
Using newer version of GCC and
binutils with the FreeBSD Ports

Collection
Martin Matuska

mm@FreeBSD.org

$FreeBSD: release/9.2.0/en_US.ISO8859-1/articles/cus tom-gcc/article.xml 41645
2013-05-17 18:49:52Z gabor $

Copyright © 2009 The FreeBSD Documentation Project
$FreeBSD: release/9.2.0/en_US.ISO8859-1/articles/cus tom-gcc/article.xml 41645

2013-05-17 18:49:52Z gabor $

FreeBSD is a registered trademark of the FreeBSD Foundation.
Many of the designations used by manufacturers and sellers to distinguish their products are claimed
as trademarks. Where those designations appear in this documen t, and the FreeBSD Project was
aware of the trademark claim, the designations have been follow ed by the “™” or the “®” symbol.

This article describes how to use newer versions of theGCC compilers andbinutils from the FreeBSD
ports tree. CustomGCC configurations are also discussed.

Table of Contents
1 Introduction ..1

2 Prerequisites...1

3 Configuring ports for custom version of GCC..2

4 Impact on the binary performance..4

1 Introduction
The default system compiler as of FreeBSD 8.0 isGCC version 4.2.1. In addition, the base system of FreeBSD
includesbinutils version 2.15. These versions are several years old and lack,among other things, support for recent
CPU instructions like SSSE3, SSE4.1, SSE4.2, etc. Due to licensing issues, new versions of these applications will
not be integrated into the base system. Luckily, it is possible to use a newer version of theGCC compiler (e.g.
version 4.4) with the help of the FreeBSD ports tree.

1

Using newer version of GCC and binutils with the FreeBSD Ports Collection

2 Prerequisites

2.1 Installing binutils from ports

To make use of all of the new features in the latestGCC versions, the latest version ofbinutils needs to be installed.
Installation of the newer version ofbinutils is optional; but without it, there will be no support for new CPU
instructions.

To install the latest available version ofbinutils using the FreeBSD ports tree, issue the following command:

cd /usr/ports/devel/binutils && make install

2.2 Installing GCC from ports

The FreeBSD ports tree offers several new versions ofGCC. The following example is for the stable version 4.4.
However, it is possible to install previous or later development versions (e.g.lang/gcc43 or lang/gcc45).

To install one of the mentionedGCC ports, run the following command:

cd /usr/ports/lang/gcc44 && make install

3 Configuring ports for custom version of GCC
Additional system configuration is required in order to use custom version ofGCC installed from the FreeBSD ports
tree.

3.1 Adjusting make.conf

Add the following lines to the/etc/make.conf file (or modify appropriately):

.if !empty(.CURDIR:M/usr/ports/*) && exists(/usr/local/bin/gcc44)
CC=gcc44
CXX=g++44
CPP=cpp44
.endif

Alternatively, it is possible to specify the${CC} and${CPP} variables manually.

Note: The examples above are for GCC version 4.4. To use gcc43, replace "gcc44" with "gcc43" and "4.4"

with "4.3" and so on.

2

Using newer version of GCC and binutils with the FreeBSD Ports Collection

3.2 Adjusting libmap.conf

Many of the ports’ binaries and libraries link to libgcc_s orlibstdc++. The base system already includes these
libraries, but from an earlier version ofGCC (version 4.2.1). To supply rtld (and ldd) with correct versions, add the
following lines to the/etc/libmap.conf file (or modify appropriately):

libgcc_s.so.1 gcc44/libgcc_s.so.1
libgomp.so.1 gcc44/libgomp.so.1
libobjc.so.3 gcc44/libobjc.so.2
libssp.so.0 gcc44/libssp.so.0
libstdc++.so.6 gcc44/libstdc++.so.6

Note: The examples above are for GCC version 4.4. To use gcc43, replace "gcc44" with "gcc43" and so on.
Note also that all of these libraries are fully backwards compatible with base system libraries.

Warning: Some C++ programs may refuse to work if these libraries are not mapped correctly. If it is not feasible
to map them all, it is recommended to map at least libstdc++.so.

3.3 Custom CFLAGS for the ports tree

To add customCFLAGS for the ports tree which are unsupported by the base system, adjust the/etc/make.conf
according to the following example:

.if !empty(.CURDIR:M/usr/ports/*) && exists(/usr/local/bin/gcc44)
CC=gcc44
CXX=g++44
CPP=cpp44
CFLAGS+=-mssse3
.endif

It is possible to completely replaceCFLAGS and/or define customCPUTYPE as well. We recommend settingCPUTYPE
because many ports decide their optimizations flags based onthis variable.

3.4 Excluding ports that do not build with new version of GCC

To exclude ports that have problems with custom version ofGCC, adjust the/etc/make.conf according to the
following example:

.if !empty(.CURDIR:M/usr/ports/*) && exists(/usr/local/bin/gcc44)

.if empty(.CURDIR:M/usr/ports/net/openldap*)
CC=gcc44
CXX=g++44
CPP=cpp44
.endif
.endif

3

Using newer version of GCC and binutils with the FreeBSD Ports Collection

The example above excludes the forced use ofgcc 4.4 for thenet/openldap* ports. It is also possible to specify
more ports on a single line:

.if empty(.CURDIR:M/usr/ports/net/openldap*) && empty(.CURDIR:M/usr/ports/xxx/yyy) && ...

4 Impact on the binary performance
UsingGCC version 4.4 with SSSE3 instruction set enabled (if supported by the CPU) may yield up to 10% average
increase in binary performance. In certain tests, the results show more than a 20% performance boost (e.g. in
multimedia processing).

The table located at http://people.freebsd.org/~mm/benchmarks/perlbench/ shows a comparison ofGCC versions
currently available in base FreeBSD system,GCC version 4.3 andGCC version 4.4 with various combinations of
CFLAGS using the perlbench benchmark suite.

4

	Table of Contents
	1 Introduction
	2 Prerequisites
	2.1 Installing binutils from ports
	2.2 Installing GCC from ports

	3 Configuring ports for custom version of GCC
	3.1 Adjusting make.conf
	3.2 Adjusting libmap.conf
	3.3 Custom CFLAGS for the ports tree
	3.4 Excluding ports that do not build with new version of GCC

	4 Impact on the binary performance

