1libproj4: A Comprehensive Library of
Cartographic Projection Functions
(Preliminary Draft)

Gerald I. Evenden

Falmouth, MA, USA — November 22, 2008

Contents

(1

Using the libproj4 Library.

1.1 Basic Usagel
1.2 Projection factors.| 0L

1.3 Error handling| oo oo
[[.4 Character/Radian Conversion]
[I.5 Limiting Selection of Projections]

[2_Internal Controls|

2.1 Initialization Procedures)
2.1.1 Setting the Earth’s figure.|.
2.2 Determinations from the argument list.|
2.2.1 Creating the list.| 0.
2.2.2 Using the parameter list|
[2.3 _Computing projection values|
2.4 rojection Procedure| L.
2.5 Setting new error numbers.| Lo L Lo

Analytic Support Functions|

[3.1 Ellipsoid definitions|.00
3.2 eridian Distance—proj mdist.c|
3.2.1 ectitying Latitude|.o

[3.3 _Conformal Sphere—proj gauss.c|
[3.3.T Simplified Form of Conformal Latitude]

[3.4 Authalic Sphere—proj_auth.c|
. xis Translation —proj_translate.c|
[3.6 Transcendental Functions—proj_trans.c|

B.7_Miscellaneous Functions

Cylindrical Projections.|

4.1 Normal Aspects.|
411 Arden-Close

4.1.2 Braun’s Second (Perspective)|.
4.1.3 Cylindrical Equal-Area.|

1. entral Cylindrical.|,
4.1.5 Cylindrical Equidistant.|
4.1.6 Cylindrical Stereographic| oL
.17 Kharchenko-Shabanoval

12
12
13
13

15
15
16
17
17
17
18
19
21

23
23
24
25
25
26
27
28
29
29
30
30
31
31
31
32

36
37
37
38

4 CONTENTS

418 Mercatoro 39
19 OM. Miller] 39
4110 OM. Miller 2] oo o o 39
4.1.11 Miller’s Perspective Compromise.|. 40
EIT2 Paviov] 40
4.1.13 Tobler’s Alternate #1| 42
4.1.14 Tobler’s Alternate #2| 42
4.1.15 Tobler’s World in a Square.| 42
4.1.16 Urmayev Cylindrical II.] 42
4.1.17 Urmayev Cylindrical IIL|. 42
4.2 Transverse and Oblique Aspects,| 42
21 Transverse Mercatod 42
4.2.2 Oblique Mercator|. 52
H23 Cassinll . . . o oo 56
4.2.4 Transverse Cylindrical Equal-Areaf 57
4.2.5 Swiss Oblique Mercator Projection| 58
4.2.6 Gauss dSchreiber Transverse Mercator Projection| 59
4.2.7 Labordel.o 59
[Pseudocylindrical Projections| 63
.1 Computations.] 63
p.2 Spherical Forms,|o oo 64
B2T1 Shmusoidall 64
bh22 Winkel LI oo 65
P.2.3 Winkel-Snyder|o 66
5.2.4 Urmayev Flat-Polar Sinusoidal Series.| 66
B25 EckerfIl. 66
B26 FEckert IT] 67
[5.2.7 Eckert 111, Apian II (Arago), Putnins Py, Putnins P}, Wagner |
VIi, Winkel II and Kavraisky VIL.| 68

h28 Eckert IV. oo o 68
B29 FEckert VI 68
5.2.10 Wagner IL.|, 68
P.2.11 Wagner IIL| oo 69
b.2.12 Wagner V.|o 70
5.2.13 Foucaut Sinusoidall. 70
[5.2.14 Mollweide, Bromley, Wagner IV (Putnins P5) and Werenski- |
[old IIIN. . . o o o o 70
B2T5 Holzell o oo 72
F2T6 Hatanol . . . o« v v oo e e 72
[p.2.17 Craster (Putnins Py)| 72
F2I8 PutninSPol 72
[5.2.19 Putnin§ Ps and P4 oo oo 73
E’).2.20 Putnins Py and Werenskiold I| 74
5.2.21 Putnins§ Psand P oo Lo 74
[5.2.22 Putnins Pg and P7] 74
[(F.2.23 Collignon.] 75
p.2.24 Sine-Tangent Series.| Lo 76
15.2.25 McBryde-Thomas Flat-Polar Parabolic| 76
5.2.26 McBryde-Thomas Flat-Polar Sine (No. 1). 76
[5.2.27 McBryde-Thomas Flat-Polar Quartic] 7
9.2.28 Boggs Eumorphic.| o000 77
B229 Nelll . . . ot 77

CONTENTS 5

B23T Slemon IV oo oo 7
5232 Robinson] oo 78
9.2.33 Denoyer.|.o o 79
............................... 79
6.2.35 Ginsburg VIIL| 79
0236 Loximuthall. o000 79
5.2.37 Urmayev V Series.|, 79
9.2.38 Goode Homolosine, McBryde Q3 and McBride 52| 80
9.2.39 Equidistant Mollweide] L. 81
9.2.40 McBryde S3.o o 81
D.2.41 Semiconformalf oo 81
5242 BrdiKrausz]o 81
p.2.43 Snyder Minimum Error.|o o000 82
B2 Maurer] o o oo 83
B245 Canfers].o i 83
6.2.46 Baranyi I-VIL| 83
(247 Oxford and Times Atlas] 87
5.2.48 Baker Dinomicl. oo o000 87
5.2.49 Fourtier ILIo 88
9.2.50 Mayr-Tobler.| o 88
B25L Tobler Gl . « o o v v oo et e e e e e e 88

9.3 Pseudocylindrical Projections for the Ellipsoid.| 88
.3.1 Sinusoidal Projection|. L. 88

[6 Conic Projections| 89
6.0.2 Bonnel. 92
[6.0.3 Bipolar Oblique Conic Conformal.| 92
:6.0.4 American) Polyconic.| 95
[6.05 Rectangular Polyconic]. 97
6.0.6 Modified Polyconic.| 98
16.0.7 Ginzburg Polyconics.|. o000 98
6.0.8 Kiovak Oblique Confomal Conic Projection| 99
16.0.9 Lambert Conformal Conic Alternative Projection|. 100
6.0.10 Hill Eucyclic| o oo oo oo 102

|7 Azimuthal Projections| 105
[7.1 Perspectivel 105
[7.1.1 Perspective Azimuthal Projections.|. 105
[7.1.2 Stereographic Projection.| 107
.................................. 110
[.2.1 Hammer and FEckert-Greifendorff). 110
[7.2.2 Aitoff, Winkel Tripel and with Bartholomew option, 111
7.2.3 Wagner VII (Hammer-Wagner) and Wagner VIIL.| 112
[7.2.4 Wagner IX (Aitoff-Wagner)|. 114
[725 Gilbert Two World Perspective]. 115

[8 Miscellaneous Projections| 117
8.1 Spherical Forms|. oo 117
8.1.1 Apian Globular I, Bacon and Ortelius Ovalf. 117
BI2 Armadillol. 117
8.1.3 August Epicycloidal.|o 118
BI4 TFisenlohd 120
B8.1.5 Fournier Globular Il 121

6 CONTENTS

8.1.7 Lagrange| o 123

8.1.8 Nicolosi Globular) 0. 124

8.1.9 Van der Grinten (I).] 126

8.1.10 Van der Grinten ILf. 127

BIIT Vander Grinten ITTJo 127

81.12 Vander Grinten IV.|o o000 128

8113 Larrivéel.o 129

[9 Creating Oblique Projections.| 131
9.1 olar Position ique Projection Method.| 131
0.2 Two Points on Great Circle Methodl 132

List of Figures

8.1 The meridional ellipse.f oo 23
B.2 Axis Transformation| o 29
4.1 Cylinder projections I| oL 37
4.2 Cylinder projections II} oo 40
4.3 Cylinder projections III| 41
[£-4 Displacement error in meters in_comparing projection tmerc with |

referemce projection etmerc.| L. 45
4.5 Displacement error in meters in comparing projection gbmerc with |

referemce projection etmerc.|o oL 46
b.1 Interupted Projections.). oo 64
9.2 General pseudocylindricals I\ 00000 65
9.3 Eckert pseudocylindrical series| 0L 67
[5.4 Wagner pseudocylindrical series| 69
5.5 General pseudocylindricals If| 71
5.6 PutninsPseudocylindricals.| 73
-7 General pseudocylindricals TIT] 75
9.8 General pseudocylindricals IV|. 0. 78
5.9 General pseudocylindricals V| 80
5.10 General pseudocylindricals VI 82
.11 Canters’ pseudocylindrical series| 84
5.12 Baranyi pseudocylindrical series|. 85
[6.1 A-Hill Eucyclic and B-Maurer SNo. 73 (+proj=hill +K=0)[. 103
[7.1 _Geometry of perspective projections| 106
........................... 113
8.1 Apian Comparison| i e e e e 118
B2 Globular Seried 119
8.3 General Miscellaneousl L L. 120
8.4 Miscellaneous Square Series| oL 124
8.5 Lagrange Series| Lo 125
8.6 Van der Grinten Sertesl 128
9.1 Wray Oblique Classification| 133
9.2 Examples of oblique projections|. 134
9.3 Examples of oblique Equidistant Cylinder projections| 135

LIST OF FIGURES

Chapter 1
Using the libproj4 Library.

Although this cartographic projection library contains a large number of projections
the programmatic usage is quite simple. The main burden of usage is the selection
and correct usage of the parameters of the individual projections which is, in most
cases, a burden placed upon the user, not the programmer. Usage is very similar to
I/0 programming where a file is opened and a structure is returned that is used by
various I/O operation routines—a structure that contains all the details related to a
particular file. Other similarities with file handling is that more than one projection
can be processed concurrently and the structure is closed when finished.

1.1 Basic Usage

A cartographic projection is also a mathematical process like functions included
in a compiler’s mathematics library such as sin(x) to compute sinx and asin(x)
to compute the inverse, arcsinz (also referred to as sin™'z). But unlike most
mathematical library functions, the forward, P, and inverse, P~!, cartographic
projection functions have a multivariate argument and a bivariate return value:

(.T,y) — P()‘7¢7) (11)
()"(b) — P_l(xvy"") (1'2)

where x and y are the planar, Cartesian coordinates, usually in meters, and A and
¢ are the respective longitude and latitude geographic coordinates in radians.

The biggest complication is the type and number of the additional functional
arguments constituting the complete argument list. There is always either the
Earth’s radius or several techniques for defining the Earth’s ellipsoid shape as well as
specifications for false origins and units of Cartesian measure. Individual projections
may have additional parameters that need to be specified. In all cases, it is necessary
for the user to refer to the individual projection description for details about the
individual projection parameters required.

Because of the large number of selectable projections, each with their own special
list of arguments, the following method was chosen to simplify the number of library
entries needed by the programmer to the following prototypes defined in the header
file projects.h:

#include <lib_proj.h>

void *proj_init(int nargs, char *argsl[]);
void *proj_initstr(char *args);
XY proj_fwd(LP 1lp, void *PJ);

10 CHAPTER 1. USING THE LIBPROJ4 LIBRARY.

LP proj_inv(XY xy, void *PJ);
void proj_free(void *PJ);

The complexity of this system is not in programmatic usage as described in the
following text, but in understanding and properly using the cartographic control
parameters.

There are two ways to initialize a projection: proj_init which is very similar
to a C program entry point where a list of nargs in the array of strings args or the
proj-initstr that has only one string that contains all of the parameters needed
to initialize the projection. Even in the case of any single string in the array args
there may be more than one control parameter. In either case, when there are more
than one parameter in a string they must be separated by “white space” such as a
blank, tab or newline. An example of each initialization:

#include <lib_proj.h>

char *parms[] {
"proj=poly ellps=clrk66",
"lon_0=90w"

};

void *P;

P = proj_init(2, parms);
/* or */
P = proj_initstr("proj=poly ellps=clrk66 lon_0=98w");

Upon successful initialization both initialization procedures returns a type void
pointer to a data structure that is used as the second argument with the forward,
proj_fwd, and inverse, proj_inv, projection functions. Because the data structure
returned is unique to the projection defined and contains all the information for the
computing the projection selected by the initialization call, any number of additional
initialization calls can be made and used concurrently.

If the initialization call failed then a null value is returned. See Section for
details on determining cause of failure.

The first argument argument to the forward and inverse projection function and
the function return is a type declared (in the header file 1ib_proj.h) as:

typedef struct { double x, y; } XY;
typedef struct { double lam, phi; } LP;

which are the respective z and y Cartesian coordinates respective longitude, A,
and latitude, ¢, geographic coordinates in radians. If either the forward or inverse
function fail to perform a conversion, both values in the returned structure are set
to HUGE_VAL as defined in the math.h.

Two additional notes should be made about the header file projects.h: it
contains includes to the system header files stdlib.h and math.h, and several
predefined constants such as multipliers DEG_TO_RAD and RAD_TO_DEG to respectively
convert degrees to and from radians.

To illustrate usage, the following is an example of a filter procedure designed
to convert input pairs of latitude and longitude values in decimal degrees to corre-
sponding Cartesian coordinates using the Polyconic projection with a central merid-
ian of 90°W and the Clarke 1866 ellipsoid:

#include <stdio.h>
#include <lib_proj.h>
main(int argc, char x*argv) {

1.1. BASIC USAGE 11

static char *parms[] = {
"proj=poly",
"ellps=clrk66",
"lon_0=90W"

};

PJ *ref;

LP idata;
XY odata;

if (! (ref = proj_init(sizeof (parms)/sizeof (char *), parms))) {
fprintf (stderr, "Projection initialization failed\n");
exit(1);
}
while (scanf("%1f %1f", &idata.phi, &idata.lam) == 2) {
idata.phi *= DEG_TO_RAD;
idata.lam *= DEG_TO_RAD;
odata = proj_fwd(idata, ref);
if (odata.x !'= HUGE_VAL)
printf ("%.3f\t%.3f\n", odata.x, odata.y);
else
printf("data conversion error\n");
}
exit (0);
}

To test the program, the script

./a.out <<EOF

0 -90
33 -95
77 -86
EOF

should give the results:

0.000 0.000
-467100.408 3663659.262
100412.759 8553464 .807

When executing proj_init or proj_initstr the projection system allocates
memory for the structure pointed to by the return value. This allocation is complex
and consists of one or more additional memory allocations to assign substructures
referenced within the base structure. In applications where multiple calls are to
proj_init are made and where the previous initializations are no longer needed it
is advisable to free up the memory associated with the no longer needed structures
by calling proj_free.

In some cases it is convenient to include:

#define PROJ_UV_TYPE

before the inclusion of the 1lib_proj.h header file. This changes the declaration of
the forward and inverse entries to having a

typedef struct { double u, v; } UV;

type for both the first argument and functional return. The included program
1proj is an example where this is used and facilitates the processing of the I/O
that can be either forward or inverse projection which is performed by substituting
the appropriate forward or inverse procedure interchangeably.

12 CHAPTER 1. USING THE LIBPROJ4 LIBRARY.

1.2 Projection factors.

Various details about a projections behavior including scale factors at selected ge-
ographic coordinates can be determined with the function:

#include <lib_proj.h>

int proj_factors(LP 1p, PJ *P, double h, struct FACTORS x*fac);

Argument 1p is the coordinate where the factors are to be determined, P points to
the projection’s control structure, h numerical derivative increment and fac is a
structure defined in 1ib_proj.h as:

struct DERIVS {

double x_1, x_p; /* derivatives of x for lambda-phi */
double y_1, y_p; /* derivatives of y for lambda-phi */
};

struct FACTORS {

struct DERIVS der;

double h, k; /* meridional, parallel scales */

double omega, thetap; /* angular distortion, theta prime */
double conv; /* convergence */

double s; /* areal scale factor */

double a, b; /* max-min scale error */

int code; /* info as to analytics, see following */

}

#define IS_ANAL_XL_YL 01 /* derivatives of lon analytic */
#define IS_ANAL_XP_YP 02 /% derivatives of lat analytic */
#define IS_ANAL_HK 04 /* h and k analytic */

#define IS_ANAL_CONV 010 /* convergence analytic */

The variable code has bits set according to the defines where “analytic” refers to
equations within the projections providing the values rather than their determina-
tion by numerical differentiation.

The argument h may be 0. and a suitable default value will be used.

For a more complete, mathematical description of the elements in FACTORS see

Section [3.8]

1.3 Error handling.

Error reporting is a combination of using the C library facility errno and libproj4’s
proj_errno. While the C libraries never reset errno to zero, libproj4 resets both
errno and proj_errno at each entry of a libproj4 procedure. Upon return to the
calling program, if proj_errno is zero it is set to the value of errno. Because all
error numbers reported by libproj4 procedures are negative and all C system values
of errno are positive values the source of the error code is easily resolved. The
header file 1ib_proj.h must be used when referring to proj_errno.
There are two methods to get a string that describes non-zero error codes:

char * proj_strerrno(int error_no);
int proj_strerror_r(int error_no, char *buf, int len);

The first method emulates the standard library strerrno which is not thread-safe.
In both cases, error no is the error number, either proj_errno or the system’s
errno, for which the descriptive string is to be returned. In the first case, a pointer
is returned to the descriptive string and in the second case the first 1en characters

1.4. CHARACTER/RADIAN CONVERSION. 13

of the descriptive string are copied into buf space supplied by the calling procedure.
Procedure proj_strerror_r return a function value of -1 if unsuccessful otherwise
a Zero.

The function proj_strerrno is deprecated and is destined for deletion in future
releases.

1.4 Character/Radian Conversion.

Two procedures in the LIBPROJ4 library are provided to perform conversion between
human readable character representation of geodetic coordinates and internal float-
ing point binary. These procedures are summarized by the following prototypes:

#include <lib_proj.h}

double proj_dmstor(const char * str, char *x str)
char #proj_rtodms(char *str, double rad, const char * signt)
void proj_set_rtodms(int frac, int con_w)

The proj_dmstor function is patterned after the C language library strtod func-
tion where str is a character string to be read for a bMSs value to be returned as
the function value and the second character pointer returns a pointer to the next
character in the string after the successfully decoded string. If a proper bDMs value
is not found then a 0 is returned and a HUGE_VAL is returned for bizarre conversion
errors. In the latter case proj_errno may be set with a -16 value.

Function rtodms performs output formatting and creates a DSM string from the
input rad. The argument signt is a two character string where the first character
is to be taken as the positive sign suffix and the second as the negative sign suffix.
Normally, signt will either be "NS" or "EW". If signt is O then normal numeric
minus sign prefixes the numeric output.

Normal output of proj_rtodms formats to 3 decimal digits of seconds but this
precision can be adjusted with the proj_set_rtodms function by specifying the
number of significant digits to use with frac. If the argument con_w argument is
not 0 then constant width values are output (often useful in map labeling or tabular
values).

1.5 Limiting Selection of Projections

Many applications will only need a small subset of the projections contained in the
library 1ibproj.a, but unless some action is taken, all of the projections will be
linked into the final process. This is not a problem unless the memory requirements
of the application are to be kept small or access to projections is to be restricted.

If there is a need to limit the number of projections, a simple two-step process
needs to followed. First create a header file, my_list.h for example, that contains
a list of macro calls PROJ_HEAD (id, text’, one for each projection to be part of the
application program. Argument id is the acronym of the projection and argument
text is the ASCII string describing the program (what appears after the colon in
proj’s -1 execution. The header file, nad 1ist, for program nad2nad is a an
example:

/* projection list for program my_prog */
PROJ_HEAD(lcc, "Lambert Conformal Conic")

PROJ_HEAD (omerc, "Oblique Mercator")

PROJ_HEAD(poly, "Polyconic (American)")

PROJ_HEAD (tmerc, "Transverse Mercator")

PROJ_HEAD (utm, "Universal Transverse Mercator (UTM)")

14 CHAPTER 1. USING THE LIBPROJ4 LIBRARY.

An easy way to create this list is to copy and edit the file proj_list.h in the source
distribution, which contains the entire listing of available projections, and edit out

of the copy all lines of unwanted projections.
Next, in one of the program code modules that includes the header file projects.h,
precede the include statement with:

#define PROJ_LIST_H "my_list.h"

Be careful to only put this include in only one of the code modules because this define
action causes the initialization of the global proj_1list and multiple initializations
will cause havoc with the linker.

Chapter 2

Internal Controls

To discuss the internal control of this system the description will be based upon
following the flow of the process from projection initialization to coordinate conver-
sion. Although extracts of the code and data structures will be presented here it
may be helpful for the reader to follow the description with frequent references to
the source code.

2.1 Initialization Procedures.

To initiate the cartographic transformation system it is necessary to execute a pro-
cedure that will decode the user’s control input into internally recognized parame-
ters and to establish a myriad of computational constants and process controls and
return to the calling procedure a reference to employ when performing transforma-
tions. In this system the entry is the procedure proj_init is passed a argument
count and character array in a manner similar to a C program’s main. The first
operation proj_init performs is to put the list of arguments into a linked list
described in the next section.

The reason for this copy operation is that it allows the system to add arguments
to the list and not violate const attributes of the input list and it also allows
marking each argument element that is used by the system. This latter feature is
useful in giving an audit trail for debugging usage of system.

The first extraction from the input list is to determine the identifier of the
projection to be used (+proj=<id>) and locating the entry id in the list:

struct PROJ_LIST {
char *id; /* projection keyword */
PJ *(*proj) (PJ *); /* projection entry point */
char * const *descr; /* description text */

};

The following extract from the 1ib_proj.h header file shows how the projection list
is declared and initialized:

/* Generate proj_list external or make list from include file */
#ifndef PROJ_LIST_H

extern struct PROJ_LIST proj_list[];

#else

#define PROJ_HEAD(id, name) \

extern PJ *proj_##i1d(PJ *); extern char * const proj_s_##id;
#define DO_PROJ_LIST_ID

#include PROJ_LIST_H

15

16 CHAPTER 2. INTERNAL CONTROLS

#undef DO_PROJ_LIST_ID

#undef PROJ_HEAD

#define PROJ_HEAD(id, name) {#id, proj_##id, &proj_s_##id},
struct PROJ_LIST

proj_list[] = {

#include PROJ_LIST_H

{0, 0, 0},
};

#undef PROJ_HEAD
#endif

In all but one situation of the usage of 1ib_proj.h the identifier PROJ_LIST H is
undefined and thus only the external declaration of the projection list proj_list is
made. In the case of the file proj_list.c the only code in the file is:

#define PROJ_LIST_H "proj_list.h"
#include "lib_proj.h"

which result in the following actions:

e the PROJ_HEAD macro is defined as a declaration of the external projection
function and an external description character string,

e the header file proj_list.h containing a list of PROJ_HEAD statement is read,

e PROJ_HEAD is redefined so as to create a structure array and initializes that
array by re-reading the header file proj_list.h

The reason for this seemingly convoluted operation is to simplify the installation
of new projections by merely creating the the PROJ_HEAD macro once in the file
containing the projection code and then simply copying this line into the list-defining
header file.

Once the projection initialization entry is determined from the list the next
operation is to call the projection entry defined in the list structure with a zero
(null) argument. The projection procedure will return a pointer to the PROJconsts
structure whose top portion is defined in 1ib_proj.h. This structure pointer is what
is eventually returned by proj_init to the calling program after its contents are
fully initialized. The reason for having the projection return the structure pointer
is that the complete definition and size is defined by the selected projection.

At this stage all of the elements after the first five of the structure PROJconsts
are filled in by following operations of proj_init. These components are found to
be commonly used and projection independent and thus more efficiently determined
by a common process.

The final step is to re-call the projection entry point previously used but now
with the pointer to the PROJconsts stucture as the argument and allow the projec-
tion to complete the initialization of the structure based upon the already initialize
elements and other options in the argument link list that are unique to the projec-
tion. Note that the base address of the base address of the argument list is now
stored in the structure.

If all goes well, the pointer to the structure PROJconsts is returned to the user
as the functional return of proj_init.

2.1.1 Setting the Earth’s figure.

In initializing the PROJconsts stucture the elliptical parameters are the first pa-
rameters determined by a call to the function proj_ell_set. Its first operation is
to search the parameter link-list for the definition of +R=<radius> and if found,

2.2. DETERMINATIONS FROM THE ARGUMENT LIST. 17

the remainder of the initialization is for a spherical earth regardless of any ellipsoid
parameters on the list.

If the radius is not on the list, then a search the argument +ellps=<id> and a
search of the table

struct PROJ_ELLPS {
char =xid; /* ellipse keyword name */
char #*major; /* a= value */
char xell; /% elliptical parameter */
char *name; /* comments */

};

is made and if found, the ellipsoid parameters from the second and third character
fields are pushed onto the parameter linked list.

The remainder of the PROJconsts fields related to the ellipsoid or sphere are
now determined.

If neither a radius nor ellipsoid constants are found, an error condition exists.

2.2 Determinations from the argument list.

Control options are the list of projection parameters typically obtained from run
lines of programs or data bases. They consist of the option name optionally followed
by an equal sign and an option value that may be a integer, floating, degree-minute-
second (MDS or character string value. Control options may be prefixed with a +
sign that is ignored by following functions.

2.2.1 Creating the list.

One of the first functions of initialization of projection procedures in LIBPROJ4 is
to convert the string array argv into a linked list with the structure:

struct ARG_list {
struct ARG_list *next;
char used;
char param[1];

};

When each control parameter is stored in the list, the flag used is set to zero. If the

parameter is somehow tested or the argument used the flag is set to one. This serves

as an audit trail on projection usage if the verbose diagnostic call is employed.
The argument string is placed into the list with execution of the function:

#include <lib_proj.h>

paralist *proj_mkparam(char *str);

where paralist is a typedef of list structure. If proj_mkparam is unable to allocate
memory for the new argument then a NULL value is returned.

The calling program must use the returned pointer to either establish the starting
point of a list or add to the “next” value at the end of an existing list.

2.2.2 Using the parameter list

The function proj_param provides for searching for parameters and returning their
value from paralist.

18 CHAPTER 2. INTERNAL CONTROLS

#include <lib_proj.h>

PVALUE proj_param(paralist *pl, const char *opt)

where

typedef union {

double f£;

int 1i;

const char *s;
} PVALUE;
\begin{center}

Upon calling proj_param the argument opt character string contains the name
of the option desired with a prefix character of how the the option argument is to
be treated. The following is a list of the prefix characters and the nature of the
return value of proj_param.

t test for the presence of the string in the list. Re-
turn integer 1 is present else 0.

i treat the option argument as integer and return
the binary value.

d treat the option argument as a real number and
return double as the result.

r argument is degree-minute-second input and re-
turn type double value in radians.

s argument is a character string and return pointer
to string.

b argument is boolean; return integer 0 if value “F”,
“f”, “0” or integer 1 if the value is “T”, “t” or
“17,

In all cases where there is no argument value a 0 or NULL value is returned.
In practice, the b type is rarely used and it is understood that the presences or
absence of the option serves as a boolean flag with the t test.

2.3 Computing projection values

A review of the operations that are performed by the entry points proj_fwd and
proj_inv is necessary in order to understand what is performed by the system
before calling the individual projection procedures. The following operations are
deemed to be common to all forward projections even though they maybe seldom
used in some cases:

e The range of the latitude and longitude arguments is check. The absolute
value of latitude must be less than or equal to 90° (7/2 radians) and the
absolute value of longitude must be less than or equal to 10 radians (573°).

e (lear error flags.

e If geocentric latitude option is selected the latitude is changed to geodetic
latitude.

e Central meridian is subtracted from the longitude.

o If over-ranging is not selected the longitude is reduced to be between +180°.

2.4. PROJECTION PROCEDURE. 19

e The projection procedure is called.

e It errors, then set z—y to HUGE_VAL and return, else z—y values are multiplied
by the Earth’s radius or major elliptical axis, false Northing and Easting are
added and each are scaled to the selected units.

The main thing to note is that the projection functions only deal with longitude
reduced to the central meridian (no A — A\g terms) and an unit radius/major-axis
Earth.

In the case of the inverse projection, fewer checks of the input data can be done
by the inverse projection entry:

e (lear error flags.

e Adjust the Cartesian coordinates by rescaling, subtracting the false Easting
and Northing and dividing out the Earth’s radius or major-axis.

e (Call the inverse projection.

e If errors, set A—¢ to HUGE_VAL and return.

e Add central meridian to returned longitude.

e If over-ranging not selected reduce longitude range to between

e If geocentric latitude specified, change geodetic latitude to geocentric.

2.4 Projection Procedure.

Because the library was intended to have a large number of projection procedures
care was given to facilitating the coding of the procedures and to make them have
a similar structure. By following this guideline it is easy to develop new projections
(at least as far as the controlling code).

The following is the skeletal outline of a projection procedure:

<boiler plate---copyright/disclaimers, etc.>
#define PROJ_PARMS__ \

<local extensions to PROJconsts structure>
#define PROJ_LIB

#include <lib_proj.h>
PROJ_HEAD(<entry_id>, "<expanded descriptive name>") "\n\t<type>,
<local defines, static variablesi, functions, ...>

FORWARD (<forward_id>) ;
<declarations and code for forward>
Xy.x =
Xy.y =
return (xy);
¥
INVERSE(<inverse_id>);
<declarations and code for inverse>

lp.phi =
lp.lam =
return (1p);
}
FREEUP;

if (P)
free(P);

20 CHAPTER 2. INTERNAL CONTROLS

}

ENTRYO (<entry_id>)
<initialization code>
P->inv = <inverse_id>;
P->fwd = <forward_id>;
ENDENTRY (P)

where the material enclosed in angle braces is a form of comment for this demon-
stration.

The first thing to note is the defining of PROJ_LIB__ which enables sections of
the header file that contain definitions and other material unique to the projection
procedures. The next item is the definition of PROJ_PARMS__ that defines extensions
to the structure that are unique to the current projection. Looking at the definition
in the header file 1ib_proj.h

typedef struct PROJconsts {
XY (xfwd) (LP, struct PROJconsts *);
LP (*inv) (XY, struct PROJconsts *);
void (*spc) (LP, struct PROJconsts *, struct FACTORS *);
void (*pfree) (struct PROJconsts *);
int (*derivs) (struct PROJconsts *, PROJ_LP, struct PROJ_DERIVS x*);
const char *descr;

paralist *params; /* parameter list */
int over; /* over-range flag */

int geoc; /* geocentric latitude flag */
double

a, /* major axis or radius if es==0 */
e, /* eccentricity */
es, /x e "~ 2 %/
ra, /*x 1/A %/
one_es, /* 1 - e"2 %/
rone_es, /* 1/one_es */
lam0, phiO, /* central longitude, latitude */
x0, yO, /* easting and northing */
kO, /* general scaling factor */
to_meter, fr_meter; /* cartesian scaling */
#ifdef PROJ_PARMS__
PROJ_PARMS__
#endif /* end of optional extensions */
} PJ;

shows how the projection unique values are treated. In cases of very simple pro-
jections, the definition may be omitted. Finally the inclusion of the lib_proj.h
header file.

The PROJ_HEAD macro is used to define the entry point to the projection, an
expanded description string and a string containing expanded information. The
first argument <entry_id> must match the name used in the ENTRYO macro. This
identifier argument is prefixed with PROJ_ and is used as the external reference for
the projection and is the point where the projection is called for initialization.

There may be more than one entry point and thus more than one PROJ_HEAD and
ENTRYO combinations. A good example of this is the Transverse Mercator projection
which has two entries: tmerc and UTM. The Universal Transverse Mercator is a usage
of the Transverse Mercator with added constraints and controls of parameters but
remaining computations are identical.

Additional variants of ENTRYO(<id> are ENTRYn,<id>,<args> where n is 1 or
2 and which have a corresponding number of identifier args in the macro. The

2.5. SETTING NEW ERROR NUMBERS. 21

identifiers must be contained in the PROJ_consts structure as pointers that are to
be set to 0 (NULL) at the beginning of initialization.

In all entry cases, the ENTRY macros checks the non-null status of the input
argument pointing to the structure and if null allocates memory for the structure
PROJ_consts and clears or sets the first five members of the structure and returns
with with the structure address. For a non-null input argument control is passed
to the following code which should conclude with the macro ENDENTRY (<arg>). In
most cases arg is the pointer to the structure PROJconsts but it can be a call to
an static, local function that also returns the pointer.

The FORWARD and INVERSE macros define the local, static entry points for the
respective forward and inverse projection calculations and their addresses are stored
in the PROJconsts structure. In many cases there are two forward and inverse
entries for the cases of elliptical and spherical earth and the initializing entry will
select the ones to be stored on the basis of non-zero e previously set in PROJconsts.
Occasionally there is only a forward projection for the spherical case and thus
only a FORWARD section. These two macros also declare the arguments and return
structures xy and 1lp.

In all cases, including initialization, the identifier pointing to PROJ_consts is P.

Error conditions are best handled by four macros:

e F_ERROR for use in forward projection code and sets the global proj_errno to
-20 and returns,

e T FRROR is the same as above but for inverse projection code,

e E_ERROR.O for use in initialization code and it free allocated PROJ_consts
memory and returns a null pointer. It is assumed that some procedure call
by the initializing code has already set proj_errno.

e E_FERROR(<no>) same as above but also sets the external proj_errno to the
negative argument value.

The complexity of the entry to free the memory allocated to the structure
PROJ_consts is dependent upon how many additional sub allocations have been
made. For projections of the spherical Earth there are usually no sub-allocations
and the prototype listed earlier is complete. Additional memory sub-allocations
to be released is the same as the number of arguments in the initialization entry
macros.

2.5 Setting new error numbers.

When developing new procedures or projections for the libproj library where er-
ror detection is part of the code do the following steps. Check the program file
proj_strerrno.c which contains a listing of all the libproj4 error numbers. If a
current error condition applies to the new error condition, then use that negative
number as the value to be assigned to proj_errno. Otherwise, install a new descrip-
tive string at the next to last line of the list proj_err_list with a new, negative
error number.

22

CHAPTER 2. INTERNAL CONTROLS

Chapter 3

Analytic Support Functions

The material in this chapter expands upon equations and procedures employed
by the projection functions and how they are implemented in the C programming
environment. In most cases a description of the originating mathematical function
is presented rather than just the series or other simplification used for evaluation.
The reason for this is that the reader may have insights into how to improve the
evaluation and further enhance the performance of the system.

In many cases function naming goes back to early FORTRAN versions of GCTP
where an effort was made to collect common computing operations into globally
available subroutines. As with projection descriptions, all procedures that deal
with ellipsoidal or spherical operations are performed for the unit ellipsoid (a = 1)
or unit sphere (R = 1).

3.1 Ellipsoid definitions

N

S

Figure 3.1: The meridional ellipse.

From Fig. the components and symbols used in this document for defining

23

24 CHAPTER 3. ANALYTIC SUPPORT FUNCTIONS

the ellipsoid are summarized as follows:

semimajor axis a

semiminor axis b

a? —v?
excenticity e?> = 5
a
6/2
T 11
= 2 p
2 32
a®—b
second excentricity €2 = =
o 1—e?
a—1b
flattening f =
a

The angle ¢ is geographic or geodetic latitude and A is geodetic longitude (the angle
of rotation of the meridianal plane about the N-S axis). Geocentric latitude, v, is
infrequently used in projection applications.
The distances PQ’ and PQ are the respective radii of the ellipsoid surface in the
plane of the meridianal ellipse and normal to the plane of the meridianal ellipse.
) Cl(l — 62)
PQ =R = 1l)i (3.1)
a

PQ =N = (1 — e2sin? ¢)1/2 (3:2)

3.2 Meridian Distance—proj mdist.c

A common function among cartographic projections for the ellipsoidal earth is to
determine the distance along a meridian from the equator to latitude ¢. The def-
inition of this distance is the integral of the radius of the spheroid in the plane of
the meridian (equation

@ do
_ 2
M(p)=a(l—e)/0 1 st)2 (3.3)
which can be computed as
e2sin ¢ cos ¢
M(¢p)=al| E(¢,e) — ————— 34
(@) a((6.¢) 1§$§¢> (3.9

where E(¢,e) is the elliptic integral of the second kind. When e is small (as in
the case of the Earth’s eccentricity) a means of evaluating the elliptic integral is as
follows:

2 2.4
E(¢,e) = E¢+singcosp(by+ §b1 sin? ¢ + ﬁbg sinfp+---)

bp = 1—-F
b o= b (2n — 1N 2 e
vt 21! on — 1

1 123 (2n — 1)I]? e2n
E = 1— —¢2— 4_ ...

22 T 92 p2¢ [ol | 2n— 1

3.3. CONFORMAL SPHERE—PR0OJ_GAUSS.C 25

In the LIBPROJ4 library three functional entries are used in the meridional dis-
tance calculations:

void *proj_mdist_ini(double es)
double proj_mdist(double phi, double sphi, double cphi, const void *en);
double proj_inv_mdist(double dist, const void *en)

Function proj mdist_ini determines F and the series coefficients b,, for the speci-
fied eccentricity argument (e?) and returns a pointer to a structure of these values,
en, for use by the forward and inverse functions. In the case of an unreasonably
large value of €2, function proj mdist_ini could fail and thus return a null pointer.
The degree required by the series is automatically determined by the procedure so
as to ensure precision commensurate with the type double on the host hardware.

Function proj mdist returns the distance from the equator to the latitude phi.
In the interests of avoiding repeated evaluation of sine (sphi) and cosine (cphi)
of latitude (almost always computed for other reasons in the calling procedures)
these values are included in the argument list. Function proj_inv_mdist returns
the latitude for a distance dist from the equator. In both the forward and inverse
case the sign of the latitude and distance is carried though the evaluation so that a
negative latitude gives a negative meridian distance and conversely.

3.2.1 Rectifying Latitude

The rectifying latitude, u (or w) is a latitude on a sphere determined by the ratio
of the distance from the equator for a point on the ellipsoid at latitude ¢ divided
by the distance over the ellipsoid from the equator to the pole:

M(¢)

2 M(x/2) (3:5)

‘LL =

where the function M is the meridian distance from (3.4)).

3.3 Conformal Sphere—proj gauss.c

Determinations of oblique projections on an ellipsoid can be difficult to solve and
result in long, complex computations. Because conformal transformations can be
made multiple time without loss of the conformal property a method of determining
oblique projections involves conformal transformation of the elliptical coordinates
to coordinates on a conformal sphere. The transformed coordinates can now be
translated /rotated on the sphere and then converted to planar coordinates with a
conformal spherical projection. Pearson [I7] gives a development of the conformal
transformation but assumes a zero constant of integration.

The conformal transformation of ellipsoid coordinates (¢, A) to conformal sphere
coordinates (x, A.) is

1+ esing
Ae = CA (3.7)
V1—e?

R = ————— 3.8
1 — e2sin? ¢y (3:8)

. Ce/2
X = 2arctan [Ktanc(ﬂ/4+¢/2) (HSlm’b)] —7/2 (3.6)

where A is relative to the longitude of projection origin, R, is radius of the conformal

26 CHAPTER 3. ANALYTIC SUPPORT FUNCTIONS

sphere and
2ol
¢
C o= 1+ (3.9)
Xo = arcsin <Smc¢0) (3.10)
1 — esin¢g Ce/2
K = tan(xo/2+ n/4)/ [tan®(¢o/2 4 7/4) () (3.11)

1 + esin ¢

where Y is the latitude on the conformal sphere at the central geographic latitude
of the projection.

To determine the inverse solution, geographic coordinates from Gaussian sphere
coordinates, execute:

A= A/C (3.12)
¢ = 2arctan tan'/% (/2 + m/4) — /2 (3.13)
K1/C (1 — esin@-,l)‘g/2
1+esing; 1

with the initial value of ¢;_1 = x and ¢;_; iteratively replaced by ¢ until |¢p — ¢;_1]
is less than an acceptable error value.
Procedures to compute the transformation are:

#include <lib_proj.h>

void *proj_gauss_ini(double es, double phiO,
double *chiO, double *rc)

LP proj_gauss(LP arg, const void *en)

LP proj_gauss_inv(LP arg, const void *en)

The initialization procedure proj_gauss_ini returns a pointer to a control array for
forward and inverse conversion at the latitude of origin phi0 (¢g). It also returns the
radius of the Gaussian sphere (rc). Procedures proj_gauss and proj_gauss_inv
are respective forward and inverse conversion of the latitude and longitude to and
from the Gaussian sphere. The storage pointed to by en should be release back to
the system upon completion of conversion usage.

3.3.1 Simplified Form of Conformal Latitude.

A common determination of the conformal latitude is made by setting K = 1 (based
upon zero constant of integration which causes y — 0 as ¢ — 0) and set C' = 1 which
seems to be equivalent to similar to having x — 7/2 as ¢9 — 7/2. Equation
now becomes:

1+ esing
Ae = A (3.15)

—esing\“/?
X = 2arctan [tan(ﬂ/4+¢/2) <1¢>]77/2 (3.14)

Determining ¢ from x is the same as discussed for equation [3.13]
The radius of the conformal sphere is determined by:

R = = %o (1—e*sin® ¢) /2 (3.16)
€oS X0

3.4. AUTHALIC SPHERE—PROJ_AUTH.C 27

This new sphere radius is not how it is phrased by Snyder [2I, page 160] or
Thomas [24, page 134] but it serves as a useful equivalence when making a re-
placement funtion for proj_gauss_ini. The derivation of this factor was based
upon the requirement of unity scale factor at the Stereographic projection origin.
For the moment, this is the only projection that employs this procedure so beware
in applying it in other cases.

Although the precedure to perform the simplified Gauss latitude need not be as
complex, the operations are made compatible with the general use for compatibility.

#include <lib_proj.h>

void *proj_sgauss_ini(double es, double phiO,
double *chiO, double *rc)

LP proj_sgauss(LP arg, double *en)

LP proj_sgauss_inv(LP arg, double *en)

3.4 Authalic Sphere—proj_auth.c

Authalic operations relate to the sphere having the same surface area of an elliptical
earth. From the integral definition:

/R%osﬁdﬁ = a2(162)/(1._(;288?;2¢)2d¢ (3.17)

which is readily solved by binomial expansion of the denominator and term-by-term
integration:

2, 4
R%*sinf3 = a2(1—62)sin¢<1 36 sin? ¢+ e sint ¢ + € 65in% -)
L+n o21 in2"
= a*(1-¢? squE 1—|—2n 0] (3.18)

The constants of integration are eliminated to main equality when ¢ = § = 0 and
R (radius of the authalic sphere) is determined by ensuring ¢ = § = 7/2 and thus
is obtained from:

1
R = a(1-e)) - j;;e?" (3.19)
n=0

Finally, the authalic latitude is:

2n : 2n
. SlnqSZ T 2 10)
B = arcsin Z TTn - (3.20)
= 1+2n

= arcsin (sin o) Z Con sin®" (b) (3.21)
where co,, are the collapsed constants determined by the initializing process speci-
fying e.

To obtain the geodetic latitude from the authalic latitude the Newton-Raphson
process can be used where the initial value of ¢ = :

sin 3 — sin ¢ Z Con SIN?" ¢

by = o+ — (3.22)
.)
cos ¢ nE:O 1 sin“" ¢

28 CHAPTER 3. ANALYTIC SUPPORT FUNCTIONS

Another authalic factor (currently lacking a name) is the ¢ function typically

defined as:

sin ¢ 1 1 —esing

= 1-)|——— —In(——= 2

1 (e)[l—e2sin2¢ 2e n(l—kesinqﬁ)} (3.23)
1+n ,

_ 2V AT on . oon

= 2(1 e)smgbg T ont Sin 0]
n=0

R% .
= @Slnﬂ

The series form of the function is used in the library function gsfn.
LIBPROJ4 entries:

#include <lib_proj.h>

void* proj_auth_ini(double es, double *r)
double proj_gsfn(double phi, voidx*i en)
double proj_auth_lat(double phi, void* en)
double proj_auth_inv(double beta, void* en)

3.5 Axis Translation—proj translate.c

This set of procedures performs axis translations for the spherical coordinate sys-
tem. The elliptical system can only be translated about the polar axis— a process
performed by the Ag or central meridian factor. One way for elliptical projections
to perform general translation is transformation of the elliptical coordinates to the
sphere and subsequent use of this procedure.

The forward translation is performed by

cos ¢ sin A

sin ¢’ = sin ¢y, sin ¢ — cos ¢, cos ¢ cos A (3.24)

sin(A — \p) = cos ¢sin A/ cos ¢’ (3.25)
cos(N — \,) = sin ¢, cos ¢ cos A + cos ¢y, sin @)/ cos ¢’ (3.26)
(3.27)

tan(\' — \p) =

sin ¢, cos ¢ cos A 4 cos ¢, sin ¢

and the inverse translation is performed by

sin ¢ = sin ¢, sin ¢’ + cos ¢, cos ¢’ cos(A — Ap) (3.28)

sin A = cos ¢ sin(\ — \p)/ cos ¢ (3.29)

cos A = [sin ¢, cos ¢’ cos(N —) — cos ¢, sin @]/ cos ¢ (3.30)
W o o

tan \ = cos @' sin(N — Ap) (3.31)

sin ¢, cos ¢’ cos(N — Ap) — cos ¢, sin ¢/

In both forward and inverse cases of X the tangent equations are the preferred
method and the atan2 function should be used for arctangent computation. The
geographic coordinates (\,, ¢,) is the position of the North pole of the translated
system on the (XN, ¢’) system as shown in figure

The library translation functions are:

#include <proj_lib.h>
LP proj_translate(LP base, void *en);

LP proj_inv_translate(LP shift, void *emn);
void *proj_translate_ini(double phi_p, double lam_p);

3.6. TRANSCENDENTAL FUNCTIONS—PROJ_TRANS.C 29

Figure 3.2: Axis Transformation
Solid lines are graticule of (¢, \) system with North pole translated to coordinates
(¢p, Ap) of the (¢, N') system with dashed line graticule.

Execution of the initializing function proj_translate_ini will return a pointer to
a structure containing constants for the forward and inverse operations. A NULL
value will be returned if the procedure failed to successfully obtain memory.

Function proj_translate returns the translated original coordinates and con-
versely, proj_translate returns the translated coordinates back to the original
values. Users must execute free(en) upon end of usage.

3.6 Transcendental Functions—proj_trans.c

In order to avoid domain errors in calling several of the standard C library functions
several alternate entries are used:

#include <lib_proj.h>

double proj_asin(double)
double proj_acos(double)
double proj_sqrt(double)
double proj_atan2(double, double)

The proj_asin and proj_acos check that arguments whose absolute value exceeds
unity by a small amount are successfully resolved. Similarly a sufficiently small
negative argument to proj_sqrt will cause a return of zero. If both the arguments
to proj_atan2 are sufficiently small it will return a zero value.

3.7 Miscellaneous Functions

These are short functions that date from origins in the GCTP system and perform
evaluations for various projections. Part of the purpose of developing GCTP was to
minimize repetitive program code.

30 CHAPTER 3. ANALYTIC SUPPORT FUNCTIONS

3.7.1 Isometric Latitude.

The isometric latitude, defined as

1—esing e/2

is directly proportional to the spacing of parallels of latitude from the equator. The
code in GCTP confused things by using a function called tsfn which evaluated:

t = tan(r/4— ¢/2)/ (Hsm”’) o’ (3.33)
1+ esing
and in cases where isometric latitude was required:
¥ = —log(t); (3.34)
#include <lib_proj.h>
double proj_psi(double phi, double sinphi, e);
double proj_tsfn(double phi, double sinphi, e);
3.7.2 Inverse of Isometric Latitude.
Given 1 and e then compute the initial estimate of geodetic latitude from:
t = e¥ (3.35)
¢ = 2arctan(t) —w/2 (3.36)
Iterate the following
¢4+ = 2arctan |t (m)e/j —7/2 (3.37)

until |¢p4 — ¢| and replacing ¢ with ¢ after each iteration.

1 —esing o/2
¢+ = w/2—2arctan |t <1+esm¢> 1 (3.38)
where
t = exp(—7)
and using an initial value of:
¢ = w/2—2arctan(t)

Library function prototype:
#include <lib_proj.h>

double proj_apsi(double psi, double e);
double proj_phi2(double tau, double e);

3.8. PROJECTION FACTORS. 31

3.7.3 Parallel Radius.

The distance of a point at latitude ¢ from the polar axis. Also termed the radius
of a parallel of latitude (distance X in figure and equation .

a cos @

m=Ncos¢p = ———
1—e2sin® ¢

(3.39)

where N is the radius of curvature of the ellipse perpendicular to the plane of the
meridian. A unit major axis (a) is used. The LIBPROJ4 prototype is:

#include <lib_proj.h>

double proj_msfn(double sinphi, double cosphi, es);

3.8 Projection factors.

The meaning of factors here is the definition of how a projection performs in terms
of various distortions and scaling errors. In some cases analytic functions are readily
available that can be included within the individual projections files and available
through the PROJconsts structure. However, it is felt that a numeric determination
of these factors is preferable because they are an independent evaluation that de-
termines the factors by execution of the projection code and thus perform a check
on these implementations and not upon the merely the evaluation of the factor
procedure.

3.8.1 Scale factors.

Two important factors about a projection are the scaling at a given geographic
coordinate which is defined by:

cE@T e e
G e
R - _al=¢) (3.42)

(1 — e2sin? ¢)3/2

where h and k are the scale factors along the respective meridian and parallel. R is
the ellipsoid radius in the plane of the meridian and m is the parallel radius .
These equations are for the ellipsoidal Earth but can be readily simplified for the
spherical case by setting e = 0. Respective scale error is computed from the A and
k factors by subtracting 1.

Additional factors to be computed are:

d = (h?+k*+2hksing)'/? (3.43)
V' = (h*+4 k?* - 2hksing)Y/? (3.44)
where
dyox _ 0xdy
sin 6’ 0pOr 99 9\ (3.45)

a®(1 — e?)hk cos ¢
(1 — e2sin® ¢)2

32 CHAPTER 3. ANALYTIC SUPPORT FUNCTIONS

From a’ and b’ the respective maximum and maximum scale factors are obtained
from

o = 7 ; 4 (3.46)

b= & 5 4 (3.47)
and the area scale factor found from

S = hksin®’ (3.48)

In the case of conformal projections the scale factors must be equal and thus
the angular distortion give by

w = arcsin <Z _T_ Z) (3.49)

will be zero.

The remaining element of the projection factors is convergence or grid declination
which is the azimuth of grid north (z or Northing axis) in relation to true north. It
is determined by:

%

v = arctan2 % (3.50)

N
Normally only of interest in formal military or cadastral grid systems.

When the projection modules are not able to provide the values for the partial
derivatives then the following numeric method is used:

9fop 1 (
0z 40
The function f is the forward projection used in the procedure proj_deriv which
calculates the Cartesian coordinates for the four ¢ offsets from the central point and
computes the four partial derivatives. Note that this method may fail if the central
point is within ¢ of the limits of the projection.

fir—f-ia+fi-1— f—1,—1)0(52) (3.51)

3.9 General Projection Inverse Method

Although many projections have been developed with an expression for the in-
verse operation or the inverse is a simple rewriting of the forward projection, some
projections do not have a mathematical expression for the inverse operation. A
projection’s inverse may be determined by the application of the Newton-Raphson
root finding method applied to multivariate expressions. (see []).

Many cartographic projections are simply expressed as

T = fa(X @) (3.52)
y=fy(X9) (3.53)

and to determine the inverse values of A, ¢ it is simply a matter of determining the
roots of the expressions:

3.9. GENERAL PROJECTION INVERSE METHOD 33

where X, Y are known.

Rather than redevelop and test robust multivariate software to determine solu-
tion to the inverse functions the GNU Scientific Library and its Multidimensional
Root-finding functions are employed. It is now only necessary to form an interface
to the GSL procedures.

To facilitate coding inverse projections that do not have analytic expressions
for the inverse the function the following items are declared within the 1ib_proj.h
header file:

int (*derivs) (struct PROJconsts *, PROJ_LP, struct PROJ_DERIVS *);

struct PROJ_DERIVS {
double x_1, x_p; /* derivatives of x for lambda-phi */
double y_1, y_p; /* derivatives of y for lambda-phi */
+;

int proj_gdinverse(PROJ_consts P, LP &lp, XY xy, double tol)

If the derivatives as given in the structure PROJ_DERIVS

0 0

x1= afx()‘v(;s) Xp= %fx(A»¢)
0 0

y-1= afy()\a(?) y-p= %fy()\»@

are known and computable by the function derivs then the address of the function
must be stored in the projection structure PROJ_consts during projection initial-
ization. If derivatives are not computed by a projection entry a NULL pointer will
be assigned at initialization of the structure.

If a inverse projection procedure executes a call to proj_gdinverse then that
procedure will make calls to the derivs routine if available otherwise it will make
estimates of the derivatives by numerical methods. Obviously, the latter method
will be slower with many more executions to the forward projection entry.

The argument xy of proj_gdinverse is the Cartesian coordinate input to the in-
verse section call and contents of 1p the initial estimate of the geographic coordinate
solution of the inverse.

If the loop process converges to the requested tolerance then the procedure will
return a 0 value and the contents of 1p will contain the geographic coordinates of the
inverse projection value. If convergence in not reached or there is any other failure
then a non-zero value will be returned and the contents of 1p are meaningless.

34

CHAPTER 3. ANALYTIC SUPPORT FUNCTIONS

Chapter 4

Cylindrical Projections.

The mathematical characteristics of normal cylindical projections is of the form:

z = f(\ (4.1)
y = 9(9) (4.2)

That is, both lines of constant parallels and meridians are straight lines. The term
normal cylindrical is used here to denote the usage where the axis of the cylinder
is coincident with the polar axis. In the transverse and oblique cylindricals the
parallels and meridians are complex curves.

Although the example figures of the cylindrical projections are of the entire Earth
the cylindrical projection is poorly suited for very small scale mapping because of
distortion of the polar regions. However, large scale usage of Mercator in all normal,
transverse and oblique forms is in common usage in regions bordering the cylinder’s
tangency or secant lines. The normal Mercator projection is also in common use in
navigation because of the property of a loxodrome being a straight line.

4.1 Normal Aspects.

4.1.1 Arden-Close.

+proj=ardn_cls (Fig. 4.1 Mean of Mercator and Cylindrical Equal-Area
projections.

y1 = Intan (Z + (5) yg = sin ¢ (4.3)

T =\ y=(y1+y2)/2 (4.4)

4.1.2 Braun’s Second (Perspective).
+proj=braun2 Fig. Ref. [22] p. 111]

=\ y= gsin o/ (; + cos (;S) (4.5)

4.1.3 Cylindrical Equal-Area.

+proj=cea [+lat 0= | +lat_ts=] Fig.
Standard parallels (0° when omitted) may be specified that determine latitude of
true scale (k = h = 1). See Tablefor other names associated with this projection.

35

36 CHAPTER 4. CYLINDRICAL PROJECTIONS.

Table 4.1: Alternate names for the Cylindrical Equal-Area projection and their

associated control option.

Projection Name (Lat_ts=) ¢y
Lambert’s Cylindrical Equal-Area 0°
Behrmann’s Projection (1910) 0°

Limiting case of Craster 37°4
Trystan Edwards 37°24

Gall’s Orthographic, Peter’s 45°

Peter’s Projection

M. Balthasart’s Projection

Spherical form.

Forward projection:

T = Acos ¢g

The inverse is easily derived from the above.

Ellipsoid form.
Forward projection:
ko = cos ¢o(1 — €% sin? ¢0)*1/2

l':ko)\

44.138° (Voxland)
46°2’ (Maling)
55° (Snyder)

50° (Maling)

sin ¢
cos @o

_a(9)
2%ko

where ¢() is the authalic factor described on page For the inverse:

Q’yko

q(m/2)

([= arcsin

A= a)‘/k‘o

y=q'(B)

(4.6)

(4.9)

(4.10)

where the funxtion ¢~1() returns the geodetic latitude from the authalic latitude.

4.1.4 Central Cylindrical.
+proj=cc Fig. [4.1| Ref. (|22 p. 107,]

Cylindrical version of the Gnomonic Projection. Of little practical value.

T =A
The transverse aspect by Wetch is given as:

B cos ¢ sin A
11— cos? ¢sin® \)~1/2

x

y =tan¢

< tan ¢ >
Yy = arctan
cos A

(4.11)

(4.12)

4.1. NORMAL ASPECTS. 37

BN = LA S S
i‘}% c%ﬁ B S|]|)
T SaPeh s) DZ{ i .
1\: /\\,§ (] . n ;\"\q,\
5 = 3 (7 R 3 3 35} a | Ao
/] T [S ca »\{j{
— OS5 e
A B _:/ T T lxl] 7\9 E)
- B N
ik e - o
N~
= g Jf PR
BRI e BRSS AT N
- 1A L1 Ny
B f m S
C
i A ic % - /'\)
S EEENRY ;
. A K / Q)
o
b Myl | OQA) y
NN f(S| [K 7
&
// 1 L/\f » il S 5)‘{ﬁ
D u [e e == i 7 s
[T =P
)
| = | 2 e 1
Y i T
N 12
Qi (] 7 B) N VA
NI = e
- [U1~ Lyl
E ST LT R

Figure 4.1: Cylinder projections I
A—Arden-Close, B—Cylindrical Equal-Area, C—Braun’s Second, D—Gall’s Ortho-
graph/Peter’s (¢g = 45°), E-Pavlov and F-Central Cylindrical.

4.1.5 Cylindrical Equidistant.

+proj=eqc [+lat_O= | +lat_ts=] Fig. H
The simplist of all projections. Standard parallels (0° when omitted) may be speci-
fied that determine latitude of true scale (k = h = 1). See Table[4.2]for other names
associated with this projection and corresponding ¢, setting.

T = ACOS ¢y y=ae (4.13)

4.1.6 Cylindrical Stereographic.

+proj=cyl_stere [+lat 0=] Fig.
Standard parallels (0° when omitted) may be specified that determine latitude of

38 CHAPTER 4. CYLINDRICAL PROJECTIONS.

Table 4.2: Alternate names for the Equidistant Cylindrical projection and their
associated control option.

Projection Name (lat-ts=) ¢o
Plain/Plane Chart 0°
Simple Cylindrical 0°
Plate Carrée 0°
Ronald Miller—minimum overall scale oans
. . 37°30
distortion
E. Grafarend and A. Niermann 42°
Ronald Miller—minimum continental can/
. . 43°30
scale distortion
Gall Isographic 45°
Ronald Miller Equirectagular 50°30’
E. Gradarend and A. Niermann 61.7°

minimum linear distortion

true scale (k = h = 1). See Tablefor other names associated with this projection.

T = Acos ¢o y = (14 cos¢yp) tang (4.14)

4.1.7 Kharchenko-Shabanova.

+proj=kh_sh Fig. [4.2

107
= — 4.1
x = Acos 180 (4.15)

y = $(0.99 + $2(0.0026263 + $20.10734)) (4.16)

Table 4.3: Alternate names for the Cylindrical Stereographic projection and their
associated control option.

Projection Name (lat-0=) do
Braun’s Cylindrical 0°

BSAM or Kamenetskiy’s Second 30°

Gall’s Stereographic 45°
Kamenetskiy’s First Projection 55°

O.M. Miller’s Modified Gall > = 66.159467°

S

4.1. NORMAL ASPECTS. 39

4.1.8 Mercator.
+proj=merc [lat_ts=] Fig. Ref. [21] p. 41, 44]

Scaling may be specified by either the latitude of true scale (¢¢s) or setting kg with

+k= or +k_0=.

Spherical form.

Forward projection:
In tan (% + %

xTr = ko)\ Yy = ko 1 ! 1+ Sin¢ (417)

2 1 —sing

ko = cos ¢y (4.18)

Inverse projection:

= 2/ko 6= {arctan[sinh(y/ko)] (4.19)

7 — 2arctan[exp(—y/ko)]

Elliptical form.

Forward projection:

x = koA y = kolnt(p) (4.20)
ko = m(¢rs) (4.21)

where ¢() is the Isometric Latitude kernel function (see and m(¢) is the parallel
radius at latitude ¢ (see[3.7.3)). Inverse projection:

A=z/ko ¢ =t~ (exp(—y/ko)) (4.22)

4.1.9 O.M. Miller.
+proj=mill Fig.4.3| Ref. [21] p. 8§]

SIntan (+ 2¢)

Sarcsinh[tan(3¢)]

T=A y=4 4 4.23
5. (1+singe (429
g In PEE——
1 —singo
For the inverse
5 arct 4,0 _ 5
A==z ¢ = g are an[e:xp(54y)] g7 (4.24)
5 arctan([sinh(zy)]

4.1.10 O.M. Miller 2.
+proj=mill_2 Fig. 4.3

3 T ¢
x=A y=3 In tan (4 + 3) (4.25)

40 CHAPTER 4. CYLINDRICAL PROJECTIONS.

T T T | S | | | | R
S T e U e el L
‘ 3 oy P& 1) < 7 B g
S '] d R %
NG Y 24
1 Nt B
T R, AL
s ENERSNERARINEN
| ™ T [» 7 \ (A =~
i -
u R ry AR
A [—1
TR
B
T
| - mutz(z s T [~ T = T PRI
4 % L9 ST M \Mg ? }2] M
| I
b AP 2 ‘ b A
. q D ‘ﬁ G/L“fnj v)—\{F
b M 4 RER i . 7 % B
LT =R 2 D e
/ Rl] a=ar
u
r‘/ A 7T ~ L~
[T+] [-] D || L 1T R
C
p§§€“,% e o
= i]
LT T | | 1| |~ TN Y | AR e
R T [P 7
ﬁg‘ éﬁ)?\‘ - { ”‘\V;i)\{ﬁj
sy h U ;
[™ N v B |
= - AR e I = PR
D L] = e I = B »
I T 1 N
% - e e e TS
E] 1 |F

Figure 4.2: Cylinder projections II
A-Cylindrical Stereographc (Braun’s), B—Gall’s Stereographic (¢9 = 45°), C-
Kharchenko-Shabanova, D—Mercator, E-Tobler alternate #2 and F-Tobler alter-
nate #1.

4.1.11 Miller’s Perspective Compromise.

+proj=mill per Fig. 4.3

x=A\ Y= <Sin(;S + tan Z)) (4.26)

4.1.12 Pavlov.
+proj=pav_cyl Fig.

z=A y=<¢

(4.27)

_ 0531 5 0.0267
3 5

4.1. NORMAL ASPECTS. 41

S T T | e A ||
TEH e RN UAY R T
2| [[
- vl]
= . h~=
ALY ™ N v ®
" NI RN
CI [y
[l | T [y
A - i i e S
A1 [AT
R L— —
eSS T8 | o |7 A
TR [
Ny q D l\{;j ~h<§%v—-’%?, le oL o~
mENERSS Y4 - HREES]
7 j (A s % - —1% -\{ﬁj
4 ur(TN 1\’5‘ N % %
b DI T
= T R z A
% L A]
A T R TR (D i i
\?“& &)
A 0
| LW | e A LR
NG ZE0HES e
]
L - ‘ }1 (/* Cf\» i ﬁj
=] 5 3
%] b ST T s
/K = =
TR == -
/ Y Iy
y il
| | R ~1 T o o
E 21 SR e o o 2 B N 7 0 ég a PR
N z’«(‘%’ x| "L o - 9%} {
/\\igg&%é };_ i L4 1 Pl ,\{F j
- o | | A = IEENE ’ .
ot S e S S
= 7 B — i
B S 3)
\
Z J\\g /7‘>
\I/ AT YT TT T
L LA A == — .y
G] 1 |H

Figure 4.3: Cylinder projections III
A—Cylindrical Equidistant, B-Miller, C-Gall’ Isographic, D—Miller 2, E-Tobler
World in a Square, F-Miller Perspective, G-Urmayev II, H-Urmayev III.

42 CHAPTER 4. CYLINDRICAL PROJECTIONS.

4.1.13 Tobler’s Alternate #1

+proj=tobler_1 Fig. 77
This is alternate to to O.M. Miller’s projection.

T=\ y = <¢> + éof") (4.28)

4.1.14 Tobler’s Alternate #2

+proj=tobler 2 Fig. 77
This is alternate to to O.M. Miller’s projection.

T=\ y = (¢ + é¢>3 + 214¢>5> (4.29)

4.1.15 Tobler’s World in a Square.
+proj=tob_sqr Fig. [4.3

r =N y = \/msin¢ (4.30)

4.1.16 Urmayev Cylindrical II.
+proj=urm_2 Fig. (4.3

A
d=|— 4.31
g n
z=A (4.32)
188 1
= 14+ —d+ ——2 4.
y=9 (T 18384° T 30640 > (4.33)
The y-axis may be also expressed by: (4.34)
c3 = 0.1275561329783 (4.35)
cs = 0.0133641090422587 (4.36)
Y= (¢ + c30® + C5¢5) (4.37)
4.1.17 Urmayev Cylindrical III.
+proj=urm_3C Fig. (4.3
ap = 0.92813433 az = 1.11426959 (4.38)
z = RA y=R (a0 + %f’) (4.39)

4.2 Transverse and Oblique Aspects.

4.2.1 Transverse Mercator

The Transverse Mercator is the case where the axis of the cylinder of the Mercator
projection lies in the equitorial plane and is perpendicular to the plane of the central
meridian. The library entries for this projection are:

4.2. TRANSVERSE AND OBLIQUE ASPECTS. 43

+proj=tmerc +lat_0= +k_0=

+proj=utm [+lon_O= | +zone=] +south=

+proj=gbtmerc +lat_O0= +k_ 0=

+proj=ftmerc +lat_O= +k 0=

+proj=ktmerc +k_0=

+proj=etmerc +lat_0= +k_0=
The only entry that computes a spherical Earth projection is tmerc.

The +proj=utm option selects the Universal Transverse Mercator projection
(uTM) which a special case of the tmerc projection. UTM is restricted to 6° wide
longitude zones and it is safer to select the zone of interest by +zone because a
central meridian selection is automatically adjusted to a proper zone and if the user
selects a value on the boundary between two zones the final zone selected by the
projection is unpredictable. In addition, UTM requires ellipsoidal figure parameters.

Spherical

Forward projections:

B = cos¢sin A (4.40)
1 In 71 +B tan ¢

r=koR< 2 1-B y=koR [arctan (an) — gbo} (4.41)
tanh~' B c08 A

Inverse projection:

D= Riko + o (4.42)
. sin D
¢ = arcsin (cosh x’) (4.43)
o = Riko (4.44)
i
A = arctan <s(1;181:§ > (4.45)
Elliptical

The elliptical form of the Transverse Mercator is complicated by the multiple so-
lutions available for of the projection. Gauss originally devised a derivation for a
version that had a constant scale factor along the central meridian that was later
revised by Kriiger and hence the common designation Gauss-Kriiger [22) p. 98].
What follows are several computational variants of this projection.

Gauss-Kriiger Transverse Mercator. The follwing are the equations for
tmerc as defined by Thomas [24, p. 2] and is probably the most common form
used by various grid systems. Because it is a Taylor series derivation the range of
longitude from the central meridian is limited to about £5°.

It is the “official” method to be used with the UTM grid system as defined by
DMA[IT]. To use tmerc as the UTM projection use +proj=utm to ensure proper
selection of central meridian, scale factor and Cartesian origin offsets (false eastings
and northings).

44 CHAPTER 4. CYLINDRICAL PROJECTIONS.

Forward projection:

)\3
¥ =Xeoso+ %éﬁ(24P
M5 cos® ¢ — 1812 + t* + 14n% — 58t%n%+
+ 4 6 _ 24_ 776 (4.46)
5! 1377 + 4n° — 64t°n* — 24tn
)\7
+ (}&qb(fil 4792 + 179t* — 15)
y _ M(9) + 2 sin ¢ cos ¢
N N 2!
A% sin ¢ cos
+ 72 ¢(5 — 12 4+ 9% + 4n?)
. 61 — 582 + t* + 270n% — 330t%n%+ (4.47)
)\6 5
W 4450 + 32415 — 680121 + 8818 —

600¢21° — 192¢2n®

)\8 : 7
ATSIOCOS &) ags g 11142 4 pa3td — 19)

8!
where
a
N = 1) (4.48)
a(l—e?)

R= IR (4.49)
t =tan¢ (4.50)

2 e? 2
M= {3 C08) (4.51)

and where M (¢) is the meridianal distance. Inverse projection: Given the “foot-
print” latitude ¢y = M~1(y):

- t1$2 t1l‘4
0= SN, T AR

(5+ 3t1 + 117 — 4 — Ity

b6 61 + 90t + 46771 + 45t — 2521?1771
- m 3t + 100771 — 6612n* — 90t4n2i (4.52)
U\ 8808 4 225t 0] + 842§ — 19233
tia® 2 4 6
8RN (1,385 + 3,633t7 4 4,005t] + 1,575¢5)
3
x X
A= - (14262 +1?)

cos Ny 3lcos pN}

+ xs 5 + 6771 + 28t2 — 3771 + 8t17]1
5lcos pND \ +24t1 — 4nf + 4tint + 248308

7

~ T7'cos pNT

The only criteria for determining accurace of the tmerc elliptical projection at
the moment is to compare it with a transverse Mercator projection with an alleged
greater accuracy. In this case, the etmerc version is selected for comparison because
the developers of the method claim an accuracy of 0.03mm up to 4,400km (about
36° degrees of longitude at the equator) from the central merdian [12] p. 1].

To compare these two bivariate functions the distance between the Cartesian
coordinates generated by the two projections is used:

d= \/l"t—xe yt ye)2

(4.53)

(61 4 662t + 1,320t} + 720t%)

4.2. TRANSVERSE AND OBLIQUE ASPECTS. 45

10

1
0.1
0.01

0.001

S !
SIS
ISSSCSICN,
S
ST

0.0001 55
R

le-05

le-06

80
60

Degrees Latitude

Degrees Longitude

Figure 4.4: Displacement error in meters in comparing projection tmerc with ref-
eremce projection etmerc.

Assuming one projection is an accurate reference then d represents the error of
the second projection as shown in fig. [£4] It can be seen that tmerc is probably
accurate to nearly 0.1mm at 5° from the central meridian and good to 1mm near
8°.

Gauss-Boaga. The Gauss-Boaga projection is similar to the Gauss-Kriiger
represented by tmerc but the series expression suffers greater truncation. It is pre-
sented by Snyder[21] and it is used in the GCTP[27] projection package. Because
of the truncation, the longitude range is reduced as shown in fig. The range
of 0.lmm accuracy is now barely 3° and Imm accuracy is limited to about 5° of
the central meridian. When working with standard 6° zones, this precision is quite
adequate. +proj=gbtmerc

Forward projection:

)\3 3
%:Acosgzﬁ—i—ciolsd)(l—f—kn%
3 (4.54)
AP cos® ¢ 2, 44 2 2,2
+ S (5 186 + 1 4 1 — 58°)
Yy _ M(9) n AZsin ¢ cos ¢
N N 2!
)\4 : 3
+ 781%(308 (5= 4+ 02 + dn)

A8 sin ¢ cos®
L Nsingcos’ o

o (61 — 58% + t* 4+ 270n* — 330t%n?)

46 CHAPTER 4. CYLINDRICAL PROJECTIONS.

10 ¢
1
01 F
0.01 F R
0.001 E :‘:‘:::::“;““‘“‘“““‘!
- S
0.0001 F seset!
le-05 F
1e-06 [:
B 550
W50%05K
Ly
s

80
60

Degrees Latitude
14

Degrees Longitude

Figure 4.5: Displacement error in meters in comparing projection gbmerc with
referemce projection etmerc.

Inverse projection:

Z‘Qtl l‘4t1

¢ =1 — oz + a0+ 38+ i — 9tint —)
INZ " 4IN?
o (4.55)
~ 5 Nlﬁ (61 4 90t2 — 252202 + 45t* + 467> — 3n)
vl
3

X X

A= - (1+2t3 +n?)
cosp1 N1 3lcos¢ NP L
P11 . @1 Ny (4.56)

X
+ W<5 + 28t7 + 241 + 617 + 8t1n7)
. 1

French Transverse Mercator This is another Gauss-Kriiger version de-
scribed in [I]. When |A| < 5° this projection matches tmerc to within a few tenths
of a millimeter, but beyond this range tmerc to fail and this is the preferred projec-
tion. However, for |A| > 40° this projection also begins to fail, especially at lower
latitudes.

4.2. TRANSVERSE AND OBLIQUE ASPECTS. 47

Forward projection:

1 3 5 175
F:1_72_74_76_78 4.57
0 1° 764 T 2567 T 16384° (4.57)
1 1 9 901
poole 1 6 _ 8 458
1789 796 T 1024 T 184320° (4.58)
13, 17T ¢ 311

Fy = . 4.59
27 768° T120° T 737280° (4.59)
61 899
Fr = 6 8 4.60
37 153607 " 430080° (4.60)
40561
_ 4900l 461
47 11287680 (4.61)
= V(p,e) (4.62)
in A
g = arcsin ilsnhw (4.63)
¥ (3,0)
Vs = G (4.64)
log tan 1 + 5
inh
§ = arctan 2 4.65)
0S \
z =0+ it (4.66)
4
Z=Fy+ Y Fysin(2kz) (4.67)
k=1
x = koS(Z) (4.68)
y = ko(R(Z) — M(¢o)) (4.69)

where () is the isometric latitude function (sec. [3.7.1) and M() is the meridian
distance function (sec. [3.2)).

48 CHAPTER 4. CYLINDRICAL PROJECTIONS.

Inverse projection:

1 3 5 175
Jom]e2_ 242 6_ 109 s
0 1° T 64° T 2567 T 16384
1 1 7 1
o224~y e 1 8
2= 3¢ T8¢ T 20a8° T 61440
1 559
1274 6 8
4= 768 T 1230° T 368640°
17 283
I: 6 8
6= 30720 " 430080°
4397
I: 8
8 = 11287680°
M
Loyt (¢0)+i£
ko ko

4
Z=z/Ip=Y _ Ipsin(2kz)

k=1
5= R(Z)
5y = 3(2)
A = arctan sinh 0,
0Ss 0
5— . ind
= arcsin —— 5
W(6,0)
"= Yiogtan (T + 0
ogtan | =+
é=T"1(e)

where W~1() is the inverse of the isometeric latitude.

(4.70)
(4.71)
(4.72)
(4.73)
(4.74)

(4.75)

Swedish Transverse Mercator This method appears to be used by Swe-

den [I6]. This method also appears to be used by Finland.
+proj=ktmerc
Forward projection:

¢ = ¢ —sin ¢ cos p(A + Bsin? ¢ + C'sin? ¢ + Dsin® p+)
¢ = atan2(tan ¢’, cos \)
n' = arctanh(cos ¢’ sin \)

&' + B2 sin 2¢’ cosh 21 + B4 sin 4¢’ cosh 4n'+
y=K (B sin 6’ cosh 61 + (g sin 8¢’ cosh 8y’ + - - -)

=K 1 + B2 cos 2&' sinh 27 + B4 cos 4¢’ sinh 4n'+
B B cos 6¢ sinh 61 + (g cos 8¢’ sinh 8y’ + - - -

4.2. TRANSVERSE AND OBLIQUE ASPECTS.

where
A=¢?
1
— Z(5et _ ¢S
£ (5et =)
_ 1 6 8
1
= (12378 + ...
1260(37e®+--+)
e
2—-f
1]1 1 1 1
Kzi][+n1+fn2+—n4+—n6+~~

(4 64 256

12, 5 441,

Po=gn—3n + 5" g0" T
13, 3., 557

Pi=gW 5" g Tt

16, 103,
Po=350™ ~ 10"
49561

Ps = T61280"

Inverse projection:

-4
=%
oz
=K
¢ = & — 09 5in 2€ cosh 21 — 04 sin 4€ cosh 41 — ¢ sin 6€ cosh 61—

dg sin 8¢ cosh 8y + - - -

n' = n — da cos 2 sinh 21 — &4 cos 4€ sinh 47 — g cos 6 sinh 67—

0g cos 8¢ sinh 8y + - - -
¢’ = arcsin(sin &’/ cosh ')

¢=¢ +sing cos¢’ (A + B'sin® ¢’ + C'sin* ¢’ + D' sin® ¢’ + - - -

A = atan2(sinh 7', cos ¢’)

where
1 2. 37 1
6 p— —_— 2 — 3—7 4 RS
2= T g e T g T
1,1, 437,
=@ A T T
17 37
o= —n3 — Z_pt ...
6= 180" " 80" T
4397
Sy = 4
8~ 161280 "

A =e et +ef+eBq4 .
1
B’:—6(7e4+1766+3068+'--)

1
' = m(zme@‘ +889¢% + -+)

1
P (427965 4 ---
D 1260(e +-)

49

50 CHAPTER 4. CYLINDRICAL PROJECTIONS.

Danish Transverse Mercator The process here is to perform the projection
through several converstion stages: geographic coordinates (A, ¢) to Soldner Sphere
coordinates (), ¢') to complex Gauss coordinates (Y +4iX) and finally to Cartesian
coordinates (z,y). And, of course, to perform the reverse process series. The
process, summerized here, has some novel and interesting processes [12].

+proj=etmerc
Forward projection:

N o= (4.116)

¢ = ¢+ Gosin(2kg) (4.117)

Y = atank;(;in @', cos ¢’ cos \) (4.118)

t = atan2 (cos ¢’ sin X, \/sin2 ¢’ + cos? ¢ cos? A’) (4.119)

X =Intan <Z + ;) (4.120)

y+iz =K |Y +iX + > Qopsin(2k(Y + iX))] (4.121)
k=1

Inverse projection:

y—ix="Y ;(” +3 Qhysin <2k:y ;{m) (4.122)
k=1

t = 2arctan(exp(X)) — g (4.123)

A\ = atan2(sint, cost cos Y) (4.124)

¢’ = atan2 (sin Y cost, V/sin? t + cos? t cos? Y) (4.125)

A= N (4.126)

(4.127)

¢ =¢' + Y Gy sin(2ke)
k=1

4.2. TRANSVERSE AND OBLIQUE ASPECTS.

ne_d

2-f
Kzllj?n(1+in2+6i4 +ﬁn6+”
Gz——2n+§n2+§n3 %n‘l %ns
Gs——%n3+% 4+§n5
Gg = %n‘l_f 5

734
GlO*fﬁg’

L Toa 8.4 22T, 2704
G4 +3n 5 45n+315n
56 136 1262
Go= i = g5 g
1279 . 332
Go=tG3" ~ 35"
, 4174
10:*%"
2240 a1, 127 s
QI_+2n_§n 16" * 15" ~ 28"
13 5 3 g, 557 , 281 g
Qe=ts" 5" T " a0
_ 61 5 103 . 15061 ;
@ =+220" ~ 120" T 26830"
O — 961 4 179 5
® T Tl61280" 168"
34729
@ =+ 55600"
r_ 1 2., 37 75
Qy = 2n+3n 96 +360 +512
1 1 437 46
!/ 2_7 74_75
izt " +1440 105"
17 5, 37 209
! 74 75
Q%= ~150" T 310" T 180"
4397 1
/__ 4 75
©s = "Tg1280" 504"
4583
o 999 5
@10 = ~751280"

51

(4.128)

(4.129)
(4.130)
(4.131)
(4.132)
(4.133)
(4.134)
(4.135)
(4.136)
(4.137)
(4.138)
(4.139)
(4.140)
(4.141)
(4.142)
(4.143)
(4.144)
(4.145)
(4.146)
(4.147)
(4.148)

(4.149)
(4.150)

52 CHAPTER 4. CYLINDRICAL PROJECTIONS.

The summations of equations and are performed by Clenshaw’s recur-
rence formula given argument x and K polynomial coefficients G:

t = 2cos(2x)

ha =0

hi =Gk
h =—hy+hit+ Gy
hy =hy (k=K—-1,K-2,...,1)
hi =h

y =+ hsin(2x)

Similarly for the summations of equations [£.122] and with the complex argu-
ment z, K real polynomial coefficients QQ, complex temporary variables o, h, h1 and
h2:

o = 2(cos(Rz) cosh(Jz) — i sin(Rz) sinh(Jz))

hy =0
h = Qr +i0

hy =hy

b =h -

b= —Rhy + RoRhy — S0Shy + @ | KKK =20

4 i(—Shs + SoRhy — RoShy)
y = RoRh — SoSh + i(RoSh + SoRh)

where the prefixes ® and & indicate the respective real and imaginary parts of the
variable suffix.

4.2.2 Oblique Mercator

+proj=omerc (see below for full list of options)

The oblique Mercator projection is designed for elongated regions aligned along a
geodesicﬂ arc (Great Circle) where the cylinder of the projection is tangent to the
sphere or ellipsoid (kg = 1). Ellipsoid equations presented here are based upon
Snyder’s |21l p. 66-75] development of Hotine’s [9] “rectified skewed orthomorphic”
projection and a development found in material by EPSGr [3]. In none of these
sources were the developments sufficiently complete to perform projections of several
common grid systems and it was necessary to merge operations to create a more
general procedure.

Two methods are used to specify the projection parameters: by specifying two
points that lay on the centerline of the projection or by specifying the geographic
coordinates of the central point on the centerline and specifying an azimuth of the
centerline. The latter method is most commonly used for grid systems.

Two point method

Parameters of the two-point methods are as follows:

lat_1= (¢1, A1) latitude and longitude of the

lon_1= first point on the centerline

lat 2= (¢2, A2) latitude and longitude of the
lon_ 2= second point on the centerline

lat 0= ¢o latitude of the center of the map

k 0= ko scale factor along the centerline

no_rot if present, do not rotate axis

1 The centerline is a true geodesic only for the spherical case and approximates a geodesic in
the ellipsoidal case.

4.2. TRANSVERSE AND OBLIQUE ASPECTS. 53

Note that the central meridian (lon-0) common to most projections is not deter-
mined by the user. Restrictions on parameter specification is such that a centerline
may not coincide with a meridian (Transverse Mercator case) nor coincide with the
equator (simple Mercator case). Also, ¢1 # ¢o. First, compute factors common to
both control specification method. For ¢y # 0 then

o2 .y 3
B= (1 + T2 <8 q/)o) (4.151)
1—e?)z
A= Bry =) (4.152)
1 — e2sin” ¢q
to = W(d0) (4.153)
—e2)3
D= B(l—e)22 i (4.154)
cos ¢po(1 — e2sin” ¢p) 2
F=D++/D?—1 taking sign of ¢ (4.155)
E=tJF (4.156)

where ¥() is the Isometric Latitude kernel function (proj_tsfn). Set D = 1 if
D? < 1. other wise

B=(1-¢%)"2 A=k E=D=F=1 (4.157)

Now continue with initialization unique to the two point method:

t1 = V(¢1) (4.158)
2 = U(6n) (4.159)
H=1t8 (4.160)
L=t8 (4.161)
E
== 4.1
F=2 (4.162)
G=(F—-1/F)/2 (4.163)
E? - LH
J = IO (4.164)
L-H
=Iym (4.165)
RSP R | J B
Ao = 5 "B arctan (P tan {2()\1 -)\2)}) (4.166)
~o = arctan <W> (4.167)
o, = arcsin(D sinvyp) (4.168)

Unless no_rot is specified the axis rotation v is set from «. and rotation is about
the ¢g position.

Central point and azimuth method

The parameters for this case are:

54 CHAPTER 4. CYLINDRICAL PROJECTIONS.

lat_0= (¢o, Ae) latitude and longitude of the central point of

lonc= the line.

alpha= . azimuth of centerline clockwise from north at the
center point of the line. If gamma is not given then a,
determines the value of ~.

gamma= < azimuth of centerline clockwise from north of the rec-
tified bearing of centre line. If alpha is not given, then
gamma is assign to o from which .. is derived (see equa-
tion .

k 0= ko scale factor along the centerline

ro_rot if present, do not rotate axis

no_off if present, do not offset origin to center of projection
(U() = 0)

. To determine initialization parameters for this specification form of the projection
first determine B, A, to, D, F and E from equations [£.151] through and then
proceed as follows:

sina,. = Dsin~yy (4.169)
F-1/F

G = T/ (4.170)

o= A arcsm((étan’yo) (4.171)

Common Initialization
If no_off is specified then

ue =0

otherwise the u axis is corrected by:

A
Ue = :&:EataHZ(\/ D? —1,cosa,.) (4.172)

taking the sign of ¢g.

Forward elliptical projection

The first phase is to convert the geographic coordinates (¢, A) to the intermediate
Cartesian system (u,v) where the u axis is coincident with the centerline of the
projection and the projection (u,v) system origin is at the aposphere equator and
longitude Ag.

First compute

V =sin[B(A — Xo)] (4.173)

4.2. TRANSVERSE AND OBLIQUE ASPECTS.

If |¢| # 7/2 then:

E
MTOL
_Q-1/Q
5=
ro Q10
U— —V cosyy + Ssinyg
T
A 1-U
v = QBhl(l—i—U) Ul #1
00 U] =1

M = cos[B(A — Ao)]

A
EatanQ(S cosy + Vsinyy, M) M #0

u =
AB()\ —)\0) M=0
otherwise:
A ™ Yo A
= 2t (7 7) — g2
V=3 ntan 1 F 5 U= ¢ i
If rotation is suppressed by the no_rot option then
T=u Yy=0
else
U = —Uec T = vcosy+ usinvy Y = ucosy —vsiny
Inverse elliptical projection
First rotate (x,y) system into (u,v) system:
v =2zxcosy—ysiny U = ycosy + rsiny + u,

—
S/ _ Q/ _21/Q/
7 +21/ Q

Bu
VA
V' =sin (A)

V' cosvyg + S’ sinyp

U = T

If |U’| =1, then ¢ = +m/2 taking sign of U’ and A = \y. Otherwise

1-U"\ 117
=l (=))
y 1—esing B
1+ esing

1 B
A= EatanZ {S’ cosyp — V' sin~g, cos (;)}

¢ = g — 2arctan

%)

(4.174)

(4.175)
(4.176)

(4.177)

(4.178)
(4.179)

(4.180)

(4.181)

(4.182)

(4.183)

(4.184)

(4.185)

(4.186)
(4.187)

(4.188)

(4.189)

(4.190)

(4.191)

(4.192)

56 CHAPTER 4. CYLINDRICAL PROJECTIONS.

where equation [4.191]is solved by iteration in function proj_phi2.

Examples.

The first example of this projection is the Timbalai 19487R.S.O. Borneo grid system

from EPSG [3][p. 35-36] defined by:

proj=omerc a=6377298.556 rf=300.8017
lat_0=4 lonc=115 alpha=53d18’56.9537
gamma=53d7°48.3685 k_0=0.99984
x_0=590476.87 y_0=442857.65

Lon/lat | Easting/Northing

115d48°19.8196”E 679245.73
5d23’14.1129”N 596562.78

Zone 1 of the Alaska State Plane Coordinate System uses the Oblique Mercator

projection as in this NAD27 example:

proj=omerc a=6378206.4
es=.006768657997291094

k=.9999 lonc=-133d40 lat_0=57
alpha=-36d52’11.6315

x_0=818585.5672270928 y_0=575219.2451072642
units=us-ft

Lon/lat | Easting/Northing

-134d00°00.000” 2615716.535
55d00°00.000” 1156768.938

The values agree with those computed by ccTp [27] 20].

4.2.3 Cassini.

+proj=cass Ref. [21], p. 94-95]

Spherical form.

Forward projection:

x = arcsin(cos ¢ sin \) y = atan2(tan ¢, cos \) — ¢

Inverse projection:

¢ = arcsin [sin(y + ¢g) cos 7] A = atan2 (tan z, cos(y + @)

(4.193)

(4.194)

4.2. TRANSVERSE AND OBLIQUE ASPECTS.

Elliptical form.
Forward projection:

N = (1—e?sin?¢)"1/2

T = tan® ¢
A= Acos¢
2
_ 2
C= o2 cos” ¢
A3 A®

A? At
y =M(¢) — M(¢o) + N tan ¢ (2 +(5— T+6C’)24>

where M() us the meridianal distance function (3.2)). Inverse projection:

¢ =M1 (M(¢o) +)

o7

(4.195)
(4.196)
(4.197)

(4.198)

(4.199)

(4.200)

(4.201)

If ¢’ = 7/2 then ¢ = ¢’ and A = 0 otherwise evaluate T and N above using ¢’ and

R=(1- 62)(1 — e2sin? ¢/)_3/2
D =xz/N

2 4
o=t (2 am)

3 5
A= (D - T% +(1+ 3T)T?5> / cos ¢’

4.2.4 Transverse Cylindrical Equal-Area
+proj=tcea Ref. [21], p. 77-85]

Spherical form.
Forward projection:

x = cos ¢psin \/kog y = ko [atan2(tan ¢, cos) — ¢

Inverse projection:

b=+ H=(1- (kox)?)"*
¢ = arcsin(H sin 0) A = atan2(koz, H) cos §

Ellipsoid form.

Forward projection:

B=A(9)
B. = atan2(tan 3, cos \)
P = Ail(ﬁc)

- cos 3 cos P, sin A
ko cos B.(1 — 2 sin? ¢,)1/2
y = ko[M(¢c) — M(eo)]

(4.202)
(4.203)

(4.204)

(4.205)

o8 CHAPTER 4. CYLINDRICAL PROJECTIONS.

where A() and A~1() are the respective forward and inverse functions for conversion
of geodetic latitude to and from the authalic sphere (see p. [3.21]) and M() is the
meridianal distance function (see p. . Inverse projection:

t=y/ko+ M(¢o) (4.214)
¢ =M (t) (4.215)
Be = A" (¢e) (4.216)
(' = — arcsin[kox cos B.(1 — €® sin? ¢.) Y2/ cos ¢.] (4.217)

(3 = arcsin(cos 3 sin f3;) (4.218)

) (1219)

A\ = —atan2(tan ', cos 3.) (4.220)

When [t| > M(7/2) then A = A F 7 where sign of 7 is opposite the sign of A.
Note that the inverse projection looses accuracy when |A| is within a few minutes
of 90°. At the time of this writing a ready fix in not apparent.

4.2.5 Swiss Oblique Mercator Projection

+proj=somerc 2]
The Swiss Oblique Mercator Projection (a tentative name based upon the Swiss
usage in their CH1903 grid system) is based upon a three step process:

1. conformal transformation of ellipsoid coordinates to a sphere,

2. rotational translation of the spherical system so that the specified projection
origin will lie on the equator, and

3. Mercator projection of geographic coordinates to the Cartesian system.

The projection cylinder is tangent at the projection origin (Ag, ¢p) with zero scale
error at the projection origin (kg = 1) with minimum error extending east-west
near the central meridian. In this projection, axis rotation only occurs about an
axis normal to the plane of the central meridian (Wray’s “simple oblique aspect”
[13, pages 135-138]).

For the forward projection the input geographic coordinates are processed in
following manner:

(\,¢) — proj_gauss — proj_translate — (X', ¢')

where proj_gauss and proj_translate are the respective conversion to
Gaussian sphere and axis translation-rotation procedures. Then standard, spherical
Mercator projection is applied in-line for conversion to (z,y). Final scaling
is performed by multiplying the radius of the conformal sphere, returned by the
Gauss initialization, and with k.

Inverse projection follows the reverse sequence of the above steps by using the
inverse Mercator projection, inverse of spherical coordinate transformation and in-
verse from the Gaussian sphere to the ellipsoid coordinates.

The following example demonstrates the example from [2, p. 9] where the control
parameters are

+proj=somerc
+ellps=bessel
+lon_0=7d26°22.50
+lat_0=46d57°08.66
+x_0=2600000
+y_0=1200000

4.2. TRANSVERSE AND OBLIQUE ASPECTS. 59
and geographic and Swiss projection coordinates are:

A =8°9'11.11127154" E « 2679520.05 Easting (4.221)
¢ = 47°03'28.95659233" N « 1212273.44 Northing (4.222)

This projection has general application for grid system that have proportionally
longer extensions along the Easting.

4.2.6 Gauss Schreiber Transverse Mercator Projection

+proj=gstmerc]
The Gauss-Schreiber Transverse Mercator projection depends upon the Gauss con-
formal transformation of ellipsoid coordinates to a sphere, followed by application
of the spherical form of the transverse Mercator formulas. In this form of the trans-
verse Mercator the scale factor is unity only on the central meridian and the latitude
selected by the option +lat_0.

In France the projection is known as the Gauss-Laborde projection.

For the forward projection the input geographic coordinates are processed in
following manner:

(\,¢) — proj_gauss — proj_translate — (X, ¢')

where proj_gauss and proj_translate are the respective conversion to
Gaussian sphere and axis translation-rotation procedures. Then standard, spherical
Mercator projection is applied in-line for conversion to (x,y). Final scaling
is performed by multiplying the radius of the conformal sphere, returned by the
Gauss initialization, and with k.

Inverse projection follows the reverse sequence of the above steps by using the
inverse Mercator projection, inverse of spherical coordinate transformation and in-
verse from the Gaussian sphere to the ellipsoid coordinates.

4.2.7 Laborde.

+proj=labrd +azi=
The Laborde projection was developed and exclusively used for the Madagascar
Grid System with these parameters:

+proj=labrd
+azi=18d54’
+lat_0=18d54°S
+lon_0=46d26°13.95"E
+k_0=0.9995
+x_0=400000
+y_0=800000
+ellps=intnl

This projection should not be confused with the Hotine Oblique Mercator nor should
the later be used as a substitute. [22] p. 162].

60 CHAPTER 4. CYLINDRICAL PROJECTIONS.

The following are initialization steps:

R=(1-¢%)(1—e?sin?¢)~3/2

N = (1 —e?sin? ¢)~1/2

R, = (N R)Y?geometric mean for radius of Gauss sphere
¢os = arctan((Ro/No)'/? tan ¢y)

A = sin ¢/ sin ¢os
%1 1+ esin ¢q

C = 5 I esing, Alntan(m/4 + ¢0/2) + Intan(m/4 + ¢os/2)
1 —cos2A4,

“ Tomw
sin 24

Cy = =
12R2kg

C.=3(C2—Cg)

Cq =6C,Ch

Forward computations:

Vi = Alntan(n/4+ ¢/2)
eA 1l+esing

= 71 _—
Ve 2 nlfesin(,b
bs = 2(tan"texp(Vy — Vo + C) — 7 /4)
I = ¢s — Pos

I, = A?sin ¢, cos ¢y /2
I3 = A*sin ¢, cos® ¢4 (5 — tan? ¢,) /24
= A% sin ¢ cos g5 (5 cos? ¢, — sin? b)) /24
Iy = Acos ¢
I5 = A3 cos® ¢4 (1 — tan® ¢,) /6
= A3 cos ¢ (cos? p — sin? p) /6
Is = AP cos® ¢4 (5 — 18 tan? ¢, + tan ¢,)/120
= AP cos ¢ (5 cos? ¢ — 18 cos? ¢ sin? ¢, + sin? ¢4) /120
g = koRgA(Is + N (I5 + \°Ig))
Yg = kORg(II +)\2(12 +)‘213))
Vi =3agy; — 2
Vo = y;’ - 3373?49
r=x4+C,V1 + Vs
y=y,— CpVi +C, Vs

4.2. TRANSVERSE AND OBLIQUE ASPECTS.

Inverse formulas:

Vi = 3xy® — 2°

Vo =y® —3z%y

Vs = 2 — 102%y* + bay?

Vi = 5xty — 102%y3 + o/°

Tg = —CoVi —CyVa+ C.Vs 4 CqVy
Yg =Y+ CpVi — CoVo — CyVa + C.V,y
¢s = bos + Yg/ (Hgko)

be = @5 + G0 — Pos

Iterate
Vi = Alntan(n/4 + ¢./2)
Vo — % nl—l—esinqb6
270 1 —esing.
t=¢s—2(tan"texp(Vi — Vo + C) — 7/4)
Ge = P+t
until || < e

R, = a(1 — e?)(1 — e*sin? ¢,) ~3/2
I = tan ¢,/ (2R Ryk)
Iy = tan ¢5 (5 + 3tan® ¢,) /(24R. Rokq)
Iy =1/(cos psRykoA)
Io = (14 2tan® ¢,)/(6 cos quRSkS’A)
I; = (5 + 28tan® ¢, + 24 tan ¢,) /(120 cos ¢SR2k8A)
¢ = ¢ — Iz} + Is

A= Igl'g — I1()$3 + 111{1,‘2

61

62

CHAPTER 4. CYLINDRICAL PROJECTIONS.

Chapter 5

Pseudocylindrical
Projections

Pseudocylindrical projections have the mathematical characteristics of

r = f(\o)
y = g(¢)

where the parallels of latitude are straight lines, like cylindrical projections, but the
meridians are curved toward the center as they depart from the equator. This is
an effort to minimize the distortion of the polar regions inherent in the cylindrical
projections. Pseudocylindrical projections are almost exclusively used for small
scale global displays and, except for the Sinusoidal projection, only derived for
a spherical Earth. Because of the basic definition none of the pseudocylindrical
projections are conformal but many are equal area.

To further reduce distortion, pseudocylindrical are often presented in interrupted
form that are made by joining several regions with appropriate central meridians
and false easting and clipping boundaries. Figure [5.1] shows typical constructions
that are suited for showing respective global land and oceanic regions. To reduce
the lateral size of the map, some uses remove an irregular, North-South strip of the
mid-Atlantic region so that the western tip of Africa is plotted north of the eastern
tip of South America.

5.1 Computations.

A complicating factor in computing the forward projection for pseudocylindricals is
that some of the projection formulas use a parametric variable, typically 6, which
is a function of ¢. In some cases, the parametric equation is not directly solvable
for 8 and requires use of Newton-Raphson’s method of iterative finding the root of
P(0). The defining equations for these cases are thus given in the form of P(6) and
its derivative, P’(6), and an estimating initial value for 6y = f(¢). Refinement of 0
is made by 6 «— 8 — P(0)/P’(6) until |P(0)/P’(0)| is less than predefined tolerance.

When known, formula constant factors are given in rational form (e.g. /2/2)
rather than a decimal value (0.7071) so that the precision used in the resultant
program code constants is determined by the programmer. However, source material
may only provide decimal values, typically to 5 or 6 decimal digits. This is adequate
in most cases, but has caused problems with the convergence of a Newton-Raphson
determination and degrades the determination of numerical derivatives.

Because several of the pseudocylindrical projections have a common computa-
tional base, they are grouped into a single module with multiple initializing entry

63

64 CHAPTER 5. PSEUDOCYLINDRICAL PROJECTIONS

Figure 5.1: Interupted Projections.
Interupted Goode Homolosine: A—continental regions, B—oceanic regions.

points. This may lead to a minor loss of efficiency, such as adding a zero term in
the simple Sinusoidal case of the the Generalized Sinusoidal.

5.2 Spherical Forms.

5.2.1 Sinusoidal.

Equal-area for all cases.

Name +proj= figure Ref.
General Sinusoidal gn_sinu +m= +n=
Sinusoidal
Sanson-Flamsteed sinu [21), p. 243-248]
Eckert VI eck4 [23, p. 220]
McBryde-Thomas mbtfps [23, p. 220]
Flat-Polar Sinusoidal
x=CA(m+cosf)/(m+1) (5.1)
y=0C0 (5.2)
C=+(m+1)/n (5.3)
P() =m6 +sinf —nsin¢ (5.4)
P'(0) = m + cost (5.5)
fo = o (5.6)
m n c
Sinusoidal (Sanson-Flamsteed) 0 1 1
Eckert VI 1 1+7/2 2/V2+7

McBryde-Thomas Flat-Polar Sinusoidal 1/2 14 7/4 6/(4+)

65

NN
R

AR Z ARMBN
YL T =y)
V] T 7 /)

\/1“7 77

DN
D
N A,
: DARANEZ ARTRN
VI T 1773/
] 7S L
SNV VT AIAAAAL

5.2. SPHERICAL FORMS.

& ,

Py

W Ein=as W EasES |

Sl D g :

MNHHNMW& wgmuuwmw umwﬁ\ 3
M//WMM\ n M/wmmmk WMM\

SE T STaME 1
m e e
N\ N
< bey] < MP.V A 2 hod

rn\ e FEasy
Al T iy
W\%WWWWWW W\MWWMWW/ \WWMWW
NG il Sy T T H
i 3 I) 2 I B3 T
S0 5 o e N g
e R BR e | W
[[ey /q | I+
NS N S~aRE NS
[~ —~ [
] <] d N TTA AW_ -
A e NWHm e

50d28)

R
T
ST 1

]

S

PACREONNNNN NS

ALk][]

Y]

)

T ARN

SNV

ALY

Ref. [23, p. 220]

V4

Fig.

¢+s estabishes latitude of true scale on central meridian (default = 0°

T2 7077

[T]]

]

Figure 5.2: General pseudocylindricals I

A—-Werenskiold I, B-Werenskiold 1T, C~Werenskiold III, D-Winkel I, E-Winks, F-

|

AN

AN

ALY

+proj=winkl +lat_ts

5.2.2 Winkel I.
Option lat_ts

h

Sinusoidal, G-Mollweide, H-Foucaut Sinusoidal (+n=0.5), I-Kavraisky V and J-

Kavraisky VII .
and thus the same as Eckert V). Not equal-area but if cos ¢ys = 2/7 (lat_ts

the total area of the global map is correct.

66 CHAPTER 5. PSEUDOCYLINDRICAL PROJECTIONS

x = A(cos ¢ts + cos @) /2 y=0q (5.7)

5.2.3 Winkel-Snyder

+proj=wink2 +lat_1= Fig. ﬂ Ref. [20, p. 77]
Arithmetic mean of Equirectangular and Mollweide and is not equal-area. Param-
eter lat_1=¢; controls standard parallel and width of flat polar extent. When not
specified ¢; = 5820 (
This projection was originally listed by Snyder as Winkel IT but later dismissed
the designation [22] p. 307].

x = A(cos 8 + cos ¢y1)/2 y=m7(sinf +2¢/7)/4 (5.8)
P(6) = 20 + 5in26 — 7sin ¢ P'(6) = 2+ 2cos 26 (5.9)
0 = 0.9¢ (5.10)

As with Mollweide, P converges slowly as ¢ — 7/2 and 6 — 7/2.

5.2.4 Urmayev Flat-Polar Sinusoidal Series.

Urmayev and Wagner are equal area but Werenskiold has true scale at the equator.

Name +proj= Fig. Ref.
Urmayev FPS urmfps +n=
Wagner I (Kavraisky VI) wagl
Werenskiold 11 weren2
Ca
Urmayev FPS 2 g/g n
Wagner I (Kavraisky VI) 23 3
.75 4 0.75
Werenskiold 11 % . % % -3 ?
x = CzAcosy y=Cyt (5.11)
siny = Cy, sin¢ (5.12)

For Urmayev the latitudes of true scale are determined by the relation:

9—4v3

R (5.13)

¢t = arcsin
and the ratio of the length of the poles to the equator is determined by v1 — nZ2.

5.2.5 Eckert I.
+proj=eckl Fig. 5.3 Ref. [? , p. 223]

x=24/2/37A(1 —|p|/7) y =2+/2/31¢ (5.14)

S , ,
T TN R
N\ AN g
P N g x D
%&M&M X W S %&M ~
Z \%’I// L= = ™~
z e s
PR | F ST | 5 =
W\\N\/V// WH L~ ™ M e Ny
R : LI 7 IR
T N I SN e e T LT g =
ANNEmEESs e s BRI T LT T %3
S LA G @% R 75
7 W N [SEN=|
RS /@N | st % e
SR S NS gy e
NS \ A e 24
1" LN | 1Tl >
] I e e il S g
@) =] Mw% B M
T~ T OGP Y 2
. My 1 N 1 a
: Ll N Neabree] i
AR \U,/W - ; AT
AN P &umw/w AR S
Giosty Za e / l o
; 1 i HHMVIHH LT e < = W
I [™~ |
M ;W\\WﬁﬂW// .WHHWWMWHH M\mewmmu/ N @ z0
S | e ucYEEERIE fd s NEEBEN i 50
S S wm; EREE SENNUmEE=E = d
3 N ERREENEEE A H =
S W ey S 3
R T 7 NVAJ%WQD P 1 .
e NS A SEEH —
= R A ﬁ(%/\\ .
% < A\\emw g
= <] 9] 7 [w] <

5.2.6 Eckert II.

eck2 Fig. Ref. [23, p. 223]

+proj

(5.15)

y=+ (\/271'/3(2 ~ /41— 3sin |¢\))

(2/V/6m)A\/4 — 3sin |¢|

Tr =

where y assumes sign of ¢.

68 CHAPTER 5. PSEUDOCYLINDRICAL PROJECTIONS

5.2.7 Eckert III, Apian II (Arago), Putnins P;, Putnins P/,
Wagner VIi, Winkel II and Kavraisky VII.

None of these projections are equal-area and are flat-polar when coefficient A # 0.

Name +proj= figure Ref.
Apian IT (Arago) apian2 [22][p. 104]
Eckert II1 eck3
Putnins Py putpl
Putnins P} putplp
Wagner VI wag6
Winkel IT wink?2 [22]p. 196
Kavraisky VII kav7 [20][p. 67]
x=C,ANA++/1—B(¢/7)?) y=Cyo (5.16)
Cy Cy A B
Putnins P; 1.89490 094745 —1/2 3
Putnins P/ 1.89490/2 0.94745 0o 3
Wagner VI 1 1 0 3
Winkel 11 0.5 1 4 2/m
Apian 11 1 1 0 4
Eckert III 2/\/m(d+7) 4/\/7(4+7) 1 4
Kavraisky VII V3/2 1 0 3
5.2.8 Eckert IV.
+proj=eck4 Fig. |5.3] Ref. [23, p. 221]
x=2X1+cosO)/\/7(4+7) (5.17)
y=2y/7/(4+ 7)sind (5.18)
4
P(O) = 0+ sin 20+ 25in 0 — ;”T) sin ¢ (5.19)
4
=6 +sinf(cosf + 2) — (JQFW) sin ¢
P'(0) =2+ 4cos20 +4cosd (5.20)
= 1.+ cosf(cosd +2) —sin? 0
0y = 0.895168¢ + 0.0218849¢° + 0.00826809¢° (5.21)
5.2.9 Eckert V.
+proj=eck5 Fig. |5.3] Ref. [23, p. 220]
x=A1+cos@)/V2+ y=20/V2+m (5.22)
5.2.10 'Wagner II.
+proj=wag2 Fig. [5.4] Ref. [28 p. 184-187], [20] p. 64]
1
r=—"" Xcos y=—3 (5.23)
nmimso nmimso
2
siny = my sin(ma¢) n=gz (5.24)
arccos (1.2 cos 60°) V3

=— 2
60° 2sin (m2 %) (5.25)

69

5.2. SPHERICAL FORMS.

Figure 5.4: Wagner pseudocylindrical series

/ max reeo\Ny MWW
N P AN AR
SN\ e\,
e 1 Sy NENy
W EinEN W EacESE m\u SESma
GM%\ MYHL ,«,% 3HL ficwnd y DT
MHW/ mu\nm R m WHM - MHH !Nu\numw
N]] A T
] NS mm
\ N ﬂ - N -
| ﬂ iy T
‘ mm) T
3 G D " 43
m N %W\@L/W A2 WWFMW
T P L M\!//
s “» W B izesx &W\u qEsR
e S e
S T L W SGiss — Uf
e e : S
e e W
NN /Y?MHH\ /ﬁv%/HHH

A-Wagner I, B-II, C-III, D-IV, E-V and F-VII

5.2.11 Wagner III.

Ref: [28, p. 189-190]

+proj=wag3 Fig.

(5.26)

)/\cos(2¢>/3)

€OS Pys
cos(2¢ys/3

70 CHAPTER 5. PSEUDOCYLINDRICAL PROJECTIONS

5.2.12 Wagner V.
+proj=wagh Fig. [5.4] Ref. [28, p. 194-196]

n2\/§

= m)\ COS’l/) (527)
y= 2 sin ¢ (5.28)

nmimso
P(v) = 29 + sin 2¢) — wmy sin(mad) (5.29)
P'(¢p) =2+ 2cos2¢ (5.30)
do=2 (531)
n = ? (5.32)
g — arccos (1.2 cos 60°) (5.33)

60°
n + sin I

my=-3— 3 (5.34)

7 sin (m227r)
5.2.13 Foucaut Sinusoidal.

+proj=fouc_s +n= Fig. [5.2] Ref. [22][p. 113], [25]
An equal-area projection where the y-axis is a weighted arithmetic mean of the
Cylindrical Equal-Area and the Sinusoidal projections. Parameter n=n is the weight-
ing factor where 0 < n < 1.

x = Acosp/(n+ (1 —n)cos¢p) y=nd+ (1 —n)sing (5.35)

5.2.14 Mollweide, Bromley, Wagner IV (Putnins P}) and
Werenskiold I11.

Mollweide and Wagner IV are equal area.

Name +proj= figure Ref.
Mollweide moll 23] p. 220]
Bromley bromley 22 p. 163]
Wagner IV (Putning P)) wagé [28]
Werenskiold 1T weren3 [20, p. 66]
x = CypAcos(0) (5.36)
y = Cysin(0) (5.37)
P(0) =20 +sin20 — Cpsing (5.38)
P'(0) =2+ 2cos 26 (5.39)
b = ¢ (5.40)
Cy Cy Cp
Mollweide 2—\/5 V2 T
" 1
Bromley 1 — s

Wagner IV (Putnins P5)

yis
2 [673 | 2mV3 Ar43V3
™\ 47 +3v3 47 + 3v3 6

5.2. SPHERICAL FORMS. 71

7 [] [TR

ENAYY ZAHENNS
| \ ‘

2 P T AR
T 5 AT \
R l

Figure 5.5: General pseudocylindricals IT
A—Boggs Eumorphic, B—Collignon, C—Craster, D-Denoyer, E-Equidistant Moll-
weide, F-Fahey, G—Foucaut, H-Goode Homolosine, I-Ho6lzel and J-Hatano.

For the Werenskiold III is the same Wagner IV but with the C, and C,, values are
increased by 1.15862.

72 CHAPTER 5. PSEUDOCYLINDRICAL PROJECTIONS

5.2.15 Holzel.

+proj=holzel Fig.|5.5

6| — 40928\ | .
o\) 322673 + 369722 [1 — (1.161517 if 9] > 139634 (5

441013 * (1 + cos ¢) otherwise
y=2¢ (5.42)

5.2.16 Hatano.

+proj=hatano [+sym] Fig. Ref. [23, p. 64 and 221]
If the option +syn is selected, the symmetric form of this projection is used, other-
wise the asymmetric form.

x = 0.85Acosd (5.43)
y = Cysinf (5.44)
P(#) =20 +sin20 — Cpsin o (5.45)
P'(0) = 2(1 + cos 20) (5.46)
B = 2¢ (5.47)
Cy Cp
if +sym or ¢ >0 1.75859 2.67595
if not +sym and ¢ < 0 1.93052 2.43763
For ¢ =0, y < 0 and = < 0.85\.
5.2.17 Craster (Putnins P,).
+proj=crast Fig. [5.5 Ref. [?7 , p. 221]
A pointed pole, equal-area projection with standard parallels at 36°46'.
x = +/3/mA[2c0s(2¢/3) — 1] y = V3msin(¢/3) (5.48)
5.2.18 Putnins Ps.
+proj=put?2 Fig. |5.6 Ref. |20} p.66]
x = 1.89490\(cos 0 — 1/2) (5.49)
y = 1.71848sin 0 (5.50)
P(0) = 20 + sin 20 — 2sin 0 — [(47 — 3v/3) /6] sin ¢ (5.51)
=0 +sinf(cos — 1) — [(47 — 3v/3)/12] sin ¢
P'(0) =2+ 2cos20 +2cos 0 (5.52)

=1+ cosf(cosf — 1) — sin? 6
By = 0.615709¢ + 0.00909953¢> + 0.00462924° (5.53)

73

5.2. SPHERICAL FORMS.

(5.54)

6"

!/

2/m¢

SN AL

CLT TN TR RN N
WW\M%WW Mmi/ % NWUJW ot XW ” AN
AL AN SIS g SASN
jSamnann SN A EAEN Ahn
pieeses N A [e
JEXs I BEBR SO\ W% Emant i amnnantiii W%\ I
/WMHHI 1 e = Saw | e
A 257 BRSNS M o G
M g o //W »
S

NN SNERS

LT N T

Ch
(LT TSR]

NN

Figure 5.6: PutninsPseudocylindricals.

7
(VG]]
[

)AL LN D
NN

AANN

IEI M
=
A/ ks
K/ 1AL

G]

y=

Putning Py, D-Putning P3, E-Putnins P%, F-

Ref.

C
Putnins$ P, I-Putnins Pg and J-Putnins

1

H

§ !
S P57
figure

S

V2/TA1 — Ag?/n?)

N AR
AMW/W @mwwmw W
<) pannung
i W -
PN s - m=
I RO = =
v Rras:” M| ~TSurass® - 2
s NN %WMW\& e /
= N R
7 E e N)

i

putp3p

*+proj
putp3

Putnins Pj
Putnins P4

Name

5.2.19 Putnins P3; and P%.

A-Putnins Py, B—Putnin
Putnins P/, G-Putnin

74 CHAPTER 5. PSEUDOCYLINDRICAL PROJECTIONS

where A is 4 and 2 for respective P3 and Pj.

5.2.20 Putnins P/ and Werenskiold I.

This is the flat pole version of Putnins’s P4 or Craster’s Parabolic.

Name +proj= figure Ref.
Putnins Py putp4 [20, p. 68]
Werenskiold I~ weren [20, p. 68]
x = CyAcosf/cos(0/3) y = Cysin(0/3) (5.55)
sinf = (5v/2/8) sin ¢ (5.56)
where
P Weren. I

C, 2,/0.6/r 1.0
Cc, 2vV12w ™2

5.2.21 Putnins P; and Ps.

Putnins P5 and Pj projections have equally spaced parallels and respectively pointed

Name +proj= figure Ref.
and flat poles. Putning P; putps 120, p. 69]
Putnins P{ putp5p [20, p. 69]
x = 1.01346A(A — B/1 + 12¢2 /7?) y = 1.01346¢ (5.57)
where
Ps P

A 2.0 1.5
B 1.0 0.5

5.2.22 Putnins Pg and Py.

Putnin$ Pg and P§ projections are equal-area with respective pointed and flat poles.
Name +proj= figure Ref.

Putnins Pg putp6 [20, p. 69]
Putning P§y putp6p [20, p. 69]
z = C D — (1+p*)'/?) (5.58)
y=Cyp (5.59)
P(p) = (A= (1+p*)*)p—In(p+ (1+p*)"/?) - Bsing (5.60)
P'(p) = A—2\/1+p? (5.61)
po=¢ (5.62)
where
P P
C, 101346 0.44329
D 2 3
C, 091910 0.80404
A 4.00000 6.00000
B 214714 5.61125

(0]

ISy,

(5.63)

NP

S
m

[T]]

H)77 L

HRARINZAREN
)

Y LT TRy

¢

N
A
[N AN
HBDARRRNED
V(L]
|4 ’
/M 7
NN\ A
//%;Fh\@ .
ATV
AR
AEINEERE 5%
KANBEEAND.
ST
SN

7450
FlEn
PR A,
s 25;/ 7
7 o
S N\ni

/4
yaaaNES Y

1 —sin

NN AL

L DI

pal

5.2. SPHERICAL FORMS.

am=e anzss e W
U] / @W% VJWWQW\ WMW%W 7
//%k /@/W#r\\ /%XW&!J\\\\ /ﬁ%wk/;l\
| a ™ e

LTSN

RN

AR ZARRN

NN Ay

NN AR

AT
4

/.

W7

VAL Ry
7z

Figure 5.7: General pseudocylindricals ITI

M

[aaEaEySNERSSERARINZ IARNN

|

\

I i

; wmm N
N\ AN\ RN
N e
S GEZasSuy ZE=SS

= 7] a7 NG
//W = Ww =il ﬂ =
Suy . T
\\N&g N N
I N A L
<] Ul @ +
L~ —1 ~—1

G4 T]
(LT SRL

AT D

AN

NN\ LA

Thomas Flat-Polar Parabolic, H-McBryde-Thomas Flat-Polar Quartic, -McBryde-

Thomas Sine (No. 1), F-McBryde-Thomas Flat-Poler Sine (No. 2) G-McBride-
Thomas Flat-Polar Sinusoidal and J-Robinson .

A-McBryde P3, B-McBryde Q3, C-McBryde S2, D-McBryde S3, E-McBryde-

5.2.23 Collignon.

Fig. [23] p. 223]

=collg

+proj

y=vr(l-

1—sing

(2/v/m)A

xr =

76 CHAPTER 5. PSEUDOCYLINDRICAL PROJECTIONS

5.2.24 Sine-Tangent Series.

Name +proj= figure Ref.
Foucaut fouc 5.5] [20, p. 70]
Adams Quartic Au- qua_aut 5.9 [20] p. 70]
thalic
McBryde-Thomas mbt_s 5.71 20, p. 72]
Sine (No. 1)
Kavraisky V kavb 5.2} 20, p. 72]
General Sine/Tan. gen_ts [+t|+s] T

+q= +p=

Baar [?] listed several variations with values of p = ¢ = 10/9, 4/3 and 3/2 for the
sine series and 1, 4/3, 3/2 and 3 for the tangent series.

Sine seriesi equations:

z = (g/p)Acos ¢/ cos(¢/q) y = psin(¢/q) (5.64)

Tangent Seriesi equations:

= (q/p)A cos ¢ cos*(¢/q) y = ptan(¢/q) (5.65)
q D Sine Tangent
2 T Foucaut
2 2 Quartic Authalic
1.36509 1.48875 McBryde-Thomas

35° arccos(0.9) q/0.9 Kavraisky V

5.2.25 McBryde-Thomas Flat-Polar Parabolic.

+proj=mbtfpp Fig.

x =1+/6/7/3A[1+ 2cosf/ cos(0/3)] (5.66)
y =34/6/7sin(6/3) (5.67)
P(0) = 1.125sin(0/3) — sin®(0/3) — 0.4375sin ¢ (5.68)
P'(0) = [0.375 — sin?(0/3)] cos(0/3) (5.69)
0o = ¢ (5.70)
5.2.26 McBryde-Thomas Flat-Polar Sine (No. 1).
+proj=mbtfps Fig.
x = 0.22248\[1 + 3 cos 0/ cos(0/1.36509)] (5.71)
y = 1.44492 sin(6/1.36509) (5.72)
P(6) = 0.45503 sin(0/1.36509) + sin 0 — 1.41546 sin ¢ (5.73)
, o 0.45503
P'(0) = 136500 cos(0/1.36509) + cos (5.74)
0=¢ (5.75)

At the moment, there is a discrepancy between formulary and claim that 80° parallel
length is half the length of the equator.

5.2. SPHERICAL FORMS. 7

5.2.27 McBryde-Thomas Flat-Polar Quartic.

+proj=mbtfpq Fig.

z = A1+ 2cosf/ cos(0/2))[3v2 + 6]~ 1/2 (5.76)
y = (2v/3sin(6/2)[2 + V2] /2 (5.77)
P(0) =sin(0/2) 4 sin 6 — (1 4+ v/2/2) sin ¢ (5.78)
P'(9) = (1/2) cos(6/2) + cos 0 (5.79)
0=0¢ (5.80)
5.2.28 Boggs Eumorphic.
+proj=boggs Fig. [5.5
x = 2.00276A(sec ¢ + 1.11072sec §) y = 0.49931(¢ + v2sin6) (5.81)
P(0) =20 +sin20 — wsin¢ P'(0) =2+ 2cos 26 (5.82)
0=0¢ (5.83)
5.2.29 Nell.
+proj=nell Fig. 5.8 Ref. [22][p. 115]
x = A1+ cosf)/2 y=20 (5.84)
P(0) =0+sinf — 2sin¢ P'(0) =1+ cosf (5.85)
61 = 1.003716 — 0.0935382¢3 — 0.011412¢4° (5.86)

5.2.30 Nell-Hammer.

+proj=nellh [+n=] Fig. [5.8) Ref. [20, p. 74]
The equal-area Nell-Hammer is a specialized case of the more generalized arithmetic
mean of tha y-axis or parallels of the Cylindical Equal-Area and the Sinusoidal
projection [25]:

z = (a+bcosP)A (5.87)
2(¢—tan%) fora=b=1/2
2 Va2 — b2 tan % e o 9
v=<30¢ a| Tz arctan —aib if a® > b (5.88)
b b 2 (b—a) tan% o 5
ﬁarctanhﬁ if b° > a

where a and b are the respective weights of the cylindrical equal-area and sinuisoidal
projections and where a + b = 1.

The optional n parameter corresponds to a and 0 < n < 1. When n is not
specified then n < 0.5 (true Nell-Hammer).

5.2.31 Siemon IV.
+proj=seimon4 Fig. 77 Ref. [22][p. 208-9] Forward projection:

NCCLI o0 in
v C cos(¢/2) y = 2Csin(¢/2) (5.89)
=30 (5.90)

22

CHAPTER 5. PSEUDOCYLINDRICAL PROJECTIONS

78

(&)

)

(5.91)

LA] 2SI T o
FRN 7 LI \w// amai % By
pgda S N S TAN &mﬁMW RTIN
NMMWHHH WMW%H m.\JWW wmww pras
AT A P SN AN
\\mmmwwu _WHHNWMWWH mWHH,WU | \\%mmww/ WWW
g Yimmaaanill < iEwmmes I GEnsas 1 Eraaat
= o e o ror] e
= &/MMMMW& a7 %m/wwmmx)
) e) W \NSEE
4 N g Wi We
. 1] w2 T =

40), C-Urmayev V, D-Urmayev

y assumes sign of ¢

1.3523Y (|g|)

Y

0.7), E-Erdi-Krausz, F-Fourtier II, G-Nell-Hammer, H-
Ref. [1§]

Figure 5.8: General pseudocylindricals IV

g T T

— N N AN g
= m@mﬂ% N [

SNy Tk L Sy pEEN
\m\mmwm/w ke i sioess pr
T R 0 BT BT
S T R W
W) W W R
WVAWN(I\“ e B .

T AN\ T ‘\NSuE

| A - L] e S N

+ 4] 9] m Ve [

Fig.

Common for global thematic maps in recent atlases.

Robinson.
robin

z = 0.8487AX (|¢])

5.2.32

*+proj
where the coefficients of X and Y are determined from the following table:

A-Snyder Minimum Error. B-Loximuthal (+1at_1

Nell, I-Maurer and J-Mayr—Tobler.

Flat-Polar Sinusoidal (+n

5.2. SPHERICAL FORMS. 79

¢° Y X ¢° Y X
0 0.0000 1.0000 || 50 0.6176 0.8679
5 0.0620 0.9986 || 55 0.6769 0.8350
10 0.1240 0.9954 || 60 0.7346 0.7986
15 0.1860 0.9900 || 65 0.7903 0.7597
20 0.2480 0.9822 | 70 0.8435 0.7186
25 0.3100 0.9730 || 75 0.8936 0.6732
30 0.3720 0.9600 || 80 0.9394 0.6213
35 04340 09427 || 85 0.9761 0.5722
40 0.4968 0.9216 || 90 1.0000 0.5322
45 0.5571 0.8962

Robinson did not define how intermediate values were to be interpolated between
the 5° intervals. The proj system uses a set of bicubic splines determined for each
X-Y set with zero second derivatives at the poles. GCTP uses Stirling’s interpolation
with second differences.

5.2.33 Denoyer.
+proj=denoy Fig. [5.5
z = Acos[(0.95 — |A|/12 + [A]/600)(0.9¢ + 0.03¢°)] y=9¢ (5.92)

5.2.34 Fahey.
+proj=fahey Fig. [5.5

T = Acos35%°y/1 — tan?(¢/2) y = (1 + cos35°) tan(¢/2) (5.93)

5.2.35 Ginsburg VIII.
+proj=gins8 Fig. [5.10| [20][p. 78]
z = (1 —0.162388¢%)(0.87 — 0.000952426)*) y = ¢(1 + ¢*/12) (5.94)

5.2.36 Loximuthal.

+proj=loxim +lat_1= Fig.
All straight lines radiating from the point where lat_1=¢; intersects the central
meridian are loxodromes (rhumb lines) and scale along the loxodomes is true.

o= JM@—d1)/[Intan(m/4+ ¢/2) —Intan(w/d+ ¢1/2)] ¢ # ¢ 6
A cos ¢1 ¢ =1 Y '
(5.95)
5.2.37 Urmayev V Series.
+proj=urmb Fig. 5.8 Ref. [20, p. 77] [22][213]
x =mMAcosf (5.96)
y = 0(1+ q6%/3)/(mn) (5.97)
sinf = nsin ¢ (5.98)

where m = 2v/3/3, n = 0.8 and ¢ = 0.414524 are default values that have been
employed in some atlases.

80 CHAPTER 5. PSEUDOCYLINDRICAL PROJECTIONS
R BT s

,) T EREETTRTS,

A A NIRYEYRRE % dRRRRRRN\LA

oy RN AN YRR AN
RN LT INGS: \ N 1
~ - 7 g LTS N b 3 [l
N TN HEEREE D V1T =TT
- R EEN | 1]

<y VUV T [T DY

\\\\ / /

Figure 5.9: General pseudocylindricals V
A—Baker Dinomic, B-Times, C—Tobler G1 and D—Quartic Authalic.

5.2.38 Goode Homolosine, McBryde Q3 and McBride S2.

Name +proj= figure Ref.
Goode Homolosine goode

McBryde P3 psfig:mb_P3

McBryde Q3 psfig:mb_Q3

McBryde S2 psfig:mb_S2

Pseudocylindrical can be composited where different projections are used in different
latitude zones. In the cases presented here there are only two regions: one covering
the central or equitorial latitudes and another covering the polar regions. At the
latitude where they join together, the horizontal scale must match and a shift value
is normally subtracted from the computed y-value of the polar projection.

Name Equitorial Polar ¢ join y offset
Goode Homolo- Sinusoidal Mollweide 40°44’ 0.05280
sine Sec. Sec
McBryde P3 Craster McBryde-Thomas — 49°20'21.8” 0.035509
Parabolic Flat-Polar
Sec. Parabolic
Sec. 5.2.25
McBryde Q3 Quartic McBryde-Thomas 52°9' 0.042686
Authalic Flat-Polar
Sec. 522? Quartic
Sec.
McBryde S2 Sinusoidal Eckert VI 49°16' 0.084398

Sec. @

5.2. SPHERICAL FORMS.

5.2.39 Equidistant Mollweide
+proj=eqmoll Fig. |5.5
o= 2y =i y=0
o
5.2.40 McBryde S3.

+proj=mb_S3 Fig. [5.7 Ref.
If |¢| < 55°51’ then

T = Acos ¢ y=9¢

else

CA
x = E(O.E) + cosf)

y = CH F 0.069065

0
P(6) = 3 +sind — (1 — %)sinqﬁ

1
P0) = 5t cos)
bo =9

C(4iw>

where the last constant takes the opposite sign of ¢.

N

5.2.41 Semiconformal.

+proj=near_con (Fig. [5.10

_ { sign of ¢ 0.99989 if |¢| > 1.5564

sin ¢ otherwise
1 1
0=_—1n ~tp
2 1—p
x = Acosf
y =msinf

5.2.42 Erdi-Krausz.

+proj=erdi krusz Fig. |5.8) Ref. [20, p. 73-74]
If || < w/3 then

x = 0.96042) cos 6§’ y = 1.301526’
sing’ = 0.8sin ¢

otherwise

x =1.07023\ cos 0 y = 1.68111sin 0 F 0.28549

81

(5.99)

(5.100)

(5.101)
(5.102)

(5.103)

(5.104)
(5.105)

(5.106)

(5.107)

(5.108)

(5.109)

(5.110)
(5.111)

(5.112)
(5.113)

(5.114)

82 CHAPTER 5. PSEUDOCYLINDRICAL PROJECTIONS

AN

’lﬂ;;’f?"
Wil
J7H TP

/)
Illl.’l,lﬂlllf a

HiSEaCE I et e
MAAEX
¥\\\\

Figure 5.10: General pseudocylindricals VI
A—Oxford, B-Ginsburg VIII and C-Semiconformal.

where sign is opposite that of 6
P(0) =26 +sin20 — wsin ¢ P'(0) =2+ 2cos20 (5.115)

0o = ¢ (5.116)

5.2.43 Snyder Minimum Error.

+proj=smin_err Fig. [5.8

a; = 1.27326 (5.117)
az = —.04222 (5.118)
as = —.0293 (5.119)
ay = —0.12666 (5.120)
ay = —.1465 (5.121)

Acos ¢ (5.122)

Tt &% (a + ako?)
y = ¢(a1 + ¢*(as + as¢”)) (5.123)

5.2. SPHERICAL FORMS. 83
5.2.44 Maurer.
+proj=maurer Fig. [5.8 [20] p. 69]
-2
:c)\<7T ¢> y=0¢ (5.124)
™
5.2.45 Canters.
Canters’ four low-error pseudocylindrical projections.
Name +proj= figure Ref
General optimization fc_gen for all [7]
Pole length half the lenght of the equator fc_pe
Correct axis ratio fc_ar
Pointed pole, correct axis ratio fc_pp
with the general form:
flat pol
z = Ao + ca0? +eapt) { PO (5.125)
X cos¢ pointed pole
y=cho+ ¢’ + kg (5.126)

where the coefficients are:

general optimization

co = 0.7920 ¢y = 1.0304
co = —0.0978 cy = 0.0127
cq = 0.0059 ¢t = —0.0250
pole length half the lenght of the equator
co = 0.7879 ¢, = 1.0370
co = —0.0238 c5 = —0.0059
cg = —0.0551 ¢k = —0.0147
correct axis ratio and
co = 0.8378 ¢ = 1.0150
co = —0.1053 cy = 0.0207
cq = —0.0011 cg = —0.0375
pointed pole, correct axis ratio
co = 0.8333 ¢y = 1.0114
co = 0.3385 ch = 0.0243
cqg = 0.0942 c5 = -0.0391
5.2.46 Baranyi I-VII.

Name proj= figure

Baranyi IV (Snyder) baranyi4

Baranyi I brny_1 +vopt all on fig.

Baranyi I1 brny_ 2 +vopt

Baranyi IIT brny_3

Baranyi IV brny_4

Baranyi V brny_5

Baranyi VI brny_6

Baranyi VII brny_7

84 CHAPTER 5. PSEUDOCYLINDRICAL PROJECTIONS

AR T | ER TR A T TR,
lilh".i’{yﬂll' RRRRRNNCY YAS A EEE SdRRRRRNNN
[AT TV LT T[] T W
[T NG O RRREE 03 A\DPA |
LT M | P U’{H\\’ Y A f\.‘
HEREN D fH 'M‘H\\ D) iSxal

]

/

Figure 5.11: Canters’ pseudocylindrical series
A—Canters’ General optimization, B—Pole length half the lenght of the equator. C—
Pole length half the lenght of the equator and D—Pointed pole, correct axis ratio.

Baranyi I'V.

The following is a version of projection IV of the Baranyi set of seven projections [6]
that is derived from unpublished BASIC procedure written by Snyder and forwarded
by Anderson [5]:

y = (1. + > (112579 + || (—.107505 + ||.0273759))) (5.127)
log(1. 4+ 0.11679 x |A|)
0.31255

1.22172 4 1/2.115292 — 42 when |¢| < 1.36258
r=fx (5.128)
B V/[38.4304449 — (4.5848 + [y|)2| otherwise '

f== where f takes the sign of A

Baranyi projections.

The following version of Baranyi’s seven projections attempt to stay close to Baranyi’s
original description [6] with some interpretations from a FORTRAN procedure by
Voxland [15].

The projections follow three basic steps:

e convert both latitude and longitude to intermediate units (xp,y,) by means
of tabular description of the converted coordinates at 10° intervals,

e determine the length of the parallel (x;) for the intermediate latitude at the
limiting longitude (180°) and

e scale the intermediate longitude by the ratio of the meridian length at the
intermediate latitude and equatorial length.

Conversion if longitude and latitude to intermediate units is performed by first
changing radians to degrees and then interpolating intermediate values from the
from tables and of intermediates values at each 10%rc of geographic coor-
dinate. Because projections I and II have regular spacing or increments of tabular

5.2. SPHERICAL FORMS. 85

Figure 5.12: Baranyi pseudocylindrical series
A-Baranyi I, B-1I, C-III, D-IV E-V F-VI and G-VII.

values, Voxland used a second degree determination for intermediate latitude:

yp = a1|pq| + az0] (5.129)
= 0.975 Barany% I a4y — 0.0025 Barany% I (5.130)
0.95 Baranyi II 0.005 Baranyi II

The results from the above equations for ¥, will differ from the linear interpolation
and may be selected by using the +vopt option. Although this solution is elegant
it does not match the general nature of Baranyi’s definition of the projection.

The previously determined intermediate longitude represent the value at the
equator and must be scaled by the ratio of the length of the parallel at the interme-
diate latitude and length of the equator. Length of the parallels are determined by
two or three segments that are either circular arcs or straight lines. Each segment

86 CHAPTER 5. PSEUDOCYLINDRICAL PROJECTIONS

0° [10°] [20°] [30°] [40°] [50°]]60°] [70°] [80°]]90°]
I (00 100 205 315 430 550 675 80.5 940 108.0
II |00 100 210 330 460 60.0 750 91.0 1080 126.0
I | 0.0 120 240 360 490 620 750 86.0 97.0 108.0
IV | 00 120 240 360 490 620 750 87.0 99.0 111.0
V |00 100 205 315 440 580 705 815 920 1020
VI | 0.0 10.0 205 315 435 565 705 85.0 100.0 1155
VII | 00 120 240 355 470 585 695 805 905 99.5

Table 5.1: Intermediate parameter y, value for each 10 degrees of latitude.

0° [10°] [20°] [30°] [40°] [50°] [60°] [70°] [80°] [90°]
1100°| [110°] |120°] |130°| |140°| |150°| [160°| |170°| |180°]
I 00 100 200 30.0 40.0 50.0 60.0 70.0 80.0 90.0
100.0 110.0 120.0 130.0 140.0 150.0 160.0 170.0 180.0

II 0.0 10.0 20.0 300 40.0 500 60.0 70.0 80.0 90.0
100.0 110.0 120.0 130.0 140.0 150.0 160.0 170.0 180.0
11 0.0 12.0 240 350 46.0 570 680 78.0 88.0 98.0
108.0 118.0 128.0 138.0 148.0 157.0 166.0 175.0 184.0
v 0.0 12.0 240 350 46.0 570 680 78.0 88.0 98.0
108.0 118.0 128.0 138.0 148.0 157.0 166.0 175.0 184.0
\% 0.0 105 21.0 315 420 525 625 725 825 925
102.5 112.5 1225 132.5 1425 151.0 159.5 168.0 176.5
VI 0.0 10,5 21.0 315 420 525 625 725 825 925
102.5 112.5 122.5 1325 1425 151.5 160.5 169.5 178.5
VII 00 12.0 240 355 470 580 69.0 79.5 90.0 100.0
110.0 120.0 130.0 140.0 150.0 159.0 168.0 176.0 184.0

Table 5.2: Intermediate parameter z, value for each 10 degrees of longitude.

joins in a smooth manner by the curves intersecting at points of tangency.

2= T, X +4/R?—(y, +Y)? circular arc (5.131)
zp[180] | (y, — A)/B straight line segment
(5.132)

where the coefficients are determined from table Applicable arc-line segment is
determined by ¥, < y,-intersect column value. The empty last entry in this column
is assumed to be infinite and thus selected if previous tests fail. Factor z,[180] is
the length of the equator from the last column of table

The intermediate coordinates are finally scaled to z,(10°) and y,(10°):

™ m
=t = dy,—— 5.133
TR0 Y= 180 (5.133)

where the sign of x and y are taken from A and ¢ respectively.

5.2. SPHERICAL FORMS. 87
Circular Arc [Line] Arc-Line
No. X Y[A4] R[B] Yy, Intersect
I 80.0 0.0 100.0 81.241411756
0.0 111.465034594 237.202237362
II 75.0 0.0 105.0 89.732937686
0.0 123.428571429 249.428571429
11T 94.0 0.0 90.0 78.300539425
0.0 165.869652378 280.653459397
IV | 84.0 0.0 100.0 94.323113828
0.0 315.227272727 426.227272727
\% 86.5 0.0 90.0 89.129742863
[102.995921508] [-0.140082858] | 101.013708578
0.0 0.0 102.0
VI | 83.5 0.0 95.0 92.807743792
[115.5] [-0.218634245]
VII | 94.0 0.0 90.0 87.968257449
0.0 460.302631579 559.802631579
Table 5.3: Table of limiting curve constants and y, range limit.
5.2.47 Oxford and Times Atlas.
Name +proj= figure Ref.
Oxford Atlas
Modified Gall oxford 5.10
Times Atlas times
t = tan (‘é’) (5.134)
2
y = (1 n ‘g) ¢ (5.135)
10049 Oxford Atlas
- xfor
=\ V2 (5.136)
0.74v/1 — 0.5t2 Times Atlas
5.2.48 Baker Dinomic.
+proj=baker Fig. Ref. [22][p. 271]
When |¢| < 7/4 then projection is basic Mercator
In tan % + g or
e P e
1—sing
otherwise
x:Acos¢(2\/§—csc¢>) y==£ [—1ntan|q5+2\/§<|¢| - ;T)] (5.138)

2

where the above y value takes the sign of ¢.

88 CHAPTER 5. PSEUDOCYLINDRICAL PROJECTIONS

5.2.49 Fourtier II.

+proj=four2 Fig.
A very early pseudocylindrical.

T = %cosgb y = ﬁsinqﬁ (5.139)

5.2.50 Mayr-Tobler.

+proj=mayr [+n=] Fig.|5.§ Ref: [25], 22, p. 220]
An equal-area projection first described by Mayr and later by Tobler. The pro-
jection is based upon a weighted geometric mean of the x-axis or meridians of the
Cylindical Equal-Area and Sinusoidal projections:

¢
z = \cos' " bo y= / cos" ¢ dp (5.140)
0

where 0 < n < 1 and is the weight factor of the cylindrical projection. The Mayr
projection is the special case (default) where n < 0.5 when not specified.

5.2.51 Tobler G1

+proj=tob_gl [+n=] Fig. [5.9] Ref. [25]
For this equal-area projection the y-axis is a weighted geometric mean of the Cylin-
drical Equal-Area and the Sinusoidal projections.

_ #° sin® ¢
T = Acos¢as1n¢ yy—; (5.141)
y=¢"sin’¢ (5.142)
a+b=1 (5.143)

Option n is equivalent to @ and 0 < n < 1 and is the weight for the cylindrical
projection. If the n option is not specified, then a < 0.5.

5.3 Pseudocylindrical Projections for the Ellipsoid.

5.3.1 Sinusoidal Projection

The elliptical version of the Sinusoidal projection is one of the simlplest elliptical
computations. Spacing of the parallels is based upon the meridianal distance M (¢)
as defined in section [3.2] The parallel lengths are determined by their radii defined
in section [3:7.3] Thus the forward equations are simply:

z = aim(¢) y = M(o) (5.144)

The inverse projection values are determined by:

¢=M"(y) A= (5.145)

Chapter 6

Conic Projections

Forward Conic Formulae.

The basic forward formulae for all simple conics are expressed by:

x = psinf (6.1)
= pg— pcost

where 6§ = n\. Factor p is the distance of the projected point from the apex of the
cone and n is the cone constant. The factor pg is determined by evaluating p at ¢q
(+1at_0=) and establishes the y-axis origin. The x-axis origin is at Ao (+lon_0=).

Both p and n are functions that determine the characteristics of each conic
projection, as shown in Table[6.1] and both usually controlled by two user specified
parallels: ¢; and ¢y (+lat_1= and +lat_2=). In some cases, one parallel may be
specified, ¢1, specified (in Lambert Equal Area and ¢; = ¢» cases) and in the case
of the Lambert Conformal Conic, a scale factor, ko (+k_0=) may be specified. All
cases where o, o or n would evaluate to 0 or n evaluates to 1 are not allowed.

In addition to the formulae for the spherical earth in Table several conics
are available for the ellipsoidal earth as follows.

Albers Equal Area:

p=+C—ng/n
" — { (mt —m3)/ (a2 — @) ¢1 # b2
sin ¢y 1 = b2

C = m% + ngy
cos /(1 — €2 sin® ¢)1/?

51 1 1 —esing
12 sin ¢ _1
4= e)[leQSingb 2€—|—n 1+ esing

k=1/h = /C —ng/m=np/m

m

For the case of Lambert Equal Area, subsitute 7/2 for ¢» in the preceeding formulae.

89

90 CHAPTER 6. CONIC PROJECTIONS
Table 6.1: Spherical equations for conic projections.
Name p= n =
Lo @2CO8 P — P1COS Py COS ¢1 — COS P2
Equidistant <08 1 — 03 s 1) e —
1= @2 cot g1+ ¢1 — ¢ sin ¢1
Murdoch T (cotosind)/d+0 — o sino
Murdoch II cot 0v/cosd + tan(o — ¢) sin o/ cos &
Murdoch IIT dcotdcoto+o—¢ (sin o sin é tan §) /62
Euler 0/2cot(d/2)coto + o — ¢ (sinosind)/é
In (€08 91
tan” (/4 + ¢1/2) (cos b2
Lambert Conformal coSs ¢ ntan™ (/4 + 6/2) - tan(r /4 + 03 /2)
tan(mw/4 + ¢1/2)
_ tan™ (7 /4 + ¢1/2)
1= 2 ko COS¢1ntan”(7r/4+ 0/2) sin ¢y
Albers Equal Area [cos? @1 + 2n(sin ¢y — sin ¢)]/2/n (sin ¢y + sin ¢2)/2
Lambert Equal Area [2(1 — sin ¢)/n]'/? (1+sin¢y)/2
Perspective cosd[cot o — tan(¢p — o)] sino
: sino |, cosd 1/2 :
Tissot { {cosé + Sho — 2sin d)} /n} sino
Vitkovsky I same as Murdoch III (tandsino)/d

where 0 = (¢2 + ¢1)/2 and 6 = (¢2 — ¢1)/2.

91

Lambert Conformal:

P = koFtn
Inmy — Inmeo

n = { lntl—lntg ¢17é¢2
sin ¢y 1 = @2

m = cos /(1 — e®sin? ¢)'/?

o e/2
t = tan(r/4— 6/2)/ Eizz(ﬂ

B 1 —sing 1+esing\° 1/2
N {(1—!—8111@5) <1—esin¢)]
F = my/(nt?)
h=k = konp/m

7 = nA
Equidistant:
p=G—M@9)
n— { (m1 —ma)/(M(¢2) — M(¢1)) ¢1 # b2
Sil’l ¢1 (bl = ¢2
m = cos¢/(1 — e®sin? ¢)'/?
G = ml/n+M(¢1)
h=1
k =np/m

Inverse Conic Formulae.

When n < 0, reverse the sign of x, y, and ¢g and then evaluate: First compute
y' = po — y and then

p= (x2 +y/2)1/2.
If n < 0, reverse sign of x, ¥y’ and p and compute

0 = atan2(z,y’)

Compute A = §/n and, in the spherical case, determine ¢ from the p equations in
Table Solutions for ¢ for the elliptical earth are as follows:
Albers Equal Area:
Compute ¢ = (C' — p?>n?)/n and initial value of ¢ = sin"'(¢/2) and iterate ¢ =
¢ 4+ A¢ until |[A¢| less than acceptable tolerance and where:
Ap = (1 — e®sin?)1/? g sin ¢ 1 1—esing
N 2 cos ¢ 1+ esing

1—e? 1—e€?sin®¢p 2e

Lambert Conformal:
Compute t = (p/F)"/™ and ¢ = 7/2 — tan— 't and substitute ¢ into the right hand

side of
. 1—esing e/2
1+ esing
Repeat substition of ¢ into right side until absolute difference between last and
current value of ¢ less than tolerance.

¢=m/2—2tan"!

92 CHAPTER 6. CONIC PROJECTIONS

Equidistant:
¢=M"G —p).

6.0.2 Bonne.

+proj=bonne [+lat_1=] 77 [2I] p. 140]
The Werner and Sylvano are special cases of the Bonne where Werner specified a
value of ¢; = 90°. Sylvano selected ¢ = 47° and limited the geographic range to
within +£160° and 40°S > ¢ < 80°N for a world map centered at 60°FE.
For forward of the sphere:

p=cotdr+é1—¢ (6.3)
B 2250 (6.4)
p
x=psinFE (6.5)
y=cotgp, — pcos & (6.6)
and for the ellipsoid:
m = cos ¢/(1 — e?sin® ¢)'/? (6.7)
p= m1/ sin ¢1 + M(¢1) — M(d)) (68)
E=mM\/p (6.9)
x = psin E (6.10)
my
= — E 11
V= ™ pcos (6.11)
For the inverse of the sphere:
2 2y211/2
p == [2° + (cot ¢1 — y*)?] (6.12)
¢=cotdr+¢1—p (6.13)
__P _
A= o (batanQ[:I:x, +(cot ¢1 — y)] (6.14)
and for the ellipsoid:
2 : 2y2711/2
p ==+ [2* + (m1/sind1 — y*)? (6.15)
¢ =M (my/sing; + M(é1) — p) (6.16)
A= ﬁatan2[j:x, +(my/sin ¢ — y)] (6.17)
m

In all cases, £+ take sign of ¢;.

6.0.3 Bipolar Oblique Conic Conformal.

Developed as a low-error conformal map of both North and South America, it
consists of two translated, spherical form Lambert Conformal Conic projections (A
and B) with points to the left of a geodesic from B to A determined by projection
A and those to the right by projection B. There is a small and varying discontinuity
along this geodesic, but it is negligible within the range of interest and at the small
scales normally used. Because the formulae for this projection are presented by
[21], they are used here rather than using a combination of the general oblique
procedures. Only the spherical form is used and both +lon_0 and +lat_0 are
ignored.

93

The following are defining constants for the location of the poles of each projec-
tion:

¢pa = 20° S = —0.349065850398866
Aa = 110° W = —1.91986217719376
¢p = 45° N = 0.785398163397448
zap = 104° = 1.81514242207410

and each projection has the equivalent standard parallels of ¢; = 31° and ¢o = 73°.
These factors determine the following constants:

AB

coSzap — sing 4 sin ¢p
COS 4 COSPp)
= —0.348949767262507(—19059/36.0561)
n = In (s%ngbl) In (tan(tbl/?))
sin ¢o tan(¢pa/2)
= 0.630558448812747
Fy = sin ¢y /[ntan"(¢1/2)]
= 1.83375966397205
ko = 2/[1 4+ nFy tan™ 26°/ sin 52°]
= 1.03462163714794
F = kyFy
= 1.89724742567461
Azap = arccos{[cos ¢4 singp —
singa cos pp cos(Ap + Aa)]/sinzap}
= 0.816500436746864(46°46'55.30437")
Azpa = arccos{[cos ¢ppsinps —
singp cos pa cos(Ap + Aa)]/sinzap}
= 1.82261843856186(104°2542.03909")
T = tan™(¢1/2) + tan"(¢2/2)
= 1.27246578267089
pe = FT/2=1.20709121521569
ze = 2tan”H(T/2)V/™
= 0.908249725391265(52°2'19.95363")

A4 -+ arccos (

Forward projection:

First determine which conic to use by computing

Az = atan2[sin(Ap — A),

cos ¢ tan ¢ — sin ¢ cos(Ap — A)].

If Az > Azp A, then conic A is to be used otherwise conic B. Next compute distance
from point to conic pole from:

z = arccos[sin ¢4 sin @ + cos ¢4 cos ¢ cos(A + A4)]

or
z = arccos[sin ¢p sin ¢ + sin ¢ cos ¢ cos(Ap —)]

94 CHAPTER 6. CONIC PROJECTIONS

for respective A and B conics and in the case of the A conic recompute the azimuth
from:

Az = atan2[(sin(A + A4),
cos 4 tan ¢ — sin ¢4 cos(A + Aa)).
Next compute:
p = Ftan"(z/2)
k = pn/sinz
a = arccos{[tan"(z/2) + tan"(zap — 2)]/T'}

Determine 6 by subtract Az from Aap or Aga for respective A or B conic and then
compute

p = p/ cos[a — 6].
If p > a, then p = —p. Now compute local cartesian system:

/

psinf

/

Fpcosb £ pe.

using upper or lower sign for respective A or B conic. Finally, rotate into appropriate
position:

x = —a' cos Az, — 1y sin Az,

y = —y' cos Az, + x’ sin Az,

Inverse projection:

First, rotate cartesian into local system:

"= —wcos Az, + ysin Az,

y = —xsin Az, —ycos Az,

If 2/ < 0, the change sign of 3'. Next compute:

p = [2%+ (pe +y)]"/?
A, = aten2(a’, pe + 1)

Set p = p’ and compute

z = 2tan"!(p/F)'/?
arccos{[tan"(z/2) + tan™(zap — 2)|}

(07

If Az < «, set p = p’(cos @ — Az) and repeat previous two equations until difference
between previous and current p less than desired tolerance. If ' < 0, set ¢. = ¢4
and A, = Azap, otherwise ¢, = ¢p and A, = Azpa. Finally calculate:

Az = A, — Az/n
¢ = arcsin(sin ¢. cos z + cos @, sin z cos Az

A = A, — atan2(sin Az, cos ¢,/ tan z — sin ¢, cos z)

95

6.0.4 (American) Polyconic.

Forward:
If ¢ =0, then
T =\
= —my
otherwise
E = n)\sing

x = cot¢psin K
y =m—mo+ncote(l —cosE)

For the sphere, N = 1 and M = ¢, and for the ellipsoid, n = (1 — e?sin® $)~'/? and
m = M(¢).

Inverse:
If y = —my, then

¢:
A==z

otherwise a Newton-Raphson approximation must be used which will not converge
when |A| > 7/2. Firsts compute:

A=mo+y
B = 2% + A?
Set ¢ = A and iterate the following. For the sphere:

A(ptang + 1) — ¢ — [(¢* + B) tan ¢]/2

Ap = (6 — A)/tand — 1

or the ellipsoid:

C = (1-e?sin?¢)?tan ¢

m = M(¢)
m' = (1—e?)(1— e%sin? ¢)~%/2
Ap = [A(Cm+1) —m — (M? + B)C/2]/

[
[e? sin 2¢(m? + B — 24Am) /4C +
(A —m)(Cm’ —2/sin2¢) —m/]

For both: ¢ = ¢ — A¢ and recompute until A¢ less than tolerance. Lastly, compute
A = sin~ ! (zC)/ sin ¢.

IMW Polyconic.

A modified polyconic projection adopted in 1909 for the 1:1,000,000-scale Interna-
tional Map of the World where each panel spans 4° of latitude and with longitude
extent determined by:

Latitude Zones Longitude Range)\
60°S to 60°N 6° 2°
60° to 76° 12° 4°
76° to 84° 24° 8°

96 CHAPTER 6. CONIC PROJECTIONS

The factor A\ is a standard meridian on either side of the map’s central meridian
that has unity meridianal scale factor (k). Parallel scale factor (k) is 1. along the
map bounds. Longitude boundaries of standard IMW sheets are unknown to the
author. Polar Stereographic was apparently used for the polar regions but confusing
extent specifications make scale factor speculative.

Circa 1962, the Lambert Conformal Conic replaced this projection. For this
system, the conic standard parallels are 15 and 4% of the extent of the 4° latitude
zones (standard parallels obtained by adding by +48 respectively to lower and
upper bounds) and the zones extend from 80°S to 84°N. The polar Stereographic
projection is used for the remaining regions with scale factor adjusted to match the
abutting edge of either IMW polyconic or Lambert Conformal Conic zones.

Usage of the IMW Polyconic requires specification of the map’s limiting par-
allels, ¢1 and ¢o, with lat_1 and lat_2. The projection may not symetrically
span the equator (¢; = —¢2). The standard merdians (from \;) are automatically
determined from the mean of the standard parallels, but this my be overriden by
specifying lon_1. Cartesian origin is at the central meridian, lon_0, and the most
southerly bounding parallel.

Initializing computations for both forward and inverse are as follows. For n = 1,
2, compute

T, = R,sinF, A1
Y1 = Rl(lfCOSFl) 0
T2 = RQ(].—COSFQ) 0

where

R, = cot ¢, /(1 — e*sin? p,,)*/?
/\1 sin ¢n

e
I

Then compute

Yo = {M(¢2) — M(61)]* — (22 — 21)?}* + 1
Co =y —T

D = M(¢2) — M(¢1)

P = [M(¢2)y1 — M(¢1)y2]/D

Q= (y2—y1)/D
P’ = [M(¢2)x1 — M(¢1)x2]/D
Q' = (z2—x1)/D

Forward:
Compute: this is incomplete!!! If ¢ = 0, then
T = A
y =20
Otherwise, compute
v = P4 QM(9)
Yo = P+ QM(9)
R = cot /(1 — e?sin? ¢)1/?
C = yo— R+ (R*—z2)'/?

where £ takes the same sign as ¢. Next, compute

97

$2 #0 $2 =0
Zp = Rgsin(Asin¢s) A
yp = Co+ Ro[l —cos(Asing)] Cy
and
$1#0 $1=0
T.= Rpsin(Asin¢q) A
Ye= Ri[l —cos(Asingy)] 0
Finally,
D = (l‘b - xc)/(yb - yc)
B =z.4+D(C+R-y.)
v = {BF D[R*(1+ D?) - B}"/?}/(1+ D?)

y=C+RTF (R?— %)/

where F takes sign opposite of ¢.

Inverse:

Using initial estimates of

¢ = ¢2
A =ux/cosd

compute (x¢,y;) obtained from (z,y) determined by the forward equations. Deter-
mine adjusted (¢, A) from:

¢ = [(¢— 1)y —ve)/ (Yt — ye)| + b1
A= Ax/xy

Using new estimates, repeat process until change in each axis reaches tolerance.

6.0.5 Rectangular Polyconic.
If ¢ts = 0, then

A=)\/2
otherwise
A = tan[(Asin ¢)/2] sin ¢ys.
If ¢ =0, then
x=2A
= —¢o.
otherwise
p = cot ¢
6 = 2tan"'(Asin¢)
x = psinf

y = ¢— ¢o+ p(l—cosb).

98 CHAPTER 6. CONIC PROJECTIONS

6.0.6 Modified Polyconic.

For ¢ =0

= 25,f()

y=20
otherwise

25, f (A)V S/ Sn
e [f(A) sin (bVSm/Sn—l]z
y = SuM() + xf(N)sin gV S/ 51

where

V = cos ¢/ (1 — e?sin? ¢)1/?
When ¢y = 0, then
F(A) =moAr/(25,)

otherwise
_ tan[(no sin ggA) /(25,)]

sin ¢q ‘/()Sm/s"' -1
In the case of ¢pg = 0, typically S,, =S, = ng where ng is the scale factor along
the equator. Where ¢y # 0, K also needs to be specified.

)

6.0.7 Ginzburg Polyconics.

These polyconics are based upon polynomials in ¢ defining the cartesian coordinates
at the central meridian (z,,, ¥,) and at the A = 180° meridian (z;, y;):

Ty =

0
2n—1
Ym = E CQn—1¢ "
n=1
2
xry = E a2, "
n—

)
o= Zb2n—1¢2n71
n=1

where the coefficents are:

c1 1.0 1.0 1.0 1.0

c3 0.045 0.0 0.0 0.0

ao 57/6 2.8284 2.5838 2.6516
az —0.62636 —1.6988 —0.83584 —0.76534
as —0.0344 0.75432 0.17037 0.19123
ae 0.0 —0.18071 —0.038097 —0.047094
b1 1.3493 1.76003 1.54331 1.36289
bs —0.05524 —0.38914 —0.41143 —0.13965
bs 0.0 0.042555 0.082742 0.031762

To determine the radius of the polyconic arc, the radius of a circle circumscribing
the triangle formed by the A = £180° points and the central merdian:

p=(af +y2)/(2x1ys)

where ys = |yi — ym| and where the sign of p is taken from ¢. The cartesian
coordinates are determined by:

x = psinfA
Y
where 0 = tan~(z/(p — y))/7.

pcos O+ ypm,

99

6.0.8 Kiovak Oblique Confomal Conic Projection

Projection of geographic coordinates by the oblique conformal conic projection is
three step process. First, conversion of the ellipsoid coordinates (¢,)\) to coordinates
on a conformal sphere (¢.,\.) which is followed by translation of the spherical
coordinates (¢’,\'). Finally, these coordinates are projected to planar coodinates
with the tangential form of the conformal conic projection. The following equations
are presented in their most general form and include options that may be disregarded
in the final application.

Forward projection

In the following conversion from ellipsoid to conformal sphere coodinates the values
of the projection origin on the ellipsoid, ¢o-Ag, must be provided. R, is the radius of
the sphere computed as the geometric mean of the meridinal and parallel ellipsoid
radii.

. Ce/2
. = 2arctan |K tan®(r/4+ $/2) (1—esm¢> 1 —m/2 (6.18)

1+ esing
Ae = C(A= X (6.19)
1 —e2

R, = a——— (6.20)
1 — e2sin” ¢
e2costpg

= 14+ —F+ 6.21

C + (6.21)

X = arcsin (SIHC,QSO) (6.22)

— esin Ce/2
K = tan(x/2+7/4)/ ltanc(fbo/Q +7/4) (M)] (6.23)

The following is general spherical translation but in this application only the shift
of the latitude of the pole, «, is used. Angles 8 and A\, are ignored (set to 0).

¢ = arcsin(sinasin ¢, — cos a cos ¢, cos(Ae — Aeg)) (6.24)
N = arcsin(cos ¢, sin(A. — A\eo)/ cos¢’) + 3 (6.25)
a = w/2— ¢ (6.26)

where ¢; is the latitude of the new sphere on the old sphere.

The translated spherical coordinates are now projected to the tangent cone by
the general spherical conformal conic projection:

= singy ()
F = cos¢ytan™(w/44 ¢1/2)/n (6.28)
p = koR.F/tan"(m/4+¢'/2) (6.29)
po = koR.F/tan™(mw/4 + ¢1/2) (6.30)
(6.31)
(6.32)
(6.33)

3
|

= =N
r = psinf

= po—pcost

100 CHAPTER 6. CONIC PROJECTIONS

Inverse projection

For the inverse case, coordinates on the conformal sphere are first found from:

koR.F\ "
¢ = 2arctan(0 pc) —7/2 (6.34)
N = 0/n+ Ao (6.35)
p = E£Vz2+ (po—y)?), taking sign of n (6.36)
0 = arctan (<) (6.37)
po—Y
To revert these coordinates to the unshifted spherical coordinates:
¢. = arcsin(sinasing’ + cosacos @’ cos(N — 3)) (6.38)
Ae = arcsin(cos ¢ sin(\ — (3)/cos de) + Ao (6.39)
At this point the ellipsoid coordinates are obtained from
A= A/C+ X (6.40)
t 1/C (4 9 4
¢; = 2arctan an [7(¢'/2 + m/4) S| —7/2 (6.41)
K1/C (1 — esin ¢>H)e/
1+esing;_1

with the initial value of ¢;,_; = ¢. and ¢;_; iteratively replaced by ¢; until |¢; —¢;_1|
is less than an acceptable error value.

The Krovak Projection Grid

The following script defines the execution of the program proj to compute coordi-
nates for the S-JTSK grid system covering the states of the Czech Republic and
Slovak Republic. The central (or origin) longitude is specified as being 42°30’ east
of the a point off the isle of Ferro (Hierro) in the Canary Islands. The Ferro point
is at 17°39’59.7354"W but the value is often rounded to 17°40’'W for topographic
work. The latitude of origin on the ellipsoid is 49°30’. The latitude of the trans-
lated pole on the original conformal sphere is 56°42'42.69689” and the latitude of
the cone’s point of tangency on the translated sphere is 78°30’.

#<S-JTSK> Krovak Coordinate System
proj +proj=kocc +ellps=bessel +czech
+lon_0=42d30
+lat_0=49d30
+lat_t=59d42’42.69689
+lat_1=78d30
+k_0=.9999

The natural math conversion puts the coordinates of the area in the —x, —y
quadrant. The S-JTSK projection, however, uses positive y to the left of the lon-
gitude of origin and positive x south of the cone’s polar point near Helsinki. The
option +czech converts to S-JTSK x,y output.

6.0.9 Lambert Conformal Conic Alternative Projection

+proj=lcca This tangential conic projection is a variant of the Lambert
Conformal Conic that was employed by the French and several north African and
near eastern countries. The unique problem was that the projection was computed
with a severely truncated series which compromised its conformality as well as
creating confusion.

101

Forward projection

The following are the equations to determine the planar coordinates from geographic
coordinates.

x = rsinf (6.42)
y = 1r9—rcosf (6.43)
6 = IA (6.44)
I = singp (6.45)
T ro F Ar (6.46)

3 4 .
Ar = F(S)=S+—> {i5(5Ro 4N, tan ¢g

6Ro Ny 24RZNG
55(5 + 3 tanj ¢0) + 56(7 —+ 4tan2 gf)(jl) tan (250 (647)
120Ry N3 240R N

S = M(¢)— M(¢o) (6.48)

ro = No/tangy (6.49)
Ny = a/y/1—e2sin® ¢y (6.50)

1— 2
R, = a(l—¢’) (6.51)

(1 — e2sin? ¢og)3/2

where M (¢) is the meridinal arc distance from the equator to latitude ¢.

In the case of this “nearly conformal” projection, only the first two terms of
are evaluated. Even the remaining series coefficients (inside curly braces)
are an approximation where the higher order terms were simplified by assuming
Ry = Np.

Inverse projection

The geographic coordinates are obtained from the planar cartesian by:

6 = arctan (<) (6.52)
To—Y

Ar = y—zxtan (g) (6.53)

A = 0/singg (6.54)

The value of S can be obtained by applying Newton-Raphson’s method to (6.47):

Siy1 =15 — F(S)

(6.55)

where the initial value of S; = Ar and iteration is continued until specified tolerance
is met. Finally, latitude is obtained from the inverse meridinal arc routine:

¢ =M"1(S+ M(¢o)); (6.56)

PROJ.4 usage

Projection selection is +proj=lcca where only +lat_0= is used to specify point of
cone tangency and mathematical origin (along with +lon_0). For a secant cone, use
the scale factor option +k_0=.

For an accurate, complete Lambert Conformal Conic use +proj=lcc.

102 CHAPTER 6. CONIC PROJECTIONS

6.0.10 Hill Eucyclic.

+proj=hill [+K=] or [+beta=] Fig. Ref. [?]
Without specifying options K assumes the value of 1. For computing the Maurer
SNo. 73 projection, set beta=45d. In all cases compute

1

sin 8 = oK (6.57)
A= (6.58)
0o = g (1 +K+VE@2+ K)) (6.59)

When |¢| # 7/2 use Newton-Raphson iteration to determine 6 from
P)=60—-K?3—(1+ K)sin6

+(1+(1+K)*—2(1+ K)cosb) (6+arctansme)

14+ K —cosf
1
- 5(1—sin¢)[ﬂ'+4ﬁ(1+K)] (6.60)
1oy . sin 0
P'(0) =2(1+ K)sinf (ﬂ + arctan TT K —cosd cosﬁ) (6.61)
and then
p=AV1+(1+K)2—-2(1+K)cosf (6.62)
sin 6

(1 = arctan (6.63)

1+ K —cosf

Otherwise 3; = 0 and

) AK if p =7/2
P= {A(K+2) it ¢ = —7/2 (6.64)

Finally
w=2Bt8) (6.65)
T
x = psinw (6.66)
Y= po— pPCosw (6.67)

where pg is determined from ¢q.

103

Figure 6.1: A-Hill Eucyclic and B-Maurer SNo. 73 (+proj=hill +K=0)

104 CHAPTER 6. CONIC PROJECTIONS

Chapter 7

Azimuthal Projections

7.1 Perspective

7.1.1 Perspective Azimuthal Projections.

The term perspective is applied to several of the azimuthal projections as well
as a few conic and cylindrical projections. Figure [7.I] shows the geometry of the
perspective projection where a ray originating at the “perspective” point P passes
though the object to be plotted at L to the plane of the map at L’ at a distance p
from the point of tangency of the plane with the sphere. From the known conditions,
1 and h the the distance p is determined by the general expression

(14 h)siny

P hfcosy (7.1)

From this equation three of the common perspective azimuthal projections are sim-
plified special cases of h:

tan ¥ h = 0 Gnomonic
94
p= % = 2tan(¢/2) h =1 Stereographic (7.2)
sin h = oo Orthographic

The angle ¢’ is the limit of 1 for the visible part of the projection and is defined
by:

o = arccos(—1/h) |h| > 1 (73)
"~ | #/2+aresinh b <1)

For the case where |h| < 1 then p = oo when 1) =)'
For the case where TS is the polar axis the angle 1) becomes the colatitude and
equation 7?7 becomes

cot ¢ Gnomonic
p =1 2tan(m/4 — ¢/2) Sterographic (7.4)
cos ¢ Orthographic

The Cartesian coordinates polar aspect

T = psin A Yy = Fpcos A (7.5)

105

106 CHAPTER 7. AZIMUTHAL PROJECTIONS

Figure 7.1: Geometry of perspective projections

where A = 0 follows the negative y azis for the North polar aspect and the positive

y axis for the South polar aspect.

For the oblique aspect ¥ or the angular distance of L from the center of the
projection (¢, A = 0) to the projected point is the geodesic or “Great Circle”

distance. Snyder in both [21] and [23] has used:
€OoS Y = sin ¢g sin ¢ + cos ¢g CoS ¢ CoS A

However, for better precision near the origin ([21L p. 30]):

1/2
cos(1/2) = {sin2 ((b _2%) + cos ¢ cos ¢ sin? %

The azimuth from the projection center to the point is:

sin o« = sin A cos ¢/ sin) or

cos o = (cos ¢y sin ¢ — sin ¢y cos pcos \)/ sin)
The oblique coordinates z,y are

x = K cos¢sin \
y = K(cos ¢ sin ¢ — sin ¢y cos ¢ cos \)

where
1/(sin ¢y sin ¢ 4 cos ¢ cos ¢ cos) Gnomonic
K = ¢ 2/(1+ sin ¢y sin ¢ + cos ¢1 cospcos A) Stereographic
1 Orthographic

Further simplifications for the equitorial case are obvious.
For the inverse projection the first operation is to determine

p= a2ty

(7.6)

(7.12)

(7.13)

7.1. PERSPECTIVE 107

If p=0 then A =0 and ¢ = ¢9. Otherwise

arctan p Gnomonic
1 = { 2arctan ﬁ Stereographic (7.14)
arcsin p Orthographic

Geographic coordinates are now obtained from

¢ = arcsin [cos ¢ sin ¢y + (y sinyy cos ¢g)/p] (7.15)
A = atan2(x sin), p cos ¢ cosp — y sin ¢ sin 1)) (7.16)

If | o] = 90° then
A = atan2(z, Fy) (7.17)

where y takes the opposite sign of ¢g.

7.1.2 Stereographic Projection.

+proj=stere
+proj=sterea
+proj=ups
+proj=rouss

The conformal Stereographic projection is useful for both mapping of continental
size regions as well as grid systems with a near circular perimeter. Although spher-
ical form, useful for small scale projections has only one set of equations, three
different forms of the ellipsoid Oblique Stereographic projection are available. Two
of them are based upon conformal coversion of the geographic coordinates on the el-
lipsoid to coodinates on the sphere while the third uses a polynomial approximation.
For the polar aspect, only one ellipsoidal method is used in the +proj=stere version
and the specialized use of the polar projection in the Universal Polar Stereographic
system is available with +proj=ups.

Spherical Stereographic

The forward spherical oblique equations (0 < |¢g| < 7/2) are:

x = 2kcospsinA (7.18)
= 2k(cos ¢ sin ¢ — sin ¢g cos ¢ cos) (7.19)

where
k= ko/(1+ sin¢gsin¢ + cos ¢ cos ¢ cos \) (7.20)

For the equitorial aspect, ¢g = 0,

y = ksing (7.21)
kE = 2ko/(1+ cospcosA) (7.22)

and where x is obtained from equation [7.18]
For the polar aspect, ¢¢ &+ 7/2, the equations simplify to:

T .9
x = 2kotsinA (7.24)
y = 2fkotcosA (7.25)

108 CHAPTER 7. AZIMUTHAL PROJECTIONS

where f F 1 is assigned the opposite sign of ¢q.
To determine the inverse spherical projection determine:

po= (@*+y)'? (7.26)
¢ = 2arctan (220> (7.27)
If p = 0 then ¢ = ¢9 and A = 0 otherwise for the general oblique case:
¢ = arcsin <coscsin ¢o + ysmccosgbo) (7.28)
rsinc
= 2 .2
A arctan (p COS (g cOs ¢ — ¥ sin ¢g sin c) (7.29)
or for the polar case
A = arctan?2 (ny) (7.30)
where f + 1 with the sign of ¢g. For the equitorial case:
A = arctan?2 (acsmc) (7.31)
p COS g COS C

In the case of +proj=stere the specification of the latitude origin (+1lat_0=¢g)
determines the oblique or polar mode of usage. Scaling may be performed by using
k_0=ko in all cases or latitude of true scale (+lat_ts=d¢,;) for the polar case. Note
that the central meridian for the southern polar case runs from the projection origin
to the north.

The Universal Polar Stereographic is much like the Universal Transverse Mer-
cator system where scaling and false easting/northings are all predefined and an
ellipsoid must be specified.

Oblique Stereographic using intermediate sphere.

Using the spherical stereographic projection:

x = 2kR.cosxsin(A.) (7.32)
y = 2kRc[cos xpsin x — sin xg cos x cos(A.)] (7.33)

where
k= ko/[1+ sinypsinx + cos xo cos x cos(A¢)] (7.34)

The difference between stere and sterea is how the conformal latitudes x and xq
and longitude A\, and radius R, are determined.
For determining the x, xo and R. values the function series proj_sgauss and
proj-gauss are used for the respective stere and sterea entries (see section .
For the inverse case:

po= (@ +y)"? (7.35)

¢ = 2arctan <2Rpck0) (7.36)

X = arcsin <cos csin xo + ysinccosX0> (7.37)

A = arctan < rsine . .) (7.38)
P COS X COS ¢ — ysin o sin ¢

Where p = 0 then x = x) and A. = 0. For the geographic coordinates execute the
inverse confomal functions proj_sgauss_inv or proj_gauss_inv.

7.1. PERSPECTIVE 109

Oblique Roussilhe Stereographic.

Another oblique version of the stereographic projection for the ellipsoid presented
by Roussilhe [19]. Given:

¢

s = Mdgo (7.39)
%o

a = ANcos¢ (7.40)

where M and N are the respective ellipsoid meridional radius and radius normal to
the meridian:

M = (1—e*)(1-e*sin?¢)~3/?
N = (1-—eé?sin?¢)71/?

then the Cartesian coordinates are computed by:

r = a4+ Ajas® — Aya® — A30’s + Agast — Asals® — Aga® (7.41)
= s+ Bia? + Bys® + Bza?s + Bya* + Bsa®s? — Bgats +
B.a?s3 + Bgs® (7.42)
and where:
to = tan (;50
1 to
Al = B = —2_
YT 4MLN, YA
Ay — 212 — 1 — 2¢? sin? ¢y B, 1
12MON0 12M0N0
A, — To(1+4t3) B — 1+ 2t — 2e?sin’ ¢
57 T12MoN? 3T 4MoN,
1 to(2 —t3)
A= —— B, =~~~ "0
T 24MEN2 T 24MN2
1268 + 1182 — 1 to(5 + 4t3)
Ag = — e By = e
24 MG N§ 8MyNg
—2t8 + 11t — 2 6t — 5tg — 2
Ag = — o — Bs = — o=
240MZ N3 48MEN;
B — 12t§ +19t3 +5
T 24M2ENE
1
Bg= ——
® T 120M2NZ

The distance s is obtained from the meridional distance function proj mdist
by initializing so with the meridional distance at ¢y and subtracting it from the
meridional distance for each value of ¢.

For the inverse projection first determine:

a = x—Cixy® + Cox® + Csa®y — Cua® + Cs23y? + Coay®* —
Crady — Cea3y? (7.43)
s = y—Diz?—DyY? — Dyz®y + Dya* — Dsaz?y? + Dgazty — D7y +
Dgy® — Dgz% + Dyga*y? + Diia’y?* (7.44)

where

110 CHAPTER 7. AZIMUTHAL PROJECTIONS

1 to
Cy = Dy = 2
L= 1Mo, LT 2N
= 212 — 1 — 2¢?sin” ¢y D, — 1
12Mo Ny 12Mo No
to(1+t2) 1+ 2t2 — 2¢%sin? ¢y
O = AN Ds = AM, N,
04¥p 04V¥0
22t3 + 3413 — 3 to(1+t3)
Co=— aeNT Dy= 5"
240 M2 N2 8My N
12t3 +13t3 + 4 to(1+2t3)
Cs=—mrEnNT Ds=— 2
24 M2 NZ 4MyNZ
1 6t +6t3 + 1
Cs = 2772 Do = —7 20 2
16 M2 NG 16 M2 NG
to (165 + 33t3 + 11) t3(3 + 4t3)
Cr= ABMEZNG Dr==giEne
0-'0 0-'0
to(4t2 +1) 1
Cg = ——-0 2 Dg=—b—
® 7 36MZN3 ® 7~ 80MZNZ
De — to(—26t3 + 17812 — 21)
? T20MZ N2
Do to(48t3 + 86t 29)
10 96 MENG
 to(4483 + 37)
© 96MEN§

Determine the latitude from the inverse meridional function proj_inv.mdist for
5 + so and determine longitude from A = a(1 — e?sin® ¢)'/2/ cos ¢

7.2 Modified

7.2.1 Hammer and Eckert-Greifendorff.
+proj=hammer [+W=] Fig. ??
+proj=eck_greif
The general forward equations are:

B V2 . _ V2sing
d =1+ cospcos(WA) x = 7w cos ¢ sin(WA) y = 7

where W = 1/2 for Hammer (default when +W not specified) and for Eckert-
Greifendorff. For the inverse, the bivariate Newton-Raphson process (3.9) is em-
ployed and the required partial derivatives are:

(7.45)

% — 2;3[32 cos ¢(cos ¢ + (1 + d) cos(WA)) (7.46)
% _ _W%u +d) sin gsin(WA) (7.47)
% — %cos¢sin¢sin(W)\) (7.48)
0y _ V2 (cos(WA) + (1 + d) cos ¢) (7.49)

575 T 943/2

7.2. MODIFIED 111

For the Hammer inverse the initial geographic coordinate estimates are:

¢ = (0.0059352y + (1.114 — 0.16684 2))

(7.50)
+ (—0.011799 = + 0.04837) = — 0.03175
No=av2(2-¢2) (7.51)
Initial geographic coordinate estimates for Eckert-Greifendorff are:
= (0.093931y + (0.97418 — 0.042348 z
$o = (y+()y (752)

+ (—0.0010565 2 + 0.00784937) : — 0.0031801
Ao = ((3.629y + (1.2425z — 5.8619)) y

+ ((—0.063661 & — 0.32196) = + 2.1456)) y + ((0.0083212 x (7.53)

—0.01121) 2 + 1.0081) z — 0.058104

7.2.2 Aitoff, Winkel Tripel and with Bartholomew option.

+proj=aitoff
+proj=wintri [lat_1=]
+proj=barth
The forward formulas for the Aitoff projection are:

§ = arccos <cos ¢ cos ;\) (7.54)

If§ =0, then z =y =0 else

x = +2§sina y = dcosa (7.55)

where = takes the sign of .
The inverse of the Aitoff projection requires the general bivariate Newton-
Raphson method (3.9) with the following partial derivatives:

% = COS; ¢ in? % + el cos ¢ sin’ gbcos% (7.56)
% = sin /\2211 2¢ _ 023(i2 sinésin% (7.57)
% - ”Zé‘ﬁ sin% _ Osin ¢4ng /f sin) (7.58)
where
C =1 — cos® ¢ cos? % (7.60)

For the Winkel Tripel and Bartholomew projections the average of the Aitoff
(2a, yp» below) and Equirectangular are used:

Tq + Acosdy Ya + ¢
T v=

(7.61)

where ¢1 = arccos(2/7) (approximately 50.467°) for Winkel Tripel and ¢; = 40°
for Bartholomew. Winkel Tripel may be generalized by specifying +1at_1= for using

112 CHAPTER 7. AZIMUTHAL PROJECTIONS

alternative values of ¢ however inverse projection is not available when this option
is used.

The partial derivative needed by the Newton-Raphson system are simple modi-
fications of the values determined for the Aitoff projection:

L) B
For Aitoff the initial geographic coordinate estimate is:
$o = —0.083557 y* + (1.1495 — 0.15666 =) y (7.64)
—0.013258 2% + 0.050367 = — 0.034144
po=o0 (2-y2) (7.65)

For Winkel Tripel the initial geographic coordinate estimate is:

Ao = 0.95883 > + (0.81597 = — 2.0631) 3>
+ (—0.118252” — 0.2113 2 + 1.0087) y (7.66)
+0.023893 2° — 0.048077 2% + 1.2454 2 — 0.047809

b0 = 0.030779 9> + (0.97772 — 0.07118 z) y

7.67
—0.022258 2 + 0.050243 = — 0.0079936 (7.67)

For Bartholomew the coordinate estimates are:

Ao = 0.79504 53 + (0.66796 = — 1.7303) 3>
+ (—0.081812” — 0.1881 z + 0.86145) y (7.68)
+0.012063 2° — 0.020416 2% + 1.1409 2 — 0.041698

b0 = 0.037265 > + (0.96681 — 0.060926) ¥

7.69
—0.019451 22 + 0.045983 = — 0.0059598 ()

7.2.3 Wagner VII (Hammer-Wagner) and Wagner VIII.

Name +proj= Fig. Ref.
Wagner VII wag7 77
Wagner VIII wag8 77

For n = 1/3, initialization for Wagner VII:

me =1 (7.70)
my = sin 65° (7.71)
k = 2v/5in 32.5° (7.72)
2
Cy = k (7.73)
nmi
2
Cy = (7.74)

7.2. MODIFIED 113

RS 2

: AL
‘m\\\\"@\‘\\\ I{ll.’lll‘i’i'l"?

HEE PR AT i
RN TRy : - AR 3 \
YT T7770 77 INEENE) ,
LI P VALY v
A 22 N\
= RNt
SN

DI WA
EpaRL M)
77 = Alh
\NX ANV T777F
\\\\\\\'\$\&\3 2% /// ~

ML
N

wli'\‘\‘\ﬁ’ﬁ\
 ARRAAANNNN

sEARRRRROINNS
3 W
EECaNE \ an SEBANALEA
l =R YL T T EERY
T 5 77
] Warrrirs 4

L1 Z2Z
2

R . AN
R R TR T T
/7 - AN NG T T T NS
R R Bia NEDARILET
\ ENEEANINENRS S

77
77222

Figure 7.2: Modified Azimuthals.
A-Aitoff, B-Winkel Tripel, C-Hammer, D-Eckert-Greifendorff (+proj=hammer
+W=0.25), E-Wagner VII, F-Wagner VIII, G-Wagner IX and G-Bartholomew
(+proj=wintri +lat_1=40).

and for Wagner VIII:

arccos(1.2 cos 60°)

= 7.75
e 60° (7.75)
51n65°
=7 7.76
" sin(m290°) (7.76)
2sin 32.5°
k=\—m— .77
sin 30° ()
2
=2k (7.78)
mimeon
2
Cy = (7.79)

114 CHAPTER 7. AZIMUTHAL PROJECTIONS
Common computations [28 p. 205-207]:

sin ¢ = my sin(mag) (7.80)

cosd = coswcosg (7.81)

If 6 =0 then z =y =0 else

= . 2
cosa = —— (7.82)
x = +C,sin g sin «v (7.83)
)
y = Cysin 5 cosa (7.84)

where x assumes the sign of A\. An alternate, more efficient method [23], p. 233] for
the common computations are:

S =m1l xsin(m?2 x ¢) (7.85)

Co=/1— 82 (7.86)
9 2

G = [1 + Co COS()\/S)] (7.87)

x = %0001 sin(\/3) (7.88)

y = %501 (7.89)

7.2.4 Wagner IX (Aitoff-Wagner).

+proj=wag9 Fig. 77

n= % (7.90)
m = g (7.91)
14

k=% (7.92)

Y =mo (7.93)

d = arccos[cos(n)) cos 1] (7.94)

If 6 =0 then z =y =0 else

cosa = Ssllrrllzé} (7.95)

x = :I:\/:%ésina (7.96)

Y= k:\/lminé cos (7.97)

where x takes the sign of \.

7.2. MODIFIED

7.2.5 Gilbert Two World Perspective.
gilbert [lat_1=] Fig. ?? Ref: [4]

x =cos¢ sin\
y = cos ¢} sin ¢’ — sin @] cos ¢’ cos N’
D = sin ¢/ sin ¢’ + cos ¢} cos ¢’ cos N’

where D > 0 for points to be visible and

¢’ = arcsintan (ﬁ)

N =2
2

115

(7.98)
(7.99)
(7.100)

(7.101)

(7.102)

The latitude ¢; is the latitude of perspective azimuth for the oblique case which

has a default value of 5°.

116 CHAPTER 7. AZIMUTHAL PROJECTIONS

Chapter 8

Miscellaneous Projections

This category is a collection of projections that often defy the process of classifica-
tion. Some are termed “Globular” as the meridians at £90° of the central meridian
are circular and usually form the boundaries of a hemispherical plot. Others might
be considered Pseudocylindricals and variants of conics but by tradition end up
being classified as miscellaneous. Some projections seem like simply cartoons.

8.1 Spherical Forms

8.1.1 Apian Globular I, Bacon and Ortelius Oval.

Name +proj= figure Ref.
Apian Globular I apianl [23][p. 234]
Bacon Globular bacon 23] [p. 234]
Ortelius Oval ortel [23][p. 235]
10 Apian and Ortelius
v= {” sin¢ Bacon (8:1)
2
(m/2)* >
+ A) /2
po { (R) (5.2
/2 Ortelius when |A| > 7/2
0 ifA=0 <3
e i(|A|—F+(F2—y2)%) if A £ 0) (8:3)
where = takes the sign of .
8.1.2 Armadillo.
+proj=arma Fig. 8.3 Ref. [23 p. 23§]
First determine
cos(A/2)
g = — t 7 4
10) arctan (tan 20°) (8.4)
then if ¢ > ¢4 then
A
x = (1 + cos @) sin 5 (8.5)
y = (1 +sin20° — cos 20°)/2 + sin ¢ cos 20°
— (1 + cos ¢) sin 20° cos(\/2) (8.6)

117

118 CHAPTER 8. MISCELLANEOUS PROJECTIONS

Figure 8.1: Apian Comparison
Global plot of A—Apian I and B—Apian II.,

else point invisible.

8.1.3 August Epicycloidal.

+proj=august Fig. [8.3| Ref. [23] p. 235]

C, = <1 — tan? ;5) ’ (8.7)
C=14Cjcos % (8.8)
x = % sin 5 (8.9)
Y1 = tang/Q) (8.10)
x = §x1(3+:cf — 3yi) (8.11)

4
y= §y1(3 + 322 — %) (8.12)

8.1. SPHERICAL FORMS 119

7T
/77T
(L]
(L]
L
A
AN

\
[A] Nz

T
T Y]
NN VF 7T
N
o] [~

Figure 8.2: Globular Series
A—Bacon Globular, B-Fournier Globular 1, C—Nicolosi Globular and D—Apian Glob-
ular 1.

120 CHAPTER 8. MISCELLANEOUS PROJECTIONS

o

Figure 8.3: General Miscellaneous
A—August Epicycloidal, B-Eisenlohr, C—Ortelius Oval and D—Armadillo.

8.1.4 Eisenlohr

+proj=eisen Fig. [8.3] Ref. [23, p. 235]

S) = sin% (8.13)
C = cos% (8.14)
Q= cos% (8.15)
oo sin(@/2) (5.16)
Q + (2cos¢)2C) '
2 \?
o (+2) a1
P = Cos(b (8.18)
_[Q@+P(CL+ 51)]°2
V= [Qﬂm_sl)] (8.19)
= (3+82)(=2lnV +C(V —1/V)) 8.20
y=(3+8%)(—2arctanT + CT(V + 1/V)) (8.21)

8.1. SPHERICAL FORMS

8.1.5 Fournier Globular I.

+proj=fourl Fig. Ref. [23] p. 234]
If \=0or |¢| = 7/2 then

z=0
else if ¢ = 0 then
=\

else if || = 7/2 then

T = Acos¢
otherwise
2
T
C=7
P = |7 sin ¢|
42
S = C-9
P —2¢|
)\2
A=— -1
C

y:i({stA(cfpsz?)}% fs) /A

2

Yy
:ﬂF
x C

where x and y take the respective signs of A and ¢.

8.1.6 Guyou and Adams Series

Name +proj=

y=2¢
y=0
y:gsinqb

Ref.

121

(8.22)

(8.23)

(8.24)

Guyou guyou
Adams Hemisphere in a Square adams_hemi
Adams World in a Square I adams_wsI
Adams World in a Square II adams_wsII

23, p. 235-236]

Several projections have common usage of the elliptical integral of the first kind

and are collected under this section.
For the Guyou projection: If |¢| = 7/2, then
=0
y = £1.85407 taking the sign of ¢

else where |\| < 7/2

cosa = (cos psin A — sin @) /v/2
cosb = (cos ¢sin A + sin @) /v/2
S = £1 takes sign of A
S, = +1 takes sign of ¢

122 CHAPTER 8. MISCELLANEOUS PROJECTIONS

For the Adams Hemisphere in a Square projection where |\| < 7/2:

€os a = cos ¢sin A
T
b=—-—
5 9
S = %1
Sy, = =1

takes sign of sin¢ + a

takes sign of sin¢g — a

For the Adams World in a Square I poles at centers of sides projection:

sin ¢’ = tan g

cosa = (cos ¢ sin% — sin ¢/> /V2
s A Y
cosb = [cos ¢ s1n§+s1n¢) /N2

Sm = +1 takes sign of A
S, = +1 takes sign of ¢

8.37
8.38

8.39
8.40

~—~ o~ o~
= O —

For the Adams World in a Square II poles at opposite vertexes projection:

sin ¢’ = tan g

DA
cosa = cos ¢’ sin >

cosb = sin ¢’
S = *1
S, = *£1

takes sign of sin¢’ + a
takes sign of sin¢’ — a

Finally compute:

sinm = i(l—i—cosacosb—smasmb)%
smn—:I:(l—cosacosb—smasmb)%
= F(m,0.5)
F(n,v0.5)

where m takes the sign of .S,,

where n takes the sign of S,

(8.46)

8.47

8.48
8.49

)
)
)
8.50)

(
(
(
(

where F(¢,k) is the elliptic integral of the first kind. Because the factor k is
moderately large and because it is constant and the function itself is well behaved,
the use of a Chebyshev approximation series is warranted.

~ lz_: i Ti(¢)
i=0

_ 560
where
To(¢) =1
Ti(¢) =9
Ty(¢) = 2¢° — 1
Tn+1(¢) = 2¢Tn(¢) —Th—1 n2>1

(8.55)

(8.56)
(8.57)
(8.58)

(8.59)

8.1. SPHERICAL FORMS 123

Normalizing the elliptic integral, F(¢,k)/¢ allows an even Chebyshev series to be
determined with significantly fewer terms for a given precision. The follow list of
even coefficients (stored in order) provide for an approximating function with a
precision better than 1 x 10~7 which should be sufficient for spherical earth appli-
cations.

co = 2.19174570831038 ¢4 = 5.30394739921063e — 05
c1 = 0.0914203033408211 cs = 3.12960480765314e — 05
co = —0.00575574836830288 ce = 2.02692115653689¢ — 07
c3 = —0.0012804644680613 c7 = —8.58691003636495¢ — 07

These are evaluated using Clenshaw’s recursion in the following manner:

2
x = ¢— scale argument range to £1
71'

x =222 —1 compensate argument for even series
t1=1t2=0

For i = M — 1 while 7 > 0 do

t=11

t1 =2xt1 —to + ¢
to =1

1=1—1;

where M is the order of the coefficient array. Finally compute

F(d), V 05) = (;5 <$t1 — 1o+ ;Co>

8.1.7 Lagrange.

+proj=lagrng +W= +lat_1= Fig. |8.5| Ref. [23] p.]
The factor M is the ratio of the difference in longitude from the central meridian
to the a circular meridian to 90°. Thus for M = 1 the hemisphere is in a circle and
for M = 2 the world is in a circle. Factor ¢; is the central latitude of the projection
and forms a straight line parallel. If |¢| = 7/2 then

z=0 (8.60)
y = £2 where y takes the sign of ¢. (8.61)
otherwise
1+ sin ¢y =
A= —= .62
' (1—sin¢>1> (862)
_ (1+sing 7w
A= (1 — sinfb) (8.63)
V=AA (8.64)
C:(V+1/V)/2+cos% (8.65)
2
T=5 sin % (8.66)

y=V-1/V)/V (8.67)

124 CHAPTER 8. MISCELLANEOUS PROJECTIONS

] QL

o) /\\\//l 20 Y R N

|

o

Figure 8.4: Miscellaneous Square Series
A—-Guyou, B-Adams World in a Square I, C-Adams Hemisphere in a Square and
D-Adams World in a Square II.

For normal Lagrange, W = 2 and ¢_0 which are default values when omitted. If
W =1 and ¢; = 0 then equitorial Stereographic results.

8.1.8 Nicolosi Globular.

+proj=nicol Fig. Ref. [23] p. 234]
If A=0 or |¢| = /2 then

x=0 y=¢ (8.68)
else if ¢ = 0 then

=\ y=20 (8.69)
else if |\| = 7/2 then

T = \coso y= T sin ¢ (8.70)

8.1. SPHERICAL FORMS 125

'L =
b AN
R
3% N
< s
~ 7T A} = /L/E)'ﬂ '
BN N M & A ")t
D] 3
11—
) b B
o]

Figure 8.5: Lagrange Series
A-Lagrange +W=1.43, B—+W=1 +lon_0=90W, C—default options, D—1lat_1=45N.

else
™ 2\
= — = — .71
b T (8.71)
2
c= 2¢ (8.72)
™
1—c?
d= - (8.73)
b
_b 74
k y (8.74)
k, =1/k (8.75)
k%sing + b/2
M=—— " .
1+ kr? (8.76)
k2 sin ¢ + d/2
N=-—1—_-"'"- .
1+ k2 (8.77)
r=2 M+ | M2y cos” : here + takes the sign of A (8.78)
-2 1+ k2 v 8 '
T k2sin® ¢ + dsing — 1 5
=[N+t |N?-Z
L) ([1+ k2 } (8.79)

where £ takes the opposite sign of ¢

126 CHAPTER 8. MISCELLANEOUS PROJECTIONS

8.1.9 Van der Grinten (I).

+proj=vandg Fig. Ref. 23] p. 237]

For the forward projection:
2
B =—|¢|
T
If ¢ = 0 then
T=A
else if A = 0 then
z=0
else if |¢| = /2 then

z=0

where y takes the sign of ¢ in last two cases else

_lm_A
2N 7
2
P=G(=-1
S =P+ A

C=(1-B%:2
y=0
B B
Y= e
y==m
C
G*B+C—1
Q=A+G
T=G- P?

_.r 272 2 _ p2yid
xfiS<AT+[AT S(G p)])

y = i% (PQ — A[(A2+1)S — QQ]%)

where x and y take the respective signs of A and phi.

For the inverse projection:
X=xz/n
Y=y/m
e =—Y|(1+X?+Y?)
o =c1 —2Y? + X2
c3=—2c1 +1+2Y? + (22 +Y?)?
d=Y?/cz+ (2¢3/c3 — 9eica/ch) 2T

3
ay = C1—3703 /Cs

mi = 2(—&1/3)1/2

1 3d
0, = 3 arccos

aimy

¢=xm [—ml cos(h +7/3) — 2
303

2X

taking the sign of y

(8.80)

(8.81)

(8.82)

(8.83)

(8.84)

(8.85)

(8.86)

(8.87)

(8.88)

(8.98)

)_{W{X2+y21+[1+2(X2Y2)+(X2+Y2)2]1/2} if X #0

0 otherwise

(8.99)

8.1. SPHERICAL FORMS

8.1.10 Van der Grinten II.
+proj=vandg2 Fig. Ref. [23] p. 237-238]

2 1
B =19l C=(1-B
T
If ¢ =0 then
T=A y=20
else if A = 0 then
B
v=0 Y= e

else if |¢| = /2 then

z=0 y==£m

where y takes the sign of ¢ in last two cases else

T A
A= "%
xicu+ﬁﬁ—A@
! 1+ A2B2
T =t

y=+m(l — 2124 + 3))?

where x and y take the respective signs of A and phi.

8.1.11 Van der Grinten III.
+proj=vandg3 Fig. Ref. [23][p. 238], [20][p. 78]

2 1
B=—l C=(-p}
T
If ¢ = 0 then
T=A y=20

else if A = 0 then

B
z=0 y=ETE
else if |¢| = /2 then
z=0 y==7
where y takes the sign of ¢ in last two cases else
T A B
A=I3"% n=1r¢
r=H(APH1-y)E -4 y = +my,

where x and y take the respective signs of A and phi.

127

(8.100)

(8.101)

(8.102)

(8.103)

(8.104)

(8.105)

(8.106)
(8.107)

(8.108)

(8.109)

(8.110)

(8.111)

(8.112)

(8.113)

128

CHAPTER 8. MISCELLANEOUS PROJECTIONS

G |

TSR

]
|

[T TITA T

R
0|

BT,

PRl

P

[

[TNGH]

8.1.

dl
NG]

. L\
[]

SRl

[]
HERER
Y]

Figure 8.6: Van der Grinten Series
A-Van der Grinten (I), B-Van der Grinten II, C-Van der Grinten III, D—Van der
Grinten IV and E-Larrivée.

12 Van der Grinten I'V.

+proj=vandg4
If ¢ =0 then

Fig. Ref. [23, p. 236]

r=A

y=0 (8.114)

8.1. SPHERICAL FORMS

else if A =0 or |¢| = 7/2 then

z=0 y=0o
else
2
B = —|¢|
T
o —5+ B(8 — B(2+ B?))
N 2B2(B — 1)
2
r=2
T

2 2
1
D :i{(R—i—Z) —4} taking the sign of (A —7/2)

F=(B+C)?*B*+C?D*-1)+ (1 - B?
4+ ((1 = B*)(B*(B + 30)* +40?) + 12BC? + 4C*)
D((B+C)?+C?—1)+2F2
4(B+C)? + D?
T = :I:gxl taking the sign of A

xr1 =

y= :I:g(l + D|xy| — w%)% taking the sign of ¢
8.1.13 Larrivée.

+proj=larr Fig. Ref. [22][p. 262]
Similar to Van der Grinten I but without circular arcs.

:c:)\(l—l—\/m)/Q y:qb/(cos;bcos)\)

6

129

(8.115)

(8.116)
(8.117)

(8.118)

(8.119)

(8.120)

(8.121)

(8.122)

(8.123)

(8.124)

130 CHAPTER 8. MISCELLANEOUS PROJECTIONS

Chapter 9

Creating Oblique
Projections.

All spherical projections can have their coordinate system transformed in an arbi-
trary manner with the mathematical mechanics described in section Although
several projections available in the library already have various aspects of trans-
lation built in as part of their options or as separate “transverse” or “oblique”
projections there is a need to allow computing a variety of previously designed
oblique projections or to create new ones.

To perform a general oblique projection starts with the selection of the +proj=ob_tran
“projection” which determines the necessary values for use of the procedures de-
scribed in In the following sections, three different means of specifying the
characteristics of the oblique projection are discussed.

9.1 Polar Position Oblique Projection Method.

+proj=ob_tran +o_proj= +o_lat_p= +o_lon_p= +rot=
This method most closely matches the needs of the proj_translate procedure
by directly entering the location of the transformed pole. Options +o_lat_p= and
+o0_lon_p= assign the geographic coordinates (¢, Ap) of the North Pole of the trans-
lated system on the projection system. All other options that apply to the +o_proj
projection are entered normally. The +rot= option provides for rotation of the pro-
jected axis and the degree argument is positive for counter-clockwise when positive.

A potentially confusing option is +1on_0=. The effect if this option is to translate
the longitude axis about the original polar axis which is skewed in the new system
because it is applied to input longitude prior to transformation by proj_translate.

Nomenclature for oblique aspects has been suggested by Wray ([14, 131-138])
which is based upon the symmetry of the transformation and is summarized in
table and illustrated in figure The first transverse aspect, most commonly
referred to as the equatorial aspect in this manual, and the second transverse or
simple transverse are the two versions most commonly encoded as a option to a
projection or designed as a separate projection entry. For example, the natural
form of azimuthal projections is the polar aspect but equatorial and simple oblique
are available as projection options.

Table lists several examples of various oblique projections. For more infor-
mation on the Atlantic, Close, Fairgrieve and Briesemeister projections see [22].
The parameters for the Easter USSR projection were deduced from [I0, p. 74] and
are probably not exact. The projections are displayed in figure [9.2

131

132 CHAPTER 9. CREATING OBLIQUE PROJECTIONS.

Table 9.1: Wray Oblique Classification

Aspect name o_lat p= o_lonp
normal

first or equatorial 0 0
second transverse or 0 90
transverse

transverse oblique 0 # 90
simple oblique #0 0
equiskew #0 90
plagal or scale #0 #90

Table 9.2: Oblique projections using +ob_tran

Projection +o_proj= +o_lat_p= +o_lonp= Other Options +rot=

Atlantis moll 9 45 +lon_0=60 -90

Close moll 0 90 +1lon_0=90 -90

Fairgrieve moll 45 90W +lon_0=90W [0]

Briesemeister ~— hammer 45 0 +lon_0=10 [0]
+M=0.9354143

Eastern USSR poly 0 26.5 +lon_0=8 90

%The z : y axis length ratio is modified from 2:1 to 1.75:1

9.2 Two Points on Great Circle Method.

+proj=ob_tran +o_lat_l1= +o_lon_1= +o_lat_2= +o_lon_2= +rot=
In this method two points, (¢1, A1) and (P2, A2), are specified that are on the great
circle which will be translated to the equator of the target projection. The first
point must be West of the second point.

_ COS (1 Sin @2 COs A\ — Sin @1 COS P2 €OS Ag,
Ar = atan2 (sin ¢ cos ¢ sin Ay — €os ¢y sin ¢ sin A\ (9-1)
—cos(Ar — A1)
¢p = arctan (Wl) (92)

In initializing proj_translate ¢, is assigned to phi_p but the longitude of the
translated pole is assumed to be zero and may be offset by the user’s use of the
+lon_0 option. Rotation of the axis about the original pole so that the center line
of the great circle lies on the equator of the target projection is accomplished by
assigning A, to Ao (originally used by +lon_0).

Figure shows an example of the two point method for a great circle path
between Corvallis, OR, and Falmouth, MA, created by the following control param-
eters:

+proj=ob_tran
+o_proj=eqc
+o_lat_1=44d34
+o_lon_1=-123d17
+o_lat_2=41d38
+o_lon_2=-70d37

9.3. POINT AND AZIMUTH ON GREAT CIRCLE METHOD. 133

Figure 9.1: Wray’s oblique classification with the Mollweide projection: A-Normal
Aspect, B-Equitorial or First Transverse Aspect, C—(Second) Transverse Aspect,
D-Transverse Oblique Aspect, E-Simple Obliqe Aspect, F-Equiskew Aspect and,
G—Plagal or Scale Aspect.

9.3 Point and Azimuth on Great Circle Method.

+proj=ob_tran +o_proj= +o_lat_c= +o_lon_c= +o_alpha= +rot=
At the central point of the projection, (¢, Ac), the angle « specifies the azimuth of
the central line clockwise form North at the central point. At the central point of the
projection, (¢, \.), the angle « specifies the azimuth of the central line clockwise
form North at the central point.

¢p = arcsin (cos ¢ sin «) (9.3)
A, = atan2 < PR) FA+T (9.4)
—sin ¢, sin

Initialisation of proj_translate is the same as for the two point method above.
An example of this method is a map of the eastern U.S. seaboard centered

134 CHAPTER 9. CREATING OBLIQUE PROJECTIONS.

. RN
5E§§§ ;: “l'o\\
CXRTAY T BR)

' Sy ‘» , [5w \\i‘
Fhis “;j.- / A".&u N
pose] ‘ﬁ*’\(NGt

| PR “'0 S
i’ X

S8
.

SN
N

7 TSN
RO X pIBRN
G SR
R
WA o
e

Figure 9.2: A-—Atlantis, B—Close, C—Fairgrieve, D—Briesemeister and E-Eastern
USSR (entire global region shown for clarity of example)

at Falmouth, MA, with the following parameters for the Equidistant Cylindrical
projection:

+proj=ob_tran
+o_proj=eqc
+o_lat_c=41d38

135

9.3. POINT AND AZIMUTH ON GREAT CIRCLE METHOD.

Figure 9.3: A-Great circle route from Corvallis, OR, to Falmouth, MA, B-oblique

map of iUnited States Atlantic seaboard.

=-70d37
45

lon_c

+0

pha

+o_al

A plot is shown in figure [9.3[B.

136 CHAPTER 9. CREATING OBLIQUE PROJECTIONS.

References

[1]

2]

[10]

[11]

Projection cartographique mercator transverse. Notes techniques NT/G 76,
Institut Geographique National, 1995.

Formulas and constants for the calculation of the Swiss conformal cylindrical
projection and for the transformation between coordinate systems. Switzerland,
2001.

Guidance note number 7: Coordinate conversions and transformations includ-
ing formulas. Technical report, European Petrolium Survey Group, 2004.

John P. Snyder Alan A. DeLucia. An innovative world map projection. The
American Cartographer, 13(2):165-167, 1986.

Paul B. Anderson. Personal communications, 2004.

Jéanos Baranyi. The problems of the representation of the globe on a plane
with special reference to the preservation of the forms of the continents. In
Hungarian Cartographical Studies, pages 19-43. Féldmérési Intézet, Budapest,
1968.

Frank Canters. Small-scale Map Projection Design. Taylor & Francis, London,
2002.

1.Ozbug Biklirici Cengizhan Ipbiiker. A general algorithm for the inverse trans-
formation of map projections using jacobian matrices. In Proceedings of the
Third International Symposium Mathematical & Computational Applications,
pages 175182, Turkey, September 2002.

Martin Hotine. The orthomorphic projection of the spheroid. Empire Survey
Review, 8(62):300-311, 1946.

Jr. John B. Carver, editor. Atlas of the World. National Geographic Society,
Washington, D.C., sixth edition, 1990.

Brad W. Drew John W. Hager, James F. Behensky. Universal grids: Univer-
sal transverse mercator (utm) and universal polar stereographic (ups). DMA
Technical Manual 8358.2, Defense Mapping Agency, 1989.

K. Poder K. Engsager. The transverse mercator mapping with high accuracy
for the entire globe almost. Technical report, Danish National Space Center,
Geodetic Dept., Danish Technical University, Copenhagen, Denmark, 2007

D. H. Maling. Coordinate Systems and Map Projections. Pergamon Press, New
York, second edition, 1992.

D. H. Maling. Coordinate Systems and Map Projections. Pergamon Press,
Oxford, second edition, 1993.

137

138

[15]
[16]

[17]

18

[21]

[22]

[23]

REFERENCES

Philip M.Voxland. Personal communications, 2004.

Lantméteriet-National Land Survey of Sweden. Gauss conformal projection
(transverse mercator) — kriigers formulas. http://www.lantmateriet.se, Au-
gust 2005.

Frederick Pearson II. Map Projections: Theory and Applications. CRC Press,
Boca Raton, Florida, 1990.

Author H. Robinson. A new map projection: Its development and character-
istics. International Yearbook of Cartography, 14:145-155, 1974.

Henri Roussihle. Emploi des coordonnées rectangulaires stéréographiques pour
le calcul de la triangulation dans un rayon de 560 kilometres autour de ’origine.
Travaux, International Union of Geodesy and Geophysics, May 1922.

John P. Snyder. A comparison of pseudocylindrical map projections. The
American Cartographer, 4(1):60-81, April 1977.

John P. Snyder. Map projections—a working manual. Prof. Paper 1395, U.S.
Geol. Survey, 1987.

John P. Snyder. Flattening of the Earth—Two Thousand Years of Map Pro-
jections. Univ. of Chicago Press, Chicago and London, 1993.

John P. Snyder and Philip M. Voxland. An album of map projections. Prof.
Paper 1453, U.S. Geol. Survey, 1989.

Paul D. Thomas. Conformal projections in geodesy and cartography. Spec.
Pub. 251, U.S. Coast and Geodetic Survey, 1952.

W. R. Tobler. The hyperelliptical and other new pseudo cylindrical equal area
map projections. Journal of Geophysical Research, 78(11):1753-1759, April
1973.

U.S. Geological Survey. L176—Dbatch general map projection transform. NMD
User’s Manual, U.S. Geol. Survey, 1989.

U.S. Geological Survey. GCTP—general cartographic transformation package.
NMD Software Documentation, U.S. Geol. Survey, 1990.

Karlheinz Wagner. Kartographische netzentwiirfe. Technical report, Bibli-
ographisches Institut Leipzig, 1949.

Index

1 Eckert IT, [67]
Interupted projections, [63] Eckert III, [6§

Eckert IV,
P Eckert V,
Projection Eckert VI, [64]

Adams Hemisphere in a Square, [121
Adams Quartic Authalic, [76]
Adams World in a Square I,
Adams World in a Square II,
Aitoff,

Aitoff-Wagner,

Apian Globular I,

Apian II, [6§]

Arago,

Arden-Close,

Armadillo (M), |117

Atlantic, [132

August Epicycloidal,

Bacon Globular, [I17]

Baker Dinomic,
Bartholomew, [111

Baryanyi I, [83]

Baryanyi II, B3]

Baryanyi 111, [83]

Baryanyi IV, [83]

Baryanyi V, B3]

Baryanyi VI,

Baryanyi VII, B3]

Behrmann’s Projection, [36]
Boggs Eumorphic, [77]

Bonne, [02]

Braun’s, [38]

Braun’s Second (Perspective),
Briesemeister, [132]

Bromley,

BSAM or Kamenetskiy’s Second,
Canters, [83]

Cassini, [50]

Central Cylindrical, [36]

Close,

Collignon,

Craster, [72]

Cylindrical Equal-Area,
Denoyer, [79]

Eckert I, [66]

139

Eckert-Greifendorff,

Eisenlohr,

Equidistant, [37]

Equidistant Cylindrical,

Equidistant Mollweide,

Erdi-Krausz,

Fahey, [79]

Fairgrieve, [[32]

Foucaut, [70]

Foucaut Sinusoidal, [70]

Fournier Globular I,

Fourtier II.,

Gall Isographic,

Gall’s Orthographic,

Gall’s Stereographic, [3§

Gauss Schreiber Transverse Merca-
tor, B9

Gauss-Kriiger,

Gilbert Two World Perspective, [115]

Ginsburg VIIL, [79]

Goode Homolosine,

Gradarend and Niermann minimum
linear distortion,

Grafarend and Niermann,

Guyou,

Hammer, [T10]

Hammer-Wagner, [[12]

Hatano, [72]

Hill Eucyclic (C),[102

Holzel,

Kamenetskiy’s First Projection, 3§

Kavraisky V, [76]

Kavraisky VI,

Kavraisky VII, [6§|

Kharchenko-Shabanova,

Laborde,

Lagrange, [123]

Lambert’s Cylindrical Equal-Area,

Larrivée, 129

Limiting case of Craster, [30]

140

Loximuthal, [79]

M. Balthasart’s Projection,
Maurer, [83]

Maurer SNo. 73 (C),
Mayr (Mayr-Tobler),
McBryde P3,

McBryde Q3,

McBryde S2,

McBryde S3,

McBryde-Thomas Flat-Polar Parabolic,

McBryde-Thomas Flat-Polar Quar-

tic, [77]

McBryde-Thomas Flat-Polar Sine (No.

1),
McBryde-Thomas Flat-Polar Sinu-
soidal,
McBryde-Thomas Sine (No.1),
Mercator, [39]
Miller’s Perspective Compromise, [40]
Modified Gall, [87]
Mollweide, [70]
Nell, [77]
Nell-Hammer,
Nicolosi Globular, [124]
Oblique Mercator,
O.M. Miller,
O.M. Miller 2.,
O.M. Miller’s Modified Gall,
Otelius Oval,
Oxford Atlas,
Putnins Py,
Putnins Pf,
Putnins Ps,
Putnins P5, |7
Putnins Pj,
Putnins P%, |7
Putnins Py, [7
Putnins P/, |7
Putnins Ps,
Putnin$ Pf, |7
Putnins Pg,
Putnins Pg,
Pavlov, [40]
Peter’s Projection,
Plain/Plane Chart,
Plate Carrée,
Point and azimuth oblique projec-

tion, [I33]

Points on Great Circle Oblique Pro-

FEEREEEREE

INDEX

Ronald Miller Equirectagular,
Ronald Miller—minimum continen-
tal scale distortion,

Ronald Miller—minimum overall scale

distortion,
Sanson_Flamsteed,
Semiconformal, [81]
Siemon IV, [77]
Simple Cylindrical,
Sinusoidal, [64}
Snyder Minimum Error,
Stereographic, [37] [38]
Swiss Oblique Mercator, 5§
Sylvano,
Times Atlas,
Tobler G1,
Tobler’s Alternate #1,
Tobler’s Alternate #2, 2]
Tobler’s World in a Square,
Transverse Cylindrical Equal-Area,
5y
Transverse Mercator, [42]
Trystan Edwards,
Urmayev Flat-Polar Sinusoidal Se-
ries, [66]
Urmayev II, [42]
Urmayev 111, [42]
Urmayev V Series, [79]
Van der Grinten (I), [126
Van der Grinten 11,
Van der Grinten III,
Van der Grinten IV, [12§]
Wagner 1,
Wagner II, [68]
Wagner III, [69]
Wagner 1V, [70]
Wagner IX, [114]
Wagner V, [70]
Wagner VI, 68|
Wagner VII, [I12]
Wagner VIII, [T12]
Werenskiold III, [70]
Werenskiold 1., [74]
Werenskiold 11,
Werner, [92]
Wetch,
Winkel I, [63
Winkel 1T,
Winkel Tripel,
Winkel-Snyder,

jection Method,
Polar Position Oblique Projection Method,

137
Robinson, [7§|

Projection:Lambert Conformal Conic Al-
ternative, [I00]

proj_errno, [12]

proj_gdinverse, [32]

INDEX 141

proj_strerrno, [12]
proj_strerror n,[I2]

	Using the libproj4 Library.
	Basic Usage
	Projection factors.
	Error handling.
	Character/Radian Conversion.
	Limiting Selection of Projections

	Internal Controls
	Initialization Procedures.
	Setting the Earth's figure.

	Determinations from the argument list.
	Creating the list.
	Using the parameter list

	Computing projection values
	Projection Procedure.
	Setting new error numbers.

	Analytic Support Functions
	Ellipsoid definitions
	Meridian Distance---proj_mdist.c
	Rectifying Latitude

	Conformal Sphere---proj_gauss.c
	Simplified Form of Conformal Latitude.

	Authalic Sphere---proj_auth.c
	Axis Translation---proj_translate.c
	Transcendental Functions---proj_trans.c
	Miscellaneous Functions
	Isometric Latitude.
	Inverse of Isometric Latitude.
	Parallel Radius.

	Projection factors.
	Scale factors.

	General Projection Inverse Method

	Cylindrical Projections.
	Normal Aspects.
	Arden-Close.
	Braun's Second (Perspective).
	Cylindrical Equal-Area.
	Central Cylindrical.
	Cylindrical Equidistant.
	Cylindrical Stereographic.
	Kharchenko-Shabanova.
	Mercator.
	O.M. Miller.
	O.M. Miller 2.
	Miller's Perspective Compromise.
	Pavlov.
	Tobler's Alternate #1
	Tobler's Alternate #2
	Tobler's World in a Square.
	Urmayev Cylindrical II.
	Urmayev Cylindrical III.

	Transverse and Oblique Aspects.
	Transverse Mercator
	Oblique Mercator
	Cassini.
	Transverse Cylindrical Equal-Area
	Swiss Oblique Mercator Projection
	Gauss Schreiber Transverse Mercator Projection
	Laborde.

	Pseudocylindrical Projections
	Computations.
	Spherical Forms.
	Sinusoidal.
	Winkel I.
	Winkel-Snyder
	Urmayev Flat-Polar Sinusoidal Series.
	Eckert I.
	Eckert II.
	Eckert III, Apian II (Arago), Putnins P1, Putnins P'1, Wagner VIi, Winkel II and Kavraisky VII.
	Eckert IV.
	Eckert V.
	Wagner II.
	Wagner III.
	Wagner V.
	Foucaut Sinusoidal.
	Mollweide, Bromley, Wagner IV (Putnins P'2) and Werenskiold III.
	Hölzel.
	Hatano.
	Craster (Putnins P4).
	Putnins P2.
	Putnins P3 and P'3.
	Putnins P'4 and Werenskiold I.
	Putnins P5 and P'5.
	Putnins P6 and P'6.
	Collignon.
	Sine-Tangent Series.
	McBryde-Thomas Flat-Polar Parabolic.
	McBryde-Thomas Flat-Polar Sine (No. 1).
	McBryde-Thomas Flat-Polar Quartic.
	Boggs Eumorphic.
	Nell.
	Nell-Hammer.
	Siemon IV.
	Robinson.
	Denoyer.
	Fahey.
	Ginsburg VIII.
	Loximuthal.
	Urmayev V Series.
	Goode Homolosine, McBryde Q3 and McBride S2.
	Equidistant Mollweide
	McBryde S3.
	Semiconformal.
	Érdi-Krausz.
	Snyder Minimum Error.
	Maurer.
	Canters.
	Baranyi I--VII.
	Oxford and Times Atlas.
	Baker Dinomic.
	Fourtier II.
	Mayr-Tobler.
	Tobler G1

	Pseudocylindrical Projections for the Ellipsoid.
	Sinusoidal Projection

	Conic Projections
	Bonne.
	Bipolar Oblique Conic Conformal.
	(American) Polyconic.
	Rectangular Polyconic.
	Modified Polyconic.
	Ginzburg Polyconics.
	Krovák Oblique Confomal Conic Projection
	Lambert Conformal Conic Alternative Projection
	Hill Eucyclic.

	Azimuthal Projections
	Perspective
	Perspective Azimuthal Projections.
	Stereographic Projection.

	Modified
	Hammer and Eckert-Greifendorff.
	Aitoff, Winkel Tripel and with Bartholomew option.
	Wagner VII (Hammer-Wagner) and Wagner VIII.
	Wagner IX (Aitoff-Wagner).
	Gilbert Two World Perspective.

	Miscellaneous Projections
	Spherical Forms
	Apian Globular I, Bacon and Ortelius Oval.
	Armadillo.
	August Epicycloidal.
	Eisenlohr
	Fournier Globular I.
	Guyou and Adams Series
	Lagrange.
	Nicolosi Globular.
	Van der Grinten (I).
	Van der Grinten II.
	Van der Grinten III.
	Van der Grinten IV.
	Larrivée.

	Creating Oblique Projections.
	Polar Position Oblique Projection Method.
	Two Points on Great Circle Method.
	Point and Azimuth on Great Circle Method.

