FreeBSD From Scratch

Jens Schweikhardt <schweikh@FreeBSD.org >
Revision: 44684

Copyright © 2002,2003,2004,2008 Jens Schweikhardt
FreeBSD is a registered trademark of the FreeBSD Foundation.

Adobe, Acrobat, Acrobat Reader, Flash and PostScript are either reg-
istered trademarks or trademarks of Adobe Systems Incorporated in
the United States and/or other countries.

Many of the designations used by manufacturers and sellers to distin-
guish their products are claimed as trademarks. Where those desig-
nations appear in this document, and the FreeBSD Project was aware
of the trademark claim, the designations have been followed by the
“™” or the “®” symbol.

2014-04-28 by wblock.

Abstract

This article describes my efforts at FreeBSD From Scratch: a fully
automated installation of a customized FreeBSD system compiled
from source, including compilation of all your favorite ports and con-
figured to match your idea of the perfect system. If you think make
world is a wonderful concept, FreeBSD From Scratch extends it to
make evenmore.

“w@e”

Table of Contents

oI e G) B N O R

INEFOAUCHION 11vvvieeiiiise ettt e e et e e et e e et 2
. Why would I (not) want FreeBSD From Scratch?uuvvveevrrviiiiiiiiineeeennnnnin, 2
L PrereqUISItes vuvvvuiriiiniiiiii 3
. Stage One: System Installationeevrreiiiiiiiiiiiinnneeiiiiiiiiinnneeeiiiiin, 4
. Stage Two: Ports Installationceeeueiiiiiiiiiiiiiiniii e 10
2 SEAZE THICE wevvneeiiiiie ettt ettt 13
L LIMItationsvevviiiiiiiiii 14

CTHE FIES waivieii i 15

mailto:schweikh@FreeBSD.org
http://svnweb.freebsd.org/doc?view=revision&revision=44684

Introduction

1. Introduction

Have you ever upgraded your system with make world ? There is a problem if you have
only one system on your disks. If the installworld fails partway through, you are left
with a broken system that might not even boot any longer. Or maybe the installworld
runs smoothly but the new kernel does not boot. Then it is time to reach for the Fixit CD
and dig for those backups you have taken half a year ago.

I believe in the “wipe your disks when upgrading systems” paradigm. Wiping disks, or
rather partitions, makes sure there is no old cruft left lying around, something which most
upgrade procedures just do not care about. But wiping the partitions means you have
to also recompile/reinstall all your ports and packages and then redo all your carefully
crafted configuration tweaks. If you think that this task should be automated as well, read
on.

2. Why would I (not) want FreeBSD From Scratch?

This is a legitimate question. We have sysinstall and the well known way to compile the
kernel and the userland tools.

The problem with sysinstall is that it is severely limited in what, where and how it can
install.

« It is normally used to install pre-built distribution sets and packages from some other
source (CD, DVD, FTP). It cannot install the result of a make buildworld.

« It cannot install a second system under a directory in a running system.
¢ It cannot install in Vinum or ZFS partitions.

+ It cannot compile ports, only install precompiled packages.

+ Itis hard to script or to make arbitrary post-installation changes.

« Last but not least, sysinstall is semi-officially at its End-Of-Life.

The well known way to build and install the world, as described in the Handbook, by de-
fault replaces the existing system. Only the kernel and modules are saved. System bina-
ries, headers and a lot of other files are overwritten; obsolete files are still present and
can cause surprises. If the upgrade fails for any reason, it may be hard or even impossible
to restore the previous state of the system.

FreeBSD From Scratch solves all these problems. The strategy is simple: use a running
system to install a new system under an empty directory tree, while new partitions are
mounted appropriately in that tree. Many config files can be copied to the appropriate
place and mergemaster(8) can take care of those that cannot. Arbitrary post-configura-

http://www.FreeBSD.org/doc/en_US.ISO8859-1/books/handbook/makeworld.html
http://www.FreeBSD.org/cgi/man.cgi?query=mergemaster&sektion=8

FreeBSD From Scratch

tion of the new system can be done from within the old system, up to the point where you
can chroot to the new system. In other words, we go through three stages, where each
stage consists of either running a shell script or invoking make:

1. stage 1.sh: Create a new bootable system under an empty directory and merge or
copy as many files as are necessary. Then boot the new system.

2. stage 2.sh :Install desired ports.
3. stage 3.mk : Do post-configuration for software installed in previous stage.

Once you have used FreeBSD From Scratch to build a second system and found it works
satisfactorily for a couple of weeks, you can then use it again to reinstall the original
system. From now on, whenever you feel like an update is in order, you simply toggle the
partitions you want to wipe and reinstall.

Maybe you have heard of or even tried Linux From Scratch, or LFS for short. LFS also
describes how to build and install a system from scratch in empty partitions using a run-
ning system. The focus in LFS seems to be to show the role of each system component
(such as kernel, compiler, devices, shell, terminal database, etc) and the details of each
component's installation. FreeBSD From Scratch does not go into that much detail. My
goal is to provide an automated and complete installation, not explaining all the gory
details that go on under the hood when making the world. In case you want to explore
FreeBSD at this level of detail, start looking at /usr/src/Makefile and follow the actions
of amake buildworld.

There are also downsides in the approach taken by FreeBSD From Scratch that you should
bear in mind.

+ While compiling the ports during stage two the system can not be used for its usual
duties. If you run a production server you have to consider the downtime caused by
stage two. The ports compiled by stage_2.conf.default below require about 8 hours
(of which 4 hours are due to OpenOffice.org) to build on a contemporary system. If you
prefer to install packages instead of ports, you can significantly reduce the downtime
to about 10 minutes.

3. Prerequisites

For going the FreeBSD From Scratch way, you need to have:

¢ A running FreeBSD system with sources and a ports tree.

+ At least one unused partition where the new system will be installed.
+ Experience with running mergemaster(8). Or at least no fear doing so.

« If you have no or only a slow link to the Internet: the distfiles for your favorite ports.

http://www.linuxfromscratch.org/
http://www.FreeBSD.org/cgi/man.cgi?query=mergemaster&sektion=8

Stage One: System Installation

+ Basic knowledge of shell scripting with the Bourne shell, sh(1).

+ Finally, you should also be able to tell your boot loader how to boot the new system,
either interactively, or by means of a config file.

4. Stage One: System Installation

The first version of this article used a single shell script for stage one where all your cus-
tomization had to be done by editing the script. After valuable user feedback I have decid-
ed to separate the code and data in the scripts. This allows to have different configuration
data sets to install different systems without changing any of the code scripts.

The code script for stage oneis stage_1.sh and when run with exactly one argument, like

./stage_l.sh default

will read its configuration from stage 1.conf.default and write a log to
stage 1.log.default .

Further below you find my stage 1.conf.default . You need to customize it in
various places to match your idea of the “perfect system”. I have tried to exten-
sively comment the places you should adapt. The configuration script must pro-
vide four shell functions, create file systems , create etc fstab , copy files and
all remaining customization (in case it matters: this is also the sequence in which
they will be called from stage 1.sh).

The points to ponder are:
« Partition layout.

I do not subscribe to the idea of a single huge partition for the whole system. My sys-
tems generally have at least one partition for /, /usr and /var with /tmp symlinked
to /var/tmp . In addition I share the file systems for /home (user homes), /home/ncvs
(FreeBSD CVS repository replica), /usr/ports (the ports tree), /src (various checked
out src trees) and /share (other shared data without the need for backups, like the
news spool).

*+ Luxury items.

What you want immediately after booting the new system and even before starting
stage two. The reason for not simply chrooting to the new system during stage one and
installing all my beloved ports is that in theory and in practice there are bootstrap and
consistency issues: stage one has your old kernel running, but the chrooted environ-
ment consists of new binaries and headers. If the new binaries use a new system call,
these binaries will die with SIGSYS, Bad system call, because the old kernel does
not have that system call. T have seen other issues when I tried building lang/perl5.8.

http://www.FreeBSD.org/cgi/man.cgi?query=sh&sektion=1
http://www.freebsd.org/cgi/url.cgi?ports/lang/perl5.8/pkg-descr

FreeBSD From Scratch

Before yourun stage 1.sh make sure you have completed the usual tasks in preparation
for make installworld installkernel, like:

« configured your kernel config file
« successfully completed make buildworld
+ successfully completed make buildkernel KERNCONF= whatever

When you run stage_1.sh for the first time, and the config files copied from your run-
ning system to the new system are not up-to-date with respect to what is under /usr/
src, mergemaster will ask you how to proceed. I recommend merging the changes. If you
get tired of going through the dialogues you can simply update the files on your running
system once (Only if this is an option. You probably do not want to do this if one of your
systems runs -STABLE and the other -CURRENT. The changes may be incompatible). Sub-
sequent mergemaster invocations will detect that the RCS version IDs match those under
/usr/src and skip the file.

The stage_1.sh script will stop at the first command that fails (returns a non-zero exit
status) due to set -e, so you cannot overlook errors. It will also stop if you use an unset
environment variable, probably due to a typo. You should correct any errors in your ver-
sion of stage 1.conf.default before you go on.

In stage_1.sh we invoke mergemaster. Even if none of the files requires a merge, it will
display and ask at the end

*** Comparison complete
*** Saving mtree database for future upgrades

Do you wish to delete what is left of /var/tmp/temproot.stagel? o
[no] no

Please answer no or just hit Enter. The reason is that mergemaster will have left a few zero
sized files below /var/tmp/temproot.stagel which will be copied to the new system
later (unless already there).

After that mergemaster will list the files it installed and ask if the new login.conf should
be generated:

*** You chose the automatic install option for files that did not
exist on your system. The following were installed for you:
/newroot/etc/defaults/rc.conf

/newroot/COPYRIGHT
*** You installed a new aliases file into /newroot/etc/mail, but
the newaliases command is limited to the directories configured
in sendmail.cf. Make sure to create your aliases database by
hand when your sendmail configuration is done.

*** You installed a login.conf file, so make sure that you run

Stage One: System Installation

The answer does not matter since stage 1.sh will run cap_mkdb(1) for you in any case.

Here is the author's stage 1.conf.default , which you need to modify substantially.
The comments give you enough information what to change.

6

http://www.FreeBSD.org/cgi/man.cgi?query=cap_mkdb&sektion=1
stage_1.conf.default

FreeBSD From Scratch

Stage One: System Installation

FreeBSD From Scratch

Stage Two: Ports Installation

If you do not have /home on a shared partition, you may want to o
copy it:

mkdir -p ${DESTDIR}/home

cd /home; tar cf - . | (cd ${DESTDIR}/home; tar xpvf -)
I

vim: tabstop=2:expandtab:shiftwidth=2:syntax=sh:
EOF $RCSfile: stage 1l.conf.default,v $

Download stage 1.conf.default

Running this script installs a system that when booted provides:
+ Inherited users and groups.

+ Firewalled Internet connectivity over Ethernet.

+ Correct time zone and NTP.

+ Some more minor configuration, like /etc/ttys and inetd.

Other areas are prepared for configuration, but will not work until stage two is completed.
For example we have copied files to configure printing and X11. Printing however is likely
to need applications not found in the base system, like PostScript® utilities. X11 will not
run before we have compiled the server, libraries and programs.

5. Stage Two: Ports Installation

Note

@ It is also possible to install the (precompiled) packages at this stage,
instead of compiling ports. In this case, stage_2.sh would be noth-
ing more than a list of pkg_add commands. I trust you know how to
write such a script. Here we concentrate on the more flexible and
traditional way of using the ports.

The following stage 2.sh script is how I install my favorite ports. It can be run any num-
ber of times and will skip all ports that are already installed. It supports the dryrun option
(-n) to just show what would be done. You run it like stage 1.sh with exactly one argu-
ment to denote a config file, e.g.

./stage_2.sh default

which will read the list of ports from stage_2.conf.default .

10

stage_1.conf.default

FreeBSD From Scratch

The list of ports consists of lines with two or more space separated words: the category
and the port, optionally followed by an installation command that will compile and install
the port (default: make install BATCH=yes < /dev/null).Empty lines and lines starting
with #are ignored. Most of the time it suffices to only name category and port. A few ports
however can be fine tuned by specifying make variables, e.g.:

www mozilla make WITHOUT MAILNEWS=yes WITHOUT CHATZILLA=yes install

In fact you can specify arbitrary shell commands, so you are not restricted to simple make
invocations:

java jdkl6 echo true > files/license.sh; make install o
BATCH=yes < /dev/null
print acroread8 yes accept | make install PAGER=1s

x11-fonts gnu-unifont make install && mkfontdir /usr/local/lib/X11/
fonts/local

news inn-stable CONFIGURE ARGS="--enable-uucp-rnews --enable-
setgid-inews" make install

The first two lines are examples how you can handle ports asking you to accept a licence.
Note how the line for news/inn-stable is an example for a one-shot shell variable assign-
ment to CONFIGURE ARGS . The port Makefile will use this as an initial value and augment
some other essential args. The difference to specifying a make variable on the command
line with

news inn-stable make CONFIGURE ARGS="--enable-uucp-rnews --enable-
setgid-inews" install

is that the latter will override instead of augment. It depends on the particular port which
method you want.

Be careful that your ports do not use an interactive install, i.e. they should not try to read
from stdin other than what you explicitly give them on stdin. If they do, they will read the
next line(s) from your list of ports in the here-document and get confused. If stage_2.sh
mysteriously skips a port or stops processing, this is likely the reason.

Below is stage 2.conf.default .Alog file named LOGDIR/category+port iscreated for
each port it actually installs.

vim: syntax=sh

$Id: stage 2.conf.default,v 1.4 2008-12-03 21:59:51 schweikh Exp $
$FreeBSD: head/en US.IS08859-1/articles/fbsd-from-scratch/stage 2.s
conf.default 38826 2012-05-17 19:12:14Z hrs $

ports-mgmt portaudit

devel ccache

shells zsh

devel gettext

archivers unzip

archivers zip

security sudo

x11 xorg

11

http://www.freebsd.org/cgi/url.cgi?ports/news/inn-stable/pkg-descr

Stage Two: Ports Installation

FreeBSD From Scratch

Download stage 2.conf.default .

6. Stage Three

You have installed your beloved ports during stage two. Some ports require a little bit
of configuration. This is what stage three, the post-configuration is for. I could have in-
tegrated this post-configuration at the end of the stage 2.sh script. However, I think
there is a conceptual difference between installing a port and modifying its out-of-the-
box configuration that warrants a separate stage.

13

stage_2.conf.default

Limitations

I have chosen to implement stage three as a Makefile because this allows easy selection
of what you want to configure simply by running:

make -f stage 3.mk target

As with stage 2.sh make sure you have stage 3.mk available after booting the new
system, either by putting it on a shared partition or copying it somewhere on the new
system.

7. Limitations

The automated installation of a port may prove difficult if it is interactive and does not
support make BATCH=YES install . For a few ports the interaction is nothing more than
typing yes when asked to accept some license. If the answer is read from standard input,
simply pipe the appropriate answers to the installation command (e.g. yes | make in-

stall. For other ports you need to investigate where exactly the interactive command is
located and deal with it appropriately. See the examples above for print/acroreads and
java/jdk1e.

You should also be aware of upgrade issues for config files. In general you do not know
when and if the format or contents of a config file changes. A new group may be added to
/etc/group , or /etc/passwd may gain another field. All of this has happened in the past.
Simply copying a config file from the old to the new system may be enough most of the
time, but in these cases it was not. If you update a system the canonical way (by overwrit-
ing the old files) you are expected to use mergemaster to deal with changes where you
effectively want to merge your local config with potentially new items. Unfortunately,
mergemaster is only available for base system files, not for anything installed by ports.
Some third party software seems to be especially designed to keep me on my toes by
changing the config file format every fortnight. To detect such silent changes, I keep a
copy of the modified config files in the same place where I keep stage 3.mk and compare
the result with a make rule, e.g. for apache's httpd. conf in target config apache with

@if ! cmp -s /usr/local/etc/apache2/httpd.conf httpd.conf; then \
echo "ATTENTION: the httpd.conf has changed. Please examine o

if"; \
echo "the modifications are still correct. Here is the diff:"; \
diff -u /usr/local/etc/apache2/httpd.conf httpd.conf; \

fi

If the diff is innocuous I can make the message go away with cp /usr/local/etc/

apache2/httpd.conf httpd.conf

I have used FreeBSD From Scratch several times to update a 7-CURRENT to 7-CURRENT and
8-CURRENT to 8-CURRENT, i.e. I have never tried to install a 8-CURRENT from a 7-CURRENT
system or vice versa. Due to the number of changes between different major release num-
bers I would expect this process to be a bit more involved. Using FreeBSD From Scratch

14

http://www.freebsd.org/cgi/url.cgi?ports/print/acroread8/pkg-descr
http://www.freebsd.org/cgi/url.cgi?ports/java/jdk16/pkg-descr

FreeBSD From Scratch

for upgrades within the realm of a STABLE branch should work painlessly (although T have
not yet tried it.)

8. The Files

Here are the three files you need beside the conlfig files already shown above.

This is the stage_1.sh script, which you should not need to modify.

15

stage_1.sh

The Files

FreeBSD From Scratch

The Files

FreeBSD From Scratch

Download stage 1.sh.

This is the stage 2.sh script. You may want to modify the variables at the beginning.

stage_1.sh
stage_2.sh

The Files

FreeBSD From Scratch

Download stage 2.sh.

This is my stage_3.mk to give you an idea how to automate all reconfiguration.

stage_2.sh
stage_3.mk

The Files

FreeBSD From Scratch

The Files

FreeBSD From Scratch

The Files

Download stage 3.mk .

26

stage_3.mk

	FreeBSD From Scratch
	Table of Contents
	1. Introduction
	2. Why would I (not) want FreeBSD From Scratch?
	3. Prerequisites
	4. Stage One: System Installation
	5. Stage Two: Ports Installation
	6. Stage Three
	7. Limitations
	8. The Files

