
Pluggable Authentication Modules
Dag-Erling Smørgrav

$FreeBSD: release/9.2.0/en_US.ISO8859-1/articles/pam /article.xml 42094
2013-06-30 14:17:41Z blackend $

Copyright © 2001, 2002, 2003 Networks Associates Technolog y, Inc.

This article was written for the FreeBSD Project by ThinkSec AS and Network Associates Laboratories,
the Security Research Division of Network Associates, Inc. un der DARPA/SPAWAR contract
N66001-01-C-8035 (“CBOSS”), as part of the DARPA CHATS resea rch program.

FreeBSD is a registered trademark of the FreeBSD Foundation.
Linux is a registered trademark of Linus Torvalds.
Motif, OSF/1, and UNIX are registered trademarks and IT DialTone a nd The Open Group are trademarks
of The Open Group in the United States and other countries.
Sun, Sun Microsystems, Java, Java Virtual Machine, JavaSer ver Pages, JDK, JRE, JSP, JVM, Netra,
OpenJDK, Solaris, StarOffice, Sun Blade, Sun Enterprise, Sun Fire , SunOS, Ultra and VirtualBox are
trademarks or registered trademarks of Sun Microsystems, Inc. in t he United States and other
countries.
Many of the designations used by manufacturers and sellers to distinguish their products are claimed
as trademarks. Where those designations appear in this documen t, and the FreeBSD Project was
aware of the trademark claim, the designations have been follow ed by the “™” or the “®” symbol.

This article describes the underlying principles and mechanisms of the Pluggable Authentication Modules
(PAM) library, and explains how to configure PAM, how to integrate PAM into applications, and how to
write PAM modules.

Table of Contents
1. Introduction ...1

2. Terms and conventions...2

3. PAM Essentials..5

4. PAM Configuration...8

5. FreeBSD PAM Modules..10

6. PAM Application Programming ..13

7. PAM Module Programming...13

A. Sample PAM Application ..14

B. Sample PAM Module...17

C. Sample PAM Conversation Function...21

Further Reading..23

1

Pluggable Authentication Modules

1. Introduction
The Pluggable Authentication Modules (PAM) library is a generalized API for authentication-related services which
allows a system administrator to add new authentication methods simply by installing new PAM modules, and to
modify authentication policies by editing configuration files.

PAM was defined and developed in 1995 by Vipin Samar and Charlie Lai of Sun Microsystems, and has not changed
much since. In 1997, the Open Group published the X/Open Single Sign-on (XSSO) preliminary specification, which
standardized the PAM API and added extensions for single (orrather integrated) sign-on. At the time of this writing,
this specification has not yet been adopted as a standard.

Although this article focuses primarily on FreeBSD 5.x, which uses OpenPAM, it should be equally applicable to
FreeBSD 4.x, which uses Linux-PAM, and other operating systems such as Linux and Solaris™.

2. Terms and conventions

2.1. Definitions

The terminology surrounding PAM is rather confused. Neither Samar and Lai’s original paper nor the XSSO
specification made any attempt at formally defining terms forthe various actors and entities involved in PAM, and
the terms that they do use (but do not define) are sometimes misleading and ambiguous. The first attempt at
establishing a consistent and unambiguous terminology wasa whitepaper written by Andrew G. Morgan (author of
Linux-PAM) in 1999. While Morgan’s choice of terminology was a huge leap forward, it is in this author’s opinion
by no means perfect. What follows is an attempt, heavily inspired by Morgan, to define precise and unambiguous
terms for all actors and entities involved in PAM.

account

The set of credentials the applicant is requesting from the arbitrator.

applicant

The user or entity requesting authentication.

arbitrator

The user or entity who has the privileges necessary to verifythe applicant’s credentials and the authority to
grant or deny the request.

chain

A sequence of modules that will be invoked in response to a PAMrequest. The chain includes information about
the order in which to invoke the modules, what arguments to pass to them, and how to interpret the results.

2

Pluggable Authentication Modules

client

The application responsible for initiating an authentication request on behalf of the applicant and for obtaining
the necessary authentication information from him.

facility

One of the four basic groups of functionality provided by PAM: authentication, account management, session
management and authentication token update.

module

A collection of one or more related functions implementing aparticular authentication facility, gathered into a
single (normally dynamically loadable) binary file and identified by a single name.

policy

The complete set of configuration statements describing howto handle PAM requests for a particular service. A
policy normally consists of four chains, one for each facility, though some services do not use all four facilities.

server

The application acting on behalf of the arbitrator to converse with the client, retrieve authentication information,
verify the applicant’s credentials and grant or deny requests.

service

A class of servers providing similar or related functionality and requiring similar authentication. PAM policies
are defined on a per-service basis, so all servers that claim the same service name will be subject to the same
policy.

session

The context within which service is rendered to the applicant by the server. One of PAM’s four facilities, session
management, is concerned exclusively with setting up and tearing down this context.

token

A chunk of information associated with the account, such as apassword or passphrase, which the applicant
must provide to prove his identity.

3

Pluggable Authentication Modules

transaction

A sequence of requests from the same applicant to the same instance of the same server, beginning with
authentication and session set-up and ending with session tear-down.

2.2. Usage examples

This section aims to illustrate the meanings of some of the terms defined above by way of a handful of simple
examples.

2.2.1. Client and server are one

This simple example showsalice su(1)’ing toroot .

% whoami

alice
% ls -l ‘which su‘

-r-sr-xr-x 1 root wheel 10744 Dec 6 19:06 /usr/bin/su
% su -

Password: xi3kiune

whoami
root

• The applicant isalice .

• The account isroot .

• The su(1) process is both client and server.

• The authentication token isxi3kiune .

• The arbitrator isroot , which is why su(1) is setuidroot .

2.2.2. Client and server are separate

The example below showseve try to initiate an ssh(1) connection tologin.example.com , ask to log in asbob ,
and succeed. Bob should have chosen a better password!

% whoami

eve
% ssh bob@login.example.com

bob@login.example.com’s password: god

Last login: Thu Oct 11 09:52:57 2001 from 192.168.0.1
Copyright (c) 1980, 1983, 1986, 1988, 1990, 1991, 1993, 1994

The Regents of the University of California. All rights rese rved.
FreeBSD 4.4-STABLE (LOGIN) #4: Tue Nov 27 18:10:34 PST 2001

Welcome to FreeBSD!

4

Pluggable Authentication Modules

%

• The applicant iseve .

• The client is Eve’s ssh(1) process.

• The server is the sshd(8) process onlogin.example.com

• The account isbob .

• The authentication token isgod .

• Although this is not shown in this example, the arbitrator isroot .

2.2.3. Sample policy

The following is FreeBSD’s default policy forsshd :

sshd auth required pam_nologin.so no_warn
sshd auth required pam_unix.so no_warn try_first_pass
sshd account required pam_login_access.so
sshd account required pam_unix.so
sshd session required pam_lastlog.so no_fail
sshd password required pam_permit.so

• This policy applies to thesshd service (which is not necessarily restricted to the sshd(8)server.)

• auth , account , session andpassword are facilities.

• pam_nologin.so , pam_unix.so , pam_login_access.so , pam_lastlog.so andpam_permit.so are
modules. It is clear from this example thatpam_unix.so provides at least two facilities (authentication and
account management.)

3. PAM Essentials

3.1. Facilities and primitives

The PAM API offers six different authentication primitivesgrouped in four facilities, which are described below.

auth

Authentication.This facility concerns itself with authenticating the applicant and establishing the account
credentials. It provides two primitives:

• pam_authenticate(3) authenticates the applicant, usually by requesting an authentication token and
comparing it with a value stored in a database or obtained from an authentication server.

• pam_setcred(3) establishes account credentials such as user ID, group membership and resource limits.

5

Pluggable Authentication Modules

account

Account management.This facility handles non-authentication-related issuesof account availability, such as
access restrictions based on the time of day or the server’s work load. It provides a single primitive:

• pam_acct_mgmt(3) verifies that the requested account is available.

session

Session management.This facility handles tasks associated with session set-upand tear-down, such as login
accounting. It provides two primitives:

• pam_open_session(3) performs tasks associated with session set-up: add an entry in theutmp andwtmp

databases, start an SSH agent, etc.

• pam_close_session(3) performs tasks associated with session tear-down: add an entry in theutmp andwtmp

databases, stop the SSH agent, etc.

password

Password management.This facility is used to change the authentication token associated with an account,
either because it has expired or because the user wishes to change it. It provides a single primitive:

• pam_chauthtok(3) changes the authentication token, optionally verifying that it is sufficiently hard to guess,
has not been used previously, etc.

3.2. Modules

Modules are a very central concept in PAM; after all, they arethe “M” in “PAM”. A PAM module is a self-contained
piece of program code that implements the primitives in one or more facilities for one particular mechanism; possible
mechanisms for the authentication facility, for instance,include the UNIX® password database, NIS, LDAP and
Radius.

3.2.1. Module Naming

FreeBSD implements each mechanism in a single module, namedpam_mechanism.so (for instance,pam_unix.so

for the UNIX mechanism.) Other implementations sometimes have separate modules for separate facilities, and
include the facility name as well as the mechanism name in themodule name. To name one example, Solaris has a
pam_dial_auth.so.1 module which is commonly used to authenticate dialup users.

3.2.2. Module Versioning

FreeBSD’s original PAM implementation, based on Linux-PAM, did not use version numbers for PAM modules.
This would commonly cause problems with legacy applications, which might be linked against older versions of the
system libraries, as there was no way to load a matching version of the required modules.

6

Pluggable Authentication Modules

OpenPAM, on the other hand, looks for modules that have the same version number as the PAM library (currently 2),
and only falls back to an unversioned module if no versioned module could be loaded. Thus legacy modules can be
provided for legacy applications, while allowing new (or newly built) applications to take advantage of the most
recent modules.

Although Solaris PAM modules commonly have a version number, they are not truly versioned, because the number
is a part of the module name and must be included in the configuration.

3.3. Chains and policies

When a server initiates a PAM transaction, the PAM library tries to load a policy for the service specified in the
pam_start(3) call. The policy specifies how authenticationrequests should be processed, and is defined in a
configuration file. This is the other central concept in PAM: the possibility for the admin to tune the system security
policy (in the wider sense of the word) simply by editing a text file.

A policy consists of four chains, one for each of the four PAM facilities. Each chain is a sequence of configuration
statements, each specifying a module to invoke, some (optional) parameters to pass to the module, and a control flag
that describes how to interpret the return code from the module.

Understanding the control flags is essential to understanding PAM configuration files. There are four different control
flags:

binding

If the module succeeds and no earlier module in the chain has failed, the chain is immediately terminated and
the request is granted. If the module fails, the rest of the chain is executed, but the request is ultimately denied.

This control flag was introduced by Sun in Solaris 9 (SunOS™ 5.9), and is also supported by OpenPAM.

required

If the module succeeds, the rest of the chain is executed, andthe request is granted unless some other module
fails. If the module fails, the rest of the chain is also executed, but the request is ultimately denied.

requisite

If the module succeeds, the rest of the chain is executed, andthe request is granted unless some other module
fails. If the module fails, the chain is immediately terminated and the request is denied.

sufficient

If the module succeeds and no earlier module in the chain has failed, the chain is immediately terminated and
the request is granted. If the module fails, the module is ignored and the rest of the chain is executed.

As the semantics of this flag may be somewhat confusing, especially when it is used for the last module in a
chain, it is recommended that thebinding control flag be used instead if the implementation supports it.

optional

The module is executed, but its result is ignored. If all modules in a chain are markedoptional , all requests
will always be granted.

When a server invokes one of the six PAM primitives, PAM retrieves the chain for the facility the primitive belongs
to, and invokes each of the modules listed in the chain, in theorder they are listed, until it reaches the end, or

7

Pluggable Authentication Modules

determines that no further processing is necessary (eitherbecause abinding or sufficient module succeeded, or
because arequisite module failed.) The request is granted if and only if at leastone module was invoked, and all
non-optional modules succeeded.

Note that it is possible, though not very common, to have the same module listed several times in the same chain. For
instance, a module that looks up user names and passwords in adirectory server could be invoked multiple times
with different parameters specifying different directoryservers to contact. PAM treat different occurrences of the
same module in the same chain as different, unrelated modules.

3.4. Transactions

The lifecycle of a typical PAM transaction is described below. Note that if any of these steps fails, the server should
report a suitable error message to the client and abort the transaction.

1. If necessary, the server obtains arbitrator credentialsthrough a mechanism independent of PAM—most
commonly by virtue of having been started byroot , or of being setuidroot .

2. The server calls pam_start(3) to initialize the PAM library and specify its service name and the target account,
and register a suitable conversation function.

3. The server obtains various information relating to the transaction (such as the applicant’s user name and the
name of the host the client runs on) and submits it to PAM usingpam_set_item(3).

4. The server calls pam_authenticate(3) to authenticate the applicant.

5. The server calls pam_acct_mgmt(3) to verify that the requested account is available and valid. If the password is
correct but has expired, pam_acct_mgmt(3) will returnPAM_NEW_AUTHTOK_REQDinstead ofPAM_SUCCESS.

6. If the previous step returnedPAM_NEW_AUTHTOK_REQD, the server now calls pam_chauthtok(3) to force the
client to change the authentication token for the requestedaccount.

7. Now that the applicant has been properly authenticated, the server calls pam_setcred(3) to establish the
credentials of the requested account. It is able to do this because it acts on behalf of the arbitrator, and holds the
arbitrator’s credentials.

8. Once the correct credentials have been established, the server calls pam_open_session(3) to set up the session.

9. The server now performs whatever service the client requested—for instance, provide the applicant with a shell.

10. Once the server is done serving the client, it calls pam_close_session(3) to tear down the session.

11. Finally, the server calls pam_end(3) to notify the PAM library that it is done and that it can release whatever
resources it has allocated in the course of the transaction.

4. PAM Configuration

4.1. PAM policy files

4.1.1. The /etc/pam.conf file

The traditional PAM policy file is/etc/pam.conf . This file contains all the PAM policies for your system. Each

8

Pluggable Authentication Modules

line of the file describes one step in a chain, as shown below:

login auth required pam_nologin.so no_warn

The fields are, in order: service name, facility name, control flag, module name, and module arguments. Any
additional fields are interpreted as additional module arguments.

A separate chain is constructed for each service / facility pair, so while the order in which lines for the same service
and facility appear is significant, the order in which the individual services and facilities are listed is not. The
examples in the original PAM paper grouped configuration lines by facility, and the Solaris stockpam.conf still
does that, but FreeBSD’s stock configuration groups configuration lines by service. Either way is fine; either way
makes equal sense.

4.1.2. The /etc/pam.d directory

OpenPAM and Linux-PAM support an alternate configuration mechanism, which is the preferred mechanism in
FreeBSD. In this scheme, each policy is contained in a separate file bearing the name of the service it applies to.
These files are stored in/etc/pam.d/ .

These per-service policy files have only four fields instead of pam.conf ’s five: the service name field is omitted.
Thus, instead of the samplepam.conf line from the previous section, one would have the followingline in
/etc/pam.d/login :

auth required pam_nologin.so no_warn

As a consequence of this simplified syntax, it is possible to use the same policy for multiple services by linking each
service name to a same policy file. For instance, to use the same policy for thesu andsudo services, one could do as
follows:

cd /etc/pam.d

ln -s su sudo

This works because the service name is determined from the file name rather than specified in the policy file, so the
same file can be used for multiple differently-named services.

Since each service’s policy is stored in a separate file, thepam.d mechanism also makes it very easy to install
additional policies for third-party software packages.

4.1.3. The policy search order

As we have seen above, PAM policies can be found in a number of places. What happens if policies for the same
service exist in multiple places?

It is essential to understand that PAM’s configuration system is centered on chains.

4.2. Breakdown of a configuration line

As explained inSection 4.1, each line in/etc/pam.conf consists of four or more fields: the service name, the
facility name, the control flag, the module name, and zero or more module arguments.

9

Pluggable Authentication Modules

The service name is generally (though not always) the name ofthe application the statement applies to. If you are
unsure, refer to the individual application’s documentation to determine what service name it uses.

Note that if you use/etc/pam.d/ instead of/etc/pam.conf , the service name is specified by the name of the
policy file, and omitted from the actual configuration lines,which then start with the facility name.

The facility is one of the four facility keywords described in Section 3.1.

Likewise, the control flag is one of the four keywords described inSection 3.3, describing how to interpret the return
code from the module. Linux-PAM supports an alternate syntax that lets you specify the action to associate with each
possible return code, but this should be avoided as it is non-standard and closely tied in with the way Linux-PAM
dispatches service calls (which differs greatly from the way Solaris and OpenPAM do it.) Unsurprisingly, OpenPAM
does not support this syntax.

4.3. Policies

To configure PAM correctly, it is essential to understand howpolicies are interpreted.

When an application calls pam_start(3), the PAM library loads the policy for the specified service and constructs four
module chains (one for each facility.) If one or more of thesechains are empty, the corresponding chains from the
policy for theother service are substituted.

When the application later calls one of the six PAM primitives, the PAM library retrieves the chain for the
corresponding facility and calls the appropriate service function in each module listed in the chain, in the order in
which they were listed in the configuration. After each call to a service function, the module type and the error code
returned by the service function are used to determine what happens next. With a few exceptions, which we discuss
below, the following table applies:

Table 1. PAM chain execution summary

PAM_SUCCESS PAM_IGNORE other

binding if (!fail) break; - fail = true;

required - - fail = true;

requisite - - fail = true; break;

sufficient if (!fail) break; - -

optional - - -

If fail is true at the end of a chain, or when a “break” is reached, the dispatcher returns the error code returned by
the first module that failed. Otherwise, it returnsPAM_SUCCESS.

The first exception of note is that the error codePAM_NEW_AUTHTOK_REQDis treated like a success, except that if no
module failed, and at least one module returnedPAM_NEW_AUTHTOK_REQD, the dispatcher will return
PAM_NEW_AUTHTOK_REQD.

The second exception is that pam_setcred(3) treatsbinding andsufficient modules as if they wererequired .

The third and final exception is that pam_chauthtok(3) runs the entire chain twice (once for preliminary checks and
once to actually set the password), and in the preliminary phase it treatsbinding andsufficient modules as if
they wererequired .

10

Pluggable Authentication Modules

5. FreeBSD PAM Modules

5.1. pam_deny(8)

The pam_deny(8) module is one of the simplest modules available; it responds to any request withPAM_AUTH_ERR.
It is useful for quickly disabling a service (add it to the topof every chain), or for terminating chains ofsufficient

modules.

5.2. pam_echo(8)

The pam_echo(8) module simply passes its arguments to the conversation function as aPAM_TEXT_INFOmessage. It
is mostly useful for debugging, but can also serve to displaymessages such as “Unauthorized access will be
prosecuted” before starting the authentication procedure.

5.3. pam_exec(8)

The pam_exec(8) module takes its first argument to be the nameof a program to execute, and the remaining
arguments are passed to that program as command-line arguments. One possible application is to use it to run a
program at login time which mounts the user’s home directory.

5.4. pam_ftpusers(8)

The pam_ftpusers(8) module

5.5. pam_group(8)

The pam_group(8) module accepts or rejects applicants on the basis of their membership in a particular file group
(normallywheel for su(1)). It is primarily intended for maintaining the traditional behaviour of BSD su(1), but has
many other uses, such as excluding certain groups of users from a particular service.

5.6. pam_guest(8)

The pam_guest(8) module allows guest logins using fixed login names. Various requirements can be placed on the
password, but the default behaviour is to allow any passwordas long as the login name is that of a guest account. The
pam_guest(8) module can easily be used to implement anonymous FTP logins.

5.7. pam_krb5(8)

The pam_krb5(8) module

5.8. pam_ksu(8)

The pam_ksu(8) module

11

Pluggable Authentication Modules

5.9. pam_lastlog(8)

The pam_lastlog(8) module

5.10. pam_login_access(8)

The pam_login_access(8) module provides an implementation of the account management primitive which enforces
the login restrictions specified in the login.access(5) table.

5.11. pam_nologin(8)

The pam_nologin(8) module refuses non-root logins when/var/run/nologin exists. This file is normally created
by shutdown(8) when less than five minutes remain until the scheduled shutdown time.

5.12. pam_opie(8)

The pam_opie(8) module implements the opie(4) authentication method. The opie(4) system is a challenge-response
mechanism where the response to each challenge is a direct function of the challenge and a passphrase, so the
response can be easily computed “just in time” by anyone possessing the passphrase, eliminating the need for
password lists. Moreover, since opie(4) never reuses a challenge that has been correctly answered, it is not vulnerable
to replay attacks.

5.13. pam_opieaccess(8)

The pam_opieaccess(8) module is a companion module to pam_opie(8). Its purpose is to enforce the restrictions
codified in opieaccess(5), which regulate the conditions under which a user who would normally authenticate herself
using opie(4) is allowed to use alternate methods. This is most often used to prohibit the use of password
authentication from untrusted hosts.

In order to be effective, the pam_opieaccess(8) module mustbe listed asrequisite immediately after a
sufficient entry for pam_opie(8), and before any other modules, in theauth chain.

5.14. pam_passwdqc(8)

The pam_passwdqc(8) module

5.15. pam_permit(8)

The pam_permit(8) module is one of the simplest modules available; it responds to any request withPAM_SUCCESS.
It is useful as a placeholder for services where one or more chains would otherwise be empty.

5.16. pam_radius(8)

The pam_radius(8) module

12

Pluggable Authentication Modules

5.17. pam_rhosts(8)

The pam_rhosts(8) module

5.18. pam_rootok(8)

The pam_rootok(8) module reports success if and only if the real user id of the process calling it (which is assumed
to be run by the applicant) is 0. This is useful for non-networked services such as su(1) or passwd(1), to which the
root should have automatic access.

5.19. pam_securetty(8)

The pam_securetty(8) module

5.20. pam_self(8)

The pam_self(8) module reports success if and only if the names of the applicant matches that of the target account.
It is most useful for non-networked services such as su(1), where the identity of the applicant can be easily verified.

5.21. pam_ssh(8)

The pam_ssh(8) module provides both authentication and session services. The authentication service allows users
who have passphrase-protected SSH secret keys in their~/.ssh directory to authenticate themselves by typing their
passphrase. The session service starts ssh-agent(1) and preloads it with the keys that were decrypted in the
authentication phase. This feature is particularly usefulfor local logins, whether in X (using xdm(1) or another
PAM-aware X login manager) or at the console.

5.22. pam_tacplus(8)

The pam_tacplus(8) module

5.23. pam_unix(8)

The pam_unix(8) module implements traditional UNIX password authentication, using getpwnam(3) to obtain the
target account’s password and compare it with the one provided by the applicant. It also provides account
management services (enforcing account and password expiration times) and password-changing services. This is
probably the single most useful module, as the great majority of admins will want to maintain historical behaviour
for at least some services.

6. PAM Application Programming
This section has not yet been written.

13

Pluggable Authentication Modules

7. PAM Module Programming
This section has not yet been written.

A. Sample PAM Application
The following is a minimal implementation of su(1) using PAM. Note that it uses the OpenPAM-specific
openpam_ttyconv(3) conversation function, which is prototyped insecurity/openpam.h . If you wish build this
application on a system with a different PAM library, you will have to provide your own conversation function. A
robust conversation function is surprisingly difficult to implement; the one presented inAppendix Cis a good
starting point, but should not be used in real-world applications.

/ * -

* Copyright (c) 2002,2003 Networks Associates Technology, I nc.

* All rights reserved.

*
* This software was developed for the FreeBSD Project by Think Sec AS and

* Network Associates Laboratories, the Security Research Di vision of

* Network Associates, Inc. under DARPA/SPAWAR contract N660 01-01-C-8035

* ("CBOSS"), as part of the DARPA CHATS research program.

*
* Redistribution and use in source and binary forms, with or wi thout

* modification, are permitted provided that the following co nditions

* are met:

* 1. Redistributions of source code must retain the above copy right

* notice, this list of conditions and the following disclaime r.

* 2. Redistributions in binary form must reproduce the above c opyright

* notice, this list of conditions and the following disclaime r in the

* documentation and/or other materials provided with the dis tribution.

* 3. The name of the author may not be used to endorse or promote

* products derived from this software without specific prior written

* permission.

*
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS “ASIS” AND

* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE

* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE

* ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORSBE LIABLE

* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL

* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS

* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)

* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT

* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY

* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF

* SUCH DAMAGE.

*
* $P4: //depot/projects/openpam/bin/su/su.c#10 $

* $FreeBSD: release/9.2.0/en_US.ISO8859-1/articles/pam /su.c 38826 2012-05-17 19:12:14Z hrs $

* /

#include <sys/param.h>
#include <sys/wait.h>

14

Pluggable Authentication Modules

#include <err.h>
#include <pwd.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <syslog.h>
#include <unistd.h>

#include <security/pam_appl.h>
#include <security/openpam.h> / * for openpam_ttyconv() * /

extern char ** environ;

static pam_handle_t * pamh;
static struct pam_conv pamc;

static void
usage(void)
{

fprintf(stderr, "Usage: su [login [args]]\n");
exit(1);

}

int
main(int argc, char * argv[])
{

char hostname[MAXHOSTNAMELEN];
const char * user, * tty;
char ** args, ** pam_envlist, ** pam_env;
struct passwd * pwd;
int o, pam_err, status;
pid_t pid;

while ((o = getopt(argc, argv, "h")) != -1)
switch (o) {
case ’h’:
default:

usage();
}

argc -= optind;
argv += optind;

if (argc > 0) {
user = * argv;
--argc;
++argv;

} else {
user = "root";

}

15

Pluggable Authentication Modules

/ * initialize PAM * /
pamc.conv = &openpam_ttyconv;
pam_start("su", user, &pamc, &pamh);

/ * set some items * /
gethostname(hostname, sizeof(hostname));
if ((pam_err = pam_set_item(pamh, PAM_RHOST, hostname)) ! = PAM_SUCCESS)

goto pamerr;
user = getlogin();
if ((pam_err = pam_set_item(pamh, PAM_RUSER, user)) != PAM _SUCCESS)

goto pamerr;
tty = ttyname(STDERR_FILENO);
if ((pam_err = pam_set_item(pamh, PAM_TTY, tty)) != PAM_SU CCESS)

goto pamerr;

/ * authenticate the applicant * /
if ((pam_err = pam_authenticate(pamh, 0)) != PAM_SUCCESS)

goto pamerr;
if ((pam_err = pam_acct_mgmt(pamh, 0)) == PAM_NEW_AUTHTOK _REQD)

pam_err = pam_chauthtok(pamh, PAM_CHANGE_EXPIRED_AUTHT OK);
if (pam_err != PAM_SUCCESS)

goto pamerr;

/ * establish the requested credentials * /
if ((pam_err = pam_setcred(pamh, PAM_ESTABLISH_CRED)) != PAM_SUCCESS)

goto pamerr;

/ * authentication succeeded; open a session * /
if ((pam_err = pam_open_session(pamh, 0)) != PAM_SUCCESS)

goto pamerr;

/ * get mapped user name; PAM may have changed it * /
pam_err = pam_get_item(pamh, PAM_USER, (const void **)&user);
if (pam_err != PAM_SUCCESS || (pwd = getpwnam(user)) == NULL)

goto pamerr;

/ * export PAM environment * /
if ((pam_envlist = pam_getenvlist(pamh)) != NULL) {

for (pam_env = pam_envlist; * pam_env != NULL; ++pam_env) {
putenv(* pam_env);
free(* pam_env);

}
free(pam_envlist);

}

/ * build argument list * /
if ((args = calloc(argc + 2, sizeof * args)) == NULL) {

warn("calloc()");
goto err;

}

* args = pwd->pw_shell;
memcpy(args + 1, argv, argc * sizeof * args);

16

Pluggable Authentication Modules

/ * fork and exec * /
switch ((pid = fork())) {
case -1:

warn("fork()");
goto err;

case 0:
/ * child: give up privs and start a shell * /

/ * set uid and groups * /
if (initgroups(pwd->pw_name, pwd->pw_gid) == -1) {

warn("initgroups()");
_exit(1);

}
if (setgid(pwd->pw_gid) == -1) {

warn("setgid()");
_exit(1);

}
if (setuid(pwd->pw_uid) == -1) {

warn("setuid()");
_exit(1);

}
execve(* args, args, environ);
warn("execve()");
_exit(1);

default:
/ * parent: wait for child to exit * /
waitpid(pid, &status, 0);

/ * close the session and release PAM resources * /
pam_err = pam_close_session(pamh, 0);
pam_end(pamh, pam_err);

exit(WEXITSTATUS(status));
}

pamerr:
fprintf(stderr, "Sorry\n");

err:
pam_end(pamh, pam_err);
exit(1);

}

B. Sample PAM Module
The following is a minimal implementation of pam_unix(8), offering only authentication services. It should build
and run with most PAM implementations, but takes advantage of OpenPAM extensions if available: note the use of
pam_get_authtok(3), which enormously simplifies prompting the user for a password.

/ * -

* Copyright (c) 2002 Networks Associates Technology, Inc.

17

Pluggable Authentication Modules

* All rights reserved.

*
* This software was developed for the FreeBSD Project by Think Sec AS and

* Network Associates Laboratories, the Security Research Di vision of

* Network Associates, Inc. under DARPA/SPAWAR contract N660 01-01-C-8035

* ("CBOSS"), as part of the DARPA CHATS research program.

*
* Redistribution and use in source and binary forms, with or wi thout

* modification, are permitted provided that the following co nditions

* are met:

* 1. Redistributions of source code must retain the above copy right

* notice, this list of conditions and the following disclaime r.

* 2. Redistributions in binary form must reproduce the above c opyright

* notice, this list of conditions and the following disclaime r in the

* documentation and/or other materials provided with the dis tribution.

* 3. The name of the author may not be used to endorse or promote

* products derived from this software without specific prior written

* permission.

*
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS “ASIS” AND

* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE

* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE

* ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORSBE LIABLE

* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL

* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS

* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)

* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT

* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY

* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF

* SUCH DAMAGE.

*
* $P4: //depot/projects/openpam/modules/pam_unix/pam_u nix.c#3 $

* $FreeBSD: release/9.2.0/en_US.ISO8859-1/articles/pam /pam_unix.c 38826 2012-05-17 19:12:14Z hrs

* /

#include <sys/param.h>

#include <pwd.h>
#include <stdlib.h>
#include <stdio.h>
#include <string.h>
#include <unistd.h>

#include <security/pam_modules.h>
#include <security/pam_appl.h>

#ifndef _OPENPAM
static char password_prompt[] = "Password:";
#endif

#ifndef PAM_EXTERN
#define PAM_EXTERN
#endif

18

Pluggable Authentication Modules

PAM_EXTERN int
pam_sm_authenticate(pam_handle_t * pamh, int flags,

int argc, const char * argv[])
{
#ifndef _OPENPAM

struct pam_conv * conv;
struct pam_message msg;
const struct pam_message * msgp;
struct pam_response * resp;

#endif
struct passwd * pwd;
const char * user;
char * crypt_password, * password;
int pam_err, retry;

/ * identify user * /
if ((pam_err = pam_get_user(pamh, &user, NULL)) != PAM_SUC CESS)

return (pam_err);
if ((pwd = getpwnam(user)) == NULL)

return (PAM_USER_UNKNOWN);

/ * get password * /
#ifndef _OPENPAM

pam_err = pam_get_item(pamh, PAM_CONV, (const void **)&conv);
if (pam_err != PAM_SUCCESS)

return (PAM_SYSTEM_ERR);
msg.msg_style = PAM_PROMPT_ECHO_OFF;
msg.msg = password_prompt;
msgp = &msg;

#endif
for (retry = 0; retry < 3; ++retry) {

#ifdef _OPENPAM
pam_err = pam_get_authtok(pamh, PAM_AUTHTOK,

(const char **)&password, NULL);
#else

resp = NULL;
pam_err = (* conv->conv)(1, &msgp, &resp, conv->appdata_ptr);
if (resp != NULL) {

if (pam_err == PAM_SUCCESS)
password = resp->resp;

else
free(resp->resp);

free(resp);
}

#endif
if (pam_err == PAM_SUCCESS)

break;
}
if (pam_err == PAM_CONV_ERR)

return (pam_err);
if (pam_err != PAM_SUCCESS)

return (PAM_AUTH_ERR);

19

Pluggable Authentication Modules

/ * compare passwords * /
if ((!pwd->pw_passwd[0] && (flags & PAM_DISALLOW_NULL_AU THTOK)) ||

(crypt_password = crypt(password, pwd->pw_passwd)) == NU LL ||
strcmp(crypt_password, pwd->pw_passwd) != 0)

pam_err = PAM_AUTH_ERR;
else

pam_err = PAM_SUCCESS;
#ifndef _OPENPAM

free(password);
#endif

return (pam_err);
}

PAM_EXTERN int
pam_sm_setcred(pam_handle_t * pamh, int flags,

int argc, const char * argv[])
{

return (PAM_SUCCESS);
}

PAM_EXTERN int
pam_sm_acct_mgmt(pam_handle_t * pamh, int flags,

int argc, const char * argv[])
{

return (PAM_SUCCESS);
}

PAM_EXTERN int
pam_sm_open_session(pam_handle_t * pamh, int flags,

int argc, const char * argv[])
{

return (PAM_SUCCESS);
}

PAM_EXTERN int
pam_sm_close_session(pam_handle_t * pamh, int flags,

int argc, const char * argv[])
{

return (PAM_SUCCESS);
}

PAM_EXTERN int
pam_sm_chauthtok(pam_handle_t * pamh, int flags,

int argc, const char * argv[])
{

return (PAM_SERVICE_ERR);
}

20

Pluggable Authentication Modules

#ifdef PAM_MODULE_ENTRY
PAM_MODULE_ENTRY("pam_unix");
#endif

C. Sample PAM Conversation Function
The conversation function presented below is a greatly simplified version of OpenPAM’s openpam_ttyconv(3). It is
fully functional, and should give the reader a good idea of how a conversation function should behave, but it is far too
simple for real-world use. Even if you are not using OpenPAM,feel free to download the source code and adapt
openpam_ttyconv(3) to your uses; we believe it to be as robust as a tty-oriented conversation function can reasonably
get.

/ * -

* Copyright (c) 2002 Networks Associates Technology, Inc.

* All rights reserved.

*
* This software was developed for the FreeBSD Project by Think Sec AS and

* Network Associates Laboratories, the Security Research Di vision of

* Network Associates, Inc. under DARPA/SPAWAR contract N660 01-01-C-8035

* ("CBOSS"), as part of the DARPA CHATS research program.

*
* Redistribution and use in source and binary forms, with or wi thout

* modification, are permitted provided that the following co nditions

* are met:

* 1. Redistributions of source code must retain the above copy right

* notice, this list of conditions and the following disclaime r.

* 2. Redistributions in binary form must reproduce the above c opyright

* notice, this list of conditions and the following disclaime r in the

* documentation and/or other materials provided with the dis tribution.

* 3. The name of the author may not be used to endorse or promote

* products derived from this software without specific prior written

* permission.

*
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS “ASIS” AND

* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE

* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE

* ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORSBE LIABLE

* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL

* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS

* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)

* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT

* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY

* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF

* SUCH DAMAGE.

*
* $FreeBSD: release/9.2.0/en_US.ISO8859-1/articles/pam /converse.c 38826 2012-05-17 19:12:14Z hrs

* /

#include <stdio.h>

21

Pluggable Authentication Modules

#include <stdlib.h>
#include <string.h>
#include <unistd.h>

#include <security/pam_appl.h>

int
converse(int n, const struct pam_message ** msg,

struct pam_response ** resp, void * data)
{

struct pam_response * aresp;
char buf[PAM_MAX_RESP_SIZE];
int i;

data = data;
if (n <= 0 || n > PAM_MAX_NUM_MSG)

return (PAM_CONV_ERR);
if ((aresp = calloc(n, sizeof * aresp)) == NULL)

return (PAM_BUF_ERR);
for (i = 0; i < n; ++i) {

aresp[i].resp_retcode = 0;
aresp[i].resp = NULL;
switch (msg[i]->msg_style) {
case PAM_PROMPT_ECHO_OFF:

aresp[i].resp = strdup(getpass(msg[i]->msg));
if (aresp[i].resp == NULL)

goto fail;
break;

case PAM_PROMPT_ECHO_ON:
fputs(msg[i]->msg, stderr);
if (fgets(buf, sizeof buf, stdin) == NULL)

goto fail;
aresp[i].resp = strdup(buf);
if (aresp[i].resp == NULL)

goto fail;
break;

case PAM_ERROR_MSG:
fputs(msg[i]->msg, stderr);
if (strlen(msg[i]->msg) > 0 &&

msg[i]->msg[strlen(msg[i]->msg) - 1] != ’\n’)
fputc(’\n’, stderr);

break;
case PAM_TEXT_INFO:

fputs(msg[i]->msg, stdout);
if (strlen(msg[i]->msg) > 0 &&

msg[i]->msg[strlen(msg[i]->msg) - 1] != ’\n’)
fputc(’\n’, stdout);

break;
default:

goto fail;
}

}

* resp = aresp;

22

Pluggable Authentication Modules

return (PAM_SUCCESS);
fail:

for (i = 0; i < n; ++i) {
if (aresp[i].resp != NULL) {

memset(aresp[i].resp, 0, strlen(aresp[i].resp));
free(aresp[i].resp);

}
}
memset(aresp, 0, n * sizeof * aresp);

* resp = NULL;
return (PAM_CONV_ERR);

}

Further Reading

This is a list of documents relevant to PAM and related issues. It is by no means complete.

Papers

Making Login Services Independent of Authentication Technologies
(http://www.sun.com/software/solaris/pam/pam.external.pdf), Vipin Samar and Charlie Lai, Sun Microsystems.

X/Open Single Sign-on Preliminary Specification (http://www.opengroup.org/pubs/catalog/p702.htm), The Open
Group, 1-85912-144-6, June 1997.

Pluggable Authentication Modules (http://www.kernel.org/pub/linux/libs/pam/pre/doc/current-draft.txt), Andrew G.
Morgan, October 6, 1999.

User Manuals

PAM Administration (http://www.sun.com/software/solaris/pam/pam.admin.pdf), Sun Microsystems.

Related Web pages

OpenPAM homepage (http://openpam.sourceforge.net/), Dag-Erling Smørgrav, ThinkSec AS.

Linux-PAM homepage (http://www.kernel.org/pub/linux/libs/pam/), Andrew G. Morgan.

Solaris PAM homepage (http://wwws.sun.com/software/solaris/pam/), Sun Microsystems.

23

	Table of Contents
	1. Introduction
	2. Terms and conventions
	2.1. Definitions

	account
	applicant
	arbitrator
	chain
	client
	facility
	module
	policy
	server
	service
	session
	token
	transaction
	2.2. Usage examples
	2.2.1. Client and server are one
	2.2.2. Client and server are separate
	2.2.3. Sample policy

	3. PAM Essentials
	3.1. Facilities and primitives
	3.2. Modules
	3.2.1. Module Naming
	3.2.2. Module Versioning

	3.3. Chains and policies
	3.4. Transactions

	4. PAM Configuration
	4.1. PAM policy files
	4.1.1. The /etc/pam.conf file
	4.1.2. The /etc/pam.d directory
	4.1.3. The policy search order

	4.2. Breakdown of a configuration line
	4.3. Policies

	5. FreeBSD PAM Modules
	5.1. pamdeny(8)
	5.2. pamecho(8)
	5.3. pamexec(8)
	5.4. pamftpusers(8)
	5.5. pamgroup(8)
	5.6. pamguest(8)
	5.7. pamkrb5(8)
	5.8. pamksu(8)
	5.9. pamlastlog(8)
	5.10. pamloginaccess(8)
	5.11. pamnologin(8)
	5.12. pamopie(8)
	5.13. pamopieaccess(8)
	5.14. pampasswdqc(8)
	5.15. pampermit(8)
	5.16. pamradius(8)
	5.17. pamrhosts(8)
	5.18. pamrootok(8)
	5.19. pamsecuretty(8)
	5.20. pamself(8)
	5.21. pamssh(8)
	5.22. pamtacplus(8)
	5.23. pamunix(8)

	6. PAM Application Programming
	7. PAM Module Programming

	A. Sample PAM Application
	B. Sample PAM Module
	C. Sample PAM Conversation Function
	Further Reading
	Papers
	User Manuals
	Related Web pages

