
Perforce in FreeBSD Development
Scott Long

scottl@FreeBSD.org

$FreeBSD: release/9.2.0/en_US.ISO8859-1/articles/p4- primer/article.xml 41645
2013-05-17 18:49:52Z gabor $

$FreeBSD: release/9.2.0/en_US.ISO8859-1/articles/p4- primer/article.xml 41645
2013-05-17 18:49:52Z gabor $

FreeBSD is a registered trademark of the FreeBSD Foundation.
CVSup is a registered trademark of John D. Polstra.
Many of the designations used by manufacturers and sellers to distinguish their products are claimed
as trademarks. Where those designations appear in this documen t, and the FreeBSD Project was
aware of the trademark claim, the designations have been follow ed by the “™” or the “®” symbol.

Table of Contents
1 Introduction ..1

2 Getting Started...2

3 Clients..3

4 Syncing..4

5 Branches..4

6 Integrations...5

7 Submit...6

8 Editing ...7

9 Changes, Descriptions, and History...7

10 Diffs ...8

11 Adding and Removing Files..9

12 Working with diffs ...9

13 Renaming files..10

14 Interactions between FreeBSD Subversion and Perforce..10

15 Offline Operation...10

16 Notes for Google Summer of Code...11

1 Introduction
The FreeBSD project uses thePerforceversion control system to manage experimental projects that are not ready
for the main Subversion repository.

1

Perforce in FreeBSD Development

1.1 Availability, Documentation, and Resources

While Perforce is a commercial product, the client software for interacting with the server is freely available from
Perforce. It can be easily installed on FreeBSD via thedevel/p4 port or can be downloaded from thePerforceweb
site at http://www.perforce.com/perforce/loadprog.html, which also offers client applications for other OS’s.

While there is a GUI client available, most people use the command line application calledp4. This document is
written from the point of view of using this command.

Detailed documentation is available online at http://www.perforce.com/perforce/technical.html.

Reading the “Perforce User’s Guide” and “Perforce Command Reference” is highly recommended. Thep4
application also contains an extensive amount of online help accessible via thep4 help command.

The FreeBSDPerforceserver is hosted onperforce.freebsd.org, port1666. The repository is browsable
online at http://p4web.freebsd.org. Some portions of the repository are also automatically exported to a number of
legacyCVSup servers.

2 Getting Started
The first step to usingPerforce is to obtain an account on the server. If you already have aFreeBSD.org account,
log intofreefall, run the following command, and enter a password that is not the same as your FreeBSD login or
any other SSH passphrase:

% /usr/local/bin/p4newuser

Of course if you do not have aFreeBSD.org account, you will need to coordinate with your sponsor.

Warning: An email will be sent to your FreeBSD address that contains the password you specified above in
cleartext. Be sure to change the password once your Perforce account has been created!

The next step is to set the environment variables thatp4 needs, and verify that it can connect to the server. The
P4PORT variable is required to be set for all operations, and specifies the appropriatePerforceserver to talk to. For
the FreeBSD project, set it like so:

% export P4PORT=perforce.freebsd.org:1666

Note: Users with shell access on the FreeBSD.org cluster may wish to tunnel the Perforce client-server protocol
via an SSH tunnel, in which case the above string should be set to localhost.

The FreeBSD server also requires that theP4USER andP4PASSWD variables be set. Use the username and password
from above, like so:

% export P4USER=username

% export P4PASSWD=password

Test that this works by running the following command:

2

Perforce in FreeBSD Development

% p4 info

This should return a list of information about the server. Ifit does not, check that you have theP4PORT variable set
correctly.

3 Clients
Perforceprovides access to the repository and tracks state on a per-client basis. InPerforce terms, a client is a
specification that maps files and directories from the repository to the local machine. Each user can have multiple
clients, and each client can access different or overlapping parts of the repository. The client also specifies the root
directory of the file tree that it maps, and it specifies the machine that the tree lives on. Thus, working on multiple
machines requires that multiple clients be used.

Clients may be accessed via thep4 client command. Running this command with no arguments will bring up a
client template in an editor, allowing you to create a new client for your work. The important fields in this template
are explained below:

Client:

This is the name of the client spec. It can be anything you want, but it must be unique within thePerforce
server. A naming convention that is commonly used isusername_machinename, which makes it easy to identify
clients when browsing them. A default name will be filled in that is just the machine name.

Description:

This can contain a simple text description to help identify the client.

Root:

This is the local directory that will serve as the root directory of all the files in the client mapping. This should
be a unique location in your filesystem that does not overlap with other files orPerforceclients.

Options:

Most of the default options are fine, though it is usually a good idea to make sure that thecompress andrmdir
options are present and do not have ano prefix on them. Details about each option are in thePerforcedocs.

LineEnd:

This handles CR-LF conversions and should be left to the default unless you have special needs for it.

View:

This is where the server-to-local file mappings go. The default is

//depot/... //client/...

This will map the entirePerforce repository to theRoot directory of your client.DO NOT USE THIS
DEFAULT! The FreeBSD repo is huge, and trying to map and sync it all willtake an enormous amount of
resources. Instead, only map the section of the repo that youintend to work on. For example, there is the smpng
project tree at//depot/projects/smpng. A mapping for this might look like:

//depot/projects/smpng/... //client/...

3

Perforce in FreeBSD Development

The... should be taken literally. It is aPerforce idiom for saying “this directory and all files and directories
below it.”

A Perforce “view” can contain multiple mappings. Let’s say you want to map in both the SMPng tree and the
NFS tree. Your View might look like:

//depot/projects/smpng/... //client/smpng/...
//depot/projects/nfs/... //client/nfs/...

Remember that theclient is the name of the client that was specified in theClient section, but in theView it
also resolves to the directory that was specified in theRoot section.

Also note that the same file or directory cannot be mapped multiple times in a single view. The following is
illegal and will produce undefined results:

//depot/projects/smpng/... //client/smpng-foo/...
//depot/projects/smpng/... //client/smpng-bar/...

Views are a tricky part of the learning experience withPerforce, so do not be afraid to ask questions.

Existing clients can be listed via thep4 clients command. They can be viewed without being modified via thep4

client -o clientname command.

Whenever you are interacting with files inPerforce, theP4CLIENT environment variable must be set to the name of
the client that you are using, like so:

% export P4CLIENT=myclientname

Note that client mappings in the repository are not exclusive; multiple clients can map in the same part of the
repository. This allows multiple people to access and modify the same parts of the repository, allowing a team of
people to work together on the same code.

4 Syncing
Once you have a client specification defined and theP4CLIENT variable set, the next step is to pull the files for that
client down to your local machine. This is done with thep4 sync command, which instructsPerforce to
synchronize the local files in your client with the repository. The first time it runs, it will download all of the files.
Subsequent runs will only download files that have changed since the previous run. This allows you to stay in sync
with others whom you might be working with.

Sync operations only work on files that thePerforceserver knows has changed. If you change or delete a file locally
without informing the server, doing a sync will not bring it back. However, doing ap4 sync -f will
unconditionally sync all files, regardless of their state. This is useful for resolving problems where you think that
your tree might be corrupt.

You can sync a subset of your tree or client by specifying a relative path to the sync command. For example, to only
sync theufs directory of thesmpng project, you might do the following:

% cd projectroot/smpng

% p4 sync src/sys/ufs/...

Specifying a local relative path works for many otherp4 commands.

4

Perforce in FreeBSD Development

5 Branches
One of the strongest features ofPerforce is branching. Branches are very cheap to create, and moving changes
between related branches is very easy (as will be explained later). Branches also allow you to do very experimental
work in a sandbox-like environment, without having to worryabout colliding with others or destabilizing the main
tree. They also provide insulation against mistakes while learning thePerforcesystem. With all of these benefits, it
makes sense for each project to have its own branch, and we strongly encourage that with FreeBSD. Frequent
submits of changes to the server are also encouraged.

Similar toSubversion, thePerforce repository (the “depot”) is a single flat tree. Every file, whether a unique
creation or a derivative from a branch, is accessible via a simple path under the server//depot directory. When you
create a branch, all you are doing is creating a new path underthe//depot. This is in sharp contrast to systems like
CVS, where each branch lives in the same path as its parent. With Perforce, the server tracks the relationship
between the files in the parent and child, but the files themselves live under their own paths.

The first step to creating a branch is to create a branch specification. This is similar to a client specification, but is
created via the commandp4 branch branchname.

The following important fields are explained:

Branch

The name of the branch. It can be any name, but must be unique within the repository. The common convention
in FreeBSD is to useusername_projectname.

Description

This can hold a simple text description to describe the branch.

View

This is the branch mapping. Instead of mapping from the depotto the local machine like a client map, it maps
between the branch parent and branch child in the depot. For example, you might want to create a branch of the
smpng project. The mapping might look like:

//depot/projects/smpng/... //depot/projects/my-super-smpng/...

Or, you might want to create a brand new branch off of the stockFreeBSD sources:

//depot/vendor/freebsd/... //depot/projects/my-new-project/...

This will map the FreeBSD HEAD tree to your new branch.

Creating the branch spec only saves the spec itself in the server, it does not modify the depot or change any files. The
directory that you specified in the branch is empty on the server until you populate it.

To populate your branch, first edit your client with thep4 client command and make sure that the branch
directory is mapped in your client. You might need to add aView line like:

//depot/projects/my-new-project/... //myclient/my-new-project/...

The next step is to run thep4 integrate command, as described in the next section.

5

Perforce in FreeBSD Development

6 Integrations
“Integration” is the term used byPerforce to describe the action of moving changes from one part of the depot to
another. It is most commonly done in conjunction with creating and maintaining branches. An integration is done
when you want to initially populate a branch, and it is done when you want to move subsequent changes in the
branch from the parent to the child, or from the child to the parent. A common example of this is periodically
integrating changes from the vendor FreeBSD tree to your child branch tree, allowing you to keep up to date with
changes in the FreeBSD tree. ThePerforceserver tracks the changes in each tree and knows when there are changes
that can be integrated from one tree to another.

The common way to do an integration is with the following command:

% p4 integrate -b branchname

branchname is the name given to a branch spec, as discussed in the previous section. This command will instruct
Perforce to look for changes in the branch parent that are not yet in thechild. From those changes it will prepare a
list of diffs to move. If the integration is being done for thefirst time on a branch (i.e. doing an initial population
operation), then the parent files will simply be copied to thechild location on the local machine.

Once the integration operation is done, you must runp4 resolve to accept the changes and resolve possible
conflicts. Conflicts can arise from overlapping changes thathappened in both the parent and child copy of a file.
Usually, however, there are no conflicts, andPerforcecan quickly figure out how to merge the changes together. Use
the following commands to do a resolve operation:

% p4 resolve -as

% p4 resolve

The first invocation will instructPerforce to automatically merge the changes together and accept filesthat have no
conflicts. The second invocation will allow you to inspect each file that has a possible conflict and resolve it by hand
if needed.

Once all of the integrated files have been resolved, they needto be committed back to the repository. This is done via
thep4 submit command, explained in the next section.

7 Submit
Changes that are made locally should be committed back to thePerforceserver for safe keeping and so that others
can access them. This is done via thep4 submit command. When you run this command, it will open up a submit
template in an editor. FreeBSD has a custom template, and theimportant fields are described below:

Description:
<enter description here>
PR:
Submitted by:
Reviewed by:
Approved by:
Obtained from:
MFP4 after:

It is good practice to provide at least 2-3 sentences that describe what the changes are that you are submitting. You
should say what the change does, why it was done that way or what problem is solves, and what APIs it might

6

Perforce in FreeBSD Development

change or other side effects it might have. This text should replace the<enter description here> line in the
template. You should wrap your lines and start each line witha TAB. The tags below it are FreeBSD-specific and can
be removed if not needed.

Files:

This is automatically populated with all of the files in your client that were marked in the add, delete, integrate, or
edit states on the server. It is always a very good idea to review this list and remove files that might not be ready yet.

Once you save the editor session, the submit will happen to the server. This also means that the local copies of the
submitted files will be copied back to the server. If anythinggoes wrong during this process, the submit will be
aborted, and you will be notified that the submit has been turned into a changelist that must be corrected and
re-submitted. Submits are atomic, so if one file fails, the entire submit is aborted.

Submits cannot be reverted, but they can be aborted while in the editor by exiting the editor without changing the
Description text.Perforcewill complain about this the first time you do it and will put you back in the editor.
Exiting the editor the second time will abort the operation.Reverting a submitted change is very difficult and is best
handled on a case-by-case basis.

8 Editing
The state of each file in the client is tracked and saved on the server. In order to avoid collisions from multiple people
working on the same file at once,Perforce tracks which files are opened for edit, and uses this to help with submit,
sync, and integration operations later on.

To open a file for editing, use thep4 edit command like so:

% p4 edit filename

This marks the file on the server as being in theedit state, which then allows it to be submitted after changes are
made, or marks it for special handling when doing an integration or sync operation. Note that editing is not exclusive
in Perforce. Multiple people can have the same file in the edit state (you will be informed of others when you run the
edit command), and you can submit your changes even when others are still editing the file.

When someone else submits a change to a file that you are editing, you will need to resolve his changes with yours
before your submit will succeed. The easiest way to do this isto either run ap4 sync or p4 submit and let it fail
with the conflict, then runp4 resolve to manually resolve and accept his changes into your copy, then runp4
submit to commit your changes to the repository.

If you have a file open for edit and you want to throw away your changes and revert it to its original state, run thep4

revert command like so:

% p4 revert filename

This resyncs the file to the contents of the server, and removes the edit attribute from the server. Any local changes
that you had will be lost. This is quite useful when you have a made changes to a file but later decide that you do not
want to keep them.

When a file is synced, it is marked read-only in the filesystem.When you tell the server to open it for editing, it is
changed to read-write on the filesystem. While these permissions can easily be overridden by hand, they are meant to
gently remind you that you should being using thep4 edit command. Files that have local changes but are not in
the edit state may get overwritten when doing ap4 sync.

7

Perforce in FreeBSD Development

9 Changes, Descriptions, and History
Changes to thePerforcedepot can be listed via thep4 changes command. This will provide a brief description of
each change, who made the change, and what its change number was. A change can be examined in detail via thep4

describe changenumber command. This will provide the submit log and the diffs of theactual change.

Commonly, thep4 describe command is used in one of three ways:

p4 describe -s CHANGE

List a short description of changesetCHANGE, including the commit log of the particular changeset and a list
of the files it affected.

p4 describe -du CHANGE

List a description of changesetCHANGE, including the commit log of the particular changeset, a list of the files
it affected and a patch for each modified file, in a format similar to “unified diff” patches (but not exactly the
same).

p4 describe -dc CHANGE

List a description of changesetCHANGE, including the commit log of the particular changeset, a list of the files
it affected and a patch for each modified file, in a format similar to “context diff” patches (but not exactly the
same).

Thep4 filelog filename command will show the history of a file, including all submits, integrations, and
branches of it.

10 Diffs
There are two methods of producing file diffs inPerforce, either against local changes that have not been submitted
yet, or between two trees (or within a branch) in the depot. These are done with different commands,diff and
diff2:

p4 diff

This generates a diff of the local changes to files in the edit state. The-du and-dc flags can be used to create
unified or context diffs, respectively, or theP4DIFF environment variable can be set to a local diff command to
be used instead. It is a very good idea to use this command to review your changes before submitting them.

p4 diff2

This creates a diff between arbitrary files in the depot, or between files specified in a branch spec. The diff
operation takes place on the server, soP4DIFF variable has no effect, though the-du and-dc flags do work.
The two forms of this command are:

% p4 diff2 -b branchname

and

% p4 diff2 //depot/path1 //depot/path2

In all cases the diff will be written to the standard output. Unfortunately,Perforceproduces a diff format that is
slightly incompatible with the traditional Unix diff and patch tools. Using theP4DIFF variable to point to the real
diff(1) tool can help this, but only for thep4 diff command. The output ofdiff2 command must be

8

Perforce in FreeBSD Development

post-processed to be useful (the-u flag ofdiff2 will produce unified diffs that are somewhat compatible, butit does
not include files that have been added or deleted). There is a post-processing script at:
http://people.freebsd.org/~scottl/awkdiff.

11 Adding and Removing Files
Integrating a branch will bring existing files into your tree, but you may still want to add new files or remove existing
ones. Adding files is easily done be creating the file and then running thep4 add command like so:

% p4 add filename

If you want to add a whole tree of files, run a command like:

% find . -type f | xargs p4 add

Note: Perforce can track UNIX symlinks too, so you can probably use “\! -type d” as the matching expression
in find(1) above. We don’t commit symlinks into the source tree of FreeBSD though, so this should not be
necessary.

Doing ap4 submit will then copy the file to the depot on the server. It is very important to only add files, not
directories. Explicitly adding a directory will causePerforce to treat it like a file, which is not what you want.

Removing a file is just as easy with thep4 delete command like so:

% p4 delete filename

This will mark the file for deletion from the depot the next time that a submit is run. It will also remove the local
copy of the file, so beware.

Of course, deleting a file does not actually remove it from therepository.

Deleted files can be resurrected by syncing them to a prior version. The only way to permanently remove a file is to
use thep4 obliterate command. This command is irreversible and expensive, so it is only available to those with
admin access.

12 Working with diffs
Sometimes you might need to apply a diff from another source to a tree underPerforcecontrol. If it is a large diff that
affects lots of files, it might be inconvenient to manually run p4 edit on each file. There is a trick for making this
easier. First, make sure that no files are open on your client and that your tree is synced and up to date. Then apply
the diff using the normal tools, and coerce the permissions on the files if needed. Then run the following commands:

% p4 diff -se ... | xargs p4 edit

% p4 diff -sd ... | xargs p4 delete

% find . -type f | xargs p4 add

The first command tellsPerforce to look for files that have changed, even if they are not open. The second command
tellsPerforce to look for files that no longer exist on the local machine but do exist on the server. The third command

9

Perforce in FreeBSD Development

then attempts to add all of the files that it can find locally. This is a very brute-force method, but it works because
Perforcewill only add the files that it does not already know about. Theresult of running these commands will be a
set of files that are opened for edit, removal, or add, as appropriate.

Verify the active changelist with:

% p4 changelist

% p4 diff -du

and just do ap4 submit after that.

13 Renaming files
Perforcedoes not have a built-in way of renaming files or moving them toa different part of the tree. Simply
copying a file to the new location, doing ap4 add on it, and ap4 delete on the old copy, works, but does not
preserve change history of the file. This can make future integrations with parents and children very bumpy, in fact.
A better method of dealing with this is to do a one-time, in-tree integration, like so:

% p4 integrate -i oldfile newfile

% p4 resolve

% p4 delete oldfile

% p4 submit

The integration will forcePerforce to keep a record of the relationship between the old and new names, which will
assist it in future integrations. The-i flag tells it that it is a “baseless” integration, meaning that there is no branch
history available for it to use in the integration. That is perfect for an integration like this, but should not be used for
normal branch-based integrations.

14 Interactions between FreeBSD Subversion and Perforce
The FreeBSDPerforceandSubversionrepositories are completely separate. However, changes toSubversion are
tracked at near-real-time inPerforce. Every 2 minutes, the Subversion server is polled for updates in the HEAD
branch, and those updates are committed toPerforce in the//depot/vendor/freebsd/... tree. This tree is then
available for branching and integrating to derivative projects. Any project that directly modifies that FreeBSD source
code should have this tree as its branch parent (or grandparent, depending on the needs), and periodic integrations
and syncs should be done so that your tree stays up to date and avoids conflicts with mainline development.

The bridge between Subversion andPerforce is one-way; changes to Subversion will be reflected inPerforce, but
changes in Perforce will not be reflected in Subversion. On request, some parts of thePerforce repo can be exported
to CVSup and made available for distribution that way. Contact the FreeBSDPerforceadministrators if this is
something that you are interested in.

15 Offline Operation
One weakness ofPerforce is that it assumes that network access to the server is alwaysavailable. Most state, history,
and metadata is saved on the server, and there is no provisionfor replicating the server like there is with
CVS/CVSup. It is possible to run a proxy server, but it only provides very limited utility for offline operation.

10

Perforce in FreeBSD Development

The best way to work offline is to make sure that your client hasno open files and is fully synced before going
offline. Then when editing a file, manually change the permissions to read-write. When you get back online, run the
commands listed in theSection 12to automatically identify files that have been edited, added, and removed. It is
quite common to be surprised byPerforceoverwriting a locally changed file that was not opened for edit, so be extra
vigilant with this.

16 Notes for Google Summer of Code
Most FreeBSD projects under the Google Summer of Code program are located on the FreeBSDPerforceserver
under one of the following locations:

• //depot/projects/soc2005/project-name/...

• //depot/projects/soc2006/project-name/...

• //depot/projects/soc2007/project-name/...

• //depot/projects/soc2008/project-name/...

The project mentor is responsible for choosing a suitable project name and getting the student going withPerforce.

Access to the FreeBSDPerforceserver does not imply membership in the FreeBSD CVS committer community,
though we happily encourage all students to consider joining the project when the time is appropriate.

11

	Table of Contents
	1 Introduction
	1.1 Availability, Documentation, and Resources
	2 Getting Started
	3 Clients
	4 Syncing
	5 Branches
	6 Integrations
	7 Submit
	8 Editing
	9 Changes, Descriptions, and History
	10 Diffs
	11 Adding and Removing Files
	12 Working with diffs
	13 Renaming files
	14 Interactions between FreeBSD Subversion and Perforce
	15 Offline Operation
	16 Notes for Google Summer of Code

