
RANDLIB90
Fortran 95 Routines for Random Number Generation

User's Guide

Barry W. BrownJames Lovato

1 Technicalities
1.1 Obtaining the Code
The source for this code (and all code written by this group) can be obtained fromthe following URL:
http://odin.mdacc.tmc.edu/anonftp/

1.2 Legalities
We place our e�orts in writing this package in the public domain. However, codefrom ACM publications is subject to the ACM policy (below).
1.3 References
1.3.1 Base Generator
The base generator and all code in the ecuyer cote mod come from the reference:P. L'Ecuyer and S. Cote. (1991) \Implementing a Random Number Package withSplitting Facilities." ACM Trans. on Math. Softw. 17:1, pp 98-111.We transliterated the Pascal of the reference to Fortran 95.
1.4 The Beta Random Number Generator
R. C. H. Cheng (1978) \Generating Beta Variates with Nonintegral Shape Param-eters." Communications of the ACM, 21:317-322 (Algorithms B and BC)

1

1.5 The Binomial Random Number Generator
Kachitvichyanukul, V. and Schmeiser, B. W. (1988) \Binomial Random VariateGeneration." Communications of the ACM, 31: 216. (Algorithm BTPE.)
1.6 The Standard Exponential Random Number Generator
Ahrens, J.H. and Dieter, U. (1972) \Computer Methods for Sampling from theExponential and Normal Distributions." Communications of the ACM, 15: 873-882. (Algorithm SA.)
1.7 The Standard Gamma Random Number Generator
Ahrens, J.H. and Dieter, U. (1982) \Generating Gamma Variates by a Modi�edRejection Technique." Communications of the ACM, 25: 47-54. (Algorithm SA.)
1.8 The Standard Normal Random Number Generator
Ahrens, J.H. and Dieter, U. (1973) \Extensions of Forsythe's Method for RandomSampling from the Normal Distribution." Math. Comput., 27:927 - 937. AlgorithmFL (method=5)
1.9 ACM Policy on Use of Code
Here is the software Policy of the ACM.

Submittal of an algorithm for publication in one of the ACM Transac-tions implies that unrestricted use of the algorithm within a computeris permissible. General permission to copy and distribute the algorithmwithout fee is granted provided that the copies are not made or dis-tributed for direct commercial advantage. The ACM copyright noticeand the title of the publication and its date appear, and notice is giventhat copying is by permission of the Association for Computing Machin-ery. To copy otherwise, or to republish, requires a fee and/or speci�cpermission.
Krogh, F. (1997) \Algorithms Policy." ACM Tran. Math. Softw. 13,183-186.

Here is our standard disclaimer.
NO WARRANTYWE PROVIDE ABSOLUTELY NO WARRANTY OF ANY KIND EI-THER EXPRESSED OR IMPLIED, INCLUDING BUT NOT LIM-ITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY

2

AND FITNESS FOR A PARTICULAR PURPOSE. THE ENTIRE RISKAS TO THE QUALITY AND PERFORMANCE OF THE PROGRAMIS WITH YOU. SHOULD THIS PROGRAM PROVE DEFECTIVE,YOU ASSUME THE COST OF ALL NECESSARY SERVICING, RE-PAIR OR CORRECTION.
IN NO EVENT SHALL THE UNIVERSITY OF TEXAS OR ANY OFITS COMPONENT INSTITUTIONS INCLUDING M. D. ANDERSONHOSPITAL BE LIABLE TO YOU FOR DAMAGES, INCLUDINGANY LOST PROFITS, LOST MONIES, OR OTHER SPECIAL, IN-CIDENTAL OR CONSEQUENTIAL DAMAGES ARISING OUT OFTHE USE OR INABILITY TO USE (INCLUDING BUT NOT LIM-ITED TO LOSS OF DATA OR DATA OR ITS ANALYSIS BEINGRENDERED INACCURATE OR LOSSES SUSTAINED BY THIRDPARTIES) THE PROGRAM.
(Above NO WARRANTY modi�ed from the GNU NO WARRANTYstatement.)

3

2 Introduction: The ecuyer cote mod module
The base random generator for this set of programs contains 32 virtual randomnumber generators. Each generator can provide 1,048,576 blocks of numbers, andeach block is of length 1,073,741,824. Any generator can be set to the beginning orend of the current block or to its starting value. The methods are from the papercited immediately below, and most of the code is a transliteration from the Pascalof the paper into Fortran.Most users won't need the sophisticated capabilities of this package, and will desirea single generator. This single generator (which will have a non-repeating length of2:3� 1018 numbers) is the default.
3 Initializing the Random Number Generator
You almost certainly want to start the random number generation by setting theseed. (Defaults are provided if the seed is not set, but the defaults will producethe same set of numbers on each run of the program which is generally not what iswanted.)Make sure that the program unit that sets the seed hasUSE user set generator at its top.The most straightforward way of setting the values need by the generator is a callto USER SET ALL.
SUBROUTINE USER SET ALL(SEED1, SEED2, GENERATOR)

ARGUMENTS
� INTEGER, INTENT(IN) :: SEED1 The �rst number used to set thegenerator.
� INTEGER, INTENT(IN) :: SEED2 The second number used to set thegenerator.
� INTEGER, INTENT(IN), OPTIONAL :: GENERATOR The cur-rent generator. If this argument is not present, the current generator is set to1. Input Range: [1 : 32]

It is easier to remember an English phrase, such as your name, than it is to remembertwo large integer values. The following routine prompts interactively for a phrase(non-blank character string { only the �rst 80 characters are used) and hashes thephrase to set the seeds of the random number generator. The current generator isset to 1.
4

SUBROUTINE INTER PHRASE SET SEEDS()
This routine calls the following routine which is the non-interactive version of thesame action.
SUBROUTINE PHRASE SET SEEDS(PHRASE)CHARACTER(LEN=*), INTENT(IN) :: PHRASE
This in turn calls the lowest level routine:
CALL PHRASE TO SEED(PHRASE, SEED1, SEED2)CHARACTER(LEN=*), INTENT(IN) :: PHRASEINTEGER, INTENT(OUT) :: SEED1, SEED2
In this call, phrase is an (input) character string of arbitrary length and seed1 andseed2 are two (output) integer values that may be used to initialize the seeds of therandom number generator.Setting the seeds to a �xed value is extremely useful in the debugging phase ofa project where exact runs are to be replicated. However, there are occasions inwhich a random appearing sequence is desired { an example is computer games.The following routine sets the seeds of the generator using the system clock.
SUBROUTINE TIME SET SEEDS()
If the computer doesn't have a clock (unlikely) then the routine queries the user fora phrase to use to set the seeds. The current generator is set to 1.The next described routine allows the programmer to select setting seeds by timeor from a phrase entered interactively.
SUBROUTINE SET SEEDS(WHICH)INTEGER, OPTIONAL, INTENT(IN) :: WHICH
If WHICH is not present, the routine queries the user as to whether time or a phraseis to be used to set the random number seeds. If WHICH is present in the callinglist and equals 1 then the seeds are set from the time; if WHICH is present and notequal to 1 then the seeds are set for a phrase promted from the user..The current generator is set through
SUBROUTINE SET CURRENT GENERATOR(G)INTEGER, INTENT(IN) :: G
The integer argument G sets the number of the current generator to its value whichmust be between 1 and 32.

5

4 random beta mod
FUNCTION RANDOM BETA(A,B)
4.1 The Distribution
The density of the beta distribution is de�ned on x in [0; 1] and is proportional to

xa(1� x)b

4.2 Arguments
� REAL, INTENT(IN) :: A. The �rst parameter of the beta distribution(a above). Input Range: [10�37 :1]
� REAL, INTENT(IN) :: B. The second parameter of the beta distribution(b above). Input Range: [10�37 :1]

6

5 random binomial mod
REAL FUNCTION RANDOM BINOMIAL(N,PR)
5.1 The Distribution
The density of the binomial distribution provides the probability of S successes inN independent trials, each with probability of success PR.The density is proportional to

PRS(1� PR)N�S
The routine returns values of S drawn from this distribution.
5.2 Arguments

� INTEGER, INTENT(IN) :: N. The number of binomial trials. InputRange: [0 :1]
� REAL, INTENT(IN) :: PR. The probability of success at each trial. In-put Range: [0 : 1]

7

6 random chisq mod
REAL FUNCTION RANDOM CHISQ(DF)
6.1 The Distribution
The chi-squared distribution is the distribution of the sum of squares of DF inde-pendent unit (mean 0, sd 1) normal deviates.The density is de�ned on x in [0;1) and is proportional to

x(DF�2)=2 exp(�x=2
6.2 Argument

� REAL, INTENT(IN) :: DF. The degrees of freedom of the chi-squaredistribution. Input Range: [10�37 :1]

8

7 random exponential mod
REAL FUNCTION RANDOM EXPONENTIAL(AV)
7.1 The Distribution
The density is:

1=AV exp(�x=AV)
7.2 Argument

� REAL, INTENT(IN) :: AV. The mean of the exponential; see densityabove. Input Range: [10�37 :1]

9

8 random gamma mod
REAL FUNCTION RANDOM GAMMA(scale,shape)
8.1 The Distribution
The density of the GAMMA distribution is proportional to:

(x=SCALE)SHAPE�1 exp(�x=SCALE)
8.2 Arguments

� REAL (dpkind), INTENT(IN) :: SHAPE. The shape parameter of thedistribution (See above.)Input Range: [10�37 :1]
� REAL (dpkind), INTENT(IN) :: SCALE. The scale parameter of thedistribution.Input Range: [10�37 :1]

10

9 random multinomial mod
SUBROUTINE RANDOM MULTINOMIAL(N,P,NCAT,IX)
9.1 The Distribution
Each observation falls into one category where the categories are numbered 1 : : : NCAT .The observations are independent and the probability that the outcome will be cat-egory i is P (i). There are N observations altogether, and the number falling incategory i is IX(i).
9.2 Arguments

� INTEGER, INTENT(IN) :: N The number of observations from themultinomial distribution. Input Range: [1 :1]
� REAL, DIMENSION(NCAT-1), INTENT(IN) :: P P(i) is the prob-ability that an observation falls into category i. NOTE: The P(i) must benon-negative and less than or equal to 1. Only the �rst NCAT-1 P(i) areused, the �nal one is obtained from the restriction that all NCAT P's mustadd to 1.
� INTEGER, INTENT(IN) :: NCAT The number of outcome categories.NCAT must be at least 2.
� INTEGER, INTENT(OUT), IX(NCAT)

11

10 random multivariate normal mod
11 The Distribution
The multivariate normal density is:
(2�)�(k=2)jCOVM j�1=2 exp(h�(1=2)(X �MEANV)TCOVM�1(X �MEANV)i)
where superscript T is the transpose operator.
12 Use of Routines
First, CALL SET RANDOM MULTIVARIATE NORMAL. This routine processesand saves information needed to generate multivariate normal deviates. Succes-sive calls to RANDOM MULTIVARIATE NORMAL generate deviates from valuesspeci�ed in the most recent SET routine.SUBROUTINE SET RANDOM MULTIVARIATE NORMAL(MEANV,COVM,P)
12.1 Arguments

� REAL, INTENT(IN), DIMENSION(:) :: MEANV. The mean of themultivariate normal. The size of MEANV must be at least P; if it is morethan P, entries following the P'th are ignored.
� REAL, INTENT(IN), DIMENSION(:,:) :: COVM. The variance co-variance matrix of the multivariate normal. Both dimensions must be at leastP; if the matrix is bigger than PXP, extra entries are ignored.
� INTEGER, INTENT(IN) :: P. The dimension of the multivariate normaldeviates to be generated.

SUBROUTINE RANDOM MULTIVARIATE NORMAL(X)
12.2 Arguments

� REAL, INTENT(OUT), DIMENSION(:) :: X. Contains the generatedmultivariate normal deviate. NOTE. No check on the size of X is made { theprogrammer must assure that it is big enough.

12

13 random nc chisq mod
FUNCTION random nc chisq(df,pnonc)
13.1 The Distribution
The noncentral chi-squared distribution is the sum of DF independent normal dis-tributions with unit standard deviations, but possibly non-zero means . Let themean of the ith normal be �i. Then PNONC = Pi �i.
13.2 Arguments

� REAL, INTENT(IN) :: DF. The degrees of freedom of the noncentralchi-squared.
� REAL, INTENT(IN) :: PNONC. The noncentrality parameter of thenoncentral chi-squared.

13

14 random negative binomial mod
FUNCTION random negative binomial(s,pr)
14.1 The Distribution
The density of the negative binomial distribution provides the probability of pre-cisely F failures before the S'th success in independent binomial trials, each withprobability of success PR.The density is

 F + S � 1S � 1
!PRS(1� PR)F

This routine returns a random value of F given values of S and P.
14.2 Arguments

� INTEGER, INTENT(IN) :: S. The number of succcesses after which thenumber of failures is not counted.
� REAL, INTENT(IN) :: PR. The probability of success in each binomialtrial.

14

15 random normal mod
FUNCTION random normal(mean,sd)
15.1 The Distribution
The density of the normal distribution is proportional to

exp �(X �MEAN)22SD2
!

15.2 Arguments
� REAL, INTENT(IN) :: MEAN. The mean of the normal distribution.
� REAL, INTENT(IN) :: SD. The standard deviation of the normal dis-tribution.

15

16 random permutation mod
SUBROUTINE RANDOM PERMUTATION(ARRAY,LARRAY)
16.1 Function
Returns a random permutation of (integer) array.
16.2 Arguments

� INTEGER, INTENT(INOUT) :: ARRAY. On input an array of inte-gers (usually 1..larray). On output a random permutation of this array.
� INTEGER, INTENT(IN), OPTIONAL:: LARRAY. If present thelength of ARRAY to be used . If absent, all of ARRAY is used { i.e., the SIZEfunction is invoked to determine the dimensioned size of ARRAY

16

17 random poisson mod
FUNCTION random poisson(lambda)
17.1 The Distribution
The density of the Poisson distribution (probability of observing S events) is:

LAMBDAS
S! exp(�LAMBDA)

17.2 Argument
� REAL, INTENT(IN) :: LAMBDA. The mean of the Poisson distribu-tion.

17

17.3 random uniform integer
FUNCTION RANDOM UNIFORM INTEGER(LOW,HIGH)
17.4 Function
Returns a random integer between LOW and HIGH (inclusive of the limits).
17.5 Arguments

� INTEGER, INTENT(IN) :: LOW. Low limit of uniform integer.
� INTEGER, INTENT(IN) :: HIGH. High limit of uniform integer.

18

18 random uniform mod
FUNCTION random uniform(low,high)
18.1 Function
Returns a random real between LOW and HIGH.
18.2 Arguments

� REAL, INTENT(IN) :: LOW. Low limit of uniform real.
� REAL, INTENT(IN) :: HIGH. High limit of uniform real.

19

19 The \Standard" Generator Modules
It is not really intended that these modules be used directly. However, for complete-ness, here is a listing of them.
19.1 random standard exponential mod
FUNCTION random standard exponential()
19.1.1 Function
Returns a random value from an exponential distribution with mean one.
19.2 random standard normal mod
FUNCTION random standard normal()
19.2.1 Function
Returns a random value from a normal distribution with mean 0 and standarddeviation one.
19.3 random standard uniform mod
FUNCTION random standard uniform()
19.3.1 Function
Returns a random value from a uniform distribution on zero to one.
20 Advanced Use of the ecuyer cote mod Module
Recall the following information from the Introduction.

The base random generator for this set of programs contains 32 virtualrandom number generators. Each generator can provide 1,048,576 blocksof numbers, and each block is of length 1,073,741,824. Any generatorcan be set to the beginning or end of the current block or to its startingvalue.

20

20.1 Setting the Virtual Random Number Generator
SUBROUTINE set current generator(g)Sets the current virtual generator to the integer value g, where 1 � g � 32. Beforethis routine is called, the current generator is 1.
20.1.1 Arguments

� INTEGER, INTENT(IN) :: G. The number of the virtual generator tobe used.
20.2 Getting the Virtual Random Number Generator
SUBROUTINE get current generator(g)
20.2.1 Arguments

� INTEGER, INTENT(OUT) :: G. The number of the virtual generatorcurrently in use.
20.3 Reinitializing the Current Virtual Generator
SUBROUTINE reinitialize current generator(isdtyp)Reinitializes the state of the current generator.
20.3.1 Arguments

� INTEGER, INTENT(IN) :: ISDTYP. The initialization action to beperformed.
-1 Sets the seeds of the current generator to their value at the beginning ofthe current run.
0 Sets the seeds to the �rst value of the current block of seeds.
1 Sets the seeds to the �rst value of the next block of seeds.

21 Getting the Current Seeds of the Virtual Ran-
dom Number Generator

SUBROUTINE get current seeds(iseed1,iseed2)
21

21.1 Arguments
Gets the current value of the two integer seeds of the current generator.

� INTEGER, INTENT(OUT) :: ISEED1. The value of the �rst seed.
� INTEGER, INTENT(OUT) :: ISEED2. The value of the second seed.

22 Setting the Current Seeds of the Virtual Ran-
dom Number Generator

SUBROUTINE set current seeds(iseed1,iseed2)
22.1 Arguments
Sets the current value of the two integer seeds of the current generator.

� INTEGER, INTENT(IN) :: ISEED1. The value of the �rst seed.
� INTEGER, INTENT(IN) :: ISEED2. The value of the second seed.

23 Producing Antithetic Random Numbers from
the Current Generator

SUBROUTINE set antithetic(qvalue)Sets the current generator to produce antithetic values or not. If X is the valuenormally returned from a uniform [0,1] random number generator then 1 - X is theantithetic value. If X is the value normally returned from a uniform [0,N] randomnumber generator then N - 1 - X is the antithetic value. All generators are initializedto NOT generate antithetic values.
23.1 Arguments

� LOGICAL, INTENT (IN) :: qvalue If .TRUE., antithetic values aregenerated. If .FALSE., non-antithetic (ordinary) values are generated.

22

24 Bottom Level Support Routines
SUBROUTINE advance state(k)Advances the current state of the seeds of the current virtual random number gen-erator by 2k values.

� INTEGER, INTENT (IN) :: k The seeds of the current virtual generatorare set ahead by sk values.
FUNCTION multiply modulo(a,s,m)Returns (A*S) modulo M.

� INTEGER, INTENT(IN) :: A First component of product. Must be <M.
� INTEGER, INTENT(IN) :: S Second component of product. Must be� M.
� INTEGER, INTENT(IN) :: M Integer with respect to which the modulooperation is performed.

23

	Technicalities
	Obtaining the Code
	Legalities
	References
	Base Generator

	The Beta Random Number Generator
	The Binomial Random Number Generator
	The Standard Exponential Random Number Generator
	The Standard Gamma Random Number Generator
	The Standard Normal Random Number Generator
	ACM Policy on Use of Code

	Introduction: The ecuyer_cote_mod module
	Initializing the Random Number Generator
	random_beta_mod
	The Distribution
	Arguments

	random_binomial_mod
	The Distribution
	Arguments

	random_chisq_mod
	The Distribution
	Argument

	random_exponential_mod
	The Distribution
	Argument

	random_gamma_mod
	The Distribution
	Arguments

	random_multinomial_mod
	The Distribution
	Arguments

	random_multivariate_normal_mod
	The Distribution
	Use of Routines
	Arguments
	Arguments

	random_nc_chisq_mod
	The Distribution
	Arguments

	random_negative_binomial_mod
	The Distribution
	Arguments

	random_normal_mod
	The Distribution
	Arguments

	random_permutation_mod
	Function
	Arguments

	random_poisson_mod
	The Distribution
	Argument
	random_uniform_integer
	Function
	Arguments

	random_uniform_mod
	Function
	Arguments

	The ``Standard'' Generator Modules
	random_standard_exponential_mod
	Function

	random_standard_normal_mod
	Function

	random_standard_uniform_mod
	Function

	Advanced Use of the ecuyer_cote_mod Module
	Setting the Virtual Random Number Generator
	Arguments

	Getting the Virtual Random Number Generator
	Arguments

	Reinitializing the Current Virtual Generator
	Arguments

	Getting the Current Seeds of the Virtual Random Number Generator
	Arguments

	Setting the Current Seeds of the Virtual Random Number Generator
	Arguments

	Producing Antithetic Random Numbers from the Current Generator
	Arguments

	Bottom Level Support Routines

