
Package Building Procedures
The FreeBSD Ports Management Team

$FreeBSD: release/9.2.0/en_US.ISO8859-1/articles/por tbuild/article.xml 41645
2013-05-17 18:49:52Z gabor $

Copyright © 2003, 2004, 2005, 2006, 2007, 2008, 2009, 2010, 2 011, 2012, 2013 The
FreeBSD Ports Management Team

$FreeBSD: release/9.2.0/en_US.ISO8859-1/articles/por tbuild/article.xml 41645
2013-05-17 18:49:52Z gabor $

FreeBSD is a registered trademark of the FreeBSD Foundation.
Intel, Celeron, EtherExpress, i386, i486, Itanium, Pentium, and Xeon are trademarks or registered
trademarks of Intel Corporation or its subsidiaries in the United States and other countries.
SPARC, SPARC64, SPARCengine, and UltraSPARC are trademarks of S PARC International, Inc in the
United States and other countries. SPARC International, Inc o wns all of the SPARC trademarks and
under licensing agreements allows the proper use of these trad emarks by its members.
Many of the designations used by manufacturers and sellers to distinguish their products are claimed
as trademarks. Where those designations appear in this documen t, and the FreeBSD Project was
aware of the trademark claim, the designations have been follow ed by the “™” or the “®” symbol.

1

Package Building Procedures

Table of Contents
1 Introduction ..2

2 Build Client Management...4

3 Jail Build Environment Setup...4

4 Customizing Your Build ..4

5 Starting the Build ...6

6 Anatomy of a Build ..9

7 Build Maintenance...9

8 Monitoring the Build ...11

9 Dealing With Build Errors ..12

10 Release Builds...12

11 Uploading Packages...12

12 Experimental Patches Builds..14

13 How to configure a new package building node..16

14 How to configure a new FreeBSD branch..24

15 How to delete an unsupported FreeBSD branch...25

16 How to rebase on a supported FreeBSD branch...25

17 How to configure a new architecture..26

18 How to configure a new head node (pointyhat instance)..28

19 Procedures for dealing with disk failures..34

1 Introduction
In order to provide pre-compiled binaries of third-party applications for FreeBSD, the Ports Collection is regularly
built on one of the “Package Building Clusters.” Currently,the main cluster in use is at http://pointyhat.FreeBSD.org.

This article documents the internal workings of the cluster.

Note: Many of the details in this article will be of interest only to those on the Ports Management
(http://www.FreeBSD.org/portmgr/) team.

1.1 The codebase

Most of the package building magic occurs under the/a/portbuild directory. Unless otherwise specified, all paths
will be relative to this location.${arch} will be used to specify one of the package architectures (e.g., amd64, arm,
i386™, ia64, powerpc, SPARC64®), and${branch} will be used to specify the build branch (e.g., 7, 7-exp, 8,
8-exp, 9, 9-exp, 10, 10-exp). The set of branches thatportmgr currently supports is the same as those that the
FreeBSD security team (http://www.freebsd.org/security/index.html#sup) supports.

Note: FreeBSD no longer builds packages for branches 4, 5, or 6, nor for the alpha architecture.

2

Package Building Procedures

The scripts that control all of this live in either/a/portbuild/scripts/ or. /a/portbuild/admin/scripts/ .
These are the checked-out copies from the Subversion repository at base/projects/portbuild/

(http://svnweb.freebsd.org/base/projects/portbuild/).

Typically, incremental builds are done that use previous packages as dependencies; this takes less time, and puts less
load on the mirrors. Full builds are usually only done:

• right after release time, for the-STABLE branches

• periodically to test changes to-CURRENT

• for experimental ("exp-") builds

Packages from experimental builds are not uploaded.

1.2 Historical notes on the codebase

Until mid-2010, the scripts were completely specific topointyhat.FreeBSD.org as the head (dispatch) node.
During the summer of 2010, a significant rewrite was done in order to allow for other hosts to be head nodes. Among
the changes were:

• removal of the hard-coding of the stringpointyhat

• factoring out all configuration constants (which were previously scattered throughout the code) into configuration
files (seebelow)

• appending the hostname to the directories specified bybuildid (this will allow directories to be unambigious
when copied between machines.)

• making the scripts more robust in terms of setting up directories and symlinks

• where necessary, changing certain script invocations to make all the above easier

Note: Also during this process, the codebase was migrated to the Subversion repository
(http://svnweb.freebsd.org/base/projects/portbuild/scripts/). For reference, the previous version may still be found
in CVS (http://www.freebsd.org/cgi/cvsweb.cgi/ports/Tools/portbuild/scripts/Attic/).

1.3 Notes on privilege separation

As of January 2013, a rewrite is in progress to further separate privileges. The following concepts are introduced:

• Server-side userportbuild assumes all responsiblity for operations involving buildsand communicating with
the clients. This user no longer has access tosudo.

• Server-side usersrcbuild is created and given responsiblity for operations involving both VCS operations and
anything involving src builds for the clients. This user does not have access tosudo.

• The server-sideports- arch users go away.

• None of the above server-side users havesshkeys. Individualportmgr will accomplish all those tasks usingksu.
(This is still work-in-progress.)

3

Package Building Procedures

• The only client-side user is also namedportbuild and still has access tosudo for the purpose of managing jails.

2 Build Client Management
You may set up clients to either netboot from the master (connected nodes) or have them either self-hosted or
netboot from some otherpxe host (disconnected nodes). In all cases they set themselves up at boot-time to
prepare to build packages.

The cluster masterrsync s the interesting data (ports and src trees, bindist tarballs, scripts, etc.) to disconnected
nodes during the node-setup phase. Then, the disconnected portbuild directory is nullfs-mounted for jail builds.

Theportbuild user can ssh(1) to the client nodes to monitor them. Usesudo and check the
portbuild. hostname.conf for the user and access details.

Thescripts/allgohans script can be used to run a command on all of the${arch} clients.

3 Jail Build Environment Setup
Package builds are performed by the clients in ajail populated by theportbuild script using the
${arch}/ ${branch}/builds/ ${buildid}/bindist.tar file.

On the server, use themakeworld command to build a world from the
${arch}/ ${branch}/builds/ ${buildid}/src/ tree and install it into
${arch}/ ${branch}/builds/ ${buildid}/bindist.tar . The tree will be updated first unless-novcs is
specified.

/a/portbuild/admin/scripts/makeworld ${arch} ${branch} ${buildid} [-novcs]

Similiarly on the server, thebindist.tar tarball is created from the previously installed world by themkbindist

script.

/a/portbuild/admin/scripts/mkbindist ${arch} ${branch} ${buildid}

The per-machine tarballs are located on the server in${arch}/clients .

Thebindist.tar file is extracted onto each client at client boot time, and at the start of each pass of the
dopackages script.

For both commands above, if${buildid} is latest , it may be omitted.

Note: Currently the above two scripts must be run as root ; otherwise, the install scripts lack sufficient
permissions. This is undesirable for security reasons. Work is in progress in -HEAD to allow users to do
installations; once that is committed, the intention is to use that and run these two commands as srcbuild .

4

Package Building Procedures

4 Customizing Your Build
You can customize your build by providing local versions ofmake.conf and/orsrc.conf , named
${arch}/ ${branch}/builds/ ${buildid}/make.conf.server and
${arch}/ ${branch}/builds/ ${buildid}/src.conf.server , respectively. These will be used in lieu of the
default-named files on the server side.

Similarly, if you wish to also affect theclient-side make.conf , you may use
${arch}/ ${branch}/builds/ ${buildid}/make.conf.client .

Note: Due to the fact that individual clients may each have their own per-host make.conf , the contents of
${arch}/ ${branch}/builds/ ${buildid}/make.conf.client will be appended to that make.conf , not supplant it,
as is done for ${arch}/ ${branch}/builds/ ${buildid}/make.conf.server .

Note: There is no similar functionality for ${arch}/ ${branch}/builds/ ${buildid}/src.conf.client (what effect
would it have?).

Example 1. Samplemake.conf. target to test new default ruby version

(For this case, the contents are identical for both server and client.)

RUBY_DEFAULT_VER= 1.9

Example 2. Samplemake.conf. target for clang builds

(For this case, the contents are also identical for both server and client.)

.if !defined(CC) || ${CC} == "cc"
CC=clang
.endif
.if !defined(CXX) || ${CXX} == "c++"
CXX=clang++
.endif
.if !defined(CPP) || ${CPP} == "cpp"
CPP=clang-cpp
.endif
Do not die on warnings
NO_WERROR=
WERROR=

Example 3. Samplemake.conf.server for pkgng

WITH_PKGNG=yes
PKG_BIN=/usr/local/sbin/pkg

5

Package Building Procedures

Example 4. Samplemake.conf.client for pkgng

WITH_PKGNG=yes

Example 5. Samplesrc.conf.server to test new sort codebase

WITH_BSD_SORT=yes

5 Starting the Build
Separate builds for various combinations of architecture and branch are supported. All data private to a build (ports
tree, src tree, packages, distfiles, log files, bindist, Makefile, etc) are located under the
${arch}/ ${branch}/builds/ ${buildid}/ directory. The most recently created build can be alternatively
referenced using buildidlatest , and the one before usingprevious .

New builds are cloned from thelatest , which is fast since it uses ZFS.

5.1 dopackages scripts

Thescripts/dopackages.wrapper script is used to perform the builds.

dopackages.wrapper ${arch} ${branch} ${buildid} [-options]

Most often, you will be usinglatest for the value ofbuildid.

[-options] may be zero or more of the following:

• -keep - Do not delete this build in the future, when it would be normally deleted as part of thelatest -
previous cycle. Do not forget to clean it up manually when you no longerneed it.

• -nofinish - Do not perform post-processing once the build is complete.Useful if you expect that the build will
need to be restarted once it finishes. If you use this option, do not forget to cleanup the clients when you do not
need the build any more.

• -finish - Perform post-processing only.

• -nocleanup - By default, when the-finish stage of the build is complete, the build data will be deletedfrom
the clients. This option will prevent that.

• -restart - Restart an interrupted (or non-finish ed) build from the beginning. Ports that failed on the previous
build will be rebuilt.

• -continue - Restart an interrupted (or non-finish ed) build. Will not rebuild ports that failed on the previous
build.

• -incremental - Compare the interesting fields of the newINDEX with the previous one, remove packages and
log files for the old ports that have changed, and rebuild the rest. This cuts down on build times substantially since
unchanged ports do not get rebuilt every time.

• -cdrom - This package build is intended to end up on a CD-ROM, soNO_CDROMpackages and distfiles should be
deleted in post-processing.

• -nobuild - Perform all the preprocessing steps, but do not actually dothe package build.

6

Package Building Procedures

• -noindex - Do not rebuildINDEX during preprocessing.

• -noduds - Do not rebuild theduds file (ports that are never built, e.g., those markedIGNORE, NO_PACKAGE, etc.)
during preprocessing.

• -nochecksubdirs - Do not check theSUBDIRSfor ports that are not connected to the build.

• -trybroken - Try to buildBROKENports (off by default because the amd64/i386 clusters are fast enough now that
when doing incremental builds, more time was spent rebuilding things that were going to fail anyway. Conversely,
the other clusters are slow enough that it would be a waste of time to try and buildBROKENports).

Note: With -trybroken , you probably also want to use -fetch-original and -unlimited-errors .

• -nosrc - Do not update thesrc tree from the ZFS snapshot, keep the tree from previous buildinstead.

• -srcvcs - Do not update thesrc tree from the ZFS snapshot, update it with a fresh checkout instead.

• -noports - Do not update theports tree from the ZFS snapshot, keep the tree from previous buildinstead.

• -portsvcs - Do not update theports tree from the ZFS snapshot, update it with a fresh checkout instead.

• -norestr - Do not attempt to buildRESTRICTEDports.

• -noplistcheck - Do not make it fatal for ports to leave behind files after deinstallation.

• -nodistfiles - Do not collect distfiles that passmake checksum for later uploading toftp-master .

• -fetch-original - Fetch the distfile from the originalMASTER_SITESrather than any cache such as on
ftp-master .

• -unlimited-errors - defeat the "qmanager threshhold" check for runaway builds. You want this primarily
when doing a-restart of a build that you expect to mostly fail, or perhaps a-trybroken run. By default, the
threshhold check is done.

Unless you specify-restart , -continue , or -finish , the symlinks for the existing builds will be rotated. i.e, the
existing symlink forprevious will be deleted; the most recent build will have its symlink changed toprevious/ ;
and a new build will be created and symlinked intolatest/ .

If the last build finished cleanly you do not need to delete anything. If it was interrupted, or you selected
-nocleanup , you need to clean up clients by running

% build cleanup ${arch} ${branch} ${buildid} -full

When a new build is created, the directorieserrors/ , logs/ , packages/ , and so forth, are cleaned by the scripts.
If you are short of space, you can also clean outports/distfiles/ . Leave thelatest/ directory alone; it is a
symlink for the webserver.

Note: dosetupnodes is supposed to be run from the dopackages script in the -restart case, but it can be a
good idea to run it by hand and then verify that the clients all have the expected job load. Sometimes,
dosetupnode cannot clean up a build and you need to do it by hand. (This is a bug.)

Make sure the${arch} build is run as theportbuild user or it will complain loudly.

7

Package Building Procedures

Note: The actual package build itself occurs in two identical phases. The reason for this is that sometimes
transient problems (e.g., NFS failures, FTP sites being unreachable, etc.) may halt a build. Doing things in two
phases is a workaround for these types of problems.

Be careful thatports/Makefile does not specify any empty subdirectories. This is especially important if you are
doing an -exp build. If the build process encounters an emptysubdirectory, both package build phases will stop short,
and an error similar to the following will be written to${arch}/ ${branch}/journal :

don’t know how to make dns-all(continuing)

To correct this problem, simply comment out or remove theSUBDIRentries that point to empty subdirectories. After
doing this, you can restart the build by running the properdopackages command with the-restart option.

Note: This problem also appears if you create a new category Makefile with no SUBDIRs in it. This is probably a
bug.

Example 6. Update the i386-7 tree and do a complete build

% dopackages.wrapper i386 8 latest -nosrc -norestr -nofinis h

Example 7. Restart an interrupted amd64-8 build without updating

% dopackages.wrapper amd64 8 latest -nosrc -noports -norest r -continue -noindex -noduds -nofinish

Example 8. Post-process a completed sparc64-8 tree

% dopackages.wrapper sparc64 8 -finish

Hint: it is usually best to run thedopackages command inside ofscreen(1) .

5.2 build command

You may need to manipulate the build data before starting it,especially for experimental builds. This is done with the
build command. Here are the useful options for creation:

• build create arch branch [newid] - Createsnewid (or a datestamp if not specified). Only needed when
bringing up a new branch or a new architecture.

• build clone arch branch oldid [newid] - Clonesoldid to newid (or a datestamp if not specified).

• build srcupdate arch branch buildid - Replaces the src tree with a new ZFS snapshot. Do not forget to use
-nosrc flag todopackages later!

• build portsupdate arch branch buildid - Replaces the ports tree with a new ZFS snapshot. Do not forget
to use-noports flag todopackages later!

8

Package Building Procedures

5.3 Building a single package

Sometimes there is a need to rebuild a single package from thepackage set. This can be accomplished with the
following invocation:

path/qmanager/packagebuild amd64 7-exp 20080904212103 aclock-0.2.3_2.tbz

6 Anatomy of a Build
A full build without any-no options performs the following operations in the specified order:

1. An update of the currentports tree from the ZFS snapshot1

2. An update of the running branch’ssrc tree from the ZFS snapshot1

3. Checks which ports do not have aSUBDIRentry in their respective category’sMakefile 1

4. Creates theduds file, which is a list of ports not to build12

5. Generates a freshINDEX file12

6. Sets up the nodes that will be used in the build12

7. Builds a list of restricted ports12

8. Builds packages (phase 1)3

9. Performs another node setup1

10. Builds packages (phase 2)3

7 Build Maintenance
There are several cases where you will need to manually cleanup a build:

1. You have manually interrupted it.

2. The head node has been rebooted while a build was running.

3. qmanager has crashed and has been restarted.

7.1 Interrupting a Build

Manually interrupting a build is a bit messy. First you need to identify the tty in which it’s running (either record the
output of tty(1) when you start the build, or useps x to identify it. You need to make sure that nothing else
important is running in this tty, e.g.,ps -t p1 or whatever. If there is not, you can just kill off the whole term easily
with pkill -t pts/1 ; otherwise issue akill -HUP in there by, for example,ps -t pts/1 -o pid= | xargs

kill -HUP . Replacep1 by whatever the tty is, of course.

The package builds dispatched bymake to the client machines will clean themselves up after a few minutes (check
with ps x until they all go away).

9

Package Building Procedures

If you do not kill make(1), then it will spawn more jobs. If youdo not kill dopackages , then it will restart the entire
build. If you do not kill thepdispatch processes, they’ll keep going (or respawn) until they’ve built their package.

7.2 Cleaning up a Build

To free up resources, you will need to clean up client machines by runningbuild cleanup command. For example:

% /a/portbuild/scripts/build cleanup i386 8-exp 200807141 20411 -full

If you forget to do this, then the old buildjail s will not be cleaned up for 24 hours, and no new jobs will be
dispatched in their place sincepointyhat thinks the job slot is still occupied.

To check,cat ~/loads/ * to display the status of client machines; the first column is the number of jobs it thinks is
running, and this should be roughly concordant with the loadaverage.loads is refreshed every 2 minutes. If you do
ps x | grep pdispatch and it is less than the number of jobs thatloads thinks are in use, you are in trouble.

Note: The following notes about mounting only apply to connected nodes.

You may have problem with theumount commands hanging. If so, you are going to have to use theallgohans

script to run an ssh(1) command across all clients for that buildenv. For example:

% ssh gohan24 df

will get you a df, and

% allgohans "umount -f pointyhat.freebsd.org:/var/portbu ild/i386/8-exp/ports"
% allgohans "umount -f pointyhat.freebsd.org:/var/portbu ild/i386/8-exp/src"

are supposed to get rid of the hanging mounts. You will have tokeep doing them since there can be multiple mounts.

Note: Ignore the following:

umount: pointyhat.freebsd.org:/var/portbuild/i386/8- exp/ports: statfs: No such file or directory
umount: pointyhat.freebsd.org:/var/portbuild/i386/8- exp/ports: unknown file system
umount: Cleanup of /x/tmp/8-exp/chroot/53837/compat/li nux/proc failed!
/x/tmp/8-exp/chroot/53837/compat/linux/proc: not a fil e system root directory

The former two mean that the client did not have those mounted; the latter two are a bug.

You may also see messages about procfs .

Note: The above is the end of the notes that apply only to connected nodes.

After you have done all the above, remove the${arch}/lock file before trying to restart the build. If you do not,
dopackages will simply exit.

If you have to do a ports tree update before restarting, you may have to rebuild eitherduds , INDEX, or both.

10

Package Building Procedures

7.3 Maintaining builds with the build command

Here are the rest of the options for thebuild command:

• build destroy arch branch - Destroy the build id.

• build list arch branch - Shows the current set of build ids.

8 Monitoring the Build
You can useqclient command to monitor the status of build nodes, and to list the currently scheduled jobs:

% python path/qmanager/qclient jobs

% python path/qmanager/qclient status

Thescripts/stats ${branch} command shows the number of packages already built.

Runningcat /a/portbuild/ * /loads/ * shows the client loads and number of concurrent builds in progress. The
files that have been recently updated are the clients that areonline; the others are the offline clients.

Note: The pdispatch command does the dispatching of work onto the client, and post-processing.
ptimeout.host is a watchdog that kills a build after timeouts. So, having 50 pdispatch processes but only 4
ssh(1) processes means 46 pdispatch es are idle, waiting to get an idle node.

Runningtail -f ${arch}/ ${branch}/build.log shows the overall build progress.

If a port build is failing, and it is not immediately obvious from the log as to why, you can preserve theWRKDIRfor
further analysis. To do this, touch a file called.keep in the port’s directory. The next time the cluster tries to build
this port, it will tar, compress, and copy theWRKDIRto ${arch}/ ${branch}/wrkdirs/ .

If you find that the system is looping trying to build the same package over and over again, you may be able to fix the
problem by rebuilding the offending package by hand.

If all the builds start failing with complaints that they cannot load the dependent packages, check to see thathttpd is
still running, and restart it if not.

Keep an eye on df(1) output. If the/a/portbuild file system becomes full then Bad Things™ happen.

The status of all current builds is generated periodically into thepackagestats.html file, e.g.,
http://pointyhat.FreeBSD.org/errorlogs/packagestats.html. For eachbuildenv , the following is displayed:

• updated is the contents of.updated . This is why we recommend that you update.updated for -exp runs (see
below).

• date oflatest log

• number of lines inINDEX

• the number of currentbuild logs

• the number of completedpackages

• the number oferrors

11

Package Building Procedures

• the number of duds (shown asskipped)

• missing shows the difference betweenINDEX and the other columns. If you have restarted a run after a ports tree
update, there will likely be duplicates in the packages and error columns, and this column will be meaningless.
(The script is naive).

• running andcompleted are guesses based on a grep(1) ofbuild.log .

9 Dealing With Build Errors
The easiest way to track build failures is to receive the emailed logs and sort them to a folder, so you can maintain a
running list of current failures and detect new ones easily.To do this, add an email address to
${branch}/portbuild.conf . You can easily bounce the new ones to maintainers.

After a port appears broken on every build combination multiple times, it is time to mark itBROKEN. Two weeks’
notification for the maintainers seems fair.

Note: To avoid build errors with ports that need to be manually fetched, put the distfiles into
~ftp/pub/FreeBSD/distfiles . Access restrictions are in place to make sure that only the build clients can
access this directory.

10 Release Builds
When building packages for a release, it may be necessary to manually update theports andsrc trees to the release
tag and use-novcs and-noportsvcs .

To build package sets intended for use on a CD-ROM, use the-cdrom option todopackages .

If the disk space is not available on the cluster, use-nodistfiles to avoid collecting distfiles.

After the initial build completes, restart the build with-restart -fetch-original to collect updated distfiles as
well. Then, once the build is post-processed, take an inventory of the list of files fetched:

% cd ${arch}/ ${branch}

% find distfiles > distfiles- ${release}

You should use that output to periodically clean out the distfiles fromftp-master . When space gets tight, distfiles
from recent releases can be kept while others can be thrown away.

Once the distfiles have been uploaded (see below), the final release package set must be created. Just to be on the safe
side, run the${arch}/ ${branch}/cdrom.sh script by hand to make sure all the CD-ROM restricted packages and
distfiles have been pruned. Then, copy the${arch}/ ${branch}/packages directory to
${arch}/ ${branch}/packages- ${release}. Once the packages are safely moved off, contact the
re@FreeBSD.org and inform them of the release package location.

Remember to coordinate with the re@FreeBSD.org about the timing and status of the release builds.

12

Package Building Procedures

11 Uploading Packages

Note: For FreeBSD.org as of 2013, the instructions about uploading to ftp-master are obsolete. In the future,
ftp-master will pull from pointyhat , using a mechanism yet to be implemented. However, the instructions
about RESTRICTEDand NO_CDROMmust still be carefully followed.

Once a build has completed, packages and/or distfiles can be transferred toftp-master for propagation to the FTP
mirror network. If the build was run with-nofinish , then make sure to follow up withdopackages -finish to
post-process the packages (removesRESTRICTEDandNO_CDROMpackages where appropriate, prunes packages not
listed in INDEX, removes fromINDEX references to packages not built, and generates aCHECKSUM.MD5summary);
and distfiles (moves them from the temporarydistfiles/.pbtmp directory intodistfiles/ and removes
RESTRICTEDandNO_CDROMdistfiles).

It is usually a good idea to run therestricted.sh and/orcdrom.sh scripts by hand afterdopackages finishes
just to be safe. Run therestricted.sh script before uploading toftp-master , then runcdrom.sh before
preparing the final package set for a release.

The package subdirectories are named by whether they are forrelease , stable , or current . Examples:

• packages-7.2-release

• packages-7-stable

• packages-8-stable

• packages-9-stable

• packages-10-current

Note: Some of the directories on ftp-master are, in fact, symlinks. Examples:

• packages-stable

• packages-current

Be sure you move the new packages directory over the real destination directory, and not one of the symlinks
that points to it.

If you are doing a completely new package set (e.g., for a new release), copy packages to the staging area on
ftp-master with something like the following:

cd /a/portbuild/ ${arch}/ ${branch}

tar cfv - packages/ | ssh portmgr@ftp-master tar xfC - w/port s/ ${arch}/tmp/ ${subdir}

Then log intoftp-master , verify that the package set was transferred successfully,remove the package set that the
new package set is to replace (in~/w/ports/ ${arch}), and move the new set into place. (w/ is merely a shortcut.)

For incremental builds, packages should be uploaded usingrsync so we do not put too much strain on the mirrors.

ALWAYS use-n first with rsync and check the output to make sure it is sane. If it looks good, re-run thersync

without the-n option.

Examplersync command for incremental package upload:

13

Package Building Procedures

rsync -n -r -v -l -t -p --delete packages/ portmgr@ftp-maste r:w/ports/ ${arch}/ ${subdir}/ | tee log

Distfiles should be transferred with thecpdistfiles script:

/a/portbuild/scripts/cpdistfiles ${arch} ${branch} ${buildid} [-yesreally] | tee log2

Doing it by hand is deprecated.

12 Experimental Patches Builds

Note: Most of the information in this section is obsolete as of 2013 and needs to be rewritten.

Experimental patches builds are run from time to time to new features or bugfixes to the ports infrastructure (i.e.
bsd.port.mk), or to test large sweeping upgrades. At any given time theremay be several simultaneous
experimental patches branches, such as8-exp on the amd64 architecture.

In general, an experimental patches build is run the same wayas any other build, except that you should first update
the ports tree to the latest version and then apply your patches. To do the former, you can use the following:

Note: The following example is obsolete

% cvs -R update -dP > update.out

% date > .updated

This will most closely simulate what thedopackages script does. (While.updated is merely informative, it can be
a help.)

You will need to editupdate.out to look for lines beginning witĥM, ^C, or ^? and then deal with them.

It is always a good idea to save original copies of all changedfiles, as well as a list of what you are changing. You can
then look back on this list when doing the final commit, to makesure you are committing exactly what you tested.

Since the machine is shared, someone else may delete your changes by mistake, so keep a copy of them in e.g., your
home directory onfreefall . Do not usetmp/ ; sincepointyhat itself runs some version of-CURRENT, you can
expect reboots (if nothing else, for updates).

In order to have a good control case with which to compare failures, you should first do a package build of the branch
on which the experimental patches branch is based for the i386 architecture (currently this is8). Then, when
preparing for the experimental patches build, checkout a ports tree and a src tree with the same date as was used for
the control build. This will ensure an apples-to-apples comparison later.

Once the build finishes, compare the control build failures to those of the experimental patches build. Use the
following commands to facilitate this (this assumes the8 branch is the control branch, and the8-exp branch is the
experimental patches branch):

% cd /a/portbuild/i386/8-exp/errors

% find . -name \ * .log\ * | sort > /tmp/8-exp-errs

% cd /a/portbuild/i386/8/errors

% find . -name \ * .log\ * | sort > /tmp/8-errs

14

Package Building Procedures

Note: If it has been a long time since one of the builds finished, the logs may have been automatically
compressed with bzip2. In that case, you must use sort | sed ’s,\.bz2„g’ instead.

% comm -3 /tmp/8-errs /tmp/8-exp-errs | less

This last command will produce a two-column report. The firstcolumn is ports that failed on the control build but not
in the experimental patches build; the second column is viceversa. Reasons that the port might be in the first column
include:

• Port was fixed since the control build was run, or was upgradedto a newer version that is also broken (thus the
newer version should appear in the second column)

• Port is fixed by the patches in the experimental patches build

• Port did not build under the experimental patches build due to a dependency failure

Reasons for a port appearing in the second column include:

• Port was broken by the experimental patches

• Port was upgraded since the control build and has become broken

• Port was broken due to a transient error (e.g., FTP site down,package client error, etc.)

Both columns should be investigated and the reason for the errors understood before committing the experimental
patches set. To differentiate betweenbroken by experimental patchesandbroken by upgradingabove, you can do a
rebuild of the affected packages under the control branch:

% cd /a/portbuild/i386/8/ports

Note: The following example is obsolete

Note: Be sure to cvs update this tree to the same date as the experimental patches tree.

The following command will set up the control branch for the partial build:

% /a/portbuild/scripts/dopackages.wrapper i386 8 latest - noportsvcs -nobuild -novcs -nofinish

The builds must be performed from thepackages/All directory. This directory should initially be empty exceptfor
the Makefile symlink. If this symlink does not exist, it must be created:

% cd /a/portbuild/i386/8/packages/All

% ln -sf ../../Makefile .

% make -k -j<#> <list of packages to build>

Note: <#> is the concurrency of the build to attempt. It is usually the sum of the weights listed in
/a/portbuild/i386/mlist unless you have a reason to run a heavier or lighter build.

15

Package Building Procedures

The list of packages to build should be a list of package names (including versions) as they appear in INDEX. The
PKGSUFFIX(i.e., .tgz or .tbz) is optional.

This will build only those packages listed as well as all of their dependencies.

You can check the progress of this partial build the same way you would a regular build.

Once all the errors have been resolved, you can commit the package set. After committing, it is customary to send a
HEADS UPemail to ports@FreeBSD.org (mailto:ports@FreeBSD.org) and copy ports-developers@FreeBSD.org
(mailto:ports-developers@FreeBSD.org) informing people of the changes. A summary of all changes should also be
committed to/usr/ports/CHANGES .

13 How to configure a new package building node
Before following these steps, please coordinate withportmgr .

13.1 Node requirements

Note: This section is only of interest when considering tier-2 architectures.

Here are the requirement for what a node needs to be generallyuseful.

• CPU capacity: anything less than 500MHz is generally not useful for package building.

Note: We are able to adjust the number of jobs dispatched to each machine, and we generally tune the
number to use 100% of CPU.

• RAM: Less than 2G is not very useful; 8G or more is preferred. We have been tuning to one job per 512M of
RAM.

• disk: at least 20G is needed for filesystem; 32G is needed for swap. Best performance will be if multiple disks are
used, and configured asgeom stripes. Performance numbers are also TBA.

Note: Package building will test disk drives to destruction. Be aware of what you are signing up for!

• network bandwidth: TBA. However, an 8-job machine has been shown to saturate a cable modem line.

16

Package Building Procedures

13.2 Preparation

1. Pick a unique hostname. It does not have to be a publicly resolvable hostname (it can be a name on your internal
network).

2. By default, package building requires the following TCP ports to be accessible: 22 (ssh), 414 (infoseek), and
8649 (ganglia). If these are not accessible, pick others and ensure that anssh tunnel is set up (see below).

(Note: if you have more than one machine at your site, you willneed an individual TCP port for each service on
each machine, and thusssh tunnels will be necessary. As such, you will probably need toconfigure port
forwarding on your firewall.)

3. Decide if you will be booting natively or viapxeboot . You will find that it is easier to keep up with changes to
-current with the latter, especially if you have multiple machines atyour site.

4. Pick a directory to hold ports configuration andchroot subdirectories. It may be best to put it this on its own
partition. (Example:/usr2/ .)

Note: The filename chroot is a historical remnant. The chroot command is no longer used.

5. Decide if you will be using a localsquid cache on the client, instead of the server. It is more efficient to run it on
the server. If you are doing that, skip the "squid" steps below.)

13.3 Configuring src

1. Create a directory to contain the latest-current source tree and check it out. (Since your machine will likely
be asked to build packages for-current , the kernel it runs should be reasonably up-to-date with thebindist

that will be exported by our scripts.)

2. If you are usingpxeboot : create a directory to contain the install bits. You will probably want to use a
subdirectory of/pxeroot , e.g.,/pxeroot/ ${arch}- ${branch}. Export that asDESTDIR.

3. If you are cross-building, exportTARGET_ARCH=${arch}.

Note: The procedure for cross-building ports is not yet defined.

4. Generate a kernel config file. IncludeGENERIC(or, if on i386, and you are using more than 3.5G,PAE).

Required options:

options NULLFS
options TMPFS

Suggested options:

options GEOM_CONCAT
options GEOM_STRIPE
options SHMMAXPGS=65536
options SEMMNI=40
options SEMMNS=240

17

Package Building Procedures

options SEMUME=40
options SEMMNU=120

If you are interested in debugging general problems, you maywish to use the following. However, for
unattended operations, it is best to leave it out:

options ALT_BREAK_TO_DEBUGGER

For PAE, it is not currently possible to load modules. Therefore, ifyou are running an architecture that supports
Linux emulation, you will need to add:

options COMPAT_LINUX
options LINPROCFS

Also for PAE, as of 20110912 you need the following. This needs to be investigated:

nooption NFSD # New Network Filesystem Server
options NFSCLIENT # Network Filesystem Client
options NFSSERVER # Network Filesystem Server

5. As root, do the usual build steps, e.g.:

make -j4 buildworld

make buildkernel KERNCONF= ${kernconf}

make installkernel KERNCONF= ${kernconf}

make installworld

The install steps useDESTDIR.

6. Customize files inetc/ . Whether you do this on the client itself, or another machine, will depend on whether
you are usingpxeboot .

If you are usingpxeboot : create a subdirectory of${DESTDIR} calledconf/ . Create one subdirectory
default/etc/ , and (if your site will host multiple nodes), subdirectories${ip-address}/etc/ to contain
override files for individual hosts. (You may find it handy to symlink each of those directories to a hostname.)
Copy the entire contents of${DESTDIR}/etc/ to default/etc/ ; that is where you will edit your files. The
by-ip-addressetc/ directories will probably only need customizedrc.conf files.

In either case, apply the following steps:

• Create aportbuild user and group. It can have the’ * ’ password.

Create/home/portbuild/.ssh/ and populateauthorized_keys .

• If you are usingganglia for monitoring, add the following user:

ganglia: * :102:102::0:0:User &:/usr/local/ganglia:/bin/sh

Add it to etc/group as well.

• If you are using a localsquid cache on the client, add the following user:

squid: * :100:100::0:0:User &:/usr/local/squid:/bin/sh

Add it to etc/group as well.

• Create the appropriate files inetc/.ssh/ .

• In etc/crontab : add

* * * * * root /var/portbuild/scripts/client-metrics

• Create the appropriateetc/fstab . (If you have multiple, different, machines, you will need to put those in
the override directories.)

18

Package Building Procedures

• In etc/inetd.conf : add

infoseek stream tcp nowait nobody /var/portbuild/scripts /reportload

• You should run the cluster on UTC. If you have not set the clockto UTC:

cp -p /usr/share/zoneinfo/Etc/UTC etc/localtime

• Create the appropriateetc/rc.conf . (If you are usingpxeboot , and have multiple, different, machines, you
will need to put those in the override directories.)

Recommended entries for physical nodes:

hostname=" ${hostname}"
inetd_enable="YES"
linux_enable="YES"
nfs_client_enable="YES"
ntpd_enable="YES"
sendmail_enable="NONE"
sshd_enable="YES"
sshd_program="/usr/local/sbin/sshd"

If you are usingganglia for monitoring, add the following

gmond_enable="YES"

If you are using a localsquid cache on the client, add the following

squid_enable="YES"
squid_chdir=" / a/squid/logs "
squid_pidfile=" / a/squid/logs/squid.pid "

Required entries for VMWare-based nodes:

vmware_guest_vmmemctl_enable="YES"
vmware_guest_guestd_enable="YES"

Recommended entries for VMWare-based nodes:

hostname=""
ifconfig_em0="DHCP"
fsck_y_enable="YES"

inetd_enable="YES"
linux_enable="YES"
nfs_client_enable="YES"
sendmail_enable="NONE"
sshd_enable="YES"
sshd_program="/usr/local/sbin/sshd"

gmond_enable="YES"
squid_enable="YES"
squid_chdir=" / a/squid/logs "
squid_pidfile=" / a/squid/logs/squid.pid "

ntpd(8) shouldnot be enabled for VMWare instances.

Also, it may be possible to leavesquid disabled by default so as to not have/ a persistent (which should save
instantiation time.) Work is still ongoing.

• Createetc/resolv.conf , if necessary.

19

Package Building Procedures

• Modify etc/sysctl.conf :

9a10,30
> kern.corefile= / a/%N.core

> kern.sugid_coredump=1
> #debug.witness_ddb=0
> #debug.witness_watch=0
>
> # squid needs a lot of fds (leak?)
> kern.maxfiles=40000
> kern.maxfilesperproc=30000
>
> # Since the NFS root is static we do not need to check frequent ly for file changes
> # This saves >75% of NFS traffic
> vfs.nfs.access_cache_timeout=300
> debug.debugger_on_panic=1
>
> # For jailing
> security.jail.sysvipc_allowed=1
> security.jail.allow_raw_sockets=1
> security.jail.chflags_allowed=1
> security.jail.enforce_statfs=1
>
> vfs.lookup_shared=1

• If desired, modifyetc/syslog.conf to change the logging destinations to@pointyhat.freebsd.org .

13.4 Configuring ports

1. Install the following ports:

net/rsync
security/sudo

You may also wish to install:

security/openssh-portable (with HPN on)

If you are usingganglia for monitoring, install the following:

sysutils/ganglia-monitor-core (with GMETAD off)

If you are using a localsquid cache on the client, install the following

www/squid31 (with SQUID_AUFS on)

2. Customize files inusr/local/etc/ . Whether you do this on the client itself, or another machine, will depend
on whether you are usingpxeboot .

Note: The trick of using conf override subdirectories is less effective here, because you would need to copy
over all subdirectories of usr/ . This is an implementation detail of how the pxeboot works.

Apply the following steps:

20

Package Building Procedures

• If you are usingganglia, modify usr/local/etc/gmond.conf :

21,22c21,22
< name = "unspecified"
< owner = "unspecified"

> name = " ${arch} package build cluster"
> owner = "portmgr@FreeBSD.org"
24c24
< url = "unspecified"

> url = "http://pointyhat.freebsd.org"

If there are machines from more than one cluster in the same multicast domain (basically = LAN) then change
the multicast groups to different values (.71, .72, etc).

• Createusr/local/etc/rc.d/portbuild.sh , using the appropriate value forscratchdir :

#!/bin/sh
#
Configure a package build system post-boot

scratchdir= / a

ln -sf ${scratchdir}/portbuild /var/

Identify builds ready for use
cd /var/portbuild/ arch

for i in * /builds/ * ; do
if [-f ${i}/.ready]; then

mkdir /tmp/.setup-${i## * /}
fi

done

Flag that we are ready to accept jobs
touch /tmp/.boot_finished

• If you are using a localsquid cache, modify,usr/local/etc/squid/squid.conf :

288,290c288,290
< #auth_param basic children 5
< #auth_param basic realm Squid proxy-caching web server
< #auth_param basic credentialsttl 2 hours

> auth_param basic children 5
> auth_param basic realm Squid proxy-caching web server
> auth_param basic credentialsttl 2 hours
611a612
> acl localnet src 127.0.0.0/255.0.0.0
655a657
> http_access allow localnet
2007a2011
> maximum_object_size 400 MB
2828a2838
> negative_ttl 0 minutes

21

Package Building Procedures

Also, changeusr/local to usr2 in cache_dir , access_log , cache_log , cache_store_log ,
pid_filename , netdb_filename , coredump_dir .

Finally, change thecache_dir storage scheme fromufs to aufs (offers better performance).

• Configuressh : copyetc/ssh to usr/local/etc/ssh and addNoneEnabled yes to sshd_config .

•

Note: This step is under review.

Createusr/local/etc/sudoers/sudoers.d/portbuild :

local changes for package building
portbuild ALL=(ALL) NOPASSWD: ALL

13.5 Configuration on the client itself

1. Change into the port/package directory you picked above,e.g.,cd / usr2.

2. As root:

mkdir portbuild

chown portbuild:portbuild portbuild

mkdir pkgbuild

chown portbuild:portbuild pkgbuild

If you are using a localsquid cache:

mkdir squid

mkdir squid/cache

mkdir squid/logs

chown -R squid:squid squid

3. If clients preserve/var/portbuild between boots then they must either preserve their/tmp , or revalidate
their available builds at boot time (see the script on theamd64 machines). They must also clean up stale jails
from previous builds before creating/tmp/.boot_finished .

4. Boot the client.

5. If you are using a localsquid cache, as root, initialize thesquid directories:

squid -z

13.6 Configuration on the server

These steps need to be taken by aportmgr acting asportbuild on the server.

1. If any of the default TCP ports is not available (see above), you will need to create anssh tunnel for them and
include its invocation command inportbuild ’s crontab .

22

Package Building Procedures

2. Unless you can use the defaults, add an entry to/home/portbuild/.ssh/config to specify the public IP
address, TCP port forssh , username, and any other necessary information.

3. Create/a/portbuild/ ${arch}/clients/bindist- ${hostname}.tar .

• Copy one of the existing ones as a template and unpack it in a temporary directory.

• Customizeetc/resolv.conf for the local site.

• Customizeetc/make.conf for FTP fetches for the local site. Note: the nulling-out of
MASTER_SITE_BACKUPmust be common to all nodes, but the first entry inMASTER_SITE_OVERRIDEshould
be the nearest local FTP mirror. Example:

.if defined(FETCH_ORIGINAL)
MASTER_SITE_BACKUP=
.else
MASTER_SITE_OVERRIDE= \

ftp:// friendly-local-ftp-mirror/pub/FreeBSD/ports/distfiles/${DIST_SUBDIR}/ \
ftp://${BACKUP_FTP_SITE}/pub/FreeBSD/distfiles/${DI ST_SUBDIR}/

.endif

• tar it up and move it to the right location.

Hint: you will need one of these for each machine; however, ifyou have multiple machines at one site, you
should create a site-specific one (e.g., in/a/portbuild/conf/clients/) and symlink to it.

4. Create/a/portbuild/ ${arch}/portbuild- ${hostname} using one of the existing ones as a guide. This file
contains overrides to/a/portbuild/ ${arch}/portbuild.conf .

Suggested values:

disconnected=1
scratchdir= / usr2/pkgbuild

client_user=portbuild
sudo_cmd="sudo -H"
rsync_gzip=-z

infoseek_host=localhost
infoseek_port= ${tunelled-tcp-port}

If you will be usingsquid on the client:

http_proxy="http://localhost:3128/"
squid_dir= / usr2/squid

If, instead, you will be usingsquid on the server:

http_proxy="http:// servername:3128/"

Possible other values:

use_md_swap=1
md_size=9g
use_zfs=1
scp_cmd="/usr/local/bin/scp"
ssh_cmd="/usr/local/bin/ssh"

These steps need to be taken by aportmgr acting asroot on pointyhat .

23

Package Building Procedures

1. Add the public IP address to/etc/hosts.allow . (Remember, multiple machines can be on the same IP
address.)

2. If you are usingganglia, add an appropriatedata_source entry to/usr/local/etc/gmetad.conf :

data_source " arch/ location Package Build Cluster" 30 hostname

You will need to restartgmetad .

13.7 Enabling the node

These steps need to be taken by aportmgr acting asportbuild :

1. Ensure thatssh to the client is working by executingssh hostname uname -a . The actual command is not
important; what is important is to confirm the setup, and alsoadd an entry intoknown_hosts , once you have
confirmed the node’s identity.

2. Populate the client’s copy of/var/portbuild/scripts/ by something like
/a/portbuild/scripts/dosetupnode arch major latest hostname. Verify that you now have files in
that directory.

3. Test the other TCP ports by executingtelnet hostname portnumber. 414 (or its tunnel) should give you a
few lines of status information includingarch andosversion ; 8649 should give you anXMLresponse from
ganglia .

This step needs to be taken by aportmgr acting asportbuild :

1. Tell qmanager about the node. Example:

python path/qmanager/qclient add name= uniquename arch= arch osversion= osversion

numcpus=number haszfs=0 online=1 domain= domain primarypool=package pools="package

all" maxjobs=1 acl="ports- arch,deny_all"

Finally, again asportmgr acting asportbuild :

1. Once you are sure that the client is working, tellpollmachineabout it by adding it to
/a/portbuild/ ${arch}/mlist .

14 How to configure a new FreeBSD branch

14.1 Steps necessary before qmanager is started

When a new branch is created, some work needs to be done to specify that the previous branch is no longer
equivalent toHEAD.

Note: As srcbuild :

24

Package Building Procedures

• Edit /a/portbuild/conf/admin/admin.conf with the following changes:

• Add new-branch to SRC_BRANCHES.

• For what was previously head, changeSRC_BRANCH_branch_SUBDIR to releng/ branch.0 (literal zero).

• Add SRC_BRANCH_new-branch_SUBDIR =head.

• Run /a/portbuild/admin/scripts/updatesnap manually.

14.2 Steps necessary after qmanager is started

• For each branch that will be supported, do the following:

• As portbuild , kick-start the build for the branch with:

build create arch branch

• As srcbuild , createbindist.tar .

15 How to delete an unsupported FreeBSD branch
When an old branch goes out of support, there are some things to garbage-collect.

• Edit /a/portbuild/admin/conf/admin.conf with the following changes:

• Deleteold-branch from SRC_BRANCHES.

• DeleteSRC_BRANCH_old-branch_SUBDIR=whatever

• umount a/snap/src- old-branch/src;
umount a/snap/src- old-branch;
zfs destroy -r a/snap/src- old-branch

• You will probably find that the following files and symlinks in/a/portbuild/errorlogs/ can be removed:

• Files named* - old_branch-failure.html

• Files namedbuildlogs_ * - old_branch- * -logs.txt

• Symlinks named* - old_branch-previous *

• Symlinks named* - old_branch-latest *

25

Package Building Procedures

16 How to rebase on a supported FreeBSD branch
As of 2011, the philosophy of package building is to build packages based onthe earliest supported release of each
branch. e.g.: if onRELENG-8, the following releases are supported: 8.1, 8.2, 8.3; thenpackages-8-stable should
be built from 8.1.

As releases go End-Of-Life (see chart (http://www.freebsd.org/security/index.html#sup)), a full (not incremental!)
package build should be done and uploaded.

The procedure is as follows:

• Edit /a/portbuild/admin/conf/admin.conf with the following changes:

• Change the value ofSRC_BRANCH_branch_SUBDIR to releng/ branch.N whereN is the newest ’oldest’
release for that branch.

• Run /a/portbuild/admin/scripts/updatesnap manually.

• Rundopackages with -nobuild .

• Follow thesetup procedure.

• Now you can rundopackages without -nobuild .

17 How to configure a new architecture

17.1 Steps necessary before qmanager is started

Note: The next steps are most easily done as user portbuild .

Note: The following assumes you have already run mkportbuild .

• As theportbuild user, run

% /a/portbuild/tools/addarch arch

• For each branch that will be supported, do the following:

• Kick-start the build for the branch with

build create arch branch

• If you are going to store your historical buildlogs and errorlogs on your head node’s hard drive, you may skip this
step. Otherwise:

Create an external directory and link to it:

26

Package Building Procedures

Example 9. Creating and linking an external archive directory

mkdir /dumpster/pointyhat/ arch/archive
ln -s /dumpster/pointyhat/ arch/archive archive

Note: (Historical note that only applied to the original pointyhat.FreeBSD.org installation)

It is possible that /dumpster/pointyhat will not have enough space. In that case, create the archive directory
as /dumpster/pointyhat/ arch/archive and symlink to that.

• Populateclients as usual.

• Edit portbuild.conf from one of the ones for another architecture.addarch will have created a default one for
you.

• Create customizedportbuild. machinename.conf files as appropriate.

• If you need to create any tunnels:

1. Make a private configuration directory:

mkdir /a/portbuild/conf/ arch

2. In that directory: create anydotunnel. * scripts needed.

Note: As srcbuild :

• Add arch to SUPPORTED_ARCHSin /a/portbuild/admin/conf/admin.conf .

• Add thearch directory to/a/portbuild/admin/scripts/zbackup . (This is a hack and should go away.)

• Enable the appropriatearch entry for/a/portbuild/scripts/dologs to the portbuildcrontab . (This is a
hack and should go away.)

17.2 Steps necessary after qmanager is started

Note: Again as srcbuild :

• For each branch that will be supported, do the following:

• Createbindist.tar .

27

Package Building Procedures

18 How to configure a new head node (pointyhat instance)

18.1 Basic installation

1. Install FreeBSD.

2. Create a user to own theportbuild repository, such asportbuild . It should have the’ * ’ password.

3. Similarly, create a user to own the administration functions and manage thesvn repositories, such assrcbuild .
It should have the’ * ’ password.

4. Add the following to/boot/loader.conf :

console="vidconsole,comconsole"

5. You should run the cluster on UTC. If you have not set the clock to UTC:

cp -p /usr/share/zoneinfo/Etc/UTC /etc/localtime

6. Create the appropriate/etc/rc.conf .

Required entries:

hostname=" ${hostname}"
sshd_enable="YES"
zfs_enable="YES"

Recommended entries:

background_fsck="NO"
clear_tmp_enable="YES"
dumpdev="AUTO"
fsck_y_enable="YES"

apache22_enable="YES"
apache_flags=""
apache_pidfile="/var/run/httpd.pid"
inetd_enable="YES"
inetd_flags="-l -w"
mountd_enable="YES"
nfs_server_enable="YES"
nfs_server_flags="-u -t -n 12"
nfs_remote_port_only="YES"
ntpd_enable="YES"
rpcbind_enable="YES"
rpc_lockd_enable="NO"
rpc_statd_enable="YES"
sendmail_enable="NONE"
smartd_enable="YES"

If you are usingganglia, add:

gmetad_enable="YES"

28

Package Building Procedures

gmond_enable="YES"

If you will be using asquid cache on the server, rather than the clients:

squid_enable="YES"

7. Create/etc/resolv.conf , if necessary.

8. Create the appropriate files in/etc/ssh/ .

9. Add the following to/etc/sysctl.conf :

kern.maxfiles=40000
kern.maxfilesperproc=38000
sysctl vfs.usermount=1
sysctl vfs.zfs.super_owner=1

10. Make sure the following change is made to/etc/ttys :

ttyu0 "/usr/libexec/getty std.9600" vt100 on secure

18.2 Configuring src

You should be able to install from the most recent release using only the default kernel configuration.

18.3 Configuring ports

1. The following ports (or their latest successors) are required:

databases/py-sqlite3
databases/py-sqlalchemy (only SQLITE is needed)
devel/git (WITH_SVN)
devel/py-configobj
devel/py-setuptools
devel/subversion
net/nc
net/rsync
www/apache22 (with EXT_FILTER)

Expect those to bring in, among others:

databases/sqlite3
lang/perl-5.14 (or successor)
lang/python27 (or sucessor)

If you are usingganglia, add:

sysutils/ganglia-monitor-core (with GMETAD off)
sysutils/ganglia-webfrontend (compile with -DWITHOUT_X 11)

If you will be using asquid cache on the server, rather than the clients:

www/squid (with SQUID_AUFS on)

The following ports (or their latest successors) are strongly suggested:

devel/ccache
mail/postfix

29

Package Building Procedures

net/isc-dhcp41-server
ports-mgmt/pkg
ports-mgmt/portaudit
ports-mgmt/portmaster
shells/bash
shells/zsh
sysutils/screen

Note: The use of sudo on the master, which was formerly required, is no longer recommended .

The following ports (or their latest successors) are handy:

benchmarks/bonnie++
ports-mgmt/pkg_tree
sysutils/dmidecode
sysutils/smartmontools
sysutils/zfs-stats

18.4 Configuring the zfs volume and setting up the repository

The following steps need to be done as euid root.

Here is a quick example:

Example 10. The contents of example fileportbuild/tools/example_install

#!/bin/sh
#
example script to drive the "mkportbuild" kickstart file
#
export PORTBUILD_USER=portbuild
export SRCBUILD_USER=srcbuild
export ZFS_VOLUME=a
export ZFS_MOUNTPOINT=/a
export VCS_REPOSITORY=svn://svn0.us-east.FreeBSD.org

#
create the zpool. the examples here are just suggestions an d need to be
customized for your site.
#
simple examples:
zpool create ${ZFS_VOLUME} da1
zpool create ${ZFS_VOLUME} gprootfs
more complex example:
zpool create ${ZFS_VOLUME} mirror da1 da2 mirror da3 da4 mi rror da5 da6 mirror da7 da8

#
check out the kickstart file and run it
#
mkdir -p tmp

30

Package Building Procedures

svn checkout ${VCS_REPOSITORY}/base/projects/portbuil d/admin/tools tmp
sh -x ./tmp/mkportbuild

Here is a detailed explanation of the example:

1. Export the value ofPORTBUILD_USER:

export PORTBUILD_USER= portbuild

2. Export the value ofSRCBUILD_USER:

export SRCBUILD_USER= srcbuild

3. Pick azfsvolume name and export it. We have useda so far to date.

export ZFS_VOLUME= a

4. Pick a mountpoint and export it. We have used/ a so far to date.

export ZFS_MOUNTPOINT=/ a

5. Create thezfsvolume and mount it.

Example 11. Creating a zfs volume for portbuild

zpool create ${ZFS_VOLUME} mirror da1 da2 mirror da3 da4 mir ror da5 da6 mirror da7 da8

Note: The kickstart script defines zfs permission sets , so that the srcbuild user and portbuild user
may administer subdirectories of this volume without having to have root privileges.

6. Select ansvn repository and export it. See the FreeBSD Handbook
(http://www.FreeBSD.org/doc/en_US.ISO8859-1/books/handbook/svn-mirrors.html) for the currently supported
list.

export VCS_REPOSITORY=svn://svn0.us-east.FreeBSD.org

7. Obtain a copy of the kickstart script into a temporary directory. (You will not need to keep this directory later.)

mkdir -p /home/ portbuild/ tmp
svn checkout ${VCS_REPOSITORY}/base/projects/portbuil d/admin/tools /home/ portbuild/ tmp

8. Run the kickstart script:

sh /home/ portbuild/ tmp/mkportbuild

This will accomplish all the following steps:

1. Create theportbuild directory

2. Create and mount a newzfsfilesystem on it

3. Set up the directory

4. Set up the initial repository:

5. Set up thezfs permission sets .

6. Split ownerships of subdirectories such thatPORTBUILD_USER owns, and only owns, files that are used to
manage builds and interact with slaves. The more trustable userSRCBUILD_USER now owns everything else.

31

Package Building Procedures

18.5 Configuring the srcbuild-owned files

1. Configure the server by making the following changes to/ a/portbuild/admin/conf/admin.conf :

• SetSUPPORTED_ARCHSto the list of architectures you wish to build packages for.

• For each source branch you will be building for, setSRC_BRANCHESandSRC_BRANCH_branch_SUBDIRas
detailed inSection 14.1. You should not need to changeSRC_BRANCHES_PATTERN.

• SetZFS_VOLUMEandZFS_MOUNTPOINTto whatever you chose above.

• SetVCS_REPOSITORYto whatever you chose above.

• SetMASTER_URLto the http URL of your server. This will be stamped into the package build logs and the
indices thereof.

Most of the other default values should be fine.

18.6 Configuring the portbuild-owned files

1. Configure how build slaves will talk to your server by making the following changes to
/ a/portbuild/conf/client.conf :

• SetCLIENT_NFS_MASTERto wherever your build slaves will PXE boot from. (Possibly,the hostname of your
server.)

• SetCLIENT_BACKUP_FTP_SITEto a backup site for FTP fetches; again, possibly the hostname of your
server.

• SetCLIENT_UPLOAD_HOSTto where completed packages will be uploaded.

Most of the other default values should be fine.

2. Most of the default values in/ a/portbuild/conf/common.conf should be fine. This file holds definitions
used by both the server and all its clients.

3. Configure the server by making the following changes to/ a/portbuild/conf/server.conf :

• SetUPLOAD_DIRECTORY, UPLOAD_TARGET, andUPLOAD_USERas appropriate for your site.

Most of the other default values should be fine.

18.7 pre-qmanager

1. For each architecture, follow the steps inSection 17.1.

18.8 qmanager

1. As root , copy the following files from/a/portbuild/admin/etc/rc.d/ to /usr/local/etc/rc.d/ :

pollmachine
qmanager

32

Package Building Procedures

As root, start each one of them. You may find it handy to start each underscreenfor debugging purposes.

2. Initialize theqmanagerdatabase’s acl list:

Note: This should now be automatically done for you by the first build command.

python / a/portbuild/qmanager/qclient add_acl name=deny_all uidl ist= gidlist= sense=0

18.9 Creating src and ports repositories

1. As thesrcbuild user, run the following commands manually to create thesrc andports repositories,
respectively:

% / a/portbuild/admin/scripts/updatesnap.ports
% / a/portbuild/admin/scripts/updatesnap

These will be periodically run from thesrcbuild crontab , which you will install below.

18.10 Other services

1. Configure/usr/local/etc/apache22/httpd.conf as appropriate for your site.

2. Copy/a/portbuild/admin/conf/apache.conf to the appropriateIncludes/ subdirectory, e.g.,
/usr/local/etc/apache22/Includes/portbuild.conf . Configure it as appropriate for your site.

3. Install/a/portbuild/admin/crontabs/portbuild as theportbuild crontab viacrontab -u

portbuild -e . If you do not support all the archs listed there, make sure tocomment out the appropriate
dologsentries.

4. Install/a/portbuild/admin/crontabs/srcbuild as thesrcbuild crontab viacrontab -u srcbuild

-e .

5. If your build slaves will be pxebooted, make sure to enablethetftp entries in/etc/inetd.conf .

6. Configure mail by doing the following:

newaliases .

18.11 Finishing up

1. For each architecture, follow the steps inSection 17.2.

2. You will probably find it handy to append the following to thePATHdefinition for theportbuild user:

/ a/portbuild/scripts:/ a/portbuild/tools

3. You will also probably find it handy to append the followingto thePATHdefinition for thesrcbuild user:

/ a/portbuild/admin/scripts:/ a/portbuild/admin/tools

33

Package Building Procedures

You should now be ready to build packages.

19 Procedures for dealing with disk failures

Note: The following section is particular to freebsd.org and is somewhat obsolete.

When a machine has a disk failure (e.g., panics due to read errors, etc), then we should do the following steps:

• Note the time and failure mode (e.g., paste in the relevant console output) in/a/portbuild/ ${arch}/reboots

• For i386 gohan clients, scrub the disk by touching/SCRUB in the nfsroot (e.g.,/a/nfs/8.dir1/SCRUB) and
rebooting. This willdd if=/dev/zero of=/dev/ad0 and force the drive to remap any bad sectors it finds, if it
has enough spares left. This is a temporary measure to extendthe lifetime of a drive that is on the way out.

Note: For the i386 blade systems another signal of a failing disk seems to be that the blade will completely
hang and be unresponsive to either console break, or even NMI.

For other build systems that do not newfs their disk at boot (e.g., amd64 systems) this step has to be skipped.

• If the problem recurs, then the disk is probably toast. Take the machine out ofmlist and (for ata disks) run
smartctl on the drive:

smartctl -t long /dev/ad0

It will take about 1/2 hour:

gohan51# smartctl -t long /dev/ad0
smartctl version 5.38 [i386-portbld-freebsd8.0] Copyrig ht (C) 2002-8
Bruce Allen
Home page is http://smartmontools.sourceforge.net/

=== START OF OFFLINE IMMEDIATE AND SELF-TEST SECTION ===
Sending command: "Execute SMART Extended self-test routin e immediately in off-line mode".
Drive command "Execute SMART Extended self-test routine im mediately in off-line mode" successful.
Testing has begun.
Please wait 31 minutes for test to complete.
Test will complete after Fri Jul 4 03:59:56 2008

Use smartctl -X to abort test.

Thensmartctl -a /dev/ad0 shows the status after it finishes:

SMART Self-test log structure revision number 1
Num Test_Description Status Remaining
LifeTime(hours) LBA_of_first_error
1 Extended offline Completed: read failure 80% 15252 31928 6

It will also display other data including a log of previous drive errors. It is possible for the drive to show previous
DMA errors without failing the self-test though (because ofsector remapping).

34

Package Building Procedures

When a disk has failed, please inform the cluster administrators so we can try to get it replaced.

Notes
1. Status of these steps can be found in${arch}/ ${branch}/build.log as well as on stderr of the tty running the

dopackages command.

2. If any of these steps fail, the build will stop cold in its tracks.

3. Status of these steps can be found in${arch}/ ${branch}/journal . Individual ports will write their build logs
to ${arch}/ ${branch}/logs/ and their error logs to${arch}/ ${branch}/errors/ .

35

	Table of Contents
	1 Introduction
	1.1 The codebase
	1.2 Historical notes on the codebase
	1.3 Notes on privilege separation

	2 Build Client Management
	3 Jail Build Environment Setup
	4 Customizing Your Build
	5 Starting the Build
	5.1 dopackages scripts
	5.2 build command
	5.3 Building a single package

	6 Anatomy of a Build
	7 Build Maintenance
	7.1 Interrupting a Build
	7.2 Cleaning up a Build
	7.3 Maintaining builds with the build command

	8 Monitoring the Build
	9 Dealing With Build Errors
	10 Release Builds
	11 Uploading Packages
	12 Experimental Patches Builds
	13 How to configure a new package building node
	13.1 Node requirements
	13.2 Preparation
	13.3 Configuring src
	13.4 Configuring ports
	13.5 Configuration on the client itself
	13.6 Configuration on the server
	13.7 Enabling the node

	14 How to configure a new FreeBSD branch
	14.1 Steps necessary before qmanager is started
	14.2 Steps necessary after qmanager is started

	15 How to delete an unsupported FreeBSD branch
	16 How to rebase on a supported FreeBSD branch
	17 How to configure a new architecture
	17.1 Steps necessary before qmanager is started
	17.2 Steps necessary after qmanager is started

	18 How to configure a new head node (pointyhat instance)
	18.1 Basic installation
	18.2 Configuring src
	18.3 Configuring ports
	18.4 Configuring the zfs volume and setting up the repository
	18.5 Configuring the srcbuildowned files
	18.6 Configuring the portbuildowned files
	18.7 preqmanager
	18.8 qmanager
	18.9 Creating src and ports repositories
	18.10 Other services
	18.11 Finishing up

	19 Procedures for dealing with disk failures

