
AltiVec™ Support In MrC[pp]

Revision 1.9
2/16/99

™AltiVec is a registered trademark of Motorola, Inc.

Table Of Contents

1. Introduction .. 1

2. MrC[pp] AltiVec Compiler Extensions.. 1
2.1 Specifying AltiVec on the Command Line..1
2.2 Predefined Macros ...2
2.3 AltiVec Pragmas ..2

2.3.1 #pragma altivec_model..2
2.3.2 #pragma altivec_codegen ..2
2.3.3 #pragma altivec_vrsave ...3

2.4 AltiVec Naming Conventions..3
2.5 Vector Data Types ...3
2.6 Alignment...4

2.6.1 Alignment of non-vector data..4
2.6.2 Alignment of vector Data within structures and classes..................................5
2.6.3 Dynamic allocation and alignment ..5

2.6.3.1 Dynamic alignment of compiler allocated local data.........................5
2.6.3.2 Space dynamically allocated on the stack by the user (alloca)5
2.6.3.3 Space dynamically allocated on the heap by the user (vec_malloc)..5
2.6.3.4 Space dynamically allocated for class objects5

2.7 Expressions ..6
2.7.1 sizeof() ...6
2.7.2 Assignment ..6
2.7.3 Address Operator ...6
2.7.4 Pointer Arithmetic ...6
2.7.5 Pointer Dereferencing..6
2.7.6 Type Casting..7
2.7.7 Vector Constants..7
2.7.8 Value for adjusting pointers...8

2.8 Operators representing AltiVec operations..8

3. Library and Header Support for AltiVec .. 9
3.1 Extensions to Standard I/O Formatting of the Vector Data Types10

3.1.1 Output conversions specifications for printf, etc...10
3.1.2 Input conversions specifications for scanf, etc. ...11

3.2 Extensions to the Headers ..13
3.2.1 new.h..13
3.2.2 stdarg.h...13
3.2.3 stdlib.h ...13
3.2.4 setjmp.h..13

3.3 Extensions to PPCCRuntime.o ..14
3.4 Extensions to MrCExceptionsLib ..14
3.5 Extensions to StdCLib ...14

4. Functions Calls and Linkage Conventions .. 14

MrC[pp] AltiVec Release Notes i Copyright Apple Computer, Inc. 1998
2/18/99 All rights reserved.

4.1 Additional Function Call Semantics ..14
4.2 Linkage Conventions ...15

4.2.1 Register Usage Conventions..15
4.2.2 Function calls with a fixed number of arguments ...15
4.2.3 Function calls with a variable number of arguments.....................................15

4.3 The Stack Frame ..16
4.3.1 Stack Frame Alignment ...17
4.3.2 Saving the vector registers (VR’s)...18
4.3.3 VRsave...18
4.3.4 Local Variables..18

Appendix A: Generic and Specific AltiVec Operators 19
A.1 vec_add(arg1, arg2) ..19
A.2 vec_addc(arg1, arg2) ..20
A.3 vec_adds(arg1, arg2)...20
A.4 vec_and(arg1, arg2) ..20
A.5 vec_andc(arg1, arg2) ..21
A.6 vec_avg(arg1, arg2) ..21
A.7 vec_ceil(arg1) ...22
A.8 vec_cmpb(arg1, arg2) ...22
A.9 vec_cmpeq(arg1, arg2) ...22
A.10 vec_cmpge(arg1, arg2) ...22
A.11 vec_cmpgt(arg1, arg2)..23
A.12 vec_ctf(arg1, arg2)..23
A.13 vec_cts(arg1, arg2) ...23
A.14 vec_ctu(arg1, arg2) ...23
A.15 vec_dss(arg1)..23
A.16 vec_dssall(arg1)..24
A.17 vec_dst(arg1, arg2, arg3) ..24
A.18 vec_dstst(arg1, arg2, arg3) ...24
A.19 vec_dststt(arg1, arg2, arg3) ..25
A.20 vec_dstt(arg1, arg2, arg3) ...25
A.21 vec_expte(arg1) ..26
A.22 vec_floor(arg1) ...26
A.23 vec_ld(arg1, arg2)...26
A.24 vec_lde(arg1, arg2) ...27
A.25 vec_ldl(arg1, arg2)..27
A.26 vec_loge(arg1) ..28
A.27 vec_lvsl(arg1, arg2) ..28
A.28 vec_lvsr(arg1, arg2)..29
A.29 vec_madd(arg1, arg2, arg3)..29
A.30 vec_madds(arg1, arg2, arg3) ..29
A.31 vec_max(arg1, arg2) ...29
A.32 vec_mergeh(arg1, arg2)..30
A.33 vec_mergel(arg1, arg2)...30
A.34 vec_mfvscr(void)..30
A.35 vec_min(arg1, arg2)..31
A.36 vec_mladd(arg1, arg2, arg3)...31
A.37 vec_mradds(arg1, arg2, arg3) ...31
A.38 vec_msum(arg1, arg2, arg3) ...32
A.39 vec_msums(arg1, arg2, arg3) ...32
A.40 vec_mtvscr(arg1) ..32
A.41 vec_mule(arg1, arg2)..32

MrC[pp] AltiVec Release Notes ii Copyright Apple Computer, Inc. 1998
2/18/99 All rights reserved.

A.42 vec_mulo(arg1, arg2)..33
A.43 vec_nmsub(arg1, arg2, arg3) ..33
A.44 vec_nor(arg1, arg2)...33
A.45 vec_or(arg1, arg2)...33
A.46 vec_pack(arg1, arg2) ..34
A.47 vec_packpx(arg1, arg2) ..34
A.48 vec_packs(arg1, arg2)...34
A.49 vec_packsu(arg1, arg2)...35
A.50 vec_perm(arg1, arg2, arg3)...35
A.51 vec_re(arg1)..35
A.52 vec_rl(arg1, arg2) ...35
A.53 vec_round(arg1)..36
A.54 vec_rsqrte(arg1)..36
A.55 vec_sel(arg1, arg2, arg3) ..36
A.56 vec_sl(arg1, arg2) ...36
A.57 vec_sld(arg1, arg2, arg3) ..37
A.58 vec_sll(arg1, arg2) ..37
A.59 vec_slo(arg1, arg2) ...38
A.60 vec_splat(arg1, arg2) ..38
A.61 vec_splat_s8(arg1)..39
A.62 vec_splat_s16(arg1)..39
A.63 vec_splat_s32(arg1)..39
A.64 vec_splat_u8(arg1) ...39
A.65 vec_splat_u16(arg1) ...39
A.66 vec_splat_u32(arg1) ...39
A.67 vec_sr(arg1, arg2) ...40
A.68 vec_sra(arg1, arg2) ...40
A.69 vec_srl(arg1, arg2)..40
A.70 vec_sro(arg1, arg2) ...41
A.71 vec_st(arg1, arg2, arg3) ..42
A.72 vec_ste(arg1, arg2, arg3) ..42
A.73 vec_stl(arg1, arg2, arg3) ...43
A.74 vec_sub(arg1, arg2) ..44
A.75 vec_subc(arg1, arg2)...45
A.76 vec_subs(arg1, arg2)...45
A.77 vec_sum4s(arg1, arg2)..45
A.78 vec_sum2s(arg1, arg2)..45
A.79 vec_sums(arg1, arg2)..46
A.80 vec_trunc(arg1)...46
A.81 vec_unpackh(arg1) ...46
A.82 vec_unpackl(arg1) ..46
A.83 vec_unpack2sh(arg1, arg2)...46
A.84 vec_unpack2sl(arg1, arg2)..47
A.85 vec_unpack2uh(arg1, arg2) ..47
A.86 vec_unpack2ul(arg1, arg2) ...47
A.87 vec_xor(arg1, arg2)...47

Appendix B: AltiVec Predicates... 49
B.1 vec_all_eq(arg1, arg2) ..49
B.2 vec_all_ge(arg1, arg2) ..49
B.3 vec_all_gt(arg1, arg2)...50
B.4 vec_all_in(arg1, arg2)...50
B.5 vec_all_le(arg1, arg2) ...51

MrC[pp] AltiVec Release Notes iii Copyright Apple Computer, Inc. 1998
2/18/99 All rights reserved.

B.6 vec_all_lt(arg1, arg2)..51
B.7 vec_all_nan(arg1) ...52
B.8 vec_all_ne(arg1, arg2) ..52
B.9 vec_all_nge(arg1, arg2) ..52
B.10 vec_all_ngt(arg1, arg2)...53
B.11 vec_all_nle(arg1, arg2) ...53
B.12 vec_all_nlt(arg1, arg2)..53
B.13 vec_all_numeric(arg1)..53
B.14 vec_any_eq(arg1, arg2) ..53
B.15 vec_any_ge(arg1, arg2) ..54
B.16 vec_any_gt(arg1, arg2) ...54
B.17 vec_any_le(arg1, arg2) ...55
B.18 vec_any_lt(arg1, arg2)..55
B.19 vec_any_nan(arg1) ...56
B.20 vec_any_ne(arg1, arg2) ..56
B.21 vec_any_nge(arg1, arg2) ..57
B.22 vec_any_ngt(arg1, arg2) ...57
B.23 vec_any_nle(arg1, arg2) ...57
B.24 vec_any_nlt(arg1, arg2)..57
B.25 vec_any_numeric(arg1) ..57
B.26 vec_any_out(arg1, arg2) ...58

Appendix C: C++ Name Mangling of the Vector Data Types..................... 59

Appendix D: Implicit Optimizations ... 61
D.1 Vector Constants...61

D.1.1 Generation of Vector Constants 61
D.1.2 Conversion of vector operations to vector constants 62
D.1.3 Benefits of Generating Explicit Vector Constants 63

D.2 Other Transformations..64

Appendix E: AltiVec Prolog/Epilog Details .. 65
E.1 The Stack Frame ...65
E.2 Prolog..67
E.3 Delayed Prolog ...69
E.4 Epilog..72

MrC[pp] AltiVec Release Notes iv Copyright Apple Computer, Inc. 1998
2/18/99 All rights reserved.

Revision History

Revision Date Comments

1.0 2/23/98 Initial document.
1.1 16/3/98 All references to VMX changed to AltiVec or vector.

All naming conventions changed to use vec_.
Rewrite of linkage conventions.

1.2 7/6/98 Fixed a couple of typeos in the Vector Data Types table.
1.3 10/8/98 vec_msum(unsigned char, signed char) had their arguments reversed. It was

changed to vec_msum(signed char, unsigned char).
[int] added to Vector Data Types table for clearification (section 2.4).

Added vector bool and vector pixel mappings to vec_st, vec_ste, and vec_stl.
In all functions that take a signed char* a sentence was added to explicitly state that
plain char * is not allowed.
Added Appendix D to document what optimizations are performed on vector
constants.

1.5 10/14/98 Appendix D reorganized and updated to include optimizations on vmr with vsldoi.
1.6 11/16/98 Added -altivec_model as an alternatived command line option to -vector.

Added secton on AltiVec pragmas.
__ALTIVEC__ macro defined.

1.7 12/8/98 All loads and stores have been changed to permit a pointer to be apointer to volatile.
Appendix E added to fully describe the stack frame, prolog, and epilog.

1.8 12/11/98 Epilog documentation in Appendix E update to show r31|sp as the register to set r0
before retoring the vector registers.
Small grammar correction in the VRsave description in section 4.2.1.

1.9 2/16/99 Updated Section 3.1 to clearify the bnf descriptions and add an ‘@’ flag to specify
an arbitrary vector seperator string.

MrC[pp] AltiVec Release Notes Copyright Apple Computer, Inc. 1998
 2/18/99 All rights reserved.

1. Introduction
The PowerPC architecture has been extended to support a set of instructions referred to as the
AltiVec™ vector instructions. As a result, MrC (for C) and MrCpp (for C++), referred to here
collectively as “MrC[pp]”, is extended to support the AltiVec architecture.1 There are also
vector extensions to various libraries and headers that are needed when building MrC[pp]
programs that use AltiVec.

2. MrC[pp] AltiVec Compiler Extensions
The following briefly summarizes the areas that are extended or changed to support AltiVec in
MrC[pp]. All of these will be described in more detail in subsequent sections.

• Command line option (-vec[tor] on) to enable the AltiVec language extensions.

• Predefined macro (__VEC__, __ALTIVEC_) to indicate the AltiVec extensions are enabled.

• Vector data types.

• Data alignment and dynamic allocation requirements for vector data types.

• Rules for using vector data types in expressions.

• Vector operators to generate the AltiVec instructions.

• Library and header support for AltiVec.

• Functions calls and linkage conventions to allow passing and storing of vector data types.

2.1 Specifying AltiVec on the Command Line
As discussed later, supporting AltiVec requires that the compiler use certain naming conventions
which potentially could conflict with existing programs. Therefore the AltiVec extensions are
not recognized unless -vec[tor] on or -altivec_model on is specified (thus the default is off).
The full command line syntax is,

-vec[tor] on[,[no]vrsave] enable AltiVec extensions
-vec[tor] off disable AltiVec extensions (default)

or alternatively,

-altivec_model on[,[no]vrsave] enable AltiVec extensions
-altivec_model off disable AltiVec extensions (default)

The additional [no]vrsave option controls whether function linkage conventions support the
VRsave register. VRsave is a AltiVec SPR (special purpose register) used to inform the OS
which vector registers need to be saved and reloaded across context switches (e.g., interrupts).
The Macintosh system supports use of VRsave. However, the novrsave option is provided for
contexts in which it is known that the VRsave register is not needed or not supported by the OS.2

™ AltiVec is a registered trademark of Motorola, Inc.
1 The basis for these extensions is defined by the Motorola AltiVec™ Programming Model specification. Much of

that specification has been incorporated into this document to tailor it specifically for MrC[pp].
2 In general the noversave option should never be used. It doesn’t affect the environment if the register is

maintained whether or not it is supported by the OS. Remember that even if an OS doesn’t presently support
the handling of VRsave today, it might in the future!

MrC[pp] AltiVec Release Notes 1 Copyright Apple Computer, Inc. 1998
 2/18/99 All rights reserved.

2.2 Predefined Macros
When AltiVec is enabled (by command line option on pragma), the compiler will predefine the
macro __VEC__. __VEC__ is predefined to have the decimal integer value following the format
“vrrnn”, which corresponds to Programming Model version numbering scheme “v.rr.nn”.3

The macro __ALTIVEC__ is also defined as 1 to indicate that a set of AltiVec #pragmas
(described in the next section) are supported by the compiler.

2.3 AltiVec Pragmas
Three pragmas can be used to control AltiVec support within a compilation unit: The pragmas
are:

• #pragma altivec_model on | off | reset

• #pragma altivec_codegen on | off | reset

• #pragma altivec_vrsave on | off | reset | allon

2.3.1 #pragma altivec_model - Control acceptance of the AltiVec model

#pragma altivec_model on | off | reset

This pragma is used to either temporarily or permanently override accepting the AltiVec
extensions as specified by the command line -vector on or -altivec_model on. The setting
remains in effect until the next altivec_model pragma is encountered.

This pragma may be placed anywhere within the compilation unit. If reset is specified, the
setting is reset to what was specified or implied by the command line.

2.3.2 #pragma altivec_codegen - Control AltiVec (vectorization) optimizations

#pragma altivec_codegen on | off | reset

This pragma is used to either temporarily or permanently override vectorization of code as
specified by the command line -opt size or speed altivec_codegen parameter. When
vectorization is enabled, code generation is allowed to take advantage of the AltiVec architecture
as a possible optimization.

When used outside of a function, then the pragma overrides the command line until another
#pragma altivec_codegen is encountered outside of any functions. If reset is specified, the
setting is reset to off.4

If the pragma is placed inside a function body (i.e., anywhere between its enclosing braces), then
the pragma temporarily overrides the current setting for that function only. The setting applies to
the entire function no matter where within the function the pragma is placed. If more than one
#pragma altivec_codegen is placed within the function, then it’s an error if they have different
settings. The reset option is not permitted when the pragma is used within functions.
Following the function, the default setting is reset to what was in effect prior to that function.

3 For example, if the current version of the Motorola AltiVec™ Programming Model specification is 1.2.1 then
__VEC__ is defined to have the decimal value 10201.

4 Eventually there may be a command line option, in which case reset will reset to the setting specified or
implied by the command line.

MrC[pp] AltiVec Release Notes 2 Copyright Apple Computer, Inc. 1998
 2/18/99 All rights reserved.

Note: This pragma is recognized but no implicit AltiVec vectorization optimizations are
performed at this time.

2.3.3 #pragma altivec_vrsave - Control handling of VRsave

#pragma altivec_vrsave on | off | reset | allon

This pragma is used to either temporarily or permanently override maintaining of the VRsave
register as specified by the command line -vector on,[no]vrsave or -altivec_model
on,[no]vrsave. When enabled, function prologs and epilogs have additional code to properly
maintain VRsave to indicate which vector registers are currently in use. If allon is specified,
then VRsave is defined as having all vector register in use.

When used outside of a function, then the pragma overrides the command line until another
#pragma altivec_vrsave is encountered outside of any functions. If reset is specified, the
setting is reset to what was specified or implied by the command line. The allon option is not
permitted when the pragma is used outside of a function.

If the pragma is placed inside a function body (i.e., anywhere between its enclosing braces), then
the pragma temporarily overrides the current setting for that function only. The setting applies to
the entire function no matter where within the function the pragma is placed. If more than one
#pragma altivec_vrsave is placed within the function, then it’s an error if they have different
settings. The reset option is not permitted when the pragma is used within functions.
Following the function, the default setting is reset to what was in effect prior to that function.

It is not recommended that VRsave handling be turned off since interrupt handlers need VRsave
in order to know which vector register need to be preserved across interrupts. However there is a
price to be paid in prolog/epilog overhead in maintaining VRsave. It is possible to safely turn off
VRsave handling if it is known that the VRsave register reflects all possible vector registers that
can be in use. Using the allon option indicates that the function containing this option will
define VRsave as having the value of all ones thus indicating all vector registers are in use. All
functions called by this function and their descendants can then be safely set to not maintain
VRsave. It is the user’s responsibility to ensure VRsave is properly controlled in this call chain.

2.4 AltiVec Naming Conventions
When AltiVec is enabled all identifiers with the prefix “vec_” are reserved by the compiler for
AltiVec extensions. There is nothing prohibiting the user from using identifiers starting with
“vec_” in contexts other than what is described here, but this is not recommended.

2.5 Vector Data Types
AltiVec introduces 11 new reserved vector data type names as defined in the table at the top of
the next page.

In addition to the 11 data types defined above, the type specifier int may be combined with
short or long (e.g., vector unsigned short int, the int is shown in brackets to indicate it is
optional). When multiple simple type specifiers are allowed, they can be freely intermixed in
any order. However, the vector type specifier must occur first.

Note that although the identifiers vector and pixel occur as part of the vector data types, they
are not considered as reserved words except in when used as type specifiers. Similarly bool is
not treated as a reserved keyword in C except in this context. In C++ however it will be treated
as a reserved keyword if the command line option -bool on is specified (which also will then

MrC[pp] AltiVec Release Notes 3 Copyright Apple Computer, Inc. 1998
 2/18/99 All rights reserved.

treat true and false as reserved keywords).

Two reserved keywords are provided as aliases to vector and pixel . They are __vector and
__pixel respectively. These may always be used in either C or C++.

In this document, the term “vec_data” is defined to mean data that can be any of the above vector
data types and “vec_type” is used to represent any of the vector data types.

New C/C++ type Size
(bytes)

Interpretation of
contents

Values

vector unsigned char 16 16 unsigned char 0...255
vector signed char 16 16 signed char -128...127

vector bool char 16 16 unsigned char 0 (F), 255 (T)

vector unsigned short [int] 16 8 unsigned short 0...65536

vector signed short [int] 16 8 signed short -32768...32767

vector bool short [int] 16 8 unsigned short 0 (F), 65535 (T)

vector unsigned long [int] 16 4 unsigned int 0...232 - 1
vector signed long [int] 16 4 signed int -231 ... 231 - 1
vector bool long [int] 16 4 unsigned int 0 (F), 232 - 1 (T)
vector float 16 4 float IEEE-754 values

vector pixel 16 8 unsigned short 1/5/5/5 pixel

Vector Data Types

As will be discussed later, all vector operations take the form of overloaded function calls. These
overloaded functions are allowed in both C and C++. In addition, when vector types appear in
C++ member functions, the name mangling rules for function signatures have been extended to
support the vector types. See Appendix C for further details on C++ vector name type
mangling.

2.6 Alignment
A defined data item of any vector data type must always aligned in memory on a 16-byte
boundary. A pointer to any vector data type always points to a 16-byte boundary. The compiler
is responsible for aligning vector data types on 16-byte boundaries. Given that vector data must
be correctly aligned, a program is incorrect if it attempts to dereference a pointer to a vector type
if the pointer does not contain a 16-byte aligned address. Note that in the AltiVec architecture an
unaligned load/store does not cause an alignment exception. Instead, the low-order bits of the
address are quietly ignored.

2.6.1 Alignment of non-vector data
An array of components to be loaded into vector registers need not be aligned, but will have to be
accessed with attention to its alignment. Typically, this will be accomplished with the
vec_lvsr(), vec_lvsl(), and vec_perm() instructions.

2.6.2 Alignment of vector Data within structures and classes
Structures or classes containing vector types are aligned on 16-byte boundaries and their internal

MrC[pp] AltiVec Release Notes 4 Copyright Apple Computer, Inc. 1998
 2/18/99 All rights reserved.

organization padded, if necessary, so that each internal vector type is aligned on a 16-byte
boundary regardless of the alignment mode (set via #pragma align or -align command line
option) currently in effect.5

2.6.3 Dynamic allocation and alignment
Dynamically allocated space for vector data must be aligned on a 16-byte boundary. There are
four ways space is dynamically allocated, two of which are explicitly under user control.

• Space dynamically allocated on the stack for local data allocated by the compiler.

• Space dynamically allocated on the stack by the user.

• Space dynamically allocated on the heap by the user.

• Space dynamically allocated for C++ class objects.

2.6.3.1 Dynamic alignment of compiler allocated local data
In order to guarantee that vector local data is aligned on a 16-byte boundary, the compiler must
generate function entry (prolog) code that ensures the function’s local data is 16-byte aligned.
The additional code generated by the prolog (and function exit epilog) to ensure alignment is
only generated if needed, i.e., when a function contains vector locals or has vector parameters
that may themselves be on the stack. See section 4 for further details.

2.6.3.2 Space dynamically allocated on the stack by the user (alloca)
When -alloca is specified on the command line then the predefined alloca() function may be
used in a function to dynamically allocate space on the stack. The code generated for alloca()
will always allocate a multiple of 16 bytes and always align the space on a 16-byte boundary on
the stack. Therefore the allocated space can be used for whatever purpose, including space for
vector data.

2.6.3.3 Space dynamically allocated on the heap by the user (vec_malloc)
Unlike alloca(), the standard malloc() may be heavily used, many times to allocate relatively
small objects. Thus generalizing malloc(), calloc(), and realloc() to always have a
multiple-of-16 overhead with 16-byte alignment is not desirable. A different set of variants,
called vec_malloc(), vec_calloc(), and vec_realloc() are provided as part of StdCLib and
defined in stdlib.h. It is the user’s responsibility to use vec_malloc(), etc. when the intended
use for the allocated space is to contain vector data. In order to free space allocated by these
allocators the routine vec_free() (also defined in stdlib.h) must be called.

2.6.3.4 Space dynamically allocated for class objects
When the default operator new is invoked for a class that contains vector data (either explicitly
or implicitly through inheritance) a routine named vec_new() is called instead of invoking the
operator new runtime support routine. Similarly, when the default operator delete is called,
the compiler substitutes a call to vec_delete(). vec_new() is implemented by calling
vec_malloc() and vec_delete() calls vec_free().

If an explicit operator new (including the placement form of operator new) or operator
delete is declared as a member function, then the user takes responsibility for the allocation.
Therefore such implementations must take into account vector alignment if required by calling

5 Padding may also occur to align data inherited from parent classes that themselves contain vector data.

MrC[pp] AltiVec Release Notes 5 Copyright Apple Computer, Inc. 1998
 2/18/99 All rights reserved.

vec_new() (or vec_malloc()) and vec_delete() (or vec_free()) as appropriate.6

2.7 Expressions
Most C/C++ operators do not permit any of their arguments to be a vector data type. The normal
C/C++ operators are extended to include the operations defined in the following sections.

In the examples in the following sections let a and b be vector types and p be a pointer to a
vector type.

2.7.1 sizeof()
sizeof(a) and sizeof(*p) return 16.

2.7.2 Assignment
If either the left hand side or right hand side of an expression has a vector type, then both sides of
the expression must be of the same vector type. Thus, the expression a = b is valid and
represents assignment only if a and b are of the same vector type (or if neither is a vector type).
Otherwise, the expression is invalid and is reported as an error by the compiler.

2.7.3 Address Operator
The operation &a is valid if a is a vector type and the result of the operation is a pointer to a.

2.7.4 Pointer Arithmetic
The usual pointer arithmetic can be performed on p. In particular, p+1 is a pointer to the next
vector element after p.

2.7.5 Pointer Dereferencing
If p is a pointer to a vector type, *p implies either a 128-bit vector load from the address obtained
by clearing the low order bits of p (equivalent to the instruction vec_ld(0,p)) or a 128-bit
vector store to that address (equivalent to the instruction vec_st(0,p)). If it is desired to mark
the data accessed as least-recently-used (LRU), the explicit instruction vec_ldl(0,p) or
vec_stl(0,p) must be used.

Dereferencing a pointer to a non-vector type produces the standard behavior of either a load or a
copy of the corresponding type.

Accessing of non-aligned memory must be carried out explicitly by a vec_ld(int, type *)
operation, a vec_ldl(int, type *) operation, a vec_st(int, type *) operation or a
vec_stl(int, type *) operation.

2.7.6 Type Casting
Pointers to non-vector and vector data may be cast back and forth to each other. Casting a
pointer to a vector type represents an (unchecked) assertion that the address is 16-byte aligned.

Casts from one vector type to another are provided using the usual C syntax (vec_type)e,
(e.g., (vector unsigned char)e). In all cases the data represented by e is converted to the

6 Internally there are four library routines to support allocation and deallocation of C++ classes: vec_new() and
vec_delete() as discussed above, __vec_vec_new() and __vec_vec_delete() for arrays of
objects (but the latter calls are only generated by the compiler). Like operator new, vec_new() is defined
in new.h.

MrC[pp] AltiVec Release Notes 6 Copyright Apple Computer, Inc. 1998
 2/18/99 All rights reserved.

specified vector type without changing the bit pattern.

2.7.7 Vector Constants
Vector constants may used wherever a vector data value is allowed (static/dynamic initialization,
parameters, assignments). The compiler generates code which either computes or loads the
values into an AltiVec register. They have the following forms:

(vector unsigned char)(unsigned int)
(vector unsigned char)(unsigned int1,...,unsigned int16)

Represents a vector unsigned char constant consisting of a set of 16 unsigned 8-bit quantities
which all have the value specified by a single unsigned integer or as individually specified by
16 unsigned integers.

(vector signed char)(int)
(vector signed char)(int1,...,int16)

Represents a vector signed char constant consisting of a set of 16 signed 8-bit quantities
which all have the value specified by a single integer or as individually specified by 16
integers.

(vector unsigned short)(unsigned int)
(vector unsigned short)(unsigned int1,...,unsigned int8)

Represents a vector unsigned short constant consisting of a set of 8 unsigned 16-bit quantities
which all have the value specified by a single unsigned integer or as individually specified by
8 unsigned integers.

(vector signed char)(int)
(vector signed char)(int1,...,int8)

Represents a vector signed char constant consisting of a set of 8 signed 16-bit quantities
which all have the value specified by a single integer or as individually specified by 8
integers.

(vector unsigned long)(unsigned int)
(vector unsigned long)(unsigned int1,...,unsigned int4)

Represents a vector unsigned long constant consisting of a set of 4 unsigned 32-bit quantities
which all have the value specified by a single unsigned integer or as individually specified by
4 unsigned integers.

(vector signed long)(int)
(vector signed long)(int1,...,int4)

Represents a vector signed long constant consisting of a set of 4 signed 32-bit quantities
which all have the value specified by a single integer or as individually specified by 4
integers.

(vector float)(float)
(vector float)(float1,...,float4)

Represents a vector float constant consisting of a set of 4 32-bit floating-point quantities
which all have the value specified by a single float value or as individually specified by 4
float values.

In all of these constants the individual (unsigned) integer(s) or float value(s) may be constant
expressions.

MrC[pp] AltiVec Release Notes 7 Copyright Apple Computer, Inc. 1998
 2/18/99 All rights reserved.

Note that constants generated with functions may or may not be represented as 16-byte data
items and could be generated directly in the code. See Appendix D for a discussion on the
generation of vector constants.

2.7.8 Value for adjusting pointers
Given a pointer to a type that is one of the possible vector components, vec_step(vec_data) or
vec_step(vec_type) produces at compile time the integer value to be added to the pointer to
cause the pointer to be incremented by 16 bytes. For example, a vector unsigned short data type
is considered to contain 8 unsigned 2-byte values. A pointer to unsigned 2-byte values used to
stream through an array of unsigned 2-byte values by a full vector at a time should be
incremented by vec_step(vector unsigned short) which generates the constant 8.

vec_step(vector unsigned char) = 16
vec_step(vector signed char) = 16
vec_step(vector boolean char) = 16
vec_step(vector unsigned short) = 8
vec_step(vector signed short) = 8
vec_step(vector boolean short) = 8
vec_step(vector unsigned long) = 4
vec_step(vector signed long) = 4
vec_step(vector boolean long) = 4
vec_step(vector float) = 4
vec_step(vector pixel) = 8

2.8 Operators representing AltiVec operations
The vector operators allow full access to the functionality provided by the AltiVec architecture.
The operators are represented in the programming language by language structures which have
function call syntax. The names associated with these operations are all prefixed with “vec_”.
The appearance of one of these forms can indicate:

• A generic (overloaded) AltiVec operation (e.g., vec_add()) which generates a vector
instruction depending on the argument types.

• A specific AltiVec operation (e.g., vec_addubm()) which maps directly into a AltiVec
machine instruction.

• A predicate (0 or 1) computed from a AltiVec operation (e.g., vec_all_eq()).

• A cast, like (vector signed char)e, as already discussed in Section 2.6.6.

• Loading of a vector of constant components, as already discussed in section 2.6.7.

Each operator representing a AltiVec operation takes a list of arguments representing the input
operands in the order in which they appear in the tables in Appendix A and Appendix B and
returns a result (possibly void).

The permitted operand types for each AltiVec operation, whether specific or generic, are
restricted to those in the tables. The programmer may override this constraint by explicitly
casting arguments to permissible types.

For a specific operation, the operand types are used to determine whether the operation is
acceptable and to determine the type of the result. For example, vec_addubm(vector signed
char, vector signed char) is acceptable because that represents a reasonable way to do
modular addition with signed bytes, while vec_addubs(vector signed char, vector signed
char) and addubh(vector signed char, vector signed char) are not acceptable. The former

MrC[pp] AltiVec Release Notes 8 Copyright Apple Computer, Inc. 1998
 2/18/99 All rights reserved.

operation would produce a result in which saturation treated the operands as unsigned, while the
latter would produce a result in which adjacent pairs of signed bytes would be treated as signed
half words.

For a generic operation, the operand types are used to determine whether the operation is
acceptable, to select a particular operation according to the types of the arguments, and to
determine the type of the result. For example, vec_add(vector signed char, vector signed
char) will map onto vec_addubm() and return a result of type vector signed char, while
vec_add(vector unsigned short, vector unsigned short) will map onto vec_adduhm() and
return a result of type vector unsigned short.

The AltiVec operations which set condition register CR6 (the “compare dot” instructions) are
treated somewhat differently. The programmer does not have access to specific register names.
Instead of directly specifying a compare dot instruction, the programmer makes reference to a
predicate which returns an integer value derived from the result of a compare dot instruction. As
in C, this value may be used directly as a value (1 is true, 0 is false) or as a condition for
branching. The predicates all begin with “vec_all_” or “vec_any_”. There are predicates to
test the true or false state of any bit which can be set by a compare dot instruction. For example,
vec_all_gt(x,y) tests the true value of bit 24 of the CR after executing some vcmpgt.
instruction. To complete the coverage by predicates, additional predicates exercise compare dot
instructions with reversed or duplicated arguments. As examples, vec_all_lt(x,y) performs a
vcmpgtx.(y,x), and vec_all_nan(x) is mapped onto vcmpeqfp.(x,x). If the programmer
wishes to have both the result of the compare dot instruction as returned in the vector register and
the value of CR6, the programmer must specify two instructions.

The tables of permitted generic instructions are documented in Appendix A.

The tables of permitted predicates are documented in Appendix B.

3. Library and Header Support for AltiVec
The following areas are extended to supported AltiVec:

• Extensions to standard I/O formatting for the vector data types

• Extensions to headers

• Extensions to PPCCRuntime.o

• Extensions to MrCExceptionsLib

• Extensions to StdCLib

3.1 Extensions to Standard I/O Formatting of the Vector Data Types
The conversion specifications in standard I/O output statements (scanf, fprintf, etc.) are extended
to support the vector data types. The specifications are described in the following sections; first
the forms for output (printf, etc.) and then those for input (scanf, etc.).

3.1.1 Output conversions specifications for printf, etc.
All the output functions that have a format string as one of their arguments (fprintf, printf,
sprintf, vfprintf, vprintf, vsprintf) support vector output conversions that have the
following general form:

%[<flags>][width][<precision>][<size>]<conversion>

MrC[pp] AltiVec Release Notes 9 Copyright Apple Computer, Inc. 1998
 2/18/99 All rights reserved.

where,

<flags> ::= <flag-char> | <flags><flag-char>
<flag-char> ::= <std-flag-char> | <c-sep>
<std-flag-char> ::= '-' | '+' | '0' | '#' | ' ' | '@'
<c-sep> ::= any character including <std-flags-char> except

<width> | <precision> | <size> | <conversion>
<width> ::= <integer> | '*'
<precision> ::= '.' [<width>]
<size> ::= 'll' | 'L' | 'l' | 'h' | <vector-size>
<vector-size> ::= 'vl' | 'vh' | 'lv' | 'hv' | 'v'
<conversion> ::= <char-conv> | <str-conv> | <fp-conv> | <int-conv> |

 <misc-conv>
<char-conv> ::= 'c'
<str-conv> ::= 's' | 'P'
<fp-conv> ::= 'e' | 'E' | 'f' | 'g' | 'G'
<int-conv> ::= 'd' | 'i' | 'u' | 'o' | 'p' | 'x' | 'X'
<misc-conv> ::= 'n' | '%'

The extensions to the output conversion specification for vector types are shown in bold.

The <vector-size> indicates that a single vector value is to be converted. The vector value is
displayed in the following general format:

value1 C value2 C value3 C value4 C ... C valuen

where C is a separator character defined by the <c-sep> or a string specified by an argument.
when the '@' flag is used. There are 4, 8, or 16 output values depending on the <vector-size>,
each formatted according to the <conversion>.

A <vector-size> of 'vl' or 'lv' consumes one argument and modifies the <int-conv>
conversion; it should be of type vector signed long, vector unsigned long, or vector bool
long; it is treated as a series of four 4-byte components. A <vector-size> of 'vh' or 'hv'
consumes one argument and modifies the <int-conv> conversion; it should be of type vector
signed short, vector unsigned short, vector bool short, or vector pixel; it is treated as a
series of eight 2-byte components. A <vector-size> of 'v' with <int-conv> or <char-conv>
consumes one argument; it should be of type vector signed char, vector unsigned char, or
vector bool char; it is treated as a series of sixteen 1-byte components. A <vector-size> of
'v' with <fp-conv> consumes one argument; it should be of type vector float; it is treated as
a series of four 4-byte floating-point components. All other combinations of <vector-size>
and <conversion> are undefined.

The default value for the separator character is a space unless 'c' conversion is being used. For
'c' conversion the default is to have no separator. Also for 'c' conversion, any of the standard
numeric flags characters ('-', '+', '#', ' ') may be used as a separator since these flags are not
otherwise used. For numeric conversions the standard flags apply to the conversions and thus
may not be specified as a separator flag. Also, only one separator character may be specified in
the <flags>.

Examples:

Given the following declarations:

vector signed char s8 = (vector signed char)(1, 2, 3, 4, 5, 6, 7, 8,

MrC[pp] AltiVec Release Notes 10 Copyright Apple Computer, Inc. 1998
 2/18/99 All rights reserved.

 9, 10, 11, 12, 13, 14, 15, 16);
vector unsigned short u16 = (vector unsigned short)('a', 'b', 'c', 'd',
 'e', 'f', 'g', 'h');
vector signed long s32 = (vector signed long)(1, 2, 3, 12);
vector float f32 = (vector float)(1.1, 2.2, 3.3, 4.4);

The following printf statements produce the indicated output:

printf("s8 = %vd", s8); ⇒ s8 = 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
printf("s8 = %,vd", s8); ⇒ s8 = 1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16
printf("u16 = %vhc", u16); ⇒ u16 = abcdefgh
printf("s32 = %,2lvd", s32); ⇒ s32 = 1, 2, 3,12
printf("f32 = %,5.2vf", f32); ⇒ f32 = 1.10, 2.20, 3.30, 4.40

The '@' flag is a generalization of <c-sep> allowing the separator to be any arbitrary string.
Using the '@' flag consumes one argument expected to be a pointer to a string. This argument is
consumed before any other argument for conversion (e.g., a '*' specified for a <width>).

Example:

vector unsigned long u32 = (vector unsigned long)(0, -1, -2, -3);

printf("u32 = 0x%@.8lvX", ", 0x", u32); /* separator is ", 0x" */

⇓
0x00000000, 0xFFFFFFFF, 0xFFFFFFFE, 0xFFFFFFFD

3.1.2 Input conversions specifications for scanf, etc.
All the input functions that have a format string as one of their arguments (fscanf, scanf,
sscanf) support vector input conversions that have the following general form:

%[<flags>][width][<size>]<conversion>

where,

<flags> ::= '*' | '@' | <c-sep> ['*'] | ['*'] <c-sep>
<c-sep> ::= any character except '*' | <width> | <size> |

<conversion>
<width> ::= <integer>
<size> ::= 'll' | 'L' | 'l' | 'h' | <vector-size>
<vector-size> ::= 'vl' | 'vh' | 'lv' | 'lh' |'v'
<conversion> ::= <char-conv> | <str-conv> | <fp-conv> | <int-conv> |

 <misc-conv>
<char-conv> ::= 'c'
<str-conv> ::= 's' | 'P' | '[' ['^'] <any characters> ']'
<fp-conv> ::= 'e' | 'f' | 'g'
<int-conv> ::= 'd' | 'i' | 'u' | 'o' | 'p' | 'x'
<misc-conv> ::= 'n' | '%' | '['

The extensions to the input conversion specification for vector types are shown in bold.

The <vector-size> indicates that a single vector value is to be scanned and converted. The
vector data to be scanned is expected to have the following general format:

value1 C value2 C value3 C value4 C ... C valuen

MrC[pp] AltiVec Release Notes 11 Copyright Apple Computer, Inc. 1998
 2/18/99 All rights reserved.

where C is a separator character defined by the <c-sep> (surrounded by any number of spaces)
or string specified by an argument when the '@' flag is used. . The number of scanned values is
4, 8, or 16 depending on the <vector-size> with each value scanned according to the
<conversion>.

A <vector-size> of 'vl' or 'lv' consumes one argument and modifies the <int-conv>
conversion; it should be of type vector signed long * or vector unsigned long * depending
on the <int-conv> specification; 4 values are scanned. A <vector-size> of 'vh' or 'hv'
consumes one argument and modifies the <int-conv> conversion; it should be of type vector
signed * or vector unsigned short * depending on the <int-conv> specification; 8 values are
scanned. A <vector-size> of 'v' with <int-conv> or <char-conv> consumes one argument;
it should be of type vector signed char * or vector unsigned char * depending on the <int-
conv> or <char-conv> specification; 16 values are scanned. A <vector-size> of 'v' with
<fp-conv> consumes one argument; it should be of type vector float *; 4 floating-point
values are scanned. All other combinations of <vector-size> and <conversion> are
undefined.

The default value for the separator character is any number of space unless 'c' conversion is
being used. For 'c' conversion the default is to have no separator character.

Examples:

These are equivalent to,

sscanf("1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16", "%vd", &s8);
sscanf("1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16", "%,vd", &s8);
sscanf("abcdefgh", "%vhc", &u16);
sscanf("1, 2, 3,12", "%,2lvd", &s32);
sscanf("1.10, 2.20, 3.30, 4.40", "%,5vf", &f32);

These set the vector variables as if they were declared as follows:

vector signed char s8 = (vector signed char)(1, 2, 3, 4, 5, 6, 7, 8,
 9, 10, 11, 12, 13, 14, 15, 16);
vector unsigned short u16 = (vector unsigned short)('a', 'b', 'c', 'd',
 'e', 'f', 'g', 'h');
vector signed long s32 = (vector signed long)(1, 2, 3, 12);
vector float f32 = (vector float)(1.1, 2.2, 3.3, 4.4);

The '@' flag is a generalization of <c-sep> allowing the separator to be any arbitrary string.
Using the '@' flag consumes one argument expected to be a pointer to a string. Leading and
trailing blanks in this string are ignored.

Example:

sscanf("0x00000000, 0xFFFFFFFF, 0xFFFFFFFE, 0xFFFFFFFD", "%@vlx", ", 0x", &u32);

This is the same as if u32 were declared as,

vector unsigned long u32 = (vector unsigned long)(0, -1, -2, -3);

3.2 Extensions to the Headers
Four headers are modified to support AltiVec; new.h, stdarg.h, stdlib.h, and setjmp.h. In all
these headers, the extensions are only in effect if AltiVec is enabled. In other words they are all

MrC[pp] AltiVec Release Notes 12 Copyright Apple Computer, Inc. 1998
 2/18/99 All rights reserved.

under #if __VEC__ conditional which is only true when the AltiVec extensions are enabled.

3.2.1 new.h
The C++ header new.h declares vec_new(). This is referenced by the compiler when an
operator new is seen for a class that contains or inherits vector data.

3.2.2 stdarg.h
As discussed under Linkage Conventions section 4, all vector arguments must be aligned on a
16-byte boundary. This requires special treatment when handling a variable argument list using
stdarg.h where the argument list can be a mixture of non-vector data (aligned on 4-byte
boundaries) and vector data (on 16-byte boundaries).

When not using AltiVec all arguments are aligned on a 4-byte boundary. Thus va_arg() is
defined to round up the va_list pointer using sizeof(type) to the next 4-byte boundary. This
is not sufficient with AltiVec and its 16-byte alignment requirement. A more complicated
adjustment (but still done at compile time) must either round up to the next 4-byte or 16-byte
boundary. A compile-time predefined function called __va_align__(type) returns a constant 4
or 16 depending on whether its type argument is a non-vector type or a vector type respectively.
va_arg() is defined in terms of both __va_align__() and sizeof() in order to correctly
handle variable argument lists with vector-typed arguments.

3.2.3 stdlib.h
As discussed in section 2.5.3.3 and section 3.5, vec_malloc(), vec_calloc() and
vec_realloc() are provided to ensure 16-byte alignment for dynamically allocated vector data.
To free space allocated by these routines, vec_free() must be used. The definitions for these
routines are defined in stdlib.h. Except for the alignment requirement their behavior and
arguments are identical to their non-vector counterparts.

3.2.4 setjmp.h
The definition for jmp_buf in setjmp.h must be different when supporting AltiVec in order to
save the pertinent AltiVec registers in addition to those saved when AltiVec is not being used.
The setjmp.h header defines the larger jmp_buf and redefines setjmp() and longjmp() to call
an alternate set of library routines in StdCLib that expect this larger jmp_buf. These are called
__vec_setjmp() and __vec_longjmp().

Since it is the setjmp.h header that determines which form of jmp_buf to use and which
setjmp() and longjmp() routines to call, it is up to the user to be consistent with their use.
Thus if a longjmp() is done from a compilation unit that doesn’t otherwise use the AltiVec
extensions, it still must still enabled the Altivec extensions in order for the proper longjmp()
call to be generated. The converse is also true, i.e., doing a setjmp() from a compilation unit
that doesn’t otherwise use the AltiVec extensions to define a jmp_buf used by a compilation unit
that does. Both compilation units need to be compiled with AltiVec enabled.

3.3 Extensions to PPCCRuntime.o
When -opt size is specified on the compiler command line, any non-leaf functions save their
volatile floating-point registers with the aid of routines supplied in PPCCRuntime.o. Calling a
single routine to save registers saves space (hence why it’s only used under the -opt size
option). These routines all have names following the same forms: _savefN to save and _restfN to
restore floating-point registers, where N is a number 14 to 31. For example, calling _savef25
will cause floating-point registers fp25 through fp31 to be saved while calling _restf25 will
restore them. These calls are generated by the compiler and should never be called by the user.

MrC[pp] AltiVec Release Notes 13 Copyright Apple Computer, Inc. 1998
 2/18/99 All rights reserved.

For AltiVec registers, a similar set of routines are provided in PPCCRuntime.o to save and
restore the volatile vector registers. These have the general name _savevN and _restvN, where N
is 20 through 31 (see section 4 for a discussion of linkage conventions and the non-volatile
vector registers). As with floating-point, these routines are compiler-generated for non-leaf
functions compiled with -opt size and should not to be called by the user.

3.4 Extensions to MrCExceptionsLib
When exceptions are used in MrCpp -exceptions on must be specified on the command line
and the program linked with MrCExceptionsLib. Any compilation unit that is also compiled
with AltiVec enabled will invoke a set of different runtime exceptions support routines in
MrCExceptionsLib.7 If both exceptions and AltiVec are used in the program then all
compilations units should be built with AltiVec enabled whether or not a specific set of
compilation units uses AltiVec. This is necessary to properly restore the vector registers and the
VRsave SPR as the stack is unwound from a throw to the appropriate catch clause.

3.5 Extensions to StdCLib
As discussed in section 2.5.3.3, vec_malloc(), vec_calloc(), vec_realloc(), and
vec_free() are provided to dynamically allocate 16-byte aligned space for vector data. These
are located in StdCLib.

AltiVec support for setjmp() and longjmp(), i.e., the routines __vec_setjmp() and
__vec_longjmp(), are also located in StdCLib.

4. Functions Calls and Linkage Conventions
AltiVec support imposes some additional semantic rules on function calls and their declarations
or definitions. There are also differences in the linkage conventions to support the handling of
the vector registers, stack frame layout and alignment, and the VRsave special purpose register.

Note that the AltiVec intrinsic operations are not treated as function calls, so these comments do
not apply to those operations.

4.1 Additional Function Call Semantics
Any forward reference to a function which includes vector parameters requires a prototype.
Vector types as parameters or as a return type are not allowed for DTSOM member functions.

4.2 Linkage Conventions
The following sections discuss the modifications to linkage conventions.

4.2.1 Register Usage Conventions
The register usage conventions for the vector register file are defined as follows:

Registers Intended use Behavior across call sites

v0-v1 General use Volatile (Caller save)

7 Because the vector registers and the VRsave SPR must be restored when a (re)throw is done (using the routines
__vec__eh_throw() and __vec__eh_rethrow()) and space for thrown objects must be allocated or
deallocated using 16-byte alignment.

MrC[pp] AltiVec Release Notes 14 Copyright Apple Computer, Inc. 1998
 2/18/99 All rights reserved.

v2-v13 Parameters, general Volatile (Caller save)
v14-v19 General Volatile (Caller save)
v20-v31 General Non-volatile (Callee save)
VRsave Special, see below Non-volatile (Callee save)

AltiVec Register Usage Conventions

The special purpose register (SPR) number 256, named VRsave, is used to inform the operating
system which vector registers need to be saved and reloaded across context switches. Bit n of
this register is set to 1 if vector register vn needs to be saved and restored across a context
switch. Otherwise, the operating system may return that register with any value that does not
violate security after a context switch. The most significant bit in the 32-bit word is considered
to be bit 0.

4.2.2 Function calls with a fixed number of arguments
The first twelve parameters of any non-struct vector data type are placed in consecutive vector
registers v2 through v13. Any additional vector-typed parameters are passed through memory on
the stack. They appear together, 16-byte aligned, and after any non-vector parameters. If fewer
(or no) vector type arguments are passed, the unneeded registers are not loaded and will contain
undefined values on entry to the called function.

Non-vector parameters are passed in the same registers as they would be if the vector parameters
were not present. Structs that contain vector fields are treated the same as any other struct except
that they are 16-byte aligned. This can result in words in the parameter list being skipped for
alignment (padding) and left with undefined value.

Vector parameters are not shadowed in GPR’s. They are not placed in memory unless there are
more than 12 vector arguments.

Functions that declare a vector data type as a return value place that return value in register v2.

4.2.3 Function calls with a variable number of arguments
Arguments lists for a function defined with a variable number of arguments are passed
differently than those with a fixed number of arguments. All arguments are passed in the order
specified with vector arguments 16-byte aligned and non-vector arguments 4-byte aligned. All
the arguments are put on the stack in the parameter area with the first 8 words shadowed in the
GPR’s including any “holes” created for alignment.

4.3 The Stack Frame
A stack frame for a function having vector local data or using vector registers requires a vector
register save area, the VRsave save word, and the alignment padding space to dynamically align
the stack to a 16-byte boundary.8

The general layout of the stack frame is shown below.

8 See Appendix E for additional information on the generation of the stack frame.

MrC[pp] AltiVec Release Notes 15 Copyright Apple Computer, Inc. 1998
 2/18/99 All rights reserved.

r31

SP

Caller's VRsave

Saved GPRs

Saved FPRs

Locals

Param Area

Linkage Area

Saved VRs

Stack grows
down

len1 = Space for FPR's+GPR's+4 (for VRsave)
rounded up to a multiple of 16

len2 = Space for VR's+Locals's+PA+LA
rounded up to a multiple of 16

Len = len1 + len2

AltiVec Stack Frame Layout

SP in the figure denotes the stack pointer (general purpose register r1) of the called function
after it has executed code establishing its stack frame.

The following additional requirements apply to a vector stack frame:

• Before a function changes the value of VRsave, it must save the value of VRsave at the
time of entry to the function in the VRsave save word.

• The alignment padding space is either 0, 4, 8, or 12 bytes long to make the address of the
vector register save area (and subsequent stack locations) be 16-byte aligned.

• The code establishing the stack frame dynamically aligns the stack pointer atomically
with an stwux instruction. The code always assumes the stack pointer on entry is aligned
on an 8-byte boundary.

• The code establishing the stack frame dynamically aligns the stack pointer atomically
with an stwux instruction. The code always assumes the stack pointer on entry is aligned
on an 8-byte boundary.

• Before a function changes the value in any non-volatile vector register, vn, it saves the
value in vn, in the word in the vector register save area 16*(32-n) bytes before the low-
addressed end of the alignment padding space.

• Local variables of a vector data type which need to be saved to memory are placed on the
stack frame on a 16-byte alignment boundary in the same stack frame region used for
local variables of other types.

Non-volatile floating point registers (FPR’s) and general purpose registers (GPR’s) are saved in
the frame in the usual way. But when there are non-volatile vector registers (VR’s) to be saved
or vector locals, then the frame needs additional space for those registers and the caller’s
VRsave. The prolog code needs to dynamically 16-byte align the frame thus producing a “hole”
(illustrated by the shaded area in the above diagram). These is discussed in more detail in the

MrC[pp] AltiVec Release Notes 16 Copyright Apple Computer, Inc. 1998
 2/18/99 All rights reserved.

following sections.

4.3.1 Stack Frame Alignment

All vector stack frames must assume that the caller’s SP is only 8-byte aligned and therefore each
callee is responsible for 16-byte aligning it’s own frame. The compiler computes the size of the
locals such that it plus the sizes of the parameter area (PA) and linkage areas (LA) will also come
out to be a multiple of 16 (len2 in the above diagram). Thus the frame will start on a 16-byte
boundary if the area for the saved vector registers also start on a 16-byte boundary.

The upper size of the alignment hole is computed at compile time. It is the minimum number of
bytes needed to needed to make the space for the saved FPR’s+GPR’s+4 (for VRsave) a multiple
of 16 (i.e., 4, 8, or 12, len1 in the diagram is the size of this rounded up space). The multiple-of-
16 space for the locals+PA+LA (len2) can be dynamically aligned by “sliding” the space
(represented by len2) “up” or ”down” using the statically computed hole to take up the slack.

The computations for computing the callee’s SP are as follows:

• If the static hole is 8 or 12 it is big enough to allow moving the len2 space “up” by 0 or 8
bytes to get that space 16-byte aligned.

callee’s SP = caller’s SP - Len + (caller’s SP & 8)

• If the static hole is 0 or 4 then it isn’t big enough to allow moving the len2 space “up”.
Therefore it must be moved “down” by 0 or 8 bytes to get it 16-byte aligned.

callee’s SP = caller’s SP - Len - (caller’s SP & 8)

Because the alignment is dynamic an additional register, r31, must be reserved to allow accessing
of the caller’s parameters. It will always point to the callee’s stack frame (i.e., it is a copy of the
caller’s SP).9

R31 is not always reserved as the caller’s frame pointer. If it turns out that r31 is the only GPR
that needs saving and there is a volatile register between r3 and r10 available, then one of those
volatiles will be used in place of r31.

4.3.2 Saving the vector registers (VR’s)
If any non-volatile VR’s need to be saved on the stack they are saved immediately after the
alignment hole. Debuggers can always find these registers if they know the number of saved
GPR’s and FPR’s and whether VRsave is saved or not.

4.3.3 VRsave
VRsave is the AltiVec SPR (256) used to inform the OS which vector registers need to be saved
and reloaded across context switches (e.g., interrupts). Bit i of this register is set to 1 if vector
register i needs to be saved and restored across a context switch (the most significant bit in the

9 Normally r31 is used as the callee’s original frame pointer when alloca() is used in order to access locals
and the caller’s parameters. But as just discussed, when the stack is vector aligned, r31 is used as the caller’s
frame pointer. Then r30 becomes alloca()’s original callee frame pointer. Note that it does not matter
whether the stack is vector aligned or not for the space allocated by alloca() since it always allocates its
stack space on a 16-byte boundary.

MrC[pp] AltiVec Release Notes 17 Copyright Apple Computer, Inc. 1998
 2/18/99 All rights reserved.

32-bit word is considered to correspond to v0). Otherwise, the operating system may return
vector register i with any value that does not violate security after a context switch.

When a process is launched, VRsave is set to 0. As functions are called the prolog is responsible
for saving the caller’s VRsave and OR’ing into VRsave all the bits that correspond to the vector
registers (volatile and non-volatile) used by that function. On exit, the epilog code restores the
caller’s VRsave.

Because VRsave is stored in a fixed place in the stack frame, debuggers can access it if they need
to.

4.3.4 Local Variables
Vector locals are 16-byte aligned within the local area and mixed in with all the other locals used
by the function. This may incur some wasted space within the local area. The entire local space
is also rounded up to a multiple of 16 so that it plus the parameter and linkage area space are a
multiple of 16.

MrC[pp] AltiVec Release Notes 18 Copyright Apple Computer, Inc. 1998
 2/18/99 All rights reserved.

Appendix A: Generic and Specific AltiVec Operators
The tables are organized alphabetically by generic operation name and define the permitted
generic and specific AltiVec operations. Each table describes a single generic AltiVec operation.
Each line shows a valid set of argument types for that generic AltiVec operation, the result type
for that set of argument types, and the specific AltiVec instruction generated for that set of
arguments. For example, vec_add(vector unsigned char, vector unsigned char) maps to
“vaddubm”.

In some tables a Note column is shown. If there is no Note column it is permissible to use a
specific AltiVec operator formed by prefixing “vec_” to the name of the operation in the Maps
To column with that line’s set of argument types. For example, vec_vaddubm(vector unsigned
char, vector unsigned char) has the same effect as vec_add(vector unsigned char,
vector unsigned char).

In the few cases in which a Note column is shown, it will have a “N” to indicate that the specific
AltiVec instruction is not permitted for that generic operation because that set of argument types
has been chosen to produce a different result type.

Any operation which is not explicitly permitted by these tables is prohibited and will cause a
compilation error. Casts may be used, if necessary, to use operators in bizarre ways.

A.1 vec_add(arg1, arg2)
Each element of the result is the sum of the corresponding elements of arg1 and arg2. The
arithmetic is modular for integer types.

Result arg1 arg2 Maps To
vector unsigned char vector unsigned char vector unsigned char vaddubm
vector unsigned char vector unsigned char vector bool char vaddubm
vector unsigned char vector bool char vector unsigned char vaddubm
vector signed char vector signed char vector signed char vaddubm
vector signed char vector signed char vector bool char vaddubm
vector signed char vector bool char vector signed char vaddubm
vector unsigned short vector unsigned short vector unsigned short vadduhm
vector unsigned short vector unsigned short vector bool short vadduhm
vector unsigned short vector bool short vector unsigned short vadduhm
vector signed short vector signed short vector signed short vadduhm
vector signed short vector signed short vector bool short vadduhm
vector signed short vector bool short vector signed short vadduhm
vector unsigned long vector unsigned long vector unsigned long vadduwm
vector unsigned long vector unsigned long vector bool long vadduwm
vector unsigned long vector bool long vector unsigned long vadduwm
vector signed long vector signed long vector signed long vadduwm
vector signed long vector signed long vector bool long vadduwm
vector signed long vector bool long vector signed long vadduwm
vector float vector float vector float vaddfp

MrC[pp] AltiVec Release Notes 19 Copyright Apple Computer, Inc. 1998
 2/18/99 All rights reserved.

A.2 vec_addc(arg1, arg2)
Each element of the result is the carry produced by adding the corresponding elements of arg1
and arg2. A carry gives a value of 1; no carry gives a value of 0.

Result arg1 arg2 Maps To
vector unsigned long vector unsigned long vector unsigned long vaddcuw

A.3 vec_adds(arg1, arg2)
Each element of the result is the saturated sum of the corresponding elements of arg1 and arg2.

Result arg1 arg2 Maps To
vector unsigned char vector unsigned char vector unsigned char vaddubs
vector unsigned char vector unsigned char vector bool char vaddubs
vector unsigned char vector bool char vector unsigned char vaddubs
vector signed char vector signed char vector signed char vaddsbs
vector signed char vector signed char vector bool char vaddsbs
vector signed char vector bool char vector signed char vaddsbs
vector unsigned short vector unsigned short vector unsigned short vadduhs
vector unsigned short vector unsigned short vector bool short vadduhs
vector unsigned short vector bool short vector unsigned short vadduhs
vector signed short vector signed short vector signed short vaddshs
vector signed short vector signed short vector bool short vaddshs
vector signed short vector bool short vector signed short vaddshs
vector unsigned long vector unsigned long vector unsigned long vadduws
vector unsigned long vector unsigned long vector bool long vadduws
vector unsigned long vector bool long vector unsigned long vadduws
vector signed long vector signed long vector signed long vaddsws
vector signed long vector signed long vector bool long vaddsws
vector signed long vector bool long vector signed long vaddsws

A.4 vec_and(arg1, arg2)
Each element of the result is the logical AND of the corresponding elements of arg1 and arg2.

Result arg1 arg2 Maps To
vector unsigned char vector unsigned char vector unsigned char vand
vector unsigned char vector unsigned char vector bool char vand
vector unsigned char vector bool char vector unsigned char vand
vector signed char vector signed char vector signed char vand
vector signed char vector signed char vector bool char vand
vector signed char vector bool char vector signed char vand
vector bool char vector bool char vector bool char vand
vector unsigned short vector unsigned short vector unsigned short vand
vector unsigned short vector unsigned short vector bool short vand
vector unsigned short vector bool short vector unsigned short vand
vector signed short vector signed short vector signed short vand
vector signed short vector signed short vector bool short vand
vector signed short vector bool short vector signed short vand
vector bool short vector bool short vector bool short vand

MrC[pp] AltiVec Release Notes 20 Copyright Apple Computer, Inc. 1998
 2/18/99 All rights reserved.

vector unsigned long vector unsigned long vector unsigned long vand
vector unsigned long vector unsigned long vector bool long vand
vector unsigned long vector bool long vector unsigned long vand
vector signed long vector signed long vector signed long vand
vector signed long vector signed long vector bool long vand
vector signed long vector bool long vector signed long vand
vector bool long vector bool long vector bool long vand
vector float vector bool long vector float vand
vector float vector float vector bool long vand
vector float vector float vector float vand

A.5 vec_andc(arg1, arg2)
Each element of the result is the logical AND of the corresponding element of arg1 and the one's
complement of the corresponding element of arg2.

Result arg1 arg2 Maps To
vector unsigned char vector unsigned char vector unsigned char vandc
vector unsigned char vector unsigned char vector bool char vandc
vector unsigned char vector bool char vector unsigned char vandc
vector signed char vector signed char vector signed char vandc
vector signed char vector signed char vector bool char vandc
vector signed char vector bool char vector signed char vandc
vector bool char vector bool char vector bool char vandc
vector unsigned short vector unsigned short vector unsigned short vandc
vector unsigned short vector unsigned short vector bool short vandc
vector unsigned short vector bool short vector unsigned short vandc
vector signed short vector signed short vector signed short vandc
vector signed short vector signed short vector bool short vandc
vector signed short vector bool short vector signed short vandc
vector bool short vector bool short vector bool short vandc
vector unsigned long vector unsigned long vector unsigned long vandc
vector unsigned long vector unsigned long vector bool long vandc
vector unsigned long vector bool long vector unsigned long vandc
vector signed long vector signed long vector signed long vandc
vector signed long vector signed long vector bool long vandc
vector signed long vector bool long vector signed long vandc
vector bool long vector bool long vector bool long vandc
vector float vector bool long vector float vandc
vector float vector float vector bool long vandc
vector float vector float vector float vandc

A.6 vec_avg(arg1, arg2)
Each element of the result is the average of the corresponding elements of arg1 and arg2.

Result arg1 arg2 Maps To
vector unsigned char vector unsigned char vector unsigned char vavgub
vector signed char vector signed char vector signed char vavgsb
vector unsigned short vector unsigned short vector unsigned short vavguh

MrC[pp] AltiVec Release Notes 21 Copyright Apple Computer, Inc. 1998
 2/18/99 All rights reserved.

vector signed short vector signed short vector signed short vavgsh
vector unsigned long vector unsigned long vector unsigned long vavguw
vector signed long vector signed long vector signed long vavgsw

A.7 vec_ceil(arg1)
Each element of the result is the largest representable floating point integer not less than the
corresponding element of arg1.

Result arg1 Maps To
vector float vector float vrfip

A.8 vec_cmpb(arg1, arg2)
Each element of the result is 0 if the corresponding element of arg1 is greater than or equal to the
negative of the corresponding element of arg2 and less than or equal to the corresponding
element of arg2. If the corresponding element of arg2 is not negative, each element of the result
will be negative if the corresponding element of arg1 is greater than the corresponding element
of arg2 and positive if the corresponding element of arg1 is less than the negative of the
corresponding element of arg1.

Result arg1 arg2 Maps To
vector signed long vector float vector float vcmpbfp

A.9 vec_cmpeq(arg1, arg2)
Each element of the result is TRUE if the corresponding element of arg1 is equal to the
corresponding element of arg2. Otherwise, it returns 0.

Result arg1 arg2 Maps To
vector bool char vector unsigned char vector unsigned char vcmpequb
vector bool char vector signed char vector signed char vcmpequb
vector bool short vector unsigned short vector unsigned short vcmpequh
vector bool short vector signed short vector signed short vcmpequh
vector bool long vector unsigned long vector unsigned long vcmpequw
vector bool long vector signed long vector signed long vcmpequw
vector bool long vector float vector float vcmpeqfp

A.10 vec_cmpge(arg1, arg2)
Each element of the result is TRUE if the corresponding element of arg1 is greater than or equal
to the corresponding element of arg2. Otherwise, it returns 0.

Result arg1 arg2 Maps To
vector bool long vector float vector float vcmpgefp

MrC[pp] AltiVec Release Notes 22 Copyright Apple Computer, Inc. 1998
 2/18/99 All rights reserved.

A.11 vec_cmpgt(arg1, arg2)
Each element of the result is TRUE if the corresponding element of arg1 is greater than the
corresponding element of arg2. Otherwise, it returns 0.

Result arg1 arg2 Maps To
vector bool char vector unsigned char vector unsigned char vcmpgtub
vector bool char vector signed char vector signed char vcmpgtsb
vector bool short vector unsigned short vector unsigned short vcmpgtuh
vector bool short vector signed short vector signed short vcmpgtsh
vector bool long vector unsigned long vector unsigned long vcmpgtuw
vector bool long vector signed long vector signed long vcmpgtsw
vector bool long vector float vector float vcmpgtfp

A.12 vec_ctf(arg1, arg2)
Each element of the result is the closest floating-point representation of the number obtained by
dividing the corresponding element of arg1 by 2 to the power of arg2.

Result arg1 arg2 Maps To
vector float vector unsigned long 5-bit unsigned literal vcfux
vector float vector signed long 5-bit unsigned literal vcfsx

A.13 vec_cts(arg1, arg2)
Each element of the result is the saturated signed value obtained after truncating the number
obtained by multiplying the corresponding element of arg1 by 2 to the power of arg2.

Result arg1 arg2 Maps To
vector signed long vector float 5-bit unsigned literal vctsxs

A.14 vec_ctu(arg1, arg2)
Each element of the result is the saturated unsigned value obtained after truncating the number
obtained by multiplying the corresponding element of arg1 by 2 to the power of arg2.

Result arg1 arg2 Maps To
vector unsigned long vector float immed_u5 vctuxs

A.15 vec_dss(arg1)
Each operation stops cache touches for the data stream associated with tag arg1.

Result arg1 Maps To
void 2-bit unsigned literal dss

MrC[pp] AltiVec Release Notes 23 Copyright Apple Computer, Inc. 1998
 2/18/99 All rights reserved.

A.16 vec_dssall(arg1)
The operation stops cache touches for all data streams.

Result arg1 Maps To
void void dssall

A.17 vec_dst(arg1, arg2, arg3)
Each operation initiates cache touches for loads for the data stream associated with tag arg3 at
the address arg1 using the data block in arg2. The arg1 may also be a pointer to a const-
qualified type. Plain char * is excluded in the mapping for arg1.

Result arg1 arg2 arg3 Maps To
void vector unsigned char * int 2-bit unsigned literal dst
void vector signed char * int 2-bit unsigned literal dst
void vector bool char * int 2-bit unsigned literal dst
void vector unsigned short * int 2-bit unsigned literal dst
void vector signed short * int 2-bit unsigned literal dst
void vector bool short * int 2-bit unsigned literal dst
void vector pixel * int 2-bit unsigned literal dst
void vector unsigned long * int 2-bit unsigned literal dst
void vector signed long * int 2-bit unsigned literal dst
void vector bool long * int 2-bit unsigned literal dst
void vector float * int 2-bit unsigned literal dst
void unsigned char * int 2-bit unsigned literal dst
void signed char * int 2-bit unsigned literal dst
void unsigned short * int 2-bit unsigned literal dst
void short * int 2-bit unsigned literal dst
void unsigned int * int 2-bit unsigned literal dst
void int * int 2-bit unsigned literal dst
void unsigned long * int 2-bit unsigned literal dst
void long * int 2-bit unsigned literal dst
void float * int 2-bit unsigned literal dst

A.18 vec_dstst(arg1, arg2, arg3)
Each operation initiates cache touches for stores for the data stream associated with tag arg3 at
the address arg1 using the data block in arg2. The arg1 may also be a pointer to a const-
qualified type.

Result arg1 arg2 arg3 Maps To
void vector unsigned char * int 2-bit unsigned literal dstst
void vector signed char * int 2-bit unsigned literal dstst
void vector bool char * int 2-bit unsigned literal dstst
void vector unsigned short * int 2-bit unsigned literal dstst
void vector signed short * int 2-bit unsigned literal dstst
void vector bool short * int 2-bit unsigned literal dstst
void vector pixel * int 2-bit unsigned literal dstst
void vector unsigned long * int 2-bit unsigned literal dstst
void vector signed long * int 2-bit unsigned literal dstst

MrC[pp] AltiVec Release Notes 24 Copyright Apple Computer, Inc. 1998
 2/18/99 All rights reserved.

void vector bool long * int 2-bit unsigned literal dstst
void vector float * int 2-bit unsigned literal dstst
void unsigned char * int 2-bit unsigned literal dstst
void signed char * int 2-bit unsigned literal dstst
void unsigned short * int 2-bit unsigned literal dstst
void short * int 2-bit unsigned literal dstst
void unsigned int * int 2-bit unsigned literal dstst
void int * int 2-bit unsigned literal dstst
void unsigned long * int 2-bit unsigned literal dstst
void long * int 2-bit unsigned literal dstst
void float * int 2-bit unsigned literal dstst

A.19 vec_dststt(arg1, arg2, arg3)
Each operation initiates cache touches for transient stores for the data stream associated with tag
arg3 at the address arg1 using the data block in arg2. The arg1 may also be a pointer to a
const-qualified type. Plain char * is excluded in the mapping for arg1.

Result arg1 arg2 arg3 Maps To
void vector unsigned char * int 2-bit unsigned literal dststt
void vector signed char * int 2-bit unsigned literal dststt
void vector bool char * int 2-bit unsigned literal dststt
void vector unsigned short * int 2-bit unsigned literal dststt
void vector signed short * int 2-bit unsigned literal dststt
void vector bool short * int 2-bit unsigned literal dststt
void vector pixel * int 2-bit unsigned literal dststt
void vector unsigned long * int 2-bit unsigned literal dststt
void vector signed long * int 2-bit unsigned literal dststt
void vector bool long * int 2-bit unsigned literal dststt
void vector float * int 2-bit unsigned literal dststt
void unsigned char * int 2-bit unsigned literal dststt
void signed char * int 2-bit unsigned literal dststt
void unsigned short * int 2-bit unsigned literal dststt
void short * int 2-bit unsigned literal dststt
void unsigned int * int 2-bit unsigned literal dststt
void int * int 2-bit unsigned literal dststt
void unsigned long * int 2-bit unsigned literal dststt
void long * int 2-bit unsigned literal dststt
void float * int 2-bit unsigned literal dststt

A.20 vec_dstt(arg1, arg2, arg3)
Each operation initiates cache touches for transient loads for the data stream associated with tag
arg3 at the address arg1 using the data block in arg2. The arg1 may also be a pointer to a
const-qualified type. Plain char * is excluded in the mapping for arg1.

Result arg1 arg2 arg3 Maps To
void vector unsigned char * int 2-bit unsigned literal dstt
void vector signed char * int 2-bit unsigned literal dstt
void vector bool char * int 2-bit unsigned literal dstt

MrC[pp] AltiVec Release Notes 25 Copyright Apple Computer, Inc. 1998
 2/18/99 All rights reserved.

void vector unsigned short * int 2-bit unsigned literal dstt
void vector signed short * int 2-bit unsigned literal dstt
void vector bool short * int 2-bit unsigned literal dstt
void vector pixel * int 2-bit unsigned literal dstt
void vector unsigned long * int 2-bit unsigned literal dstt
void vector signed long * int 2-bit unsigned literal dstt
void vector bool long * int 2-bit unsigned literal dstt
void vector float * int 2-bit unsigned literal dstt
void unsigned char * int 2-bit unsigned literal dstt
void signed char * int 2-bit unsigned literal dstt
void unsigned short * int 2-bit unsigned literal dstt
void short * int 2-bit unsigned literal dstt
void unsigned int * int 2-bit unsigned literal dstt
void int * int 2-bit unsigned literal dstt
void unsigned long * int 2-bit unsigned literal dstt
void long * int 2-bit unsigned literal dstt
void float * int 2-bit unsigned literal dstt

A.21 vec_expte(arg1)
Each element of the result is an estimate of 2 raised to the corresponding element of arg1.

Result arg1 Maps To
vector float vector float vexptefp

A.22 vec_floor(arg1)
Each element of the result is the largest representable floating point integer not greater than arg1.

Result arg1 Maps To
vector float vector float vrfim

A.23 vec_ld(arg1, arg2)
Each operation performs a 16-byte load at a 16-byte aligned address. arg1 is taken to be an
integer value, while arg2 is a pointer. Note that the sum of arg1 and arg2 is truncated, if
necessary, to give 16-byte alignment; loading unaligned data into a vector register typically
requires a permutation of the results of two loads. Note that this load is the one which will be
generated for a loading dereference of a pointer to a vector type. The arg2 may also be a pointer
to a const or volatile qualified type. Plain char * is excluded in the mapping for arg2.

Note: A pointer to volatile has the effect of making the load volatile. However, pointers to
volatile types are not permitted in a implementation conforming to the Programming Model as
documented by Motorola. Therefore a warning will be issued if such a pointer is passed.

Result arg1 arg2 Maps To
vector unsigned char int vector unsigned char * lvx
vector unsigned char int unsigned char * lvx
vector signed char int vector signed char * lvx
vector signed char int signed char * lvx

MrC[pp] AltiVec Release Notes 26 Copyright Apple Computer, Inc. 1998
 2/18/99 All rights reserved.

vector bool char int vector bool char * lvx
vector unsigned short int vector unsigned short * lvx
vector unsigned short int unsigned short * lvx
vector signed short int vector signed short * lvx
vector signed short int short * lvx
vector bool short int vector bool short * lvx
vector pixel int vector pixel * lvx
vector unsigned long int vector unsigned long * lvx
vector unsigned long int unsigned int * lvx
vector unsigned long int unsigned long * lvx
vector signed long int vector signed long * lvx
vector signed long int int * lvx
vector signed long int long * lvx
vector bool long int vector bool long * lvx
vector float int vector float * lvx
vector float int float * lvx

A.24 vec_lde(arg1, arg2)
Each operation loads a single element into the position in the vector register corresponding to its
address, leaving the remaining elements of the register undefined. arg1 is taken to be an integer
value, while arg2 is a pointer. The arg2 may also be a pointer to a const or volatile qualified
type. Plain char * is excluded in the mapping for arg2.

Note: A pointer to volatile has the effect of making the load volatile. However, pointers to
volatile types are not permitted in a implementation conforming to the Programming Model as
documented by Motorola. Therefore a warning will be issued if such a pointer is passed.

Result arg1 arg2 Maps To
vector unsigned char int unsigned char * lvebx
vector signed char int signed char * lvebx
vector unsigned short int unsigned short * lvehx
vector signed short int short * lvehx
vector unsigned long int unsigned int * lvewx
vector unsigned long int unsigned long * lvewx
vector signed long int int * lvewx
vector signed long int long * lvewx
vector float int float * lvewx

A.25 vec_ldl(arg1, arg2)
Each operation performs a 16-byte load at a 16-byte aligned address. arg1 is taken to be an
integer value, while arg2 is a pointer. Note that the sum of arg1 and arg2 is truncated, if
necessary, to give 16-byte alignment; loading unaligned data into a vector register typically
requires a permutation of the results of two loads. These operations mark the cache line as least-
recently-used. The arg2 may also be a pointer to a const or volatile qualified type. Plain char *
is excluded in the mapping for arg2.

Note: A pointer to volatile has the effect of making the load volatile. However, pointers to
volatile types are not permitted in a implementation conforming to the Programming Model as
documented by Motorola. Therefore a warning will be issued if such a pointer is passed.

MrC[pp] AltiVec Release Notes 27 Copyright Apple Computer, Inc. 1998
 2/18/99 All rights reserved.

Result arg1 arg2 Maps To
vector unsigned char int vector unsigned char * lvxl
vector unsigned char int unsigned char * lvxl
vector signed char int vector signed char * lvxl
vector signed char int signed char * lvxl
vector bool char int vector bool char * lvxl
vector unsigned short int vector unsigned short * lvxl
vector unsigned short int unsigned short * lvxl
vector signed short int vector signed short * lvxl
vector signed short int short * lvxl
vector bool short int vector bool short * lvxl
vector pixel int vector pixel * lvxl
vector unsigned long int vector unsigned long * lvxl
vector unsigned long int unsigned int * lvxl
vector unsigned long int unsigned long * lvxl
vector signed long int vector signed long * lvxl
vector signed long int int * lvxl
vector signed long int long * lvxl
vector bool long int vector bool long * lvxl
vector float int vector float * lvxl
vector float int float * lvxl

A.26 vec_loge(arg1)
Each element of the result is an estimate of the logarithm to base 2 of the corresponding element
of arg1.

Result arg1 Maps To
vector float vector float vlogefp

A.27 vec_lvsl(arg1, arg2)
Each operation generates a permutations useful for aligning data from an unaligned address. The
arg2 may also be a pointer to a const or volatile qualified type. Plain char * is excluded in the
mapping for arg2.

Result arg1 arg2 Maps To
vector unsigned char int unsigned char * lvsl
vector unsigned char int signed char * lvsl
vector unsigned char int unsigned short * lvsl
vector unsigned char int short * lvsl
vector unsigned char int unsigned int * lvsl
vector unsigned char int unsigned long * lvsl
vector unsigned char int int * lvsl
vector unsigned char int long * lvsl
vector unsigned char int float * lvsl

MrC[pp] AltiVec Release Notes 28 Copyright Apple Computer, Inc. 1998
 2/18/99 All rights reserved.

A.28 vec_lvsr(arg1, arg2)
Each operation generates a permutations useful for aligning data from an unaligned address. The
arg2 may also be a pointer to a const or volatile qualified type. Plain char * is excluded in the
mapping for arg2.

Result arg1 arg2 Maps To
vector unsigned char int unsigned char * lvsr
vector unsigned char int signed char * lvsr
vector unsigned char int unsigned short * lvsr
vector unsigned char int short * lvsr
vector unsigned char int unsigned int * lvsr
vector unsigned char int unsigned long * lvsr
vector unsigned char int int * lvsr
vector unsigned char int long * lvsr
vector unsigned char int float * lvsr

A.29 vec_madd(arg1, arg2, arg3)
Each element of the result is the sum of the corresponding element of arg3 and the product of the
corresponding elements of arg1 and arg2.

Result arg1 arg2 arg3 Maps To
vector float vector float vector float vector float vmaddfp

A.30 vec_madds(arg1, arg2, arg3)
Each element of the result is the 16-bit saturated sum of the corresponding element of arg3 and
the high-order 17 bits of the product of the corresponding elements of arg1 and arg2.

Result arg1 arg2 arg3 Maps To
vector signed short vector signed short vector signed short vector signed short vmhaddshs

A.31 vec_max(arg1, arg2)
Each element of the result is the larger of the corresponding elements of arg1 and arg2.

Result arg1 arg2 Maps To
vector unsigned char vector unsigned char vector unsigned char vmaxub
vector unsigned char vector unsigned char vector bool char vmaxub
vector unsigned char vector bool char vector unsigned char vmaxub
vector signed char vector signed char vector signed char vmaxsb
vector signed char vector signed char vector bool char vmaxsb
vector signed char vector bool char vector signed char vmaxsb
vector unsigned short vector unsigned short vector unsigned short vmaxuh
vector unsigned short vector unsigned short vector bool short vmaxuh
vector unsigned short vector bool short vector unsigned short vmaxuh
vector signed short vector signed short vector signed short vmaxsh
vector signed short vector signed short vector bool short vmaxsh
vector signed short vector bool short vector signed short vmaxsh
vector unsigned long vector unsigned long vector unsigned long vmaxuw

MrC[pp] AltiVec Release Notes 29 Copyright Apple Computer, Inc. 1998
 2/18/99 All rights reserved.

vector unsigned long vector unsigned long vector bool long vmaxuw
vector unsigned long vector bool long vector unsigned long vmaxuw
vector signed long vector signed long vector signed long vmaxsw
vector signed long vector signed long vector bool long vmaxsw
vector signed long vector bool long vector signed long vmaxsw
vector float vector float vector float vmaxfp

A.32 vec_mergeh(arg1, arg2)
The even elements of the result are obtained left-to-right from the high elements of arg1. The
odd elements of the result are obtained left-to-right from the high elements of arg2.

Result arg1 arg2 Maps To
vector unsigned char vector unsigned char vector unsigned char vmrghb
vector signed char vector signed char vector signed char vmrghb
vector bool char vector bool char vector bool char vmrghb
vector unsigned short vector unsigned short vector unsigned short vmrghh
vector signed short vector signed short vector signed short vmrghh
vector bool short vector bool short vector bool short vmrghh
vector pixel vector pixel vector pixel vmrghh
vector unsigned long vector unsigned long vector unsigned long vmrghw
vector signed long vector signed long vector signed long vmrghw
vector bool long vector bool long vector bool long vmrghw
vector float vector float vector float vmrghw

A.33 vec_mergel(arg1, arg2)
The even elements of the result are obtained left-to-right from the low elements of arg1. The
odd elements of the result are obtained left-to-right from the low elements of arg2.

Result arg1 arg2 Maps To
vector unsigned char vector unsigned char vector unsigned char vmrglb
vector signed char vector signed char vector signed char vmrglb
vector bool char vector bool char vector bool char vmrglb
vector unsigned short vector unsigned short vector unsigned short vmrglh
vector signed short vector signed short vector signed short vmrglh
vector bool short vector bool short vector bool short vmrglh
vector pixel vector pixel vector pixel vmrglh
vector unsigned long vector unsigned long vector unsigned long vmrglw
vector signed long vector signed long vector signed long vmrglw
vector bool long vector bool long vector bool long vmrglw
vector float vector float vector float vmrglw

A.34 vec_mfvscr(void)
The first six elements of the result are 0. The seventh element of the result contains the high-
order 16 bits of the VSCR (including NJ). The eighth element of the result contains the low-
order 16 bits of the VSCR (including SAT).

MrC[pp] AltiVec Release Notes 30 Copyright Apple Computer, Inc. 1998
 2/18/99 All rights reserved.

Result Maps To
vector unsigned short mfvscr

A.35 vec_min(arg1, arg2)
Each element of the result is the smaller of the corresponding elements of arg1 and arg2.

Result arg1 arg2 Maps To
vector unsigned char vector unsigned char vector unsigned char vminub
vector unsigned char vector unsigned char vector bool char vminub
vector unsigned char vector bool char vector unsigned char vminub
vector signed char vector signed char vector signed char vminsb
vector signed char vector signed char vector bool char vminsb
vector signed char vector bool char vector signed char vminsb
vector unsigned short vector unsigned short vector unsigned short vminuh
vector unsigned short vector unsigned short vector bool short vminuh
vector unsigned short vector bool short vector unsigned short vminuh
vector signed short vector signed short vector signed short vminsh
vector signed short vector signed short vector bool short vminsh
vector signed short vector bool short vector signed short vminsh
vector unsigned long vector unsigned long vector unsigned long vminuw
vector unsigned long vector unsigned long vector bool long vminuw
vector unsigned long vector bool long vector unsigned long vminuw
vector signed long vector signed long vector signed long vminsw
vector signed long vector signed long vector bool long vminsw
vector signed long vector bool long vector signed long vminsw
vector float vector float vector float vminfp

A.36 vec_mladd(arg1, arg2, arg3)
Each element of the result is the low-order 16 bits of the sum of the corresponding element of
arg3 and the product of the corresponding elements of arg1 and arg2.

Result arg1 arg2 arg3 Maps To
vector unsigned short vector unsigned short vector unsigned short vector unsigned short vmladduhm
vector signed short vector unsigned short vector signed short vector signed short vmladduhm
vector signed short vector signed short vector unsigned short vector unsigned short vmladduhm
vector signed short vector signed short vector signed short vector signed short vmladduhm

A.37 vec_mradds(arg1, arg2, arg3)
Each element of the result is the 16-bit saturated sum of the corresponding element of arg3 and
the high-order 17 bits of the rounded product of the corresponding elements of arg1 and arg2.
Note that arg2 is unsigned, while arg1 is signed for the variant which maps to vmsumbm.

Result arg1 arg2 arg3 Maps To
vector signed short vector signed short vector signed short vector signed short vmhraddshs

MrC[pp] AltiVec Release Notes 31 Copyright Apple Computer, Inc. 1998
 2/18/99 All rights reserved.

A.38 vec_msum(arg1, arg2, arg3)
Each element of the result is the sum of the corresponding element of arg3 and the products of
the elements of arg1 and arg2 which overlap the positions of that element of arg3. The sum is
performed with 32-bit modular addition.

Result arg1 arg2 arg3 Maps To
vector unsigned long vector unsigned char vector unsigned char vector unsigned long vmsumubm
vector unsigned long vector unsigned short vector unsigned short vector unsigned long vmsumuhm
vector signed long vector signed char vector unsigned char vector signed long vmsummbm
vector signed long vector signed short vector signed short vector signed long vmsumshm

A.39 vec_msums(arg1, arg2, arg3)
Each element of the result is the sum of the corresponding element of arg3 and the products of
the elements of arg1 and arg2 which overlap the positions of that element of arg3. The sum is
performed with 32-bit saturating addition.

Result arg1 arg2 arg3 Maps To
vector unsigned long vector unsigned short vector unsigned short vector unsigned long vmsumuhs
vector signed long vector signed short vector signed short vector signed long vmsumshs

A.40 vec_mtvscr(arg1)
The VSCR is set by the elements in arg1 which occupy the last 32 bits.

Result arg1 Maps To
void vector unsigned char mtvscr
void vector signed char mtvscr
void vector bool char mtvscr
void vector unsigned short mtvscr
void vector signed short mtvscr
void vector bool short mtvscr
void vector pixel mtvscr
void vector unsigned long mtvscr
void vector signed long mtvscr
void vector bool long mtvscr

A.41 vec_mule(arg1, arg2)
Each element of the result is the product of the corresponding high half-width elements of arg1
and arg2.

Result arg1 arg2 Maps To
vector unsigned short vector unsigned char vector unsigned char vmuleub
vector signed short vector signed char vector signed char vmulesb
vector unsigned long vector unsigned short vector unsigned short vmuleuh
vector signed long vector signed short vector signed short vmulesh

MrC[pp] AltiVec Release Notes 32 Copyright Apple Computer, Inc. 1998
 2/18/99 All rights reserved.

A.42 vec_mulo(arg1, arg2)
Each element of the result is the product of the corresponding low half-width elements of arg1
and arg2.

Result arg1 arg2 Maps To
vector unsigned short vector unsigned char vector unsigned char vmuloub
vector signed short vector signed char vector signed char vmulosb
vector unsigned long vector unsigned short vector unsigned short vmulouh
vector signed long vector signed short vector signed short vmulosh

A.43 vec_nmsub(arg1, arg2, arg3)
Each element of the result is the negative of the difference of the corresponding element of arg3
and the product of the corresponding elements of arg1 and arg2.

Result arg1 arg2 arg3 Maps To
vector float vector float vector float vector float vnmsubfp

A.44 vec_nor(arg1, arg2)
Each element of the result is the logical NOR of the corresponding elements of arg1 and arg2.

Result arg1 arg2 Maps To
vector unsigned char vector unsigned char vector unsigned char vnor
vector signed char vector signed char vector signed char vnor
vector bool char vector bool char vector bool char vnor
vector unsigned short vector unsigned short vector unsigned short vnor
vector signed short vector signed short vector signed short vnor
vector bool short vector bool short vector bool short vnor
vector unsigned long vector unsigned long vector unsigned long vnor
vector signed long vector signed long vector signed long vnor
vector bool long vector bool long vector bool long vnor
vector float vector float vector float vnor

A.45 vec_or(arg1, arg2)
Each element of the result is the logical OR of the corresponding elements of arg1 and arg2.

Result arg1 arg2 Maps To
vector unsigned char vector unsigned char vector unsigned char vor
vector unsigned char vector unsigned char vector bool char vor
vector unsigned char vector bool char vector unsigned char vor
vector signed char vector signed char vector signed char vor
vector signed char vector signed char vector bool char vor
vector signed char vector bool char vector signed char vor
vector bool char vector bool char vector bool char vor
vector unsigned short vector unsigned short vector unsigned short vor
vector unsigned short vector unsigned short vector bool short vor
vector unsigned short vector bool short vector unsigned short vor
vector signed short vector signed short vector signed short vor

MrC[pp] AltiVec Release Notes 33 Copyright Apple Computer, Inc. 1998
 2/18/99 All rights reserved.

vector signed short vector signed short vector bool short vor
vector signed short vector bool short vector signed short vor
vector bool short vector bool short vector bool short vor
vector unsigned long vector unsigned long vector unsigned long vor
vector unsigned long vector unsigned long vector bool long vor
vector unsigned long vector bool long vector unsigned long vor
vector signed long vector signed long vector signed long vor
vector signed long vector signed long vector bool long vor
vector signed long vector bool long vector signed long vor
vector bool long vector bool long vector bool long vor
vector float vector bool long vector float vor
vector float vector float vector bool long vor
vector float vector float vector float vor

A.46 vec_pack(arg1, arg2)
Each high element of the result is the truncation of the corresponding wider element of arg1.
Each low element of the result is the truncation of the corresponding wider element of arg2.

Result arg1 arg2 Maps To
vector unsigned char vector unsigned short vector unsigned short vpkuhum
vector signed char vector signed short vector signed short vpkuhum
vector bool char vector bool short vector bool short vpkuhum
vector unsigned short vector unsigned long vector unsigned long vpkuwum
vector signed short vector signed long vector signed long vpkuwum
vector bool short vector bool long vector bool long vpkuwum

A.47 vec_packpx(arg1, arg2)
Each high element of the result is the packed pixel from the corresponding wider element of
arg1. Each low element of the result is the packed pixel from the corresponding wider element
of arg2.

Result arg1 arg2 Maps To
vector pixel vector unsigned long vector unsigned long vpkpx

A.48 vec_packs(arg1, arg2)
Each high element of the result is the saturated value of the corresponding wider element of
arg1. Each low element of the result is the saturated value of the corresponding wider element
of arg2.

Result arg1 arg2 Maps To
vector unsigned char vector unsigned short vector unsigned short vpkuhus
vector signed char vector signed short vector signed short vpkshss
vector unsigned short vector unsigned long vector unsigned long vpkuwus
vector signed short vector signed long vector signed long vpkswss

MrC[pp] AltiVec Release Notes 34 Copyright Apple Computer, Inc. 1998
 2/18/99 All rights reserved.

A.49 vec_packsu(arg1, arg2)
Each high element of the result is the saturated value of the corresponding wider element of
arg1. Each low element of the result is the saturated value of the corresponding wider element
of arg2. The result elements are all unsigned. Note, it is necessary to use the generic name for
the two variants with specific operations vec_vpkuhus and vec_vpkuwus since these are used for
two variants of the vec_packs generic operation.

Result arg1 arg2 Maps To Note
vector unsigned char vector unsigned short vector unsigned short vpkuhus N
vector unsigned char vector signed short vector signed short vpkshus
vector unsigned short vector unsigned long vector unsigned long vpkuwus N
vector unsigned short vector signed long vector signed long vpkswus

A.50 vec_perm(arg1, arg2, arg3)
Each element of the result is selected independently by indexing the catenated bytes of arg1 and
arg2 by the corresponding element of arg3.

Result arg1 arg2 arg3 Maps To
vector unsigned char vector unsigned char vector unsigned char vector unsigned char vperm
vector signed char vector signed char vector signed char vector unsigned char vperm
vector bool char vector bool char vector bool char vector unsigned char vperm
vector unsigned short vector unsigned short vector unsigned short vector unsigned char vperm
vector signed short vector signed short vector signed short vector unsigned char vperm
vector bool short vector bool short vector bool short vector unsigned char vperm
vector pixel vector pixel vector pixel vector unsigned char vperm
vector unsigned long vector unsigned long vector unsigned long vector unsigned char vperm
vector signed long vector signed long vector signed long vector unsigned char vperm
vector bool long vector bool long vector bool long vector unsigned char vperm
vector float vector float vector float vector unsigned char vperm

A.51 vec_re(arg1)
Each element of the result is an estimate of the reciprocal the corresponding element of arg1.

Result arg1 Maps To
vector float vector float vrefp

A.52 vec_rl(arg1, arg2)
Each element of the result is the result of rotating left the corresponding element of arg1 by the
number of bits in the corresponding element of arg2.

Result arg1 arg2 Maps To
vector unsigned char vector unsigned char vector unsigned char vrlb
vector signed char vector signed char vector unsigned char vrlb
vector unsigned short vector unsigned short vector unsigned short vrlh
vector signed short vector signed short vector unsigned short vrlh
vector unsigned long vector unsigned long vector unsigned long vrlw
vector signed long vector signed long vector unsigned long vrlw

MrC[pp] AltiVec Release Notes 35 Copyright Apple Computer, Inc. 1998
 2/18/99 All rights reserved.

A.53 vec_round(arg1)
Each element of the result is the nearest representable floating point integer to arg1, using IEEE
round-to-nearest rounding.

Result arg1 Maps To
vector float vector float vrfin

A.54 vec_rsqrte(arg1)
Each element of the result is an estimate of the reciprocal square root of the corresponding
element of arg1.

Result arg1 Maps To
vector float vector float vrsqrtefp

A.55 vec_sel(arg1, arg2, arg3)
Each bit of the result is the corresponding bit of arg1 if the corresponding bit of arg3 is 0.
Otherwise, it is the corresponding bit of arg2.

Result arg1 arg2 arg3 Maps To
vector unsigned char vector unsigned char vector unsigned char vector unsigned char vsel
vector unsigned char vector unsigned char vector unsigned char vector bool char vsel
vector signed char vector signed char vector signed char vector unsigned char vsel
vector signed char vector signed char vector signed char vector bool char vsel
vector bool char vector bool char vector bool char vector unsigned char vsel
vector bool char vector bool char vector bool char vector bool char vsel
vector unsigned short vector unsigned short vector unsigned short vector unsigned short vsel
vector unsigned short vector unsigned short vector unsigned short vector bool short vsel
vector signed short vector signed short vector signed short vector unsigned short vsel
vector signed short vector signed short vector signed short vector bool short vsel
vector bool short vector bool short vector bool short vector unsigned short vsel
vector bool short vector bool short vector bool short vector bool short vsel
vector unsigned long vector unsigned long vector unsigned long vector unsigned long vsel
vector unsigned long vector unsigned long vector unsigned long vector bool long vsel
vector signed long vector signed long vector signed long vector unsigned long vsel
vector signed long vector signed long vector signed long vector bool long vsel
vector bool long vector bool long vector bool long vector unsigned long vsel
vector bool long vector bool long vector bool long vector bool long vsel
vector float vector float vector float vector unsigned long vsel
vector float vector float vector float vector bool long vsel

A.56 vec_sl(arg1, arg2)
Each element of the result is the result of shifting the corresponding element of arg1 left by the
number of bits of the corresponding element of arg2.

Result arg1 arg2 Maps To
vector unsigned char vector unsigned char vector unsigned char vslb
vector signed char vector signed char vector unsigned char vslb
vector unsigned short vector unsigned short vector unsigned short vslh

MrC[pp] AltiVec Release Notes 36 Copyright Apple Computer, Inc. 1998
 2/18/99 All rights reserved.

vector signed short vector signed short vector unsigned short vslh
vector unsigned long vector unsigned long vector unsigned long vslw
vector signed long vector signed long vector unsigned long vslw

A.57 vec_sld(arg1, arg2, arg3)
The result is obtained by selecting the top 16 bytes obtained by shifting left (unsigned) by the
value of arg3 bytes a 32-byte quantity formed by catenating arg1 with arg2.

Result arg1 arg2 arg3 Maps To
vector unsigned char vector unsigned char vector unsigned char 4-bit unsigned literal vsldoi
vector signed char vector signed char vector signed char 4-bit unsigned literal vsldoi
vector unsigned short vector unsigned short vector unsigned short 4-bit unsigned literal vsldoi
vector signed short vector signed short vector signed short 4-bit unsigned literal vsldoi
vector pixel vector pixel vector pixel 4-bit unsigned literal vsldoi
vector unsigned long vector unsigned long vector unsigned long 4-bit unsigned literal vsldoi
vector signed long vector signed long vector signed long 4-bit unsigned literal vsldoi
vector float vector float vector float 4-bit unsigned literal vsldoi

A.58 vec_sll(arg1, arg2)
The result is obtained by shifting arg1 left by a number of bits specified by the last 3 bits of the
last element of arg2.

Result arg1 arg2 Maps To
vector unsigned char vector unsigned char vector unsigned char vsl
vector unsigned char vector unsigned char vector unsigned short vsl
vector unsigned char vector unsigned char vector unsigned long vsl
vector signed char vector signed char vector unsigned char vsl
vector signed char vector signed char vector unsigned short vsl
vector signed char vector signed char vector unsigned long vsl
vector bool char vector bool char vector unsigned char vsl
vector bool char vector bool char vector unsigned short vsl
vector bool char vector bool char vector unsigned long vsl
vector unsigned short vector unsigned short vector unsigned char vsl
vector unsigned short vector unsigned short vector unsigned short vsl
vector unsigned short vector unsigned short vector unsigned long vsl
vector signed short vector signed short vector unsigned char vsl
vector signed short vector signed short vector unsigned short vsl
vector signed short vector signed short vector unsigned long vsl
vector bool short vector bool short vector unsigned char vsl
vector bool short vector bool short vector unsigned short vsl
vector bool short vector bool short vector unsigned long vsl
vector pixel vector pixel vector unsigned char vsl
vector pixel vector pixel vector unsigned short vsl
vector pixel vector pixel vector unsigned long vsl
vector unsigned long vector unsigned long vector unsigned char vsl
vector unsigned long vector unsigned long vector unsigned short vsl
vector unsigned long vector unsigned long vector unsigned long vsl
vector signed long vector signed long vector unsigned char vsl

MrC[pp] AltiVec Release Notes 37 Copyright Apple Computer, Inc. 1998
 2/18/99 All rights reserved.

vector signed long vector signed long vector unsigned short vsl
vector signed long vector signed long vector unsigned long vsl
vector bool long vector bool long vector unsigned char vsl
vector bool long vector bool long vector unsigned short vsl
vector bool long vector bool long vector unsigned long vsl

A.59 vec_slo(arg1, arg2)
The result is obtained by shifting arg1 left by a number of bytes specified by shifting the value
of the last element of arg2 by 3 bits.

Result arg1 arg2 Maps To
vector unsigned char vector unsigned char vector unsigned char vslo
vector unsigned char vector unsigned char vector signed char vslo
vector signed char vector signed char vector unsigned char vslo
vector signed char vector signed char vector signed char vslo
vector unsigned short vector unsigned short vector unsigned char vslo
vector unsigned short vector unsigned short vector signed char vslo
vector signed short vector signed short vector unsigned char vslo
vector signed short vector signed short vector signed char vslo
vector pixel vector pixel vector unsigned char vslo
vector pixel vector pixel vector signed char vslo
vector unsigned long vector unsigned long vector unsigned char vslo
vector unsigned long vector unsigned long vector signed char vslo
vector signed long vector signed long vector unsigned char vslo
vector signed long vector signed long vector signed char vslo
vector float vector float vector unsigned char vslo
vector float vector float vector signed char vslo

A.60 vec_splat(arg1, arg2)
Each element of the result is component arg2 of arg1.

Result arg1 arg2 Maps To
vector unsigned char vector unsigned char 5-bit unsigned literal vspltb
vector signed char vector signed char 5-bit unsigned literal vspltb
vector bool char vector bool char 5-bit unsigned literal vspltb
vector unsigned short vector unsigned short 5-bit unsigned literal vsplth
vector signed short vector signed short 5-bit unsigned literal vsplth
vector bool short vector bool short 5-bit unsigned literal vsplth
vector pixel vector pixel 5-bit unsigned literal vsplth
vector unsigned long vector unsigned long 5-bit unsigned literal vspltw
vector signed long vector signed long 5-bit unsigned literal vspltw
vector bool long vector bool long 5-bit unsigned literal vspltw
vector float vector float 5-bit unsigned literal vspltw

A.61 vec_splat_s8(arg1)
Each element of the result is the value obtained by sign-extending arg1. Note that this permits
values ranging from -16 to +15 only.

MrC[pp] AltiVec Release Notes 38 Copyright Apple Computer, Inc. 1998
 2/18/99 All rights reserved.

Result arg1 Maps To
vector signed char 5-bit signed literal vspltisb

A.62 vec_splat_s16(arg1)
Each element of the result is the value obtained by sign-extending arg1. Note that this permits
values ranging from -16 to +15 only.

Result arg1 Maps To
vector signed short 5-bit signed literal vspltish

A.63 vec_splat_s32(arg1)
Each element of the result is the value obtained by sign-extending arg1. Note that this permits
values ranging from -16 to +15 only.

Result arg1 Maps To
vector signed long 5-bit signed literal vspltisw

A.64 vec_splat_u8(arg1)
Each element of the result is the value obtained by sign-extending arg1 and casting it to an
unsigned char value. Note that this permits values ranging from -16 to +15 with the negative
values interpreted as lying interval from 240 to 255 since the result is a vector unsigned char.
Values 240 to 255 are also permitted for arg1 and equivalent to -16 to -1 respectively. Also
note, it is necessary to use the generic name since the specific operation vec_vspltisb is used
for the vec_splat_s8 generic operation.

Result arg1 Maps To Note
vector unsigned char 5-bit signed literal vspltisb N

A.65 vec_splat_u16(arg1)
Each element of the result is the value obtained by sign-extending arg1. Note that this permits
values ranging from -16 to +15 with the negative values interpreted as lying interval from 65520
to 65535 since the result is a vector unsigned short. Values 65520 to 65535 are also permitted
for arg1 and equivalent to -16 to -1 respectively. Also note, it is necessary to use the generic
name since the specific operation vec_vspltish is used for the vec_splat_s16 generic
operation.

Result arg1 Maps To Note
vector unsigned short 5-bit signed literal vspltish N

A.66 vec_splat_u32(arg1)
Each element of the result is the value obtained by sign-extending arg1. Note that this permits
values ranging from -16 to +15 with the negative values interpreted as lying interval from
4294967280 to 4294967295 since the result is a vector unsigned long. Values 4294967280 to
4294967295 are also permitted for arg1 and equivalent to -16 to -1 respectively. Also note, it is
necessary to use the generic name since the specific operation vec_vspltisw is used for the

MrC[pp] AltiVec Release Notes 39 Copyright Apple Computer, Inc. 1998
 2/18/99 All rights reserved.

vec_splat_s32 generic operation.

Result arg1 Maps To Note
vector unsigned long 5-bit signed literal vspltisw N

A.67 vec_sr(arg1, arg2)
Each element of the result is the result of shifting the corresponding element of arg1 right by the
number of bits of the corresponding element of arg2. Zero bits are shifted in from the left for
both signed and unsigned argument types.

Result arg1 arg2 Maps To
vector unsigned char vector unsigned char vector unsigned char vsrb
vector signed char vector signed char vector unsigned char vsrb
vector unsigned short vector unsigned short vector unsigned short vsrh
vector signed short vector signed short vector unsigned short vsrh
vector unsigned long vector unsigned long vector unsigned long vsrw
vector signed long vector signed long vector unsigned long vsrw

A.68 vec_sra(arg1, arg2)
Each element of the result is the result of shifting the corresponding element of arg1 right by the
number of bits of the corresponding element of arg2. Copies of the sign bit are shifted in from
the left for both signed and unsigned argument types.

Result arg1 arg2 Maps To
vector unsigned char vector unsigned char vector unsigned char vsrab
vector signed char vector signed char vector unsigned char vsrab
vector unsigned short vector unsigned short vector unsigned short vsrah
vector signed short vector signed short vector unsigned short vsrah
vector unsigned long vector unsigned long vector unsigned long vsraw
vector signed long vector signed long vector unsigned long vsraw

A.69 vec_srl(arg1, arg2)
The result is obtained by shifting arg1 right by a number of bits specified by the last 3 bits of the
last element of arg2.

Result arg1 arg2 Maps To
vector unsigned char vector unsigned char vector unsigned char vsr
vector unsigned char vector unsigned char vector unsigned short vsr
vector unsigned char vector unsigned char vector unsigned long vsr
vector signed char vector signed char vector unsigned char vsr
vector signed char vector signed char vector unsigned short vsr
vector signed char vector signed char vector unsigned long vsr
vector bool char vector bool char vector unsigned char vsr
vector bool char vector bool char vector unsigned short vsr
vector bool char vector bool char vector unsigned long vsr
vector unsigned short vector unsigned short vector unsigned char vsr
vector unsigned short vector unsigned short vector unsigned short vsr

MrC[pp] AltiVec Release Notes 40 Copyright Apple Computer, Inc. 1998
 2/18/99 All rights reserved.

vector unsigned short vector unsigned short vector unsigned long vsr
vector signed short vector signed short vector unsigned char vsr
vector signed short vector signed short vector unsigned short vsr
vector signed short vector signed short vector unsigned long vsr
vector bool short vector bool short vector unsigned char vsr
vector bool short vector bool short vector unsigned short vsr
vector bool short vector bool short vector unsigned long vsr
vector pixel vector pixel vector unsigned char vsr
vector pixel vector pixel vector unsigned short vsr
vector pixel vector pixel vector unsigned long vsr
vector unsigned long vector unsigned long vector unsigned char vsr
vector unsigned long vector unsigned long vector unsigned short vsr
vector unsigned long vector unsigned long vector unsigned long vsr
vector signed long vector signed long vector unsigned char vsr
vector signed long vector signed long vector unsigned short vsr
vector signed long vector signed long vector unsigned long vsr
vector bool long vector bool long vector unsigned char vsr
vector bool long vector bool long vector unsigned short vsr
vector bool long vector bool long vector unsigned long vsr

A.70 vec_sro(arg1, arg2)
The result is obtained by shifting (unsigned) arg1 right by a number of bytes specified by
shifting the value of the last element of arg2 by 3 bits.

Result arg1 arg2 Maps To
vector unsigned char vector unsigned char vector unsigned char vsro
vector unsigned char vector unsigned char vector signed char vsro
vector signed char vector signed char vector unsigned char vsro
vector signed char vector signed char vector signed char vsro
vector unsigned short vector unsigned short vector unsigned char vsro
vector unsigned short vector unsigned short vector signed char vsro
vector signed short vector signed short vector unsigned char vsro
vector signed short vector signed short vector signed char vsro
vector pixel vector pixel vector unsigned char vsro
vector pixel vector pixel vector signed char vsro
vector unsigned long vector unsigned long vector unsigned char vsro
vector unsigned long vector unsigned long vector signed char vsro
vector signed long vector signed long vector unsigned char vsro
vector signed long vector signed long vector signed char vsro
vector float vector float vector unsigned char vsro
vector float vector float vector signed char vsro

MrC[pp] AltiVec Release Notes 41 Copyright Apple Computer, Inc. 1998
 2/18/99 All rights reserved.

A.71 vec_st(arg1, arg2, arg3)
The 16-byte value of arg1 is stored at a 16-byte aligned address formed by truncating the last
four bits of the sum of arg2 and arg3. arg2 is taken to be an integer value, while arg3 is a
pointer. Note that this is not, by itself, an acceptable way to store aligned data to unaligned
addresses. Note that this store is the one which will be generated for a storing dereference of a
pointer to a vector type. The arg3 may also be a pointer to a volatile-qualified type. Plain char *
is excluded in the mapping for arg3.

Note: A pointer to volatile has the effect of making the store volatile. However, pointers to
volatile types are not permitted in a implementation conforming to the Programming Model as
documented by Motorola. Therefore a warning will be issued if such a pointer is passed.

Result arg1 arg2 arg3 Maps To
void vector unsigned char int vector unsigned char * stvx
void vector unsigned char int unsigned char * stvx
void vector signed char int vector signed char * stvx
void vector signed char int signed char * stvx
void vector bool char int vector bool char * stvx
void vector bool char int unsigned char * stvx
void vector bool char int signed char * stvx
void vector unsigned short int vector unsigned short * stvx
void vector unsigned short int unsigned short * stvx
void vector signed short int vector signed short * stvx
void vector signed short int short * stvx
void vector bool short int vector bool short * stvx
void vector bool short int unsigned short * stvx
void vector bool short int short * stvx
void vector pixel int vector pixel * stvx
void vector pixel int unsigned short * stvx
void vector pixel int short * stvx
void vector unsigned long int vector unsigned long * stvx
void vector unsigned long int unsigned int * stvx
void vector unsigned long int unsigned long * stvx
void vector signed long int vector signed long * stvx
void vector signed long int int * stvx
void vector signed long int long * stvx
void vector bool long int vector bool long * stvx
void vector bool long int unsigned int * stvx
void vector bool long int unsigned long * stvx
void vector bool long int int * stvx
void vector bool long int long * stvx
void vector float int vector float * stvx
void vector float int float * stvx

A.72 vec_ste(arg1, arg2, arg3)
A single element of arg1 is stored at the address formed by truncating the last 0 (char), 1 (short)
or 2 (int, float) bits of the sum of arg2 and arg3. The element stored is the one whose position in
the register matches the position of the adjusted address relative to 16-byte alignment. Note that
if you don't know the alignment of the sum of arg2 and arg3, you won't know which element is

MrC[pp] AltiVec Release Notes 42 Copyright Apple Computer, Inc. 1998
 2/18/99 All rights reserved.

stored. The arg3 may also be a pointer to a volatile-qualified type. Plain char * is excluded in
the mapping for arg3.

Note: A pointer to volatile has the effect of making the store volatile. However, pointers to
volatile types are not permitted in a implementation conforming to the Programming Model as
documented by Motorola. Therefore a warning will be issued if such a pointer is passed.

Result arg1 arg2 arg3 Maps To
void vector unsigned char int unsigned char * stvebx
void vector signed char int signed char * stvebx
void vector bool char int unsigned char * stvebx
void vector bool char int signed char * stvebx
void vector unsigned short int unsigned short * stvehx
void vector signed short int short * stvehx
void vector bool short int unsigned short * stvehx
void vector bool short int short * stvehx
void vector pixel int unsigned short * stvehx
void vector pixel int short * stvehx
void vector unsigned long int unsigned int * stvewx
void vector unsigned long int unsigned long * stvewx
void vector signed long int int * stvewx
void vector signed long int long * stvewx
void vector bool long int unsigned int * stvewx
void vector bool long int unsigned long * stvewx
void vector bool long int int * stvewx
void vector bool long int long * stvewx
void vector float int float * stvewx

A.73 vec_stl(arg1, arg2, arg3)
The 16-byte value of arg1 is stored at a 16-byte aligned address formed by truncating the last
four bits of the sum of arg2 and arg3. arg2 is taken to be an integer value, while arg3 is a
pointer. Note that this is not, by itself, an acceptable way to store aligned data to unaligned
addresses. The cache line stored into is marked LRU. The arg3 may also be a pointer to a
volatile-qualified type. Plain char * is excluded in the mapping for arg3.

Note: A pointer to volatile has the effect of making the store volatile. However, pointers to
volatile types are not permitted in a implementation conforming to the Programming Model as
documented by Motorola. Therefore a warning will be issued if such a pointer is passed.

Result arg1 arg2 arg3 Maps To
void vector unsigned char int vector unsigned char * stvxl
void vector unsigned char int unsigned char * stvxl
void vector signed char int vector signed char * stvxl
void vector signed char int signed char * stvxl
void vector bool char int vector bool char * stvxl
void vector bool char int unsigned char * stvxl
void vector bool char int signed char * stvxl
void vector unsigned short int vector unsigned short * stvxl
void vector unsigned short int unsigned short * stvxl
void vector signed short int vector signed short * stvxl

MrC[pp] AltiVec Release Notes 43 Copyright Apple Computer, Inc. 1998
 2/18/99 All rights reserved.

void vector signed short int short * stvxl
void vector bool short int vector bool short * stvxl
void vector bool short int unsigned short * stvxl
void vector bool short int short * stvxl
void vector pixel int vector pixel * stvxl
void vector pixel int unsigned short * stvxl
void vector pixel int short * stvxl
void vector unsigned long int vector unsigned long * stvxl
void vector unsigned long int unsigned int * stvxl
void vector unsigned long int unsigned long * stvxl
void vector signed long int vector signed long * stvxl
void vector signed long int int * stvxl
void vector signed long int long * stvxl
void vector bool long int vector bool long * stvxl
void vector bool long int unsigned int * stvxl
void vector bool long int unsigned long * stvxl
void vector bool long int int * stvxl
void vector bool long int long * stvxl
void vector float int vector float * stvxl
void vector float int float * stvxl

A.74 vec_sub(arg1, arg2)
Each element of the result is the difference between the corresponding elements of arg1 and
arg2. The arithmetic is modular for integer types.

Result arg1 arg2 Maps To
vector unsigned char vector unsigned char vector unsigned char vsububm
vector unsigned char vector unsigned char vector bool char vsububm
vector unsigned char vector bool char vector unsigned char vsububm
vector signed char vector signed char vector signed char vsububm
vector signed char vector signed char vector bool char vsububm
vector signed char vector bool char vector signed char vsububm
vector unsigned short vector unsigned short vector unsigned short vsubuhm
vector unsigned short vector unsigned short vector bool short vsubuhm
vector unsigned short vector bool short vector unsigned short vsubuhm
vector signed short vector signed short vector signed short vsubuhm
vector signed short vector signed short vector bool short vsubuhm
vector signed short vector bool short vector signed short vsubuhm
vector unsigned long vector unsigned long vector unsigned long vsubuwm
vector unsigned long vector unsigned long vector bool long vsubuwm
vector unsigned long vector bool long vector unsigned long vsubuwm
vector signed long vector signed long vector signed long vsubuwm
vector signed long vector signed long vector bool long vsubuwm
vector signed long vector bool long vector signed long vsubuwm
vector float vector float vector float vsubfp

MrC[pp] AltiVec Release Notes 44 Copyright Apple Computer, Inc. 1998
 2/18/99 All rights reserved.

A.75 vec_subc(arg1, arg2)
Each element of the result is the value of the carry generated by subtracting the corresponding
elements of arg1 and arg2. The value is 0 if a borrow occurred and 1 if no borrow occurred.

Result arg1 arg2 Maps To
vector unsigned long vector unsigned long vector unsigned long vsubcuw

A.76 vec_subs(arg1, arg2)
Each element of the result is the saturated difference between the corresponding elements of
arg1 and arg2.

Result arg1 arg2 Maps To
vector unsigned char vector unsigned char vector unsigned char vsububs
vector unsigned char vector unsigned char vector bool char vsububs
vector unsigned char vector bool char vector unsigned char vsububs
vector signed char vector signed char vector signed char vsubsbs
vector signed char vector signed char vector bool char vsubsbs
vector signed char vector bool char vector signed char vsubsbs
vector unsigned short vector unsigned short vector unsigned short vsubuhs
vector unsigned short vector unsigned short vector bool short vsubuhs
vector unsigned short vector bool short vector unsigned short vsubuhs
vector signed short vector signed short vector signed short vsubshs
vector signed short vector signed short vector bool short vsubshs
vector signed short vector bool short vector signed short vsubshs
vector unsigned long vector unsigned long vector unsigned long vsubuws
vector unsigned long vector unsigned long vector bool long vsubuws
vector unsigned long vector bool long vector unsigned long vsubuws
vector signed long vector signed long vector signed long vsubsws
vector signed long vector signed long vector bool long vsubsws
vector signed long vector bool long vector signed long vsubsws

A.77 vec_sum4s(arg1, arg2)
Each element of the result is the 32-bit saturated sum of the corresponding element in arg2 and
all elements in arg1 with positions overlapping those of that element.

Result arg1 arg2 Maps To
vector unsigned long vector unsigned char vector unsigned long vsum4ubs
vector signed long vector signed char vector signed long vsum4sbs
vector signed long vector signed short vector signed long vsum4shs

A.78 vec_sum2s(arg1, arg2)
The first and third elements of the result are 0. The second element of the result is the 32-bit
saturated sum of the first two elements of arg1 and the second element of arg2. The fourth
element of the result is the 32-bit saturated sum of the last two elements of arg1 and the fourth
element of arg2.

MrC[pp] AltiVec Release Notes 45 Copyright Apple Computer, Inc. 1998
 2/18/99 All rights reserved.

Result arg1 arg2 Maps To
vector signed long vector signed long vector signed long vsum2sws

A.79 vec_sums(arg1, arg2)
The first three elements of the result are 0. The fourth element of the result is the 32-bit saturated
sum of all elements of arg1 and the fourth element of arg2.

Result arg1 arg2 Maps To
vector signed long vector signed long vector signed long vsumsws

A.80 vec_trunc(arg1)
Each element of the result is the value of the corresponding element of arg1 truncated to an
integral value.

Result arg1 Maps To
vector float vector float vrfiz

A.81 vec_unpackh(arg1)
Each element of the result is the result of extending the corresponding half-width high element of
arg1.

Result arg1 Maps To
vector signed short vector signed char vupkhsb
vector bool short vector bool char vupkhsb
vector unsigned long vector pixel vupkhpx
vector signed long vector signed short vupkhsh
vector bool long vector bool short vupkhsh

A.82 vec_unpackl(arg1)
Each element of the result is the result of extending the corresponding half-width low element of
arg1.

Result arg1 Maps To
vector signed short vector signed char vupklsb
vector bool short vector bool char vupklsb
vector unsigned long vector pixel vupklpx
vector signed long vector signed short vupklsh
vector bool long vector bool short vupklsh

A.83 vec_unpack2sh(arg1, arg2)
These operations form signed double-size elements by catenating each high element of arg1 with
the corresponding high element of arg2. If arg1 is a vector of 0's, this effectively is a signed
unpack of the unsigned value arg2. Note, it is necessary to use the generic name since the
specific operations vec_vmrghb and vec_vmrghh are also used for the vec_unpack2uh generic
operation.

MrC[pp] AltiVec Release Notes 46 Copyright Apple Computer, Inc. 1998
 2/18/99 All rights reserved.

Result arg1 arg2 Maps To Note
vector signed short vector unsigned char vector unsigned char vmrghb N
vector signed long vector unsigned short vector unsigned short vmrghh N

A.84 vec_unpack2sl(arg1, arg2)
These operations form signed double-size elements by catenating each low element of arg1 with
the corresponding low element of arg2. If arg1 is a vector of 0's, this effectively is a signed
unpack of the unsigned value arg2. Note, it is necessary to use the generic name since the
specific operations vec_vmrglb and vec_vmrglh are also used for the vec_unpack2ul generic
operation.

Result arg1 arg2 Maps To Note
vector signed short vector unsigned char vector unsigned char vmrglb N
vector signed long vector unsigned short vector unsigned short vmrglh N

A.85 vec_unpack2uh(arg1, arg2)
These operations form unsigned double-size elements by catenating each high element of arg1
with the corresponding high element of arg2. If arg1 is a vector of 0's, this effectively is an
unpack of arg2. Note, it is necessary to use the generic name since the specific operations
vec_vmrghb and vec_vmrghh are also used for the vec_unpack2sh generic operation.

Result arg1 arg2 Maps To Note
vector unsigned short vector unsigned char vector unsigned char vmrghb N
vector unsigned long vector unsigned short vector unsigned short vmrghh N

A.86 vec_unpack2ul(arg1, arg2)
These operations form unsigned double-size elements by catenating each low element of arg1
with the corresponding low element of arg2. If arg1 is a vector of 0's, this effectively is an
unpack of arg2. Note, it is necessary to use the generic name since the specific operations
vec_vmrglb and vec_vmrglh are also used for the vec_unpack2sl generic operation.

Result arg1 arg2 Maps To Note
vector unsigned short vector unsigned char vector unsigned char vmrglb N
vector unsigned long vector unsigned short vector unsigned short vmrglh N

A.87 vec_xor(arg1, arg2)
Each element of the result is the logical XOR of the corresponding elements of arg1 and arg2.

Result arg1 arg2 Maps To
vector unsigned char vector unsigned char vector unsigned char vxor
vector unsigned char vector unsigned char vector bool char vxor
vector unsigned char vector bool char vector unsigned char vxor
vector signed char vector signed char vector signed char vxor
vector signed char vector signed char vector bool char vxor
vector signed char vector bool char vector signed char vxor

MrC[pp] AltiVec Release Notes 47 Copyright Apple Computer, Inc. 1998
 2/18/99 All rights reserved.

vector bool char vector bool char vector bool char vxor
vector unsigned short vector unsigned short vector unsigned short vxor
vector unsigned short vector unsigned short vector bool short vxor
vector unsigned short vector bool short vector unsigned short vxor
vector signed short vector signed short vector signed short vxor
vector signed short vector signed short vector bool short vxor
vector signed short vector bool short vector signed short vxor
vector bool short vector bool short vector bool short vxor
vector unsigned long vector unsigned long vector unsigned long vxor
vector unsigned long vector unsigned long vector bool long vxor
vector unsigned long vector bool long vector unsigned long vxor
vector signed long vector signed long vector signed long vxor
vector signed long vector signed long vector bool long vxor
vector signed long vector bool long vector signed long vxor
vector bool long vector bool long vector bool long vxor
vector float vector bool long vector float vxor
vector float vector float vector bool long vxor
vector float vector float vector float vxor

MrC[pp] AltiVec Release Notes 48 Copyright Apple Computer, Inc. 1998
 2/18/99 All rights reserved.

Appendix B: AltiVec Predicates
The predicates are organized alphabetically by predicate name. Each table describes a single
generic predicate. Each line shows a valid set of argument types for that predicate, and the
specific AltiVec instruction generated for that set of arguments. For example,
vec_any_lt(vector unsigned char, vector unsigned char) will use the instruction
“vcmpgtb.”.

The Notes column for predicates always indicates “N” to show that the specific AltiVec
instruction cannot be used by itself. The entry “R” indicates that the operands will be reversed in
invoking the instruction, while the entry “D” indicates that the same operand will be used twice.

B.1 vec_all_eq(arg1, arg2)
Each predicate returns 1 if each element of arg1 is equal to the corresponding element of arg2.
Otherwise, it returns 0.

Result arg1 arg2 Maps To Note
int vector unsigned char vector unsigned char vcmpequb. N
int vector unsigned char vector bool char vcmpequb. N
int vector signed char vector signed char vcmpequb. N
int vector signed char vector bool char vcmpequb. N
int vector bool char vector unsigned char vcmpequb. N
int vector bool char vector signed char vcmpequb. N
int vector unsigned short vector unsigned short vcmpequh. N
int vector unsigned short vector bool short vcmpequh. N
int vector signed short vector signed short vcmpequh. N
int vector signed short vector bool short vcmpequh. N
int vector bool short vector unsigned short vcmpequh. N
int vector bool short vector signed short vcmpequh. N
int vector unsigned long vector unsigned long vcmpequw. N
int vector unsigned long vector bool long vcmpequw. N
int vector signed long vector signed long vcmpequw. N
int vector signed long vector bool long vcmpequw. N
int vector bool long vector unsigned long vcmpequw. N
int vector bool long vector signed long vcmpequw. N
int vector float vector float vcmpeqfp. N

B.2 vec_all_ge(arg1, arg2)
Each predicate returns 1 if each element of arg1 is greater than or equal to the corresponding
element of arg2. Otherwise, it returns 0.

Result arg1 arg2 Maps To Note
int vector unsigned char vector unsigned char vcmpgtub. NR
int vector unsigned char vector bool char vcmpgtub. NR
int vector signed char vector signed char vcmpgtsb. NR
int vector signed char vector bool char vcmpgtsb. NR
int vector bool char vector unsigned char vcmpgtub. NR
int vector bool char vector signed char vcmpgtsb. NR
int vector unsigned short vector unsigned short vcmpgtuh. NR
int vector unsigned short vector bool short vcmpgtuh. NR

MrC[pp] AltiVec Release Notes 49 Copyright Apple Computer, Inc. 1998
 2/18/99 All rights reserved.

int vector signed short vector signed short vcmpgtsh. NR
int vector signed short vector bool short vcmpgtsh. NR
int vector bool short vector unsigned short vcmpgtuh. NR
int vector bool short vector signed short vcmpgtsh. NR
int vector unsigned long vector unsigned long vcmpgtuw. NR
int vector unsigned long vector bool long vcmpgtuw. NR
int vector signed long vector signed long vcmpgtsw. NR
int vector signed long vector bool long vcmpgtsw. NR
int vector bool long vector unsigned long vcmpgtuw. NR
int vector bool long vector signed long vcmpgtsw. NR
int vector float vector float vcmpgefp. N

B.3 vec_all_gt(arg1, arg2)
Each predicate returns 1 if each element of arg1 is greater than the corresponding element of
arg2. Otherwise, it returns 0.

Result arg1 arg2 Maps To Note
int vector unsigned char vector unsigned char vcmpgtub. N
int vector unsigned char vector bool char vcmpgtub. N
int vector signed char vector signed char vcmpgtsb. N
int vector signed char vector bool char vcmpgtsb. N
int vector bool char vector unsigned char vcmpgtub. N
int vector bool char vector signed char vcmpgtsb. N
int vector unsigned short vector unsigned short vcmpgtuh. N
int vector unsigned short vector bool short vcmpgtuh. N
int vector signed short vector signed short vcmpgtsh. N
int vector signed short vector bool short vcmpgtsh. N
int vector bool short vector unsigned short vcmpgtuh. N
int vector bool short vector signed short vcmpgtsh. N
int vector unsigned long vector unsigned long vcmpgtuw. N
int vector unsigned long vector bool long vcmpgtuw. N
int vector signed long vector signed long vcmpgtsw. N
int vector signed long vector bool long vcmpgtsw. N
int vector bool long vector unsigned long vcmpgtuw. N
int vector bool long vector signed long vcmpgtsw. N
int vector float vector float vcmpgtfp. N

B.4 vec_all_in(arg1, arg2)
Each predicate returns 1 if each element of arg1 is less than or equal to the corresponding
element of arg2 and greater than or equal to the negative of the corresponding element of arg2.
Otherwise, it returns 0.

Result arg1 arg2 Maps To Note
int vector float vector float vcmpbfp. N

MrC[pp] AltiVec Release Notes 50 Copyright Apple Computer, Inc. 1998
 2/18/99 All rights reserved.

B.5 vec_all_le(arg1, arg2)
Each predicate returns 1 if each element of arg1 is less than or equal to the corresponding
element of arg2. Otherwise, it returns 0.

Result arg1 arg2 Maps To Note
int vector unsigned char vector unsigned char vcmpgtub. N
int vector unsigned char vector bool char vcmpgtub. N
int vector signed char vector signed char vcmpgtsb. N
int vector signed char vector bool char vcmpgtsb. N
int vector bool char vector unsigned char vcmpgtub. N
int vector bool char vector signed char vcmpgtsb. N
int vector unsigned short vector unsigned short vcmpgtuh. N
int vector unsigned short vector bool short vcmpgtuh. N
int vector signed short vector signed short vcmpgtsh. N
int vector signed short vector bool short vcmpgtsh. N
int vector bool short vector unsigned short vcmpgtuh. N
int vector bool short vector signed short vcmpgtsh. N
int vector unsigned long vector unsigned long vcmpgtuw. N
int vector unsigned long vector bool long vcmpgtuw. N
int vector signed long vector signed long vcmpgtsw. N
int vector signed long vector bool long vcmpgtsw. N
int vector bool long vector unsigned long vcmpgtuw. N
int vector bool long vector signed long vcmpgtsw. N
int vector float vector float vcmpgefp. NR

B.6 vec_all_lt(arg1, arg2)
Each predicate returns 1 if each element of arg1 is less than the corresponding element of arg2.
Otherwise, it returns 0.

Result arg1 arg2 Maps To Note
int vector unsigned char vector unsigned char vcmpgtub. NR
int vector unsigned char vector bool char vcmpgtub. NR
int vector signed char vector signed char vcmpgtsb. NR
int vector signed char vector bool char vcmpgtsb. NR
int vector bool char vector unsigned char vcmpgtub. NR
int vector bool char vector signed char vcmpgtsb. NR
int vector unsigned short vector unsigned short vcmpgtuh. NR
int vector unsigned short vector bool short vcmpgtuh. NR
int vector signed short vector signed short vcmpgtsh. NR
int vector signed short vector bool short vcmpgtsh. NR
int vector bool short vector unsigned short vcmpgtuh. NR
int vector bool short vector signed short vcmpgtsh. NR
int vector unsigned long vector unsigned long vcmpgtuw. NR
int vector unsigned long vector bool long vcmpgtuw. NR
int vector signed long vector signed long vcmpgtsw. NR
int vector signed long vector bool long vcmpgtsw. NR
int vector bool long vector unsigned long vcmpgtuw. NR
int vector bool long vector signed long vcmpgtsw. NR
int vector float vector float vcmpgtfp. NR

MrC[pp] AltiVec Release Notes 51 Copyright Apple Computer, Inc. 1998
 2/18/99 All rights reserved.

B.7 vec_all_nan(arg1)
Each predicate returns 1 if each element of arg1 is a NaN. Otherwise, it returns 0.

Result arg1 Maps To Note
int vector float vcmpeqfp. ND

B.8 vec_all_ne(arg1, arg2)
Each predicate returns 1 if each element of arg1 is not equal to the corresponding element of
arg2. Otherwise, it returns 0.

Result arg1 arg2 Maps To Note
int vector unsigned char vector unsigned char vcmpequb. N
int vector unsigned char vector bool char vcmpequb. N
int vector signed char vector signed char vcmpequb. N
int vector signed char vector bool char vcmpequb. N
int vector bool char vector unsigned char vcmpequb. N
int vector bool char vector signed char vcmpequb. N
int vector unsigned short vector unsigned short vcmpequh. N
int vector unsigned short vector bool short vcmpequh. N
int vector signed short vector signed short vcmpequh. N
int vector signed short vector bool short vcmpequh. N
int vector bool short vector unsigned short vcmpequh. N
int vector bool short vector signed short vcmpequh. N
int vector unsigned long vector unsigned long vcmpequw. N
int vector unsigned long vector bool long vcmpequw. N
int vector signed long vector signed long vcmpequw. N
int vector signed long vector bool long vcmpequw. N
int vector bool long vector unsigned long vcmpequw. N
int vector bool long vector signed long vcmpequw. N
int vector float vector float vcmpeqfp. N

B.9 vec_all_nge(arg1, arg2)
Each predicate returns 1 if each element of arg1 is not greater than or equal to the corresponding
element of arg2. Otherwise, it returns 0. Not greater than or equal can mean either less than or
that one of the elements is a NaN.

Result arg1 arg2 Maps To Note
int vector float vector float vcmpgefp. N

B.10 vec_all_ngt(arg1, arg2)
Each predicate returns 1 if each element of arg1 is not greater than the corresponding element of
arg2. Otherwise, it returns 0. Not greater than or equal can mean either less than or equal to or
that one of the elements is a NaN.

Result arg1 arg2 Maps To Note

MrC[pp] AltiVec Release Notes 52 Copyright Apple Computer, Inc. 1998
 2/18/99 All rights reserved.

int vector float vector float vcmpgtfp. N

B.11 vec_all_nle(arg1, arg2)
Each predicate returns 1 if each element of arg1 is not less than or equal to the corresponding
element of arg2. Otherwise, it returns 0. Not greater than or equal can mean either greater than
or that one of the elements is a NaN.

Result arg1 arg2 Maps To Note
int vector float vector float vcmpgefp. NR

B.12 vec_all_nlt(arg1, arg2)
Each predicate returns 1 if each element of arg1 is not less than the corresponding element of
arg2. Otherwise, it returns 0. Not greater than or equal can mean either greater than or equal to
or that one of the elements is a NaN.

Result arg1 arg2 Maps To Note
int vector float vector float vcmpgtfp. NR

B.13 vec_all_numeric(arg1)
Each predicate returns 1 if each element of arg1 is numeric (not a NaN). Otherwise, it returns 0.

Result arg1 Maps To Note
int vector float vcmpeqfp. ND

B.14 vec_any_eq(arg1, arg2)
Each predicate returns 1 if at least one element of arg1 is equal to the corresponding element of
arg2. Otherwise, it returns 0.

Result arg1 arg2 Maps To Note
int vector unsigned char vector unsigned char vcmpequb. N
int vector unsigned char vector bool char vcmpequb. N
int vector signed char vector signed char vcmpequb. N
int vector signed char vector bool char vcmpequb. N
int vector bool char vector unsigned char vcmpequb. N
int vector bool char vector signed char vcmpequb. N
int vector unsigned short vector unsigned short vcmpequh. N
int vector unsigned short vector bool short vcmpequh. N
int vector signed short vector signed short vcmpequh. N
int vector signed short vector bool short vcmpequh. N
int vector bool short vector unsigned short vcmpequh. N
int vector bool short vector signed short vcmpequh. N
int vector unsigned long vector unsigned long vcmpequw. N
int vector unsigned long vector bool long vcmpequw. N
int vector signed long vector signed long vcmpequw. N
int vector signed long vector bool long vcmpequw. N
int vector bool long vector unsigned long vcmpequw. N

MrC[pp] AltiVec Release Notes 53 Copyright Apple Computer, Inc. 1998
 2/18/99 All rights reserved.

int vector bool long vector signed long vcmpequw. N
int vector float vector float vcmpeqfp. N

B.15 vec_any_ge(arg1, arg2)
Each predicate returns 1 if at least one element of arg1 is greater than or equal to the
corresponding element of arg2. Otherwise, it returns 0.

Result arg1 arg2 Maps To Note
int vector unsigned char vector unsigned char vcmpgtub. NR
int vector unsigned char vector bool char vcmpgtub. NR
int vector signed char vector signed char vcmpgtsb. NR
int vector signed char vector bool char vcmpgtsb. NR
int vector bool char vector unsigned char vcmpgtub. NR
int vector bool char vector signed char vcmpgtsb. NR
int vector unsigned short vector unsigned short vcmpgtuh. NR
int vector unsigned short vector bool short vcmpgtuh. NR
int vector signed short vector signed short vcmpgtsh. NR
int vector signed short vector bool short vcmpgtsh. NR
int vector bool short vector unsigned short vcmpgtuh. NR
int vector bool short vector signed short vcmpgtsh. NR
int vector unsigned long vector unsigned long vcmpgtuw. NR
int vector unsigned long vector bool long vcmpgtuw. NR
int vector signed long vector signed long vcmpgtsw. NR
int vector signed long vector bool long vcmpgtsw. NR
int vector bool long vector unsigned long vcmpgtuw. NR
int vector bool long vector signed long vcmpgtsw. NR
int vector float vector float vcmpgefp. N

B.16 vec_any_gt(arg1, arg2)
Each predicate returns 1 if at least one element of arg1 is greater than the corresponding element
of arg2. Otherwise, it returns 0.

Result arg1 arg2 Maps To Note
int vector unsigned char vector unsigned char vcmpgtub. N
int vector unsigned char vector bool char vcmpgtub. N
int vector signed char vector signed char vcmpgtsb. N
int vector signed char vector bool char vcmpgtsb. N
int vector bool char vector unsigned char vcmpgtub. N
int vector bool char vector signed char vcmpgtsb. N
int vector unsigned short vector unsigned short vcmpgtuh. N
int vector unsigned short vector bool short vcmpgtuh. N
int vector signed short vector signed short vcmpgtsh. N
int vector signed short vector bool short vcmpgtsh. N
int vector bool short vector unsigned short vcmpgtuh. N
int vector bool short vector signed short vcmpgtsh. N
int vector unsigned long vector unsigned long vcmpgtuw. N
int vector unsigned long vector bool long vcmpgtuw. N
int vector signed long vector signed long vcmpgtsw. N

MrC[pp] AltiVec Release Notes 54 Copyright Apple Computer, Inc. 1998
 2/18/99 All rights reserved.

int vector signed long vector bool long vcmpgtsw. N
int vector bool long vector unsigned long vcmpgtuw. N
int vector bool long vector signed long vcmpgtsw. N
int vector float vector float vcmpgtfp. N

B.17 vec_any_le(arg1, arg2)
Each predicate returns 1 if at least one element of arg1 is less than or equal to the corresponding
element of arg2. Otherwise, it returns 0.

Result arg1 arg2 Maps To Note
int vector unsigned char vector unsigned char vcmpgtub. N
int vector unsigned char vector bool char vcmpgtub. N
int vector signed char vector signed char vcmpgtsb. N
int vector signed char vector bool char vcmpgtsb. N
int vector bool char vector unsigned char vcmpgtub. N
int vector bool char vector signed char vcmpgtsb. N
int vector unsigned short vector unsigned short vcmpgtuh. N
int vector unsigned short vector bool short vcmpgtuh. N
int vector signed short vector signed short vcmpgtsh. N
int vector signed short vector bool short vcmpgtsh. N
int vector bool short vector unsigned short vcmpgtuh. N
int vector bool short vector signed short vcmpgtsh. N
int vector unsigned long vector unsigned long vcmpgtuw. N
int vector unsigned long vector bool long vcmpgtuw. N
int vector signed long vector signed long vcmpgtsw. N
int vector signed long vector bool long vcmpgtsw. N
int vector bool long vector unsigned long vcmpgtuw. N
int vector bool long vector signed long vcmpgtsw. N
int vector float vector float vcmpgefp. NR

B.18 vec_any_lt(arg1, arg2)
Each predicate returns 1 if at least one element of arg1 is less than the corresponding element of
arg2. Otherwise, it returns 0.

Result arg1 arg2 Maps To Note
int vector unsigned char vector unsigned char vcmpgtub. NR
int vector unsigned char vector bool char vcmpgtub. NR
int vector signed char vector signed char vcmpgtsb. NR
int vector signed char vector bool char vcmpgtsb. NR
int vector bool char vector unsigned char vcmpgtub. NR
int vector bool char vector signed char vcmpgtsb. NR
int vector unsigned short vector unsigned short vcmpgtuh. NR
int vector unsigned short vector bool short vcmpgtuh. NR
int vector signed short vector signed short vcmpgtsh. NR
int vector signed short vector bool short vcmpgtsh. NR
int vector bool short vector unsigned short vcmpgtuh. NR
int vector bool short vector signed short vcmpgtsh. NR
int vector unsigned long vector unsigned long vcmpgtuw. NR

MrC[pp] AltiVec Release Notes 55 Copyright Apple Computer, Inc. 1998
 2/18/99 All rights reserved.

int vector unsigned long vector bool long vcmpgtuw. NR
int vector signed long vector signed long vcmpgtsw. NR
int vector signed long vector bool long vcmpgtsw. NR
int vector bool long vector unsigned long vcmpgtuw. NR
int vector bool long vector signed long vcmpgtsw. NR
int vector float vector float vcmpgtfp. NR

B.19 vec_any_nan(arg1)
Each predicate returns 1 if at least one element of arg1 is a NaN. Otherwise, it returns 0.

Result arg1 Maps To Note
int vector float vcmpeqfp. ND

B.20 vec_any_ne(arg1, arg2)
Each predicate returns 1 if at least one element of arg1 is not equal to the corresponding element
of arg2. Otherwise, it returns 0.

Result arg1 arg2 Maps To Note
int vector unsigned char vector unsigned char vcmpequb. N
int vector unsigned char vector bool char vcmpequb. N
int vector signed char vector signed char vcmpequb. N
int vector signed char vector bool char vcmpequb. N
int vector bool char vector unsigned char vcmpequb. N
int vector bool char vector signed char vcmpequb. N
int vector unsigned short vector unsigned short vcmpequh. N
int vector unsigned short vector bool short vcmpequh. N
int vector signed short vector signed short vcmpequh. N
int vector signed short vector bool short vcmpequh. N
int vector bool short vector unsigned short vcmpequh. N
int vector bool short vector signed short vcmpequh. N
int vector unsigned long vector unsigned long vcmpequw. N
int vector unsigned long vector bool long vcmpequw. N
int vector signed long vector signed long vcmpequw. N
int vector signed long vector bool long vcmpequw. N
int vector bool long vector unsigned long vcmpequw. N
int vector bool long vector signed long vcmpequw. N
int vector float vector float vcmpeqfp. N

B.21 vec_any_nge(arg1, arg2)
Each predicate returns 1 if at least one element of arg1 is not greater than or equal to the
corresponding element of arg2. Otherwise, it returns 0. Not greater than or equal can mean
either less than or that one of the elements is a NaN.

Result arg1 arg2 Maps To Note
int vector float vector float vcmpgefp. N

MrC[pp] AltiVec Release Notes 56 Copyright Apple Computer, Inc. 1998
 2/18/99 All rights reserved.

B.22 vec_any_ngt(arg1, arg2)
Each predicate returns 1 if at least one element of arg1 is not greater than the corresponding
element of arg2. Otherwise, it returns 0. Not greater than can mean either less than or equal to
or that one of the elements is a NaN.

Result arg1 arg2 Maps To Note
int vector float vector float vcmpgtfp. N

B.23 vec_any_nle(arg1, arg2)
Each predicate returns 1 if at least one element of arg1 is not less than or equal to the
corresponding element of arg2. Otherwise, it returns 0. Not less than or equal can mean either
greater than or that one of the elements is a NaN.

Result arg1 arg2 Maps To Note
int vector float vector float vcmpgefp. NR

B.24 vec_any_nlt(arg1, arg2)
Each predicate returns 1 if at least one element of arg1 is not less than the corresponding element
of arg2. Otherwise, it returns 0. Not less than can mean either greater than or equal to or that
one of the elements is a NaN.

Result arg1 arg2 Maps To Note
int vector float vector float vcmpgtfp. NR

B.25 vec_any_numeric(arg1)
Each predicate returns 1 if at least one element of arg1 is numeric (not a NaN). Otherwise, it
returns 0.

Result arg1 Maps To Note
int vector float vcmpeqfp. ND

B.26 vec_any_out(arg1, arg2)
Each predicate returns 1 if at least one element of arg1 is not less than or equal to the
corresponding element of arg2 or not greater than or equal to the negative of the corresponding
element of arg2. Otherwise, it returns 0. Not less than or equal can mean greater than or that
either argument is a NaN. Not greater than or equal can mean less than or that either argument is
a NaN.

Result arg1 arg2 Maps To Note
int vector float vector float vcmpbfp. N

MrC[pp] AltiVec Release Notes 57 Copyright Apple Computer, Inc. 1998
 2/18/99 All rights reserved.

Appendix C: C++ Name Mangling of the Vector Data Types
The MrCpp C++ name mangling rules have been extended to support all the new vector data
types. The following table defines the basic type mangling strings used when one of the vector
types appears in a C++ function signature.

Vector Data Type Type Mangling String

vector unsigned char XUc
vector signed char Xc
vector bool char XC
vector unsigned short XUs
vector signed short Xs
vector bool short XS
vector unsigned long XUi
vector signed long Xi
vector bool long Xl
vector float Xf
vector pixel Xp

C++ Mangling conventions of the basic vector data types

Examples:

vector unsigned char example1(vector unsigned char)
⇒ example1__FXUc

void example2(vector signed char *)
⇒ example2__FPXc

vector unsigned char example3(vector unsigned char, vector signed char *)
⇒ example3__FXUcPXc

vector float *example4(vector signed char *, vector unsigned short[][10],
 vector bool char)

⇒ example4__FPXcPA10XUsXC

MrC[pp] AltiVec Release Notes 59 Copyright Apple Computer, Inc. 1998
 2/18/99 All rights reserved.

Appendix D: Implicit Optimizations
One of the goals of standard instruction scheduling is to attempt to rearrange the given
instructions to improve performance by ensuring that adjacent instructions are not executed out
of the same instruction unit wherever possible. But there is a limit to what can be done if the
sequence of selected instructions do not provide sufficient variety to allow the rearrangement of
those instructions. With AltiVec however there are certain transformations that can be done that
allow alternate, but equivalent sequences to be performed to reduce the possibility of executing
from the same unit by two adjacent instructions. Those transformations are discussed in the
following sections.

D.1 Vector Constants
Vector constants are generated in different ways by the compiler depending on the placement and
value of the constant.

• Constants declared outside of any function are defined as 16-byte data items accessed
through the TOC.

• Constants declared within functions that are not be generated by explicit code are stored
in a table accessed through data offsets.

• Constants declared within a function that can be generated by explicit code and thus
require no additional data storage requirements.

It is the third case that allows for the possibility of certain optimizations. Users “fluent” in
AltiVec know that certain constants can be generated by AltiVec instructions and do so. What is
not obvious is how “smart” the compiler is to do what these users do while allowing the
programs to be more readable. For an obvious example, it is more readable to set a variable to 0
using, say,

x = (vector signed short)(0);

than,

x = vec_xor(y, y);

There are also other non-obvious benefits to using a vector constant over the vector function
which are discussed in Appendix D.1.3. The next two section document what transformations
are done on vector constants (or to produce vector constants from function calls) so that the
programmer knows what to expect and doesn’t have to resort to more cryptic means to do the
same thing (which the compiler may convert anyhow as in the above vec_xor case).

D.1.1 Generation of Vector Constants
Four constant patterns are recognized by the compiler for possible generation by AltiVec
instruction(s).

(1) A single constant or all n constants the same (n = 4, 8, or 16 as a function of the type).

Constant(s) are in the range -16 to +15 are generated with vspltisX (X = b, h, or w).

Examples:
(vector unsigned long)(6,6,6,6)

is generated as
vec_splat_s32(6) (vsplitsw vn,6)

MrC[pp] AltiVec Release Notes 61 Copyright Apple Computer, Inc. 1998
 2/18/99 All rights reserved.

(vector signed short)(-1)
is generated as

vec_splat_s16(-1) (vsplitsh vn,-1)

(vector float)(0.0)
is generated as

vec_splat_s32(0) (vsplitsw vn,0)

(2) A vector [un]signed constant with repeating half-word values.

Vector [un]signed char constant(s) which can be viewed as a series of repeating half-words
in the range -16 to +15 are generated with vsplitsh.

Examples:
(vector unsigned char)(0,1, 0,1, 0,1, 0,1, 0,1, 0,1, 0,1, 0,1)

is generated as
vec_splat_s8(1) (vsplitsh vn,1)

(vector signed char)(-1,-2, -1,-2, -1,-2, -1,-2, -1,-2, -1,-2, -1,-2, -1,-2)
is generated as

vec_splat_s16(-2) (vsplitsh vn,-2)

(3) A vector [un]signed constant with repeating long-word values.

Vector [un]signed char constant(s) which can be viewed as a series of words in the range
-16 to +15 are generate with vsplitsw.

Examples:
(vector unsigned char)(0,0,0,4, 0,0,0,4, 0,0,0,4, 0,0,0,4)

is generated as
vec_splat_s32(4) (vsplitsw vn,4)

(vector signed char)(-1,-1,-1,-8, -1,-1,-1,-8, -1,-1,-1,-8, -1,-1,-1,-8)
is generated as

vec_splat_s32(-8) (vsplitsw vn,-8)

(4) A vector [un]signed constant with sequential values.

Vector [un]signed char constant(s) in sequential ascending order starting with a values 0 to
15 are generated with lvsl. If it starts with 16 it is generated with a lvsr.

Examples:
(vector unsigned char)(3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18)

is generated as
vec_lvsl(3,NULL) (lvsl vn,0,rx where rx contains 3)

(vector signed char)(16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31)
is generated as

vec_lvsr(0,NULL) (lvsl vn,0,rx where rx contains 1)

D.1.2 Conversion of vector operations to vector constants
The compiler may convert certain vector function calls to constants or replace the entire
operation with a function’s operand under the conditions described below. In these descriptions,
X is any acceptable argument (expression) that does not have any side effects.

MrC[pp] AltiVec Release Notes 62 Copyright Apple Computer, Inc. 1998
 2/18/99 All rights reserved.

(1) vec_binary(X, X) ⇒ vec_spltisw(0)

where, vec_binary is any of the following:

vec_sub(X,X) (vec_vsubuXm, X = b, h, w)
vec_xor(X,X) (vec_vxor)
vec_andc(X,X) (vec_vandc)

(2) vec_cmpeq(X, X) ⇒ vec_spltisw(-1)

D.1.3 Benefits of Generating Explicit Vector Constants
As documented in the previous two sections, the compiler will, whenever it can, convert vector
constants to explicit generation using a vspltisX. The opportunities for instruction scheduling
are increased when constants can be generated with vspltisX instructions. However, this takes
some explaining.

The AltiVec processor is divided into two dispatchable units; the Vector Permute unit and the
Vector ALU unit (which is further divided into subunits). The vspltisX instruction is executed
in the Vector Permute unit. Of course it depends on the application, but in general, there are
fewer Vector Permute unit instructions to execute than there are ALU unit instructions. So
instruction scheduling can be improved if we can generate the constants using the Vector
Permute unit rather than the ALU. That’s the primary reason for generating the constants.

There are other good reasons as well for generating the constants:

• Saves memory space and a memory access.

• It’s faster to generate a constant than to load it.

• The spltisX instructions can be easily identified by the instruction scheduler to try to
avoid consecutive use of the Vector Permute unit.

Just as the use of the vspltisX instruction reduces the probability of connective use of the
Vector ALU, consecutive use of the Vector Permute unit can also be reduced. The instruction
scheduler looks specifically for vspltisX instructions and checks to see if the instruction
preceding it was also in the Vector Permute unit. If it was, and the vspltisX satisfies certain
criteria, an ALU instruction can be substituted. This is the reverse of the optimizations discussed
in section D.1.1.

Here are the criteria and substitutions:

(1) If a vspltisX(0) is seen preceded by another Vector Permute Unit instruction then a vxor
is substituted.

(2) If a vspltisX(1) is seen preceded by another Vector Permute Unit instruction then a
vcmpequw is substituted.

(3) If a vspltisw(-1) is seen preceded by another Vector Permute Unit instruction then a
vsubcuw is substituted.

These substitutions then replace adjacent uses of the Vector Permute unit so the second
instruction is executed out of the Vector ALU.

MrC[pp] AltiVec Release Notes 63 Copyright Apple Computer, Inc. 1998
 2/18/99 All rights reserved.

D.2 Other Transformations
The compiler may replace certain vector operations calls with equivalent operations under the
conditions and reasons described below. In these descriptions, X is any acceptable argument
(expression) that does not have any side effects.
(1) vec_binary(X, X) ⇒ X

where, vec_binary is any of the following:

vec_or(X,X) (vec_vor)
vec_and(X,X) (vec_vand)
vec_avg(X,X) (vec_vavgSX, S = s, u; X = b, h, w)
vec_max(X,X) (vec_vmaxSX, S = s, u; X = b, h, w)
vec_min(X,X) (vec_vminSX, S = s, u; X = b, h, w)

and, X is any acceptable argument (expression) that does not have any side effects.

(2) vec_sld(X, X, 0) ⇒ X

where, X is any acceptable argument (expression) that does not have any side effects.

(3) vec_or(X, X) ⇒ vec_sld(X,X,0)

where, X is any values since these two transformations are done by instruction scheduling
(see below).

In cases (1) and (2) above the compiler will try to reduce the function call to a single variable
reference. These are done with the aim at providing better code optimizations since the
opportunities for optimizations are increased when the function calls can be removed and
replaced with a single variable or expression reference.

Case (3) has purpose of allowing the compiler to try to keep from scheduling the Vector ALU in
consecutive instructions. If a vec_or(X, X) (vor vT,vX) is seen preceded by another Vector
ALU instruction then a vec_sld(X,X,0) (vsldoi vT,vX,vX,0) is substituted to do the equivalent
operation in the Vector Permute Unit.

MrC[pp] AltiVec Release Notes 64 Copyright Apple Computer, Inc. 1998
 2/18/99 All rights reserved.

Appendix E: AltiVec Prolog/Epilog Details
Section 4.3 discussed the general layout of an AltiVec stack frame. Here we discuss the stack
frame layout in excruciating detail! This appendix is intended mainly only for those interested in
understainding what is generated in a function’s prolog and epilog and why it is genertated.

E.1 The Stack Frame
Below is the AltiVec stack frame along with additional size notations needed for the descriptions
which follow it.

alignment
hole

padding hole

FPRs

GPRs

VRs

VRsave

Locals

Param Area

SP

r31

Caller’s CR

Caller’s LR

Caller’s SP

Linkage Area

0

+4

+8

len

a

f

b

e

c=(a+b+4)

h

d
v

AltiVec Stack Frame Layout

A stack frame has a length len, which is computed as follows:

h = ((c + 15) & ~15) - c Amount needed to make space for FPRs + GPRs + VRsave
a multiple of 16. This is the “static alignment hole” which
may change in size by dynamically “sliding up or down”
the stuff below the hole (described below).

e = (f + 15) & ~15 Size of Linkage Area + Parameter Area + Locals rounded

MrC[pp] AltiVec Release Notes 65 Copyright Apple Computer, Inc. 1998
 2/18/99 All rights reserved.

up to multiple of 16. This may introduce a padding hole
between the VRs and locals but that isn't important here.
The value of d is just e plus the space needed to save the
non-volatile VRs.

len = c + h + d Since c+h is a multiple of 16 and d is a multiple of 16 then
the entire frame is a multiple of 16.

We assume that SP always points to an 8-byte boundary. That means that to align the frame on a
16-byte boundary we need to adjust the alignment hole by 0 (if SP is already 16-byte aligned) or
8 (if SP is only on an 8-byte boundary). The alignment is done by dynamically expanding or
contracting the static hole to get the VRs on then next 16-byte boundary following VRsave,
because if they are aligned, then so will the start of the frame, since everything is a multiple of
16. We must have the frame 16-byte aligned so that the compiler knows how to compute the
vector data offsets within the local area.

The static hole (size h) is either 0, 4, 8, or 12. If the hole is 0 or 4, then depending on SP, we
need to expand the hole by 0 or 8 to get the VRs on a 16-byte boundary. If the hole is 8 or 12 we
have enough “working room” to reduced it by 8 if necessary to get the VRs aligned. The hole is
expanded or contracted by subtracting the proper amount from the caller’s SP effectively
“sliding” everything below the hole up or down.

It’s easy to understand this if the caller’s SP is already 16-byte aligned. In that case h is such so
that the VRs are already aligned. But when SP is only 8-byte aligned the amount to adjust the
caller’s SP by to get the new frame to start on a 16-byte boundary, and thus the VRs on the next
16-byte boundary after the saved VRsave, depends on the static hole size.

Remember that the static hole is computed assuming the frame starts on a 16-byte boundary. If it
starts on an 8 byte boundary then everything after the hole must be either move down or up by 8
to get the VRs and locals 16-byte aligned.

If the static hole, h, is 0 or 4, then we need to move all the stuff after the hole down by 8. It is
done with a subfic to compute -8-framesize. This will result in a dynamic hole of 8 or 12
respectively.

If the static hole, h, is 8 or 12, then we have the “working room” to slide the frame “up” to
reduce the static hole by 8. It is done with an addi to compute +8-framesize. This will result in
a dynamic hole of 0 or 4 respectively.

Note that if the function is a leaf with no alloca(), and len fits in the red zone (minus 8 if h was 0
or 4), then the uses of r31 and SP are reversed, i.e., r31 will point to the leaf’s frame start while
SP remains pointing at the caller’s frame. All uses of these two registers in the leaf’s code are
reversed appropriately. Additionally, if r31 is the only non-volatile to be saved, and a volatile
between r3 and r10 is not used, then we can substitute that volatile for r31 thus avoiding the non-
volatile save/restore in the prolog/epilog.

Finally, when no vector data or registers are needed by a function, the stack frame becomes a
standard PPC stack frame and the prolog/epilog are the same as they have always been. In either
case the FPRs and GPRs are saved the same way.

The code descriptions in the following sections show the generated prolog and epilog in all
possible forms. There are two variants in each case; one using vectors and one without. This
code is “hand scheduled”. Hence the sometimes strange ordering of instructions.

MrC[pp] AltiVec Release Notes 66 Copyright Apple Computer, Inc. 1998
 2/18/99 All rights reserved.

E.2 Prolog

 AltiVec Stack  Non-AltiVec Stack
 ================================= =================================
 prolog: 
[1] mfcr r12  mfcr r12
[2] mflr r0  mflr r0
[3] mfspr rv|r11,VRsave  mfspr rv|r11,VRsave
 
[4] stfd FPx,-a(sp)  stfd FPx,-a(sp)
 - - -  - - -
 or ----------------------------  or ----------------------------
 bl _savefxx  bl _savefxx
 
 stw Rx,-b(sp)  stw Rx,-b(sp)
 - - -  - - -
 or ----------------------------  or ----------------------------
 stmw Rx,-b(sp)  stmw Rx,-b(sp)
 
[7,9] mr r31,sp 
 
[1] stw r12,4(sp)  stw r12,4(sp)
 
[6] rlwinm r12,sp,0,28,28 
 
[6] subfic|addi r12,r12,-len 
[2] stw r0,8(sp)  stw r0,8(sp)
[6] stwux sp,sp,r12  stwu sp,-len(sp)
 or ----------------------------  or ----------------------------
[2] stw r0,8(sp)  addis r12,0,-len>>16
 addis r0,0,-len>>16  ori r12,r12,-len&0xFFFF
 ori r0,r0,-len&0xFFFF  stw r0,8(sp)
 subf|add r12,r12,r0  stwux sp,sp,r12
[6] stwux sp,sp,r12 
 or ---------------------------- 
[9] subfic|addi r12,r12,-len 
 add r31,sp,r12 
 
[3,9] stw rv|r11,-c(r31|sp)  stw rv|r11,v(sp)
 or ----------------------------  or ----------------------------
 mr r11,rv  addis r0,0,v>>16
 or ----------------------------  ori r0,r0,v&0xFFFF
 not saved at all  stwx r11,sp,r0
  or ----------------------------
  stw r11,-c(sp)
  or ----------------------------
  mr r11,rv
  or ----------------------------
  not saved at all

MrC[pp] AltiVec Release Notes 67 Copyright Apple Computer, Inc. 1998
 2/18/99 All rights reserved.

 
[8] mr r30,sp  mr r31,sp
 
[3] oris r11,r11,mask>>16  oris r11,r11,mask>>16
 ori r11,r11,mask&0xFFFF  ori r11,r11,mask&0xFFFF
 or ----------------------------  or ----------------------------
 oris r11,rv|r11,mask>>16  oris r11,rv|r11,mask>>16
 or ----------------------------  or ----------------------------
 ori r11,rv|r11,mask  ori r11,rv|r11,mask
 or ----------------------------  or ----------------------------
 li r11,-1  li r11,-1
 
[5,9] addi r0,sp|r31,d 
 or ---------------------------- 
 addis r0,0,d>>16 
 ori r0,r0,d&0xFFFF 
 add r0,sp,r0 
 
[5] li r12,-16*Vx 
 stvx Vx,r12,r0 
 - - - 
 or ---------------------------- 
 bl _savevxx 
 
[3] mtspr Vrsave,r11  mtspr Vrsave,r11

Notes:

[1] The condition register is saved only if CR2, CR3 or CR4 are used.

[2] The link register is saved only if needed (i.e., the function is not a leaf).

[3] The caller’s VRsave is saved and the callee VRsave set by OR'ing in the mask representing
the vector registers used by this callee. Note that the value of the mask determines the
optimum way to do the OR (oris/ori, just oris, or just ori). Also note that VRsave can
be saved and set in the non-vector case where only volatile VRs are used and no vector data
needs to be stored in the frame. In that case the offset from the callee’s SP, v, is used to
access the VRsave area to avoid problems with the red zone (there is no alignment hole in
the non-vector case). If the function is a leaf, there is no red zone problems so -c can be
used. Although the case where v is used could be optimized if the VRsave area could be
reached in the red zone, this entire case (volatiles only, no vector data) is rare enough to not
warrant the added complications and conditions.

 If possible the caller’s VRsave will be copied to a register, rv, rather than storing it on the
stack. This can happen when both of the following conditions apply:

• The function is a leaf.

• A volatile from r3 to r10 is free to use for the rv register.

Saving the caller’s VRsave in a register avoids reloading it in the epilog and also avoids

MrC[pp] AltiVec Release Notes 68 Copyright Apple Computer, Inc. 1998
 2/18/99 All rights reserved.

saving it on the stack (unless traceback tables are being generated -- they assume VRsave is
always on the stack). There is the case however where the callee’s VRsave mask requires
the oris/ori instruction pair. In that case we still have to do a mr r11,rv.

[4] When -opt size is being used, and the function is not a leaf, then a library support routine
in PPCCRuntime.o is called to save the FPRs. There are 18 FPR savers (_savef31,
_savef30, ... _savef14). Calling _savefXX would save FPRXX thru FPR31. These
routines “know” the stack offsets for the saves which is always relative to SP.

[5] The VRs are saved always using r0 as a base register, where r0 is the stack offset to the end
of the VRs, i.e., d in the diagram. As with the FPRs, PPCCRuntime.o library routines are
provided for -opt size non-leaf functions. There can be up to 12 VRs saved and therefore
there are 12 library routines (_savev31, _savev29, ... _savev20).

[6] The rlwinm r12,sp,0,28,28 AND’s SP with 8 and therefore results in a 0 or 8 to be
subtracted from -len (subfic) or added to SP (addi). This is -x-len or +x-len, where x
is 0 or 8 from the rlwinm. That’s the value to add to the caller’s SP to produce the 16-byte
aligned callee’s SP with the alignment hole expanding or contracting as necessary.

 Note that the saving of the caller’s CR, LR, and VRsave is “hand scheduled” here to
 delay their saving “far enough” from their accesses.

[7] Because of the dynamic alignment hole, r31 needs to be reserved across the function to
allow accessing of the caller’s parameters. This is not needed if the function is a leaf. See
note [9].

[8] If alloca() is used, then r30 is used in the vector case, and r31 in the non-vector case, in
order to access the locals (since SP will be changed by alloca()).

[9] If the function is a leaf, has a frame that fits in the red zone (minus 8 if h is 0 or 4), and
doesn’t use alloca(), then the roles of SP and r31 are reversed. The caller’s SP remains
unchanged while r31 takes the role that SP had in the non-leaf case. Additionally, r31 is
replaced with a volatile between r3 and r10 if one of those is not used and r31 would be the
only non-volatile being saved. This avoids the additional save/restore.

E.3 Delayed Prolog
A case exists where, under the right conditions, a conditional block of code can be moved “up”
before the prolog. This block has no standard prolog or epilog and the actual prolog is delayed
beyond this block. If the function uses vector registers then VRsave must still be maintained.

The moved up block has two possible cases:

1. Block ends with a conditional branch that exits the function.

 moved up conditional block of code
 Bcclr
 prolog:

This case is referred to here as the exit case.

2. Block ends with conditional branch to the prolog around some code that ends with an exit
from the function.

MrC[pp] AltiVec Release Notes 69 Copyright Apple Computer, Inc. 1998
 2/18/99 All rights reserved.

 moved up conditional block of code
 Bcc prolog
 true or false block of code controlled by the conditional
 blr
 prolog:

This case is referred to here as the !exit (not exit) case.

Depending on which one of these cases we have, and whether we can store VRsave in the same
place that the prolog would have saved it, and that place is within the red zone, we handle
VRsave in three possible ways as follows:

■ VRsave can be saved in the same place that the prolog would have saved it (so long as it’s in
the red zone) and the code following the prolog uses some vector registers.

exit case: mfspr rv|r11,VRsave
 [stw rv|r11,-c(sp)]
 ori r11,rv|r11,mask ; or oris, oris/ori as appropriate

 moved up conditional block of code

 mfspr r11,VRsave
 [lwz r12,-c(sp)]
 mtspr VRsave,rv|r12
 Bcclr
 prolog:
 standard prolog with all references to VRsave omitted
 mtspr VRsave,r11

Here VRsave is saved where the prolog would have saved it and r11 reflects the callee’s set
of vector registers. Therefore the only thing the delayed prolog has to do with VRsave is to
reset VRsave from r11.

Note that as in the standard prolog case it may be possible to hold the caller’s VRsave in a
volatile, rv (r3 to r10, see note [3] above). Thus the stw and lwz are shown enclosed in
brackets to indicate that these may not be generated. This convention applies to all the
following delayed prolog examples.

!exit case: mfspr rv|r11,VRsave
 [stw rv|r11,-c(sp)]
 ori r11,rv|r11,mask ; or oris, oris/ori as appropriate

 moved up conditional block of code

 bcc CRx,prolog

 true or false block of code controlled by the conditional

 [lwz r12,-c(sp)]
 mtspr VRsave,rv|r12
 blr
 prolog:
 standard prolog with all references to VRsave omitted

This is similar to the previous situation except that here the bcc branch to the prolog can be taken
without restoring VRsave. It is therefore saved in its proper stack offset (note the stw is not

MrC[pp] AltiVec Release Notes 70 Copyright Apple Computer, Inc. 1998
 2/18/99 All rights reserved.

optional) and defined correctly to reflect the callee’s vector registers. The prolog doesn’t need to
do anything further with VRsave.

■ VRsave can be saved in the same place that the prolog would have saved it (so long as it’s in
the red zone) and the code following the prolog uses no vector registers.

exit case: mfspr rv|r11,VRsave !exit case: mfspr rv|r11,VRsave
 [stw rv|r11,-c(sp)] [stw rv|r11,-c(sp)]
 ori r11,r11,mask ori r11,r11,mask

 moved up block of code moved up block of code

 [lwz r12,-c(sp)]
 mtspr VRsave,rv|r12
 bcclr bcc CRx,prolog

 true or false block

 [lwz r12,-c(sp)]
 mtspr VRsave,rv|r12
 blr
 prolog: prolog:

In this case we don’t need to worry about VRsave in the delayed prolog. We can thus treat
the exit and !exit forms similarly.

Here the caller’s VRsave is restored just before the exit. The prolog, because it knows that
that portion of the code is not using any vector registers won’t have any operations to save or
set VRsave.

■ VRsave cannot be saved in the same place that the prolog would have saved it because that
location would be beyond the red zone.

exit case: mfspr rv|r11,VRsave !exit case: mfspr rv|r11,VRsave
 [stw rv|r11,-4(sp)] [stw rv|r11,-4(sp)]
 ori r11,rv|r11,mask ori r11,rv|r11,mask

 moved up block of code moved up block of code

 [lwz r12,-4(sp)]
 mtspr VRsave,rv|r12
 Bcclr bcc CRx,prolog

 true or false block

 [lwz r12,-4(sp)]
 mtspr VRsave,rv|r12
 blr
 prolog: prolog:
 full prolog full prolog

This is the non-optimal catch-all case. We need to save VRsave as in the above cases but we
cannot do it in the place the prolog would have put it since we are not creating the stack
frame yet and that save position is beyond the red zone. So, for lack of anything better,
-4(sp) is used. This means that the prolog must do everything it would normally do with
VRsave and the moved block must make sure the caller’s VRsave is restored prior to

MrC[pp] AltiVec Release Notes 71 Copyright Apple Computer, Inc. 1998
 2/18/99 All rights reserved.

dropping into the prolog.

It’s not the best situation, but it probably won’t occur very often either (hopefully).

E.4 Epilog

 AltiVec Stack  Non-AltiVec Stack
 ================================= =================================
 epilog: 
[1,7] addi r0,r31|sp,d 
 or ---------------------------- 
 addis r0,0,d>>16 
 ori r0,r0,d&0xFFFF 
 add r0,sp,r0 
 
[1] li r12,-16*Vx 
 lvx Vx,r12,r0 
 - - - 
 or ----------------------------  lwz r11,v(sp)
 bl _restvxx  or ----------------------------
  addis r0,0,v>>16
[3,7] lwz r0,8(r31|sp)  ori r0,r0,v&0xFFFF
[4,7] lwz r12,4(r31|sp)  lwzx r11,sp,r0
  or ----------------------------
 lwz r11,-c(r31|sp)  lwz r11,-c(sp)
[5,7] or ----------------------------  or ----------------------------
 not loaded at all  not loaded at all
 
[2,7] mr sp,r31  lwz sp,0(sp)
  or ----------------------------
  addi sp,sp,len
 
  lwz r0,8(sp)
  lwz r12,4(sp)
 
[3] mtlr r0  mtlr r0
 
 lwz Rx,-b(sp)  lwz Rx,-b(sp)
 - - -  - - -
 or ----------------------------  or ----------------------------
 lmw Rx,-b(sp)  lmw Rx,-b(sp)
 
[4] mtcrf 56,r12  mtcrf 56,r12
[5] mtspr VRsave,rv|r11  mtspr VRsave,rv|r11
 
[6] lfd FPx,-a(sp)  lfd FPx,-a(sp)
 - - -  - - -
 blr  blr
 or ----------------------------  or ----------------------------
 b _restfxx  b _restfxx

MrC[pp] AltiVec Release Notes 72 Copyright Apple Computer, Inc. 1998
 2/18/99 All rights reserved.

Notes:

[1] The VRs are restored always using r0 as a base register, where r0 is the stack offset to the
end of the VRs, i.e., d in the diagram. PPCCRuntime.o library routines are provided for
-opt size non-leaf functions to restore the VRs out-of-line. There can be up to 12 VRs
restored and therefore there are 12 library routines (_restv31, _restv29, ... _restv20).

[2] The caller’s SP is restored here. In the vector case r31 is available to set SP. In the non-
vector case SP is restored from 0(sp) if alloca() was used or len is too large to be used in
and addi.

[3] The link register is restored only if needed (i.e., the function is not a leaf). The scheduling
is to keep the mtlr “some distance” from the exiting branch that uses LR.

[4] The condition register is restored only if CR2, CR3 or CR4 are used.

[5] VRsave needs to be restored in the vector case. Note that VRsave can be restored in the
non-vector case where only volatile VRs are used and no vector data needs to be stored in
the frame. In that case the offset from the callee’s SP, v, is used to access the VRsave area
to avoid problems with the red zone (there is no alignment hole in the non-vector case). If
the function is a leaf, there is no red zone problems so -c can be used. Although the case
where v is used could be optimized if the VRsave area could be reached in the red zone,
this entire case (volatiles only, no vector data) is rare enough to not warrant the added
complications and conditions.

Note that if the prolog saved VRsave in a volatile, rv (r3 to r10) then the reload from the
stack is unnecessary in the epilog.

[6] The FPRs are restored by library routines in PPCCRuntime.o for -opt size non-leaf
functions. There are 18 FPR restore library functions (_restf31, _restff30, ...
_restf14). These routines “know” the stack offsets for the saves which is always relative
to SP. Note that if one of the library routines is used it is simply branched to allowing its
exit to return to the caller since the link register is already properly set.

[7] If the function is a leaf, has a frame that fits in the red zone (minus 8 if h is 0 or 4), and
doesn’t use alloca(), then the roles of SP and r31 are reversed. The caller’s SP remains
unchanged while r31 takes the role that SP had in the non-leaf case. This means that SP
does not need to be restored and the loading of the LR, CR, and VRsave become relative to
SP instead of r31. See also prolog note [9].

MrC[pp] AltiVec Release Notes 73 Copyright Apple Computer, Inc. 1998
 2/18/99 All rights reserved.

