Perforce in FreeBSD Development

Scott Long
scottl@FreeBSD.org

$FreeBSD: release/9.2.0/en_US.ISO8859-1/articles/p4- primer/article.xml 41645
2013-05-17 18:49:52Z gabor $

$FreeBSD: release/9.2.0/en_US.ISO8859-1/articles/p4- primer/article.xml 41645
2013-05-17 18:49:52Z gabor $

FreeBSD is a registered trademark of the FreeBSD Foundation.

CVSup is a registered trademark of John D. Polstra.

Many of the designations used by manufacturers and sellers to distinguish their products are claimed
as trademarks. Where those designations appear in this documen t, and the FreeBSD Project was
aware of the trademark claim, the designations have been follow ed by the “™” or the “®” symbol.

Table of Contents

I g1 (0T L1 Tox 1T o I PR 1
P22 © =1 1] o) €= U (=T o P 2.
I 1 1= o SO SR T PR 3
Y7 o7 T OSSP 4
o= = L Tod 1= PP 4
L3N L1 0= o =0 g SRR 5
S0 o] o 1 PO SO RUPPR SRR 6
STl o 1111 o PSSO RUUP R SRRPP 7
9 Changes, Descriptions, @nd HiSTOIY..........oii ittt ee e e e e e e e s s sennbeeeeeaenesnnnnneeeeee]
O£ SRR 8
11 Adding and ReMOVING FIlES.... ...ttt ettt e e e e e sttt et e e e e e e s e mnneee e e e annnbeeeeaeaaaas 9.
12 WOrKING WIth QIffS ..ottt e e et e e e e e e e e e s e bbereaaaeeeaaanne 9..
L3 RENAMING FIlES ...ttt ettt e e e e e oottt e e e e e e e e bbb be e e e e ebbbbeeeeeaaeeseannnnnnnseaaaaaeaaanns 10.
14 Interactions between FreeBSD Subversion and PerforCe............ooviviiiiiiiiieiiiiiiee s sieeeesee e 10
ST @ T T @] o 1T = 4o o SRR 10
16 Notes for Google SUMMET Of COUE........c..uuiiiiiiiie et e e e e s e st e e e e e e eennnraeeeeeeas 11

1 Introduction

The FreeBSD project uses tRerforce version control system to manage experimental projectstiganot ready
for the main Subversion repository.

Perforce in FreeBSD Devel opment

1.1 Availability, Documentation, and Resources

While Perforceis a commercial product, the client software for interagtivith the server is freely available from
Perforce. It can be easily installed on FreeBSD viadéeel / p4 port or can be downloaded from tRerforce web
site at http://www.perforce.com/perforce/loadprog.htahich also offers client applications for other OS’s.

While there is a GUI client available, most people use theroamd line application callegd. This document is
written from the point of view of using this command.

Detailed documentation is available online at http://wpavforce.com/perforce/technical.html.

Reading the “Perforce User's Guide” and “Perforce Commaai@iRnce” is highly recommended. Tphé
application also contains an extensive amount of onling hetessible via the4 hel p command.

The FreeBSDPerforce server is hosted oper f or ce. f r eebsd. or g, port1666. The repository is browsable
online at http://p4web.freebsd.org. Some portions of #pmsitory are also automatically exported to a number of
legacyCVSup servers.

2 Getting Started

The first step to usingerforceis to obtain an account on the server. If you already hawes&BSD. or g account,
log intof reef al I, run the following command, and enter a password that ishesame as your FreeBSD login or
any other SSH passphrase:

% /usr /1 ocal / bi n/ pAnewuser

Of course if you do not haverr eeBSD. or g account, you will need to coordinate with your sponsor.

Warning: An email will be sent to your FreeBSD address that contains the password you specified above in
cleartext. Be sure to change the password once your Perforce account has been created!

The next step is to set the environment variablesghateeds, and verify that it can connect to the server. The
P4PORT variable is required to be set for all operations, and specifie appropriateéerforce server to talk to. For
the FreeBSD project, set it like so:

% export P4PORT=perforce.freebsd. org: 1666

Note: Users with shell access on the FreeBSD. or g cluster may wish to tunnel the Perforce client-server protocol
via an SSH tunnel, in which case the above string should be set to | ocal host .

The FreeBSD server also requires thatPAEISER andP4PASSWD variables be set. Use the username and password
from above, like so:

% export P4USER=user nane
% export P4PASSWD=passwor d

Test that this works by running the following command:

Perforce in FreeBSD Devel opment
% p4 info

This should return a list of information about the serveit tfoes not, check that you have th¢PORT variable set
correctly.

3 Clients

Perforce provides access to the repository and tracks state on dipetdzasis. InPerforceterms, a clientis a
specification that maps files and directories from the réposto the local machine. Each user can have multiple
clients, and each client can access different or overlappéamts of the repository. The client also specifies the root
directory of the file tree that it maps, and it specifies thetmaethat the tree lives on. Thus, working on multiple
machines requires that multiple clients be used.

Clients may be accessed via thwe cl i ent command. Running this command with no arguments will bripgu
client template in an editor, allowing you to create a newrdlifor your work. The important fields in this template
are explained below:

Client:

This is the name of the client spec. It can be anything you waritit must be unique within theerforce
server. A naming convention that is commonly usegsis name_machi nenanme, which makes it easy to identify
clients when browsing them. A default name will be filled iatfs just the machine name.

Description:

This can contain a simple text description to help identify tlient.

Root :

This is the local directory that will serve as the root dicegtof all the files in the client mapping. This should
be a unique location in your filesystem that does not overligpather files oPerforce clients.

Opti ons:
Most of the default options are fine, though it is usually adjoiea to make sure that tieenpr ess andr ndi r
options are present and do not haweogprefix on them. Details about each option are inRleeforce docs.

Li neEnd:

This handles CR-LF conversions and should be left to theuttafaless you have special needs for it.

Vi ew

This is where the server-to-local file mappings go. The defsu
/ldepot/... /lclient/...

This will map the entirdPerforce repository to theRoot directory of your clientDO NOT USE THIS

DEFAULT! The FreeBSD repo is huge, and trying to map and sync it alltaki an enormous amount of
resources. Instead, only map the section of the repo thainyend to work on. For example, there is the smpng
project tree at / depot / pr oj ect s/ snpng. A mapping for this might look like:

/ depot / projects/snpng/... /lclient/...

Perforce in FreeBSD Devel opment

The. . . should be taken literally. It is Berforce idiom for saying “this directory and all files and directaie
below it.”

A Perforce “view” can contain multiple mappings. Let's sayuywant to map in both the SMPng tree and the
NFS tree. Your View might look like:

/ I depot / projects/snpng/... //client/snmpng/...
/I depot/projects/nfs/... [/client/nfs/...

Remember that thel i ent is the name of the client that was specified in@héent section, butin th&i ewit
also resolves to the directory that was specified iR section.

Also note that the same file or directory cannot be mappedpieitimes in a single view. The following is
illegal and will produce undefined results:

/I depot / projects/snpng/... //client/snpng-foo/...
/I depot / proj ects/snpng/... //client/snpng-bar/...

Views are a tricky part of the learning experience wWetrforce, so do not be afraid to ask questions.

Existing clients can be listed via tipg cl i ent s command. They can be viewed without being modified viapthe
client -o clientname command.

Whenever you are interacting with filesRerforce, theP4CLI ENT environment variable must be set to the name of
the client that you are using, like so:

% export PACLI ENT=nycl i ent name

Note that client mappings in the repository are not exckigivultiple clients can map in the same part of the
repository. This allows multiple people to access and nydtié same parts of the repository, allowing a team of
people to work together on the same code.

4 Syncing

Once you have a client specification defined andP@L1 ENT variable set, the next step is to pull the files for that
client down to your local machine. This is done with fie sync command, which instrucBerforce to
synchronize the local files in your client with the reposjtdrhe first time it runs, it will download all of the files.
Subsequent runs will only download files that have changezkghe previous run. This allows you to stay in sync
with others whom you might be working with.

Sync operations only work on files that tRerforce server knows has changed. If you change or delete a file yocall
without informing the server, doing a sync will not bring @d¢k. However, doing p4 sync -f will

unconditionally sync all files, regardless of their statiisTis useful for resolving problems where you think that
your tree might be corrupt.

You can sync a subset of your tree or client by specifyingatinad path to the sync command. For example, to only
sync theuf s directory of thesnpng project, you might do the following:

% cd projectroot/snpng
% p4 sync src/sys/ufs/...

Specifying a local relative path works for many otp@rcommands.

Perforce in FreeBSD Devel opment

5 Branches

One of the strongest featuresRérforce is branching. Branches are very cheap to create, and mokampes
between related branches is very easy (as will be explaated | Branches also allow you to do very experimental
work in a sandbox-like environment, without having to woatyout colliding with others or destabilizing the main
tree. They also provide insulation against mistakes whiering thePerforce system. With all of these benefits, it
makes sense for each project to have its own branch, and evegstrencourage that with FreeBSD. Frequent
submits of changes to the server are also encouraged.

Similar toSubversion the Perforce repository (the “depot”) is a single flat tree. Every file, \er a unique
creation or a derivative from a branch, is accessible viapls path under the servetdepot directory. When you
create a branch, all you are doing is creating a new path uhdér depot . This is in sharp contrast to systems like
CVS, where each branch lives in the same path as its paretht P&fiforce, the server tracks the relationship
between the files in the parent and child, but the files therasdive under their own paths.

The first step to creating a branch is to create a branch sgs@ifi. This is similar to a client specification, but is
created via the commama@ branch branchnane.

The following important fields are explained:

Br anch
The name of the branch. It can be any name, but must be unidii@the repository. The common convention
in FreeBSD is to usaser name_pr oj ect nane.

Description

This can hold a simple text description to describe the branc

Vi ew

This is the branch mapping. Instead of mapping from the depitite local machine like a client map, it maps
between the branch parent and branch child in the depotxaonge, you might want to create a branch of the
smpng project. The mapping might look like:

/ / depot / proj ects/ snpng/ ... //depot/projects/ ny-super-snpng/...
Or, you might want to create a brand new branch off of the skveleBSD sources:
/I depot / vendor/freebsd/... //depot/projects/ my-new project/...
This will map the FreeBSD HEAD tree to your new branch.

Creating the branch spec only saves the spec itself in thrersérdoes not modify the depot or change any files. The
directory that you specified in the branch is empty on theesamatil you populate it.

To populate your branch, first edit your client with §h cl i ent command and make sure that the branch
directory is mapped in your client. You might need to add aw line like:

|/ depot / proj ects/ my-newproject/... //nyclient/ my-new project/...

The next step is to run th@t i nt egr at e command, as described in the next section.

Perforce in FreeBSD Devel opment

6 Integrations

“Integration” is the term used byerforce to describe the action of moving changes from one part of épotto
another. It is most commonly done in conjunction with cregtand maintaining branches. An integration is done
when you want to initially populate a branch, and it is donewkou want to move subsequent changes in the
branch from the parent to the child, or from the child to theepd A common example of this is periodically
integrating changes from the vendor FreeBSD tree to yold binénch tree, allowing you to keep up to date with
changes in the FreeBSD tree. TlRerforce server tracks the changes in each tree and knows when tleechamges
that can be integrated from one tree to another.

The common way to do an integration is with the following coamd:
% p4 integrate -b branchnane

br anchnane is the name given to a branch spec, as discussed in the psesgation. This command will instruct
Perforceto look for changes in the branch parent that are not yet ichiid. From those changes it will prepare a
list of diffs to move. If the integration is being done for tfikest time on a branch (i.e. doing an initial population
operation), then the parent files will simply be copied to¢hid location on the local machine.

Once the integration operation is done, you mustgdinr esol ve to accept the changes and resolve possible
conflicts. Conflicts can arise from overlapping changeshhppened in both the parent and child copy of a file.
Usually, however, there are no conflicts, @etforce can quickly figure out how to merge the changes together. Use
the following commands to do a resolve operation:

% p4 resolve -as
% p4 resol ve

The first invocation will instrucPerforceto automatically merge the changes together and acceptifdebave no
conflicts. The second invocation will allow you to inspectleéile that has a possible conflict and resolve it by hand
if needed.

Once all of the integrated files have been resolved, they tteleel committed back to the repository. This is done via
thep4 subnit command, explained in the next section.

7 Submit

Changes that are made locally should be committed back teafferce server for safe keeping and so that others
can access them. This is done via pde subni t command. When you run this command, it will open up a submit
template in an editor. FreeBSD has a custom template, arichffegtant fields are described below:

Descri ption:
<enter description here>
PR:
Subni tted by:
Revi ewed by:
Approved by:
Obt ai ned from
MFP4 after:

It is good practice to provide at least 2-3 sentences thatitbeswhat the changes are that you are submitting. You
should say what the change does, why it was done that way drpablalem is solves, and what APIs it might

Perforce in FreeBSD Devel opment

change or other side effects it might have. This text shogjidbice thecent er descri pti on her e> line in the
template. You should wrap your lines and start each line witAB. The tags below it are FreeBSD-specific and can
be removed if not needed.

Files:

This is automatically populated with all of the files in yolieat that were marked in the add, delete, integrate, or
edit states on the server. It is always a very good idea tewethis list and remove files that might not be ready yet.

Once you save the editor session, the submit will happeretseéhver. This also means that the local copies of the
submitted files will be copied back to the server. If anythgogs wrong during this process, the submit will be
aborted, and you will be natified that the submit has beereaiimto a changelist that must be corrected and
re-submitted. Submits are atomic, so if one file fails, thireisubmit is aborted.

Submits cannot be reverted, but they can be aborted whiteieditor by exiting the editor without changing the
Descri pti on text. Perforce will complain about this the first time you do it and will puty®ack in the editor.
Exiting the editor the second time will abort the operatieaverting a submitted change is very difficult and is best
handled on a case-by-case basis.

8 Editing

The state of each file in the client is tracked and saved ongihes In order to avoid collisions from multiple people
working on the same file at oncerforce tracks which files are opened for edit, and uses this to hehpsubmit,
sync, and integration operations later on.

To open a file for editing, use thet edi t command like so:
% p4 edit filenanme

This marks the file on the server as being in ¢di state, which then allows it to be submitted after changes are
made, or marks it for special handling when doing an intégmair sync operation. Note that editing is not exclusive
in Perforce. Multiple people can have the same file in the edit state (yililbeinformed of others when you run the
edi t command), and you can submit your changes even when otleestilbediting the file.

When someone else submits a change to a file that you areggditin will need to resolve his changes with yours
before your submit will succeed. The easiest way to do this &ther run @4 sync orp4 subnit and let it fail
with the conflict, then rup4 r esol ve to manually resolve and accept his changes into your copw, ibnp4

submi t to commit your changes to the repository.

If you have a file open for edit and you want to throw away yowaraies and revert it to its original state, run plde
revert command like so:

% p4 revert filenanme

This resyncs the file to the contents of the server, and regttneedit attribute from the server. Any local changes
that you had will be lost. This is quite useful when you havealenchanges to a file but later decide that you do not
want to keep them.

When afile is synced, it is marked read-only in the filesysthen you tell the server to open it for editing, it is
changed to read-write on the filesystem. While these peionisgan easily be overridden by hand, they are meant to
gently remind you that you should being using ti#e edi t command. Files that have local changes but are not in
the edit state may get overwritten when doingdasync.

Perforce in FreeBSD Devel opment

9 Changes, Descriptions, and History

Changes to th@erforce depot can be listed via thet changes command. This will provide a brief description of
each change, who made the change, and what its change nuaheX shange can be examined in detail viaghe
descri be changenunber command. This will provide the submit log and the diffs of #tual change.

Commonly, thep4 descri be command is used in one of three ways:

p4 describe -s CHANGE

List a short description of changes8HANGE, including the commit log of the particular changeset andta |
of the files it affected.

p4 describe -du CHANGE

List a description of changes€HANGE, including the commiit log of the particular changeset, dfghe files
it affected and a patch for each modified file, in a format smtid “unified diff” patches (but not exactly the
same).

p4 describe -dc CHANGE

List a description of changes€HANGE, including the commit log of the particular changeset, dfghe files
it affected and a patch for each modified file, in a format simtib “context diff” patches (but not exactly the
same).

Thep4 filelog filename command will show the history of a file, including all submitgtegrations, and
branches of it.

10 Diffs

There are two methods of producing file diffsRerforce, either against local changes that have not been submitted
yet, or between two trees (or within a branch) in the depo¢sehare done with different commandsf f and
di ff2:

pa diff

This generates a diff of the local changes to files in the ¢aliesThe du and- dc flags can be used to create
unified or context diffs, respectively, or tira Dl FF environment variable can be set to a local diff command to
be used instead. It is a very good idea to use this commandiewrgour changes before submitting them.

pa diff2

This creates a diff between arbitrary files in the depot, twben files specified in a branch spec. The diff
operation takes place on the serverPgdl FF variable has no effect, though thdu and- dc flags do work.
The two forms of this command are:

% p4 diff2 -b branchname
and
% p4 diff2 //depot/pathl //depot/path2

In all cases the diff will be written to the standard outputfdrtunatelyPerforce produces a diff format that is
slightly incompatible with the traditional Unix diff and fidn tools. Using th@4DI FF variable to point to the real
diff(1) tool can help this, but only for the4 di f f command. The output afi f f 2 command must be

Perforce in FreeBSD Devel opment

post-processed to be useful (theflag ofdi f f 2 will produce unified diffs that are somewhat compatible,ibdbes
not include files that have been added or deleted). Theredstagrocessing script at:
http://people.freebsd.org/~scottl/awkdiff.

11 Adding and Removing Files

Integrating a branch will bring existing files into your tréeit you may still want to add new files or remove existing
ones. Adding files is easily done be creating the file and thaning thep4 add command like so:

% p4 add fil enane
If you want to add a whole tree of files, run a command like:

% find . -type f | xargs p4 add

Note: Perforce can track UNIX symlinks too, so you can probably use “\! -type d” as the matching expression
in find(1) above. We don’t commit symlinks into the source tree of FreeBSD though, so this should not be
necessary.

Doing ap4 subni t will then copy the file to the depot on the server. It is very artpant to only add files, not
directories. Explicitly adding a directory will cauerforceto treat it like a file, which is not what you want.

Removing a file is just as easy with thé delete command like so:
% p4 del ete filename

This will mark the file for deletion from the depot the next &érthat a submit is run. It will also remove the local
copy of the file, so beware.

Of course, deleting a file does not actually remove it fromrépository.

Deleted files can be resurrected by syncing them to a prisiarer The only way to permanently remove afile is to
use thep4 obl i t er at e command. This command is irreversible and expensive, smitly available to those with
admin access.

12 Working with diffs

Sometimes you might need to apply a diff from another soweettee undePerforce control. If it is a large diff that
affects lots of files, it might be inconvenient to manuallpp4# edi t on each file. There is a trick for making this
easier. First, make sure that no files are open on your cliehttaat your tree is synced and up to date. Then apply
the diff using the normal tools, and coerce the permissiorthe files if needed. Then run the following commands:

% p4 diff -se ... | xargs p4 edit
% p4 diff -sd ... | xargs p4 delete
% find . -type f | xargs p4 add

The first command tellRerforceto look for files that have changed, even if they are not opée.second command
tells Perforceto look for files that no longer exist on the local machine buedist on the server. The third command

Perforce in FreeBSD Devel opment

then attempts to add all of the files that it can find locallyisTik a very brute-force method, but it works because
Perforcewill only add the files that it does not already know about. Témult of running these commands will be a
set of files that are opened for edit, removal, or add, as @piatte.

Verify the active changelist with:

% p4 changel i st
% p4 diff -du

and just do @4 subni t after that.

13 Renaming files

Perforce does not have a built-in way of renaming files or moving thera tiifferent part of the tree. Simply
copying a file to the new location, doingpd add on it, and a4 del et e on the old copy, works, but does not
preserve change history of the file. This can make futurgmtens with parents and children very bumpy, in fact.
A better method of dealing with this is to do a one-time, imetmtegration, like so:

% p4 integrate -i oldfile newfile
% p4 resol ve

% p4 del ete oldfile

% p4 subm t

The integration will forcePerforceto keep a record of the relationship between the old and newesawhich will
assist it in future integrations. The flag tells it that it is a “baseless” integration, meaning thare is no branch
history available for it to use in the integration. That isfpet for an integration like this, but should not be used for
normal branch-based integrations.

14 Interactions between FreeBSD Subversion and Perforce

The FreeBSDPerforce andSubversionrepositories are completely separate. However, chandg&stieersion are
tracked at near-real-time Perforce. Every 2 minutes, the Subversion server is polled for umdiatehe HEAD

branch, and those updates are committeldle¢dorcein the/ / depot / vendor / freebsd/ . . . tree. This tree is then
available for branching and integrating to derivative pot$. Any project that directly modifies that FreeBSD source
code should have this tree as its branch parent (or granalpdspending on the needs), and periodic integrations
and syncs should be done so that your tree stays up to date/@idd aonflicts with mainline development.

The bridge between Subversion dperforce is one-way; changes to Subversion will be reflecteBenforce, but
changes in Perforce will not be reflected in Subversion. @uest, some parts of thierforcerepo can be exported
to CVSup and made available for distribution that way. Contact treeBSDPerforce administrators if this is
something that you are interested in.

15 Offline Operation

One weakness d?erforceis that it assumes that network access to the server is alvayiable. Most state, history,
and metadata is saved on the server, and there is no profasiceplicating the server like there is with
CVSICVSup. ltis possible to run a proxy server, but it only providespémited utility for offline operation.

10

Perforce in FreeBSD Devel opment

The best way to work offline is to make sure that your clienti@aspen files and is fully synced before going
offline. Then when editing a file, manually change the pernuwiissto read-write. When you get back online, run the
commands listed in th8ection 120 automatically identify files that have been edited, added removed. Itis
quite common to be surprised Bgrforce overwriting a locally changed file that was not opened fot,exti be extra
vigilant with this.

16 Notes for Google Summer of Code

Most FreeBSD projects under the Google Summer of Code prmogra located on the FreeBSerforce server
under one of the following locations:

« //depot/ projects/soc2005/ project-name/ . ..
« [/ depot/ projects/soc2006/ project-name/ . ..
« //depot/ projects/soc2007/ project-name/ . ..
« [/ depot/ projects/soc2008/ project-name/ . ..
The project mentor is responsible for choosing a suitali@ept name and getting the student going viRirforce.

Access to the FreeBSBerforce server does not imply membership in the FreeBSD CVS comnuittemunity,
though we happily encourage all students to consider jgittie project when the time is appropriate.

11

	Table of Contents
	1 Introduction
	1.1 Availability, Documentation, and Resources
	2 Getting Started
	3 Clients
	4 Syncing
	5 Branches
	6 Integrations
	7 Submit
	8 Editing
	9 Changes, Descriptions, and History
	10 Diffs
	11 Adding and Removing Files
	12 Working with diffs
	13 Renaming files
	14 Interactions between FreeBSD Subversion and Perforce
	15 Offline Operation
	16 Notes for Google Summer of Code

