AltiVec™ Support In MrC[pp]

Revision 1.9
2/16/99

™AItiVec isaregistered trademark of Motorola, Inc.

Table Of Contents

I I 01 oo [Tt A o o R USSRN 1

2. MrC[pp] AltiVec Compiler EXtENSIONS........ccccccveeieriiieesiee e see e 1

2.1 Specifying AltiVec on the Command LiNe..........cccooieviiieeiieeciiee e sree e 1

2.2 PredefiNed IMBCIOSccviiiee e cee ettt ettt e ae e aesnae e e sreesneenneenneenns 2

2.3 AIIVEC PragmaScocueiiiiieeieie et sttt sttt s sre b ne s 2

2.3.1 #pragmaativeC MOUEL.........ccouoeiiiiiie e 2

2.3.2 #pragmaaltiVeC COUEQENccvieciieciee e nree e 2

2.3.3 #PragMaaltiVEC VISAVEc.ccciveeiiiecieecieeciteeetee sttt e e e sree b e nrea e 3

2.4 AltiVec Naming CONVENLIONS........c.cccverieeriereeieeseeseeeeesseeeseesseesseessesssesssessseesssennes 3

SRV o (0 g BT = Y/ o= SR 3

P22 T N T 0] 0 07 | 4

2.6.1 Alignment Of NON-VECLOr dataL.........cceeveeierrieiireie e eseesee e 4

2.6.2 Alignment of vector Datawithin structures and Classes............ccceevveveeneennnnne 5

2.6.3 Dynamic alocation and alignmentcceeoeeeeeieeceereeseese e 5

2.6.3.1 Dynamic alignment of compiler alocated local data........................ 5

2.6.3.2 Space dynamically alocated on the stack by the user (alloca) 5

2.6.3.3 Space dynamically allocated on the heap by the user (vec_malloc)..5

2.6.3.4 Space dynamically alocated for class Objects.........cccveveeiieeieennenne 5

A (o (== 0] SRR 6

P N = = o () PSS 6

2.7.2 ASSIGNIMENT ..ottt st e st e st e e sbe e beebesteeseesaeesneesseesreens 6

2.7.3 AAUreSS OPEIELOLcoiveiuieieeeieesieeseesieesieestee s e e sreesteeseeseeseesseesseesaeesseesseesseens 6

2.7.4 PoINter ATTNMELIC ..oovviiiiee e e e 6

2.7.5 PoINter DereferenNCiNg........ccoieeiieiierie e sie sttt s eeese e 6

2.7.6 TYPE CASHING...veeteertieiiieeiesie e et ettt sbe e st e e sae et e esaesbeebeebeenseenreesreens 7

A B VA= o (0] g O] 1 = | K= PRSPPI 7

2.7.8 Vauefor adjusting POINLENS........cccuiiiiieiieeiiee e sre e nee s 8

2.8 Operators representing AltiVeC OPEratioNS...........ccvecueerieereereesieesieesee e seesee e 8

3. Library and Header Support for AItIVECccooceeevcee v, 9

3.1 Extensionsto Standard 1/0 Formatting of the Vector Data Types.......ccccecvevveennen. 10

3.1.1 Output conversions specifications for printf, efC.........cccccvvveeviiiienieiceeiinns 10

3.1.2 Input conversions specifications for scanf, etC.cceeveveevceeviecce e, 11

3.2 EXtenSIONSTO the HEAEN'S.......co i 13

B2 1 NEW. N e 13

3.2.2 SEAAIG N e 13

3.2.3 SAIDLN e 13

.24 SEMP.N. e nree 13

3.3 EXtensionsto PPCCRUNLIME.Occcveeiieieeiecieeieetesteeie e ees e sae e sneesneesneesneas 14

3.4 Extensionsto MrCEXCEPtONSLIDccveeiieeiiieciee e 14

3.5 EXtenSionSto SIACLIDocveeieceeeeeee e s 14

4. Functions Callsand Linkage Conventionscccoccveveesieenseesiiesneennnne 14
MrC[pp] AltiVec Release Notes [Copyright Apple Computer, Inc. 1998

2/18/99 All rights reserved.

4.1 Additional FUNCEON Call SEMEANTICSooeeeeeeeee et e e e e eeeeeens 14

4.2 Linkage CONVENLIONScoiieiieiieiiesiee ettt saeesne e nseesseenee e 15
4.2.1 Register Usage CONVENLIONS........ccoeererririireiesieeeseeesieessessseessessessssesssesssenns 15
4.2.2 Function calls with afixed number of argumentsccccceeveeieeiiniiennienne 15
4.2.3 Function calls with avariable number of arguments............ccccovevieiieniienne 15

4.3 TheSACK FraME ..ottt st 16
4.3.1 Stack Frame AlIGNMENtcooeeiieiiecie e 17
4.3.2 Saving the vector registers (VR'S)...uucieiierieeree e e seeseesae e eae e e eneeens 18
4.3.3 VRSAVE.....cueiiiiiiieite sttt sttt sttt et 18
4.3.4 LOCaA VaiaDIES.......ocueiiiiieeeieee e 18

Appendix A: Generic and Specific AltiVec Operators........cocceveeevereereeene. 19

N R VT= o= o o[€= (0 - 0 2 USRS 19

P NZAVI= o= 0 o (of €= (0 IR 0 12 PRSP 20

P NRC T VI= o= o (0 S (= o) = 12 DRSS 20

YN V< o= 410 €= (0 NN 0 2 USRS 20

YNSRI VI= o= 410 (of €= (0 N ' 12 U PTORRRN 21

F N VL= o= Yo | €= (0 N 0 2 USRS 21

F A= o o< |1 =0 1) USSP 22

A.8 VEC _CMPD(AIGL, B02) .oooveeiieiieeiieieerie ettt sttt sae e e e e reenreens 22

A9 vEC _CMPEY(AIGL, @rQ2) ...eeerveeieeieeieerieeieeeiteesteesee st e e sseesreeseessessreesneesaeesreens 22

A.10 VEC _CMPOE(AIGL, @rJ2) ..veeveeieeieeieerieesieeste st s tesee e eesseesreesreessessreesneesaeesneens 22

A1l veC _CMPOL(ArGL, @rQ2).....ceceeieeaeieieeieesieesieesreesreesreesseesseeseesseesseesseesseesseessessseesns 23

F N = o o1 { =0 = (0 2 SRS RRRRRN 23

A 13 VEC CLS(AIGL, @IJ2) ..eoieeeeieeeiieiieesiiesieesieesteesteesteesteseestestesseesseesseesseesneesreesneesseesseans 23

A4 VEC CLU(BIGL, BI2) .eoieeeieeiiieiieenieesieesieesteesteesteesteetestesaesseesseesseesseesseesreesneesseesseans 23

F N L= oo xS (= o) TSSO 23

A.L16 VEC ASSAI(BIGL) . eeieiiiiesieeiiie e siee ettt ettt sre e s e st e st e s rbe et e s aeeneenreens 24

A.17 vec_dst(argl, arg2, @rg3)eeceerierierie et reenreens 24

A.18 vec _dstst(argl, arg2, @g3) ..oceeceereerie e e nreens 24

A.19 vec _dststt(argl, arg2, @g3) ...eeeeereereerieree e see e nreens 25

A.20 vec_dstt(argl, arg2, @rg3)ccceeeererreeiee ettt e e enee e 25

F A < o = o= = o i) USRS 26

Y= o | Lo o (= o) USRI TORRRN 26

YN BV o o €= (0 I {0) TP 26

YN V< o o (= €=) = 12 USRS 27

A.25 VEC IAI(ArgL, @rg2).....eeeeeeieeieeieeieesee ettt ettt sb e st sbe e sr e aeenreens 27

F N RV o (oo (= = o) TSP 28

F Y= o AV 1= (0 I 0 2 USRS 28

A28 VEC IVSI(@QL, @rQ2).....eeieeeeeeieeieeieesieesieesieesiee e seessee e teste e seesbeesseesteesseesaee e 29

A.29 vec_madd(argl, arg2, @rg3)......cccuereerurrrieeieeiree e see st e et re et saee e 29

A.30 vec_madds(argl, arg2, ag3) ...c.cceeeereereereeseeseesreesree e e e e e e e e sre e e sreens 29

A.31L VEC MAX(ArQL, @IQ2)eeieeieeeiieenieesieesieesieesteesteeste ettt et et e e e ne e e e neenreen 29

A.32 veC_MErgen(argl, @g2)......c.coceiiieieerie et 30

A.33 vVEeC_MErQEl(ArgL, @rg2).....ceeeeeieeieeieeriee ettt nree 30

y R A< o 0 01 AVAS o £ (Y0 o) SRR 30

A.35 VEC MIN(AIGL, BIG2)....cieiiiieieeiieie et rie et et ste et e re e beesbe e beesbeesbeesbeesseesbeenseens 31

A.36 vec_mladd(argl, arg2, @rg3)......ccccererrerrerrieiie e eie et 31

A.37 vec_mradds(argl, arg2, @rg3)cooeereereereesieesee e siee et sreesreens 31

A.38 vec_mMsUM(argl, arg2, @rg3) ...ccceererrerreereesieeseesreesieesseesseesseesreesreesneesreesneesreeseeens 32

A.39 vec_mMsUMS(argl, arg2, @g3) ...ccoveereereereesiee e siee e ettt reenreens 32

A0 VEC IMEVSCI(AITL) -eeuveinieeiieeieeieeieeseesiee st sreesiee st e ste et te e bessseeneesneesneesneesneesneesneans 32

A 4L VEC MUIE(AIGL, BIG2)....cceeeieeieeeieesieesiee e see st e s te et sbeesbeesreesseesseesneeenteenneenseens 32

MrC[pp] AltiVec Release Notes ii Copyright Apple Computer, Inc. 1998

2/18/99 All rights reserved.

A.42 VEC MUIO(AIGL, @rQ2)....ccceeieeeeesieeeeseeeeesteeeesaesaeeeesseeaseeeseeesseensesseensennseansennes 33
A.43 vec_ nMmsub(argl, arg2, @rg3)ccceereereereeseere et a e 33
A.44 VEC NOF(@IGL, @IQ2)....ccccueeeeeeeeeeeeesieseeseeseesseesseeseesseesseesseesseesseesseesseessessseensennes 33
EN LY L= ol o (o o 12 33
pAN T CRRVZe ol o= o (= J IR o 12 34
A.A7 VEC PACKPX(AIGL, BIT2) .vvevveeeeeieeieeieeieeieeeesaeeeesseesseesseesseesseesseesseesseessessseensennes 34
A48 VEC PACKS(AIQL, @rQ2)...ccueeeeeeeeeeeieeieesieesieesteesseesseesseessessseesseesseesseesseesnessseesnsesnes 34
A.49 VEC PaCKSU(AIGL, @IQ2)....ccceereeieeieeaieseeseeseeseeeeeeseesseeseeseesseesseesseesseenseesseesses 35
A.50 vec perm(argl, arg2, @rg3).....cccereereereereereesteenseenseenteesseesreenseenseenreenseeteereeeeenes 35
F Y RV 7= o == o1) T 35
EN Y= ol 1 G} TR 12 35
A.53 VEC TOUNU(ITL) ... ueeveeieeeeeieeieeieeieeeesteesseete e aeeaeeseesseesseeseeseenseenseenseesseensennns 36
FN Y Y o £Se [(= (o 1) S 36
A.55 vec sal(argl, arg2, @g3) ..ccceeceeeee et 36
A.56 VEC SI(AIQL, @rQ2) ...veeoeeeeeeieeeieceeseestee st este e te e teesteeste e e eneesseesneesneesreesneenreenreenaeenns 36
A.57 veC Sd(@rgl, arg2, @Qg3)ccceeeereeeieeeieseesee e e et reeae e enes 37
pN St IV ol T o o 2 37
PN I IRVZS ol o = o IR 12 38
DN G IO IRYZ= ol o = (= J = 12 38
FN X Y= oS o = = o 1) 39
A.62 VEC SPIAE_ SLO(AITL)....eeeeeeeeeieeiieeitiesteeseesee st e seeeteesteesaeesseesseesreesseesreeeneeeneeenseenes 39
FN O IRV oS o = =G 724 = 1) S 39
pNC7 YT oS o = U1 = o 1) 39
EN LoV ol o = U G) 39
pN G OV ol o = U 1S 721 = (o 1) 39
EN YAV L= ol €= (0) N 0 12 L 40
A.B68 VEC STA(@JL, @02) ..eceeeeeeireeireesieesteesieesseesteesteeseeseeseeasaeasessseesseesseesseesseenseenseensennes 40
A.B9 VEC SII(ArQL, @rQ2)....ceeeieeieeiieesieesteesteeseeseeseesee e eeeteeaeesseesseesseesseesreesneessenanesanes 40
DO IRYZ= ol £o] (o o 12 41
DN YT oS (o = o V2 (o 1) I 42
A.72 veC _ste(argl, arg2, @g3) ...ecceeeeieeee e e et ae e 42
A.73 VEC S(Argl, arg2, @g3) ..cceeveeeieeeeeieeieseeeeesee e e e sae et esse e e e sre e e nreeaeere s 43
FN Y= oS ¥ oo = o) 44
DN LS RYZ= oS U oo (o I I o 12 S 45
A.76 VEC SUDS(ArQL, @rg2).....cccueeieeieeieeieeieesieesieesteesee s e e sreesseesseesraesnaesnaesnaeenaeenaeeneeenes 45
A.T7 VEC SUMAS(AIQL, @rJ2)...cueeiueeiteeirieieeseeseeseesseesseesseesseesseesseesseesseesseesseesseesseessessses 45
A.78 VEC SUMZS(ArQL, @rJ2)...ccueeiueerreeirieieesieeseeseeseesseesseesseesseesseesseesseesseesseesseesseessessses 45
A.79 VEC SUMS(AIGL, @rJ2)....ccceeieiereesieaieeeeeeeseeaesaeesaeassessseasseesseesseessesseensesnsesnsennes 46
A.B0 VEC TrUNC(AITL) ... eeeeeereeeeeieeiteesteesteesteesseesseesreesseesseesseesseesseessessseesseessseansesssesnsennes 46
DN S VTS o U a0 7= ox o = o 1) 46
A.82 VEC UNPACKI(BIGL) ..eeeeeeeeieeesieecieeseesiee st ese e e teete et e e e s e esneesneesneenseesseeneeenes 46
A.83 vec _UNPaCK2Sh(@rgl, @rg2).....ccuueieereereeieeseeseeeeeseeeee e eseesseesseesseenseesseesseenses 46
A.84 vec UNPaCK29l(Argl, @rg2).....ccceieeiieerieieesieseeseeseeseeseeseeeaeeaeeeesneeseeeeeeeenes 47
A.85 vec unpack2uh(@rgl, @rg2)ccccceeeieerieereeseereeseeseesseesseesseesseesseenseesseensesseeseenes 47
A.86 veC UNPACK2UI(BIGL, @IQ2)eeeeeeeereeeeesieeseesieeseesseesseesseesseesseesseesseesseensesssesnsennns 47
A.87 VEC XOI(@rQL, @Q2).....cccueeeerieeeereeseeseeseeseesseesseesseesseesseesseesseesseessessseessessseensennes 47
Appendix B: AltIVeC PrediCates.........coovieeieiiiieee e 49
B.1 veC al_eq(argl, @rg2)ccocceiiiiieiieniee e e 49
B.2 veC all_ge(argl, @rg2)cccceiieieeiie e e 49
B.3 veC all_gt(argl, @g2)....ccceeieeiieerieenie ettt 50
B.4 veC all_iN(Argl, @02).....ccceeiieieeiieniie e see e see ettt nreen 50
B.5 veC all_1e(argl, @g2)ccuoieeiieieeiie e 51
MrC[pp] AltiVec Release Notes i Copyright Apple Computer, Inc. 1998

2/18/99 All rights reserved.

B.6 veC all It(argl, @rg2).....ccccoueieeieeiiee et s sreenree e 51
= A V= o= | I =016) PSSP 52
B.8 veC al Ne(argl, @rg2)ccccceieeieeeieseese ettt nneens 52
B.9 veC all NgE(ArgL, @Q2) ...ccceereeieeiierie e eseeste e te e te et sra e e nnaenneens 52
B.10 vecC al NQL(argl, @rg2)......cccieeieereeseesieesieseeseeseesee s e seeeae e aeeneenneenreenneenreens 53
B.11 vec al Nle(argl, @rg2)ccceeeeieeiieseeseeseese et enae e 53
B.12 vecC al NIt(argl, @g2).....ccceeieeieeiieerieesieeseesieesieesieesteeseeesseesseesseesseesseesseesseesseesseens 53
B.13 veC al NUMENIC(AIGL)......eecueereeieerieeieeseesteeseestee e aeete e te e e nse e seesreenneesnee e 53
B.14 veC any eq(@rgl, @rg2)cccceeieerieeiieerieerieeseesie e ete e ete e sae e e e e e nnaenneens 53
B.15 veC any ge(@rgl, @rg2)ccccceeeiieeieerieenieeseesieeteeteenae e ete e sae e aesreesnaesnaenneens 54
B.16 veC any gt(argl, @g2)cccceeeeieeiiesiese e st ettt sae e e nnaenneens 54
B.17 veC any |€(argl, @Q2) ...ccccoeieereeieeieeseeseesie e e eteeneeeteeeeeaeeaesaeeneesneesneesnaenneens 55
B.18 veC any [t(argl, @rg2).....ccccceeiieeiieiieseeeieeieere e e e e eae e eaeeneere e 55
B.19 VEC @ny NAN(AIGL) ..ocooeeieeeieiieeieeieseesiee s e ste e s e e teeeeeteeaeeaeesae e esneesreesneenreenreens 56
B.20 veC_any NE(@rgl, @rg2)cccceieerieereerieerieeseesieesseeteeseeasseeseseesseesseesneessesssenssensreens 56
B.21 veC _any NOE(ArgL, @Q2)cecoieeieereerieerieesieeteeteeeeseessasseesseessessseessessseessessseessenns 57
B.22 veC_any NOU(AIrGL, @Q02) ...ccceereereerieesieerieesieesteesteeeeeeeasasseessesssesssesssesssesssesssessseens 57
B.23 vec_any Nle(argl, @rg2)ccccceeieereerieeieeesieesieesieestesseeaeeseeseessassseesneesseesseesnessneens 57
B.24 vec_any NIt(argl, @g2)......ccceoieeiierieeieeseeseesieesessaeseeseeesaeese e seesseesseesseesnessseens 57
B.25 veC_any NUMENTC(AIGL) ...ocoveieeieeiierieesteesteeste e e et eee et et ssae e e s e sneesnensneens 57
B.26 VEC_any OUL(AIQL, @Q2) ...ccceerveerreesieeireesieesieeeeeseeeeseeassssseessesssesssesssesssesssssssesssenns 58
Appendix C: C++ Name Mangling of the Vector Data Types..........ccccuu..... 59
Appendlx D: Implicit OptimiZatioNSccccveicieeiie e esee e 61
WV ECLOI CONSLANTS......ceieeeiieeeiee e e s e e nnr e nneennnee s 61
D.1.1 Generation of Vector Constants 61
D.1.2 Conversion of vector operations to vector constants 62
D.1.3 Benefits of Generating Explicit Vector Constants 63
D.2 Other TransfOormMalionsS.........ccuoiereeriirereerieseeie sttt sre e b e b 64
Appendix E: AltiVec Prolog/Epilog Details..........ccocovieiieenienneenieeee i 65
E.l The SaCK Frame... ..ottt 65
E.2 PrOIOQ. .o ettt e ae e nr e nreen 67
E.3 DeEayed ProlOgcocooiiiiiiiiiieeieeiee ettt 69
S o] oo O UPRPPRRRPRRN 72
MrC[pp] AltiVec Release Notes iv Copyright Apple Computer, Inc. 1998

2/18/99 All rights reserved.

Revision History

Revision Date Comments
1.0 2/23/98 Initial document.
11 16/3/98 | All referencesto VMX changed to AltiVec or vector.

All naming conventions changed to use vec .

Rewrite of linkage conventions.

1.2 7/6/98 Fixed a couple of typeos in the Vector Data Types table.

13 10/8/98 | vec_msum(unsigned char, signed char) had their arguments reversed. It was
changed to vec_msum(signed char, unsigned char).

[int] added to Vector Data Types table for clearification (section 2.4).
Added vector bool and vector pixel mappingsto vec s, vec_ste, and vec stl.

In al functionsthat take a signed char* a sentence was added to explicitly state that
plain char * is not allowed.

Added Appendix D to document what optimizations are performed on vector

constants.
15 10/14/98 | Appendix D reorganized and updated to include optimizations on vmr with valdoi.
16 11/16/98 | Added - al ti vec_nopdel asan dternatived command line optionto - vect or .

Added secton on AltiVec pragmas.
__ALTI VEC__ macro defined.

17 12/8/98 | All loads and stores have been changed to permit a pointer to be apointer to volatile.
Appendix E added to fully describe the stack frame, prolog, and epilog.
1.8 12/11/98 | Epilog documentation in Appendix E update to show r31|sp asthe register to set rO

before retoring the vector registers.

Small grammar correction in the VRsave description in section 4.2.1.

1.9 2/16/99 Updated Section 3.1 to clearify the bnf descriptions and add an * @’ flag to specify
an arbitrary vector seperator string.

MrC[pp] AltiVec Release Notes Copyright Apple Computer, Inc. 1998
2/18/99 All rights reserved.

1. Introduction

The PowerPC architecture has been extended to support a set of instructions referred to as the
AltiVec™ vector instructions. Asaresult, MrC (for C) and MrCpp (for C++), referred to here
collectively as “MrC[pp]”, is extended to support the AltiVec architecturel There are also
vector extensions to various libraries and headers that are needed when building MrC[pp]
programs that use AltiVec.

2. MrC[pp] AltiVec Compiler Extensions

The following briefly summarizes the areas that are extended or changed to support AltiVecin
MrC[pp]. All of these will be described in more detail in subsequent sections.

¢ Command line option (- vec[t or] on) to enable the AltiVec language extensions.

* Predefined macro (__VEC , __ ALTI VEC) to indicate the AltiVec extensions are enabled.
* Vector datatypes.

¢ Dataalignment and dynamic allocation requirements for vector data types.

* Rulesfor using vector datatypesin expressions.

* Vector operatorsto generate the AltiVec instructions.

e Library and header support for AltiVec.

* Functions calls and linkage conventions to allow passing and storing of vector data types.

2.1 Specifying AltiVec on the Command Line

As discussed later, supporting AltiVec requires that the compiler use certain naming conventions
which potentially could conflict with existing programs. Therefore the AltiVec extensions are
not recognized unless-vec[tor] on or -al ti vec_nodel on isspecified (thus the default isof f).
The full command line syntax is,

-vec[tor] on[,[no]vrsave] enable AltiVec extensions
-vec[tor] off disable AltiVec extensions (default)
or aternatively,

-altivec_nodel on[,[no]vrsave] enableAltiVec extensions
-al tivec_nodel off disable AltiVec extensions (default)

The additional [no] vr save option controls whether function linkage conventions support the
VRsaveregister. VRsaveisaAltiVec SPR (specia purpose register) used to inform the OS
which vector registers need to be saved and rel oaded across context switches (e.g., interrupts).
The Macintosh system supports use of VRsave. However, the novr save option is provided for
contexts in which it is known that the VRsave register is not needed or not supported by the OS.2

™

AltiVec isaregistered trademark of Motorola, Inc.

1 Thebasisfor these extensionsis defined by the Motorola AltiVec™ Programming Model specification. Much of
that specification has been incorporated into this document to tailor it specifically for MrC[pp].

2 |ngeneral the nover save option should never be used. It doesn't affect the environment if the register is

maintained whether or not it is supported by the OS. Remember that even if an OS doesn't presently support

the handling of VRsave today, it might in the future!

MrCl[pp] AltiVec Release Notes 1 Copyright Apple Computer, Inc. 1998
2/18/99 All rights reserved.

2.2 Predefined Macros

When AltiVec is enabled (by command line option on pragma), the compiler will predefine the
macro __VEC . _ VEC _ ispredefined to have the decimal integer value following the format
“vrrnn”, which corresponds to Programming Model version numbering scheme “v.rr.nn".3

Themacro __ALTI VEC _ isaso defined as 1 to indicate that a set of AltiVec #pragmas
(described in the next section) are supported by the compiler.

2.3 AltiVec Pragmas

Three pragmas can be used to control AltiVec support within a compilation unit: The pragmas
are;

® #pragma altivec_nodel on | off | reset
® #pragma altivec_codegen on | off | reset
® #pragma altivec_vrsave on | off | reset | allon

2.3.1 #pragma altivec_model - Control acceptance of the AltiVec model
#pragma altivec_nodel on | off | reset

This pragmais used to either temporarily or permanently override accepting the AltiVec
extensions as specified by the command line -vector on or - al ti vec_nodel on. The setting
remainsin effect until the next al ti vec_nodel pragmais encountered.

This pragma may be placed anywhere within the compilation unit. If reset is specified, the
setting is reset to what was specified or implied by the command line.

2.3.2 #pragma altivec_codegen - Control AltiVec (vectorization) optimizations
#pragna altivec_codegen on | off | reset

This pragmais used to either temporarily or permanently override vectorization of code as
specified by the command line - opt si ze or speed al ti vec_codegen parameter. When
vectorization is enabled, code generation is alowed to take advantage of the AltiVec architecture
as a possi ble optimization.

When used outside of afunction, then the pragma overrides the command line until another
#pragma al ti vec_codegen isencountered outside of any functions. If reset isspecified, the
setting is reset to of f .4

If the pragma.is placed inside a function body (i.e., anywhere between its enclosing braces), then
the pragma temporarily overrides the current setting for that function only. The setting appliesto
the entire function no matter where within the function the pragmais placed. If more than one
#pragma al ti vec_codegen is placed within the function, then it’s an error if they have different
settings. Thereset option is not permitted when the pragma is used within functions.

Following the function, the default setting is reset to what was in effect prior to that function.

3 For example, if the current version of the Motorola AltiVec™ Programming Mode! specification is 1.2.1 then
__VEC __ isdefined to have the decimal value 10201.

4 Eventually there may be acommand line option, in which caser eset will reset to the setting specified or
implied by the command line.

MrC[pp] AltiVec Release Notes 2 Copyright Apple Computer, Inc. 1998
2/18/99 All rights reserved.

Note: Thispragmaisrecognized but no implicit AltiVec vectorization optimizations are
performed at thistime.

2.3.3 #pragma altivec_vrsave - Control handling of VRsave
#pragma altivec_vrsave on | off | reset | allon

This pragmais used to either temporarily or permanently override maintaining of the VRsave
register as specified by the command line - vect or on, [no] vrsave Or - al ti vec_nodel

on, [no] vrsave. When enabled, function prologs and epilogs have additional code to properly
maintain VRsave to indicate which vector registers are currently in use. If al | on is specified,
then VRsave is defined as having all vector register in use.

When used outside of afunction, then the pragma overrides the command line until another
#pragma al ti vec_vrsave isencountered outside of any functions. If reset isspecified, the
setting is reset to what was specified or implied by the command line. The al | on option is not
permitted when the pragmais used outside of a function.

If the pragma.is placed inside a function body (i.e., anywhere between its enclosing braces), then
the pragma temporarily overrides the current setting for that function only. The setting appliesto
the entire function no matter where within the function the pragmais placed. If more than one
#pragma al ti vec_vrsave isplaced within the function, then it’s an error if they have different
settings. Thereset option is not permitted when the pragma is used within functions.

Following the function, the default setting is reset to what was in effect prior to that function.

It is not recommended that VRsave handling be turned off since interrupt handlers need VRsave
in order to know which vector register need to be preserved across interrupts. However thereisa
price to be paid in prolog/epilog overhead in maintaining VRsave. It is possible to safely turn off
VRsave handling if it is known that the VRsave register reflects al possible vector registers that
can beinuse. Using theal | on option indicates that the function containing this option will
define VRsave as having the value of all ones thusindicating all vector registersarein use. All
functions called by this function and their descendants can then be safely set to not maintain
VRsave. Itisthe user’sresponsibility to ensure VRsave is properly controlled in this call chain.

2.4 AltiVec Naming Conventions

When AltiVec is enabled al identifiers with the prefix “vec_” are reserved by the compiler for
AltiVecextensions. There is nothing prohibiting the user from using identifiers starting with
“vec_” in contexts other than what is described here, but thisis not recommended.

2.5 Vector Data Types

AltiVec introduces 11 new reserved vector data type names as defined in the table at the top of
the next page.

In addition to the 11 data types defined above, the type specifier i nt may be combined with
short orlong (e.g., vect or unsi gned short int, theint isshownin bracketsto indicateitis
optional). When multiple smple type specifiers are allowed, they can be freely intermixed in
any order. However, thevect or type specifier must occur first.

Note that although the identifiersvect or and pi xel occur as part of the vector data types, they
are not considered as reserved words except in when used as type specifiers. Similarly bool is
not treated as areserved keyword in C except in this context. In C++ however it will be treated
as areserved keyword if the command line option -bool on is specified (which also will then

MrCl[pp] AltiVec Release Notes 3 Copyright Apple Computer, Inc. 1998
2/18/99 All rights reserved.

treat t rue and f al se asreserved keywords).

Two reserved keywords are provided as aliasesto vect or and pi xel . They are__vect or and
__pi xel respectively. These may always be used in either C or C++,

In this document, the term “vec_data’ is defined to mean data that can be any of the above vector
datatypesand “vec_type’ isused to represent any of the vector data types.

New C/C++ type Size Inter pretation of Values
(bytes) contents

vector unsigned char 16 16 unsigned char 0...255
vector signed char 16 16 signed char -128...127
vector bool char 16 16 unsigned char 0(F), 255 (T)
vector unsigned short [int] 16 8 unsigned short 0...65536
vector signed short [int] 16 8 signed short -32768...32767
vector bool short [int] 16 8 unsigned short 0 (F), 65535 (T)
vector unsigned long [int] 16 4 unsigned int 0.2%2.1
vector signed long [int] 16 4 signed int _281 231_1
vector bool long [int] 16 4 unsigned int 0 (F), 2%2-1(T)
vector float 16 4 float |EEE-754 values
vector pixel 16 8 unsigned short 1/5/5/5 pixel

Vector Data Types

Aswill be discussed later, all vector operations take the form of overloaded function calls. These
overloaded functions are alowed in both C and C++. In addition, when vector types appear in
C++ member functions, the name mangling rules for function signatures have been extended to
support the vector types. See Appendix C for further details on C++ vector name type
mangling.

2.6 Alignment

A defined dataitem of any vector data type must always aligned in memory on a 16-byte
boundary. A pointer to any vector data type always pointsto a 16-byte boundary. The compiler
isresponsible for aligning vector data types on 16-byte boundaries. Given that vector data must
be correctly aligned, a program isincorrect if it attempts to dereference a pointer to a vector type
if the pointer does not contain a 16-byte aligned address. Note that in the AltiVec architecture an
unaligned load/store does not cause an alignment exception. Instead, the low-order bits of the
address are quietly ignored.

2.6.1 Alignment of non-vector data

An array of components to be loaded into vector registers need not be aligned, but will have to be
accessed with attention to its alignment. Typically, thiswill be accomplished with the
vec_lvsr(),vec_lvsl(),andvec_perm() instructions.

2.6.2 Alignment of vector Data within structures and classes
Structures or classes containing vector types are aligned on 16-byte boundaries and their internal

MrC[pp] AltiVec Release Notes 4
2/18/99

Copyright Apple Computer, Inc. 1998
All rights reserved.

organization padded, if necessary, so that each internal vector type is aligned on a 16-byte
boundary regardless of the alignment mode (set via#pr agma al i gn or - al i gn command line
option) currently in effect.®

2.6.3 Dynamic allocation and alignment

Dynamically allocated space for vector data must be aligned on a 16-byte boundary. There are
four ways space is dynamically allocated, two of which are explicitly under user control.

¢ Space dynamically allocated on the stack for local data allocated by the compiler.
¢ Space dynamically allocated on the stack by the user.

¢ Space dynamically allocated on the heap by the user.

¢ Space dynamically allocated for C++ class objects.

2.6.3.1 Dynamic alignment of compiler allocated local data

In order to guarantee that vector local datais aligned on a 16-byte boundary, the compiler must
generate function entry (prolog) code that ensures the function’s local datais 16-byte aligned.
The additional code generated by the prolog (and function exit epilog) to ensure alignment is
only generated if needed, i.e., when a function contains vector locals or has vector parameters
that may themselves be on the stack. See section 4 for further details.

2.6.3.2 Space dynamically allocated on the stack by the user (alloca)

When - al | oca is specified on the command line then the predefined al 1 oca() function may be
used in afunction to dynamically allocate space on the stack. The code generated for al | oca()
will always allocate a multiple of 16 bytes and always align the space on a 16-byte boundary on
the stack. Therefore the allocated space can be used for whatever purpose, including space for
vector data

2.6.3.3 Space dynamically allocated on the heap by the user (vec_malloc)

Unlikeal | oca(), the standard mal | oc() may be heavily used, many times to allocate relatively
small objects. Thus generalizing mal | oc(), cal I oc(), and real | oc() toawayshavea
multiple-of-16 overhead with 16-byte alignment is not desirable. A different set of variants,
called vec_mal I oc(), vec_calloc(),and vec_real | oc() areprovided as part of StdCLib and
defined in stdlib.h. It isthe user’ s responsibility to usevec_mal | oc(), €tc. when the intended
use for the alocated space isto contain vector data. In order to free space allocated by these
alocatorsthe routinevec_free() (also definedin stdlib.h) must be called.

2.6.3.4 Space dynamically allocated for class objects

When the default oper at or newisinvoked for a class that contains vector data (either explicitly
or implicitly through inheritance) a routine named vec_new() iscalled instead of invoking the
oper at or new runtime support routine. Similarly, when the default oper at or del et e iscalled,
the compiler substitutes acall tovec_del ete(). vec_new() isimplemented by calling

vec_mal | oc() andvec_del ete() calsvec _free().

If an explicit oper at or new (including the placement form of oper at or new) or oper at or
del et e is declared as a member function, then the user takes responsibility for the allocation.
Therefore such implementations must take into account vector alignment if required by calling

S Padding may also occur to aign data inherited from parent classes that themselves contain vector data.

MrC[pp] AltiVec Release Notes 5 Copyright Apple Computer, Inc. 1998
2/18/99 All rights reserved.

vec_new() (orvec_mal |l oc()) andvec_del ete() (or vec_free()) asappropriate.6

2.7 Expressions

Most C/C++ operators do not permit any of their arguments to be a vector datatype. The normal
C/C++ operators are extended to include the operations defined in the following sections.

In the examples in the following sections let a and b be vector types and p be a pointer to a
vector type.

2.7.1 sizeof()
si zeof (a) andsi zeof (*p) return 16.

2.7.2 Assignment

If either the left hand side or right hand side of an expression has a vector type, then both sides of
the expression must be of the same vector type. Thus, the expressiona =b isvalid and
represents assignment only if a and b are of the same vector type (or if neither is a vector type).
Otherwise, the expression isinvalid and is reported as an error by the compiler.

2.7.3 Address Operator
The operation &a isvalid if a isavector type and the result of the operation is a pointer to a.

2.7.4 Pointer Arithmetic

The usual pointer arithmetic can be performed on p. In particular, p+1 isapointer to the next
vector e ement after p.

2.7.5 Pointer Dereferencing

If p isapointer to avector type, *p implies either a 128-bit vector |oad from the address obtained
by clearing the low order bits of p (equivalent to the instruction vec_I d(0, p)) or a 128-hit
vector store to that address (equivalent to the instruction vec_st (0, p)). If itisdesired to mark
the data accessed as | east-recently-used (LRU), the explicit instruction vec_I di (0, p) or
Vec_stl (0, p) must be used.

Dereferencing a pointer to a non-vector type produces the standard behavior of either aload or a
copy of the corresponding type.

Accessing of non-aligned memory must be carried out explicitly by avec_I d(i nt, type *)
operation, avec_I dl (int, type *) operation, avec_st (int, type *) operation or a
vec_stl (int, type*) operation.

2.7.6 Type Casting

Pointers to non-vector and vector data may be cast back and forth to each other. Casting a
pointer to avector type represents an (unchecked) assertion that the addressis 16-byte aligned.

Casts from one vector type to another are provided using the usual C syntax (vec_t ype) e,
(e.0., (vector unsi gned char) e). In all casesthe datarepresented by e is converted to the

6 Internally there are four library routines to support allocation and deallocation of C++ classes: vec_new() and
vec_del et e() asdiscussed above, __vec_vec_new() and __vec_vec_del et e() for arrays of
objects (but the latter calls are only generated by the compiler). Likeoper at or new, vec_new() isdefined
in new.h.

MrC[pp] AltiVec Release Notes 6 Copyright Apple Computer, Inc. 1998
2/18/99 All rights reserved.

specified vector type without changing the bit pattern.

2.7.7 Vector Constants

Vector constants may used wherever avector data value is allowed (static/dynamic initialization,
parameters, assignments). The compiler generates code which either computes or loads the
valuesinto an AltiVec register. They have the following forms:

(vector unsigned char) (unsigned int)
(vector unsigned char)(unsigned intq,..., unsi gned i nt 1)

Represents a vector unsigned char constant consisting of a set of 16 unsigned 8-bit quantities
which all have the value specified by a single unsigned integer or as individually specified by
16 unsigned integers.

(vector signed char)(int)
(vector signed char)(intq,..., intqg)

Represents a vector signed char constant consisting of a set of 16 signed 8-bit quantities
which all have the value specified by a single integer or asindividually specified by 16
integers.

(vector unsigned short) (unsigned int)
(vector unsigned short)(unsigned intq,..., unsi gned intg)

Represents a vector unsigned short constant consisting of a set of 8 unsigned 16-bit quantities
which all have the value specified by a single unsigned integer or as individually specified by
8 unsigned integers.

(vector signed char)(int)
(vector signed char)(intq,..., intg)

Represents a vector signed char constant consisting of a set of 8 signed 16-bit quantities
which all have the value specified by a single integer or asindividually specified by 8
integers.

(vector unsigned |ong) (unsigned int)
(vector unsigned long)(unsigned intq,..., unsi gned int p)

Represents a vector unsigned long constant consisting of a set of 4 unsigned 32-bit quantities
which all have the value specified by a single unsigned integer or as individually specified by
4 unsigned integers.

(vector signed |ong)(int)
(vector signed long)(intq,..., i Nt 4)

Represents a vector signed long constant consisting of a set of 4 signed 32-bit quantities
which all have the value specified by a single integer or asindividually specified by 4
integers.

(vector float)(fl oat)
(vector float)(floatyq,..., float,)

Represents a vector float constant consisting of a set of 4 32-bit floating-point quantities
which all have the value specified by asingle float value or asindividually specified by 4
float values.

In al of these constants the individual (unsigned) integer(s) or float value(s) may be constant
expressions.

MrC[pp] AltiVec Release Notes 7 Copyright Apple Computer, Inc. 1998
2/18/99 All rights reserved.

Note that constants generated with functions may or may not be represented as 16-byte data
items and could be generated directly in the code. See Appendix D for a discussion on the
generation of vector constants.

2.7.8 Valuefor adjusting pointers

Given a pointer to atype that is one of the possible vector components, vec_st ep(vec_dat a) or
vec_st ep(vec_t ype) produces at compile time the integer value to be added to the pointer to
cause the pointer to be incremented by 16 bytes. For example, a vector unsigned short data type
is considered to contain 8 unsigned 2-byte values. A pointer to unsigned 2-byte values used to
stream through an array of unsigned 2-byte values by afull vector at atime should be
incremented by vec_st ep(vect or unsi gned short) which generates the constant 8.

16
16
16

vec_step(vector unsigned char)
vec_step(vector signed char)
vec_step(vector bool ean char)
vec_step(vector unsigned short)
vec_step(vector signed short)
vec_step(vector bool ean short)
vec_step(vector unsigned | ong)
vec_step(vector signed |ong)
vec_step(vector bool ean | ong)
vec_step(vector float)
vec_step(vector pixel)

oo~ BSMDDMOO©OO®W

2.8 Operatorsrepresenting AltiVec operations

The vector operators allow full access to the functionality provided by the AltiVec architecture.
The operators are represented in the programming language by language structures which have

function call syntax. The names associated with these operations are all prefixed with “vec_".
The appearance of one of these forms can indicate:

* A generic (overloaded) AltiVec operation (e.g., vec_add()) which generates a vector
instruction depending on the argument types.

* A gpecific AltiVec operation (e.g., vec_addubnt()) which maps directly into a AltiVec
machine instruction.

¢ A predicate (0 or 1) computed from a AltiVec operation (e.g., vec_al | _eq()).
* Acad, like(vector signed char) e, asalready discussed in Section 2.6.6.
* Loading of avector of constant components, as aready discussed in section 2.6.7.

Each operator representing a AltiVec operation takes alist of arguments representing the input
operands in the order in which they appear in the tablesin Appendix A and Appendix B and
returns aresult (possibly void).

The permitted operand types for each AltiVec operation, whether specific or generic, are
restricted to those in the tables. The programmer may override this constraint by explicitly
casting arguments to permissible types.

For a specific operation, the operand types are used to determine whether the operation is
acceptable and to determine the type of the result. For example, vec_addubn(vect or si gned
char, vector signed char) isacceptable because that represents a reasonable way to do
modular addition with signed bytes, whilevec_addubs(vect or si gned char, vector si gned
char) and addubh(vect or si gned char, vector si gned char) arenot acceptable. The former

MrCl[pp] AltiVec Release Notes 8 Copyright Apple Computer, Inc. 1998
2/18/99 All rights reserved.

operation would produce aresult in which saturation treated the operands as unsigned, while the
latter would produce aresult in which adjacent pairs of signed bytes would be treated as signed
half words.

For a generic operation, the operand types are used to determine whether the operation is
acceptable, to select a particular operation according to the types of the arguments, and to
determine the type of the result. For example, vec_add(vect or si gned char, vector si gned
char) will map onto vec_addubn{) and return aresult of typevect or si gned char, while
vec_add(vect or unsi gned short, vector unsi gned short) will map onto vec_adduhn() and
return aresult of typevect or unsi gned short.

The AltiVec operations which set condition register CR6 (the “compare dot” instructions) are
treated somewhat differently. The programmer does not have access to specific register names.
Instead of directly specifying acompare dot instruction, the programmer makes referenceto a
predicate which returns an integer value derived from the result of a compare dot instruction. As
in C, thisvalue may be used directly asavalue (1 istrue, O isfalse) or as a condition for
branching. The predicates all begin with “vec_al | _” or “vec_any_". There are predicates to
test the true or false state of any bit which can be set by a compare dot instruction. For example,
vec_al | _gt (x,y) teststhetrue value of bit 24 of the CR after executing some vcnpgt .
instruction. To complete the coverage by predicates, additional predicates exercise compare dot
instructions with reversed or duplicated arguments. Asexamples, vec_al | _I t (x,y) performsa
venpgt x. (y, x),, and vec_al | _nan(x) IS mapped onto venpeqf p. (x, x) . If the programmer
wishes to have both the result of the compare dot instruction as returned in the vector register and
the value of CR6, the programmer must specify two instructions.

The tables of permitted generic instructions are documented in Appendix A.

The tables of permitted predicates are documented in Appendix B.

3. Library and Header Support for AltiVec
The following areas are extended to supported AltiVec:

¢ Extensionsto standard 1/0O formatting for the vector datatypes
* Extensionsto headers

¢ Extensionsto PPCCRuntime.o

* Extensionsto MrCExceptionsLib

* Extensionsto StdCLib

3.1 Extensionsto Standard I/0O Formatting of the Vector Data Types

The conversion specifications in standard 1/0 output statements (scanf, fprintf, etc.) are extended
to support the vector datatypes. The specifications are described in the following sections; first
the forms for output (printf, etc.) and then those for input (scanf, etc.).

3.1.1 Output conversions specificationsfor printf, etc.

All the output functions that have aformat string as one of their arguments (f pri ntf,printf,
sprintf,vfprintf,vprintf,vsprintf) supportvector output conversions that have the
following genera form:

% <fl ags>] [wi dt h] [<pr eci si on>] [<si ze>] <conver si on>

MrC[pp] AltiVec Release Notes 9 Copyright Apple Computer, Inc. 1998
2/18/99 All rights reserved.

where,

<fl ags>
<fl ag- char >
<std-fl ag-char>

<flag-char> | <flags><flag-char>
<std-flag-char> | <c-sep>
L} _I | L} +I | L} OI | L} #I | L} L} | L} @

<c-sep> any character including <std-flags-char> except
<wi dth> | <precision> | <size> | <conversion>

<wi dt h> = <integer> | '*'

<pr eci si on> = [<wi dt h>]

<si ze> = "I ptL "1t] "ht | <vector-size>

<vector-size> = 'vl' | 'vht | "Iv | "hy | "V

<conversi on> <char-conv> | <str-conv> | <fp-conv> | <int-conv>
<m sc-conv>

<char - conv> ‘¢

<str-conv> ='s" | 'P

<f p_ COI’]V> = ' el | ' El | ' fl | ' gl | ' G

<i nt - Conv> = L} dl | L} i L} | L} ul | L} 0I | L} pI | L} XI | L} XI
<m sc- conv> ='n" | "%

The extensions to the output conversion specification for vector types are shown in bold.

The <vect or - si ze> indicates that a single vector valueisto be converted. The vector valueis
displayed in the following general format:

value; Cvalue, C value; Cvalue, C ... Cvalue,

where C is a separator character defined by the <c- sep> or astring specified by an argument.
whenthe' @ flagisused. Thereare 4, 8, or 16 output values depending on the <vect or - si ze>,
each formatted according to the <conver si on>.

A <vector-size>o0f'vl' or'lv' consumes one argument and modifiesthe <i nt - conv>
conversion; it should be of typevect or si gned | ong, vect or unsi gned | ong, O vect or bool

| ong; it istreated as a series of four 4-byte components. A <vect or - si ze> Of ' vh' or ' hv'
consumes one argument and modifies the <i nt - conv> conversion; it should be of type vect or
si gned short, vect or unsi gned short, vect or bool short, Or vector pi xel ;itistreated asa
series of eight 2-byte components. A <vect or - si ze> of ' v' with <i nt - conv> or <char - conv>
consumes one argument; it should be of typevect or si gned char, vect or unsi gned char, or
vect or bool char; itistreated as aseries of sixteen 1-byte components. A <vect or - si ze> of
"v' with <f p- conv> consumes one argument; it should be of typevect or fl oat ; it istreated as
a series of four 4-byte floating-point components. All other combinations of <vect or - si ze>
and <conver si on> are undefined.

The default value for the separator character isaspaceunless' ¢' conversion isbeing used. For
' ¢' conversion the default isto have no separator. Alsofor' ¢' conversion, any of the standard
numeric flags characters (" -'," +',' #' ,' ') may be used as a separator since these flags are not
otherwise used. For numeric conversions the standard flags apply to the conversions and thus
may not be specified as a separator flag. Also, only one separator character may be specified in
the <f | ags>.

Examples:
Given the following declarations:

vector signed char s8 = (vector signed char)(1, 2, 3, 4, 5 6, 7, 8§,

MrC[pp] AltiVec Release Notes 10 Copyright Apple Computer, Inc. 1998
2/18/99 All rights reserved.

9, 10, 11, 12, 13, 14, 15, 16);
vector unsigned short ul6é = (vector unsigned short)('a, 'b', 'c', "d,
Iel, Ifl, Igl, Ihl);
vector signed long s32 = (vector signed long)(1, 2, 3, 12);
vector float f32 = (vector float)(1.1, 2.2, 3.3, 4.4);

The following printf statements produce the indicated output:

printf("s8 = %d", s8); P s8 =1234567 89 10 11 12 13 14 15 16
printf("s8 = %vd", s8); P s8 =1,2,3,4,5,6,7,8,9,10,11, 12, 13, 14, 15, 16
printf("ulé = %hc", ul6); P ul6é = abcdefgh

printf("s32 = % 2l vd", s32); b s32 = 1, 2, 3,12

printf("f32 = %5.2vf", f32); b f32 = 1.10, 2.20, 3.30, 4.40

The' @ flagisageneralization of <c-sep> alowing the separator to be any arbitrary string.
Usingthe' @ flag consumes one argument expected to be a pointer to astring. Thisargument is
consumed before any other argument for conversion (e.g., a' *' specified for a<wi dt h>).

Example:
vector unsigned |ong u32 = (vector unsigned long)(0, -1, -2, -3);
printf("u32 = Ox%@ 8l vXx', ", 0x", u32); /* separator is ", Ox" */

d
0x00000000, OXFFFFFFFF, OxFFFFFFFE, OXFFFFFFFD

3.1.2 Input conversions specifications for scanf, etc.

All the input functions that have aformat string as one of their arguments (f scanf , scanf,
sscanf) support vector input conversions that have the following general form:

% <fl ags>] [wi dt h] [<si ze>] <conver si on>

where,
<flags> ="' | '@ | <c-sep>["*"] | ['*"] <c-sep>
<c- sep> = any character except '*' | <width> | <size> |
<conversi on>
<wi dt h> = <integer>
<si ze> = "I ptL "1t] "h' | <vector-size>
<vector-size> = 'vi" | "vh' | "Iv' | "Ih |'v

<conver si on> <char-conv> | <str-conv> | <fp-conv> | <int-conv> |
<mi sc- conv>

<char - conv> c'

<str-conv> ='s" | P | '[" ['"™] <any characters> ']
<f p-conv> ='e | '"f*"' | '¢d

<i nt-conv> = 'd | "i"] ‘u | "o | '"p" | "X

<m sc-conv> ='n" | "% | '["

The extensions to the input conversion specification for vector types are shown in bold.

The <vect or - si ze> indicates that a single vector value isto be scanned and converted. The
vector data to be scanned is expected to have the following general format:

value; C value, C value; C valug, C ... Cvalue,

MrC[pp] AltiVec Release Notes 11 Copyright Apple Computer, Inc. 1998
2/18/99 All rights reserved.

where C isaseparator character defined by the <c- sep> (surrounded by any number of spaces)
or string specified by an argument when the' @ flag isused. . The number of scanned valuesis
4, 8, or 16 depending on the <vect or - si ze> with each value scanned according to the
<conver si on>.

A <vector-size>o0f'vl' or'lv' consumesone argument and modifiesthe <i nt - conv>
conversion; it should be of typevect or si gned | ong * Or vect or unsi gned | ong * depending
on the <i nt - conv> specification; 4 values are scanned. A <vect or-si ze>of ' vh' or' hv'
consumes one argument and modifies the <i nt - conv> conversion; it should be of type vect or
signed * or vect or unsi gned short * depending on the <i nt - conv> specification; 8 values are
scanned. A <vector-si ze> oOf ' v' with <i nt - conv> oOr <char - conv> CONSUMES One argument;
it should be of typevect or si gned char * or vect or unsi gned char * depending on the <i nt -
conv> Or <char - conv> specification; 16 values are scanned. A <vect or-si ze> of ' v' with

<f p- conv> consumes one argument; it should be of typevect or fl oat *; 4 floating-point
values are scanned. All other combinations of <vect or - si ze> and <conver si on> are
undefined.

The default value for the separator character is any number of space unless' ¢' conversionis
being used. For' ¢' conversion the default isto have no separator character.

Examples:
These are equivalent to,

sscanf("1 2 3
sscanf ("1, 2, 3,
sscanf (" abcdef
sscanf ("1, 2,

sscanf (" 1. 10,

7 89 10 11 12 13 14 15 16", "%wd", &s8);
5, 7,8,9,10, 11, 12, 13, 14, 15, 16", "%vd", &s8);
, "%hc", &ul6);

12", "% 2lvd", &s32);

.20, 3.30, 4.40", "%5vf", &f32);

_CDCD

4
4,
gh
3,
2

These set the vector variables as if they were declared as follows:

vector signed char s8 = (vector signed char)(1, 2, 3, 4, 5 6, 7, 8,
9, 10, 11, 12, 13 14, 15, 16);
vector unsigned short ulé = (vector unsigned short)('a, 'b'", 'c', "d
|e|, lfl, |g| lh),
vector signed long s32 = (vector signed long)(1, 2, 3, 12);
vector float f32 = (vector float)(1.1, 2.2, 3.3, 4.4);

The' @ flagisageneralization of <c-sep> alowing the separator to be any arbitrary string.
Usingthe' @ flag consumes one argument expected to be a pointer to astring. Leading and
trailing blanks in this string are ignored.

Example:

sscanf (" 0x00000000, OxFFFFFFFF, OxFFFFFFFE, OxFFFFFFFD', "o%@vl x", ", Ox", &u32);
This is the sane as if u32 were decl ared as,

vector unsigned |ong u32 = (vector unsigned long)(0, -1, -2, -3);

3.2 ExtensionstotheHeaders

Four headers are modified to support AltiVec; new.h, stdarg.h, stdlib.h, and setjmp.h. In all
these headers, the extensions are only in effect if AltiVecisenabled. In other wordsthey are all

MrC[pp] AltiVec Release Notes 12 Copyright Apple Computer, Inc. 1998
2/18/99 All rights reserved.

under #i f __VEC__ conditional which isonly true when the AltiVec extensions are enabled.

3.2.1 new.h

The C++ header new.h declaresvec_new() . Thisisreferenced by the compiler when an
oper at or newis seen for aclassthat contains or inherits vector data.

3.2.2 stdarg.h

As discussed under Linkage Conventions section 4, all vector arguments must be aligned on a
16-byte boundary. This requires specia treatment when handling a variable argument list using
stdarg.h where the argument list can be a mixture of non-vector data (aligned on 4-byte
boundaries) and vector data (on 16-byte boundaries).

When not using AltiVec al arguments are aligned on a 4-byte boundary. Thusva_arg() is
defined to round up theva_I i st pointer using si zeof (type) to the next 4-byte boundary. This
is not sufficient with AltiVec and its 16-byte alignment requirement. A more complicated
adjustment (but still done at compile time) must either round up to the next 4-byte or 16-byte
boundary. A compile-time predefined function called __va_al i gn__(type) returnsaconstant 4
or 16 depending on whether its type argument is a non-vector type or avector type respectively.
va_ar g() isdefined intermsof both __va_align__ () andsi zeof () in order to correctly
handle variable argument lists with vector-typed arguments.

3.2.3 stdlib.h

As discussed in section 2.5.3.3 and section 3.5, vec_mal | oc(), vec_cal | oc() and

vec_real | oc() are provided to ensure 16-byte alignment for dynamically allocated vector data.
To free space allocated by these routines, vec_free() must be used. The definitions for these
routines are defined in stdlib.h. Except for the alignment requirement their behavior and
arguments are identical to their non-vector counterparts.

3.24 setjmp.h

The definition for j mp_buf in setjmp.h must be different when supporting AltiVec in order to
save the pertinent AltiVec registersin addition to those saved when AltiVec is not being used.
The setjmp.h header defines the larger j np_buf and redefinesset j np() and | ongj np() to call
an alternate set of library routinesin StdCLib that expect this larger jmp_buf. These are called
__vec_setjnp() and __vec_Il ongj np() .

Since it is the setjmp.h header that determines which form of j np_buf to use and which
setjnmp() and ! ongj np() routinesto call, it isup to the user to be consistent with their use.
Thusif al ongj mp() isdone from a compilation unit that doesn’t otherwise use the AltiVec
extensions, it still must till enabled the Altivec extensions in order for the proper | ongj np()

call to be generated. The converseisalsotrue, i.e., doing asetj np() from acompilation unit
that doesn' t otherwise use the AltiVec extensions to define a j mp_buf used by a compilation unit
that does. Both compilation units need to be compiled with AltiVec enabled.

3.3 Extensionsto PPCCRuntime.o

When - opt si ze is specified on the compiler command line, any non-leaf functions save their
volatile floating-point registers with the aid of routines supplied in PPCCRuntime.o. Calling a
single routine to save registers saves space (hence why it’s only used under the - opt si ze
option). These routines all have names following the same forms. _savefN to save and _restfN to
restore floating-point registers, where N isanumber 14 to 31. For example, calling _savef25
will cause floating-point registers fp25 through fp31 to be saved while calling _restf25 will
restore them. These calls are generated by the compiler and should never be called by the user.

MrC[pp] AltiVec Release Notes 13 Copyright Apple Computer, Inc. 1998
2/18/99 All rights reserved.

For AltiVec registers, asimilar set of routines are provided in PPCCRuntime.o to save and
restore the volatile vector registers. These have the general name _savevN and _restvN, where N
is 20 through 31 (see section 4 for adiscussion of linkage conventions and the non-volatile
vector registers). Aswith floating-point, these routines are compiler-generated for non-leaf
functions compiled with - opt si ze and should not to be called by the user.

3.4 Extensionsto MrCExceptionsLib

When exceptions are used in MrCpp - except i ons on must be specified on the command line
and the program linked with MrCExceptionsLib. Any compilation unit that is also compiled
with AltiVec enabled will invoke a set of different runtime exceptions support routinesin
MrCExceptionsLib.” If both exceptions and AltiVec are used in the program then all
compilations units should be built with AltiVec enabled whether or not a specific set of
compilation units uses AltiVec. Thisis necessary to properly restore the vector registers and the
VRsave SPR as the stack is unwound from athrow to the appropriate catch clause.

3.5 Extensionsto StdCLib

Asdiscussed in section 2.5.3.3, vec_mal | oc(), vec_cal l oc(),vec_real | oc(), and
vec_free() areprovided to dynamically allocate 16-byte aligned space for vector data. These
arelocated in StdCLib.

AltiVec support for set j np() and | ongj np(), i.e., theroutines__vec_setj np() and
__vec_l ongj np() , are also located in StdCL.ib.

4. Functions Callsand Linkage Conventions

AltiVec support imposes some additional semantic rules on function calls and their declarations
or definitions. There are also differencesin the linkage conventions to support the handling of
the vector registers, stack frame layout and alignment, and the VRsave special purpose register.

Note that the AltiVec intrinsic operations are not treated as function calls, so these comments do
not apply to those operations.

4.1 Additional Function Call Semantics

Any forward reference to a function which includes vector parameters requires a prototype.
Vector types as parameters or as areturn type are not allowed for DTSOM member functions.

4.2 Linkage Conventions
The following sections discuss the modifications to linkage conventions.

4.2.1 Register Usage Conventions
The register usage conventions for the vector register file are defined as follows:

Registers Intended use Behavior across call sites

vO-v1l General use Volatile (Caller save)

7 Because the vector registers and the VRsave SPR must be restored when a (re)throw is done (using the routines
_vec__eh_throw() and__vec__eh_ret hrow()) and space for thrown objects must be allocated or
deallocated using 16-byte alignment.

MrC[pp] AltiVec Release Notes 14 Copyright Apple Computer, Inc. 1998
2/18/99 All rights reserved.

v2-v13	Parameters, general	Volatile (Caller save)
vi4-v19	Genera	Volatile (Caller save)
v20-v31	General	Non-volatile (Callee save)
VRsave	Special, seebelow	Non-volatile (Callee save)

AltiVec Register Usage Conventions

The special purpose register (SPR) number 256, named VRsave, is used to inform the operating
system which vector registers need to be saved and reloaded across context switches. Bit n of
thisregister isset to 1 if vector register vn needs to be saved and restored across a context
switch. Otherwise, the operating system may return that register with any value that does not
violate security after a context switch. The most significant bit in the 32-bit word is considered
to be bit 0.

4.2.2 Function callswith a fixed number of arguments

The first twelve parameters of any non-struct vector data type are placed in consecutive vector
registers v2 through v13. Any additional vector-typed parameters are passed through memory on
the stack. They appear together, 16-byte aligned, and after any non-vector parameters. If fewer
(or no) vector type arguments are passed, the unneeded registers are not loaded and will contain
undefined values on entry to the called function.

Non-vector parameters are passed in the same registers as they would be if the vector parameters
were not present. Structs that contain vector fields are treated the same as any other struct except
that they are 16-byte aligned. This can result in words in the parameter list being skipped for
alignment (padding) and left with undefined value.

Vector parameters are not shadowed in GPR’s. They are not placed in memory unless there are
more than 12 vector arguments.

Functions that declare avector data type as areturn value place that return value in register v2.

4.2.3 Function callswith a variable number of arguments

Arguments lists for a function defined with a variable number of arguments are passed
differently than those with afixed number of arguments. All arguments are passed in the order
specified with vector arguments 16-byte aligned and non-vector arguments 4-byte aligned. All
the arguments are put on the stack in the parameter area with the first 8 words shadowed in the
GPR’sincluding any “holes’ created for alignment.

4.3 The Stack Frame

A stack frame for afunction having vector local data or using vector registers requires a vector
register save area, the VRsave save word, and the alignment padding space to dynamically align
the stack to a 16-byte boundary.8

The general layout of the stack frame is shown below.

8 See Appendix E for additional information on the generation of the stack frame.

MrC[pp] AltiVec Release Notes 15 Copyright Apple Computer, Inc. 1998
2/18/99 All rights reserved.

b - r31—» -
Saved FPRs

lenl = Space for FPR's+GPR's+4 (for VRsave)
Saved GPRs rounded up to amultiple of 16

Cdler's VRsave L

Saved VRs

Len=lenl +len2

Locals len2 = Space for VR's+Localss+PA+LA
rounded up to amultiple of 16

Param Area

Linkage Area

-~ SP—»

' Stack grows

i down #

AltiVec Stack Frame L ayout

SP in the figure denotes the stack pointer (general purpose register r 1) of the called function
after it has executed code establishing its stack frame.

The following additional requirements apply to a vector stack frame:

Before afunction changes the value of VRsave, it must save the value of VRsave at the
time of entry to the function in the VRsave save word.

The alignment padding space is either 0, 4, 8, or 12 bytes long to make the address of the
vector register save area (and subsequent stack locations) be 16-byte aligned.

The code establishing the stack frame dynamically aligns the stack pointer atomically

with an st wux instruction. The code always assumes the stack pointer on entry is aligned
on an 8-byte boundary.

The code establishing the stack frame dynamically aligns the stack pointer atomically
with an st wux instruction. The code always assumes the stack pointer on entry is aligned
on an 8-byte boundary.

Before afunction changes the value in any non-volatile vector register, vn, it savesthe
valuein vn, in the word in the vector register save area 16* (32-n) bytes before the low-
addressed end of the alignment padding space.

Local variables of avector data type which need to be saved to memory are placed on the
stack frame on a 16-byte alignment boundary in the same stack frame region used for
local variables of other types.

Non-volatile floating point registers (FPR’s) and general purpose registers (GPR’s) are saved in
the frame in the usual way. But when there are non-volatile vector registers (VR’s) to be saved
or vector locals, then the frame needs additional space for those registers and the caller’s
VRsave. The prolog code needs to dynamically 16-byte align the frame thus producing a“hol€e’
(illustrated by the shaded areain the above diagram). These is discussed in more detail in the

MrC[pp] AltiVec Release Notes 16 Copyright Apple Computer, Inc. 1998
2/18/99 All rights reserved.

following sections.

4.3.1 Stack Frame Alignment

All vector stack frames must assume that the caller’s SPis only 8-byte aligned and therefore each
callee isresponsible for 16-byte aligning it’s own frame. The compiler computes the size of the
locals such that it plus the sizes of the parameter area (PA) and linkage areas (LA) will also come
out to be amultiple of 16 (Ien2 in the above diagram). Thus the frame will start on a 16-byte
boundary if the area for the saved vector registers also start on a 16-byte boundary.

The upper size of the alignment hole is computed at compile time. It isthe minimum number of
bytes needed to needed to make the space for the saved FPR’' s+GPR’ s+4 (for VRsave) amultiple
of 16 (i.e.,, 4, 8, or 12, lenl in the diagram is the size of this rounded up space). The multiple-of-
16 space for the locals+tPA+LA (len2) can be dynamically aligned by “dliding” the space
(represented by len2) “up” or "down” using the statically computed hole to take up the slack.

The computations for computing the callee’s SP are as follows:

If the static holeis 8 or 12 it is big enough to allow moving the len2 space “up” by O or 8
bytes to get that space 16-byte aligned.

calleesSP=cadler'sSP- Len + (caller’sSP & 8)

If the static holeis 0 or 4 then it isn’t big enough to allow moving the len2 space “up”.
Therefore it must be moved “down” by O or 8 bytesto get it 16-byte aligned.

caleesSP=caler’'sSP- Len- (caler'sSP & 8)

Because the alignment is dynamic an additional register, r31, must be reserved to allow accessing
of the caller’s parameters. It will always point to the callee's stack frame (i.e., it is a copy of the
caler'sSP).9

R31isnot always reserved as the caller’ s frame pointer. If it turns out that r31 isthe only GPR
that needs saving and there isavolatile register between r3 and r10 available, then one of those
volatileswill be used in place of r31.

4.3.2 Savingthevector registers(VR’S)

If any non-volatile VR’ s need to be saved on the stack they are saved immediately after the
alignment hole. Debuggers can aways find these registersif they know the number of saved
GPR’s and FPR’ s and whether VRsave is saved or not.

4.3.3 VRsave

VRsave isthe AltiVec SPR (256) used to inform the OS which vector registers need to be saved
and reloaded across context switches (e.g., interrupts). Biti of thisregister isset to 1 if vector
register i needs to be saved and restored across a context switch (the most significant bit in the

9 Normally r31 is used as the callee’ s original frame pointer when al | oca() isused in order to access locals
and the caller’ s parameters. But as just discussed, when the stack is vector aligned, r31 is used asthe caller's
frame pointer. Then r30 becomesal | oca() 'soriginal callee frame pointer. Note that it does not matter
whether the stack is vector aligned or not for the space allocated by al | oca() sinceit always alocatesits
stack space on a 16-byte boundary.

MrC[pp] AltiVec Release Notes 17 Copyright Apple Computer, Inc. 1998
2/18/99 All rights reserved.

32-bit word is considered to correspond to v0). Otherwise, the operating system may return
vector register i with any value that does not violate security after a context switch.

When a process is launched, VRsave is set to 0. Asfunctions are called the prolog is responsible
for saving the caller’ s VRsave and OR’ing into VRsave all the bits that correspond to the vector
registers (volatile and non-volatile) used by that function. On exit, the epilog code restores the
caler'sVRsave.

Because VRsave is stored in afixed place in the stack frame, debuggers can accessit if they need
to.

4.3.4 Local Variables

Vector locals are 16-byte aligned within the local area and mixed in with all the other locals used
by the function. This may incur some wasted space within the local area. The entire local space
isalso rounded up to amultiple of 16 so that it plus the parameter and linkage area space are a
multiple of 16.

MrC[pp] AltiVec Release Notes 18 Copyright Apple Computer, Inc. 1998
2/18/99 All rights reserved.

Appendix A: Generic and Specific AltiVec Operators

The tables are organized alphabetically by generic operation name and define the permitted
generic and specific AltiVec operations. Each table describes a single generic AltiVec operation.
Each line shows avalid set of argument types for that generic AltiVec operation, the result type
for that set of argument types, and the specific AltiVec instruction generated for that set of
arguments. For example, vec_add(vect or unsi gned char, vector unsi gned char) mapsto
“vaddubnt’.

In some tables a Note column is shown. If there is no Note column it is permissible to use a
specific AltiVec operator formed by prefixing “vec_" to the name of the operation in the Maps
To column with that line's set of argument types. For example, vec_vaddubn(vect or unsi gned
char, vector unsi gned char) hasthe same effect asvec_add(vect or unsi gned char,

vect or unsi gned char).

In the few cases in which aNote column is shown, it will have a“N” to indicate that the specific
AltiVec instruction is not permitted for that generic operation because that set of argument types
has been chosen to produce a different result type.

Any operation which is not explicitly permitted by these tables is prohibited and will cause a
compilation error. Casts may be used, if necessary, to use operators in bizarre ways.

A.1 vec add(argl, arg2)

Each element of the result is the sum of the corresponding elements of argl and arg2. The
arithmetic is modular for integer types.

Result argl arg2 MapsTo
vector unsigned char | vector unsigned char | vector unsigned char vaddubm
vector unsigned char | vector unsigned char | vector bool char vaddubm
vector unsigned char | vector bool char vector unsigned char vaddubm
vector signed char vector signed char vector signed char vaddubm
vector signed char vector signed char vector bool char vaddubm
vector signed char vector bool char vector signed char vaddubm
vector unsigned short | vector unsigned short | vector unsigned short | vadduhm
vector unsigned short | vector unsigned short | vector bool short vadduhm
vector unsigned short | vector bool short vector unsigned short | vadduhm
vector signed short vector signed short vector signed short vadduhm
vector signed short vector signed short vector bool short vadduhm
vector signed short vector bool short vector signed short vadduhm
vector unsigned long | vector unsigned long | vector unsigned long vadduwm
vector unsigned long | vector unsigned long | vector bool long vadduwm
vector unsigned long | vector bool long vector unsigned long vadduwm
vector signed long vector signed long vector signed long vadduwm
vector signed long vector signed long vector bool long vadduwm
vector signed long vector bool long vector signed long vadduwm
vector float vector float vector float vaddfp

MrC[pp] AltiVec Release Notes 19 Copyright Apple Computer, Inc. 1998
2/18/99 All rights reserved.

A.2 vec addc(argl, arg2)

Each element of the result is the carry produced by adding the corresponding elements of argl

and arg2. A carry givesavalueof 1; no carry givesavalue of 0.

Result

argl

arg2

MapsTo

vector unsigned long

vector unsigned long

vector unsigned long

vaddcuw

A.3 vec adds(argl, arg2)

Each element of the result is the saturated sum of the corresponding elements of argl and ar g2.

Result argl arg2 MapsTo
vector unsigned char | vector unsigned char | vector unsigned char vaddubs
vector unsigned char | vector unsigned char | vector bool char vaddubs
vector unsigned char | vector bool char vector unsigned char vaddubs
vector signed char vector signed char vector signed char vaddsbs
vector signed char vector signed char vector bool char vaddsbs
vector signed char vector bool char vector signed char vaddsbs
vector unsigned short | vector unsigned short | vector unsigned short vadduhs
vector unsigned short | vector unsigned short | vector bool short vadduhs
vector unsigned short | vector bool short vector unsigned short vadduhs
vector signed short vector signed short vector signed short vaddshs
vector signed short vector signed short vector bool short vaddshs
vector signed short vector bool short vector signed short vaddsns
vector unsigned long | vector unsigned long | vector unsigned long vadduws
vector unsigned long | vector unsigned long | vector bool long vadduws
vector unsigned long | vector bool long vector unsigned long vadduws
vector signed long vector signed long vector signed long vaddsws
vector signed long vector signed long vector bool long vaddsws
vector signed long vector bool long vector signed long vaddsws

A.4 vec and(argl, arg2)

Each element of theresult isthelogical AND of the corresponding el ements of argl and ar g2.

MrC[pp] AltiVec Release Notes

2/18/99

20

Copyright Apple Computer, Inc. 1998
All rights reserved.

Result argl arg2 MapsTo
vector unsigned char | vector unsigned char | vector unsigned char vand
vector unsigned char | vector unsigned char | vector bool char vand
vector unsigned char | vector bool char vector unsigned char vand
vector signed char vector signed char vector signed char vand
vector signed char vector signed char vector bool char vand
vector signed char vector bool char vector signed char vand
vector bool char vector bool char vector bool char vand
vector unsigned short | vector unsigned short | vector unsigned short vand
vector unsigned short | vector unsigned short | vector bool short vand
vector unsigned short | vector bool short vector unsigned short vand
vector signed short vector signed short vector signed short vand
vector signed short vector signed short vector bool short vand
vector signed short vector bool short vector signed short vand
vector bool short vector bool short vector bool short vand

vector unsigned long | vector unsigned long | vector unsigned long vand
vector unsigned long | vector unsigned long | vector bool long vand
vector unsigned long | vector bool long vector unsigned long vand
vector signed long vector signed long vector signed long vand
vector signed long vector signed long vector bool long vand
vector signed long vector bool long vector signed long vand
vector bool long vector bool long vector bool long vand
vector float vector bool long vector float vand
vector float vector float vector bool long vand
vector float vector float vector float vand

A.5 vec andc(argl, arg2)

Each element of the result isthelogical AND of the corresponding element of argl and the one's

complement of the corresponding element of arg2.

Result argl arg2 MapsTo
vector unsigned char | vector unsigned char | vector unsigned char vandc
vector unsigned char | vector unsigned char | vector bool char vandc
vector unsigned char | vector bool char vector unsigned char vandc
vector signed char vector signed char vector signed char vandc
vector signed char vector signed char vector bool char vandc
vector signed char vector bool char vector signed char vandc
vector bool char vector bool char vector bool char vandc
vector unsigned short | vector unsigned short | vector unsigned short vandc
vector unsigned short | vector unsigned short | vector bool short vandc
vector unsigned short | vector bool short vector unsigned short vandc
vector signed short vector signed short vector signed short vandc
vector signed short vector signed short vector bool short vandc
vector signed short vector bool short vector signed short vandc
vector bool short vector bool short vector bool short vandc
vector unsigned long | vector unsigned long | vector unsigned long vandc
vector unsigned long | vector unsigned long | vector bool long vandc
vector unsigned long | vector bool long vector unsigned long vandc
vector signed long vector signed long vector signed long vandc
vector signed long vector signed long vector bool long vandc
vector signed long vector bool long vector signed long vandc
vector bool long vector bool long vector bool long vandc
vector float vector bool long vector float vandc
vector float vector float vector bool long vandc
vector float vector float vector float vandc

A.6 vec avg(argl, arg2)

Each element of the result is the average of the corresponding elements of argl and arg2.

MrC[pp] AltiVec Release Notes

2/18/99

21

Copyright Apple Computer, Inc. 1998
All rights reserved.

Result argl arg2 MapsTo
vector unsigned char | vector unsigned char | vector unsigned char vavgub
vector signed char vector signed char vector signed char vavgsb
vector unsigned short | vector unsigned short | vector unsigned short vavguh

vector signed short vector signed short vector signed short vavgsh
vector unsigned long | vector unsigned long | vector unsigned long vavguw
vector signed long vector signed long vector signed long vavgsw

A.7 vec ceil(argl)
Each element of the result is the largest representabl e floating point integer not less than the
corresponding element of argl.

Result
vector float

argl
vector float

MapsTo
vrfip

A.8 vec_cmpb(argl, arg2)

Each element of the result is O if the corresponding element of ar gl is greater than or equal to the
negative of the corresponding element of arg2 and less than or equal to the corresponding
element of arg2. If the corresponding element of arg2 is not negative, each element of the result
will be negative if the corresponding element of argl is greater than the corresponding element
of arg2 and positive if the corresponding element of argl is less than the negative of the
corresponding element of argl.

Result
vector signed long

argl
vector float

arg2
vector float

MapsTo
vempbfp

A.9 vec _cmpeqg(argl, arg?)
Each element of the result is TRUE if the corresponding element of argl is equal to the
corresponding element of arg2. Otherwise, it returns 0.

Result argl arg2 MapsTo
vector bool char vector unsigned char | vector unsigned char vcmpequb
vector bool char vector signed char vector signed char vcmpequb
vector bool short vector unsigned short | vector unsigned short | vempeguh
vector bool short vector signed short vector signed short vempequh
vector bool long vector unsigned long | vector unsigned long | vcmpequw
vector bool long vector signed long vector signed long vcmpegquw
vector bool long vector float vector float vempeqgip

A.10 vec_cmpge(argl, arg2)

Each element of the result is TRUE if the corresponding element of argl is greater than or equal

to the corresponding element of arg2. Otherwise, it returns 0.

Result

argl

arg2

MapsTo

vector bool long

vector float

vector float

vempgerp

MrC[pp] AltiVec Release Notes

22
2/18/99

Copyright Apple Computer, Inc. 1998
All rights reserved.

A.11 vec _cmpgt(argl, arg2)

Each element of the result is TRUE if the corresponding element of argl is greater than the

corresponding element of arg2. Otherwise, it returns 0.

Result argl arg2 MapsTo
vector bool char vector unsigned char | vector unsigned char vempgtub
vector bool char vector signed char vector signed char vempgtsb
vector bool short vector unsigned short | vector unsigned short | vempgtuh
vector bool short vector signed short vector signed short vempgtsh
vector bool long vector unsigned long | vector unsigned long | vempgtuw
vector bool long vector signed long vector signed long vempgtsw
vector bool long vector float vector float vempgtip

A.12 vec ctf(argl, arg?2)

Each element of the result is the closest floating-point representation of the number obtained by
dividing the corresponding element of argl by 2 to the power of arg2.

Result argl arg2 MapsTo
vector float vector unsigned long | 5-bit unsigned literal vcfux
vector float vector signed long 5-bit unsigned literal vcfsx

A.13 vec cts(argl, arg2)

Each element of the result is the saturated signed value obtained after truncating the number
obtained by multiplying the corresponding element of argl by 2 to the power of arg2.

Result
vector signed long

argl
vector float

arg2
5-bit unsigned literal

MapsTo
vcisxs

A.14 vec ctu(argl, arg2)

Each element of the result is the saturated unsigned value obtained after truncating the number
obtained by multiplying the corresponding element of argl by 2 to the power of arg2.

Result
vector unsigned long

argl
vector float

arg2
immed_ub5

MapsTo
vctuxs

A.15 vec dss(argl)
Each operation stops cache touches for the data stream associated with tag ar g1.

Result argl MapsTo
void 2-bit unsigned literal dss
MrC[pp] AltiVec Release Notes 23 Copyright Apple Computer, Inc. 1998
2/18/99 All rights reserved.

A.16 vec dssall(argl)
The operation stops cache touches for all data streams.

Result argl MapsTo
void void dssall

A.17 vec dst(argl, arg2, arg3)

Each operation initiates cache touches for loads for the data stream associated with tag ar g3 at
the address ar gl using the data block in arg2. The argl may aso be a pointer to a const-
qualified type. Plain char * is excluded in the mapping for ar g1.

Result argl arg2 arg3 MapsTo
void | vector unsigned char * int 2-bit unsigned literal dst
void | vector signed char * int 2-bit unsigned literal dst
void | vector bool char * int 2-bit unsigned literal dst
void | vector unsigned short * int 2-bit unsigned litera dst
void | vector signed short * int 2-bit unsigned literal dst
void | vector bool short * int 2-bit unsigned literal dst
void | vector pixel * int 2-bit unsigned literal dst
void | vector unsigned long * int 2-bit unsigned literal dst
void | vector signed long * int 2-bit unsigned literal dst
void | vector bool long * int 2-bit unsigned litera dst
void | vector float * int 2-bit unsigned litera dst
void | unsigned char * int 2-bit unsigned literal dst
void | signed char * int 2-bit unsigned literal dst
void | unsigned short * int 2-bit unsigned literal dst
void | short * int 2-bit unsigned literal dst
void unsigned int * int 2-bit unsigned litera dst
void int * int 2-bit unsigned litera dst
void | unsigned long * int 2-bit unsigned literal dst
void | long* int 2-bit unsigned literal dst
void | float * int 2-bit unsigned literal dst

A.18 vec dstst(argl, arg2, arg3)

Each operation initiates cache touches for stores for the data stream associated with tag ar g3 at
the address ar g1 using the data block in arg2. The argl may also be a pointer to a const-
qualified type.

Result argl arg2 arg3 MapsTo
void | vector unsigned char * int 2-bit unsigned literal dstst
void | vector signed char * int 2-bit unsigned literal dstst
void | vector bool char * int 2-bit unsigned litera dstst
void | vector unsigned short * int 2-bit unsigned literal dstst
void | vector signed short * int 2-bit unsigned literal dstst
void | vector bool short * int 2-bit unsigned literal dstst
void | vector pixel * int 2-bit unsigned literal dstst
void | vector unsigned long * int 2-bit unsigned literal dstst
void | vector signed long * int 2-bit unsigned litera dstst

MrC[pp] AltiVec Release Notes 24 Copyright Apple Computer, Inc. 1998

2/18/99 All rights reserved.

void | vector bool long * int 2-bit unsigned literal dstst
void | vector float * int 2-bit unsigned literal dstst
void | unsigned char * int 2-bit unsigned literal dstst
vold | signed char * int 2-bit unsigned literal dstst
void | unsigned short * int 2-bit unsigned literal dstst
void | short * int 2-bit unsigned literal dstst
void | unsignedint * int 2-bit unsigned literal dstst
void int * int 2-bit unsigned litera dstst
void | unsignedlong * int 2-bit unsigned literal dstst
void | long* int 2-bit unsigned literal dstst
void | float * int 2-bit unsigned literal dstst

A.19 vec dststt(argl, argz, arg3)

Each operation initiates cache touches for transient stores for the data stream associated with tag
arg3 at the address ar gl using the data block in arg2. The argl may aso be apointer to a
const-qualified type. Plain char * isexcluded in the mapping for argl.

Result argl arg2 arg3 MapsTo
void | vector unsigned char * int 2-bit unsigned literal dststt
void | vector signed char * int 2-bit unsigned literal dststt
void | vector bool char * int 2-bit unsigned literal dststt
void | vector unsigned short * int 2-bit unsigned litera dststt
void | vector signed short * int 2-bit unsigned literal dststt
void | vector bool short * int 2-bit unsigned literal dststt
void | vector pixel * int 2-bit unsigned literal dststt
void | vector unsigned long * int 2-bit unsigned literal dststt
void | vector signedlong * int 2-bit unsigned literal dststt
void | vector bool long * int 2-bit unsigned litera dststt
void | vector float * int 2-bit unsigned litera dststt
void | unsigned char * int 2-bit unsigned literal dststt
void | signed char * int 2-bit unsigned literal dststt
void | unsigned short * int 2-bit unsigned literal dststt
void | short * int 2-bit unsigned literal dststt
void unsigned int * int 2-bit unsigned litera dststt
void int * int 2-bit unsigned litera dststt
void | unsigned long * int 2-bit unsigned literal dststt
void | long* int 2-bit unsigned literal dststt
void | float * int 2-bit unsigned literal dststt

A.20 vec dstt(argl, argz, arg3)

Each operation initiates cache touches for transient |oads for the data stream associated with tag
arg3 at the address ar g1 using the data block in arg2. The argl may also be a pointer to a
const-qualified type. Plain char * is excluded in the mapping for argl.

Result argl arg2 arg3 MapsTo
void | vector unsigned char * int 2-bit unsigned literal dstt
void | vector signed char * int 2-bit unsigned literal dstt
void | vector bool char * int 2-bit unsigned litera dstt
MrC[pp] AltiVec Release Notes 25 Copyright Apple Computer, Inc. 1998

2/18/99 All rights reserved.

void | vector unsigned short * int 2-bit unsigned literal dstt
void | vector signed short * int 2-bit unsigned literal dstt
void vector bool short * int 2-bit unsigned litera dstt
void | vector pixel * int 2-bit unsigned literal dstt
void | vector unsigned long * int 2-bit unsigned literal dstt
void | vector signed long * int 2-bit unsigned literal dstt
void | vector bool long * int 2-bit unsigned literal dstt
void | vector float * int 2-bit unsigned litera dstt
void unsigned char * int 2-bit unsigned literal dstt
vold | signed char * int 2-bit unsigned literal dstt
void | unsigned short * int 2-bit unsigned literal dstt
void | short * int 2-bit unsigned literal dstt
void | unsignedint * int 2-bit unsigned literal dstt
void int * int 2-bit unsigned litera dstt
void unsigned long * int 2-bit unsigned literal dstt
void | long* int 2-bit unsigned literal dstt
void | float * int 2-bit unsigned literal dstt

A.21 vec _expte(argl)
Each element of the result is an estimate of 2 raised to the corresponding element of arg1l.

Result argl MapsTo
vector float vector float vexptefp

A.22 vec floor(argl)
Each element of the result is the largest representabl e floating point integer not greater than ar gl.

Result argl MapsTo
vector float vector float vrfim

A.23 vec ld(argl, arg2)

Each operation performs a 16-byte load at a 16-byte aligned address. argl istaken to be an
integer value, while arg2 isapointer. Note that the sum of argl and arg2 is truncated, if
necessary, to give 16-byte alignment; loading unaligned data into a vector register typically
requires a permutation of the results of two loads. Note that thisload is the one which will be
generated for aloading dereference of a pointer to avector type. The arg2 may aso be a pointer
to aconst or volatile qualified type. Plain char * is excluded in the mapping for ar g2.

Note: A pointer to volatile has the effect of making the load volatile. However, pointers to
volatile types are not permitted in aimplementation conforming to the Programming Model as
documented by Motorola. Therefore awarning will be issued if such a pointer is passed.

Result argl arg2 MapsTo
vector unsigned char int vector unsigned char * [vx
vector unsigned char int unsigned char * [vx
vector signed char int vector signed char * Ivx
vector signed char int signed char * [vx
MrC[pp] AltiVec Release Notes 26 Copyright Apple Computer, Inc. 1998

2/18/99 All rights reserved.

vector bool char int vector bool char * [vx
vector unsigned short int vector unsigned short * [vx
vector unsigned short int unsigned short * [vx
vector signed short int vector signed short * [vx
vector signed short int short * [vx
vector bool short int vector bool short * [vx
vector pixel int vector pixel * Ivx
vector unsigned long int vector unsigned long * [vx
vector unsigned long int unsigned int * [vx
vector unsigned long int unsigned long * [vx
vector signed long int vector signed long * [vx
vector signed long int int* [vx
vector signed long int long * Ivx
vector bool long int vector bool long * [vx
vector float int vector float * [vx
vector float int float * [vx

A.24 vec lde(argl, arg2)

Each operation loads a single element into the position in the vector register corresponding to its
address, leaving the remaining elements of the register undefined. argl istaken to be an integer
value, while arg2 isapointer. The arg2 may also be a pointer to a const or volatile qualified
type. Plain char * isexcluded in the mapping for ar g2.

Note: A pointer to volatile has the effect of making the load volatile. However, pointersto
volatile types are not permitted in aimplementation conforming to the Programming Model as
documented by Motorola. Therefore awarning will beissued if such a pointer is passed.

Result argl arg2 MapsTo
vector unsigned char Int unsigned char * [vebx
vector signed char int signed char * [vebx
vector unsigned short int unsigned short * [vehx
vector signed short Int short * [vehx
vector unsigned long Int unsigned int * [vewx
vector unsigned long Int unsigned long * [vewx
vector signed long Int Int * [vewx
vector signed long int long * [vewx
vector float int float * [vewx

A.25 vec ldl(argl, arg?2)

Each operation performs a 16-byte load at a 16-byte aligned address. argl istaken to be an
integer value, while arg2 isapointer. Note that the sum of argl and arg2 is truncated, if
necessary, to give 16-byte alignment; loading unaligned data into a vector register typically
requires a permutation of the results of two loads. These operations mark the cache line as |east-
recently-used. The arg2 may also be a pointer to aconst or volatile qualified type. Plain char *
is excluded in the mapping for ar g2.

Note: A pointer to volatile has the effect of making the load volatile. However, pointers to
volatile types are not permitted in aimplementation conforming to the Programming Model as
documented by Motorola. Therefore awarning will be issued if such a pointer is passed.

MrCl[pp] AltiVec Release Notes 27 Copyright Apple Computer, Inc. 1998
2/18/99 All rights reserved.

Result argl arg2 MapsTo
vector unsigned char int vector unsigned char * [vxI
vector unsigned char int unsigned char * [vxl
vector signed char int vector signed char * IvxI
vector signed char int signed char * lvxI
vector bool char int vector bool char * lvxI
vector unsigned short int vector unsigned short * [vxI
vector unsigned short int unsigned short * [vxI
vector signed short int vector signed short * [vxl
vector signed short int short * [vxl
vector bool short int vector bool short * [vxI
vector pixel int vector pixel * [vxI
vector unsigned long int vector unsigned long * [vxI
vector unsigned long int unsigned int * [vxI
vector unsigned long int unsigned long * [vxl
vector signed long int vector signed long * IvxI
vector signed long int int* [vxI
vector signed long int long * [vxI
vector bool long int vector bool long * [vxI
vector float int vector float * [vxl
vector float int float * [vxl

A.26 vec loge(argl)

Each element of the result is an estimate of the logarithm to base 2 of the corresponding element

of argl.

Result

argl

MapsTo

vector float

vector float

vlogefp

A.27 vec lvd(argl, arg2)

Each operation generates a permutations useful for aligning data from an unaligned address. The
arg2 may also be a pointer to a const or volatile qualified type. Plain char * isexcluded in the

mapping for ar g2.

Result argl arg2 MapsTo
vector unsigned char Int unsigned char * lvsl
vector unsigned char Int signed char * lvsl
vector unsigned char int unsigned short * lvsl
vector unsigned char int short * Ivsl
vector unsigned char Int unsigned int * Ivdl
vector unsigned char Int unsigned long * Ivdl
vector unsigned char Int Int * lvsl
vector unsigned char Int long * lvsl
vector unsigned char int float * Ivsl

MrC[pp] AltiVec Release Notes 28 Copyright Apple Computer, Inc. 1998
2/18/99 All rights reserved.

A.28 vec lvsr(argl, arg2)

Each operation generates a permutations useful for aligning data from an unaligned address. The
arg2 may also be apointer to aconst or volatile qualified type. Plain char * isexcluded in the

mapping for ar g2.

Result argl arg2 MapsTo
vector unsigned char int unsigned char * lvsr
vector unsigned char int signed char * Ivsr
vector unsigned char Int unsigned short * Ivsr
vector unsigned char Int short * [vsr
vector unsigned char Int unsigned int * Ivsr
vector unsigned char Int unsigned long * lvsr
vector unsigned char int int * Ivsr
vector unsigned char int long * Ivsr
vector unsigned char Int float * Ivsr

A.29 vec_madd(argl, arg2, arg3)

Each element of the result is the sum of the corresponding element of ar g3 and the product of the

corresponding elements of argl and ar g2.

Result

argl

arg2

arg3

MapsTo

vector float

vector float

vector float

vector float

vmaddfp

A.30 vec_madds(argl, arg2, arg3)

Each element of the result is the 16-bit saturated sum of the corresponding element of ar g3 and

the high-order 17 bits of the product of the corresponding elements of argl and ar g2.

Result

argl

arg2

arg3

MapsTo

vector signed short

vector signed short

vector signed short

vector signed short

vmhaddshs

A.31 vec_max(argl, arg2)
Each element of the result is the larger of the corresponding elements of argl and arg2.

MrC[pp] AltiVec Release Notes

29

2/18/99

Copyright Apple Computer, Inc. 1998
All rights reserved.

Result argl arg2 MapsTo
vector unsigned char | vector unsigned char | vector unsigned char vmaxub
vector unsigned char | vector unsigned char | vector bool char vmaxub
vector unsigned char | vector bool char vector unsigned char vmaxub
vector signed char vector signed char vector signed char vmaxsb
vector signed char vector signed char vector bool char vmaxsb
vector signed char vector bool char vector signed char vmaxsh
vector unsigned short | vector unsigned short | vector unsigned short vmaxuh
vector unsigned short | vector unsigned short | vector bool short vmaxuh
vector unsigned short | vector bool short vector unsigned short vmaxuh
vector signed short vector signed short vector signed short vmaxsh
vector signed short vector signed short vector bool short vmaxsh
vector signed short vector bool short vector signed short vmaxsh
vector unsigned long | vector unsigned long | vector unsigned long vmaxuw

vector unsigned long | vector unsigned long | vector bool long vmaxuw
vector unsigned long | vector bool long vector unsigned long vmaxuw
vector signed long vector signed long vector signed long VMmaxsw
vector signed long vector signed long vector bool long VMaxsw
vector signed long vector bool long vector signed long VMaxsw
vector float vector float vector float vmaxfp

A.32 vec_mergeh(argl, arg2)

The even elements of the result are obtained |eft-to-right from the high elements of argl. The

odd elements of the result are obtained |eft-to-right from the high elements of arg2.

Result argl arg2 MapsTo
vector unsigned char | vector unsigned char | vector unsigned char vmrghb
vector signed char vector signed char vector signed char vmrghb
vector bool char vector bool char vector bool char vmrghb
vector unsigned short | vector unsigned short | vector unsigned short vmrghh
vector signed short vector signed short vector signed short vmrghh
vector bool short vector bool short vector bool short vmrghh
vector pixel vector pixel vector pixel vmrghh
vector unsigned long | vector unsigned long | vector unsigned long vmrghw
vector signed long vector signed long vector signed long vmrghw
vector bool long vector bool long vector bool long vmrghw
vector float vector float vector float vmrghw

A.33 vec_mergel(argl, arg2)

The even elements of the result are obtained |eft-to-right from the low elements of argl. The

odd elements of the result are obtained |eft-to-right from the low elements of ar g2.

Result argl arg2 MapsTo
vector unsigned char | vector unsigned char | vector unsigned char vmrglb
vector signed char vector signed char vector signed char vmrglb
vector bool char vector bool char vector bool char vmrglb
vector unsigned short | vector unsigned short | vector unsigned short vmrglh
vector signed short vector signed short vector signed short vmrglh
vector bool short vector bool short vector bool short vmrglh
vector pixel vector pixel vector pixel vmrglh
vector unsigned long | vector unsigned long | vector unsigned long vmrglw
vector signed long vector signed long vector signed long vmrglw
vector bool long vector bool long vector bool long vmrglw
vector float vector float vector float vmrglw

A.34 vec_mfvscr(void)

Thefirst six elements of the result are 0. The seventh element of the result contains the high-
order 16 bits of the VSCR (including NJ). The eighth element of the result contains the low-

order 16 bits of the VSCR (including SAT).

MrC[pp] AltiVec Release Notes

2/18/99

Copyright Apple Computer, Inc. 1998
All rights reserved.

Result MapsTo
vector unsigned short mfvscr

A.35 vec_min(argl, arg2)
Each element of the result is the smaller of the corresponding elements of argl and ar g2.

Result argl arg2 MapsTo
vector unsigned char | vector unsigned char | vector unsigned char vminub
vector unsigned char | vector unsigned char | vector bool char vminub
vector unsigned char | vector bool char vector unsigned char vminub
vector signed char vector signed char vector signed char vminsb
vector signed char vector signed char vector bool char vminsb
vector signed char vector bool char vector signed char vminsb
vector unsigned short | vector unsigned short | vector unsigned short vminuh
vector unsigned short | vector unsigned short | vector bool short vminuh
vector unsigned short | vector bool short vector unsigned short vminuh
vector signed short vector signed short vector signed short vminsh
vector signed short vector signed short vector bool short vminsh
vector signed short vector bool short vector signed short vminsh
vector unsigned long | vector unsigned long | vector unsigned long vminuw
vector unsigned long | vector unsigned long | vector bool long vminuw
vector unsigned long | vector bool long vector unsigned long VMinuw
vector signed long vector signed long vector signed long VMINSw
vector signed long vector signed long vector bool long vMminsw
vector signed long vector bool long vector signed long vMinsw
vector float vector float vector float vminfp

A.36 vec_mladd(argl, arg2, arg3)

Each element of the result is the low-order 16 bits of the sum of the corresponding element of
ar g3 and the product of the corresponding elements of argl and ar g2.

Result argl arg2 arg3 MapsTo
vector unsigned short | vector unsigned short | vector unsigned short | vector unsigned short vmladduhm
vector signed short vector unsigned short | vector signed short vector signed short vmladduhm
vector signed short vector signed short vector unsigned short | vector unsigned short vmladduhm
vector signed short vector signed short vector signed short vector signed short vmladduhm

A.37 vec_mradds(argl, argz2, arg3)

Each element of the result is the 16-bit saturated sum of the corresponding element of ar g3 and
the high-order 17 bits of the rounded product of the corresponding elements of argl and ar g2.
Note that arg2 is unsigned, while argl is signed for the variant which maps to vmsumbm.

Result argl arg2 arg3 MapsTo
vector signed short vector signed short vector signed short vector signed short vmhraddshs

MrC[pp] AltiVec Release Notes 31 Copyright Apple Computer, Inc. 1998
2/18/99 All rights reserved.

A.38 vec_msum(argl, argz, arg3)

Each element of the result is the sum of the corresponding element of ar g3 and the products of
the elements of argl and ar g2 which overlap the positions of that element of arg3. Thesumis
performed with 32-bit modular addition.

Result argl arg2 arg3 MapsTo
vector unsigned long | vector unsigned char vector unsigned char | vector unsigned long vmsumubm
vector unsigned long | vector unsigned short | vector unsigned short | vector unsigned long vmsumuhm
vector signed long vector signed char vector unsigned char | vector signed long vmsummbm
vector signed long vector signed short vector signed short vector signed long vmsumshm

A.39 vec_msums(argl, arg2, arg3)
Each element of the result is the sum of the corresponding element of ar g3 and the products of

the elements of argl and ar g2 which overlap the positions of that element of arg3. Thesumis
performed with 32-bit saturating addition.

Result argl arg2 arg3 MapsTo
vector unsigned long | vector unsigned short | vector unsigned short | vector unsigned long vmsumuhs
vector signed long vector signed short vector signed short vector signed long vmsumshs

A.40 vec_mtvscr(argl)

The VSCR is set by the elements in ar gl which occupy the last 32 bits.

Result argl MapsTo
void vector unsigned char mtvscr
void vector signed char mtvscr
void vector bool char mtvscr
void vector unsigned short mtvscr
void vector signed short mtvscr
void vector bool short mtvscr
void vector pixel mtvscr
void vector unsigned long mtvscr
void vector signed long mtvscr
void vector bool long mtvscr

A.41 vec_mule(argl, arg?2)
Each element of the result is the product of the corresponding high half-width elements of argl

and arg2.

Result argl arg2 MapsTo
vector unsigned short | vector unsigned char | vector unsigned char vmuleub
vector signed short vector signed char vector signed char vmulesb
vector unsigned long | vector unsigned short | vector unsigned short vmuleuh
vector signed long vector signed short vector signed short vmulesh

MrC[pp] AltiVec Release Notes

2/18/99

32

Copyright Apple Computer, Inc. 1998
All rights reserved.

A.42 vec_mulo(argl, arg2)

Each element of the result is the product of the corresponding low half-width elements of argl

and arg2.

Result argl arg2 MapsTo
vector unsigned short | vector unsigned char | vector unsigned char vmuloub
vector signed short vector signed char vector signed char vmulosb
vector unsigned long | vector unsigned short | vector unsigned short vmulouh
vector signed long vector signed short vector signed short vmulosh

A.43 vec nmsub(argl, arg2, arg3)

Each element of the result is the negative of the difference of the corresponding element of ar g3

and the product of the corresponding elements of argl and arg2.

Result

argl arg2

arg3

MapsTo

vector float

vector float

vector float

vector float

vnmsubfp

A.44 vec nor(argl, arg2)

Each element of the result is the logical NOR of the corresponding elements of argl and ar g2.

Result argl arg2 MapsTo
vector unsigned char | vector unsigned char | vector unsigned char vnor
vector signed char vector signed char vector signed char vnor
vector bool char vector bool char vector bool char vnor
vector unsigned short | vector unsigned short | vector unsigned short vnor
vector signed short vector signed short vector signed short vnor
vector bool short vector bool short vector bool short vnor
vector unsigned long | vector unsigned long | vector unsigned long vnor
vector signed long vector signed long vector signed long vnor
vector bool long vector bool long vector bool long vnor
vector float vector float vector float vnor

A.45 vec or(argl, arg2)

Each element of the result is the logical OR of the corresponding elements of argl and ar g2.

MrC[pp] AltiVec Release Notes

33
2/18/99

Copyright Apple Computer, Inc. 1998
All rights reserved.

Result argl arg2 MapsTo
vector unsigned char | vector unsigned char | vector unsigned char vVor
vector unsigned char | vector unsigned char | vector bool char vor
vector unsigned char | vector bool char vector unsigned char vor
vector signed char vector signed char vector signed char vor
vector signed char vector signed char vector bool char vor
vector signed char vector bool char vector signed char vor
vector bool char vector bool char vector bool char vor
vector unsigned short | vector unsigned short | vector unsigned short vor
vector unsigned short | vector unsigned short | vector bool short vor
vector unsigned short | vector bool short vector unsigned short vor
vector signed short vector signed short vector signed short vor

vector signed short vector signed short vector bool short vor
vector signed short vector bool short vector signed short vor
vector bool short vector bool short vector bool short vVor
vector unsigned long | vector unsigned long | vector unsigned long vor
vector unsigned long | vector unsigned long | vector bool long Vor
vector unsigned long | vector bool long vector unsigned long vor
vector signed long vector signed long vector signed long vor
vector signed long vector signed long vector bool long vor
vector signed long vector bool long vector signed long vor
vector bool long vector bool long vector bool long vVor
vector float vector bool long vector float Vor
vector float vector float vector bool long vor
vector float vector float vector float vor

A.46 vec pack(argl, arg2)

Each high element of the result is the truncation of the corresponding wider element of argl.
Each low element of the result is the truncation of the corresponding wider element of ar g2.

Result argl arg2 MapsTo
vector unsigned char | vector unsigned short | vector unsigned short | vpkuhum
vector signed char vector signed short vector signed short vpkuhum
vector bool char vector bool short vector bool short vpkuhum
vector unsigned short | vector unsigned long | vector unsigned long | vpkuwum
vector signed short vector signed long vector signed long vpkuwum
vector bool short vector bool long vector bool long vpkuwum

A.47 vec packpx(argl, arg2)

Each high element of the result is the packed pixel from the corresponding wider element of
argl. Eachlow element of the result is the packed pixel from the corresponding wider element

of arg2.

Result

argl

arg2

MapsTo

vector pixel

vector unsigned long

vector unsigned long

VpKpX

A.48 vec packs(argl, arg2)

Each high element of the result is the saturated value of the corresponding wider element of
argl. Eachlow element of the result is the saturated value of the corresponding wider element

of arg2.

Result argl arg2 MapsTo
vector unsigned char | vector unsigned short | vector unsigned short vpkuhus
vector signed char vector signed short vector signed short vpkshss
vector unsigned short | vector unsigned long | vector unsigned long vpkuwus
vector signed short vector signed long vector signed long vpkswss

MrC[pp] AltiVec Release Notes

34
2/18/99

Copyright Apple Computer, Inc. 1998
All rights reserved.

A.49 vec packsu(argl, arg2)

Each high element of the result is the saturated value of the corresponding wider element of
argl. Eachlow element of the result isthe saturated value of the corresponding wider element
of arg2. Theresult elementsare all unsigned. Note, it is necessary to use the generic name for
the two variants with specific operationsvec_vpkuhus and vec_vpkuwus since these are used for
two variants of thevec_packs generic operation.

Result argl arg2 MapsTo Note
vector unsigned char | vector unsigned short | vector unsigned short vpkuhus N
vector unsigned char | vector signed short vector signed short vpkshus
vector unsigned short | vector unsigned long | vector unsigned long vpkuwus N
vector unsigned short | vector signed long vector signed long vpkswus

A.50 vec perm(argl, argz, arg3)
Each element of the result is selected independently by indexing the catenated bytes of argl and
ar g2 by the corresponding element of arg3.

Result argl arg2 arg3 MapsTo
vector unsigned char | vector unsigned char vector unsigned char vector unsigned char vperm
vector signed char vector signed char vector signed char vector unsigned char vperm
vector bool char vector bool char vector bool char vector unsigned char vperm
vector unsigned short | vector unsigned short | vector unsigned short | vector unsigned char vperm
vector signed short vector signed short vector signed short vector unsigned char vperm
vector bool short vector bool short vector bool short vector unsigned char vperm
vector pixel vector pixel vector pixel vector unsigned char vperm
vector unsigned long | vector unsignhed long vector unsigned long vector unsigned char vperm
vector signed long vector signed long vector signed long vector unsigned char vperm
vector bool long vector bool long vector bool long vector unsigned char vperm
vector float vector float vector float vector unsigned char vperm

A.51 vec re(argl)
Each element of the result is an estimate of the reciprocal the corresponding element of argl.

Result argl MapsTo
vector float vector float vrefp

A.52 vec rl(argl, arg2)

Each element of the result is the result of rotating left the corresponding element of argl by the
number of bitsin the corresponding element of arg2.

Result argl arg2 MapsTo
vector unsigned char | vector unsigned char | vector unsigned char vrib
vector signed char vector signed char vector unsigned char vrlb
vector unsigned short | vector unsigned short | vector unsigned short vrlh
vector signed short vector signed short vector unsigned short vrih
vector unsigned long | vector unsigned long | vector unsigned long vrlw
vector signed long vector signed long vector unsigned long vrlw
MrC[pp] AltiVec Release Notes 35 Copyright Apple Computer, Inc. 1998

2/18/99 All rights reserved.

A.53 vec round(argl)

Each element of the result is the nearest representable floating point integer to argl, using IEEE
round-to-nearest rounding.

Result

argl

MapsTo

vector float

vector float

vrfin

A.54 vec rsgrte(argl)
Each element of the result is an estimate of the reciprocal square root of the corresponding

element of argl.

Result

argl

MapsTo

vector float

vector float

vrsgrtefp

A.55 vec sel(argl, arg2, arg3)
Each bit of the result is the corresponding bit of argl if the corresponding bit of arg3isO0.
Otherwisg, it is the corresponding bit of arg2.

Result argl arg2 arg3 MapsTo
vector unsigned char | vector unsigned char vector unsigned char | vector unsigned char vsel
vector unsigned char | vector unsigned char vector unsigned char | vector bool char vsel
vector signed char vector signed char vector signed char vector unsigned char vsel
vector signed char vector signed char vector signed char vector bool char vsel
vector bool char vector bool char vector bool char vector unsigned char vsel
vector bool char vector bool char vector bool char vector bool char vsel
vector unsigned short | vector unsigned short | vector unsigned short | vector unsigned short vsel
vector unsigned short | vector unsigned short | vector unsigned short | vector bool short vsel
vector signed short vector signed short vector signed short vector unsigned short vsel
vector signed short vector signed short vector signed short vector bool short vsel
vector bool short vector bool short vector bool short vector unsigned short vsel
vector bool short vector bool short vector bool short vector bool short vsel
vector unsigned long | vector unsigned long vector unsigned long | vector unsigned long vsel
vector unsigned long | vector unsigned long vector unsigned long | vector bool long vsel
vector signed long vector signed long vector signed long vector unsigned long vsel
vector signed long vector signed long vector signed long vector bool long vsel
vector bool long vector bool long vector bool long vector unsigned long vsel
vector bool long vector bool long vector bool long vector bool long vsel
vector float vector float vector float vector unsigned long vsel
vector float vector float vector float vector bool long vsel

A.56 vec dl(argl, arg2)
Each element of the result is the result of shifting the corresponding element of argl left by the
number of bits of the corresponding element of ar g2.

MrC[pp] AltiVec Release Notes

2/18/99

36

Result argl arg2 MapsTo
vector unsigned char | vector unsigned char | vector unsigned char vslb
vector signed char vector signed char vector unsigned char vslb
vector unsigned short | vector unsigned short | vector unsigned short vah

Copyright Apple Computer, Inc. 1998

All rights reserved.

vector signed short

vector signed short

vector unsigned short

vah

vector unsigned long

vector unsigned long

vector unsigned long

vslw

vector signed long

vector signed long

vector unsigned long

vslw

A.57 vec_dld(argl, argz2, arg3)

The result is obtained by selecting the top 16 bytes obtained by shifting left (unsigned) by the
value of ar g3 bytes a 32-byte quantity formed by catenating ar g1 with ar g2.

Result argl arg2 arg3 MapsTo
vector unsigned char | vector unsigned char vector unsigned char 4-bit unsigned literal vsldoi
vector signed char vector signed char vector signed char 4-bit unsigned literal vsldoi
vector unsigned short | vector unsigned short | vector unsigned short | 4-hit unsigned literal vsldoi
vector signed short vector signed short vector signed short 4-bit unsigned literal vsldoi
vector pixel vector pixel vector pixel 4-bit unsigned literal vsldoi
vector unsigned long | vector unsighed long vector unsigned long 4-bit unsigned literal vsldoi
vector signed long vector signed long vector signed long 4-bit unsigned literal vsldoi
vector float vector float vector float 4-bit unsigned literal vsldoi

A.58 vec dll(argl, arg2)
The result is obtained by shifting ar gl left by a number of bits specified by the last 3 bits of the

last element of arg2.

MrC[pp] AltiVec Release Notes

2/18/99

37

Result argl arg2 MapsTo
vector unsigned char | vector unsigned char | vector unsigned char vsl
vector unsigned char | vector unsigned char | vector unsigned short vsl
vector unsigned char | vector unsigned char | vector unsigned long vsl
vector signed char vector signed char vector unsigned char vsl
vector signed char vector signed char vector unsigned short vsl
vector signed char vector signed char vector unsigned long vsl
vector bool char vector bool char vector unsigned char vsl
vector bool char vector bool char vector unsigned short vsl
vector bool char vector bool char vector unsigned long vsl
vector unsigned short | vector unsigned short | vector unsigned char vsl
vector unsigned short | vector unsigned short | vector unsigned short vsl
vector unsigned short | vector unsigned short | vector unsigned long vsl
vector signed short vector signed short vector unsigned char vsl
vector signed short vector signed short vector unsigned short vsl
vector signed short vector signed short vector unsigned long vsl
vector bool short vector bool short vector unsigned char vsl
vector bool short vector bool short vector unsigned short vsl
vector bool short vector bool short vector unsigned long vsl
vector pixel vector pixel vector unsigned char vsl
vector pixel vector pixel vector unsigned short vsl
vector pixel vector pixel vector unsigned long vsl
vector unsigned long | vector unsigned long | vector unsigned char vsl
vector unsigned long | vector unsigned long | vector unsigned short vsl
vector unsigned long | vector unsigned long | vector unsigned long vsl
vector signed long vector signed long vector unsigned char vs

Copyright Apple Computer, Inc. 1998

All rights reserved.

vector signed long vector signed long vector unsigned short vsl
vector signed long vector signed long vector unsigned long vsl
vector bool long vector bool long vector unsigned char vsl
vector bool long vector bool long vector unsigned short vsl
vector bool long vector bool long vector unsigned long vsl

A.59 vec do(argl, arg2)

The result is obtained by shifting ar gl left by a number of bytes specified by shifting the value

of the last element of arg2 by 3 bits.

Result argl arg2 MapsTo
vector unsigned char | vector unsigned char | vector unsigned char vslo
vector unsigned char | vector unsigned char | vector signed char vslo
vector signed char vector signed char vector unsigned char vso
vector signed char vector signed char vector signed char vslo
vector unsigned short | vector unsigned short | vector unsigned char vslo
vector unsigned short | vector unsigned short | vector signed char vslo
vector signed short vector signed short vector unsigned char vslo
vector signed short vector signed short vector signed char vslo
vector pixel vector pixel vector unsigned char vso
vector pixel vector pixel vector signed char vslo
vector unsigned long | vector unsigned long | vector unsigned char vslo
vector unsigned long | vector unsigned long | vector signed char vslo
vector signed long vector signed long vector unsigned char vslo
vector signed long vector signed long vector signed char vslo
vector float vector float vector unsigned char vso
vector float vector float vector signed char vslo

A.60 vec_splat(argl, arg2)
Each element of the result is component ar g2 of argl.

Result argl arg2 MapsTo
vector unsigned char | vector unsigned char | 5-bit unsigned literal vsplth
vector signed char vector signed char 5-bit unsigned literal vspltb
vector bool char vector bool char 5-bit unsigned literal vspltb
vector unsigned short | vector unsigned short | 5-bit unsigned litera vsplth
vector signed short vector signed short 5-bit unsigned literal vsplth
vector bool short vector bool short 5-hit unsigned literal vsplth
vector pixel vector pixel 5-bit unsigned literal vsplth
vector unsigned long | vector unsigned long | 5-bit unsigned literal vspltw
vector signed long vector signed long 5-bit unsigned literal vspltw
vector bool long vector bool long 5-bit unsigned literal vspltw
vector float vector float 5-bit unsigned literal vspltw

A.61 vec splat_s8(argl)

Each element of the result is the value obtained by sign-extending argl. Note that this permits

values ranging from -16 to +15 only.

MrC[pp] AltiVec Release Notes

2/18/99

38

Copyright Apple Computer, Inc. 1998
All rights reserved.

Result argl MapsTo
vector signed char 5-bit signed literal vspltisb

A.62 vec_splat_sl6(argl)

Each element of the result is the value obtained by sign-extending argl. Note that this permits
values ranging from -16 to +15 only.

Result argl MapsTo
vector signed short 5-bit signed literal vspltish

A.63 vec splat_s32(argl)

Each element of the result is the value obtained by sign-extending argl. Note that this permits
values ranging from -16 to +15 only.

Result argl MapsTo
vector signed long 5-bit signed literal vspltisw

A.64 vec_splat_u8(argl)

Each element of the result is the value obtained by sign-extending ar gl and casting it to an
unsigned char value. Note that this permits values ranging from -16 to +15 with the negative
valuesinterpreted as lying interval from 240 to 255 since the result is a vector unsigned char.
Values 240 to 255 are al'so permitted for argl and equivalent to -16 to -1 respectively. Also
note, it is necessary to use the generic name since the specific operation vec_vspl ti sb isused
for thevec_spl at _s8 generic operation.

Result argl MapsTo Note
vector unsigned char 5-bit signed literal vspltisb N

A.65 vec _splat_ul6(argl)

Each element of the result is the value obtained by sign-extending argl. Note that this permits
values ranging from -16 to +15 with the negative values interpreted as lying interval from 65520
to 65535 since the result is a vector unsigned short. Values 65520 to 65535 are also permitted
for argl and equivalent to -16 to -1 respectively. Also note, it is necessary to use the generic
name since the specific operation vec_vspl ti sh isused for thevec_spl at _s16 generic
operation.

Result argl MapsTo Note
vector unsigned short | 5-bit signed literal vspltish N

A.66 vec splat_u32(argl)

Each element of the result is the value obtained by sign-extending argl. Note that this permits
values ranging from -16 to +15 with the negative values interpreted as lying interval from
4294967280 to 4294967295 since the result is a vector unsigned long. Values 4294967280 to
4294967295 are also permitted for argl and equivalent to -16 to -1 respectively. Also note, itis
necessary to use the generic name since the specific operation vec_vspl ti swis used for the

MrC[pp] AltiVec Release Notes 39 Copyright Apple Computer, Inc. 1998
2/18/99 All rights reserved.

vec_spl at _s32 generic operation.

Result

argl

MapsTo Note

vector unsigned long

5-bit signed literal

vspltisw N

A.67 vec sr(argl, arg2)
Each element of the result is the result of shifting the corresponding element of argl right by the
number of bits of the corresponding element of arg2. Zero bits are shifted in from the left for

both signed and unsigned argument types.

Result argl arg2 MapsTo
vector unsigned char | vector unsigned char | vector unsigned char vsrb
vector signed char vector signed char vector unsigned char vsrb
vector unsigned short | vector unsigned short | vector unsigned short vsrh
vector signed short vector signed short vector unsigned short vsrh
vector unsigned long | vector unsigned long | vector unsigned long VSIw
vector signed long vector signed long vector unsigned long VSIw

A.68 vec sra(argl, arg?)

Each element of the result is the result of shifting the corresponding element of argl right by the
number of bits of the corresponding element of arg2. Copies of the sign bit are shifted in from

the left for both signed and unsigned argument types.

Result argl arg2 MapsTo
vector unsigned char | vector unsigned char | vector unsigned char vsrab
vector signed char vector signed char vector unsigned char vsrab
vector unsigned short | vector unsigned short | vector unsigned short vsrah
vector signed short vector signed short vector unsigned short vsrah
vector unsigned long | vector unsigned long | vector unsigned long vsraw
vector signed long vector signed long vector unsigned long vsraw

A.69 vec sri(argl, arg?2)

The result is obtained by shifting ar g1 right by a number of bits specified by the last 3 bits of the

last element of arg2.

MrC[pp] AltiVec Release Notes

40
2/18/99

Copyright Apple Computer, Inc. 1998
All rights reserved.

Result argl arg2 MapsTo
vector unsigned char | vector unsigned char | vector unsigned char Vst
vector unsigned char | vector unsigned char | vector unsigned short Vs
vector unsigned char | vector unsigned char | vector unsigned long Vs
vector signed char vector signed char vector unsigned char Vs
vector signed char vector signed char vector unsigned short Vst
vector signed char vector signed char vector unsigned long Vs
vector bool char vector bool char vector unsigned char Vst
vector bool char vector bool char vector unsigned short Vs
vector bool char vector bool char vector unsigned long Vs
vector unsigned short | vector unsigned short | vector unsigned char Vst
vector unsigned short | vector unsigned short | vector unsigned short vsr

vector unsigned short | vector unsigned short | vector unsigned long Vst
vector signed short vector signed short vector unsigned char Vs
vector signed short vector signed short vector unsigned short Vs
vector signed short vector signed short vector unsigned long Vs
vector bool short vector bool short vector unsigned char Vs
vector bool short vector bool short vector unsigned short Vst
vector bool short vector bool short vector unsigned long Vst
vector pixel vector pixel vector unsigned char Vs
vector pixel vector pixel vector unsigned short Vs
vector pixel vector pixel vector unsigned long Vs
vector unsigned long | vector unsigned long | vector unsigned char Vst
vector unsigned long | vector unsigned long | vector unsigned short Vst
vector unsigned long | vector unsigned long | vector unsigned long Vst
vector signed long vector signed long vector unsigned char Vs
vector signed long vector signed long vector unsigned short Vs
vector signed long vector signed long vector unsigned long Vs
vector bool long vector bool long vector unsigned char Vst
vector bool long vector bool long vector unsigned short Vst
vector bool long vector bool long vector unsigned long Vst

A.70 vec sro(argl, arg2)
The result is obtained by shifting (unsigned) ar gl right by a number of bytes specified by
shifting the value of the last element of arg2 by 3 hits.

Result argl arg2 MapsTo
vector unsigned char | vector unsigned char | vector unsigned char VSIo
vector unsigned char | vector unsigned char | vector signed char VSIo
vector signed char vector signed char vector unsigned char VSIo
vector signed char vector signed char vector signed char VSIo
vector unsigned short | vector unsigned short | vector unsigned char VSIo
vector unsigned short | vector unsigned short | vector signed char VSIo
vector signed short vector signed short vector unsigned char VSIo
vector signed short vector signed short vector signed char VSIo
vector pixel vector pixel vector unsigned char VSIo
vector pixel vector pixel vector signed char VSO
vector unsigned long | vector unsigned long | vector unsigned char VSIo
vector unsigned long | vector unsigned long | vector signed char VSIo
vector signed long vector signed long vector unsigned char VSIo
vector signed long vector signed long vector signed char VSIo
vector float vector float vector unsigned char VSIo
vector float vector float vector signed char VSIo

MrC[pp] AltiVec Release Notes

4
2/18/99

Copyright Apple Computer, Inc. 1998
All rights reserved.

A.71 vec st(argl, arg2, arg3)

The 16-byte value of argl is stored at a 16-byte aligned address formed by truncating the last
four bits of the sum of arg2 and arg3. arg2istaken to be aninteger value, whilearg3isa
pointer. Note that thisisnot, by itself, an acceptable way to store aligned data to unaligned
addresses. Note that this store is the one which will be generated for a storing dereference of a
pointer to avector type. The arg3 may also be a pointer to avolatile-qualified type. Plain char *
is excluded in the mapping for arg3.

Note: A pointer to volatile has the effect of making the store volatile. However, pointersto
volatile types are not permitted in aimplementation conforming to the Programming Model as
documented by Motorola. Therefore awarning will be issued if such a pointer is passed.

Result argl arg2 arg3 MapsTo
void | vector unsigned char int | vector unsigned char * stvx
void | vector unsigned char int unsigned char * stvx
void | vector signed char int | vector signed char * stvx
void | vector signed char int signed char * stvx
void | vector bool char int | vector bool char * stvx
void | vector bool char int | unsigned char * stvx
void | vector bool char int | signed char * stvx
void | vector unsigned short int | vector unsigned short * stvx
void | vector unsigned short int unsigned short * stvx
void | vector signed short int vector signed short * stvx
void | vector signed short int | short* stvx
void | vector bool short int | vector bool short * stvx
void | vector bool short int unsigned short * stvx
void | vector bool short int | short* Stvx
void | vector pixel int | vector pixel * stvx
void | vector pixel int unsigned short * stvx
void | vector pixel int short * stvx
void | vector unsigned long int | vector unsigned long * stvx
void | vector unsigned long int unsigned int * stvx
void | vector unsigned long int unsigned long * stvx
void | vector signed long int | vector signed long * stvx
void | vector signed long int int* stvx
void | vector signed long int long * stvx
void | vector bool long int | vector bool long * stvx
void | vector bool long int | unsignedint* stvx
void | vector bool long int unsigned long * stvx
void | vector bool long int int* stvx
void | vector bool long int long * stvx
void | vector float int vector float * stvx
void | vector float int | float* Stvx

A.72 vec_ste(argl, arg2, arg3)

A single element of argl is stored at the address formed by truncating the last O (char), 1 (short)
or 2 (int, float) bits of the sum of arg2 and arg3. The element stored is the one whose position in
the register matches the position of the adjusted address relative to 16-byte alignment. Note that
if you don't know the alignment of the sum of arg2 and ar g3, you won't know which element is

MrC[pp] AltiVec Release Notes 42 Copyright Apple Computer, Inc. 1998
2/18/99 All rights reserved.

stored. The arg3 may also be a pointer to avolatile-qualified type. Plain char * isexcluded in
the mapping for arg3.

Note: A pointer to volatile has the effect of making the store volatile. However, pointersto
volatile types are not permitted in aimplementation conforming to the Programming Model as
documented by Motorola. Therefore awarning will be issued if such a pointer is passed.

Result argl arg2 arg3 MapsTo
void | vector unsigned char int unsigned char * stvebx
void | vector signed char int | signed char * stvebx
void | vector bool char int | unsigned char * stvebx
void | vector bool char int | signed char * stvebx
void | vector unsigned short int unsigned short * stvehx
void | vector signed short int short * stvehx
void | vector bool short int unsigned short * stvehx
void | vector bool short int | short* stvehx
void | vector pixel int | unsigned short * stvehx
void | vector pixel int | short* stvehx
void | vector unsigned long int unsigned int * stvewx
void | vector unsigned long int unsigned long * stvewx
void | vector signed long int int* stvewx
void | vector signed long int long * stvewx
void | vector bool long int | unsignedint* stvewx
void | vector bool long int unsigned long * stvewx
void | vector bool long int int* stvewx
void | vector bool long int long * stvewx
void | vector float int float * stvewx

A.73 vec_stl(argl, arg2, arg3)

The 16-byte value of argl is stored at a 16-byte aligned address formed by truncating the last
four bits of the sum of arg2 and arg3. arg2 istaken to be an integer value, whilearg3isa
pointer. Note that thisis not, by itself, an acceptable way to store aligned data to unaligned
addresses. The cache line stored into is marked LRU. The arg3 may also be a pointer to a
volatile-qualified type. Plain char * isexcluded in the mapping for arg3.

Note: A pointer to volatile has the effect of making the store volatile. However, pointersto
volatile types are not permitted in aimplementation conforming to the Programming Model as
documented by Motorola. Therefore awarning will be issued if such a pointer is passed.

Result argl arg2 arg3 MapsTo
void | vector unsigned char int vector unsigned char * stvxl
void | vector unsigned char int unsigned char * stvxl
void | vector signed char int | vector signed char * stvxl
void | vector signed char int | signed char * stvxl
void | vector bool char int | vector bool char * stvxl
void | vector bool char int unsigned char * stvxl
void | vector bool char int signed char * stvxl
void | vector unsigned short int vector unsigned short * stvxl
void | vector unsigned short int | unsigned short * stvxl
void | vector signed short int | vector signed short * stvxl

MrC[pp] AltiVec Release Notes 43 Copyright Apple Computer, Inc. 1998

2/18/99 All rights reserved.

void | vector signed short int short * stvxl
void | vector bool short int vector bool short * stvx|
void | vector bool short int unsigned short * stvxl
void | vector bool short int | short* stvxl
void | vector pixel int | vector pixel * stvxl
void | vector pixel int unsigned short * stvxl
void | vector pixel int short * stvxl
void | vector unsigned long int vector unsigned long * stvxl
void | vector unsigned long int unsigned int * stvxl
void | vector unsigned long int | unsigned long * stvxl
void | vector signed long int | vector signed long * stvxl
void | vector signed long int int* stvxl
void | vector signed long int long * stvxl
void | vector bool long int vector bool long * stvxl
void | vector bool long int unsigned int * stvxl
void | vector bool long int | unsigned long * stvxl
void | vector bool long int int* stvxl
void | vector bool long int long * stvxl
void | vector float int | vector float * stvxl
void | vector float int float * stvxl

A.74 vec sub(argl, arg2)

Each element of the result is the difference between the corresponding elements of argl and
arg2. Thearithmetic is modular for integer types.

Result argl arg2 MapsTo
vector unsigned char | vector unsigned char | vector unsigned char vsububm
vector unsigned char | vector unsigned char | vector bool char vsububm
vector unsigned char | vector bool char vector unsigned char vsububm
vector signed char vector signed char vector signed char vsububm
vector signed char vector signed char vector bool char vsububm
vector signed char vector bool char vector signed char vsububm
vector unsigned short | vector unsigned short | vector unsigned short | vsubuhm
vector unsigned short | vector unsigned short | vector bool short vsubuhm
vector unsigned short | vector bool short vector unsigned short | vsubuhm
vector signed short vector signed short vector signed short vsubuhm
vector signed short vector signed short vector bool short vsubuhm
vector signed short vector bool short vector signed short vsubuhm
vector unsigned long | vector unsigned long | vector unsigned long vsubuwm
vector unsigned long | vector unsigned long | vector bool long vsubuwm
vector unsigned long | vector bool long vector unsigned long vsubuwm
vector signed long vector signed long vector signed long vsubuwm
vector signed long vector signed long vector bool long vsubuwm
vector signed long vector bool long vector signed long vsubuwm
vector float vector float vector float vsubfp

MrC[pp] AltiVec Release Notes 44 Copyright Apple Computer, Inc. 1998
2/18/99 All rights reserved.

A.75 vec subc(argl, arg2)

Each element of the result is the value of the carry generated by subtracting the corresponding
elements of argl and arg2. ThevaueisO if aborrow occurred and 1 if no borrow occurred.

Result

argl

arg2

MapsTo

vector unsigned long

vector unsigned long

vector unsigned long

vsubcuw

A.76 vec subs(argl, arg2)

Each element of the result is the saturated difference between the corresponding elements of

argl and arg2.

Result argl arg2 MapsTo
vector unsigned char | vector unsigned char | vector unsigned char vsububs
vector unsigned char | vector unsigned char | vector bool char vsububs
vector unsigned char | vector bool char vector unsigned char vsububs
vector signed char vector signed char vector signed char vsubsbs
vector signed char vector signed char vector bool char vsubsbs
vector signed char vector bool char vector signed char vsubsbs
vector unsigned short | vector unsigned short | vector unsigned short vsubuhs
vector unsigned short | vector unsigned short | vector bool short vsubuhs
vector unsigned short | vector bool short vector unsigned short vsubuhs
vector signed short vector signed short vector signed short vsubshs
vector signed short vector signed short vector bool short vsubshs
vector signed short vector bool short vector signed short vsubshs
vector unsigned long | vector unsigned long | vector unsigned long vsubuws
vector unsigned long | vector unsigned long | vector bool long vsubuws
vector unsigned long | vector bool long vector unsigned long vsubuws
vector signed long vector signed long vector signed long vsubsws
vector signed long vector signed long vector bool long vsubsws
vector signed long vector bool long vector signed long vsubsws

A.77 vec_sumds(argl, arg2)

Each element of the result is the 32-bit saturated sum of the corresponding element in ar g2 and

al elementsin argl with positions overlapping those of that element.

Result argl arg2 MapsTo
vector unsigned long | vector unsigned char | vector unsigned long | vsum4ubs
vector signed long vector signed char vector signed long vsumd4sbs
vector signed long vector signed short vector signed long vsumdshs

A.78 vec_sum2s(argl, arg2)

Thefirst and third elements of the result are 0. The second element of the result is the 32-bit
saturated sum of the first two elements of ar gl and the second element of arg2. The fourth
element of theresult is the 32-bit saturated sum of the last two elements of ar gl and the fourth
element of arg2.

MrCl[pp] AltiVec Release Notes 45
2/18/99

Copyright Apple Computer, Inc. 1998
All rights reserved.

Result
vector signed long

argl
vector signed long

arg2
vector signed long

MapsTo
VSUM2sws

A.79 vec_sums(argl, arg2)
Thefirst three elements of the result are 0. The fourth element of the result is the 32-bit saturated
sum of all elements of argl and the fourth element of arg2.

Result
vector signed long

argl
vector signed long

arg2
vector signed long

MapsTo
VSUMSWS

A.80 vec trunc(argl)

Each element of the result is the value of the corresponding element of ar gl truncated to an
integral value.

Result
vector float

argl MapsTo
vector float vrfiz

A.81 vec_unpackh(argl)

Each element of the result is the result of extending the corresponding half-width high element of
argl.

Result argl MapsTo
vector signed short vector signed char vupkhsb
vector bool short vector bool char vupkhsb
vector unsigned long | vector pixel vupkhpx
vector signed long vector signed short vupkhsh
vector bool long vector bool short vupkhsh

A.82 vec_unpackl(argl)

Each element of the result is the result of extending the corresponding half-width low element of

argl.

Result argl MapsTo
vector signed short vector signed char vupklsb
vector bool short vector bool char vupklsb
vector unsigned long | vector pixel vupklpx
vector signed long vector signed short vupklsh
vector bool long vector bool short vupklsh

A.83 vec_unpack2sh(argl, arg2)

These operations form signed double-size elements by catenating each high element of argl with
the corresponding high element of arg2. If argl isavector of O's, this effectively isasigned
unpack of the unsigned value arg2. Note, it isnecessary to use the generic nhame since the
specific operationsvec_vnr ghb and vec_vnr ghh are also used for the vec_unpack2uh generic
operation.

MrC[pp] AltiVec Release Notes 46
2/18/99

Copyright Apple Computer, Inc. 1998
All rights reserved.

Result argl arg2 MapsTo Note
vector signed short vector unsigned char | vector unsigned char vmrghb N
vector signed long vector unsigned short | vector unsigned short vmrghh N

A.84 vec_unpack2d(argl, arg2)
These operations form signed double-size elements by catenating each low element of argl with
the corresponding low element of arg2. If argl isavector of 0's, this effectively isasigned
unpack of the unsigned value arg2. Note, it is necessary to use the generic name since the
specific operationsvec_vnr gl b and vec_vmrglh are also used for the vec_unpack2ul generic

operation.
Result argl arg2 MapsTo Note
vector signed short vector unsigned char | vector unsigned char vmrglb N
vector signed long vector unsigned short | vector unsigned short vmrglh N

A.85 vec_unpack2uh(argl, arg2)

These operations form unsigned doubl e-size elements by catenating each high element of argl
with the corresponding high element of arg2. If argl isavector of 0's, this effectively isan
unpack of arg2. Note, it is necessary to use the generic name since the specific operations

vec_vnr ghb and vec_vnr ghh are also used for the vec_unpack2sh generic operation.

Result argl arg2 MapsTo Note
vector unsigned short | vector unsigned char | vector unsigned char vmrghb N
vector unsigned long | vector unsigned short | vector unsigned short vmrghh N

A.86 vec _unpack2ul(argl, arg2)

These operations form unsigned double-size elements by catenating each low element of argl
with the corresponding low element of arg2. If arglisavector of O's, this effectively isan
unpack of arg2. Note, it is necessary to use the generic name since the specific operations
vec_vnr gl b and vec_vmrglh are also used for the vec_unpack2sl generic operation.

Result argl arg2 MapsTo Note
vector unsigned short | vector unsigned char | vector unsigned char vmrglb N
vector unsigned long | vector unsigned short | vector unsigned short vmrglh N

A.87 vec xor(argl, arg2)
Each element of the result is the logical XOR of the corresponding elements of argl and ar g2.

MrC[pp] AltiVec Release Notes 47

2/18/99

Result argl arg2 MapsTo
vector unsigned char | vector unsigned char | vector unsigned char vXor
vector unsigned char | vector unsigned char | vector bool char VXor
vector unsigned char | vector bool char vector unsigned char vXor
vector signed char vector signed char vector signed char vXor
vector signed char vector signed char vector bool char vXor
vector signed char vector bool char vector signed char vxor

Copyright Apple Computer, Inc. 1998

All rights reserved.

vector bool char vector bool char vector bool char vXor
vector unsigned short | vector unsigned short | vector unsigned short vXor
vector unsigned short | vector unsigned short | vector bool short vXor
vector unsigned short | vector bool short vector unsigned short vXor
vector signed short vector signed short vector signed short vXor
vector signed short vector signed short vector bool short vXor
vector signed short vector bool short vector signed short VXor
vector bool short vector bool short vector bool short vxor
vector unsigned long | vector unsigned long | vector unsigned long vXor
vector unsigned long | vector unsigned long | vector bool long vXor
vector unsigned long | vector bool long vector unsigned long vXor
vector signed long vector signed long vector signed long vXor
vector signed long vector signed long vector bool long VXor
vector signed long vector bool long vector signed long vXor
vector bool long vector bool long vector bool long vXor
vector float vector bool long vector float vXor
vector float vector float vector bool long vXor
vector float vector float vector float vXor
MrC[pp] AltiVec Release Notes 48 Copyright Apple Computer, Inc. 1998
2/18/99 All rights reserved.

Appendix B: AltiVec Predicates

The predicates are organized alphabetically by predicate name. Each table describes asingle
generic predicate. Each line shows avalid set of argument types for that predicate, and the
specific AltiVec instruction generated for that set of arguments. For example,

vec_any_| t (vector unsi gned char, vector unsi gned char) will usetheinstruction

“venpgt b.”.

The Notes column for predicates always indicates “N” to show that the specific AltiVec

instruction cannot be used by itself. The entry “R” indicates that the operands will be reversed in
invoking the instruction, while the entry “D” indicates that the same operand will be used twice.

B.1 vec all eg(argl, arg?2)
Each predicate returns 1 if each element of argl is equal to the corresponding element of arg2.

Otherwiseg, it returns 0.

Result argl arg2 MapsTo Note
Int vector unsigned char | vector unsigned char | vcmpequb. N
Int vector unsigned char | vector bool char vempequb. N
Int vector signed char vector signed char vcmpegub. N
Int vector signed char vector bool char vcmpegub. N
Int vector bool char vector unsigned char | vcmpequb. N
Int vector bool char vector signed char vempequb. N
Int vector unsigned short | vector unsigned short | vcmpequh. N
Int vector unsigned short | vector bool short vempequh. N
Int vector signed short vector signed short vcmpeguh. N
Int vector signed short vector bool short vempequh. N
Int vector bool short vector unsigned short | vecmpequh. N
Int vector bool short vector signed short vempequh. N
Int vector unsigned long | vector unsigned long | vcmpegquw. N
Int vector unsigned long | vector bool long vempegquw. N
Int vector signed long vector signed long vecmpequw. N
Int vector signed long vector bool long vcmpequw. N
Int vector bool long vector unsigned long | vempeguw. N
Int vector bool long vector signed long vCmpequw. N
Int vector float vector float vempeqgfp. N

B.2 vec all _ge(argl, arg2)

Each predicate returns 1 if each element of argl is greater than or equal to the corresponding
element of arg2. Otherwise, it returns 0.

MrC[pp] AltiVec Release Notes

49
2/18/99

Result argl arg2 MapsTo Note
Int vector unsigned char | vector unsigned char | vcmpgtub. NR
Int vector unsigned char | vector bool char vempgtub. NR
Int vector signed char vector signed char vcmpgtsb. NR
Int vector signed char vector bool char vempgtsb. NR
Int vector bool char vector unsigned char | vcmpgtub. NR
Int vector bool char vector signed char vempgtsh. NR
Int vector unsigned short | vector unsigned short | vcmpgtuh. NR
Int vector unsigned short | vector bool short vempgtuh. NR

Copyright Apple Computer, Inc. 1998

All rights reserved.

Int vector signed short vector signed short vempgtsh. NR
Int vector signed short vector bool short vcmpgtsh. NR
Int vector bool short vector unsigned short | vempgtuh. NR
Int vector bool short vector signed short vcmpgtsh. NR
Int vector unsigned long | vector unsigned long | vempgtuw. NR
Int vector unsigned long | vector bool long vempgtuw. NR
Int vector signed long vector signed long vempgtsw. NR
Int vector signed long vector bool long vcmpgtsw. NR
Int vector bool long vector unsigned long | vcmpgtuw. NR
Int vector bool long vector signed long vCmpgtsw. NR
Int vector float vector float vempgefp. N

B.3 vec all gt(argl, arg2)
Each predicate returns 1 if each element of argl is greater than the corresponding el ement of
arg2. Otherwisg, it returns 0.

Result argl arg2 MapsTo Note
Int vector unsigned char | vector unsigned char | vcmpgtub. N
Int vector unsigned char | vector bool char vempgtub. N
Int vector signed char vector signed char vempgtsb. N
Int vector signed char vector bool char vcmpgtsb. N
Int vector bool char vector unsigned char vcmpgtub. N
Int vector bool char vector signed char vempgtsh. N
Int vector unsigned short | vector unsigned short | vcmpgtuh. N
Int vector unsigned short | vector bool short vempgtuh. N
Int vector signed short vector signed short vempgtsh. N
Int vector signed short vector bool short vcmpgtsh. N
Int vector bool short vector unsigned short | vempgtuh. N
Int vector bool short vector signed short vcmpgtsh. N
Int vector unsigned long | vector unsigned long | vcmpgtuw. N
Int vector unsigned long | vector bool long vempgtuw. N
Int vector signed long vector signed long vempgtsw. N
Int vector signed long vector bool long vcmpgtsw. N
Int vector bool long vector unsigned long | vcmpgtuw. N
Int vector bool long vector signed long vempgtsw. N
Int vector float vector float vempgttp. N

B.4 vec all in(argl, arg2)

Each predicate returns 1 if each element of argl isless than or equal to the corresponding

element of arg2 and greater than or equal to the negative of the corresponding element of ar g2.

Otherwise, it returns 0.

Result

argl

arg2

MapsTo

Note

int

vector float

vector float

vempbfp.

N

MrC[pp] AltiVec Release Notes

2/18/99

50

Copyright Apple Computer, Inc. 1998

All rights reserved.

B.5 vec all le(argl, arg2)

Each predicate returns 1 if each element of argl isless than or equal to the corresponding

element of arg2. Otherwise, it returns 0.

Result argl arg2 MapsTo Note
Int vector unsigned char | vector unsigned char | vcmpgtub. N
Int vector unsigned char | vector bool char vempgtub. N
Int vector signed char vector signed char vempgtsb. N
Int vector signed char vector bool char vcmpgtsb. N
Int vector bool char vector unsigned char vcmpgtub. N
Int vector bool char vector signed char vempgtsh. N
Int vector unsigned short | vector unsigned short | vcmpgtuh. N
Int vector unsigned short | vector bool short vempgtuh. N
Int vector signed short vector signed short vempgtsh. N
Int vector signed short vector bool short vcmpgtsh. N
Int vector bool short vector unsigned short | vempgtuh. N
Int vector bool short vector signed short vcmpgtsh. N
Int vector unsigned long | vector unsigned long | vcmpgtuw. N
Int vector unsigned long | vector bool long vempgtuw. N
Int vector signed long vector signed long vempgtsw. N
Int vector signed long vector bool long vcmpgtsw. N
Int vector bool long vector unsigned long | vcmpgtuw. N
Int vector bool long vector signed long vempgtsw. N
Int vector float vector float vempgefp. NR

B.6 vec all It(argl, arg2)
Each predicate returns 1 if each element of ar gl isless than the corresponding element of ar g2.

Otherwise, it returns 0.

Result argl arg2 MapsTo Note
Int vector unsigned char | vector unsigned char | vcmpgtub. NR
Int vector unsigned char | vector bool char vempgtub. NR
Int vector signed char vector signed char vempgtsb. NR
Int vector signed char vector bool char vcmpgtsb. NR
Int vector bool char vector unsigned char vempgtub. NR
Int vector bool char vector signed char vempgtsh. NR
Int vector unsigned short | vector unsigned short | vcmpgtuh. NR
Int vector unsigned short | vector bool short vempgtuh. NR
Int vector signed short vector signed short vempgtsh. NR
Int vector signed short vector bool short vcmpgtsh. NR
Int vector bool short vector unsigned short | vempgtuh. NR
Int vector bool short vector signed short vcmpgtsh. NR
Int vector unsigned long | vector unsigned long | vcempgtuw. NR
Int vector unsigned long | vector bool long vempgtuw. NR
Int vector signed long vector signed long vempgtsw. NR
Int vector signed long vector bool long vcmpgtsw. NR
Int vector bool long vector unsigned long | vecmpgtuw. NR
Int vector bool long vector signed long vCmpgtsw. NR
Int vector float vector float vempgttp. NR

MrC[pp] AltiVec Release Notes 51 Copyright Apple Computer, Inc. 1998
2/18/99 All rights reserved.

B.7 vec all_nan(argl)

Each predicate returns 1 if each element of argl isaNaN. Otherwise, it returns 0.

Result

argl

MapsTo Note

int

vector float

vempeqgrp. ND

B.8 vec all ne(argl, arg?)
Each predicate returns 1 if each element of argl is not equal to the corresponding el ement of
arg2. Otherwise, it returns 0.

Result argl arg2 MapsTo Note
Int vector unsigned char | vector unsigned char | vcmpequb. N
Int vector unsigned char | vector bool char vempequb. N
Int vector signed char vector signed char vempequb. N
Int vector signed char vector bool char vcmpegub. N
Int vector bool char vector unsigned char | vcmpequb. N
Int vector bool char vector signed char vempequb. N
Int vector unsigned short | vector unsigned short | vcmpequh. N
Int vector unsigned short | vector bool short vempequh. N
Int vector signed short vector signed short vempequh. N
Int vector signed short vector bool short vcmpeguh. N
Int vector bool short vector unsigned short | vempequh. N
Int vector bool short vector signed short vempequh. N
Int vector unsigned long | vector unsigned long | vempequw. N
Int vector unsigned long | vector bool long vempegquw. N
Int vector signed long vector signed long vempegquw. N
Int vector signed long vector bool long vecmpequw. N
Int vector bool long vector unsigned long | vempequw. N
Int vector bool long vector signed long vcmpequw. N
Int vector float vector float vempegrp. N

B.9 vec all nge(argl, arg2)
Each predicate returns 1 if each element of argl is not greater than or equal to the corresponding
element of arg2. Otherwise, it returns 0. Not greater than or equal can mean either less than or

that one of the elementsis a NaN.

Result

argl

arg2

MapsTo

Note

int

vector float

vector float

vempgefp.

N

B.10 vec all ngt(argl, arg2)
Each predicate returns 1 if each element of argl is not greater than the corresponding el ement of
arg2. Otherwise, it returns 0. Not greater than or equal can mean either less than or equal to or

that one of the elementsisa NaN.

| Result |

argl

MrC[pp] AltiVec Release Notes

52
2/18/99

arg2

MapsTo

| Note |

Copyright Apple Computer, Inc. 1998

All rights reserved.

| Int

vector float

vector float

| vempgtfp. |

N

B.11 vec all nle(argl, arg2)
Each predicate returns 1 if each element of argl is not less than or equal to the corresponding

element of arg2. Otherwise, it returns 0. Not greater than or equal can mean either greater than
or that one of the elementsisaNaN.

Result

argl

arg2

MapsTo

Note

Int

vector float

vector float

vempgefp.

NR

B.12 vec all nlt(argl, arg2)
Each predicate returns 1 if each element of argl is not less than the corresponding element of

arg2. Otherwise, it returns 0. Not greater than or equal can mean either greater than or equal to
or that one of the elementsisaNaN.

Result

argl

arg2

MapsTo

Note

Int

vector float

vector float

vempgtfp.

NR

B.13 vec_all numeric(argl)

Each predicate returns 1 if each element of argl is numeric (not aNaN). Otherwise, it returns 0.

Result

argl

MapsTo Note

Int

vector float

ND

vempeqgfp.

B.14 vec _any_eq(argl, arg2)

Each predicate returns 1 if at least one element of argl is equal to the corresponding element of
arg2. Otherwise, it returns 0.

MrC[pp] AltiVec Release Notes

2/18/99

53

Copyright Apple Computer, Inc. 1998
All rights reserved.

Result argl arg2 MapsTo Note
Int vector unsigned char | vector unsigned char | vcmpequb. N
Int vector unsigned char | vector bool char vcmpegub. N
Int vector signed char vector signed char vcmpegub. N
Int vector signed char vector bool char vempequb. N
Int vector bool char vector unsigned char | vcmpequb. N
Int vector bool char vector signed char vempequb. N
Int vector unsigned short | vector unsigned short | vcmpequh. N
Int vector unsigned short | vector bool short vcmpeguh. N
Int vector signed short vector signed short vempequh. N
Int vector signed short vector bool short vempequh. N
Int vector bool short vector unsigned short | vecmpequh. N
Int vector bool short vector signed short vempequh. N
Int vector unsigned long | vector unsigned long | vempegquw. N
Int vector unsigned long | vector bool long vecmpequw. N
Int vector signed long vector signed long vcmpequw. N
Int vector signed long vector bool long vcmpequw. N
Int vector bool long vector unsigned long | vempeguw. N

Int vector bool long vector signed long vempegquw. N
Int vector float vector float vempegfp. N

B.15 vec_any ge(argl, arg2)

Each predicate returns 1 if at least one element of argl is greater than or equal to the

corresponding element of arg2. Otherwise, it returns 0.

Result argl arg2 MapsTo Note

Int vector unsigned char | vector unsigned char vcmpgtub. NR
Int vector unsigned char | vector bool char vempgtub. NR
Int vector signed char vector signed char vempgtsh. NR
Int vector signed char vector bool char vempgtsh. NR
Int vector bool char vector unsigned char | vempgtub. NR
Int vector bool char vector signed char vempgtsb. NR
Int vector unsigned short | vector unsigned short | vempgtuh. NR
Int vector unsigned short | vector bool short vempgtuh. NR
Int vector signed short vector signed short vcmpgtsh. NR
Int vector signed short vector bool short vempgtsh. NR
Int vector bool short vector unsigned short | vempgtuh. NR
Int vector bool short vector signed short vempgtsh. NR
Int vector unsigned long | vector unsigned long | vempgtuw. NR
Int vector unsigned long | vector bool long vempgtuw. NR
Int vector signed long vector signed long vCmpgtsw. NR
Int vector signed long vector bool long vempgtsw. NR
Int vector bool long vector unsigned long | vempgtuw. NR
Int vector bool long vector signed long vempgtsw. NR
Int vector float vector float vcmpgefp. N

B.16 vec any gt(argl, arg2)
Each predicate returns 1 if at least one element of argl is greater than the corresponding element
of arg2. Otherwise, it returnsO.

MrC[pp] AltiVec Release Notes

2/18/99

54

Result argl arg2 MapsTo Note
Int vector unsigned char | vector unsigned char vcmpgtub. N
Int vector unsigned char | vector bool char vcmpgtub. N
Int vector signed char vector signed char vempgtsh. N
Int vector signed char vector bool char vempgtsh. N
Int vector bool char vector unsigned char | vempgtub. N
Int vector bool char vector signed char vempgtsb. N
Int vector unsigned short | vector unsigned short | vempgtuh. N
Int vector unsigned short | vector bool short vempgtuh. N
Int vector signed short vector signed short vcmpgtsh. N
Int vector signed short vector bool short vempgtsh. N
Int vector bool short vector unsigned short | vempgtuh. N
Int vector bool short vector signed short vempgtsh. N
Int vector unsigned long | vector unsigned long | vempgtuw. N
Int vector unsigned long | vector bool long vempgtuw. N
Int vector signed long vector signed long vempgtsw. N

Copyright Apple Computer, Inc. 1998

All rights reserved.

Int vector signed long vector bool long vempgtsw. N
Int vector bool long vector unsigned long | vempgtuw. N
Int vector bool long vector signed long vcmpgtsw. N
Int vector float vector float vempgtfp. N

B.17 vec any le(argl, arg2)
Each predicate returns 1 if at least one element of argl isless than or equal to the corresponding
element of arg2. Otherwise, it returns 0.

Result argl arg2 MapsTo Note
Int vector unsigned char | vector unsigned char | vcmpgtub. N
Int vector unsigned char | vector bool char vempgtub. N
Int vector signed char vector signed char vempgtsh. N
Int vector signed char vector bool char vempgtsb. N
Int vector bool char vector unsigned char vcmpgtub. N
Int vector bool char vector signed char vcmpgtsb. N
Int vector unsigned short | vector unsigned short | vcempgtuh. N
Int vector unsigned short | vector bool short vempgtuh. N
Int vector signed short vector signed short vempgtsh. N
Int vector signed short vector bool short vempgtsh. N
Int vector bool short vector unsigned short | vempgtuh. N
Int vector bool short vector signed short vcmpgtsh. N
Int vector unsigned long | vector unsigned long | vempgtuw. N
Int vector unsigned long | vector bool long vempgtuw. N
Int vector signed long vector signed long vempgtsw. N
Int vector signed long vector bool long vempgtsw. N
Int vector bool long vector unsigned long | vempgtuw. N
Int vector bool long vector signed long vcmpgtsw. N
Int vector float vector float vempgefp. NR

B.18 vec any lt(argl, arg2)
Each predicate returns 1 if at least one element of argl isless than the corresponding element of
arg2. Otherwise, it returns 0.

MrC[pp] AltiVec Release Notes

2/18/99

55

Result argl arg2 MapsTo Note
Int vector unsigned char | vector unsigned char | vcmpgtub. NR
Int vector unsigned char | vector bool char vempgtub. NR
Int vector signed char vector signed char vempgtsh. NR
Int vector signed char vector bool char vempgtsb. NR
Int vector bool char vector unsigned char vcmpgtub. NR
Int vector bool char vector signed char vempgtsb. NR
Int vector unsigned short | vector unsigned short | vempgtuh. NR
Int vector unsigned short | vector bool short vempgtuh. NR
Int vector signed short vector signed short vempgtsh. NR
Int vector signed short vector bool short vempgtsh. NR
Int vector bool short vector unsigned short | vempgtuh. NR
Int vector bool short vector signed short vcmpgtsh. NR
Int vector unsigned long | vector unsigned long | vempgtuw. NR

Copyright Apple Computer, Inc. 1998

All rights reserved.

Int vector unsigned long | vector bool long vempgtuw. NR
Int vector signed long vector signed long vcmpgtsw. NR
Int vector signed long vector bool long vcmpgtsw. NR
Int vector bool long vector unsigned long | vempgtuw. NR
Int vector bool long vector signed long vempgtsw. NR
Int vector float vector float vempgtfp. NR

B.19 vec any nan(argl)

Each predicate returns 1 if at least one element of argl isaNaN. Otherwise, it returns 0.

Result

argl

MapsTo Note

int

vector float

vempeqgfp. ND

B.20 vec any ne(argl, arg2)
Each predicate returns 1 if at least one element of argl is not equal to the corresponding el ement
of arg2. Otherwise, it returnsO.

Result argl arg2 MapsTo Note
Int vector unsigned char | vector unsigned char | vcmpequb. N
Int vector unsigned char | vector bool char vempequb. N
Int vector signed char vector signed char vcmpegub. N
Int vector signed char vector bool char vcmpegub. N
Int vector bool char vector unsigned char | vcmpequb. N
Int vector bool char vector signed char vempequb. N
Int vector unsigned short | vector unsigned short | vcmpequh. N
Int vector unsigned short | vector bool short vempequh. N
Int vector signed short vector signed short vcmpeguh. N
Int vector signed short vector bool short vempequh. N
Int vector bool short vector unsigned short | vecmpequh. N
Int vector bool short vector signed short vempequh. N
Int vector unsigned long | vector unsigned long | vcmpegquw. N
Int vector unsigned long | vector bool long vempegquw. N
Int vector signed long vector signed long vecmpequw. N
Int vector signed long vector bool long vcmpequw. N
Int vector bool long vector unsigned long | vempeguw. N
Int vector bool long vector signed long vCmpequw. N
Int vector float vector float vempeqgfp. N

B.21 vec any nge(argl, arg2)

Each predicate returns 1 if at least one element of argl is not greater than or equal to the

corresponding element of arg2. Otherwise, it returns 0. Not greater than or equal can mean
either less than or that one of the elementsis a NaN.

Result

argl

arg2

MapsTo

Note

int

vector float

vector float

vempgefp.

N

MrC[pp] AltiVec Release Notes

2/18/99

56

Copyright Apple Computer, Inc. 1998

All rights reserved.

B.22 vec any ngt(argl, arg2)
Each predicate returns 1 if at least one element of argl is not greater than the corresponding

element of arg2. Otherwise, it returns 0. Not greater than can mean either less than or equal to
or that one of the elementsisaNaN.

Result

argl

arg2

MapsTo

Note

int

vector float

vector float

vempgttp.

N

B.23 vec_any nle(argl, arg2)
Each predicate returns 1 if at least one element of argl is not less than or equal to the
corresponding element of arg2. Otherwisg, it returns 0. Not less than or equal can mean either
greater than or that one of the elementsisaNaN.

Result

argl

arg2

MapsTo

Note

int

vector float

vector float

vempgefp.

NR

B.24 vec any nlt(argl, arg2)
Each predicate returns 1 if at least one element of argl is not less than the corresponding element
of arg2. Otherwise, it returns 0. Not less than can mean either greater than or equal to or that

one of the e ementsisaNaN.

Result

argl

arg2

MapsTo

Note

int

vector float

vector float

vempgttp.

NR

B.25 vec_any numeric(argl)
Each predicate returns 1 if at least one element of argl is numeric (not aNaN). Otherwise, it

returns 0.

Result

argl

MapsTo

Note

int

vector float

vempegrp.

ND

B.26 vec_any out(argl, arg2)
Each predicate returns 1 if at least one element of argl is not less than or equal to the
corresponding element of arg2 or not greater than or equal to the negative of the corresponding
element of arg2. Otherwise, it returns 0. Not less than or equal can mean greater than or that
either argument isaNaN. Not greater than or equal can mean less than or that either argument is

aNaN.
Result argl arg2 MapsTo Note
Int vector float vector float vempbfp. N
MrC[pp] AltiVec Release Notes 57 Copyright Apple Computer, Inc. 1998

2/18/99 All rights reserved.

Appendix C: C++ Name Mangling of the Vector Data Types

The MrCpp C++ name mangling rules have been extended to support all the new vector data
types. The following table defines the basic type mangling strings used when one of the vector
types appears in a C++ function signature.

Vector Data Type | TypeMangling String
vector unsigned char XUc
vector signed char Xc
vector bool char XC
vector unsigned short XUs
vector signed short Xs
vector bool short XS
vector unsigned long XUi
vector signed long Xi
vector bool long X
vector float Xf
vector pixel Xp

C++ Mangling conventions of the basic vector data types
Examples:

vector unsigned char exanpl el(vector unsigned char)
=} exanpl el FXUc

voi d exanpl e2(vector signed char *)
=} exanpl e2__FPXc

vector unsigned char exanpl e3(vector unsigned char, vector signed char *)
=} exanpl e3__FXUcPXc

vector float *exanpl e4(vector signed char *, vector unsigned short[][10],
vector bool char)
=) exanpl e4__FPXcPA10XUsXC

MrC[pp] AltiVec Release Notes 59 Copyright Apple Computer, Inc. 1998
2/18/99 All rights reserved.

Appendix D: Implicit Optimizations

One of the goals of standard instruction scheduling is to attempt to rearrange the given
instructions to improve performance by ensuring that adjacent instructions are not executed out
of the same instruction unit wherever possible. But thereisalimit to what can be done if the
sequence of selected instructions do not provide sufficient variety to allow the rearrangement of
those instructions. With AltiVec however there are certain transformations that can be done that
allow alternate, but equivalent sequences to be performed to reduce the possibility of executing
from the same unit by two adjacent instructions. Those transformations are discussed in the
following sections.

D.1 Vector Constants

Vector constants are generated in different ways by the compiler depending on the placement and
value of the constant.

¢ Constants declared outside of any function are defined as 16-byte data items accessed
through the TOC.

¢ Constants declared within functions that are not be generated by explicit code are stored
in atable accessed through data offsets.

¢ Constants declared within afunction that can be generated by explicit code and thus
require no additional data storage requirements.

It isthe third case that allows for the possibility of certain optimizations. Users “fluent” in
AltiVec know that certain constants can be generated by AltiVec instructions and do so. What is
not obviousis how “smart” the compiler isto do what these users do while allowing the
programs to be more readable. For an obvious example, it is more readable to set avariableto 0

using, say,

X (vector signedshort)(0);

t han,

X vec_xor(y, Yy);

There are also other non-obvious benefits to using a vector constant over the vector function
which are discussed in Appendix D.1.3. The next two section document what transformations
are done on vector constants (or to produce vector constants from function calls) so that the
programmer knows what to expect and doesn’t have to resort to more cryptic means to do the
same thing (which the compiler may convert anyhow asin the above vec_xor case).

D.1.1 Generation of Vector Constants

Four constant patterns are recognized by the compiler for possible generation by AltiVec
instruction(s).

(1) Asingleconstant or all n constants the same (n = 4, 8, or 16 as a function of the type).

Constant(s) are in the range -16 to +15 are generated with vspl ti sX (X = b, h, or w).

Examples:
(vector unsi gned |l ong) (6, 6, 6, 6)

isgenerated as
vec_spl at _s32(6) (vsplitsw vn, 6)

MrC[pp] AltiVec Release Notes 61 Copyright Apple Computer, Inc. 1998
2/18/99 All rights reserved.

(vector signedshort)(-1)
isgenerated as
vec_splat _s16(-1) (vsplitsh wvn,-1)

(vector float) (0.0)

isgenerated as
vec_splat _s32(0) (vsplitsw vn,0)

(2) A vector [un]signed constant with repeating half-word values.

Vector [un]signed char constant(s) which can be viewed as a series of repeating half-words
in the range -16 to +15 are generated with vspl i t sh.

Examples:
(vector unsignedchar)(0,1, 0,1, 0,1, 0,1, 0,1, 0,1, 0,1, 0,1)
isgenerated as
vec_splat _s8(1) (vsplitsh wvn, 1)

(vector signedchar)(-1,-2, -1,-2, -1,-2, -1,-2, -1,-2, -1,-2, -1,-2, -1,-2)
isgenerated as
vec_spl at_s16(-2) (vsplitsh wvn,-2)

(3) A vector [un]signed constant with repeating long-word val ues.

Vector [un]signed char constant(s) which can be viewed as a series of wordsin the range
-16 to +15 are generate with vspl i t sw.

Examples:
(vector unsi gnedchar)(0,0,0,4, 0,0,0,4, 0,0,0,4, 0,0,0, 4)
isgenerated as
vec_spl at_s32(4) (vsplitsw vn,4)

(vector signedchar)(-1,-1,-1,-8, -1,-1,-1,-8, -1,-1,-1,-8, -1,-1,-1,-8)
isgenerated as
vec_spl at_s32(-8) (vsplitsw vn,-8)

(4) A vector [un]signed constant with sequential values.

Vector [un]signed char constant(s) in sequential ascending order starting with avalues 0 to
15 are generated with | vsi . If it startswith 16 it is generated with al vsr.

Examples:
(vector unsignedchar)(3,4,5,6,7,8,9, 10, 11, 12,13, 14, 15, 16, 17, 18)
isgenerated as
vec_lvsl (3, NULL) (lvsl vn,0,rx whererx contains 3)

(vector signedchar) (16,17, 18,19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31)
is generated as)
vec_l vsr(0, NULL) (lvsl vn,0,rx whererx containsl)

D.1.2 Conversion of vector operationsto vector constants

The compiler may convert certain vector function calls to constants or replace the entire
operation with a function’s operand under the conditions described below. In these descriptions,
X is any acceptable argument (expression) that does not have any side effects.

MrC[pp] AltiVec Release Notes 62 Copyright Apple Computer, Inc. 1998
2/18/99 All rights reserved.

(1) vec_binary(X, X) P vec_spltisw0)
where, vec_bi nary isany of the following:

vec_sub(X X) (vec_vsubuXm X=bh, h, w)
vec_xor (X, X) (vec_vxor)
vec_andc(X, X) (vec_vandc)

(2) vec_crpeq(X, X) P vec_spltisw(-1)

D.1.3 Benefits of Generating Explicit Vector Constants

As documented in the previous two sections, the compiler will, whenever it can, convert vector
constants to explicit generation using avspl ti sX. The opportunities for instruction scheduling
are increased when constants can be generated with vspl t i sX instructions. However, this takes
some explaining.

The AltiVec processor is divided into two dispatchable units; the Vector Permute unit and the
Vector ALU unit (which is further divided into subunits). Thevspl ti sXinstruction is executed
in the Vector Permute unit. Of course it depends on the application, but in general, there are
fewer Vector Permute unit instructions to execute than there are ALU unit instructions. So
instruction scheduling can be improved if we can generate the constants using the Vector
Permute unit rather than the ALU. That’s the primary reason for generating the constants.

There are other good reasons as well for generating the constants:

* Saves memory space and a memory access.
e |t'sfaster to generate a constant than to load it.

* Thespl ti sXinstructions can be easily identified by the instruction scheduler to try to
avoid consecutive use of the Vector Permute unit.

Just as the use of the vspl ti sX instruction reduces the probability of connective use of the
Vector ALU, consecutive use of the Vector Permute unit can also be reduced. The instruction
scheduler looks specifically for vspl ti sX instructions and checks to seeif the instruction
preceding it was also in the Vector Permute unit. If it was, and thevspl ti sX satisfies certain
criteria, an ALU instruction can be substituted. Thisisthe reverse of the optimizations discussed
insection D.1.1.

Here are the criteria and substitutions;

(1) IfavspltisX(0) isseen preceded by another Vector Permute Unit instruction then avxor
is substituted.

(2) If avspltisX(1) isseen preceded by another Vector Permute Unit instruction then a
venpequw iS substituted.

(3 Ifavspltisw-1) isseen preceded by another Vector Permute Unit instruction then a
vsubcuw is substituted.

These substitutions then replace adjacent uses of the Vector Permute unit so the second
instruction is executed out of the Vector ALU.

MrCl[pp] AltiVec Release Notes 63 Copyright Apple Computer, Inc. 1998
2/18/99 All rights reserved.

D.2 Other Transformations

The compiler may replace certain vector operations calls with equivalent operations under the
conditions and reasons described below. In these descriptions, X is any acceptable argument
(expression) that does not have any side effects.

(1) vec_binary(X, X) P X

where, vec_bi nary isany of the following:

vec_or (X, X) (vec_vor)
vec_and(X, X) (vec_vand)
vec_avg(X, X) (vec_vavgSX, S=s, u; X=h, h, w)
vec_max(X, X) (vec_vmaxSX, S=s, u; X=h, h, w)
vec_m n(X, X) (vec_vminSX, S=s, u; X=b, h, w)
and, Xisany acceptable argument (expression) that does not have any side effects.

(2) vec_sld(X X, 00 P X

where, X is any acceptable argument (expression) that does not have any side effects.

(3) vec_or (X, X P vec dd(X X, 0)

where, X isany values since these two transformations are done by instruction scheduling
(see below).

In cases (1) and (2) above the compiler will try to reduce the function call to asingle variable
reference. These are done with the aim at providing better code optimizations since the
opportunities for optimizations are increased when the function calls can be removed and
replaced with a single variable or expression reference.

Case (3) has purpose of alowing the compiler to try to keep from scheduling the Vector ALU in
consecutive instructions. If avec_or (X, X) (vor vT, vX) isseen preceded by another Vector
ALU instruction then avec_dd(X, X, 0) (vsldoi vT,vX,vX,0) is substituted to do the equivalent
operation in the Vector Permute Unit.

MrC[pp] AltiVec Release Notes 64 Copyright Apple Computer, Inc. 1998
2/18/99 All rights reserved.

Appendix E: AltiVec Prolog/Epilog Details

Section 4.3 discussed the general layout of an AltiVec stack frame. Here we discuss the stack
frame layout in excruciating detail! This appendix isintended mainly only for those interested in
understainding what is generated in afunction’s prolog and epilog and why it is genertated.

E.1 The Stack Frame

Below is the AltiVec stack frame along with additional size notations needed for the descriptions

which follow it.

0
31—k

SP—+

A stack frame has alength | en, which is computed as follows:

h

0]
1

(f + 15) & ~15

MrC[pp] AltiVec Release Notes

+8
+4 Caler'sCR

((c + 15) & ~15) -

FPRs

GPRs

VRsave

alignment
hole

VRs

padding hole

Locals

Param Area

Linkage Area

~ Cadler'sSP

A

]

A,

N|

l¢

A

N|

A,

AltiVec Stack Frame L ayout

¢ Amount needed to make space for FPRs + GPRs + VRsave
amultiple of 16. Thisisthe “static alignment hole” which
may change in size by dynamically “dliding up or down”
the stuff below the hole (described below).

Size of Linkage Area + Parameter Area + Locals rounded

65

2/18/99

Sle

="

c=(atb+4)

Copyright Apple Computer, Inc. 1998
All rights reserved.

up to multiple of 16. This may introduce a padding hole
between the VRs and locals but that isn't important here.
Thevalue of d isjust e plus the space needed to save the
non-volatile VRs.

len = c + h +d Since c+h isamultiple of 16 and d isamultiple of 16 then
the entire frame is a multiple of 16.

We assume that SP always points to an 8-byte boundary. That means that to align the frame on a
16-byte boundary we need to adjust the alignment hole by O (if SPis already 16-byte aligned) or
8 (if SPisonly on an 8-byte boundary). The alignment is done by dynamically expanding or
contracting the static hole to get the VRs on then next 16-byte boundary following VRsave,
because if they are aligned, then so will the start of the frame, since everything is a multiple of
16. We must have the frame 16-byte aligned so that the compiler knows how to compute the
vector data offsets within the local area.

The static hole (size h) iseither 0, 4, 8, or 12. If the holeis 0 or 4, then depending on SP, we
need to expand the hole by 0 or 8 to get the VRs on a 16-byte boundary. If the holeis 8 or 12 we
have enough “working room” to reduced it by 8 if necessary to get the VRs aligned. The holeis
expanded or contracted by subtracting the proper amount from the caller’ s SP effectively
“diding” everything below the hole up or down.

It's easy to understand thisif the caller's SP is already 16-byte aligned. In that caseh issuch so
that the VRs are aready aligned. But when SP is only 8-byte aligned the amount to adjust the
caller’ s SP by to get the new frame to start on a 16-byte boundary, and thus the VRs on the next
16-byte boundary after the saved VRsave, depends on the static hole size.

Remember that the static hole is computed assuming the frame starts on a 16-byte boundary. If it
starts on an 8 byte boundary then everything after the hole must be either move down or up by 8
to get the VRs and locals 16-byte aligned.

If the static hole, h, is 0 or 4, then we need to move al the stuff after the hole down by 8. Itis
done with asubfi ¢ to compute -8-framesize. Thiswill result in adynamic hole of 8 or 12
respectively.

If the static hole, h, is 8 or 12, then we have the “working room” to slide the frame “up” to
reduce the static hole by 8. It isdone with an addi to compute +8-framesize. Thiswill result in
adynamic hole of O or 4 respectively.

Note that if the function isaleaf with no aloca(), and | en fitsin the red zone (minus 8 if h was 0
or 4), then the uses of r31 and SP arereversed, i.e., r31 will point to the leaf’ s frame start while
SP remains pointing at the caller’sframe. All uses of these two registersin the leaf’ s code are
reversed appropriately. Additionaly, if r31 isthe only non-volatile to be saved, and avolatile
between r3 and r10 is not used, then we can substitute that volatile for r31 thus avoiding the non-
volatile save/restore in the prolog/epilog.

Finally, when no vector data or registers are needed by afunction, the stack frame becomes a
standard PPC stack frame and the prolog/epilog are the same as they have always been. In either
case the FPRs and GPRs are saved the same way.

The code descriptions in the following sections show the generated prolog and epilog in all
possible forms. There are two variants in each case; one using vectors and one without. This
code is“hand scheduled”. Hence the sometimes strange ordering of instructions.

MrC[pp] AltiVec Release Notes 66 Copyright Apple Computer, Inc. 1998
2/18/99 All rights reserved.

E.2 Prolog

AltiVec Stack

prolog
[1] mfcr ri2
[2] mflr ro
[3] mfspr rv|rll,VRsave
[4] stfd FPx,-a(sp)
OF ——mm e
bl _savefxx
stw Rx,-b(sp)
OF ——mm e -
stmw Rx,-b(sp)
[7.,9] mr r31,sp
[1] stw ri2,4(sp)
[6] rlwinm rl2,sp,0,28,28
[6] subfic]addi rl12,rl12,-len
[2] stw ro,8(sp)
[6]1 stwux sp,sp,ril2
OF ——mm e -
[2] stw ro,8(sp)
addis ro,0,-len>>16
ori ro,r0,-1en&0xFFFF
subf]add r12,r12,r0
[6]1 stwux sp,sp,rl2
OF ——mm e -
[9] subficladdi ri12,r12,-1en
add r31,sp,ri2
[3,9] stw rvlrll,-c(r31]sp)
OF ————m e -
mr ril,rv
OF ——mm e
not saved at all
MrC[pp] AltiVec Release Notes 67

2/18/99

o Non-AltiVec Stack
g:::::::::::::::::::::::::::::::::
¢

c mfcr ri2

¢ mflr ro

c mfspr rv|rill,VRsave

¢

¢ stfd FPx,-a(sp)

c - - -

COF ——m e
¢ bl _savefxx

¢

c stw Rx,-b(sp)

c - - -

COF ——m e e
c stmw Rx,-b(sp)

¢

¢

¢

¢ stw ri2,4(sp)

¢

¢

¢

¢

c stw ro,8(sp)

¢ stwu sp,-len(sp)

COF ——m e e
c addis ri2,0,-len>>16

¢ ori ri2,rl12,-1en&0xFFFF
c stw r0,8(sp)

¢ stwux Sp,Sp,ril2

¢

¢

¢

¢

¢

c stw rvlrll,v(sp)

COF ———— e
c addis r0,0,v>>16

c ori ro,r0,v&0xFFFF

c stwx ril,sp,rO

COF ———m e
c stw ril,-c(sp)

COF ———— e
c mr ril,rv

COF ——m e
¢ not saved at all

Copyright Apple Computer, Inc. 1998
All rights reserved.

¢
[8] mr r30,sp ¢ mr r31,sp
¢
[3] oris rl1,r11,mask>>16 c oris rll1,r11,mask>>16
ori r11,r11,mask&0OxFFFF ¢ ori r11,r11,mask&0OxFFFF
OF ———— - GOl ————— e
oris ril,rv|rll,mask>>16 c oris ril,rv|rll,mask>>16
OF ———— - GOl —————— e
ori rll,rv|rll,mask c ori rll,rv|rll,mask
OF ——mm e GOl ———— e
li ril,-1 ¢ li ril,-1
¢
[5,9] addi ro,sp|r31,d c
OF ———— - ¢
addis r0,0,d>>16 c
ori rO,r0,d&0xFFFF c
add ro,sp,ro0 ¢
¢
[51 li rl2,-16*vVx c
Stvx Vx,rl2,r0 c
- - - ¢
OF —— e o
bl _savevxx c
¢
[31] mtspr Vrsave,rill c mtspr Vrsave,rll
Notes:

[1]
[2]
[3]

MrC[pp] AltiVec Release Notes 68

The condition register is saved only if CR2, CR3 or CR4 are used.
Thelink register is saved only if needed (i.e., the function is not a leaf).

The caller’'s VRsave is saved and the callee VRsave set by OR'ing in the mask representing
the vector registers used by this callee. Note that the value of the mask determines the
optimum way to do the OR (ori s/ ori,justoris, orjustori). Also notethat VRsave can
be saved and set in the non-vector case where only volatile VRs are used and no vector data
needs to be stored in the frame. In that case the offset from the callee’ s SP, v, isused to
access the VRsave area to avoid problems with the red zone (there is no alignment holein
the non-vector case). If the function isaleaf, thereis no red zone problems so - ¢ can be
used. Although the case where v isused could be optimized if the VRsave area could be
reached in the red zone, this entire case (volatiles only, no vector data) is rare enough to not
warrant the added complications and conditions.

If possible the caller’s VRsave will be copied to aregister, rv, rather than storing it on the
stack. This can happen when both of the following conditions apply:

* Thefunctionisaleaf.
* A volatilefrom r3torl0isfreeto usefor therv register.

Saving the caller’ s VRsave in aregister avoids reloading it in the epilog and also avoids

Copyright Apple Computer, Inc. 1998

2/18/99 All rights reserved.

saving it on the stack (unless traceback tables are being generated -- they assume VRsave is
always on the stack). Thereisthe case however where the callee’ s VRsave mask requires
theoris/ori instruction pair. Inthat case we till havetodo anr r11, rv.

[4] When-opt size isbeing used, and the function is not aleaf, then alibrary support routine
in PPCCRuntime.o is called to save the FPRs. There are 18 FPR savers (_savef 31,
_savef 30, ... _savef 14). Calling _savef XX would save FPRXX thru FPR31. These
routines “know” the stack offsets for the saves which is always relative to SP.

[5] TheVRsare saved aways using rO as a base register, where r0 is the stack offset to the end
of the VRs, i.e, d inthe diagram. Aswith the FPRs, PPCCRuntime.o library routines are
provided for - opt si ze non-leaf functions. There can be up to 12 VRs saved and therefore
there are 12 library routines (_savev31, _savev29, ... _savev20).

[6] Therlw nmri2,sp, 0, 28, 28 AND’s SP with 8 and therefore resultsin a0 or 8 to be

subtracted from -1 en (subfi ¢) or added to SP (addi). Thisis-x-1en or +x- | en, where x
isOor 8fromther! wi nm That'sthe value to add to the caller’ s SP to produce the 16-byte
aligned callee’ s SP with the alignment hole expanding or contracting as necessary.

Note that the saving of the caller's CR, LR, and VRsave is “hand scheduled” hereto
delay their saving “far enough” from their accesses.

[7] Because of the dynamic alignment hole, r31 needs to be reserved across the function to
allow accessing of the caller’s parameters. Thisis not needed if the function isaleaf. See
note[9].

[8] If dloca() isused, then r30 is used in the vector case, and r31 in the non-vector case, in
order to access the locals (since SP will be changed by alloca()).

[9] If thefunctionisaleaf, has aframethat fitsin the red zone (minus 8 if h isO or 4), and
doesn’t use alloca(), then theroles of SP and r31 arereversed. The caller’s SP remains
unchanged while r31 takes the role that SP had in the non-leaf case. Additiondly, r31is
replaced with avolatile between r3 and r10 if one of those is not used and r31 would be the
only non-volatile being saved. This avoids the additional save/restore.

E.3 Delayed Prolog

A case exists where, under the right conditions, a conditional block of code can be moved “up”
before the prolog. This block has no standard prolog or epilog and the actual prolog is delayed
beyond this block. If the function uses vector registers then VRsave must still be maintained.

The moved up block has two possible cases:
1. Block ends with a conditiona branch that exits the function.

moved up conditional block of code
Bcclr
prolog:

Thiscaseisreferred to here as the exit case.

2. Block endswith conditional branch to the prolog around some code that ends with an exit
from the function.

MrC[pp] AltiVec Release Notes 69 Copyright Apple Computer, Inc. 1998
2/18/99 All rights reserved.

moved up conditional block of code
Bcc prolog
true or false block of code controlled by the conditional
blr
prolog:

This case isreferred to here as the !exit (not exit) case.

Depending on which one of these cases we have, and whether we can store VRsave in the same
place that the prolog would have saved it, and that place is within the red zone, we handle
VRsave in three possible ways as follows:

m VRsave can be saved in the same place that the prolog would have saved it (so long asit’sin
the red zone) and the code following the prolog uses some vector registers.

exit case: mfspr rv|rll,VRsave
[stw rv|rll,-c(sp)]
ori ril,rv|rll,mask ; or oris, oris/ori as appropriate
moved up conditional block of code

mfspr ril,VRsave

[lwz ri2,-c(sp)]
mtspr VRsave,rv]ril2
Bcclr

prolog:
standard prolog with all references to VRsave omitted
mtspr VRsave,rll

Here VRsave is saved where the prolog would have saved it and r11 reflects the callee’ s set
of vector registers. Therefore the only thing the delayed prolog has to do with VRsave isto
reset VRsave fromrll.

Note that asin the standard prolog case it may be possible to hold the caller’sVRsavein a
volatile, rv (r3tor10, see note [3] above). Thusthestwand | wz are shown enclosed in
brackets to indicate that these may not be generated. This convention appliesto all the
following delayed prolog examples.

Texit case: mfspr rv|rll,VRsave
[stw rv|rll,-c(sp)]
ori rll,rv|rill,mask ; or oris, oris/ori as appropriate
moved up conditional block of code

bcc CRx,prolog

true or false block of code controlled by the conditional

[Twz ri2,-c(sp)]
mtspr VRsave,rv|ril2
blr

prolog:
standard prolog with all references to VRsave omitted

Thisis similar to the previous situation except that here the bcc branch to the prolog can be taken
without restoring VRsave. It istherefore saved in its proper stack offset (note the st wis not

MrCl[pp] AltiVec Release Notes 70 Copyright Apple Computer, Inc. 1998
2/18/99 All rights reserved.

optional) and defined correctly to reflect the callee’ s vector registers. The prolog doesn’t need to
do anything further with VRsave.

m VRsave can be saved in the same place that the prolog would have saved it (so long asit’sin
the red zone) and the code following the prolog uses no vector registers.

exit case: mfspr rv|rll,VRsave Texit case: mfspr rv|lrll,VRsave
[stw rvlrll,-c(sp)l [stw rvrll,-c(sp)]
ori r11,r11,mask ori ril,rill,mask
moved up block of code moved up block of code
[lwz ri2,-c(sp)l]
mtspr VRsave,rv]ril2
bceclr bcc CRx,prolog

true or false block

[lwz ri2,-c(sp)]
mtspr VRsave,rv]ril2
blr

prolog: prolog:

In this case we don’t need to worry about VRsave in the delayed prolog. We can thus treat
the exit and !exit forms similarly.

Herethe caller's VRsave isrestored just before the exit. The prolog, because it knows that
that portion of the code is not using any vector registers won't have any operations to save or
set VRsave.

m VRsave cannot be saved in the same place that the prolog would have saved it because that
location would be beyond the red zone.

exit case: mfspr rv]lrll,VRsave Texit case: mfspr rv|lrll,VRsave
[stw rvrlil,-4(sp)] [stw rv|rll,-4(sp)l]
ori rll,rv]rll,mask ori rll,rv]rll,mask
moved up block of code moved up block of code
[Twz ri2,-4(sp)]
mtspr VRsave,rv|ril2
Bcclr bcc CRx,prolog

true or false block

[lwz ri2,-4(sp)]
mtspr VRsave,rv|ril2
blr

prolog: prolog:
full prolog full prolog

Thisisthe non-optimal catch-all case. We need to save VRsave as in the above cases but we
cannot do it in the place the prolog would have put it since we are not creating the stack
frame yet and that save position is beyond the red zone. So, for lack of anything better,

-4(sp) isused. This means that the prolog must do everything it would normally do with
VRsave and the moved block must make sure the caller’ s VRsave is restored prior to

MrC[pp] AltiVec Release Notes 71 Copyright Apple Computer, Inc. 1998
2/18/99 All rights reserved.

dropping into the prolog.

It's not the best situation, but it probably won’t occur very often either (hopefully).

E.4 Epilog
AltiVec Stack ¢ Non-AltiVec Stack
e el i g:::::::::::::::::::::::::::::::::
epilog ¢
[1,7] addi ro,r3l]sp,d ¢
OF ———— - o
addis ro,0,d>>16 c
ori rO,r0,d&0xFFFF ¢
add ro,sp,roO ¢
¢
[1] 1 ri2,-16*vVx o
lIvx Vx,rl2,r0 c
- - - ¢
o] g e (o lwz ril,v(sp)
bl _restvxx COF —m e
c addis ro0,0,v>>16
[3.7] lwz ro,8(r31|sp) ¢ ori rO,r0,Vv&0XFFFF
[4,7] lwz r12,4(r31]sp) c lwzx rll,sp,roO
GO ————— e
lwz rll,-c(r31]sp) ¢ lwz ril,-c(sp)
[5.7] OF ——— e COF —m e
not loaded at all c not loaded at all
¢
[2,7] mr sp,r3l c lwz sp,0(sp)
GO ————— e
¢ addi sp,sp,len
¢
c lwz ro,8(sp)
¢ lwz ri2,4(sp)
¢
[31] mtlr ro c mtlr ro
¢
lwz Rx,-b(sp) c lwz Rx,-b(sp)
- - - c - - -
OF —— e GOl —————m e
Imw Rx,-b(sp) c Imw Rx,-b(sp)
¢
[4] mtcrf 56,r12 ¢ mtcrf 56,r12
[5] mtspr VRsave,rv|rilil c mtspr VRsave,rv|rilil
¢
[6]1 1fd FPx,-a(sp) o 1fd FPx,-a(sp)
- - - c - - -
blr c blr
OF ———— - GOl —————— e
b _restfxx c b _restfxx
MrC[pp] AltiVec Release Notes 72 Copyright Apple Computer, Inc. 1998

2/18/99 All rights reserved.

Notes:

[1]

[2]

[3]

[4]
[3]

[6]

[7]

The VRs are restored always using r0 as a base register, where r0 is the stack offset to the
end of the VRs, i.e., d in the diagram. PPCCRuntime.o library routines are provided for
- opt si ze non-leaf functions to restore the VRs out-of-line. There can be up to 12 VRs
restored and therefore there are 12 library routines (_r est v31, _restv29, ... _restv20).

The caller’'s SPisrestored here. In the vector caser3l isavailableto set SP. In the non-
vector case SP isrestored from O(sp) if alloca() was used or | en istoo large to be used in
and addi .

Thelink register isrestored only if needed (i.e., the function is not aleaf). The scheduling
isto keep thent | r “some distance” from the exiting branch that uses LR.

The condition register is restored only if CR2, CR3 or CR4 are used.

VRsave needs to be restored in the vector case. Note that VRsave can be restored in the
non-vector case where only volatile VRs are used and no vector data needs to be stored in
the frame. In that case the offset from the callee’s SP, v, is used to access the VRsave area
to avoid problems with the red zone (there is no alignment hole in the non-vector case). If
the function is aleaf, thereis no red zone problems so - ¢ can be used. Although the case
where v isused could be optimized if the VRsave area could be reached in the red zone,
this entire case (volatiles only, no vector data) is rare enough to not warrant the added
complications and conditions.

Note that if the prolog saved VRsave in avolatile, rv (r3 to r10) then the reload from the
stack is unnecessary in the epilog.

The FPRs are restored by library routinesin PPCCRuntime.o for - opt si ze non-leaf
functions. There are 18 FPR restore library functions (_r est f 31, _rest f f 30, ...
_restf14). Theseroutines“know” the stack offsets for the saves which is aways relative
to SP. Notethat if one of the library routinesis used it is simply branched to allowing its
exit to return to the caller since the link register is aready properly set.

If the function is aleaf, has aframe that fitsin the red zone (minus 8 if h is0 or 4), and
doesn’'t use alloca(), then the roles of SP and r31 arereversed. The caller’s SP remains
unchanged while r31 takes the role that SP had in the non-leaf case. This means that SP
does not need to be restored and the loading of the LR, CR, and VRsave become relative to
SP instead of r31. See also prolog note [9].

MrC[pp] AltiVec Release Notes 73 Copyright Apple Computer, Inc. 1998

2/18/99 All rights reserved.

