
1

To learn more about Project Tin Can, visit TinCanAPI.com.
__

Tin Can API (REST binding — version 0.9)

Definitions

Tin Can API (TCAPI): The API defined in this document is the product of “Project
Tin Can”. It’s a simple, lightweight way for any permitted actor to store and retrieve
extensible learning records as well as learner and learning experience profiles, regardless
of the platform used.

Learning Activity Provider (AP): Like a SCORM package, the AP is the software
object that is communicating with the LRS to record information about a learning
experience.

Learning Activity (activity): Like a SCORM activity, the Learning Activity is a unit of
instruction, experience, or performance that is to be tracked.

Statement: A simple statement consisting of <Actor (learner)> <verb> <object>, with
<result>, in <context> to track an aspect of a learning experience. A set of several
statements may be used to track complete details about a learning experience.

Learning Record Store (LRS): An LRS is a system that stores learning information.
Currently, most LRSs are Learning Management Systems (LMSs), however this
document uses the term LRS to be clear that a full LMS is not necessary to implement the
TCAPI.

Learning Management System (LMS): Provides the tracking functionality of an LRS,
but provides additional administrative and reporting functionality. In this document the
term will be used when talking about existing systems that implement learning standards.

Registration: If the LRS is an LMS, it likely has a concept of registration — an instance
of a learner signing up for a particular learning activity. The LMS may also close the
registration at some point when it considers the learning experience to be complete.
For Tin Can purposes, a registration may be applied more broadly; an LMS could
assign a group of students to a group of activities and track all related statements in one
registration. Note: activity providers are cautioned against reporting registrations other
than when assigned by an LRS. An LRS that assigns registrations is likely to reject
statements containing unassigned registration IDs.

State: Similar to SCORM suspend data, but TCAPI State allows storage of arbitrary key/
document pairs. The LRS does not have to retain state once the learning experience is
considered done (LRS has closed its “registration”).

http://tincanapi.com
http://tincanapi.com
http://tincanapi.com

2

Profile: Learners and activities can both have arbitrary key/document pairs of profile
data stored about them. This could be used for leader boards, to note learner preferences,
learner strengths & weaknesses, etc.

Objects

Statement

The statement is the core of the TCAPI. All learning events are stored as statements in
the form of “I did this”. Verb and object are required, all other properties are optional.

Property Type Default Description

id UUID may be assigned by statement creator or LRS.

actor JSON/XML
object

 Learner or Team object the statement is
about. “I”. If not specified, LRS will infer
based on authentication, and populate the
actor.

verb String String. See table below.

inProgress Boolean false Should the LRS wait for further information
about this statement, this statement is just a
mention of a learning experience in progress,
but not yet to be submitted.

object Activity, person, or another statement that is
the object of the statement, “this”. Note that
Agent objects which are provided as a value
for this field should include an “objectType”
field. If not specified, the object is assumed to
be an activity.

result Result object, further details relevant to the
specified verb.

context JSON/XML
object

 Context that gives the statement more
meaning. Examples: the team an actor is
working with, altitude in a flight simulator.

timestamp Timestamp of when the thing that this
statement describes happened.

stored Timestamp of when this statement was
recorded. Set by LRS.

3

authority Actor who is asserting this statement is true.
Verified by LRS based on authentication, and
set by LRS if left blank.

voided Boolean false Indicates that the statement has been voided
(see below)

Aside from the possible initial assignment of “ID” and “Authority” by the LRS,
the assignment of “Stored” whenever a statement is passed from system to system,
and the “voided” flag, statements are immutable. Note that objects are referenced in
statements (actors, activities); the contents of the object are not considered part of the
statement itself. So while the statement is immutable, the actors and activities referenced
by that statement are not. This means a deep serialization of a statement into JSON will
change if the referenced activities and actors change.

Example of a simple statement:

{
 "id" : "fd41c918-b88b-4b20-a0a5-a4c32391aaa0",
 "actor" : {
 "name" : ["Project Tin Can"],
 "mbox" : ["mailto:tincan@scorm.com"]
 },
 "verb" : "created",
 "object" : {
 "id" : "http://example.scorm.com/tincan/example/
simplestatement",
 "definition" : {
 "name" : { "en-US" : "simple statement" } ,
 "description" : { "en-US" : "A simple Tin Can
API statement. Note that the LRS does not need to have any
prior information about the actor (learner), the verb, or
the activity/object." }
 }
 }
}

Simplest possible statement:

{
 "verb" : "created",
 "object" : { "id" : "http://example.scorm.com/tincan/
example/simplestatement"
 }
}

4

Typical simple completion with score:

{
 "actor" : {
 "name" : "Example Learner",
 "mbox" : "mailto:learner@example.scorm.com"
 },
 "verb" : "attempted",
 "object" : {
 "id" : "http://example.scorm.com/tincan/example/
simpleCBT",
 "definition" : {
 "name" : { "en-US" : "simple CBT course" } ,
 "description" : { "en-US" : "A fictitious
example CBT course." }
 }
 },
 “result” : {

“score” : { “scaled” : .95},
“success” : true,
“completion” : true

 }
}

Statement Verbs:

There are two major competing goals in choosing a set of defined verbs for use in
statements:

1. Provide sufficient verbs to clearly express any foreseeable learning event
2. Ensure that different verbs are not used to express the same concept.

The first goal suggests a large set of verbs, but a small set is better for the second goal.

The list of verbs below focuses on the second goal, while providing enough verbs to
express concepts currently used for SCORM-based tracking.

The table below shows valid object types and results for use with defined verbs. The
results listed are valid, not required results for that verb — so a statement with the
verb “read” may report completion, but doesn’t have to, and it should not report a score.

The attempt column indicates if a statement with the listed verb indicates the start of a
new attempt. In other words, if prior statements exist for this learner and object, does the
new statement represent a distinct interaction with that object (new attempt), or does it
add detail to existing statements (no new attempt)? No specific behavior is triggered by

5

attempt vs. non-attempt verbs. However, clients should choose the appropriate verb type,
and reporting tools may use this information to logically group results.

The list below is sorted into groups of related verbs. Related verbs have similar
meanings, the same applicable object types, results, context, and attempt behavior, and
can be handled as a group for reporting purposes. The specific verb used should always
be displayed on reports except when aggregating statements.

Verb Object Types Results Attempt?

experienced, attended Content (video,
book, article,
blog), Event

Completion Yes

attempted Any Completion, Success,
Score, (interaction
details)

Yes

completed, passed,
failed

Any Completion, Success,
Score, (interaction
details)

Yes

answered question Completion, Success,
Score, interaction details

Yes

interacted control, thing,
interaction

(interaction details) No

imported, created,
shared

Any No

voided Statement No

Completed, passed, mastered, and failed are special in that they indicate a specific result
value. All statements using these verbs shall be read by an LRS as having completion
= true, and passed, mastered, and failed will have success set to true, true, or false
respectively. They are provided as a convenience to allow these common concepts to
be compactly and clearly expressed. It is okay to explicitly set these values as described
above in a statement with one of these verbs, or leave the results blank. A statement using
the completed, passed, or failed verb and containing contradictory results is invalid.

When queried, an LRS must expand statements using completed, passed, or failed to
include the appropriate results block as implied by the verb used.

The imported verb exists as a way to get activity or actor definitions into an LRS without

6

requiring a separate import API or misuse of another verb. Since activities or actors can
be used in statements without previously importing them, and an LRS is required to save
the information provided in such statements, it is possible to import an activity definition
just by using it in a statement. Although a consumer may repeat details about activities
and actors on each statement, for efficiency it is best to do so only once, particularly
in cases where there is a lot of detail (such as when strings are defined in multiple
languages).

Verbs are not case-sensitive. TCAPI consumers may specify verbs in any case, but the
canonical representation is all lowercase as show above, and the LRS must return this
representation of the verb when queried.

Voiding Statements:

A key factor in enabling the distributed nature of Tin Can is through the immutability of
statements. Because statements cannot be logically changed or deleted, systems can be
assured to have an accurate collection of data based solely off of the stream of statements
that are introduced into the LRS.

But it is clear that statements may not always be valid for all of time once they are made.
Mistakes or other factors could require that some previous statement is marked as invalid.
For this case, the “voided” verb can be used, using the invalid statement as the object.

An LRS which has received a statement that voids another statement should mark the
target statement as voided using the “voided” field. If the target statement which is
referenced cannot be found, the LRS should report an appropriate error indicating as
such.

When issuing a voiding statement, the object is required to have its “objectType” field
set to “Statement”, and must specify the target statement’s ID using the “id” field. An
example of a voiding statement follows:

{
 "actor" : {
 "name" : ["Example Admin"],
 "mbox" : ["mailto:admin@example.scorm.com"]
 },
 "verb" : "voided",
 "object" : {
 "objectType":"Statement",
 "id" : "e05aa883-acaf-40ad-bf54-02c8ce485fb0"
 }
}

The above statement voids a previous statement which is identified with the statement
ID “e05aa883-acaf-40ad-bf54-02c8ce485fb0”. The previous statement will now be

7

marked by setting its “voided” flag to true. Any changes to activity or actor definitions
which were introduced by the voided statement may be rolled back by the LRS, but this
not required.

Any statement that voids another cannot itself be voided. An activity provider that would
like to “unvoid” a voided statement should reissue the statement under a new ID. Though
voided and voiding statements must be reported as usual through the Tin Can API, it
is recommended that reporting systems do not show voided or voiding statements by
default.

Result

If the result of a statement is logically a simple string, eg: I commented “This question
is a little vague” on “question1”, then that string may be used as the result object.
Otherwise, the result object is as follows:

Property Description

score Score object (or not specified)

success true, false, or not specified

completion Completed, or not specified

response A response appropriately formatted for the given activity.
Only valid for an interaction activity. In the case of an activity
of type “cmi.interaction”, this field is formatted according
to the “cmi.interactions.n.learner_response” element
defined in the SCORM 2004 4th edition Runtime Environment.

duration Period of time over which the statement occurred. Formatted
according to ISO 8601, with a precision of 0.01 seconds.

extensions A map of other properties as needed.

Context

Context information relevant to the current statement.

Property Description

registration UUID of the registration statement is associated with.

https://en.wikipedia.org/wiki/ISO_8601#Durations
https://en.wikipedia.org/wiki/ISO_8601#Durations

8

instructor Instructor that the statement relates to, if not included as the
actor or object of the statement.

team Team that this statement relates to, if not included as the actor
or object of the statement.

contextActivities A map of the types of context to learning activities “activity”
this statement is related to.

Valid context types are: “parent”, “grouping”, and “other”.

For example, if I am studying a textbook, for a test, the
textbook is the activity the statement is about, but the test is a
context activity, and the context type is “other”.

{
 "other" : {"id" : "http://
example.scorm.com/tincan/example/test" }
}

This activity could also be a session, like a section of a
specific course, or a particular run through of a scenario. So
the statement could be about “Algebra I”, but in the context
of “Section 1 of Algebra I”.

There could be an activity hierarchy to keep track of, for
example “question 1” on “test 1” for the course “Algebra 1”.
When recording results for “question 1”, it we can declare
that the question is part of “test 1”, but also that it should be
grouped with other statements about “Algebra 1”. This can be
done using parent and grouping:

{
 "parent" : {"id" : "http://
example.scorm.com/tincan/example/test
1" },
 "grouping" : {"id" : "http://
example.scorm.com/tincan/example/
Algebra1" }
}

This is particularly useful with the object of the statement is an
actor, not an activity. “I mentored Ben with context Algebra I”.

9

revision Revision of the learning activity associated with this statement.

Revisions are to track fixes of minor issues (like a spelling
error), if there is any substantive change to the learning
objectives, pedagogy, or assets associated with an activity, a
new activity ID should be used.

Revision format is up to the owner of the associated activity.

Not applicable if statement's object is a Person.

platform Platform used in the experience of this learning activity.
Not applicable if statement's object is a Person. Defined
vocabulary, TBD.

language Code representing the language in which the experience being
recorded in this statement (mainly) occurred in, if applicable
and known. Do not specify any value if not applicable or not
known.

Format for this value is as defined in RFC3066.

For example, US English would be recorded as: en-US

statement Another statement (either existing or new), which should be
considered as context for this statement. This could be used to
add context to a comment, or when grading.

extensions

A map of any other domain-specific context relevant to this
statement. For example, in a flight simulator altitude, airspeed,
wind, attitude, GPS coordinates might all be relevant.

Score

Property Description

scaled cmi.score.scaled (recommended)

raw cmi.score.raw

min cmi.score.min

max cmi.score.max

https://tools.ietf.org/html/rfc3066
https://tools.ietf.org/html/rfc3066

10

State

Property Description

id String, set by AP, unique within state scope (learner, activity)

updated Timestamp

contents Free form.

Note that in the REST binding, State is a document not an object. ID is stored in the
URL, updated is HTTP header information, and contents is the HTTP document itself.

Agent (learner or team)

These will be agent objects, based on FOAF agent objects http://xmlns.com/foaf/spec/
#term_Agent.

A key design goal for the TCAPI is to enable an LRS to receive learning records about a
learner that has not yet been defined in the LRS, or from a LP that does not have access
to the identifier used by the LRS for that learner. FOAF, or “Friend of a Friend” agent
objects provide some capabilities that will help in achieving these goals.

1. FOAF provides a vocabulary with a variety of options for uniquely defining an
agent (or person) such as email address, weblog address, or account on a system
(the LRS for example).

2. OWL (Web Ontology Language), which FOAF uses, provides a way to
declare what properties can be used to uniquely identify an entity — they have
the “Inverse Functional Property”. Using this information, it is possible to merge
two different sets of statements about the same entity, provided they have a match
in one of these properties. For example, email is an inverse functional property for
Person, if we have two sets of statements (FOAF objects) about someone who has
the email address person1@example.com then we know that those statements are
about the same person.

When defining a Learner, Team, or Agent, at least one field that has the Inverse
Functional Property (http://www.w3.org/wiki/InverseFunctionalProperty) must be
defined. Note that the “account” field in FOAF is not defined as having the Inverse
Functional Property, but in the context of the TCAPI it will be considered to have this
property.

TCAPI Agent objects have some differences from the FOAF version, so they will be
defined here. Inverse functional properties are marked with a *.

NOTE: All properties (except type) of Agent, Person, and Group are arrays. The most

http://xmlns.com/foaf/spec/#term_Agent
http://xmlns.com/foaf/spec/#term_Agent
http://xmlns.com/foaf/spec/#term_Agent
http://xmlns.com/foaf/spec/#term_Agent
http://xmlns.com/foaf/spec/#term_Agent
http://xmlns.com/foaf/spec/#term_Agent
http://xmlns.com/foaf/spec/#term_Agent
http://xmlns.com/foaf/spec/#term_Agent
http://xmlns.com/foaf/spec/#term_Agent
http://xmlns.com/foaf/spec/#term_Agent
http://xmlns.com/foaf/spec/#term_Agent
http://xmlns.com/foaf/spec/#term_Agent
http://xmlns.com/foaf/spec/#term_Agent
http://xmlns.com/foaf/spec/#term_Agent
mailto:person1@example.com
mailto:person1@example.com
mailto:person1@example.com
mailto:person1@example.com
mailto:person1@example.com
http://www.w3.org/wiki/InverseFunctionalProperty
http://www.w3.org/wiki/InverseFunctionalProperty
http://www.w3.org/wiki/InverseFunctionalProperty
http://www.w3.org/wiki/InverseFunctionalProperty
http://www.w3.org/wiki/InverseFunctionalProperty
http://www.w3.org/wiki/InverseFunctionalProperty
http://www.w3.org/wiki/InverseFunctionalProperty
http://www.w3.org/wiki/InverseFunctionalProperty
http://www.w3.org/wiki/InverseFunctionalProperty
http://www.w3.org/wiki/InverseFunctionalProperty
http://www.w3.org/wiki/InverseFunctionalProperty

11

correct, or most recent data should be listed first in each array.

Where the property names in tables below are links, please follow the links to details
about that property in the FOAF documentation, which is the authoritative documentation
for that property (a brief description is included here for convenience). Where no link is
given, this document is authoritative on the usage of the property.

Agent

property description

objectType “Agent”, “Person”, or “Group”. Will always be specified by
the LRS. When not specified by an LRS consumer, the LRS
will attempt to infer the type based on the properties present,
however if the type could be either “Agent” or “Person”
then “Person” will be assumed.

name (array of) Name of this agent.

mbox* (array of) Email address that has only ever been assigned to
this agent.

mbox_sha1sum* (array of) SHA1 of an Email address that has only ever been
assigned to this agent. The LRS will compare this value with
mbox values by applying SHA1(mbox).

openid* (array of) The URI associated with an openID for this agent.

account* (array of) Account objects. See below

Account

property description

accountServiceHomePage The URI to the canonical home page for the system the
account is on.

accountName The unique ID or name used to log in to this account.

Note: If the agent is authenticated via the OAuth Registered application workflow (with
no known user), then the consumer_key should be used as the accountName, and the
token request endpoint (eg: http://example.com/TCAPI/OAuth/token) should be used as
the accountServiceHomePage. It is crucial not to do this for any agent object where
a known user is involved, as this would lead to logically different agents being
considered identical by the LRS.

http://xmlns.com/foaf/spec/#term_mbox
http://xmlns.com/foaf/spec/#term_mbox
http://xmlns.com/foaf/spec/#term_mbox_sha1sum
http://xmlns.com/foaf/spec/#term_mbox_sha1sum
http://xmlns.com/foaf/spec/#term_mbox_sha1sum
http://xmlns.com/foaf/spec/#term_mbox_sha1sum
http://xmlns.com/foaf/spec/#term_mbox_sha1sum
http://xmlns.com/foaf/spec/#term_mbox_sha1sum
http://example.com/TCAPI/OAuth/token)
http://example.com/TCAPI/OAuth/token)
http://example.com/TCAPI/OAuth/token)
http://example.com/TCAPI/OAuth/token)
http://example.com/TCAPI/OAuth/token)
http://example.com/TCAPI/OAuth/token)
http://example.com/TCAPI/OAuth/token)
http://example.com/TCAPI/OAuth/token)
http://example.com/TCAPI/OAuth/token)
http://example.com/TCAPI/OAuth/token)
http://example.com/TCAPI/OAuth/token)
http://example.com/TCAPI/OAuth/token)

12

Person (subclass of Agent)

If an agent is a person, some systems may need to know the components of their name.
Therefore, this information should be provided if available. Using givenName &
familyName is preferred if known, otherwise firstName and lastName should be used, if
known. See the FOAF documentation for each property linked below for a discussion of
why both options are provided.

property description

givenName (array of) a person’s given name

familyName (array of) a person’s family name

firstName (array of) a person’s first name

lastName (array of) a person’s last Name

Group (subclass of Agent)

property description

member (array of) Agent objects representing members of this
group.

NOTE: Groups are currently only supported in the Asserter field of the statement, and
only for a group with 2 members as needed for OAuth authentication of a consumer and a
user.

The LRS should consider agents with matching fields having the inverse functional
property (such as email) to be the same agent. This equivalence should be applied both
when filtering statements based on agent, and when reporting. However, the LRS should
still be able to report on the original agent that was associated with any statement, before
applying any merge operation.

Activity

Property Description

objectType Should always be “Activity” when present. Used in cases where
type cannot otherwise be determined, such as the value of a
statement’s “object” field.

http://xmlns.com/foaf/spec/#term_givenName
http://xmlns.com/foaf/spec/#term_familyName
http://xmlns.com/foaf/spec/#term_firstName
http://xmlns.com/foaf/spec/#term_lastName

13

 id URI , may be a URL. If a URL, the URL should refer to metadata
for this activity. If it does not resolve to activity metadata, then it
must not resolve.

This URI is unique. Any reference to it always refers to the same
activity, the AP must ensure this is true and the LRS may not
attempt to treat multiple reference to the same URI as references
to different activities, regardless of any information which
indicates two authors or organizations may have picked the same
activity ID. When defining an activity ID, care must be taken to
make sure it will not be re-used. It should use a domain the creator
controls or has been authorized to use creating IDs, according to
a scheme the domain owner has adopted to make sure IDs within
that domain remain unique.

The prohibition against an LRS treating references to the same
activity ID as two different activities, even if the LRS can
positively determine that was the intent, is crucial to prevent
activity ID creators from getting by with sloppy IDs and then later
encountering a system that is unable to determine the original
intent.

Any state or statements stored against an activity id must be
compatible and consistent with any other state or statements that
are stored against the same activity ID, even if those statements
were stored in the context of a new revision or platform. Notice
that there is no way to specify revision or platform on State! If
this consistency can not be maintained, it is time to create a new
activity id.

definition Metadata, See below

An activity id URI must always refer to a single unique activity. There may be
corrections to that activities definition. Spelling fixes would be appropriate, for example,
but changing correct responses would not.

An LRS should update its internal representation of an activity’s definition upon
receiving a statement with a different definition of the activity from the one stored, but
only if it would have considered the statement authoritative if the activity was previously
unknown to the LRS.

Activity Definition

name Language Map (see below), what the

14

activity is called

description Language Map (see below), a description
of the activity (question text if a question)

type course, module, meeting, media,
performance, simulation, assessment,
interaction, cmi.interaction, question,
objective, link

interactionType Identifies a specific interaction type, in the
case of an interaction activity (see below)

extensions A map of other properties as needed

Activity Metadata:

Activities may be defined in XML according to the schema http://projecttincan.com/
tincan.xsd. Upon first encountering an activity ID in a statement, if the ID is a URL, and
the activity definition type is not “link”, the LRS should retrieve the document at that
URL and check if it conforms to the TinCan schema. If it does, the LRS should fill in its
internal representation of the activities definition based on that document.

Note that multiple activities may be defined in the same metadata document, even one
served from an activity ID URL. The LRS may choose whether to store information
about activities other than those it has received statements for or not.

As part of each group of activities, the activity metadata document may define
information about an activity provider that the LRS should expect will report statements
for that activity. The LRS should incorporate that data to the extent it works with the
registration workflow the LRS has adopted for OAuth.

Link: If the activity definition type is “link”, then the URI of the activity must be a URL
to a resource. Activities of type “link” are defined by the resource they link to. For all
other activities, their ID should either not resolve, or resolve to metadata as described
above. The purpose of the “link” type is to simplify the process of making statements
about existing resources for which a URL is known, and to remove the need to generate
metadata for that resource. For example, the statement “I experienced this”, where this is
a web page is best represented with an activity type of “link”.

Interaction Activities:

By design, Tin Can is intended to be a communication structure, a vocabulary for
conveying what a person or people did in many contexts. It would be impossible for early
versions of the specification to provide detailed data structures for every community of
practice.

http://projecttincan.com/tincan.xsd
http://projecttincan.com/tincan.xsd
http://projecttincan.com/tincan.xsd
http://projecttincan.com/tincan.xsd
http://projecttincan.com/tincan.xsd
http://projecttincan.com/tincan.xsd
http://projecttincan.com/tincan.xsd
http://projecttincan.com/tincan.xsd
http://projecttincan.com/tincan.xsd
http://projecttincan.com/tincan.xsd

15

Traditional e-learning has included structures for interactions or assessments. As an
example for how those practices and structures might be used to extend Tin Can's
definition and utility, we've included a definition for interactions in the Tin Can
specification which borrows from the CMI data model. (This carries the further benefit
of preventing any loss of capability as we move from SCORM 1.2 and SCORM 2004 to
something new and better.)

The definitions that accompany the “cmi.interaction” activity type are intended to
accommodate that which was possible in SCORM and something slightly more. They are
not intended to encompass everything which is possible in the world of assessments going
forward. That's a task to be left to people more expert in that area who will further extend
Tin Can in the future.

When using the “cmi.interaction” activity type, the following activity definition fields are
processed as follows:

 interactionType As in “cmi.interactions.n.type” as

defined in the SCORM 2004 4th edition
Runtime Environment.

 correctResponsesPattern An array of strings, corresponding
to “cmi.interactions.n.correct_
responses.n.pattern” as defined in
the SCORM 2004 4th edition Runtime
Environment, where the final n is the
index of the array.

choices | scale | source | target | steps Array of CMI interaction components
specific to the given interaction type (see
below).

CMI Interaction Components:

CMI interaction components are defined as follows:

id As in “cmi.interactions.n.id” as

defined in the SCORM 2004 4th edition
Runtime Environment

description Language Map (see below), a description
of the interaction component (for example,
the text for a given choice in a multiple-
choice interaction)

16

The following table shows the supported lists of CMI interaction components for an
interaction activity of type “cmi.interaction” with the given interactionType.

interactionType supported component list(s)

choice, sequencing choices

likert scale

matching source, target

performance steps

true-false, fill-in, numeric, other [No component lists defined]

See Appendix C for examples of activity definitions for each of the cmi.interaction types.

Language Map

A language map is a dictionary where the key is a RFC 5646 Language Tag, and the
value is a string in the language specified in the tag. This map should be populated as
fully as possible based on the knowledge of the string in question in different languages.

Activity / Learner profile

Property Description

id String, set by AP, unique within activity/learner scope (learner,
activity)

updated Timestamp

contents Free form.

Note that in the REST binding, activity and learner profiles are documents, not objects.
ID is stored in the URL, updated is HTTP header information, and contents is the HTTP
document itself.

StatementsResult

Container for a list of statements and a continuation link for fetching additional results for
that list.

http://tools.ietf.org/html/rfc5646
http://tools.ietf.org/html/rfc5646
http://tools.ietf.org/html/rfc5646
http://tools.ietf.org/html/rfc5646
http://tools.ietf.org/html/rfc5646

17

Property Type Description
statements Array of

Statements
List of statements

more URL Relative URL that may be used to fetch more
results, including the full path and optionally a
query string but excluding scheme, host, and port.
Empty string if there are no more results to fetch.

This URL must be usable for at least 24 hours after
it is returned by the LRS. In order to avoid the need
to store these URLs and associated query data, an
LRS may include all necessary information within
the URL to continue the query, but should avoid
generating extremely long URLs. The consumer
should not attempt to interpret any meaning from
the URL returned.

Runtime Communication

The TCAPI consists of 4 sub-APIs: statement, state, learner, and activity profile. The
statement API can be used by itself to track learning records.

Encoding

All strings must be encoded and interpreted as UTF-8.

Security

The LRS will support authentication using the following methods:

● OAuth 1.0 (rfc5849), with signature methods of "HMAC-SHA1", "RSA-SHA1",
and "PLAINTEXT"

● HTTP Basic Authentication

There are a number of expected authentication scenarios to consider for the TCAPI. In
all cases, the LRS is responsible for making, or delegating, decisions on the validity of
statements and determining what operations may be performed based on the credentials
used. It must be possible to configure any LRS to completely support the TCAPI using
either of the above authentication methods, and any of the workflows describe below.
However, an LRS may only be configured to support favored authentication mechanisms,
or limit the known users or registered applications that may authenticate at all or using
a specific authentication type. In summary, the LRS must be capable of supporting any
authentication scenario, but may be configured with any desired restrictions. This is to

http://tools.ietf.org/html/rfc5849
http://tools.ietf.org/html/rfc5849

18

allow administrators to strike the desired balance between interoperability and security.

In particular, the "PLAINTEXT" signature method of OAuth and HTTP Basic
Authentication are likely to be turned off by security focused LRS administrators.
Therefore LRS administrators are urged to minimally leave OAuth enabled, with at least
the signature methods of "HMAC-SHA1" and "RSA-SHA1", and TCAPI consumers are
urged to use OAuth with one of those signature methods to maximize interoperability.

Authentication Definitions:

A registered application is an application that will authenticate to the LRS as an
OAuth consumer that has been registered with the LRS. As part of that registration,
the application's name and a unique consumer key (identifier) have been recorded.
Either the application has been assigned a consumer secret, or it has recorded its public
key. The LRS must provide a mechanism to complete this registration, or delegate to
another system that provides such a mechanism. The means by which this registration is
accomplished are not defined by OAuth or the TCAPI.

A Known User is a user account on the LRS, or on a system which the LRS trusts to
define users.

The following authentication workflows are anticipated:

1) Registered Application + Known User

This is the standard workflow for OAuth. Use the endpoints described further below to
complete the standard OAuth workflow.

If this form of authentication is used to record statements and no asserter is specified,
the LRS should record the asserter as a group consisting of an Agent representing the
registered application, and a Person representing the known user.

2) Registered Application

An LRS may choose to trust certain applications to access the TCAPI without additional
user credentials, that is without invoking the authorize or token steps of the OAuth
workflow. In that case, the LRS will consider requests valid that are signed using OAuth
with that application's credentials and with an empty token and token secret. In this case,
the application must have been registered with the LRS.

If this form of authentication is used to record statements and no asserter is specified, the
LRS should record the asserter as the Agent representing the registered application.

3) Unregistered Application + Known User

19

The following must be applied to the standard OAuth workflow:

Since the application is not registered, it's consumer key will not be stored by the LRS.
A consumer key should be picked that will be the same every time that application (or
installation of the application) communicates, but will not be used by another application.
A blank consumer secret should be used. The "Temporary Credential" request should
then be called. Along with the usual parameters, "consumer_name" should be specified.
During the user authentication phase, this name will be displayed to the user, along with a
warning that the identity of the application requesting authentication can not be verified.

Since OAuth is specifying an application here, even though it is unverified, the LRS may
want to record an asserter that includes both that application and the authenticating user,
as a group.

4) Known User, no application

This workflow uses HTTP Basic Authentication. A username/password combination
corresponding to an LRS login should be used, and the LRS should record the Asserter
as an Agent identified by the login used, unless another asserter is specified and the LRS
trusts the known user to specify that asserter.

5) No Authentication

Some LRSs may wish to support API access with no authentication, possibly
for testing purposes, although there is no requirement to do so. To distinguish an
explicitly unauthenticated request from a request that should be given a HTTP Basic
Authentication challenge, unauthenticated requests should include headers for HTTP
Basic Authentication based on a blank username and password.

OAuth Authorization Scope

The LRS will accept a scope parameter as defined in OAuth 2.0. If no scope is specified,
a requested scope of “statements/write” and “statements/read/mine” will be assumed.
The list of scopes determines the set of permissions that is being requested. An API client
should request only the minimal needed scopes, to increase the chances that the request
will be granted.

LRSs are not required to support any of these scopes except “all”. These are
recommendations for scopes which should enable an LRS and an application
communicating using the TCAPI to negotiate a level of access which accomplishes what
the application needs while minimizing the potential for misuse. The limitations of each
scope are in addition to any security limitations placed on the user account associated
with the request.

For example, an instructor might grant “statements/read” to a reporting tool, but the LRS

http://www.w3.org/Protocols/HTTP/1.0/spec.html#BasicAA
http://www.w3.org/Protocols/HTTP/1.0/spec.html#BasicAA
http://www.w3.org/Protocols/HTTP/1.0/spec.html#BasicAA
http://www.w3.org/Protocols/HTTP/1.0/spec.html#BasicAA
http://www.w3.org/Protocols/HTTP/1.0/spec.html#BasicAA
https://tools.ietf.org/html/draft-ietf-oauth-v2-22#section-3.3
https://tools.ietf.org/html/draft-ietf-oauth-v2-22#section-3.3
https://tools.ietf.org/html/draft-ietf-oauth-v2-22#section-3.3
https://tools.ietf.org/html/draft-ietf-oauth-v2-22#section-3.3
https://tools.ietf.org/html/draft-ietf-oauth-v2-22#section-3.3
https://tools.ietf.org/html/draft-ietf-oauth-v2-22#section-3.3
https://tools.ietf.org/html/draft-ietf-oauth-v2-22#section-3.3
https://tools.ietf.org/html/draft-ietf-oauth-v2-22#section-3.3

20

would still limit that tool to statements that the instructor could read if querying the LRS
with their credentials directly (such as statements relating to their students).

TCAPI scope values:

scope permission

statements/write write any statement

statements/read/mine read statements written by “me”, that is with an asserter
matching what the LRS would assign if writing a statement
with the current token.

statements/read read any statement

state read/write state data, limited to activities and actors associated
with the current token to the extent it is possible to determine
this relationship.

define (re)Define activities and actors. If storing a statement when
this is not granted, IDs will be saved and the LRS may save
the original statement for audit purposes, but should not
update its internal representation of any actors or activities.

profile read/write profile data, limited to activities and actors
associated with the current token to the extent it is possible to
determine this relationship.

all/read unrestricted read access

all unrestricted access

OAuth Extended parameters

Note that the parameters “consumer_name” and “scope” are not part of OAuth 1.0, and
therefore if used should be passed as query string or form parameters, not in the OAuth
header.

OAuth Endpoints

Temporary Credential Request:
 http://example.com/TCAPI/OAuth/initiate

Resource Owner Authorization:
 http://example.com/TCAPI/OAuth/authorize

21

Token Request:
 http://example.com/TCAPI/OAuth/token

Concurrency

In order to prevent “lost edits” due to API consumers PUT-ing changes based on old
data, TCAPI will use HTTP 1.1 entity tags (ETags) to implement optimistic concurrency
control in the portions of the API where PUT may overwrite existing data. (State API,
Actor and Activity profile APIs). The requirements in the rest of this “Concurrency”
section only apply to those APIs.

When responding to a GET request, the LRS will add an ETag HTTP header to the
response. The value of this header must be a hexidecimal string of the SHA-1 digest of
the contents, and must be enclosed in quotes.

The reason for specifying the LRS ETag format is to allow API consumers that can’t read
the ETag header to calculate it themselves.

When responding to a PUT request, the LRS must handle the If-Match header or If-
None-Match header as described in RFC2616, HTTP 1.1, if the If-Match header contains
an ETag, or the If-None-Match header contains “*”. In the first case, this is to detect
modifications made after the consumer last fetched the document, and in the second case,
this is to detect when there is a resource present that the consumer is not aware of.

In either of the above cases, if the header precondition specified fails, the LRS must
return HTTP status 412 “Precondition Failed”, and make no modification to the resource.

TCAPI consumers should use these headers to avoid concurrency problems. The State
API will permit PUT statements without concurrency headers, since state conflicts are
unlikely. For other APIs that use PUT (Actor and Activity Profile), the headers are
required. If a PUT request is received without either header for a resource that already
exists, the LRS must return HTTP status 409 “Conflict”, and return a plain text body
explaining that the consumer must check the current state of the resource and set the “If-
Match” header with the current ETag to resolve the conflict. In this case, the LRS must
make no modification to the resource.

Statements

Store (Statement)

POST http://example.com/TCAPI/statements

Stores a statement, or a set of statements. Returns: 200 OK, statement ID(s) (UUID).
Since the PUT method targets a specific statement ID, POST must be used rather than

http://www.ietf.org/rfc/rfc3174.txt
http://www.ietf.org/rfc/rfc3174.txt
http://www.w3.org/Protocols/rfc2616/rfc2616-sec14.html#sec14.24
http://www.w3.org/Protocols/rfc2616/rfc2616-sec14.html#sec14.24
http://www.w3.org/Protocols/rfc2616/rfc2616-sec14.html#sec14.24
http://www.w3.org/Protocols/rfc2616/rfc2616-sec14.html#sec14.26
http://www.w3.org/Protocols/rfc2616/rfc2616-sec14.html#sec14.26
http://www.w3.org/Protocols/rfc2616/rfc2616-sec14.html#sec14.26
http://www.w3.org/Protocols/rfc2616/rfc2616-sec14.html#sec14.26
http://www.w3.org/Protocols/rfc2616/rfc2616-sec14.html#sec14.26
http://www.w3.org/Protocols/rfc2616/rfc2616-sec14.html#sec14.26
http://www.w3.org/Protocols/rfc2616/rfc2616-sec14.html#sec14.26

22

PUT to save multiple statements, or to save one statement without first generating a
statement ID. An alternative for systems that generate a large amount of statements is to
provide the LRS side of the API on the AP, and have the LRS query that API for the list
of updated (or new) statements periodically. This will likely only be a realistic option for
systems that provide a lot of data to the LRS.

GET http://example.com/TCAPI/statements
Returns: 200 OK, statement

Parameter Type Default Description
statementId String ID of statement to fetch

PUT http://example.com/TCAPI/statements
Returns: 204 No Content
Errors: 409 Conflict

Stores statement with the given ID. This MUST NOT modify an existing statement. If the
statement ID already exists, the receiving system SHOULD verify the received statement
matches the existing one and return 409 Conflict if they do not match.

An LRS will never make any modifications to its state based on a receiving a statement
with a statementID that it already has a statement for. Whether it responds with “409
Conflict”, or 204 “No Content”, it will not modify the statement or any other object.

Parameter Type Default Description

statementId String ID of statement to
record

GET http://example.com/TCAPI/statements

Returns: A StatementList object, a list of statements in reverse chronological order based
on “stored” time, subject to permissions and maximum list length. If additional results are
available, a URL to retrieve them will be included in the StatementList object.

Parameter Type Default Description

verb String Filter, only return statements matching the
specified verb.

23

object Actor Object
(JSON/XML)

 Filter, only return statements matching the
specified object (activity or actor).

Object is an activity: return statements
with an object that is an activity with
a matching activity ID to the specified
activity.

Object is an actor: same behavior
as “actor” filter, except match against
object property of statements.

registration UUID Filter, only return statements matching
the specified registration ID. Note that
although frequently a unique registration
ID will be used for one actor assigned to
one activity, this should not be assumed.
If only statements for a certain actor
or activity should be returned, those
parameters should also be specified.

context Boolean True When filtering on activities (object),
include statements for which any of the
context activities match the specified
object.

actor Actor Object
(JSON/XML)

 Filter, only return statements about the
specified agent. Note: at minimum agent
objects where every property is identical
are considered identical. Additionally,
if the LRS can determine that two actor
objects refer to the same agent, they
should be treated as identical for filtering
purposes. See agent object definition for
details.

since Timestamp only statements stored since the specified
timestamp (exclusive) are returned

until Timestamp only statements stored at or before the
specified timestamp are returned

limit Nonnegative
Integer

0 Maximum number of statements to return.
0 indicates return the maximum the server
will allow.

24

authoritative Boolean True Only include statements that are asserted
by actors authorized to make this assertion
(according to the LRS), and are not
superseded by later statements.

sparse Boolean True If true, only include minimum information
necessary in actor and activity objects to
identify them, If false, return populated
activity and actor objects.

Activity objects contain Language Map
objects for name and description. Only
one language should be returned in each of
these maps.

In order to provide these strings in the
most relevant language, the LRS will apply
the Accept-Language header as described
in RFC 2616 (HTTP 1.1), except that this
logic will be applied to each language map
individually to select which language entry
to include, rather than to the resource (list
of statements) as a whole.

instructor Actor Object
(JSON/XML)

True Same behavior as “actor” filter, except
match against “context:instructor”.

Note: due to query string limits, this method may be called using POST and form fields
if necessary. The LRS will differentiate a POST to add a statement or to list statements
based on the parameters passed.

State

Generally, this is a scratch area for activity providers that do not have their own internal
storage, or need to persist state across devices.

PUT | GET | DELETE http://example.com/TCAPI/activities/state

Stores, fetches, or deletes the specified state document in the context of the specified
activity, actor, and registration (if specified).

http://www.w3.org/Protocols/rfc2616/rfc2616-sec14.html
http://www.w3.org/Protocols/rfc2616/rfc2616-sec14.html

25

Parameter Type Required Description

activityId String yes The activity ID
associated with this
state

actor (JSON/XML) yes The actor associated
with this state

registrationId String no The registration ID
associated with this
state

stateId String yes The id for this state,
within the given
context

DELETE http://example.com/TCAPI/activities/state

Deletes all state data for this context (activity + actor [+ registration if specified]).

Parameter Type Required Description

activityId String yes The activity ID
associated with this
state

actor (JSON/XML) yes The actor associated
with this state

registrationId String no The registration ID
associated with this
state

GET http://example.com/TCAPI/activities/state

Fetches IDs of all state data for this context (activity + actor [+ registration if specified]).
If “since” parameter is specified, this is limited to entries that have been stored or updated
since the specified timestamp (exclusive).

26

Parameter Type Required Description

activityId String yes The activity ID
associated with
these states

actor (JSON/XML) yes The actor associated
with these states

registrationId String no The registration
ID associated with
these states

since Timestamp no Only IDs of states
stored since the
specified timestamp
(exclusive) are
returned

Activity Profile

PUT | GET | DELETE http://example.com/TCAPI/activities/profile

Saves/retrieves/deletes the specified profile document in the context of the specified
activity

Parameter Type Required Description

activityId String yes The activity ID
associated with this
profile

profileId String yes The profile ID
associated with this
profile

GET http://example.com/TCAPI/activities/profile

Loads IDs of all profile entries for an activity. If “since” parameter is specified, this
is limited to entries that have been stored or updated since the specified timestamp
(exclusive).

27

Parameter Type Required Description

activityId String yes The activity ID
associated with
these profiles

since Timestamp no Only IDs of profiles
stored since the
specified timestamp
(exclusive) are
returned

GET http://example.com/TCAPI/activities

Loads the complete activity object specified.

Parameter Type Required Description

activityId String yes The ID associated with the activities to load

Actor Profile

PUT | GET | DELETE http://example.com/TCAPI/actors/profile

Saves/retrieves/deletes the specified profile document in the context of the specified
learner (learner may be an individual or a team)

Parameter Type Required Description

actor (JSON/XML) yes The actor associated
with this profile

profileId String yes The profile ID
associated with this
profile

GET http://example.com/TCAPI/actors/profile

Loads IDs of all profile entries for an actor. If “since” parameter is specified, this
is limited to entries that have been stored or updated since the specified timestamp
(exclusive).

28

Parameter Type Required Description

actor (JSON/XML) yes The actor associated
with this profile

since Timestamp no Only IDs of profiles
stored since the
specified timestamp
(exclusive) are
returned

GET http://example.com/TCAPI/actors

Loads full actor object for the specified actor. Even though an actor object is specified
in the get call, the LRS may have more information about that actor that can be returned.
For example, the actor object passed in could include only an email address, but the LRS
could return an actor object populated with name, department, and role.

Parameter Type Required Description

actor (JSON/XML) yes The (partial) actor
representation to
use in fetching actor
information

Cross Origin Requests in Internet Explorer

One of the goals of the TCAPI is to allow cross-domain tracking, and even though the
TCAPI seeks to enable tracking from applications other than browsers, browsers still
need to be supported. Internet Explorer 8 and 9 do not implement Cross Origin Resource
Sharing, but rather use their own Cross Domain Request API, which can not use all of the
TCAPI as describe above due to only supporting “GET” and “POST”, and not allowing
HTTP headers to be set.

The following describes alternate syntax for consumers to use only when unable to use
the usual syntax for specific calls due to the restrictions mentioned above. All LRSs must
support this syntax.

● Method: All TCAPI requests issued must be POST. The intended TCAPI method
must be included as the only query string parameter on the request. (ex: /TCAPI/
statements?method=PUT)

29

● Headers: Any required parameters which are expected to appear in the HTTP
header must instead be included as a form parameter with the same name

● Content: If the TCAPI call involved sending content, that content must now
be encoded and included as a form parameter called “content”. The LRS will
interpret this content as a UTF-8 string, storing binary data is not supported with
this syntax.

See Appendix B for an example function written in Javascript which transforms a normal
request into one using this alternate syntax.

Problems

Registration: LMS concept, but may need to be included in launch information, tracking.

Solution: Registration ID (UUID) becomes part of the statement stream, may
be specified by clients when storing statements. If the LRS provides a launch link, it
would provide the registration to track against in that link, if the launch is based on a
registration. If the LRS provides a registration ID, then the AP must use it when reporting
statements, and should use it when querying statements unless specifically intending
to retrieve previous registration information as well. This method allows for multiple
simultaneous registrations.

Rejected Solution: “Registered for” verb causes all prior statements to be “non-
authoritative”, and starts new registration. Only one registration at a time is valid.
Clients don’t really have to know about registrations. This does not work because
different assignments may be made for both an activity and a child of that activity. In that
case, using the registered verb on the child activity would reset progress from both the
assignment of that particular activity and its parent. Also, only one registration at a time
being valid is an unreasonable restriction due to this same sort of overlap. A registration
for an activity should not preclude a registration on another activity that has it as a child.

The concepts of “attempt” and “submitted” are similar. Furthermore, specifying some
verbs as signifying a new attempt, and others not limits verb choice and therefore
statement expressiveness. We should consider merging these concepts somehow. The
problem with doing that is that “submitted” would be associated with ending an attempt,
whereas the attempt vs. non-attempt verbs determine whether or not to start a new
attempt. Both seem to be needed, submitted when it is known whether or not more details
will be sent, and attempt vs non-attempt to determine whether a new statement is a
revision of an existing attempt (an instructor grading the attempt for example), or the start
of a new attempt.

Result: Determining “authoritative” results will be difficult unless each result field is
constrained to only be enabled on one verb. If two statements have different verbs, and
different results, particularly different partial results, how does that get summarized?

30

Could potentially be solved with a “scored” verb, “passed” verb, etc.

Statement visibility (privacy) is a concern. There is nothing in the API to prevent any
actor from viewing any statements written by any other actor, though an LRS may chose
to limit this. To avoid an interoperability mess, at minimum, best practices on what actor
types (admin, instructor, etc) can view which statements should be established.

FOAF account is not defined as having the inverse functional property, however we
need a way to uniquely identify agents (people) based on their LRS account as an option.
Consider adding an extension property rather than changing the definition of FOAF
account.

Should the FOAF agent object have a type added so the LRS can differentiate between a
person and an agent? Does it matter?

Results/Score section should be updated to use CMI5

Possibilities

UUID of statement could be a hash of other statement fields (except store time). This
could potentially allow two systems to generate the same statement, with the same ID, if
describing the same event (at the same time).

Statements could be signed by the “Authority”. This would require canonicalization of
statements first.

31

Appendix A: Bookmarklet

The TCAPI enables using an “I learned this” bookmarklet to self-report learning. The
following is an example of such a bookmarklet, and the statement that this bookmarklet
would send if used on the page: http://tincanapi.com.

The bookmarklet would be provided by and tracked to the LRS for a specific user.
Therefore the LRS URL, authentication, and actor information is hard coded in
the bookmarklet. Note that since the authorization token must be included in the
bookmarklet, the LRS should provide a token with limited privileges, ideally only
enabling the storage of self-reported learning statements.

The UUID generation is only necessary since the PUT method is being used, if a
statement is POSTED without an ID the LRS will generate it.

In order to allow cross-domain reporting of statements, a browser that supports
the “Access-Control-Allow-Origin” and “Access-Control-Allow-Methods” headers must
be used, such as IE 8+, FF 3.5+, Safari 4+, Safari iOS, Chrome, or Android browser.
Additionally the server must set the required headers.

var url = "http://localhost:8080/TCAPI/Statements/?
statementId="+_ruuid();
var auth = "Basic dGVzdDpwYXNzd29yZA==";
var statement = {actor:{"mbox" :
["mailto:learner@example.scorm.com"]
},verb:"",object:{id:"" }};
var definition = statement.object.definition;

statement.verb='experienced';
statement.object.id = window.location.toString();
definition.type="Link";

var xhr = new XMLHttpRequest();
xhr.open("PUT", url, true);
xhr.setRequestHeader("Content-Type", "application/json");
xhr.setRequestHeader("Authorization", auth);
xhr.onreadystatechange = function() {
 if(xhr.readyState == 4) {
 alert(xhr.status + " : " + xhr.responseText);
 }
};
xhr.send(JSON.stringify(statement));

/*!
Modified from: Math.uuid.js (v1.4)
http://www.broofa.com

http://tincanapi.com
http://tincanapi.com
http://tincanapi.com
http://tincanapi.com
http://tincanapi.com

32

mailto:robert@broofa.com

Copyright (c) 2010 Robert Kieffer
Dual licensed under the MIT and GPL licenses.
*/
function _ruuid() {
 return 'xxxxxxxx-xxxx-4xxx-yxxx-xxxxxxxxxxxx'.replace(/
[xy]/g, function(c) {
 var r = Math.random()*16|0, v = c == 'x' ? r :
(r&0x3|0x8);
 return v.toString(16);
 });
 }

Example statement using bookmarklet

Headers:

{ 'content-type': 'application/json; charset=UTF-8',
 authorization: 'd515309a-044d-4af3-9559-c041e78eb446',
 referer: 'http://tincanapi.com/',
 'content-length': '###',
 origin: 'http://tincanapi.com' }

Method/Path:

PUT : /TCAPI/Statements/?statementId=ed1d064a-eba6-45ea-
a3f6-34cdf6e1dfd9

Body: {

"actor":{
"mbox":["mailto:learner@example.scorm.com"]

},
"verb":"experienced",
"object":{

"id":"http://tincanapi.com ",
"definition":{

"type":"link"
}

}
 }

mailto:learner@example.scorm.com
mailto:learner@example.scorm.com
mailto:learner@example.scorm.com
mailto:learner@example.scorm.com
mailto:learner@example.scorm.com
mailto:learner@example.scorm.com
mailto:learner@example.scorm.com
mailto:learner@example.scorm.com
mailto:learner@example.scorm.com

33

Appendix B: Creating an “IE Mode” Request

function getIEModeRequest(method, url, headers, data){

 var newUrl = url;

 //Everything that was on query string goes into form vars
 var formData = new Array();
 var qsIndex = newUrl.indexOf('?');
 if(qsIndex > 0){
 formData.push(newUrl.substr(qsIndex+1));
 newUrl = newUrl.substr(0, qsIndex);
 }

 //Method has to go on querystring, and nothing else
 newUrl = newUrl + '?method=' + method;

 //Headers
 if(headers !== null){
 for(var headerName in headers){
 formData.push(
 headerName + "=" +
 encodeURIComponent(
 headers[headerName]));
 }
 }

 //The original data is repackaged as "content" form var
 if(data !== null){
 formData.push('content=' + encodeURIComponent(data));
 }

 return {
 "method":"POST",
 "url":newUrl,
 "headers":{},
 "data":formData.join("&")
 };
}

34

Appendix C: Example definitions for activities of
type “cmi.interaction”

true-false

"definition": {
 "description": {"en-US": "Does the TCAPI include the concept of statements?"},
 "type": "cmi.interaction",
 "interactionType": "true-false",
 "correctResponsesPattern": ["true"]
}

choice

"definition": {
 "description": {"en-US": "Which of these prototypes are available at the beta site?"},
 "type": "cmi.interaction",
 "interactionType": "multiple-choice",
 "correctResponsesPattern": ["golf[,]tetris"],
 "choices": [
 {"id": "golf", "description": {"en-US": "Golf Example"}},
 {"id": "facebook", "description": {"en-US": "Facebook App"}},
 {"id": "tetris", "description": {"en-US": "Tetris Example"}},
 {"id": "scrabble", "description": {"en-US": "Scrabble Example"}}
]
}

fill-in

"definition": {
 "description": {"en-US": "Ben is often heard saying: "},
 "type": "cmi.interaction",
 "interactionType": "fill-in",
 "correctResponsesPattern": ["Bob’s your uncle"]
}

likert

"definition": {
 "description": {"en-US": "How awesome is Tin Can?"},
 "type": "cmi.interaction",
 "interactionType": "likert",
 "correctResponsesPattern": ["likert_3"],
 "scale": [
 {"id": "likert_0", "description": {"en-US": "It’s OK"}},
 {"id": "likert_1", "description": {"en-US": "It’s Pretty Cool"}},
 {"id": "likert_2", "description": {"en-US": "It’s Damn Cool"}},
 {"id": "likert_3", "description": {"en-US": "It’s Gonna Change the World"}}
]
}

35

matching

"definition": {
 "description": {"en-US": "Match these people to their kickball team:"},
 "type": "cmi.interaction",
 "interactionType": "matching",
 "correctResponsesPattern": ["ben[.]3[,]chris[.]2[,]troy[.]4[,]freddie[.]1"],
 "source": [
 {"id": "ben", "description": {"en-US": "Ben"}},
 {"id": "chris", "description": {"en-US": "Chris"}},
 {"id": "troy", "description": {"en-US": "Troy"}},
 {"id": "freddie", "description": {"en-US": "Freddie"}}
],
 "target": [
 {"id": "1", "description": {"en-US": "SCORM Engine"}},
 {"id": "2", "description": {"en-US": "Pure-sewage"},
 {"id": "3", "description": {"en-US": "Project Tin Can"}},
 {"id": "4", "description": {"en-US": "SCORM Cloud"}}
]
}

performance

"definition": {
 "description": {"en-US": "This interaction measures performance over a day of RS
sports:"},
 "type": "cmi.interaction",
 "interactionType": "performance",
 "correctResponsesPattern": ["pong[.]1:[,]dg[.]:10[,]lunch[.]"],
 "steps": [
 {"id": "pong", "description": {"en-US": "Net pong matches won"}},
 {"id": "dg", "description": {"en-US": "Strokes over par in disc golf at Liberty"}},
 {"id": "lunch", "description": {"en-US": "Lunch having been eaten"}}
]
}

sequencing

"definition": {
 "description": {"en-US": "Order players by their pong ladder position:"},
 "type": "cmi.interaction",
 "interactionType": "sequencing",
 "correctResponsesPattern": ["tim[,]mike[,]ells[,]ben"],
 "choices": [
 {"id": "tim", "description": {"en-US": "Tim"}},
 {"id": "ben", "description": {"en-US": "Ben"}},
 {"id": "ells", "description": {"en-US": "Ells"}},
 {"id": "mike", "description": {"en-US": "Mike"}}
]
}

36

numeric

"definition": {
 "description": {"en-US": "How many jokes is Chris the butt of each day?"},
 "type": "cmi.interaction",
 "interactionType": "numeric",
 "correctResponsesPattern": ["4:"]
}

other

"definition": {
 "description": {"en-US": "On this map, please mark Franklin, TN"},
 "type": "cmi.interaction",
 "interactionType": "other",
 "correctResponsesPattern": ["(35.937432,-86.868896)"]
}

