
=3
~ e-
0
(1
..... @>
~
+ +

-the­
~ COMPLETE

REFERENCE

SCHILDT

535

++
~the~~~~~~

COMPLETE REFERENCE

BORLAND·OSBORNE/McGRAW-HILL

PROGRAMMING SERIES

Turbo C®!C++:
The Complete Reference

Turbo C®/C++:
The Complete Reference

Herbert Schildt

Osborne McGraw-Hill

Berkeley New York St. Louis San Francisco
Auckland Bogota Hamburg London Madrid

Mexico City Milan Montreal New Delhi Panama City
Paris Sao Paulo Singapore Sydney

Tokyo Toronto

Osborne McGraw-Hill
2600Tenth Street
Berkeley, California 94710
U.S.A.

Osborne McGraw-Hill offers software for sale. For information on
software, translations, or book distributors outside of the U.S.A., please
write to Osborne McGraw-Hill at the above address.

Quite a few Turbo C and Turbo C++ structure definitions have been
presented and discussed in this book. The definitions originate in the
Turbo C and Turbo C++ manuals and disk files. These structure defini­
tions are used with permission from Borland International, Inc., devel­
oper of Turbo C and Turbo C++.

TURBO C®/C++: THE COMPLETE REFERENCE

Copyright© 1990 by McGraw-Hill, Inc. All rights reserved. Printed in
the United States of America. Except as permitted under the Copyright
Act of 1976, no part of this publication may be reproduced or distributed
in any form or by any means, or stored in a database or retrieval
system, without the prior written permission of the publisher, with the
exception that the program listings may be entered, stored, and exe­
cuted in a computer system, but they may not be reproduced for publi­
cation.

234567890 DOC 99876543210

ISBN 0-07-881535-5

Information has been obtained by Osborne McGraw-Hill from sources believed to be reliable. However, because of the
possibility of human or mechanical error by our sources, Osborne McGraw·Hill, or others, Osborne McGraw-Hill does not
guarantee the accuracy, adequacy, or completeness of any information and is not responsible for any errors or omissions or the
results obtained from use of such information.

PART ONE

ONE

TWO

THREE

FOUR

FIVE

SIX

SEVEN

EIGHT

NINE

TEN

ELEVEN

PART TWO

TWELVE

Introduction . xliii
Why This Book Is for You 1

The C Language 3

An Overview of C 5

Variables, Constants, Operators, and
Expressions . 17

Program Control Statements 61

Functions 91

Arrays 125

Pointers 149

Structures, Unions, and User-Defined
Variables . 173

Input, Output, and Disk Files 203

The Turbo C Preprocessor 245

Turbo C's Memory Models 263

Turbo C's Screen and Graphics
Functions . 279

The Turbo C Environment

The Turbo C Integrated
Programming Environment

317

319

THIRTEEN The Turbo C Text Editor 335

FOURTEEN Compiler and Linker Options 347

PART THREE The Turbo C Library 369

FIFTEEN Linking, Libraries, and
Header Files . 371

SIXTEEN 1/0 Functions 377

SEVENTEEN String, Memory, and Character
Functions . 451

EIGHTEEN Mathematical Functions 489

NINETEEN Time-, Date-, and System-Related
Functions . 509

TWENlY Dynamic Allocation 561

TWENlY-ONE Directory Functions 579

TWENlY-TWO Process Control Functions 591

TWENlY-THREE Text Screen and Graphics
Functions . 601

TWENlY-FOUR Miscellaneous Functions 687

PART FOUR TurboC++ 725

TWENTY-FIVE An Overview of C++ 727

TWENTY-SIX A Closer Look at Classes and
Objects . 7 49

TWENTY-SEVEN Function and Operator
Overloading . 783

TWENTY-EIGHT Inheritance, Virtual Functions, and
Polymorphism . 815

TWENTY-NINE Using C++ 's 1/0 Class Library 835

THIRTY Miscellaneous C++ Topics 865

PART FIVE The Turbo C++ Environment 899

THIRTY-ONE The Turbo C++ Integrated
Development Environment 901

THIRTY-lWO Using the Turbo C++ Editor 921

THIRTY-THREE Using the Command-Line Compiler,
VROOMM, and Multiple-File
Projects 939

APPENDIX A Using Turbo C++'s Debugger 951

APPENDIX B Using Turbo C's Debugger 963

APPENDIXC Interfacing to Assembly Language
Routines 975

APPENDIXD Multiple-File Programs and Libraries
Using Turbo C . 991

Index 1001

PART ONE The C Language

ONE An Overview of C
The Origins of the C Language
A Middle-Level Language
A Structured Language
A Programmer's Language
Compilers Versus Interpreters
The Form of a C Program

The Library and Linking
Separate Compilation
Turbo C's Memory Map

A Review of Terms

TWO Variables, Constants, Operators, and
Expressions
Identifier Names
Data Types

Type Modifiers
Access Modifiers

Declaration of Variables
Local Variables
Formal Parameters
Global Variables

Storage Class Specifiers
extern
static Variables
static Local Variables
static Global Variables
Register Variables

Assignment Statements
Type Conversion in Assignments
Variable Initializations

Constants
Backslash Character Constants

Operators
Arithmetic Operators
Increment and Decrement
Relational and Logical Operators
Bitwise Operators
The ? Operator

3

5
5
6
7
9

10
11
12
14
14
15

17
17
18
19
20
21
22
24
25
27
28
29
29
31
33
34
34
36
37
37
38
39
40
41
44
48

T
A
B
L
E

0
F

c
0
N
T
E
N
T
s

THREE

FOUR

The & and * Pointer Operators 49
The sizeof Compile-Time Operator 51
The Comma Operator 52
The . and - > Operators 53
[]and () . 54
Precedence Summary 54

Expressions . 54
Type Conversion in Expressions 55
Casts . 56
Spacing and Parentheses 57
C Shorthand . 58

Program Control Statements
True and False in C
C Statements
Conditional Statements
if

Nested ifs
The if-else-if Ladder
The ? Alternative

switch
Nested switch Statements

Loops
for

for Loop Variations
The Infinite Loop
fq:r Loops with No Bodies

while
do/while
break
exit()
continue
Labels and goto

Functions
The return Statement

Returning from a Function
Return Values
Returning Values from main()

61
61
62
62
62
64
65
66
69
73
73
73
75
78
79
80
82
83
85
86
87

91
91
91
93
95

FIVE

SIX

Scope Rules of Functions
Function Arguments

Call by Value, Call by Reference
Creating a Call by Reference
Calling Functions with Arrays

Arguments to main()
Functions Returning N oninteger Values
Using Function Prototypes

Standard Library Function Prototypes
Prototyping Functions that Have No

Parameters
Returning Pointers
Classic Versus Modern Parameter

Declarations
Recursion
Pointers to Functions
Implementation Issues

Parameters and General-Purpose
Functions

Efficiency .

95
96
96
97
99

103
108
110
113

113
115

117
118
120
123

123
123

Arrays . 125
Single-Dimension Arrays 125
Passing Single-Dimension Arrays to Functions 127

Strings . 128
Two-Dimensional Arrays 130

Arrays of Strings . 134
Multidimensional Arrays 136
Arrays and Pointers . 137
Allocated Arrays . 139
Array Initialization . 143

Unsized-Array Initializations 144
A Tic-Tac-Toe Example 146

Pointers 149
Pointers Are Addresses 150
Pointer Variables . 150
The Pointer Operators . 151
Pointer Expressions . 153

SEVEN

EIGHT

Pointer Assignments
Pointer Arithmetic
Pointer Comparisons

Turbo C's Dynamic Allocation Functions
Pointers and Arrays

Pointers to Character Arrays
Arrays of Pointers

Pointers to Pointers
Initializing Pointers
Pointers to Functions
Problems with Pointers

Structures, Unions, and User-Defined

153
154
155
157
159
160
162
163
165
166
169

Variables . 173
Structures

Referencing Structure Elements
Arrays of Structures

An Inventory Example
Passing Structures to Functions

Passing Structure Elements to Functions ..
Passing Entire Structures to Functions

Structure Pointers
Declaring a Structure Pointer
Accessing Structure Pointers

Arrays and Structures Within Structures
Bit-fields
Unions
Enumerations
Using sizeof to Ensure Portability
typedef

173
176
177
177
183
183
184
185
186
186
190
191
194
196
199
200

Input, Output, and Disk Files 203
Streams and Files . 204

Streams . 204
Text Streams . 205
Binary Streams . 205
Files . 205

The ANSI C 1/0 System:
Conceptual vs. Actual 207

NINE

Console I/O . 207
getche() and putchar() 208
gets() and puts() . 210

Formatted Console I/O 211
printf() . 212
scanf() . 214

The ANSI C File System 219
The File Pointer . 220
fopen() . 220
putc() . 222
getc() . 223
f close() . 224
ferror() and rewind() 224
Using fopen(), getc(), putc(), and fclose() 225
getw() and putw() 227
fgets() and fputs() 227
fread() and fwrite() 228
fseek() and Random Access I/O 229
The Standard Streams 233
fprintf() and fscanf() 233
Erasing Files . 235

The UNIX-Like File Routines 236
open(), creat(), and close() 237
write() and read() 239
unlink() . 241
Random Access Files and lseek() 241

Choosing an Approach . 243

The Turbo C Preprocessor
The Turbo C Preprocessor
#define
#error
#include
Conditional Compilation Directives

#if, #else, #elif, and #endif
#if def and #ifndef

#undef
#line
#pragma
Predefined Macro Names•

245
245
246
249
250
251
251
254
255
256
257
259

TEN

ELEVEN

Turbo C's Memory Models 263
The 8086 Family of Processors 263
Address Calculation . 264
Near Versus Far Pointers 267
Memory Models . 267

Tiny Model . 268
Small Model . 268
Medium Model . 268
Compact Model . 268
Large Model . 269
Huge Model . 269
Selecting a Model . 269
The Memory Model Compiler Options 270

Overriding a Memory Model 271
far . 271
near . 272
huge . 273

Turbo C's Segment Specifiers 273
A Memory Display and Change Program 27 4

The display_ mem() Function 27 4
The change_mem() Function 275
The Entire Memory Display and Change

Program . 275

Turbo C's Screen and Graphics
Functions . 279
The PC Video Adapters and

Modes of Operation . 279
The Text Screen Functions 281

Windows . 281
Basic Input and Output 282
The Screen Manipulation Functions 284
Text Attribute Control 288
The Text Screen Status Functions 292
The directvideo Variable 293
A Short Demonstration Program 293

Turbo C's Graphics Functions 295
Viewports . 296
Video Mode Control Functions 296

PART TWO

TWELVE

THIRTEEN

The Basic Graphing Functions 302
Text Output in Graphics Mode 306
Graphics Mode Status 308
The Graphics Screen

Manipulation Functions 309

The Turbo C Environment 317

The Turbo C Integrated
Programming Environment 319
Executing Turbo C . 319
The Main Menu . 319

File . 322
Edit . 323
Run . 323
Compile . 323
Project . 324
Options . 325
Debug . 325
Break/watch . 326

The Edit and Message Windows 327
The Hot Keys . 327

Help . 329
Switching Windows and Zoom 329
Make . 329
The ALT-X Key Combination 329

The TCINST Program . 329
Compile . 330
Project . 330
Options . 330
Debug . 331
Editor Commands . 331
Screen Mode . 332
Set Colors . 332
Resize Windows . 333
Quit/save . 334

The Turbo C Text Editor
Editor Commands

335
335

FOURTEEN

9Invoking the Editor and Entering Text 335
Deleting Characters, Words, and Lines 337
Moving, Copying, and Deleting Blocks of Text 338
More on Cursor Movement 338
Find and Find with Replace 339
Setting and Finding Place Markers 340
Saving and Loading Your File 340
Understanding Autoindentation 341
Moving Blocks of Text to and from Disk Files 342
Pair Matching . 342
Miscellaneous Commands 343
Invoking Turbo C with a File Name 344
Command Summary . 344

Compiler and Linker Options
Integrated Development Environment Options
Compiler Options

Model
Defines
Code Generation
Optimization
Source
Errors
Names

Linker Options
Map File
Initialize Segments
Default Libraries
Graphics Library
Warn Duplicate Symbols
Stack Warning.
Case-Sensitive Link

Environment Options
The Directories Option
Arguments
Saving and Loading Options

The TCCONFIG.TC File
Using Other Configuration Files

The Command-Line Version of Turbo C

347
347
348
348
348
349
351
351
353
353
355
355
356
356
356
356
356
357
357
358
359
359
359
360
360

PART THREE

FIFTEEN

SIXTEEN

Compiling with the
Command-Line Compiler 360

What's in a File Name? 364
TLINK: The Turbo C Standalone Linker 365

Linking Turbo C Programs 366
TLINK Options . 367

The Turbo C Library 369

Linking, Libraries, and
Header Files . 371
The Linker
The C Standard Library

Library Files Versus Object Files
Header Files

Macros in Header Files

1/0 Functions

371
373
373
373
374

377
The 1/0 Functions . 377

int access(const char *filename, int mode) . . 378
int _ chmod(const char *filename,

int get_ set, int attrib) 379
int chmod(const char *filename, int mode) 380
int chsize(char handle, long size) 380
void clearerr(FILE *stream) 381
int close(int f d)
int _ close(int fd) . 382
int creat(const char *filename, int pmode)
int _creat(const char *filename, int attrib)
int creatnew(const char *filename, int attrib)
int creattemp(const char *filename,

int attrib) . 384
int dup(int handle)
int dup2(int old_handle, int new _handle) . . 385
int eof(int fd) . 386
int fclose(FILE *stream)
int fcloseall(void) . 387

FILE •fdopen(int handle, char •mode) 388
int feof(FILE •stream) 389
int ferror(FILE •stream) 390
int fflush(FILE •stream); 390
int fgetc(FILE •stream); 391
int fgetchar(void) . 392
int •fgetpos(FILE •stream, fpos _ t •pos) . . 393
char •fgets(char •str, int num,

FILE •stream) . 394
long filelength(int handle) 395
int fileno(FILE •stream) 395
int fl.ushall(void); . 396
FILE •fopen(const char •fname,

const char •mode) 397
int fprintf(FILE •stream,

const char •format, arg-list) 399
int fputc(illt ch, FILE •stream) 399
int fputchar(int ch) 400
int fputs(const char •str, FILE •stream) 401
size_t fread(void •buf, size_t size,

size_ t count, FILE •stream) 402
FILE •freopen(const char •fname,

const char •mode, FILE •stream) 403
int fscanf(FILE •stream, const char •format,

arg-list) . 404
int fseek(FILE •stream, long offset,

int origin) . 405
int fsetpos(FILE •stream,

const fpos _ t •pos) 406
int fstat(int handle, struct stat •statbuf) 407
long ftell(FILE •stream) 408
size_ t fwrite(const void •buf, size_ t size,

size_ t count, FILE •stream) 409
int getc(FILE •stream) 410
int getch(void)
int getche(void) . 411
int getchar(void) . 412
char •gets(char •str) 412
int getw(FILE •stream) 414
int isatty(int handle) 414

int lock(int handle, long offset,
long length) . 415

long lseek(int handle, long offset,
int origin) . 416

int open(const char *filename, int access,
unsigned mode) . 417

int_open(const char *filename, int access) 417
void perror(const char *str) 420
int printf(const char *format, arg-list) 420
int putc(int ch, FILE *stream) 423
int putchar(int ch) . 424
int puts(const char *str) 425
int putw(int i, FILE *stream) 425
int read(int fd, void *buf, unsigned count) . . 426
int_read(int fd, void *buf,

unsigned count) 426
int remove(const char *fname) 427
int rename(const char *oldfname,

const char *newfname); 428
void rewind(FILE *stream) 429
int scanf(const char *format, arg-list) 429
void setbuf(FILE *stream, char *but) 434
int setmode(int handle, int mode) 435
int setvbuf(FILE *stream, char *buf,

int mode, size_ t size) 436
int sopen(const char *filename, int access,

int shfl.ag, int mode) 436
int sprintf(char *buf, const char *format,

arg-list) . 439
int sscanf(char *buf, const char *format,

arg-list) . 439
int stat(char •filename,

struct stat •statbuf) 440
long tell(int f d) . 441
FILE •tmpfile(void) 442
char *tmpnam(char *name) 443
int ungetc(int ch, FILE *stream) 443
int unlink(const char •fname) 444
int unlock(int handle, long offset,

long length) . 445

int vprintf(const char *format,
va_list arg _ptr) 446

int vfprintf(FILE *stream, const char *format,
va_list arg _ptr) 446

int vsprintf(char *buf, const char *format,
va_list arg_ptr) 446

int vscanf(const char *format,
va_list arg_ptr) 448

int vfscanf(FILE *stream,
const char *format, va_list arg_ptr) 448

int vsscanf(const char * buf,
const char *format, va_list arg_ptr) 448

int write(int handle, void *buf, int count) 449
int _ write(int handle, void *buf, int count) . 449

SEVENTEEN String, Memory, and Character
Functions . 451

int isalnum(int ch) . 452
int isalpha(int ch) . 452
int isascii(int ch) . 453
int iscntrl(int ch) . 454
int isdigit(int ch) . 455
int isgraph(int ch) . 455
int islower(int ch) . 456
int isprint(int ch) . 457
int ispunct(int ch) . 458
int isspace(int ch) . 458
int isupper(ch) . 459
int isxdigit(int ch) . 460
void *memccpy(void *dest, const void *source,

int ch, size_ t count); 461
void *memchr(const void *buffer, int ch,

size_ t count) . 461
int memcmp(const void *bufl,

const void *buf2, size_ t count) 462
int memicmp(const void *bufl,

const void *buf2, size_ t count) 462

void *memcpy(void *dest, const void *source,
size_ t count) . 463

void *memmove(void *dest,
const void *source, size_ t count) 464

void *memset(void *buf, int ch,
size_ t count) . 465

void movedata(unsigned sourceseg,
unsigned sourceoff, unsigned destseg,
unsigned destoff, size_ t count) 466

void movemem(void *source, void *dest,
unsigned count) . 466

void setmem(void *buf,
unsigned count, char ch) 467

char *stpcpy(char *strl, const char *str2) 467
char •strcat(char •strl, const char •str2) 468
char •strchr(const char •str, int ch) 469
int strcmp(const char *strl,

const char •str2) 470
int strcoll(char *strl, char •str2) 471
char •strcpy(char •strl, const char *str2) . . 471
size_t strcspn(const char •strl,

const char •str2) 4 71
char *strdup(const char *str) 472
char• _strerror(const char •str) 473
char •strerror(int num) 474
int stricmp(const char •strl,

const char •str2) 4 7 4
int strcmpi(const char •strl,

const char •str2) 4 7 4
size_t strlen(const char •str) 475
char •strlwr(char •str) 476
char •strncat(char •strl, const char •str2,

size_t count) . 476
int strncmp(const char •strl,

const char •str2, size_ t count) 477
int strnicmp(const char •strl,

const char •str2, size_t count) 477
int strncmpi(const char •strl,

const char •str2, size_t count) 477

char *strncpy(char *dest, const char *source,
size_t count) . 478

char *strnset(char *str, int ch,
size_t count); . 479

char *strpbrk(const char *strl,
const char *str2) 480

char *strrchr(const char *str, int ch) 480
char *strrev(char *str) 481
char *strset(char *str, int ch) 482
size_t strspn(const char *strl,

const char *str2) 482
char *strstr(const char *strl,

const char *str2) 483
char •strtok(char *strl, const char *str2) . . 484
char •strupr(char •str) 485
size_ t strxfrm(char *dest,

const char *source, size_ t count) 486
int tolower(int ch)
int _ tolower(int ch) 486
int toupper(int ch)
int _ toupper(int ch) 487

EIGHTEEN Mathematical Functions 489
double acos(double arg) 489
double asin(double arg) 490
double atan(double arg) 491
double atan2(double y, double x) 492
double cabs(struct complex znum) 492
double ceil(double num) 493
double cos(double arg) 494
double cosh(double arg) 494
double exp(double arg) 495
double fabs(double num) 495
double floor(double num) 496
double fmod(double x, double y) 496
double frexp(double num, int *exp) 497
double hypot(double x, double y) 497
double ldexp(double num, int exp) 498
double log(double num) 498

double loglO(double num) 499
int matherr(struct exception *err) 500
double modf(double num, int *i) 501
double poly(double x, int n, double c[]) 502
double pow(double base, double exp) 502
double powlO(int n) 503
double sin(double arg) 504
double sinh(double arg) 505
double sqrt(double num) 505
double tan(double arg) 506
double tanh(double arg) 506

NINETEEN Time-, Date-, and System-Related
Functions . 509

int absread(int drive, int numsects,
int sectnum, void *buf) 511

int abswrite(int drive, int numsects,
int sectnum, void *but) 511

char *asctime(const struct tm *ptr) 512
int bdos(int fnum, unsigned dx, unsigned al)
int bdosptr(int fnum, void *dsdx,

unsigned al) . 513
int bioscom(int cmd, char byte, int port) 514
int biosdisk(int cmd, int drive, int head,

int track, int sector, int nsects,
void *but) . 517

int biosequip(void) 517
int bioskey(int cmd) 519
int biosmemory(void) 521
int biosprint(int cmd, int byte, int port) 521
long biostime(int cmd, long newtime) 522
clock_ t clock(void) 523
struct country *country(int countrycode,

struct country *countryptr) 524
char *ctime(const time_ t *time) 525
void ctrlbrk(int (*fptr)(void)) 526
void delay(unsigned time) 527
double difftime(time_ t time2,

time_ t timel) . 528

void disable(void) . 529
int dosexterr(struct DOSERROR *err) 529
long dostounix(struct date *d,

struct time *t) . 530
void enable(void) . 531
unsigned FP _OFF(void far *ptr) 531
unsigned FP _SEG(void far *ptr) 531
void ftime(struct timeb *time) 532
void geninterrupt(int intr) 533
int getcbrk(void) . 533
void getdate(struct date *d) 534
void gettime(struct time *t) 534
void ,getdfree(unsigned char drive,

struct dfree *dfptr) 535
char far *getdta(void) 536
void getfat(unsigned char drive,

struct fatinfo *fptr) 537
void getfatd(struct fatinfo *fptr) 537
int getftime(int handle,

struct ftime *ftptr) 538
unsigned getpsp(void) 539
void interrupt(*getvect(int intr))() 539
int getverify(void) . 540
struct tm *gmtime(const time_t *time) 540
void harderr(int (*int_handler)()) 541
void hardresume(int code) 541
void hardretn(int code) 541
int inport(int port) . 543
unsigned char inportb(int port) 543
int int86(int int_ num,

union REGS *in_regs,
union REGS *out_regs) 543

int int86x(int int_num,
union REGS *in_regs,
union REGS *out_regs,
struct SREGS *segregs) 543

int intdos(union REGS *in_regs,
union REGS *out_regs) 544

int intdosx(union REGS *in_regs,
union REGS *out_regs,
struct SREGS *segregs) 544

void intr(int intr _ num,
struct REGPACK *reg) 545

void keep(unsigned char status,
unsigned size) . 546

struct tm *localtime(const time_ t *time) 547
time_ t mktime(struct tm *P) 548
void far *MK_FP(unsigned seg,

unsigned oft) . 549
void outport(int port, int word) 549
void outportb(int port,

unsigned char byte) 549
char *parsfnm(const char *fname,

struct fcb *fcbptr, int option) 550
int peek(unsigned seg, unsigned offset) 551
char peekb(unsigned seg, unsigned offset) . . 551
void poke(unsigned seg,

unsigned offset, int word) 551
void pokeb(unsigned seg,

unsigned offset, char byte) 551
int randbrd(struct fcb *fcbptr, int count)
int randbwr(struct fcb *fcbptr, int count) 552
void segread(struct SREGS *sregs) 553
int setcbrk(int cb) . 553
void setdate(struct date *d)
void settime(struct time *t) 554
void setdta(char far *dta) 555
int setftime(int handle, struct ftime *t) 555
void setvect(int intr,

void interrupt(*isr)()) 556
void setverify(int value) 556
void sleep(unsigned time) 557
int stime(time_ t *t) 558
time_ t time(time_ t *time) 559
void tzset(void) . 559
void unixtodos(long utime, struct date *d,

struct time *t) . 560

TWENTY Dynamic Allocation 561
int allocmem(unsigned size,

unsigned *seg) . 562
int brk(void *eds) . 563
void *calloc(size_t num, size_t size) 563
unsigned coreleft(void)

/* small data models */ 564
unsigned long coreleft(void)

/* large data models */ 564
void far *farcalloc(unsigned long num,

unsigned long size) 565
unsigned long farcoreleft(void) 565
void farfree(void far *ptr) 566
void far *farmalloc(unsigned long size) 567
void far *farrealloc(void far *ptr,

unsigned long newsize) 567
void free(void *ptr) 567
int freemem(unsigned seg) 568
int heapcheck(void) 569
int farheapcheck(void) 569
int heapcheckfree(unsigned fill) 570
int farheapcheckfree(unsigned fill) 570
int heapchecknode(void *ptr) 571
int farheapchecknode(void far *ptr) 571
int heapfillfree(unsigned fill) 572
int farheapfillfree(unsigned fill) 572
int heapwalk(struct heapinfo *hinfo) 573
int farheapwalk(struct farheapinfo *hinfo) . . 573
void *malloc(size_t size) 575
void *realloc(void *ptr, size_ t newsize) 576
void *sbrk(int amount) 577
int setblock(unsigned seg, unsigned size) 578

TWENTY-ONE Directory Functions 579
int chdir(const char *Path) 579
int findfirst(const char *name,

struct fiblk *ptr, int attrib) 580

TWENTY-TWO

void fnmerge(char *path, const char *drive,
const char *dir, const char *fname,
const char *ext) " 581

int fnsplit(const char *path, char *drive,
char *dir, char *fname, char *ext) 581

int getcurdir(int drive, char *dir) 583
char *getcwd(char *dir, int len) 584
int getdisk(void) . 585
int mkdir(const char *path) 586
char *mktemp(char *fname) 586
int rmdir(const char *path) 587
char *searchpath(const char *fname) 588
int setdisk(int drive) 589

Process Control Functions 591
void abort(void) . 591
int atexit(void (*func)()) 592
int execl(char *fname, char *argO, ... ,

char *argN, NULL) 593
int execle(char *fname, char *argO, ... ,

char *argN, NULL, char *envp[]) 593
int execlp(char *fname, char *argO, ... ,

char *argN, NULL) 593
int execlpe(char *fname, char *argO, ... ,

char *argN, NULL, char *envp[]) 593
int execv(char *fname, char *arg[]) 593
int execve(char *fname, char *arg[],

char *envp[]) . 593
int execvp(char *fname, char *arg[]) 593
int execvpe(char *fname, char *arg[],

char *envp[]) . 593
void exit(int status) 595
void _ exit(int status) 595
int spawnl(int mode, char *fname,

char *argO, ... ,char *argN, NULL) 596
int spawnle(int mode, char *fname,

char *argO, ... , char *argN, NULL,
char *envp[]) . 596

int spawnlp(int mode, char *fname,
char *argO, ... ,char *argN, NULL) 596

int spawnlpe(int mode, char *fname,
char *arg0, ... ,char *argN, NULL,
char *envp[]) . 596

int spawnv(int mode, char *fname,
char *arg[]) . 596

int spawnve(int mode, char *fname,
char *arg[], char *envp[]) 596

int spawnvp(int mode, char *fname,
char *arg[]) . 596

int spawnvpe(int mode, char *fname,
char *arg[], char *envp[]) 596

lWENTY·THREE Text Screen and
Graphics Functions 601

void far arc(int x, int y, int start, int end,
int radius) . 602

void far bar(int left, int top, int right,
int bottom)

void far bar3d(int left, int top, int right,
int bottom, int depth, int topflag) 603

void far circle(int x, int y, int radius) 604
void far cleardevice(void)
void far clearviewport(void) 604
void far closegraph(void) 606
void clreol(void) . 606
void clrscr(void) . 606
int cprintf(const char *fmt, ...) 607
int cputs(const char *str) 608
int cscanf(char *fmt, ...) 609
void delline(void) . 610
void far detectgraph(int far *driver,

int far *mode) . 611
void far drawpoly(int numpoints,

int far *points) . 612
void far ellipse(int x, int y, int start, int end,

int xradius, int yradius) 612

void far fillellipse(int x, int y,
int xr, int yr) • 613

void far fillpoly(int numpoints,
int far *points) . 614

void far floodfill(int x, int y, int border) 615
void far getarccoords(struct arccoordstype

far *coords) . 616
void far getaspectratio(int far *xasp,

int far *yasp) . 617
int far getbkcolor(void) 618
int far getcolor(void) 619
struct palettetype *far

getdefaultpalette(void) 619
char *far getdrivername(void) 620
void far getfillpattern(char far *pattern) 621
void far getfillsettings(struct fillsettingstype

far *info) . 622
int far getgraphmode(void) 623
void far getimage(int left, int top, int right,

int bottom, void far *huf) 625
void far getlinesettings(struct

linesettingstype far *info) 627
int far getmaxcolor(void) 628
int far getmaxmode(void) 629
int far getmaxx(void) 629
int far getmax:y(void) 629
char *far getmodename(int mode) 630
void far getmoderange(int driver, int far

*lowmode, int far *himode) 631
void far getpalette(struct palettetype

far *pal) . 632
int far getpalettesize(void) 635
unsigned far getpixel(int x, int y) 636
int gettext(int left, int top, int right,

int bottom, void *buf) 636
void far gettextsettings(struct

textsettingstype far *info) 637

void far getviewsettings(struct viewporttype
far *info) . 638

int far getx(void) . 639
int far gety(void) . 639
void gotoxy(int x, int y) 640
void far graphdefaults(void) 640
char *far grapherrormsg(int errcode) 641
void far _graphfreemem(void far *ptr,

unsigned size) . 642
void far *far _graphgetmem(unsigned

size) . 642
int far graphresult(void) 642
void highvideo(void) 643
unsigned far imagesize(int left, int top,

int right, int bottom) 644
void far initgraph(int far *driver,

int far *mode, char far *path) 645
void insline(void) . 647
int far installuserdriver(char far

*drivername, int huge (*func)(void)) 648
int far installuserfont(char far *fontname) 649
void far line(int startx, int starty, int endx,

int endy) . 649
void far lineto(int x, int y); 649
void far linerel(int deltax, int deltay) 649
void lowvideo(void) 650
void far moverel(int deltax, int deltay) 651
int movetext(int left, int top, int right,

int bottom, int newleft, int newtop) 652
void far moveto(int x, int y) 652
void normvideo(void) 653
void far outtext(char far *str) 653
void var outtextxy(int x, int y, char *str) . . . 653
void far pieslice(int x, int y, int start, int end,

int radius) . 654
void far putimage(int x, int y, void var *buf,

int op) . 655
void far putpixel(int x, int y, int color) 657
int puttext(int left, int top, int right,

int bottom void *buf) 657

void far rectangle(int left, int top, int right,
int bottom) . 658

int registerbgidriver(void (*driver)(void)) 659
int registerbgifont(void (*font)(void)) 659
void far restorecrtmode(void) 659
void far sector(int x, int y, int start,

int end,int xr, int yr) 660
void far setactivepage(int page) 661
void far setallpalette(struct palettetype far

*pal) . 662
void far setaspectratio(int xaspect,

int yaspect) . 662
void far setbkcolor(int color) 663
void far setcolor(int color) 665
void far setfillpattern(char far *pattern,

int color) . 665
void far setfillstyle(int pattern, int color) . . . 666
unsigned far

setgraphbufsize(unsigned size) 668
void far setgraphmode(int mode) 668
void far setlinestyle(int style,

unsigned pattern, int width) 669
void far setpalette(int index, int color) 671
void far setrgbpalette(int color, int r, int g,

int b) . 673
void far settextjustify(int horiz, int vert) 673
void far settextstyle(int font, int direction,

int size) . 674
setusercharsize(int mulx, int divx, int muly,

int divy) . 675
void far setviewport(int left, int top, int right,

int bottom, int clip) 676
void far setvisualpage(int page) 677
void far setwritemode(int wmode) 678
void textattr(int attr) 679
void textbackground(int color) 680
void textcolor(int color) 681
int far textheight(char far *str) 682
void textmode(int mode) 683
int far textwidth(char far *str) 684

int wherex(void) . 685
int wherey(void) . 685
void window(int left, int top, int right,

int bottom) . 685

lWENlY-FOUR Miscellaneous Functions 687
int abs(int num) . 687
void assert(int exp) 688
double atof(const char *str) 689
int atoi(const char *str) 690
int atol(const char *str) 691
void *bsearch(const void *key,

const void *base, size_ t num, size_ t size,
int (*compare)(const void *,
const void *)) . 692

unsigned int _ clear87(void) 693
unsigned int _ control87(unsigned fpword,

unsigned fpmask) 694
div_ t div(int numer, int denom) 694
char *ecvt(double value, int ndigit, int *dee,

int *sign) . 695
void __ emit __ (arg, ...) 696
char *fcvt(double value, int ndigit, int *dee,

int *Sign) . 696
void _fpreset(void) 697
char *gcvt(double value,

int ndigit, char *buf) 697
char *getenv(const char *name) 698
char *getpass(const char *str) 699
unsigned getpid(void) 700
char *itoa(int num, char *str, int radix) 700
long labs(long num) 701
ldiv _ t ldiv(long numer, long denom) 702
void *lfind(const void *key, const void *base,

size_ t *num, size_ t size,
int (*compare)(const void *,
const void *)) . 702

void *lsearch(const void *key,
const void *base, size_ t *num, size_ t size,
int (*compare)(const void *,
const void *)) . 702

void longjmp(jmp _ buf envbuf, int val) 704
char *ltoa(long num, char *str, int radix) 705
char *ultoa(unsigned long num, char *str,

int radix) . 705
unsigned long _lrotl(unsigned long 1, inti)
unsigned long _lrotr(unsigned long 1,

inti) . 706
max(x,y) . 707
min(x,y) . 707
void nosound(void) 708
int putenv(const char *evar) 709
void qsort(void *base, size_ t num,

size_ t size, int (*compare)(const void *,
const void *)) . 709

int raise(int signal) 711
int rand(void) . 712
int random(int num)
void randomize(void) 713
unsigned _rotl(unsigned val, int num) 713
unsigned _rotr(unsigned val, int num) 713
void _setcursortype(int type) 714
int setjmp(jmp _ buf envbuf) 715
void (*signal (int signal,

void (*sigfunc) (int func)))(int) 716
void sound(unsigned freq) 718
void srand(unsigned seed) 718
unsigned int _ status87(void) 719
double strtod(const char *start,

char **end) . 719
long strtol(const char *start, char *end,

int radix) . 721
unsigned long strtoul(const char *start,

char **end, int radix) 721

void swab(char *source, char *dest,
int num) . 722

int system(const char *str) 722
void va_start(va_list argptr, last_parm) . 723
void va_end(va_list argptr) 723
type va_arg(va_list argptr, type) 723

PART FOUR Turbo C++ 725

TWENTY-FIVE An Overview of C++ 727
The Origins of C++ . 727
What Is Object-Oriented Programming? 728

Objects . 729
Polymorphism . 730
Inheritance . 730

Some C++ Fundamentals 730
Compiling a C++ Program 733
Introducing C++ Classes 733
Function Overloading . 737
Operator Overloading . 7 40
Inheritance . 740
Constructors and Destructors 7 44
The C++ Keywords . 748

TWENTY-SD< A Closer Look at Classes and
Objects . 7 49
Parameterized Constructors 7 49
Friend Functions . 753
Default Function Arguments 757

Using Default Arguments Correctly 760
Classes and Structures Are Related 761
Unions and Classes Are Related 763
In-Line Functions . 764

Creating In-Line Functions Inside a Class 766
More About Inheritance 767
Multiple Inheritance . 772
Passing Objects to Functions 777
Arrays of Objects . 778
Pointers to Objects . 779

lWENTY-SEVEN Function and Operator
Overloading 783
Overloading Constructor Functions 783
Local Variables in C++ . 785
Dynamic Initialization . 786
Applying Dynamic Initialization to

Constructors . 788
The this Keyword . 789
Operator Overloading . 791

Friend Operator Functions 797
References . 801

N onparameter Reference Variables 804
Using a Reference to

Overload a Unary Operator 806
Another Example of Operator Overloading 809

lWENTY-EIGHT Inheritance, Virtual Functions, and
Polymorphism . 815
Pointers to Derived Types 815
Virtual Functions . 818
Why Virtual Functions? 822
Pure Virtual Functions and Abstract Types 826
Early Versus Late Binding 829
Constructors and Destructors in

Derived Classes . 829
Multiple Base Classes . 832

lWENTY-NINE Using C++'s 1/0 Class Library 835
Why C++ Has Its Own I/O System 835
C++ Streams . 836

The C++ Predefined Streams 837
The C++ Stream Classes 837
Creating Your Own Insertors and Extractors 837

Creating Insertors 838
Overloading Extractors 841

Formatting I/O . 843
Formatting Using the ios

Member Functions 843

Using Manipulators 84 7
Creating Your Own Manipulator Functions 849

Creating Parameterless Manipulators 849
Creating Parameterized Manipulators 851

File I/O . 854
Opening and Closing a File 855
Reading and Writing Text Files 857
Binary I/O . 859
Detecting EOF . 861
Random Access . 862

A Short Note About the Old Stream Class
Library . 864

THIRTY Miscellaneous C++ Topics 865
Dynamic Allocation Using new and delete 865

Overloading new and delete 870
static Class Members . 87 4
virtual Base Classes . 877
Using the asm Keyword 881
Linkage Specification . 882
The .* and - > * Operators 883
Creating Conversion Functions 885
Granting Access . 887
The overload Anachronism 888
Differences Between C and C++ 889
Turbo C++ 's Complex and BCD Classes 890
The Message-Based Philosophy 894
Final Thoughts . 897

PART FIVE The Turbo C++ Environment 899

THIRTY-ONE The Turbo C++ Integrated
Development Environment 901
Executing the Turbo C++ IDE 901
Using the Mouse . 902
The Main Menu . 903

Dialog Boxes . 904

Turning On Full Menus 906
Exploring the Main Menu 907

The System Menu . 907
File . 908
Edit . 909
Search . 909
Run . 909
Compile . 910
Debug . 910
Project . 910
Options . 911
Window . 912
Help . 914

The Hot Keys . 915
Using Turbo C++'s Context-Sensitive Help 915
Understanding Windows 917

Sizing and Moving Windows 918
The Editor Window 919
The Message Window 919
The Status Line . 919

THIRlY-TWO Using the Turbo C++ Editor 921
Editor Commands . 921
Invoking the Editor and Entering Text 922
Deleting Characters, Words, and Lines 923
Moving, Copying, and Deleting Blocks of Text 924
Using the Clipboard . 927
More on Cursor Movement 928
Find and Replace . 929
Setting and Finding Place Markers 931
Saving and Loading Your File 932
Understanding Autoindentation 932
Moving Blocks of Text to and from Disk Files 933
Pair Matching . 933
Miscellaneous Commands 934
Changing the Editor Defaults 935
Invoking Turbo C++ with a File Name 936
Command Summary . 936

THIRTY-THREE

APPENDIX A

APPENDIX B

Using the Command-Line Compiler,
VROOMM, and Multiple-File
Projects
Compiling Using the Command-Line Compiler .. .

Using a Response File
Compiling Multiple-File Programs Using

the IDE
Projects and the Project Option

Using the VROOMM Overlay System

Using Turbo C++ 's Debugger
Preparing Your Programs for Debugging
What Is a Source-Level Debugger?
Debugger Basics

Single-Stepping
Setting Breakpoints
Watching Variables

Watched-Expression Format Codes
Qualifying a Variable's Name

Watching the Stack
Evaluating an Expression
Modifying a Variable
Inspecting a Variable
Use the Register Window

Using Turbo C's Debugger
Preparing Your Programs for Debugging
What Is a Source-Level Debugger?
Debugger Basics

Single-Stepping
Setting Breakpoints
Watching Variables

Watching Expressions
Qualifying a Variable's Name
Watched-Expression Format Codes

Watching the Stack
Evaluating an Expression

939
939
943

945
946
948

951
951
951
952
953
954
954
955
958
959
960
960
961
961

963
963
963
964
965
965
966
967
968
969
971
972

APPENDIX C

APPENDIX D

Changing a Variable's Value 973
Finding a Function . 973

Interfacing to Assembly Language
Routines . 975
Calling Conventions . 977

The Calling Conventions of Turbo C/C++ 977
Creating an Assembly Code Function 978
Using asm . 988

Multiple-File Programs and Libraries
Using Turbo C . 991
Projects and the Project Option 991

Trying It Yourself . 992
Specifying Additional Dependencies 993

The Standalone Make . 994
TLIB, The Turbo C Librarian 997

Index 1001

Millions of programmers worldwide have come to rely on Borland's
Turbo Language products to develop programs ranging from simple
utilities to large commercial and real-time applications. Now with our
introduction of Turbo C++ and our earlier release of Turbo Pascal 5.5,
Borland has brought object-oriented programming into familiar lan­
guages on high-performance, production-oriented programming plat­
forms.

Borland's goal is to be the leader in high productivity and compre­
hensive object-oriented development environments and tools for profes­
sionals to novices. Our strategy is to provide state-of-the-art products to
our customers. Borland•Osborne/McGraw-Hill is committed to providing
the best books to support that strategy. Turbo CITurbo C++: The Com­
plete Reference ably demonstrates those commitments.

Turbo CIC++: The Complete Reference is written for Turbo C and/or
Turbo C++ users. Whether you're just beginning or have been program­
ming for years, you will benefit from this important volume. Packed with
a wealth of information, it speaks to all users of these languages. You
get a solid overview of the features that Turbo C and Turbo C++ have in
common and a complete discussion of all library functions. The introduc­
tion to C++ and object-oriented programming is outstanding.

In short, regardless of your programming level, Turbo CIC++: The
Complete Reference is the book to help you realize the benefits of
object-oriented programming while maintaining the performance and
efficiency of C.

Philippe Kahn
Chief Executive Officer
Borland International, Inc.

F
0
R
E
w
0
R
D

Xii

This book is about both Turbo C and Turbo C++.
Since Borland first introduced Turbo C in the mid-1980s, it has

become one of the world's most widely used (and liked) C compilers. It
is known for both its speed of compilation and the efficiency of the code
it produces. In fact, Turbo C has been used to produce ~ome of the
best-known software products. Another important feature of Turbo C is
that it complies with the ANSI C standard. This means that programs
you write using Turbo C axe portable and easily maintained. At the time
of this writing, both C and Turbo C axe widely used. In fact, it will most
likely be a very long time before C is deemed obsolete as a program­
ming language.

As the popularity of C increased during the 1980s, a new way to
program was beginning to emerge. This programming method is called
object-oriented programming (OOP for short), and the C version of this
approach is called C++. Because of the importance of object-oriented
programming, C++ is expected to grow in popularity. Some predict that
it will become the dominant language of the 1990s.

To address the demand for a high-quality C++ compiler, Borland
began work on Turbo C++ in 1988, adding the C++ OOP extensions to
the extremely powerful Turbo C. It was not an easy task. Although easy
for the programmer to use, C++ is a rigorous exercise in compiler
construction. In fact, the Turbo C++ project has been the largest and
most ambitious Borland has undertaken. To create Turbo C++, Borland
assembled a group of some of the best compiler programmers available.

xllv Turbo C/C++: The Complete Reference

Their efforts paid off: Turbo C++ retains the speed and efficiency of
Turbo C but adds support for object-oriented programming. Turbo C++
is truly a language for the 1990s.

Whether you use Turbo C or Turbo C++, the purpose of this guide
is to help you unleash the power of these two impressive compilers.

About This Book

This book provides a comprehensive source of information about both
the Turbo C and Turbo C++ programming languages and their environ­
ments. It includes numerous example programs that illustrate the ele­
ments that form each language. It is designed for programmers at all
skill levels. If you are just learning to program in Turbo C or Turbo
C++, this book makes an excellent companion to any tutorial, providing
answers to your specific questions. If you are an experienced C or C++
programmer, this book serves as a handy desk reference.

How This Book Is Organized

This book is divided into five parts:

Part One-The C Language
Part Two-The Turbo C Environment
Part Three-The Turbo C Library
Part Four-Turbo C++
Part Five-The Turbo C++ Environment

Part One provides a thorough discussion of the Turbo C language.
Part Two describes the Turbo C environment, including the integrated
development environment (IDE) and the editor. Part Three describes all
of Turbo C's library functions. These functions are also available in
Turbo C++. Part Four discusses in depth the Turbo C++ object-oriented
features. The examples in this section assume that you are a proficient C

Introduction xiv

programmer. The book ends with Part Five, which discusses the Turbo
C++ environment. Even though similar, the Turbo C and Turbo C++
environments differ in several important ways. For example, Turbo C++
incorporates the use of a mouse; Turbo C does not.

The organization of this book allows the Turbo C user to quickly
find material related to that language and environment, while at the
same time letting the Turbo C++ programmer find the material appro­
priate to that environment. Further, if you are currently a C program­
mer and want to become proficient at Turbo C++, the organization of
this book prevents you from "wading through" reams of information that
you already know. You can simply concentrate on the Turbo C++ sec­
tions of the book.

Conventions Used In This Book

In this book, keywords, operators, function names, and variable names
are shown in bold when referenced in text. Placeholders are shown in
italics. Also, when referencing a function name in text, the name is
followed by parentheses. In this way, you can easily distinguish a vari­
able name from a function name.

Diskette Offer

There are many useful and interesting functions and programs con­
tained in this book. If you are like me, you would like to use them, but
hate typing them into the computer. If you type something wrong, you
spend hours trying to get the program to work. For this reason, I am
offering the source code for all the functions and programs contained in
this book on diskette. Just fill in the order blank on the next page and
mail it, along with your payment, to the address shown. Or, if you're in a
hurry, call (217) 586-4021 to place your order. (VISA and MasterCard
accepted.)

xlvl Turbo CIC++: The Complete Reference

Please send me copies, at $24.95 each, of the programs
in Turbo CIC++: The Complete Reference on an IBM-compatible dis­
kette. (Foreign orders: Checks must be drawn on a U.S. bank. Please
add $5 shipping and handling.)

Telephone
~~~~~~~~~-

Diskette size (check one): 5 1/4" 3 1/2" -----

Method of payment: Check VISA MC 

Credit card number: 

Send to: 
Herbert Schildt 
RR 1, Box 130 
Mahomet, IL 61853 

~~~- ~~~- ~~~-

or phone: (217) 586-4021

This offer is subject to change or cancellation at any time.

Please allow 3 to 6 weeks for delivery. Osborne/McGraw-Hill assumes NO responsi­
bility for this offer. This is solely an offer of the author, Herbert Schildt, and .not of
Osborne/McGraw-Hill.

If you want a comprehensive reference guide to both Turbo C and
Turbo C++, this book is for you. This book is for both beginning pro­
grammers and seasoned pros. Because of the way the book is organized,
it is ideally suited to users of either compiler. If you are currently a C
programmer who is moving to C++, then this book is particularly well
suited for you because it separates the Turbo C language from the
Turbo C++ language, thus allowing you to quickly begin learning about
Turbo C++. On the other hand, if all you want to know about is Turbo C,
this book still provides complete coverage of this important compiler.

In addition to covering both the Turbo C and C++ languages, this
book also covers the integrated programming environment, the Turbo
CIC++ editor, all library functions, and various compiler options.

One last point: because the information in this book was reviewed
for technical accuracy by Borland International, Inc., you can be assured
of its quality. Special thanks to Robert Goosey for his aid in the prepa­
ration of the chapters in Part Three of this book.

w
H
y

T
H
I
s

B
0
0
K

I
s

F
0
R

The C Language

Part One of this guide presents a discussion of the Turbo C program­
ming language. Because Turbo C++ is a superset of Turbo C, virtually
everything presented in this section is applicable to Turbo C++. If you
are new to C and C++, you will need to learn to program in C before you
learn to program in C++.

Since Turbo C closely conforms to the ANSI C standard, most of
the information presented in Part One is also valid for any ANSI C
standard environment.

p
A
R
T

0
1\1
E

An Overview of C

This chapter presents an overview of the origins, uses, and philosophy of
the programming language C.

The Origins of the C Language

Dennis Ritchie invented and first implemented the programming lan­
guage Con a DEC PDP-11 that used the UNIX operating system. The
language is the result of a development process that started with an
older language called BCPL. Martin Richards developed BCPL, which
influenced Ken Thompson's invention of a language called B, which led
to the development of C in the 1970s.

For many years the de facto standard for C was the version sup­
plied with the UNIX System V operating system. It is described in The
C Programming Language by Brian Kernighan and Dennis Ritchie
(Prentice-Hall, 1978). The growing popularity of microcomputers led to
the creation of a large number of C implementations. In what could
almost be called a miracle, the source code accepted by most of these .
implementations is highly compatible. However, because no standard
existed, there were discrepancies. To rectify this situation, ANSI estab­
lished a committee in the beginning of the summer of 1983 to create an
ANSI standard for the C language. The standard was finally adopted in
1990, and Turbo C fully implements the resulting ANSI standard for C.
Turbo C is a fast, efficient compiler, and provides both an integrated
programming environment and the more traditional command-line ver­
sion to satisfy the needs and desires of a wide variety of programmers.

0
N
E

6 Turbo CIC++: The Complete Reference

A Middle-Level Language

C is often called a middle-level computer language. This does not mean
that C is less powerful, harder to use, or less developed than a high­
level language such as BASIC or Pascal; nor does it imply that C is
similar to, or presents the problems associated with, assembly language.
The definition of C as a middle-level language means that it combines
elements of high-level languages with the functionalism of assembly
language. Table 1-1 shows how C fits into the spectrum of languages.

AB a middle-level language, C allows the manipulation of bits, bytes,
and addresses - the basic elements with which the computer functions.
The C code is very portable. (Portability means that it is possible to
adapt software written for one type of computer to another.) For exam­
ple, if a program written for an Apple II + can be moved easily to an
IBM PC, that program is portable.

All high-level programming languages support the concept of data
types. A data type defines a set of values that a variable can store along
with a set of operations that can be performed on that variable. Com­
mon data types are integer, character, and real. Although C has five
basic built-in data types, it is not a strongly typed language like Pascal
or Ada. In fact C will allow almost all type conversions. For example,

Highest level

Middle level

Lowest level

Ada

Modula-2

Pascal

COBOL

FORTRAN

BASIC

c
FORTH

Macro-assembly language

ABsembly language

Table 1-1. C's Place in the World of Languages

An OveNiew of C 7

character and integer types may be freely intermixed in most expres­
sions. Traditionally C performs no run-time error checking such as
array-boundary checking or argument-type compatibility checking.
These checks are the responsibility of the programmmer.

A special feature of .c is that it allows the direct manipulation of
bits, bytes, words, and pointers. This suits it to system-level program­
ming, where these operations are common. Another important aspect of
C is that it has only 32 keywords (27 from the Kernighan and Ritchie
standard and 5 added by the ANSI standardization committee), which
are the commands that make up the C language. (Turbo C contains 11
more keywords to support various enhancements and extensions.) As a
comparison, consider that BASIC for the IBM PC contains 159 key­
words!

A Structured Language

Although the term block-structured language does not strictly apply to
C, C is commonly called a structured language because of structural
similarities to ALGOL, Pascal, and Modula-2. (Technically, a block­
structured language permits procedures or functions to be declared
inside other procedures or functions. In this way the concepts of "global"
and "local" are expanded through the use of scope rules, which govern
the "visibility" of a variable or procedure. Since C does not allow the
creation of functions within functions, it is not really block structured.)

The distinguishing feature of a structured language is compartmen­
talization of code and data. Compartmentalization is the language's
ability to section off and hide from the rest of the program all informa­
tion and instructions necessary to perform a specific task. One way of
achieving compartmentalization is to use subroutines that employ local
(temporary) variables. By using local variables, the programmer can
write subroutines so that the events that occur within them cause no
side effects in other parts of the program. This capability makes it very
easy for C programs to share sections of code. If you develop compart­
mentalized functions, you only need to know what a function does, not
how it does it. Remember that excessive use of global variables (vari­
ables known throughout the entire program) may allow bugs to creep
into a program by allowing unwanted side effects. (Anyone who has
programmed in BASIC is well aware of this problem!)

8 Turbo CIC++: The Complete Reference

A structured language allows you a variety of programming possi­
bilities. It directly supports several loop constructs, such as while,
do-while, and for. In a structured language the use of goto is either
prohibited or discouraged and is not the common form of program
control as it is in BASIC and FORTRAN. A structured language allows
you to indent statements and does not require a strict field concept.

Here are some examples of structured and nonstructured lan­
guages:

Structured

Pascal

Ada

c
Modula-2

N onstructured

FORTRAN

BASIC

COBOL

Structured languages tend to be newer; nonstructured languages
are older. Today it is widely maintained that the clarity of structured
languages makes programming and maintenance easier than with non­
structured languages.

The main structural component of C is the function-C's stand
alone subroutine. In C functions are the building blocks in which all
program activity occurs. They allow the separate tasks in a program to
be defined and coded separately, thus allowing your programs to be
modular. After a function has been created, you can rely on it to work
properly in various situations, without creating side effects in other
parts of the program. The fact that you can create stand-alone functions
is extremely critical in larger projects where one programmer's code
must not accidentally affect another's.

Another way to structure and compartmentalize code in C is to use
code blocks. A code block is a logically connected group of program
statements that is treated as a unit. In C a code block is created by
placing a sequence of statements between opening and closing curly
braces. In this example,

if(x<lO) {

}

printf("too low, try again");
reset_counter(-1);

An OveNiew of C 9

the two statements after the if and between the curly braces are both
executed if x is less than 10. These two statements together with the
braces are a code block. They are a logical unit: One of the statements
cannot execute without the other. Code blocks not only allow many
algorithms to be implemented with clarity, elegance, and efficiency, but
also help the programmer conceptualize the true nature of the routine.

A Programmer's Language

One might respond to the statement, "C is a programmer's language,"
with the question, "Aren't all programming languages for
programmers?" The answer is an unqualified "No!" Consider the classic
examples of nonprogrammer's languages, COBOL and BASIC. COBOL
was designed to enable nonprogrammers to read and, presumably, un­
derstand the program. BASIC was created essentially to allow nonpro­
grammers to program a computer to solve relatively simple problems.

In contrast, C stands almost alone in that it was created, influenced,
and field-tested by real working programmers. The end result is that C
gives the programmer what the programmer wants: few restrictions,
few complaints, block structures, stand alone functions, and a compact
set of keywords. It is truly amazing that by using C, a programmer can
achieve nearly the efficiency of assembly code, combined with the struc­
ture of ALGOL or Modula-2. It is no wonder that C is easily the most
popular language among topflight professional programmers.

The fact that C can often be used in place of assembly language
contributes greatly to its popularity among programmers. Assembly
language uses a symbolic representation of the actual binary code that
the computer executes. Each assembly language operation maps into a
single task for the computer to perform. Although assembly language
gives programmers the potential for accomplishing tasks with maximum
flexibility and efficiency, it is notoriously difficult to use when developing
and debugging a program. Furthermore, since assembly language is
unstructured, the final program tends to be spaghetti code - a tangled
mess of jumps, calls, and indexes. This lack of structure makes assembly
language programs difficult to read, enhance, and maintain. Perhaps
more important, assembly language routines are not portable between
machines with different central processing units (CPUs).

1 O Turbo CIC++: The Complete Reference

Initially, C was used for systems programming. A systems program
is part of a large class of programs that forms a portion of the operating
system of the computer or its support utilities. For example, the follow­
ing are usually called systems programs:

• Operating systems

• Interpreters

• Editors

• Assembly programs

• Compilers

• Database managers

As C grew in popularity, many programmers began to use it to
program all tasks because of its portability and efficiency. Because there
are C compilers for almost all computers, it is possible to take code
written for one machine and compile and run it on another with few or
no changes. This portability saves both time and money. In addition, C
compilers tend to produce tighter and faster object code than most
BASIC compilers, for example.

Perhaps the most significant reason that C is used in all types of
programming tasks is that programmers like it! It has the speed of
assembly language and the extensibility of FORTH but few of the
restrictions of Pascal or Modula-2. Each C programmer can create and
maintain a unique library of functions that have been tailored to his or
her personality and can be used in many different programs. Because it
allows -indeed, encourages - separate compilation, C allows program­
mers to manage large projects easily and minimize duplication of effort.

Compilers Versus f nterpreters

The terms compiler and interpreter refer to the way in which a program
is executed. In theory, any programming language can be either com-

An Overview of C 11

piled or interpreted, but some languages are usually executed one way
or the other. For example, BASIC is usually interpreted and C is usually
compiled. (Recently, however, C interpreters have gained in popularity
as debugging aids.) The way a program is executed is not defined by the
language in which it is written. Interpreters and compilers are simply
sophisticated programs that operate on your program source code.

An interpreter reads the source code of your program one line at a
time and performs the specific instructions contained in that line. A
compiler reads the entire program and converts it into object code,
which is a translation of the program source code in a form that can be
directly executed by the computer. Object code is also called binary code
and machine code. Once a program is compiled, a line of source code is
no longer meaningful in the execution of the program.

When you use an interpreter, it must be present each time you wish
to run your program. For example, in BASIC you have to execute the
BASIC interpreter first and then load your program and type RUN
each time you want to use it. The BASIC interpreter then examines
your program one line at a time for correctness and then executes it.
This slow process occurs every time the program runs. By contrast, a
compiler converts your program into object code that can be directly
executed by your computer. Because the compiler translates your pro­
gram only once, all you need to do is execute your program directly,
usually by the simple process of typing its name. Thus, compilation is a
one-time cost, while interpreted code incurs an overhead cost each time
a program runs.

Two terms that you will often see in this book and in your C
compiler manual are compile time, which refers to the events that occur
during the compilation process, and run time, which refers to the events
that occur while the program is actually executing. You usually see these
terms in discussions of errors, as in the phrases "compile-time errors"
and "run-time errors."

The Form of a C Program

Table 1-2 lists the 43 keywords that, combined with the formal C syntax,
form the Turbo C programming language.

1 2 Turbo CIC++: The Complete Reference

The 32 keywords as defined by the ANSI standard

auto double int struct

break else long switch

case en um register typedef

char extern return union

const float short unsigned

continue for signed void

default goto size of volatile

do if static while

The Turbo C extended keywords

asm _cs _ds _es

_SS cdecl far huge

interrupt near pascal

Table 1-2. A List of Turbo C Keywords

All C keywords are lowercase. In C uppercase and lowercase are
different: else is a keyword; ELSE is not. A keyword may not be used
for any other purpose in a C program - that is, it may not serve as a
variable or function name.

All C programs consist of one or more functions. The only function
that absolutely must be present is called main(), and it is the first
function called when program execution begins. In well-written C code,
main() outlines what the program does. The outline is composed of
function calls. Although main() is technically not part of the C lan­
guage, treat it as if it were. Don't try to use main as the name of a
variable, for example.

The general form of a C program is illustrated in Figure 1-1, where
fl() through fN()represent user-defined functions.

The Llbraiy and Linking

Technically speaking, it is possible to create a useful, functional C
program that consists solely of the statements actually created by the

Figure 1-1.

global declarations
main()
{

local variables

An OveNiew of C 1 3

statement sequence
}
fl()
{

local variables
statement sequence

}
f'2()
{

local variables
statement sequence

}

fN()
{

local variables
statement sequence

}

The general form of a C program

programmer. However, this is rarely done because C does not, within
the actual definition of the language, provide any method of performing
1/0 operations. A;;, a result, most programs include calls to various
functions contained in C's standard library.

Turbo C comes with a standard library that provides functions that
perform most commonly needed tasks. When you call a function that is
not part of the program you wrote, Turbo C "remembers" its name.
Later the linker combines the code you wrote with the object code
already found in the standard library. This process is called linking.

The functions that are kept in the library are in relocatable format.
This means that the memory addresses for the various machine-code
instructions have not been absolutely defined; only offset information
has been kept. When your program links with the functions in the

14 Turbo CIC++: The Complete Reference

standard library, these memory offsets are used to create the actual
addresses used. There are several technical manuals and books that
explain this process in more detail. However, you do not need any fur­
ther explanation of the actual relocation process to program in Turbo C.

Separate Compilation

Most short C programs are completely contained within one source file.
However, as a program gets longer, so does its compile time, and long
compile times make for short tempers! Hence, Turbo C allows a pro­
gram to be broken into pieces and contained in many files and for each
file to be compiled separately. Once all files have been compiled, they are
linked together, along with any library routines, to form the complete
object code. The advantage of separate compilation is that a change in
the code of one file does not necessitate the recompilation of the entire
program. On all but the simplest projects, the time saving is substantial.

Turbo C's Memory Map

A compiled Turbo C program creates and uses iour logically distinct
regions of memory that serve specific functions. The first region is the
memory that actually holds the code of your program. The next region is
the memory where global variables are stored. The remaining two
regions are the stack and the heap. The stack is used for a great many
things while your program executes. It holds the return address of
function calls, arguments to functions, and local variables. It is also used
to save the current state of the CPU. The heap is a region of free
memory, which your program can use via Turbo C's dynamic allocation
functions for things like linked lists and trees.

An Overview of C 15

Stack

l
r

Heap

Global variables

Program code

Figure 1-2. A conceptual memory map of a C program

Although the exact physical layout of each of the four regions of mem­
ory differs, based on the way you tell Turbo C to compile your program,
the diagram in Figure 1-2 shows conceptually how your C programs
appear in memory.

A Review of Terms

The terms that follow will be used frequently throughout the remainder
of this book. You should be completely familiar with their meaning.

Source code The text of a program that a
user can read; commonly
thought of as the program. The
source code is input into the C
compiler.

16 Turbo CIC++: The Complete Reference

Object code

Linker

Library

Compile time

Run time

Translation of the source code of
a program into machine code,
which the computer can read
and execute directly. Object code
is the input to the linker.

A program that links separately
compiled functions together into
one program. It combines the
functions in the standard C li­
brary with the code that you
wrote. The output of the linker
is an executable program.

The file containing the standard
functions that can be used by
your program. These functions
include all I/0 operations as well
as other useful routines.

The events that occur while your
program is being compiled. A
common occurrence during com­
pile time is a syntax error.

The events that occur while your
program is executing.

Variables, Constants, Operators, and
Expressions

Variables and constants are manipulated by operators to form expres­
sions. These are the atomic elements of the Turbo C and C++ language.
This chapter will examine each element closely.

Identifier Names

The names that are used to reference variables, functions, labels, and
various other user-defined objects are called identifiers. An identifier in
Turbo C can vary from 1 to 32 characters. The first character must be a
letter or an underscore with subsequent characters being either letters,
numbers, or the underscore. Turbo C also allows the $ to be used in an
identifier name, but this is nonstandard and its use is not recommended.
Here are some examples of correct and incorrect identifier names:

18 Turbo CIC++: The Complete Reference

correct

count

test23
high_ balance

incorrect

lcount

hi!there

high .. balance

In C, upper- and lowercase are treated differently. Hence, count,
Count, and COUNT are three separate identifiers. An identifier cannot
be the same as a Turbo C keyword, and it should not have the same
name as functions that you wrote or that are in the Turbo C library.

Data Types

There are five atomic data types in C: character, integer, floating point,
double floating point, and valueless. The sizes of these types are shown
in Table 2-1.

Values of type char are used to hold ASCII characters or any 8-bit
quantity. Variables of type int are used to hold integer quantities.
Variables of type float and double are used to hold real numbers. (Real
numbers have both an integer and a fractional component.)

The void type has three uses. The first is to declare explicitly a
function as returning no value; the second is to declare explicitly a
function as having no parameters; the third is to create generic pointers.
Each of these uses is discussed in subsequent chapters.

Type Bit Width Range

char 8 0 to 255
int 16 -32768 to 32767
float 32 3.4E -38 to 3.4E + 38
double 64 1. 7E -308 to 1. 7E + 308
void 0 valueless

Table 2-1. Size and Range of Turbo C's Basic Data Types

Variables, Constants, Operators, and Expressions 19

Turbo C supports several aggregate types, including structures,
unions, bit fields, enumerations, and user-defined types. These complex
types are discussed in Chapter 7.

Type Modifiers

Excepting type void, the basic data types may have various modifiers
preceding them. A modifier is used to alter the meaning of the base type
to fit the needs of various situations more precisely. The list of modifiers
is shown here:

signed
unsigned
long
short

The modifiers signed, unsigned, long, and short may be applied to
character and integer base types. However, long may also be applied to
double. Table 2-2 shows all allowed combinations that adhere to the
ANSI C standard, along with their bit widths and range assuming a
16-bit word.

The use of signed on integers is redundant (but allowed) because
the default integer declaration assumes a signed number.

The difference between signed and unsigned integers is in the way
the high-order bit of the integer is interpreted. If a signed integer is
specified, then the compiler will generate code that assumes the high­
order bit of an integer is to be used as a sign flag. If the sign flag is 0,
then the number is positive; if it is 1, then the number is negative. For
example:

127 in binary is 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1
- 127 in binary is 1 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1

t
sign bit

The reader is cautioned that most computers (including those based
on the 8086 family of processors) will use two's complement arithmetic,
which will cause the representation of - 127 to appear different. How­
ever, the use of the sign bit is the same. A negative number in two's

20 Turbo CIC++: The Complete Reference

Type Bit Width Range

char 8 -128 to 127
unsigned char 8 0 to 255
signed char 8 -128 to 127
int 16 -32768 to 32767
unsigned int 16 0 to 65535
signed int 16 -32768 to 32767
short int 16 -32768 to 32767
unsigned short int 16 0 to.65535
signed short int 16 -32768 to 32767
long int 32 -2147483648 to

2147483647
signed long int 32 -2147483648 to

2147483647
float 32 3.4E -38 to 3.4E + 38
double 64 1. 7E -308 to 1. 7E + 308
long double 64 1/7E-308to1.7E+308

Table 2-2. All Possible Combinations of Turbo C's Basic Types and Modifiers

complement form has all bits reversed and one is added to the number.
For example, -127 in two's complement appears like this:

1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 1

Signed integers are important for a great many algorithms, but
they only have half the absolute magnitude of their unsigned brothers.
For example, here is 32,767:

0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

If the high-order bit were set to 1, the number would then be inter­
preted as -32,768. However, if you had declared this to be an unsigned
int, then when the high-order bit is set to 1, the number becomes 65,535.

Access Modifiers

C has two type modifiers that are used to control the ways in which
variables may be accessed or modified. These modifiers are called const
and volatile.

Variables, Constants, Operators, and Expressions 21

Variables of type const may not be changed during execution by
your program. For example,

const int a;

will create an integer variable called a that cannot be modified by your
program. It can, however, be used in other types of expressions. A const
variable will receive its value either from an explicit initialization or by
some hardware-dependent means. For example, this gives count the
value of 100:

const int count = 100;

Aside from initialization, no const variable can be modified by your
program.

The modifier volatile is used to tell the compiler that a variable's
value can be changed in ways not explicitly specified by the program.
For example, a global variable's address can be passed to the clock
routine of the operating system and used to hold the real-time of the
system. In this situation the contents of the variable are altered without
any explicit assignment statements in the program. This is important
because Turbo C automatically optimizes certain expressions by making
the assumption that the content of a variable is unchanging inside that
expression. Also, some optimizations may change the order of evaluation
of an expression during the compilation process. The volatile modifier
prevents these changes from occurring.

It is possible to use const and volatile together. For example, if
Ox30 is assumed to be the address of a port that is changed by external
conditions only, then the following declaration is precisely what you
would want to prevent any possibility of accidental side effects:

canst volatile unsigned char *port=Ox30;

Declaratlon of Variables

All variables must be declared before they are used. The general form of
a declaration is shown on the next page.

22 Turbo CIC++: The Complete Reference

type variable_ list;

Here, type must be a valid C data type and variable_ list may consist of
one or more identifier names with comma separators. Some declarations
are shown here:

int i, j, l;

short int si;

unsigned int ui;

double balance, profit, loss;

Remember, in C, the name of a variable has nothing to do with its type.
There are three basic places where variables will be declared: inside

functions, in the definition of function parameters, or outside all func­
tions. These variables are called local variables, formal parameters, and
global variables.

Local Variables

Variables that are declared inside a function are called 'local variables.
In some C literature, these variables may be referred to as automatic
variables in keeping with C's use of the (optional) keyword auto that
can be used to declare them. Since the term local variable is more
commonly used, this guide will continue to use it. Local variables can be
referenced only by statements that are inside the block in which the
variables are declared. Stated another way, local variables are not
known outside their own code block. You should remember that a block
of code is begun when an opening curly brace is encountered and
terminated when a closing curly brace is found.

One of the most important things to understand about local vari­
ables is that they exist only while the block of code in which they are
declared is executing. That is, a local variable is created upon entry into
its block and destroyed upon exit.

The most common code block in which local variables are declared
is the function. For example, consider these two functions:

void funcl(void)
{

int x;

x = 10;
}

void func2(void)
{

int x;

x = -199;
}

Variables, Constants, Operators, and Expressions 23

The integer variable x was declared twice, once in funcl() and once in
func2(). The x in funcl() has no bearing on, or relationship to, the x in
func2() because each x is only known to the code within the same block
as the variable's declaration.

The language contains the keyword auto, which can be used to
declare local variables. However, since all nonglobal variables are as­
sumed to be auto by default, it is virtually never used.

It is common practice to declare all variables needed within a
function at the start of that function's code block. This is done mostly to
make it easy for anyone reading the code to know what variables are
used. However, it is not necessary to do this because local variables can
be declared within any code block. To understand how this works,
consider the following function.

void f(void)
{

}

int t;

scanf("%d", &t);

i f(t==l) {

}

char s[80]; /*this is existent only
inside this block */

printf("enter name:");
gets(s);
process(s);

/* s is not known here */

Here, the local variable s is known only within the if code block. Since s
is known only within the if block, it may not be referenced elsewhere -
not even in other parts of the function that contains it.

24 Turbo CIC++: The Complete Reference

One reason you might want to declare a variable within its own
block instead of at the top of a function is to prevent its accidental
misuse elsewhere in the function. In essence, declaring variables inside
the blocks of code that actually use them allows you to compartmental­
ize your code and data into more easily managed units.

Because local variables are destroyed upon exit from the function in
which they are declared, they cannot retain their values between func­
tion calls. (As you will see shortly, however, it is possible to direct the
compiler to retain their values through the use of the static modifier.)

Unless otherwise specified, storage for local variables is on the
stack. The fact that the stack is a dynamic and changing region of
memory explains why local variables cannot, in general, hold their
values between function calls.

Formal Parameters

If a function is to use arguments, then it must declare variables that will
accept the values of the arguments. These variables are called the
formal, parameters of the function. They behave like any other local
variables inside the function. As shown in the following program frag­
ment, their declaration occurs inside the parentheses that follow the
function name.

/* return 1 if c is part of string s; 0 otherwise */
is_in(char *s, char c)
{

while(*s)
if(*s==c) return 1;
else s++;

return 0;

The function is_in() has two parameters: s and c. You must tell C
what type of variable these are by declaring them as shown above. Once
this has been done, they may be used inside the function as normal local

Variables, Constants, Operators, and Expressions 25

variables. Keep in mind that, as local variables, they are also dynamic
and are destroyed upon exit from the function.

You must make sure that the formal parameters you declare are the
same type as the arguments you will use to call the function. If there is
a type mismatch, unexpected results can occur. Unlike many other
languages, C is very robust and generally will do something, even if it is
not what you want. There are few run-time errors and no bounds
checking. As the programmer, you have to make sure that errors do not
occur.

As with local variables, you may make assignments to a function's
formal parameters or use them in any allowable C expression. Even
though these variables perform the special task of receiving the value of
the arguments passed to the function, they can be used like any other
local variable.

Global Variables

Unlike local variables, global variables are known throughout the entire
program and may be used by any piece of code. Also, they will hold their
values during the entire execution of the program. Global variables are
created by declaring them outside of any function. They may be ac­
cessed by any expression regardless of what function that expression is
in.

In the following program, you can see that the variable count has
been declared outside of all functions. Its declaration comes before the
main() function. However, it could have been placed anywhere prior to
its first use, as long as it was not in a function. Common practice is to
declare global variables at the top of the program.

#include <stdio.h>

void funcl(void}, func2(void};

int count; /*count is global */

main(void}
{

count = 100;
funcl();
return O; /* return success to the system */

26 Turbo CIC++: The Complete Reference

}

void funcl(void)
{

}

int temp;

temp = count;
func2();
printf("count is %d", count); /*will print 100 */

void func2(void)
{

}

int count:

for(count=l: count<lO; count++)
putchar('.');

Looking closely at this program fragment, it should be clear that
although neither main() nor funcl() has declared the variable count,
both may use it. However, func2() has declared a local variable called
count. When func2() references count, it will be referencing only its
local variable, not the global one. Remember that if a global variable and
a local variable have the same name, all references to that name inside
the function where the local variable is declared refer to the local
variable and have no reference to the global variable. This is a conve­
nient benefit. However, forgetting this can cause your program to act
very strangely, even though it "looks" correct.

Storage for global variables is in a fixed region of memory set aside
for this purpose by the compiler. Global variables are very helpful when
the same data is used in many functions in your program. You should
avoid using unnecessary global variables, however, for three reasons:

1. They take up memory the entire time your program is executing,
not just when they are needed.

2. Using a global variable where a local variable will do makes a
function less general because it relies on something that must be
defined outside itself.

3. Using a large number of global variables can lead to program
errors because of unknown, and unwanted, side effects.

One of the principal points of a structured language is the compart­
mentalization of code and data. In C, compartmentalization is achieved

Variables, Constants, Operators, and Expressions 27

through the use of local variables and functions. For example, here are
two ways to write mul() - a simple function that computes the product
of two integers.

Two Ways to Write mul()

General Specific

mul(int x, int y)
int x, y;
mul(void)
{ {

return(x*y); return(x*y);
} }

Both functions will return the product of the variables x and y.
However, the generalized, or parameterized, version can be used to
return the product of any two numbers, whereas the specific version can
be used to find only the product of the global variables x and y.

Storage Class Specifiers

There are four storage class specifiers supported by C. They are

extern
static
register
auto

These are used to tell the compiler how the variable that follows should
be stored. The storage specifier precedes the rest of the variahle decla­
ration. Its general form is

storage_ specifier type var_ name;

Each specifier will be examined in turn.

28 Turbo CIC++: The Complete Reference

extern
Because C allows separately compiled modules of a large program to be
linked together to speed up compilation and aid in the management of
large projects, there must be some way of telling all the files about the
global variables required by the program. Remember, you can declare a
global variable only once. If you try to declare two global variables with
the same name inside the same file, Turbo C prints the error message
that it does not know which variable to use. The same type of problem
occurs if you declare all the global variables needed by your program in
each file. Although the compiler would not issue any error messages at
compile time, you would actually be trying to create two (or more) copies
of each variable. The trouble would start when Turbo C attempted to
link your modules together. The linker would display an error message
because it would not know which variable to use. The solution is to
declare all of your globals in one file and use extern declarations in the
other, as shown in Table 2-3.

In File 2, the global variable list was copied from File 1 and the
extern specifier was added to the declarations. The extern specifier tells
the compiler that the following variable types and names have been

File 1

int x, y;
char ch;

main(void)
{

}

void funcl(void)
{

x = 123;
}

File 2

extern int x, y;
extern char ch;

void func22(void)
{

x = y/10;
}

void func23(void)
{

y = 10;
}

Table 2-3. Using Global Variables in Separately Compiled Files

Variables, Constants, Operators, and Expressions 29

declared elsewhere. In other words, extern lets the compiler know what
the types and names are for these global variables without actually
creating storage for them again. When the two modules are linked, all
references to the external variables are resolved.

When a declaration creates storage for a variable, it is called a
definition. extern statements are declarations, but not definitions. They
simply tell the compiler that a definition exists elsewhere in the pro­
gram.

When you use a global variable inside a function that is in the same
file as the declaration for the global variable you may elect to use
extern, although you don't have to and it is rarely done. The following
program fragment shows the use of this option:

int first, last; /* global definition of first
and last */

main(void)
{

}

extern int first; /* optional use of the
extern declaration */

/* ... */

Although extern variable declarations can occur inside the same file
as the global declaration, they are not necessary. If the C compiler
encounters a variable that has not been declared, the compiler checks
whether it matches any of the global variables. If it does, the compiler
assumes that the global variable is the one being referenced.

static Variables

static variables are permanent variables within their own function or
file. They differ from global variables because they are not known
outside their function or file but they maintain their values between
calls. This feature makes them very useful when you write generalized
functions and function libraries, which may be used by other program­
mers. Because the effect of static on local variables is different from its
effect on global ones, they will be examined separately.

static Local Variables

When static is applied to a local variable it causes the compiler to create
permanent storage for it in much the same way that it does for a global

30 Turbo C/C++: The Complete Reference

variable. The key difference between a static local variable and a global
variable is that the static local variable remains known only to the block
in which it is declared. In simple terms, a static local variable is a local
variable that retains its value between function calls.

It is very important to the creation of stand-alone functions that
static local variables are available in C because there are several types
of routines that must preserve a value between calls. If static variables
were not allowed then globals would have to be used- opening the door
to possible side effects. A simple example of how a static local variable
can be used is illustrated by the count() function in this short program:

#include <stdio.h>
#include <conio.h>

int count(int i);

main(void)
{

}

do {
count(O);

} while(lkbhit());
printf("count called %d times", count(l));
return O;

count(int i)
{

}

static int c=O;

if(i) return c;
else c++;
return O;

Sometimes it is useful to know how many times a function has been
executed during a program run. While it is certainly possible to use a
global variable for this purpose, a better way is to have the function in
question keep track of this information itself, as is done by the count()
function. In this example, if count() is called with a value of 0 then the
counter variable c is incremented. (Presumably in a real application, the
function would also perform some other useful processing.) If count() is
called with any other value, it returns the number of times it has been
called. Counting the number of times a function is called can be useful
during the development of a program so that those functions called most
frequently can receive the most attention.

Variables, Constants, Operators, and Expressions 31

Another good example of a function that would require a static
local variable is a number series generator that produces a new number
based on the last one. It is possible for you to declare a global variable
for this value. However, each time the function is used in a program, you
would have to remember to declare that global variable and make sure.
that it did not conflict with any other global variables already de­
clared- a major drawback. Also, using a global variable would make this
function difficult to place in a function library. The better solution is to
declare the variable that holds the generated number to be static, as in
this program fragment:

series(void)
{

}

static int series_num;

series num = series num+23;
return(series_num);-

In this example, the variable series_ num stays in existence be­
tween function calls, instead of coming and going the way a normal local
variable would. This means that each call to series() can produce a new
member of the series based on the last number without declaring that
variable globally.

You may have noticed something that is unusual about the function
series() as it stands in the example. The static variable series_ num is
never explicitly initialized. This means that the first time the function is
called, series_num will have the value zero, by default. While this is
acceptable for some applications, most series generators will need a
flexible starting point. To do this requires that series_ num be initial­
ized prior to the first call to series(), which can be done easily only if
series_ num is a global variable. However, avoiding having to make
series_ num global was the entire of point of making it static to begin
with. This leads to the second use of static.

static Global Variables

When the specifier static is applied to a global variable it instructs the
compiler to create a global variable that is known only to the file in

32 Turbo CIC++: The Complete Reference

which the static global variable is declared. This means that even
though the variable is global, other routines in other files may have no
knowledge of it or alter its contents directly; thus it is not subject to
side effects. For the few situations where a local static cannot do the
job, you can create a small file that contains only the functions that need
the static global variable, separately compile that file, and use it without
fear of side effects.

To see how a static global variable can be used, the series genera­
tor example from the previous section is recoded so that a starting
"seed" value can be used to initialize the series through a call to a second
function called series_start(). The entire file containing series(),
series_start(), and series_num follows:

/* This must all be in one file - preferably by itself */

static int series_num;

int series(void);
void series_start(int seed);

series (void)
{

}

series_num = series_num + 23;
return(series_num);

/* initialize series num */
void series_start(int seed)
{

series_num = seed;
}

Calling series_ start() with some known integer value initializes the
series generator. After that, calls to series() will generate the next
element in the series.

The names of static local variables are known only to the function
or block of code in which they are declared, and the names of static
global variables are known only to the file in which they reside. This
means that if you place the series() and series_ start() functions in a
separate file, you can use the functions, but you cannot reference the
variable series_ num. It is hidden from the rest of the code in your
program. In fact, you may even declare and use another variable called
series_num in your program (in another file, of course) and not con­
fuse anything. In essence, the static modifier allows variables to exist
within the functions that need them, without confusing other functions.

Variables, Constants, Operators, and Expressions 33

static variables enable you to hide portions of your program from
other portions. This can be a tremendous advantage when trying to
manage a very large and complex program. The static storage specifier
lets you create very general functions that can go into libraries for later
use.

Register Variables

C has one last storage specifier that originally applied only to variables
of type int and char. However, the ANSI C standard has broadened its
scope. The register specifier requests Turbo C to store a variable
declared with this modifier in a manner that allows the fastest access
time possible. For integers and characters, this typically means in the
register of the CPU rather than in memory, where normal variables are
stored. For other types of variables, Turbo C may use any other means
to decrease their access time. In fact, it can also simply ignore the
request altogether.

The register specifier may be applied to local variables and to the
formal parameters in a function. You cannot apply register to global
variables.

In general, operations on register variables occur much faster than
on variables stored in memory. In fact, when the value of a variable is
actually held in the CPU no memory access is required to determine or
modify its value. This makes register variables ideal for loop control.
Here is an example of how to declare a register variable of type int and
use it to control a loop. This function computes the result of Me for
integers.

int_pwr(int m, register int e)
{

}

register int temp;

temp = 1;

for(; e; e--) temp *= m;
return temp;

In this example, both e and temp are declared to be register
variables because both are used within the loop. In general practice,

34 Turbo CIC++: The Complete Reference

register variables are used where they will do the most good, that is, in
places where many references will be made to the same variable. This is
important because not all variables can be optimized for access time.

Turbo C allows two variables to be held in CPU registers at any one
time. In effect, this means that you can have two per function. You don't
have to worry about declaring too many register variables, though,
because Turbo C will automatically do its best to reduce access time of
any variable declared using register. Throughout this book most loop
control variables will be register.

Assignment Statements

The general form of the assignment statement is

variable_ name = expression;

where an expression may be as simple as a single constant or as
complex as a combination of variables, operators, and constants. Like
BASIC and FORTRAN, C uses a single equal sign to indicate assign­
ment (unlike Pascal or Modula-2, which use the : = construct). The
target, or left part, of the assignment must be a variable, not a function
or a constant.

Type Conversion In Assignments

Type conversion refers to the situation in which variables of one type
are mixed with variables of another type. When this occurs in an
assignment statement, the type conversion rule is very easy: The value
of the right (expression) side of the assignment is converted to the type
of the left side (target variable), as illustrated by this example:

int x;
char ch;
float f;

Variables, Constants, Operators, and Expressions 35

void func (void)
{

ch = x;
x = f;
f = ch;
f = x;

/* 1 */
/* 2 */
/* 3 */
/* 4 */

In line 1, the left, high-order bits of the integer variable x are
lopped off leaving ch with the lower 8 bits. If x was between 256 and 0
to begin with, then ch and x would have identical values. Otherwise, the
value of ch would reflect only the lower order bits of x. In line 2, x
receives the nonfractional part of f. In line 3, f converts the 8-bit integer
value stored in ch to the same value except in the floating-point format.
This also happens in line 4, except that f will convert an integer value
into floating-point format.

When converting from integers to characters, long integers to inte­
gers, and integers to short integers, the basic rule is that the appropri­
ate amount of high-order bits will be removed. This means 8 bits will be
lost when going from an integer to a character, and 16 bits will be lost
when going from a long integer to an integer.

Table 2-4 synopsizes these assignment type conversions. You must

Target Type

signed char

char
char
char
short int
short int
int
int

float
double

Table 2-4.

Expression Type

char

short int
int
long int
int
lont int
long int
float

double
long double

Possible Info Loss

If value > 127, then
targets will be negative
High-order 8 bits
High-order 8 bits
High-order 24 bits
None
High-order 16 bits
High-order 16 bits
Fractional part and
possibly more
Precision, result rounded
Precision, result rounded

The Outcome of Common Type Conversions Assuming a 16-Bit Word

36 Turbo CIC++: The Complete Reference

remember two important points that can affect the portability of the
code you write:

1. The conversion of an int to a float, or a type float to double and
so on, will not add any precision or accuracy. These kinds of conver­
sions will only change the form in which the value is represented.

2. Some C compilers (and processors) will always treat a char
variable as positive, no matter what value it has .when converting it
to an integer or float (as does Turbo C). Other compilers may treat
char variable values greater than 127 as negative numbers when
converting. Generally speaking, you should use char variables for
characters, and use int, short int, or signed char when needed to
avoid a possible portability problem in this area.

To use Table 2-4 to make a conversion not directly shown, simply
convert one type at a time until you finish. For example, to convert from
a double to an int, first convert from a double to a float and then from
a float to an int.

If you have used a computer language like Pascal, which prohibits
this automatic type conversion, you may think that C is very loose and
sloppy. However, keep in mind that C was designed to make the life of
the programmer easier by allowing work to be done in C rather than
assembler. To do this, C has to allow such type conversions.

Variable lnltlalizatlons

You can give variables in C a value at the time they are declared by
placing an equal sign and a constant after the variable name. This is
called an initialization and its general form is

type variable_ name = constant;

Some examples are

char ch= 'a';

int first = O;

float balance = 123.23;

Variables, Constants, Operators, and Expressions 37

Global and static global variables are initialized only at the start of
the program. Local variables are initialized each time the block in which
they are declared is entered. However, static local variables are only
initialized once- not each time the block is entered. All global variables
are initialized to zero if no other initializer is specified. Local and
register variables that are not initialized will have unknown values
before the first assignment is made to them.

Constants

Constants in C refer to fixed values that may not be altered by the
program. They can be of any data type, as shown in Table 2-5.

C supports one other type of constant in addition to those of the
predefined data types. This is a string. All string constants are enclosed
between double quotes, such as "this is a test". You must not confuse
strings with characters. A single character constant is enclosed by
single quotes, such as 'a'. Because strings are simply arrays of charac­
ters, they will be discussed in Chapter 5.

Backslash Character Constants
Enclosing all character constants in single quotes works for most print­
ing characters, but a few, such as the carriage return, are impossible to

Data Type

char
int
long int
short int
unsigned int
float
double

Table 2-5.

Constant Examples

'a' '\n' '9'
1123 21000 -234
35000 -34
10 -12 90
10000 987 40000
123.23 4.34e -3
123.23 12312333 -0.9876324

Constant Examples for Data Types

38 Turbo C/C++: The Complete Reference

enter from the keyboard. For this reason, C uses the special backslash
character constants, shown in Table 2-6.

You use a backslash code exactly the same way you would any other
character. For example,

ch= '\t':

printf("this is a test\n"):

first assigns a tab to ch and then prints "this is a test" on the screen
followed by a newline.

Operators

C is very rich in built-in operators. An operator is a symbol that tells the
compiler to perform specific mathematical or logical manipulations.
There are three general classes of operators in C: arithmetic, relational
and logical, and bitwise. In addition, C has some special operators for
particular tasks.

Code

\b
\f
\n
\r
\t
y
\'
\0
\\
\v
\a
\o
\x

Table 2-6. Backslash Codes

Meaning

Backspace
Form feed
Newline
Carriage return
Horizontal tab
Double quote
Single quote character
Null
Backslash
Vertical tab
Alert
Octal constant
Hexadecimal constant

Variables, Constants, Operators, and Expressions 39

Arithmetic Operators

Table 2-7 lists the arithmetic operators allowed in C. The operators + ,
- , *, and I all work the same way in C as they do in most other
computer languages. They can be applied to almost any built-in data
type allowed by C. When I is applied to an integer or character, any
remainder is truncated; for example, 10/3 equals 3 in integer division.

The modulus division operator % also works in C the way it does in
other languages. Remember that the modulus division operation yields
the remainder of an integer division. However, as such, % cannot be
used on type float or double. The following code fragment illustrates its
use:

int x, y;

x = 10;
y = 3;

printf("%d", x/y); /*will display 3 */
printf("%d", x%y); /*will display 1, the remainder of

x = 1;
y = 2;

the integer division */

printf("%d %d", x/y, x%y); /* will display 0 1 */

The reason the last line prints a 0 and 1 is because 1/2 in integer
division is 0 with a remainder of 1. 1 %2 yields the remainder 1.

Operator

+

*
I
%

++

Table 2-7. Arithmetic Operators

Action

Subtraction, also unary minus
Addition
Multiplication
Division
Modulus division
Decrement
Increment

40 Turbo CIC++: The Complete Reference

The unary minus, in effect, multiplies its single operand by -1. That
is, any number preceded by a minus sign switches its sign.

Increment and Decrement

C allows two very useful operators not generally found in other com­
puter languages. These are the increment and decrement operators, ++
and - -. The operation ++ adds 1 to its operand, and - - subtracts 1.
Therefore, the following are equivalent operations:

x = x+l;

is the same as

++x;

Also,

x = x-1;

is the same as

--x;

Both the increment and decrement operators may either precede or
follow the operand. For example,

x = x+l;

can be written

++x;

or

x++;

Variables, Constants, Operators, and Expressions 41

However, there is a difference when they are used in an expression.
When an increment or decrement operator precedes its operand, C
performs the increment or decrement operation prior to using the
operand's value. If the operator follows its operand, C uses the
operand's value before incrementing or decrementing it. Consider the
following:

x = 10;

Y = ++x;

In this case, y is set to 11. However, if the code had been written as

x = 10;

Y = x++;

y would have been set to 10. In both cases, xis set to 11; the difference
is when it happens. There are significant advantages in being able to
control when the increment or decrement operation takes place.

The precedence of the arithmetic operators is as follows:

highest ++--

(unary minus)

*I%

lowest + -

Operators on the same precedence level are evaluated by the compiler
from left to right. Of course, parentheses may be used to alter the order
of evaluation. Parentheses are treated by C in the same way they are by
virtually all other computer languages: They give an operation, or set of
operations, a higher precedence level.

Relational and Logical Operators

In the term relational operator the word relational refers to the rela­
tionships values can have with one another. In the term logical operator
the word logical refers to the ways these relationships can be connected

42 Turbo CIC++: The Complete Reference

together using the rules of formal logic. Because the relational and
logical operators often work together, they will be discussed together
here.

The key to the concepts of relational and logical operators is the
idea of true and false. In C, true is any value other than 0. False is 0.
Expressions that use relational or logical operators will return 0 for
false and 1 for true.

Table 2-8 shows the relational and logical operators. The truth table
for the logical operators is shown here using ls and Os:

p q p && q pllq !p

0 0 0 0 1

0 1 0 1 1

1 1 1 1 0

1 0 0 1 0

Both the relational and logical operators are lower in precedence
than the arithmetic operators. This means that an expression like 10 >

Operator

>
>=
<
<=

!=

Operator

&&

Table 2-8.

Relational Operators

Logical Operators

Action
Greater than
Greater than or equal
Less than
Less than or equal
Equal
Not equal

Action

AND
OR
NOT

Relational and Logical Operators

Variables, Constants, Operators, and Expressions 43

1+12 is evaluated as if it were written 10 > (1+12). The result is, of
course, false.

Several operations can be combined in one expression, as shown
here:

10>5 && !(10<9) :: 3< =4

which will evaluate true.
The following shows the relative precedence of the relational and

logical operators:

highest

> >= < <=

!=

&&

lowest II
II

AB with arithmetic expressions, it is possible to use parentheses to
alter the natural order of evaluation in a relational or logical expression.
For example,

!1 && 0

will be false because the ! is evaluated first, then the && is evaluated.
However, when the same expression is parenthesized as shown here, the
result is true.

!(1 && 0)

Remember, all relational and logical expressions produce a result of
either 0 or 1. Therefore the following program fragment is not only
correct, but also prints the number 1 on the display:

44 Turbo CIC++: The Complete Reference

int x;

x = 100;
printf("%d", x>lO);

Bitwise Operators

Unlike many other languages, C supports a complete complement of
bitwise operators. Since C was designed to take the place of assembly
language for most programming tasks, it needed the ablilty to support
all (or at least many) operations that can be done in assembler. Bitwise
operations are the testing, setting, or shifting of the actual bits in a byte
or word, which correspond to C's standard char and int data types and
variants. Bitwise operators cannot be used on type float, double, long
double, void, or other more complex types. Table 2-9 lists these opera­
tors.

The bitwise AND, OR, and NOT (one's complement) are governed
by the same truth table as were their logical equivalents except that
they work on a bit-by-bit level. The exclusive OR .. has the truth table
shown here:

p

0

0

1

1

q

0

1

0

1

p q

0

1

1

1

As the table indicates, the outcome of an XOR is true only if exactly one
of the operands is true; it is false otherwise.

Operator

&

Action

AND
OR
Exclusive OR (XOR)
One's complement

> > Shift right
< < Shift left

Table 2-9. The Bitwise Operators

Variables, Constants, Operators, and Expressions 45

Bitwise operations most often find application in device drivers,
such as modem programs, disk file routines, and printer routines, be­
cause the bitwise operations can be used to mask off certain bits, such as
parity. (The parity bit is used to confirm that the rest of the bits in the
byte are unchanged. It is usually the high-order bit in each byte.)

The bitwise AND is most commonly used to turn bits off. That is,
any bit that is 0 in either operand causes the corresponding bit in the
outcome to be set to 0. For example, the following function reads a
character from the modem port using the function read_modem() and
resets the parity bit to 0.

char get_char_from_modem(void)
{

}

char ch;

ch= read_modem(); /*get a character from the
modem port */

return(ch & 127);

Parity is indicated by the eighth bit, which is set to 0 by ANDing it
with a byte that has bits 1 through 7 set to 1 and bit 8 set to 0. The
expression ch & 127 means to AND together the bits in ch with the bits
that make up the number 127. The net result is that the eighth bit of ch
will be set to 0. In the following example, assume that ch had received
the character 'A' and had the parity bit set:

parity bit

• 1 1 0 0 0 0 0 1

0 1 1 1 1 1 1 1

&

0 1 0 0 0 0 0 1

ch containing an 'A'
with parity set

127 in binary

do bitwise AND

'A' without parity

The bitwise OR, as the reverse of AND, can be used to turn bits on.
Any bit that is set to 1 in either operand causes the corresponding bit in
the outcome to be set to 1. For example, 128 I 3 is

46 Turbo CIC++: The Complete Reference

1 0 0 0 0 0 0 0 128 in binary

0 0 0 0 0 0 1 1 3 in binary

bitwise OR

1 0 0 0 0 0 1 1 result

An exclusive OR, usually abbreviated XOR, will turn a bit on only if
the bits being compared are different. For example, 127 " 120 is

0 1 1 1 1 1 1 1 127 in binary

0 1 1 1 1 0 0 0 120 in binary

bitwise XOR

0 0 0 0 0 1 1 1 result

In general, bitwise ANDs, ORs, and XORs apply their operations
directly to each bit in the variable individually. For this reason, among
others, bitwise operators are not usually used in conditional statements
the way the relational and logical operators are. For example if x = 7,
then x && 8 evaluates to true (1), whereas x & 8 evaluates to false (0).

Reminder: Relational and logical operators always produce a result
that is either 0 or 1, whereas the similar bitwise operations may produce
any arbitrary value in accordance with the specific operation.

In other words, bitwise operations may create values other than 0
or 1, while the logical operators will always evaluate to 0 or 1.

The shift operators, > > and < < , move all bits in a variable to the
right or left as specified. The general form of the shift right statement is

variable > > number of bit positions

and the shift left statement is

variable < < number of bit positions

Variables, Constants, Operators, and Expressions 4 7

x as Each Statement Value of
Executes x

charx;
x=7; 00000111 7

x=x < < 1; 00001110 14
x=x < < 3; 01110000 112
x=x < < 2; 11000000 192
x=x > > 1; 01100000 96
x=x > > 2; 00011000 24

Each left shift multiplies by 2. You should notice that information has been lost af­
ter x < < 2 because a bit was shifted off the end.

Each right shift divides by 2. Notice that subsequent divisions will not bring back
any lost bits.

Table 2-10. Multiplication and Division with Shift Operators

AB bits are shifted off one end, bits are brought in the other end.
Remember, a shift is not a rotate. That is, the bits shifted off one end do
not come back around to the other. The bits shifted off are lost, and Os
are brought in. However, a right shift of a negative number shifts in
ones.

Bit shift operations can be very useful when decoding external
device input, like DI A converters, and reading status information. The
bitwise shift operators can also be used to perform very fast multiplica­
tion and division of integers. A shift left will effectively multiply a
number by 2 and a shift right will divide it by 2, as shown in Table 2-10.

The one's complement operator, -, will reverse the state of each
bit in the specified variable. That is, all ls are set to 0, and all Os are set
to 1.

The bitwise operators are used often in cipher routines. If you
wished to make a disk file appear unreadable, you could perform some
bitwise manipulations on it. One of the simplest methods would be to
complement each byte by using the one's complement to reverse each
bit in the byte as shown here:

48 Turbo CIC++: The Complete Reference

Original byte 0 0 1 0 1 1 0 0

After 1st complement 1 1 0 1 0 0 1 1 same

After 2nd complement 0 0 1 0 1 1 0 0

Notice that a sequence of two complements in a row always produces
the original number. Hence, the first complement would represent the
coded version of that byte. The second complement would decode it to
its original value.

You could use the encode() function shown here to encode a char­
acter:

/* A simple cipher function. */
char encode(char ch)
{

return(Nch); /*complement it*/
}

The? Operator

C has a very powerful and convenient operator that can be used to
replace certain statements of the if-then-else form. The ternary operator
? takes the general form

Exp1 ? Exp2 : Exp3

where Exp1, Exp2, and Exp3 are expressions. Notice the use and
placement of the colon.

The ? operator works like this. Exp1 is evaluated. If it is true, then
Exp2 is evaluated and becomes the value of the expression. If Exp1 is
false, then Exp3 is evaluated and its value becomes the value of the
expression. For example:

x = 10;

y = x>9 ? 100 : 200;

In this example, y will be assigned the value 100. If x had been less than
or equal to 9, y would have received the value 200. The same code
written using the if/else statement would be:

x = 10;

if(x>9) y = 100;
else y = 200;

Variables, Constants, Operators, and Expressions 49

The ? operator will be discussed more fully in Chapter 3 in relation­
ship to C's other conditional statements.

The & and * Pointer Operators

A pointer is the memory address of a variable. A pointer variable is a
variable that is specifically declared to hold a pointer to a value of its
specified type. Knowing a variable's address can be of great help in
certain types of routines. Pointers have two main functions in C:

1. They can provide a very fast means of referencing array ele­
ments.

2. They allow C functions to modify their calling parameters.

These topics and uses will be dealt with later. Chapter 6 is devoted
exclusively to pointers. However, the two operators that are used to
manipulate pointers will be presented here.

The first pointer operator is &. It is a unary operator that returns
the memory address of its operand. Remember that a unary operator
only requires one operand. For example,

m = &count;

places into m the memory address of the variable count. This address is
the computer's internal location of the variable. It has nothing to do
with the value of count. The operation of the & can be remembered as
returning the "the address of." Therefore, the above assignment state­
ment could be read as "m receives the address of count."

To better understand the above assignment, assume the variable
count uses memory location 2000 to store its value. Also assume that
count has a value of 100. After the above assignment, m will have the
value 2000.

50 Turbo CIC++: The Complete Reference

The second operator, *, is the complement of the &. It is a unary
operator that returns the value of the variable located at the address
that follows. For example, if m contains the memory address of the
variable count, then

q = *m;

places the value of count into q. Following the above example, q will
have the value 100 because 100 is stored at location 2000, which is the
memory address that was stored in m. The operation of the * can be
remembered as "at address." In this case, the statement could be read as
"q receives the value at address m."

Unfortunately the multiplication sign and the "at address" sign are
the same and the bitwise AND and the "address of" sign are the same.
These operators have no relationship to each other. Both & and * have a
higher precedence than all other arithmetic operators except the unary
minus, with which they are equal.

Variables that will hold memory addresses, or pointers as they are
called in C, must be declared by putting a * in front of the variable name
to indicate to the compiler that it will hold a pointer to that type of
variable. For example, to declare a pointer type variable for a char ch
you would write

char *ch;

Here, ch is not a character, but rather a pointer to a character-there is
a big difference. The type of data that a pointer will be pointing to, in
this case char, is called the base type of the pointer. However, the
pointer variable itself is a variable that will be used to hold the address
to an object of the base type. Hence, a character pointer (or any pointer
for that matter) will be of sufficient size to hold an address as defined by
the architecture of the computer on which it is running. The key point to
remember is that a pointer should only be used to point to data that is
of that pointer's base type.

You can mix both pointer and non pointer directives in the same
declaration statement. For example,

int x, *Y, count;

Variables, Constants, Operators, and Expressions 51

declares x and count to be integer types, and y to be a pointer to an
integer type.

Here, the * and & operators are used to put the value 10 into a
variable called target:

/* Assignment with * and &. */
main(void)
{

}

int target, source;
int *m;

source = 10;
m = &source;
target = *m;

return O;

The slzeof Compile-Time Operator

sizeof is a unary compile-time operator that returns the length, in bytes,
of the variable or parenthesized type-specifier it precedes. For example,

float f;

printf("%f ", sizeof f);
printf("%d", sizeof(int));

displays 4 2.
Remember that to compute the size of a type you must enclose the

type name in parentheses (like a cast). This is not necessary for variable
names.

The principal use of sizeof is to help generate portable code when
that code depends upon the size of the C built-in data types. For
example, imagine a database program that needs to store six integer
values per record. To make the database program portable to the widest
variety of computers, you must not assume that an integer is 2 bytes;
you must determine its actual length using sizeof. This being the case,
the following routine could be used to write a record to a disk file:

/* write a record to a disk file */
put_rec(FILE *fp, int rec[6])
{

52 Turbo CIC++: The Complete Reference

}

int size, num;

size= sizeof(rec);
num = fwrite(rec, size, 1, fp};
if(num<>l) printf("write error");

The key point of this example is that, coded as shown, put_ rec() will
compile and run correctly on any computer-including those with 4-byte
integers. Correctly using sizeof means that you can use Turbo C to
develop code that will ultimately run in a different environment.

The Comma Operator
The comma operator is used to string together several expressions. The
left side of the comma operator will always be evaluated as void. This
means that the expression on the right side will become the value of the
total comma-separated expression. For example,

x = (y=3, y+l};

first assigns y the value 3 and then assigns x the value of 4. The
parentheses are necessary because the comma operator has a lower
precedence than the assignment operator.

Essentially, the comma causes a sequence of operations to be per­
formed. When it is used on the right side of an assignment statement,
the value assigned is the value of the last expression of the comma
separated list. For example:

y = 10;

x = (y=y-5, 25/y};

After execution, x will have the value 5 because y' s original value of 10
is reduced by 5, and then that value is divided into 25, yielding 5 as the
result.

You might think of the comma operator as having the same mean­
ing the word and has in normal English when it is used in the phrase
"do this and this and this."

Variables, Constants, Operators, and Expressions 53

The . and ->Operators

The . (dot) operator and the ->(arrow) operator are used to reference
individual elements of structures and unions. Structures and unions are
compound data types that can be referenced under a single name.
Unions and structures will be thoroughly covered in Chapter 7, but a
short discussion of the operators used with them is given here.

The dot operator is used when operating on the actual structure or
union. The arrow operator is used when a pointer to a structure or
union is used. Suppose you were given the structure

struct employee {
char name [80];
int age;
fl oat wage;

} emp;

struct tom *p = &emp; /* address of emp into p */

To assign the value 123.23 to element wage of structure emp, you would
write

emp.wage = 123.23;

However, the same assignment using a pointer to structure emp would
be

emp->wage = 123.23;

There is a very important difference between older versions of C
and Turbo C in regard to the way they pass structures and unions to
functions. It is important to understand this difference if you will be
porting your code to a great many environments. In the older approach,
only a pointer to a structure or union is actually passed to a function.
(Notice that this is an exception to C's call-by-value method of parame­
ter passing.) However, as specified by the ANSI standard, the entire
structure or union is actually passed, making it consistent with the way
other types of arguments are passed to functions. Since Turbo C follows
the ANSI standard, it uses the latter approach.

54 Turbo CIC++: The Complete Reference

[J and (}
In C, parentheses do the expected job of increasing the precedence of
the operations inside of them.

Square brackets perform array indexing, and will be discussed fully
in Chapter 5. Simply, given an array, the expression within the square
brackets provides an index into that array. For example,

#include <stdio.h>

char s [80);

main(void)
{

s[3]='X';
printf("%c", s[3]);

return O;

first assigns the value 'X' to the fourth element (remember, all arrays in
C begin at 0) of array s, and then prints that element.

Precedence Summary

Table 2-11 lists the precedence of all C operators. Note that all opera­
tors, except the unary operators and ?, associate from left to right. The
unary operators,*•&, -, and? associate from right to left.

Expressions

Operators, constants, and variables are the constituents of expressions.
An expression in C is any valid combination of those pieces. Because
most expressions tend to follow the general rules of algebra, they are
often taken for granted. However, there are a few aspects of expres­
sions that relate to C specifically and will be discussed here.

Variables, Constants, Operators, and Expressions 55

Type Conversion In Expressions

When constants and variables of different types are mixed in an expres­
sion, they are converted to the same type. The compiler will convert all
operands "up" to the type of the largest operand. This is done on an
operation-by-operation basis as described in the following type conver­
sion rules:

1. All chars and short ints are converted to ints. All floats are
converted to doubles.

2. For all operand pairs if one of the operands is a long double, the
other operand is converted to long double.

Otherwise, if one of the operands is double, the other operand
is converted to double.

Otherwise, if one of the operands is long, the other operand is
converted to long.

Otherwise, if one of the operands is unsigned, the other oper­
and is converted to unsigned.

Highest

Lowest

()[]_..

! - + + -- - (type)* & sizeof
*/%
+ -
<< >>
< <= > >=
== !=
&

&&

?
+ = -= *= /=

Table 2-11. Precedence of C Operators

56 Turbo CIC++: The Complete Reference

char ch;
inti;
float f;
doubled;

result= (ch I i) + (f * d) - (f + i);

Jj do8 dou8
int double double

tJ
double

Figure 2-1. An example of type conversion

Once these conversion rules have been applied, each pair of oper­
ands will be of the same type and the result of each operation will be the
same as the type of both operands. Please note that the second rule has
several conditions that must be applied in sequence.

For example, consider the type conversions that occur in Figure
2-1.

First, the character ch is converted to an integer and float f is
converted to double. Then the outcome of ch/i is converted to a double
because f*d is double. The final result is double because, by this time,
both operands are double.

Casts

It is possible to force an expression to be of a specific type by using a
construct called a cast. The general form of a cast is:

Variables, Constants, Operators, and Expressions 57

(type) expression

where type is one of the standard C data types or a user-defined type.
For example, if you wished to make sure the expression x/2 would be
evaluated to type float you could write it:

(fl oat) x/2

Casts are often considered operators. AB an operator, a cast is
unary and has the same precedence as any other unary operator.

Although casts are not usually used a great deal in programming,
there are times when they can be very useful. For example, suppose you
wish to use an integer for loop control, yet perform computation on it
requiring a fractional part, as in the following program:

#include <stdio.h>

/* Print i and i/2 with fractions. */
main (void)
{

inti;

for(i=l; i<=lOO; ++i)
printf("%d I 2 is: %f", i, (float) i /2);

return O;

Without the cast (float), only an integer division would have been
performed; but the cast ensures that the fractional part of the answer
will be displayed on the screen.

Spacing and Parentheses

To aid readability, an expression in Turbo C may have tabs and spaces
in it at your discretion. For example, the following two expressions are
the same.

x=l0/y"'(127/x);

x = 10 I y "'(127/x);

58 Turbo CIC++: The Complete Reference

Use of redundant or additional parentheses does not cause errors or
slow down the execution of the expression. You are encouraged to use
parentheses to clarify the exact order of evaluation, both for yourself
and for others who may have to read your program later. For example,
which of the following two expressions is easier to read?

x=y/3-34*temp&127;

x={y/3) - (34*(temp & 127));

C Shorthand

C has a special shorthand that simplifies the coding of a certain type of
assignment statement. For example

x = x+lO;

can be written, in C shorthand, as

x += 10;

The operator pair + = tells the compiler to assign to x the value of x
plus 10.

This shorthand works for all the binary operators in C (those that
require two operands). The general form of the shorthand

var = var operator expression;

is the same as

var operator = expression;

For another example,

x = x-100;

Variables, Constants, Operators, and Expressions 59

is the same as

x -= 100;

You will see shorthand notation used widely in professionally writ­
ten C programs and you should become familiar with it.

Program Control Statements

This chapter discusses C's rich and varied program control statements.
These include the loop constructs while, for, and do/while, the if and
switch conditional statements, and the break, continue, and goto state­
ments. (Although the return statement technically affects program con­
trol, its discussion is deferred until the following chapter on functions.)
The exit() function is discussed here because it also can affect the flow
of a program.

True and False In C

Most program control statements in any computer language, including
C, rely on a conditional test that determines what course of action is to
be taken. The conditional test produces either a true or false value.
Unlike many other computer languages that specify special values for

:;~•;i:\jli;:;l'!l;::i~r· i;li\i · iU;!f
,,<,_) "' ,, <,1<''

,/"li:'.'i&: ' " l".;8,0r~1:~'

:',,''.'; >' > (o''''''

62 Turbo CIC++: The Complete Reference

true and false, a true value in C is any nonzero value, including negative
numbers. A false value is zero. This approach to true and false is
implemented in C primarily because it allows a wide range of routines to
be coded very efficiently.

c Statements

According to the C syntax, a statement can consist of one of the
following: a single statement, a block of statements, or nothing (in the
case of empty statements). In the descriptions presented here, the term
statement is used to mean all three possibilities.

Conditional Statements

If

C supports two types of conditional statements: if and switch. In
addition, the ? operator is an alternative to the if in certain circum­
stances.

The general form of the if statement is

if(expression) statement;
else statement;

where statement may be either a single statement or a block of state­
ments. (Remember that in C a block is a group of statements sur­
rounded by braces.) The else clause is optional.

The general form of the if with blocks of statements is

if(expression) {
statement sequence

}
else {

statement sequence
}

Program Control Statements 63

If the expression is true (anything other than 0), the statement or
block that forms the target of the if is executed; otherwise, the state­
ment or block that is the target of the else is executed. Remember, only
the code associated with the if or the code that is associated with the
else executes, never both.

For example, consider the following program, which plays a very
simple version of "guess the magic number" game. It prints the message
"**Right**" when the player guesses the magic number.

#include <stdio.h>

/* Magic number program. */
main(void)
{

}

int magic = 123; /*magic number */
int guess;

printf("Enter your guess: ");
scanf("%d", &guess);

if(guess ==magic) printf("** Right**");

return 0;

This program uses the equality operator to determine whether the
player's guess matches the magic number. If it does, the message is
printed on the screen.

Taking the magic number program further, the next version illus­
trates use of the else statement to print a message when the wrong
number is tried.

#include <stdio.h>

/* Magic number program - improvement 1. */
main(void)
{

int magic = 123; /* magic number */

64 Turbo CIC++: The Complete Reference

}

int guess;

printf("Enter your guess: ");
scanf("%d" ,&guess);

if(guess ==magic) printf("** Right **");
else printf(" •• Wrong .• ");

return O;

Nested Ifs

One of the most confusing aspects of if statements in any programming
language is nested ifs. A nested if is an if statement that is the object of
either an if or else. The reason that nested ifs are so troublesome is
that it can be difficult to know what else associates with what if. For
example:

if (x)
if(y) printf("l");
else printf("2");

To which if does the else refer?
Fortunately, C provides a very simple rule for resolving this type of

situation. In C, the else is linked to the closest preceding if that does
not already have an else statement associated with it. In this case, the
else is associated with the if(y) statement. To make the else associate
with the if(x) you must use braces to override its normal association, as
shown here:

if (x} {
if(y) printf("l");

}
else printf("2"};

The else is now associated with the if(x) because it is no longer part of
the if(y) object block. Because of C's scope rules, the else now has no
knowledge of the if(y) statement because they are no longer in the same
block of code.

Program Control Statements 65

A further improvement to the magic number program provides the
player with feedback on how close each guess is. This is accomplished
through the use of a nested if.

#include <stdio.h>

/* Magic number program - improvement 2. */
main(void}
{

int magic = 123; /*magic number */
int guess;

printf("Enter your guess: ");
scanf("%d", &guess);

if(guess == magic) {
printf("** Right**");
printf("%d is the magic number", magic};

}
else {

}

printf(" •• Wrong .• ");
if(guess >magic) printf("Too high");
else printf("Too low");

return O;

The if-else-if Ladder

A common programming construct is the if else-if ladder. It looks like
this:

if (expression)
statement;

else if (expression)
statement;

else if (expression)
statement;

else
statement;

66 Turbo CIC++: The Complete Reference

The conditions are evaluated from the top downward. AB soon as a
true condition is found, the statement associated with it is executed, and
the rest of the ladder is bypassed. If none of the conditions are true, the
final else is executed. The final else often acts as a default condition;
that is, if all other conditional tests fail, the last else statement is
performed. If the final else is not present, then no action takes place if
all other conditions are false.

Using an if-else-if ladder the magic number program becomes

#include <stdio.h>

/* Magic number program - improvement 3. */
main(void)
{

}

int magic = 123; /* magic number */
int guess;

printf("Enter your guess: ");
scanf("%d", &guess);

if(guess == magic) {
printf("** Right** ");
printf("%d is the magic number", magic);

}
else if(guess >magic)

printf(" •• Wrong •• Too High");
else printf(" .• Wrong •. Too low");

return O;

The 1 Alternative

The ? operator can be used to replace if/else statements of the general
form:

if(condition)
expression

else
expression

The key restriction is that the target of both the if and the else must be
a single expression - not another C statement.

Program Control Statements 6 7

The ? is called a ternary operator because it requires three oper­
ands and takes the general form

Exp1 ? Exp2 : Exp3

where Exp1, Exp2, and Exp3 are expressions. Notice the use and
placement of the colon.

The value of an ? expression is determined as follows. Exp1 is
evaluated. If it is true, then Exp2 is evaluated and becomes the value of
the entire ? expression. If Exp1 is false, then Exp3 is evaluated and its
value becomes the value of the expression. For example:

x = 10;

y = x>9 ? 100 : 200;

In this example, y is assigned the value 100. If x had been less than or
equal to 9, y would have received the value 200. The same code written
using the if/else statement would be

x = 10;

if(x>9) y = 100;
else y = 200;

The use of the ? operator to replace if/else statements is not
restricted to assignments. Remember that all functions (except those
declared as void) can return a value. Hence, it is permissible to use one
or more function calls in a C expression. When the function's name is
encountered, the function is, of course, executed so that its return value
can be determined. Therefore, it is possible to execute one or more
function calls using the ? operator by placing them in the expressions
that form the operands.

For example:

#include <stdio.h>

int fl(int n), f2(void);

main(void)
{

int t;

printf(": ");
scanf("%d", &t);

68 Turbo CJC++: The Complete Reference

/* print proper message */
t ? fl(t)+f2() : printf("zero entered");

fl(int n)
{

}

printf("%d ",n);
return 0;

f2(void)
{

printf("entered");
return O;

In this simple example, if you enter a 0, the printf() function is called
and the "zero entered" message appears. If you enter any other number,
then both fl() and f2() are executed. It is important to note that the
value of the ? expression is discarded in this example; it is not necessary
to assign it to anything. Even though neither fl() nor f2() returns a
meaningful value, they cannot be defined as returning void because
doing so prevents their use in an expression. Therefore, the functions
default to returning a 0.

Using the ? operator, it is possible to rewrite the magic number
program again as shown here:

#include <stdio.h>

/* Magic number program - improvement 4. */
main(void)
{

int magic = 123; /* magic number */
int guess;

printf("Enter your guess: ");
scanf("%d", &guess);
if(guess == magic) {

printf("** Right**");
printf("%d is the magic number", magic);

}
else

guess> magic? printf("High") : printf("Low");

return O;

Program Control Statements 69

Here, the ? operator causes the proper message to be displayed based
on the outcome of the test guess >magic.

switch

Although the if-else-if ladder can perform multiway tests, it is hardly
elegant. The code can be very hard to follow and can confuse even its
author at a later date. For these reasons, C has a built-in multiple­
branch decision statement called switch. A variable is successively
tested against a list of integer or character constants. When a match is
found, a statement or block of statements is executed. The general form
of the switch statement is

switch(variable) {

}

case constant1:
statement sequence
break;

case constant2:
statement sequence
break;

case constant3:
statement sequence
break;

default:
statement sequence

where the default statement is executed if no matches are found. The
default is optional and, if not present, no action takes place if all
matches fail. When a match is found, the statement associated with that

70 Turbo CIC++: The Complete Reference

case is executed until the break statement is reached or, in the case of
the default (or last case if no default is present), the end of the switch
statement is encountered.

There are three important things to know about the switch state­
ment:

1. The switch differs from the if in that switch can only test for
equality whereas the if can evaluate a relational or logical expres­
sion.

2. No two case constants in the same switch can have identical
values. Of course, a switch statement enclosed by an outer switch
may have case constants that are the same.

3. If character constants are used in the switch, they are automati­
cally converted to their integer values.

The switch statement is often used to process keyboard commands,
such as menu selection. AB shown here, the function menu() displays a
menu for a spelling checker program and calls the proper procedures:

void menu(void)
{

char ch;

printf("l. Check Spelling\n");
printf("2. Correct Spelling Errors\n");
printf("3. Display Spelling Errors\n");
printf("Strike Any Other Key to Skip\n");
printf(" Enter your choice: ");

ch= getche(); /*read the selection from
the keyboard */

switch(ch) {
case '1':

check_spelling();
break;

case '2':
correct_errors();
break;

case '3':
display_errors();
break;

}
}

default :
printf("No option selected");

Program Control Statements 71

Technically, the break statements are optional inside the switch
statement. They are used to terminate the statement sequence associ­
ated with each constant. If the break statement is omitted, execution
continues into the next case's statements until either a break or the end
of the switch is reached. You can think of the cases as labels. Execution
starts at the label that matches and continues until a break statement is
found, or the switch ends. For example, the function shown here makes
use of the "drop through" nature of the cases to simplify the code for a
device driver input handler:

void inp_handler(void)
{

int ch, flag;

ch= read_device(); /*read some sort of device*/
flag = -1;

switch(ch) {
case 1: /* these cases have common statement */
case 2: /* sequences */
case 3:

flag = O;
break;

case 4:
flag = 1;

case 5:
error(fl ag);
break;

default:
process(ch);

}
}

This routine illustrates two facets of the switch statement. First, you
can have empty conditions. In this case, the first three constants all
execute the same statements:

flag = O;
break;

Second, execution continues into the next case if no break state­
ment is present. If ch matches 4, flag is set to 1 and, because there is no

72 Turbo CIC++: The Complete Reference

break statement, execution continues and the statement error(flag) is
executed. In this case, flag has the value 1. If ch had matched 5,
error(flag) would have been called with a flag value of -1. The ability
to run cases together when no break is present enables you to create
very efficient code because it prevents the unwarranted duplication of
code.

It is important to understand that the statements associated with
each label are not code blocks but rather statement sequences. (Of
course, the entire switch statement defines a block.) This technical
distinction is important only in certain special situations. For example,
the following code fragment is in error and will not even compile
because it is not possible to declare a variable in a statement sequence:

/* This is incorrect. */
switch(c) {

case 1:
int t;

However, a variable could be added as shown here:

/* This is correct. */
switch(c) {

int t;
case 1:

Of course, it is possible to create a block of code as one of the
statements in a sequence and declare a variable within it as shown here:

/* This is also correct. */
switch(c) {

case 1:
if(l) { /* always true, used to create block */

int t;

}

Program Control Statements 73

Nested switch Statements

It is possible to have a switch as part of the statement sequence of an
outer switch. Even if the case constants of the inner and outer switch
contain common values, no conflicts will arise. For example, the follow­
ing code fragment is perfectly acceptable:

switch(x) {
case 1:

switch(y) {

}

case 0: printf("divide by zero error");
break;

case 1: process(x,y);

break;
case 2:

Loops

for

In C, and all other modern programming languages, loops allow a set of
instructions to be performed until a certain condition is reached. This
condition may be predefined as in the for loop, or open-ended as in the
while and do loops.

The general format of C's for loop is probably familiar to you because it
is found in one form or another in all procedural programming lan­
guages. However, in C it has unexpected flexibility and power.

The general form of the for statement is

for(initialization; condition; increment) statement;

The for statement allows many variants, but there are three main parts:

74 Turbo CIC++: The Complete Reference

1. The initialization is usually an assignment statement that is
used to set the loop control variable.

2. The condition is a relational expression that determines when
the loop will exit.

3. The increment defines how the loop control variable will change
each time the loop is repeated.

These three major sections must be separated by semicolons. The
for loop continues to execute as long as the condition is true. Once the
condition becomes false, program execution resumes on the statement
following the for loop.

For a simple example, the following program prints the numbers 1
through 100 on the terminal:

#include <stdio.h>

main(void)
{

int x;

for(x=l; x<=lOO; x++) printf("%d ", x};

return O;
}

In the program, x is initially set to 1. Since x is less than 100,
printf() is called, x is increased by 1, and x is tested to see if it is still
less than or equal to 100. This process repeats until x is greater than
100, at which point the loop terminates. In this example, x is the loop
control variable, which is changed and checked each time the loop
repeats.

Here is an example of a for loop that contains multiple statements:

for(x=lOO; x!=65; x-=5} {
z = sqrt(x);
printf("The square root of %d, %f", x, z);

Both the sqrt() and printf() calls are executed until x equals 65. Note
that the loop is negative running: x was initialized to 100, and 5 is
subtracted from it each time the loop repeats.

Program Control Statements 75

An important point about for loops is that the conditional test is
always performed at the top of the loop. This means that the code inside
the loop may not be executed at all if the condition is false to begin with.
For example:

x = 10;

for(y=lO; y!=x; ++y) printf("%d", y);

printf("%d", y);

This loop never executes because x and y are in fact equal when the loop
is entered. Because the conditional expression is false, neither the body
of the loop nor the increment portion of the loop is executed. Hence, y
still has the value 10 assigned to it, and the output is only the number 10
printed once on the screen.

for Loop Variations

The preceding discussion described the most common form of the for
loop. However, several variations are allowed that increase its power,
flexibility, and applicability to certain programming situations.

One of the most common variations is achieved by using the comma
operator to allow two or more variables to control the loop. (You should
recall that the comma operator is used to string together a number of
expressions in a sort of "do this and this" fashion. It is described in
Chapter 2.) For example, this loop uses the variables x and y to control
the loop, with both variables being initialized inside the for statement.

for(x=O, y=O; x+y<lO; ++x) {
scanf("%d", &y);

}

Here, commas separate the two initialization statements. Each time
x is incremented the loop repeats, and y' s, value is set by keyboard
input. Both x and y must be at the correct value for the loop to
terminate. It is necessary to initialize y to 0 so that its value is defined

76 Turbo CIC++: The Complete Reference

prior to the first evaluation of the conditional expression. If y were not
defined it might, by chance or earlier program usage, contain a 10,
thereby making the conditional test false and preventing the loop from
executing.

Another example of using multiple loop-control variables is found in
the reverse() function shown here. The purpose of reverse() is to copy
the contents of the first string argument back-to-front into the second
string argument. If it is called with "hello" in s, upon completion, r
contains "olleh."

/* Copy s into r backwards. */
void reverse(char *s, char *r)
{

}

int i , j;

for(i=strlen(s)-1, j=O; i>=O; j++,i--) r[i] = s[j);
r[j) = '\O'; /*append null terminator*/

The conditional expression does not necessarily involve simply test­
ing the loop control variable against some target value. In fact, the
condition may be any relational or logical statement. This means that
you can test for several possible terminating conditions. For example,
this function could be used to log a user onto a remote system. The user
is given three tries to enter the password. The loop terminates when
either the three tries are used up or the correct password is entered.

void sign_on(void)
{

char str[20];
int x;

for(x=O; x<3 && strcmp(str,"password"); ++x) {
printf("enter password please:");
gets(str);

}
if(x==3) hang_up();

}

Remember, strcmp() is a standard library function that compares
two strings and returns 0 if they match.

Another interesting variation of the for loop is created by remem­
bering that each of the three sections of the for may consist of any valid

Program Control Statements 77

C expression. They need not actually have anything to do with what the
sections are usually used for. With this in mind, consider the following
example:

#include <stdio.h>

int readnum(void), prompt(void);
int sqrnum(int num);

main(void)
{

}

int t;

for(prompt(); t=readnum(); prompt())
sqrnum(t);
return 0;

prompt(void)
{

}

printf(": ");
return 0;

readnum(void)
{

}

int t;

scanf("%d", &t);
return t;

sqrnum(int num)
{

}

printf("%d\n", num*num);
return O;

If you look closely at the for loop in main(), you will see that each part
of the for comprises function calls that prompt the user and read a
number entered from the keyboard. If the number entered is 0, the loop
terminates because the conditional expression is false; otherwise the
number is squared. Thus, in this for loop the initialization and increment
portions are used in a nontraditional, but completely valid sense.

Another interesting trait of the for loop is that pieces of the loop
definition need not be there. In fact, there need not be an expression
present for any of the sections; they are optional. For example, this loop
runs until 123 is entered:

for(x=O; x! =123;) scanf("%d", &x);

78 Turbo CIC++: The Complete Reference

Notice that the increment portion of the for definition is blank. This
means that each time the loop repeats, x is tested to see if it equals 123,
but no further action takes place. If, however, you type 123 at the
keyboard, the loop condition becomes false and the loop terminates.

It is not uncommon to see the initialization occur outside the for
statement. This most frequently happens when the initial condition of
the loop control variable must be computed by some complex means.
For example:

gets(s); /*read a string into s */
if(*s) x = strlen(s); /*get the string's length*/

for(;x<lO;) {
printf("%d", x);
++x;

}

Here, the initialization section has been left blank and x is initialized
before the loop is entered.

The Infinite Loop

One of the most interesting uses of the for loop is the creation of the
infinite loop. Since none of the three expressions that form the for loop
are required, it is possible to make an endless loop by leaving the
conditional expression empty. For example:

for(;;) printf(" this loop will run forever.\n");

Although you may have an initialization and increment expression it is
more common among G programmers to use the for(;;) with no expres­
sions to signify an infinite loop.1

Actually, the for(;;) construct does not necessarily create an infinite
loop because C's break statement, when encountered anywhere inside

i.There is a small, but persistent, group of C programmers that use the while(l)
method of creating an infinite loop. They both work equally well. The for(;;) method
is recommended only because it is the more common form.

Program Control Statements 79

the body of a loop, causes immediate termination. (The break statement
is discussed later in this chapter.) Program control then picks up at the
code following the loop, as shown here:

ch='\O';

for(;;) {

}

ch= getchar(); /*get a character*/
if(ch=='A') break; /* exit the loop */

printf("you typed an A");

This loop will run until A is typed at the keyboard.

for Loops with No Bodies

A statement, as defined by the C syntax, may be empty. This means that
the body of the for (or any other loop) may also be empty. This fact can
be used to improve the efficiency of certain algorithms as well as to
create time delay loops.

One of the most common tasks to occur in programming is the
removal of spaces from an input stream. For example, a database may
allow a query such as "show all balances less than 400." The database
needs to have each word of the query fed to it separately, without
spaces. That is, the database input processor recognizes "show'' but not
" show'' as a command. The following loop removes any leading spaces
from the stream pointed to by str:

for(; *str==' '; str++) ;

As you can see, there is no body to this loop- and no need for one
either.

Time delay loops are often used in programs. The following shows
how to create one using for:

for(t=O; t<SOME_VALUE; t++) ;

80 Turbo CIC++: The Complete Reference

while

The second loop available in C is the while. The general form is

while(condition) statement;

where statement, as stated earlier, is either an empty statement, a
single statement, or a block of statements that is to be repeated. The
condition may be any expression, with true being any nonzero value.
The loop iterates while the condition is true. When the condition be­
comes false, program control passes to the line after the loop code.

The following example shows a keyboard input routine that simply
loops until A is pressed:

void wait_for_char(void)
{

}

char ch;

ch= '\O'; /*initialize ch*/
while(ch!='A') ch= getchar();

First, ch is initialized to null. AB a local variable, its value is not known
when wait_ for_ char() is executed. The while loop then begins by
checking to see if ch is not equal to 'A'. Because ch was initialized to
null beforehand, the test is true and the loop begins. Each time a key is
pressed on the keyboard, the test is tried again. Once an 'A' is input,
the condition becomes false because ch equals 'A', and the loop termi­
nates.

AB with the for loop, while loops check the test condition at the top
of the loop, which means that the loop code may not execute at all. This
eliminates having to perform a separate conditional test before the loop.
A good illustration of this is the function pad(), which adds spaces to
the end of a string up to a predefined length. If the string is already at
the desired length, no spaces will be added.

/* Add spaces to the end of a string. */
void pad(char *S, int length)
{

int 1;

Program Control Statements 81

1 = strlen(s); /*find out how long it is*/

while(l<length) {
sQ] = ' '; /*insert a space*/
l++;

}

s[l] '\O'; /* strings need to be
terminated in a null */

The two arguments to pad() are s, a pointer to the string to
lengthen, and length, the number of characters that s will be length­
ened to. If the string s is already equal to or greater than length, the
code inside the while loop never executes. If s is less than length,
pad() adds the required number of spaces to the string. The strlen()
function, which is part of the standard library, returns the length of the
string.

Where several separate conditions may be needed to terminate a
while loop, it is common to have only a single variable forming the
conditional expression with the value of this variable being set at various
points throughout the loop. For example:

void funcl(void)
{

int working;

working= 1; /*i.e., true*/

while(working) {
working=processl();
if(working)

working=process2();
if (working)

working=process3();
}

}

Here, any of the three routines may return false and cause the loop to
exit.

There need not be any statements at all in the body of the while
loop. For example,

while((ch=getchar()) != 'A')

82 Turbo CIC++: The Complete Reference

simply loops until A is typed at the keyboard. If you feel uncomfortable
with the assignment inside the while conditional expression, remember
that the equal sign is really just an operator that evaluates to the value
of the right-hand operand.

do/whlle

Unlike the for and while loops that test the loop condition at the top of
the loop, the do/while loop checks its condition at the bottom of the
loop. This means that a do/while loop always executes at least once. The
general form of the do/while loop is

do {
statement sequence;

} while(condition);

Although the braces are not necessary when only one statement is
present, they are usually used to improve readability and avoid confu­
sion (to the reader, not the compiler) with the while.

This do/while reads numbers from the keyboard until one is less
than or equal to 100.

do {
scanf("%d", &num);

} while(num>lOO);

Perhaps the most common use of the do/while is in a menu selec­
tion routine. When a valid response is typed it is returned as the value
of the function. Invalid responses cause a reprompt. The following shows
an improved version of the spelling checker menu that was developed
earlier in this chapter:

void menu(void)
{

char ch;

printf("l. Check Spelling\n");
printf("2. Correct Spelling Errors\n");
printf("3. Display Spelling Errors\n");

Program Control Statements 83

printf(" Enter your choice: ") :

do {
ch= getche(); /*read the selection from

the keyboard */

}

switch(ch) {

}

case '1':
check_spelling();
break;

case '2':
correct_errors():
break;

case '3':
display_errors();
break;

} while(ch!='l' && ch!='2' && ch!='3'):

In the case of a menu function, you always want it to execute at
least once. After the options have been displayed, the program loops
until a valid option is selected.

break

The break statement has two uses. The first is to terminate a case in
the switch statement, and is covered earlier in this chapter in the
section on the switch. The second use is to force immediate termination
of a loop, bypassing the normal loop conditional test. This use is exam­
ined here.

When the break statement is encountered inside a loop, the loop is
immediately terminated and program control resumes at the next state­
ment following the loop. For example:

#include <stdio.h>

main(void)
{

int t;

for(t=O; t<lOO; t++) {
printf("%d ", t);
if(t==lO) break;

}

84 Turbo CIC++: The Complete Reference

return O;
}

This prints the numbers 0 through 10 on the screen and then terminates
because the break causes immediate exit from the loop, overriding the
conditional test t < 100 built into the loop.

The break statement is commonly used in loops in which a special
condition can cause immediate termination. For example, here a key­
press can stop the execution of the look_ up() routine:

look_up(char *name)
{

}

char tname[40];
int loc;

loc = -1;
do {

loc = read_next_name(tname);
if(kbhit()) break;

} while(!strcmp(tname, name));
return loc;

You can use this function to find a name in a database file. If the file is
very long and you are tired of waiting, you could strike a key and return
from the function early. The kbhit() function returns 0 if no key has
been hit; nonzero otherwise.

A break will cause an exit from only the innermost loop. For
example,

for(t=O; t<lOO; +=t) {
count = 1;
for(;;) {

}
}

printf("%d ",count);
count++;
if(count==lO) break;

prints the numbers 1 through 10 on the screen 100 times. Each time the
break is encountered, control is passed back to the outer for loop.

A break used in a switch statement affects only that switch and
not any loop the switch happens to be in.

Program Control Statements 85

exit(J

The function exit(), which is found in the standard library, causes
immediate termination of the entire program. Because the exit() func­
tion stops program execution and forces a return to the operating
system, its use is somewhat specific as a program control device, yet a
great many C programs rely on it. The exit() function has this general
form:

void exit(int status);

It uses the stdlib.h header file. The value of status is returned to the
operating system.

exit() is traditionally called with an argument of 0 to indicate that
termination is normal. Other arguments are used to indicate some sort
of error that a higher-level process will be able to access.

A common use of exit() occurs when a mandatory condition for the
program's execution is not satisfied. For example, imagine a computer
game in which a color graphics card must be present in the system. The
main() function of this game might look like

#include <stdlib.h>

main(void)
{

if(!color_card()) exit(l);
play();
return 0;

where color_ card() is a user-defined function that returns true if the
color card is present. If the card is not in the system, color_ card()
returns false and the program terminates.

As another example, exit() is used by this version of menu() to
quit the program and return to the operating system:

void menu(void)
{

char ch;

printf("l. Check Spelling\n");
printf("2. Correct Spelling Errors\n");

86 Turbo CIC++: The Complete Reference

}

printf("3. Display Spelling Errors\n");
printf("4. Quit\n");
printf(" Enter your choice: ");

do {
ch = getchar(); /* read the selection from

the keyboard */
switch (ch) {

case '1':
check_spelling();
break;

case '2':
correct_errors();
break;

case '3':
display_errors();
break;

case '4':
exit(D); /*return to OS*/

}
} while(chl='l' && ch!='2' && ch!='3');

continue

The continue statement works somewhat like the break statement. But,
instead of forcing termination, continue forces the next iteration of the
loop to take place, skipping any code in between. For example, the
following routine displays only positive numbers:

do {
scanf("%d", &num);
if(x<O) continue;
printf("%d ", x);

} while(x!=lOO);

In while and do/while loops, a continue statement causes control
to go directly to the conditional test and then continue the looping
process. In the case of the for, first the increment part of the loop is
performed, next the conditional test is executed, and finally the loop
continues. The previous example could be changed to allow only 100
numbers to be printed, as shown here:

for(t=O; t<lOO; ++t) {
scanf("%d", &num);
if(x<O) continue;
printf("%d ", x);

}

Program Control Statements 87

In the following example, continue is used to expedite the exit from
a loop by forcing the conditional test to be performed sooner:

void code(void)
{

char done, ch;

done = O;
while(!done) {

}
}

ch = getchar();
if(ch=='$') {

done = l;
continue;

}
putchar(ch+l); /* shift the alphabet one

position */

You could use this function to code a message by shifting all characters
one letter higher; for example, 'a' would become 'b'. The function
terminates when a '$' is read, and no further output occurs because the
conditional test, brought into effect by continue, finds done to be true
and causes the loop to exit.

Labels and goto

Although goto fell out of favor some years ago, it has managed to polish
its tarnished image a bit recently. This book will not judge its validity as
a form of program control. It should be stated, however, that there are
no programming situations that require its use; it is a convenience,
which, if used wisely, can be beneficial in certain programming situa­
tions. As such, goto is not used extensively in this book outside of this
section. (In a language like C, which has a rich set of control structures
and allows additional control using break and continue, there is little
need for it.) The chief concern most programmers have about the goto

88 Turbo CIC++: The Complete Reference

is its tendency to confuse a program and render it nearly unreadable.
However, there are times when the use of the goto actually clarifies
program flow rather than confuses it.

The goto requires a label for operation. A label is a valid C identi­
fier followed by a colon. The label must be in the same function as the
goto that uses it. For example, a loop from 1 to 100 could be written
using a goto and a label as shown here:

x = 1;

loopl:
x++;
if(x<lOO) goto loopl;

One good use for the goto is to exit from several layers of nesting.
For example:

for(...) {

}

for(...) {
while(•••) {

}
}

if(•••) goto stop;

stop:
printf("error in program\n");

Eliminating the goto would force a number of additional tests to be
performed. A simple break statement would not work here because it
would only exit from the innermost loop. If you substituted checks at
each loop, the code would then look like

done = O;
for(...) {

for(...) {
while(...) {

if(...) {

}

done = 1;
break;

}
i f(done) break;

}
if(done) break;

}

Program Control Statements 89

You should use the goto sparingly, if at all. But if the code would be
much more difficult to read or if execution speed of the code is critical,
by all means use the goto.

Functions

Functions are the building blocks of C in which all program activity
occurs. The general form of a function is

type-specifier function_ name(parameter list)
{

body of the function
}

The type-specifier specifies the type of value that the function returns
using the return statement. It can be any valid type. If no type is
specified, the function is assumed to return an integer result. The
parameter list is a comma-separated list of variables that receive the
values of the arguments when the function is called. A function may be
without parameters, in which case the parameter list contains only the
keyword void.

The return Statement

The return statement has two important uses. First, it causes an imme­
diate exit from the function it is in. That is, it causes program execution
to return to the calling code. Second, it can be used to return a value.
Both of these uses are examined here.

Returning from a Function

There are two ways that a function terminates execution and returns to
the caller. One way is when the last statement in the function has

92 Turbo CIC++: The Complete Reference

executed and, conceptually, the function's ending} is encountered. (Of
course, the curly brace isn't actually present in the object code, but you
can think of it in this way.) For example, this function simply prints a
string backward on the screen:

void pr_reverse(char *s)
{

register int t;

for(t=strlen(s)-1; t>-1; t--) printf("%c", s[t]);

Once the string has been displayed, there is nothing left for the function
to do, so it returns to the place it was called from.

However, not many functions use this default method of terminating
their execution. Most functions rely on the return statement to stop
execution either because a value must be returned or to simplify a
function's code and make it more efficient by allowing multiple exit
points. It is important to remember that a function may have several
return statements in it. For example, the function shown here returns
either the index.of the first occurrence of the substring pointed to by sl
within the string pointed to by s2 or -1 if no match is found:

find_substr(char *sl, char *s2)
{

}

register int t;
char *p, *p2;

for(t=O; sl[t]; t++) {
p = &sl[t];

}

p2 = s2;
while(*p2 && *p2==*p) {

p++;
p2++;

}
if(!*p2) return t;

return -1;

Notice how the two return statements help simplify this function.

Functions 93

Return Values

All functions, except those of type void, return a value. This value is
explicitly specified by the return statement. If a function is not specified
as void and if no return value is specified, then an unknown garbage
value is returned. AI3 long as a function is not declared as void it can be
used as an operand in any valid C expression. Therefore, each of the
following expressions is valid in Turbo C:

x = power(y);

if(max(x, y) > 100) printf("greater");

for(ch=getchar(); isdigit(ch);) •.. ;

However, a function cannot be the target of an assignment. A
statement such as

swap(x, y) = 100; /* incorrect statement */

is wrong. Turbo C will flag it as an error and not compile a program
that contains a statement like this.

Keep in mind that if a function is declared as void it cannot be used
in any expression. For example, assume that f() is declared as void. The
following statements will not compile:

int t;

t = f(); /*no value to assign tot*/

f()+f(); /*no value to add*/

Although all functions not of type void have return values, when
you write programs you generally use three types of functions. The first
is simply computational. It is designed specifically to perform operations

94 Turbo CIC++: The Complete Reference

on its arguments and return a value based on that operation -it is
essentially a "pure" function. Examples of this sort of function are the
standard library functions sqr() and sin().

The second type of function manipulates information and returns a
value that simply indicates the success or failure of that manipulation.
An example is fwrite(), which is used to write information to a disk file.
If the write operation is successful, fwrite() returns the number of
items successfully written. If an error occurs, the number returned is
not equal to the number of items it was requested to write.

The last type of function has no explicit return value. In essence,
the function is strictly procedural and produces no value. An example is
srand(), which is used to initialize the random-number-generating func­
tion rand(). Sometimes, functions that don't produce an interesting
result often return something anyway. For example, printf() returns
the number of characters written. It would be very unusual to find a
program that actually checked this. Therefore, although all functions,
except those of type void, return values, you don't necessarily have to
use them for anything. A very common question concerning function
return values is, "Don't I have to assign this value to some variable
since a value is being returned?" The answer is no. If there is no
assignment specified, then the return value is simply discarded. Con­
sider the following program, which uses mul():

#include <stdio.h>

mul (int a, int b);

main(void)
{

}

int x, y, z;

x = 10; y = 20;
z = mul(x, y);
printf("%d", mul(x, y));
mul(x, y);

return 0;

mul(int a, int b)
{

return a*b;
}

/* 1 */
/* 2 */
/* 3 */

Line 1 assigns the return value of mul() to z. In line 2, the return value
is not actually assigned, but it is used by the printf() function. Finally,

Functions 95

in line 3, the return value is lost because it is neither assigned to
another variable nor used as part of an expression.

Returning Values from main(J

When you use a return statement in main(), your program returns a
termination code to the calling process (usually to the operating sys­
tem). The returned value must be an integer. For many operating
systems, including DOS and OS/2, a return value of 0 indicates that the
program terminated normally. All other values indicate that some error
occurred.

All the programs in this book return values from main(), although
technically this is optional. If you don't specify a return value, then
Turbo C returns an unknown value to the operating system. For this
reason, it is a good idea to use an explicit return statement.

Scope Rules of Functions

The scope rules of a language are the rules that govern whether a piece
of code knows about, or has access to, another piece of code or data.

Each function in C is a discrete block of code. A function's code is
private to that function and cannot be accessed by any statement in any
other function except through a call to that function. (It is not possible,
for instance, to use the goto to jump into the middle of another func­
tion.) The code that makes up the body of a function is hidden from the
rest of the program and, unless it uses global variables or data, it can
neither affect nor be affected by other parts of the program. In other
words, the code and data that are defined within one function cannot
interact with the code and data defined in another function because the
two functions have a different scope.

Variables that are defined within a function are called local vari­
ables. A local variable comes into existence when the function is entered
and is destroyed upon exit. Therefore, local variables cannot hold their
value between function calls. The only exception to this rule is when the
variable is declared with the static storage-class specifier. This causes

96 Turbo CIC++: The Complete Reference

the compiler to treat it like a global variable for storage purposes, but
still limit its scope to within the function. (Chapter 2 contains a complete
discussion of global and local variables.)

All functions in C are at the same scope level. That is, it is not
possible to define a function within a function.

Function Arguments

If a function is to use arguments, it must declare variables that accept
the values of the arguments. These variables are called the formal
parameters of the function. They behave like other local variables inside
the function and are created upon entry into the function and destroyed
upon exit. As shown in the following example, the parameter declaration
occurs after the function name and before the function's opening brace:

/* return 1 if c is part of string s; 0 otherwise */
is_in(char *s, char c)
{

}

whil e(*s)
if(*s==c) return 1;
else s++;

return 0;

The function is_ in() has two parameters: s and c. This function re­
turns 1 if the character c is part of the string s and 0 otherwise.

As with local variables, you can make assignments to a function's
formal parameters or use them in any allowable C expression. Even
though these variables perform the special task of receiving the value of
the arguments passed to the function, they can be used like any other
local variable.

Call by Value, Call by Reference

In general, subroutines can be passed arguments in one of two ways.
The first is called call by value. This method copies the value of an

Functions 97

argument into the formal parameter of the subroutine. Changes made to
the parameters of the subroutine have no effect on the variables used to
call it.

Call by reference is the second way a subroutine can have argu­
ments passed to it. In this method, the address of an argument is copied
into the parameter. Inside the subroutine, the address is used to access
the actual argument used in the call. This means that changes made to
the parameter affect the variable used to call the routine.

With a few exceptions, C uses call by value to pass arguments. This
means that you generally cannot alter the variables used to call the
function. (You will find out later in this chapter how to generate a call by
reference by using a pointer to allow changes to the calling variables.)
Consider the following function:

#include <stdio.h>

int sqr(int x);

main(void)
{

int t=lO;

printf("%d %d", sqr(t), t);
return 0;

sqr(int x)
{

}

x = x*x;
return(x);

In this example, the value of the argument to sqr(), 10, is copied into
the parameter x. When the assignment x = x*x takes place, the only
thing modified is the local variable x. The variable t, used to call sqr(),
still has the value 10. Hence, the output will be "100 10".

Remember that only a copy of the value of the argument is passed
to that function. What occurs inside the function has no effect on the
variable used in the call.

Creating a Call by Reference

Even though C's parameter-passing convention is call by value, it is
possible to cause a call by reference by passing a pointer to the

98 Turbo CIC++: The Complete Reference

argument. Since this passes the address of the argument to the function,
it is then possible to change the value of the argument outside the
function.

Pointers are passed to functions just like any other value. Of course,
it is necessary to declare the parameters as pointer types. For example,
the function swap(), which exchanges the value of its two integer
arguments, is shown here:

void swap(int *x, int *Y)
{

}

int temp;

temp = *x;
*X = *y;
*Y = temp;

/* save the value at address x */
/* put y into x */
/* put x into y */

The * operator is used to access the variable pointed to by its operand.
(A complete discussion of the * is found in Chapter 2. Also, Chapter 6
deals exclusively with pointers.) Hence, the contents of the variables
used to call the function are swapped.

It is important to remember that swap() (or any other function
that uses pointer parameters) must be called with the addresses of the
arguments. The following program shows the correct way to call
swap():

#include <stdio.h>

void swap(int *X, int *y);

main(void)
{

int x, y;

x = 10;
y = 20;
swap(&x, &y);
printf("%d %d" , x, y);
return O;

In this example, the variable x is assigned the value 10, and y is
assigned the value 20. Then swap() is called with the addresses of x
and y. The unary operator & is used to produce the addresses of the
variables. Therefore, the addresses of x and y, not their values, are
passed to the function swap().

Functions 99

Calling Functions with Arrays

Arrays will be covered in detail in Chapter 5. However, the operation of
passing arrays as arguments to functions is dealt with here because it is
an exception to the standard call by value parameter-passing conven­
tion.

When an array is used as an argument to a function, only the
address of the array is passed, not a copy of the entire array. When you
call a function with an array name, a pointer to the first element in the
array is passed to the function. (Remember that in C an array name
without any index is a pointer to the first element in the array.) The
parameter declaration must be of a compatible pointer type. There are
three ways to declare a parameter that is to receive an array pointer.
First, it can be declared as an array, as shown here:

#include <stdio.h>

void display(int num[lO]);

main(void) /* print some numbers */
{

}

int t[lO], i;

for(i=O; i<lO; ++i) t[i]=i;
display(t);
return O;

void display(int num[lO])
{

inti;

for(i=O; i<lO; i++) printf("%d ", num[i]);
}

Even though the parameter num is declared to be an integer array of
10 elements, Turbo C automatically converts it to an integer pointer
because no parameter can actually receive an entire array. Only a
pointer to an array is passed, so a pointer parameter must be there to
receive it.

A second way to declare an array parameter is to specify it as an
unsized array, as shown here,

void display(int num[])
{

100 Turbo CIC++: The Complete Reference

int i;

for(i=O; i<lO; i++) printf("%d ", num[i]);
}

where num is declared to be an integer array of unknown size. Since C
provides no array boundary checks, the actual size of the array is
irrelevant to the parameter (but not to the program, of course). This
method of declaration also actually defines num as an integer pointer.

The final way that num can be declared- and the most common
form in professionally written C programs -is as a pointer, as shown
here:

void display(int *num)
{

int i;

for(i=O; i<lO; i++) printf("%d ", num[i]);
}

This is allowed because any pointer can be indexed using [] as if it were
an array. (Actually, arrays and pointers are very closely linked.)

All three methods of declaring an array parameter yield the same
result: a pointer.

On the other hand, an array element used as an argument is treated
like any other simple variable. For example, the program just examined
could have been written without passing the entire array, as shown
here:

#include <stdio.h>

void display(int num);

main(void) /* print some numbers */
{

int t[lO], i;

for(i=O; i<lO; ++i) t[i]=i;
for(i=O; i<lO; i++) display(t[i]);
return O;

void display(int num)
{

printf("%d ", num);

Functions t O t

As you can see, the parameter to display() is of type int. It is not
relevant that display() is called by using an array element, because
only that one value of the array is passed.

It is important to understand that when an array is used as a
function argument, its address is passed to a function. This is an excep­
tion to C's call by value parameter-passing convention. This means that
the code inside the function operates on and potentially alters the actual
contents of the array used to call the function. For example, consider
the function print_ upper() which prints its string argument in upper­
case:

#include <stdio.h>
#include <ctype.h>

void print_upper(char *string);

main(void) /* print string as uppercase */
{

}

char s [80);

gets(s);
print_upper(s);

return O;

void print_upper(char *string)
{

register int t;

for(t=O; string[t]; ++t) {
string[t] = toupper(string[t]);
printf("%c", string[t]);

}
}

After the call to print_ upper(), the contents of array s in main() are
changed to uppercase. If this is not what you want to happen, you could
write the program like this:

#include <stdio.h>
#include <ctype.h>

void print_upper(char *string);

main(void) /* print string as uppercase */
{

char s [80);

102 Turbo CIC++: The Complete Reference

}

gets(s);
print_upper(s);
return O;

void print_upper(char *string)
{

}

register int t;

for(t=O; string[t]; ++t)
printf("%c", toupper(string[t]));

In this version, the contents of array s remain unchanged because its
values are not altered.

A classic example of passing arrays to functions is found in the
standard library function gets(). Although the gets() in Turbo C's
library is more sophisticated and complex, the function shown in the
following example will give you an idea of how it works. To avoid
confusion with the standard function, this one is called xgets().

/*A simplified version of the standard
gets() library function. */

void xgets(char *s)
{

register char ch;
register int t;

for(t=O; t<79;) {
ch = getche () ;
switch(ch) {

case '\r':

}
}

s[t] = '\0'; /*null terminate the string*/
return;

case '\b':
if(t>O) t--;
break;

default:
s[t] = ch;
t++;

s[79] = '\O';
}

The xgets() function must be called with a character pointer, which can
be either a variable that you declare to be a character pointer or the
name of a character array, which by definition is a character pointer.

Functions 1 03

Upon entry, xgets() establishes a for loop from 0 to 79. This prevents
larger strings from being entered at the keyboard. If more than 80
characters are typed, the function returns. Because C has no built-in
bounds checking, you should make sure that any variable used to call
xgets() can accept at least 80 characters. AB you type characters on the
keyboard, they are entered in the string. If you type a backspace, the
counter t is reduced by 1. When you enter a carriage return, a null is
placed at the end of the string, signaling its termination. Because the
actual array used to call xgets() is modified, upon return it will contain
the characters typed.

Arguments to main(J

Turbo C supports three arguments to main(). The first two are the
traditional arguments: argc and argv. These are also the only argu­
ments to main() defined by the ANSI standard. They allow you to pass
command-line arguments to your C program. A command-line argu­
ment is the information that follows the program's name on the com­
mand line of the operating system. For example, when you compile
programs using Turbo C's command-line version, you type something
like

tee program_ name

where program_ name is the program you wish compiled. The name of
the program is passed to Turbo C as an argument.

The argc parameter holds the number of arguments on the com­
mand line and is an integer. It will always be at least 1 because the
name of the program qualifies as the first argument. The argv parame­
ter is a pointer to an array of character pointers. Each element in this
array points to a command-line argument. All command-line arguments
are strings; any numbers have to be converted by the program into the
proper internal format. The following short program prints "Hello", then
your name if you type it directly after the program name:

104 Turbo CIC++: The Complete Reference

#include <stdio.h>

main(int argc, char *argv[])
{

if(argc!=2) {

}

printf("You forgot to type your name\n");
return l;

printf("Hello %s", argv[l]);

return O;

If you title this program name and your name is Chris, to run the
program you would type "name Chris". The output from the program
would be "Hello Chris". For example, if you were logged into drive A,
you would see

A>name Chris
Hello Chris
A>

after running name.
Command-line arguments must be separated by a space or a tab.

Commas, semicolons, and the like are not considered separators. For
example,

run Spot run

is composed of three strings, while

Herb,Rick,Fred

is one string-commas are not legal separators.
If you want to pass a string that contains spaces or tabs as a single

argument, you must enclose that string within double quotes. For exam­
ple, to Turbo C, this is a single argument:

"this is a test"

It is important that you delcare argv properly. One common method is

Functions 1 05

char *argv[];

The empty brackets indicate that it is an array of undetermined length.
You can now access the individual arguments by indexing argv. For
example, argv[O] points to the first string, which is always the
program's name; argv[l] points to the next string, and so on.

A short example using command-line arguments is the following
program called countdown. It counts down from a value specified on
the command line and beeps when it reaches 0. Notice that the first
argument containing the number is converted into an integer using the
standard function atoi(). If the string "display'' is present as the second
command-line argument, the count will also be displayed on the screen.

/* Countdown program. */

#include <stdio.h>

main(int argc, char *argv[])
{

}

int disp, count;

i f(argc<2) {

}

printf("You must enter the length of the count\n");
printf("on the command line. Try again.\n");
return 1;

if(argc==3 && !strcmp(argv[2],"display")) disp = 1;
else disp = O;

for(count=atoi(argv[l]); count; --count)
if(disp) printf("%d ", count);

printf("%c", 7); /*this will ring the bell on most
computers */

return O;

Notice that if no arguments are specified, an error message is printed.
It is common for a program that uses command-line arguments to issue
instructions if an attempt has been made to run it without the proper
information being present.

To access an individual character in one of the command strings,
you add a second index to argv. For example, the following program
displays all the arguments with which it was called, one character at a
time.

106 Turbo CIC++: The Complete Reference

#include <stdio.h>

main(int argc, char *argv[])
{

}

int t, i;

for(t=O; t<argc; ++t)

}

i = 0;
while(argv[t][i]) {

printf("%c", argv[t] [i]);
++i;

}
printf(" ");

return 0;

Remember that the first index accesses the string and the second index
accesses that character of the string.

You generally use argc and argv to get initial commands into your
program. In theory, you can have up to 32,767 arguments, but most
operating systems do not allow more than a few. You normally use these
arguments to indicate a file name or an option. Using command-line
arguments gives your program a very professional appearance and
facilitates the program's use in batch files.

If you link the file WILDARGS.OBJ, provided with Turbo C, with
your program, command-line arguments like *.EXE automatically ex­
pand into any matching file names. (Turbo C automatically processes the
wildcard file name characters and increases the value of argc appropri­
ately.) For example, if you link the following program with WILDARGS
.OBJ, it tells you how many files match the file name specified on the
command line:

/* Link this program with WILDARGS.OBJ. */

#include <stdio.h>

main(int argc, char *argv[])
{

register int i;

printf("%d files match specified name\n", argc-1);

printf("They are: ");

for(i =1; i<argc; i++)

Functions 1 07

printf("%s ", argv[i]);

return O;
}

If you call this program WA, then executing it in the following manner
tells you the number of files that have the .EXE extension, and lists
their names:

C>WA *.EXE

In addition to argc and argv, Turbo C also allows a third command-line
argument called env. The env parameter tells your program to access
the environmental information associated with the operating system.
The env parameter must follow argc and argv and is declared like this:

char *env[]

As you can see, env is declared like argv. Like argv it is a pointer to an
array of strings. Each string is an environmental string defined by the
operating system. The env parameter does not have a corresponding
argc-like parameter that tells your program how many environmental
strings there are. Instead, the last environmental string is null. The
following program displays all the environmental strings currently de­
fined by the operating system:

/* This program prints all the environmental
strings.

*/
#include <stdio.h>

main(int argc, char *argv[], char *env[])
{

int t;

for(t=O; env[t]; t++)
printf("%s\n", env[t]);

return 0;

Notice that even though argc and argv are not used by this program,
they must be present in the parameter list. Turbo C does not actually
know the names of the parameters. Instead, their usage is determined
by the order in which the parameters are declared. In fact, you can call

108 Turbo CIC++: The Complete Reference

the parameters anything you like. Since argc, argv, and env are tradi­
tional names, it is best to use them so anyone reading your program will
instantly know that they are arguments to main().

It is quite common for a program to need to find the value of one
specific environmental string. For example, under DOS, knowing the
value of the PATH string allows your program to utilize the currently
defined search paths. The following program shows how to find the
string that defines the default search paths. It uses the standard library
function strstr(), which has this prototype:

char *strstr(const char *str1, const char *str2);

The strstr() function searches the string pointed to by str1 for the first
occurrence of the string pointed to by str2. If it is found, a pointer to the
first occurrence is returned. If no match exists, then strstr() returns
null.

/* This program searches the environmental
strings for the one that contains the
current PATH.

*/
#include <stdio.h>
#include <string.h>

main(int argc, char *argv[], char *env[])
{

int t;

for(t=O; env[t]; t++) {
if(strstr(env[t], "PATH"))

printf("%s\n", env[t]);
}

return 0;

Functions Returning Nonlnteger Values

When the return type of a function is not explicitly declared, it automat­
ically defaults to int. For many functions this default is acceptable.
However, when it is necessary to return a different data type you must
use this two-step process:

Functions 1 09

1. The function must be given an explicit type specifier.

2. The compiler must be told the type of the function before the
first call is made to it.

Only in this way can Turbo C generate correct code for functions
returning noninteger values.

Functions can be declared to return any valid C data type. The
method of declaration is similar to that of variables: The type specifier
precedes the function name. The type specifier tells the compiler what
type of data the function is to return. This information is critical if the
program is going to run correctly, because different data types have
different sizes and internal representations.

Before you can use a function that returns a noninteger type, its
type must be made known to the rest of the program. Unless directed to
the contrary, Turbo C assumes that a function is going to return an
integer value. If the function actually returns some other type, then
Turbo C will have generated the wrong code for the return value. In
general, the way to inform Turbo C about the return type of a function
involves using a forward reference. A forward reference declares the
return type of a function but does not actually define what the function
does. The function definition occurs elsewhere in the program.

There are two ways to create a forward reference. The first is the
traditional method used by pre-ANSI-standard versions of C. The sec­
ond is to use a function prototype (which is the method used in this
book). The traditional forward reference method is explained here be­
cause much old C code is still in existence. The function prototype
method is examined later in this chapter.

The traditional method of informing Turbo C about the return type
of a function simply declares the return type and name of the function
near the top of the program. For example, to tell Turbo C that a
function called myfunc() returns a double value, you would put this
declaration near the top of your program:

double myfunc();

Even if myfunc() has parameters, in this method none are shown
within the parentheses. When Turbo C reads this line, it knows that
myfunc() returns a double and generates the correct return code. For
example, the following is a correct (although old-style) program:

11 O Turbo CIC++: The Complete Reference

#include <stdio.h>
#include <math.h>

double myfunc(); /*forward declaration of myfunc() */

main(void)
{

}

printf("%lf", myfunc(lO.O)):
return 0;

double myfunc(double x)
{

return sqrt(x) * 2.0; /* return sqr root of x * 2 */
}

As you can see, even though myfunc() has one parameter, the tradi­
tional forward declaration says nothing about it.

Frankly, while both Turbo C and the ANSI C standard still allow
the preceding function declaration method as a means to telling Turbo C
about the return type of a function, it cannot be recommended. The
reason for this is that the function prototype, which was added by the
ANSI committee, provides a much better alternative.

Using Function Prototypes

The ANSI C standard expands on the traditional forward function
declaration. This expanded declaration is called a function prototype.
Except for the example in the preceding section, every program in this
book includes a function prototype for all functions used in the program.

A function prototype performs two special tasks. First, it identifies
the return type of the function so that Turbo C can generate the correct
code for the return data. Second, it specifies the type and number of
arguments used by the function. The prototype takes this general form:

type function_ name(parameter list);

The prototype normally goes near the top of the program and must
appear before any call is made to the function.

Functions 111

In addition to telling the compiler about the return type of the
function, function prototypes enable C to provide strong type-checking
somewhat similar to that provided by languages such as Turbo Pascal.
The prototypes allow Turbo C to find and report any illegal type conver­
sions between the type of arguments used to call a function and the type
definition of its parameters. They also allow Turbo C to report when a
function is called with too few or too many arguments.

When possible, Turbo C automatically converts the type of an argu­
ment into the type of the parameter that is receiving it. However, some
type conversions are simply illegal. When a function is prototyped, any
illegal type conversion will be found and an error message will be issued.
AB an example, the following program causes an error message to be
issued because there is an attempt to call func() with a pointer instead
of the float required. (It is illegal to transform a pointer into a float.)

/* This program uses function prototypes to
enforce strong type checking in the calls
to func().

*/

The program will not compile because of the
mismatch between the type of the arguments
specified in the function's prototype and
the type of arguments used to call the function.

#include <stdio.h>

float func(int x, floaty); /*prototype*/

main(void)
{

}

int x, *Yi

x = 10; y = &x;
func(x, y); /*type mismatch*/
return 0;

float func(int x, floaty)
{

}

printf(11%f 11 , y/(float)x);
return y/(float) x;

Using a prototype also allows Turbo C to report when the number
of arguments used to call a function disagrees with the number of

112 Turbo CIC++: The Complete Reference

parameters defined by the function. For example, this program will not
compile because func() is called with the wrong number of arguments:

/*

*/

The program will not compile because of the
mismatch between the number of parameters
specified in the function's prototype and
the number of arguments used to call the function.

#include <stdio.h>

float func(int x, floaty); /*prototype*/

main(void)
{

}

func(2, 2.0, 4); /*wrong number of args */
return O;

float func(int x, floaty)
{

}

printf("%f", y/(float)x);
return y/(float) x;

Technically, when you prototype a function, you do not need to
include the actual parameter names. For example, both of these are
valid prototypes:

char func(char *• int);

char func(char *str, int count);

However, if you include each parameter name, Turbo C uses the names
to report any type mismatch errors.

Some functions, such as printf(), can take a variable number of
arguments. A variable number of arguments are specified in a prototype
using three periods. For example, the prototype to printf() is

int printf(const char *fmt, ...);

To create functions with a variable number of arguments, refer to the
description of the standard library function va_arg() in Part Four of
this book.

Functions 113

Aside from telling the compiler about a function's return data type,
use of function prototypes helps you trap bugs before they occur by
preventing a function from being called with invalid arguments. They
also help verify that your program is working correctly by not allowing
functions to be called with the wrong number of arguments.

Standard Library Function Prototypes

Any standard library functions used by your program should be proto­
typed. To accomplish this, you must include the appropriate header file
for each library function. Header files use the .H extension and are
provided along with Turbo C. Turbo C's header files contain two main
elements: the definitions used by the functions and the prototypes for
the standard functions related to the header file. For example, STDIO.H
is included in almost all programs in this book because it contains the
prototype for the printf() function. By including the appropriate header
file for each library function used in a program it is possible for Turbo C
to catch any accidental errors you may make when using them.

Turbo C's header files and the category of functions for which each
is used is shown in Table 4-1. In Part Four of this book, the header file
required by each library function is shown along with its description.

Although we will look more closely at Turbo C's compiler options
later in this book, you should be aware that you can let Turbo C warn
you when a function prototype has not been included for any function in
your program. To do this in the integrated environment, select Options.
Under Options select Compiler followed by Messages. From this menu
select Frequent errors. Finally, activate the Call to function without
prototype option. If you are using the command-line compiler, use the
-wpro option.

Prototyping Functions that Have No Parameters

As you know, a function prototype tells Turbo C about the type of data
returned by a function as well as the type and number of parameters
used by the function. However, since prototypes were not part of the

114 Turbo CIC++: The Complete Reference

File Name

alloc.h
assert.h
bios.h
conio.h
ctype.h
dir.h
dos.h
errno.h
fcntl.h
fioat.h
graphics.h
io.h
limits.h
locale.h
math.h
mem.h
process.h
setjmp.h
share.h
signal.h
stdargs.h
stddef.h
stdio.h
stdlib.h
string.h
sys\<;tat.h
sys\timeb.h
sys\types.h
time.h
values.h

Table 4-1.

Related Functions

Dynamic memory allocation
Defines assert()
BIOS interface functions
Direct console I/O functions
Character-related functions
Directory-related functions
DOS interface functions
Defines various error codes
Defines various constants used by the UNIX-like file system
Defines floating point limits
Graphics-related functions
Low-level I/O functions
Defines various integer limits
Country-specific functions
Mathematical functions
Memory manipulation functions
Process control functions
Required by setjmp() and longjmp()
Support for file-sharing
Support for signal() and raise()
Support for variable-length arguments
Defines standard types and macros
Standard I/O functions
Miscellaneous functions
String-related functions
File-related constants
Supports the ftime() function
Defines time_ t, which is used by the time functions
Time- and date-related functions
Various implementation-dependent constants

Turbo C's Header Files

original version of C, a special case is created when you need to proto­
type a function that takes no parameters. The reason for this is that the
ANSI C standard stipulates that when no parameters are included in a
function's prototype, no information whatsoever is specified about the

Functions 11 5

type or number of the function's parameters. This is necessary to
ensure that older C programs can be compiled by modern compilers,
such as Turbo C. When you specifically want to tell Turbo C that a
function actually takes no parameters you must use the keyword void
inside the parameter list. For example, examine this short program:

#include <stdio.h>

void displaylO(void);

main(void)
{

displaylO();

return O;

void displaylO(void)
{

}

inti;

for(i=O; i<lO; i++)
printf("%d •, i);

In this program, the prototype to displaylO() explicitly tells the com­
piler that displaylO() takes no arguments. Since the parameter list of
the function must agree with its prototype, the void must also be
included in the declaration of displaylO() as well as in its definition
later in the program. Assuming the foregoing prototype, Turbo C will
not compile a call to displaylO() that looks like the following example:

displaylO(lOO);

However, if the void had been left out of the parameter list specification,
no error would have been reported and the argument would simply have
been ignored.

Returning Pointers

Although functions that return pointers are handled in exactly the same
way as any other type of function, a few important concepts need to be
discussed.

116 Turbo CIC++: The Complete Reference

Pointers to variables are neither integers, nor unsigned integers.
They are the memory addresses of a certain type of data. The reason for
this distinction lies in the fact that when pointer arithmetic is performed
it is relative to the base type - that is, if an integer pointer is incre­
mented it will contain a value that is 2 greater than its previous value
(assuming 2-byte words). More generally, each time a pointer is incre­
mented, it points to the next data item of its type. Since each data type
may be of a different length, the compiler must know what type of data
the pointer is pointing to in order to make it point to the next data item.
(The subject of pointer arithmetic is covered in detail in Chapter 6.)

For example, the following is a function that returns a pointer to a
string at the place where a character match was found:

char *match(char c, char *s)
{

}

register int count;

count = 0;
while(c!=s[count] && s[count]) count++;
return(&s[count]);

The function match() attempts to return a pointer to the place in a
string where the first match with c is found. If no match is found, a
pointer to the null terminator is returned.

A short program that uses match() is shown here:

#include <stdio.h>
#include <conio.h>

char *match(char c, char *s);

main(void)
{

}

char s[BO], *p, ch;

gets(s);
ch = getche ();
p = match(ch, s);
if(p) /* there is a match */

printf("%s ", p);
else

printf("no match found");

return O;

Functions 11 7

This program reads a string and then a character. If the character is in
the string, it prints the string from the point of the match. Otherwise, it
prints "no match found".

Classlc Versus Modern Parameter Declarations

The original version of C uses its own method to declare function
parameters, which sometimes is called the traditional or classic form.
The declaration approach used in this book is called the modern form.
Turbo C adheres closely to the ANSI standard for C, which supports
both forms but strongly recommends the modern form. (In fact, it is
rare to see new C code that is written using the classic function declara­
tions.) However, it is important for you to know the classic form because
there are literally millions of lines of C code in existence that use it.
Also, many programs published in books and magazines that are more
than a couple of years old use this form.

The classic function parameter declaration consists of two parts: a
parameter list, which goes inside the parentheses that follow the func­
tion name, and the actual parameter declarations, which go between the
closing parentheses and the function's opening curly brace. The general
form of the classic parameter definition is shown here:

type function_ name(parm1, parm2, . . . parmN)
type parm1;
type parm2;

type parmN;
{

function code
}

For example, this modern declaration:

char *f(const char *strl, int count, int index)
{

}

118 Turbo CIC++: The Complete Reference

will look like this in its classic form:

char *f(strl, count, index)
char *strl;
int count, index;
{

}

Notice that in the classic form more than one parameter can be listed
after the type name.

There is one slight distinction that Turbo C makes between the
classic and modern declaration methods. If you declare a float parame­
ter using the classic declaration method, Turbo C automatically elevates
it to a double at the time of the call. Using the modern declaration
approach prevents this automatic type promotion, and the parameter
and its argument remain floats.

Remember that even though the classic declaration form is out­
dated, Turbo C can still correctly compile programs that use this ap­
proach. Therefore, you need not worry if you want to compile a program
that uses classic function declarations.

Recursion

In C, functions can call themselves. A function is recursive if a state­
ment in the body of the function calls itself. Sometimes called circular
definition, recursion is the process of defining something in terms of
itself.

Examples of recursion abound. A recursive way to define an integer
number is as the digits 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, plus or minus an integer
number. For example, the number 15 is the number 7 plus the number
8; 21 is 9 plus 12; and 12 is 9 plus 3.

For a computer language to allow recursion, a function must be able
to call itself. A simple example is the function factr(), which computes
the factorial of an integer. The factorial of a number N is the product of

Functions 11 9

all the whole numbers from 1 to N. For example, 3 factorial is 1 x 2 x
3, or 6. Both factr() and its iterative equivalent are shown here.

/* Compute the factorial of a number. */
factr(int n) /* recursive */
{

}

int answer;

if(n==l) return(!);
answer = factr(n-l)*n;
return(answer);

/* Compute the factorial of a number. */
fact(int n) /* non-recursive */
{

}

int t, answer;

answer = 1;
for(t=l; t<=n; t++)

answer=answer*(t);
return(answer);

The operation of the nonrecursive version of fact() should be clear.
It uses a loop starting at 1 and ending at the number, and progressively
multiplies each number by the moving product.

The operation of the recursive factr() is a little more complex.
When factr() is called with an argument of 1, the function returns 1;
otherwise it returns the product of factr(n -1) *n. To evaluate this
expression, factr() is called with n -1. This happens until n equals 1
and the calls to the function begin returning.

Computing the factorial of 2, the first call to factr() causes a
second call to be made with the argument of 1. This call returns 1, which
is then multiplied by 2 (the original n value). The answer is then 2. You
might find it interesting to insert printf() statements into factr() to
show the level and the intermediate answers of each call.

When a function calls itself, new local variables and parameters are
allocated storage on the stack, and the function code is executed with
these new variables from the beginning. A recursive call does not make
a new copy of the function. Only the arguments are new. As each
recursive call returns, the old local variables and parameters are re­
moved from the stack and execution resumes at the point of the function
call inside the function. Recursive functions could be said to "telescope"
out and back.

120 Turbo CIC++: The Complete Reference

Most recursive routines do not significantly save code size or mem­
ory. The recursive versions of most routines may execute a bit more
slowly than the iterative equivalent because of the added function calls;
but this is not significant in most cases. Many recursive calls to a
function could cause a stack overrun, but this is unlikely. Because
storage for function parameters and local variables is on the stack and
each new call creates a new copy of these variables, the stack space
could become exhausted. If this happens, a stack overflow occurs. You
can have Turbo C watch for stack overflow by turning off the No Stack
Warning menu entry inside the Linker entry under the Options menu
of the integrated environment or by specifying the -N option when
using the command-line version of Turbo C.

The main advantage to recursive functions is that they can be used
to create versions of several algorithms that are clearer and simpler
than their iterative siblings. For example, the QuickSort sorting algo­
rithm is quite difficult to implement in an iterative way. Some problems,
especially AI-related ones, also seem to lend themselves to recursive
solutions. Finally, some people seem to think recursively more easily
than iteratively.

When writing recursive functions, you must have an if statement
somewhere to force the function to return without the recursive call
being executed. If you don't do this, once you call the function, it never
returns. This is a very common error when writing recursive functions.
Use printf() and getchar() liberally during development so that you
can watch what is going on and abort execution if you see that you have
made a mistake.

Pointers to Functions

A particularly confusing yet powerful feature of C is the function
pointer. Even though a function is not a variable, it still has a physical
location in memory that can be assigned to a pointer. The address
assigned to the pointer is the entry point of the function. This pointer
can then be used in place of the function's name. It also allows functions
to be passed as arguments to other functions.

To understand how function pointers work, you must understand a
little about how a function is compiled and called in Turbo C. As each

Functions 1 21

function is compiled, source code is transformed into object code and an
entry point is established. When a call is made to a function while your
program is running, a machine language "call" is made to this entry
point. Therefore, a pointer to a function actually contains the memory
address of the entry point of the function.

The address of a function is obtained by using the function's name
without any parentheses or arguments. (This is similar to the way an
array's address is obtained by using only the array name without
indexes.) For example, consider the following program, paying very
close attention to the declarations:

#include <stdio.h>
#include <string.h>

void check(char *a, char *b, int (*cmp) (char*• char*));

main(void)
{

}

char sl [80]. s2 [80];
int (*p) ();

p = strcmp; /* get address of strcmp() */

gets(sl);
gets(s2);

check(sl, s2, p);
return 0;

void check(char *a, char *b, int (*cmp) (char *• char *))
{

}

printf("testing for equality\n");
if(!(*cmp) (a, b)) printf("equal");
else printf("not equal");

When the function check() is called, two character pointers and one
function pointer are passed as parameters. Inside the function check(),
the arguments are declared as character pointers and a function pointer.
Notice how the function pointer is declared. You must use exactly the
same method when declaring other function pointers, except that the
return type or parameters of the function can be different. The paren­
theses around the *cmp are necessary for the compiler to interpret this
statement correctly. Without the parentheses around *cmp Turbo C
would be confused.

When you declare a function pointer, you can still provide a proto­
type to it as the preceding program illustrates. However, in many cases

122 Turbo CIC++: The Complete Reference

you won't know the names of the actual parameters so you can leave
them blank, or you can use any names you like.

Once inside check(), you can see how the strcmp() function is
called. The statement

(*cmp) (a, b)

performs the call to the function, in this case strcmp(), which is pointed
to by cmp with the arguments a and b. This statement also represents
the general form of using a function pointer to call the function it points
to.

It is possible to call check() using strcmp directly, as shown here:

check(sl, s2, strcmp);

This statement would eliminate the need for an additional pointer vari­
able.

You may be asking yourself why anyone would want to write a
program this way. In this example, nothing is gained and significant
confusion is introduced. However, there are times when it is advanta­
geous to pass arbitrary functions to procedures or to keep an array of
functions. The following helps illustrate a use of function pointers. When
an interpreter is written, it is common for it to perform function calls to
various support routines, for example, the sine, cosine, and tangent
functions. Instead of having a large switch statement listing all of these
functions, you can use an array of function pointers with the proper
function called. You can get the flavor of this type of use by studying the
expanded version of the previous example. In this program, check() can
be made to check for either alphabetical equality or numeric equality by
simply calling it with a different comparison function:

#include <stdio.h>
#include <ctype.h>
#include <string.h>
#include <stdlib.h>

void check(char *a, char *b, int (*cmp) (char*• char*));
int numcmp(char *a, char *b);

main(void)
{

char s1[80], s2[80];

}

gets(sl);
gets(s2);

if(isalpha(*sl))
check(sl, s2, strcmp);

else
check(sl, s2, numcmp);

return O;

void check(char *a, char *b, int (*cmp) (char *• char *))
{

}

printf("testing for equality\n");
if(!(*cmp) (a, b)) printf("equal"):
else printf("not equal"):

numcmp(char *a, char *b)
{

}

if(atoi(a)==atoi(b)) return 0;
else return 1;

Implementation Issues

Functions 1 23

When you create C functions you should remember a few important
things that affect their efficiency and usability. These issues are the
subject of this section.

Parameters and General-Purpose Functions

A general-purpose function is one that is used in a variety of situations,
perhaps by many different programmers. Typically, you should not base
general-purpose functions on global data. All the information a function
needs should be passed to it by its parameters. In the few cases in which
this is not possible, you should use static variables.

Besides making your functions general-purpose, parameters keep
your code readable and less susceptible to bugs caused by side effects.

Efficiency

Functions are the building blocks of C and crucial to the creation of all
but the most trivial programs. Nothing said in this section should be
construed otherwise. In certain specialized applications, however, you

124 Turbo CIC++: The Complete Reference

may need to eliminate a function and replace it with in-line code. In-line
code is the equivalent of a function's statements used without a call to
that function. In-line code is used instead of function calls only when
execution time is critical.

There are two reasons in-line code is faster than a function call.
First, a "call" instruction takes time to execute. Second, arguments to be
passed have to be placed on the stack, which also takes time. For almost
all applications, this very slight increase in execution time is of no
significance. But if it is, remember that each function call uses time that
would be saved if the code in the function were placed in line. For
example, below are two versions of a program that prints the square of
the numbers from 1 to 10. The in-line version runs faster than the other
because the function call takes time.

in line

main(void)
{

}

int x;

for(x=l; x<ll; ++x)
printf("%d", x*x);
return O;

function call

main(void)
{

int x;

for(x=l; x<ll; ++x)
printf("%d", sqr(x));
return 0;

sqr(int a)
{

return a*a;
}

As you create programs, you must always weigh the cost of func­
tions in terms of execution time against the benefits of increased read­
ability and modifiability.

Arrays

An array is a collection of variables of the same type that are refer­
enced by a common name. A specific element in an array is accessed by
an index. In C all arrays consist of contiguous memory locations. The
lowest address corresponds to the first element; the highest address
corresponds to the last element. Arrays may have from one to several
dimensions.

Slngle-Dlmenslon Arrays

The general form of a single-dimension array declaration is

type var_ name[size];

In C arrays must be explicitly declared so that the compiler can allocate
space for them in memory. Here, type declares the base type of the
array, which is the type of each element in the array. Size defines how
many elements the array will hold. For a single-dimension array, the
total size of an array in bytes is computed as shown here:

total bytes = sizeof(base type) * number of elements

All arrays have 0 as the index of their first element. Therefore,
when you write

char p [10);

F
I
v
E

1 26 Turbo CIC++: The Complete Reference

you are declaring a character array that has 10 elements, p[O] through
p[9]. For example, the following program loads an integer array with
the numbers 0 through 9 and displays them:

#include <stdio.h>

main(void)
{

}

int x[lO]; /*this reserves 10 integer elements*/
int t;

for(t=O; t<lO; ++t} x[t]=t;

for(t=O; t<lO; ++t) pri ntf("%d ", x[t]);
return 0;

In C there is no bounds checking on arrays. You could overwrite either
end of an array and write into some other variable's data, or even into a
piece of the program's code. It is the programmer's job to provide
bounds checking when it is needed. For example, make certain that the
character arrays that accept character input using gets() are long
enough to accept the longest input.

Single-dimension arrays are essentially lists of information of the
same type. For example, Figure 5-1 shows how array a appears in
memory if it is declared as shown here and starts at memory location
1000:

char a[?];

a[O] a[l] a [2] a[3] a[4] a[5] a[6]

1000 1001 1002 1003 1004 1005 1006

Figure 5-1. A seven-element characater beginning at location 1000

Arrays 127

Passing Single-Dimension Arrays to Functions

When passing single-dimension arrays to functions, call the function
with the array name without any index. This passes the address of the
first element of the array to the function. In C it is not possible to pass
the entire array as an argument; a pointer is automatically passed
instead. For example, the following fragment passes the address of i to
funcl():

main(void)
{

int i[lO];

funcl(i);

}

If a function is to receive a single-dimension array, you may declare
the formal parameter as a pointer, as a sized array, or as an unsized
array. For example, to receive i into a function called funcl(), you could
declare funcl() as either

funcl(int *a) /* pointer */
{

}

or

funcl(int a[lO]) /* sized array */
{

}

1 28 Turbo CIC++: The Complete Reference

or

funcl(int a[]) /* unsized array */
{

}

All three methods of declaration tell the compiler that an integer pointer
is going to be received. In the first declaration a pointer is used; in the
second the standard array declaration is employed. In the third declara­
tion, a modified version of an array declaration simply specifies that an
array of type int of some length is to be received. Ai; far as the function
is concerned, it doesn't matter what the length of the array actually is
because C performs no bounds checking, anyway. In fact, as far as the
compiler is concerned,

funcl(int a[32])
{

}

also works because Turbo C generates code that instructs funcl() to
receive a pointer-it does not actually create a 32-element array.

Strings
By far the most common use of single-dimension arrays is for character
strings. Although C defines no string type, it supports some of the most
powerful string manipulation functions found in any language. In C a
string is defined to consist of a character array of any length that is
terminated by a null. A null is specified as '\O' and is 0. For this reason
it is necessary to declare character arrays to be one character longer

Arrays 129

than the largest string that they are to hold. For example, if you wished
to declare an array s that holds a 10-character string, you would write

char s [11];

This makes room for the null at the end of the string.
Although C does not have a string data type, it still allows string

constants. A string constant is a list of characters enclosed between
double quotes .. For example, here are two string constants:

"hello there" "this is a test"

It is not necessary to add the null to the end of string constants
manually; the C compiler does this for you automatically.

Turbo C supports a wide range of string manipulation functions.
Some of the most common are strcpy(), strcat(), strlen(), and
strcmp(), whose prototypes are shown here:

char *strcpy(char *s1, const char *s2);

char *strcat(char *S1, const char *s2);

int strlen(const char *s1);

int strcmp(const char *s1, const char *s2);

All of the functions use the string.h header file. The strcpy() function
copies the string pointed to by s2 into the one pointed to by s1. It
returns s1. The strcat() function concatenates the string pointed to by
s2 to the one pointed to by s1. It also returns s1. The strlen() function
returns the length of the string pointed to by s1. The strcmp() function
compares s1 and s2. It returns 0 if the two strings are equal, greater
than 0 if the string pointed to by s1 is greater than the one pointed to by
s2, and less than zero if the string pointed to by s1 is less than the
string pointed to by s2. All comparisons are done lexicographically
(according to dictionary order). (These and other string functions are
discussed in detail in Part Four of this book.)

130 Turbo CIC++: The Complete Reference

The following program illustrates the use of these string functions:

#include <string.h>
#include <stdio.h>

main(void)
{

}

char sl[SO], s2[80];

gets(sl); gets(s2);

printf("lengths: %d %d\n", strlen(sl), strlen(s2));

if(!strcmp(sl, s2)) printf("The strings are equal\n");

strcat(sl, s2);
printf("%s\n", sl);

return O;

If this program is run and the strings "hello" and "hello" are entered, the
output is

lengths: 5 5
The strings are equal
hellohello

It is important to remember that strcmp() returns false if the
strings are equal, so be sure to use the ! to reverse the condition, as
shown in this example, if you are testing for equality.

Two-Dlmenslonal Arrays

Turbo C allows multidimensional arrays. The simplest form of the multi­
dimensional array is the two-dimensional array. A two-dimensional ar­
ray is, in essence, an array of one-dimensional arrays. Two-dimensional
arrays are declared using this general form:

type array_ name[2nd dimension size][1st dimension size];

Hence, to declare a two-dimensional integer array d of size 10,20, you
would write

Arrays 131

int d [10] [20];

Pay careful attention to the declaration. Unlike some computer lan­
guages, which use commas to separate the array dimensions, C places
each dimension in its own set of brackets.

Similarly, to access point 3,5 of array d, use

d [3] [5]

In the following example, a two-dimensional array is loaded with the
numbers 1 through 12, which it then displays on the screen:

#include <stdio.h>

main(void)
{

}

int t, i, num[3][4];

for(t=O;t<3;++t)
for(i=O;i<4;++i)

num[t][i]=(t*4)+i+l;

/* display them */
for(t=O;t<3;++t) {

for(i=O;i<4;++i)

}

printf("%d ", num[t][i]);
printf("\n");

return 0;

In this example, num[O][O] has the value 1; num[O][l], the value 2,
num[0][2] the value 3; and so on. The value of num[2][3] is 12.

Two-dimensional arrays are stored in a row-column matrix, where
the first index indicates the row and the second indicates the column.
This means that the rightmost index changes faster than the leftmost
when accessing the elements in the array in the order they are actually
stored in memory. See Figure 5-2 for a graphic representation of a
two-dimensional array in memory. In essence, the leftmost index can be
thought of as a "pointer" to the correct row.

The number of bytes of memory required by a two-dimensional
array is computed using the following formula:

132 Turbo CIC++: The Complete Reference

bytes = 2nd dimension* 1st dimension* sizeof (base type)

Therefore, assuming 2-byte integers, an integer array with dimensions
10,5 would have 10 x 5 x 2 or 100 bytes allocated.

When a two-dimensional array is used as an argument to a function,
only a pointer is passed to the first element. However, a function
receiving a two-dimensional array as a parameter must minimally define
the length of the first dimension, because the compiler needs to know
the length of each row if it is to index the array correctly. For example,
a function that will receive a two-dimensional integer array with dimen­
sions 5,10 would be declared like this:

funcl(int x[][lO])
{

}

~ ~
"O
i:::,

~
00

~

1,0 1,1

2,0 2,1

3,0 3,1

4,0 4,1

Second index

1,2 1,3 1,4

2,2 2,3 2,4

3,2 3,3 3,4

4,2 4,3 4,4

Figure 5-2. A two-dimensional array in memory

1,5 1,6 1,7

2,5 2,6 2,7

3,5 3,6 3,7

4,5 4,6 4,7

Arrays 133

You can specify the second dimension as well, but it is not necessary.
The compiler needs to know the first dimension in order to work on
statements such as

x[2][4)

inside the function. If the length of the rows is not known, it is impos­
sible to know where the next row begins.

The short program shown here uses a two-dimensional array to
store the numeric grade for each student in a teacher's classes. The
program assumes that the teacher has three classes and a maximum of
30 students per class. Notice how the array grade is accessed by each of
the functions.

#include <conio.h>
#include <ctype.h>
#include <stdio.h>
#include <stdlib.h>

#define CLASSES 3
#define GRADES 30
int grade [CLASSES] [GRADES] ;

void disp_grades(int g[][GRADES]), enter_grades(void);
int get_grade(int num);

main(void) /* class grades program */
{

char ch;

for(;;) {
do {

pri ntf (" (E) nter grades\n");
printf("(R)eport grades\n");
printf("(Q)uit\n");
ch = toupper(getche());

} while(chl='E' && ch!='R' && ch!='Q');

switch(ch) {
case 'E':

}
}

enter _grades();
break;

case 'R':
disp_grades(grade);
break;

case 'Q':
return O;

134 Turbo CIC++: The Complete Reference

}

/* Enter each student's grade. */
void enter_grades(void)
{

int t, i;

for(t=O; t<CLASSES; t++) {
printf("Class # %d:\n", t+l);
for(i=O; i<GRADES; ++i)

grade [t] [i] = get_grade (i) ;
}

}

/*Actually input the grade. */
get_grade(int num)
{

}

char s[80];

printf("enter grade for student# %d:\n", num+l);
gets (s);
return(atoi(s));

/* Display the class grades. */
void disp_grades(int g[][GRADES])
{

int t I i;

for(t=O; t<CLASSES; ++t) {
printf("Class # %d:\n", t+l);
for(i=O; i<GRADES; ++i)

}
}

printf("grade for student #%dis %d\n",i+l, g[t][i]);

Arrays of Strings

It is not uncommon in programming to use an array of strings. For
example, the input processor to a database may verify user commands
against a string array of valid commands. A two-dimensional character
array is used to create an array of strings with the size of the left index
determining the number of strings and the size of the right index
specifying the maximum length of each string. For example, this de­
clares an array of 30 strings, each having a maximum length of 79
characters:

char str _array[30] [80];

Arrays 135

To access an individual string is quite easy: You simply specify only
the left index. For example, this statement calls gets() with the third
string in str _array.

gets(str_array[2]);

This is functionally equivalent to

gets (&str _array [2] [OJ);

but the previous form is much more common in professionally written C
code.

To improve your understanding of how string arrays work, study
the following short program that uses one as the basis for a very simple
text editor:

#include <stdio.h>

#define MAX 100
#define LEN 80

char text [MAX] [LEN];

/* A very simple text editor. */
main(void)
{

}

register int t, i, j;

for(t=O; t<MAX; t++) {
printf("%d: ", t);
gets (text [t]);
if(!*text[t]) break; /*quit on blank line*/

}

/* this displays the text one character at a time */
for(i=O; i<t; i++) {

}

for(j=O; *text[i][j]; j++) printf("%c", text[i][j]);
printf("%c", '\n');

return 0;

This program inputs lines of text until a blank line is entered. Then it
redisplays each line. For purposes of illustration, it displays the text one

136 Turbo CIC++: The Complete Reference

character at a time by indexing the first dimension. However, because
each string in the array is null-terminated, the routine that displays the
text could be simplified like this:

for(i=O; i<t; i++)
printf("%s\n", text[i]);

Multldlmenslonal Arrays

C allows arrays of greater than two dimensions. The general form of a
multidimensional array declaration is

type name[sizeN] . . . [size2][size1];

Arrays of more than three dimensions are rarely used because of the
amount of memory required to hold them. Storage for all global arrays
is allocated permanently at the beginning of the execution of your
program. For example, a four-dimensional character array with dimen­
sions 10,6,9,4 would require 10 x 6 x 9 x 4 or 2,160 bytes. If the array
were 2-byte integers, 4,320 bytes would be needed. If the array were
double (assuming 8 bytes per double), then 34,560 bytes would be
required. The storage required increases exponentially with the number
of dimensions.

A point to remember about multidimensional arrays is that it takes
the computer time to compute each index. This means that accessing an
element in a multidimensional array will be slower than accessing an
element in a single-dimensional array. For these and other reasons,
when large multidimensional arrays are needed, often they are dynami­
cally allocated a portion at a time using C's dynamic allocation func­
tions. This approach is called a sparse array.

When passing multidimensional arrays into functions, you must
declare all but the leftmost dimension. For example, if you declare array
mas

int m[4)[3][6][5];

then a function, funcl(), receiving m, could look like

funcl(int d[][3][6][5])
{

}

Arrays 137

Of course, you are free to include the leftmost dimension if you like.

Arrays and Pointers

Pointers and arrays are closely related in C. For example, an array
name without an index is a pointer to the first element in the array. In
this array,

char p [10];

the following statements are identical:

p

&p[O]

Put another way,

P == &p[O]

evaluates true because the address of the first element of an array is the
same as the address of the array.

Any pointer variable can be indexed as if it were declared to be an
array of the base type of the pointer. For example:

int *p, i [10];

p = i;

p[S] = 100; /* assign using index */

(p+S) = 100; / assign using pointer arithmetic */

138 Turbo CIC++: The Complete Reference

Both assigment statements place the value 100 in the sixth element of i.
The first statement indexes p; the second uses pointer arithmetic. Either
way, the result is the same. (Pointers and pointer arithmetic are dealt
with in detail in Chapter 6.)

The same holds true for arrays of two or more dimensions. For
example, assuming that a is a 10-by-10 integer array, these two state­
ments are equivalent:

a

&a [OJ [OJ

Further, the 0,4 element of a may be referenced either by array­
indexing, a[0][4], or by the pointer, *((*a) +4). Similarly, element 1,2 is
either a[1][2] or *(*a)+ 12). In general, for any two-dimensional array

a[j][k] is equivalent to *((*a)+ (j*row length)+ k)

Pointers are sometimes used to access arrays because pointer arith­
metic is often a faster process than array-indexing. The gain in speed
using pointers is the greatest when an array is being accessed in purely
sequential fashion. In this situation, the pointer may be incremented or
decremented using C's highly efficient increment and decrement opera­
tors. On the other hand, if the array is to be accessed in random order,
then the pointer approach may not be much better than array-indexing.

In a sense, a two-dimensional array is like an array of row pointers
to arrays of rows. Therefore, one easy way to use pointers to access
two-dimensional arrays is by using a separate pointer variable. The
following function prints the contents of the specified row for the global
integer array num.

int num[lOJ[lOJ;

pr_row(int j)
{

int *p, t;

p = num[jJ; /*get address of first
element in row j */

Arrays 139

for(t=O; t<lO; ++t) printf("%d ", *(p+t));
}

This routine can be generalized by making the calling arguments be the
row, the row length, and a pointer to the first array element, as shown
here:

/* General */
pr_row(int j, int row_dimension, int *p)
{

}

int t;

p = p + (j * row_dimension);
for(t=O; t<row_dimension; ++t)

printf("%d ", *(p+t));

Arrays of greater than two dimensions can be thought of in the
same way. For example, a three-dimensional array can be reduced to a
pointer to a two-dimensional array, which can be reduced to a pointer to
a one-dimensional array. Generally, an N-dimensional array can be
reduced to a pointer and an N-1 dimensional array. This new array can
be reduced again using the same method. The process ends when a
single-dimension array is produced.

Allocated Arrays

In many programming situations it is impossible to know how large an
array will be needed. In addition, many types of programs need to use
as much memory as is available, yet still run on machines having only
minimal memory. A text editor or a database are examples of this. In
these situations, it is not possible to use a predefined array because its
dimensions are established at compile time and cannot be changed
during execution. The solution is to create a dynamic array. A dynamic
array uses memory from the region of free memory called the heap and
is accessed by indexing a pointer to that memory. (Remember that any
pointer can be indexed as if it were an array variable.)

140 Turbo CIC++: The Complete Reference

In C you can dynamically allocate and free memory by using the
standard library routines malloc(), which allocates memory and re­
turns a void * pointer to the start of it, and free(), which returns
previously allocated memory to the heap for possible reuse. The proto­
types for malloc() and free() are

void *malloc(size_ t num_bytes);

void free(void *p);

Both functions use the stdlib.h header file. Here, num_bytes is the
number of bytes requested. The type size_ t is defined in stdlib.h as
being capable of holding the largest amount of memory that may be
allocated at any one time. If there is not enough free memory to fill the
request, malloc() returns a null. It is important that free() be called
only with a valid, previously allocated pointer; otherwise damage could
be done to the organization of the heap and possibly cause a program
crash.

The code fragment shown here allocates 1000 bytes of memory.

char *p;

p = malloc(lOOO); /* get 1000 bytes */

The p points to the first of 1000 bytes of free memory. Notice that no
cast is used to convert the void pointer returned by malloc() into the
desired char pointer. Because malloc() returns a void pointer, it can be
assigned to any other type of pointer and is automatically converted into
a pointer of the target type.

This example shows the proper way to use a dynamically allocated
array to read input from the keyboard using gets().

/* Print a string backwards using dynamic allocation. */

#include <stdlib.h>
#include <stdio.h>
#include <string.h>

main(void)
{

char *s;
register int t;

}

s = malloc(BO);

if(!s) {
printf("memory request failed\n");
return 1;

gets(s);
for(t=strlen(s)-1; t>=O; t--) printf("%c", s[t]);
free(s);
return 0;

Arrays 141

AB the program shows, s is tested, prior to its first use, to ensure that a
valid pointer is returned by malloc(). This is absolutely necessary to
prevent accidental use of a null pointer. (Using a null pointer will almost
certainly cause a system crash.) Notice how the pointer s is indexed as
an array to print the string backwards.

It is possible to have multidimensional dynamic arrays, but you
need to use a function to access them because there must be some way
to define the size of all but the leftmost dimension. To do this, a pointer
is passed to a function that has its parameter declared with the proper
array bounds. To see how this works, study this short example, which
builds a table of the numbers 1 through 10 raised to their first, second,
third, and fourth powers:

#include <stdlib.h>
#include <stdio.h>

int pwr(int a, int b);
void table(int p[5][11]), show(int p[5][11]);

/* This program displays various numbers raised to
integer powers. */

main(void)
{

int *p;

p = malloc(40*sizeof(int));

if(!p) {

}

printf("memory request failed\n");
return l;

/* here, p is simply a pointer */
table(p);
show(p);

142 Turbo CIC++: The Complete Reference

return O;
}

/* Build a table of numbers. */
void table(int p[S][ll]) /*now the compiler thinks that

p is an array */
{

register inti, j;

for(j=l; j<ll; j++)
for(i=l; i<S; i++) p[i][j] = pwr(j, i);

}

/* Display the table. */
void show(int p[SJ[ll])
{

register inti, j;

printf("%10s %10s %10s %10s\n","N","N"2","N"3","N"4");
for(j=l; j<ll; j++) {

for(i=l; i<S; i++) printf("%10d ", p[i][j]);
printf("\n");

}
}

/* Raise a to the b power. */
pwr(int a, int b)
{

}

register int t=l;

for(; b; b--) t = t*a;
return t;

The output produced by this program is

N N"2 N"3 N"4
1 1 1 1
2 4 8 16
3 9 27 81
4 16 64 256
5 25 125 625
6 36 216 1296
7 49 343 2401
8 64 512 4096
9 81 729 6561

10 100 1000 10000

As this program illustrates, by defining a function parameter to the
desired array dimensions you can "trick" Turbo C into handling multidi­
mensional dynamic arrays. Actually, as far as the compiler is concerned,
you have a 4,10 integer array inside the functions show() and table();

Arrays 143

the difference is that the storage for the array is allocated manually,
using the malloc() statement rather than automatically, by using the
normal array declaration statement. Also, note the use of sizeof to
compute the number of bytes needed for a 4,10 integer array. This
guarantees the portability of this program to computers with different­
sized integers.

Array lnltlaflzatlon

C allows the initialization of global and local arrays at the time of
declaration. The general form of array initialization is similar to that of
other variables, as shown here:

type-specifier array_ name[sizeN] . . . [size1] = { value-list };

The value-list is a comma-separated list of constants that are type­
compatible with type-specifier. The first constant is placed in the first
position of the array, the second constant in the second position, and so
on. The last entry in the list is not followed by a comma. Note that a
semicolon follows the }. In the following example, a 10-element integer
array is initialized with the numbers 1 through 10:

int i [10] = {l, 2, 3, 4, 5, 6, 7, 8, 9, 10};

This means that i[O] has the value 1 and i[9] has the value 10.
Character arrays that hold strings allow a shorthand initialization

in the form

char array_name[size] ="string";

In this form of initialization, the null terminator is automatically ap­
pended to the string. For example, this code fragment initializes str to
the phrase "hello".

char str[6] = "hello";

144 Turbo CIC++: The Complete Reference

This is the same as writing

char str[6] = {'h', 'e', 'l', 'l', 'o', '\O'};

Notice that in this version you must explicitly include the null termina­
tor. Because all strings in C end with a null, you must make sure that
the array you declare is long enough to include it. This is why str is six
characters long even though "hello" is only five characters. When the
string constant is used (as in the previous approach), the compiler
automatically supplies the null terminator.

Multidimensional arrays are initialized in the same fashion as
single-dimensional ones. For example, the following initializes sqrs with
the numbers 1 through 10 and their squares:

int sqrs[10][2] = {
1, 1,
2, 4,
3, 9,
4, 16,
5, 25,
6, 36,
7. 49,
8, 64,
9, 81,
10, 100

};

Here, sqrs[O][O] contains 1, sqrs[O][l] contains 1, sqrs[l][O] contains 2,
sqrs[l][l] contains 4, and so forth.

Unsized-Array lnitlallzatlons

Imagine that you are using an array initialization to build a table of
error messages as shown here:

char e1[12] = "read error\n";
char e2[13] = "write error\n";
char e3[18] = "cannot open file\n";

AB you might guess, it is very tedious to count the characters in each
message manually to determine the correct array dimension. It is pos­
sible to let C dimension the arrays automatically by using unsized arrays.

Arrays 145

If the size of the array is not specified in an array initialization state­
ment, the C compiler automatically creates an array big enough to hold
all the initializers present. Using this approach, the message table be­
comes

char el[] = "read error\n";
char e2[] = "write error\n";
char e3 [] = "cannot open fi 1 e\n";

Given these initializations, this statement

printf("%s has length %d\n", e2, sizeof e2);

prints

write error
has length 13

Aside from being less tedious, the unsized-array initialization method
allows any of the messages to be changed without fear of accidentally
counting wrong.

Unsized-array initializations are not restricted to only single­
dimensional arrays. For multidimensional arrays you must specify all
but the leftmost dimensions in order to allow C to index the array
properly. (This is similar to specifying array parameters.) In this way,
you can build tables of varying lengths and the compiler automatically
allocates enough storage for them. For example, the declaration of sqrs
as an unsized array is shown here:

int sq rs[] [2] = {

1, 1,
2, 4,
3, 9,
4, 16,
5, 25,
6, 36,
7' 49,
8, 64,
9, 81,
10, 100

};

146 Turbo CIC++: The Complete Reference

The advantage to this declaration over the sized version is that the table
may be lengthened or shortened without changing the array dimensions.

A Tic-Tac-Toe Example

This chapter concludes with a longer example that illustrates many of
the ways arrays can be manipulated using C.

Two-dimensional arrays are commonly used to simulate board game
matrices, as in chess and checkers. Although it is beyond the scope of
this book to present a chess or checkers program, a simple tic-tac-toe
program can be developed.

The tic-tac-toe matrix is represented using a 3-by-3 character array.
You are always ''X" and the computer is "0". When you move, an "X" is
placed in the specified position of the game matrix. When it is the
computer's turn to move, it scans the matrix and puts its 'O' in the first
empty location of the matrix. (This makes for a fairly dull game -you
might find it fun to spice it up a bit!) If the computer cannot find an
empty location, it reports a draw game and exits. The game matrix is
initialized to contain spaces at the start of the game. The tic-tac-toe
program is shown here.

#include <stdio.h>
#include <stdlib.h>

/*A simple game of Tic-Tac-Toe. */

#define SPACE ' '

char matrix[3][3] = { /*the tic-tac-toe matrix*/
SPACE,SPACE,SPACE,
SPACE,SPACE,SPACE,
SPACE,SPACE,SPACE

};

void get_computer_move(void), get_player_move(void);
void disp_matrix(void);
int check(void);

main()
{

char done;

printf("This is the game of Tic-Tac-Toe.\n");
printf("You will be playing against the computer.\n"):

}

done=SPACE;
do {

di sp_matri x ();
get_player_move();
done=check ();
if(done!=SPACE) break;
get_computer_move();
done=check () ;

} while(done==SPACE);

/* display the game board */
/* get your move */
/* see if winner */
/* winner!*/
/* get computer's move */
/* see if winner */

if{done=='X') printf("You won!\n");
else printf("I won!l!!\n");
disp_matrix(); /*show final positions*/

return 0;

/* Input the player's move. */
void get_player_move(void)
{

}

int x, y;

printf("Enter coordinates for your X: ");
scanf("%d%d" ,&x, &y);
x--; y--;
if{matrix[x][y]!=SPACE) {

}

printf("Invalid move, try again.\n");
get_player_move();

else matrix[x][y]='X';

/* Get the computer's move */
void get_computer_move(void)
{

}

register int t;
char *p;

p = (char *) matrix;
for(t=O; *p!=SPACE && t<9; ++t) p++;
i f(t==9) {

}

printf("draw\n");
exit{O); /*game over*/

else *P = 'O';

/* Display the game board. */
void disp_matrix(void)
{

int t;

for(t=O; t<3; t++) {

}

printf(" %c : %c : %c ", matrix[t][O].
matrix[t][l], matrix [t][2]);

if(t!=2) printf("\n---i---i---\n");

Arrays 147

148 Turbo CIC++: The Complete Reference

printf("\n");
}

/* See if there is a winner. */
check(void)
{

}

int t;
char *p;

for(t=O; t<3; t++) { /* check rows */
p = &matrix[t] [O];
if(*p==*(p+l) && *(p+l)==*(p+2)) return *p;

}

for(t=O; t<3; t++) { /* check columns */
p = &matrix[O][t];
if(*p==*(p+3) && *(p+3)==*(p+6)) return *p;

}

/* test diagonals */
if(matrix[O] [O]==matrix[l] [l] && matrix[l] [l]==matrix[2] [2])

return matrix[O][O];

if(matrix[O] [2]==matrix[l] [l] && matrix[l] [l]==matrix[2] [O])
return matrix[0][2];

return SPACE;

The array is initialized to contain spaces because a space is used to
indicate to get_player _move() and get_computer _move() that a
matrix position is vacant. The fact that spaces are used instead of nulls
simplifies the matrix display function disp _matrix() by allowing the
contents of the array to be printed on the screen without any transla­
tions. Note that the routine get_player _move() is recursive when an
invalid location is entered. This is an example of how recursion can be
used to simplify a routine and reduce the amount of code necessary to
implement a function.

In the main loop, each time a move is entered the function check()
is called. This function determines if the game has been won and by
whom. The check() function returns an 'X' if you have won, or an 'O' if
the computer has won. Otherwise, it returns a space. check() works by
scanning the rows, the columns, and then the diagonals looking for a
winning configuration.

The routines in this example all access the array matrix differently.
You should study them to make sure that you understand each array
operation.

Pointers

The correct understanding and use of pointers is critical to the creation
of most Turbo C programs for four reasons:

1. Pointers provide the means by which functions can modify their
calling arguments.

2. Pointers are used to support Turbo C's dynamic allocation sys­
tem.

3. The use of pointers can improve the efficiency of certain routines.

4. Pointers are commonly used to support certain data structures
such as linked lists and binary trees.

In addition to being one of C's strongest features, pointers are also
its most dangerous feature. For example, uninitialized or wild pointers
can cause the system to crash. Perhaps worse, it is very easy to use
pointers incorrectly, which causes bugs that are very difficult to find.

Because arrays and pointers are interrelated in C, you will want to
examine Chapter 5, which covers arrays.

s
I
x

149

150 Turbo CIC++: The Complete Reference

Pointers Are Addresses

A pointer contains a memory address. Most commonly, this address is
the location of another variable in memory. If one variable contains the
address of another variable, the first variable is said to point to the
second. For example, if a variable at location 1004 is pointed to by a
variable at location 1000, location 1000 will contain the value 1004. This
situation is illustrated in Figure 6-1.

Note: The 8086 family of processors uses a segmented memory archi­
tecture scheme, under which a memory address consists of both a
segment and an offset portion. There are six different ways for Turbo C
to organize memory, called memory models, and each model affects the
way pointers are represented internally. For the purposes of this chap­
ter, the memory organization does not matter and the examples work
with all memory models. Chapter 10 covers the special cases that relate
specifically to each memory model.

Pointer Variables

If a variable is going to hold a pointer, it must be declared as such. A
pointer declaration consists of a base type, an*, and the variable name.

Memory
Address

1000
1001
1002
1003
1004

Contents
1004

Figure 6-1. One variable pointing to another

Pointers 151

The general form for declaring a pointer variable is

type *name;

where type is any valid C type (the pointer's base type), and name is the
name of the pointer variable.

The base type of the pointer defines what type of variables the
pointer can point to. Technically, any type of pointer can point anywhere
in memory, but C assumes that what the pointer is pointing to is an
object of its base type. Also, as you will see, all pointer arithmetic is done
relative to its base type, so the base type of a pointer is very important.

The Pointer Operators

There are two special pointer operators: * and &. The & is a unary
operator that returns the memory address of its operand. (A unary
operator requires only one operand.) For example,

m = &count;

places into m the memory address of the variable count. This address is
the computer's internal location of the variable. It has nothing to do
with the value of count. The operation of the & can be remembered as
returning "the address of." Therefore, the preceding assignment state­
ment could be read as "m receives the address of count."

To improve your understanding of the assignment, assume the
variable count uses memory location 2000 to store its value. Also as­
sume that count has a value of 100. Then, after the above assignment,
m will have the value 2000.

The second operator, *, is the complement of &. It is a unary
operator that returns the value of the variable located at the address
that follows. For example, if m contains the memory address of the
variable count,

q = *m;

152 Turbo CIC++: The Complete Reference

places the value of count into q. Following through with this example, q
has the value 100 because 100 is stored at location 2000, which is the
memory address that was stored in m. The operation of the * can be
remembered as "at address." In this case the statement could be read as
"q receives the value at address m.11

The following program illustrates the foregoing discussion:

#include <stdio.h>

main(void)
{

int count, q;
int *m;

count = 100; /* count is assigned 100 */
m = &count; /* m receives count's address */
q = *m; /* q is assigned count's value

indirectly through m */

printf("%d", q); /*prints 100 */

return O;
}

The above program displays the value 100 on the screen.
Unfortunately, the multiplication sign and the "at address" sign are

the same, and the bitwise AND and the "address of" sign are the same.
These operators have no relationship to each other. Both & and * have a
higher precedence than all other arithmetic operators except the unary
minus, with which they are equal.

You must make sure that your pointer variables always point to the
correct type of data. For example, when you declare a pointer to be of
type int, the compiler assumes that any address it holds points to an
integer value. Because C allows you to assign any address to a pointer
variable, the following code fragment compiles (although Turbo C will
issue a warning message) but does not produce the desired result.

#include <stdio.h>

main(void)
{

float x, y;
int *p;

x = 100.123;

}

P = &x;
y = *p;
printf("%f", y); /*this will be wrong*/

return 0;

Pointers 153

This does not assign the value of x to y. Because p is declared to be an
integer pointer, only 2 bytes of information will be transferred toy, not
the 4 that normally make up a floating point number.

Pointer Expressions

In general, expressions involving pointers conform to the same rules as
any other C expression. This section will examine a few special aspects
of pointer expressions.

Pointer Assignments

AB with any variable, a pointer may be used on the right-hand side of
assignment statements to assign its value to another pointer. Note, for
example:

#include <stdio.h>

main(void)
{

int x;
int *pl, *p2;

pl = &x;
p2 = pl;

/* This will display the addresses held by
pl and p2. They will be the same.

*/
printf("%p %p", pl, p2);

return O;

Here, both pl and p2 will contain the address of x.

154 Turbo CIC++: The Complete Reference

Pointer Arithmetic

Only two arithmetic operations can be used on pointers: addition and
subtraction. To understand what occurs in pointer arithmetic, let pl be a
pointer to an integer with a current value of 2000, and assume that
integers are 2 bytes long. After the expression

pl++;

the content of pl is 2002, not 2001! Each time pl is incremented, it
points to the next integer. The same is true of decrements. For example,

pl--;

will cause pl to have the value 1998, assuming that it previously was
2000.

Each time a pointer is incremented, it points to the memory location
of the next element of its base type. Each time it is decremented it
points to the location of the previous element. In the case of pointers to
characters this appears as "normal" arithmetic. However, all other point­
ers increase or decrease by the length of the data type they point to.
For example, assuming 1-byte characters and 2-byte integers, when a
character pointer is incremented, its value increases by l; however,
when an integer pointer is incremented its value increases by 2. This
happens because all pointer arithmetic is done relative the base type of
the pointer so that the pointer is always pointing to another element of
the base type. Figure 6-2 illustrates this concept.

You are not limited to increment and decrement, however. You may
also add or subtract integers to or from pointers. The expression

pl = pl + 9;

makes pl point to the ninth element of pl's type beyond the one it is
currently pointing to.

Besides addition and subtraction of a pointer and an integer, the
only other operation you can perform on a pointer is to subtract it from
another pointer. For the most part, subtracting one pointer from an­
other only makes sense when both pointers point to a common object,
such as an array. The subtraction then yields the number of elements of

Pointers 155

the base type separating the two pointer values. Aside from these
operations, no other arithmetic operations can be performed on pointers.
You cannot multiply or divide pointers; you cannot add pointers; you
cannot apply the bitwise shift and mask operators to them; and you
cannot add or subtract type float or double to pointers.

Pointer Comparisons

It is possible to compare two pointers in a relational expression. For
instance, given the pointers p and q, the following statement is perfectly
valid:

if(p<q)printf("p points to lower memory than q\n");

In Turbo C, there are some special problems associated with far pointer
comparisons. Because of this, the material presented here is applicable
only to near or huge pointers. (The difficulties associated with far
pointers are discussed in Chapter 10 when the Turbo C memory models
are explained.)

char *ch= 3000;
int *i = 3000;

ch

ch+l

ch+2

ch+3

ch+4

ch+5

3000

30001

3002

3003

3004

3005

Memory

Figure 6-2. All pointer arithmetic is relative to its base type

156 Turbo CIC++: The Complete Reference

Generally, pointer comparisons are used when two or more pointers
are pointing to a common object. AB an example, imagine that you are
constructing a stack routine to hold integer values. A stack is a list that
uses "first in, last out" accessing. It is often compared to a stack of
plates on a table - the first one set down is the last one to be used.
Stacks are used frequently in compilers, interpreters, spreadsheets, and
other system-related software. To create a stack, you need two routines:
push() and pop(). The push() function puts values on the stack and
pop() takes them off. The stack is held in the array stack, which is
STCKSIZE elements long. The variable tos holds the memory address
of the top of the stack and is used to prevent stack underflows. Once the
stack has been initialized, push() and pop() may be used as a stack for
integers. These routines are shown here with a simple main() function
to drive them:

#include <stdio.h>
#include <stdlib.h>

#define STCKSIZE 50

void push(int i);
int pop(void);

int *pl, *tos, stack[STCKSIZE];

main (void)
{

}

int value;

pl = stack; /* assign pl the start of stack */
tos = pl; /* let tos hold top of stack */

do {
printf("Enter a number (-1 to quit, 0 to pop): ");
scanf("%d", &value);
if(value!=O) push(value);
else printf("this is it %d\n", pop());

} while(value!=-1);
return O;

void push(int i)
{

pl++;
if(pl==(tos + STCKSIZE)) {

printf("stack overflow");
exit(l);

}
*pl= i;

pop(void)
{

i f(pl==tos) {

}

printf("stack underflow"};
exit(l);

pl--;
return *(pl+l);

Pointers 1 5 7

Both the push() and pop() functions perform a relational test on the
pointer pl to detect limit errors. In push(), pl is tested against the end
of stack by adding STCKSIZE (the size of the stack) to tos. In pop(),
pl is checked against tos to be sure that a stack underflow has not
occurred.

In pop(), the parentheses are necessary in the return statement.
Without them, the statement would look like

return *pl + 1;

which would return the value at location pl plus 1, not the value of the
location pl+ 1. You must be very careful to use parentheses to ensure
the correct order of evaluation.

Turbo C's Dynamic Allocation Functions

Once compiled, all C programs organize the computer's memory into
four regions, which hold program code, global data, the stack, and the
heap. The heap is an area of free memory that is managed by C's
dynamic allocation functions malloc() and free().

The rnalloc() function allocates memory and returns a void pointer
to the start of it, and free() returns previously allocated memory to the
heap for possible reuse. The general forms for rnalloc() and free() are

void *malloc(size_ t num_bytes);

void free(void *p);

1 58 Turbo CIC++: The Complete Reference

Both functions use the stdlib.h header file. Here, num _bytes is the
number of bytes requested. If there is not enough free memory to fill
the request, malloc() returns a null. The type size_ t is defined in
stdlib.h and specifies a type that is capable of holding the largest
amount of memory that may be allocated with a single call to malloc().
It is important that free() be called only with a valid, previously
allocated pointer; otherwise the organization of the heap could be dam­
aged, which might cause a program crash.

The code fragment shown here allocates 1000 bytes of memory:

char *p;

p = malloc(25);

After the assignment, p points to the first of 25 bytes of free memory.
Notice that no type cast is used with malloc(); the pointer type is
converted automatically to the same type as the pointer variable on the
left side of the assignment. AB another example, this fragment allocates
space for 50 integers. It uses sizeof to ensure portability.

int *p;

p = malloc(SO*sizeof(int));

Since the heap is not infinite, whenever you allocate memory, it is
imperative to check the value returned by malloc() to make sure that it
is not null before using the pointer. Using a null pointer may crash the
computer. The proper way to allocate memory and test for a valid
pointer is illustrated in this code fragment:

if((p=malloc(lOO))==NULL) {
printf("Out of memory.\n");
exit(l);

}

The macro NULL is defined in stdlib.h. Of course, you can substitute
some other sort of error handler in place of exit(). The point is that you
do not want the pointer p to be used if it is null.

You should include the header file stdlib.h at the top of any file that
uses malloc() and free() because it contains their prototypes.

Pointers 1 59

Later in this book you will see pointers and dynamic allocation used
to create linked lists, sparse arrays, and the like. Also, Chapter 5 shows
some other examples of malloc() and free().

Pointers and Arrays

There is a close relationship between pointers and arrays. Consider this
fragment:

char str[80], *pl;
pl = str;

Here, pl has been set to the address of the first array element in str. If
you wished to access the fifth element in str you could write

str [4)

or

*(pl+4)

Both statements return the fifth element. Remember, arrays start at 0,
so a 4 is used to index str. You add 4 to the pointer pl to get the fifth
element because pl currently points to the first element of str. (Remem­
ber that an array name without an index returns the starting address of
the array, which is the first element.)

In essence C allows two methods of accessing array elements. This
is important because pointer arithmetic can be faster than array­
indexing. Since speed is often a consideration in programming, the use
of pointers to access array elements is very common in C programs.

To see an example of how pointers can be used in place of array­
indexing, consider these two simplified versions of the puts() standard
library function- one with array-indexing and one with pointers. The
puts() function writes a string to the standard output device.

160 Turbo CIC++: The Complete Reference

/* use array */
puts(char *s)
{

register int t;

for(t=O; s[t]; ++t) putch(s[t]);
return 1;

/* use pointer */
puts(char *s)
{

}

while(*s) putch(*s++);
return 1;

Most professional C programmers would find the second version easier
to read and understand. In fact, the pointer version is the way routines
of this sort are commonly written in C.

Sometimes novice C programmers make the mistake of thinking
that they should never use array-indexing because pointers are much
more efficient. But this is not the case. If the array is going to be
accessed in strictly ascending or descending order, pointers are faster
and easier to use. However, if the array is going to be accessed ran­
domly, array-indexing may be as good as using pointer arithmetic be­
cause it will be about as fast as evaluating a complex pointer expression.
Also, when you use array-indexing, you are letting the compiler do some
of the work for you.

Pointers to Character Arrays

Many string operations in C are usually performed by using pointers
and pointer arithmetic because strings tend to be accessed in a strictly
sequential fashion.

For example, here is one version of the standard library function
strcmp() that uses pointers:

/* use pointers */
strcmp(char *sl, char *s2)
{

whil e(*sl)
if(*sl-*s2)

return *sl-*s2;
else {

}

sl++;
s2++;

return O; /* equal */

Pointers 161

Remember, all strings in C are terminated by a null, which is a false
value. Therefore, a statement such as

while (*sl)

is true until the end of the string is reached. Here, strcmp() returns 0 if
sl is equal to s2. It returns less than 0 if sl is less than s2; otherwise it
returns greater than 0.

Most string functions resemble the strcmp() with regard to the
way it uses pointers, especially where loop control is concerned. Using
pointers is faster, more efficient, and often easier to understand than
using array-indexing.

One common error that sometimes creeps in when using pointers is
illustrated by the following program:

/* This program is incorrect. */

#include <stdio.h>
#include <string.h>

main(void)
{

}

char *pl, s[80];

pl = s; /* assign pl the starting address of s */
do {

gets(s); /* read a string */

/* print the decimal equivalent of each
character */

while(*pl) printf(" %d", *pl++);

} while(strcmp(s, "done"));
return O;

Can you find the error in this program?
The problem is that pl is assigned the address of s only once­

outside the loop. The first time through the loop, pl does point to the
first character in s. However, in the second (and subsequent iterations),

162 Turbo CIC++: The Complete Reference

it continues from where it left off, because it is not reset to the start of
the array s. This causes the next string input using gets() to be put
after the null terminator of the first string, meaning that pl continues to
point to the null terminator of the first string. The proper way to write
this program is

/* This program is correct. */

#include <stdio.h>
#include <string.h>

main(void)
{

}

char *pl, s[80];

do {
pl = s; /* assign pl the starting address of s */
gets(s); /* read a string */

/* print the decimal equivalent of each
character */

while(*pl) printf(" %d", *pl++);

} while(strcmp(s, "done"));
return O;

Here, each time the loop iterates, pl is set to the start of string s.

Arrays of Pointers

Pointers may be arrayed like any other data type. The declaration for an
int pointer array of size 10 is

int *x[lO];

To assign the address of an integer variable called var to the third
element of the array, you would write:

x[2) = &var;

To find the value of var, you would write

*X [2)

Pointers 163

If you want to pass an array of pointers into a function, you can use
the same method used for other arrays - simply call the function with
the array name without any indexes. For example, a function that will
receive array x would look like:

void display_array(int *q[])
{

}

int t;

for(t=O; t<lO; t++)
printf("%d ", *q[t]};

Remember, q is not a pointer to integers, but to an array of pointers to
integers. Therefore it is necessary to declare the parameter q as an
array of integer pointers as shown here. It may not be declared simply
as an integer pointer because that is not what it is.

A common use of pointer arrays is to hold pointers to error mes­
sages. You can create a function that outputs a message given its code
number, as shown here:

void serror(int num)
{

static char *err[] = {
"cannot open file\n",
"read error\n",
"write error\n",
"media failure\n"

};

printf("%s", err[num]);

As you can see, printf() inside serror() is called with a character
pointer that points to one of the various error messages indexed by the
error number passed to the function. For example, if num is passed a 2,
the message "write error" is displayed.

It is interesting to note that the command-line argument argv is an
array of character pointers.

Pointers to Pointers

An array of pointers is the same as pointers to pointers. The concept of
arrays of pointers is straightforward because the indexes keep the
meaning clear. However, pointers to pointers can be very confusing.

164 Turbo CIC++: The Complete Reference

A pointer to a pointer is a form of multiple indirection, or a chain of
pointers. Consider Figure 6-3.

In the case of a normal pointer, the value of the pointer is the
address of the variable that contains the value desired. In the case of a
pointer to a pointer, the first pointer contains the address of the second
pointer, which contains the address of the variable, which contains the
value desired.

Multiple indirection can be carried on to whatever extent desired,
but there are few cases where using more than a pointer to a pointer is
necessary, or even wise. Excessive indirection is difficult to follow and
prone to conceptual errors. (Do not confuse multiple indirection with
linked lists, which are used in databases and the like.)

A variable that is a pointer to a pointer must be declared as such.
This is done by placing an additional asterisk in front of its name. For
example, this declaration tells the compiler that newbalance is a pointer
to a pointer of type float.

float **newbalance;

It is important to understand that newbalance is not a pointer to a
floating point number but rather a pointer to a float pointer.

In order to access the target value indirectly pointed to by a pointer

Pointer Variable

'---a-dd_r_e_ss _ __.-----.. -1 vfilue

Single Indirection
Pointer Pointer Variable

.....__ad_d_r_e-ss __ _:-----.... 1~--a-d-dr-e-ss _ __.1------.,..i_l __ v_a_lu_e _ __,

Multiple Indirection

Figure 6-3. Single and multiple indirection

Pointers 165

to a pointer, the asterisk operator must be applied twice as is shown in
this short example:

#include <stdio.h>

main(void)
{

int x, *p, **q;

x = 10;
p = &x;
q = &p;

printf("%d", **q); /*print the value of x */

return 0;

Here, p is declared as a pointer to an integer, and q as a pointer to a
pointer to an integer. The call to printf() prints the number 10 on the
screen.

Initializing Pointers

After a pointer is declared, but before it has been assigned a value, it
contains an unknown value. If you try to use the pointer prior to giving
it a value, you probably will crash not only your program but also the
operating system of your computer- a very nasty type of error!

By convention, a pointer that is pointing nowhere should be given
the value null to signify that it points to nothing. However, just because
a pointer has a null value does not make it "safe.'' If you use a null
pointer on the left side of an assignment statement you still risk crash­
ing your program or operating system.

Because a null pointer is assumed to be unused, you can use the null
pointer to make many of your pointer routines easier to code and more
efficient. For example, you could use a null pointer to mark the end of a
pointer array. If this is done, a routine that accesses that array knows
that it has reached the end when the null value is encountered. This
type of approach is illustrated by the search() function shown here:

/* look up a name */
search(char *p[], char *name)
{

register int t;

166 Turbo CIC++: The Complete Reference

}

for(t=O; p[t]; ++t)
if(!strcmp(p[t], name)) return t;

return -1; /* not found */

The for loop inside search() runs until either a match or a null pointer
is found. Because the end of the array is marked with a null, the
condition controlling the loop fails when it is reached.

It is common in professionally written C programs to initialize
strings. You saw an example of this in the serror() function in the
previous section. Another variation on this theme is the following type of
string declaration:

char *p = "hello world\n";

AB you can see, the pointer p is not an array. The reason this sort of
initialization works has to do with the way Turbo C operates. All C
compilers create what is called a string table, which is used internally by
the compiler to store the string constants used by the program. There­
fore, this declaration statement places the address of "hello world," into
the pointer p. Throughout the program p can be used like any other
string. For example, the following program is perfectly valid:

#include <stdio.h>
#include <string.h>

char *P = "hello world";

main(void)
{

}

register int t;

/* print the string forward and backwards */
printf(p);
for(t=strlen(p)-1; t>-1; t--) printf("%c", p[t]);
return O; '

Pointers to Functions

In Chapter 4, you were introduced to a particularly confusing yet
powerful feature of C, the function pointer. Even though a function is

Pointers 16 7

not a variable, it still has a physical location in memory that can be
assigned to a pointer. A function's address is the entry point of the
function. Because of this a function pointer can be used to call a func­
tion. In this section, we will look at another use for the function pointer.

In certain types of programs the user can select one option from a
long list of possible actions. For example, in an accounting program, you
may be presented with a menu that has 20 or more selections. Once the
selection has been made, the routine that routes program execution to
the proper function can be handled two ways. The most common way is
to use a switch statement. However, in applications that demand the
highest performance there is a better way. An array of pointers can be
created with each pointer in the array containing the address of a
function. The selection made by the user is decoded and is used to index
into the pointer array, causing the proper function to be executed. This
method can be very fast-much faster than the switch method.

To see how an array of function pointers can be used as described,
imagine that you are implementing a very simple inventory system that
is capable of entering, deleting, and reviewing data, as well as exiting to
the operating system. If the functions that perform these activities are
called enter(), delete(), review(), and quit(), respectively, the follow­
ing fragment correctly initializes an array of function pointers to these
functions:

void enter(void), delete(void), review(void), quit(void);
int menu(void);

void (*options[])(void) = {
enter,
delete,
review,
quit

} ;

Pay special attention to the way an array of function pointers is de­
clared. Notice the placement of the parentheses and square brackets.

Although the actual inventory routines are not developed, the fol­
lowing program illustrates the proper way to execute the funtions by
using the function pointers. Notice how the menu() function automati­
cally returns the proper index into the pointer array.

#include <stdlib.h>
#include <stdio.h>
#include <conio.h>

168 Turbo CIC++: The Complete Reference

#include <string.h>

void enter(void), delete(void), review(void), quit(void);
int menu(void);

void (*options[])(void) = {
enter,
delete,
review,
quit

} ;

main(void)
{

}

int i;

i =menu(); /*get user's choice*/

(*options[i])(); /*execute it*/
return 0;

menu(void)
{

}

char ch;

do {

printf("l. Enter\n");
printf("2. Delete\n");
printf("3. Review\n");
printf("4. Quit\n");
printf("Select a number: ");
ch = getche () ;
printf("\n");

} while(!strchr("l234", ch));
return ch-49; /* convert to an integer equivalent */

void enter(void)
{

printf("in enter");
}

void delete(void)
{

printf("in delete");
}

void review(void)
{

printf("in review");
}

void quit(void)

}

printf("in quit");
exit(O);

Pointers 169

The program works like this. The menu is displayed, and the user enters
the number of the selection desired. Since the number is in ASCII, 49
(the decimal value of 0) is subtracted from it in order to convert it into a
binary integer. This value is then returned to main() and is used as an
index to options, the array of function pointers. Next, the call to the
proper function is executed.

Using arrays of function pointers is very common, not only in
interpreters and compilers but also in database programs, because often
these programs provide a large number of options and efficiency is
important.

Problems with Pointers

Nothing will get you into more trouble than a "wild" pointer! Pointers
are a mixed blessing. They give you tremendous power and are neces­
sary for many programs. But when a pointer accidentally contains a
wrong value, it can be the most difficult bug to track down. The pointer
itself is not the problem; the problem is that each time you perform an
operation using it, you are reading or writing to some unknown piece of
memory. If you read from it, the worst that can happen is that you get
garbage. However, if you write to it, you write over other pieces of your
code or data. This may not show up until later in the execution of your
program, and may lead you to look for the bug in the wrong place.
There may be little or no evidence to suggest that the pointer is the
problem.

Because pointer errors are such nightmares, you should do your
best never to generate one. Toward this end, a few of the more common
errors are discussed here.

The classic example of a pointer error is the uninitialized pointer.
For example:

/* This program is wrong. */

main(void)

170 Turbo CIC++: The Complete Reference

{

}

int x, *p;

x = 10;
*p = x;
return O;

This program assigns the value 10 to some unknown memory location.
The pointer p has never been given a value, therefore it contains a
garbage value. This type of problem often goes unnoticed when your
program is very small because the odds are in favor of p containing a
"safe" address-one that is not in your code, data, stack, heap, or
operating system. However, as your program grows, so does the proba­
bility of p having a pointer into something vital. Eventually your pro­
gram stops working. The solution to this sort of trouble is to make sure
that a pointer is always pointing at something valid before it is used.

A second common error is caused by a simple misunderstanding of
how to use a pointer. For example:

#include <stdio.h>

/* this program is wrong */
main(void)
{

}

int x, *p;

x = 10;
p = x;
printf("%d", *p);
return O;

The call to printf() does not print the value of x, which is 10, on the
screen. It prints some unknown value because the assignment

p = x;

is wrong. That statement has assigned the value 10 to the pointer p,
which was supposed to contain an address, not a value. To make the
program correct, you should write

Pointers 1 71

P = &x;

The fact that pointers can cause very tricky bugs if handled incorrectly
is no reason to avoid using them. Simply be careful and make sure that
you know where each pointer is pointing before using it.

Structures, Unions, and User-Defined
Variables

The C language gives you five ways to create custom data types:

1. The structure is a grouping of variables under one name and is
sometimes called a conglomerate data type.

2. The bit-field is a variation of the structure and allows easy access
to the individual bits within a word.

3. The union enables the same piece of memory to be defined as
two or more different types of variables.

4. The enumeration is a list of symbols.

5. The typedef keyword simply creates a new name for an existing
type.

Structures

In C, a structure is a collection of variables that are referenced under
one name, providing a convenient means of keeping related information
together. A structure declaration forms a template that may be used to

s
E
v
E
N

174 Turbo CIC++: The Complete Reference

create structure variables. The variables that make up the structure are
called structure elements. Generally, all the elements in the structure
are related to each other logically. For example, the name and address
information found in a mailing list is normally represented as a struc­
ture.

To understand structures, it is best to begin with an example. The
following code fragment declares a structure template that defines the
name and address fields of a mailing list structure. The keyword struct
tells the compiler that a structure is being declared.

struct addr {

};

char name[30];
char street[40];
char city[20];
char state[3];
unsigned long int zip;

The declaration is terminated by a semicolon because a structure decla­
ration is a statement. Also, the structure name addr identifies this
particular data structure and is its type specifier. The structure name is
often ref erred to as its tag.

At this point in the code, no variable has actually been declared.
Only the form of the data has been defined. To declare an actual
variable with this structure, you would write

struct addr addr_info;

This declares a structure variable of type addr called addr _info. When
you declare a structure, you are essentially defining a complex variable
type composed of the structure elements. Not until you declare a vari­
able of that type does one actually exist.

Turbo C automatically allocates sufficient memory to accommodate
all the variables that make up a structure variable. Figure 7-1 shows
how addr _info appears in memory assuming 1-byte characters and
2-byte integers.

You may also declare one or more variables at the same time that
you declare a structure. For example,

struct addr {
char name [30) ;
char street[40];

Structures, Unions, and User-Defined Variables 175

char ci ty[20];
char state [3];
unsigned long int zip;

} addr_info, binfo, cinfo;

declares a structure type called addr and declares variables addr _info,
binfo, and cinfo of that type.

If you need only one structure variable, the structure tag name is
not needed. This means that

struct {
char name [30];
char street[40];
char city[20];
char state [3];
unsigned long int zip;

} addr_info;

declares one variable named addr _info as defined by the structure
preceding it.

The general form of a structure declaration is

struct structure_ tag_ name {
type variable_ name;
type variable_ name;
type variable_ name;

} structure_ variables;

Name
Street
City
State
Zip

30bytes} 40 bytes
20 bytes addr - info
3 bytes
4 bytes

Figure 7-1. The addr _info structure as it appears in memory

176 Turbo CIC++: The Complete Reference

The structure_ tag_ name is the name of the structure - not a variable
name. The structure_ variables is a comma-separated list of
variable names. Remember, either structure_ tag_ name or
structure_ variables is optional, but not both.

Referencing Structure Elements .

Individual structure elements are referenced by using the . (usually
called the "dot") operator. For example, the following code assigns the
zip code 12345 to the zip field of the structure variable addr _info
declared earlier:

addr_info.zip = 12345;

The structure variable name followed by a period and the element name
references that individual structure element. All structure elements are
accessed in the same way. The general form is

structure_ name. element_ name

Therefore, to print the zip code to the screen, you could write

printf("%ld", addr_info.zip);

This prints the zip code contained in the zip variable of the structure
variable addr _info.

In the same fashion, the addr _info.name character array can be
used with gets() as shown here:

gets(addr_info.name);

This passes a character pointer to the start of the element name.
To access the individual elements of addr _info.name, you could

index name. For example, you could print the contents of
addr _info.name one character at a time by using this code:

Structures, Unions, and User-Defined Variables 177

register int t;

for(t=O; addr_info.name[t]; ++t) putch(addr_info.name[t]);

Arrays of Structures

Perhaps the most common use of structures is in arrays of structures.
To declare an array of structures, you must first define a structure, and
then declare an array variable of that type. For example, to declare a
100-element array of structures of type addr, which was declared earlier
in this chapter, you would write

struct addr addr_info[lOO];

This creates 100 sets of variables that are organized as declared in the
structure type addr.

To access a specific structure within the addr _info array, the
structure variable name is indexed. For example, to print the zip code of
the third structure, you would write

printf("%ld", addr_info[2].zip);

Like all array variables, arrays of structures begin their indexing at 0.

An Inventory Example

To help illustrate how structures and arrays of structures are used,
consider a simple inventory program that uses an array of structures to
hold the inventory information. The functions in this program interact
with structures and their elements in various ways to illustrate struc­
ture usage.

1 78 Turbo CIC++: The Complete Reference

In this example, the information to be stored includes

item name

cost

number on hand

You can define the basic data structure, called inv, to hold this informa­
tion as

#define MAX 100

struct inv {
char item[30];
fl oat cost;
int on_hand;

} inv_info[MAX];

In the inv structure, item is used to hold each inventoried item's name.
The element cost contains the item's cost, and on_hand represents the
number of items currently available.

The first function needed for the program is main().

main(void)
{

}

char choice;

init_list(); /*initialize the structure array*/
for(;;) {

choice= menu_select();
switch(choice) {

}
}

case 1: enter();
break;

case 2: delete();
break;

case 3: list();
break;

case 4: return 0;

In main(), the call to init _list() prepares the structure array for use
by putting a null character into the first byte of the item field. The
program assumes that a structure variable is not in use if the item field
is empty. The init _list() function is defined as follows.

Structures, Unions, and User-Defined Variables 179

/* Initialize the structure array. */
void init_list(void)
{

register int t;

for(t=O; t<MAX; ++t) inv_info[t].item[O] '\O';
}

The menu_ select() function displays the option messages and returns
the user's selection:

/* Input the user's selection. */
menu_select(void)
{

}

char s [80];
int c;

pri ntf ("\n");
printf("l. Enter an item\n");
printf("2. Delete an item\n");
printf("3. List the inventory\n");
printf("4. Quit\n");
do {

printf("\nEnter your choice: ");
gets(s);
c = atoi (s);

} wh il e (c<O : : c>4) ;
return c;

The enter() function prompts the user for input and places the informa­
tion entered into the next free structure. If the array is full, the mes­
sage ''list full" is printed on the screen. The function find_ free()
searches the structure array for an unused element.

/* Input the inventory information. */
void enter(void)
{

int slot;

slot= find_free();
if(slot == -1) {

printf("\nlist full");
return;

}

printf("enter item: ");
gets(inv_info[slot].item);

printf("enter cost: ");
scanf("%f", &inv_info[sl ot] .cost);

180 Turbo CIC++: The Complete Reference

}

printf("enter number on hand: ");
scanf("%d%*c" ,&inv_info[slot] .on_hand);

/* Return the index of the first unused array
location or -1 if the no free locations exist.

*/
find_free(void)
{

register int t;

for(t=O; inv_info[t].item[O] && t<MAX; ++t) ;
if(t == MAX) return -1; /* no slots free */
return t;

Notice that find_ free() returns a -1 if every structure array variable
is in use. This is a "safe" number to use because there cannot be a -1
element of the inv _info array.

The delete() function requires the user to specify the number of
the item that needs to be deleted. The function then puts a null charac­
ter in the first character position of the item field.

/* Delete an item from the list. */
void delete(void)
{

}

register int slot;
char s [80] ;

printf("enter record#: ");
gets(s);
slot= atoi(s);
if(slot >= 0 && slot< MAX) inv_info[slot].item[0]='\0';

The final function the program needs is list(). It prints the entire
inventory list on the screen.

/* Display the list on the screen. */
void list(void)
{

register int t;

for(t=O; t<MAX; ++t) {
if(inv_info[t].item[O]) {

}

printf("item: %s\n", inv_info[t]. item);
printf("cost: %f\n", inv_info[t] .cost);
printf("on hand: %d\n\n", inv_info[t] .on_hand);

}
printf("\n\n");

Structures, Unions, and User-Defined Variables 181

The complete listing for the inventory program is shown here. If
you have any doubts about your understanding of structures, you should
enter this program into your computer and study its execution by
making changes and watching their effects.

/*A simple inventory program using an array of structures */

#include <stdio.h>
#include <stdlib.h>

#define MAX 100

struct i nv {
char item[30];
float cost;
int on_hand;

} inv_info[MAX];

void init_list(void), list(void), delete(void);
void enter(void);
int menu_select(void), find_free(void);

main(void)
{

char choice;

init_list(); /*initialize the structure array*/
for(;;) {

choice= menu_select();
switch(choice) {

}
}

case 1: enter();
break;

case 2: delete();
break;

case 3: list();
break;

case 4: return 0;

/* Initialize the structure array. */
void init_list(void)
{

register int t;

for(t=O; t<MAX; ++t) inv_info[t]. item[O] '\O';
}

182 Turbo CIC++: The Complete Reference

/* Input the user's selection. */
menu_select(void)
{

char s [80];
int c;

printf("\n");
printf("l. Enter an item\n");
printf("2. Delete an item\n");
printf("3. List the inventory\n");
printf("4. Quit\n");
do {

printf("\nEnter your choice: ");
gets(s);
c = atoi(s);

}while(c<O ii c>4);
return c;

/* Input the inventory information. */
void enter(void)
{

}

int slot;

slot= find_free();
if(slot == -1) {

printf("\nlist full");
return;

}

printf("enter item: ");
gets(inv_info[slot].item);

printf("enter cost: ");
scanf("%f", &inv_info[slot] .cost);

printf("enter number on hand: ");
scanf ("%d%*c", &i nv_i nfo [slot]. on_hand);

/* Return the index of the first unused array
location or -1 if the no free locations exist.

*/
find_free(void)
{

}

register int t;

for(t=O; inv_info[t].item[O] && t<MAX; ++t)
if(t == MAX) return -1; /* no slots free */
return t;

/*Delete an item from the list. */
void delete(void)
{

register int slot;

Structures, Unions, and User-Defined Variables 183

char s [80] ;

printf("enter record#: ");
gets(s);
slot= atoi(s);
if(slot >= O && slot< MAX) inv_info[slot].item[O] = '\O';

}

/* Display the list on the screen. */
void list(void)
{

}

register int t;

for(t=O; t<MAX; ++t) {
if(inv_info[t].item[O]) {

}

printf("item: %s\n", inv_info[t]. item);
printf("cost: %f\n", inv_info[t] .cost);
printf("on hand: %d\n\n", inv_info[t] .on_hand);

}
printf("\n\n");

Passing Structures to Functions

So far, all structures and arrays of structures used in the examples have
been assumed to be either global or defined within the function that uses
them. In this section special consideration will be given to passing
structures and their elements to functions.

Passing Structure Elements to Functions

When you pass an element of a structure variable to a function, you are
actually passing the value of that element to the function. Therefore, you
are passing a simple variable (unless, of course, that element is an array,
in which case an address is passed). For example, consider this struc­
ture:

struct fred {
char x;
int y;
float z;

184 Turbo CIC++: The Complete Reference

char s [10);
} mike;

Here are examples of each element being passed to a function:

func(mike.x); /*passes character value of x */

func2(mike.y); /*passes integer value of y */

func3(mike.z); /*passes float value of z */

func4(mike.s); /*passes address of strings*/

func(mike.s[2]); /* passes character value of s[2] */

However, if you wished to pass the address of individual structure
elements to achieve call by reference parameter passing, you would
place the & operator before the structure name. For example, to pass
the address of the elements in the structure mike, you would write

func(&mike.x); /*passes address of character x */

func2(&mike.y); /*passes address of integer y */

func3(&mike.z); /*passes address of float z */

func4(mike.s); /*passes address of strings*/

func(&mike.s[2]); /*passes address of character s[2] */

Notice that the & operator precedes the structure name, not the
individual element name. Note also that the string element s already
signifies an address, so that no & is required. However, when accessing
a specific character in string s, as shown in the final example, the & is
still needed.

Passing Entire Structures to Functions

When a structure is used as an argument to a function, the entire
structure is passed using the standard call by value method. This means

Structures, Unions, and User-Defined Variables 185

that any changes made to the contents of the structure inside the
function to which it is passed do not affect the structure used as an
argument.

When using a structure as a parameter, the most important thing to
remember is that the type of the argument must match the type of the
parameter. The best way to do this is to define a structure globally and
then use its name to declare structure variables and parameters as
needed. For example:

#include <stdio.h>

/* declare a structure type*/
struct struct_type {

int a, b;
char ch;

} ;

void fl(struct struct_type parm);

main(void)
{

struct struct_type arg; /* declare arg */

arg.a = 1000;

fl(arg);

return 0;
}

void fl(struct struct_type parm)
{

printf("%d", parm.a);
}

This program prints the number 1000 on the screen. AB you can see,
both arg and parm are declared to be structures of type struct _type.

Structure Pointers

C allows pointers to structures in the same way it does to other types of
variables. However, there are some special aspects to structure pointers
that you must keep in mind.

186 Turbo CIC++: The Complete Reference

Declaring a Structure Pointer
Structure pointers are declared by placing the * in front of a structure
variable's name. For example, assuming the previously defined structure
addr, the following declares addr _pointer to be a pointer to data of
that type:

struct addr *addr_pointer;

Accessing Structure Pointers
There are two primary uses for structure pointers: (1) to pass the
address of a structure to a function and (2) to create linked lists and
other dynamic data structures using Turbo C's allocation system. This
chapter will be concerned only with the first; the second use will be
covered later in the book.

There is one major drawback to passing all but the simplest struc­
tures to functions: the overhead needed to push (and pop) all the
structure elements onto the stack. (Remember, in Turbo C, all parame­
ters are passed to a function using the stack.) For simple structures
with few elements this overhead is not too important, but if several
elements are used or some of the elements are arrays, run-time perfor­
mance may degrade to unacceptable levels. The solution to this problem
is to pass only a pointer to a function.

When a pointer to a structure is passed to a function only the
address of the structure is pushed (and popped) on the stack. This
means a very fast function call can be executed. Also, because the
function references the actual structure and not a copy, it can modify
the contents of the actual elements of the structure used in the call,
which may be useful in some situations.

To find the address of a structure variable, the & operator is placed
before the structure's name. For example, given the following fragment,

struct bal {
float balance;
char name [80];

} person;

struct bal *p; /* declare a structure pointer*/

Structures, Unions, and User-Defined Variables 187

then

p = &person;

places the address of the structure person into the pointer p.
One of the most important things to remember about pointers to

structures is that you cannot use the dot operator to access a structure
element given a pointer to that structure. Instead, you must use use the
arrow operator. The arrow operator, - >,is formed using a minus sign
and a greater-than symbol. For example, to reference the balance
element using p, you would write

p->balance

To see how structure pointers can be used, examine this simple
program that prints the hours, minutes, and seconds on the screen using
a software timer. (The timing of the program is adjusted by varying the
loop counter in mydelay() to fit the speed of your computer.)

/* Display a software timer. */

#include <stdio.h>
#include <conio.h>

struct tm {
int hours;
int minutes;
int seconds;

} ;

void update(struct tm *t), display(struct tm *t);
void mydelay(void);

main(void) /* version 2 - use the arrow operator */
{

struct tm time;

time.hours = 0;
time.minutes = 0;
time.seconds = 0;

for(;;) {
update(&time);
display(&time);
if(kbhit()) return O;

}
}

188 Turbo CIC++: The Complete Reference

void update(struct tm *t)
{

}

t->seconds++;
if(t->seconds==60) {

t->seconds=O;
t->minutes++;

}
if(t->minutes==60) {

t->minutes=O;
t->hours++;

}
if(t->hours==24) t->hours = 0;
mydelay();

void display(struct tm *t)
{

printf("%d:", t->hours);
printf("%d:", t->minutes);
printf("%d\n", t->seconds);

void mydelay(void)
{

long int t;

for(t=l; t<128000; ++t)
}

A global structure called tm is declared but no variable is declared.
Inside main(), the structure variable, time, of type tm is declared and
initialized to 00:00:00. This means that time is known directly only to
the main() function.

The functions update(), which changes the time, and display(),
which prints the time, are passed the address of time. In both functions
the argument is declared to be a pointer to a structure of type tm.

Each structure element is actually referenced by a pointer. For
example, if you wanted to set the hours back to 0 when 24:00:00 was
reached, you would write

if(t->hours==24) t->hours = 0;

This line of code tells the compiler to take the address of t (which points
time in main()) and assign 0 to its element called hours.

Reminder: Use the dot operator to access structure elements when
operating on the structure itself. Use the arrow operator when referenc­
ing a structure through a pointer.

Structures, Unions, and User-Defined Variables 189

As a final example of using structure pointers, the following pro­
gram illustrates how a general-purpose integer input function can be
designed. The function input_xy() allows you to specify the x and y
coordinates at which a prompting message will be displayed and then
inputs an integer value. To accomplish these things it uses the structure
xyinput.

/*A generalized input example using structure pointers. */

#include <stdio.h>
#include <conio.h>
#include <string.h>

struct xyinput {
int x, y; /* screen location for prompt */
char message[80]; /*prompting message*/
inti; /*input value*/

} ;

void input_xy(struct xyinput *info);

main(void)
{

}

struct xyinput mess;

mess.x ; 10; mess.y ; 10;
strcpy(mess.message, "enter an integer: ");

cl rscr();

input_xy(&mess);

printf("your number squared is: %d", mess.i*mess.i);
return O;

/* Display a prompting message at the specified location
and input an integer value.

*/
void input_xy(struct xyinput *info)
{

}

gotoxy(info->x, info->y);

printf(info->message);
scanf("%d", &info->i);

The program uses the functions clrscr() and gotoxy(), which are
provided by Turbo C beginning with version 1.5. Both functions use the
conio.h header file. A function like input_ xy() is very useful when

. 190 Turbo CIC++: The Complete Reference

your program must input many pieces of information. (In fact, you might
want to create several functions like input_ xy() that input other types
of data.)

Note: Although not commonly used, there is a way to reference a
structure element given a pointer to that structure that uses the dot
operator instead of the arrow operator. For example, this fragment
assigns the balance element the value 10.10:

struct bal {
float balance;
char name[80];

} person;

struct bal *p; /* declare a structure pointer */

(*p).balance = 10.10;

By applying the * operator to the pointer p, you reference the actual
structure and the dot operator can be applied. The parentheses are
necessary around p because the "dot" operator has a higher priority
than the*· Although some very old C programs may use this form, it is
very rare. However, if you do encounter it, you will know that it is just
another way to reference a structure element given a pointer to the
structure. (This form is considered archaic and definitely not recom­
mended for new programs. You should use the arrow operator instead.)

Arrays and Structures Within Structures

A structure element can be either simple or complex. A simple element
is any of the built-in data types, such as integer or character. You have
already seen a few complex elements. The character array used in
addr _info is an example. Other complex data types are single- and
multidimensional arrays of the other data types and structures.

A structure element that is an array is treated as you might expect
from the earlier examples. For example, consider this structure:

struct x {
int a[lO][lO]; /* 10 x 10 array of ints */
float b;

} y;

Structures, Unions, and User-Defined Variables 191

To reference integer 3,7 in a of structure y, you would write

y .a [3)[7]

When a structure is an element of another structure, it is called a
nested structure. For example, here the structure variable element
address is nested inside emp:

struct emp {
struct addr address;
float wage;

} worker;

The addr is the structure defined earlier in this chapter. Here, a struc­
ture emp has been declared as having two elements. The first element is
the structure of type addr, which contains an employee's address, and
wage, which holds the employee's wage. The following code fragment
assigns $35,000 to the wage element of worker and 98765 to the zip
field of address:

worker.wage = 35000.00;

worker.address.zip = 98765;

The elements of each structure are referenced from outermost to
innermost (left to right).

Structures can be nested up to any level provided there is sufficient
memory.

Bit-fie Ids

Unlike most other computer languages, C has a built-in method to
access a single bit within a byte. This can be useful for three reasons:

1. If storage is limited, you can store several Boolean (true/false)
variables in one byte.

2. Certain device interfaces transmit information encoded into bits
within a single byte.

192 Turbo CIC++: The Complete Reference

3. Certain encryption routines need to access the bits within a byte.

Although all these functions can be performed using the bitwise opera­
tors, a bit-field can add more structure and efficiency to your code.

The method C uses to access bits is based on the structure. A
bit-field is really just a special type of structure element that defines
how long, in bits, it is to be. The general form of a bit-field declaration is

struct struc _name {
type name1 : length;
type name2 : length;

type namen : length;
}

A bit-field must be declared as either int, unsigned, or signed. Bit-fields
of length 1 should be declared as unsigned because a single bit cannot
have a sign.

Bit-fields can be from 1 to 16 bits long. In Turbo C, the leftmost bit
is the most significant bit.

For example, consider the structure definition below:

struct device {
unsigned active : 1;
unsigned ready : 1;
unsigned xmt_error : 1;

} dev_code;

This structure defines three variables of 1 bit each. The structure
variable dev _code might be used to decode information from the port
of a tape drive, for example. The following code fragment writes a byte
of information to the (imaginary) tape and checks for errors using
dev _code from above:

wr_tape(char c)
{

while(!dev_code.ready) rd(&dev_code); /*wait*/

Structures, Unions, and User-Defined Variables 193

wr_to_tape(c); /*write out byte*/

while(dev_code.active) rd(&dev_code); /*wait until
info is written */

if(dev_code.xmt_error) printf("write error");

Here, rd() returns the status of the tape drive and wr _to_ tape()
actually writes the data.

Figure 7-2 shows what the bit variable dev _code looks like in
memory.

AB you can see from the previous example, each bit-field is accessed
using the dot operator. However, if the structure is referenced through
a pointer, you must use the - > operator.

You do not have to name each bit-field. This makes it easy to reach
the bit you want and pass up unused ones. For example, if the tape drive
also returned an end-of-tape flag in bit 5, you could alter structure
device to accommodate this by using

struct device {
unsigned active : l;
unsigned ready : 1;
unsigned xmt_error : 1;
unsigned : 2;
unsigned EQT : 1;

} dev_code;

0 1 3 4 5

~------- unused

dev code.xmt_error
dev _code.ready
dev code.active

Figure 7-2. The bit-field variable dev _code in memory

6 7

194 Turbo CIC++: The Complete Reference

Bit-field variables have certain restrictions. You cannot take the
address of a bit-field variable. Bit-field variables cannot be arrayed. You
cannot overlap integer boundaries. You cannot know, from machine to
machine, whether the fields will run from right to left or from left to
right; any code that uses bit-fields may have machine dependencies.

Finally, it is valid to mix other structure elements with bit-field
elements. For example,

struct emp {

};

struct addr address;
float pay;
unsigned lay_off:l; /* lay off or active */
unsigned hourly:l: /* hourly pay or wage */
unsigned deductions:3: /* IRS deductions */

defines an employee record that uses only 1 byte to hold three pieces of
information: the employee's status, whether the employee is salaried,
and the number of deductions. Without the use of the bit-field, this
information would have taken 3 bytes.

Unions

In C, a union is a memory location that is used by several variables,
which are of different types. The union declaration is similar to that of a
structure, as shown in this example:

union union_type {
int i;
char ch;

} ;

AB with structures, you may declare a variable either by placing its
name at the end of the definition or by using a separate declaration
statement. To declare a union variable cnvt of type union_ type using
the definition just given, you would write

union union_type cnvt;

In union cnvt, both integer i and character ch share the same memory
location. (Of course, i occupies 2 bytes and ch uses only 1). Figure 7-3

Figure 7-3.

Structures, Unions, and User-Defined Variables 195

~i~
I Byte 0 I Byte 1 I
"-.__ch/

How i and ch use the union cnvt

shows how i and ch share the same address.
When a union is declared, the compiler automatically creates a

variable large enough to hold the largest variable type in the union.
To access a union element use the same syntax that you would use

for structures: the dot and arrow operators. If you are operating on the
union directly, use the dot operator. If the union variable is accessed
through a pointer, use the arrow operator. For example, to assign the
integer 10 to element i of cnvt, you would write

cnvt.i = 10;

Using a union can help you produce machine-independent (portable)
code. Because the compiler keeps track of the actual sizes of the vari­
ables that make up the union, no machine dependencies are produced.
You need not worry about the size of an integer, character, float, or
whatever.

Unions are used frequently when type conversions are needed. For
example, the standard library function putw() writes the binary repre­
sentation of an integer to a disk file. Although there are many ways to
code this function, the one shown here uses a union. First, a union
composed of one integer and a 2-byte character array is created:

union pw {
inti;
char ch [2];

};

Now, putw() is written using the union that follows.

196 Turbo CIC++: The Complete Reference

/* putw with union */
putw(union pw word, FILE *fp)
{

}

putc(word->ch[O]); /*write first half*/
putc(word->ch[l]); /*write second half*/

Although called with an integer, putw() uses the union to write both
halves of the integer to the disk file.

Enumerations

An enumeration is a set of named integer constants that specifies all
the legal values that a variable of its type can have. Enumerations are
not uncommon in everyday life. For example, an enumeration of the
coins used in the United States is

penny, nickel, dime, quarter, half-dollar, dollar

Enumerations are defined like structures, by using the keyword enum
to signal the start of an enumeration type. The general form is

en um en um_ tag_ name { enumeration list } variable_ list;

Both the enumeration name enum _tag_ name and the variable_ list
are optional, but one of them must be present. AB with structures, the
enumeration tag name is used to declare variables of its type. The
following fragment defines an enumeration called coin and declares
money to be of that type:

enum coin {penny, nickel, dime, quarter,
half_dollar, dollar};

enum coin money;

Given this definition and declaration, the following types of statements
are perfectly valid:

Structures, Unions, and User-Defined Variables 197

money = dime;

if(money==quarter) printf("is a quarter\n"):

The key point to understand about an enumeration is that each of the
symbols stands for an integer value and can be used in any integer
expression. For example,

printf("the value of quarter is %d ", quarter);

is perfectly valid.
Unless initialized otherwise, the value of the first enumeration sym­

bol is 0, the second is 1, and so forth. Therefore,

pri ntf("%d %d", penny, dime);

displays 0 2 on the screen.
It is possible to specify the value of one or more of the symbols by

using an initializer. This is done by following the symbol with an equal
sign and an integer value. Whenever an initializer is used, symbols that
appear after it are assigned values greater than the previous initializa­
tion value. For example, the following assigns the value of 100 to
quarter.

enum coin {penny, nickel, dime, quarter=lOO,
half_dollar, dollar};

Now, the values of these symbols are

penny 0

nickel 1

dime 2

quarter 100

half_ dollar 101

dollar 102

198 Turbo CIC++: The Complete Reference

Using initializations, more than one element of an enumeration can have
the same value.

A common misconception is that the symbols of an enumeration can
be input and output directly, but this is not true. For example, the
following code fragment will not perform as desired:

/* this will not work */

money = do 11 ar;

printf("%s", money);

Remember that the symbol dollar is simply a name for an integer: it is
not a string. Hence, it is not possible for printf() to display the string
"dollar." Likewise, you cannot give an enumeration variable a value
using the string equivalent. That is, this code does not work:

/* this code will not work */

money= "penny";

Actually, creating code to input and output enumeration symbols is
quite tedious (unless you are willing to settle for their integer values).
For example, the following code is needed to display, in words, the kind
of coins that money contains:

switch(money) {

}

case penny: printf("penny");
break;

case nickel: printf("nickel");
break;

case dime: printf("dime");
break;

case quarter: pr1ntf("quarter");
break;

case half_dollar: printf("half_dollar");
break;

case dollar: printf("dollar");

Sometimes, it is possible to declare an array of strings and use the
enumeration value as an index to translate an enumeration value into its
corresponding string. For example, this code also outputs the proper
string:

Structures, Unions, and User-Defined Variables 199

char name[]={
"penny",
"nickel",
11 dime 11 ,

"quarter",

} ;

"hal f_dol l ar",
"dollar"

printf("%s", name[(int)money]);

Of course, this works only if no symbol initializations are used, because
the string array must be indexed starting at 0. The cast that precedes
money is necessary to avoid warning errors because money is not
technically an integer variable but an enumeration variable.

Since enumeration values must be converted manually to their
human-readable string values for console I/O, they are most useful in
routines that do not make such conversions. For example, an enumera­
tion is commonly used to define a compiler's symbol table.

Using sizeof to Ensure Portabllity

You have seen that structures, unions, and enumerations can be used to
create variables of varying sizes, and that the actual size of these
variables may change from machine to machine. The sizeof unary oper­
ator is used compute the size of any variable or type and can help
eliminate machine-dependent code from your programs.

For example, Turbo C has the following sizes for these data types:

Type Size in Bytes

char 1

int 2

long int 4

float 4

double 8

long double 10

200 Turbo CIC++: The Complete Reference

Therefore, the following code will print the numbers 1, 2, 4, and 10 on
the screen:

char ch;
int i;
float f;

printf("%d", sizeof ch);

printf("%d", sizeof i);

printf("%d", sizeof f);

printf("%d", sizeof(long double));

The sizeof operator is a compile-time operator: All the information
necessary to compute the size of any variable is known at compile time.
For example, consider the following:

union x {
char ch;
int i;
float f;

} tom;

The sizeof tom will be 4 bytes long. At run time, it does not matter
what the union tom is actually holding; all that matters is the size of
the largest variable it can hold because the union must be as large as
its largest element.

Depending on what compiler options you are using, Turbo C may
align data on word boundaries. This means that the size of a conglomer­
ate data type may be slightly larger than the sum of its parts. Manually
adding up the lengths of the elements of a structure, for example, may
not yield its correct size. Therefore, you should always use sizeof to
determine the size of a variable.

typedef

C allows you to define new data type names using the typedef keyword.
You are not actually creating a new data class; you are defining a new

Structures, Unions, and User-Defined Variables 201

name for an existing type. This process can help make machine­
dependent programs more portable; only the typedef statements need
to be changed. It also can help you document your code by allowing
descriptive names for the standard data types. The general form of the
typedef statement is

typedef type name;

where type is any allowable data type and name is the new name for
this type. The new name you define is an addition to, not a replacement
for, the existing type name.

For example, you could create a new name for float by using

typedef float balance;

This statement tells the compiler to recognize balance as another name
for float. Next you could create a float variable using balance:

balance past_due;

Here, past_ due is a floating point variable of type balance, which is
another word for float.

You can also use typedef to create names for more complex types.
For example:

typedef struct {
fl oat due;
int over due;
char name [40] ;

} client; /* here client is the new type name */

client clist[NUM_CLIENTS]; /*define array of
structures of type client */

Using typedef can help make your code easier to read and more porta­
ble. But remember, you are not creating any new data types.

Input, Output, and Disk Files

Input and output in C are accomplished through the use of library
functions; there are no C keywords that perform I/0 operations. The
three complete sets of I/O functions defined in Turbo C and C++ are:

1. The I/O system defined by the ANSI C standard, also called the
buffered file system (sometimes the terms formatted or high-level
are used instead).

2. The UNIX-like I/O system, sometimes referred to as the
unbuffered file system (also called unformatted). The UNIX-like I/O
system was created for the first C compilers, which were developed
under UNIX.

3. Some low-level I/0 functions that operate directly on the hard­
ware of the computer.

This chapter discusses the ANSI and UNIX-like I/O systems. The
low-level functions are covered in Part Three of this book.

The ANSI standard's failure to define the UNIX-like file system is
justified by several arguments, including the fact that the two file
systems are largely redundant. However, because both file systems are
currently in widespread use, Turbo C supports both approaches. This
chapter will cover both, but the greatest emphasis will be placed on the
ANSI standard I/O system because use of the UNIX-like system is
expected to decline. New code should be written using the ANSI I/O
functions.

E
I
G
H
T

204 Turbo CIC++: The Complete Reference

The purpose of this chapter is to present an overview of I/O in
Turbo C and to illustrate the way the core functions of each file system
work together. The Turbo C library contains a rich and diverse assort­
ment of I/O routines-more than can be covered here. However, the
functions presented in this chapter are sufficient for most circumstances.
The remainder of the I/0 functions are covered in Part Three of this
book.

During this discussion, keep in mind that the prototype declarations
and several predefined types and constants for the Turbo C buffered I/O
library functions are found in the file stdio.h. The header file io.h is
used for the UNIX-like routines.

Streams and Files

Before beginning our discussion of the ANSI C I/O system, it is impor­
tant to understand the difference between the terms streams and files.
The ANSI C I/O system supplies a consistent interface to the C pro­
grammer independent of the actual device being accessed. That is, the
ANSI C I/O system provides a level of abstraction between the pro­
grammer and the hardware. This abstraction is called a stream; the
actual device is called a file. It is important to understand how they
interact.

Streams

The buffered file system is designed to work with a wide variety of
devices, including terminals, disk drives, and tape drives. Even though
each device is very different, the buffered file system transforms each
into a logical device called a stream. All streams are similar in behavior.
Because streams are largely device independent, the functions that
write to a disk file can also write to the console. There are two types of
streams: text and binary.

Input, Output, and Disk Files 205

Text Streams

A text stream is a sequence of characters. In a text stream, certain
character translations may occur as required by the host environment.
For example, a newline may be converted to a carriage return-linefeed
pair. Therefore, there may not be a one-to-one relationship between the
characters that are written or read and those in the external device.
Also, because of possible translations, the number of characters written
or read may not be the same as those found in the external device.

Binary Streams

A binary stream is a sequence of bytes that have a one-to-one corre­
spondence to those found in the external device. That is, no character
translations will occur. Also, the number of bytes written or read will be
the same as the number found in the external device. The ANSI stan­
dard does specify, however, that a binary stream may have an
implementation-defined number of null bytes appended to its end. These
null bytes might be used to pad the information so that it fills a sector
on a disk, for example.

Files

In the ANSI C I/O system, a file is a logical concept that can be applied
to everything from disk files to terminals. A stream is associated with a
specific file by performing an open operation. Once a file is open, then
information can be exchanged between it and your program.

Not all files have the same capabilities. For example, a disk file can
support random access, but a modem cannot. This illustrates an impor­
tant point about the ANSI C I/0 system: All streams are the same but
all files are not.

If the file can support random access (sometimes ref erred to as
position requests), opening that file initializes the file position indicator
to the start of the file. As each character is read from or written to the
file, the position indicator is incremented, ensuring progression through
the file.

206 Turbo CIC++: The Complete Reference

The smallest accessible portion of a disk is a sector, which is usually
512 bytes long. Information is written to or read from a disk one sector
at a time. Thus, even if your program only needs a single byte of data,
an entire sector of data will be read. This data is put into a region of
memory called a buffer until it can be used by your program. When data
is output to a disk file, it is buffered until a full sector's worth of
information has been accumulated, at which point it is actually physically
written to the file.

A stream is disassociated from a specific file using a close operation.
Closing a stream causes any contents of its associated buffer to be
written to the external device (it will be padded, if necessary, to fill out a
complete sector). This process is generally called flushing the buffer,
and it guarantees that no information is accidentally left in the disk
buffer. All files are closed automatically when your program terminates
normally by main() returning to the operating system or by calling to
exit(). However, it is better to actually close a file using fclose() as
soon as it is no longer needed because several events can prevent the
buffer from being written to the disk file. For example, files are not
written if a program terminates through a call to abort(), if it crashes,
or if the user turns the computer off before terminating the program.

At the beginning of a program's execution five predefined text
streams are opened. They are stdin, stdout, stderr, stdaux, and stdprn,
and they refer to the standard I/O devices connected to the system, as
shown here:

Stream Device

stdin Keyboard

std out Screen

std err Screen

std aux First serial port

stdprn Printer

The first three streams are defined by the ANSI C standard, and
any code that uses them is fully portable. The last two are specific to
Turbo C and may not be portable to other C compilers. Most operating
systems, including DOS, allow I/O redirection, so routines that read or
write to these streams can be redirected to other devices. (Redirection
of I/O is the process whereby information that would normally go to one

Input, Output, and Disk Files 207

device is rerouted to another device by the operating system.) You
should never try explicitly to open or close these files.

Each stream that is associated with a file has a file control structure
of type FILE. This structure is defined in the header stdio.h. You must
not make modifications to this structure.

The ANSI C 1/0 System: Conceptual vs. Actual

AB far as the programmer is concerned, all I/O takes place through
streams. All streams are the same. The file system links a stream to a
file, which is any external device capable of I/O. Because different
devices have differing capabilities, all files are not the same. However,
these differences are minimized by the ANSI C I/O system, which
converts the raw information coming from the device into a stream (and
vice versa). A.Eide from the limitation that only certain types of files
support random access, the programmer need not worry about the
actual physical device and is free to concentrate on the logical device -
the stream.

If this approach seems confusing or strange, look at it in the
context of languages like BASIC or FORTRAN, in which each device
supported by the implementation has its own completely separate I/O
system. In C's approach, the programmer need think only in terms of
streams and use only one file system to accomplish all I/O operations.

Console 1/0

Console 110 refers to operations that occur at the keyboard and screen
of your computer. Because input and output to the console is such a
common affair, a subsystem of the ANSI I/O file system was created to
deal exclusively with console 1/0. Technically, these functions direct
their operations to the standard input and standard output of the
system. It is possible to redirect the console I/O to other devices. For

208 Turbo CIC++: The Complete Reference

simplicity of discussion, however, it is assumed that the console will be
the device used since it is the most common.

getche(J and putcharf J

The simplest of the console I/O functions are getche(), which reads a
character from the keyboard, and putchar(), which prints a character
to the screen at the current cursor location. The getche() function waits
until a key is pressed and then returns its value. The key pressed is also
echoed to the screen automatically. The prototypes for getche() and
putchar() are shown here:

int getche(void);
int putchar(int c);

The getche() function returns the character pressed. The putchar()
function returns c if successful, or EOF if an error occurs. (EOF is a
macro defined in stdio.h that stands for end of file.) Even though c is
declared as an integer, only the low-order byte is displayed on the
screen. Similarly, even though getche() returns an integer, the low­
order byte will contain the character entered at the keyboard.

The following program inputs characters from the keyboard and
prints them in reverse case. That is, uppercase prints as lowercase, and
lowercase as uppercase. The program halts when a period is typed.

#include <conio.h>
#include <stdio.h>
#include <ctype.h>

main(void) /* case switcher */
{

}

char ch;

do {
ch = getche 0;
if(islower(ch)) putchar(toupper(ch));
else putchar(tolower(ch));

} while (ch!='.');/* use a period to stop*/
return 0;

Input, Output, and Disk Files 209

The getche() function is not part of the ANSI C I/O system, but is
closely related. It requires the conio.h header file.

There are two important variations on getche(). The first is get­
char(), which is the character input function defined by ANSI C. The
trouble with getchar() is that it buffers input until a carriage return is
entered. The reason for this is that the original UNIX systems line­
buff ered terminal input- that is, you had to enter a carriage return for
anything you had just typed to actually be sent to the computer. To be
compatible with the UNIX implementation, many C compilers, including
Turbo C, have implemented getchar() so that it line-buffers input. This
is quite annoying in today's interactive environments and the use of
getchar() is not recommended. It is supported by Turbo C++ only to
ensure portability with UNIX-based programs. You may want to play
with it a little to understand its effect better. However, no programs in
this guide use getchar().

A second, more useful, variation on getche() is getch(), which
operates like getche() except that the character you type is not echoed
to the screen. You can use this fact to create a rather humorous (if
disconcerting) program to run on some unsuspecting user. The program,
shown here, displays what appears to be a standard DOS prompt and
waits for input. However, every character the user types is displayed as
the next letter in the alphabet. That is, an "A!' becomes "B", and so forth.
To stop the program, press CTRL-A.

/* This program appears to act as a DOS gone wild. It
displays the DOS prompt but displays every character
the user types as the next letter in the alphabet.

*/

#include <stdio.h>
#include <conio.h>

main(void)
{

char ch;

do {
printf("C>");
for(;;) {

ch= getch(); /*read chars without echo*/
if(ch=='\r' ii ch==l) {

printf("\n");
break;

}
putchar(ch+l);

}

21 O Turbo CIC++: The Complete Reference

}

} while(ch!=l) ; /* exit on control-A */
return O;

Use this program with caution; it has been know to cause panic in novice
computer users!

gets(J and puts(J

On the next step up, in terms of complexity and power, are the functions
gets() and puts(). They enable you to read and write strings of charac­
ters at the console.

The gets() function reads a string of characters entered at the
keyboard and places them at the address pointed to by its character
pointer argument. You may type characters at the keyboard until you
strike a carriage return. The carriage return does not become part of
the string; instead a null terminator is placed at the end, and gets()
returns. In fact, it is impossible to use gets() to obtain a carriage return
(getchar() and its variants can, though). Typing mistakes can be cor­
rected by using the backspace before striking a carriage return. The
gets() function has the prototype

char *gets(char *s);

where s is a character array. For example, the following program reads
a string into the array str and prints its length:

#include <stdio.h>
#include <string.h>

main(void)
{

char str[80];

gets(str);
printf("length is %d", strlen(str));
return O;

The gets() function returns a pointer to s.
The puts() function writes its string argument to the screen fol­

lowed by a newline. Its prototype is

Input, Output, and Disk Files 211

char *puts(const char *s);

It recognizes the same backslash codes as printf(), such as \t for tab. A
call to puts() requires far less overhead than the same call to printf()
because puts() outputs only a string of characters; it does not output
numbers or do format conversions. Since puts() takes up less space and
runs faster than printf(), it is often used when highly optimized code is
needed. The puts() function returns a pointer to its string argument.
The following statement writes "hello" on the screen.

puts("hello");

The simplest functions that perform console I/O operations are
summarized in Table 8-1.

Formatted Console 1/0

In addition to the simple console I/O functions, the Turbo C standard
library contains two functions that perform formatted input and output
on the built-in data types: printf() and scanf(). The term formatted
refers to the fact that these functions can read and write data in various

Function

getchar()

getche()

getch()

putchar()
gets()
puts()

Table 8-1.

Operation

Reads a character from the keyboard; waits for car­
riage return
Reads a character with echo; does not wait for car­
riage return
Reads a character without echo; does not wait for
carriage return
Writes a character to the screen
Reads a string from the keyboard
Writes a string to the screen

The Basic Console I/O Functions

21 2 Turbo CIC++: The Complete Reference

formats that are under your control. The printf() function is used to
write data to the console; scanf(), its complement, reads data from the
keyboard. Both printf() and scanf() can operate on any of the built-in
data types, including characters, strings, and numbers.

prlntf(J

The printf() function has this prototype

int printf(const char *fmt_string, ...);

The first argument, fmt_string, defines the way any subsequent argu­
ments are displayed. Often called the format string, it consists of two

Code

%c
%d
%i
%e
%f
%g
%0
%s
%u
%x
%%
%p
%n

Table 8-2.

Format

A single character
Decimal
Decimal
Scientific notation
Decimal floating point
Uses %e or %f, whichever is shorter
Octal
String of characters
Unsigned decimal
Hexadecimal
Prints a % sign
Displays a pointer
The associated argument shall be to an integer
pointer into which is placed the number of charac­
ters written so far

printf() Format Specifiers

Input, Output, and Disk Files 21 3

types of items: characters that will be printed on the screen, and format
commands that define the way arguments that follow the format string
are displayed. A format command begins with a percent sign and is
followed by the format code. The format commands are shown in Table
8-2. There must be exactly the same number of arguments as there are
format commands, and the format commands and arguments are
matched in order. For example, this printf() call

printf("Hi %c%d%s", 'c', 10, "there!");

displays "Hi c 10 there!". The printf() function returns the number of
characters output. It returns EOF if an error occurs.

The format commands may have modifiers that specify the field
width, the number of decimal places, and a left-justification flag. An
integer placed between the % sign and the format command acts as a
minimum-field-width specifier. This pads the output with spaces to
ensure that it is at least a certain minimum length. If the string or
number is greater than that minimum, it is printed in full even if it
overruns the minimum. If you wish to pad the output with Os, place 0
before the field-width specifier. For example, %05d pads a number of
less than five digits with Os so that its total length is five.

To specify the number of decimal places printed for a floating point
number, place a decimal point after the field-width specifier, followed by
the number of decimal places you wish to display. For example, %10.4f
displays a number at least ten characters wide with four decimal places.
When this is applied to strings or integers the number following the
period specifies the maximum field length. For example, %5.7s displays a
string of at least five characters and not more than seven. If the string
is longer than the maximum field width, the characters are truncated off
the right end.

By default, all output is right-justified: If the field width is larger
than the data printed, the data is placed on the right edge of the field.
You can force the information to be left-justified by placing a minus sign
directly after the %. For example, %-10.2f will left-justify a floating
point number with two decimal places in a ten-character field. The
following program illustrates the field-width specifiers and left­
justification:

#include <stdio.h>

main(void)

214 Turbo CIC++: The Complete Reference

{
printf("i%10.4fl\n", 123.23);
printf("i%-10.4fi\n", 123.23);
printf("i%10.4sl\n", "Hello there");
printf("i%-10.4si\n", "Hello there");
return 0;

There are two format command modifiers that allow printf() to
display short and long integers. These modifiers can be applied to the d,
i, o, u, and x format specifiers. The I modifier tells printf() that a long
data type follows. For example, %Id means that a long int is to be
displayed. The h modifier instructs printf() to display a short int.
Therefore, %hu indicates that the data is of type short unsigned int.

The l modifier may also prefix the floating point commands of e, f,
and g, and indicates that a double follows. The L modifier may prefix
double to indicate long double.

With printf(), you can output virtually any format of data you
desire. Figure 8-1 shows some examples.

scanf(J

The general-purpose console input routine is scanf(). It reads all the
built-in data types and automatically converts numbers into the proper
internal format. It is like the reverse of printf(). The general form of
scanf() is

int scanf(const char *fmt_string, ...);

Figure 8-1.

printf() statement

("%-5.2 f',123.234)
("%5.2 f', 3.234)
("%10s","hello")
("%-lOs",''hello")
("%5. 7s",''123456789")

Some printf() examples

Output

123.23
3.23

hello
hello
1234567

Input, Output, and Disk Files 215

The control string consists of three classifications of characters:

• Format specifiers

• White-space characters

• Non-white-space characters

The scanf() function returns the number of fields that are input. It
returns EOF if a premature end of file is reached.

The input format specifiers are preceded by a % sign and tell
scanf() what type of data is to be read next. These codes are listed in
Table 8-3. For example, %s reads a string, while %d reads an integer.

A white-space character in the control string causes scanf() to skip
over one or more white-space characters in the input stream. A white­
space character is either a space, a tab, or a newline. In essence, one
white-space character in the control string causes scanf() to read, but
not store, any number (including zero) of white-space characters up to
the next non-white-space character.

A non-white-space character causes scanf() to read and discard a
matching character. For example, "%d,%d" causes scanf() to read an
integer, then read and discard a comma, and finally read another inte­
ger. If the specified character is not found, scanf() terminates.

Code

%c
%d
%i
%e
%f
%h
%0

%s

%x
%p
%n

Table 8-3.

Meaning

Read a single character
Read a decimal integer
Read a decimal integer
Read a floating point number
Read a floating point number
Read a short integer
Read an octal number
Read a string
Read a hexadecimal number
Read a pointer
Receives an integer value equal to the number of
characters read so far

scanf() Format Specifiers

216 Turbo CIC++: The Complete Reference

All the variables used to receive values through scanf() must be
passed by their addresses. This means that all arguments must be
pointers to the variables used as arguments. This is C's way of creating
a "call by reference," and it allows a function to alter the contents of an
argument. For example, if you wish to read an integer into the variable
count, use the following scanf() call:

scanf("%d", &count);

Strings are read into character arrays, and the array name, without
any index, is the address of the first element of the array. To read a
string into the character array address, you would use

char address[BO];

scanf("%s", address);

In this case, address is already a pointer and need not be preceded by
the & operator.

The input data items must be separated by spaces, tabs, or new­
lines. Punctuation marks such as commas, semicolons, and the like do
not count as separators. This means that

scanf("%d%d", &r, &c);

accepts an input of 10 20, but fails with 10,20. As in printf(), the
scanf() format codes are matched in order with the variables receiving
input in the argument list.

An * placed after the % and before the format code reads data of
the specified type but suppresses its assignment. Thus, given the input
"10/20",

scanf("%d%*c%d", &x, &y);

places the value 10 into x, discards the division sign, and gives y the
value 20.

Input, Output, and Disk Files 21 7

The format commands can specify a maximum-field-length modifier.
This is an integer number placed between the % and the format com­
mand code that limits the number of characters read for any field. For
example, if you wish to read no more than 20 characters into str, write:

scanf("%20s", str);

If the input stream is greater than 20 characters, a subsequent call
to input begins where this call leaves off. If

ABCDEFGHIJKLMNOPQRSTUVWXYZ

is entered as the response to the scanf() call in this example, only the
first 20 characters, or up to the "T" are placed into str because of the
maximum size specifier. The remaining characters, "UVWXYZ" have not
yet been used. If another scanf() call is made, such as

scanf("%s 11 , str);

then "UVWXYZ" is placed into str. Input for a field may terminate
before the maximum field length is reached if a white-space character is
encountered. In this case, scanf() moves on to the next field.

Although spaces, tabs, and newlines are used as field separators,
when reading a single character, they are read like any other character.
For example, with an input stream of "x y'',

scanf("%c%c%c", &a, &b, &c);

returns with the character "x" in a, a space in b, and "y'' in c.
Be careful: If you have any other characters in the control string­

including spaces, tabs, and newlines - those characters will be used to
match and discard characters from the input stream. For example, given
the input stream "10t20",

scanf("%st%s", &x, &y);

will place 10 into x and 20 into y. The "t" is discarded because of the t in
the control string. For another example,

scanf("%s ", name);

218 Turbo CIC++: The Complete Reference

will not return until you type a character after you type a white-space
character. This is because the space after the %s has instructed scanf()
to read and discard spaces, tabs, and newline characters.

Another feature of scanf() is the scanset. A scanset defines a list of
characters that will be matched by scanf() and stored in a character
array variable. The scanf() function inputs characters, putting them
into the corresponding character array, as long as they are members of
the scanset. When a character is entered that does not match any in the
scanset, scanf() null-terminates the corresponding array and moves on
to the next field.

A scanset is defined by putting a list of the characters you want to
scan for inside square brackets. The beginning square bracket must be
prefixed by a percent sign. For example, this scanset tells scanf() to
read only the letters "X", ''Y", and "Z".

%[XYZ]

The argument corresponding to the scanset must be a pointer to a
character array. Upon return from scanf(), the array will contain a
null-terminated string composed of the characters read. For example,
this program uses a scanset to read digits into sl. As soon as a non-digit
is entered, sl is null-terminated and characters are read into s2 until the
next white-space character is entered.

/*A simple scanset example. */
#include <stdio.h>

main(void)
{

char sl[BO], s2[80];

printf("Enter numbers, then some letters\n");
scanf("%[0123456789]%s", sl, s2);
printf("%s %s", sl, s2);
return 0;

You can specify a range inside a scanset using a hyphen. For
example, this tells scanf() to accept the characters "A:' through "Z".

%[A-Z]

Input, Output, and Disk Files 219

You can specify more than one range within a scanset. For example, this
program reads digits and then letters:

/* A scanset example using ranges. */
#include <stdio.h>

main(void)
{

char s1[80], s2[80];

printf("Enter numbers, then some letters\n");
scanf("%[0-9]%[a-zA-Z]", sl, s2);
printf("%s %s", sl, s2);
return O;

You can specify an inverted set if the first character in the set is a
caret n, When the A is present, it instructs scanf() to accept any
character that is not defined by the scanset. Here, the previous program
uses the " to invert the type of characters the scanset will read:

/* A scanset example using inverted ranges. */
#include <stdio.h>

main(void)
{

}

char sl [80], s2 [80];

printf("Enter non-numbers, then some non-letters\n");
scanf("%["0-9]%["a-zA-Z] ", sl, s2);
printf("%s %s", sl, s2);
return O;

One important point to remember is that the scanset is case­
sensitive. Therefore, if you want scan for both uppercase and lowercase
letters they must be specified individually.

The ANSI C File System

The ANSI C file system is composed of several interrelated functions.
The most common are shown in Table 8-4.

220 Turbo CIC++: The Complete Reference

Name

fopen()
fclose()
putc()
getc()
fseek()
fprintf()
fscanf()
feof()
ferror()
rewind()

remove()

Function

Opens a stream
Closes a stream
Writes a character to a stream
Reads a character from a stream
Seeks to specified byte in a stream
Is to a stream what printf() is to the console
Is to a stream what scanf() is to the console
Returns true if enq of file is reached
Returns true if an error has occurred
Resets the file position locator to the beginning of
the file
Erases a file

Table 8-4. The Most Common Buffered-File System Functions

The header file stdio.h must be included in any program in which
these functions are used.

The File Pointer

The common thread that ties the buffered I/O system together is the file
pointer. A file pointer is a pointer to information that defines various
things about the file, including its name, status, and current position. In
essence, the file pointer identifies a specific disk file and is used by the
stream associated with it to tell each of the buffered I/O functions where
to perform operations. A file pointer is a pointer variable of type FILE,
which is defined i:q stdio.h.

fopenf)

The fopen() function opens a stream for use, links a file with that
stream, and then returns a FILE pointer to that stream. Most often
(always for the purpose of this discussion) the file is a disk file. The
fopen() function has this prototype

Input, Output, and Disk Files 221

FILE *fopen(const char *filename, const char *mode);

where mode points to a string containing the desired open status. The
legal values for mode in Turbo C are shown in Table 8-5. The filename
must be a string of characters that provides a valid file name for the
operating system and may include a path specification.

The fopen() function returns a pointer of type FILE. This pointer
identifies the file and is used by most other file system functions. It
should never be altered by your code.

As Table 8-5 shows, a file can be opened in either text or binary
mode. In text mode, carriage return-linefeed sequences are translated
into newline characters on input. On output, the reverse occurs: new­
lines are translated to carriage return-linefeeds. No such translations
occur on binary files.

Mode

"r"

"w"
"a"
"rb"
"wb"
"ab"
"r+"
"w+"
"a+"
"r+b"
"w+b"
"a+b"
"rt"
"'Wt"
"at"
"r+t"
"w+t"
"a+t"

Table 8-5.

Meaning

Open a text file for reading
Create a text file for writing
Append to a text file
Open a binary file for reading
Create a binary file for writing
Append to a binary file
Open a text file for read/write
Create a text file for read/write
Open or create a text file for read/write
Open a binary file for read/write
Create a binary file for read/write
Open or create a binary file for read/write
Open a text file for reading
Create a text file for writing
Append to a text file
Open a text file for read/write
Create a text file for read/write
Open or create a text file for read/write

The Legal Values for mode

222 Turbo CIC++: The Complete Reference

If you wish to open a file for writing with the name test, write:

fp = fopen("test", "w");

Where fp is a variable of type FILE *· However, you usually see it
written like this:

if ((fp = fop en ("test", "w")) ==NULL) {
puts("cannot open file");
exit(l);

}

This method detects any error in opening a file, such as a write­
protected or full disk, before attempting to write to it. A null, which is 0,
is used because no file pointer will ever have that value. NULL is a
macro defined in stdio.h.

If you use fopen() to open a file for output, then any preexisting
file by that name is erased and a new file started. If no file by that name
exists, then one is created. If you want to add to the end of the file, you
must use mode a. If the file does not exist, it will be created. Opening a
file for read operations requires an existing file. If no file exists, an error
is returned. If a file is opened for read/write operations it is not erased if
it exists; if no file exists, one is created.

putc(J

The putc() function is used to write characters to a stream that was
previously opened for writing using the fopen() function. The prototype
for putc() is

int putc(int ch, FILE *fp);

where fp is the file pointer returned by fopen() and ch is the character
to be output. The file pointer tells putc() which disk file to write to. For
historical reasons, ch is formally called an int, but only the low-order
byte is used.

If a putc() operation is a success, it returns the character written.
If putc() fails, an EOF is returned.

Input, Output, and Disk Files 223

getc(J

The getc() function is used to read characters from a stream opened in
read mode by fopen(). The prototype is

int getc(FILE *fp);

where fp is a file pointer of type FILE returned by fopen(). For his­
torical reasons, getc() returns an integer, but the high-order byte is 0.

The getc() function returns an EOF when the end of the file has
been reached. To read a text file to the end, you could use the following
code:

ch= getc(fp);

while(ch!=EOF) {
ch= getc(fp);

}

AB stated earlier, the buffered-file system can also operate on bi­
nary data. When a file is opened for binary input, an integer value equal
to the EOF mark may be read. This would cause the routine just given
to indicate an end-of-file condition even though the physical end of the
file had not been reached. To solve this problem, Turbo C includes the
function feof(), which is used to determine the end of the file when
reading binary data. It has this prototype:

int feof(FILE *fp);

where fp identifies the file. The feof() function returns non-0 if the end
of the file has been reached; otherwise 0 is returned. Therefore, the
following routine reads a binary file until the end-of-file mark is encoun­
tered:

while(!feof(fp)) ch= getc(fp);

This method can be applied to text files as well as binary files.

224 Turbo CIC++: The Complete Reference

fclose{ J

The f close() function is used to close a stream that was opened by a call
to fopen(). It writes any data still remaining in the disk buffer to the
file and does a formal operating-system-level close on the file. A call to
f close() frees the file control block associated with the stream and
makes it available for reuse. There is an operating system limit to the
number of open files you can have at any one time, so it may be
necessary to close one file before opening another.

The f close() function has the prototype

int fclose(FILE *!P);

where fp is the file pointer returned by the call to fopen(). A return
value of 0 signifies a successful close operation; an EOF is returned if an
error occurs. Generally, f close() will fail only when a diskette has been
prematurely removed from the drive or if there is no more space on the
diskette.

ferror(J and rewind(J

The f error() function is used to determine whether a file operation has
produced an error. The function ferror() has this prototype

int f error(FILE *fp)

where fp is a valid file pointer. It returns true if an error has occurred
during the last file operation; it returns false otherwise. Because each
file operation sets the error condition, f error() should be called immedi­
ately after each file operation; otherwise an error may be lost.

The rewind() function resets the file position locator to the begin­
ning of the file specified as its argument. The prototype is

void rewind(FILE *fp)

where fp is a valid file pointer.

Input, Output, and Disk Files 225

Using fopen(J, getc(J, putc(J, and fclose(J
The functions fopen(), getc(), putc(), and fclose() comprise a minimal
set of file routines. A simple example of using putc(), fopen(), and
f close() is the following program, ktod. It simply reads characters from
the keyboard and writes them to a disk file until a dollar sign is typed.
The file name is specified from the command line. For example, if you
call this program ktod, then typing ktod test allows you to enter lines
of text into the file called test.

/* ktod: key to disk. */

#include <stdio.h>

main(int argc, char *argv[])
{

}

FILE *fp;
char ch;

if(argc!=2) {
printf("You forgot to enter the fil ename\n");
return 1;

if((fp=fopen(argv[l],"w")) ==NULL) {
printf("cannot open file\n");
return 1;

do {
ch = getchar();
putc(ch, fp);

} while (ch!='$');

fclose(fp);
return O;

The complementary program dtos will read any text file and display the
contents on the screen. You must specify the name of the file on the
command line.

/* dtos: disk to screen. */
#include <stdio.h>

main(int argc, char *argv[])
{

FILE *fp;
char ch;

226 Turbo CIC++: The Complete Reference

}

if(argc!=2) {

}

printf("You forgot to enter the filename\n");
return l;

if((fp=fopen(argv[l], "r")) == NULL) {
printf("cannot open file\n");
return l;

ch= getc(fp); /*read one character*/

while (ch!=EOF) {

}

putchar(ch); /*print on screen*/
ch= getc(fp);

fclose(fp);
return 0;

The following program copies a file of any type. Notice that the files are
opened in binary mode and the feof() is used to check for the end of the
file. (No error checking is performed on output, but in a real-world
situation it would be a good idea. Try to add it as an exercise.)

/* This program will copy a file to another. */
#include <stdio.h>

main(int argc, char *argv[])
{

FILE *in, *out;
char ch;

if(argc!=3) {

}

printf("You forgot to enter a filename\n");
return l;

if((in=fopen(argv[l], "rb")) == NULL) {
printf("cannot open source file\n");
return l;

}
if((out=fopen(argv[2], "wb")) == NULL) {

printf("cannot open destination file\n");
return 1;

}

/* this code acutally copies the file */
while(!feof(in)) {

ch= getc(in);
if(!feof(in)) putc(ch, out);

}

}

fclose(in);
fclose(out);
return O;

getw() and putw()

Input, Output, and Disk Files 227

In addition to getc() and putc(), Turbo C supports two additional
buffered I/O functions: putw() and getw(). (Although these functions
are not defined by the ANSI standard, they are included with Turbo C
and are commonly found in most other C compiler libraries.) They are
used to read and write integers from and to a disk file. These functions
work exactly the same as putc() and getc() except that instead of
reading or writing a single character, they read or write 2 bytes. For
example, the following code fragment writes an integer to the disk file
pointed to by fp:

putw(lOO, fp);

fgets() and fputs()

The Turbo C buffered I/O system includes two functions that can read
and write strings from and to streams: fgets() and fputs(). Their
prototypes are

int fputs(const char *str, FILE *fp);
char *fgets(char *str, int length, FILE *fp);

The function fputs() works much like puts() except that it writes the
string to the specified stream. The f gets() function reads a string from
the specified stream until either a newline character or length-1 charac­
ters have been read. If a newline is read, it will be part of the string
(unlike gets()). However fgets() is terminated, the resultant string will
be null-terminated.

228 Turbo CIC++: The Complete Reference

fread(J and fwrlte(J

The ANSI C file system provides two functions, fread() and fwrite(),
that allow the reading and writing of blocks of data. Their prototypes
are

size_ t fread(void *buffer, size_ t num_bytes,
size_ t count, FILE *fp)

size_ t fwrite(const void *buffer, size_ t num_bytes,
size_t count, FILE *fp);

In the case of fread(), buffer is a pointer to a region of memory that
receives the data read from the file. For fwrite(), buffer is a pointer to
the information to be written to the file. The number of bytes to be read
or written is specified by num _bytes. The argument count determines
how many items (each being num_bytes in length) will be read or
written. Finally, fp is a file pointer to a previously opened stream.

k3 long as the file has been opened for binary data, fread() and
fwrite() can read and write any type of information. For example, this
program writes a float to a disk file:

/* Write a floating point number to a disk file. */
#include <stdio.h>

main(void)
{

}

FILE *fp;
fl oat f=12. 23;

if((fp=fopen("test","wb"))==NULL) {
printf("cannot open file\n");
return 1;

}

fwrite(&f, sizeof(float), 1, fp);

fclose(fp};
return O;

k3 this program illustrates, the buff er can, and often is, simply a
variable.

One of the most useful applications of fread() and fwrite() in­
volves the reading and writing of arrays (or structures). For example,

Input, Output, and Disk Files 229

this fragment writes the contents of the floating point array balance to
the file balance using a single fwrite() statement. Next, it reads the
array, using a single fread() statement, and displays its contents.

#include <stdio.h>

main(void)
{

}

register inti;
FILE *fp;
float balance[lOO];

/* open for write */
if ((fp=fopen ("balance", "wb")) ==NULL) {

printf("cannot open file\n");
return 1;

}

for(i=O; i<lOO; i++) balance[i] = (float) i;

/* this saves the entire balance array in one step */
fwrite(balance, sizeof balance, 1, fp);
fclose(fp);

/* zero array */
for(i=O; i<lOO; i++) balance[i] = 0.0;

/* open for read */
if ((fp=fopen ("balance", "rb")) ==NULL) {

printf("cannot open file\n");
return 1;

}

/* this reads the entire balance array in one step */
fread(balance, sizeof balance, 1, fp);

/* display contents of array */
for(i=O; i<lOO; i++) printf("%f ", balance[i]);

fclose(fp);
return 0;

Using fread() and fwrite() to read or write complex data is more
efficient than using repeated calls to getc() and putc().

fseek(J and Random Access 1/0

You can perform random read and write operations using the buffered
J/O system with the help of fseek(), which sets the file position locator.
Its prototype is

230 Turbo CIC++: The Complete Reference

int fseek(FILE *fp, long num_bytes, int origin);

where fp is a file pointer returned by a call to fopen(); num_bytes, a
long integer, is the number of bytes from origin to seek to, and origin is
one of the following macros (defined in stdio.h):

Origin

Beginning of file

Current position

End of file

Macro Name

SEEK_SET

SEEK_ CUR

SEEK_ END

The macros are defined as integer values with SEEK_SET being
0, SEEK_ CUR being 1, and SEEK_END being 2. Therefore, to seek
num_bytes from the start of the file, origin should be SEEK_SET. To
seek from the current position use SEEK_ CUR, and to seek from the
end of the file use SEEK_ END.

Remember that num _bytes is a long int to support files larger
than 64K bytes.

The use of fseek() on text files is not recommended because the
character translations cause position eITors. Use of fseek() is sug­
gested only for binary files.

For example, you could use the following code to read the 234th
byte in a file called test:

funcl(void)
{

FILE *fp;

if((fp=fopen("test", "rb")) ==NULL) {
printf("cannot open fil e\n");
exit(l);

}

fseek(fp, 234L, O);
return getc(fp); /*read one character*/

/* at 234th position */
}

}

A return value of 0 means that fseek() succeeded. A non-0 value
indicates failure.

Input, Output, and Disk Files 231

Another example that uses fseek() is the following dump program,
which lets you examine the contents in both ASCII and hexadecimal of
any file you choose. You can look at the file in 128-byte "sectors" as you
move about the file in either direction. The output displayed is similar in
style to the format used by the DEBUG command when given the D
(dump memory) command. To exit the program, type a -1 when
prompted for the sector. Notice the use of fread() to read the file. At
the end-of-file mark, less than SIZE number of bytes are likely to be
read, so the number returned by fread() is passed to display(). (Re­
member that fread() returns the number of items actually read.) Enter
this program into your computer and study it until you are certain how
it works:

/*dump: A simple disk look utility using fseek. */
#include <stdio.h>
#include <ctype.h>

#define SIZE 128

void display(int numread);

char buf [SIZE] :
void display();

main(int argc, char *argv[])
{

FILE *fp;
int sector, numread;

if(argc!=2) {

}

printf("usage: dump filename\n");
return 1;

if((fp=fopen(argv[l], "rb"))==NULL) {
printf("cannot open file\n"):
return 1;

}

do {
printf("enter sector: "):
scanf("%ld", §or):
if(sector>=O) {

if(fseek(fp, sector*SIZE, SEEK_SET)) {
printf("seek error\n"):

}
if((numread=fread(buf, 1, SIZE, fp)) != SIZE)

printf("EOF reached\n"):

display(numread);
}

I
1'

232 Turbo CIC++: The Complete Reference

}

} while(sector>=O);
return O;

/* Display the contents of a file. */
void display(int numread)
{

}

int i, j;

for(i=O; i<numread/16; i++) {

}

for(j=O; j<l6; j++) printf("%3X", buf[i*l6+j]);
pri ntf(" ");
for(j=O; j<l6; j++) {

}

1 f (1 sprint (buf[i*l6+j])) pri ntf ("%c", buf[i *16+j]);
else printf(".");

printf("\n");

Notice that the library function isprint() is used to determine which
characters are printing characters. The isprint() function returns true
if the character is printable and false otherwise, and requires the use of
the header file ctype.h, which is included near the top of the program. A
sample output with dump used on itself is shown in Figure 8-2.

enter sector: 0
2F 2A 20 44 SS 4D SO 3A 20 41 20 73 69 6D 70 6C /* dump: A simpl
6 S 20 64 69 73 6B 20 6C 6F 6F 6B 20 7S 74 69 6C e disk look util
69 74 79 20 7S 73 69 6E 67 20 66 73 6S 6S 6B 2E ity using fseek.
20 2A 2F D A 23 69 6E 63 6C 7S 64 6S 20 3C 73 */ •• #include <s
74 64 69 6F 2E 68 3E D A 23 69 6E 63 6C 7S 64 tdio.h> •• #includ
6S 20 3C 63 74 79 70 6S 2E 68 3E D A D A 23 e <ctype.h> •••• #
64 6S 66 69 6E 6S 20 S3 49 SA 4S 20 31 32 38 D define SIZE 128.
A D A 76 6F 69 64 20 64 69 73 70 6C 61 79 28 ••• void display(

enter sector: 1
69 6E 74 20 6E 7S 6D 72 6S 61 64 29 3B D A D
A 63 68 61 72 20 62 7S 66 SB S3 49 SA 4S SD 3B
D A 76 6F 69 64 20 64 69 73 70 6C 61 79 28 29

3B D A D A 6D 61 69 6E 28 69 6E 74 20 61 72
67 63 2C 20 63 68 61 72 20 2A 61 72 67 76 SB SD
29 D A 7B D A 20 20 46 49 4C 45 20 2A 66 70
3B D A 20 20 69 6E 74 20 73 6S 63 74 6F 72 2C
20 6E 75 6D 72 6S 61 64 3B D A D A 20 20 69

enter sector: -1

int numread); •••
.char buf[SIZE];
•• void display()
; •••• main(int ar
gc, char *argv[]
) .. {.. FILE *fp
; •• int sector,
numread;.... i

Figure 8-2. Sample output from the dump program

Input, Output, and Disk Files 233

The Standard Streams

Whenever a Turbo C program starts execution, five streams are opened
automatically. They are stdin, stdout, stderr, stdaux, and stdprn. Be­
cause these are file pointers, they may be used by any function in the
ANSI C I/O system that uses file pointers. For example, putchar()
could be defined as

putchar(int c)
{

putc(c, stdout);
}

fprintf(J and fscanf(J

In addition to the basic I/O functions, the buffered I/O system includes
fprintf() and fscanf(). These functions behave exactly like printf()
and scanf() except that they operate with disk files. The prototypes of
fprintf() and fscanf() are

int fprintf(FILE *fp, const char *fmt_string, ...);
int fscanf(FILE *fp, const char *fmt_string, .. .);

where fp is a file pointer returned by a call to fopen(). Except for
directing their output to the file defined by fp, they operate exactly like
printf() and scanf() respectively.

To illustrate how useful these functions can be, the following pro­
gram maintains a simple telephone directory in a disk file. You may
enter names and numbers or look up a number given a name.

/* A simple telephone directory */

#include <conio.h>
#include <stdlib.h>
#include <stdio.h>
#include <ctype.h>
#include <string.h>

void add_num(void), lookup(void);
int menu(void);

main(void) /* fscanf - fprintf example */
{

234 Turbo CIC++: The Complete Reference

}

char choice;

do {
choice= menu();
switch(choice) {

}

case 'a': add_num();
break;

case 'l ': lookup();
break;

} while (choice!='q');
return 0;

/* Display menu and get request. */
menu(void)
{

}

char ch;

do {
printf("(A)dd, (L)ookup, or (Q)uit: ");
ch= tolower(getche());
printf("\n");

} while (ch ! = 'q' && ch ! = 'a' && ch ! = 'l ') ;

return ch;

/* Add a name and number to the directory. */
void add_num(void)
{

}

FILE *fp;
char name[80];
int a_code, exchg, num;

/* open it for append */
if((fp=fopen("phone","a")) == NULL) {

printf("cannot open directory file\n");
exit(l);

}

printf("enter name and number: ");
fscanf(stdin, "%s%d%d%d", name, &a_code, &exchg, &num);

fscanf(stdin, "%*c"); /*remove CR from input stream*/

/* write to file */
fprintf(fp,"%s %d %d %d\n", name, a_code, exchg, num);

fclose(fp);

/* Find a number given a name. */
void lookup(void)
{

FILE *fp;
char name[80], name2[80];

Input, Output, and Disk Files 235

int a_code, exchg, num;

/* open it for read */
if((fp=fopen("phone","r")) == NULL) {

printf("cannot open directory file\n");
exit(l);

}

printf("name? ");
gets(name);

/* look for number */
while(!feof(fp)) {

fscanf(fp,"%s%d%d%d", name2, &a_code, &exchg, &num);
if(!strcmp(name, name2)) {

}

printf("%s: (%d) %d-%d\n",name, a_code, exchg, num);
break;

}
fclose(fp);

}

Enter this program and run it. After you have entered a couple of
names and numbers, examine the file phone. AB you would expect, it
appears just the way it would if the information had been displayed on
the screen using printf().

Note: Although fprintf() and fscanf() are often the easiest way to
write and read assorted data to disk files, they are not always the most
efficient. Because formatted ASCII data is being written just as it would
appear on the screen (instead of in binary) you incur extra overhead
with each call. If speed or file size is a concern, you should probably use
fread() and fwrite().

Erasing Files

The remove() function erases the specified file. Its prototype is

int remove(const char *filename);

It returns 0 upon success, non-0 if it fails.
This program uses remove() to erase a file specified by the user.

236 Turbo CIC++: The Complete Reference

/*A remove() example. */

#include <stdio.h>

main(void)
{

char fname[SO];

printf("name of file to remove: ");
gets(fname):

if(remove(fname)) {
printf("Error removing file\n");
return 1;

}
else return O;

}

The UNIX-Like Fiie Routines

Because C was originally developed under the UNIX operating system,
a second disk-file I/O system was created. It uses functions that are
separate from the ANSI file system functions. The low-level, UNIX-like
disk I/O functions are shown in Table 8-6. These functions all require
that the header file io.h be included near the beginning of any program
that uses them. The disk I/O subsystem comprising these functions is
sometimes called the unbuffered 1/0 system because the programmer
must provide and maintain all disk buffers; the routines do not do it for
you. Unlike the functions getc() and putc(), which read and write

Name

read()
write()
open()
close()
lseek()
unlink()

Table 8-6.

Function

Reads a buffer of data
Writes a buffer of data
Opens a disk file
Closes a disk file
Seeks to the specified byte in a file
Removes a file from the directory

The UNIX-Like Unbuffered J/O Functions

Input, Output, and Disk Files 237

characters from or to a stream of data, the functions read() and
write() will read or write one complete buffer of information with each
call. (This is similar to fread() and fwrite().)

As stated at the beginning of this chapter, the UNIX-like file
system is not defined by the ANSI standard. This implies that programs
that use it will have portability problems at some point in the future.
The unbuffered file system's use is expected to diminish over the next
few years, but it is included in this chapter because a great many
existing C programs use it, and it is supported by virtually all existing C
compilers.

open(J, creat(), and close(J
Unlike the ANSI C I/O system, the UNIX-like system does not use file
pointers of type FILE, but rather file descriptors called handles of type
int. A file is opened using the open() function, which has the prototype

int open(const char *filename, int mode, int access);

The open() function requires both the fnctl.h and the io.h header files.
The string pointed to by filename is any valid file name and mode is one
of the following macros defined in fcntl.h:

Mode

O_RDONLY

O_WRONLY

O_RDWR

Effect

Read-only

Write-only

Read/write

Turbo C also allows some options to be added to these basic modes, so
consult your manual.

The access parameter only relates to UNIX environments and is
included for compatibility. In the examples in this chapter, access will be
set to 0.

Turbo C also defines a DOS-specific version of open() called
_open() that has this prototype:

int _open(const char *filename, int mode);

This function bypasses the access parameter altogether.

238 Turbo CIC++: The Complete Reference

A successful call to open() returns a positive integer. A return
value of -1 means that the file cannot be opened.

You usually see the call to open() like this:

if((fd=open(filename, mode, 0)) == -1) {
printf("cannot open file\n");
exit(l);

}

If the file specified in the open() statement does not appear on the
disk, the operation fails. It will not create the file.

To close a file using the UNIX-like I/O system, use close(). Its
prototype is

int close(int fd);

If close() returns a -1, it was unable to close the file. This could occur
if the diskette were removed from the drive, for example.

A call to close() releases the file descriptor so that it can be reused
for another file. There is always some limit to the number of open files
that can exist simultaneously, so you should close() a file when it is no
longer needed. More importantly, a close operation forces any informa­
tion in the internal disk buffers of the operating system to be written to
disk. Failure to close a file usually leads to loss of data.

You use creat() to create a new file for write operations. The
prototype of creat() is

int creat(const char *filename, int access);

where filename is any valid file name. The access argument is used to
specify access modes and to mark the file as being either binary or text.
Because creat()'s use of access relates to the UNIX environment,
Turbo C provides a special MS-DOS version called _creat(), which
takes a file attribute byte for access instead. In DOS, each file is
associated with an attribute byte that specifies various bits of informa­
tion. Table 8-7 shows how this attribute byte is organized.

The values in the table are additive. That is, if you wish to create a
read-only hidden file you would use the value 3 (1 + 2) for access.
Generally, to create a standard file, access will be 0.

Input, Output, and Disk Files 239

Bit Value Meaning

0 1 Read-only file
1 2 Hidden file
2 4 System file
3 8 Volume label name
4 16 Subdirectory name
5 32 Archive
6 64 Unused
7 128 Unused

Table 8-7. The Organization of the DOS Attribute Byte

write() and read()

Once a file has been opened for writing it can be accessed by write().
The prototype for write() is

int write(intfd, void *buf, unsigned size);

Each time a call to write() is executed, size characters are written to
the disk file specified by fd from the buffer pointed to by buf The
prototype for write() is in io.h. The write() function returns the
number of bytes written to the file. If an error occurs, write() returns
-1.

The read() function is the complement of write(). Its prototype is

int read(intfd, void *buf, unsigned size);

where fd, buf, and size are the same as for write(), except that read()
places the data read into the buffer pointed to by buf If read() is
successful, it returns the number of characters actually read. It returns
0 upon the physical end of the file, and -1 if errors occur. The prototype
for read() is in io.h.

The program shown here illustrates some aspects of the unbuffered
IJO system. It reads lines of text from the keyboard, and writes them to
a disk file, then reads them back.

240 Turbo CIC++: The Complete Reference

#include <stdio.h>
#include <fcntl.h>
#include <io.h>
#include <string.h>
#include <stdlib.h>

#define BUF_SIZE 128

void display(char *buf, int fd2);
void input(char *buf, int fdl);

main(void) /* read and write using UNIX-like I/0 */
{

char buf[BUF_SIZE];
int fdl, fd2;

if ((fdl= _creat ("oscar", O_WRONLY)) ==-1) { /* open for write */
printf("cannot open file\n"):
return 1;

}

input(buf, fdl);

/* now close file and read back */
close(fdl);

if((fd2=open("oscar", O, O_RDONLY))==-1) { /* open for write*/
printf("cannot open file\n");
return 1;

display(buf,fd2);
close(fd2);
return O;

void input(char *buf, int fdl)
{

register int t;

printf("Enter test (quit to stop}: "):
do {

for(t=O; t<BUF_SIZE; t++} buf[t]='\O';
gets(buf); /*input chars from keyboard*/
if(write(fdl, buf, BUF_SIZE)!=BUF_SIZE) {

}

printf("error on write\n"};
exit(l);

} while (strcmp(buf, "quit"));
}

void display(char *buf, int fd2)
{

for(;;) {

Input, Output, and Disk Files 241

}
}

if(read(fd2, buf, BUF_SIZE)==O) return;
printf("%s\n",buf);

unlink(J

If you wish to remove a file from the directory, use unlink(). Although
unlink() is considered part of the UNIX-like I/O system, it removes
any file from the directory. The standard form of the call is

int unlink(const char *filename);

where filename is a character pointer to any valid file name. The
unlink() function returns an error (usually -1) if it is unable to erase
the file. This could happen if the file is not present on the diskette to
begin with, or if the diskette is write-protected. The prototype for
unlink() is in io.h.

Random Access Files and Jseek(J
Turbo C supports random access file I/O under the unbuffered I/O
system via calls to lseek(). Its prototype is

long lseek(intfd, long numbytes, int origin);

where fd is a file descriptor returned by a creat() or open() call. Here,
numbytes must be a long int. Origin must be one the following macros:

Origin

Beginning of file

Current position

End of file

Name

SEEK_SET

SEEK_CUR

SEEK_END

To seek numbytes from the start of the file, origin must be
SEEK_SET. To seek from the current position, use SEEK_CUR; to
seek from the end of the file, use SEEK_END.

242 Turbo CIC++: The Complete Reference

The lseek() function returns numbytes on success. Upon failure, a
-1 is returned. The prototype for lseek() is in io.h.

A simple example using lseek() is the dump program developed
earlier in this chapter, which is recoded for the UNIX-like I/O system.
It not only shows the operation of lseek() but also illustrates many of
the UNIX-like I/O functions.

/* dump using the UNIX-like file system. */

#include <fcntl.h>
#include <io.h>
#include <ctype.h>
#include <stdio.h>
#include <stdlib.h>

#define SIZE 128

char buf[SIZE];
void display(int numread);

main(int argc, char *argv[])
{

}

char s[lO];
int fd, sector, numread;
long pas;

if(argc!=2) {

}

printf("You forgot to enter the file name.");
return 1;

if((fd=open(argv[l], O_RDONLY, 0))==-1) {/*open for read*/
printf("cannot open file\n");
return l;

}

do {
printf("\n\nbuffer: ");
gets (s);

sector= atoi(s); /*get the sector to read*/

pas= (long) (sector*SIZE);
if(lseek(fd, pas, SEEK_SET)!=pos)

printf("seek error\n");

numread = read(fd, buf, SIZE);

display(numread);
} while(sector>=O);
close(fd);
return 0;

void display(int numread)
{

int i, j;

for(i=O; i<numread/16; i++) {

Input, Output, and Disk Files 243

for(j=O; j<16; j++) printf("%3X", buf[i*l6+j]);
printf(" ");

}
}

for(j=O; j<16; j++) {
if(isprint(buf[i*l6+j])) printf("%c", buf[i*l6+j]);
else printf(".");

}
printf("\n");

Choosing an Approach

The buffered I/O system defined by the ANSI C standard is recom­
mended for new projects. Because the ANSI standard committee has
elected not to standardize the UNIX-like unbuffered I/0 system, it
cannot be recommended for future projects. However, existing code
should be maintainable for a number of years. There is probably no
reason to rush into a rewrite at this time.

Within the buffered I/0 system, you should use text mode and
getc() and putc() when you are working with character files, such as
the text files created by a word processor. However, when it is neces­
sary to store binary data or complex data types, you should use binary
files and fread() and fwrite().

A final word of warning: never try to mix the I/O systems inside
the same program. Because the way they approach files is different, they
could accidentally interfere with each other.

The Turbo C Preprocessor

The source code for a C program can include various instructions to the
compiler. Although not actually part of the Turbo C language, these
preprocessor directives expand the scope of the C programming envi­
ronment. This chapter will examine Turbo C's preprocessor directives
and built-in macros. It will also discuss a few directives and macros
added by Turbo C++.

The Turbo C Preprocessor

The C preprocessor defined by the ANSI standard contains the follow­
ing directives:

#define
#error
#include
#if
#else
#elif
#endif
#if def
#ifndef
#undef
#line
#pragma

All preprocessor directives begin with a # sign. Turbo C supports all
these directives, and each will be examined in turn.

N
I
N
E

1 ..

I~
l'l

246 Turbo CIC++: The Complete Reference

#define

The #define directive is used to define an identifier and a character
string that is substituted for the identifier each time it is encountered in
the source file. The identifier is called a macro-name, and the replace­
ment process is called macro-substitution. The general form of the
directive is

#define macro-name string

Notice that there is no semicolon in this statement. There can be any
number of spaces between the identifier and the string, but once the
string begins, it is terminated only by a new line.

For example, if you wish to use TRUE for the value 1 and FALSE
for the value 0, then you would declare two macro #defines:

#define TRUE 1
#define FALSE 0

This causes the compiler to substitute a 1 or a 0 each time TRUE or
FALSE is encountered in your source file. For example, the following
prints 110 1 211 on the screen:

printf("%d %d %d", FALSE, TRUE, TRUE+l);

Once a macro-name has been defined, it can be used as part of the
definition of other macro-names. For example, this code defines ONE,
TWO, and THREE to their respective values:

#define ONE
#define TWO
#define THREE

1
ONE+ONE
ONE+TWO

The Turbo C Preprocessor 24 7

It is important to understand that macro-substitution is simply
replacing an identifier with its associated string. Therefore, if you
wished to define a standard error message you might write something
like

#define E_MS "standard error on input\n"

printf(E_MS);

Turbo C actually substitutes the string "standard error on input\n" when
the identifier E _MS is encountered. To the compiler, the printf()
statement actually appears to be

printf("standard error on input\n");

No text substitutions occur if the identifier occurs within a string.
For example,

#define XYZ this is a test

printf("XYZ");

does not print "this is a test" but "XYZ."
If the string is longer than one line, it can be continued on the next

line by placing a backslash at the end of the line, as shown in this
example:

#define LONG_STRING "this is a very long \
string that is used as an example"

It is common practice among C programmers to use capital letters
for defined identifiers. With this convention anyone reading the program

248 Turbo CIC++: The Complete Reference

knows at a glance that a macro-substitution will take place. It is best to
put all #defines at the start of the file or, perhaps in a separate include
file, rather than sprinkling them throughout the program.

The most common use of macro-substitutions is to define names for
"magic numbers" that occur in a program. For example, you may have a
program that defines an array and has several routines that access that
array. Instead of "hard-coding'' the array's size with a constant, it is
better to define a size and use that name whenever the size of the array
is needed. If the size of the array changes, you only have to change it in
one place in the file and recompile. For example,

#define MAX_SIZE 100

float balance[MAX_SIZE];

The #define directive has another powerful feature: The macro­
name can have arguments. Each time the macro-name is encountered,
the arguments associated with it are replaced by the actual arguments
found in the program. For example:

#include <stdio.h>

#define MIN(a,b) (a<b) ? a : b

main(void)
{

}

int x, y;

x = 10;
y = 20;
printf("the minimum is: %d", MIN(x, y);
return 0;

When this program is compiled, the expression defined by MIN(a,b) is
substituted, except that x and y are used as the operands. That is, the
printf() statement is substituted to look like this:

printf("the minimum is: %d",(x<y) ? x : y);

If you are not very careful in defining macros that take arguments,
there can be some surprising results. For example,

The Turbo C Preprocessor 249

/* This program will give the wrong answer. */

#include <stdio.h>

#define EVEN(a) a%2;;Q ? 1 : 0

main(void)
{

if(EVEN(9+1)) printf("is even"):
else printf("is odd"):
return O;

does not work correctly because of the way the macro-substitution is
made. When Turbo C compiles this program, the EVEN(9+ 1) is ex­
panded to

Because the % (modulus) operator takes precedence over the plus oper­
ator, the % operation is first performed on the 1, and that result is
added to 9, which of course does not equal 0. To fix the trouble, there
must be parentheses around a in the macro definition of EVEN as
shown in this corrected version of the program:

#include <stdio.h>

#define EVEN(a) (a)%2;;Q ? 1 : 0

main(void)
}

}

if(EVEN(9+1)) printf("is even");
else printf("is odd");
return 0;

Now, the 9 + 1 is evaluated before the modulus operation. In general, it
is a good idea to surround macro parameters with parentheses to avoid
troubles like the one just described.

The use of macro-substitutions in place of real functions has one
major benefit: It increases the speed of the code because no overhead
for a function call is incurred. However, this increased speed is paid for
with an increase in the size of the program because of duplicated code.

#error

The #error directive forces Turbo C to stop compiling when it is en-

250 Turbo CIC++: The Complete Reference

countered. It is used primarily for debugging. The general form of the
directive is

#error ervror-message

The ervror-message is not between double quotes. When the compiler
encounters this directive, it displays the following information and ter­
minates compilation.

Fatal: filename linenum Error directive: error-message

#Include

The #include directive instructs the compiler to include another source
file with the one that has the #include directive in it. The source file to
be included must be enclosed between double quotes or angle brackets.
For example, the two directives

#include "stdio.h"
#include <stdio.h>

both instruct Turbo C to read and compile the header for the disk file
library routines.

It is valid for included files to have #include directives in them.
These are called nested includes. For example, this program, shown
with its include files, includes a file that includes another file:

/* The program file: */

main(void)
{

#include "one"
}

/* Include file one: */

printf("This is from the first include file.\n");
#include "two"

The Turbo C Preprocessor 251

/* Include file two: */

printf("This is from the second include file.\n");

If explicit path names are specified as part of the filename identifier,
only those directories will be searched for the included file. Otherwise, if
the filename is enclosed in quotes, the current working directory is
searched first. If the file is not found, any directories specified on the
command line are searched. If the file has still not been found, the
standard directories, as defined by the implementation, are searched.

If no explicit path names are specified and the filename is enclosed
by angle brackets, the file is first searched for in the directories speci­
fied in the compiler command line using the -I option, or in those
specified in the integrated environment by using the options menu. If
the file is not found, the standard directories are searched. At no time is
the current working directory searched unless the current working
directory is specified in a -I path.

Conditional Compilation Directives

Several directives allow you to compile selected portions of your pro­
gram's source code. This process is called conditional compilation and
is used widely by commercial software houses that provide and maintain
many customized versions of one program.

#if, #else, #ellf, and #end If

The general idea behind the #if is that if the constant expression
following the #if is true, the code that is between it and an #endif is
compiled; otherwise the code is skipped. The #endif is used to mark the
end of an #if block.

The general form of #if is

#if constant-expression
statement sequence

#endif

252 Turbo CIC++: The Complete Reference

If the constant expression is true, the block of code is compiled; other­
wise it is skipped. For example:

/* A simple #if example*/
#include <stdio.h>

#define MAX 100
main(void)
{
#if MAX>99

printf("compiled for array greater than 99\n");
#endif

return O;
}

This program displays the message on the screen because, as defined in
the progr;:im, MAX is greater than 99. This example illustrates an
important point: The expression that follows the #if is evaluated at
compile time. Therefore, it must contain only identifiers that have been
previously defined and constants; no variables can be used.

The #else works in much the same way as the else that forms part
of the C language: It provides an alternative if the #if fails. The
previous example can be expanded as shown here:

/*A simple #if/#else example*/
#include <stdio.h>

#define MAX 10
main(void)
{
#if MAX>99

printf("compiled for array greater than 99\n");
#else

printf("compiled for small array\n");
#endif

return O;

In this case, MAX is defined to be less than 99 so the #if portion of the
code is not compiled, but the #else alternative is. Therefore, the mes­
sage "compiled for small array'' is displayed.

Notice that the #else is used to mark both the end of the #if block
and the beginning of the #else block. This is necessary because there
can be only one #endif associated with any #if.

The Turbo C Preprocessor 253

The #elif directive means "else if" and is used to establish an
if-else-if ladder for multiple compilation options. The #elif is followed by
a constant expression. If the expression is true, that block of code is
compiled and no other #elif expressions are tested. Otherwise, the next
in the series is checked. The general form is

#if expression
statement sequence

#elif expression 1
statement sequence

#elif expression 2
statement sequence

#elif expression 3
statement sequence

#elif expression 4

#elif expression N
statement sequence

#endif

For example, this fragment uses the value of ACTIVE_ COUNTRY to
define the currency sign:

#define US 0
#define ENGLAND 1
#define FRANCE 2

#define ACTIVE_COUNTRY US

#if ACTIVE_COUNTRY==US
char currency[] = "dollar";

#elif ACTIVE_COUNTRY==ENGLAND
char currency[] = "pound";

#else
char currency[] = "franc";

#endif

The #if and #elif directives can be nested with the #endif, #else, or
#elif associating with the nearest #if or #elif. For example, the follow­
ing is perfectly valid:

#if MAX>lOO
#if SERIAL_VERSION

int port = 198;

254 Turbo CIC++: The Complete Reference

#el if
int port = 200:

#endif
#else

char out_buffer[lOO]:
#endi f

In Turbo C, you can use the sizeof compile-time operator in an #if
statement. For example, this fragment determines whether a program is
being compiled for a small or large data model (memory models are
discussed in Chapter 10):

#if (sizeof(char *) == 2)
printf("Program compiled for small model.");

#else
printf("Program compiled for large model.");

#endi f

#lfdef and #ifndef

Another method of conditional compilation uses the directives #if def
and #ifndef, which mean "if defined" and "if not defined" respectively.

The general form of #if def is

#if def macro-name
statement sequence

#endif

If the macro-name has been previously defined in a #define statement,
the statement sequence between the #ifdef and #endif is compiled.

The general form of #ifndef is

#ifndef macro-name
statement sequence

#endif

If macro-name is currently undefined by a #define statement, the block
of code is compiled.

Both the #ifdef and #ifndef can use an #else statement but not
the #elif.

For example,

#include <stdio.h>

#define TED 10

main(void)
{
#i fdef TED

printf("Hi Ted\n");
#else

printf("Hi anyone\n");
#end if
#ifndef RALPH

printf("RALPH not defined\n");
#endif

return 0;

The Turbo C Preprocessor 255

prints "Hi Ted" and "RALPH not defined." However, if TED were not
defined, "Hi anyone" would be displayed, followed by "RALPH not
defined."

You can nest #if defs and #ifndefs to any level in the same way
that you can nest #ifs.

You can also use the #if directive to see if a macro is defined using
the general form ·

#if defined(macro-name)

#endif

Here, macro-name is the name of the macro that is checked. This form
of the #if is specific to Turbo C and is not portable.

#undef

The #undef directive is used to remove a previous definition of the
macro-name that follows it. The general form is

#undef macro-name

For example:

256 Turbo CIC++: The Complete Reference

#define LEN 100
#define WIDTH 100

char array[LEN][WIDTH];

#undef LEN
#undef WIDTH
/* at this point both LEN and WIDTH are undefined */

Both LEN and WIDTH are defined until the #undef statements are
encountered.

The principal use of #undef is to allow macro-names to be localized
only to those sections of code that need them.

#line

The #line directive is used to change the contents of __ LINE __
and __ FILE __ , which are predefined macro-names in Turbo C. The
__ LINE __ macro contains the line number of the line currently
being compiled and __ FILE_ _ contains the name of the file being
compiled. The basic form of the #line command is

#line number ''filename"

where number is any positive integer and the optional filename is any
valid file identifier. The line number is the number of the current source
line and the file name is the name of the source file. The #line directive
is used primarily for debugging purposes and special applications.

For example, the following specifies that the line count will begin
with 100. The printf() statement displays the number 102 because it is
the third line in the program after the #line 100 statement.

#include <stdio.h>

#line 100 /*reset the-Tine counter*/
rnain(void) /* line 100 */

/* line 101 */
pri ntf("%d\n", __ LINE __ ; /* line 102 *I
retrn 0;

The Turbo C Preprocessor 257

#pragma

The #pragma directive is defined by the ANSI standard to be an
implementation-defined directive that allows various instructions, de­
fined by the compiler's creator to be given to the compiler. The general
form of the #pragma directive is

#pragma name

where name is the name of the #pragma you want. Turbo C defines
these three #pragma statements:

inline
saveregs
warn

Turbo C++ adds these four #pragmas:

argsused
exit
startup
option

The argsused directive must precede a function. It is used to
prevent a warning message from being displayed if an argument to the
function that the #pragma precedes is not utilized in the body of the
function.

The exit directive specifies one or more functions that will be called
when the program terminates. The startup directive specifies one or
more functions that will be called when the program starts running.
They have these general forms.

#pragma exit function-name priority
#pragma startup function-name priority

The priority is a value between 64 and 255 (the values 0 through 63 are
reserved). The priority determines the order in which the functions are
called. If no priority is given, then it defaults to 100. All startup and
exit functions must be declared as shown here:

void func(void);

258 Turbo CIC++: The Complete Reference

The following example defines a startup function called start().

#include <stdio.h>

void start(void);

#pragma startup start 65

main(void)
{

}

printf("in main");
return O;

void start(void)
{

printf("in start"):
}

As in this example, you must provide a function prototype for all exit
and startup functions prior to the #pragma statement.

Another #pragma directive is inline. It has the general form

#pragma inline

This tells Turbo C that in-line assembly code is contained in the pro­
gram. For the greatest efficiency, Turbo C needs to know this in ad­
vance.

The option directive allows you to specify command-line options
within your program instead of on the command line. It takes the
general form

#pragma option option-list

For example, this causes the program that contains it to be compiled for
the large memory model:

#pragma option -ml

These options cannot be used by the option directive:

-B -c -d -D -e
-I -L -1 -M -s
-u

The Turbo C Preprocessor 259

For some options, the option directive must precede all declarations,
including function prototypes. For this reason, it is a good idea to make
it one of the first statements in your program.

The saveregs directive prevents a function declared as huge from
altering the value of any registers. This directive must immediately
precede the function and affects only the function that it precedes.

The warn directive causes Turbo C to override warning message
options. It takes the form

#pragma warn setting

where setting is one of the various warning error options. These options
are discussed later in this book.

Predefined Macro Names

The ANSI standard specifies five built-in predefined macro-names. They
are

__ LINE __
__ FILE __
__ DATE __
__ TIME __
__ STDC __

Turbo C defines these additional built-in macros:

__ CDECL __
__ COMPACT __
__ HUGE __
__ LARGE __
__ MEDIUM __
__ SMALL __
__ TINY __

260 Turbo CIC++: The Complete Reference

__ MSDOS __
__ PASCAL __
__ TURBOC __

Turbo C++ adds

__ OVERLAY __
_ _ cpl us plus

The __ LINE_ _ and __ FILE_ _ macros were discussed in the
#line discussion earlier in this chapter. The others will be examined
here.

The __ DATE __ macro contains a string that has the form
month/day/year, which is the date the source file is translated into
object code.

The length of time since the beginning of the compilation of the
source code into object code up to the point at which the __ TIME __
macro is encountered is contained as a string in __ TIME __ . The
form of the string is hour:minute:second.

The macro __ STDC __ contains the decimal constant 1. This
means that the implementation is a standard-conforming implementa­
tion. If it contains any other number, the implementation must vary
from the standard.

When a program is compiled using overlays, then the macro
__ OVERLAY __ is defined as 1. Otherwise, __ OVERLAY __ is
undefined.

The __ CDECL _ _ macro is defined if the standard C calling
convention is used- that is, if the Pascal option is not in use. If this is
not the case, the macro is undefined.

Only one of these macros is defined, based on the memory model
used during compilation: __ TINY __ , __ SMALL __ ,
__ COMPACT __ , __ MEDIUM __ , __ LARGE __ , and
__ HUGE __ .

The __ MSDOS _ _ macro is defined with the value 1 in all
situations when using the MS-DOS version of Turbo C.

The __ p ASCAL _ _ macro is defined only if the Pascal calling
conventions are used to compile a program. Otherwise it is undefined.

The __ TURBOC _ _ macro contains the version number of
Turbo C. It is represented as a hexadecimal constant. The two right­
most digits represent the minor revision numbers and the leftmost digit

The Turbo C Preprocessor 261

represents the major revision. For example, the number 202 represents
Version 2.02.

If your program is compiled as a Turbo C++ program,
__ cplusplus is defined. Otherwise, it is not defined.

The following program illustrates the use of some of these macros
(its output is shown in Figure 9-1).

#include <stdio.h>

main(void)
{

printf("%s %d %s %s\n", __ FILE __ , __ LINE __ , __ DATE __ ,
__ TIME __ ;

pri ntf ("Program being compiled using the ");
#i fdef TINY

printff''tinymodel ");
#endif
#i fdef SMALL

print f"('• sma 11-mode l ") ;
#endif
#i fdef COMPACT

pri ntff''compactmodel ");
#endif
#ifdef MEDIUM

pri ntff''medi ummode l ") ;
#endif
#i fdef LARGE

pri ntff''l argemodel ");
#endif
#ifdef HUGE

printff''hugemodel ");
#endif

}

printf("\n");

printf("Using version %X of Turbo C. ", __ TURBOC __);
return 0;

For the most part, these built-in macros are used in fairly complex
programming environments when several different versions of a pro­
gram- perhaps running on different computers - are developed or main­
tained.

example.c 5 Jan 23 1990 15:43:36
Program being compiled using the small model
Using version 200 of Turbo C.

Figure 9-1. The output from the predefined macros demonstration program

Turbo C's Memory Models

For reasons that will become clear, you can compile a Turbo C or a
Turbo C++ program using any of the six different memory models
defined by the 8086 family of processors. Each model organizes the
memory of the computer differently and governs the size of a program's
code, data, or both. It also determines how quickly your program will
execute. Because the model used has a profound effect on your
program's speed of execution and the way a program accesses the
system resources, this chapter discusses in detail the various memory
models and concludes with a program that lets you inspect and change
any part of the RAM in your system.

The 8086 Family of Processors

Before you can understand the way the various memory models work
you need to understand how the 8086 family of processors addresses
memory. (For the rest of this chapter, the CPU will be called the 8086,
but the information applies to all processors in this family, including the
8088, 80186, 80286, and 80386. For the 80286 and 80386, the following
information is applicable only when the processor is running in 8086
emulation mode.)

T
E
N

264 Turbo CIC++: The Complete Reference

The 8086 contains 14 registers into which information is placed for
processing or program control. The registers fall into the following
categories:

• General-purpose registers

• Base-pointer and index registers

• Segment registers

• Special-purpose registers

All the registers in the 8086 CPU are 16 bits (2 bytes) wide.
The general-purpose registers are the "workhorse" registers of the

CPU. Values are placed in these registers for processing, including
arithmetic operations, such as adding or multiplying; comparisons, in­
cluding equality, less than, greater than, and the like; and branch
(jump) instructions. Each of the general-purpose registers can be ac­
cessed, either as a 16-bit register or as two 8-bit registers.

The base-pointer and index registers provide support for such
things as relative addressing, the stack pointer, and block move instruc­
tions.

The segment registers help implement the 8086's segmented mem­
ory scheme. The CS register holds the current code segment, the DS
holds the current data segment, the ES holds the extra segment, and
the SS holds the stack segment.

Finally, the special-purpose registers are the flag register, which
holds the state of the CPU, and the instruction pointer, which points to
the next instruction for the CPU to execute.

Figure 10-1 shows the layout of the 8086 registers.

Address Calculation

The 8086 has a total address space of 1 megabyte (the more powerful
CPUs in the family can address more memory, but not when used in
8086 emulation mode). To access a megabyte of RAM requires a 20-bit
address. However, on the 8086 no register is larger than 16 bits. This

Turbo C's Memory Models 265

General-purpose registers
AH AL CH CL

AX I ex

BH BL DH DL

BX I DX

Base-pointer and index registers

SP SI

Stack pointer Source index

BP DI

Base pointer Destination Index

Segment registers

cs SS

Code segment Stack segment

DS ES

Data segment Extra segment

Special-purpose registers

IP

Flag register Instruction pointer

Figure 10-1. The 8086 CPU registers

266 Turbo CIC++: The Complete Reference

means that the 20-bit address must be divided between two registers.
Unfortunately, the way the 20 bits are divided is a little more complex
than one might assume.

For the 8086, all addresses consist of a segment and an offset. In
fact, the addressing method used by the 8086 is generally called the
segment:ojfset method. A segment is a 64K region of RAM that must
start on an even multiple of 16 bytes. In 8086 jargon, 16 bytes is called a
paragraph; hence the term paragraph boundary is sometimes used to
reference these even multiples of 16 bytes. The 8086 has four segments:
one for code, one for data, one for stack, and one extra. (These segments
may overlap each other or be separate. The location of any byte within a
segment is determined by the offset. The value of the segment register
determines which 64K segment is ref erred to and the value of the offset
determines which byte, within that segment, is actually being addressed.
Thus, the physical 20-bit address of any specific byte within the com­
puter is the combination of the segment and the offset.

To calculate the actual byte referred to by the combination of the
segment and offset you first shift the value in the segment register to
the left by 4 bits and then add this value to the offset. This makes a
20-bit address. For example, if the segment register holds the value
Ox20 and the offset OxlOO, the following sequence shows how the actual
address is derived. The absolute 20-bit address is Ox300.

segment register: 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0
segment shifted: 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0
offset: 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0

segment+ offset: 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0

Here is another example:

segment:
shifted segment:
offset:

1111 0000 0000 0000
1111 0000 0000 0000

0000 0000 0000 0001

segment+ offset: 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1

In this case, a segment value of OxFOOO is shifted by 4 bits to become
OxFOOOO and is added to the offset value of 1. The resulting 20-bit
address is OxFOOOl.

Turbo C's Memory Models 267

In the 8086, addresses are most commonly referred to in segment:
offset form. In this form the outcome of the first example is usually
notated as 0020:0100 rather than 300.

Note that by convention, addresses are shown using the hexadeci­
mal number system. Many segment:offsets can describe the same byte
because the segments overlap each other. For example, 0000:0010 is the
same as 0001:0000.

Near Versus Far Pointers

To access addresses within the segment currently loaded in a segment
register, only the offset of the address needs to be loaded into a
register. This means that any object referenced using only a 16-bit
address must be within the currently loaded segment. This is referred to
as a near address or a near pointer.

To access an address not in the current segment, both the segment
and the offset of the desired address must be loaded. This is called a far
address or a far pointer. A far pointer can access any address within the
1 megabyte address space.

As stated, to access memory within the current segment you need
only load the 16-bit offset. However, if you wish to access memory
outside that segment, both the segment and the offset must be loaded
with the proper values into their respective registers. Since it takes
twice as long to load two 16-bit registers as it does to load one, it takes
longer to load a far pointer than a near pointer. Hence, when using far
pointers your programs run much slower, but they allow you to have
larger programs or data. The exact way these things are affected is the
subject of the next section.

Memory Models

As stated, Turbo C and Turbo C++ for the 8086 family of processors can
compile your program six different ways; each way organizes the mem­
ory in the computer differently and affects different aspects of your
program's performance. The six models are called tiny, small, medium,
compact, large, and huge. Let's look at how these differ.

268 Turbo CIC++: The Complete Reference

Tiny Model

The tiny model compiles a C program so that all the segment registers
are set to the same value and all addressing is done using 16 bits (near
pointers). This means that the code, data, and stack must all be within
the same 64K segment. This method of compilation produces the small­
est, fastest code. (Programs compiled using this memory model can be
converted to .COM files using the /t option to the Turbo C++ linker. The
tiny model produces the fastest run-times.

Small Model

The small model is Turbo C++ 's default mode of compilation and is
useful for a wide variety of tasks. Although all addressing is done using
only the 16-bit offset, the code segment is separate from the data, stack,
and extra segments, which are in their own segment. The total size of a
program compiled this way is 128K split between code and data. Since
the small model uses only near pointers, the execution speed is as good
as it is for the tiny model, but the program can be approximately twice
as big.

Medium Model

The medium model is for large programs where the code exceeds the
one-segment restriction of the small model. The code may use multiple
segments and require 20-bit (far) pointers, but the data and extra
segments are in their own segment and use 16-bit (near) addressing.
This is good for large programs that use little data. Your programs will
run slower as far as function calls are concerned, but references to data
will be as fast as the small model.

Compact Model

The complement of the medium model is the compact model. In this
version, program code is restricted to one segment, but data may occupy
several segments. This means that all accesses to data require 20-bit

Turbo C's Memory Models 269

(far) addressing but the code uses 16-bit (near) addressing. This is good
for programs that require large amounts of data but little code. Your
program will run as fast as the small model except when referencing
data.

Large Model

The large model allows both code and data to use multiple segments.
However, the largest single item of data, such as an array, is limited to
64K. This model is used when you have large code and data require­
ments. It also runs much slower than any of the previous versions.

Huge Model

The huge model is the same as the large model with the exception that
individual data items may exceed 64K. This makes run-time speed even
slower than in the large model.

Selecting a Model

Generally, you should use the small model unless there is a reason to do
otherwise. Select the medium model if you have a lot of program but not
much data. Use the compact model if you have a lot of data but not
much program. If you have a large amount of both code and data, use
the large model unless you need single data items to be larger than 64K,
in which case you will need to use the huge model. Remember, both the
large and huge models have substantially slower run-times than the
others.

There is another consideration that may affect how you compile
your program. If you are compiling your program for either the compact
or large memory models, all pointer references to data will be through
far pointers. This creates two problems. First, most pointer comparisons
will not generate correct results because more than one segment:offset
pair can map to the same physical address. When far pointers are
compared, only the offset is checked. This means that two pointers may

270 Turbo CIC++: The Complete Reference

actually point to the same physical address, but compare as unequal, or
point to different addresses and compare as equal. The only comparison
that is guaranteed to be valid for far pointers is equality with 0 (the null
pointer).

The second problem with far pointers is that when a far pointer is
incremented or decremented, only the offset is altered, making the
pointer "wrap" past a segment boundary.

Pointers generated when compiling from the huge model are called
huge pointers. They are similar to far pointers in that they use a full
20-bit address, but they do not suffer from the limitations of far point­
ers. First, huge pointers can be correctly compared because they are
normalized. The normalization process ensures that there is only one
segment:offset address for each physical address. Thus, all comparisons
are valid. However, the normalization process takes time, thus slowing
execution speed. Second, when a pointer is incremented or decremented
past a segment boundary, the segment is adjusted accordingly and the
"wraparound" problem experienced with far pointers is eliminated, thus
allowing access to a single data object that is larger than 64K.

The Memory Model Compiler Options

Turbo C compiles your program using the small model by default. To
use a different model you must give the compiler the proper instruc­
tions. In the integrated environment version, you select the memory
model by using the Options/Compiler menu. For the command-line ver­
sion, you use one of the following command-line options:

Option Memory Model

-me Compact

-mh Huge

-ml Large

-mm Medium

-ms Small (default)

-mt Tiny

Turbo C's Memory Models 271

Overriding a Memory Model

far

How unfortunate that even a single reference to data in another seg­
ment would require you to use the compact rather than the small model,
for example, causing the execution speed of the entire program to
degrade even though only an isolated part of it actually needs a far
pointer. In general, this sort of situation arises in variety of ways. For
example, even though the rest of a program might only need near
pointers, it is necessary to use 20-bit addressing to access the video
RAM of a PC. The solution to this and other related problems is the
segment override type modifiers, far, near, and huge, which are en­
hancements provided by Turbo C. When these modifiers are applied to
pointers they affect the way data is accessed. It is also possible to apply
the near and far modifiers to functions, in which case they affect the
way you call or return from the function.

These modifiers follow the base type and precede the variable name.
For example, the following declares a far pointer called f _pointer:

char far *f_pointer;

In this example, the function myfarfunc() is declared as far:

void far myfarfunc(int *p};

The following sections look at these modifiers.

It is very common to want to access some region of memory that is (or
may be) outside the data segment. However, if the entire program is
compiled for one of the large data models, all access to data becomes
very slow. The solution to this problem is to declare explicitly the
pointers to data outside the current data segment as far and compile
using the small memory model. In this way, only references to objects
actually outside the default data segment incur the additional overhead.

272 Turbo CIC++: The Complete Reference

The use of far functions is less common and is generally restricted
to specialized programming situations in which a function lies outside
the current code segment, such as a ROM-based routine. In these cases,
the use of far ensures the proper calling and returning sequences are
used.

Explicitly declared far pointers suffer from the same trouble as
those implicitly generated when compiling for one of the large data
models. First, pointer arithmetic affects only the offset and can cause
"wraparound." This means that when a far pointer with the value
OOOO:FFFF is incremented, its new value will be 0000:0000, not
1000:0000. The value of the segment is never changed. Second, two far
pointers should not be used in a relational expression because only their
offsets will be checked. It is possible to have two different pointers
actually contain the same physical address but have different segments
and offsets. If you need to compare 20-bit pointers, you must use huge
pointers. However, you can compare a far pointer against the null
pointer.

near

A near pointer is a 16-bit offset that uses the value of the appropriate
segment to determine the actual memory location. The near modifier
forces Turbo C to treat the pointer as a 16-bit offset to the segment
contained in the DS register. You use a near pointer when you have
compiled a program using either the medium, large, or huge memory
model.

Using near on a function causes that function to be treated as if it
were compiled using the a small code model. (The address of the func­
tion is computed using the CS register). When a function is compiled
using either the tiny, small, or compact models, all calls to the function
place a 16-bit return address on the stack. Compiling with a large code
model causes a 20-bit address to be pushed on the stack. Therefore, in
programs that are compiled for the large code model, a highly recursive
function should be declared as near (if possible) to conserve stack space
and decrease execution time.

Whether you use near or far on a function, you must include a
prototype to it in any file in which it is called so that Turbo C++ can
generate the correct calling and returning sequence.

Turbo C's Memory Models 273

huge

The huge modifier can be applied only to data, not functions. A huge
pointer is like those generated when compiling for the huge memory
model. It is normalized so that comparisons between huge pointers are
meaningful. When a huge pointer is incremented, both the segment and
the offset may change: it does not suffer from the "wraparound" problem
as do far pointers. Also, a huge pointer can access objects that are
larger than 64K.

Turbo C's Segment Specifiers

In addition to far, near, and huge, Turbo C++ supports these four
addressing modifiers: _cs, _ ds, _ ss, and _es. When these type modi­
fiers are applied to a pointer's declaration they cause the pointer to
become a 16-bit offset into the specified segment. That is, given this
statement,

int _es *ptr;

ptr contains a 16-bit offset into the extra segment.
Turbo C++ also includes the _seg modifier, which creates pointers

that are 16 bits long and contain only the segment address. The offset is
assumed to be 0. There are several restrictions to _ seg pointers. You
cannot increment or decrement them. In an expression that adds or
subtracts an integer value from a _seg pointer, a far pointer is gener­
ated. When dereferencing a _seg pointer, it is converted into a far
pointer. You can add a near pointer to a _seg pointer and the result is
a far pointer.

The use of these modifiers is generally reserved for only the most
exotic of applications.

Keep in mind that near, far, huge, _es, _cs, _ ds, _ ss, and _ seg
modifiers are not defined by the ANSI standard and are not fully
portable. However, most 8086-based C compilers support some, if not
all, of these modifiers.

274 Turbo CIC++: The Complete Reference

A Memory Display and Change Program

Now that you understand how the memory models work, it is time to
put this knowledge to use. A simple program will be developed that
allows you to examine any byte in RAM and, if desired, alter its value.
The program should be compiled using a large data model. This ensures
that far pointers are used, allowing all memory to be accessed.

The display_ mem(J Function

The first function needed is display _mem(), which is used to display
the contents of memory at the address requested by the user. It first
asks for the 20-bit address to be entered in hexadecimal segment:offset
form and then displays the contents of 256 bytes beginning with the
specified address. The output is arranged with 16 values per line and 16
lines. The address of each line is shown on the left. The
display_ mem() function is shown here:

/* Displays 256 bytes of memory starting at specified
address.

*/
void display_mem(void)
{

}

register inti;
unsigned char ch;
unsigned char *p;

/* get a 20-bit address */
printf("beginning address (in hex): ");
scanf("%p%*c", &p);

printf{"%p: ", p); /*print address*/
for(i=l; i<=256; i++) {

}

ch = *p;
printf("%02x ",ch);/* display in hex*/
p++;
if(!(i%16)) {/*every 16 bytes use new line*/

printf{"\n");
if(i!=256) printf("%p: ", p); /*print address*/

}

Turbo C's Memory Models 275

The change_mem(J Function

The second function required by the program is called change_mem().
It is used to change the contents of a specified byte. It operates by
requesting the 20-bit address to be changed and then prompting for the
new value. The change_ mem() function is shown here:

/* Change the contents of a byte of memory. */
void change_mem(void}
{

}

unsigned char *p;
char value;

/* get a 20-bit address */
printf("Enter address to change (in hex): ");
scanf("%p%*c", &p};
printf("Enter new value (in hex): ");
scanf("%x", &value);

/* change the value */
*p = (unsigned char) value;

The Entire Memory Display and Change Program

The entire memory display and change program is shown here. It
operates by prompting for input using the I < symbol. Press D to
display memory, c to change it, and Q to exit the program.

/* Display and/or change memory program.
Compile using a large data model.

*/
#include <ctype.h>
#include <stdlib.h>
#include <stdio.h>
#include <conio.h>
void display_mem(void}, change_mem(void};

main(void)
{

char ch;

for(;;} {
printf("i< ");/*display the prompt symbol */
ch= getche(); /*read command*/
printf("\n");
switch(tolower(ch}} {

case 'd': display_mem(};

276 Turbo CIC++: The Complete Reference

}

break;
case 'c': change_mem();

break;
case 'q': exit(O);

/* Displays 256 bytes of memory starting at specified
address.

*/
void display_mem(void)
{

register int i;
unsigned char ch;
unsigned char *p;

/* get a 20-bit address */
printf("beginning address (in hex): ");
scanf(11 %p%*c 11 , &p);

printf("%p: ", p); /*print address*/
for(i=l; i<=256; i++) {

ch = *p;
printf("%02x ", ch); /*display in hex*/
p++;
if(!(i%16)) {/*every 16 bytes use new line*/

printf("\n");

}
}

if(i!=256) printf("%p: ", p); /*print address*/

/* Change the contents of a byte of memory. */
void change_mem(void)
{

unsigned char *p;
char value;

/* get a 20-bit address */
printf("Enter address to change (in hex): ");
scanf("%p%*c 11 , &p);
printf("Enter new value (in hex): ");
scanf("%x", &value);

/*change the value */
*p = (unsigned char) value;

A sample of the program's output is shown here:

Turbo C's Memory Models 277

i< d
beginning address (in hex): eOOla
OOOE:OOlA: 70 02 45 14 70 02 59 ec 00 fO 3d 04 00 eO Od 21
OOOE:002A: 00 fO 66 52 00 eO Od 21 00 fO Od 21 00 fO 5d 02
OOOE:003A: 00 eO Od 21 00 fO Od 21 00 fO Od 21 00 fO Od 21
OOOE:004A: 00 fO Od 21 00 fO Od 21 00 fO Od 21 00 fO Od 21
OOOE:005A: 00 fO Od 21 00 fO Od 21 00 fO Od 21 00 fO Od 21
OOOE:006A: 00 fO Od 21 00 fO Od 21 00 fO Od 21 00 fO Od 21
OOOE:007A: 00 fO Od 21 00 fO Od 21 00 fO Od 21 00 fO Od 21
OOOE:008A: 00 fO Od 21 00 fO Od 21 00 fO Od 21 00 fO Od 21
OOOE:009A: 00 fO Od 21 00 fO 00 00 00 00 00 00 00 00 00 00
OOOE:OOAA: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
OOOE:OOBA: 00 00 00 00 00 00 Od 21 DO fO Od 21 00 fO Od 21
OOOE:OOCA: 00 fO Od 21 00 fO Od 21 00 fO Od 21 00 fO Od 21
OOOE:OODA: 00 fO Od 21 00 fO a3 01 7a Oe 5c 21 00 fO Od 21
OOOE:OOEA: 00 fO Od 21 00 fO dl 05 7a De 65 21 00 fO 59 06
OOOE:OOFA: 7a De Od 21 00 fO 00 00 00 00 00 00 00 00 00 00
OOOE:OlOA: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
i< c
Enter address to change (in hex): eOOlb
Enter new value (in hex): 00
i< d
beginning address (in hex): eOOla
OOOE:OOlA: 70 00 45 14 70 02 59 ec 00 fO 3d 04 00 eO Od 21
OOOE:002A: 00 fO 66 52 00 eO Od 21 00 fO Od 21 00 fO 5d 02
OOOE:003A: 00 eO Od 21 00 fO Od 21 00 fO Od 21 00 fO Od 21
OOOE:004A: 00 fO Od 21 00 fO Od 21 00 fO Od 21 00 fO Od 21
OOOE:005A: 00 fO Od 21 00 fO Od 21 00 fO Od 21 00 fO Od 21
OOOE:006A: 00 fO Od 21 00 fO Od 21 00 fO Od 21 00 fO Od 21
OOOE:007A: 00 fO Od 21 00 fO Od 21 00 fO Od 21 00 fO Od 21
OOOE:008A: 00 fO Od 21 00 fO Od 21 00 fO Od 21 00 fO Od 21
OOOE:009A: 00 fO Od 21 00 fO 00 00 00 00 00 00 00 00 00 00
OOOE:OOAA: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
OOOE:OOBA: 00 00 00 00 00 00 Od 21 00 fO Od 21 00 fO Od 21
OOOE:OOCA: 00 fO Od 21 00 fO Od 21 00 fO Od 21 00 fO Od 21
OOOE:OODA: 00 fO Od 21 00 fO a3 01 7a Oe Sc 21 00 fO Od 21
OOOE:OOEA: 00 fO Od 21 00 fO dl 05 7a Oe 65 21 00 fO 59 06
OOOE:OOFA: 7a Oe Od 21 00 fO 00 00 00 00 00 00 00 00 00 00
OOOE:OlOA: 00 00 00 00 00 00 DO 00 00 00 00 00 00 00 00 00

Turbo C's Screen and Graphics Functions

Although the ANSI standard for C does not define screen or graphics
functions, they are obviously important to most comtemporary program­
ming tasks. They are not defined by the ANSI standard because there
are wide differences between the capabilities and interfaces of different
types of hardware. However, since Turbo C is designed to run on the
IBM line of microcomputers, it provides a comprehensive set of screen­
handling and graphics functions for these machines, beginning with
Turbo C Version 1.5. This chapter presents an overview of both the
screen and graphics functions, along with some short sample programs
that illustrate their use. The screen and graphics systems are so large
that it is not possible to discuss every function in detail here. However,
this chapter presents an overview of the text screen and graphics
systems and gives you a taste of their capabilities. (All the text and
graphics functions are discussed thoroughly later in the book.)

This chapter begins with a brief discussion of the various video
modes available for the PC line of computers. It then explores the
functions that control the screen in text mode before moving on to the
graphics routines.

The PC Video Adapters and Modes of Operation

.A:s you probably know, several different types of video adapters are
currently available for the PC line of computers. The most common are
the monochrome, the CGA (Color Graphics Adapter), PCjr, the EGA
(Enhanced Graphics Adapter), and the VGA (Video Graphics Array).

280 Turbo C/C++: The Complete Reference

Together, these adapters support many different modes of video opera­
tion. These video modes are synopsized in Table 11-1. AB you can see by
looking at the table, some modes are for text and some are for graphics.
In a text mode only text can be displayed. The smallest user­
addressable part of the screen in a text mode is one character. In a
graphics mode both graphic images and text can be displayed. The
smallest user-addressable part of the screen in a graphics mode is one
pixel. (Actually, the term pixel originally referred to the smallest indi­
vidual phosphor element on the video monitor that can be individually
energized by the scan beam. However, in recent years, use of the term
has been generalized to refer to the smallest addressable point on a
graphics display.)

In both the text and graphics modes, individual locations on the
screen are referenced by their row and column numbers. In the graphics

Mode Type Dimensions Adapters

0 text, b/w 40x25 CGA, EGA, VGA
1 text, 16 colors 40x25 CGA, EGA, VGA
2 text, b/w 80x25 CGA, EGA, VGA
3 text, 16 colors 80x25 CGA, EGA, VGA
4 graphics, 4 colors 320x200 CGA, EGA, VGA
5 graphics, 4 gray tones 320x200 CGA,EGA,VGA
6 graphics, b/w 640x200 CGA, EGA, VGA
7 text, b/w 80X25 monochrome
8 graphics, 16 colors 160x200 PCjr
9 graphics, 16 colors 320x200 PCjr

10 graphics, 4 colors 640x200 PCjr
11 reserved
12 reserved
13 graphics, 16 colors 320x200 EGA, VGA
14 graphics, 16 colors 640x200 EGA, VGA
15 graphics, 4 colors 640x350 EGA, VGA
16 graphics, 16 colors 640x350 VGA
17 graphics, 2 colors 640x480 VGA
18 graphics, 16 colors 640x430 VGA
19 graphics, 256 colors 640x200 VGA

Table 11-1. The Video Modes for the IBM Line of Microcomputers

Turbo C's Screen and Graphics Functions 281

modes the upper-left corner of the screen is location 0,0. For unknown
reasons, in text modes the upper-left corner is 1,1.

The text screen examples shown in this chapter use video mode 3,
80-column color mode. The graphics routines use VGA mode 16. If your
hardware does not support one or both of these modes, you will have to
make the appropriate changes to the examples.

The Text Screen Functions

Turbo C supports a complete set of text screen functions that fall into
the following categories:

• Basic input and output

• Screen manipulation

• Attribute control

• Screen status

These functions require the header file conio.h to be included with any
program that uses them. This file contains several variables, types, and
constants used by the functions, as well as their function prototypes.

Windows

The Turbo C text functions operate through windows. Fortunately, the
default window is the entire screen, so you don't need to worry about
creating any special windows to use the text and graphics routines.
However, it is important to understand the basic concept of windows to
get the most from the Turbo C screen functions.

A window is a portal that your program uses to send messages to
the user. A window can be as large as the entire screen or as small as
just a few characters. In sophisticated software it is not uncommon for
the screen to have several active windows at one time- one for each
separate task performed by the program.

282 Turbo CIC++: The Complete Reference

Turbo C lets you define the location and dimensions of a window.
After you define a window, Turbo C's routines that manipulate text
affect only the window you have defined, not the entire screen. For
example, Turbo C's clrscr() function clears the active window, not the
entire screen. (Unless, of course, the active window is the entire screen,
as it would be by default.) In addition, all position coordinates are
relative to the active window instead of the screen.

One of the most important aspects of Turbo C's windows is that
output is automatically prevented from spilling past the boundaries of a
window.

The subject of windows will be resumed later in this chapter after
the basic screen control functions have been discussed.

Basic Input and Output

Because the standard C output routines, such as printf(), are not
designed for use in a window-oriented screen environment, Turbo C
contains I/O functions that recognize windows. When you are using the
default window, which is the entire screen, it does not matter signifi­
cantly whether you use the window-based I/O functions or the standard
I/O functions. However, if you are using a smaller window, then you will
want to use the window-oriented functions because they automatically
prevent text from being written outside the active window. These func­
tions are shown in Table 11-2.

Function

cprintf()
cputs()
putch()
getche()
cgets()

Table 11-2.

Purpose

Writes formatted output to the active window
Writes a string to the active window
Outputs a character to the active window
Inputs a character from the active window
Inputs a string from the active window

The Basic Text I/O Functions for Use with Windows

Turbo C's Screen and Graphics Functions 283

The cprintf() function operates like printf(), and cputs() is simi­
lar to puts(). Both functions differ from their standard 1/0 counterparts
in that they recognize windows and neither converts a newline character
(\n) into a carriage return-linefeed pair. (To output a carriage return­
linefeed pair, explicitly specify \n\r.) The putch() function is similar to
putchar(), but does not allow a character to be written outside the
current window. The getche() function does not echo input outside the
active window.

The cgets() function works a little differently than its non­
windowed relative gets(). The cgets() function has this prototype:

char *cgets(char *str);

When you call cgets(), you must place into str[O] the maximum length
of the string you want to read. When cgets() returns, the number of
characters actually read is returned in str[1] and the string begins with
str[2]. This means that the longest string you can read using cgets() is
255 characters long. The cgets() function continues reading characters
until a carriage return is received. The carriage return is converted into
a null terminator. If you continue to enter characters past the specified
maximum, they will be ignored. The cgets() function returns a pointer
to str[2] (the start of the string). This program shows how to use
cgets() to read a string that is at most 20 characters long:

#include <conio.h>

main(void)
{

}

char s [80], *p;

s [O] = 20;
cprintf("Enter a string (max 20 chars): ");

/* read up to 20 characters */
p = cgets(s); /* p will point to start of string*/

cprintf("\n\rHere is your string: %s", p};
return O;

One other thing to understand about these basic 1/0 functions is that
they are not redirectable. That is, Turbo C's (and ANSI C's) standard

284 Turbo CIC++: The Complete Reference

1/0 functions allow output to be redirected to or from a disk file or
auxiliary device. This is not the case with the window-based text screen
functions.

When text output exceeds the line length of a window, it is wrapped.
How text is wrapped at the end of a window is determined by the value
of _ wscroll, which is a built-in global variable. By default _ wscroll is
1, which causes text to be wrapped to the next line and the window to be
scrolled if necessary. If _ wscroll is 0, then text is wrapped to the same
line (thus overwriting preexisting text) and no scrolling takes place.

The Screen Manipulation Functions

Turbo C's text screen manipulation functions are shown in Table 11-3.
The clrscr() function clears a text window. Its prototype is

void clrscr(void);

The clreol() function clears a line from the current cursor position to
the right boundary of the window. Its prototype is

void clreol(void);

Function

clrscr()
clreol()
delline()
gettext()
gotoxy()
insline()
movetext()
puttext()
textmode()
window()

Purpose

Clears the active window
Clears from the cursor to the end of the current line
Deletes the line the cursor is on
Copies part of the screen into a character buffer
Sends the cursor to the specified location
Inserts a blank line below the current cursor position
Copies text from one part of the screen to another
Copies text from a buffer onto the screen
Sets the screen's text mode
Defines and activates a window

Table 11-3. Turbo C's Text Screen Manipulation Functions

Turbo C's Screen and Graphics Functions 285

The companion functions delline() and insline() are used to delete
a line or insert a blank line, respectively. Their prototypes are

void delline(void);
void insline(void);

A call to delline() deletes the line the cursor is on and moves up all
lines below that line. A call to insline() inserts a blank line just below
the line that currently holds the cursor, and moves all lines below it
down one line.

One of the most useful functions is gotoxy(), which is used to
position the cursor within the active window. Its prototype is

void gotoxy(int x, int y);

Here, x and y specify the coordinates at which the cursor will be
positioned. If either coordinate is out of range, no action is taken.

No matter how a window is sized or positioned, in text modes the
upper-left corner is always 1,1. Assuming that the entire screen is being
used, in 80-column text modes the valid range for x is 1 through 80; for
y it is 1 through 25.

The companion functions gettext() and puttext() are used to copy
text from the screen to a buffer and from a buff er to the screen,
respectively. Their prototypes are

int gettext(int left, int top, int right, int bottom,
void *buffer);

int puttext(int left, int top, int right, int bottom,
void *buffer);

For gettext() you specify the coordinates of the upper left corner and
lower right corner of the region of the screen you want. The pointer
buffer must point to a region of memory large enough to hold the text.
The size of the buff er is computed with this formula:

size in bytes = rows x columns x 2

Each character displayed on the screen requires 2 bytes of video mem­
ory. The first byte holds the actual character, the second holds its screen

286 Turbo CIC++: The Complete Reference

attribute. For this reason, the number of bytes required to hold the text
is twice as large as the number of characters. For example, if you called
gettext() with 1,1 for the first coordinate pair and 10,10 for the second,
you would need 10*10*2 (200) bytes of storage. Both functions return 0
if one or more coordinates is out of range; otherwise they return 1.

To copy text already in a buffer back to the screen, you simply call
puttext() with the coordinates of the upper-left and lower-right corners
of the region that will receive the text along with a pointer to the buffer
that holds it.

If you want to copy text from one part of the screen to another,
using the movetext() function is more efficient than calling gettext()
and then puttext(). The prototype for movetext() is

int movetext(int top, int left, int right, int bottom,
int newtop, int newleft);

The function movetext() returns 0 if one or more coordinates is out of
range; otherwise it returns 1.

The window() function activates a text window of specified dimen­
sions. Its prototype is

void window(int left, int top, int right, int bottom);

If any coordinate is invalid, window() takes no action. Once a call to
window() has been successfully completed, all references to location
coordinates are interpreted relative to the window, not the screen. For
example, this fragment of code creates a window and writes a line of
text at location 2,3 inside that window:

window(lO, 10, 60, 15);
gotoxy(2, 3);
cprintf("at location 2, 3");

The action of this fragment is illustrated in Figure 11-1.
It is important to understand that coordinates used to call win­

dow() are screen absolute - not relative to the currently active window.

Turbo C's Screen and Graphics Functions 287

r-= Sornen ab,,lute 1,1

t I Window rolative 1,1

!
at location 2,3

Windofv relative 50,5

Screen absolute 80,25

Figure 11-1. Illustration of relative coordinates inside a window

In this way you can use multiple windows that are not nested inside
each other.

The following program first draws a border around the screen (for
perspective), then creates two separate windows with borders. The
position of the text inside each window is specified by gotoxy() state­
ments that are relative to each window.

/* A text window demonstration program */
#include <conio.h>

void border(int startx, int starty, int endx, int endy);

main(void)
{

clrscr();

/* draw a border around the screen for perspective */
border(l, 1, 79, 25);

/* create first window*/
window(3, 2, 40, 9);
border(3, 2, 40, 9);

288 Turbo CIC++: The Complete Reference

gotoxy{3, 2);
cprintf{"first window");

/* create a second window*/
window{30, 10, 60, 18);
border{30, 10, 60, 18);
gotoxy{3, 2);
cprintf{"second window");
gotoxy{5, 4);
cprintf{"hello");

getche {);
return 0;

/* Draws a border around a text window. */
void border{int startx, int starty, int endx, int endy)
{

register inti;

gotoxy{l, l);
for(i=O; i<=endx-startx; i++)

putch('-');

gotoxy(l, endy-starty);
for(i=O; i<=endx-startx; i++)

putch (' - ') ;

for(i=2; i<endy-starty; i++) {
gotoxy(l, i);
putch (' l ');
gotoxy(endx-startx+l, i);
putch {' l ') ;

}
}

Text Attribute Control

It is possible to change video modes, control the color of the text and
background, and set the display to high or low intensity. The functions
that do these things are shown in Table 11-4 and are applicable to all
video adapters with the exception of the monochrome adapter, which
supports only one mode and one color.

The functions highvideo() and lowvideo() set the display to high­
intensity and low-intensity video, respectively. Their prototypes are

void highvideo(void);
void lowvideo(void);

Turbo C's Screen and Graphics Functions 289

Function

highvideo()
lowvideo()
normvideo()
textattr()

textbackground()
textcolor()
textmode()

Purpose

Displays text in high intensity
Displays text in low intensity
Displays text in the original intensity
Sets both the color of the text and the color of the
background at the same time
Sets the background color
Sets the color of the text
Sets the video mode

Table 11-4. The Text Attribute Functions

The function normvideo() causes characters to be displayed in the
intensity that was active when the program began execution. Its proto­
type is

void normvideo(void);

The textcolor() function determines the color of subsequent text
displayed. It can also be used to cause the text to blink. The prototype
of textcolor() is

void textcolor(int color);

The argument color may have the values 0 through 15 with each corre­
sponding to a different color. However, the macro names defined in
conio.h for each of these colors are easier to remember. These macros
and their integer equivalents are shown in Table 11-5.

It is important to understand that a change in the color of the text
affects only subsequent write operations; it does not change any text
currently displayed on the screen.

To make text blink you must OR the value 128 (BLINK) with the
color you desire. For example, this fragment causes subsequent text
output to be green and blinking:

textcolor(GREEN I BLINK);

The function textbackground() is used to set the background color
of a text screen. As with textcolor(), a call to textbackground() affects
only the background color of subsequent write operations. Its prototype
is as follows:

290 Turbo CIC++: The Complete Reference

void textbackground(int color);

The value for color must be in the range 0 through 7. This means that
only the first eight colors shown in Table 11-5 can be used for back­
ground.

The function textattr() sets both the text and background colors.
Its prototype is

void textattr(int attribute);

The value of attribute represents an encoded form of the color informa­
tion as shown here:

7 6 5 4 3 2 1 0

background text
blinking color color

If bit 7 is set, the text will blink. Bits 6 through 4 determine the
background color. Bits 3 through 0 set the color for the text. The easiest
way to encode the background color into the attribute byte is to multiply
the number of the color you desire by 16 and then OR that with the text
color. For example, to create a green background with blue text you
would use GREEN * 16 I BLUE. To cause the text to blink, OR the
text color, background color, and BLINK (128) together. For example,
this causes the text to be red and blinking with a blue background:

textattr(RED i BLINK i BLUE*l6);

The textmode() function is used to change the video mode. Its
prototype is

void textmode(int mode);

Turbo C's Screen and Graphics Functions 291.

Macro Integer Equivalent

BLACK 0
BLUE 1
GREEN 2
CYAN 3
RED 4
MAGENTA 5
BROWN 6
LIGHTGRAY 7
DARK GRAY 8
LIGHTBLUE 9
LIGHTGREEN 10
LIGHTCYAN 11
LIGHTRED 12
LIGHTMAGENTA 13
YELLOW 14
WHITE 15
BLINK 128

Table 11-5. The Color Macros and Integer Equivalents for Text

Macro Name Integer Description
Equivalent

BW40 0 40-column black and white
C40 1 40-column color
BW80 2 80-column black and white
C80 3 80-column color
MONO 7 80-column monochrome
LASTMODE -1 Previous mode
C4350 64 EGA, 80x43; VGA, 80x50

lines

Table 11-6. The Text Video Modes

292 Turbo CIC++: The Complete Reference

The argument mode must be one the values shown in Table 11-6. You
may use either the integer value or the macro name. (The macros are
defined in conio.h.)

The Text Screen Status Functions
Turbo C provides three text mode functions that return the status of the
screen. They are shown in Table 11-7.

The gettextinfo() function returns the status of the current win­
dow in a structure of type text_ info, which is defined in conio.h. The
prototype of gettextinfo() is

void gettextinfo(struct text_info *info);

The structure text_ info is defined as shown here:

struct text_info {

};

unsigned char winleft; /* left X coordinate*/
unsigned char wintop; /* top Y coordinate */
unsigned char winright; /* right X coordinate */
unsigned char winbottom; /* bottom Y coordinate */
unsigned char attribute; /* text attribute */
unsigned char normattr; /* normal attribute */
unsigned char currmode; /* current video mode */
unsigned char screenheight;/* height of screen in lines */
unsigned char screenwidth; /* width of screen in chars */
unsigned char curx; /* cursor's X coordinate */
unsigned char cury; /* cursor's Y coordinate */

Function

gettextinfo()
wherex()
wherey()

Purpose

Returns information about the current text window
Returns the x coordinate of the cursor
Returns the y coordinate of the cursor

Table 11-7. The Text Screen Status Functions

Turbo C's Screen and Graphics Functions 293

When you use gettextinfo(), remember to pass a pointer to a structure
of type text_ info so that the elements of the structure can be set by
the function. Do not try to pass the structure variable itself. For exam­
ple, this fragment illustrates how to call gettextinfo() :

struct text_info screen_status;

gettextinfo(&screen_status);

The wherex() and wherey() functions have the prototypes

int wherex(void);
int wherey(void);

The wherex() function returns the X coordinate of the current cursor
location. The wherey() function returns the Y coordinate of the current
cursor location. Both of the coordinates are relative to the current
text window.

The dlrectvldeo Variable

For IBM PCs and 100 percent compatibles, it is possible to bypass the
DOS and ROM-BIOS screen output routines and, instead, place output
directly into the video RAM. Using this method produces the fastest
possible output operations. However, for computers that are not hard­
ware compatible with the PC line but are BIOS compatible, the direct
video RAM output cannot be used. To allow for this possibility, Turbo C
provides a built-in global variable called directvideo, which controls how
output is performed. When directvideo is true, as it is by default, all
screen output is performed via direct video RAM accesses. To cause the
BIOS routines to be used rather than writing directly to the video RAM,
set directvideo to 0 (false).

A Short Demonstration Program

The following program illustrates the use of several of the text screen
functions. Its output is shown in Figure 11-2.

294 Turbo CIC++: The Complete Reference

x x
x x
x x
x x
x x
x x
x x
x x
x x
x x
x x
X X This is red with a light blue background.
x x
x x
X X This is blinking green on black.
x x
x x
x x
x x
x x
x x
x x
xx
x

Figure 11-2. Sample output from the text screen control functions

#include <conio.h>

main(void)
{

register inti, j;

textmode(CBO); /* 80 column text mode*/

cl rscr();

/* demonstrate the gotoxy() function */
for(i=l, j=l; j<24; i++, j++) {

}

gotoxy (i , j) ;
cprintf("X");

for(; j>O; i++, j--) {
gotoxy(i, j);
cprintf("X");

}

/* examples of different foreground and background colors */
textbackground(LIGHTBLUE);
textcolor(RED);
gotoxy(40, 12);
cprintf("This is red with a light blue background.");

}

Turbo C's Screen and Graphics Functions 295

gotoxy(45, 15);
textcolor(GREEN i BLINK):
textbackground(BLACK):
cprintf("This is blinking green on black."):

getch():

/* an example of movetext() */
/* this moves the "inverted peak" of the X's to the

top of the screen
*/
movetext(20, 20, 28, 24, 20, 1):
getch():
textmode(LASTMODE):
return O:

Turbo C's Graphics Functions

Turbo C's graphics functions can be grouped into the following catego­
ries:

• Video adapter mode control

• Basic graphing

• Text output

• Screen status

• Screen manipulation

The graphics functions require that the header file graphics.h be in­
cluded in any program that uses them.

Keep in mind that the computer must be equipped with a graphics
video adapter in order to use Turbo C's graphics routines. This means
that systems with only a monochrome adapter will not be able to display
graphics output. The examples shown here all use VGA mode 16
(640 x 350, 16 colors). If you do not have a VGA, you will have to make
the appropriate alterations to the examples.

One other important point: All graphics functions are declared as
far, and any parameters to them that are pointers are declared as far
pointers. This means that it is imperative that you include graphics.h
with any program that uses graphics functions.

296 Turbo CIC++: The Complete Reference

Vlewports

All of Turbo C's graphics functions operate through viewports. Viewport
is really just another name for a window, and a graphics viewport has
essentially the same qualities al:! a text window. By default the entire
screen is the viewport. However, you can create viewports of other
dimensions. You will see how to do this later in this chapter. AB you read
through the following discussions, keep in mind that all graphics output
is relative to the current viewport, which is not necessarily the same as
the screen.

Video Mode Control Functions

Before any of the graphics functions can be used, it is necessary to put
the video adapter into one of the graphics modes. By default, the vast
majority of systems that have graphics video adapters use 80-column
text mode 3 for DOS communications. Since this is not a graphics mode,
Turbo C's graphics functions cannot work. To set the adapter to a
graphics mode, use the initgraph() function. Its prototype is ·

void far initgraph(int far *driver, int far *mode,
char far *path);

The initgraph() function loads into memory a graphics driver that
corresponds to the number pointed to by driver. Without a graphics
driver loaded into memory, no graphics functions can operate. The mode
parameter points to an integer that specifies the video mode used by the
graphics functions. Finally, you can specify a path to the driver in the
string pointed to by path. If no path is specified, the current working
directory is searched.

The graphics drivers are contained in .BGI files, which must be
available on the system. However, you need not worry about the actual
name of the file because you only have to specify the driver by its
number. The header file graphics.h defines several macros that you can
use for this purpose. They are shown here:

Turbo C's Screen and Graphics Functions 297

Macro Equivalent

DETECT 0

CGA 1

MCGA 2

EGA 3

EGA64 4

EGAMONO 5

IBM8514 6

HERCMONO 7

ATT400 8

VGA 9

PC3270 10

When you use DETECT, initgraph() automatically detects the type of
video hardware present in the system and selects the video mode with
the greatest resolution.

The value of mode must be one of the graphics modes shown in
Table 11-8. Notice that the value pointed to by mode is not the same as
the value recognized by the BIOS routine that actually sets the mode.
Instead the value used to call BIOS to initialize a video mode is created
by initgraph() using both the driver and the mode. For example, to
cause the graphics system to be initialized to CGA 4-color, 320 x 200
graphics, you would use the following fragment (equivalent to BIOS
video mode 4). It assumes that the graphics driver's .BGI file is in the
current working directory.

#include <graphics.h>

int driver, mode;

driver = CGA;
mode = CGACO;

in1tgraph(&driver, &mode, "");

CGA 4-color graphics gives you access to four palettes to choose
from and four colors per palette. The colors are numbered 0 through 3,

298 Turbo CIC++: The Complete Reference

with 0 always being the background color. The palettes are also num­
bered 0 through 3. To select a palette, set the mode parameter equal to
CGACx where x is the palette number. The palettes and their associated
colors are shown in Table 11-9.

In EGNVGA 16-color mode, a palette consists of 16 colors selected
out of a possible 64 colors.

Driver Mode Equivalent Resolution

CGA CGACO 0 320X200
CGACl 1 320x200
CGAC2 2 320X200
CGAC3 3 320x200
CG AH I 4 640X200

MCGA MCGACO 0 320x200
MCGACl 1 320x200
MCGAC2 2 320x200
MCGAC3 3 320x200
MCGAMED 4 640X200
MCGAHI 5 640X480

EGA EGALO 0 640x200
EGAHI 1 640x350

EGA64 EGA64LO 0 640X200
EGA64HI 1 640x350

EGAMONO EGAMONOHI 3 640X350
HERC HERCMONOHI 0 720x348
ATT400 ATT400CO 0 320x200

ATT400Cl 1 320X200
ATT400C2 2 320x200
ATT400C3 3 320X200
ATT400CMED 4 640x200
ATT400CHI 5 640x400

VGA VGALO 0 640x200
VGAMED 1 640x350
VGAHI 2 640X480

PC3270 PC3270HI 0 720X350
IBM8514 IBM8514HI 0 1024x768

IBM8514LO 0 640x480

Table 11-8. The Turbo C Graphics Drivers and Modes Macros

Turbo C's Screen and Graphics Functions 299

Color Number

Palette 0 1 2 3
0 background green red yellow
1 background cyan magenta white
2 background lightgreen lightred yellow
3 background lightcyan lightmagenta white

Table 11-9. Palettes and Colors in Video Mode 4

To change the palette, use the setpalette() function, whose proto­
type is

void far setpalette(int index, int color);

The operation of this function is a little difficult to understand at first. In
essence, it associates the value of color with an index, specified by index,
into a table that Turbo C uses to map the color actually shown on the
screen with that being requested. The values for the color codes are
shown in Table 11-10.

For CGA modes, only the background color can be changed. The
background color is always index 0. So, for CGA modes, the following
changes the background color to green:

setpalette(O, GREEN);

The EGA can display 16 colors at a time with the total number of
different colors being 64. You can use setpalette() to map a color onto
one of the 16 different indexes. For example, the following sets the value
of color 5 to cyan:

setpalette(S, EGA_CYAN);

If you call setpalette() with invalid arguments, a - lL is returned.
When you want to set all the colors in an EGA/VGA palette, it is

easier to use the setallpalette() function, which has the prototype

void far setallpalette(struct palettetype far *pal);

300 Turbo C/C++: The Complete Reference

CGA Codes (Background Only)

Macro Value
BLACK 0
BLUE 1
GREEN 2
CYAN 3
RED 4
MAGENTA 5
BROWN 6
LIGHTGRAY 7
DARKGRAY 8
LIGHTBLUE 9
LIGHTGREEN 10

LIGHTCYAN 11
LIGHTRED 12
LIGHTMAGENTA 13
YELLOW 14
WHITE 15

EGA and VGA
Macro Value
EGA_ BLACK 0
EGA_ BLUE 1
EGA_ GREEN 2
EGA_ CYAN 3
EGA_ RED 4
EGA_ MAGENTA 5
EGA_ LIGHTGRAY 7
EGA_BROWN 20
EGA_DARKGRAY 56
EGA_ LIGHTBL UE 57
EGA_ LIGHTGREEN 58
EGA_ LIGHTCYAN 59
EGA_LIGHTRED 60
EGA_ LIGHTMAGENTA 61
EGA_ YELLOW 62
EGA_ WHITE 63

Table 11-10. The Color Codes for the setpalette() Function

Turbo C's Screen and Graphics Functions 301

Here, palettetype is defined as

struct palettetype {
unsigned char size;
signed char colors[MAXCOLORS+l);

};

You must set size to equal the number of colors in the palette and then
load the color for each index into its corresponding element in the array
colors. The MAXCOLORS macro is defined in graphics.h, and it speci­
fies the maximum number of colors in a palette.

You can set just the background color using setbkcolor(). Its
prototype is

void far setbkcolor(int color);

The value of color must be one of the following:

Macro Value

BLACK 0

BLUE 1
GREEN 2
CYAN 3

RED 4
MAGENTA 5
BROWN 6

LIGHTGRAY 7

DARKGRAY 8

LIGHTBLUE 9

LIGHTGREEN 10

LIGHTCYAN 11

LIGHTRED 12
LIGHTMAGENTA 13
YELLOW 14
WHITE 15

302 Turbo CIC++: The Complete Reference

To stop using a graphics video mode and return to a text mode, use
either closegraph() or restorecrtmode(). Their prototypes are

void far closegraph(void);
void far restorecrtmode(void);

The closegraph() function should be used when your program is going
to continue executing in text mode. It frees memory used by the graph­
ics functions and resets the video mode to what it was prior to the call
to initgraph(). If your program is terminating, you can use restorecrt­
mode() because it resets the video adapter to the mode it was in prior
to the first call to initgraph().

The Basic Graphing Functions

The most fundamental graphing functions are those that draw a point, a
line, and a circle. In Turbo C these functions are called putpixel(),
line(.), and circle(), respectively. Their prototypes are

void far putpixel(int x, int y, int color);
void far line(int startx, int starty, int endx,

int endy);
void far circle(int x, int y, int radius);

The putpixel() function writes the specified color to the location
determined by x and y. The line() function draws a line from the
location specified by startx,starty to endx,endy in the current drawing
color, line style, and thickness. The circle() function draws a circle of
radius radius in the current drawing color and thickness, with the
center at the location specified by x,y. If any of the coordinates are out
of range, no action is taken.

You can set the current drawing color using setcolor(). Its proto­
type is

void far setcolor(int color);

The value of color must be in the range valid for the current graphics
mode.

Turbo C's Screen and Graphics Functions 303

You can fill any enclosed shape using the flood.fill() function. Its
prototype is

void far fl.oodfill(int x, int y, int bordercolor);

To use this function to fill an enclosed shape, call it with the coordinates
of a point inside the shape and the color of the lines that make up the
shape (its border). You must make sure that the object that you are
filling is completely enclosed. If it isn't, the area outside the shape will
get filled as well. What the object is filled with is determined by the
current fill pattern and fill color. The background color is used by
default. However, you can change the way objects are filled using
setfillstyle(). Its prototype is

void far setfillstyle(int pattern, int color);

The values for pattern are shown here along with their macro equiva­
lents (defined in graphics.h):

Macro Value Meaning

EMPTY_FILL 0 Fill with background color

SOLID_FILL 1 Fill with solid color

LINE_FILL 2 File with lines

LTSLASH_FILL 3 Fill with light slashes

SLASH_FILL 4 Fill with slashes

BKSLASH_FILL 5 Fill with backslashes

LTBKSLASH_FILL 6 Fill with light backslashes

HATCH_FILL 7 Fill with light hatching

XHATCH_FILL 8 Fill with hatching

INTERLEAVE _FILL 9 Fill with interleaving

WIDE_ DOT _FILL 10 Fill with widely spaced
dots

CLOSE _DOT _FILL 11 Fill with closely spaced
dots

USER_FILL 12 Fill with custom pattern

304 Turbo CIC++: The Complete Reference

Figure 11-3. Output from the points, lines, and circles demonstration
program

You can define a custom fill pattern using setfillpattern(), which is
described in Chapter 23.

The following program demonstrates these basic graphics functions.
As you will see by looking at the program, the function box() is used to
draw a box in a specified color given the coordinates of the upper left
and lower right corners. It is an example of how higher-level graphics
functions can be easily constructed from the core of routines provided
by Turbo C. The output of the program is shown in Figure 11-3.

/* Points, lines, circles, and fills demonstration program. */
#include <graphics.h>
#include <conio.h>

void border(void);
void box(int startx, int starty, int endx, int endy,

int color):

main(void)
{

int driver, mode;

}

Turbo C's Screen and Graphics Functions 305

register int 1;

driver = VGA;
mode = VGAMED;
initgraph(&driver, &mode, ""):

border();

setcolor(l);
line(O, 0, 639, 349);

box(lOO, 100, 300, 200, 1);

setcolor(2);
floodfill(llO, 110, 1); /*fill part of a box*/

setcolor(l):
line(50, 200, 400, 125);

/* some points */
for(i=O; i<640; i+=lO) putpixel(i, 175, 5);

/* draw some circles */
circle(50, 50, 35);
circle(320, 175, 100);
circle(500, 250, 90);
circle(lOO, 100, 200);

setfillstyle(SOLID_FILL, GREEN);
floodfill(500, 250, 1); /*fill part of a circle*/

getch(); /*wait until keypress */
restorecrtmode();

return 0;

/* Draw a border around the screen for perspective. */
void border(void)
{

}

line(O, 0, 639, O);
line(O, 0, 0, 349);
line(O, 349, 639, 349);
line(639, 0, 639, 349);

/* Draw a box given the coordinates of its two corners. */
void box(int startx, int starty, int endx, int endy,

{

}

int color)

setcolor(color);

line(startx, starty, startx, endy);
line(startx, starty, endx, starty);
line(endx, starty, endx, endy);
line(endx, endy, startx, endy);

306 Turbo CIC++: The Complete Reference

Text Output In Graphics Mode

Although you can use the standard screen output functions such as
printf() to display text while in a graphics mode, in many situations it is
better to use the function outtext(), which is designed for this purpose.
Its prototype is

void far outtext(char far *str);

This function outputs the string pointed to by str at the current position.
(In graphics modes, there is no visible cursor, but the current position
on the screen is maintained as if there were an invisible cursor.) In the
Turbo C documentation, this position is referred to as CP. The principal
advantage to using outtext() is that it can output text in different fonts,
sizes, or directions in which the text is printed.

To change the style, size, or direction of the text, use settext­
style(). Its prototype is

void far settextstyle(int font, int direction,
int charsize);

The font parameter determines the type of font used. The default is the
hardware-defined 8 x 8 bit-mapped font. You can give font one of these
values (the macros are defined in graphics.h):

Macro Value Font Type

DEFAULT_FONT 0 8 x 8 bit-mapped

TRIPLEX_FONT 1 Stroked triplex

SMALL_FONT 2 Small stroked font

SANS_SERIF _FONT 3 Stroked sans serif

GOTHIC_ FONT 4 Stroked gothic

The direction in which the text will be displayed, from either left to
right or top to bottom, is determined by the value of direction, which
may be either HORIZ_DIR (0) or VERT _DIR (1).

The charsize parameter is a multiplier that increases the character
size. It may have a value of 0 through 10.

Turbo C's Screen and Graphics Functions 307

The bit-mapped font is built into Turbo C's graphics. In the bit­
mapped font, each character is constructed within a pixel matrix. The
bit-mapped fonts are excellent as long as they don't have to be enlarged.
When enlarged too far, they take on a grainy appearance. By contrast,
stroked fonts are defined by the line segments needed to construct
them. Therefore, as stroked fonts are increased in size, they do not
degrade in appearance. All stroked fonts are contained in files that use
the extension .CHR. These files are provided with Turbo C and must be
loaded when your program begins execution.

The following program illustrates the use of the settextstyle()
function

/* Demonstrate some different text fonts and sizes. */

#include <graphics.h>
#include <conio.h>

main(void)
{

}

int driver, mode;

driver = VGA;
mode = VGAMED;
initgraph(&driver, &mode, "");

outtext("Normal ");

/* Gothic font, twice normal size */
settextstyle(GOTHIC_FONT, HORIZ_DIR, 2);
outtext("Gothic ");

/* Triplex font, twice normal size */
settextstyle(TRIPLEX_FONT, HORIZ_DIR, 2);
outtext("Triplex "):

/* Sans serif font,7 times normal size*/
settextstyle(SANS_SERIF_FONT, HORIZ_DIR, 7);
outtext("Sans serif");

getch():
restorecrtmode():

return O:

To put text at a specific viewport location, use the outtextxy()
function. Its prototype is

void far outtextxy(int x, int y, char far *str);

308 Turbo CIC++: The Complete Reference

The string is written at the specified viewport coordinates. If either x or
y, or both, is out of range, no output is displayed.

Graphics Mode Status

You can use several functions to get information about the graphics
screen. Three of the most important are examined in this section. The
first, getviewsettings(), loads a structure with assorted information
about the current viewport. Its prototype is

void far getviewsettings(struct viewporttype far *info);

The structure viewporttype is found in graphics.h and is defined as
shown here:

struct viewporttype {

};

int left, top, right, bottom;
int clip;

The fields left, top, right, and bottom hold the coordinates of the upper
left and lower right corners of the viewport. When clip is 0, there is no
clipping of output that overruns the viewport boundaries. Otherwise,
clipping is performed to prevent boundary overrun.

For information about the current graphics text settings use get­
textsettings(). Its prototype is

void far gettextsettings(struct textsettingstype far *info);

The structure textsettingstype is defined in graphics.h and is shown
here:

struct textsettingstype {

};

int font; /* font type */
int direction; /* horizontal or vertical */
int charsize; /* size of characters */
int horiz; /* horizontal justification */
int vert; /* vertical justification */

Turbo C's Screen and Graphics Functions 309

The font element contains one of the following values (as defined in
graphics.h):

Macro Value Font Type

DEFAULT_FONT 0 8 x 8 bit-mapped

TRIPLEX_FONT 1 Stroked triplex

SMALL_FONT 2 Small stroked font

SANS_SERIF _FONT 3 Stroked sans serif

GOTHIC_FONT 4 Stroked gothic

The direction element must be set to either HORIZ_DIR (the default)
for horizontal text or VERT _DIR for vertical text. The charsize ele­
ment is a multiplier used to scale the size of the output text. The values
of horiz and vert indicate how text is justified relative to the current
position (CP). The values will be one of the following (the macros are
defined in graphics.h):

Macro Value Meaning

LEFT_TEXT 0 CP at left

CENTER_ TEXT 1 CP in the center

RIGHT_TEXT 2 CP at right

BOTTOM_ TEXT 3 CP at the bottom

TOP_TEXT 4 CP at the top

Another graphics status function is getpixel(), which returns the
color of a specified pixel. Its prototype is

unsigned far getpixel(int x, int y);

It returns the current color at the specified x,y location.

The Graphics Screen Manipulation Functions

There are seven graphics functions that allow you to manipulate the
screen and one function that allows you to create graphics windows.
These functions are shown in Table 11-11.

31 O Turbo CIC++: The Complete Reference

Function

clearviewport()
getimage()
imagesize()
putimage()
setactivepage()

setviewport()
setvisualpage()

Table 11-11.

Purpose

Clears the active viewport
Copies part of a viewport to a buffer
Returns the number of bytes needed to save an image
Copies a buffer to the viewport
Determines which page will be affected by the graph­
ics routines
Creates a graphics window
Determines which page is displayed

The Graphics Screen Control Functions

The prototypes for these functions are

void far clearviewport(void);

void far getimage(int left, int top, int right, int bottom,
void far *buf);

unsigned far imagesize(int left, int top, int right,
int bottom);

void far putimage(int left, int top, void far *buf, int op);

void far setactivepage(int pagenum);

void far setviewport(int left, int top, int right,
int bottom, int clipflag);

void far setvisualpage(int pagenum);

For some video modes, there is enough memory in video adapters to
have two or more complete screens' worth of information stored at the
same time. The RAM that holds the information displayed on the screen
is called a page. By default, DOS always uses page 0. However, you can
use any of the video pages supported by your hardware, switching
between them as desired. Although only one screen's worth of data can
be displayed at one time, it is occasionally useful to build an image as a
background task in a page that is not currently displayed so that it is

Turbo C's Screen and Graphics Functions 311

ready without delay when needed. To activate the image, simply switch
to that display page. This method is particularly useful in cases where
complex images take a long time to construct.

To support this sort of approach, Turbo C supplies the functions
setactivepage() and setvisualpage(). The setactivepage() function
determines the video page to which the output of Turbo C's graphics
functions will be directed. Turbo C uses video page 0 by default. If you
call setactivepage() with another page, subsequent graphics output is
written to the new page, not necessarily to the one currently displayed.
To display pages other than 0, use the setvisualpage() function. For
example, to display video page 1 you would call setvisualpage() with an
argument of 1.

The getimage() function copies a region of the graphics window
into a buffer and putimage() puts the contents of a buff er onto the
screen. The getimage() function copies the contents of a rectangular
portion of the screen defined by its upper left and lower right coordi­
nates to the buffer pointed to by buf. The size of the buffer in bytes for a
given region is returned by the imagesize() function. The putimage()
function displays a buffer of graphics data previously stored using get­
image(). You need to specify only the upper left corner coordinates of
the place where you want the image displayed. The value of op deter­
mines exactly how the image is written to the screen. Its valid enumer­
ated values are

Name Value Meaning

COPY_PUT 0 Copy as is
XOR_PUT 1 Exclusive-OR with destination

OR_PUT 2 Inclusive-OR with destination

AND_PUT 3 AND with destination

NOT_PUT 4 Invert source image

The following program demonstrates the getimage(), imagesize(),
and putimage() functions. Its output is shown in Figure 11-4.

/* This program demonstrates how a graphics image can be
moved using getimage(), imagesize(), and putimage().

*/
#include <conio.h>
#include <graphics.h>

31 2 Turbo CIC++: The Complete Reference

#include <stdl1b.h>

void box(int startx, int starty, int endx, int endy,
int color);

main(void)
{

}

int driver, mode;
unsigned size;
void *buf;

driver = VGA;
mode = VGAMED;
initgraph(&driver, &mode, '"');

box(20, 20, 200, 200, 15);

setcolor(RED);
line(20, 20, 200, 200);
setcolor(GREEN);
line(20, 200, 200, 20);
getch();

/* move the image */

/* first, get the image's size */
size= imagesize(20, 20, 200, 200);
if(size !=-1) { /* alloc memory for the image */

buf = malloc(size);
if(buf) {

}
}

getimage(20, 20, 200, 200, buf);
putimage(lOO, 100, buf, COPY_PUT);
putimage(300, 50, buf, COPY_PUT);

outtext("press a key");
getch();
restorecrtmode();
return O;

/* Draw a box given the coordinates of its two corners. */
void box(int startx, int starty, int endx, int endy,

{

}

int color)

setcolor(color);

line(startx, starty, startx, endy);
line(startx, starty, endx, starty);
line(endx, starty, endx, endy);
line(endx, endy, startx, endy);

Turbo C's Screen and Graphics Functions 313

press a key

Figure 11-4. Output from the move image demonstration program

You can create windows in much the same way they are created in
text mode. As stated earlier, all the graphics output is relative to the
coordinates of the active viewport. This means the coordinate of the
upper left corner of the window is 0,0 no matter where the viewport is
on the screen.

The function you use to create a graphics viewport is called
setviewport(). To use it, you specify the coordinates of the upper left
and lower right corners of the screen. If the clipflag parameter is
non-zero, then output that would exceed the viewport' s boundaries is
automatically truncated. With clipping turned off, output can overrun
the viewport. Keep in mind, however, that the clipping of output is not
considered an error condition by Turbo C. The following program illus­
trates how to create a viewport and the clipping of output. The output is
shown in Figure 11-5.

314 Turbo CIC++: The Complete Reference

press a key

Figure 11-5. Sample output from the graphics viewport demonstration
program

/*This program illustrates the use of setviewport(). */

#include <conio.h>
#include <graphics.h>

void box(int startx, int starty, int endx, int endy,
int color):

main(void)
{

int driver, mode;

driver = VGA;
mode = VGAMED;
initgraph(&driver, &mode, ""):

/* frame the screen for perspective */
box(O, 0, 639, 349, WHITE);

setviewport(20, 20, 200, 200, 1);
box(O, 0, 179, 179, RED):

/*Attempt to draw a line past the edge of the
viewport.

Turbo C's Screen and Graphics Functions 31 5

*/

setcolor(WHITE);
line(O, 100, 400, 100);

outtextxy(20, 10, "press a key");
getch();
restorecrtmode();

return O;

/* Draw a box given the coordinates of its two corners. */
void box(int startx, int starty, int endx, int endy,

{

}

int color)

setcolor(color);

line(startx, starty, startx, endy);
line(startx, starty, endx, starty);
line(endx, starty, endx, endy);
line(endx, endy, startx, endy);

Ai; you can see, the line is clipped at the edge of the viewport when an
attempt is made to draw outside the active viewport boundaries.

The Turbo C Environment

Part Two of this guide explores the Turbo C programming environment,
including the operation of both the integrated and command-line ver­
sions. Part Two also examines the Turbo C built-in editor and the
various compiler options.

p
A
R
T

T
w
(')

The Turbo C Integrated Programming
Environment

The integrated development environment, or IDE for short, makes it
possible to edit, compile, link, and run a program without ever leaving
the Turbo C environment. This allows extremely rapid recompilation
cycles, which make the creation, testing, and debugging of software
easier and faster.

Executing Turbo C

To execute the integrated version of Turbo C, simply type TC followed
by a carriage return at the DOS prompt. When Turbo C begins execu­
tion you see the screen shown in Figure 12-1. This is called the main
menu screen and consists of four parts, in order from top to bottom:

• The main menu

• The editor status line and window

• The compiler message window

• The "hot key'' quick reference line

To exit Turbo C, press ALT-X.

This chapter examines each of these areas.

The Main Menu

The main menu is used either to tell Turbo C to do something, such as
execute the editor or compile a program, or to set an environmental
option. When you first execute the Turbo C IDE, the main menu is

T
w
E
L
v
E

320 Turbo CJC++: The Complete Reference

file Edit Run Cu11p i le Pro,ject Opt ions Debug Breal\/watch
Edit

Line 1 Col 1 Insert Indent Tab Fill Unlndent * c:HOHAl1E,C

1------------Message------------.

Fl-He! F5-Zoo11 Fil-Switch F7-Trace FB-Ste f9-Make FHl-Menu

Figure 12-1. The Turbo C opening screen

active. (If, for some reason, the main menu is not active, press FlO to
reactivate it.) There are two ways to make a main menu selection.

1. You can use the arrow keys to highlight the item you want and
then press ENTER.

2. You can simply type the first letter of the menu item you want.
For example, to select Edit you type an E. You may enter the
letters in either upper- or lowercase.

Table 12-1 summarizes what each menu selection does.
Most of the main menu options have their own submenus, which are

presented as a pull-down menu beneath the main menu. For example, if
you move the highlight to File and press ENTER, you activate the File
pull-down menu as shown in Figure 12-2. Some of the submenus have

The Turbo C Integrated Programming Environment 321

Item

File

Edit
Run

Compile
Project
Options
Debug
Break/watch

Table 12-1.

Options

Loads and saves files, handles directories, invokes DOS,
and exits Turbo C
Invokes the Turbo C editor
Compiles, links, and runs the program currently loaded in
the environment
Compiles the program currently in the environment
Manages multifile projects

I
Sets various compiler and linker options
Sets various debug options
Watches expressions and manages breakpoints

Summary of the Main Menu Items

Edit Run

Load F3
Pick Alt-F3
Neu
Saue FZ
Write to
Directory
Change dir
OS sliel I
Quit rllt X

Figure 12-2.

Edit
l 1 Insert Indent Tab Fill Unlndent * c:NONA!IE,C

The File pull-down menu

322 Turbo CIC++: The Complete Reference

Fiie

further options of their own, in which case another pull-down menu is
displayed. The number of menus and submenus presented varies accord­
ing to the needs of each main option.

To make a selection from a pull-down submenu, either use the
arrow keys to highlight the option you desire and press ENTER, or type
the capitalized letter of the selection. (This is generally, but not always,
the first letter of the selection.) To exit a pull-down menu, press ESC.

Each of the main options and their suboptions are examined next.

The File option has nine suboptions. They are

Load
Pick
New
Save
Write to
Directory
Change dir
OS shell
Quit

The Load option prompts you for a file name and then loads that
file into the editor. Pick displays a menu that contains a list of the last
nine files that you loaded into the IDE. Use the arrow keys to move the
highlight until it is on the file you wish to load and press ENTER to load
the file. New erases the current contents of the editor and lets you edit
a new file. If the previous file has been changed but not yet saved to
disk, the New option first asks if you want to save the file before erasing
it. The new file is called NONAME.C. The Save option saves the file
currently in the editor. If you have edited a new file called NONAME.C,
you will be prompted to change its name if you desire. The Write to
option lets you save a file using a different file name. The Directory
option displays the contents of the current working directory. You may
specify a mask or use the default *·* mask. The Change dir command
displays the path name of the current working directory and allows you
to change it to another if you desire. The OS shell option loads the DOS
command processor and lets you execute DOS commands. You must

The Turbo C Integrated Programming Environment 323

type EXIT to return from DOS to Turbo C. The Quit option quits
Turbo C. (Remember that you can also use the ALT-X key combination to
exit Turbo C.)

Edit

Run

Selecting the Edit option activates Turbo C's built-in editor. The opera­
tion of the editor is the subject of Chapter 13.

The Run option activates a submenu containing six selections:

Run
Program reset
Go to cursor
Trace into
Step over
User screen

The Run option on the submenu executes the current program. If the
program has not yet been compiled, Run compiles it.

The next four options relate to the execution of a program using the
debugger. To use them you must compile your program with the debug­
ging information option turned on, as it is by default. (A discussion of
the debugger appears in Appendix B.) The Program reset option termi­
nates a program being run in a debug mode and allows you to rerun
your program from the beginning. Go to cursor executes your program
until it reaches the line of code where the cursor is positioned. The
Trace into option executes the next statement. If that statement in­
cludes a subroutine call, the subroutine will be traced into. The Step
over option executes the next line of code, but does not trace into any
subroutines that are called.

The User screen option lets you view the output produced by your
program.

Compile

There are six options under the Compile main menu selection:

324 Turbo CIC++: The Complete Reference

Compile to OBJ
Make EXE file
Link EXE file
Build all
Primary C file
Get info

The first option allows you to compile the file currently in the editor
(or an alternate primary file) to an .OBJ file, which is a relocatable
object file that is ready to be linked into an .EXE file that can be
executed. The Make EXE file option compiles your program directly
into an executable file. The Link EXE file option links the current .OBJ
and library files. The Build all option recompiles and links all files in a
project whether they are out of date or not. The Primary C file option
lets you specify a primary file to be compiled instead of the one that is
currently loaded into the editor. The Get info option displays informa­
tion about the current session.

Project

The Project option is used to aid in the development and maintenance of
large, multifile programs.

There are five options under the Project main menu selection:

Project name
Break make on
Auto dependencies
Clear project
Remove messages

The Project name option lets you specify the name of a project file that
contains the names of the files that make up the project. These files are
then compiled (if necessary) and linked to form the final executable
program. For example, if a project file contains the file names FILEl.C,
FILE2.C, and FILE3.C, all three files will be compiled and linked to
form the program. A project file is essentially the IDE version of a

The Turbo C Integrated Programming Environment 325

MAKE file used by the standalone MAKE utility. In fact, the Turbo C
user's guide refers to the process of building the final executable pro­
gram as a make. All project files must have the extension .PRJ.

The Break make on option lets you specify what type of conditions
cause a make to stop. You can specify to stop the make on warnings,
errors, fatal errors, or before linking.

The Auto dependencies option causes Turbo C to automatically
re-create files that depend on other files that have changed. Files are
re-created when a file used to construct the dependent file is newer than
the dependent file. For example, if a C source file is newer than a header
file used by that source file, the .OBJ file is automatically re-created, and
the program is relinked. If Auto dependencies is turned off, only the
.OBJ/C dependency is checked.

The Clear project option removes the project file name from the
system and resets the message window.

The Remove messages option clears the message window.

Options
The Options selection determines the way the integrated development
environment operates. It includes the following options:

Compiler
Linker
Environment
Directories
Arguments
Save options
Retrieve options

Each of these entries produces its own pull-down menu with a list of
related options. Because compiler, linker, and IDE options are so nu­
merous and complex, much of Chapter 14 is dedicated to a discussion of
them. No further explanation is given here.

Debug

The Debug option lets you perform various debugging operations and
set various debugging options. The selections you can choose from in
this menu are

326 Turbo CIC++: The Complete Reference

Evaluate
Call stack
Find function
Refresh display
Display swapping
Source debugging

The Evaluate option allows you to view or alter the value of any
variable or expression in your program. (However, the expression can­
not include function calls or macros.)

The Call stack option displays the functions that have been called,
but not yet returned, in stack-wise order. In other words, it displays the
call stack, meaning that the most recently called function is on top of
the stack and the least recently called function is on the bottom.

The Find function option displays the source code to the function
that you specify. (The function source code must be available to Turbo
C.)

The Refresh display option redisplays the Turbo C IDE screen.
This option is useful if an application program overwrites the IDE
screen.

The Display swapping option lets you determine how the screen
switches between the IDE screen and the user screen.

The Source debugging option lets you include debugging informa­
tion in the executable form of your program. You need to include
debugging information in your program if you want to use Turbo C's
debugger.

Break/watch

The Break/watch option is part of Turbo C's debugger. It lets you
specify various expressions to watch while your program is executing. It
also lets you manage breakpoints. A breakpoint is a location you define
in your program at which execution stops.

The options available in the Break/watch menu are

Add watch
Delete watch
Edit watch
Remove all watches

The Turbo C Integrated Programming Environment 327

Toggle breakpoint
Clear all breakpoints
View next breakpoint

The following discussion provides a brief overview of these options.
The Add watch option displays the value of an expression during

the execution of your program. (The expression can be as simple as a
single variable or as complex as any valid C expression.) The value of
the expression is displayed in the watch window. There can be several
watched expressions displayed in the watch window. There are two
restrictions to watched expressions: They cannot include function calls
or macro names.

The Delete watch option allows you to remove a watched expres­
sion.

The Edit watch option lets you modify the highlighted watched
expression.

The Remove all watches option removes all watched expressions.
The Toggle breakpoint option lets you alternately activate (set) or

deactivate (clear) a breakpoint.
The Clear all breakpoints option deactivates all breakpoints set

previously in your program.
The View next breakpoint option positions the cursor over the

location of the next breakpoint in your program.

The Edit and Message Windows

Immediately below the main menu are the edit and message windows.
The edit window is used by Turbo C's text editor. The message window
is beneath the edit window and is used to display various compiler or
linker messages.

The Hot Keys

The Turbo C IDE contains several hot keys, which are shorthand for
menu selections. Several hot keys are shown on the reference line at the
bottom of the screen; these appear by default. You can see two other
sets of hot keys by pressing the ALT key and the CTRL key, respectively.
However, the hot keys that are displayed on the status line are not the

328 Turbo C/C++: The Complete Reference

only hot keys available for use. The hot keys are summarized in Table
12-2. Some of the most commonly used hot keys are also discussed here.

Hot Key

Fl

F2

F3

F4

F5

F6

F7

F8

F9

FlO

Alt-Fl

Alt-F3

Alt-F5

Alt-F6

Alt-F7

Alt-F8

Alt-F9

Alt-C

Alt-D

Alt-E

Alt-F

Alt-0

Alt-P

Alt-R

Alt-X

Ctrl-Fl

Ctrl-F2

Ctrl-F3

Ctrl-F4

Ctrl-F7

Ctrl-FS

Ctrl-F9

Table 12-2.

Meaning

Activate the on-line help system
Save the file currently being edited
Load a file
Execute program until cursor is reached
Zoom the window
Switch between windows
Trace into function calls
Trace, but skip function calls
Compile and link a program
Toggle between the main menu and the editor
Last help screen
Pick a file to load
Switch between user screen and IDE
Switch between watch and message windows
Previous error
Next error
Compile file to .OBJ
Activate the compile menu
Activate the debug menu
Activate the editor
Activate the file menu
Activate the options menu
Activate the project menu
Activate the run menu
Quit Turbo C
Request help about the item that contains the cursor
Reset program
Show function call stack
Evaluate an expression
Set a watch expression (debugging)
Set or clear a breakpoint
Execute the current program

The Turbo C Hot Keys

The Turbo C Integrated Programming Environment 329

Help

The on-line help system is activated by pressing Fl. It is context sensi­
tive, which means that Turbo C displays information related to what you
are currently doing. You may also select a help topic manually by
pressing Fl a second time. You are shown a list of topics from which to
choose. To receive help on a Turbo C keyword or library function,
position the cursor on that word and press CTRL-Fl. To exit the help
system, press the ESC key.

Switching Windows and Zoom

By pressing the F5 key you can enlarge either the edit or message
window to encompass the full size of the screen. This feature somewhat
simulates the zoom lens of a camera; hence the name. The F5 key is a
toggle, so pressing it again returns the edit or message window to its
regular size. The window that is enlarged is determined by using the F6
key. The F6 key is a toggle that switches between the edit and message
windows. Pressing it once selects the message window; pressing it again
returns control to the edit window. You may want to select the message
window to examine the various messages generated by the compiler.

Make

The MAKE key is F9. The MAKE option provides a simple way to
compile programs consisting of multiple source files.

The ALT·X Key Combination

You can exit Turbo Cat any time by pressing the ALT-X combination.

The TCINST Program

Included with Turbo C is an installation program called TCINST that is
used to set various attributes and default settings in the Turbo C

330 Turbo C/C++: The Complete Reference

integrated environment. To execute the program simply type TCINST
from the command line. When it begins to execute you see a menu with
the following items:

Compile
Project
Options
Debug
Editor commands
Mode for display
Set colors
Resize windows
Quit/save

Each of these options is discussed in this section.

Complfe

Selecting the Compile option allows you to define a default primary file.
This option is similar to its corresponding entry in the IDE main menu.

Project

Selecting the Project option allows you to define a project name. It also
lets you set the default state of various project-related features. This
option is similar to its corresponding entry in the IDE main menu.

Options

The Options selection lets you set various compiler, linker, and environ­
mental parameters. This option is similar to its corresponding entry in
the IDE main menu.

The Turbo C Integrated Programming Environment 331

Debug

The Debug option allows you to determine how the built-in debugger
operates. This option is similar to its corresponding entry in the IDE
main menu.

Editor Commands

You can customize the Turbo C editor by selecting the Editor com­
mands option, which produces the screen shown in Figure 12-3.

Using this option, you can customize the Turbo C editor to imitate
your favorite editor by changing the keystrokes for each command. The
left keystroke column contains the primary keystrokes to activate a
command. By default the primary keystrokes are WordStar-like com­
mands. The right column contains alternate keystrokes that invoke the

Install Editor
CoMMand naMe PriMary Secondary

New Line * <CtrlM> · <CtrlM>
Cursor Left * <ctrlS> · <Lft>
Cursor Ri!lht * <ctrlD> · <R!!t>
Word Left * <CtrlA> · <CtrlLft>
Word Ri!lht * <CtrlF> · <CtrlRgt>
Cursor Up * <ctrIE> . <Up>
Cursor Down * <CtrlX> · <Dn>
Scroll Up * <CtrlW>
Scroll Down * <ctrIZ>
Page Up * <CtrlR> · <P!fUp>
Page Down * <ctrlc> · <PgDn>
Left of Line * <CtrlQ><CtrlS> · <HoMe>
Right of Line * <CtrlQ><CtrID> · <End>
Top of Screen * <ctrlQ><CtrlE> · <Ctr lHme>
BottoM of·Screen * <CtrlQ><CtrlX> · <CtrlEnd>
Top of File * <ctrlQ><CtrlR> · <CtrlPgUp>
BottoM of File * <CtrlQ><CtrlC> · <CtrlPgDn>
Moue to Block Begin * <CtrlQ><CtrlB>
Moue to Block End * <ctrIQ><CtrlH>

<-U-+ select PgUp-PgDn-page ~LModify R--restore factory defaults ESC-exit
F4-He Modes: (lf)-IJordStar-like C•l-1 nore case (·)-UerbatiM

Figure 12-3. The Editor commands screen of TCINST

332 Turbo CIC++: The Complete Reference

same command. You can change either (or both) the primary or second­
ary keystrokes associated with each command. Use the left and right
arrow keys to move between the two columns.

To change the keystrokes that execute a command, position the
highlight on the command and column that you want to change and
press ENTER. To clear the old keystrokes, press F3. Next, enter the new
keystrokes you want for that command. Use the backspace key if you
accidentally type a wrong key. Pressing F2 restores the previous key­
strokes. To cancel the modification process press ESC. Once you have
entered the new keystrokes, press ENTER.

Although the editor is quite flexible, you must follow certain rules
when customizing its commands:

1. No command sequence can be longer than six keystrokes. All
special keys, such as ALT, the arrow keys, and the function keys
count as two keystrokes.

2. The first character must be a control key or special key, not an
alphanumeric key.

3. To enter an ESC, press CTRL-[; for a backspace, press CTRL-H; and for
ENTER, press CTRL-M.

4. It is best not to use any of Turbo C's hot keys as editor com­
mands.

Screen Mode

The Mode for display option is used to determine how Turbo C commu­
nicates with the video controller in your computer. You can let Turbo C
determine what type of adapter you have or you can specify that it is
either color, black and white, or monochrome. Depending on how your
system is set up you may experience "snow'' when using the fastest
screen output method. The Mode for display option allows you to test
for snow based on the type of video adapter you have.

Set Colors

The Set Colors option lets you select the color scheme used by Turbo C
when running in a color environment. There are three built-in color

The Turbo C Integrated Programming Environment 333

options. In addition, you can define your own color scheme for every
part of the Turbo C user interface. To do this select the Custom Colors
option. You are then asked what area you wish to modify. For example,
if you select the main menu, you are shown another menu that lets you
select the part of the main menu you wish to change. Your screen will
look like Figure 12-4. When you have selected what you wish to change,
you are shown a table of color options. .Ai3 you try each option, the
partial view of the main menu changes to reflect each different color
scheme.

Resize Windows

It is possible to change size of the edit and message windows relative to
each other by using the Resize windows option. After selecting this
option you can use the arrow keys to move the line that separates the
two windows.

~ -Modif color ESC-exit

Figure 12-4. Selecting custom colors with TCINST

334 Turbo CIC++: The Complete Reference

Quit/save

The Quit/save option terminates the installation program. You are
asked whether you want the changes you made while running the
program to be written into Turbo C and become its default mode of
operation. If you do, answer Y for "yes." If you don't, answer N for "no."

The Turbo C Text Editor

This chapter discusses the text editor supplied with Turbo C's inte­
grated programming environment. Its operation is similar to both
Micropro's WordStar program and the editors provided by Turbo Pas­
cal and SideKick. The Turbo C editor contains about 50 commands and
is quite powerful.

Editor Commands

With few exceptions, all editor commands begin with a control character
(CTRL). Many are then followed by another character. For example, the
sequence CTRL-Q F is the command that tells the editor to find a string.
This means that you type a CTRL-Q and then an F in either upper- or
lowercase.

Invoking the Editor and Entering Text

When Turbo C begins, it waits at the sign-on message until you press a
key. After that the main menu option File is highlighted. To invoke the
editor you either use the cursor keys to move the highlight to Edit or
simply type an e. To leave the editor, press the FlO key.

The top line of the editor window is the editor status line, which
tells you various things about the state of the editor and the file you are
editing. The first two items, Line and Col, display the line number and
column of the cursor. The Insert message means that the editor is in
insert mode. That is, as you enter text it is inserted in the middle of
what (if anything) is already there. The opposite is called overwrite; in
this mode of operation new text overwrites existing text. You can toggle
between these two modes by pressing the INS key. The Indent message
means that autoindentation is on. You will see how this works shortly.

T
H
I
R
T
E
E
N

336 Turbo C/C++: The Complete Reference

You toggle the indentation mode by using the sequence CTRL-0 I. The Tab
message means that you can insert tabs using the TAB key. This is
toggled by using the sequence CTRL-0 T. The Fill message tells you that a
series of spaces will be filled using an optimal number of spaces and
tabs. If Fill is not on, only spaces are used. You can toggle this feature
using CTRL-0 F. At the end of the line the name of the file you are editing
is displayed.

As soon as you invoke the editor it is ready to accept text. If you
make mistakes you can use the BACKSPACE key to correct them. For
example, enter the lines

This is a
test of the Turbo C
editor.

Your screen now looks like Figure 13-1. Notice the position of the cursor
and the values associated with Line and Col.

File Edit Run Conpile Project Options Debug Breaklwatch
Edit

Line 3 Col B Insert Indent Tab Fill Unindent * c:NQNAME,C
This is a
test of the Turbo C
editor,

,__ __________ Message __________ ___,

Fl-He! F5-Zoon F6-Switch F7-Trace FB-Ste F9-Make FHl-Menu

Figure 13-1. Editor screen with text entered

The Turbo C Text Editor 337

You can use the arrow keys to move the cursor around in the file.
AB you move the cursor, the line and column numbers are updated to
reflect its current position.

If you put the cursor in the middle of a line and enter more text, the
existing line is moved to the right when the editor is in insert mode. For
example, if you move the cursor to the start of the second line of text
entered from the previous example, and type the word "good," the
screen looks like Figure 13-2. If you toggle the editor into overwrite
mode, the original line is overwritten.

Deleting Characters, Words, and Lines

You can delete a single character two ways: with the BACKSPACE key or
with the DEL key. The BACKSPACE key deletes the character immediately
to the left of the cursor, while DEL deletes the character under the cursor.

File Edit Run CoMpile Project Options Debug Break/watch
Edit

Line 2 Col & Insert Indent Tab Fill Unindent * C=NONAME,C
This is a
good test of the Turbo C
editor,

1----------- Message -------------t

Fl-He! F5-ZooM F6-Switch F7-Trace FB-Ste F9-Make F10-Menu

Figure 13-2. Editor after inserting text

338 Turbo CIC++: The Complete Reference

You can delete an entire word to the right of the cursor by typing
CTRL-T. A word is any set of characters delimited by one of the following
characters:

space $ I - + * ' A [] () • ; , < >

You can remove an entire line by typing CTRL-Y. It does not matter
where the cursor is positioned in the line; the entire line is deleted.

If you wish to delete from the current cursor position to the end of
the line, type the sequence CTRL-Q Y.

Moving, Copying, and Deleting Blocks of Text

The Turbo C editor allows you to manipulate a block of text by moving
or copying it to another location or deleting it altogether. To do any of
these things you must first define a block. You do this by moving the
cursor to the start of the block and typing the sequence CTRL-K B. Next,
move the cursor to the end of the block and type the sequence CTRL-K K.

The block that you have defined will be highlighted (or in a different
color if you have a color system).

To move the block of text, place the cursor where you want the text
to go and type the sequence CTRL-K v. This removes the previously defined
block of text from its current position and places it at the new location.
To copy a block, type the sequence CTRL-K c. To delete the currently
marked block, type the sequence CTRL-K Y.

You can mark a single word as a block by positioning the cursor
under the first character in the word and typing CTRL-K T.

More on Cursor Movement

The Turbo C editor has a number of special cursor commands, which are
summarized in Table 13-1. The best way to learn these commands is to
practice them a little each day until you have them memorized.

Command

CTRL-A

CTRL-S

CTRL-D

CTRL-F

CTRL-E

CTRL-R

CTRL-X

CTRL-C

CTRL-W

CTRL-Z

PGUP

PGDN

HOME

END

CTRL-QE

CTRL-QX

CTRL-QR

CTRL-QC

CTRL-PGUP

CTRL-PGDN

CTRL-HOME

CTRL-END

Table 13-1.

The Turbo C Text Editor 339

Action

Move to the start of the word to the left of the cursor
Move left one character
Move right one character
Move to the start of the word to the right of the cursor
Move the cursor up one line
Move the cursor up one full screen
Move the cursor down one line
Move the cursor down one full screen
Scroll screen up
Scroll screen down
Move the cursor up one full screen
Move the cursor down one full screen
Move the cursor to the start of the line
Move the cursor to the end of the line
Move the cursor to the top of the screen
Move the cursor to the bottom.of the screen
Move the cursor to the top of the file
Move the cursor to the bottom of the file
Move the cursor to the top of the file
Move the cursor to the bottom of the file
Move the cursor to the top of the screen
Move the cursor to the bottom of the screen

The Cursor Commands

Find and Find with Replace

To find a specific sequence of characters, type CTRL-Q F. You are prompted
at the status line for the string of characters you wish to find. Enter the
string you are looking for and then press ENTER. You are then prompted
for search options. The search options shown in Table 13-2 modify the
way the search is conducted. For example, typing G2 causes Turbo C to
find the second occurrence of the string. No options need be specified;
you can simply press ENTER. If no options are present, the search pro­
ceeds from the current cursor position forward with case sensitivity and
substring matches allowed.

340 Turbo CIC++: The Complete Reference

Option Effect

B Search the file backwards starting from the current cursor position
G Search the entire file regardless of where the cursor is located
N Replace without asking; for find-and-replace mode only
L Search only the current block
U Match either upper- or lowercase
W Match only whole words, not substrings within words
n Where n is an integer, causes the nth occurrence of the string to

be found

Table 13-2. The Options to the Find Command

You can repeat a search by typing a CTRL-L. This is very convenient
when you are looking for something specific in the file.

To activate the find-and-replace command, type CTRL-Q A. Its opera­
tion is identical to the find command except that it allows you to replace
the string you are looking for with another. If you specify the N option
you will not be asked whether to replace each occurrence of the search
string with the replacement string. Otherwise you Will be prompted for
a decision each time a match occurs.

You can enter control characters into the search string by typing a
CTRL-P followed by the control character you wartt.

Setting and Finding Place Markers

You can set up to four place markers in your file by typing CTRL-K n,
where n is the number of the place marker (0 to 3). After a marker has
been set, the command CTRL-Q n, where n is the marker number, causes
the cursor to go to that marker.

Saving and Loading Your File

There are three ways to save your file. Two of the ways save it to a file
that has the same name as that shown on the status line. The third way

The Turbo C Text Editor 341

saves the file to a disk file with a different name and then makes that name
the current name of your file. Let's look at how each method works.

The first way you can save your file is to exit the editor (by pressing
FlO) and select the File main menu option. In the File submenu, choos­
ing the Save option saves what is currently in the editor into a disk file
by the name shown on the status line.

The second way to save the file does not require you to exit the
editor. If you press the F2 key while you are using the editor, the file is
saved under the current name.

If you want to use a different file name, select the Write to option.
This allows you to enter the name of the file you wish to write the
current contents of the editor to. It also makes this name the default file
name.

To load a file you can either press F3 while inside the editor or select
the Load option in the File menu. Once you have done that, you are
prompted for the name of the file you wish to load. There are two ways
to specify the file name.

1. If you know the name, you can type it in at this time.

2. If you are unsure of the name, do not enter anything and Turbo
C will display all files with the .C extension, from which you can
choose one. You use the arrow keys to highlight the file you want
and then press ENTER.

Understanding Autolndentatlon

Good programmers use indentation to help make the programs they
write clearer and easier to understand. To assist you in this practice,
after you press ENTER the Turbo C editor automatically places the cursor
at the same indentation level as the line previously typed, assuming that
autoindentation is on. (Remember that you toggle this feature by typing
CTRL-0 I.) For example, enter the following few lines exactly as they are
shown here and notice how the autoindentation works.

main()
{

inti;

for(i=O; i<lOO; i++) {

342 Turbo CIC++: The Complete Reference

}
}

printf("this is i: ");
printf{"%d\n", i);

AB you write Turbo C programs, you will find this feature quite handy.

Moving Blocks of Text to and from Disk Flies

It is possible to move a block of text into a disk file for later use. This is
done by first defining a block and then typing CTRL-K w. After you have
done this, you are prompted for the name of the file you wish to save the
block in. The original block of text is not removed from your program.

To read a block in, type the sequence CTRL-K R. You are prompted for
the file name, and the contents of that file are read in at the current
cursor location.

These two commands are most useful when you are moving text
between two or more files, as is so often the case during program
development.

Pair Matching

Several delimiters in C work in pairs, including { }, [], and (). In very
long or complex programs, it is sometimes difficult to find the proper
companion to a delimiter. Starting with version 1.5 of Turbo C it is
possible to have the editor find the corresponding companion delimiter
automatically.

The Turbo C editor finds the companion delimiter for the following
delimiter pairs:

{}
[]
()
< >
/* */
""
I I

The Turbo C Text Editor 343

To find the matching delimiter, place the cursor on the delimiter you
wish to match and type CTRL-Q [for a forward match or CTRL-Q J for a
backward match. The editor moves the cursor to the matching delimiter.
Some delimiters are nestable, and some are not. The nestable delimiters
are: { }, [], (), < >, and sometimes the comment symbols (when the
nested comments option is enabled). The editor finds the proper match­
ing delimiter according to C syntax. For example, in Figure 13-3 the
lines indicate which curly braces match.

If for some reason the editor cannot find a proper match, the cursor
is not moved.

Mlscellaneous Commands

You can abort any command that requests input by typing a CTRL-U at
the prompt. For example, if you execute the find command and then
change your mind, simply type CTRL-U. (You can also press the ESC key to
abort input.)

If you wish to enter a control character into a file you first type
CTRL-P followed by the control character you want. Control characters
are displayed in either low intensity or reverse intensity depending on
how your system is configured.

main()
{~~~~~~~~~~~~~~~---.

int i, j;

for(i=O; i<lOO; i++) {
for(j=O; j<lOO; j++) {

Figure 13-3. How the editor matches the curly braces

344 Turbo CIC++: The Complete Reference

To undo changes made to a line before you have moved the cursor
off that line, type CTRL-Q L. Remember that once the cursor has been
moved off the line changes cannot be undone.

If you wish to go to the start of a block, type CTRL-Q B. Typing CTRL-Q K
takes you to the end of a block.

One particularly useful command is CTRL-Q P, which puts the cursor
back to its previous position. This is handy if you want to search for
something and then return to where you were.

Invoking Turbo C with a File Name

You can specify the name of the file you want to edit when you invoke
Turbo C. To do this you simply put the name of the file after the TC on
the command line. For example, TC MYFILE executes Turbo C and
loads MYFILE.C into the editor. The .C extension is added automati­
cally by Turbo C. If MYFILE does not exist, it is created.

Command Summaiy

Table 13-3 shows all the Turbo C editor commands.

Cursor Commands

Command
LEFT ARROW or CTRL-S

RIGHT ARROW or CTRL-D

CTRL-A

CTRL-F

UP ARROW or CTRL-E

DOWN ARROW or CTRL-X

CTRL-W

CTRL-Z

PGUP or CTRL-R

Action
Left one character
Right one character
Left one word
Right one word
Up one line
Down one line
Scroll up
Scroll down
Up one page

Table 13-3. Turbo C Editor Command Summary by Category

The Turbo C Text Editor 345

Command Action

PGDN or CTRL-C Down one page;
HOME or CTRL-Q s Go to start of line
END or CTRL-Q D Go to end of line
CTRL-QE Go to top of screen
CTRL-QX Go to bottom of screen
CTRL-QR Go to top of file
CTRL-QC Go to bottom of file
CTRL-QB Go to start of block
CTRL-QK Go to end of block
CTRL-QP Go to last cursor position

Insert Commands
Command Action
INS or CTRL-V Toggle insert mode
ENTER or CTRL-N Insert a blank line

Delete Commands
Command Action
CTRL-Y Entire line
CTRL-QY To end of line
BACKSPACE Character to left
DEL or CTRL-G Character at cursor
CTRL-T Word to the right

Block Commands
Command Action
CTRL-KB Mark beginning
CTRL-KK Mark end
CTRL-KT Mark a word
CTRL-KC Copy a block
CTRL-KY Delete a block
CTRL-KH Hide or display a block
CTRL-KV Move a block
CTRL-KR Read a block from disk
CTRL-KW Write a block to disk
CTRL-KI Indent a block
CTRL-K U Unindent a block
CTRL-KP Print a block

Table 13-3. Turbo C Editor Command Summary by Category (continued)

346 Turbo CIC++: The Complete Reference

Find Commands

Command
CTRL-QF

CTRL-QA

CTRL-QN

CTRL-L

Pair Matching
Command
CTRL-Q [

CTRL-Q]

Miscellaneous Commands
Command
CTRL-U

CTRL-0 I

CTRL-P

F!O

F3

CTRL-QW

F2

CTRL-KN

CTRL-OT

CTRL-Q L

Action
Find
Find and replace
Find place marker
Repeat find

Action
Match pair forward
Match pair reverse

Action
Abort
Toggle autoindentation mode
Control character prefix
Exit editor
New file
Restore overwritten error message
Save
Set place marker
Toggle tab mode
Undo

Table 13-3. Turbo C Editor Command Summary by Category (continued)

Compiler and Linker Options

Turbo C provides many options that affect the way programs are com­
piled and linked. Although Turbo C's default settings accommodate a
wide variety of programming projects, there will almost certainly be
times when you want to alter some of these settings to suit your specific
application. This chapter discusses the compiler options available in both
the integrated environment and the command-line version of Turbo C.
With the exception of the options and settings that deal exclusively with
the integrated environment, all the options available in the integrated
environment are also available for use in the command-line version.
However, there are a few options available in the command-line version
that are not supported by the integrated environment.

The chapter ends with a look at the standalone Turbo C linker
called TLINK.

Integrated Development Environment Options

These are the options available in the Options menu:

Compiler
Linker
Environment
Directories
Arguments
Save options
Retrieve options

Each area will be examined in turn.

348 Turbo CIC++: The Complete Reference

Compller Options

After selecting Compiler you see these compiler options:

Model

Model
Defines
Code generation
Optimization
Source
Errors
Names

The Model option allows you to select which memory model is used to
compile your program. The default is "small,'' which is adequate for most
applications. For a complete discussion of the available memory models,
refer to Chapter 10.

Defines

The Defines option allows you to define temporary preprocessor sym­
bols to be used automatically by your program. You can define one or
more macros by separating them with semicolons. This feature is most
useful during program development and debugging. For example, in the
following fragment, testing is performed with known input even though
the final program uses a number generated by the random number
generator rand(). If you define the macro RAND_ ON using the
Defines option, the random number is used; otherwise the number is
input from the keyboard. Remember that you could also define
RAND_ ON in the program by using the preprocessor command
#define.

,1

main()
{

in~ i;

#ifdef RAND_ON
i " rand(};
#else

I• for testing, read number from keyboard •/
printf("input number: ");
scanf("%d", &f);

#endif

Compiler and Linker Options 349

}

Code Generation

Selecting Code generation presents you with a large number of
switches that you can set. The options are

Calling convention
Instruction set
Floating point
Default char type
Alignment
Generate underbars
Merge duplicate strings
Standard stack frame
Test stack overflow
Line numbers
OBJ debug information

You can choose between the C calling convention and the Pascal
calling convention. A calling convention is simply the method by which
functions are called and arguments are passed. Generally, you should
use the C calling convention.

If you know that the object code of your program will be used on an
80186/80286 processor, you can tell Turbo C to use the 80186/80286
extended instruction set using the Instruction set option. It will cause
your program to execute a little faster, but it will not be able to run on
8088/8086-based computers. The default is 8088/8086 instructions.

You can control the way Turbo C implements floating-point opera­
tions. The default-and most common-method is to use 8087/80287
emulation routines. The 8087 chip is the math coprocessor for the 8086
family of CPUs, while the 80287 is the math coprocessor for the 80286
CPU. When these coprocessors are in the system, they allow very rapid
floating-point operations. However, if you don't have a math coprocessor
or if your program will be used in a variety of computers, the 8087's
operation must be emulated in software, which is much slower. The

350 Turbo CIC++: The Complete R~ference

emulation mode uses the math coprocessor by default if one is in the
system, or calls the emulation routines if no math coprocessor is in­
stalled. However, if you know in advance that the coprocessor is present
in every system on which the program will run, you can select the
8087/80287 option, which generates in-line 8087/80287 code. This is the
fastest way to implement floating-point operations. Finally, you can
deselect floating point altogether when your program doesn't use it,
thereby allowing the object code to be much smaller.

The Default char type option determines whether the type char is
signed or unsigned. By default, char is signed in Turbo C.

The Alignment option determines whether data is aligned on byte
or word boundaries. On the 8086 and 80286 processors, memory ac­
cesses are quicker if data is word-aligned. However, there is no differ­
ence on the 8088. The default is byte-alignment.

The Generate underbars option, which is on by default, determines
whether an underscore is added to the start of each indentifier in the
link file. You should not turn this off unless you are an experienced
programmer and understand the inner workings of Turbo C.

Elimination of duplicate string constants is common compiler opti­
mization that you can instruct Turbo C to perform. That is, all identical
strings can be merged into one string, the result being smaller pro­
grams. You can control this by toggling the Merge duplicate strings
option. It is off by default.

The Standard stack frame option is used to force Turbo C to
generate standard calling and returning code for each function call to
help in debugging. This option is on by default. You will not generally
have to worry about or use this option.

You can force Turbo C to check for stack overflows by turning on
the Test stack overflow option. This makes your program run more
slowly, but it may be necessary in order to find certain bugs. If your
program crashes inexplicably from time to time, you might want to
compile it with this test turned on to see if stack overflows are the
problem.

With the Line numbers option, you can force Turbo C to enter the
number of each line of the source file into the object file. This is useful
when using a debugger.

Finally, the OBJ debug information option controls whether de­
bug information is compiled into your file. This information is necessary
when you are using a debugger. This option is on by default.

Compiler and Linker Options 351

Optimization

The Optimization option contains four toggles:

Optimize for
Use register variables
Register optimization
Jump optimization

Turbo C is very efficient, but, for various reasons, some optimiza­
tions that make the object code smaller also make it slower. Other
optimizations make the object code faster but larger. Turbo C lets you
decide whether you want to optimize for speed or size by using the
Optimize for option. The default is size.

The Use register variables option, if turned off, suppresses use of
register variables. Unless you are interfacing to non-Turbo C code,
leave this option on.

When the Register optimization option, which is off by default, is
turned on, it allows Turbo C to perform some additional optimizations
that prevent redundant load and store operations. However, Turbo C
cannot know if a variable has been modified through a pointer, so you
must use this option with care.

By toggling Jump optimization on, you allow Turbo C to rear­
range the code within loops and switch statements. This can cause
higher performance. However, if you are using a debugger on your
object code, turn this option off.

Source
The Source option lets you set the number of significant characters in
an identifier, determine whether comments can be nested, and force
Turbo C to accept only the ANSI keywords.

By default, Turbo C identifiers have 32 significant characters. How­
ever, you can set this number anywhere in the range 1 through 32. You
would most commonly want to reduce the number of significant charac­
ters when you are compiling source code written for a different com­
piler. Years ago it was common to have compilers recognize only the
first six to eight characters. Some programmers exploited this limitation

352 Turbo CIC++: The Complete Reference

by embedding "comments" into their variables to help with debugging.
For example, programmers occasionally encoded the usage count into a
variable's name as shown here:

I• Assuming 7 significant characters, the variables
on the left side of the assignment statement all
resolve to a single variable called counter.

•I

counterl = 10;

counter2 = 20;

counter3 = 30;

This practice of encoding a "comment" in the variable's name has
been discredited, but some older source code may still contain instances
of it.

Turbo C supports the ANSI C standard, but it has added various
enhancements to the language to support the 8086 processor better. If
you want to make sure that you are writing code that uses only the
ANSI keywords, toggle on the option ANSI keywords only. Otherwise,
leave it in its default (off) position.

In its standard form, C (including Turbo C) does not allow one
comment to be inside another. For example, in standard C, the following
code causes a compile-time error:

I• In standard ANSI C this will not compile. •/

I•

·I

if(x<lO) printf("all OK"); /•signal status•/
else printf("failure in port 102");

Here, the programmer attempted to "comment out" a section of code,
but failed to notice that a nested comment was created. By selecting the
Nested comments option, you can tell Turbo C to allow situations like
the preceding example and allow the entire block to be ignored. This can
be very useful when you wish to remove a section of code temporarily.
Note that the standard and portable way to do this is to use an #if def
preprocessor command. The use of the Nested comments option is best
reserved for special exceptions encountered while debugging.

Compiler and Linker Options 353

Errors

The Errors option lets you determine how errors are reported during
the compilation process. There are seven options in this menu:

Errors: stop after
Warnings: stop after
Display warnings
Portability warnings
ANSI violations
Common errors
Less common errors

You can set how many fatal errors can be reported before the compila­
tion process stops by using the Errors: stop after option. The default is
25.

You can set how many warning errors can be reported before
compilation stops by using the Warnings: stop after option. The default
setting is 100. Turbo C is very forgiving and tries to make sense out of
your source code no matter how unusual it may seem. However, if Turbo
C has a suspicion that what you have written is incorrect, it displays a
warning error. A warning error does not stop compilation; it simply
informs you of Turbo C's concerns over a certain construct. It is for you
to decide whether Turbo C is correct in its concern.

Several types of warning errors can be generated. The first are
portability errors, which reflect coding methods that would render the
program nonportable to another type of processor. The second type of
warning error is generated by non-ANSI code practices. The third
group consists of common programming errors, and the final group
consists of less common programming errors. These categories are
summarized in Table 14-1.

Names

The Names option lets you change the names Turbo C uses for the
various memory segments used by your program. You will need to
change these only in unusual situations. Don't change the names unless
you are an experienced assembly language programmer and know what
you are doing.

354 Turbo CIC++: The Complete Reference

Portability Errors

Error
Nonportable pointer conversion
Nonportable pointer assignment
Nonportable pointer comparison
Constant out of range in comparison
Constant is long
Conversion may lose significant digits
Mixing pointers to signed and unsigned char

ANSI Violations

Error
Identifier not part of structure
Zero length structure
Void functions may not return a value
Both return and return of a value used
Suspicious pointer conversion
Undefined structure identifier
Redefinition of an identifier is not identical
Hexadecimal or octal constant is too large

Common Errors

Error
Function should return a value
Unreachable code
Code has no effect
Possible use of an identifier before definition
Identifier assigned a value that is never used
Parameter identifier is never used
Possibly incorrect assignment

Default
On
On
On
On
Off
Off
Off

Default
On
On
On
On
On
On
On
On

Default
Off
On
On
On
On
On
On

Table 14-1. The Types of Warning Errors Issued by Turbo C

Less Common Errors

Error
Superfluous & with function or array
Identifier declared but never used
Ambiguous operators need parentheses
Structure passed by value
No declaration for function
Call to function with no prototype

Compiler and Linker Options 355

Default
Off
Off
Off
Off
Off
Off

Table 14-1. The Types of Warning Errors Issued by Turbo C (continued)

Linker Options

If you select the Linker options, you see the following list of choices:

Map file
Initialize segments
Default libraries
Graphics library

Warn duplicate symbols
Stack warning
Case-sensitive link

Let's examine each area in turn.

Map File

By default, Turbo C's linker does not create a map file of your compiled
program. A map file shows the relative positions of the variables and
functions that make up your program and where they reside in memory.
You may need to create a map file for debugging certain programs in
complex situations. You can create a map file in three ways. The first
shows only the segments. The second shows the public (global) symbols.
The third creates a detailed (complete) map.

356 Turbo CIC++: The Complete Reference

lnltlalize Segments

By default, Initialize segments is off. It is turned on in highly special­
ized situations to force the linker to initialize segments, but this is
seldom necessary.

Default Libraries

The Default libraries option applies only when you are linking modules
compiled by other C compilers. By default this option is off. If you turn
it on, the linker searches the libraries defined in the separately compiled
modules before searching Turbo C's libraries. Again, this is a highly
specialized situation that you will probably not need to worry about.

Graphics Library

The Graphics library option is on by default. This causes Turbo C to
search the GRAPHICS.LIB library automatically when linking your
program. This enables you to use Turbo C's graphics functions. There is
little reason to turn this option off.

Warn Duplicate Symbols

By default, Warn duplicate symbols is on. This means that the linker
warns you if you have defined duplicate global identifiers. By turning it
off, you do not see this message and the linker chooses which one to use.

Stack Warning

If you are using Turbo C to create routines to link with external
assembly language programs, you might receive the link-time message
No stack specified. You can eliminate this message by turning Stack
warning off.

Compiler and Linker Options 357

Case-Sensitive Link

Case-sensitive link is on by default because C is case-sensitive. How­
ever, if you are trying to link Turbo C modules with FORTRAN mod­
ules, for example, you may need to turn this option off.

Environment Options

By selecting the Environment option from the Options menu you can
change the way Turbo C's integrated environment works. The following
selections are available:

Message tracking
Keep messages
Config auto save
Edit auto save
Backup files
Tab size
Zoomed windows
Screen size

By default, Turbo C tracks (displays) errors found only in the current
source file loaded in the editor. However, you can tell it to track
messages in all files related to a program or to not track errors at all by
toggling the Message tracking option.

If the Keep messages option is off (its default state), error mes­
sages are cleared before each recompilation. If you turn this option on,
old error messages are retained and new ones are added to the list.

When Config auto save is on, any changes made to the configura­
tion file are automatically saved each time you run a program, use the
OS shell command, or exit Turbo C. If it is off, the configuration is saved
only on your command. This option is off by default.

When Edit auto save is on, the editor automatically saves your
source file to disk each time you run the program or use the OS shell
command. If the option is off, your file is saved only when you specifi­
cally command it. It is off by default.

358 Turbo CIC++: The Complete Reference

When you save a file, Turbo C automatically renames the previous
version of that file from a .C extension to a .BAK extension. In this way,
you always have the previous version as a backup. You can turn off this
option by toggling Backup files. About the only reason for turning this
off is to save disk space if it is very limited.

The default tab size is 8; you can change it using the Tab size
option.

If Zoomed windows is on, the active window occupies the entire
screen. The option is off by default.

Finally, if you have an EGA or VGA video adapter you can tell
Turbo C to use a 43-line display. If you have a VGA, you can use a
50-line display. These settings are specified using the Screen size op­
tion. A 25-line display is used by default.

The Directories Option

After selecting the Directories option you are presented with a menu
consisting of these entries:

Include directories
Library directories
Output directory
Turbo C directory
Pick file name

This option also reports the current pick file.
If you select the Include directories option, you can specify a list of

directories to be searched for your include files. The list can be up to 127
characters long, and the file names must be separated by semicolons.

If you select the Library directories option, you can specify a list of
directories to be searched for your library files. This list can also be up
to 127 characters long, and the file names must be separated by semico­
lons.

Selecting the Output directory option allows you to specify the
directory used for output. The file and path name must not be longer
than 63 characters.

Compiler and Linker Options 359

You can specify where Turbo C looks for its help files and the
TCCONFIG.TC file by using the Turbo C directory option. The file and
path name must not be longer than 63 characters.

You can specify the path for pick files using the Pick file name
option.

Arguments

As you know, when you run a program in the interactive environment
you do not type the program name as you do from the DOS system
prompt. Hence, it is not possible to specify command-line arguments
directly when running a program in the integrated environment. How­
ever, Turbo C allows you to run programs that use the command-line
arguments in the IDE by using the Arguments option.

When you select Arguments you are prompted to enter the
command-line arguments required by your program. Enter the argu­
ments desired-but not the program name. Then, each time you run the
program, the command-line arguments you specified will be used.

Saving and Loading Options

Once you have customized Turbo C by changing various options, you
have two choices: You can use your chosen options during your current
session only, or you can save them. The two entries Save options and
Retrieve options in the Options menu allow you to save and load the
options. Let's see how.

The TCCONFIG.TC Fiie

The first thing that Turbo C does when it begins executing the inte­
grated environment is to look for a file called TCCONFIG.TC. This file
holds the configuration information for the system. You can change the

360 Turbo CIC++: The Complete Reference

contents of this file by using the Save option. In this way, the changes
you make to Turbo C will still be there the next time you execute it.

Turbo C looks for the TCCONFIG.TC file first in the current
working directory. If the file is not found it then looks in the TURBO
directory, should one exist. If you are going to modify TCCONFIG.TC,
it is best to keep a copy of the unmodified file handy in case you need to
go back to the default settings for some reason.

Using Other Configuration Files

When you save the changes you have made to Turbo C, you don't have
to save them into the TCCONFIG.TC file. You can specify any file you
desire. When Turbo C begins executing the integrated environment it
uses the default settings. To load the options you want, simply select the
Options menu and select Retrieve options. Then specify the name of
the file that contains the settings you want to use. The advantage of this
approach is that Turbo C's default settings are always available if you
need them, but you can easily customize Turbo C to your liking.

The Command-Line Version of Turbo C

If you are new to C, there is no doubt that you will find Turbo C's
integrated environment the easiest way to develop programs. However,
if you have been programming and using your own editor for some time,
you might find the command-line version of Turbo C more to your liking.
For long-time C programmers, the command-line version represents the
traditional method of compilation and linking. Also, the command-line
version of the compiler can do a few things that the integrated environ­
ment version can't. For example, if you wish to generate an assembly
language listing of the code generated by Turbo C or if you want to use
in-line assembly code, you must use the command-line version. The
name of the command-line compiler is TCC.EXE.

Complllng with the Command-Line Compiler

Assume that you have a program called X.C. To compile this program
using the command-line version of Turbo C, your command line will look
like this:

Compiler and Linker Options 361

C>TCC X.C

Assuming that there are no errors in the program, this causes X.C to be
compiled and linked with the proper library files. This is the simplest
form of the command line.

The general form of the command line is

TCC [option1 option2 ... optionN] fname1 fname2 ... fnameN

where option is a compiler or linker option and fname is either a C
source file, an .OBJ file, or a library. Additional .OBJ or .LIB files on the
command line are passed along to the linker for inclusion in the final
program. Remember, however, that Turbo C automatically includes its
standard libraries, so they need not be specified.

All compiler/linker options begin with a minus sign. Generally, fol­
lowing an option with a minus sign turns that option off. Table 14-2
shows the options available in the command-line version of Turbo C.
Keep in mind that the options are case-sensitive.

For example, to compile X.C with the stack checked for overflow,
your command line would be

C>TCC -N X.C

The -w, enable warning messages option, allows you to set which
types of warning messages are displayed by the command-line version of
the compiler. By default, the command-line compiler displays the same
messages as the integrated version. The exact form of the -w command
is shown in Table 14-3. For example, to enable the "identifier declared
but not used" message, when compiling a file called TEST.C, you would
use this command line:

TCC -wuse TEST.C

On the other hand, to tell the command-line compiler not to display a
suspicious pointer conversion, you would use this option:

-w-sus

362 Turbo CIC++: The Complete Reference

Option
-A
-a
-a-
-B
-C
-c
-Dname
-Dname =string
-d
-efname
-f
-f-
-f87
-G
-gN
-lpath
-iN
-jN
-K
-K-
-k
-Lpath
-lxxx
-M
-me
-mh
-ml
-mm
-ms
-mt
-N
-npath
-0
-of name
-p
-p-
-r
-s
-Uname
-u
-w
-w-
-y
-z
-z
-1
-1-

Table 14-2.

Meaning
Recognize ANSI keywords only
Use word alignment for data
Use byte alignment for data
In-line assembly code in source file
Accept nested comments
Compile to .OBJ only
Defines a macro name
Defines and gives a value to a macro name
Merge duplicate strings
Specifies project name
Use floating-point emulation
No floating point
Use 8087
Optimize code for speed
Stop after N warning errors
Specifies the path to the include directory
Specifies identifier length
Stop after N fatal errors
char unsigned
char signed
Generate standard stack frame
Specifies library directory
Pass xxx option to linker
Create map file
Use compact memory model
Use huge memory model
Use large memory model
Use medium memory model
Use small memory model
Use tiny memory model
Check for stack overflows
Specifies output directory
Optimize jumps
Specify object file name
Use Pascal calling conventions
Use C calling conventions
Use register variables
Generate assembly code output
Undefine a macro name
Generate underscores
Display warning errors (see Table 14-3)
Do not display warning errors
Embed line numbers into object code
Register optimization on
Specifies segment names (see Turbo C reference guide)
Generate 80186/80286 instructions
Do not generate 80186/80286 instructions

Turbo C's Command-Line Options

Compiler and Linker Options 363

Portability Warnings
Error
N onportable pointer assignment
N onportable pointer comparison
Constant out of range in comparison
Constant is long
Conversion may lose significant digits
N onportable return type conversion
Mixing pointers to signed and unsigned char

ANSI Violations
Error
Hexacdecimal or octal constant too big
Identifier not part of structure
Zero length structure
Void functions may not return a value
Both return and return of a value used
Suspicious pointer conversion
Undefined structure identifier
Redefinition of an identifier is not identical

Common Errors
Error
Function should return a value
Unreachable code found in program
Code has no effect
Possible use of an identifier before defintion
Identifier assigned a value that is never used
Parameter never used
Possibly incorrect assignment

Less Common Errors
Error
Unnecessary & with function or array
ldentifer declared but never used
Ambiguous operators need parentheses
Structure passed by value
No declaration for function
Call to function with no prototype

Command-Line Option
-wapt
-wept
-wrgn
-wcln
-wsig
-wrpt
-wucp

Command-Line Option
-whig
-wstr
-wzst
-wvoi
-wret
-wsus
-wstu
-wdup

Command-Line Option
-wrvl
-wrch
-weff
-wdef
-waus
-wpar
-wpia

Command-Line Option
-wamp
-wuse
-wamb
-wstv
-wnod
-wpro

Table 14-3. The Command-Line Warning Message Options

364 Turbo CIC++: The Complete Reference

The only warnings that are not on by default are

-wamb
-wamp
-wcln
-wnod
-wpro
-wrvl
-wsig
-wstv
-wucp
-wuse

What's in a Fiie Name?

The Turbo C command-line version does not require the .C extension.
For example, both of these command lines are functionally the same:

C>TCC X.C
C>TCC X

You can compile a file with an extension other than .C by specifying
its extension. For example, to compile X.TMP, the command line would
be

C>TCC X.TMP

You can specify additional object files to be linked with the source
file you are compiling by specifying them after the source file. All
included files must have been previously compiled and have a .OBJ
extension. For example, if your program consists of the files Pl, P2, and
P3, and if P2 and P3 have already been compiled to .OBJ files, the
following command line first compiles Pl.C and then links it with
P2.0BJ and P3.0BJ:

C>TCC Pl P2.0BJ P3.0BJ

Compiler and Linker Options 365

If you have additional libraries other than those supplied with
Turbo C, you can specify them by using the .LIB extension.

In the foregoing example, it was assumed that P2.0BJ and P3.0BJ
existed. The way to produce these files starting from their .C source files
is to compile each using the -c compiler option. This option causes the
compiler to create .OBJ files, but no link process takes place.

The executable output file produced by the linker is generally the
name of the source file being compiled with an .EXE extension. How­
ever, you can specify a different name using the -e option. The name
that follows the -e is the name the compiler uses as the executable file.
There can be no spaces between the -e and the file name. For example,
this compiles the file TEST.C and creates an executable file called
MYPROG.EXE.

C>TCC -eMYPROG test

TLINK: The Turbo C Standalone Linker

Unlike the integrated development environment, which has a built-in
linker, the command-line version of Turbo C uses a standalone linker
called TLINK. You may not be aware of TLINK because it is loaded
automatically by the command-line compiler upon conclusion of a suc­
cessful compilation. However, it is possible to use TLINK by itself. This
section explores TLINK's use as a standalone linker.

TLINK is run completely from the command line and takes this
general form:

TLINK OBJ files, output filename, map filename, libraries

In the first field you list all the .OBJ files you want to link, using spaces
to separate the list. The second field specifies the name of the .EXE file
that holds the output. If it is not specified, the name of the first .OBJ file
is used. The map section holds the map file. The map file has the
extension .MAP. If the map file name is not specified, the name of the
.EXE file is used. Finally, the libraries field holds a space-separated list
of libraries. For example, the following links the files MYFILEl.OBJ
and MYFILE2.0BJ with TEST.EXE as the output file and MYMAP as
the map file name. No libraries are used.

TLINK MYFILEl MYFILE2, TEST, MYMAP,

366 Turbo CIC++: The Complete Reference

Notice that you need not explicitly use the .EXE or .MAP extensions for
the output or map file. TLINK supplies these for you.

Although the output file name and the map file name are optional,
you must be sure to include the proper number of commas; otherwise
TLINK will not know which field is which.

Linking Turbo C Programs

Some special instructions apply to TLINK when you want to use it
manually to link object files produced by Turbo C into an executable
program. First, every time a Turbo C program is linked, the first object
file on the link line must be one of Turbo C's initialization modules.
There is a module for each memory model supported by Turbo C, which
must agree with the type of memory model used to compile the pro­
gram. The module names and their associated memory models are
shown here:

Initialization Module Name

COT.OBJ

COS.OBJ

COG.OBJ

COM.OBJ

COL.OBJ

GOH.OBJ

Memory Model

Tiny

Small

Compact

Medium

Large

Huge

You also need to ensure that the proper standard library file is
linked. Like the initialization module, it must agree with the memory
model used to compile the program. The library files are shown here:

Library Name Memory Model

CT.LIB Tiny

CS.LIB Small

CC.LIB Compact

CM.LIB Medium

CL.LIB Large

CH.LIB Huge

Compiler and Linker Options 36 7

If your program uses any floating point, you must include either
EMU.LIB or FP87.LIB on the link line. If you have an 8087/80287, use
FP87.LIB; otherwise use EMU.LIB.

The mathematics routines are contained in MATHx.LIB where x is
one of the following letters and corresponds to the proper memory
model: t, s, c, m, 1, h. Remember, the memory model used to compile
your program must agree with that of the library.

Given this information, to link a program file called TCTEST that
uses floating-point emulation (but no math routines) using the small
memory model, use the following link line:

TLINK \TC\LIB\COS TCTEST, , , EMU \TC\LIB\CS

TLINK Options

TLINK supports twelve options, summarized in Table 14-4. Each option
consists of a slash followed by a letter. These options can be placed at

Option
lc
Id

le
Ii
/1
Im
In
Is
It

Iv
Ix
13

Table 14-4.

Meaning
Case is significant in PUBLIC and EXTRN symbols
Display warning if duplicate symbols are found in the
libraries
Do not use extended keywords
Initialize all segments
Include source line numbers for debugging
Include public symbols in map file
Ignore the default libraries
Include detailed segment map in map file
Create a .COM rather than an .EXE file (tiny model
only)
Include complete debugging information
Do not create a map file
Use full 32-bit processing

The TLINK Options

368 Turbo CIC++: The Complete Reference

any point in the TLINK command line. For example, the following link
line does not produce a map file and causes source code line numbers to
be included in the executable file:

TLINK /x /l \TC\LIB\COs MYFILE, , , \TC\LIB\CS

If you have compiled your C program using the tiny memory model,
you can create a .COM rather than an .EXE file if you specify the /t
linker option.

The Turbo C Library

Part Three examines the Turbo C library. It covers the standard library
as defined by the ANSI standard in addition to the de facto UNIX
standard functions and Turbo C's additions. Chapter 15 begins with a
discussion of linking, libraries, and header files. Chapters 16 through 24
describe the functions found in the library, with each chapter concen­
trating on a specific group. Note that all of the functions described in
this section are also available in Turbo C++.

p
A
R
T

T
H
R
E
E

369

Linking, Libraries, and Header Files

If you have never been involved with the creation of a C compiler, it is
sometimes hard to understand that the compiler itself is actually fairly
easy to develop. It is the library functions that take the most time and
effort because the C standard library defines such a large and diverse
set of functions, and many of them must interface with the operating
system. Indeed, it is the richness and flexibility of the standard library
that sets C above many other languages. Given the fact that Turbo C
supplies a great many more functions in its library than are specified by
the ANSI standard, it is difficult to imagine the hours of effort that went
into its creation.

To understand the nature of the executable program produced by
Turbo C, it is important to understand how the linker works, how
libraries differ from object files, and the role of header files.

The Linker

The output of the compiler is a relocatable object file, and the output of
the linker is an executable file. The role the linker plays is twofold.
First, it physically combines the files specified in the link list into one
program file. Second, it resolves external references and memory ad­
dresses. An external reference is created any time the code in one file
refers to code found in another file through either a function call or a
reference to a global variable. For example, when the two files shown
here are linked together, file two's reference to count must be resolved.
It is the linker that "tells" the code in file two where count will be found
in memory.

F
I
F
T
E
E
N

372 Turbo CIC++: The Complete Reference

file one:

int count;
extern void display(void);

main(void)
{

}

count = 10;
display();
return 0;

file two:

#include <stdio.h>
extern int count;

void display(void)
{

printf("%d", count);
}

In a similar fashion, the linker also "tells" file one where the func­
tion display() is located so that it can be called.

When Turbo C generates the object code for file two, it substitutes
a placeholder for the address of count because it has no way of knowing
where count is located in memory. The same sort of thing occurs when
file one is compiled: The address of display() is not known so a place­
holder is used. This process forms the basis for relocatable code.

To understand relocatable code, you must first. understand absolute
code. Although it is seldom done today, in the earlier days of computers
it was not uncommon for a program to be compiled to run at a specific
memory location. When compiled in this way, all addresses are fixed at
compile time. Because the addresses are fixed, the program can be
loaded . into and executed at only one exact region of memory: the one
for which it was compiled. By contrast, relocatable code is compiled so
that the address information is not fixed. In a re.locatable object file, the
address of each call, jump, or global variable is relative to an offset.
When the file is loaded into memory for execution, the loader automati­
cally resolves the relative addresses into addresses that work for the
location in memory into which it has been loaded. This means that a
relocatable program can be loaded into and run from many different
memory locations.

Linking, Libraries, and Header Files 373

The C Standard Library

The ANSI standard has defined both the content and the form of the C
standard library. To allow the fullest possible use and control of the
computer, however, Turbo C contains many additional functions. For
example, Turbo C supplies a complete set of screen and graphics func­
tions even though these functions are not defined by the ANSI standard.
AB long as you will not be porting the programs you write to a new
environment, it is perfectly acceptable to use these enhanced functions.

Library Flies Versus Object Flies

Although libraries are similar to object files, they have one crucial
difference: Not all the code in the library is added to your program.
When you link a program that consists of several object files, all the
code in each object file becomes part of the finished executable program.
This happens whether the code is actually used or not. In other words,
all object files specified at link time are "added together'' to form the
program. This is not the case with library files.

A library is a collection of functions. Unlike an object file, a library
file stores the name of each function, the function's object code, and
relocation information necessary to the linking process. When your
program references a function contained in a library, the linker looks up
that function and adds the code to your program. Only functions that
you actually use in your program are added to the executable file.

Because functions are added to your program selectively when a
library is used, the Turbo C functions are contained in a library rather
than object files. (If they were in object files, every program you wrote
would be several hundred thousand bytes long!)

Header Flies

Many functions found in the Turbo C library work with their own
specific data types and variables to which your program must have

374 Turbo CIC++: The Complete Reference

access. These variables and types are defined in header files supplied
with the compiler, and they must be included (using #include) in any
file that uses the specific functions they refer to. In addition, all func­
tions in Turbo C's library have their prototypes defined in a header file
to provide a means of stronger type-checking. By including the header
files that correspond to the standard functions used by your program,
you can catch potential type mismatch errors. For example, including
string.h, the string function's header, will cause the following code to
produce a warning message when compiled:

#include <string.h>

char sl[20] = "hello ";
char s2[] = "there.";

main(void)
{

}

int p;

p = strcat(sl, s2);
return 0;

Because strcat() is declared as returning a character pointer in its
header file, Turbo C can now flag as a possible error the assignment of
that pointer to the integer p.

The standard header files used by Turbo C and those header files
specific to Turbo C++ are shown in Table 15-1. Some header files are
redundant: For example, all the declarations found in alloc.h are dupli­
cated in stdlib.h. The redundant header files are included to allow
source code written prior to the ANSI standard to compile without
change. In the remaining chapters of Part Three, the description of each
function specifies which header file is associated with it.

Macros In Header Files

Many of the Turbo C library functions are not functions at all but macro
definitions contained in a header file. For example, abs(), which returns
the absolute value of its integer argument, could be defined as a macro,
as shown here:

#define abs(i) (i<O) ? -i : i

Header File
ALLOC.H
ASSERT.H
BCD.H
BIOS.H
COMPLEX.H
CONIO.H
CTYPE.H
DIR.H
DOS.H
ERRNO.H
FCNTL.H
FLOAT.H
FSTREAM.H
GENERIC.H
GRAPHICS.H
IO.H
IOMANIP.H
IOSTREAM.H
LIMITS.H
LOCALE.H
MATH.H
MEM.H
PROCESS.H
SETJMP.H
SHARE.H
SIGNAL.H
STDARG.H
STDDEF.H
STDIO.H
STDLIB.H
STREAM.H
STRSTREA.H
STRING.H
SYS\STAT.H
SYS\TIMEB.H
SYS\TYPES.H
TIME.H
VALUES.H

Table 15-1.

Linking, Libraries, and Header Files 375

Purpose or Use
Dynamic allocation functions (ANSI C)
Defines the assert() macro
Defines the bed class (C++)
ROM-BIOS functions
Defines the complex-number class (C++)
Screen-handling functions
Character-handling functions (ANSI C)
Directory-handling functions
DOS interfacing functions
Defines error codes (ANSI C)
Defines constants used by open() function
Defines implementation-dependent floating-point values (ANSI C)
File I/O class definitions (C++)
Macros for faking generic class declarations (C++)
Graphics functions
UNIX-like I/0 routines
Defines I/O manipulators (C++)
Defines I/O stream class (C++)
Defines implementation-dependent various limits (ANSI C)
Country and language specifying functions (ANSI C)
Various definitions used by the math library (ANSI C)
Memory-manipulation functions
spawn() and exec() functions
Nonlocal jumps
File sharing
Defines signal values (ANSI C)
Variable-length argument lists (ANSI C)
Defines some commonly used constants (ANSI C)
Definitions and declarations for standard I/0 streams (ANSI C)
Miscellaneous declarations (ANSI C)
Definitions for old stream class (C++)
Istrstream and ostrstream class definitions (C++)
String functions (ANSI C)
Defines constants for file opening
Declarations needed for the ftime() function
Type declarations used with time functions
System time functions (ANSI C)
Machine-dependent constants

The Standard Header Files

376 Turbo CIC++: The Complete Reference

Generally, whether a standard function is defined as a macro or as a
regular C function is of no consequence. In rare situations where a
macro definition is unacceptable-for example, where code size is to be
minimized-you will have to create a real function and substitute it for
the macro.

To force the compiler to use the real function, you must prevent the
compiler from substituting the macro when the function name is encoun­
tered. Although there are several possible ways to do this, by far the
best is simply to undefine the macro name by using #undef. For
example, to force the compiler to substitute the real function for the
abs() macro defined previously, you would insert this line of code near
the beginning of your program:

#undef abs

Then, since abs() is no longer defined as a macro, the function version
will be used.

1/0 Functions

The functions that make up the C input/output system can be grouped
into three major catagories: console I/O, buffered file I/0, and the
UNIX-like unbuffered file I/O. Strictly speaking, console I/O is made up
of functions that are special-case versions of the more general functions
found in the buffered file system. However, in general usage, console I/O
and file I/0 have enough differences that they are often thought of as
conceptually separate, especially by beginners. In the first part of this
book, the console and buffered file I/O were treated as somewhat sepa­
rate as a means of emphasizing their differences. In this section, how­
ever, no such distinction is made because they use a common logical
interface.

The unbuffered UNIX-like I/O system is not defined by the ANSI C
standard and is expected to decline in popularity. The UNIX-like I/O
system functions are included in Turbo C's library to ensure compatibil­
ity with existing programs.

The 1/0 Functions

This chapter describes each of the I/0 functions, including the UNIX­
like ones. (Remember that the nonstandard UNIX-like I/O functions
include open(), close(), read(), write(), creat(), and unlink().)

For the ANSI C standard I/O system functions, the header stdio.h
is required. For the UNIX-like routines the header io.h is required.

378 Turbo CIC++: The Complete Reference

Many of the I/O functions set the predefined global integer variable
errno to an appropriate error code when an error occurs. This variable
is declared in errno.h.

Int access{const char *filename, Int mode)

Description

The prototype for access() is found in io.h.
The access() function belongs to the UNIX-like file system and is

not defined by the ANSI C standard. It is used to see if a file exists. It
can also be used to tell whether the file is write-protected and if it can
be executed. The name of the file in question is pointed to by filename.
The value of mode determines exactly how access() functions. The legal
values are

0

1

2

4

6

Check for file existence

Check for executable file (ignored)

Check for write access

Check for read access

Check for read/write access

The access() function returns 0 if the specified access is allowed; other­
wise it returns -1. Upon failure, the predefined global variable errno is
set to one of these values:

EN OE NT

EACCES

Example

Path or file name not found

Access denied

The following program checks to see if the file TEST.TST is present in
the current working directory:

#include <stdio.h>
#include <io.h>

main(void)
{

if(!access("TEST.TST", O))

printf("file present");
else

printf("file not found");
return O;

Related Functions

chmod()

1/0 Functions 379

Int _chmod (const char *filename, Int get_set, Int attrlb)

Description

The prototype for _ chmod() is found in io.h.
The _ chmod() function is not defined by the ANSI C standard. It

is used to read or set the attribute byte associated with the file pointed
to by filename as allowed by DOS. If get_ set is 0, _ chmod() returns
the current file attribute and attrib is not used. If get_set is 1, the file
attribute is set to the value of attrib. The attrib argument can be one of
these macros:

FA_RDONLY Set file to read only

FA_HIDDEN Make hidden file

FA_ SYSTEM Mark as a system file

The _chmod() function returns the file attribute if successful. Upon
failure, it returns a -1 and sets errno to either ENOENT if the file
does not exist or EACCES if access to the file is denied.

Example

This line of code sets the file TEST.TST to read only.

if (_chmod ("TEST. TST", 1, FA_RDONLY) ==FA_RDONLY)
printf("file set to read-only mode");

Related Functions

chmod(), access()

380 Turbo CIC++: The Complete Reference

Int chmod(const char *filename, Int mode)

Description

The prototype for chmod() is found in io.h.
The chmod() function is not defined by the ANSI C standard. It

changes the access mode of the file pointed to by filename to that
specified by mode. The value of mode must be one or both of the macros
S _ IWRITE and S _ IREAD, which correspond to write access and
read access, respectively. To change a file's mode to read/write status,
call chmod() with mode set to S _ IWRITE l S _ IREAD.

The chmod() function returns 0 if successful and -1 if unsuccessful.

Example

This call to chmod() attempts to set the file TEST.TST to read/write
access:

if (! chmod ("TEST. TST", S_IREAD I S_IWRITE))
printf("file set to read/write access");

Related Functions

access(), _ chmod()

Int chslze(char handle, Jong size)

Description

The prototype for chsize() is found in io.h.
The chsize() function is not defined by the ANSI C standard. It

extends or truncates the file specified by handle to the value of size.
The chsize() function returns 0 if successful. Upon failure, it re­

turns -1 and errno is set to one of the following:

EACCES

EBADF
Permission denied

Bad file handle

1/0 Functions 381

Example

This call to chsize() attempts to change the size of TEST.TST.

/*

*/

Assume that a file associated with handle
has been opened.

if(lchsize(handle, 256))
printf("file size is now 256 bytes.");

Related Functions

open(), close(), creat()

void clearerr(FILE •stream)

Description

The prototype for clearerr() is found is stdio.h.
The clearerr() function is used to reset the file error flag pointed to

by stream to 0 (ofl). The end-of-file indicator is also reset.
The error flags for each stream are initially set to 0 by a successful

call to fopen(). Once an error has occurred, the flags stay set until an
explicit call to either clearerr() or rewind() is made.

File errors can occur for a wide variety of reasons, many of which
are system dependent. The exact nature of the error can be determined
by calling perror(), which displays which error has occurred (see
perror()).

Example

This program copies one file to another. If an error is encountered, a
message is printed and the error is cleared.

#include <stdio.h>
#include <stdlib.h>

main(fnt argc, char •argv[]) /* copy one file to another */
{

FILE *1n, •out;

382 Turbo CIC++: The Complete Reference

}

char ch;

if(argc!=3) {

}

printf("You forgot to enter a filename\n");
exit(O);

if((in=fopen(argv[l],"rb")) ==NULL) {
printf("cannot open file\n");
exit(O);

}
if ((out=fopen (argv [2], "wb")) == NULL) {

printf("cannot open file\n");
exit (O);

}

while(!feof(in)) {
ch= getc(in);
if(ferror{in)) {

printf("read error");
clearerr(in);

} else {

}

putc(ch, out);
if(ferror(out)) {

printf("write error");
clearerr(out);

}

}
fclose(in);
fclose(out);
return 0;

Related Functions

feof(), ferror(), perror()

Int closeflnt fdJ

int _ close(int fdJ

Description

The prototypes for close() and _close() are found in io.h.

1/0 Functions 383

The close() function belongs to the UNIX-like file system and is
not defined by the ANSI C standard. When close() is called with a valid
file descriptor, it closes the file associated with it and flushes the write
buffers if applicable. (File descriptors are created through a successful
call to open() or creat() and do not relate to streams or file pointers.)

When successful, close() returns a O; if unsuccessful, it returns a
-1. Although there are several reasons why you might not be able to
close a file, the most common is the premature removal of the medium.
For example, if you remove a diskette from the drive before the file is
closed, an error will result. A successful call to close() appends a CTRL-Z
to the end of the file.

The _close() function works exactly like close() except that it
does not write a CTRL-Z to the file.

Example

This program opens and closes a file using the UNIX-like file system:

#include <stdio.h>
#include <fcntl.h>
#include <sys\stat.h>
#include <io.h>
#include <stdlib.h>

main(int argc, char *argv[])
{

}

int fd;

if((fd=open(argv[l],O_ROONLY))==-1) {
printf("cannot open file");
exit{l);

}

printf("file is existent\n");

if(close(fd))
printf{"error in closing file\n");

return 0;

Related Functions

open(), creat(), read(), write(), unlink()

384 Turbo CIC++: The Complete Reference

Int creat(const char *filename, Int pmode}

Int _ creat(const char *filename, Int attrlb}

Int creatnew(const char *filename, Int attrlb}

Int creattemp(const char *filename, Int attrlb}

Description

The prototypes for these functions are found in io.h.
The creat() function is part of the UNIX-like file system and is not

defined by the ANSI C standard. Its purpose is to create a new file with
the name pointed to by filename and to open it for writing. On success
creat() returns a file descriptor that is greater than or equal to O; on
failure it returns a -1. (File descriptors are integers and do not relate
to streams or file pointers.)

The value of pmode determines the file's access setting, sometimes
called its permission mode. The value of pmode is highly dependent
upon the operating system. For DOS, its values can be S_IWRITE or
S _ IREAD. If pmode is set to S _ IREAD, a read-only file is created. If
it is set to S _WRITE, a writable file is created. You can OR these
values together to create a read/write file.

If, at the time of the call to creat(), the specified file already exists,
it is erased and all previous contents are lost unless the original file was
write-protected.

The _ creat() function works like creat() but uses a DOS attribute
byte. The attrib argument may be one of these macros:

FA_RDONLY

FA_HIDDEN

FA_ SYSTEM

Set file to read only

Make hidden file

Mark as a system file

The creatnew() function is the same as _ creat() except that if the
file already exists on disk, creatnew() returns an error and does not
erase the original file.

The creattemp() function is used to create a unique temporary file.
You call creattemp() with filename pointing to the path name ending

1/0 Functions 385

with a backslash. Upon return, filename contains the name of a unique
file. You must make sure that filename is large enough to hold the file
name.

In the case of an error in any of these functions, errno is set to one
of these values:

ENOENT

EMF ILE

EA CC ES

EEXIST

Example

Path or file does not exist

Too many files are open

Access denied

File exists (creatnew() only)

The following code fragment creates a file called test:

#include <stdio.h>
#include <sys\stat.h>
#include <io.h>
#include <stdlib.h>

main(void)
{

int fd;

if((fd=creat("test" ,S_IWRITE))==-1) {
printf("cannot open file\n");
exit(l);

}

Related Functions

open(), close(), read(), write(), unlink(), eof()

Int dup(lnt handle)

Int dup2(1nt old_ handle, Int new_ handle)

Description

The prototypes for dup() and dup2() are found in io.h.

386 Turbo CIC++: The Complete Reference

The dup() function returns a new file descriptor that fully describes (i.e.
duplicates) the state of the file associated with handle. It return nonne­
gative on success; -1 on failure.

The dup2() function duplicates old-handle as new _handle. If there
is a file associated with new_handle prior to the call to dup2(), it is
closed. It returns 0 if successful, -1 when an error occurs.

Example

This fragment assigns fp2 a new file descriptor:

FILE *fp, *fp2;

fp2 = dup(fp);

Related Functions

close(), creat()

Int eof(lnt fdJ

Description

The prototype for eof() is found in io.h.
The eof() function is part of the UNIX-like file system and is not

defined by the ANSI C standard. When called with a valid file descrip­
tor, eof() returns 1 if the end of the file has been reached; otherwise it
returns a 0. If an error has occurred, it returns a -1 and errno is set to
EBADF (bad file number).

Example

The following program displays a text file on the console using eof() to
determine when the end of the file has been reached.

#include <stdio.h>
#include <io.h>
#include <fcntl.h>
#include <stdlib.h>

main(int argc, char *argv[])
{

}

int fd;
char ch;

if((fd=open(argv[l],O_RDWR))==-1)
printf("cannot open file\n");
exit(l);

while(!eof(fd)) {

}

read(fd, &ch, 1); /*read one char at a time*/
printf("%c", ch);

close(fd);
return O;

Related Functions

open(), close(), read(), write(), unlink()

Int fclose(FILE *Stream)

Int fcloseall(vold)

Description

1/0 Functions 387

The prototypes for fclose() and fcloseall() are found in stdio.h.
The f close() function closes the file associated with stream and

flushes its buffer. After an fclose(), stream is no longer connected with
the file and any automatically allocated buffers are deallocated.

If fclose() is successful, a 0 is returned; otherwise a non-0 number
is returned. Trying to close a file that has already been closed is an
error.

388 Turbo CIC++: The Complete Reference

The fcloseall() closes all open streams except stdin, stdout,
stdaux, stdprn, and stderr. It is not defined by the ANSI C standard.

Example

The following code opens and closes a file:

#include <stdio.h>
#include <stdlib.h>

main(void)
{

}

FILE *fp;

if ((fp=fopen ("test", "rb")) ==NULL) {
printf("cannot open file\n");
exit(l);

}

if(fclose(fp))
printf("file close error\n");

return O;

Related Functions

fopen(),freopen(),fHush()

FILE *fdopen(int handle, char *mode)

Description

The prototype for fdopen() is found in stdio.h.
The fdopen() function is not defined by the ANSI C standard. It

returns a stream that shares the same file that is associated with
handle, where handle is a valid file descriptor obtained through a call to
one of the UNIX-like I/O routines. In essence, fdopen() is a bridge
between the ANSI stream-based file system and the UNIX-like file
system. The value of mode must be the same as that of the mode that
originally opened the file.

See open() and fopen() for details.

Related Functions

open(), fopen(),creat()

Int feof(FILE *Stream)

Description

The prototype for feof() is found in stdio.h.

1/0 Functions 389

The feof() checks the file position indicator to determine if the end
of the file associated with stream has been reached. A non-0 value is
returned if the file position indicator is at the end of the file; a 0 is
returned otherwise.

Once the end of the file has been reached, subsequent read opera­
tions return EOF until either rewind() is called or the file position
indicator is moved using fseek().

The feof() function is particularly useful when working with binary
files because the end-of-file marker is also a valid binary integer. You
must make explicit calls to f eof() rather than simply testing the return
value of getc(), for example, to determine when the end of the file has
been reached.

Example

This code fragment shows the proper way to read to the end of a binary
file

/*

*/

Assume that fp has been opened as a binary file
for read operations.

while(!feof(fp)) getc(fp);

Related Functions

clearerr(), ferror(), perror(), putc(), getc()

390 Turbo CIC++: The Complete Reference

int ferror(FILE *Stream)

Description

The prototype for f error() is found in stdio.h.
The ferror() function checks for a file error on the given stream. A

return value of 0 indicates that no error has occurred while a non-0
value indicates an error.

The error flags associated with stream stay set until either the file
is closed, or rewind() or clearerr() is called.

Use the perror() function to determine the exact nature of the
error.

Example

The following code fragment aborts program execution if a file error
occurs:

/*

*/

Assume that fp points to a stream opened for write
operations.

while(!done) {
putc(info,fp);
if(ferror(fp)) {

printf("file error\n");
exit (1);

}

}

Related Functions

clearerr(), feof(), perror()

Int fflush(FILE *Stream);

Description

The prototype for fHush() is found in stdio.h.

1/0 Functions 391

If stream is associated with a file opened for writing, a call to
fHush() causes the contents of the output buffer to be physically written
to the file. If stream points to an input file, the input buffer is cleared. In
either case the file remains open.

A return value of 0 indicates success, while non-0 means a write
error has occurred.

All buffers are automatically flushed upon normal termination of the
program or when they are full. Closing a file flushes its buffer.

Example

The following code fragment flushes the buff er after each write opera­
tion.

/*
Assume that fp is associated with an output file.

*/

fwrite(buf,sizeof(data_type),l,fp);
ffl ush(fp);

Related Functions

fclose(), fopen(), flushall(), fwrite()

Int fgetc(FILE *Stream);

Description

The prototype for fgetc() is found in stdio.h.
The fgetc() function returns the next character from the input

stream from the current position and increments the file position in­
dicator.

392 Turbo CIC++: The Complete Reference

If the end of the file is reached, fgetc() returns EOF. However,
since EOF is a valid integer value, when working with binary files you
must use feof() to check for end-of-file. If fgetc() encounters an error,
EOF is also returned. Again, when working with binary files you must
use f error() to check for file errors.

Example

This program reads and displays the contents of a binary file:

#include <stdio.h>
#include <stdlib.h>

main(int argc, char *argv[])
{

}

}

}

FILE *fp;
char ch;

if({fp=fopen(argv[l], "r"))==NULL) {
printf("cannot open file\n");
exit(l);

while((ch=fgetc(fp))!=EOF) {
printf("%c",ch);

fclose(fp);
return 0;

Related Functions

fputc(), getc(), putc(), fopen()

Int fgetchar(voidJ

Description

The prototype for fgetchar() is found in stdio.h.
The fgetchar() function is functionally equivalent to fgetc(stdin).

Refer to fgetc() for details.

1/0 Functions 393

int *fgetpos(FILE *Stream, fpos _ t *pos)

Description

The prototype for fgetpos() is found in stdio.h.
The fgetpos() function is defined by the ANSI C standard. It

stores the current location of the file pointer associated with stream in
the variable pointed to by pas. The type fpos _ t is defined in stdio.h.

If successful, fgetpos() returns O; upon failure, a value other than 0
is returned and errno is set to one of the following values:

EBADF
EINVAL

Bad file stream

Invalid argument

Example

This program uses fgetpos() to display the current file position:

#include <stdio.h>
#include <stdlib.h>
main(int argc, char *argv[])
{

}

FILE *fp;
long l;
int i;
fpos_t *pos; /* fpos_t is defined in stdio.h */
pos = &l;

if((fp=fopen(argv[l],"w+"))==NULL) {
printf("cannot open file\n");
exit (1);

for (i=O; i<lO; i++)
fputc('Z', fp); /*write 10 Z's to the file*/

fgetpos(fp, pos);

printf("We are now at position %ld in the file.", *pos);
fclose(fp);
return O;

Related Functions

fsetpos(), fseek(), ftell()

394 Turbo CIC++: The Complete Reference

char *fgets(char *Str, Int num, FILE *Stream)

Description

The prototype for fgets() is found in stdio.h.
The fgets() function reads up to num -1 characters from stream

and places them into the character array pointed to by str. Characters
are read until either a newline or an EOF is received or until the
specified limit is reached. After the characters have been read, a null is
placed in the array immediately after the last character read. A newline
character will be retained and will be part of str.

If successful, fgets() returns str; a null pointer is returned upon
failure. If a read error occurs, the contents of the array pointed to by str
are indeterminate. Because a null pointer is returned when either an
error occurs or the end of the file is reached, you should use feof() or
f error() to determine what has actually happened.

Example

This program uses fgets() to display the contents of the text file
specified in the first command-line argument:

#include <stdio.h>
#include <stdlib.h>

main(int argc, char *argv(])
{

}

FILE *fp;
char str[128];

if((fp=fopen(argv[l], "r"))==NULL) {

}

printf("cannot open file\n");
exit(l);

while(!feof(fp)) {
if(fgets(str,126,fp))

printf("%s",str);
}
fclose(fp);
return O;

Related Functions

fputs(), fgetc(), gets(), puts()

1/0 Functions 395

long filelength(int handle)

Description

The prototype for filelength() is found in io.h.
The filelength() function is not defined by the ANSI C standard. It

returns the length, in bytes, of the file associated with the file descriptor
handle. Remember that the return value is of type long. If an error
occurs, -lL is returned and errno is set to EBADF, which means bad
file number.

Example

This fragment prints the length of a file whose file descriptor is f d:

printf("The file is %ld bytes long.", filelength(fd));

Related Functions

open()

int fileno(FILE *Stream)

Description

The prototype for fileno() is found in stdio.h.
The fileno() function is not defined by the ANSI C standard. It is

used to return a file descriptor to the specified stream.

Example

After this fragment has executed, f d is associated with the file pointed
to by stream:

FILE *stream;
int fd;

if(! (stream=fopen("TEST", "r"))) {

396 Turbo CIC++: The Complete Reference

}

printf("cannot open TEST file"):
exit(l):

fd = fileno(stream);

Related Functions

fdopen()

Int flushall(voldJ;

Description

The prototype for fiushall() is found in stdio.h. It is not defined by the
ANSI C standard.

A call to flushall() causes the contents of all the output buffers
associated with file streams to be physically written to their correspond­
ing files and all the input buffers to be cleared. All streams remain open.

The number of open streams is returned.
All buffers are automatically flushed upon normal termination of the

program or when they are full. Also, closing a file flushes its buffer.

Example

The following code fragment flushes all buffers after each write
operation:

/*
Assume that fp is associated with an output file.

*/

fwrite(buf,sizeof(data_type),1,fp);
fl ushall ():

Related Functions

fclose(), fopen(), fcloseall(), fflush()

1/0 Functions 397

FILE *fopen(const char *fname, const char *mode)

Description

The prototype for fopen() is found in stdio.h.
The fopen() function opens a file whose name is pointed to by

fname and returns the stream that is associated with it. The type of
operations that are allowed on the file are defined by the value of mode.
The legal values for mode are shown in Table 16-1. The parameter
fname must be a string of characters that constitute a valid file name
and can include a path specification.

If fopen() is successful in opening the specified file, a FILE pointer
is returned. If the file cannot be opened, a null pointer is returned.

AB Table 16-1 shows, a file can be opened in either text or binary
mode. In text mode, carriage return, linefeed sequences are translated

Mode
"r"
"w''
"a"

"rb"
"wb"
"ab"
"r+"
"w+"
"a+"
"rb+"
"wb+"
"ab+"
"rt"
"wt"
"at"
"r+t"
"w+t"
"a+t"

Meaning
Open file for reading
Create a file for writing
Append to file
Open binary file for reading
Create binary file for writing
Append to a binary file
Open file for read/write
Create file for read/write
Open file for read/write
Open binary file for read/write
Create binary file for read/write
Open binary file for read/write
Open a text file for reading
Create a text file for writing
Append to a text file
Open a text file for read/write
Create a text file for read/write
Open or create a text file for read/write

Table 16-1. Legal Values for Mode

398 Turbo CIC++: The Complete Reference

to newline characters on input. On output, the reverse occurs: newlines
are translated to carriage return, linefeeds. No such translations occur
on binary files.

If the mode string does not specify either a b (for binary) or a t (for
text), the type of file opened is determined by the value of the built-in
global variable _fmode. By default, _fmode is O _TEXT, which
means text mode. It can be set to O_BINARY, which means binary
mode. The macros are defined in f cntl.h.

One correct method of opening a file is illustrated by this code
fragment:

FILE *fp;

if ((fp = fopen("test","w"))==NULL) {
printf("cannot open file\n"):
exit(l):

}

This method detects any error in opening a file, such as a write­
protected or full disk, before attempting to write to it. A null, which is 0,
is used because no file pointer ever has that value. NULL is defined in
stdio.h.

If you use fopen() to open a file for write, any preexisting file by
that name is erased, and a new file is started. If no file by that name
exists, one is created. If you want to add to the end of the file, you must
use mode a. If the file does not exist, an error is returned. Opening a file
for read operations requires an existing file. If no file exits, an error is
returned. Finally, if a file is opened for read/write operations, it is not
erased if it exists; however, if no file not exists, one is created.

Example

This fragment opens a file called test for binary read/write operations:

FILE *fp;

if(!(fp=fopen("test","rb+"))) {
printf("cannot open file\n"):
exit(l);

}

Related Functions

fclose(), fread(), fwrite(), putc(), getc()

1/0 Functions 399

Int fprlntf(FILE *Stream, canst char *format, arg-llstJ

Description

The prototype for fprintf() is found in stdio.h.
The fprintf() function outputs the values of the arguments that

make up arg-list as specified in the format string to the stream pointed
to by stream. The return value is the number of characters actually
printed. If an error occurs, a negative number is returned.

The operations of the format control string and commands are
identical to those in printf(); see the printf() function for a complete
description.

Example

This program creates a file called test and writes the string "this is a
test 10 20.01" into the file using fprintf() to format the data:

#include <stdio.h>
#include <stdlib.h>

main(void)
{

}

FILE *fp;

if (! (fp=fopen ("test", "w"))) {
printf("cannot open file\n");
exit(l);

}

fprintf(fp, "this is a test %d %f", 10, 20.01);

fclose(fp);
return O;

Related Functions

printf(), fscanf()

Int fputc(lnt ch, FILE *Stream)

Description

The prototype for fputc() is found in stdio.h.

400 Turbo CIC++: The Complete Reference

The fputc() function writes the character ch to the specified stream
at the current file position and then increments the file position indica­
tor. Even though ch is declared to be an int, it is converted by fputc()
into an unsigned char. Because all character arguments are elevated to
integers at the time of the call, you generally see character variables
used as arguments. If an integer is used, the high-order byte is simply
discarded.

The value returned by fputc() is the value of the character written.
If an error occurs, EOF is returned. For files opened for binary opera­
tions, EOF may be a valid character, and the function ferror() must be
used to determine whether an error has actually occurred.

Example

This function writes the contents of a string to the specified stream:

write_string(char *str, FILE *fp)
{

while(*str) if(!ferror(fp)) fputc(*str++, fp);
}

Related Functions

fgetc(), fopen(), fprintf(), fread(), fwrite()

int fputchar(lnt ch)

Description

The prototype for fputchar() is found in stdio.h.
The fputchar() function writes the character ch to stdout. Even

though ch is declared to be an int, it is converted by fputchar() into an
unsigned char. Because all character arguments are elevated to inte­
gers at the time of the call, you generally see character variables used
as arguments. If an integer is used, the high-order byte is simply
discarded. A call to fputchar() is the functional equivalent of a call to
fputc(ch, stdout).

1/0 Functions 401

The value returned by fputchar() is the value of the character
written. If an error occurs, EOF is returned. For files opened for binary
operations, the EOF may be a valid character and the function ferror()
must be used to determine whether an error has actually occurred.

Example

This function writes the contents of a string to stdout:

write_string(char *str)
{

while(*str) if(!ferror(fp)) fputchar(*str++);
}

Related Functions

fgetc(), fopen(), fprintf(), fread(), fwrite()

Int fputs(const char *Str, FILE *Stream)

Description

The prototype for fputs() is found in stdio.h.
The fputs() function writes the contents of the string pointed to by

str to the specified stream. The null terminator is not written.
The fputs() function returns the last character written on success,

EOF on failure.
If the stream is opened in text mode, certain character translations

may take place. This means that there may not be a one-to-one mapping
of the string onto the file. However, if it is opened in binary mode, no
character translations occur and a one-to-one mapping exists between
the string and the file.

Example

This code fragment writes the string "this is a test" to the stream
pointed to by fp.

402 Turbo CIC++: The Complete Reference

fputs("this is a test",fp);

Related Functions

fgets(), gets(), puts(), fprintf(), fscanf()

size_ t fread(vold *buf, size_ t size, size_ t count, FILE
*Stream)

Description

The prototype for fread() is found in stdio.h.
The fread() function reads count number of objects-each object

being size number of characters in length-from the stream pointed to
by stream and places them in the character array pointed to by buf. The
file position indicator is advanced by the number of characters read.

The fread() function returns the number of items actually read. If
fewer items are read than are requested in the call, either an error has
occurred or the end of the file has been reached. You must use feof() or
f error() to determine what has taken place.

If the stream is opened for text operations, then carriage return,
linefeed sequences are automatically translated into newlines.

Example

This program reads ten floating point numbers from a disk file called
test into the array bal:

#include <stdio.h>
#include <stdlib.h>

main(void)
{

FILE *fp;
fl oat ba l [10);

if(!(fp=fopen("test","rb"))) {
printf("cannot open file\n");
exit(l);

}

if(fread(bal, sizeof(float), 10, fp)!=lO) {

}

}

if(feof(fp)) printf("premature end of file"):
else printf("file read error"):

fclose(fp);
return O;

Related Functions

fwrite(), fopen(), fscanf(), fgetc(), getc()

1/0 Functions 403

FILE *freopen(const char *fname, const char *mode, FILE
*Stream)

Description

The prototype for freopen() is found in stdio.h.
The freopen() function is used to associate an existing stream with

a different file. The new file's name is pointed to by fname, the access
mode is pointed to by mode, and the stream to be reassigned is pointed
to by stream. The string mode uses the same format as fopen(); a
complete discussion is found in the fopen() description.

When called, freopen() first tries to close a file that is currently
associated with stream. However, failure to achieve a successful closing
is ignored, and the attempt to reopen continues.

The freopen() function returns a pointer to stream on success and
a null pointer otherwise.

The main use of freopen() is to redirect the system-defined files
stdin, stdout, and stderr to some other file.

Example

The program shown here uses freopen() to redirect the stream stdout
to the file called OUT. Because printf() writes to stdout, the first
message is displayed on the screen and the second is written to the disk
file.

404 Turbo CIC++: The Complete Reference

#include <stdio.h>
#include <stdlib.h>

main(void)
{

}

}

FILE *fp;

printf("This will display on the screen\n");

if(!(fp=freopen("OUT","w",stdout))) {
printf("cannot open file\n");
exit(l);

printf("th1s will be written to the file OUT");
fclose(fp);
return O;

Related Functions

fopen(), fclose()

Int fscanf{FILE *Stream, const char *format, arg-llst)
Description

The prototype for fscanf() is found in stdio.h.
The fscanf() function works exactly like the scanf() function ex­

cept that it reads the information from the stream specified by stream
instead of stdin. See the scanf() function for details.

The fscanf() function returns the number of arguments actually
assigned. values. This number does not include skipped fields. A return
value of EOF means that an attempt was made to read past the end of
the file.

Example

This code fragment reads a string and a float number from the stream
fp:

char str[80];
float f;

fscanf(fp, "%s%f", str, &f);

Related Functions

scanf() , fprintf ()

1/0 Functions 405

Int fseek(FILE *Stream, long offset, Int origin)

Description

The prototype for fseek() is found in stdio.h.
The fseek() function sets the file-position indicator associated with

stream according to the values of offset and origin. Its main purpose is
to support random I/O operations. The offset is the number of bytes
from origin to make the new position. The origin is either a 0, 1, or 2,
with 0 being the start of the file, 1 the current position, and 2 the end of
the file. Turbo C also defines the following macros in stdio.h for origin:

Name

SEEK_SET

SEEK_ CUR

SEEK_END

Origin

Beginning of file

Current position

End of file

A return value of 0 means that fseek() succeeded. A non-0 value
indicates failure.

As specified by the ANSI C standard, offset must be a long int in
most implementations to support files larger than 64K bytes.

You can use fseek() to move the position indicator anywhere in the
file, even beyond the end. However, it is an error to attempt to set the
position indicator before the beginning of the file.

The fseek() function clears the end-of-file flag associated with the
specified stream. Furthermore, it nullifies any prior ungetc() on the
same stream. (See ungetc().)

Example

The function shown here seeks to the specified structure of type addr.
Notice the use of sizeof both to obtain the proper number of bytes to
seek and to ensure portability.

struct addr {
char name[40];
char street[40];
char city[40];
char state[3];
char zip[lO];

406 Turbo C/C++: The Complete Reference

} info;

void find(long client_num)
{

}

FILE *fp;

if(! (fp=fopen("mail","rb"))) {
printf("cannot open file\n");
exit(l);

}

/* find the proper structure */
fseek(client_num*sizeof(struct addr), O);

/* read the data into memory */
fread(&info, sizeof(struct addr), 1, fp);
fclose(fp);

Related Functions

ftell(), rewind(), fopen()

Int fsetposf FILE *Stream, const fpos _ t *posJ

Description

The prototype for fsetpos() is found in stdio.h.
The fsetpos() function is defined by the ANSI C standard. It sets

the file pointer associated with stream to the location pointed to by pos.
This value was set by a previous call to fgetpos(). The type fpos _ t is
defined in stdio.h. It is capable of representing any file location.

If successful, fsetpos() returns O; upon failure, a value other than 0
is returned, and errno is also set to a non-0 value.

Example

This program uses fsetpos() to reset the current file position to an
earlier value:

#include <stdio.h>
#include <stdlib.h>

main(int argc, char *argv[])

{

}

FILE *fp;
long l ;
int i;
fpos_t *pos; /* fpos_t is defined in stdio.h */
pos = &l;

if ((fp=fopen (argv [1] , "w+")) ==NULL) {
printf("cannot open file\n");
exit(l);

}

for (i=O; i<lO; i++)
fputc('Y', fp); /*write 10 Y's to the file*/

fgetpos(fp, pos);

for (i=O; i<lO; i++)
fputc('Z', fp); /*write 10 Z's to the file*/

fsetpos(fp, pos); /*reset to the end of the Y's */

fputc ('A' , fp) ;
fclose(fp);
return O;

/* replace first Z with an A. */

Related Functions

fgetpos(), fseek(), ftell()

Int fstat(lnt handle, struct stat *StatbufJ

Description

The prototype for fstat() is found in sys\stat.h.

1/0 Functions 407

The fstat() function fills the structure statbuf with information on
the file associated with the file descriptor handle. Information on the
contents of stat can be found in the file sys\stat.h.

Upon successfully filling the stat structure, 0 is returned. On error,
-1 is returned and errno is set to EBADF.

Example

The following example opens a file, fills the stat structure, and prints
out one of its fields:

408 Turbo CIC++: The Complete Reference

#include <stdio.h>
#include <sys\stat.h>
#include <stdlib.h>

main(void)
{

}

FILE *fp;
struct stat buff;

if(!(fp=fopen("test","rb"))) {
printf("cannot open file\n");
exit (1);

}

/* fill the stat structure */
fstat(fileno(fp), &buff);

printf("size of the file is: %ld\n", buff,st_size);
fclose(fp);
return 0;

Related Functions

stat(), access()

Jong fteJJ(FILE *Stream)

Description

The prototype for ftell() is found in stdio.h.
The ftell() function returns the current value of the file-position

indicator for the specified stream. This value is the number of bytes the
indicator is from the beginning of the file.

The ftell() function returns -lL when an error occurs. If the
stream is incapable of random seeks -if it is the console, for instance­
the return value is undefined.

Example

This code fragment returns the current value of the file-position indica­
tor for the stream pointed to by fp:

1/0 Functions 409

long i;
if((i=ftell(fp))==-ll) printf("A file error has occurred\n");

Related Functions}

fseek()

size_ t fwrlte(const void *buf, size_ t size, size_ t count, FILE
*Stream)

Description

The prototype for fwrite() is found in stdio.h.
The fwrite() function writes count number of objects- each object

being size number of characters in length- to the stream pointed to by
stream from the character array pointed to by buf The file-position
indicator is advanced by the number of characters written.

The fwrite() function returns the number of items actually written,
which, if the function is successful, equals the number requested. If
fewer items are written than are requested, an error has occurred.

Example

This program writes a float to the file test. Notice that sizeof is used
both to determine the number of bytes in a float variable and to ensure
portability.

#include <stdio.h>
#include <stdlib.h>

main(void)
{

FILE *fp;
float f=12.23;

if(!(fp=fopen("test","wb"))) {
printf("cannot open file\n");
exit(l);

}

fwrite(&f, sizeof(float), 1, fp);

41 O Turbo CIC++: The Complete Reference

}

fclose(fp);
return 0;

Related Functions

fread(), fscanf(), getc(), fgetc()

int getc(FILE *Stream}

Description

The prototype for getc() is found in stdio.h.
The getc() macro returns the next character from the current

position in the input stream and increments the file-position indicator.
The character is read as an unsigned char that is converted to an
integer.

If the end of the file is reached, getc() returns EOF. However,
since EOF is a valid integer value, when working with binary files you
must use feof() to check for the end of the file. If getc() encounters an
error, EOF is also returned. Remember that if you are working with
binary files you must use f error() to check for file errors.

Example

This program reads and displays the contents of a text file:

#include <stdio.h>
#include <stdlib.h>

main(int argc, char *argv[])
{

FILE *fp;
char ch;

if(!(fp=fopen(argv[l],"r"))) {
printf("cannot open file\n");
exit(l);

}

while((ch=getc(fp))!=EOF)
printf("%c", ch);

fclose(fp);

1/0 Functions 411

return O;
}

Related Functions

fputc(), fgetc(), putc(), fopen()

Int getch(vold)

int getche(vold)

Description

The prototypes for getch() and getche() are found in conio.h.
The getch() function returns the next character read from the

console but does not echo that character to the screen.
The getche() function returns the next character read from the

console and echoes that character to the screen.
Neither function is defined by the ANSI C standard.

Example

This fragment uses getch() to read the user's menu selection for a
spelling checker program.

do {
printf("l: check spelling\n"):
printf("2: correct spelling\n"):
printf("3: look up a word in the dictionary\n"):
printf("4: quit\n"):

printf("\nEnter your selection: "):
choice= getch():

} while(!strchr("1234", choice)):

Related Functions

getc(), getchar(), fgetc()

412 Turbo CIC++: The Complete Reference

Int getchar(voldJ

Description

The prototype for getchar() is found in stdio.h.
The getchar() macro returns the next character from stdin. The

character is read as an unsigned char that is converted to an integer. If
the end-of-file marker is read, EOF is returned.

The getchar() macro is functionally equivalent to getc(stdin).

Example

This program reads characters from stdin into the array s until a
carriage return is entered and then displays the string.

#include <stdio.h>

main(void)
{

}

char s[256], *p;

P = s;

while((*p++=getchar())!='\n') ;
*p = '\O'; /*add null terminator*/
printf(s);
return O;

Related Functions

fputc(), fgetc(), putc(), fopen()

char *gets(char *StrJ

Description

The prototype for gets() is found in stdio.h.

1/0 Functions 413

The gets() function reads characters from stdin and places them
into the character array pointed to by str. Characters are read until a
newline or an EOF is reached. The newline character is not made part
of the string but is translated into a null to terminate the string.

If successful, gets() returns str; if unsuccessful, it returns a null
pointer. If a read error occurs, the contents of the array pointed to by
str are indeterminate. Because a null pointer is returned when either an
error has occurred or the end of the file is reached, you should use
f eof() or f error() to determine what has actually happened.

There is no limit to the number of characters that gets() will read;
it is the programmer's job to make sure that the array pointed to by str
is not overrun.

Example

This program uses gets() to read a file name:

#include <stdio.h>
#include <stdlib.h>

main(void)
{

FILE *fp;
char fname[128];

printf("Enter filename: ");
gets(fname);

if(! (fp=fopen(fname, "r"))) {
printf("cannot open file\n");
exit(l);

}

fclose(fp);
return 0;

Related Functions

fputs(), fgetc(), fgets(), puts()

414 Turbo CIC++: The Complete Reference

Int getwf FILE *Stream)
Description

The prototype for getw() is found in stdio.h.
The getw() function is not defined by the ANSI C standard.
The getw() function returns the next integer from stream and

advances the file-position indicator appropriately.
Because the integer read may have a value equal to EOF, you must

use feof() or ferror() to determine when the end-of-file marker is
reached or an error has occurred.

Example

This program reads integers from the file inttest and displays their
sum.

#include <stdio.h>
#include <stdlib.h>

main(void)
{

}

FILE *fp;
int sum = O;

if(!(fp=fopen("inttest","rb"))) {
printf("cannot open file\n");
exit(l);

}

while{!feof(fp))
sum = getw{fp)+sum;

printf("the sum is %d",sum);
fclose(fp);
return O;

Related Functions

putw(), fread()

Int isattyflnt handle)
Description

The prototype for isatty() is found in io.h.

1/0 Functions 41 5

The function isatty() is not defined by the ANSI C standard. It
returns non-0 if handle is associated with a character device that is
either a terminal, console, printer, or serial port; otherwise, it returns 0.

Example

This fragment reports whether the device associated with fd is a charac­
ter device:

if{isatty{fd)) printf{"is a character device");
else printf{"is not a character device");

Related Functions

open()

Int lock(lnt handle, long offset, long length}

Description

The prototype for lock() is found io.h.
The lock() function is not defined by the ANSI C standard. It is

used to lock a region of a file, thus preventing another program from
using it until the lock is removed. To unlock a file use unlock(). These
functions provide control for file sharing in network environments.

The file to be locked is associated with handle. The portion of the
file to be locked is determined by the starting offset from the beginning
of the file and the length.

If lock() is successful, 0 is returned. Upon failure, -1 is returned.

Example

This fragment locks the first 128 bytes of the file associated with fd:

lock{fd, 0, 128);

Related Functions

unlock(),sopen()

416 Turbo CIC++: The Complete Reference

long lseek(lnt handle, long offset, Int origin)

Description

The prototype for lseek() is found in io.h.
The lseek() function is part of the UNIX-like I/O system and is not

defined by the ANSI C standard.
The lseek() function sets the file position indicator to the location

specified by offset and origin for the file specified by handle.
How lseek() works depends on the values of origin and offset. The

origin may be either 0, 1, or 2. The following chart explains how the
offset is interpreted for each origin value:

Origin

0

1

2

Effect of Call to lseek()

Count the offset from the start of the file

Count the offset from the current position

Count the offset from the end of the file

The following macros are defined in io.h. They can be used for a value of
origin in order of 0 through 2.

SEEK_SET
SEEK_ CUR
SEEK_END

The lseek() function returns offset on success. Therefore, lseek()
will be returning a long integer. Upon failure, a - lL is returned and
errno is set to one of these values;

EBADF

EINVAL

Example

Bad file number

Invalid argument

The example shown here allows you to examine a file one sector at a
time using the UNIX-like I/O system. You will want to change the
buffer size to match the sector size of your system.

#include <stdio.h>
#include <fcntl.h>
#include <sys\stat.h>
#include <io.h>
#include <stdlib.h>

#define BUF_SIZE 128

/* read buffers using lseek() */
main(int argc, char *argv[])
{

char buf[BUF_SIZE+l], s[lO];
int fd, sector;

1/0 Functions 41 7

buf[BUF_SIZE+l)='\O'; /*null terminate buffer for printf */
if((fd=open(argv[l], O_RDONLY))==-1) {/*open for write*/

printf("cannot open file\n");

}

exit(O);
}
do {

printf("buffer: ");
gets(s);

sector= atoi(s); /*get the sector to read*/

if (1 seek(fd, (1 ong) sector*BUF _SIZE,O) ==-lL)
printf("seek error\n");

if(read(fd, buf, BUF_SIZE)==O) {
printf("sector qut of range\n");

}
else

printf(buf);
} while(sector>O);
close(fd);
return 0;

Related Functions

read(), write(), open(), close()

Int open(const char *filename, Int access, unsigned mode)

lnt_open(const char *filename, Int access)

Description

The prototypes for open() and _open() are found in io.h.

418 Turbo CIC++: The Complete Reference

The open() function is part of the UNIX-like I/O system and is not
defined by the ANSI C standard.

Unlike the buffered I/O system, the UNIX-like system does not use
file pointers of type FILE, but rather file descriptors of type int. The
open() function opens a file with the name fname and sets its access
mode as specified by access. You can think of access as being con­
structed of a base mode of operation plus modifiers. The following base
modes are allowed.

Base

O_RDONLY

O_WRONLY

O_RDWR

Meaning

Open for read only

Open for write only

Open for read/write

After selecting one of these values, you may OR it with one or more of
the following access modifiers:

Access modifiers

O_NDELAY

O_APPEND

O_CREAT

O_TRUNC

O_EXCL

O_BINARY

O_TEXT

Meaning

Not used; included for UNIX compati­
bility

Causes the file pointer to be set to the
end of the file prior to each write opera­
tion

If the file does not exist, creates it with
its attribute set to the value of mode

If the file exists, truncates it to length 0
but retains its file attributes

When used with O _ CREAT, will not
create output file if a file by that name
already exists

Opens a binary file

Open a text file

The mode argument is only required if the 0 _ CREAT modifier is
used. In this case, mode may be one of three values:

Mode

S_IWRITE

S_IREAD

S _ IWRITE l S _ IREAD

1/0 Functions 41 9

Meaning

Write access

Read access

Read/write access

A successful call to open() returns a positive integer that is the file
descriptor associated with the file. A return value of -1 means that the
file cannot be opened, and errno is set to one of these values:

ENOENT

EMF ILE

EA CC ES

EINVACC

Path or file does not exist

Too many open files

Access denied

Access code is invalid

The function _open() accepts a larger number of modifiers for the
access parameter if executing under DOS 3.x or greater. These addi­
tional values are

Access Modifier

O _ NOINHERIT

O_DENYALL

O _DENYWRITE

O_DENYREAD

O_DENYNONE

Example

Meaning

File not passed to child programs

Only the current file descriptor has ac­
cess to the file

Only read access to the file allowed

Only write access to the file allowed

Allows shared files

You will usually see the call to open() like this:

if((fd=open(filename, mode)) == -1)
printf("cannot open file\n");
exit(l);

}

420 Turbo CIC++: The Complete Reference

Related Functions

close(), read(), write()

void perror(const char *StrJ
Description

The prototype for perror() is found in stdio.h.
The perror() function maps the value of the global errno onto a

string and writes that string to stderr. If the value of str is not null, the
string is written first, followed by a colon, and then the proper error
message as determined by the value of errno.

Example

This program purposely generates a domain error by calling asin()
with an out-of-range argument. The output is "Program Error Test:
Math argument".

#include <stdio.h>
#include <math.h>
#include <errno.h> /* contains declaration for errno */

main(void)
{

}

/* this will generate a domain error */
asin(lO.O);
if(errno==EDOM)

perror("Program Error Test");
return 0;

Related Functions

ferror()

Int prlntf(const char *format, arg-llstJ
Description

The prototype for printf() is found in stdio.h.
The printf() function writes to stdout the arguments that make up

arg-list under the control of the string pointed to by format.

1/0 Functions 421

The string pointed to by format consists of two types of items. The
first type is made up of characters that will be printed on the screen.
The second type contains format commands that define the way the
arguments are displayed. A format command begins with a percent sign
and is followed by the format code. The format commands are shown in
Table 16-2. There must be exactly the same number of arguments as
there are format commands, and the format commands and the argu­
ments are matched in order. For example, this printf() call,

printf("Hi %c %d %s",'c',10,"there!");

displays "Hi c 10 there!".
If there are insufficient arguments to match the format commands,

the output is undefined. If there are more arguments than format
commands, the remaining arguments are discarded.

The printf() function returns the number of characters actually
printed. A negative return value indicates that an error has taken place.

Code Format
%c A single character
%d Decimal
%i Decimal
%e Scientific notation
%f Decimal floating-point
%g Uses %e or %f, whichever is shorter
%0 Octal
%s String of characters
%u Unsigned decimal
%x Hexadecimal
%% Prints a % sign
%p Displays a pointer
%n The associated argument will be an integer pointer into which is

placed the number of characters written so far

Table 16-2. printf() Format Commands

422 Turbo CIC++: The Complete Reference

The format commands can have modifiers that specify the field
width, the number of decimal places, and left-justification. An integer
placed between the percent sign and the format command acts as a
minimum field width specifier. If the string or number is greater than
that minimum, it will be printed in full. If it is smaller than the mini­
mum, the output is padded with spaces or Os to ensure that it is the
specified length. The default padding is done with spaces. If you wish to
pad with Os, place a 0 before the field-width specifier. For example,
%05d pads a number of fewer than five digits with Os so that its total
length is five.

To specify the number of decimal places printed for a floating-point
number, place a decimal point after the field width specifier followed by
the number of decimal places you wish to display. For example, %10.4f
displays a number at least ten characters wide with four decimal places.
When this kind of format is applied to strings or integers, the number
following the period specifies the maximum field length. For example,
%5.7s displays a string that is at least five characters long and no longer
than seven. If the string is longer than the maximum field width, the
characters will be truncated off the end.

By default, all output is right-justified: If the field width is larger
than the data printed, the data will be placed on the right edge of the
field. You can force the information to be left-justified by placing a
minus sign directly after the %. For example, %-10.2f left-justifies a
floating-point number with two decimal places in a ten-character field.

There are two format-command modifiers that allow printf() to
display short and long integers. These modifiers can be applied to the d,
i, o, u, and x type specifiers. The I modifier tells printf() that a long
data type follows. For example, %Id means that a long int is to be
displayed. The h modifier instructs printf() to display a short int.
Therefore, %hu indicates that the data is of the type short unsigned
int.

The l modifier can also prefix the floating-point commands of e, f,
and g and indicates that a double follows.

The %n command causes the number of characters that have been
written at the time the %n is encountered to be placed in an integer
variable whose pointer is specified in the argument list. For example,
this code fragment displays the number 14 after the line "this is a test'':

int i:

printf("this is a test%n",&i);
printf("%d",i);

Example

1/0 Functions 423

This program displays the output shown in its comments:

#include <stdio.h>

main(void)
{

}

/*This prints "this is a test" left-justified
in 20-character field.

*/
printf("%-20s", "this is a test");

/* This prints a float with 3 decimal places in a 10
-character field. The output will be " 12.235".

*/
printf("%10.3f", 12.234657);
return O;

Related Functions

scanf(), fprintf()

Int putc(lnt ch, FILE *Stream)

Description

The prototype for putc() is found in stdio.h.
The putc() macro writes the character contained in the least signif­

icant byte of ch to the output stream pointed to by stream. Because
character arguments are elevated to integers at the time of the call, you
can use character variables as arguments to putc().

If successful, putc() returns the character written; it returns EOF
if an error occurs. If the output stream has been opened in binary mode,

424 Turbo CIC++: The Complete Reference

EOF is a valid value for ch. This means that you must use ferror() to
determine whether an error has occurred.

Example

The following loop writes the characters in string str to the stream
specified by fp. The null terminator is not written.

for(; *str; str++) putc(*str, fp);

Related Functions

fgetc(), fputc(), getchar(), putchar()

Int putchar(fnt ch)

Description

The prototype for putchar() is found in stdio.h.
The putchar() macro writes the character contained in the least

significant byte of ch to stdout. It is functionally equivalent to
putc(ch,stdout). Because character arguments are elevated to integers
at the time of the call, you can use character variables as arguments to
putchar().

If successful, putchar() returns the character written; if an error
occurs it returns EOF. If the output stream has been opened in binary
mode, EOF is a valid value for ch. This means that you must use
ferror() to determine if an error has occurred.

Example

The following loop writes the characters in string str to stdout. The null
terminator is not written.

for(; *str; str++) putchar(*str);

Related Functions

fputchar(), putc()

1/0 Functions 425

Int puts(const char *Str)

Description

The prototype for puts() is found in stdio.h.
The puts() function writes the string pointed to by str to the

standard output device. The null terminator is translated to a newline.
The puts() function returns a newline if successful and an EOF if

unsuccessful.

Example

The following writes the string "this is an example" to stdout.

#include <stdio.h>
#include <string.h>

main(void)
{

char str[SO];

strcpy(str, "this is an example");
puts(str);
return 0;

Related Functions

putc(), gets(), printf()

Int putw(lnt I, FILE *Stream)

Description

The prototype for putw() is in stdio.h. The putw() function is not
defined by the ANSI C standard and may not be fully portable.

The putw() function writes the integer i to stream at the current
file position and increments the file-position pointer appropriately.

426 Turbo CIC++: The Complete Reference

The putw() function returns the value written. A return value of
EOF means an error has occurred in the stream if it is in text mode.
Because EOF is also a valid integer value, you must use ferror() to
detect an error in a binary stream.

Example

This code fragment writes the value 100 to the stream pointed to by fp:

putw(lOO, fp);

Related Functions

getw(), printf(), fwrite()

Int read(lnt fd, void *buf, unsigned count)

Int_ read{lnt fd, void *buf, unsigned count)
Description

The prototypes for read() and _read() are found in io.h.
Neither the read() nor the _read() function is defined by the

ANSI C standard. The read() function is part of the UNIX-like I/O
system. The _read() function is specific to Turbo C and the MS-DOS
operating system.

The read() function reads count number of bytes from the file
described by fd into the buffer pointed to by buf The file-position
indicator is incremented by the number of bytes read. If the file is
opened in text mode, character translations may take place.

The return value is the number of bytes actually read. This number
will be smaller than count if an end-of-file marker is encountered or an
error occurs before count number of bytes have been read. A value of
-1 is returned if an error occurs, and a value of 0 is returned if an
attempt is made to read at end-of-file. If an error occurs, then errno is
set to one of these values:

EACCES

EBADF

Access denied

Bad file number

1/0 Functions 427

The difference between read() and _read() is that read() re­
moves carriage returns and returns EOF when a CTRL-Z is read from a
text file. The _read() function does not perform these actions.

Example

This program reads the first 100 bytes from the file TEST.TST into the
array buffer:

#include <stdio.h>
#include <io.h>
#include <fcntl.h>
#include <stdlib.h>

main(void)
{

int fd;
char buffer[lOO];

if((fd=open("TEST.TST", O_RDONLY))==-1) {
printf("cannot open file\n");

}

exit(l);
}

if(read(fd, buffer, 100)!=100)
printf("Possible read error.");

return 0;

Related Functions

open(), close(), write(), lseek()

Int remove(const char *fname)
Description

The prototype for remove() is found in stdio.h.
The remove() function erases the file specified by fname. It returns

0 if the file was successfully deleted and -1 if an error occurred. If an
error occurs, then errno is set to one of these values:

ENOENT
EA CC ES

Example

File does not exist

Access denied

This program removes the file specified on the command line:

428 Turbo CIC++: The Complete Reference

#include <stdio.h>

main(int argc, char *argv[]}
{

}

if(remove(argv[l]}==-1)
printf("remove error");

return 0;

Related Functions

rename()

Int rename(const char *Oldfname, const char *newfname);
Description

The prototype for rename() is found in stdio.h.
The rename() function changes the name of the file specified by

oldfname to newfname. The newfname must not match any existing
directory entry.

The rename() function returns 0 if successful and non-0 if an error
has occurred. If an error occurs, then errno is set to one of these
values:

ENO ENT
EACCES
ENOTSAM

File does not exist

Access denied

Device not the same

Example

This program renames the file specified as the first command-line argu­
ment to that specified by the second command-line argument. Assuming
the program is called change, a command line consisting of "change this
that" will change the name of a file called this to that.

#include <stdio.h>

main(int argc, char *argv[])
{

if(rename(argv[l], argv[2])l=O)
printf("rename error"};

return O;

Related Functions

remove()

void rewlnd(FILE *Stream)

Description

The prototype for rewind() is found in stdio.h.

1/0 Functions 429

The rewind() function moves the file-position indicator to the start
of the specified stream. It also clears the end-of-file and error flags
associated with stream. It returns 0 if successful and non-0 otherwise.

Example

This function reads the stream pointed to by fp twice, displaying the file
each time:

void re_read(FILE *fp)
{

/* read once */
while(!feof(fp}} putchar(getc(fp)};

rewind(fp);

/* read twice */
while(!feof(fp)) putchar(getc(fp)};

}

Related Functions

fseek()

Int scanf(const char *format, arg-list)

Description

The prototype for scanf() is in stdio.h. The scanf() function is a
general-purpose input routine that reads the stream stdin. It can read
all the built-in data types and automatically convert them into the
proper internal format. It is much like the reverse of printf().

The control string pointed to by format consists of three classifica­
tions of characters:

430 Turbo CIC++: The Complete Reference

• Format specifiers

• White-space characters

• Non-white-space characters

The input format specifiers are preceded by a percent sign and tell
scanf() what type of data is to be read next. These codes are listed in
Table 16-3. For example, %s reads a string, while %d reads an integer.

The format string is read left to right, and the format codes are
matched, in order, with the arguments in the argument list.

A white-space character in the control string causes scanf() to skip
over one or more white-space characters in the input stream. A white­
space character is either a space, a tab, or a newline. In essence, one
white-space character in the control string causes scanf() to read, but
not store, any number (including 0) of white-space characters up to the
first non-white-space character.

A non-white-space character causes scanf() to read and discard a
matching character. For example, "%d,%d" causes scanf() first to read
an integer, then to read and discard a comma, and finally to read
another integer. If the specified character is not found, scanf() termi­
nates.

Code Meaning
%c Read a single character
%d Read a decimal integer
%i Read a decimal integer
%e Read a floating-point number
%f Read a floating-point number
%h Read a short integer
%0 Read an octal number
%s Read a string
%x Read a hexadecimal number
%p Read a pointer
%n Receive an integer value equal to the number of characters read so far

Table 16-3. scanf() Format Codes

1/0 Functions 431

All the variables used to receive values through scanf() must be
passed by their addresses. This means that all arguments must be
pointers to the variables used as arguments. This is C's way of creating
a "call by reference," and it allows a function to alter the contents of an
argument. For example, if you wish to read an integer into the variable
count, you would use the following scanf() call.

scanf("%d",&count);

Strings will be read into character arrays, and the array name,
without any index, is the address of the first element of the array. So, to
read a string into the character array address, you would use

scanf("%s",address);

In this case, address is already a pointer and need not be preceded by
the & operator.

The input data items must be separated by spaces, tabs, or new­
lines. Commas, semicolons, and other punctuation marks do not count as
separators. This means that

scanf("%d%d",&r,&c);

will accept an input of 10 20, but fail with 10,20. AB in printf(), the
scanf() format codes are matched in order with the variables receiving
the input in the argument list.

An * placed after the % and before the format code will read data of
the specified type but suppress its assignment. Thus, given the input
10/20,

scanf("%d%*c%d",&x,&y);

places the value 10 into x, discards the divide sign, and gives y the value
20.

The format commands can specify a maximum field-length modifier.
This is an integer number placed between the % and the format­
command code that limits the number of characters read for any field.
For example, if you wish to read no more than 20 characters into
address, you write

scanf("%20s",address);

432 Turbo CIC++: The Complete Reference

If the input stream were greater than 20 characters, a subsequent
call to input would begin where this call left off. For example, if ABC
DEFGHIJKLMNOPQRSTUVWXYZ had been entered as the response
to the earlier scanf() call, only the first 20 characters - up to the
T-would have been placed into address because of the maximum size
specifier. This means that the remaining six characters, UVWXYZ, have
not yet been used. If another scanf() call is made, such as

scanf("%s", str);

UVWXYZ will be placed into str. Input for a field can terminate before
the maximum field length is reached if a white-space character is en­
countered. In this case, scanf() moves on to the next field.

Although spaces, tabs, and newlines are used as field separators,
when reading a single character they are read like any other character.
For example, with an input stream of x y,

scanf("%c%c%c", &a, &b, &c);

returns the character x in a, a space in b, and y in c.

Note: Any other characters in the control string-including spaces, tabs,
and newlines - are used to match and discard characters from the input
stream. Any character that matches is discarded. For example, given
the input stream 10t20,

scanf("%st%s", &x, &y);

places 10 into x and 20 into y. The t is discarded because of the t in the
control string. As another example,

scanf("%s ", name);

does not return until you type a character after you type a terminator
because the space after the %s has instructed scanf() to read and
discard spaces, tabs, and newline characters.

Another feature of scanf() is the scanset. A scanset defines a list of
characters that will be matched by scanf() and stored in a character

1/0 Functions 433

array variable. The scanf() function inputs characters, putting them
into the corresponding character array, as long as they are members of
the scanset. When a character is entered that does not match any in the
scanset, scanf() null-terminates the corresponding array and moves on
to the next (if any) field.

A scanset is defined by putting a list of the characters you want to
scan for inside square brackets. The beginning square bracket must be
prefixed by a percent sign. For example, this scanset tells scanf() to
read only the characters []{ }:

%[[]{ }]

The argument corresponding to the scanset must be a pointer to a
character array. Upon return from scanf(), the array contains a null­
terminated string comprising the characters read. For example, the
following program uses a scanset to read punctuation into sl. As soon as
a nonpunctuation character is entered, sl is null-terminated and charac­
ters are read into s2 until the next white-space character is entered.

/* A simple scanset example. */
#include <stdio.h>

main(void)
{

}

char sl[SO], s2[80];

printf("Enter punctuation, then some letters\n");
scanf("%[,.~ 1 !:?]%s", sl, s2);
printf("%s %s", sl, s2);
return O;

You can specify a range inside a scanset using a hypen. For example,
this tells scanf() to accept the characters A through Z:

%[A-Z]

You can specify more than one range within a scanset. For example, this
scanset reads both upper- and lowercase letters:

434 Turbo CIC++: The Complete Reference

%[A-Za-z]

You can specify an inverted set if the first character in the set is a A.

When the A is present, it instructs scanf() to accept any character that
is not defined by the scanset. Here, the previous scanset uses the A to
invert the type of characters the scanset will read. This means that it
will match all characters that are not letters of the alphabet.

%[Aa-zA-Z]

The scanf() function returns a number equal to the number of
fields that were successfully assigned values. This number does not
include fields that were read but not assigned using the * modifier to
suppress the assignment. A value of EOF is returned if an attempt is
made to read at the end-of-file mark. A 0 is returned if no fields were
assigned.

Example

The operation of the following scanf() statements are explained in their
comments.

char str[80];
int i:

/* read a string and an integer */
scanf("%s%d", str, &i);

/* read up to 79 chars into str */
scanf("%79s", str):

/* skip the integer between the two strings */
scanf{"%s%*d%s 11 , str, &i, str);

Related Functions

printf(), fscanf()

void setbuf(FILE *Stream, char *bufJ
Descrf ptfon

The prototype to setbuf() is found in stdio.h.

1/0 Functions 435

The setbuf() function is used either to specify the buff er the speci­
fied stream will use or, if called with buf set to null, to turn off buffering.
If a programmer-defined buffer is to be specified, it must be BUFSIZ
characters long. BUFSIZ is defined in stdio.h.

The setbuf() function returns no value.

Example

This following fragment associates a programmer-defined buffer with
the stream pointed to by fp:

char buffer[BUFSIZ];

setbuf(fp,buffer);

Related Functions

fopen(), fclose(), setvbuf()

int setmode(int handle, int mode)

Description

The prototype to setmode() is found in io.h.
The setmode() function is not defined by the ANSI C standard. It

is used to reset the mode of an already open file given its file descriptor
and the new mode desired. The only valid modes are O_BINARY and
O_TEXT.

It returns 0 on success, -1 on error.

Example

This line of code sets the file associated with fd to text-only operation.

setmode(fd, O_TEXT)

Related Functions

open(), creat()

436 Turbo CIC++: The Complete Reference

Int setvbuf(FILE *Stream, char *buf, int mode, size_ t size)
Description

The prototype for setvbuf() is found in stdio.h.
The setvbuf() function allows the programmer to specify the buffer,

its size, and its mode for the specified stream. The character array
pointed to by bufis used as stream's buffer for I/O operations. The size
of the buffer is set by size, and mode determines how buffering will be
handled. If buf is null, no buffering takes place.

The legal values of mode are _IOFBF, _IONBF, and _IOLBF.
These are defined in stdio.h. When the mode is set to _ IOFBF full
buffering takes place. This is the default setting. When set to _IONBF,
the stream is unbuffered regardless of the value buf. If mode is
_IOLBF, the stream is line-buffered, which means that the buffer is
flushed each time a newline character is written for output streams; for
input streams an input request reads all characters up to a newline. In
either case, the buff er is also flushed when full.

The value of size must be greater than 0.
The setvbuf() function returns 0 on success, non-0 on failure.

Example

This fragment sets the stream fp to line-buffered mode with a buffer
size of 128:

#include <stdio.h>
char buffer[128];

setvbuf(fp, buffer, _IOLBF, 128);

Related Functions

setbuf()

int sopen(const char *filename, Int access, Int shflag, Int
mode)

Description

The prototype for sopen() is found in io.h. The sopen() function is a
UNIX-like file function.

1/0 Functions 437

The sopen() function opens a file for shared-mode access using a
network. It is defined as

open(jilename, (access I shflag), mode)

The sopen() function opens a file with the name filename and sets its
access mode as specified by access and its share mode as specified by
shflag. You can think of access as being constructed of a base mode of
operation plus modifiers. The following base modes are allowed:

Base

O_RDONLY

O_WRONLY

O_RDWR

Meaning

Open for read only

Open for write only

Open for read/write

After selecting one of these values, you may OR it with one or more of
the following access modifiers:

Modifiers

O_NDELAY

O_APPEND

O_CREAT

O_TRUNC

O_EXCL

O_BINARY

O_TEXT

Meaning When Set

Not used; included for UNIX
compatibility

Causes the file pointer to be set
to the end of the file prior to
each write operation

If the file does not exist, it is
created with its attribute set to
the value of mode

If the file exists, it is truncated
to length 0 but retains its file
attributes

When used with 0 _ CREAT,
will not create output file if a file
by that name already exists

Opens a binary file

Opens a text file

438 Turbo CIC++: The Complete Reference

The shflag argument defines the type of sharing allowed on this file
and can be one of these values:

shflag

SH_COMPAT

SH_DENYRW

SH_DENYWR

SH_DENYRD

SH_DENYNONE

SH_DENYNO

Meaning

Compatibility mode

No read or write

No write

No read

Allow read/write

Allow read/write

The mode argument is only required if the 0 _ CREAT modifier is
used. In this case, mode can be one of these values:

Mode

S_IWRITE

S_IREAD

S _IWRITE i S _IREAD

Meaning

Write access

Read access

Read/write access

A successful call to sopen() returns a positive integer that is the
file descriptor associated with the file. A return value of -1 means that
the file cannot be opened, and errno will be set to one of these values:

ENOENT

EMF ILE

EA CC ES

EINVACC

Exam pre

Path or file does not exist

Too many open files

Access denied

Invalid access code

You will usually see the call to sopen() like this:

if((fd=sopen(filename, access, shflag, mode)) == -1) {
printf("cannot open file\n");
exit(l);

1/0 Functions 439

Related Functions

open(), _open(), close()

Int sprlntf{char *buf, const char *format, arg-llstJ

Description

The prototype for sprintf() is found in stdio.h.
The sprintf() function is identical to printf() except that the out­

put generated is placed into the array pointed to by buf. See the
printf() function.

The return value is equal to the number of characters actually
placed into the array.

Example

After this code fragment executes, str holds one 2 3:

char str[80];
sprintf(str,"%s %d %c","one",2,'3');

Related Functions

printf(), fsprintf()

Int sscanf(char *buf, const char *format, arg-llstJ

Description

The prototype for sscanf() is found in stdio.h.
The sscanf() function is identical to scanf() except that data is

read from the array pointed to by bufrather than stdin. See scanf().

440 Turbo CIC++: The Complete Reference

The return value is equal to the number of fields that were actually
assigned values. This number does not include fields that were skipped
through th~ use of the * format-command modifier. A value of 0 means
that no fields were assigned, and EOF indicates that a read was at­
tempted at the end of the string.

Example

This program prints the message "hello 1" on the screen:

#include <stdio.h>

main(void)
{

}

char str[SO];
inti;

sscanf("hello 1 2 3 4 5","%s%d",str,&i);
printf("%s %d",str,i);
return O;

Related Functions

scanf(), fscanf()

Int stat(char *filename, struct stat *StatbufJ

Description

The prototype to stat() is found in sys\stat.h.
The stat() function fills the structure statbuf with information on

the file associated with filename.
Upon successfully filling the stat structure, 0 is returned. If unsuc­

cessful, -1 is returned and errno is set to ENOENT.

Example

The following example opens a file, fills the stat structure, and prints out
one of its fields:

#include <stdio.h>
#include <sys\stat.h>
#include <stdlib.h>

main(void)
{

}

FILE *fp;
struct stat buff;

if(!(fp=fopen("test","rb"))) {
printf("cannot open file\n");
exit(l);

}

/*fill the stat structure*/
stat("test", &buff);

printf("size of the file is: %ld\n", buff.st_size);
fclose(fp);
return O;

Related Functions

fstat(), access()

long tell(lnt fd)

Description

The prototype for tell() is found in io.h.

1/0 Functions 441

The tell() function is part of the UNIX-like l/O system and is not
defined by the ANSI C standard.

The tell() function returns the current value of the file-position
indicator associated with the file descriptor fd. This value is the number
of bytes the position indicator is from the start of the file. A return value
of - lL indicates an error.

Example

This fragment prints the current value of the position indicator for the
file described by f d:

442 Turbo CIC++: The Complete Reference

long pos:

pos = tell (fd):
printf("Position indicator is %ld bytes from the start", pos):

Related Functions

lseek(), open(), close(), read(), write()

FILE *tmpflle(vold)

Description

The prototype for the tmpfile() function is found in stdio.h.
The tmpfile() function opens a temporary file for update and re­

turns a pointer to the stream. The function automatically uses a unique
file name to avoid conflicts with existing files.

The tmpfile() function returns a null pointer on failure; otherwise it
returns a pointer to the stream.

The temporary file created by tmpfile() is automatically removed
when the file is closed or when the program terminates.

Example

This fragment creates a temporary working file:

FILE *temp;

if(l(temp=tmpfile())) {

}

printf("cannot open temporary work file\n"):
exit(l):

Related Functions

tmpnam()

char *tmpnam(char *name)

Description

The prototype for tmpnam() is found in stdio.h.

1/0 Functions 443

The tmpnam() function is defined by the ANSI C standard. It
generates a unique file name and stores it in the array pointed to by
name. The main purpose of tmpnam() is to generate a temporary file
name that is different from any other file name in the directory.

The function may be called up to TMP _MAX times, defined in
stdio.h. Each time it generates a new temporary file name.

A pointer to name is returned on success; otherwise a null pointer
is returned.

Example

This program displays three unique temporary file names:

#include <stdio.h>

main(void)
{

}

char name [40] ;
int i;
for(i=O; i<3; i++) {

tmpnam(name);
printf("%s ", name);

}
return O;

Related Functions

tmpfile()

Int ungetc(int ch, FILE *Stream)

Description

The prototype for ungetc() is found in stdio.h.
The ungetc() function returns the character specified by the low­

order byte of ch back onto the input stream. This character is then

444 Turbo CIC++: The Complete Reference

returned by the next read operation on stream. A call to fHush() or
fseek() undoes an ungetc() operation and discards the character put
back.

Only one character can be put back between subsequent read oper­
ations.

You cannot unget an EOF.
A call to ungetc() clears the end-of-file flag associated with the

specified stream. The value of the file-position indicator for a text
stream is undefined until all pushed-back characters are read, in which
case it is the same as it was prior to the first ungetc() call. For binary
streams, each ungetc() call decrements the file-position indicator.

The return value is equal to ch on success and EOF on failure.

Exampre

This function reads words from the input stream pointed to by fp. The
terminating character is returned to the stream for later use. For
example, given input of count/10, the first call to read_ word() returns
count and puts the I back on the input stream.

read_word(FILE *fp, char *token)
{

while(isalpha(*token=getc(fp))) token++;

ungetc(fp, *token);
}

Ref ated Functions

getc()

int unlink(const char *fnameJ

Description

The prototype to unlink() is found in dos.h.
The unlink() function is part of the UNIX-like 1/0 system and is

not defined by the ANSI C standard.

1/0 Functions 445

The unlink() function removes the specified file from the directory.
It returns 0 on success and -1 on failure and sets errno to one of the
following values:

Error

ENOENT
EACCES

Example

Meaning

Invalid path or file name

Access denied

This program deletes the file specified as the first command-line argu­
ment:

#include <stdio.h>
#include <dos.h>

main(int argc, char *argv[])
{

}

if(unlink(argv[l])==-1)
printf("cannot remove file");

return 0;

Related Functions

open(), close()

int unlock(int handle, long offset, long length)

Description

The prototype for unlock() is found io.h.
The unlock() function is not defined by the ANSI C standard. It is

used to unlock a portion of a locked file, thus allowing another program
to use it until a new lock is placed on the file. To lock a file, use lock().
These functions provide control for file sharing in network environ­
ments.

446 Turbo CIC++: The Complete Reference

The file to be unlocked is associated with handle. The portion of the
file to be unlocked is determined by the starting offset from the begin­
ning of the file and the length.

If unlock() is successful, 0 is returned. If it is unsuccessful, -1 is
returned.

Example

This fragment unlocks the first 128 bytes of the file associated with f d:

unlock(fd, 0, 128);

Related Functions

lock(), sopen()

Int vprlntff con st char *format, va _fist arg _ ptrJ

Int vfprintf(FILE *Stream, const char *format, va _list
arg_ptrJ

Int vsprlntff char *buf, con st char *format, va _list
arg_ptrJ

Description

The prototypes for these functions require the files stdio.h and
stdarg.h.

The functions vprintf(), vfprintf(), and vsprintf() are functionally
equivalent to printf(), fprintf(), and sprintf(), respectively, except

1/0 Functions 44 7

that the argument list has been replaced by a pointer to a list of
arguments. This pointer must be of type va _list and is defined in
stdarg.h. See the proper related function. Also see va_arg(),
va_start(), and va_end() in Chapter 24 for further information.

Example

This fragment shows how to set up a call to vprintf(). The call to
va_start() creates a variable-length argument pointer to the start of
the argument list. This pointer must be used in the call to vprint(). The
call to va_end() clears the variable-length argument pointer.

#include <stdio.h>
#include <stdarg.h>

void print_message(char *, ...);

main{void)
{

print_message("cannot open file %s", "test");
return O;

void print_message(char *format, .•.)
{

}

va_list ptr; /* get an arg ptr */

/* initialize ptr to point to the first argument after the
format string

*/
va_start(ptr, format);
/* print out message */
vprintf(format, ptr);
va_end(ptr);

Related Functions

va_list(), va_start(), va_end()

448 Turbo CIC++: The Complete Reference

Int vscanf(const char *format, va _list arg _ ptrJ

Int vfscanf(FILE *Stream, canst char *format, va _list
arg_ptrJ

Int vsscanf(const char *buf, const char *format, va _ lfst
arg_ptrJ

Description

The prototypes for these functions require the files stdio.h and
stdarg.h.

The functions vscanf(), vfscanf(), and vsscanf() are functionally
equivalent to scanf(), fscanf(), and sscanf(), respectively, except that
the argument list has been replaced by a pointer to a list of arguments.
This pointer must be of type va_list and is defined in stdarg.h. See
the proper related function. Also see va_arg(), va_start(), and
va _end() in Chapter 24 for further information.

Example

This fragment shows how to set up a call to vscanf(). The call to
va_start() creates a variable-length argument pointer to the start of
the argument list. It is this pointer that must be used in the call to
vprint(). The call to va_end() clears the variable-length argument
pointer.

#include <stdio.h>
#include <stdarg.h>

void read_int(char *• •••);

main(void)
{

}

read_int("%d","test");
return 0;

void read_int(char *format, ••.)
{

va_list ptr; /* get an arg ptr */

/*initialize ptr to point to the first argument after the
format string

}

*/
va_start(ptr, format);

/* read in an int */
vscanf(format, &ptr);
va_end(ptr);

Related Functions

va_list(), va_start(), va_end()

int write(int handle, void *buf, int count)

1/0 Functions 449

Int _ wrlte(int handle, void *buf, Int count)

Description

The prototypes for write() and _write() are found in io.h.
The write() function is part of the UNIX-like I/O system and is not

defined by the ANSI C standard.
The write() function writes count number of bytes to the file

described by handle from the buffer pointed to by buf. The file-position
indicator is incremented by the number of bytes written. If the file is
opened in text mode, linef eeds are automatically expanded to carriage
return, linefeed combinations. However, _write() does not perform
this expansion.

The return value is the number of bytes actually written. This
number may be smaller than count if an error is encountered. A value of
-1 means an error has occurred, and errno is set to one of these values:

Value

EACCES

EBADF

Example

Meaning

Access denied

Bad file number

This program writes the 100 bytes from buffer to the file test.

450 Turbo CIC++: The Complete Reference

#include <stdio.h>
#include <io.h>
#include <fcntl.h>
#include <stdlib.h>

main(void)
{

}

int fd;
char buffer[lOO];

if((fd=open("test", O_WRONLY)==-1) {
printf("cannot open file\n");
exit(l);

}

gets(buffer);

if(write(fd, buffer, 100)!=100)
printf("write error");

close(fd);

return O;

Related Functions

read(), close(), write(), lseek()

String, Memory, and Character Functions

The Turbo C standard library has a rich and varied set of string-,
memory-, and character-handling functions. In C a string is a null­
terminated array of characters, memory is a block of contiguous RAM,
and a character is a single byte value. The string functions require the
header file string.h to provide their declarations. The memory manipu­
lation functions use mem.h, but several may also use string.h. The
character functions use ctype.h as their header file.

Because C has no bounds checking on array operations, it is the
programmer's responsibility to prevent an array overflow. AB the ANSI
C standard puts it, if an array has overflowed, "the behavior is
undefined," which is a nice way of saying that your program is about to
crash!

In Turbo C, a printable character is one that can be displayed on a
terminal. These are the characters between a space (Ox20) and tilde
(OxFE). Control characters have values between (0) and (OxlF) as well
as DEL (Ox7F). The ASCII characters are between 0 and Ox7F.

The character functions are declared to take an integer argument.
While this is true, only the low-order byte is used by the function.
Therefore, you are free to use a character argument because it is
automatically elevated to int at the time of the call.

Most of the functions described in this chapter are defined by the
ANSI C standard and are fully portable. The few that are not are so
specified.

Several functions use the size_ t data type. This type is defined in
the various header files used by the functions described here and is an
integer type.

s
E
v
E
N
T
E
E
N

452 Turbo CIC++: The Complete Reference

Int lsalnum(int ch)

Description

The prototype for isalnum() is found in ctype.h.
The isalnum() function returns non-0 if its argument is either a

letter of the alphabet (upper- or lowercase) or a digit. If the character
is not an alphanumeric, 0 is returned.

Example

This program checks each character read from stdin and reports all
alphanumeric ones:

#include <ctype.h>
#include <stdio.h>

main(void)
{

char ch;

for(;;) {
ch = getchar();
i f(ch==' ') break;
if(isalnum(ch)) printf("%c is alphanumeric\n", ch);

}
• return 0;

}

Related Functions

isalpha(), isdigit(), iscntrl(), isgraph(), isprint(), ispunct(),
isspace()

int isalpha(lnt ch)

Description

The prototype for isalpha() is found in ctype.h.

String, Memory, and Character Functions 453

The isalpha() function returns non-0 if ch is a letter of the alphabet
(upper- or lowercase); otherwise it returns 0.

Example

This program checks each character read from stdin and reports all
those that are letters of the alphabet:

#include <ctype.h>
#include <stdio.h>

main(void)
{

char ch;

for(;;) {
ch = getchar();
if(ch==' ') break;
if(isalpha(ch)) printf("%c is a letter\n", ch);

}
return O;

Related Functions

isalnum(), isdigit(), iscntrl(), isgraph(), isprint(), ispunct(),
isspace()

Int lsascli(lnt ch)

Description

The prototype for isascii() is found in ctype.h and is not defined by the
ANSI C standard.

The isascii() function returns non-0 if ch is in the range 0 through
Ox7F; otherwise it returns 0.

Example

This program checks each character read from stdin and reports all
those that are defined by ASCII:

454 Turbo CIC++: The Complete Reference

#include <ctype.h>
#include <stdio.h>

main(void)
{

}

char ch;

for(;;) {

}

ch = getchar();
if(ch==' ') break;
if(isascii(ch)) printf("%c is ASCII defined\n", ch);

return O;

Related Functions

isalnum(), isdigit(), iscntrl(), isgraph(), isprint(), ispunct(),
isspace()

int iscntrlfint ch)

Description

The prototype for iscntrl() is found in ctype.h.
The iscntrl() function returns non-0 if ch is between 0 and OxlF or

is equal to Ox7F (DEL); otherwise it returns 0.

Example

This program checks each character read from stdin and reports all
those that are control characters:

#include <ctype.h>
#include <stdio.h>

main(void)
{

}

char ch;

for(;;) {

}

ch = getchar();
if(ch==' ') break;
if(iscntrl (ch)) printf("%c is a control character\n", ch);

return 0;

String, Memory, and Character Functions 455

Related Functions

isalnum(), isdigit(), isalpha(), isgraph(), isprint(), ispunct(),
isspace()

Int lsdlglt(lnt ch}

Description

The prototype for isdigit() is found in ctype.h.
The isdigit() function returns non-0 if ch is a digit, that is, 0

through 9, otherwise it returns 0.

Example

This program checks each character read from stdin and reports all
those that are digits:

#include <ctype.h>
#include <stdio.h>

main(void)
{

char ch;

for(;;) {
ch = getchar () ;
if(ch==' ') break;
if(isdigit(ch)) printf("%c is a digit\n", ch);

}
return 0;

Related Functions

isalnum(), iscntrl(), isalpha(), isgraph(), isprint(), ispunct(),
isspace()

Int lsgraph(lnt ch}

Description

The prototype for isgraph() is found in ctype.h.

456 Turbo CIC++: The Complete Reference

The isgraph() function returns non-0 if ch is any printable charac­
ter other than a space; otherwise it returns 0. Printable characters are
in the range Ox21 through Ox7E.

Example

This program checks each character read from stdin and reports all
those that are printable characters:

#include <ctype.h>
#include <stdio.h>

main(void)
{

}

char ch;

for(;;) {

}

ch = getchar();
if(ch==' ') break;
if(isgraph(ch)) printf("%c is a printing character\n", ch);

return O;

Related Functions

isalnum(), iscntrl(), isalpha(), isdigit(), isprint(), ispunct(),
isspace()

int islower(lnt chJ

Description

The prototype for islower() is found in ctype.h.
The islower() function returns non-0 if ch is a lowercase letter ("a"

through "z"); otherwise it returns 0.

Example

This program checks each character read from stdin and reports all
those that are lowercase letters:

#include <ctype.h>
#include <stdio.h>

main(void)
{

char ch;

for(;;) {
ch = getchar();
i f(ch==' ') break;

String, Memory, and Character Functions 457

if(islower(ch)) printf("%c is lowercase\n", ch);
}
return O;

}

Related Function

isupper()

Int lsprlnt(lnt ch)

Description

The prototype for isprint() is found in ctype.h.
The isprint() function returns non-0 if ch is a printable character,

including a space; otherwise it returns 0. The printable characters are in
the range Ox20 through Ox7E.

Example

This program checks each character read from stdin and reports all
those that are printable:

#include <ctype.h>
#include <stdio.h>

main(void)
{

}

char ch;

for(;;) {
ch = getchar();
i f(ch==' ') break;
if(isprint(ch)) printf("%c is printable\n", ch);

}
return O;

458 Turbo CIC++: The Complete Reference

Related Functions

isalnum(), iscntrl(), isalpha(), isdigit(), isgraph(), ispunct(),
isspace()

Int ispunct(lnt ch)

Description

The prototype for ispunct() is found in ctype.h.
The ispunct() function returns non-0 if ch is a punctuation charac~

ter or a space; otherwise it returns 0.

Example

This program checks each character read from stdin and reports all
those that are punctuation:

#include <ctype.h>
#include <stdio.h>

main(void)
{

char ch;

for(::) {
ch = getchar():
i f(ch==' ') break;
if(ispunct(ch)) printf("%c is punctuation\n", ch);

}
return O;

}

Related Functions

isalnum(), iscntrl(), isalpha(), isdigit(), isgraph(), ispunct(),
isspace()

Int lsspace(int chJ

Description

The prototype for isspace() is found in ctype.h.

String, Memory, and Character Functions 459

The isspace() function returns non-0 if ch is either a space, car­
riage return, horizontal tab, vertical tab, form feed, or newline charac­
ter; otherwise it returns 0.

Example

This program checks each character read from stdin and reports all
those that are white-space characters:

#include <ctype.h>
#include <stdio.h>

main(void)
{

}

char ch;

for(;;) {
ch = getchar();
if(ch==' ') break;
if(isspace(ch)) printf("%c is white-space\n", ch);

}
return O;

Related Functions

isalnum(), iscntrl(), isalpha(), isdigit(), isgraph(), isspace(),
ispunct()

int lsupper(ch)

Description

The prototype for isupper() is found in ctype.h.
The isupper() function returns non-0 if ch is an uppercase letter

("A!' through "Z"); otherwise it returns 0.

Example

This program checks each character read from stdin and reports all
those that are uppercase letters:

460 Turbo CIC++: The Complete Reference

#include <ctype.h>
#include <stdio.h>

main(void)
{

}

char ch;

for(;;) {
ch = getchar();
if(ch==' ') break;
if(isupper(ch)) printf("%c is upper-case\n", ch);

}
return O;

Related Function

islower()

Int fsx:dfgitf fnt ch)
Description

The prototype for isxdigit() is found in ctype.h.
The isxdigit() function returns non-0 if ch is a hexadecimal digit;

otherwise it returns 0. A hexadecimal digit will be in one of these
ranges: "A!' through "F", "a' through "f", or "O" through "9".

Example

This program checks each character read from stdin and reports all
those that are hexadecimal digits:

#include <ctype.h>
#include <stdio.h>

main(void)
{

}

char ch;

for(;;) {
ch = getchar();
if(ch==' ') break;
if(isxdigit(ch)) printf("%c is hexadecimal \n", ch);

}
return 0;

String, Memory, and Character Functions 461

Related Functions

isalnum(), iscntrl(), isalpha(), isdigit(), isgraph(), isspace(),
ispunct()

void *memccpy(vold *dest, const void *Source, Int ch,
size_ t count);

Description

The prototype for memccpy() is found in both string.h and mem.h and
is not defined by the ANSI C standard.

The memccpy() function copies the contents of the memory pointed
to by source into the memory pointed to by dest. The copy operation
stops when either count number of bytes have been copied or after the
first occurrence of ch has been copied. It returns a pointer to the end of
dest if ch is found or null if ch is not part of source.

Example

After this fragment has executed, the word "hello" will be in array out
because the space is used to terminate the copy operation:

char str [20] , out [20) ;

strcpy(str, "hello there");

memccpy(out, str, ' ', 20};

Related Functions

memcpy(), strcpy()

void *memchrf const void *buffer, Int ch, size_ t count)

Description

The prototype for the memchr() function is found in both string.h and
mem.h.

462 Turbo C/C++: The Complete Reference

The memchr() function searches buffer for the first occurrence of
ch in the first count characters.

The memchr() function returns a pointer to the first occurrence of
ch in buffer, or a null pointer if ch is not found.

Example

This program prints " is a test" on the screen:

#include <stdio.h>
#include <string.h>

main(void)
{

}

void *p;

p=memchr("thisisatest",' ', 14);
printf((char *) p);
return 0;

Related Functions

memmove(), memcpy()

int memcmp(const void *bUf1, canst void *buf2, size_ t count)
int memicmp(const void *buf1, canst void *buf2, size_ t count)

Description

The prototype for the memcmp() function is found in both string.h and
mem.h. The memicmp() function is not defined by the ANSI C stan­
dard.

The memcmp() function compares the first count characters of the
arrays pointed to by buf1 and buf2. The comparison is done lexicograph­
ically.

The memcmp() function returns an integer that is interpreted as
indicated here:

String, Memory, and Character Functions 463

Value

Less than 0

0

Greater than 0

Meaning

buf1 is less than buft

buf1 is equal to buft

buf1 is greater than buft

The memicmp() function is identical to memcmp() except that
case is ignored when comparing letters.

Example

This program shows the outcome of a comparison of its two command­
line arguments:

#include <stdio.h>
#include <string.h>

main(int argc, char *argv[])

{

}

int outcome;
size_t len, 11, 12;

/* find the length of shortest */
len=(ll=strlen(argv[l]))<(l2=strlen(argv[2])) ? 11:12;

outcome= memcmp(argv[l], argv[2), len);
if(!outcome) printf("equal ");
else if(outcome<O) printf("first less than second"):
else printf("first greater than second"):
return O;

Related Functions

memcpy(), memchr(), strcmp()

void *memcpyfvold *dest, const void *Source, size_ t count)

Description

The prototype for memcpy() is found in both string.h and mem.h.

464 Turbo CIC++: The Complete Reference

The memcpy() function copies count characters from the array
pointed to by source into the array pointed to by dest. If the arrays
overlap, the behavior of memcpy() is undefined.

The memcpy() function returns a pointer to dest.

Example

This program copies the contents of bufl into buf2 and displays the
result:

#include <stdio.h>
#include <string.h>
#define SIZE 80

main(void)
{

}

char bu fl [SIZE]. buf2 [SIZE];

strcpy(bufl, "When, in the course of ••• ");
memcpy(buf2, bufl, SIZE);
printf(buf2);
return 0;

Related Function

memmove()

void •memmove(void •dest, canst void •source, size_ t count)

Description

The prototype for memmove() is found in both string.h and mem.h.
The memmove() function copies count characters from the array

pointed to by source into the array pointed to by dest. If the arrays
overlap, the copy takes place correctly, placing the correct contents into
dest but leaving source modified.

The memmove() function returns a pointer to dest.

Example

This program copies the contents of strl into str2 and displays the
result:

#include <stdio.h>
#include <string.h>

main(void)
{

String, Memory, and Character Functions 465

char str1[20], str2[20];

}

strcpy(strl,"Born to code in C.");
memmove(str2, strl, 20);
printf(str2);
return 0;

Related Functions

nte1ncpy(), ntovedata(), ntovente1n()

void *memsetfvoid *buf, Int ch, size_ t count)

Description

The prototype for ntentset() is found in both string.h and 1ne1n.h.
The nte1nset() function copies the low-order byte of ch into the first

count characters of the array pointed to by buf It returns buf
The most common use of ntentset() is to initialize a region of

memory to some known value.

Example

This fragment first initializes to null the first 100 bytes of the array
pointed to by buf and then sets the first 10 bytes to 'X' and displays the
string "XXXXXXXXXX":

memset(buf, '\0', 100);
memset(buf, 'X', 10);
printf((char *) buf);

Related Functions

1nentcpy(), ntentcinp(), 1nent1nove()

466 Turbo CIC++: The Complete Reference

void movedata(unslgned sourceseg, unsigned sourceoff,
unsigned destseg, unsigned destoff, size_ t count)

Description

The prototype for movedata() is found in both string.h and mem.h.
The movedata() function is not defined by the ANSI C standard.

The movedata() function copies count characters from the memory
at location sourceseg:sourceoff into the memory location destseg:destojf.
The movedata() function works regardless of which memory model is
selected.

Example

This program copies the first 25 bytes of the data segment into the
array buff.

#include <stdio.h>
#include <string.h>
#include <dos.h>

main(void)
{

}

char buff[25];

movedata(_DS, 0, FP_SEG(buff), FP_OFF(buff), 25);
return 0;

Related Functions

memcpy(), movemem(), memmove()

void movemem(vold *Source, void *dest, unsigned count)

Description

The prototype for movemem() is found in mem.h. The function move­
mem() is not defined by the ANSI C standard.

String, Memory, and Character Functions 46 7

The movemem() function copies count characters from the array
pointed to by source into the array pointed to by dest. If the arrays
overlap, the copy takes place correctly, placing the correct contents into
dest but leaving source modified.

The movemem() function is equivalent to the memmove() function
except that the movemem() function has no return value and is not
defined by the ANSI C standard.

Related Functions

memcpy(), movedata(), memmove()

void setmem(vold *buf, unsigned count, char ch)

Description

The prototype for setmem() is found in mem.h. The setmem() func­
tion is not defined by the ANSI C standard.

The setmem() function copies ch into the first count characters of
the array pointed to by buf.

The setmem() function is equivalent to the memset() function
except that the setmem() function has no return value and is not
defined by the ANSI C standard.

Related Functions

memcpy(), memset(), memmove()

char *Stpcpy(char *Str1, const char *Str2J

Description

The prototype for stpcpy() is found in string.h and is not defined by
the ANSI C standard.

468 Turbo CIC++: The Complete Reference

The stpcpy() function is used to copy the contents of str2 into str1.
str2 must be a pointer to a null-terminated string. The stpcpy() func­
tion returns a pointer to the end of str1.

Example

The following code fragment copies "hello" into string str:

char str[8];
stpcpy(str, "hello");

Related Functions

strcpy()

char *Strcat(char *Str1, const char *Str2)

Description

The prototype for strcat() is found in string.h.
The strcat() function concatenates a copy of str2 to str1 and termi­

nates str1 with a null. The null terminator originally ending str1 is
overwritten by the first character of str2. The string str2 is untouched
by the operation.

The strcat() function returns str1.
Remember that no bounds checking takes place, so it is the

programmer's responsibility to ensure that str1 is large enough to hold
both its original contents and the contents of str2.

Example

This program appends the first string read from stdin to the second.
For example, assuming the user enters "hello" and "there", the program
prints "therehello".

#include <stdio.h>
#include <string.h>

main(void)
{

}

char sl[SO]. s2[80];

gets(sl);
gets(s2);

strcat(s2, sl);
printf(s2);
return O;

Related Functions

String, Memory, and Character Functions 469

strchr(), strcmp(), strcpy()

char *Strchrf con st char *Str, Int ch)

Description

The prototype for strchr() is found in string.h.
The strchr() function returns a pointer to the first occurrence of ch

in the string pointed to by str. If no match is found, it returns a null
pointer.

Example

This program prints the string " is a test":

#include <stdio.h>
#include <string.h>

main(void)
{

}

char *p;

p = strchr("this is a test", ' ');
printf(p);
return 0;

470 Turbo CIC++: The Complete Reference

Related Functions

strpbrk(), strstr(), strtok(), strspn()

int strcmp(const char *Str1, const char *Str2J

Description

The prototype for the strcmp() function is found in string.h.
The strcmp() function lexicographically compares two null­

terminated strings and returns an integer based on the outcome, as
shown here:

Value

Less than 0

0

Greater than 0

Example

Meaning

str1 is less than str2

str1 is equal to str2

str1 is greater than str2

The following function can be used as a password-verification routine. It
returns 0 on failure and 1 on success.

password()
{

}

char s [80];

printf("enter password: ");
gets(s);

if(strcmp(s, "pass")) {
printf("invalid password\n");
return 0;

}
return 1;

Related Functions

strchr(), strcmp(), strcpy(), strncmp()

String, Memory, and Character Functions 4 71

Int strcoll(char *Str1, char *Str2J

Description

The prototype for the strcoll() function is found in string.h.
The strcoll() function is equivalent to the strcmp() function.

Please refer to strcmp() for a description.

Related Functions

strncmp(), stricmp()

char *Strcpy(char *Str1, const char *Str2J

Descrf ption

The prototype for strcpy() is found in string.h.
The strcpy() function is used to copy the contents of str2 into str1;

str2 must be a pointer to a null-terminated string. The strcpy() function
returns a pointer to str1.

If str1 and str2 overlap, the behavior of strcpy() is undefined.

Example

The following code fragment copies "hello" into string str.

char str[SO];
strcpy(str, "hello");

Related Functions

strchr(), strcmp(), memcpy(), strncmp()

size_ t strcspn(const char *Str1, const char *Str2J

Description

The prototype for the strcspn() function is found in string.h.

472 Turbo CIC++: The Complete Reference

The strcspn() function returns the length of the initial substring of
the string pointed to by str1 that is made up of only those characters
not contained in the string pointed to by str2. Stated differently, strc­
spn() returns the index of the first character in the string pointed to by
str1 that matches any of the characters in the string pointed to by str2.

Example

This program prints the number 8:

#include <stdio.h>
#include <string.h>

main(void}
{

}

int 1 en;

len = strcspn("this is a test", "ab");
printf("%d", len);
return O;

Related Functions

strpbrk(), strstr(), strtok(), strrchr()

cha; ~st;dupiconsi: char •strj

Description

The prototype for strdup() is found in string.h. The strdup() function
is not defined by the ANSI C standard.

The strdup() function allocates enough memory, via a call to mal­
loc(), to hold a duplicate of the string pointed to by str and then copies
that string into the allocated region and returns a pointer to it.

Example

This fragment duplicates the string str.

String, Memory, and Character Functions 4 73

char str[BO], *p;

strcpy{str, "this is a test");

p = strdup{str);

Related Function

strcpy()

char * _ strerror(const char *StrJ

Description

The prototype for the _ strerror() function is found in stdio.h and
string.h.

The _ strerror() function lets you display your own error message
followed by a colon and the most recent error message generated by the
program. It returns a pointer to the entire string.

The _ strerror() function is equivalent to strerror() in version 1.0
of Turbo C. The _ strerror() function is not defined by the ANSI C
standard.

Example

This fragment prints a message stating that the function called swap()
encountered an error:

swap{)
{

if(error) printf(_strerror("error in swap"));

Related Functions

perror(), strerror()

4 74 Turbo CIC++: The Complete Reference

char *Strerror(lnt numJ

Description

The prototype for the strerror() function is found in stdio.h and
string.h.

The strerror() function returns a pointer to the error message
associated with an error number.

The operation of strerror() changed after release 1.0 of Turbo C.
The original strerror() is implemented as _ strerror(), which is not
defined by the ANSI C standard.

Example

This fragment prints the error message associated with the global
variable errno if an error has occurred.

if(errno) printf(strerror(errno));

Related Functions

perror(), _strerror()

Int strlcmp(const char *Strt, const char *Str2J
int strcmpi(const char *Str1, canst char *Str2J

Description

The prototype for the stricmp() and strcmpi() functions are found in
string.h. These functions are not defined by the ANSI C standard.

The stricmp() function lexicographically compares two null­
terminated strings while ignoring case; strcmpi() is a macro that trans­
lates to a stricmp() call.

String, Memory, and Character Functions 475

Both functions return an integer based on the outcome, as shown
here:

Value

Less than 0

0

Greater than 0

Example

Meaning

str1 is less than str2

str1 is equal to str2

str1 is greater than str2

The following function compares the two file names specified on the
command line to determine if they are the same:

#include <stdio.h>
#include <string.h>

main(int argc, char *argv[])
{

}

if(!stricmp(argv[l], argv[2]))
printf("the filenames are the same\n");

return 0;

Related Functions

strnchr(), strcmp(), strncpy()

size_ t strlen(const char *Str)
Description

The prototype for strlen() is found in string.h.
The strlen() function returns the length of the null-terminated

string pointed to by str. The null is not counted.

Example

This code fragment prints the number 5 on the screen:

strcpy(s, "hello");
printf("%d", strlen(s));

476 Turbo CIC++: The Complete Reference

Related Functions

strchr(), strcmp(), memcpy(), strncmp()

char *Strlwr(char *StrJ

Description

The prototype for strlwr() is found in string.h. The strlwr() function is
not defined by the ANSI C standard.

The strlwr() function converts the string pointed to by str to
lowercase.

Example

This program prints "this is a test" on the screen:

#include <stdio.h>
#include <string.h>

main(void)
{

char s [80);

strcpy(s, "THIS IS A TEST");

strlwr(s);

printf(s);

return O;

Related Function

strupr()

char *Strncat(char *Strl, const char *Str2, size_ t count)
Description

The prototype for the strncat() function is found in string.h.
The strncat() function concatenates no more than count characters

of the string pointed to by str2 to the string pointed to by strl and
terminates strl with a null. The null terminator originally ending strl is

String, Memory, and Character Functions 4 77

overwritten by the first character of strfJ. The string strfJ is untouched
by the operation.

The strncat() function returns strl.
Remember, no bounds checking takes place, so it is the pro­

grammer's responsibility to ensure that strl is large enough to hold
both its original contents and those of strfJ.

Example

This program appends the first string read from stdin to the second and
prevents an array overflow from occurring in strl. For example, if the
user enters "hello" and "there", the program prints "therehello":

#include <stdio.h>
#include <string.h>

main(void)
{

}

char s1[80], s2[80];
size_t len;

gets(sl);
gets(s2);

/* compute how many chars will actually fit */
len = 79-strlen(s2);

strncat(s2, sl, len);
printf(s2);
return O;

Related Functions

strnchr(), strncmp(), strncpy(), strcat()

int strncmp(const char *Str1, canst char *Str2, size_ t count)
int strnicmp(const char *Str1, canst char *Str2, size_ t count)
int strncmpi(const char *Str1, canst char *Str2, size_ t count)

Description

The prototype for the strncmp(), strnicmp(), and strncmpi() func­
tions are found in string.h. Of these, only strncmp() is defined by the
ANSI C standard.

478 Turbo CIC++: The Complete Reference

The strncrnp() function lexicographically compares no more than
count characters from the two null-terminated strings. The functions
strnicrnp() and strncrnpi() perform the same comparison while ignor­
ing case; strncrnpi() is a macro that translates to a strnicrnp() call.

All three functions return an integer based on the outcome, as
shown here:

Value

Less than 0

0

Greater than 0

Meaning

str1 is less than str2

str1 is equal to str2

str1 is greater than str2

If there are fewer than count characters in either string, the comparison
ends when the first null is encountered.

Example

The following function compares the first eight characters of the two file
names specified on the command line to determine if they are the same:

#include <stdio.h>
#include <string.h>

main(int argc, char *argv[])
{

}

if(!strnicmp(argv[l], argv[2], 8))
printf("the file names are the same\n");

return O;

Related Functions

strnchr(), strcrnp(), strncpy()

char *Strncpy(char *dest, canst char *Source, size_ t count)
Description

The prototype for strncpy() is found in string.h.

String, Memory, and Character Functions 4 79

The strncpy() function is used to copy up to count characters from
the string pointed to by source into the string pointed to by dest. The
source must be a pointer to a null-terminated string. The strncpy()
function returns a pointer to dest.

If dest and source overlap, the behavior of strncpy() is undefined.
If the string pointed to by source has fewer than count characters,

nulls are appended to the end of dest until count characters have been
copied.

Alternately, if the string pointed to by source is longer than count
characters, the resulting string pointed to by dest is not null-terminated.

Example

The following code fragment copies at most 79 characters of str1 into
str2, thus ensuring that no array boundary overflow will occur:

char str1[128], str2[80];
gets(strl);
strncpy(str2, strl, 79);

Related Functions

strchr(), strncmp(), memcpy(), strncat()

char *Strnset(char *Str, Int ch, size_ t count);

Description

The prototype for strnset() is found in string.h.
The strnset() function sets the first count characters in the string

pointed to by str to the value of ch. It returns str.

Example

This fragment sets the first 10 characters of str to the value x:

strnset(str, 'x', 10);

480 Turbo CIC++: The Complete Reference

Related Function

strset()

char *Strpbrk(const char *Str1, const char *Str2J

Description

The prototype to strpbrk() is found in string.h.
The strpbrk() function returns a pointer to the first character in

the string pointed to by strl that matches any character in the string
pointed to by str2. The null terminators are not included. If there are no
matches, a null pointer is returned.

Example

This program prints the message " is a test" on the screen:

#include <stdio.h>
#include <string.h>

main(void)
{

}

char *p;

p = strpbrk{"this is a test", " absj");
printf(p);
return O;

Related Functions

strrchr(), strstr(), strtok(), strspn()

char *Strrchr(const char *Str, Int ch)

Description

The prototype to strrchr() is found in string.h.

String, Memory, and Character Functions 481

The strrchr() function returns a pointer to the last occurrence of
the low-order byte of ch in the string pointed to by str. If no match is
found, it returns a null pointer.

Example

This program prints the string "is a test":

#include <stdio.h>
#include <string.h>

main(void)
{

}

char *p;

p = strrchr("thi s is a test", 'i ');
printf(p);
return O;

Related Functions

strpbrk(), strstr(), strtok(), strspn()

char *Strrev(char *StrJ

Description

The prototype for strrev() is found in string.h. The strrev() function is
not defined by the ANSI C standard.

The strrev() function reverses all characters, except the null termi­
nator, in the string pointed to by str. It returns str.

Example

This program prints "hello" backwards on the screen:

482 Turbo CIC++: The Complete Reference

#include <stdio.h>
#include <string.h>

chars[] = "hello";

main(void)
{

strrev(s);

printf(s);

return O;
}

Related Function

strset()

char *Strset(char *Str, Int ch)

Description

The prototype for strset() is found in string.h. The strset() function is
not defined by the ANSI C standard.

The strset() function sets all characters in the string pointed to by
str to the value of ch.

Example

This fragment fills the string str with the value x.

strset(str, 'x');

Related Function

strnset()

size_ t strspn(const char *Str1, const char *Str2J
Description

The strspn() function returns the length of the initial substring of the
string pointed to by str1 that is made up of only those characters

String, Memory, and Character Functions 483

contained in the string pointed to by str2. Stated differently, strspn()
returns the index of the first character in the string pointed to by str1
that does not match any of the characters in the string pointed to by
str2.

Example

This program prints the number 8:

#include <stdio.h>
#include <string.h>

main(void)
{

}

int len;

len = strspn("this is a test", "siht ");
printf("%d",len);
return O;

Related Functions

strpbrk(), strstr(), strtok(), strrchr()

char *Strstr(const char *Strl, const char *Str2J

Description

The prototype for strstr() is found in string.h.
The strstr() function returns a pointer to the first occurrence in the

string pointed to by str1 of the string pointed to by str2 (except str2's
null terminator). It returns a null pointer if no match is found.

Example

This program displays the message "is is a test":

484 Turbo CIC++: The Complete Reference

#include <stdio.h>
#include <string.h>

main (void)
{

}

char *p;

p = strstr("this is a test", "is");
printf{p);
return 0;

Related Functions

strpbrk(), strspn(), strtok(), strrchr(), strchr(), strcspn()

char *Strtok(char *Str1, const char *Str2J

Description

The prototype for strtok() is in string.h.
The strtok() function returns a pointer to the next token in the

string pointed to by str1. The characters making up the string pointed
to by str2 are the delimiters that determine the token. A null pointer is
returned when there is no token to return.

The first time strtok() is called, str1 is actually used in the call.
Subsequent calls use a null pointer for the first argument. In this way
the entire string can be reduced to its tokens.

It is important to understand that the strtok() function modifies
the string pointed to by str1. Each time a token is found, a null is placed
where the delimiter was found. In this way strtok() continues to ad­
vance through the string.

It is possible to use a different set of delimiters for each call to
strtok().

Example

This program tokenizes the string "The summer soldier, the sunshine
patriot" with spaces and commas as the delimiters. The output is
"The : summer I soldier I the I sunshine I patriot".

#include <stdio.h>
#include <string.h>

main{void)
{

char *p;

String, Memory, and Character Functions 485

p = strtok("The summer soldier, the sunshine patriot"," ");
printf(p);

}

do {
p=strtok('\O', ", ");
if{p) printf("i%s", p);

} while{p);
return O;

Related Functions

strpbrk(), strspn(), strtok(), strrchr(), strchr(), strcspn()

char *Strupr(char *Str)

Description

The prototype for strupr() is found in string.h. The strupr() function
is not defined by the ANSI C standard.

The strupr() function converts the string pointed to by str to
uppercase. It returns str.

Example

This program prints "THIS IS A TEST" on the screen:

#include <stdio.h>
#include <string.h>

main(void)
{

char s [80] ;

strcpy{s, "this is a test");

strupr(s);

printf(s);

return O;
}

486 Turbo CIC++: The Complete Reference

Related Function

strlwr()

size_ t strxfrm(char *dest, const char *Source, size_ t count)

De serf ptfon

The prototype for strxfrm() is found in string.h.
The strxfrm() function is used to copy up to count characters from

the string pointed to by source into the string pointed to by dest. The
source must be a pointer to a null-terminated string. In the process, any
country-related items are transformed into the proper format for the
current country. The strxfrm() function returns the length of the string
pointed to by source.

The strxfrm() function is equivalent to the strncpy() function.

Related Functions

strncpy(), movedata(), memcpy(), strncat()

Int tolower(lnt ch)
Int _ tolower(int ch)

Description

The prototype for toluwe:r() and the definition of the macro
_ tolower() are found in ctype.h. The _ tolower() macro is not de­
fined by the ANSI C standard.

The to lower() function returns the lowercase equivalent of ch 1f ch
is an uppercase letter; otherwise it returns ch unchanged. The
_ tolower() macro is equivalent, but should only be used when ch is an
uppercase letter; otherwise the results are undefined.

Example

This code fragment displays a "q".

putchar(tolower('Q'));

Related Function

toupper()

Int toupper(lnt ch)
Int _ toupperf Int ch)

Description

String, Memory, and Character Functions 487

The prototype for toupper() and the macro _ toupper() are found in
ctype.h. The _ toupper() macro is not defined by the ANSI C standard.

The toupper() function returns the uppercase equivalent of ch if ch
is a letter; otherwise it returns ch unchanged. The _ toupper() macro is
equivalent, but should only be used when ch is a lowercase letter;
otherwise the results are undefined.

Example

This displays an "A:'.

putchar(toupper('a'));

Related Function

tolower()

Mathematical Functions

The ANSI C standard defines 22 mathematical functions that fall into
the following categories:

• Trigonometric functions

• Hyperbolic functions

• Exponential and logarithmic functions

• Miscellaneous

Turbo C implements all of these functions and includes a few of its own
mathematical functions.

All the math functions require the header math.h to be included in
any program using them because they all return data of type double. In
addition to declaring the math functions, this header defines three
macros called EDOM, ERANGE, and HUGE_ VAL. If an argument to
a math function is not in the domain for which it is defined, an
implementation-defined value is returned and the global errno is set
equal to EDOM. If a routine produces a result that is too large to be
represented by a double, an overflow happens. This causes the routine
to return HUGE_ VAL and errno is set to ERANGE, indicating a
range error. If an underflow happens, the routine returns 0 and sets
errno to ERANGE.

double acos(double arg)

Description

The prototype for acos() is in math.h.

E
I
G
H
T
E
E
N

490 Turbo CIC++: The Complete Reference

The acos() function returns the arc cosine of arg. The argument to
acos() must be in the range -1 to 1; otherwise a domain error occurs.
The return value is in the range 0 to 'TT. The value of arg is specified in
radians and the return value is in radians.

Example

This program prints the arc cosines, in one-tenth increments, of the
values -1 through 1:

#include <stdio.h>
#include <math.h>

main(void)
{

}

double val = -1.0;

do {
printf("arc cosine of %lf is %lf\n", val, acos(val));
val += 0.1;

} while(val <= 1.0);
return O;

Related Functions

asin(), atan(), atan2(), sin(), cos(), tan(), sinh(), cosh(), tanh()

double asinf double arg)
Description

The asin() function returns the arc sine of arg. The argument to
asin() must be in the range -1 to 1; otherwise a domain error occurs.
Its return value is in the range -,,./2 to ,,./2. The value of arg is specified
in radians.

Example

This program prints the arc sines, in one-tenth increments, of the values
-1 through 1:

#include <stdio.h>
#include <math.h>

Mathematical Functions 491

main(void}
{

double val = -1.0;

do {
printf("arc sine of %1f is %1f\n", val, asin(val}};
val += 0.1;

}

} while(val <= 1.0};
return 0;

Related Functions

asin(), atan(), atan2(), sin(), cos(), tan(), sinh(), cosh(), tanh()

double atan(double arg)

Description

The prototype for atan() is in math.h.
The atan() function returns the arc tangent of arg. The value of

arg must be in the range -1to1; otherwise a domain error occurs. The
value of arg is specified in radians.

Example

This program prints the arc tangents, in one-tenth increments, of the
values -1 through 1.

#include <stdio.h>
#include <math.h>

main(void}
{

double val =- 1.0;

do {
printf("arc tangent of %1f is %lf\n", val, atan(val});
val += 0.1;

} while(val <= 1.0);
return O;

Related Functions

asin(), acos(), atan2(), tan(), cos(), sin(), sinh(), cosh(), tanh()

492 Turbo CIC++: The Complete Reference

double atan2(double y, double xJ

Description

The prototype for atan2() is in math.h.
The atan2() function returns the arc tangent of y/x. It uses the

signs of its arguments to compute the quadrant of the return value. The
value of arg is specified in radians.

Example

This program prints the arc tangents, in one-tenth increments of y, from
-1through1:

#include <stdio.h>
#include <math.h>

main(void)
{

}

double y = -1.0;

do {
printf("atan2 of %lf is %lf\n", y, atan2(y, 1.0));
y += 0.1;

} while(y <= 1.0);
return O;

Related Functions

asin(), acos(), atan(), tan(), cos(); sin(); sinh(), cash(), tanh()

double cabs(struct complex znumJ

Description

The prototype for cabs() is in math.h. This function is not defined by
the ANSI C standard.

The cabs() macro returns the absolute value of a complex number.
The structure complex is defined as

struct complex {
double x;

Mathematical Functions 493

double y;
};

If an overflow occurs, HUGE_ VAL is returned and errno is set to
ERANGE (out of range).

Example

This code prints the absolute value of a complex number that has a real
part equal to 1 and an imaginary part equal to 2:

#include <stdio.h>
#include <math.h>

main(void)
{

}

struct complex z;

z.x = l;
z.y = 2;

printf("%lf", cabs(z));
return O;

Related Function

abs()

double cell(double numJ
Description

The prototype for ceil() is in math.h.
The ceil() function returns the smallest integer (represented as a

double) not less than num. For example, given 1.02, ceil() returns 2.0.
Given -1.02, ceil() returns -1.

Example

This fragment prints the value "10" on the screen:

printf("%lf", ceil (9.9));

Related Functions

floor(), fmod()

494 Turbo C/C++: The Complete Reference

double cos(double argJ
Description

The prototype for cos() is in math.h.
The cos() function returns the cosine of arg. The value of arg must

be in radians. The return value is in the range -1 to 1.

Example

This program prints the cosines, in one-tenth increments, of the values
-1 through 1:

#include <stdio.h>
#include <math.h>

main(void)
{

}

double val = -1.0;

do {
printf("cosine of %lf is %lf\n", val, cos(val));
val += 0.1;

} while(val <= 1.0);
return O;

Related Functions

asin(), acos(), atan2(), atan(), tan(), sin(), sinh(), cosh(), tanh()

double cosh(double argJ
Desc;:ption

The prototype for cosh() is in math.h.
The cosh() function returns the hyperbolic cosine of arg. The value

of arg must be in radians.

Example

This program prints the hyperbolic cosines, in one-tenth increments, of
the values -1 through 1:

#include <stdio.h>
#include <math.h>

main(void)
{

double val = -1.0;

do {

Mathematical Functions 495

printf("hyperbolic cosine of %lf is %lf\n", val, cosh(val));
val += 0.1;

}

} while(val <= 1.0);
return O;

Related Functions

asin(), acos(). atan2(), atan(), tan(), cos(), sin(), tanh()

double exp(double argJ
Description

The prototype for exp() is in math.h.
The exp() function returns the natural logarithm e raised to the

arg power.

Example

This fragment displays the value of e (rounded to 2.718282).

printf("value of e to the first: %lf", exp(l.O)):

Related Function

log()

double fabs(double numJ
Description

The prototype for fabs() is in math.h.
The fabs() function returns the absolute value of num.

Example

This program prints "1.0 1.0" on the screen:

#include <stdio.h>
#include <math.h>

496 Turbo CIC++: The Complete Reference

main(void)
{

printf("%1.llf %1.llf", fabs(l.O), fabs(-1.0));
return 0;

Related Function

abs()

double floor(doubfe num)
Description

The prototype for floor() is in math.h.
The floor() function returns the largest integer (represented as a

double) not greater than num. For example, given 1.02, floor() returns
1.0. Given -1.02, floor() returns -2.0.

Example

This fragment prints "10" on the screen:

printf("%lf",floor(l0.9));

Related Function

fmod()

double fmod(double x~ double yJ
Description

The prototype for fmod() is in math.h.
The fmod() function returns the remainder of x/y.

Example

This program prints "1.0" on the screen, which represents the remainder
of 10/3:

#include <stdio.h>
#include <math.h>

main(void)
{

}

printf("%1.llf", fmod(lO.O, 3.0));
return O;

Related Functions

ceil(), floor(), fabs()

Mathematical Functions 497

double frexp(double num, int *exp)

Description

The prototype for frexp() is in math.h.
The frexp() function decomposes the number num into a mantissa

in the range 0.5 to less than 1, and an integer exponent such that
num = mantissa*2exp. The mantissa is returned by the function, and the
exponent is stored at the variable pointed to by exp.

Example

This code fragment prints "0.625" for the mantissa and "4" for the
exponent:

int e;
double f;

f = frexp(lO.O, &e);
printf("%lf %d", f, e);

Related Function

ldexp()

double hypot(double x, double yJ

Description

The prototype for hypot() is in math.h. This function is not defined by
the ANSI C standard.

498 Turbo C/C++: The Complete Reference

The hypot() function returns the length of the hypotenuse of a
right triangle given the lengths of the other two sides.

Example

This code fragment prints the value "2.236068":

printf("%lf", hypot(2, 1));

double ldexp(double num, Int exp)

Description

The prototype for ldexp() is in math.h.
The ldexp() returns the value of num * 26WJJ. If overflow occurs,

HUGE_ VAL is returned.

Example

This program displays the number "4":

#include <stdio.h>
#include <math.h>

main(void)
{

}

printf("%lf", ldexp(l, 2));
return O;

Related Functions

frexp(), modf()

double log(double num)

Description

The prototype for log() is in math.h.

Mathematical Functions 499

The log() function returns the natural logarithm for num. A do­
main error occurs if num is negative and a range error occurs if the
argument is 0.

Example

This program prints the natural logarithms for the numbers 1 through
10:

#include <stdio.h>
#include <math.h>

main(void)
{

}

double val = 1.0;

do {
printf("%lf %lf\n", val, log(val));
val++;

} while (val < 11.0);
return O;

Related Function

loglO()

double log 1 Of double numJ

Description

The prototype for loglO() is in math.h.
The loglO() function returns the base 10 logarithm for num. A

domain error occurs if num is negative, and a range error occurs if the
argument is 0.

Example

This program prints the base 10 logarithms for the numbers 1 through
10:

500 Turbo C/C++: The Complete Reference

#include <stdio.h>
#include <math.h>

main(void)
{

}

double val = 1.0:

do {
printf("%lf %lf\n", val, loglO(val));
val++;

} while (val < 11.0):
return O;

Related Function

log()

Int math err{ struct exception *err)

Description

The prototype for matherr() is in math.h. This function is not defined
by the ANSI C standard.

The matherr() function allows you to create custom math error
handling routines. When the matherr() function can resolve a problem,
it returns non-0 and no message is printed. Also, the errno built-in
variable is not altered. However, if matherr() cannot resolve the prob-
lem, it returns 0, the error message is printed, and the value of e1"1"110 is
changed. By default, Turbo C provides a dummy matherr() function
that returns 0.

The matherr() function is called with an argument of type excep­
tion, which is shown here.

struct exception {
int type:

} :

char *name;
double argl, arg2;
double retval;

The type element holds the type of the error that occurred. Its value
will be one of the following enumerated values.

Symbol

DOMAIN

SING

OVERFLOW

UNDERFLOW

TLOSS

Mathematical Functions so 1

Meaning

Domain error

Result is a singularity

Overflow error

Underflow error

Total loss of significant digits

The name element holds a pointer to a string that holds the name of the
function in which the error took place. The arg1 and arg2 elements hold
the arguments to the function that caused the error. If the function only
takes one argument, it will be in arg1. Finally, retval holds the default
return value for matherr(). It is this value that you can modify.

double modf(double num, Int *IJ

Description

The prototype for modf() is in math.h. This function is not defined by
the ANSI C standard.

The modf() function decomposes num into its integer and frac­
tional parts. It returns the fractional portion and places the integer part
in the variable pointed to by i.

Example

This fragment prints "10" and "0.123" on the screen:

inti;
double f;

f = modf(l0.123, &i);
pri ntf("%d %lf", i, f);

Related Functions

frexp(), ldexp()

502 Turbo CIC++: The Complete Reference

double poly(double x, Int n, double c[]J

Description

The prototype for poly() is in math.h. This function is not defined by
the ANSI C standard.

The poly() function evaluates a polynomial in x of degree n with
coefficients c[O] through c[n] and returns the result. For example, if
n = 3, the polynomial evaluated is

c[3]x3 + c[2]x2 + c[l]x + c[O]

Example

This program prints 47 on the screen.

#include <stdio.h>
#include <math.h>

main(void)
{

}

double c[2];

c[l] = 2;
c[O] = 45;

printf("%1f", poly(l, 2, c));
return 0;

Related Function

hypot()

double pow(double base, double exp)

Descrf ptlon

The prototype for pow() is in math.h.

Mathematical Functions 503

The pow() function returns base raised to the exp power (baseexp).
A domain error occurs if base is 0 and exp is less than or equal to 0. An
overflow produces a range error.

Example

This program prints the first 11 powers of 12.

#include <stdio.h>
#include <math.h>

main(void)
{

}

double x=12.0, y=O.O;

do {
printf("%lf", pow(x, y));
y++;

} whil e(y<ll);
return O;

Related Functions

exp(), log(), sqrt(), powlO()

double pow1 O(lnt n)

Description

The prototype for powlO() is in math.h. This function is not defined by
the ANSI C standard.

The powlO() function returns 10 raised to the power n. Overflow
and underflow are the only possible errors.

Example

This program prints the first 11 powers of 10:

#include <stdio.h>
#include <math.h>

504 Turbo CIC++: The Complete Reference

main(void)
{

}

int x=O;

whil e(x < 11)
printf("%lf", powlO(x++));

return O;

Related Functions

exp(), log(), sqrt(), pow()

double sln{double argJ

Description

The prototype to sin() is in math.h.
The sin() function returns the sine of arg. The value of arg must be

in radians.

Example

This program prints the sines, in one-tenth increments, of the values -1
through 1:

#include <stdio.h>
#include <math.h>

main(void)
{

}

double val = -1.0;

do {
printf("sine of %lf is %lf\n", val, sin(val));
val += 0.1;

} while(val <= 1.0);
return O;

Related Functions

asin(), acos(), atan2(), atan(), tan(), cos(), sinh(), cosh(), tanh()

double slnh(double arg)
Description

The prototype for sinh() is in math.h.

Mathematical Functions 505

The sinh() function returns the hyperbolic sine of arg. The value of
arg must be in radians.

Example

This program prints the hyperbolic sines, in one-tenth increments, of the
values -1 through 1:

#include <stdio.h>
#include <math.h>

main(void)
{

}

double val = -1.0;

do {
printf("hyperbolic sine of %lf is %lf\n", val, sinh(val));
val += 0.1;

} while(val <= 1.0);
} return 0;

Related Functions

asin(), acos(), atan2(), atan(), tan(), cos(), tanh(), cosh()

double sqrt(double num)
Description

The prototype for sqrt() is in math.h.
The sqrt() function returns the square root of num. If called with a

negative argument, a domain error occurs.

Example

This fragment prints 11411 on the screen:

printf("%lf", sqrt(16.0));

Related Functions

exp(), log(), pow()

506 Turbo CIC++: The Complete Reference

double tan(double argJ
Description

The prototype for tan() is in rnath.h.
The tan() function returns the tangent of arg. The value of arg

must be in radians.

Example

This program prints the tangent, in one-tenth increments, of the values
-1 through 1:

#include <stdio.h>
#include <rnath.h>

main(void)
{

double val = -1.0;

do {
printf("tangent of %lf is %lf\n", val, tan(val));
val += 0.1;

} while(val <= 1.0);
return 0;

Related Functions

asin(), atan(), atan2(), atan(), cos(), sin(), sinh(), cosh(), tanh()

tint 1hf,::11 f'2nhft"ln11hlA ~ .. ,.1
----·- •••• •• .,..,....,..,..,,,,_.""" ~••'!:II

Description

The prototype for tanh() is in rnath.h.
The tanh() function returns the hyperbolic tangent of arg. The

value of arg must be in radians. ·

Example

This program prints the hyperbolic tangent, in one-tenth increments, of
the values -1 through 1:

#include <stdio.h>
#include <rnath.h>

main(void)
{

double val = -1.0;

do {

Mathematical Functions 507

printf("Hyperbolic tangent of %lf is %lf\n", val, tanh(val));
val += 0.1;

}

} while(val <= 1.0);
return O;

Related Functions

asin(), atan(), atan2(), atan(), cos(), sin(), cosh(), sin()

Time-, Date-, and System-Related
Functions

This chapter covers those functions that in one way or another are more
operating-system sensitive than others. Of the functions defined by the
ANSI C standard, these include the time and date functions, which
relate to the operating system by using its time and date information.

Also discussed in this chapter is a category of functions that allow
direct operating system interfacing. None of these functions is defined
by the ANSI C standard because each operating environment is dif­
ferent. However, Turbo C provides extensive DOS and BIOS interfacing
functions.

The functions that deal with the system time and date require the
header file time.h for their prototypes. This header also defines two
types. The type time_ t is capable of representing the system time and
date as a long integer. This is referred to as the calendar time. The
structure type tm holds the date and time broken down into elements.
The tm structure is defined as shown here:

struct tm {
int tm_sec; /* seconds, 0-59 */
int tm_min; /* minutes, 0-59 */
int tm_hour; /* hours, 0-23 */
int tm_mday; /* day of the month, 1-31 */
int tm_mon; /* months since Jan, 0-11 */
int tm_year; /* years from 1900 */
int tm_wday; /* days since Sunday, 0-6 */
int tm_yday; /* days since Jan 1, 0-365 */
int tm_isdst; /* daylight saving time indicator*/

};

The value of tm _ isdst will be positive if daylight saving time is in
effect, 0 if it is not in effect, and negative if no information is available.
This form of the time and date is called broken-down time.

Turbo C also includes some nonstandard time and date functions
that bypass the normal time and date system and interface more closely
with DOS. The functions use structures of either type time or date,
which are defined in dos.h. Their declarations are

N
I
N
E
T
E
E

" , ' ' ·"N .. " ... ·

51 O Turbo CIC++: The Complete Reference

struct date {

};

int da_year; /* year */
char da_day; /* day of month */
char da_mon; /* month, Jan=l */

struct time {

};

unsigned char ti_min; /* minutes */
unsigned char ti_hour; /* hours */
unsigned char ti_hund; /* hundredths of seconds */
unsigned char ti_sec; /* seconds */

The DOS interfacing functions require the header dos.h. The file
dos.h defines a union that corresponds to the registers of the 8088/86
CPU and is used by some of the system-interfacing functions. It is
defined as the union of two structures to allow each register to be
accessed by either word or byte.

/*

*/

Copyright (c) Borland International 1987,1988,1990
All Rights Reserved.

struct WORDREGS
{
unsigned int ax, bx, ex, dx, si, di, cflag;
};

struct BYTEREGS
{
unsigned char al, ah, bl, bh, cl, ch, dl, dh;
};

union REGS {
struct WORDREGS x;
struct BYTEREGS h;
};

Also defined in dos.h is the structure type SREGS, which is used by
some functions to set the segment registers. It is defined as

struct SREGS {
unsigned int es;
unsigned int cs;
unsigned int ss;
unsigned int ds;

};

Several of the functions described here interface directly to the
ROM-BIOS-the lowest level of the operating system. These functions
require the header bios.h.

Time-, Date-, and System-Related Functions 511

A few functions require predefined structures that have not been
discussed. Definitions for these structures will be described as needed.

Int absread(int drive, Int numsects, Int sectnum, void *buf)
int abswrlte(lnt drive, Int numsects, Int sectnum, void *bufJ

Description

The prototypes for absread() and abswrite() are in dos.h. These
functions are not defined by the ANSI C standard.

The functions absread() and abswrite() perform absolute disk
read and write operations, respectively. They bypass the logical struc­
ture of the disk and ignore files or directories. Instead they operate on
the disk at the sector specified in sectnum. The drive is specified in
drive with drive A being equal to 0. The number of sectors to read or
write is specified in numsects, and the information is read into or from
the region of memory pointed to by buf.

These functions return 0 on success; non-0 on failure. When a
failure occurs, the built-in variable errno is set to the error value
returned by DOS. You will need DOS technical documentation to deter­
mine the nature of any error that occurs.

You must use great caution when calling abswrite() because it is
very easy to corrupt the disk directory or a file.

Example

This program displays the contents of the specified disk sector in both
hexadecimal and characters form:

#include <stdio.h>
#include <dos.h>
#include <stdlib.h>

main(void)
{

char buf[512];
int sector, i, j;

for(;;) {
printf("Enter sector: ");
scanf("%d", §or);

512 Turbo CIC++: The Complete Reference

}
}

if(sector==-1) return 0;
absread(3, 1, sector, buf); /*read drive D */
for(i=O, j=O; i<512; i++) {

}

printf("%x ", buf[i]);
if(! (i%16)) {

for(; j<i; j++) printf("%c", buf[j]);
printf("\n");

}

Related Functions

read(), fread(), write(), fwrite()

char *asctlme(const struct tm *ptrJ

Description

The prototype for asctime() is in time.h.
The asctime() function returns a pointer to a string representing

the information stored in the structure pointed to by ptr that is con­
verted into the following form:

day month date hours:minutes:seconds year\n\O

For example:

Wed Jun 19 12:05:34 1999

The strnctme pointer passed to asciime() is generally obtained
from either localtime() or gmtime().

The buffer used by asctime() to hold the formatted output string is
a statically allocated character array and is overwritten each time the
function is called. If you wish to save the contents of the string, it is
necessary to copy it elsewhere.

Example

This program displays the local time defined by the system:

#include <stdio.h>
#include <time.h>

main{void)
{

struct tm *ptr;
time_t lt;

lt = time(NULL);

Time-, Date-, and System-Related Functions 513

ptr = localtime(<);
printf(asctime(ptr));
return O;

}

Related Functions

localtime(), gmtime(), time(), ctime()

int bdos(lnt fnum, unsigned dx, unsigned al)
int bdosptr(lnt fnum, void *dsdx, unsigned al)

Description

The prototypes for bdos() and bdosptr() are in dos.h. These functions
are not defined by the ANSI C standard.

The bdos() function is used to access the DOS system call specified
by fnum. It first places the values dx into the DX register and al into
the AL register and then executes an INT 21H instruction.

If you will be passing a pointer argument to DOS, use the
bdosptr() function instead of bdos().

Both the bdos() and bdosptr() functions return the value of the
AX register, which is used by DOS to return information.

Example

This program reads characters directly from the keyboard, bypassing all
of C's I/0 functions, until a "q" is typed:

/* do raw keyboard reads */
#include <dos.h>

514 Turbo CIC++: The Complete Reference

main(void)
{

}

char ch;

while((ch=bdos(l, 0, O))l='q')
/* .•• */
return O;

Related Functions

intdos(), intdosx()

Int bioscom(lnt cmd, char byte, Int port)

Description

The prototype for bioscom() is in bios.h. This function is not defined by
the ANSI C standard.

The bioscom() function is used to manipulate the RS232 asynchro­
nous communication port specified in port. Its operation is determined
by the value of cmd. The values for cmd are shown here:

Value

0

1

2

3

Meaning

Initialize the port

Send a character

Return the port status

Before using the serial port you will probably want to initialize it to
something other than its default setting. To do this, call bioscom() with
cmd set to 0. The exact way the port is set up is determined by the value
of byte, which is encoded with initialization parameters, as shown here:

Bit Numbers: 765 43 2 10

baud I J J T parity
stop bits
data bits

Time-, Date-, and System-Related Functions 51 5

The baud is encoded as shown here:

Baud Bit Pattern
9600 1 1 1
4800 1 1 0
2400 1 0 1
1200 100
600 0 1 1
300 0 1 0
150 0 0 1
110 000

The parity bits are encoded as shown here:

Parity
No parity
Odd
Even

Bit Pattern
00
0 1
1 1

The number of stop bits is determined by bit 2 of the serial port
initialization byte. If it is 1, two stop bits are used; otherwise one stop
bit is used. Finally, the number of data bits is set by the code in bits 1
and 0 of the initialization byte. Of the four possible bit patterns, only two
are valid. If bits 1 and 0 contain the pattern 1 0, seven data bits are
used. If they contain 1 1, eight data bits are used.

For example, if you want to set the port to 9600 baud, even parity,
one stop bit, and eight data bits, you would use this bit pattern:

Bit Numbers: 111 11 0 11

baud T J J J parity
stop bits
data bits

In decimal, this works out to 251.
The return value of bioscom() is always a 16-bit quantity. The

high-order byte contains the status bits, and they have the following
values.

516 Turbo CIC++: The Complete Reference

Meaning When Set Bit

Data ready 0

Overrun error 1

Parity error 2

Framing error 3

Break-detect error 4

Transfer holding register empty 5

Transfer shift register empty 6

Time-out error 7

If cmd is set to 0, 1, or 3, the low-order byte is encoded as shown
here:

Meaning When Set Bit

Change in clear-to-send 0

Change in data-set-ready 1

Trailing-edge ring detector 2

Change in line signal 3

Clear-to-send 4

Data-set-ready 5

Ring indicator 6

Line signal detected 7

When cmd has a value of 2, the low-order byte contains the value
received by the port.

Example

This initializes port 0 to 9600 baud, even parity, one stop bit, and eight
data bits:

bioscom(O, 251, O);

Related Function

bioskey()

Time-, Date-, and System-Related Functions 517

int blosdisk(lnt cmd, Int drive, Int head, Int track,
Int sector, Int nsects, void *bufJ

Description

The prototype for biosdisk() is in bios.h. This function is not defined by
the ANSI C standard.

The biosdisk() function performs BIOS-level disk operations using
interrupt Ox13. These operations ignore the logical structure of the disk
including files. All operations take place on sectors.

The drive affected is specified in drive with 0 corresponding to A, 1
to B, and so on for floppy drives. The first fixed disk is drive Ox80, the
second Ox81, and so on. The part of the disk that is operated on is
specified in head, track, and sector. Refer to the IBM PC technical
reference manual for details of the operation and options of the BIOS­
level disk routines. Keep in mind that direct control of the disk requires
thorough and intimate knowledge of both the hardware and DOS. It is
best avoided except in unusual situations.

Related Functions

absread(), abswrite()

int blosequlp(voldJ

Description

The prototype for biosequip() is found in bios.h. This function is not
defined by the ANSI C standard.

The biosequip() function returns what equipment is in the com­
puter, encoded as a 16-bit value. This value is encoded as shown here:

Bit Equipment

0 Must boot from the floppy drive

1 80x87 math coprocessor installed

518 Turbo CIC++: The Complete Reference

2,3 Motherboard RAM size

O 0: 16K

0 1: 32K

10:48K

11: 64K

4,5 Initial video mode

0 0: unused

0 1: 40x25 BW, color adapter

1 0: 80x25 BW, color adapter

11: 80x25, monochrome adapter

6,7 Number of floppy drives

0 0: one

0 1: two

1 0: three

11: four

8 DMA chip installed

9, 10, 11 Number of serial ports

0 0 0: zero

0 0 1: one

0 1 0: two

0 11: three

100: four

101: five

11 0: six

111: seven

12 Game adapter installed

13

14, 15

Example

Time-, Date-, and System-Related Functions 519

Serial printer installed (PCjr only)

Number of printers

0 0: zero

0 1: one

1 0: two
11: three

The following program displays the number of floppy drives installed in
the computer:

#include <stdio.h>
#include <bios.h>

main(void)
{

unsigned eq;

eq = biosequip();

eq >>= 6; /* shift bits 6 and 7 into lowest position */

printf("number of disk drives: %d", (eq & 3) + l);

return O;
}

Related Function

bioscom()

Int bloskey(lnt cmdJ

Description

The prototype for bioskey() is in bios.h. This function is not defined by
the ANSI C standard.

520 Turbo CIC++: The Complete Reference

The bioskey() function performs direct keyboard operations. The
value of cmd determines what operation is executed.

If cmd is 0, bioskey() returns the next key pressed on the key­
board. (It will wait until a key is pressed.) It returns a 16-bit quantity
that consists of two different values. The low-order byte contains the
ASCII character code if a "normal" key is pressed. It will contain 0 if a
"special" key is pressed. Special keys include the arrow keys, the func­
tion keys, and the like. The high-order byte contains the scan code of
the key. This value corresponds loosely to the position the key has on
the keyboard.

If cmd is 1, bioskey() checks to see if a key has been pressed. It
returns non-0 if a key has been pressed, and 0 otherwise.

When cmd is 2, the shift status is returned. The status of the
various keys that shift a state is encoded into the low-order part of the
return value, as shown here:

Bit Meaning

0 Right shift pressed

1 Left shift pressed

2 CTRL pressed

3 ALT pressed

4 SCROLL LOCK on

5 NUM LOCK on

6 CAPS LOCK on

7 Tl\.Tt'! nn
.1..r..lU V.L.I.

Example

This fragment generates random numbers until a key is pressed:

while(!bioskey(l)) rand();

Related Functions

getche(), kbhit()

Time-, Date-, and System-Related Functions 521

Int blosmemory(vold}
Description

The prototype for biosmemory() is in bios.h. This function is not
defined by the ANSI C standard.

The biosmemory() function returns the amount of memory (in
units of lKB) installed in the system.

Example

The following program reports the amount of memory in the system:

#include <stdio.h>
#include <bios.h>

main(void)
{

printf("%dK bytes of ram", biosmemory());
return O;

}

Related Function

biosequip()

Int blosprlnt(lnt cmd, Int byte, Int port)
Description

The prototype for biosprint() is in bios.h. This function is not defined
by the ANSI C standard.

The biosprint() function controls the printer port specified in port.
If port is 0, LPTl is used; if port is 1, LPT2 is accessed. The exact
function performed depends on the value of cmd. The legal values for
cmd are shown here:

Value

0

1

2

Meaning

Print the character in byte

Initialize the printer port
Return the status of the port

522 Turbo CIC++: The Complete Reference

The printer port status is encoded into the low-order byte of the return
value as shown here:

Bit Meaning

0 Time-out error

1 Unused

2 Unused

3 I/O error
4 Printer selected

5 Out-of-paper error

6 Acknowledge

7 Printer not busy

Example

This fragment prints the string "hello" on the printer connected to
LPTl:

char p[]="hello";
while(*p) biosprint(O, *p++, O);

Related Function

bioscom()

long blostlme(lnt cmd, long newtlme}

Description

The prototype for biostime() is in bios.h. This function is not defined
by the ANSI C standard.

Time-, Date-, and System-Related Functions 523

The biostime() function reads or sets the BIOS clock. The BIOS
clock ticks at a rate of approximately 18.2 ticks per second. Its value is 0
at midnight and increases until reset at midnight again or manually set
to some value. If cmd is 0, biostime() returns the current value of the
timer. If cmd is 1, it sets the timer to the value of newtime.

Example

This program prints the current value of the timer:

#include <stdio.h>
#include <bios.h>

main(void)
{

}

printf("the current timer value is %ld", biostime(O,O));
return 0;

Related Functions

time(), ctime()

clock_ t clockfvoidJ

Description

The prototype for clock() is in time.h.
The clock() function returns the amount of time elapsed since the

program that called clock() started running. If a clock is not available,
-1 is returned. To convert the return value to seconds, divide it by the
macro CLK_ TCK.

Example

The following program times the number of seconds it takes the empty
for loop to go from 0 to 500000.

524 Turbo CIC++: The Complete Reference

#include <stdio.h>
#include <time.h>

main(void)
{

}

clock_t start, stop;
unsigned long t;

start= clock();
for(t=O; t<SOOOOOL; t++);
stop= clock();
printf("loop required %f seconds\n", (stop - start) I CLK_TCK);
return O;

Related Functions

localtirne(), grntime(), time(), asctirne()

struct country *Country(lnt countrycode,
struct country *CountryptrJ

Description

The prototype for country() is in dos.h. This function is not defined by
the ANSI C standard.

The country() function sets several country-dependent items, such
as the currency symbol and the way the date and time are displayed.

The structure country is defined like this:

struct country {

};

int co_date; /* date format */
char co_curr[5]; /*currency symbol */
char co_thsep[2]; /*thousand separator*/
char co_desep[2]; /*decimal separator*/
char co_dtsep[2]; /*date separator*/
char co_tmsep[2]; /*time separator*/
char co_currstyle /* currency style */
char co_digits; /* significant digits in currency */
char co_time; /* format of time */
long co_case; /* case map */
char so_dasep; /* data separator */
char co_fill[lO]; /*filler*/

Time-, Date-, and System-Related Functions 525

If countrycode is set to 0, the country-specific information is put in the
structure pointed to by countryptr. If countrycode is non-0, the count:ry­
specific information is set to the value of the structure pointed to by
countryptr.

The value of co_date determines the date format. If it is 0, U.S.
style (month, day, year) is used. If it is 1, the European style (day,
month, year) is used. If it is 2, the Japanese style (year, month, day) is
used.

The way currency is displayed is determined by the value of
co_ currstyle. The legal values for co_ currstyle are shown here:

0 Currency symbol immediately precedes the value

1 Currency symbol immediately follows the value

2 Currency symbol precedes the value with a space between
the symbol and the value

3 Currency symbol follows the value with a space between the
symbol and the value

The function returns a pointer to the countryptr argument. If an error
occurs, it returns null.

Example

This program displays the currency symbol:

#include <stdio.h>
#include <dos.h>

main(void)
{

}

struct country c;

country(O, &c);

printf(c.co_curr):

return 0;

char *Ctime(const time_ t *time)
Description

The prototype for ctime() is in time.h.

526 Turbo CIC++: The Complete Reference

The ctime() function returns a pointer to a string of the form

day month date hours:minutes:seconds yea't\n\O

given a pointer to the calendar time. The calendar time is generally
obtained through a call to time(). The ctime() function is equivalent to

asctime{localtime(time))

The buffer used by ctime() to hold the formatted output string is a
statically allocated character array and is overwritten each time the
function is called. If you wish to save the contents of the string, it is
necessary to copy it elsewhere.

Example

This program displays the local time defined by the system:

#include <stdio.h>
#include <time.h>
#include <stddef.h>

main(void)
{

}

time_t lt;

lt = time(NULL);
printf(ctime(<));
return 0;

Related Functions

localtime(), gmtime(), time(), asctime()

void ctrlbrk(lnt f *fptrJ(voldJ)

Description

The prototype for ctrlbrk() is in dos.h. This function is not defined by
the ANSI C standard.

Time-, Date-, and System-Related Functions 527

The ctrlbrk() function is used to replace the control-break handler
called by DOS with the one pointed to by fptr. This routine is called each
time the CTRL-BRK key combination is pressed. A control-break generates
an interrupt Ox23.

Turbo C automatically replaces the old control-break handler when
your program exits.

The new control-break routine should return non-0 if the program
is to continue running. If it returns 0, the program is terminated.

Example

This program prints the numbers 0 to 31,999 unless the CTRL-BRK key
combination is pressed, which causes the program to abort:

#include <stdio.h>
#include <dos.h>

int break_handler(void);

main(void)
{

register int i;

ctrlbrk(break_handler);

for(i=O: i<32000: i++) printf("%d ", i);

return O;
}

break_handler(void)
{

}

printf("this is the new break handler");
return O;

Related Function

geninterrupt()

void delay(unslgned time)
Description

The prototype for delay() is in dos.h. This function is not defined by the
ANSI C standard.

528 Turbo CIC++: The Complete Reference

The delay() function halts program execution for time number of
milliseconds.

Example

This program displays a message and beeps twice:

#include <stdio.h>
#include <dos.h>

main(void)
{

}

printf("beep beep \n");

sound(500);
delay(600);
nosound();
delay(300);
sound(SOO);
delay(600);
nosound();

return O;

Related Function

sleep()

doubie diffi:imeitime _ t timez, time_ t time 1 J

Description

The prototype for difftime() is in time.h.
The difftime() function returns the difference in seconds between

timel and time2, that is, time2-time1.

Example

The following program times the number of seconds it takes the empty
for loop to go from 0 to 500000 (on an IBM model 60, this displays "loop
required 3.00000 seconds").

#include <stdio.h>
#include <time.h>
#include <stddef .h>

main (void)
{

time_t start.end;
long unsigned int t;

Time-, Date-, and System-Related Functions 529

start= time(NULL);
for(t=O; t<SOOOOOL; t++)
end= time(NULL);
printf("loop required %f seconds\n", difftime(end, start));
return O;

Related Functions

localtime(), gmtime(), time(), asctime()

void dlsable(vold)

Description

The prototype for disable() is in dos.h. This function is not defined by
the ANSI C standard.

The disable() macro disables interrupts. The only interrupt that it
allows is the NMI (nonmaskable interrupt). Use this function with care
because many devices in the system use interrupts.

Related Functions

enable(), geninterrupt()

Int dosexterr(struct DOSERROR *err)

Description

The prototype for dosexterr() is in dos.h. This function is not defined
by the ANSI C standard.

530 Turbo CIC++: The Complete Reference

The dosexterr() function fills the structure pointed to by err with
extended error information when a DOS call fails. The DOSERROR
structure is defined like this:

struct DOSERROR {

};

int de_exterror; /* error code */
int de_class; /*class of error*/
char de_action; /* suggested action */
char de_locus; /* location of error */

For the proper interpretation of the information returned by DOS, refer
to the DOS technical reference manual.

Related Function

ferror()

long dostounix(struct date *d, struct time *t)

Description

The prototype for dostounix() is in dos.h. This function is not defined
by the ANSI C standard.

The function dostuunix() returns the system time as returned by
gettime() and getdate() in a form compatible with the UNIX time
format (also compatible with the ANSI standard's format).

Example

See getdate() for an example.

Related Functions

unixtodos(), ctime(), time()

Time-, Date-, and System-Related Functions 531

void enable(vold)

Description

The prototype for enable() is in dos.h. This function is not defined by
the ANSI C standard.

The enable() function enables interrupts.

Related Functions

disable(), geninterrupt()

unsigned FP _ OFF(void far *ptr)
unsigned FP _ SEG(vold far *ptr)

Description

The prototypes for FP _OFF() and FP _ SEG() are in dos.h. These
macros are not defined by the ANSI C standard.

The FP _OFF() macro returns the offset portion of the far pointer
ptr. The FP _ SEG() macro returns the segment of the far pointer ptr.

Example

This program prints the segment and offset of the far pointer ptr:

#include <stdio.h>
#include <dos.h>
#include <stdlib.h>

main(void)
{

}

char far *ptr;

ptr = (char far*) malloc(lOO);

printf("segment:offset of ptr: %u %u", FP_SEG(ptr),FP_OFF(ptr));
return O;

532 Turbo CIC++: The Complete Reference

Related Function

MK_FP()

void ftime(struct tlmeb *time)

Descrf ptlon

The prototype for ftime() is in sys\timeb.h. This function is not defined
by the ANSI C standard.

The ftime() function fills the timeb structure with system time
information. Specifically, it retrieves the elapsed time in seconds since
Jan. 1, 1970 (GMT), the fractional part of any elapsed second in millisec­
onds, the difference between GMT and local time in minutes, and
whether daylight saving time is in effect.

The timeb structure looks like this:

struct timeb {

};

long time; /* time in seconds from Jan 1, 1970 */
short millitm; /*milliseconds */
short timezone; /* difference between GMT and local time */
short dstflag; /* non-0 if daylight saving time is in effect*/

Example

This program displays the number of seconds elapsed since January 1,
1970, Greenwich mean time:

#include <stdio.h>
#include <sys\timeb.h>

main(void)
{

}

struct timeb lt;

ftime(<);
printf("%ld seconds %d milliseconds.\n",lt.time,lt.millitm);
return 0;

Time-, Date-, and System-Related Functions 533

Related Functions

localtime(), gmtime(), ctime(), asctime()

void genlnterrupt(lnt lntrJ

Description

The prototype for geninterrupt() is in dos.h. This function is not
defined by the ANSI C standard.

The geninterrupt() macro generates a software interrupt. The
number of the interrupt generated is determined by the value of intr.

Example

This generates interrupt 5, the print screen function:

#include <dos.h>

main(void)
{

}

geninterrupt(S); /*print screen function*/
return O;

Related Functions

enable(), disable()

Int getcbrk(voidJ

Description

The prototype for getcbrk() is in dos.h. This function is not defined by
the ANSI C standard.

534 Turbo CIC++: The Complete Reference

The getcbrk() function returns 0 if extended control-break check­
ing is off and 1 if extended control-break checking is on. When extended
control-break checking is off, the only time DOS checks to see if the
CTRL-BRK key combination has been pressed is when console, printer, or
auxiliary communication devices are performing I/O operations. When
the extended checking is on, the CTRL-BRK combination is checked for by
each DOS call.

Example

This prints the current state of control-break checking:

printf ("The current cbrk setting is %d", getcbrk());

Related Function

setcbrk()

void getdate(struct date *d)
void gettlme(struct time *tJ

Description

The prototypes for getdate() and gettime() are in dos.h. These func­
tions are not defined by the ANSI C standard.

The getdate() function fills the date structure pointed to by d with
the DOS form of the current system date. The gettime() function fills
the time structure pointed to by t with the DOS form of the current
system time.

Example

The following program converts the DOS version of time and date into
the form that can be used by the ANSI C standard time and date
routines and displays the time and date on the screen.

Time-, Date-, and System-Related Functions 535

#include <stdio.h>
#include <time.h>
#include <dos.h>

main(void)
{

}

time_t t;
struct time dos_time;
struct date dos_date;
struct tm *local;

getdate(&dos_date):
gettime(&dos_time);

t = dostounix(&dos_date, &dos_time);
local = localtime(&t);
printf("time and date: %s\n", asctime(local));
return O;

Related Functions

settime(), setdate()

void getd free(unsigned char drive, struct dfree *dfptrJ

Description

The prototype for getdfree() is in dos.h. This function is not defined by
the ANSI C standard.

The getdfree() function returns the amount of free disk space to
the structure pointed to by dfptr for the drive specified by drive. The
drives are numbered from 1 beginning with drive A You can specify the
default drive by calling getdfree() with a value of 0. The dfree struc­
ture is defined like this:

struct dfree {

}:

unsigned df_avail; /*unused clusters*/
unsigned df_total; /*total number of clusters*/
unsigned df_bsec; /* number of bytes per sector */
unsigned df_sclus; /* number of sectors per cluster */

If an error occurs, the df _ sclus field is set to -1.

Example

The following program prints the number of free clusters available for
use on drive C.

536 Turbo CIC++: The Complete Reference

#include <stdio.h>
#include <dos.h>

main(void)
{

struct dfree p;

getdfree{J, &p); /*drive C */

printf("Number of free sectors is %d.", p.df_avail);

return O;
}

Related Function

getfat()

char far *getdta(voldJ

Description

The prototype for getdta() is in dos.h. This function is not defined by
the ANSI C standard.

The getdta() function returns a pointer to the disk transfer ad­
dress (DTA). A far pointer is returned because you cannot assume that
the disk transfer address will be located within the data segment of
your program.

Example

This fragment assigns the DTA to the far pointer ptr.

char far *ptr;
ptr = getdta{);

Related Function

setdta()

Time-, Date-, and System-Related Functions 537

void getfat(unsigned char drive, struct fatinfo *fptrJ
void getfatd(struct fatlnfo *fptrJ

Description

The prototypes for getfat() and getfatd() are in dos.h. These functions
are not defined by the ANSI C standard.

The getfat() function returns various information about the disk in
drive that is gathered from that drive's file allocation table (FAT). If the
value drive is 0, the default drive is used. Otherwise, 1 is used for drive
A, 2 for B, and so on. The structure pointed to by fptr is loaded with the
information from the FAT. The structure fatinfo is defined as

struct fatinfo {

};

char fi_sclus; /* number of sectors per cluster */
char fi_fatid; /* FAT ID */
int fi_nclus; /* total number of clusters */
int fi_bysec; /* number of bytes per sector */

The getfatd() function is the same as getfat() except that the
default drive is always used.

Example

This program displays the total storage capacity, in bytes, of the default
drive:

#include <stdio.h>
#include <dos.h>

main(void}
{

}

long total;
struct fatinfo p;

getfat{O, &p);

total = (long) p.fi_sclus * {long) p.fi_nclus * (long) p.fi_bysec;

printf("total storage capacity: %ld.", total);

return O;

Related Function

getdfree()

538 Turbo CIC++: The Complete Reference

int getftime(int handle, struct ftime *ftptrJ

Description

The prototype for getftime() is in io.h. This function is not defined by
the ANSI C standard.

The function getftime() returns time and date of creation for the
file associated with handle. The information is loaded into the structure
pointed to by ftptr. The bit field structure ftime is defined like this:

struct ftime {
unsigned ft_tsec: 5; /* seconds */
unsigned ft_min: 6; /*minutes */
unsigned ft_hour: 5; /* hours */
unsigned ft_day: 5; /* days */
unsigned ft_month: 4; /* month */
unsigned ft_year: 7; /* year from 1980 */

};

The getftime() function returns 0 if successful. If an error occurs,
-1 is returned and errno is set to either EINVFNC (invalid function
number) or EBADF (bad file number).

Remember that files associated with file descriptors (handles) use
the UNIX-like I/O system, which is not defined by the ANSI C stan­
dard.

Example

This program prints the year the file TEST.TST was created:

#include <stdio.h>
#include <io.h>
#include <dos.h>
#include <fcntl.h>
#include <stdlib.h>

main(void)
{

struct ftime p;
int fd;

if((fd=open("TEST. TST", O_RDONLY))==-1) {
printf("cannot open file");
exit (1);

}

Time-, Date-, and System-Related Functions 539

getftime(fd, &p);

printf("%d", p. ft__year + 1980);

return O;
}

Related Function

open()

unsigned getpsp(vold)
Description

The prototype for getpsp() is in dos.h. This function is not defined by
the ANSI C standard.

The getpsp() function returns the segment of the program segment
prefix (PSP). This function works only with DOS Version 3.0 or later.

The PSP is also set in the global variable _psp, which can be used
with versions of DOS more recent than 2.0.

Related Function

biosdisk()

void lnterrupt(*getvect(lnt lntr))()
Description

The prototype for getvect() is in dos.h. This function is not defined by
the ANSI C standard.

The getvect() function returns the address of the interrupt service
routine associated with the interrupt specified in intr. This value is
returned as a far pointer.

Example

This fragment returns the address of the print screen function (which is
associated with interrupt 5):

void interrupt (*p)(void);

p = getvect(5);

540 Turbo CIC++: The Complete Reference

Related Function

setvect()

Int getverlfy(voldJ

Description

The prototype for getverify() is in dos.h. This function is not defined by
the ANSI C standard.

The getverify() function returns the status of the DOS verify flag.
When this flag is on, all disk writes are verified against the output buffer
to ensure that the data was properly written. If the verify flag is off, no
verification is performed.

If the verify flag is off, 0 is returned; otherwise 1 is returned.

Example

This program prints the value of the DOS verify flag:

#include <stdio.h>
#include <dos.h>

main(void)
{

}

pri ntf ("The verify flag is set to %d.", getveri fy ()) ;
return O;

Related Function

setverify()

struct tm *gmtlme(const time_ t *time)

Description

The prototype for gmtime() is in time.h.

Time-, Date-, and System-Related Functions 541

The gmtime() function returns a pointer to the broken-down form
of in the form of a tm structure. The time is represented in Greenwich
mean time. The time value is generally obtained through a call to
time().

The structure used by gmtime() to hold the broken-down time is
statically allocated and is overwritten each time the function is called. If
you wish to save the contents of the structure, it is necessary to copy it
elsewhere.

Example

This program prints both the local time and the Greenwich mean time of
the system:

#include <stdio.h>
#include <time.h>
#include <stddef.h>

/* print local and GM time */
main(void)
{

}

struct tm *local, *gm;
time_t t;

t = time(NULL);
local = localtime(&t);
printf("Local time and date: %s", asctime(local));
gm= gmtime(&t);
printf("Greenwich mean time and date: %s", asctime(gm));
return 0;

Related Functions

localtime(), time(), asctime()

void harderr(lnt (*Int_ handler) (J J
void hardresume(int code)
void hardretn(lnt code)

Description

The prototypes for harderr(), hardresume(), and hardretn() are in
dos.h. These functions are not defined by the ANSI C standard.

542 Turbo CIC++: The Complete Reference

The function harderr() allows you to replace DOS's default hard­
ware error handler with one of your own. The function is called with the
address of the function that is to become the new error-handling rou­
tine. It will be executed each time an interrupt Ox24 occurs.

Assuming the name of the error-handling function is called
err _handler(), it must have the following prototype:

err _handler(int errnum, int ax, int bp, int si);

Here, errnum is DOS's error code and ax, bp, and si contain the values
of the AX, BP, and SI registers. If ax is nonnegative, a disk error has
occurred. When this is the case, ANDing ax with OxFF yields the
number of the drive that failed with A being equal to 0. If ax is negative,
a device failed. You must consult a DOS technical reference guide for
complete interpretation of the error codes. The bp and si registers
contain the address of the device driver from the device that sustained
the error.

You must follow two very important rules when creating your own
error handlers:

1. The interrupt handler must not use any of Turbo C's standard or
UNIX-like I/O functions. Attempting to do so will crash the com­
puter.

2. You can use only DOS calls numbers 1 through 12.

The error interrupt handler can exit in one of two ways:

1. The hardresume() function causes the handler to exit to DOS,
returning the value of code.

2. The handler can return to the program via a call to hardretn()
with a return value of code.

In either event, the value returned must be 0 for ignore, 1 for retry, or 2
for abort.

Due to the complex nature of interrupt service functions, no exam­
ple is shown.

Related Function

geninterrupt()

Time-, Date-, and System-Related Functions 543

Int lnport(lnt port)
unsigned char lnportb(int port)

Description

The prototypes for inport() and inportb() are in dos.h. These func­
tions are not defined by the ANSI C standard.

The inport() function returns the word value read from the port
specified in port.

The inportb() macro returns a byte read from the specified port.

Example

The following fragment reads a word from port 1:

unsigned inti;

i = inport(l);

Related Functions

outport(), outportb()

int lnt86(int int_num, union REGS *ln_regs,
union REGS *Out_ regs)

int int86x(int Int_ num, union REGS *In_ regs,
union REGS *Out_ regs, struct SREGS *SegregsJ

Description

The prototypes for int86() and int86x() are in dos.h. These functions
are not defined by the ANSI C standard.

The int86() function is used to execute a software interrupt speci­
fied by int_ num. The contents of the union in_ regs are copied into the
registers of the processor, and then the proper interrupt is executed.

Upon return, the union out_ regs contains the values of the regis­
ters that the CPU has upon return from the interrupt. If the carry flag
is set, an error has occurred. The value of the AX register is returned.

544 Turbo CIC++: The Complete Reference

The int86x() copies the values of segregs ___. ds into the DS regis­
ter and segregs ___. es into the ES register. This allows programs
compiled for the large data model to specify which segments to use
during the interrupt.

The unions REGS and SREGS are defined in the header dos.h.

Example

The int86() function is often used to call ROM routines in the IBM PC.
For example, this function executes an INT lOH function code 0 that
sets the video mode to the value specified by the argument mode:

#include <dos.h>

/* Set the video mode */
void set_mode(char mode)
{

union REGS in, out;

in.h.al = mode;
in.h.ah = O; /* set mode function number */

int86(0x10, &in, &out);
}

Related Functions

intdos(), bdos()

int lntdos(unlon REGS *in_ regs, union REGS *Out_ regs)
Int lntdosx(unlon REGS *In _regs, union REGS *Out_ regs,

struct SREGS *segregsJ

Description

The prototypes for intdos() and intdosx() are in dos.h. These func­
tions are not defined by the ANSI C standard.

The intdos() function is used to access the DOS system call speci­
fied by the contents of the union pointed to by in_ regs. It executes an
INT 21H instruction and places the outcome of the operation in the
union pointed to by out_ regs. The intdos() function returns the value

Time-, Date-, and System-Related Functions 545

of the AX register used by DOS to return information. On return, if the
carry flag is set, an error has occurred.

The intdos() function is used to access those system calls that
either require arguments in registers other than only DX or AL or that
return information in a register other than AX.

The union REGS defines the registers of the 8088/86 family of
processors and is found in the dos.h header file.

For intdosx(), the value of segregs specifies the DS and ES regis­
ters. This is principally for use in programs compiled using the large
data models.

Example

This program reads the time directly from the system clock, bypassing
all of C's time functions:

#include <stdio.h>
#include <dos.h>

main(void)
{

}

union REGS in, out;

in.h.ah=Ox2c; /* get time function number */
intdos(&in, &out);
printf("time is %.2d:%.2d:%.2d", out.h.ch, out.h.cl, out.h.dh};
return 0;

Related Functions

bdos(), int86()

void lntr(lnt lntr _ num, struct REGPACK *reg)

Description

The prototype for intr() is in dos.h. This function is not defined by the
ANSI C standard.

546 Turbo CIC++: The Complete Reference

The intr() function executes the software interrupt specified by
intr _ num. It provides an alternative to the int86() function, but has
no other function.

The values of the registers in the structure pointed to by reg are
copied into the CPU registers before the interrupt occurs. After the
interrupt returns, the structure contains the values of the registers as
set by the interrupt service routine. The structure REGP ACK is defined
as shown here:

struct REGPACK {

};

unsigned r_ax, r_bx, r_cx, r_dx;
unsigned· r_bp, r_si, r_di, r_ds, r_es;
unsigned r_flags;

Any registers not used by the interrupt are ignored.

Example

This program prints the screen using interrupt 5, the print screen
interrupt:

#include <dos.h>

main(void)
{

struct REGPACK r;

intr(S, &r);

return O;

Related Functions

int86(), intdos()

void keep(unslgned char status, unsigned size)
Description

The prototype for keep() is in dos.h. This function is not defined by the
ANSI C standard.

Time-, Date-, and System-Related Functions 547

The keep() function executes an interrupt Ox31, which causes the
current program to terminate but stay resident. The value of status is
returned to DOS as a return code. The size of the program that is to
stay resident is specified in size. The rest of the memory is freed for use
by DOS.

Because the subject of terminate and stay resident programs is
quite complex, no example is presented here. However, the interested
reader is referred to Born to Code in C (Herbert Schildt, Osborne/
McGraw-Hill, 1989), which provides coverage of this topic.

Related Function

geninterrupt()

struct tm *localtime(const time_ t *time)

Description

The prototype for localtirne() is in time.h.
The localtime() function returns a pointer to the broken-down

time in the form of a tm structure. The time is represented in local time.
The time value is generally obtained through a call to time().

The structure used by localtime() to hold the broken-down time is
statically allocated and is overwritten each time the function is called.
To save the contents of the structure, it is necessary to copy it else­
where.

Example

This program prints both the local time and the Greenwich mean time of
the system:

#include <stdio.h>
#include <time.h>
#include <stddef.h>

/* Print local and Greenwich mean time. */
main(void)
{

548 Turbo CIC++: The Complete Reference

}

struct tm *local, *gm;
time_t t;

t = time(NULL);
local = localtime(&t);
printf("Local time and date: %s", asctime(local));
gm= gmtime(&t);
printf("Greenwich mean time and date: %s", asctime(gm));
return O;

Related Functions

gmtime(), time(), asctime()

time_ t mktlme(struct tm *P)

Description

The prototype for mktime() is in time.h.
The mktime() function converts the time pointed to by p into

calendar time"
The mktime() function returns the time as a value of type time_ t.

If no time information is available, it returns -1.

Example

This program displays the day of the week for the given year, month,
and day:

#include <stdio.h>
#include <time.h>

main(void)
{

}

struct tm t;

t.tm_year = 90; /*year 1990 */
t.tm_mon = 1; /*month - 1 */
t.tm_mday = 7;
mktime(&t);
printf("The day of the week is %d\n", t.tm_wday);

return O;

Time-, Date-, and System-Related Functions 549

Related Functions

localtime(), time(), asctime()

void far *MK_ FPfunslgned seg, unsigned off)

Description

The prototype for MK_FP() is in dos.h. This macro is not defined by
the ANSI C standard.

The MK_FP() macro returns a far pointer given the segment seg
and the offset off.

Example

This returns the appropriate far pointer given a segment value of 16
and an offset of 101:

void far *p;

p = MK_FP(16, 101);

Related Functions

FP _OFF(), FP _ SEG()

void outport(lnt port, Int word)
void outportb(int port, unsigned char byte)

Description

The prototypes for outport() and outportb() are in dos.h. These func­
tions are not defined by the ANSI C standard.

550 Turbo CIC++: The Complete Reference

The outport() function outputs the value of word to the port
specified in port. The macro outportb() outputs the specified byte to the
specified port.

Example

This fragment writes the value OxFF to port OxlO:

outport(OxlO, OxFF);

Related Functions

inport(), inportb()

char *parsfnm(const char *fname, struct fcb *fcbptr, Int
option}

Description

The prototype for parsfnm() is in dos.h. This function is not defined by
the ANSI C standard.

The parsfnm() function converts a file name contained in a string
into the form required by the file control block (FCB) and places it into
the one pointed to by fcbptr. The function uses DOS function O:x-29. The
option parameter is used to set the AL register prior to the call to DOS.
Refer to a DOS programmer's manual for complete information on the
Ox29 function. The fcb structure is defined as:

struct
char
char
char
short
short
long
short
char
char
long

};

fcb {
fcb_drive;
fcb_name [8] ;
fcb_ext[3];
fcb_curblk;
fcb_recsize;
fcb_fil size;
fcb_date;
fcb_resv[lO];
fcb_currec;
fcb_random;

/* O = default, 1 = A, 2 = B */
/* File name *I
/* File extension */
/* Current block number */
/* Logical record size in bytes */
/* File size in bytes */
/* Date file was last written */
/* Reserved for DOS */
/* Current record in block */
/* Random record number */

Time-, Date-, and System-Related Functions 551

If the call to parsfnm() is successful, a pointer to the next byte
after the file name is returned; if there is an error, a null is returned.

Related Function

fopen()

Int peek(unslgned seg, unsigned offset)
char peekb(unslgned seg, unsigned offset)
void poke(unsigned seg, unsigned offset, int word)
void pokeb(unslgned seg, unsigned offset, char byte)

Description

The prototypes for peek(), peekb(), poke(), and pokeb() are in dos.h.
These functions are not defined by the ANSI C standard.

The peek() macro returns the 16-bit value at the location in mem­
ory pointed to by seg:ojfset.

The peekb() macro returns the 8-bit value at the location in mem­
ory pointed to by seg:offset.

The poke() macro stores the 16-bit value of word at the address
pointed to by seg:offset.

The pokeb() macro stores the 8-bit value of byte at the address
pointed to by seg:offset.

Example

This program displays the value of the byte stored at location 0000:0100:

#include <stdio.h>
#include <dos.h>

main(void)
{

printf("%d", peekb(O, OxOlOO));
return 0;

Related Functions

FP _OFF(), FP _SEG(), MK_FP()

552 Turbo CIC++: The Complete Reference

Int randbrdfstruct fcb *fcbptr, Int count)
Int randbwrf struct fcb *fcbptr, Int count)

Description

The prototypes for randbrd() and randbwr() are in dos.h. These
functions are not defined by the ANSI C standard.

The randbrd() function reads count number of records into the
memory at the current disk transfer address. The actual records read
are determined by the values of the structure pointed to by fcbptr. The
fcb structure is defined as:

struct
char
char
char
short
short
long
short
char
char
long

};

fcb {
fcb_drive;
fcb_name [8] ;
fcb_ext[3];
fcb_curblk;
fcb_recsize;
fcb_fi l size; .
fcb_date;
fcb_resv[lO];
fcb_currec;
fcb_random;

/* 0 = default, 1 = A, 2 = B */
/* File name*/
/* File extension */
/* Current block number */
/* Logical record size in bytes */
/* File size in bytes */
/* Date file was last written */
/* Reserved for DOS */
/* Current record in block */
/* Random record number */

The randbrd() function uses DOS function Ox27 to accomplish its oper­
ation. Refer to a DOS programmer's guide for details.

The randbwr() function writes count records to the file associated
with the fcb structure pointed to by fcbptr. The randbwr() uses DOS
function Ox28 to accomplish its operation. Refer to a DOS programmer's
guide for details.

The following values are returned by the functions.

0 All records successfully transferred

1 EOF encountered but the last record transferred is complete

2 Too many records, but those transferred are complete

3 EOF encountered and the last record is incomplete (applies
to randbrd() only)

Related Function

parsfnm()

Time-, Date-, and System-Related Functions 553

void segread(struct SREGS *Sregs)

Description

The prototype for segread() is in dos.h. This function is not defined by
the ANSI C standard.

The segread() function copies the current values of the segment
registers into the structure of type SREGS pointed to by sregs. This
function is intended for use by the intdosx() and int86x() functions.
Refer to these functions for further information.

Int setcbrk(lnt cb)

Description

The prototype for setcbrk() is in dos.h. This function is not defined by
the ANSI C standard.

The setcbrk() turns extended control-break checking on and off. If
cb is 1, extended control-break checking is turned on; if it is 0, extended
control-break checking is turned off. When extended control-break
checking is off, the only time DOS checks to see if the CTRL-BRK key
combination has been pressed is when performing standard l/O opera­
tions. When extended checking is on, the control-break combination is
checked for each time any DOS function is accessed.

The setcbrk() function returns cb.

Example

This program toggles extended control-break checking:

#include <stdio.h>
#include <dos.h>

554 Turbo CIC++: The Complete Reference

main(void)
{

}

if (getcbrk() == O)
setcbrk(l);

else
setcbrk(O);

printf("BREAK is %s\n", (getcbrk()) ? "on" : "off");
return 0;

Related Functions

getcbrk(), enable(), disable()

void setdate(struct date *d)
void settlme(struct time *t)

Description

The prototypes for setdate() and settime() are in dos.h. These func­
tions are not defined by the ANSI C standard.

The setdate() function sets the DOS system date as specified in the
structure pointed to by d. The settime() function sets the DOS system
time as specified in the structure pointed to by t.

Example

This fragment sets the system time to 10:10:10.0:

struct time t;

t.ti_hour = 10;
t.ti_min = 10;
t.ti_sec = 10;
t.ti_hund = O;

settime(&t);

Related Functions

gettime(), getdate()

Time-, Date-, and System-Related Functions 555

void setdtaf char far *dta)

Description

The prototype for setdta() is in dos.h. This function is not defined by
the ANSI C standard.

The setdta() function sets the disk transfer address (DTA) b that
specified by dta.

Example

This fragment sets the disk transfer address to location AOOO:OOOO:

char far *p;

p = MK_FP(OxAOOO, 0)

setdta(p);

Related Function

getdta()

Int setftlme(lnt handle, struct ftlme *t)

Description

The prototype to setftime() is found in io.h. This function is not defined
by the ANSI C standard.

The setftime() function is used to set the date and time associated
with a disk file. It changes the date and time of the file linked to handle
using the information found in the structure pointed to by t. The ftime
structure is shown here:

struct ftime {
unsigned ft_tsec: 5; /* seconds */
unsigned ft_min: 6; /*minutes */
unsigned ft_hour: 5; /* hours */
unsigned ft_day: 5; /* days */
unsigned ft_month: 4; /* month */
unsigned ft_year: 7; /* year from 1980 */

}:

556 Turbo CIC++: The Complete Reference

Since a file's date and time are generally used to indicate the time of the
file's last modification, use setftime() carefully.

If setftime() is successful, 0 is returned. If an error occurs, -1 is
returned and errno is set to one of the following:

EINVFNC Invalid function number

EBADF Bad file handle

Example

This line of code sets the file to the date and time in the ftime structure:

setftime(fd, &t);

Related Function

getftime()

void setvect(lnt lntr, void lnterruptf*lsrJ()J

Description

The prototype for setvect() is in dos.h. This function is not defined by
the ANSI C standard.

The setvect() function puts the address of the interrupt service
routine, isr into the vectored interrupt table at the location specified by
intr.

Related Function

getvect()

void setverlfy(lnt value)

Description

The prototype for setverify() is in dos.h. This function is not defined by
the ANSI C standard.

Time-, Date-, and System-Related Functions 557

The setverify() function sets the state of the DOS verify flag. When
this flag is on, all disk writes are verified against the output buffer to
ensure that the data was properly written. If the verify flag is off, no
verification is performed.

To turn on the verify flag, call setverify() with value set to 1. Set
value to 0 to turn it off.

Example

This program turns on the DOS verify flag:

#include <stdio.h>
#include <dos.h>

main(void)
{

printf{"Turning the verify flag on.");
setverify(l);
return O;

Related Function

getverify()

void sleep(unslgned time)

Description

The prototype for sleep() is in dos.h. This function is not defined by the
ANSI C standard.

The sleep() function suspends program execution for time number
of seconds.

Example

This program waits 10 seconds between messages:

#include <stdio.h>
#include <dos.h>

558 Turbo CIC++: The Complete Reference

main(void)
{

printf("hello");

sleep(lO);

printf(" there");

return O;
}

Related Functions

time(), delay()

Int stlmeftlme _ t *t}

Description

The prototype for stime() is in time.h. This function is not defined by
the ANSI C standard.

The stime() function sets the current system time to the value
pointed to by t. This value must specify the time as the number of
seconds since Jan. 1, 1970, Greenwich mean time.

The stime() function always returns 0.

Example

This program sets the time to Jan. 1, 1970:

#include <stdio.h>
#include <time.h>

main(void)
{

time_t t;

t = 0;
stime(&t);
return O;

Related Functions

settime(), gettime(), time()

Time-, Date-, and System-Related Functions 559

time_ t tlme(tlme _ t *time)

Description

The prototype for time() is in time.h.
The time() function returns the current calendar time of the sys­

tem.
The time() function can be called either with a null pointer or with

a pointer to a variable of type time_ t. If the latter is used, the
argument is also assigned the calendar time.

Example

This program displays the local time defined by the system:

#include <stdio.h>
#include <time.h>

main(void}
{

}

struct tm *ptr;
time_t lt;

lt = time(NULL};
ptr = localtime(<};
printf(asctime(ptr}};
return O;

Related Functions

localtime(), gmtime(), strftime(), ctime()

void tzset(vold)

Description

The prototype for tzset() is in time.h. This function is not defined by
the ANSI C standard.

The tzset() function sets Turbo C's built-in variables daylight
(daylight saving time indicator), timezone (time zone number), and
tzname (time zone name) using the environmental variable TZ. Since

560 Turbo CIC++: The Complete Reference

the ANSI C standard time functions provide complete access and con­
trol over the system time and date, there is no reason to use tzset().
The tzset() function is included in Turbo C for UNIX compatibility.

void unlxtodos(long utlme, struct date *d, struct time *t}

Description

The prototype for unixtodos() is in dos.h. This function is not defined
by the ANSI C standard.

The unixtodos() function converts UNIX time format into a DOS
format. The UNIX and ANSI standard time formats are the same. The
utime argument holds the UNIX time format. The structures pointed to
by d and t are loaded with the corresponding DOS date and time.

Example

This fragment converts the time contained in timeandday into its corre­
sponding DOS format:

struct time t;
struct date d;

unixtodos(timeandday, &d, &t);

Related Function

dostounix()

Dynamic Allocation

There are two primary ways in which a Turbo C program can store
information in the main memory of the computer. The first uses global
and local variables -including arrays and structures. In the case of
global and static local variables, the storage is fixed throughout the
run-time of your program. For local variables, storage is allocated from
the stack space of the computer. Although these variables are imple­
mented efficiently in Turbo C, they require the programmer to know in
advance the amount of storage needed for every situation.

The second way information can be stored is through the use of
Turbo C's dynamic allocation system. In this method, storage for infor­
mation is allocated from the free memory area as it is needed and
returned to free memory when it has served its purpose. The free
memory region lies between your program's permanent storage area
and the stack. This region, called the heap, is used to satisfy a dynamic
allocation request. The heap is contained in the data segment.

One advantage to using dynamically allocated memory to hold data
is that the same memory can be used for several different things in the
course of a program's execution. Because memory can be allocated for
one purpose and freed when that use has ended, it is possible for
another part of the program to use the same memory for something else
at a different time. Another advantage of dynamically allocated storage
is that it allows the creation of linked lists.

At the core of C's dynamic allocation system are the functions
malloc() and free(), which are part of the standard C library. Each
time a malloc() memory request is made, a portion of the remaining
free memory is allocated. Each time a free() memory release call is
made, memory is returned to the system.

The ANSI C standard defines only four functions for the dynamic
allocation system: calloc(), malloc(), free(), and realloc(). However,
Turbo C contains several other dynamic allocation functions. Some of
these additional functions are necessary to efficiently support the seg­
mented architecture of the 8086 family of processors.

T
w
E
N
T
y

562 Turbo CIC++: The Complete Reference

The ANSI C standard specifies that the header information neces­
sary to the dynamic allocation functions defined by the standard be in
stdlib.h. Turbo C lets you use either stdlib.h or alloc.h. This guide uses
stdlib.h because it is more portable. Some of the other Turbo C dynamic
allocation functions require the header alloc.h, and two of them require
the dos.h header. You should pay special attention to which header file
is used with each function.

Some of Turbo C's allocation functions allocate memory from the
far heap, which lies outside the program's default data segment. This
provides two very important features:

1. All the RAM in the system can be allocated- not just that within
the data segment.

2. Blocks of memory larger than 64KB can be allocated.

Memory in the far heap must be accessed with far pointers.

Int allocmem(unslgned size, unsigned *Seg)
Description

The prototype for allocmem() is in dos.h. This function is not defined
by the ANSI C standard.

The allocmem() function executes a DOS Ox48 function call to
allocate a paragraph-aligned block of memory. It puts the segment
address of the block into the unsigned integer pointed to by seg. The
size argument specifies the number of paragraphs to be allocated. (A

If the requested memory can be allocated, a -1 is returned. If
insufficient free memory exists, no assignment is made to the unsigned
integer pointed to by seg, and the size of the largest available block is
returned.

Example

This fragment allocates 100 paragraphs of memory:

unsigned i;

i = O;

Dynamic Allocation 563

if((i=allocmem(lOO, &i}==-1) printf("allocate successful");
else

printf("allocation failed, only %u paragraphs available", i);

Related Functions

freemem(), setblock()

Int brk{vold *eds)

Description

The prototype for brk() is in alloc.h. This function is not defined by the
ANSI C standard.

The brk() function dynamically changes the amount of memory for
use by the data segment. If successful, the end of the data segment is
eds and 0 is returned. If unsuccessful, -1 is returned and errno is set to
ENOMEM (insufficient memory).

Because the application of brk() is highly specialized, no example is
presented here.

Related Function

sbrk()

void *Calloc(slze _ t num, size_ t size)

Description

The prototype for calloc() is in stdlib.h.
The calloc() function returns a pointer to the allocated memory.

The amount of memory allocated is equal to num*size where size is in
bytes. That is, calloc() allocates sufficient memory for an array of num
objects of size bytes.

564 Turbo CIC++: The Complete Reference

The calloc() function returns a pointer to the first byte of the
allocated region. If there is not enough memory to satisfy the request, a
null pointer is returned. It is always important to verify that the return
value is not a null pointer before attempting to use the pointer.

Example

This function returns a pointer to a dynamically allocated array of 100
float:

#include <stdlib.h>
#include <stdio.h>

float *get_mem(void)
{

}

fl oat *p;

p = (float *) calloc(lOO, sizeof(float));
if(!p) {

}

printf("allocation failure - aborting");
exit(l);

return p;

Related Functions

malloc(), realloc(), free()

unsigned coreleftfvoldJ /* small data models */
unsigned long coreleft(voldJ /* large data models */

Description

The prototype for coreleft() is in alloc.h. This function is not defined
by the ANSI C standard.

Dynamic Allocation 565

The coreleft() function returns the number of bytes of unused
memory left on the heap. For programs compiled using a small memory
model, the function returns an unsigned integer. For programs com­
piled using a large data model, coreleft() returns an unsigned long
integer.

Example

This program displays the size of the heap when compiled for a small
data model:

#include <alloc.h>
#include <stdio.h>

main(void)
{

}

printf("The size of the heap is %u", coreleft());
return 0;

Related Function

malloc()

void far *farcalloc{unslgned long num, unsigned long size)

Description

The prototype for farcalloc() is in alloc.h. This function is not defined
by the ANSI C standard.

The farcalloc() function is the same as calloc() except that mem­
ory is allocated from outside the current data segment using the far
heap.

See calloc() for additional details.

unsigned long farcoreleft{vold)

Description

The prototype for farcoreleft() is in alloc.h. This function is not de­
fined by the ANSI C standard.

566 Turbo CIC++: The Complete Reference

The function farcoreleft() returns the number of bytes of free
memory left in the far heap.

Example

This program prints the number of bytes of available memory left in the
far heap:

#include <alloc.h>
#include <stdio.h>

main(void}
{

}

printf("far heap free memory: %ld", farcoreleft());
return O;

Related Function

coreleft()

void farfree(vold far *ptr)

Description

The prototype for farfree() is in alloc.h. This function is not defined by
the ANSI C standard.

The function farfree() is used to release memory allocated from the
far heap via a call to farmalloc() or farcalloc().

You must use great care to call farfree() only with a valid pointer
into the far heap. Doing otherwise will corrupt the far heap. You cannot
free a far heap pointer with the free() function or a regular heap
pointer with farfree().

Example

This program allocates and then frees a 100-byte region in the far heap:

#include <alloc.h>

main(void)

Dynamic Allocation 56 7

char far *p;

p = fannalloc(lOO);

/* only free it if there was no allocation error */
if(p) farfree(p);
return O;

}

Related Function

free()

void far *farmalloc(unslgned long size)

Description

The prototype for farmalloc() is in alloc.h.
The farmalloc() function returns a pointer into the far heap that is

the first byte in a region of memory size bytes long. It is the same as
malloc() except that the far heap is used instead of the heap within the
default data segment.

See malloc() for further details.

void far *farreallocfvoid far *ptr, unsigned long newslzeJ

Description

The prototype for farrealloc() is in alloc.h.
The farrealloc() function resizes the block of memory previously

allocated from the far heap and pointed to by ptr to the new size
specified in newsize. It is functionally equivalent to realloc() except
that it operates on the far heap instead of the heap within the default
data segment.

See realloc() for further details.

void free(vofd *ptrJ

Description

The prototype for free() is in stdlib.h.

568 Turbo CIC++: The Complete Reference

The free() function returns the memory pointed to by ptr back to
the heap. This makes the memory available for future allocation.

It is imperative that free() be called only with a pointer that was
previously allocated using one of the dynamic allocation system's func­
tions, such as rnalloc() or calloc(). Using an invalid pointer in the call
most likely will destroy the memory-management mechanism and cause
a system crash.

Example

This program first allocates room for strings entered by the user and
then frees them:

#include <stdlib.h>
#include <stdio.h>

main(void)
{

}

char *str[lOO];
inti;

for(i=O; i<lOO; i++) {
if((str[i]=(char *)malloc(128))==NULL) {

printf("allocation error - aborting"};
exit(O);

}
gets (str[i]);

}

/* now free the memory */
for(i=O; i<lOO; i++} free(str[i]);
return O;

Related Functions

rnalloc(), realloc(), calloc()

int freemem(unsigned seg)

Description

The prototype for freernern() is in dos.h. This function is not defined by
the ANSI C standard.

Dynamic Allocation 569

The freemem() function frees the block of memory whose first byte
is at seg. This memory must have been previously allocated using alloc­
mem(). The function returns 0 on success. On failure, it returns -1 and
errno is set to ENOMEM (insufficient memory).

Example

This fragment illustrates how to allocate and free memory using alloc­
mem() and freemem():

unsigned i;

if(allocmem(some, &i)!=-1)
printf("allocation error");

else
freemem (i) ;

Related Functions

allocrnern(), setblock()

int heapcheckfvoid)
Int farheapcheckfvold)

Description

The prototypes for heapcheck() and farheapcheck() are in alloc.h.
These functions are not defined by the ANSI C standard, and are
specific to Turbo C++.

The heapcheck() and farheapcheck() functions examine the heap
for errors. The heapcheck() function checks the normal heap and the
farheapcheck() function checks the far heap. Both functions return one
of these values:

Value

_HEAPOK

_HEAPEMPTY

_ HEAPCORRUPT

Meaning

No errors

No heap present

Error found in the heap

570 Turbo CIC++: The Complete Reference

Example.

This fragment illustrates how to check the heap for errors:

if(heapcheck(} == _HEAPOK)
printf("heap is correct");

else
printf("error in heap"};

Related Functions

heapwalk(), heapchecknode()

Int heapcheckfree(unsigned fill)
int farheapcheckfree(unsigned fill)

Description

The prototypes for heapcheckfree() and farheapcheckfree() are in
alloc.h. These functions are not defined by the ANSI C standard, and
are specific to Turbo C++.

The heapcheckfree() and farheapcheckfree() functions verify
that the free area is filled with the specified value fill. The heapcheck­
free() function checks the normal heap and the farheapcheckfree()
function checks the far heap. Both functions return one of these values:

Value

_HEAPOK

_HEAPEMPTY

_HEAPCORRUPT

_BADVALUE

Example

Meaning

No errors

No heap present

Error found in the heap

A value other than fill was found

The following code illustrates how to check the heap for the specified
value after filling the heap with that value.

int status;

heapfillfree(l);
status = heapcheckfree(l)

if(status == _HEAPOK)
printf("heap is filled correctly\n");

else
if(status == _BADVALUE)

Dynamic Allocation 571

pri ntf ("heap not fi 11 ed with correct val ue\n");

Related Functions

heapfillfree(), heapchecknode()

Int heapchecknode(void *ptrJ
Int farheapchecknode(vold far *ptrJ

Description

The prototypes for heapchecknode() and farheapchecknode() are in
alloc.h. These functions are not defined by the ANSI C standard, and
are specific to Turbo C++.

The heapchecknode() and farheapchecknode() functions check
the status of a single node in the heap pointed to by ptr. The
heapchecknode() function checks the normal heap and farheapcheck­
node() checks the far heap. Both functions return one of these values:

Value

_BADNODE

_FREEENTRY

_HEAPCORRUPT

_HEAPEMPTY

_USEDENTRY

Meaning

The specified node could not be
located

The specified node is free memory

Error found in the heap

No heap present

The specified node is being used

If either function is called with a pointer to a node that has been freed,
_ BADNODE could be returned because adjacent free memory is some­
times merged.

572 Turbo CIC++: The Complete Reference

Example

The following code illustrates how to check a node on the heap.

#include <stdio.h>
#include <stdlib.h>
#include <alloc.h>

main(void)
{

}

char *ptr;
int status;

if((ptr=malloc(lO)) == NULL)
exit (1);

status= heapchecknode(ptr);

if(status == _USEOENTRY)
printf("node is being used\n");

else
printf("error in heap\n");

free(ptr);
return O;

Related Functions

heapcheck(),heapcheckfree()

Int heapfillfree(unslgned fill)
Int farheapfillfree(unslgned flllJ

Description

The prototypes for heapfillfree() and farheapfillfree() are in alloc.h.
These functions are not defined by the ANSI C standard, and are
specific to Turbo C++.

The heapfillfree() and farheapfillfree() functions fill the free
blocks of memory in the heap with fill. The heapfillfree() function

Dynamic Allocation 573

operates on the normal heap and farheapfillfree() works with the far
heap. You may want to use one of these functions to give allocated
memory a known initial value.

Both functions return one of these values:

Value

_HEAPOK

_HEAPEMPTY

_ HEAPCORRUPT

Example

Meaning

No errors

No heap present

Error found in the heap

This code illustrates how to fill the heap with a desired value:

int status;

status= heapfillfree(O);
if(status == _HEAPOK)

printf("heap is correct");
else

printf("error in heap"):

Related Function

heapcheckfree()

int heapwalk(struct heapinfo *hlnfo)
Int farheapwalk(struct farheaplnfo *hlnfo)

Description

The prototypes for heapwalk() and farheapwalk() are in alloc.h.
These functions are not defined by the ANSI C standard, and are
specific to Turbo C++.

The heapwalk() and farheapwalk() functions fill the structure
pointed to by hinfo. Each call to heapwalk() or farheapwalk() steps
to the next node in the heap and returns information on that node.

574 Turbo CIC++: The Complete Reference

When there are no more nodes on the heap, _ HEAPEND is returned.
If there is no heap, _ HEAPEMPTY is returned. Each time a valid
block is examined, _ HEAPOK is returned.

The heapwalk() function operates on the normal heap and the
farheapwalk() function works with the far heap.

The heapinfo and farheapinfo structures contain three fields: a
pointer to a block, the size of the block, and a flag that is set if the block
is being used. These structures are shown here:

struct farheapinfo {
void huge *ptr; /* pointer to block */
unsigned long size; /* size of block, in bytes */
int in use; /* set if block is in use */

}; -

struct heapinfo {

};

void *ptr; /* pointer to block */
unsigned int size; /* size of block, in bytes */
int in_use; /* set if block is in use */

On the first call to either function, you must set the ptr field to NULL
before the first call to heapwalk() or farheapwalk().

Because of the way Turbo C organizes the dynamic allocation sys­
tem, the size of an allocated block of memory is slightly larger than the
amount requested when it is allocated.

These functions assume the heap is not corrupted. Always call
heapcheck() or farheapcheck() before beginning a walk through the
heap.

Example

This program walks through the heap, printing the size of each allocated
block:

#include <stdio.h>
#include <stdlib.h>
#include <alloc.h>

main(void)
{

struct heapinfo hinfo;
char *pl, *p2;

if((pl = (char*) malloc(80)) == NULL)

exit(l);

if((p2 = (char *) malloc(20)) == NULL)
exit(l);

Dynamic Allocation 575

if(heapcheck() < O) { /* always check heap before walk */
printf("heap corrupt, aborting");

}

exit(l);
}

hinfo.ptr = NULL; /* set ptr to null before first call */

/* examine first block */
if(heapwalk(&hinfo) == _HEAPOK)

printf("size of pl's block is %d\n", hinfo.size);

/* examine second block */
if(heapwalk(&hinfo) == _HEAPOK)

printf("size of p2's block is %d\n", hinfo.size);

free(pl);
free(p2);
return 0;

Related Function

heapcheck()

void *malloc(size _ t size)
Description

The prototype for malloc() is in stdlib.h.
The malloc() function returns a pointer to the first byte of a region

of memory of size bytes long that has been allocated from the heap. If
there is insufficient memory in the heap to satisfy the request, malloc()
returns a null pointer. It is always important to verify that the return
value is not a null pointer before attempting to use the pointer. Attempt­
ing to use a null pointer usually causes a system crash.

Example

This function allocates sufficient memory to hold structures of type
addr:

#include <stdlib.h>

struct addr {

576 Turbo CIC++: The Complete Reference

};

char name[40];
char street[40];
char city[40];
char state [3] ;
char zip [10);

struct addr *get_struct(void)
{

struct addr *p;

if(!(p•(struct addr *)malloc(sizeof(addr)))) {
printf("allocation error - aborting");
exit(O);

}
return p;

Related Functions

free(), realloc(), calloc()

void *realloc(vold *ptr, size_ t newslze)

Description

The prototype for realloc() is in stdlib.h.
The realloc() function changes the size of the allocated memory

pointed to by ptr to that specified by newsize. The value of newsize
specified in bytes can be greater or less than the original. A pointer to
the memory block is returned because it may be necessary for realloc()
to move the block to increase its size. If this occurs, the contents of the
old block are copied into the new block and no information is lost.

If there is not enough free memory in the heap to allocate newsize
bytes, a null pointer is returned.

Example

The following program allocates 17 characters of memory, copies the
string "this is 16 chars" into them, and then uses realloc() to increase
the size to 18 in order to place a period at the end.

#include <stdlib.h>
#include <stdio.h>
#include <string.h>

main(void)
{

}

char *p;

p = (char*) malloc(17);
if(!p) {

}

printf("allocation error - aborting");
exit(l);

strcpy(p, "this is 16 chars");

p = (char*) realloc(p,18);
if(!p) {

}

printf("allocation error - aborting");
exit(l);

strcat(p, ".");

printf(p);

free(p);

return O;

Related Functions

free(), malloc(), calloc()

void *Sbrk(int amount)

Description

Dynamic Allocation 577

The prototype for sbrk() is in alloc.h. This function is not defined by
the ANSI C standard.

The sbrk() function increments (or decrements if a negative value
is used) the amount of memory allocated to the data segment by
amount number of bytes. ·

Because the use of sbrk() is highly specialized, no example is given.

Related Function

brk()

578 Turbo CIC++: The Complete Reference

int setblock(unslgned seg, unsigned size)

Description

The prototype for setblock() is in dos.h. This function is not defined by
the ANSI C standard.

The setblock() function changes the size of the block of memory
whose segment address is seg to size, which is specified in paragraphs
(16 bytes). The block of memory must have been previously allocated
using allocmem().

If the size adjustment cannot be made, setblock() returns the
largest block that can be allocated. On success, it returns -1.

Example

This fragment attempts to resize to 100 paragraphs the block of mem­
ory whose segment address is in seg:

if(setblock(seg, 100) !=-1) printf("resize error");

Related Functions

allocmem(), freemem()

Directory Functions

Turbo C has a number of directory-manipulation functions in its library.
Although none of these functions is defined by the ANSI standard, they
are included in Turbo C to allow easy access to the DOS directory. The
functions discussed in this chapter use the dir.h header file.

Int chdir(const char *Path)

Description

The prototype for chdir() is in dir.h. This function is not defined by the
ANSI C standard.

The chdir() function causes the directory whose path name is
pointed to by path to become the current working directory. The path
name may include a drive specifier. The directory must exist.

If successful, chdir() returns 0.
If unsuccessful, it returns -1 and sets errno to ENOENT (invalid

path name).

Example

This fragment makes the WP\FORMLET directory on drive C the
current working directory:

chdir("C:\\WP\\FORMLET");

Related Functions

mkdir(), rmdir()

T
\XI
E
N
T
y
-
0
N
E

579

580 Turbo CIC++: The Complete Reference

int flndflrstf const char *fname, struct ffblk *ptr, Int attrlbJ
int findnext(struct ffblk *ptrJ;

Description

The prototypes for findfirst() and findnext() are in dir.h. However,
you also need to include the dos.h header, which contains macros that
can be used as values for attrib. These functions are not defined by the
ANSI C standard.

The findfirst() function searches for the first file name that
matches that pointed to by fname. The file name may include both a
drive specifier and a path name. The file name may also include the
wild-card characters * and ?. If a match is found, the structure pointed
to by ptr is filled with information about the file, and the DTA is set to
the address of the ftblk structure.

The ftblk structure is defined like this:

struct ffblk {
char ff_reserved[2];
char ff_attrib
int ff _ftime;
int ff_fdate;
long ff_fsize;
char ff_name[13];
};

/* used by DOS */
/* attribute of file*/
/* creation time */
/* create date */
/* size in bytes */
/* file name */

The attrib parameter determines the type of files to be found by
findfirst(). If attrib is 0, all types of files that match the desired file
name are acceptable. To cause a more selective search, attrib can be one
the following macros:

Macro Meaning

FA_RDONLY Read-only file
FA_ HIDDEN Hidden file
FA_ SYSTEM System file
FA_ LABEL Volume label
FA_DIREC Subdirectory
FA_ARCH Archive byte set

Directory Functions 581

The findnext() function continues a search started by findfirst().
Both the findfirst() and findnext() functions return 0 on success

and -1 on failure. On failure, errno is set to either ENOENT (file name
not found) or ENMFILE (no more files in directory).

Example

This program displays all files with a .C extension (and their sizes) in
the current working directory:

#include <stdio.h>
#include <dos.h>
#include <dir.h>

main(void)
{

}

struct ffblk f;
register int done;

done= findfirst("*.c", &f, O);
while (!done) {

}

printf("%s %ld\n", f.ff_name, f.ff_fsize);
done= findnext(&f);

return O;

Related Function

fnmerge()

void fnmergef char *path, const char *drive, con st char *dir,
const char *fname, const char *ext)

Int fnsplltf con st char *path, char *drive, char *dlr,
char *fname, char *ext)

Description

The prototypes for fnmerge() and fnsplit() are in dir.h. These func­
tions are not defined by the ANSI C standard.

582 Turbo CIC++: The Complete Reference

The fnmerge() function constructs a file name from the specified
individual components and puts that name into the string pointed to by
path. For example, if drive is C:, dir is \TC\, fname is TEST, and ext is
.C, the file name is produced. C:\TC\TEST.C

The fnsplit() decomposes the file name pointed to by path into its
component parts.

The array size needed for each parameter is shown here, along with
a macro defined in dir.h that can be used in place of the actual number:

Parameter Size Macro Name

path 80 MAXPATH

drive 3 MAXDRIVE

dir 66 MAXDIR

fname 9 MAXFILE

ext 5 MAXEXT

The fnsplit() function puts the colon after the drive specifier in the
string pointed to by drive. It puts the period preceding the extension
into the string pointed to by ext. Leading and trailing spaces are
retained.

The two functions fnmerge() and fnsplit() are complementary­
the output from one can be used as input to the other.

The fnsplit() function returns an integer than has five flags en­
coded into it. The flags have these macro names associated with them
(defined in dir.h):

Macro Name

EXTENSION

FILENAME

DIRECTORY

DRIVE

WILD CARD

Meaning When Set

Extension present

File-name present

Directory path present

Drive specifier present

One or more wild-card charac­
ters present

Directory Functions 583

To determine if a flag is set, AND the flag macro with the return
value and test the result. If the result is 1, the flag is set; otherwise it is
off.

Example

This program illustrates how fnmerge() encodes a file name. Its output
is "C:TEST.C":

#include <stdio.h>
#include <dir.h>

main(void)
{

char path[MAXPATH];
fnmerge(path, "C:", '"', "TEST", ".C");
printf(path);
return 0;

Related Functions

findfirst(), findnext()

int getcurdlr(int drive, char *dir)

Description

The prototype for getcurdir() is in dir.h. This function is not defined by
the ANSI C standard.

The getcurdir() function copies the name of the current working
directory of the drive specified in drive into the string pointed to by dir.
A 0 value for drive specifies the default drive. For drive A, use 1; for B,
use 2; and so on.

The string pointed to by dir must be at least MAX.DIR bytes in
length. MAX.DIR is a macro defined in dir.h. The directory name will
not contain the drive specifier and will not include leading backslashes.

584 Turbo CIC++: The Complete Reference

The getcurdir() function returns 0 if successful, -1 on failure.

Example

The following program prints the current directory on the default drive:

#include <stdio.h>
#include <dir.h>

main(void)
{

char dir[MAXDIR];

getcurdir(O, dir);
printf("current directory is %s", dir);
return O;

Related Function

getcwd()

char *getcwdfchar *dlr, Int lenJ

Description

The prototype for getcwd() is in dir.h. This function is not defined by
the ANSI C standard.

The getcwd() function copies the full path name (up to len charac­
ters) of the current working directory into the string pointed to by dir.
An error occurs if the full path name is longer than len characters. The
getcwd() function returns a pointer to dir.

If getcwd() is called with dir' s value being null, getcwd() automat­
ically allocates a buffer using malloc() and returns a pointer to this
buffer. You can free the memory allocated by getcwd() using free().

Example

This program prints the full path name of the current working direc­
tory:

#include <stdio.h>
#include <dir.h>

main(void)
{

char dir[MAXDIR];

getcwd(dir, MAXDIR);

Directory Functions 585

printf("current directory is %s", dir); return 0;
}

Related Function

getcurdir()

Int getdlsk(vold}

Description

The prototype for getdisk() is in dir.h. This function is not defined by
the ANSI C standard.

The getdisk() function returns the number of the current drive.
Drive A corresponds to 0, drive B is 1, and so on.

Example

This program displays the name of the current drive:

#include <stdio.h>
#include <dir.h>

main(void)
{

}

printf("current drive is %c", getdisk()+'A');
return O;

Related Functions

setdisk(), getcwd()

586 Turbo CIC++: The Complete Reference

Int mkdlr(const char *path)

Description

The prototype for mkdir() is in dir.h. This function is not defined by
the ANSI C standard.

The mkdir() function creates a directory using the path name
pointed to by path.

The mkdir() function returns 0 if successful. If unsuccessful, it
returns -1 and sets errno to either EACCESS (access denied) or
ENOENT (invalid path name).

Example

This program creates a directory called FORMLET:

#include <dir.h>

main(void)
{

mkdir("FORMLET");
return O;

Related Function

char *mktemp(char *fnameJ

Description

The prototype for mktemp() is in dir.h. This function is not defined by
the ANSI C standard.

The mktemp() function creates a unique file name and copies it
into the string pointed to by fname. When you call mktemp(), the
string pointed to by fname must contain six "X"s followed by a null

Directory Functions 587

terminator. The mktemp() function transforms that string into a
unique file name. It does not create the file, however.

If successful, mktemp() returns a pointer to fname; otherwise, it
returns a null.

Example

This program displays a unique file name:

#include <stdio.h>
#include <dir.h>

char fname [7] = "XXXXXX";

main(void)
{

}

mktemp(fname);
printf(fname);
return O;

Related Functions

findfirst(), findnext()

int rmdirf const char *path)

Description

The prototype for rmdir() is in dir.h. This function is not defined by the
ANSI C standard.

The rmdir() function removes the directory whose path name is
pointed to by path. To be removed, a directory must be empty, must not
be the current working directory, and must not be the root.

If rmdir() is successful, 0 is returned. Otherwise, a -1 is returned
and errno is set to either EACCESS (access denied) or ENOENT
(invalid path name).

Example

This removes the directory called FORMLET:

#include <stdio.h>
#include <dir.h>

588 Turbo C/C++: The Complete Reference

main(void)
{

}

if(!rrndir("FORMLET")) printf("FORMLET removed");
return O;

Related Function

mkdir()

char *Searchpath{const char *fname}

Description

The prototype for searchpath() is in dir.h. This function is not defined
by the ANSI C standard.

The searchpath() function tries to find the file whose name is
pointed to by fname using the DOS PATH environmental variable. If it
finds the file, it returns a pointer to the entire path name. This string is
statically allocated and is overwritten by each call to searchpath(). If
the file cannot be found, a null is returned.

Example

This program displays the path name for the file TCC.EXE:

#include <stdio.h>
#include <dir.h>

main{void)
{

}

printf(searchpath("TCC.EXE"));
return 0;

Related Function

mktemp()

Directory Functions 589

int setdisk(lnt drive)

Description

The prototype for setdisk() is in dir.h. This function is not defined by
the ANSI C standard.

The setdisk() function sets the current drive to that specified by
drive. Drive A corresponds to 0, drive B to 1, and so on. It returns the
total number of drives in the system.

Example

This program switches to drive A and reports the total number of drives
in the system:

#include <stdio.h>
#include <dir.h>

main (void)
{

printf("%d drives", setdisk(O));
return O;

Related Function

getdisk()

Process Control Functions

This chapter covers a number of functions that are used to control the
way a program executes, terminates, or invokes the execution of another
program. Aside from abort(), atexit(), and exit(), none of the func­
tions described here is defined by the ANSI C standard. However, all
allow your program greater flexibility in its execution.

The process control functions have their prototypes in process.h.
However, those functions defined by the ANSI standard also have their
prototypes in the stdlib.h header file.

void abort{voidJ

Description

The prototype for abort() is in process.h and stdlib.h.
The abort() function causes immediate termination of a program.

No files are flushed. It returns a value of 3 to the calling process
(usually the operating system).

The primary use of abort() is to prevent a runaway program from
closing active files.

Example

This program terminates if the user enters an "A!':

#include <process.h>
#include <conio.h>

main (void)
{

}

for(;;)
if(getch()=='A') abort();

return 0;

T
\XI
E
N
T
y
-
T

\XI
·o.·.·. ,' ,'

592 Turbo CIC++: The Complete Reference

Related Functions

exit(), atexit()

int atexitfvoid (*funcJ())

Description

The prototype for atexit() is in stdlib.h.
The atexit() function establishes the function pointed to by June as

the function to be called upon normal program termination. That is, the
specified function is called at the end of a program run. The act of
establishing the function is referred to as registration by the ANSI
standard.

The atexit() function returns 0 if the function is registered as the
termination function, and non-0 otherwise.

Up to 32 termination functions can be established. They are called
in the reverse order of their establishment: first in, last out.

Example

This program prints "hello there" on the screen:

#include <stdio.h>
#include <stdlib.h>

/* example using atexit() */
main(void)
I
l

void done();

if(atexit(done)) printf("error in atexit()");
return O;

void done()
{

printf("hello there");
}

Related Functions

exit(), abort()

Process Control Functions 593

Int execlf char *fname, char *argO, ... , char *argN, NULL)
int execlefchar *fname, char *argO, ... , char *argN,

NULL, char *envp[])
Int execlpf char *fname, char *argO, ... , char *argN, NULL)
Int execlpefchar *fname, char *argO, ... , char *argN,

NULL, char *envp[])
Int execvf char *fname, char *arg[])
Int execvef char *fname, char *arg[], char *envp[]J
Int execvpf char *fname, char *arg[])
int execvpef char *fname, char *arg[], char *envp[]J

Description

The prototypes for these functions are in process.h. These functions are
not defined by the ANSI C standard.

The exec group of functions is used to execute another program.
This other program, called the child process, is loaded over the one that
contains the exec call. The name of the file that contains the child
process is pointed to by fname. Any arguments to the child process are
pointed to either individually by argO through argN or by the array
arg[J. An environment string must be pointed to by envp. (The argu­
ments are pointed to by argv in the child process.)

If no extension or period is part of the string pointed to by fname, a
search is first made for a file by that name. If that fails, the .COM
extension is added and the search is tried again. If that fails, the .EXE
extension is added and the search is tried again. When an extension is
specified, only an exact match will satisfy the search. Finally, if a period
but no extension is present, a search is made for only the file specified
by the left side of the file name.

The exact way the child process is executed depends on which
version of exec you use. You can think of the exec function as having
different suffixes that determine its operation. A suffix can consist of
either one or two characters.

Functions that have a p in the suffix search for the child process in
the directories specified by the DOS PATH command. If a p is not in the
suffix, only the current and root directories are searched.

An I in the suffix specifies that the arguments to the child process
will be passed individually. You use this method when you know in

594 Turbo CIC++: The Complete Reference

advance how many arguments will be passed. Notice that the last
argument must be a NULL. (NULL is defined in stdio.h.)

A v in the suffix means that the arguments to the child process will
be passed in an array. This is the way you must pass arguments when
you do not know in advance how many there will be.

An e in the suffix specifies that one or more environmental strings
will be passed to the child process. The envp parameter is an array of
string pointers. Each string pointed to by the array must have the form

environment variable = value

The last pointer in the array must be NULL. If the first element in the
array is NULL, the child retains the same environment as the parent.

It is important to remember that files open at the time of an exec
call are also open in the child program.

When successful, the exec functions return no value. On failure,
they return -1 and set errno to one of the following values.

Macro

E2BIG

EACCES

EMFILE

ENOENT

ENO EXEC

ENOMEM

Example

Meaning

Too many arguments

Access to child process file denied

Too many open files

File not found

exec format error

Not enough free memory

The first of the following programs invokes the second, which displays
its arguments. Remember, both programs must be in separate files.

/* first file - parent */

#include <stdio.h>
#include <process.h>

main(void)
{

Process Control Functions 595

execl("test.exe", "test.exe", "hello", "10", NULL);
return 0;

/* second file - child*/
main(int argc, char *argv[])
{

}

printf("this program is executed with these command line");
printf("arguments: ");
printf(argv[l]):
printf(" %d", atoi(argv[2]));
return 0;

Related Function

spawn()

void exlt{lnt status)
void _ exlt{int status)

Description

The prototypes for exit() and _exit() are in process.h and stdlib.h.
The exit() function causes immediate, normal termination of a

program. The value of status is passed to the calling process. By conven­
tion, if the value of status is 0, normal program termination is assumed.
A non-0 value can be used to indicate an implementation-defined error.
Calling exit() flushes and closes all open files, writes any buffered
output, and calls any program termination functions registered using
atexit().

The _exit() program does not close any files, flush any buffers, or
call any termination functions. This function is not defined by the ANSI
C standard.

Example

This function performs menu selection for a mailing-list program. If Q is
pressed, the program is terminated.

596 Turbo CIC++: The Complete Reference

char menu(void)
{

}

char ch;

do {
printf("Enter names (E)\n");
printf("Delete name (D)\n");
printf("Print (P)\n");
printf("Quit (Q)\n");

} while(!strchr("EDPQ",toupper(ch));
if(ch=='Q') exit(O);
return ch;

Related Functions

atexit(), abort()

int spawnl(int mode, char *fname, char *argO, ... ,
char *argN, NULL)

int spawnle(int mode, char *fname, char *argO, ... ,
char *argN, NULL, char *envp[JJ

int spawnlp(int mode, char *fname, char *argO, ... ,
char *argN, NULL)

int spawnlpe(lnt mode, char *fname, char *argO, ... ,
char *argN, NULL, char *envp[JJ

int spawnv(lnt mode, char *fname, char *arg[JJ
Int spawnvefint mode, char *fname, char *arg[], char *envp[JJ
int spawnvp(int mode, char *fname, char *arg[]J
Int spawnvpe(int mode, char *fname, char *arg[J, char *envp[]J

Description

The prototypes for these functions are in process.h. These functions are
not defined by the ANSI C standard.

The spawn group of functions is used to execute another program.
This other program, the child process, does not necessarily replace the
parent program (unlike the child process executed by the exec group of
functions). The name of the file that contains the child process is pointed
to by fname. The arguments to the child process, if any, are pointed to

Process Control Functions 597

either individually by argO through argN or by the array arg[]. If you
pass an environment string, it must be pointed to by envp. (The argu­
ments will be pointed to by argv in the child process.) The mode
parameter determines how the child process will be executed. It can
have one of these three values (defined in process.h).

Macro

P_WAIT

P_NOWAIT

P_OVERLAY

Execution Mode

Suspends parent process until the child has
finished executing

Executes both the parent and the child con­
currently- not implemented in Turbo C

Replaces the parent process in memory

Since the P _NOWAIT option is currently unavailable, you will almost
always use P _WAIT as a value for mode. (If you want to replace the
parent program, it is better to use the exec functions instead.) If you
use the P _WAIT option, when the child process terminates, the parent
process is resumed at the line after the call to spawn.

If no extension or period is part of the string pointed to by fname, a
search is made for a file by that name. If that fails, the .EXE extension
is added and the search is tried again. If an extension is specified, only
an exact match satisfies the search. If a period but no extension is
present, a search is made for only the file specified by the left side of the
file name.

The exact way the child process is executed depends on which
version of spawn you use. You can think of the spawn function as
having different suffixes that determine its operation. A suffix can con­
sist of either one or two characters.

Those functions that have a p in the suffix search for the child
process in the directories specified by the DOS PATH command. If a p
is not in the suffix, only the current and root directories are searched.

An I in the suffix specifies that the arguments to the child process
will be passed individually. You use this method when you know in
advance how many arguments will be passed. Notice that the last
argument must be a NULL. (NULL is defined in stdio.h.)

A v in the suffix means that the arguments to the child process will
be passed in an array. This is the way you must pass arguments when
you do not know in advance how many there will be.

598 Turbo CIC++: The Complete Reference

An e in the suffix specifies that one or more environmental strings
will be passed to the child process. The envp() parameter is an array of
string pointers. Each string pointed to by the array must have the form:

environment variable = value

The last pointer in the array must be NULL. If the first element in the
array is NULL, the child retains the same environment as the parent.

It is important to remember that files open at the time of a spawn
call are also open in the child process.

When successful, the spawned functions return 0. On failure, they
return -1 and set errno to one of the following values:

Macro

EINVAL
E2BIG
ENOENT

ENOEXEC

ENOMEM

Meaning

Bad argument

Too many arguments

File not found

spawn format error

Not enough free memory

A spawned process can spawn another process. The level of nested
spawns is limited by the amount of available RAM and the size of the
programs.

Example

The first of the following programs invokes the second, which displays
its arguments and invokes a third program. After the third program
terminates, the second is resumed. When the second program termi­
nates, the parent program is resumed. Remember that the three pro­
grams must be in separate files.

/* parent process */

#include <stdio.h>
#include <process.h>

main(void)
{

Process Control Functions 599

printf("In parent\n");
spawnl (P _WAIT, "test.exe", "test.exe", "hello", "10", NULL);
printf("\nBack in parent");
return O;

/* first child */
#include <stdio.h>
#include <process.h>

main(int argc, char *argv[])
{

}

printf("First child process executing ");
printf("with these command line arguments: ");
printf(argv[l]);
printf(" %d\n", atoi(argv[2]));
spawnl(P_WAIT, "test2.exe", NULL);
pri ntf ("\nBack in first child process.");
return O;

/* second child */
main(void)
{

}

printf("In second child process.");
return O;

Related Function

exec()

Text Screen and Graphics Functions

The ANSI C standard doesn't define any text screen or graphics func­
tions, mainly because the capabilities of diverse hardware environments
preclude standardization across a wide range of machines. However,
Turbo CIC++ provides extensive screen and graphics support systems
for the PC environment. If you will not be porting your code to a
di:ff erent computer system, you should feel free to use them because
they can add substantial appeal to any application. In fact, intensive
screen control is a must for most successful commercial programs.

The prototypes and header information for the text screen handling
functions are in conio.h. The prototypes and related information for the
graphics system are in graphics.h.

The graphics system requires that the graphics.lib library be linked
with your program. If you are using the command-line version, you need
to include its name on the command line. For example, if your program
is called test, the command line looks like this:

tee test graphics.lib

If you use the integrated development environment in its default config­
uration, the graphics.lib library will be linked automatically with any
program that uses graphics functions. Linking of graphics.lib is con­
trolled through a check box in the Linker menu of the Options main
menu.

Central to both the text screen manipulation and graphics functions
is the concept of the window, the active part of the screen within which
output is displayed. A window can be as large as the entire screen, as it
is by default, or as small as your specific needs require. Turbo C uses
slightly different terminology between the text screen and graphics
systems to help keep the two systems separate. The text screen func­
tions refer to windows; the graphics system refers to viewports. How­
ever, the concept is the same.

It is important to understand that most of the screen and graphics
functions are window (viewport) relative. For example, the gotoxy()

T
w
E
N
T
y
-
T
H
R
E
E

601

602 Turbo CIC++: The Complete Reference

text screen cursor location function sends the cursor to the specified x,y
position relative to the window, not the screen.

All of the graphics functions are far functions.
One last point: When the screen is in a text mode, the upper left

corner is location 1,1. In a graphics mode, the upper left corner is 0,0.
For an overview of how the text screen and graphics systems

operate as well as background material on the various video modes refer
to Chapter 11.

Reminder: None of the functions described in this chapter are defined
by the ANSI C standard.

void far arc(int x, Int y, Int start, int end, Int radius)
Description

The prototype for arc() is in graphics.h.
The arc() function draws an arc from start to end, (given in

degrees) along the invisible circle centered at x,y, with the radius
radius. The color of the arc is determined by the current drawing color.

Example

This code draws an arc from 0 to 90 degrees on an imaginary circle
located at 100,100 with the radius 20:

#include <graphics.h>
#include <conio.h>

main(void)
l
L

int driver, mode;

driver = DETECT; /* autodetect */
mode = O;
initgraph{&driver, &mode, "");

setcolor(WHITE);
arc(lOO, 100, 0, 90, 20);

getch(); /*wait until keypress */
restorecrtmode();

return O;

Related Functions

circle(), ellipse(), getarccoords()

Text Screen and Graphics Functions 603

void far bar(lnt left, Int top, Int right, Int bottom)
void far bar3d(int left, Int top, Int right, Int bottom,

Int depth, Int topflag)
Description

The prototypes for bar() and bar3d() are in graphics.h.
The bar() function draws a rectangular bar that has its upper left

corner defined by lejt,top and its lower right corner defined by right,bot­
tom. The bar is filled with the current fill pattern and color. (You set the
current fill pattern and color using setfillpattern().) The bar is not
outlined.

The bar3d() function is the same as bar() except that it produces a
three-dimensional bar of depth pixels. The bar is outlined in the current
drawing color. This means that if you want a two-dimensional bar that is
outlined, use bar3d() with a depth of 0. If the topflag is non-0, a top is
added to the bar; otherwise, the bar has no top.

Example

This program draws a two-dimensional and a three-dimensional bar:

#include <graphics.h>
#include <conio.h>

main(void)
{

}

int driver, mode;
driver = DETECT; /* autodetect */
mode = 0;
initgraph(&driver, &mode, '"');

/* display a green 2-d bar */
setfillstyle(SOLID_FILL, GREEN);
bar(lOO, 100, 120, 200);

/* now show a red 3-d bar */
setfillstyle(SOLID_FILL, RED);
bar3d(200, 100, 220, 200, 10, 1);

getch();
restorecrtmode();
return O;

Related Function

rectangle()

604 Turbo CIC++: The Complete Reference

void far clrcle(lnt x, Int y, Int radius)

Description

The prototype for circle() is in graphics.h.
The circle() function draws a circle centered at x,y with radius

radius (expressed in pixels) in the current drawing color.

Example

This program draws five concentric circles at location 200,200:

#include <graphics.h>
#include <conio.h>

main(void)
{

}

int driver, mode;
driver = DETECT; /* autodetect */
mode = O;
initgraph(&driver, &mode, "");

circle(200, 200, 20);
circle(200, 200, 30);
circle(200, 200, 40);
circle(200, 200, 50);
circle(200, 200, 60);

getch();
restorecrtmode();
return 0;

Related Functions

arc(), ellipse()

void far cleardevice(voldJ
void far clearvlewport(voldJ

Description

The prototypes for cleardevice() and clearviewport() are in graph­
ics.h.

Text Screen and Graphics Functions 605

The cleardevice() function clears the screen and resets the current
position (CP) to 0,0. This function is used only with the graphics screen
modes.

The clearviewport() function clears the current viewport and re­
sets the current position (CP) to 0,0. After clearviewport() has exe­
cuted, the viewport no longer exists.

Example

This program creates a viewport, writes some text into it, and then
clears it:

#include <graphics.h>
#include <conio.h>

void box(int, int, int, int, int);

main(void)
{

}

int driver, mode;

driver = DETECT; /* autodetect */
mode = 0;
initgraph(&driver, &mode, "");

/* frame the screen for perspective */
box(O, 0, 639, 349, WHITE);

setviewport(20, 20, 200, 200, 1);
box(O, 0, 179, 179, RED);

outtext("this is a test of the viewport");

outtextxy(20, 10, "press a key");
getch();
/* clear the current viewport but not the entire screen */
clearviewport();

get ch();
restorecrtmode();
return 0;

/* Draw a box given the coordinates of its two corners. */
void box(int startx, int starty, int endx, int endy,

int col or)
{

setcolor(color);

606 Turbo CIC++: The Complete Reference

}

line(startx, starty, startx, endy);
line(startx, starty, endx, starty);
line(endx, starty, endx, endy);
line(endx, endy, startx, endy);

Related Function

getviewsettings()

void far closegraph(voldJ

Description

The prototype for closegraph() is in graphics.h.
The closegraph() function deactivates the graphics environment,

which includes returning to the system memory that was used to hold
the graphics drivers and fonts. This function should be used when your
program uses both graphics and nongraphics output. It also returns the
system video mode to what it was prior to the call to initgraph(). You
may also use restorecrtmode() in place of closegraph() if your pro­
gram is terminating. In this case, any allocated memory is automatically
freed.

Example

This fragment turns off the graphics system:

cl osegraph ();
cprintf("this is not in graphics");

Related Functions

initgraph()

void clreol(voldJ
void clrscr(voidJ

Description

The prototypes for clreol() and clrscr() are in conio.h.

Text Screen and Graphics Functions 607

The clreol() function clears from the current cursor position to the
end of the line in the active text window. The cursor position remains
unchanged.

The clrscr() function clears the entire active text window and
locates the cursor in the upper left corner (1,1).

Example

This program illustrates clreol() and clrscr():

#include <conio.h>

main{void)
{

}

register inti;

gotoxy(lO, 10);
cprintf("This is a test of the clreol() function.");
getch();
gotoxy(lO, 10);
clreol();

for(i=O; i<20; i++) cprintf("Hello there\n");
getch();

/* clear the screen */
clrscr();
retur11 0;

Related Functions

delline(), window()

Int cprintf(const char *fmt, ...)

Description

The prototype for cprintf() is in conio.h.
The cprintf() function works like the printf() function except that

it writes to the current text window instead of stdout. Its output may
not be redirected and it automatically prevents the boundaries of the
window from being overrun. See the printf() function for details.

608 Turbo CIC++: The Complete Reference

The cprintf() function does not translate the newline (\n) into the
linefeed, carriage return pair as does the printf() function, so it is
necessary to explicitly put the carriage return (\r) where desired.

The cprintf() function returns the number of characters actually
printed. A negative return value indicates that an error has taken place.

Example

This program displays the output shown in its comments:

#include <conio.h>

main(void)
{

}

/* This prints "this is a test" left justified
in 20 character field.

*/
cprintf("%-20s", "this is a test");

/* This prints a float with 3 decimal places in a 10
character field. The output will be " 12.2354".

*/
cprintf("%10.3f\n\r", 12.234657);
return O;

Related Functions

cscanf(), cputs()

Int cputs(const char *StrJ

Description

The prototype for cputs() is in conio.h.
The cputs() function outputs the string pointed to by str to the

current text window. Its output cannot be redirected, and it automati­
cally prevents the boundaries of the window from being overrun.

It returns the last character written if successful and EOF if
unsuccessful.

Example

This program creates a window and uses cputs() to write a line longer
than will fit in the window. The line is automatically wrapped at the end
of the window instead of spilling over into the rest of the screen.

Text Screen and Graphics Functions 609

#include <conio.h>

void border(int, int, int, int);

main(void)
{

}

cl rscr():
/* create first window */
window(3, 2, 40, 9);
border(3, 2, 40, 9):
gotoxy(l,1);
cputs("This line will be wrapped at the end of the window.");
getche();
return 0;

/* Draws a border around a text window. */
void border(startx, starty, endx, endy)
int startx, starty, endx, endy;
{

register inti;

gotoxy(l, 1);
for(i=O; i<=endx-startx; i++)

putch (' - ') ;

gotoxy(l, endy-starty);
for(i=O; i<=endx-startx; i++)

putch ('-') ;

for(i=2; i<endy-starty; i++) {
gotoxy(l, i);
putch (' l ');
gotoxy(endx-startx+l, i);
put ch (' l ') ;

}
}

Related Functions

cprintf(), window()

int cscanf(char *fmt, .. . J

Description

The prototype for cscanf() is in conio.h.
The cscanf() function works like the scanf() function except that it

reads the information from the console instead of stdin. It cannot be
redirected. See the scanf() function for details.

61 O Turbo CIC++: The Complete Reference

The cscanf() function returns the number of arguments that are
actually assigned values. This number does not include skipped fields.
The cscanf() function returns the value EOF if an attempt is made to
read past end-of-file.

Example

This code fragment reads a string and a float number from the console:

char str[80];
float f;

cscanf("%s%f", str, &f);

Related Functions

scanf(), cprintf(), sscanf()

void delllne(vold)

Description

The prototype for delline() is in conio.h.
The delline() function deletes the line in the active window that

contains the cursor. All lines below the deleted line are moved up to fill
the void. Remember that if the current window is smaller than the
entire screen, only the text inside the window is affected"

Example

This program prints 24 lines on the screen and then deletes line 3:

#include <conio.h>

rnain(void)
{

register int i;

cl rscr();

for(i=O; i<24; i++) cprintf("line %d\n\r", i);
get ch();

}

gotoxy(l, 3);
dell i ne();

getch();
return O;

Related Functions

clreol(), insline()

Text Screen and Graphics Functions 611

void far detectgraph(lnt far *driver, Int far *mode)

Description

The prototype for detectgraph() is in graphics.h.
The detectgraph() function determines what type of graphics

adapter, if any, the computer contains. If the system has a graphics
adapter, detectgraph() returns the number of the appropriate graphics
driver for the adapter in the integer pointed to by driver. It sets the
variable pointed to by mode to the highest resolution supported by the
adapter. If no graphics hardware is in the system, the variable pointed
to by driver contains a -2.

You can use detectgraph() to determine what type of video graph­
ics hardware is in the system.

Example

This fragment tests for the presence of a video adapter:

int driver, mode;
detectgraph(&driver, &mode);

if(driver==-2) {
cprintf("no graphics adapter in the system.");
exit(l);

Related Function

initgraph()

612 Turbo CIC++: The Complete Reference

void far drawpoly(lnt numpolnts, Int far *points)

Description

The prototype for drawpoly() is in graphics.h.
The drawpoly() function draws a polygon using the current draw­

ing color. The number of end points in the polygon are equal to
numpoints. Since each point consists of both x and y coordinates, the
integer array pointed to by points must be at least as large as two times
the number of points. Within this array, each point is defined by its x,y
coordinate pair with the x coordinate first.

Example

This program draws the polygon defined in the array shape:

#include <graphics.h>
#include <conio.h>

main(void)
{

}

int driver, mode;
int shape[lO] = { /* five points * 2 */

10, 10,
100, 80,
200, 200,
350, 90,
0, 0

} ;

driver = DETECT; /* autodetect */
mode = 0;
initgraph(&driver, &mode, "");

drawpo1y(5, shapej;
get ch();
restorecrtmode();
return 0;

Related Functions

fillpoly(), line(), circle()

void far ellipse(f nt x, Int y, Int start, Int end,
Int xradlus, Int yradlusJ

Description

The prototype for ellipse() is in graphics.h.

Text Screen and Graphics Functions 613

The ellipse() function draws an ellipse in the current drawing
color. The center of the ellipse is at x,y. The length of the x and y radii
are specified by xradius and yradius. The amount of the ellipse actually
displayed is determined by the values for start and end, which are
specified in degrees. If start equals 0 and end equals 360, the entire
ellipse is shown.

Example

This program draws an egg-shaped ellipse on the screen.

#include <graphics.h>
#include <conio.h>

main(void)
{ int driver, mode;

}

driver = DETECT; /* autodetect */
mode = 0;
i ni tgraph (&driver, &mode, 1111);

ellipse(lOO, 100, O, 360, 80, 40);

getch();
restorecrtmode();
return O;

Related Functions

circle(), arc()

void far flllelllpse(lnt x, Int y, Int xr, Int yr)

Description

The prototype for fillellipse() is in graphics.h.
The fillellipse() function draws and fills an ellipse using the cur­

rent fill color and pattern. The outline of the ellipse is drawn in the
drawing color. The center of the ellipse is at x,y. The length of the x and
y radii are specified by xr and yr.

Example

This program draws the following egg-shaped ellipse on the screen and
fills it using the default fill color and pattern.

614 Turbo CIC++: The Complete Reference

#include <graphics.h>
#include <conio.h>

main(void)
{

}

int driver, mode;

driver = DETECT; /* autodetect */
mode = 0;
initgraph{&driver, &mode, "");

fillellipse(lOO, 100, 80, 40);

getch();
restorecrtmode();
return 0;

Related Functions

fillpoly(), ellipse(), floodfill()

void far flllpoly(lnt numpolnts, Int far *points)

Description

The prototype for fillpoly() is in graphics.h.
The fillpoly() function first draws the object, in the current draw­

ing color, consisting of numpoints points defined by the x,y coordinates
in the array pointed to by points. (See drawpoly() fox: ·details on the
construction of a polygon.) It then proceeds to fill the object using the
current fill pattern and color. The fill pattern can be set by calling
setfillpattern().

Example

This program fills a triangle with magenta interleaving:

#include <graphics.h>
#include <conio.h>

main(void)
{

int driver, mode;

int shape[] = {

100, 100,

};

100, 200,
200, 200,
100, 100

Text Screen and Graphics Functions 61 5

driver = DETECT; /* autodetect */
mode = O;

}

initgraph(&driver, &mode, "");

setfillstyle(INTERLEAVE_FILL, MAGENTA);
fillpoly(4, shape);

get ch();
restorecrtmode();
return O;

Related Function

fioodfill()

void far floodflll(int x, Int y, Int border)

Description

The prototype for fioodfill() is in graphics.h.
The fioodfill() function fills an object with the current fill color and

pattern given the coordinates of any point within that object and the
color of the border of the object (the color of the lines or arcs that make
up the object). You must make sure that the object you are filling is
completely enclosed. If it isn't, the area outside the shape will also be
filled. The background color is used by default, but you can change the
way objects are filled using setfillstyle().

Example

This program uses fioodfill() to fill an ellipse with magenta cross­
hatching:

#include <graphics.h>
#include <conio.h>

616 Turbo CIC++: The Complete Reference

main(void)
{

}

int driver, mode;

driver = DETECT; /* autodetect */
mode = O;
initgraph(&driver, &mode, '"');

ellipse(lOO, 100, 0, 360, 80, 40);

setfillstyle(XHATCH_FILL, MAGENTA);
floodfill(lOO, 100, WHITE);

getch(};
restorecrtmode();
return 0;

Related Function

fillpoly()

void far getarccoords(struct arccoordstype far *Coords)
Description

The prototype for getarccoords() is in graphics.h.
The getarccoords() function fills the structure pointed to by coords

with coordinates related to the last call to arc(). The arccoordstype
structure is defined as

struct arccoordstype {
int x, y;
int xstart, ystart, xend, yend;

};

Here, x and y are the center of the imaginary circle about which the arc
is drawn. The starting and ending x,y coordinates are stored in xstart,
ystart and xend, yend.

Example

This program draws a quarter of a circle about point 100,100 and then
connects a line between the arc's endpoints:

#include <graphics.h>
#include <conio.h>

Text Screen and Graphics Functions 617

main(void)
{

}

int driver, mode;
struct arccoordstype ac;

driver = DETECT; /* autodetect */
mode = 0;
initgraph(&driver, &mode, '"');

arc(lOO, 100, 0, 90, 100);

/* now, draw a line between the endpoints of the arc*/
getarccoords(&ac); /* get the coordinates */
line(ac.xstart, ac.ystart, ac.xend, ac.yend);

getch();
restorecrtmode();
return 0;

Related Functions

line(), pieslice()

void far getaspectratlo(lnt far *Xasp, Int far *yaspJ

Description

The prototype for getaspectratio() is in graphics.h.
The getaspectratio() function copies the x aspect ratio into the

variable pointed to by xasp and the y aspect ratio into the variable
pointed to by yasp. You can manipulate these aspect ratios to alter the
way objects are displayed on the screen.

Example

This fragment prints the aspect ratios:

int xasp, yasp;

getaspectratio(&xasp, &yasp);

cprintf("X,Y aspect ratios %d %d", xasp, yasp);

618 Turbo CIC++: The Complete Reference

Related Functions

setaspectratio(), circle()

Int far getbkcolor(vold)

Description

The prototype for getbkcolor() is in graphics.h.
The getbkcolor() function returns the current background color.

The values and their corresponding macros (defined in graphics.h) are
shown here:

Macro Integer Equivalent

BLACK 0

BLUE 1
GREEN 2
CYAN 3
RED 4
MAGENTA 5
TlTirt.'TTTl>..T
nn.vVVl'I 6

LIGHTGRAY 7

DARKGRAY 8

LIGHTBLUE 9

LIGHTGREEN 10

LIGHTCYAN 11

LIGHTRED 12
LIGHTMAGENTA 13
YELLOW 14
WHITE 15

Text Screen and Graphics Functions 619

Example

This fragment displays the current background color:

cprintf ("background col or is %d", getbkcol or()};

Related Function

setbkcolor()

Int far getcolor(vold)

Description

The prototype for getcolor() is in graphics.h.
The getcolor() function returns the current drawing color.

Example

This fragment displays the current drawing color:

cprintf("drawing color is %d", getcolor()};

Related Function

setcolor()

struct palettetype *far getdefaultpalette(vold)

Description

The prototype for getdefaultpalette() is in graphics.h.

620 Turbo CIC++: The Complete Reference

The getdefaultpalette() function returns the default palette de­
fined by the graphics driver used in the call to initgraph(). The struc­
ture of palettetype is as defined in graphics.h as

struct palettetype {
unsigned char size;
signed char colors[MAXCOLORS + l];

};

Example

This code illustrates a call to getdefaultpalette():

struct palettetype far *p;
p = getdefaultpalette();

Related Functions

setpalette(), getpalette()

char *far getdrlvername(vold}

Description

The prototype for getdrivernarne() is in graphics.h.
The getdrivernarne() function returns the name of the current

graphics driver. The name is a string held in a statically allocated
character array. The contents of this array are overvYi ;tten each time
you call the function. If you wish to save the contents of the array, you
must copy the string elsewhere.

Example

This program displays the name of the current driver:

#include <graphics.h>
#include <conio.h>

main (void)
{

int driver, mode;
char *name;

Text Screen and Graphics Functions 621

driver = DETECT; /* autodetect */
mode = 0;

}

initgraph(&driver, &mode, "");

name= getdrivername();

outtextxy(lO, 10, name);

getch();
restorecrtmode();
return O;

Related Functions

initgraph(), getmodename()

void far getflllpattern(char far *pattern)

Description

The prototype for getfillpattern() is in graphics.h.
The getfillpattern() function fills the array pointed to by pattern

with the 8 bytes that make up the current fill pattern. The array must
be at least 8 bytes long. The pattern is arranged as an 8-bit by 8-byte
pattern.

Example

This program displays the bytes that make up the current fill pattern:

#include <stdio.h>
#include <graphics.h>
#include <conio.h>

main(void)
{

int driver, mode;
char f [8], num[lO];
int i;

driver = DETECT; /* autodetect */
mode = O;
initgraph(&driver, &mode, "");

622 Turbo CIC++: The Complete Reference

getfillpattern((char far*) &f);

/* display each byte in fill pattern */
for(i=O; i<8; i++) {

}

}

sprintf(num, "%d ", f[i]);
outtext(num);

getch();
restorecrtmode();
return 0;

Related Functions

setfillpattern(), setfillstyle()

void far getflllsettlngs(struct flllsettlngstype
far *Info)

Description

The prototype for getfillsettings() is in graphics.h.
The getfillsettings() function fills the structure pointed to by info

with the number of the fill pattern and the color currently in use. The
fillsettingstype structure is defined in graphics.h a,R

struct fillsettingstype {
int pattern;
int color;

};

The values for pattern are shown here along with their macro equiva­
lents (defined in graphics.h):

Macro

EMPTY_FILL

SOLID_FILL

Value Meaning

0 Fill with background color

1 Fill with solid color

Text Screen and Graphics Functions 623

LINE_FILL 2 Fill with lines

LTSLASH_FILL 3 Fill with light slashes

SLASH_FILL 4 Fill with slashes

BKSLASH _FILL 5 Fill with backslashes

LTBKSLASH _FILL 6 Fill with light backslashes

HATCH_FILL 7 Fill with light hatching

XHATCH _FILL 8 Fill with hatching

INTERLEAVE_ FILL 9 Fill with interleaving

WIDE_DOT _FILL 10 Fill with widely spaced dots

CLOSE _DOT_ FILL 11 Fill with closely spaced dots

USER_FILL 12 Fill with custom pattern

The color will be one of the colors valid in the video mode currently in
use.

Example

This fragment reads the current fill pattern and color:

struct fillsettingstype p;

getfillsettings(&p);

Related Function

setfillsettings()

Int far getgraphmode(voldJ

Description

The prototype for getgraphmode() is in graphics.h.

624 Turbo CIC++: The Complete Reference

The getgraphmode() function returns the current graphics mode.
The value returned does not correspond to the actual value BIOS
associates with the active video mode. Instead, the value returned is
relative to the current video driver. The value returned will be one of
these values, as defined in graphics.h:

Macro Value Resolution

CGACO 0 320x200

CGACI 1 320x200

CGAC2 2 320x200

CGAC3 3 320x200

CG AH I 4 640x200

MCGACO 0 320x200

MCGACI 1 320x200

MCGAC2 2 320x200

MCGAC3 3 320x200

MCGAMED 4 640x200

MCGAHI 5 640x480

EGALO 0 640x200

EGAHI 1 640x350

EGA64LO 0 640X200

EGA64HI 1 640x350

EGAMONOHI 3 640x350

HERCMONOHI 0 720x348

ATT400CO 0 320x200

ATT400Cl 1 320x200

ATT400C2 2 320x200

ATT400C3 3 320x200

ATT400MED 4 640x200

ATT400HI 5 640x400

Text Screen and Graphics Functions 625

VG ALO 0 640x200

VGAMED 1 640x350

VGAHI 2 640x480

PC3270HI 0 720x350

IBM8514HI 1 1024x786

IBM8514LO 0 640x480

Example

This fragment displays the number of the current graphics mode rela­
tive to the active graphics driver:

pri ntf ("graphics mode is %d", getgraphmode ());

Related Function

setgraphmode()

void far getlmagef Int left, Int top, Int right, int bottom,
void far *bufJ

Description

The prototype for getimage() is in graphics.h.
The getimage() function copies the portion of the graphics screen

with upper left corner coordinates left, top and lower right corner coordi­
nates right, bottom into the region of memory pointed to by buf

To determine the number of bytes needed to store an image, use the
imagesize() function. An image stored using getimage() can be writ­
ten to the screen using the putimage() function.

626 Turbo CIC++: The Complete Reference

Example

This program copies a rectangle with two diagonal lines to other screen
locations:

/* This program demonstrates how a graphics image can be
moved using getimage(}, imagesize(}, and putimage(}.

*/
#include <conio.h>
#include <graphics.h>
#include <stdlib.h>

void box(int, int, int, int, int};

main(void}
{

int driver, mode;
unsigned size;
void *buf;

driver = DETECT; /* autodetect */
mode = O;
initgraph(&driver, &mode, ""};

box(20, 20, 200, 200, 15};
setcolor(RED);
line(20, 20, 200, 200);
setcolor(GREEN};
line(20, 200, 200, 20};
getch(};

/* move the image */

/* first, get the image's size */
size = imagesize(20, 20, 200, 200);
if(size I= Oxffff} { /* alloc memory for the image*/

buf = malloc(size};
i f(buf) {

}
}

getimage(20, 20, 200, 200, buf);
putimage(lOO, 100, buf, COPY_PUT};
putimage(300, 50, buf, COPY_PUT};

outtext("press a key");
getch(};
restorecrtmode();
return O;

/* Draw a box given the coordinates of its two corners. */
void box(int startx, int starty, int endx, int endy,

{
int color}

setcolor(color);

line(startx, starty, startx, endy);
line(startx, starty, endx, starty};

}

Text Screen and Graphics Functions 627

line(endx, starty, endx, endy);
line(endx, endy, startx, endy);

Related Functions

putimage(), imagesize()

void far getllnesettlngs(struct llnesettingstype far *Info)

Description

The prototype for getlinesettings() is in graphics.h.
The getlinesettings() function fills the structure pointed to by info

with the current line style. The structure linesettingstype is defined as

struct linesettingstype {
int linestyle;
unsigned upattern;
int thickness;

};

The linestyle element holds the style of the line. It will be one of these
enumerated values (defined in graphics.h):

Value

SOLID_LINE

DOTTED _LINE

CENTER_LINE

DASHED_ LINE

USERBIT _LINE

Meaning

Unbroken line

Dotted line

Centered line

Dashed line

User-defined line

If linestyle is equal to USERBIT _LINE, the 16-bit pattern in upat­
tern determines how the line appears. Each bit in the pattern corre­
sponds to one pixel. If that bit is set, the pixel is turned on; otherwise it
is turned off.

The thickness element will have one of these values:

Value Meaning

NORM_ WIDTH 1 pixel wide

THICK_ WIDTH 3 pixels wide

628 Turbo CIC++: The Complete Reference

Example

This fragment reads the current line settings:

struct linesettingstype info;

getlinesettings(&info);

Related Function

setlinestyle()

Int far getmaxcolor(vold)

Description

The prototype for getmaxcolor() is in graphics.h.
The getmaxcolor() function returns the largest valid color value

for the current video mode. For example, in four-color CGA mode, this
number will be 3. (The color values for this mode are 0 through 3.)

Example

This program displays the largest valid color value:

#include <stdio.h>
#include <graphics.h>
#include <conio.h>

main(void)
{

}

int driver, mode;

driver = DETECT; I* autodetect */
mode = 0;
i ni tgraph (&driver, &mode, 1111);

printf(11 largest color: %d 11 , getmaxcolor());
getch();
restorecrtmode();
return 0;

Text Screen and Graphics Functions 629

Related Functions

getbkcolor(), getpalette()

Int far getmaxmode(voldJ

Description

The prototype for getmaxmode() is in graphics.h.
The getmaxmode() function returns the maximum mode available

for the current graphics driver.

Example

This fragment illustrates a call to getmaxmode():

int mode;
mode= getmaxmode();

Related Function

getmoderange()

Int far getmaxx(vold)
Int far getmaxy(voldJ

Description

The prototypes for getmaxx() and getmaxy() are in graphics.h.
The getmaxx() function returns the largest valid x value for the

current graphics mode.
The getmaxy() function returns the largest valid y value for the

current graphics mode.

630 Turbo CIC++: The Complete Reference

Example

This code displays the maximum x and y coordinates supported by the
graphics hardware in the system:

#include <stdio.h>
#include <graphics.h>
#include <conio.h>

main(void)
{

}

int driver, mode;

driver = DETECT; /* autodetect */
mode = 0;
initgraph(&driver, &mode, "");

printf("max X,Y: %d,%d", getmaxx(), getmaxy());
getch();
restorecrtmode();
return O;

Related Function

getmaxcolor()

char *far getmodename(lnt mode)

Description

The prototype for getmoden.a:me() is in graphics.h.
The getmodename() function returns the name of the specified

mode. The value of mode is obtained in the call to initgraph().

Example

This program displays the name of the current mode:

#include <graphics.h>
#include <conio.h>
main(void)
{

int driver, mode;
char *name;

Text Screen and Graphics Functions 631

driver = DETECT; /* autodetect */
mode = 0;
i nitgraph (&driver, &mode, 1111) ;

name= getmodename(mode); /*default mode*/

outtextxy(lO, 10, name);

getch();
restorecrtmode{);
return 0;

Related Functions

initgraph(), getdrivername()

void far getmoderange(int driver, int far *lowmode,
Int far 11hlmodeJ

Description

The prototype for getmoderange() is in graphics.h.
The getmoderange() function determines the lowest and highest

modes supported by the graphics driver specified by driver and puts
these values at the variables pointed to by lowmode and highmode,
respectively. The valid macros for driver are shown here (they are
defined in graphics.h):

Macro

CGA
MCGA
EGA
EGA64
EGAMONO
IBM8514
HERCMONO
ATT400
VGA
PC3270

632 Turbo CIC++: The Complete Reference

Example

This program displays the video mode range for the graphics hardware
currently installed in the system:

#include <stdio.h>
#include <graphics.h>
#include <conio.h>

main(void)
{

}

int driver, mode;
int high, low;

driver = DETECT; /* autodetect */
mode = D;
initgraph(&driver, &mode, '"');

getmoderange(driver, &low, &high);
printf("mode range: %d - %d", low, high);
getch();
restorecrtmode();
return O;

Related Function

getgraphrnode()

void far getpalette(struct pafettetype far *pa!)

Description

The prototype for getpalette() is in graphics.h.
The getpalette() function loads the structure pointed to by pal

with the number of the current palette. The palettetype structure is
defined as

Text Screen and Graphics Functions 633

struct palettetype {
unsigned char size:
signed char colors[MAXCOLORS + 1];

}:

The size element holds the number of colors available in the current
palette. The colors array holds the values for the colors available in the
palette. The following colors, along with their macro names, are shown
here.

CGA codes (background only):

Macro Value

BLACK 0

BLUE 1
GREEN 2
CYAN 3

RED 4
MAGENTA 5
BROWN 6

LIGHTGRAY 7

DARKGRAY 8

LIGHTBLUE 9

LIGHTGREEN 10

LIGHTCYAN 11

LIGHTRED 12
LIGHTMAGENTA 13

YELLOW 14
WHITE 15

634 Turbo CIC++: The Complete Reference

EGA and VGA:

Macro Value

EGA_ BLACK 0
EGA_ BLUE 1
EGA_ GREEN 2
EGA_ CYAN 3
EGA_ RED 4

EGA_ MAGENTA 5
EGA_ BROWN 20
EGA_LIGHTGRAY 7
EGA_DARKGRAY 56
EGA_LIGHTBLUE 57
EGA_LIGHTGREEN 58
EGA_ LIGHTCYAN 59
EGA_LIGHTRED 60
EGA_ LIGHTMAGENTA 61
EGA_ YELLOW 62
EGA_ WHITE 63

Example

This program prints the number of colors supported by the default video
mode:

#include <stdio.h>
#include <graphics.h>
#include <conio.h>

main(void)
{

int driver, mode;
struct palettetype p;

driver = DETECT; /* autodetect */
mode = O;
initgraph(&driver, &mode, "");

Text Screen and Graphics Functions 635

getpalette(&p);
printf("number of colors in palette: %d", p.size);
getch();
restorecrtmode();
return 0;

Related Function

setpalette()

Int far getpaletteslze(void)
Description

The prototype for getpalettesize() is in graphics.h.
The getpalettesize() function returns the number of colors in the

current palette.

Example

This program prints the number of colors in the current default palette:

#include <graphics.h>
#include <conio.h>
#include <stdio.h>

main(void)
{

}

int driver, mode;
int num;
char buff[lOO];

driver = DETECT; /* autodetect */
mode = O;
initgraph(&driver, &mode, "");

num = getpalettesize();
sprintf(buff, "number of colors in palette: %d", num);
outtextxy(lO, 10, buff);

getch();
restorecrtmode();
return O;

Related Functions

setpalette(), getpalette()

636 Turbo C/C++: The Complete Reference

unsigned far getplxel(int x, Int yJ
Description

The prototype for getpixel() is in graphics.h.
The getpixel() function returns the color of the pixel located at the

specified x,y position.

Example

This fragment puts the value of the color at location 10,20 into the
variable color:

color= getpixel(lO, 20);

Related Function

putpixel()

int gettext(lnt left, Int top, Int right, Int bottom,
void wbufJ

Description

The prototype for gettext() is in conio.h.
The gettext() function copies the text from a rectangle with upper

left corner coordinates lejt,top and lower right corner coordinates right,
bottom into the buffer pointed to by buf The coordinates are screen, not
window, relative.

The amount of memory needed to hold a region of the screen is
computed by the formula num _bytes = rows x columns x 2. The
reason you must multiply the number of rows times the number of
columns by 2 is that each character displayed on the screen requires 2
bytes of storage: 1 for the character itself and 1 for its attributes.

The function returns 1 on success and 0 on failure.

Example

This fragment copies a region of the screen into the memory pointed to
by buf:

buf = malloc(lO * 10 *2);

gettext(lO, 10, 20, 20, buf);

Text Screen and Graphics Functions 637

Related Functions

puttext(), movetext()

void far gettextsettlngs(struct textsettlngstype
far *Info)

Description

The prototype for gettextsettings() is in graphics.h.
The gettextsettings() function loads the structure pointed to by

info with information about the current graphics text settings. The
structure textsettingstype is defined in graphics.hand is shown'here:

struct textsettingstype {

}:

int font; /* font type */
int direction: /* horizontal or vertical */
int charsize; /* size of characters */
int horiz; /* horizontal justification */
int vert; /* vertical justification */

The font element will contain one of these values:

Value Font

0 Default 8 x 8 bit-mapped font

1 Stroked triplex font

2 Stroked small font

3 Stroked sans serif font

4 Stroked gothic font

The direction element must be set to either HORIZ_DIR (the default)
for horizontal text or VERT_ DIR for vertical text. The charsize ele­
ment is a multiplier used to scale the size of the output text. The value
of horiz and vert indicate how text will be justified. They will be one of
the following values.

638 Turbo CIC++: The Complete Reference

Macro

LEFT_TEXT

CENTER_ TEXT

RIGHT_TEXT

BOTTOM_ TEXT

CENTER_ TEXT

TOP_TEXT

Example

Meaning

Left justify

Center horizontally

Right justify

Bottom justify

Center vertically

Top justify

This fragment reads the current text settings:

struct textsettingstype t;

gettextsettings(&t);

Related Function

settextstyle()

void far getviewsettlngs{struct viewporttype far *info)

Description

The prototype for getviewsettings() is in graphics.h.
The getviewsettings() function loads information about the current

viewport into the structure pointed to by info. The structure viewport­
type is defined as

struct viewporttype {

};

int left, top, right , bottom;
int clip;

The fields left, top, right, and bottom hold the coordinates of the upper
left and lower right corners of the viewport. When clip is O, there is no

Text Screen and Graphics Functions 639

clipping of output that overruns the viewport boundaries. Otherwise,
clipping is performed to prevent boundary overrun.

Example

This fragment prints the dimensions of the current screen:

struct viewporttype info;

getviewsettings(&info);

printf("view port is %dx%x by %dx%d", info. left, info.right,
info.top, info.bottom);

Related Function

setviewport()

int far getx(vold)
int far gety(vold)

Description

The prototypes for getx() and gety() are in graphics.h.
The functions getx() and gety() return the current position's

(CP's) x and y location on the graphics screen.

Example

This fragment displays the CP's current location:

printf("CP's loc: %d, %d", getx(), gety());

Related Function

moveto()

640 Turbo CIC++: The Complete Reference

void gotoxy(lnt x, Int y)

Description

The prototype for gotoxy() is in conio.h.
The gotoxy() function sends the text screen cursor to the location

specified by x,y. If either or both of the coordinates are invalid, no
action takes place.

Example

This program prints Xs diagonally across the screen:

#include <conio.h>

main(void)
{

}

register inti, j;

cl rscr();

/* print diagonal Xs */
for(i=l, j=l; j<24; i+=3, j++) {

gotoxy(i, j);
cprintf("X");

}
getche();
cl rscr();
return O;

Related Functions

wherex(), wherey()

void far graphdefaults(voldJ

Description

The prototype for graphdefaults() is in graphics.h.

Text Screen and Graphics Functions 641

The graphdefaults() function resets the graphics system to its
default settings. Specifically, the entire screen becomes the viewport
with the CP located at 0,0. The palette, drawing color, and background
color are reset; the fill style, fill pattern, text font, and justification are
returned to their original values.

Example

This fragment resets the graphics system:

graphdefaults();

Related Functions

initgraph(), setpalette()

char *far grapherrormsg(lnt errcode)

Description

The prototype for grapherrormsg() is in graphics.h.
The grapherrormsg() function returns a pointer to the error mes­

sage that corresponds to errcode. The error code is obtained by a call to
graphresult().

See graphresult() for details of the error conditions.

Example

Assuming that errcode was returned by a call to graphresult(), this
fragment displays in text form the error message associated with that
code:

pri ntf ("%s", grapherrormsg (graphresul t ()));

Related Function

graphresult()

642 Turbo CIC++: The Complete Reference

void far _ graphfreemem(vold far *ptr, unsigned size)
void far *far _ graphgetmem(unslgned size)

Description

The prototypes for _graphfreemem() and _graphgetmem() are in
graphics.h.

The _graphgetmem() function is called by Turbo C's graphics
system to allocate memory for the graphics drivers and other graphics
system needs. The _ graphfreemem() function frees this memory.

These functions should not generally be called directly by your
programs.

Int far graphresult(voldJ

Description

The prototype for graphresult() is in graphics.h.
The graphresult() function returns a value that represents the

outcome of the last graphics operation. This value will be one of the
following enumerated values:

Name Value Meaning

grOk 0 Successful

grNoinitGraph -1 No driver installed

gr N otDetected -2 No graphics hardware in system

gr FileN otFound -3 Driver file not found

gr InvalidDriver -4 Invalid driver file

gr N oLoadMem -5 Not enough memory

grN oScanMem -6 Insufficient memory for scan fill

grN oFloodMem -7 Insufficient memory for flood fill

Text Screen and Graphics Functions 643

grFontNotFound -8 Font file not found

grNoFontMem -9 Insufficient memory for font

gr InvalidMode -10 Invalid mode

gr Error -11 General graphics error

grIOerror -12 I/O error

gr InvalidFont -13 Invalid font file

grlnvalidFontNum -14 Invalid font number

gr InvalidDeviceN um -15 Invalid device number

gr InvalidVersion -18 Invalid version number

Use grapherrormsg() to display a graphics error message given its
error number.

Example

This fragment displays the outcome of the last graphics operation:

pri ntf ("%s", grapherrormsg (graphresult ()));

Related Function

grapherrormsg()

void hlghvldeo(voldJ

Description

The prototype for highvideo() is in conio.h.

644 Turbo CIC++: The Complete Reference

After a call to highvideo(), characters written to the screen are
displayed in high-intensity video. This function works only for text
screens.

Example

This fragment turns on high-intensity output:

highvideo();

Related Functions

lowvideo(), normvideo()

unsigned far lmageslze(int left, Int top, Int right,
Int bottom)

Description

The prototype for imagesize() is in graphics.h.
The imagesize() function returns the number of bytes of storage

necessary to hold a portion of the screen with upper left corner coordi­
nates lejt,top and lower right corner coordinates right,bottom. This
function is generally used in conjunction with getimage(). The image­
size () function works only in graphic modes.

Example

This fragment determines the number of bytes needed to hold a graph­
ics image at the specified location:

unsigned size;

size= imagesize(lO, 10, 100, 100);

Related Function

getimage()

Text Screen and Graphics Functions 645

void far lnltgraph(lnt far *driver, Int far *mode,
char far *path)

Description

The prototype for initgraph() is in graphics.h.
The initgraph() function is used to initialize the graphics system

and to load the appropriate graphics driver. The initgraph() function
loads into memory a graphics driver that corresponds to the number
pointed to by driver. Without a graphics driver loaded into memory, no
graphics functions can operate. The video mode used by the graphics
functions is specified by an integer pointed to by mode. Finally, a path
to the driver can be specified in the string pointed to by path. If no path
is specified, the current working directory is searched.

The graphics drivers are contained in .BGI files, which must be
available on the system. However, you need not worry about the actual
name of the file because you only have to specify the driver by its
number. The header graphics.h defines several macros that you can use
for this purpose. They are shown here:

Macro Equivalent

DETECT 0

CGA 1

MCGA 2

EGA 3

EGA64 4

EGAMONO 5

IBM8514 6

HERCMONO 7

ATT400 8

VGA 9

PC3270 10

When you use DETECT, initgraph() automatically detects the type of
video hardware present in the system and selects the video mode with
the greatest resolution.

646 Turbo CIC++: The Complete Reference

The value of mode must be one of the graphics modes shown here.
Notice that the value pointed to by mode is not the same as the value
recognized by the BIOS routine that actually sets the mode. Instead the
value used to call BIOS to initialize a video mode is created by init-
graph() using both the driver and the mode.

Driver Mode Equivalent Resolution

CGA CGACO 0 320x200

CGACl 1 320X200

CGAC2 2 320x200

CGAC3 3 320x200

CGAHI 4 640x200

MCGA MCGACO 0 320x200

MCGACl 1 320X200

MCGAC2 2 320x200

MCGAC3 3 320X200

MCGAMED 4 640x200

MCGAHI 5 640x480

EGA EGALO 0 640X200

EGAHI 1 640x350

EGA64 EGA64LO 0 640x200
'l;\rt A~ATTT
.ci \l".ll..U'±ll.L 1 640x350

EGAMONO EGAMONOHI 3 640x350

HERC HERCMONOHI 0 720x348

ATT400 ATT400CO 0 320X200

ATT400Cl 1 320x200

ATT400C2 2 320x200

ATT400C3 3 320x200

ATT400MED 4 640x200

ATT400HI 5 640x400

Text Screen and Graphics Functions 647

Driver

VGA

PC3270

IBM8514

Example

Mode

VG ALO

VGAMED

VGAHI

PC3270HI

IBM8514HI

IBM8514LO

Equivalent Resolution

0 640x200

1 640x350

2 640x480

0 720x350

1 1024X768

1 640x480

This fragment uses initgraph() to autodetect the graphics hardware
and to select the mode of greatest resolution:

int driver, mode;

driver = DETECT; /* autodetect */
mode = O;
i ni tgraph (&driver, &mode, "");

Related Function

getgraphmode()

void lnsllne{vold)

Description

The prototype for insline() is in conio.h.
The insline() function inserts a blank line at the current cursor

position. All lines below the cursor move down. This function is for text
mode only, and it operates relative to the current text window.

Example

The following program illustrates the use of insline().

648 Turbo CIC++: The Complete Reference

#include <conio.h>

main(void)
{

}

register int i;

cl rscr();

for(i=l; i<24; i++) {
gotoxy(l, i);
cprintf("this is line %d\n\r", i);

}
getche();
gotoxy(l, 10);
insline();
getch();
return O;

Related Function

delline()

Int far lnstalluserdrlver(char far *drlvername,
Int huge (*funcJ(vold)J

Description

The prototype for installuserdriver() is in graphics.h.
The instaiiuserdriver() function allows you to install third-party

BGI drivers. The drivername parameter specifies the driver name. The
June parameter allows autodetection of the required hardware for the
installed driver. This parameter is optional and used only if the manu­
facturer supplies an autodetect function.

The installuserdriver() function returns the graphics driver's
value, which you can then use to call initgraph().

Example

This following fragment assumes you have acquired a new BGI driver
named newdriver.bgi.

Text Screen and Graphics Functions 649

int driver, mode;

driver = 1 nstall userdri ver("newdri ver", void);
mode = O;
initgraph(&driver, &mode, "");

Related Function

installuserfont()

Int far lnstalluserfont(char far *fontname)
Description

The prototype for installuserfont() is in graphics.h.
The installuserfont() function allows you to install third-party

stroked-character fonts. The parameter fontname is a pointer to the
name of the file that contains the font. All font files must use the .CHR
extension.

The installuserfont() function returns the ID number associated
with the font, which can then be used in a call to settextstyle() to
activate the font. If the font table is full, grError is returned and the
new font cannot be loaded. (Up to 20 fonts can be loaded at a time.)

Example

This fragment loads a .CHR font file named newfont.chr:

int fontnumber;

fontnumber = installuserfont("newfont.chr"); settextstyle(fontnumber, HORIZ_DIR, 1);

Related Function

installuserdriver()

void far line(int startx, Int starty, Int endx, Int endy}
void far lineto(int x, Int y};
void far llnerel(lnt deltax, Int deltay}

Description

The prototypes for line(), lineto(), and linerel() are in graphics.h.

650 Turbo CIC++: The Complete Reference

The line() function draws a line in the current drawing color from
startx,starty to endx,endy. The current position is unchanged.

The lineto() function draws a line in the current drawing color
from the current position (CP) to x,y and locates the CP at x,y.

The linerel() function draws a line from the CP to the location that
is deltax units away in the x direction and deltay units away in the y
direction. The CP is moved to the new location.

Example

This program illustrates the line functions:

#include <graphics.h>
#include <conio.h>

main(void)
{

}

int driver, mode;

driver = DETECT; /* autodetect */
mode = O;
initgraph(&driver, &mode, "");

line(lOO, 100, 200, 200);

lineto(lOO, 50);

linerel(30, 40);

getch();
restorecrtmode();
return 0:

Related Functions

circle(), drawpoly()

void lowvldeo(voldJ

Description

The prototype for lowvideo() is in conio.h.

Text Screen and Graphics Functions 651

After a call to lowvideo(), characters written to the screen are
displayed in low-intensity video. This function works only for text
screens.

Example

This fragment turns on low-intensity output:

lowvideo():

Related Functions

highvideo(), normvideo()

void far moverel(lnt deltax, Int deltay)

Description

The prototype for moverel() is in graphics.h.
The moverel() function advances the current position (CP) on a

graphics screen by the magnitudes of deltax and deltay.

Example

If the CP is at location 10,10 prior to execution of the following state­
ment, it will be at 20,30 after the statement executes:

moverel(lO, 20):

Related Function

moveto()

652 Turbo CIC++: The Complete Reference

Int movetext(lnt left, Int top, Int right, Int bottom,
Int newleft, Int newtop)

Description

The prototype for movetext() is in conio.h.
The movetext() function moves the portion of a text screen with

the upper left corner at lejt,top and lower right corner at right,bottom to
the region of the screen that has newlejt,newtop as the coordinates of its
upper left corner. This function is screen, not window, relative.

The movetext() function returns 0 if one or more coordinates are
out of range and non-0 otherwise.

Example

This fragment moves the contents of the rectangle with upper left
corner coordinates of 1,1 and lower right corner coordinates of 8,8 to
10,10:

movetext(l, 1, 8, 8, 10, 10):

Related Function

gettext()

void far moveto(lnt x, Int y)
Description

The prototype for moveto() is in graphics.h.
The moveto() function moves the current position (CP) to the

location specified by x,y relative to the current viewport.
The moveto() graphics function corresponds to the text screen

gotoxy() function in operation.

Example

This fragment moves the CP to location 100,100:

moveto(lOO, 100):

Related Function

moverel()

void normvldeo{vold}
Description

Text Screen and Graphics Functions 653

The prototype for normvideo() is in conio.h.
After a call to normvideo(), characters written to the screen are

displayed in normal-intensity video. This function works only for text
screens.

Example

This fragment turns on normal-intensity output:

normvideo();

Related Functf ons

highvideo(), lowvideo()

void far outtext(char far *Str)
void var outtextxy(int x, int y, char *Str)

Description

The prototypes for outtext() and outtextxy() are in graphics.h.
The outtext() function displays a text string on a graphics mode

screen at the current position (CP) using the active text settings (direc­
tion, font, size, and justification). If the active direction is horizontal, the
CP is increased by the length of the strir{g; otherwise no change is made
in the CP. In graphics modes, there is no visible cursor, but the current
position on the screen is maintained as if there were an invisible cursor.

The outtextxy() function is similar to outtext() except that it
displays the string beginning at the location specified by x,y. These
coordinates are relative to the current viewport.

To change the style of the text refer to settextstyle().

Example

This program illustrates the use of outtext() and outtextxy():

#include <graphics.h>
#include <conio.h>

654 Turbo CIC++: The Complete Reference

main(void)
{

int driver, mode;
inti;

driver = DETECT; /* autodetect */
mode = O;
initgraph(&driver, &mode, "");

/*write two lines at CP */
outtext("this is an example ");
outtext("another line");

/* use "cursor" positioning */
for(i=lOO; i<200: !+=8) outtextxy(200, i, "hello"};

getch();
restorecrtmode();
return 0;

Related Function

settextstyle()

void far pleslice(int .x, int y, int start, int end,
Int radius)

Description

The prototype for pieslice() is in graphics.h.
The pieslice() function draws a pie slice, using the cunent drawing

color, covering an angle equal to end-start. The beginning and ending
points of the angle are specified in degrees. The center of the "circle"
that the slice is "cut" from is at x,y and has a radius equal to radius. The
slice is filled with the current fill pattern and color.

Example

This program prints a full circle of pie slices, each 45 degrees wide and
each in a different color. (This program requires an EGA or VGA)

#include <graphics.h>
#include <conio.h>

Text Screen and Graphics Functions 655

main(void)
{

}

int driver, mode;
inti, start, end;

driver = DETECT; /* autodetect */
mode = 0;
initgraph(&driver, &mode, ""):

/* demonstrate pieslice() */

start = 0; end = 45;
for(i=O; i<S; i++) {

setfillstyle(SOLID_FILL, i);
pieslice(300, 200, start, end, 100);
start += 45;
end += 45;

}

getch();
restorecrtmode();
return 0;

Related Functions

arc(), circle()

void far putlmage(lnt x, Int y, vol d var *buf, Int op)
Description

The prototype for putimage() is in graphics.h.
The putimage() function copies an image previously saved (by

using getimage()) in the memory location pointed to by buf to the
screen beginning at location x,y. The value of op determines exactly how
the image is written to the screen. Its valid enumerated values are

Name Value Meaning

COPY_PUT 0 Copy as is

XOR_PUT 1 Exclusive-OR with destination

OR_PUT 2 Inclusive-OR with destination

AND_PUT 3 AND with destination

NOT_PUT 4 Invert source image

656 Turbo CIC++: The Complete Reference

Example

The following program demonstrates the getimage(), imagesize(), and
putimage() functions:

/* This program demonstrates how a graphics image can be
moved using getimage(), imagesize(), and putimage().

*/
#include <conio.h>
#include <graphics.h>
#include <stdlib.h>

void box(int, int, int, int, int):

main(void)
{

}

int driver, mode;
unsigned size;
void *buf;

driver = DETECT; /* autodetect */
mode = O;
initgraph(&driver, &mode, '"');

box(20, 20, 200, 200, 15);

setcolor(RED):
1ine(20, 20, 200, 200);
setcolor(GREEN);
line(20, 200, 200, 20);
getch();

/* move the image */

/* first, get the image's size */
size = imagesize(20, 20, 200, 200j;
if(size != Oxffff) { /* alloc memory for the image*/

buf = malloc(size);
if(buf) {

}
}

getimage(20, 20, 200, 200, buf);
putimage(lOO, 100, buf, COPY_PUT);
putimage(300, 50, buf, COPY_PUT);

outtext("press a key");
getch():
restorecrtmode();
return O;

/* Draw a box given the coordinates of its two corners. */
void box(int startx, int starty, int endx, int endy,

int color)

Text Screen and Graphics Functions 657

{
setcolor(color);

rectangle(startx, starty, endx, endy);

Related Functions

getirnage(), irnagesize()

void far putpixel(lnt x, Int y, Int color)

Description

The prototype for putpixel() is in graphics.h.
The putpixel() function writes the color specified by color to the

pixel at location x,y.

Example

This fragment makes the pixel at location 10,20 green, assuming that
green is supported by the current video mode:

putpixel(lO, 20, GREEN);

Related Function

getpixel()

Int puttext(lnt left, Int top, Int right, Int bottom
void *bufJ

Description

The prototype for puttext() is in conio.h.

658 Turbo CIC++: The Complete Reference

The puttext() function copies text previously saved by gettext()
from the buffer pointed to by buf into the region with upper left and
lower right corners specified by lejt,top and right,bottom.

The puttext() function uses screen-absolute, not window-relative,
coordinates.

Example

This fragment copies a region of the screen into the memory pointed to
by buf and puts that text in a new location:

buf = malloc(lO * 10 *2);
gettext(lO, 10, 20, 20, buf);
puttext(O, 0, 30, 30, buf);

Related Functions

gettext(), movetext()

void far rectangle(lnt left, Int top, Int right, Int bottom)

Description

The prototype for rectangle() is in graphics.h.
The rectangle() function draws a box as defined by the coordinates

left,top and right,bottom in the current drawing color.

Example

This program draws some sample rectangles:

#include <graphics.h>
#include <conio.h>

main(void)
{

int driver, mode;

driver = DETECT; /* autodetect */
mode = O;

}

Text Screen and Graphics Functions

i ni tgraph (&driver, &mode, "");

rectangle(lOO, 100, 300, 300);
rectangle(lSO, 90, 34, 300);
rectangle(O, 0, 2, 2);

getch();
restorecrtmode();
return O;

Related Functions

bar(), bar3d(), line()

int registerbgldriver(vold (*driver) (void) J
Int reglsterbgifont(vold (*font) (void) J

Description

659

The prototypes for registerbgidriver() and registerbgifont() are in
graphics.h.

These functions are used to notify the graphics system that either a
graphics driver, a font, or both have been linked in and there is no need
to look for a corresponding disk file.

The actual registration process is somewhat difficult, and you should
consult your Turbo C/C++ user manual for details.

void far restorecrtmode(voidJ
Description

The prototype for restorecrtmode() is in graphics.h.
The restorecrtmode() function restores the screen to the mode

that it had prior to the call to initgraph().

Example

This fragment restores the screen to its original video mode:

restorecrtmode();

Related Function

initgraph()

660 Turbo CIC++: The Complete Reference

void far sector(lnt x, Int y, Int start, Int end,
Int xr, Int yr)

Description

The prototype for sector() is in graphics.h.
The sector() function draws an elliptical pie slice using the current

drawing color and fills it using the current fill color and fill pattern. The
slice covers an angle equal to end-start. The beginning and ending
points of the angle are specified in degrees using the Cartesian coordi­
nate plane as shown in Figure 23-1. The center of the "ellipse" that the
slice is "cut" from is at x,y. It has horizontal and vertical radii equal to
xr and yr.

Example

This program prints a full ellipse of pie slices, each 45 degrees wide and
each in a different color. (This program requires an EGA or VGA)

#include <graphics.h>
#include <conio.h>

main(void)
{

int driver, mode;
inti, start, end;

driver = DETECT; /* autodetect */
mode = 0;
initgraph(&driver, &mode, "");

90°

270°

Figure 23-1. The Cartesian coordinate plane

Text Screen and Graphics Functions 661

/* demonstrate sector() */

start = O; end = 45;
for(i=O; i<B; i++) {
setfillstyle(SOLID_FILL, i);
sector(300, 200, start, end, 100, 200);
start += 45;

}

end += 45;

getch();
restorecrtmode();
return 0;

Related Functions

pieslice(), ellipse(), fillellipse()

void far setactlvepage(lnt page)

Description

The prototype for setactivepage() is in graphics.h.
The setactivepage() function determines the video page that will

receive the output of Turbo C's graphics functions. Turbo C uses video
page 0 by default. If you call setactivepage() with another page, subse­
quent graphics output is written to the new page, not necessarily the
one currently displayed. In graphics modes, only the EGA, VGA, and
Hercules adapters support multiple pages. However, even for these
adapters, not all modes have multiple pages.

Example

This fragment makes page 1 the active page:

setactivepage(l);

Related Function

setvisualpage()

662 Turbo CIC++: The Complete Reference

void far setallpalettef struct palettezype far *pal)

Description

The prototype for setallpalette() is in graphics.h.
The setallpalette() function changes all the colors in an EGA/VGA

palette. The structure palettetype is defined as

struct palettetype {
unsigned char size;
signed char colors[MAXCOLORS+l);

};

You must set size to the number of colors in the palette of the currently
active graphics mode, and set each element of colors to its correspond­
ing color. (Refer to setpalette() for the valid colors for the various
video adapters.) To leave a specific color unchanged, use the value -1.

If you call setallpalette() with incorrect values, no change to the
current palette takes place.

Example

This fragment changes the 16-color palette for an EGA/VGA adapter to
the first 16 colors:

struct palettetype p;
int i;

for(i=O; i<l6; i++) p.colors[i] = i;
n ~; .,o .,. 1 &... I"•.,.,._..., .I.Vt

setallpalette(&p);

Related Function

setpalette()

void far setaspectratlo(lnt xaspect, Int yaspectJ

Description

The prototype for setaspectratio() is in graphics.h.

Text Screen and Graphics Functions 663

The setaspectratio() function sets the x aspect ratio to the value
pointed to by xaspect and the y aspect ratio to the value pointed to by
yaspe<Jt. By default, the aspect ratios of the graphics system are set so
that circles are round. However, you can manipulate the aspect ratios to
alter the shape of objects that are displayed on the screen. (The
getaspectratio() function is used to get the current aspect ratios.)

Example

This fragment increases the y aspect ratio and prints the values of both
the x and y aspect ratios:

int xaspect, yaspect;

getaspectratio(&xaspect, &yaspect);
yaspect += 1;
setaspectratio(&xaspect, &yaspect);

cprintf("X,Y aspect ratios are now %d %d",
xaspect, yaspect);

Related Function

getaspectratio()

void far setbkcolor(lnt color)
Description

The prototype for setbkcolor() is in graphics.h.
The setbkcolor() function changes the background color to the

color specified in color. The valid values for color are

Number Macro Name

0 BLACK

1 BLUE

2 GREEN

8 CYAN
4 RED

664 Turbo CIC++: The Complete Reference

5 MAGENTA

6 BROWN

7 LIGHTGRAY

8 DARK GRAY

9 LIGHTBLUE

10 LIGHTGREEN

11 LIGHTCYAN

12 LIGHTRED

13 LIGHTMAGENTA

14 YELLOW

15 WHITE

Example

This program sets the background to light gray before drawing some
rectangles:

#include <graphics.h>
#include <conio.h>

main(void)
{

int driver, mode;

driver = DETECT; /* autodetect */
mode = 0;
in'ftgraph(&dtiver, &mode, 1; 11);

setbkcolor(LIGHTGRAY);

rectangle(lOO, 100, 300, 300);
rectangle(l50, 90, 34, 300);
rectangle(O, 0, 2, 2);

getch();
restorecrtmode();
return 0;

Related Function

setcolor()

Text Screen and Graphics Functions 665

void far setcolor(lnt color)

Description

The prototype for setcolor() is in graphics.h.
The setcolor() function sets the current drawing color to the color

specified by color. For the valid colors for each video adapter refer to
setpalette().

Example

Assuming an EGA/VGA adapter, this program prints 16 line segments
in 16 different colors. (The first is the same color as the background.)

#include <graphics.h>
#include <conio.h>

main(void)
{

}

int driver, mode;
int i;

driver = DETECT; /* autodetect */
mode = 0;
initgraph(&driver, &mode, "");

moveto(O, 200);

for(i=O; i<16; 1++) {
setcol or(i);
1 inerel (20, 0);

}

getch();
restorecrtmode();
return O;

Related Function

setpalette()

void far setflllpattern(char far *pattern, Int color)

Description

The prototype for setfi.llpattern() is in graphics.h.

666 Turbo CIC++: The Complete Reference

The setfillpattern() function sets the fill pattern used by various
functions, such as fl.oodfill(), to the pattern pointed to by pattern. The
array must be at least 8 bytes long. The pattern is arranged as an 8-bit
by 8-byte pattern. When a bit is on, the color specified by color is
displayed; otherwise the background color is used.

Example

This program creates an unusual fill pattern and uses it to fill a rectan­
gle:

#include <graphics.h>
#include <conio.h>

main(void)
{

}

int driver, mode;
/*define a fill pattern*/
char p[B] = {1, 2, 3, 4, 5, 6, 7};

driver = DETECT; /* autodetect */
mode = O;
initgraph(&driver, &mode, "");

setcolor(GREEN);
rectangle(lOO, 200, 200, 300);

setfillpattern(p, RED);
floodfill(150, 250, GREEN);

getch();
restorecrtmode();
return O;

Related Function

setfillstyle()

void far setflllstyle(lnt pattern, Int color)

Description

The prototype for setfillstyle() is in graphics.h.

Text Screen and Graphics Functions 66 7

The setfillstyle() function sets the style and color of the fill used by
various graphics functions. The value of color must be valid for the
current video mode. The values for pattern are shown here along with
their macro equivalents (defined in graphics.h):

Macro Value Meaning

EMPTY_FILL 0 Fill with background color

SOLID_FILL 1 Fill with solid color

LINE_FILL 2 Fill with lines

LTSLASH_FILL 3 Fill with light slashes

SLASH_FILL 4 Fill with slashes

BKSLASH _FILL 5 Fill with backslashes

LTBKSLASH _FILL 6 Fill with light backslashes

HATCH_FILL 7 Fill with light hatching

XHATCH _FILL 8 Fill with hatching

INTERLEAVE _FILL 9 Fill with interleaving

WIDEDOT _FILL 10 Fill with widely spaced dots

CLOSEDOT _FILL 11 Fill with closely spaced dots

USER_FILL 12 Fill with custom pattern

You define a custom fill pattern using setfillpattern().

Example

This program fills a box using LINE_ FILL in the color red:

#include <graphics.h>
#include <conio.h>

main(void)
{

int driver, mode;

driver = DETECT; /* autodetect */
mode = 0;
initgraph(&driver, &mode, "");

668 Turbo C/C++: The Complete Reference

}

setcolor(GREEN);
rectangle(lOO, 200, 200, 300);

setfillstyle(LINE_FILL, RED);
floodfill(lSO, 250, GREEN);

getch();
restorecrtmode();
return O;

Related Function

setfillpattern()

unsigned far setgraphbufsize(unslgned size)

Description

The prototype for setgraphbufsize() is in graphics.h.
The setgraphbufsize() function is used to set the size of the buffer

used by many of the graphics functions. You generally do not need to
use this function. If you do use it, you must call it before initgraph().

Related Function

_ getgraphrnern()

void far setgraphmode(lnt mode)

Description

The prototype for setgraphrnode() is in graphics.h.

Text Screen and Graphics Functions 669

The setgraphmode() function sets the current graphics mode to
that specified by mode, which must be a valid mode for the graphics
driver.

Example

This fragment sets a CGA adapter to CGAHI mode:

/* after graphics system has been initialized*/
setgraphmode(CGAHI);

Related Function

getmoderange()

void far setllnestyle(lnt style, unsigned pattern,
Int width)

Description

The prototype for setlinestyle() is in graphics.h.
The setlinestyle() function determines the way a line looks when

drawn with any graphics function that draws lines.
The style element holds the style of the line. It will be one of these

enumerated values (defined in graphics.h):

Value

SOLID_LINE

DOTTED_ LINE

CENTER_LINE

DASHED_ LINE

USERBIT _LINE

Meaning

Unbroken line

Dotted line

Centered line (dash-dot-dash)

Dashed line

User-defined line

6 70 Turbo C/C++: The Complete Reference

If style is equal to USERBIT _LINE, the 16-bit pattern in pattern
determines how the line appears. Each bit in the pattern corresponds to
one pixel. If that bit is set, the pixel is turned on; otherwise it is turned
off.

The width element will have one of these values:

Value
NORM_ WIDTH

THICK_ WIDTH

Meaning

1 pixel wide

3 pixels wide

The value of pattern is important only if USE RB IT_ LINE is the
value of style. When it is, each bit in pattern that is set will causes a
pixel to be turned on. Each 0 bit causes a pixel to be turned off. The
pattern then repeats as necessary.

Example

This program displays the Turbo C built-in line styles:

#include <graphics.h>
#include <conio.h>

main(void)
{

}

int driver, mode;
inti;

driver = DETECT; /* autodetect */
mode = 0;
initgraph(&driver, &mode, "");

for(i=O; i<4; i++) {
setlinestyle(i, 0, l);
line(i*SO, 100, i*SO+SO, 100);

}

getch();
restorecrtmode();
return 0;

Related Function

setfillstyle()

Text Screen and Graphics Functions 6 71

void far setpalette(lnt Index, Int color)

Description

The prototype for setpalette() is in graphics.h.
The setpalette() function changes the colors displayed by the video

system. The operation of this function is a little difficult to understand at
first. Essentially, it associates the value of color with an index into a
table that Turbo C uses to map the color actually shown on the screen
with the color being requested. The values for the color codes are shown
here:

CGA codes (background only):

Macro Value

BLACK 0

BLUE 1
GREEN 2
CYAN 3
RED 4
MAGENTA 5
BROWN 6

LIGHTGRAY 7

DARKGRAY 8

LIGHTBLUE 9

LIGHTGREEN 10

LIGHTCYAN 11

LIGHTRED 12
LIGHTMAGENTA 13
YELLOW 14
WHITE 15

672 Turbo CIC++: The Complete Reference

EGA and VGA:

Macro Value

EGA_ BLACK 0
EGA_ BLUE 1
EGA_ GREEN 2
EGA_ CYAN 3
EGA_ RED 4

EGA_ MAGENTA 5
EGA_BROWN 20
EGA_ LIGHTGRAY 7
EGA_DARKGRAY 56
EGA_LIGHTBLUE 57
EGA_ LIGHTGREEN 58
EGA_LIGHTCYAN 59
EGA_ LIGHTRED 60
EGA_LIGHTMAGENTA 61
EGA_ YELLOW 62
EGA_ WHITE 63

Only the background color can be changed for CGA modes. The back­
ground color is always index 0. For CGA modes, this code changes the
background color to green:

setpalette(O, GREEN);

The EGA can display 16 colors at a time with the total number of
different colors being 64. You can use setpalette() to map a color onto
one of the 16 different indexes. If you call setpalette() with invalid
arguments, it returns - lL.

Example

This fragment sets the value of color 5 to cyan:

setpalette(S, EGA_CYAN);

Related Function

setcolor()

Text Screen and Graphics Functions 6 73

void far setrgbpalette(lnt color, Int r, Int g, Int bJ

Description

The prototype for setrgbpalette() is in graphics.h.
The setrgbpalette() function changes the colors displayed by the

video system. It is for use with graphics systems that support RGB
displays, such as the IBM 8514 and VGA, only.

The color parameter must be a valid entry in the current palette.
The other three parameters (r, g, and b) correspond to the desired red,
green, and blue settings of the palette entry. You can mix different
proportions of these colors (that is, you specify a color mix for each
entry in the palette). The values of r, g, and b must be in the range 0
through 31. (Only the upper 6 most significant bits of the lower byte are
used.)

Example

This fragment sets the 15th color to equal amounts of red, green, and
blue:

setrgbpalette(15, 16, 16, 16); /*the upper 6 bits= 4 */

Related Functions

setpalette(), getpalette()

void far settextjustify(int horiz, Int vertJ

Description

The prototype for settextjustify() is in graphics.h.
The settextjustify() function sets the way text is aligned relative to

the CP. The values of horiz and vert determine the effect of settextjus­
tify(), as shown here (the macros are defined in graphics.h):

674 Turbo CIC++: The Complete Reference

Macro Value Meaning

LEFT_TEXT 0 CP at left

CENTER_ TEXT 1 CP in the center

RIGHT_TEXT 2 CP at right

BOTTOM_ TEXT 3 CP at the bottom

TOP_TEXT 4 CP at the top

The default settings are LEFT_ TEXT and TOP_ TEXT.

Example

This fragment places the CP on the right:

settextjustify(RIGHT_TEXT, TOP_TEXT);

Related Functions

settextstyle()

void far settextstyle(lnt font, Int direction, Int size)
Description

The prototype for settextstyle() is in graphics.h.
The settextstyle() function sets the active font used by the graph­

ics text output functions. It also sets the direction and size of the
characters.

The font parameter determines the type of font used. The default is
the hardware-defined 8 x 8 bit-mapped font. You can give font one of
these values (the macros are defined in graphics.h):

Font Value Meaning

DEFAULT_FONT 0 8 x 8 bit-mapped

TRIPLEX_ FONT 1 stroked triplex

SMALL_FONT 2 Small stroked font

SANSSERIF _FONT 3 Stroked sans serif

GOTHIC_FONT 4 Stroked gothic

Text Screen and Graphics Functions 675

The direction in which the text is displayed- either left to right or
bottom to top-is determined by the value of direction, which can be
either HORIZ_DIR (0) or VERT _DIR (1).

The size parameter is a multiplier that increases the character size.
It can have a value of 0 through 10.

Example

The following program illustrates the use of the settextstyle() function:

/* Demonstrate some different text fonts and sizes. */

#include <graphics.h>
#include <conio.h>

main(void)
{

int driver, mode;

driver = DETECT; /* autodetect */
mode = 0;
i ni tgraph (&driver, &mode, "") ;

outtext("Normal ");

/* Gothic font, twice normal size */
settextstyle(GOTHIC_FONT, HORIZ_DIR, 2);
outtext("Gothic ");

/* Triplex font, twice normal size */
settextstyle(TRIPLEX_FONT, HORIZ_DIR, 2);
outtext("Triplex ");

/* Sans serif font, 7 times normal size*/
settextstyle(SANSSERIF_FONT, HORIZ_DIR, 7);
outtext("Sans serif");
get ch();
restorecrtmode();
return O;

Related Function

settextjustify()

setusercharsize(int mulx, Int dlvx, Int muly, Int dlvyJ
Description

The prototype for setusercharsize() is in graphics.h.

676 Turbo CIC++: The Complete Reference

The setusercharsize() function specifies multipliers and divisors
that scale the size of graphics stroked fonts. In essence, after a call to
setusercharsize() , each character displayed on the screen has its de­
fault size multiplied by mulx/divx for its x dimension and muly/divy for
its y dimension.

Example

This code writes text in both normal and large letters:

#include <graphics.h>
#include <conio.h>

main(void)
{

int driver, mode;

driver = DETECT; /* autodetect */
mode = 0;
initgraph(&driver, &mode, "");

outtext("normal ");
settextstyle(TRIPLEX_FONT, HORIZ_DIR, USER_CHAR_SIZE);

/*make very big letters */
setusercharsize(S, 1, 5, 1);
outtext("big");

getch();
restorecrtmode();
return 0;

Related Function

gettextsettings()

void far setviewport(lnt left, Int top, Int right,
Int bottom, Int cllpJ

Description

The prototype for setviewport() is in graphics.h.

Text Screen and Graphics Functions 6 77

The setviewport() function creates a new viewport using the upper
left and lower right corner coordinates specified by left, top, right, and
bottom. If clip is 1, output is automatically clipped at the edge of the
viewport and prevented from spilling into other parts of the screen. If
clip is 0, no clipping takes place.

Example

This fragment creates a viewport with corners at 10,10 and 40,40 with
clipping:

setviewport(lO, 10, 40, 40, 1);

Related Function

clearviewport()

void far setvlsualpage(lnt page)

Description

The prototype for setvisualpage() is in graphics.h.
For some video modes, there is enough memory in video adapters to

have two or more complete screens' worth of information stored at the
same time. The RAM that holds the information displayed on the screen
is called a page. Turbo C uses page 0 by default. However, you can use
any of the video pages supported by your hardware, switching between
them as desired. Although only one screen of data can be displayed at
one time, it is occasionally useful to build an image as a background task
in a page that is not currently displayed so that it is ready when needed
without delay. To activate the image, simply switch to that display page.
This method is particularly useful in cases where complex images take a
long time to construct. To support this sort of approach, Turbo C
supplies the functions setactivepage(), and setvisualpage().

The setactivepage() function determines the video page to which
output of Turbo C's graphics functions is directed. If you call setactive­
page() with another page, subsequent graphics output is written to the

6 78 Turbo CIC++: The Complete Reference

new page, not necessarily the one currently displayed. To display pages
other than 0, use the setvisualpage() function. For example, to display
video page 1 you would call setvisualpage() with an argument of 1.

Example

This fragment selects page 1 to be displayed:

setvisualpage(l);

Related Function

setactivepage()

void far setwritemode(lnt wmodeJ
Description

The prototype for setwritemode() is in graphics.h.
The setwritemode() function determines how line(), linerel(),

lineto(), rectangle(), and drawpoly() display their output on the
screen. The value of wmode must be one of these two macros (defined in
graphics.h): COPY _PUT and XOR_PUT. Calling setwritemode()
using COPY _PUT causes subsequent output to overwrite any image
on the screen. However, if you call setwritemode() using XOR_PUT,
subsequent output is XORed with any preexisting image. The advantage
of using the XOR_ PUT mode is that you can restore the original
screen by outputting the same object a second time.

Example

This program illustrates the setwritemode() function:

#include <graphics.h>
#include <conio.h>

main(void)
{

int driver, mode;

driver = DETECT; /* autodetect */
mode = 0;
initgraph(&driver, &mode, "");

Text Screen and Graphics Functions 6 79

setwritemode(COPY_PUT); /*set for overwrite*/
setcolor(BLUE);
rectangle(lO, 10, 100, 100);
getch();

setwritemode(XOR_PUT); /*set for combining*/

setcolor(RED);
rectangle(30, 30, 80, 80); /*draw inside first rectangle*/
getch();

}

rectangle(30, 30, 80, 80); /* now erase it */
getch();

restorecrtmode();
return O;

Related Function

setlinestyle()

void textattr(lnt attrJ

Description

The prototype for textattr() is in conio.h.
The textattr() function sets both the foreground and background

colors in a text screen at one time. The value of attr represents an
encoded form of the color information, as shown here.

7 6 5 4 3

I I
~

blinking

background
color

2 1

text
color

0

680 Turbo CIC++: The Complete Reference

If bit 7 is set, the text blinks. Bits 6 through 4 determine the back­
ground color. Bits 3 through 0 set the color for the text. The easiest way
to encode the background color into the attribute byte is to multiply the
number of the color you desire by 16 and then OR that with the text
color. For example, to create a green background with blue text you
would use GREEN * 16 I BLUE. To cause the text to blink, OR the
text color, background color, and BLINK (128) together.

Example

This fragment displays the text in blinking red with a blue background:

textattr(RED I BLINK I BLUE*l6);

Related Functions

textbackground(),textcolor()

void textbackground(lnt color)

Description

The prototype for textbackground() is in conio.h.
The textbackground() function sets the background color of a text

screen. A call to textbackground() affects only the background color of
subsequent write operations. The valid colors are shown here along with
their macro names (defined in conio,h):

Macro Integer Equivalent

BLACK 0

BLUE 1

GREEN 2

CYAN 3

RED 4

MAGENTA 5
BROWN 6

LIGHTGRAY 7

Text Screen and Graphics Functions 681

The new background color takes effect after the call to textback­
ground(). The background of characters currently on the screen is not
affected.

Example

This fragment sets the background color of a text screen to cyan.

textbackground(CYAN);

Related Function

textcolor()

void textcolor(lnt color)

Description

The prototype of textcolor() is in conio.h.
The textcolor() function sets the color in which characters are

displayed in a text screen. It can also be used to specify blinking
characters. The valid values for color are shown here, along with their
macro names (defined in conio.h:

Macro Integer Equivalent

BLACK 0

BLUE 1

GREEN 2

CYAN 3

RED 4

MAGENTA 5

BROWN 6

LIGHTGRAY 7

682 Turbo CIC++: The Complete Reference

DARKGRAY 8
LIGHTBLUE 9

LIGHTGREEN 10

LIGHTCYAN 11

LIGHTRED 12
LIGHTMAGENTA 13

YELLOW 14
WHITE 15
BLINK 128

The color of characters on the screen is not changed by textcolor(); it
affects only those written after textcolor() has executed.

Example

This fragment displays subsequent output in blinking characters:

textcolor(BLINK);

Related Function

textattr()

int far tex.1heightichar far •strj

Description

The prototype for textheight() is in graphics.h.
The textheight() function returns the height, in pixels, of the

string pointed to by str relative to the current font and size.

Example

This program displays the number 8 for the text height:

#include <stdio.h>
#include <graphics.h>
#include <conio.h>

Text Screen and Graphics Functions 683

main(void)
{

}

int driver, mode;

driver = DETECT; /* autodetect */
mode = 0;
i ni tgraph (&driver, &mode, '"') ;

printf("height: %d", textheight("hello"));

getch();
restorecrtmode();
return O;

Related Function

textwidth()

void textmode(lnt mode)

Description

The prototype for textmode() is in conio.h.
The textmode() function is used to change the video mode of a text

screen. The argument mode must be one of the values shown in the
following table. You can use either the integer value or the macro name
(the macros are defined in conio.h):

Integer
Macro Name Equivalent Description

BW40 0 40 column black and white

C40 1 40 column color

BW80 2 80 column black and white

C80 3 80 column color

MONO 7 80 column monochrome

LASTMODE -1 Previous mode

684 Turbo CIC++: The Complete Reference

After a call to textmode() the screen is reset and all text screen
attributes are returned to their default settings.

Example

This fragment puts the video hardware into 80 column color mode:

textmode(CSO);

Related Function

gettextinfo()

Int far textwldth(char far *StrJ

Description

The prototype for textwidth() is in graphics.h.
The textwidth() function returns the width, in pixels, of the string

pointed to by str relative to the current font and size.

Example

This program displays 40 as the pixel length of the string "hello":

#include <stdio.h>
#include <graphics.h>
#include <conio.h>

main(void)
{

}

int driver, mode;

driver = DETECT; /* autodetect */
mode = O;
initgraph(&driver, &mode, "");

printf("width: %d", textwidth("hello"));

getch();
restorecrtmode();
return O;

Related Function

textheight()

Int wherex(vold)
Int wherey(vold)

Description

Text Screen and Graphics Functions 685

The prototypes for wherex() and wherey() are in conio.h.
The wherex() and wherey() functions return the current x and y

cursor coordinates relative to the current text window.

Example

This fragment loads the variables xpos and ypos with the current x,y
coordinates:

int xpos, ypos;

xpos = wherex();
ypos = wherey();

Related Function

gotoxy()

void wlndowfint left, Int top, Int right, Int bottom)

Description

The prototype for window() is in conio.h.
The window() function is used to create a rectangular text window

with upper left and lower right coordinates specified by left,top and
right,bottom. If any coordinate is invalid, window() takes no action.

686 Turbo C/C++: The Complete Reference

Once a call to window() has been successfully completed, all references
to location coordinates are interpreted relative to the window, not the
screen.

Example

This fragment creates a window and writes a line of text at location 2,3
inside that window:

window(lO, 10, 60, 15);
gotoxy(2, 3);
cprintf("at location 2, 3");

Related Function

clrscr()

Miscellaneous Functions

The functions discussed in this chapter are all the functions that don't
fit easily in any other category. They include various conversion,
variable-length argument processing, sorting, and other functions.

Many of the functions covered here require the use of the header
stdlib.h. This header defines two types: div_ t and ldiv _ t which are the
types of the values returned by div() and ldiv(), respectively. These
macros are also defined:

Macro

ERAN GE

HUGE_ VAL

RAND_MAX

Meaning

The value assigned to errno if a
range error occurs

The largest value representable
by the floating-point routines

The maximum value that can be
returned by the rand() function

Different header files will be discussed in the descriptions of the func­
tions that require them.

Int abs(lnt num)

Description

The prototype for abs() is in both stdlib.h and math.h. For maximum
portability, use stdlib.h.

The abs() function returns the absolute value of the integer num.

T
w
E
N
T
y
-
F

.. 0
·>.•···lJ·· o' /"',:,i ii~<«i:

R

687

688 Turbo CIC++: The Complete Reference

Example

This function converts the user-entered numbers into their absolute
values:

#include <stdio.h>
#include <stdlib.h>

int get_ abs()
{

char num[BO);

gets(num};

return abs(atoi(num}};

Related Function

labs()

void assert(lnt exp)

Description

The prototype for assert() is in assert.h.
The assert() macro writes error information to stderr and aborts

program execution if the eApression exp evaluates to 0. Otherwise,
assert() does nothing. The output of the function is in this general
form:

Assertion failed: file <file> , line < linen um>

The assert() macro is generally used to help verify that a program
is operating correctly; the expression is devised so that it evaluates true
only when no errors have taken place.

It is not necessary to remove the assert() statements from the
source code once a program is debugged because if the macro NDE­
BUG is defined (as anything), the assert() macros are ignored.

Miscellaneous Functions 689

Example

This code fragment is used to test whether the data read from a serial
port is ASCII (that is, that it does not use the 7th bit):

ch= read_port();
assert(!{ch & 128)); /*check bit 7 */

Related Function

abort()

double atof(const char *Str}

Description

The prototype for atof() is in stdlib.h and math.h. For compatibility
with the ANSI C standard, use stdlib.h.

The atof() function converts the string pointed to by str into a
double value. The string must contain a valid floating-point number. If
this is not the case, 0 is returned and errno is set to ERANGE.

The number can be terminated by any character that cannot be part
of a valid floating-point number. This includes white space, punctuation
(other than periods), and characters other than "E" or "e". This means
that if atof() is called with "100.00HELLO", the value 100.00 is re­
turned.

Example

This program reads two floating-point numbers and displays their sum:

#include <stdio.h>
#include <stdlib.h>

main(void)
{

690 Turbo CIC++: The Complete Reference

}

char numl[SO], num2[80];

printf("enter first: ");
gets(numl);
printf("enter second: "):
gets(num2);
printf("the sum is: %f",atof(numl)+atof(num2));
return O;

Related Functions

atoi(), atol()

Int atoi(const char *StrJ

Description

The prototype for atoi() is in stdlib.h.
The atoi() function converts the string pointed to by str into an int

value. The string must contain a valid integer number. If this is not the
case, 0 is returned.

The number can be terminated by any character that cannot be part
of an integer number. This includes white space, punctuation, and char­
acters other than "E" or "e". This means that if atoi() is called with
123.23, the integer value 123 is returned and the 0.23 ignored.

Example

This program reads two integer numbers and displays their sum:

#include <stdio.h>
#include <stdlib.h>

main(void)
{

char numl[BO], num2[80];

printf("enter first: "):
gets(numl);
printf("enter second: "):
gets(num2);
printf("the sum is: %d",atoi(numl)+atoi(num2));

return O;
}

Related Functions

atof(), atol()

Int atol(const char •str)
Description

Miscellaneous Functions 691

The prototype for atol() is in stdlib.h.
The atol() function converts the string pointed to by str into a long

int value. The string must contain a valid long integer number. If this is
not the case, 0 is returned.

The number can be terminated by any character that cannot be part
of an integer number. This includes white space, punctuation, and char­
acters other than "E" or "e". This means that if atol() is called with
123.23, the integer value 123 is returned and the 0.23 ignored.

Example

This program reads two long integer numbers and displays their sum:

#include <stdio.h>
#include <stdlib.h>

main(void)
{

}

char numl[SO], num2[80];

printf("enter first: ");
gets(numl);
printf("enter second: ");
gets(num2);
printf("the sum is: %ld",atol (numl)+atol (num2));
return 0;

Related Functions

atof(), atoi()

692 Turbo CIC++: The Complete Reference

void *bsearch(const void *key, const void *base,
size_ t num, size_ t size,
Int (*compare)(const void *, const void *JI

Description

The prototype for bsearch() is in stdlib.h.
The bsearch() function performs a binary search on the sorted

array pointed to by base and returns a pointer to the first member that
matches the key pointed to by key. The number of elements in the array
is specified by num, and the size (in bytes) of each element is descnbed
by size.

The type size_ t is defined as an unsigned int in stdlib.h.
The function pointed to by compare compares an element of the

array with the key. The form of the compare function must be

}Unc_name(const void *arg1, const void *arg2)

It must return the following values:

• If arg1 is less than arg2, return less than 0

• If arg1 is equal to arg2, return 0

• If argl is greater than arg2, return greater than 0

The array must be sorted in ascending order with the lowest ad­
dress containing the lowest element.

If the array does not contain the key, a null pointer is returned.

Example

This program reads characters entered at the keyboard (assuming buff­
ered keyboard I/0) and determines whether they belong to the alpha­
bet:

#include <stdio.h>
#include <stdlib.h>
#include <ctype.h>

char *alpha="abcdefghijklmnopqrstuvwxyz";
int comp(const char*• const char*);

main(void)
{

}

char ch;
char *Pi

do {
pr1ntf("enter a character: ");
scanf("%c%*c", &ch);
ch= tolower(ch);
p = bsearch(&ch,alpha, 26, 1, comp);
if(p) printf("is in alphabet\n");
else printf("is not in alphabet\n");

} whil e(p);
return O;

/* compare two characters */
int comp(const char *ch, const char *s)
{

return *ch-*s;
}

Related Function

qsort()

unsigned Int _ crear87(vold)

Description

Miscellaneous Functions 693

The prototype for _ clear87() is in float.h. This function is not defined
by the ANSI C standard.

The _ clear87() function resets the 80 x 87 hardware floating-point
coprocessor' s status word. The function returns the previous status
word.

You must have an 80 x 87 math coprocessor installed in your system
in order to use any of the 80 x 87-based functions.

Related Function

_ status87()

694 Turbo CIC++: The Complete Reference

unsigned Int _ control87f unsigned fpword,
unsigned fpmask)

Description

The prototype for _ control87() is in float.h. This function is not
defined by the ANSI C standard.

The _ control87() function returns or modifies the value of the
80 x 87 control word that controls the behavior of the chip. You must
have an 80 x 87 math coprocessor installed in the computer before using
this function.

The parameter fpmask determines which bits of the control word
will be modified. Each bit infpmask corresponds with each bit infpword
and the bits in the floating-point control word. If the bit in fpmask is
non-0, the control word at the corresponding bit position is set to the
value of the corresponding position in fpword.

The _ control87() function returns the modified control word.
However, if fpmask contains 0, the control word is unchanged, and the
current value of the control word is returned.

For a complete description of what each bit controls, consult the
header file float.h.

Related Functions

_ clear87(), _ fpreset()

div_ t dlv(lnt numer, Int denom)

Description

The prototype for div() is in stdlib.h.
The div() function returns the quotient and the remainder of the

operation numer/denom.
The structure type div_ t is defined in stdlib.h and has these two

fields.

int quot; /* the quotient */
int rem; /* the remainder */

Example

Miscellaneous Functions 695

This program displays the quotient and the remainder of 10/3:

#include <stdio.h>
#include <stdlib.h>

main(void)
{

div_t n;

n=div(l0,3);

printf("quotient and remainder: %d %d\n", n.quot, n.rem);

return 0;
}

Related Function

ldiv()

char *ecvt(double value, Int ndlglt, Int *dee, Int *Sign)

Description

The prototype for ecvt() is in stdlib.h. This function is not defined by
the ANSI C standard.

The ecvt() function converts value into a string ndigit long. After
the call, the value of the variable pointed to by dee indicates the position
of the decimal point. If the decimal point is to the left of the number, the
number pointed to by dee is negative. The decimal point is not actually
stored in the string. If value is positive, sign is 0. If the number is
negative, sign is non-0.

The ecvt() function returns a pointer to a static data area that
holds the string representation of the number.

Example

This call converts the number 10.12 into a string:

int decpnt, sign;
char •out;

out = ecvt(l0.12, 5, &decpnt, &sign);

696 Turbo CIC++: The Complete Reference

Related Functions

fcvt() ' gcvt()

void __ emit __ farg, •.• J
Description

The prototype for __ emit __ () is in dos.h. This function is not
defined by the ANSI C standard.

The __ emit __ () function is used to insert one or more values
directly into the executable code of your program at the point at which
__ emit __ () is called. These values generally will be 8086 (family)
machine instructions. If a value fits into a byte, it is treated as a byte
quantity. Otherwise, it is treated as a word quantity. You can only pass
__ emit __ () byte or word values.

You must be an expert 8086 assembly language programmer to use
__ emit __ (). If you insert incorrect values, your program will crash.

char *fcvtf double value, Int ndlglt, Int *dee, Int *Sign)

Description

The prototype for fcvt() is in stdlib.h. This function is not defined by
the ANSI C standard.

The fcvt() function is the same as ecvt() except that the output is
rounded to the number of digits specified by ndigit.

The fcvt() function returns a pointer to a static data area that
holds the string representation of the number.

Example

This call converts the number 10.12 into a string:

int decpnt, sign;
char *out;

out= fcvt(l0.12, 5, &decpnt, &sign);

Related Functions

ecvt() , gcvt()

void _ fpreset(vold)

Description

Miscellaneous Functions 697

The prototype for _ fpreset() is in float.h. This function is not defined
by the ANSI C standard.

The _ fpreset() function resets the the floating-point arithmetic
system. You may need to reset the floating-point routines after a
system(), exec(), spawn(), or signal() function executes. Refer to the
Turbo C user manuals for details.

Example

This fragment ensures that the floating-point arithmetic routines are
reset after system() returns:

/* compute and print payroll checks */
system("payroll ");

_fpreset();

Related Function

_status87()

char *Qcvt(double value, Int ndlglt, char *buf)

Description

The prototype for gcvt() is in stdlib.h. This function is not defined by
the ANSI C standard.

698 Turbo CIC++: The Complete Reference

The gcvt() function converts value into a string ndigit long. The
converted string output is stored in the array pointed to by buf in
FORTRAN F-format if possible, E-format otherwise. A pointer to bufis
returned.

Example

This call converts the number 10.12 into a string:

char buf[SO];

gcvt(l0.12, 5, buf);

Related Functions

fcvt(), ecvt()

char *getenvf const char *name)

Description

The prototype for getenv() is in stdlib.h.
The getenv() function returns a pointer to environmental informa­

tion associated with the string pointed to by name in the DOS environ­
mental information table. The string returned must never be changed by
the program.

The environment of a program can include such things as path
names and devices on-line. The exact meaning of this data is defined by
DOS.

If a call is made to getenv() with an argument that does not match
any of the environmental data, a null pointer is returned.

Example

Assuming that a specific compiler maintains environmental information
on the devices connected to the system, the following fragment returns
a pointer to the list of devices.

p = getenv("DEVICES");

Related Functions

putenv(), system()

char *getpass(const char *StrJ

Description

Miscellaneous Functions 699

The prototype for getpass() is in conio.h. This function is not defined
by the ANSI C standard.

After displaying the prompt str on the screen, the getpass() func­
tion returns a pointer to a null-terminated string of not more than eight
characters. This string is statically allocated by getpass() and is over­
written each time the function is called. If you want to save the string,
you must copy it elsewhere. Keystrokes are not echoed when the pass­
word is entered.

Example

This function waits until the proper password is entered:

#include <conio.h>
#include <string.h>

void pswd (char *pw)

{

}

char *input;

do {
input=getpass("Enter your password:");

}while (!strcmp("starbar", input));

print("You're in!");

700 Turbo CIC++: The Complete Reference

unsigned getpld(voldJ

Description

The prototype for getpid() is in process.h. This function is not defined
by the ANSI C standard.

The getpid() function returns the process ID number associated
with a program. This value is also the segment address of the PSP
(program segment prefix) for the program.

Example

This fragment displays the process ID number:

pri ntf ("This process ID of this program is %d\n", getpi d ());

Related Function

getpsp()

char *ltoa(lnt num, char *Str, Int radix)

Description

The prototype for itoa() is in stdlib.h. This function is not defined by
the ANSI C standard.

The itoa() function converts the integer num into its string equiv­
alent and places the result in the string pointed to by str. The base of
the output string is determined by radix, which can be in the range 2
through 36.

The itoa() function returns a pointer to str. There is no error
return value. Be sure to call itoa() with a string of sufficient length to
hold the converted result. The maximum length needed is 17 bytes.

Example

This program displf!.YS the value of 1423 in hexadecimal (58F):

#include <stdio.h>
#include <stdlib.h>

main(void)
{

char p[17];

itoa(1423, p, 16);

printf(p);

return 0;
}

Related Functions

atoi(), sscanf()

long labs(long numJ

Description

Miscellaneous Functions 701

The prototype for labs() is in stdlib.h and math.h. For the ANSI C
standard compatibility, use stdlib.h.

The labs() function returns the absolute value of the long int num.

Example

This function converts the user-entered numbers into their absolute
values:

#include <stdio.h>
#include <stdlib.h>
long int get_labs()
{

char num[SO] ;

gets(num);

return labs(atol(num));
}

Related Function

abs()

702 Turbo CIC++: The Complete Reference

ldlv _ t ldlv(long numer, long denom)
Description

The prototype for ldiv() is in stdlib.h.
The ldiv() function returns the quotient and the remainder of the

operation numer/denom.
The structure type ldiv _ t is defined in stdlib.h and has these two

fields:

long quot; /* the quotient */
long rem; /* the remainder */

Example

This program displays the quotient and the remainder of 100000L/8L:

#include <stdio.h>
#include <stdlib.h>

main(void)
{

ldiv_t n;

n = ldiv(lOOOOOL,3L);

printf("quotient and remainder: %ld %ld\n", n.quot, n.rem);

return 0;
}

Related Function

div()

void •lflnd(const void •key, const void •base, size_ t •num,
size_ t size,
Int (•compare)(const void *, const void *JI

void •lsearch(const void •key, const void •base, size_ t •num,
size_ t size,
Int (•compare)(const void *, const void *JI

Description

The prototypes for lfind() and lsearch() are in stdlib.h. These func­
tions are not defined by the ANSI C standard.

Miscellaneous Functions 703

The lfind() and lsearch() functions perform a linear search on the
array pointed to by base and return a pointer to the first element that
matches the key pointed to by key. The number of elements in the array
is pointed to by num, and the size (in bytes) of each element is described
by size.

The type size_ t is defined as an unsigned int in stdlib.h.
The function pointed to by compare compares an element of the

array with the key. The form of the compare function must be

func_name(const void *arg1, const void *arg2)

It must return the following values:

• If arg1 does not equal arg2, return non-0

• If arg1 is equal to arg2, return 0

The array being searched does not have to be sorted.
If the array does not contain the key, a null pointer is returned.
The difference between lfind() and lsearch() is that if the item

being searched for does not exist in the array, lsearch() adds it to the
end of the array; lfind() does not.

Example

This program reads characters entered at the keyboard (assuming buff­
ered keyboard 1/0) and determines whether they belong to the alpha­
bet:

#include <stdlib.h>
#include <ctype.h>
#include <stdio.h>

char *alpha="abcdefghijklmnopqrstuvwxyz":

int comp(const char*• const char*):

main(void)
{

char ch;
char *P:
size_t num=26;

do {
printf("enter a character: "):
scanf("%c%*c", &ch):

704 Turbo CIC++: The Complete Reference

}

ch= tolower(ch};
p = lfind(&ch, alpha, &num, 1, comp};
if(p} printf("is in alphabet\n");
else printf("is not in alphabet\n");

} while(p);
return 0;

/* compare two characters */
int comp(const char *ch, const char *s)
{

return *ch-*s;
}

Related Function

qsort()

void longJmpUmp _ buf envbuf, int val)

Description

The prototype for longjmp() is in setjmp.h.
The longjmp() instruction causes program execution to resume at

the point of the last call to setjmp(). These two functions are Turbo C's
way of providing for a jump between functions.

The longjmp() function operates by resetting the stack to the state
defined in envbuf, which must have been set by a prior call to setjmp().
This causes program execution to resume at the statement following the
setjmp() invocation. That is, the computer is "tricked" into thinking that
it never left the function that called setjmp(). (As a somewhat graphic
explanation, the longjmp() function "warps" across time and space
(memory) to a previous point in your program without having to per­
form the normal function-return process.)

The buffer envbuf is of type jmp _ buf, which is defined in the
header setjmp.h. The buffer must have been set through a call to
setjmp() prior to calling longjmp().

The value of val becomes the return value of setjump() and can be
interrogated to determine where the long jump came from. The only
value not allowed is 0.

Miscellaneous Functions 705

It is important to understand that the longjmp() function must be
called before the function that called setjmp() returns. If not, the result
is technically undefined. (Actually, a crash will almost certainly occur.)

By far, the most common use of longjmp() is to return from a
deeply nested set of routines when a catastrophic error occurs.

Example

This program prints "l 2 3":

#include <stdio.h>
#include <setjmp.h>

jmp_buf ebuf;
void f2(void);

main(void)
{

}

char first=l;
inti;

printf("l ");
i = setjmp(ebuf);
if(first) {

}

first =! first;
f2();
printf("this will not be printed");

printf("%d", i);
return 0;

void f2(void)
{

printf("2 ");
longjmp(ebuf, 3);

}

Related Function

setjmp()

char *ftoa(long num, char *Str, Int radix)
char *ultoa(unslgned long num, char *Str, Int radix)

Description

The prototype for ltoa() and ultoa() are in stdlib.h. These functions
are not defined by the ANSI C standard.

706 Turbo CIC++: The Complete Reference

The ltoa() function converts the long integer num into its string
equivalent and places the result in the string pointed to by str. The base
of the output string is determined by radix, which must be in the range
2 through 36. The ultoa() function performs the same conversion, but
on an unsigned long integer.

The ltoa() and ultoa() functions return a pointer to str. There is
no error return value. Be sure str is of sufficient length to hold the
converted result. The longest string you need is 33 bytes.

Example

This program displays the value of 1423 in hexadecimal (58F):

#include <stdio.h>
#include <stdlib.h>

main(void)
{

}

char p[33];

ltoa(l423, p, 16);

printf{p);

return O;

Reiated Functions

itoa(), sscanf()

unsigned long _ lrotl(unslgned long I, Int I)
unsigned long _ lrotr(unslgned long I, Int I)

Description

The prototypes for _ lrotl() and _ lrotr() are in stdlib.h. These func­
tions are not defined by the ANSI C standard.

Miscellaneous Functions 707

The _ lrotl() and _ lrotr() functions rotate the bits of the long
value ~ i number of bits to the left or right, respectively and returns the
result. When a rotate is performed, bits rotated off one end are inserted
onto the other end. For example, given the value

1111 0000 0000 11111111 0000 1010 0101

rotating it left by one bit, produces the value

1110 0000 0001 1111 1110 0001 0100 1011

Example

The following program shows the effect of left and right rotation.

#include <stdio.h>
#include <stdlib.h>

main(void}
{

}

unsigned long l = 1;

printf("l rotated left 2 bits= %ld\n", _lrotl(l,2}};
printf("l rotated right 2 bits = %ld\n", _lrotr(l ,2}};

return O;

Related Functions

_rotl(), _rotr()

max(x,y)
mfn(x,y)

Description

The max() and min() macros are defined in stdlib.h. These functions
are not defined by the ANSI C standard.

708 Turbo CIC++: The Complete Reference

The max() macro returns the larger of the two values and the
min() returns the smaller of the two values. The max() and min()
macros return the same type as passed to them; both arguments passed
must be of the same type.

Example

This program illustrates the min() and max() macros:

#include <stdlib.h>
#include <stdio.h>

main (void)
{

printf("max of 10, 20 is %d\n", max (10, 20));
printf("min of 10, 20 is %d\n", min (10, 20));

return 0;
}

void nosound(voldJ

Description

The prototype for nosound() is in dos.h. This function is not defined by

The nosound() function turns off the PC's speaker. This function
normally follows a call to the sound() function.

Example

This program makes the speaker beep and then stop:

#include <dos.h>

main(void)
{

sound(lOOO);
sleep(2);
nosound();

return O;
} .

Related Function

sound()

Int putenv(const char *evar}

Description

Miscellaneous Functions 709

The prototype for putenv() is in stdlib.h. This function is not defined by
the ANSI C standard.

The putenv() function puts an environmental variable into DOS. It
returns 0 if successful; -1 if unsuccessful. Refer to getenv() and to a
DOS manual for information about DOS environmental variables.

Related Function

getenv()

void qsort(vold *base, size_ t num, size_ t size,
Int f*compare}(const void *, const void * }}

Description

The prototype for qsort() is in stdlib.h.
The qsort() function sorts the array pointed to by base using a

quicksort, a general-purpose sorting algorithm (developed by C.AR.
Hoare). Upon termination, the array is sorted. The number of elements
in the array is specified by num, and the size (in bytes) of each element
is described by size.

71 O Turbo CIC++: The Complete Reference

The function pointed to by compare compares an element of the
array with the key. The form of the compare function must be

intjUnc_name(const void *arg1, const void *arg2)

It must return the following values:

• If arg1 is less than arg2, return less than 0

• If arg1 is equal to arg2, return 0

• If arg1 is greater than arg2, return greater than 0

The array is sorted into ascending order with the lowest address
containing the lowest element.

Example

This program sorts a list of integers and displays the result:

#include <stdio.h>
#include <stdlib.h>

int num[lO]= {
1,3,6,5,8,7,9,6,2,0

};

int comp(const int*• const int*);

main (vni rl) { . - - - --,

inti;

printf("original array: ");
for(i=O; i<lO; i++) printf("%d ",num[i]);

qsort(num, 10, sizeof(int),
(int(*)(const void*, const void*)) comp);

printf("sorted array: ");
for(i=O; i<lO; i++) printf("%d ", num[i]);

return O;

/* compare the integers */
int comp(const int *i, const int *j)
{

return *i-*j;
}

Related Function

bsearch()

Int ralse(lnt signal)

Description

Miscellaneous Functions 711

The prototype for raise() is in signal.h.
The raise() function sends the signal specified by signal to the

currently executing program.
The following signals are defined in signal.h:

Macro Meaning

SI GAB RT Termination error

SIGFPE Floating-point error

SI GILL Bad instruction

SIG INT Control break

SIGSEGV Illegal memory access

SI GTE RM Terminate program

On success, raise() returns 0.
You will often use this function in conjunction with the signal()

function.

Example

This program raises the SIGTERM signal, which causes myhandler()
to be executed:

#include <signal.h>
#include <stdio.h>
#include <stdlib.h>

void myhandler(void);

71 2 Turbo CIC++: The Complete Reference

main(void)
{

}

signal(SIGTERM, myhandler);
raise(SIGTERM);
print("This line will not be executed.\n");
return O;

void myhandler(void)
{

}

printf("Program terminated.\n");
exit (1);

Related Function

signal()

Int randfvoidJ

Desert ptlon

The prototype for rand() is in stdlib.h.
The rand() function generates a sequence of pseudorandom num­

bers. Each time it is called it returns an integer between 0 and
RAND_MAX.

Example

This program displays ten pseudorandom numbers:

#include <stdio.h>
#include <stdlib.h>

main(void)
{

}

int i;

for(i=O; i<lO; i++)
printf("%d ", rand());

return 0;

Related Function

srand()

Int random(lnt numJ
void randomlze(voldJ

Description

Miscellaneous Functions 713

The prototypes for random() and randomize() are in stdlib.h. These
functions are not defined by the ANSI C standard.

The random() macro returns a random number in the range 0
through num-1.

The randomize() macro initializes the random number generator
to some random value. It uses the time() function, so you should
include time.h in any program that uses randomize().

Example

This program prints ten random numbers between 0 and 24:

#include <time.h>
#include <stdio.h>
#include <stdlib.h>

main(void)
{

int i;

randomize() ;

for(i=O; i<lO; i++) printf("%d ", random(25));

return 0;
}

Related Functions

rand(), srand()

unsigned _ rotl(unslgned val, Int numJ
unsigned _ rotr(unslgned val, Int numJ

Description

The prototypes for _rotl() and _rotr() are in stdlib.h. These func­
tions are not defined by the ANSI C standard.

714 Turbo C/C++: The Complete Reference

The _rotl() and _rotr() functions rotate the bits of the value va~
num number of bits to the left or right, respectively and return the
result. When a rotate is performed, bits rotated off one end are inserted
onto the other end. For example, given the value

1111 0000 0000 1111

rotating it left by one bit produces the value

1110 0000 00011111

Example

The following program prints the value of 64 after it is rotated left and
it is rotated right:

#include <stdio.h>
#include <stdlib.h>

main(void)
{

}

unsigned val = 64;

printf("rotated left 2 bits = %d\n", _rotl (val ,2));
printf("rotated right 2 bits= %d\n", _rotr(val,2));

return O;

Related Functions

_lrotl(), _lrotr()

void _ setcursortype(lnt type)

Description

The prototype for _ setcursortype() is in conio.h. This function is not
defined by the ANSI C standard. It is specific to Turbo C++.

Miscellaneous Functions 71 5

The _ setcursortype() function changes how the cursor is dis­
played. It can be called with one of three macros (defined in conio.h).
Calling _setcursortype() with _NOCURSOR turns off the cursor.
Using _SOLIDCURSOR makes a block cursor, and with
_ NORMALCURSOR creates an underscore cursor.

Example

This fragment changes the cursor type to a block:

_setcursortype(_SOLIDCURSOR);

Related Function

setcolor()

Int setjmpUmp _ buf envbuf)

Description

The prototype for setjmp() is in setjmp.h.
The setjmp() function saves the contents of the system stack in the

buffer envbuf for later use by longjmp().
The setjmp() function returns 0 upon invocation. However, when it

executes, a longjmp() passes an argument (always non-0) to setjmp(),
which appears to be setjmp()'s value.

See longjmp() for additional information.

Example

This program prints "l 2 3":

#include <stdio.h>
#include <setjmp.h>

jmp_buf ebuf;
void f2(void);

main(void)

716 Turbo CIC++: The Complete Reference

{

}

char first=l:
inti;

printf("l ");
i = setjmp(ebuf):
if(first) {

}

first =! first:
f2():
printf("thi s wi 11 not be printed"):

pri ntf("%d", i):
return O:

void f2(void)
{

}

printf("2 "):
longjmp(ebuf, 3);

Related Function

longjmp()

void (*signal (Int signal, void (•slgfunc) (Int func)))(Int)

Description

The prototype for signal() is in signa!.h.
The signal() function tells Turbo C to execute the function pointed

to by sigfunc if signal is received.
The value for June must be one of the following macros, defined in

signal.h, or the address of a function you created:

Pointer

SIG_DFL

SIG_IGN

Meaning

Use default signal handling

Ignore the signal

If you create your own function, it is executed each time the specified
signal is received.

The following signals are defined in signal.h. These are the values
that can be given to signal.

Miscellaneous Functions 71 7

Macro Meaning

SI GAB RT Termination error

SIGFPE Floating-point error

SI GILL Bad instruction

SIG INT Control break

SIGSEGV Illegal memory access

SIG TERM Terminate program

If signal() is activated by a SIGFPE, SI GILL, or SIGSEGV, June
is called with a second integer parameter that is a pointer to the
interrupt handler's stack. The states of the registers prior to the inter­
rupt are stored on the stack in this order:

BP Top of stack
DI
SI
DS
ES
DX
ex
BX
AX
IP
cs
Flags

To access a register, cast the integer into an integer pointer and use
appropriate pointer arithmetic to access the desired register.

On success, signal() returns the address of the previously defined
function for the specified signal. On error, SIG _ERR is returned, and
errno is set to EINV AL.

Example

This line causes the function myint() to be called if CTRL-C is pressed:

signal(SIGINT, myint);

Related Function

raise()

718 Turbo CIC++: The Complete Reference

void sound(unsfgned freq)

Description

The prototype for sound() is in dos.h. This function is not defined by
the ANSI C standard.

The sound() function causes a tone of freq frequency to be sounded
on the computer's speaker. The frequency is specified in hertz. The tone
continues to be produced until a call to nosound() is made.

Example

This program beeps at 440Hz for one second:

#include <dos.h>

main(void)
{

}

sound(440);
sleep(l);
nosound();

return 0;

Related Function

nosound()

void srand(unslgned seed)

Dsscilptlon

The prototype for srand() is in stdlib.h.
The srand() function is used to set a starting point for the se­

quence generated by rand(). (The rand() function returns pseudoran­
dom numbers.)

The srand() function allows multiple program runs using different
sequences of pseudorandom numbers.

Example

This program uses the system time to initialize the rand() function
randomly by using srand().

#include <stdio.h>
#include <stdlib.h>

#include <time.h>

/* Seed rand with the system time
and display the first 100 numbers.

*/
main(void)
{

}

int i,stime;
1 ong ltime;

/* get the current calendar time */

ltime = time(NULL);
stime = (unsigned int) ltime/2;
srand(stime);
for(i=O; i<lO; i++) printf("%d ", rand());
return O;

Related Function

rand()

unsigned Int _status87fvold)

Description

Miscellaneous Functions 719

The prototype for _ status87() is in float.h. This function is not defined
by the ANSI C standard.

The _status87() function returns the value of the floating-point
status word. You must have an 80 x 87 math coprocessor installed in the
computer before using this function.

Related Functions

_clear87(), _fpreset()

double strtodf const char *Start, char **end)

Description

The strtod() function converts the string representation of a number
stored in the string pointed to by start into a double and returns the
result.

720 Turbo CIC++: The Complete Reference

The strtod() function works as follows: First, any leading white
space in the string pointed to by start is stripped. Next, each character
that makes up the number is read. Any character that cannot be part of
a floating-point number stops the process. This includes white space,
punctuation other than periods, and characters other than "E" or "e".
Finally, end is set to point to the remainder, if any, of the original
string. This means that if strtod() is called with 100.00 Pliers, the value
100.00 is returned and end points to the space that precedes "Pliers".

If a conversion error occurs, strtod() returns either HUGE_ VAL
for overflow, or -HUGE_ VAL for underflow. If no conversion could
take place, 0 is returned.

Example

This program reads floating-point numbers from a character array:

#include <stdio.h>
#include <stdlib.h>
#include <ctype.h>

main(void)
{

}

char *end, *start="l00.00 pliers 200.00 hammers";

end = start;
whil e(*start) {

}

printf("%f, ",strtod(start, &end));
printf("remainder: %s\n", end);
start = end;
/*move past the non-digits */
while(Iisdigit(*start) && *start} start++;

return 0;

The output is

100.00000, remainder: pliers 200.00 hammers
200.00000, remainder: hammers

Related Function

atof()

Miscellaneous Functions 721

long strtol(const char *Start, char *end, Int radix)
unsigned long strtoul(const char *Start, char **end,

Int radix)

Description

The prototypes for strtol() and strtoul() are in stdlib.h.
The strtol() function converts the string representation of a num­

ber stored in the string pointed to by start into a long int and returns
the result. The strtoul() function performs the same conversion, but the
result is an unsigned long. The base of the number is determined by
radix. If radix is 0, the base is determined by rules that govern
constant specification. If radix is other than 0, it must be in the range 2
through 36.

The strtol() and strtoul() functions work as follows: First, any
leading white space in the string pointed to by start is stripped. Next,
each character that makes up the number is read. Any character that
cannot be part of a long integer number stops this process. This includes
white space, punctuation, and characters. Finally, end is set to point to
the remainder, if any, of the original string. This means that if strtol()
is called with 100 Pliers, the value lOOL is returned and end points to
the space that precedes "Pliers".

If a conversion error occurs, the return value is HUGE_ VAL for
overflow, or -HUGE_ VAL for underflow. If no conversion could take
place, 0 is returned.

Example

This function reads base 10 numbers from standard input and returns
their long equivalents:

#include <stdio.h>
#include <stdlib.h>

long int read_long()
{

char start[80], *end;

printf("enter a number: ");
gets(start);

722 Turbo CIC++: The Complete Reference

return strtol(start, &end, 10);
}

Related Function

atol()

void swabfchar *Source, char *dest, Int numJ

Description

The prototype for swab() is in stdlib.h. This function is not defined by
the ANSI C standard.

The swab() function copies num bytes from the string pointed to
by source into the string pointed to by dest, switching the position of
each even/odd pair of bytes as it goes.

Example

This fragment prints "iH":

char de st [3];

swab("Hi", dest, 2);
printf(dest);

Int systemfconst char *StrJ

Description

The prototype for system() is in stdlib.h.
The system() function passes the string pointed to by str as a

command to DOS and returns the exit status of the command.

Miscellaneous Functions 723

Example

This program displays the contents of the cUITent working directory:

#include <stdlib.h>

main(void}
{

}

system("di r"};
return O;

Related Functions

spawn(), exec()

void va _ start(va _fist argptr, last_ parm)
void va _ end(va _ llst argptr)
type va _ arg(va _fist argptr, type)

Description

The prototypes for these macros are in stdarg.h
The va_arg(), va_start(), and va_end() macros work together

to allow a variable number of arguments to be passed to a function. The
most common example of a function that takes a variable number of
arguments is printf(). The type va_list is defined by stdarg.h.

The general procedure for creating a function that can take a
variable number of arguments is as follows: The function must have at
least one known parameter, but can have more, prior to the variable
parameter list. The rightmost known parameter is called the
last _parm. Before any of the variable-length parameters can be ac­
cessed, the argument pointer argptr must be initialized through a call to
va_start(). After that, parameters are returned via calls to va_arg()
with type being the type of the next parameter. Finally, once all the
parameters have been read and prior to returning from the function, a
call to va _end() must be made to ensure that the stack is properly
restored. If va _end() is not called, a program crash is very likely.

724 Turbo CIC++: The Complete Reference

Example

This program uses sum_ series() to return the sum of a series of
numbers. The first argument contains a count of the number of argu­
ments to follow. In this example, the first five elements of the series are

1

2
+

1

4

1
+

8
+

1

16
.. +

The output displayed is "0.968750".

1

/* Variable length argument example - sum a series.*/

#include <stdio.h>
#include <stdarg.h>

double sum_series(int, •••);

main(void}
{

double d;

d = sum_series(5, 0.5, 0.25, 0.125, 0.0625, 0.03125);

printf("sum of series is %f\n",d);

return O;

}

double sum_series(int num, •••)
{

}

double sum = 0.0, t;
va_11st argptr;

/* initialize argptr */
va_start(argptr,num);
/* sum the series */
for(; num; num--) {

}

t = va_arg(argptr,double);
sum += t;

/* do orderly shutdown */
va_end(argptr);
return sum;

Related Function

vprintf()

Turbo C++

Part Four of this book examines Turbo C++. C++ is essentially a super­
set of C, so everything you already know about C is applicable to C++.
Many of the concepts embodied in C++ will be new, but don't worry­
you are starting from a firm base. (Knowledge of the C language is
prerequisite to learning C++. If you don't already know C, you must
take some time to learn it.)

p
A
R
T

F'
·D·······:· ;·'.:.·••.::.•• •.. •• .. :. ; ..••.•..•... ·· .. ··.•·.':, .. •·.' .. ·:.··.·.· .. ·:,; ...•

•.>.;· •. !.1• ··.• .. ·• •. • ... • • ... · .. · .. ·.··.•.·.··.• .. ·•·.• .•. ···.•• .. '•·.·.·.···.·.·.· •.. •· .. · .. ··•·.• .. • .• ·:/. ·''\··w;

An Overview of Ci.

Put simply, C++ is an object-oriented programming language. The
object-oriented features of C++ are interrelated, so it is important to
have a general understanding of these features before attempting to
learn the details. The purpose of this chapter is to provide an overview
of the key concepts embodied in Turbo C++. The rest of Part Four
closely examines specific C++ features.

The first part of this chapter discusses the origin of C++ and
describes object-oriented programming. The rest of the chapter intro­
duces the principal C++ concepts.

The Origins of C++

C++ is an expanded version of C. C is flexible yet powerful, and it has
been used to create some of the most important software products of
the last 15 years. However, when a project exceeds a certain size, C
reaches its limits. Depending on the project, a program of 25,000 to
100,000 lines long becomes hard to manage because it is difficult to
grasp as a totality. In 1980, while working at Bell Laboratories at
Murray Hill, New Jersey, Bjarne Stroustrup addressed this problem by
adding several extensions to the C language. Initially called "C with
Classes," the name was changed to C++ in 1983.

Most additions made to C by Stroustrup support object-oriented
programming, sometimes referred to as OOP. (A brief explanation of
object-oriented programming follows in the next section.) Stroustrup
states that some of C++ 's object-oriented features were inspired by
another object-oriented language, Simula67. Therefore, C++ represents
the blending of two powerful programming methods.

728 Turbo CIC++: The Complete Reference

C++ has been revised twice since it was invented- once in 1985 and
again in 1989. Version 2.0 is the version of C++ that Turbo C++ imple­
ments. Borland began development of Turbo C++ in 1988, and released
the product in May of 1990.

When he invented C++, Stroustrup knew that it was important to
maintain the original spirit of C -including its efficiency, flexibility, and
the philosophy that the programmer, not the language, is in charge­
while at the same time adding support for object-oriented programming.
Ai3 you will see, this goal was accomplished. C++ provides the program­
mer with the freedom and control of C coupled with the power of
objects. The object-oriented features in C++, to use Stroustrup's words,
"allow programs to be structured for clarity, extensibility, and ease of
maintenance without loss of efficiency."

Although C++ was initially designed to aid in the management of
very large programs, it is in no way limited to this use. In fact, the
object-oriented attributes of C++ can be effectively applied to virtually
any programming task. It is not uncommon to see C++ used for projects
such as editors, databases, personal file systems, and communication
programs. Also, because C++ shares C's efficiency, high-performance
systems software can be constructed using C++.

What Is Object-Oriented Programming?

Object-oriented programming is a new way of approaching the job of
programming. Approaches to programming have changed dramatically
since the invention of the computer in order to accommodate the in­
creasing complexity of programs. For example, when computers were
first invented, programming was done by toggling in the binary machine
instructions using the front panel. Ai3 long as programs were just a few
hundred instructions long, this approach worked. Ai3 programs grew,
assembly language was invented so that a programmer could deal with
larger, increasingly complex programs using symbolic representations of
the machine instructions.

Eventually high-level languages were introduced that gave the pro­
grammer more tools with which to handle complexity. The first widely

An OveNiew of C++ 729

used language was FORTRAN. While FORTRAN was a very impressive
first step, it is hardly a language that encourages clear and easily
understood programs.

The 1960s gave birth to structured programming-the method en­
couraged by languages such as C and Pascal. For the first time, with
structured languages it was possible to write moderately complex pro­
grams fairly easily. However, even using structured programming meth­
ods, once a project reaches a certain size, its complexity becomes too
diffictilt for a programmer to manage.

At each milestone in the development of programming, methods
were created to allow the programmer to deal with increasingly greater
complexity. Each step of the way, the new approach took the best
elements of the previous methods and moved forward. Today, many
projects are near or at the point where the structured approach no
longer works. To solve this problem, object-oriented programming was
invented.

Object-oriented programming takes the best ideas of structured
programming and combines them with powerful, new concepts that
encourage you to look at the task of programming in a new light.
Object-oriented programming allows you to easily decompose a problem
into subgroups of related parts. Then, you can translate these subgroups
into self-contained units called objects.

All object-oriented programming languages have three things in
common: objects, polymorphism, and inheritance. Let's look at these
concepts now.

Objects

The single most important feature of an object-oriented language is the
object. Put simply, an object is a logical entity containing data and code
that manipulates that data. Within an object, some of the code or data
may be private to the object and inaccessible by anything outside the
object. In this way, an object provides a significant level of protection
against accidental modification or incorrect use. The linkage of code and
data in this way is often referred to as encapsulation.

For all intents and purposes, an object is a variable of a user­
defined type. It may seem strange at first to think of an object, which
links both code and data, as a variable. However, in object-oriented

730 Turbo CIC++: The Complete Reference

programming this is precisely the case. When you define an object you
are implicitly creating a new data type.

Polymorphism

Object-oriented programming languages support polymorphism, which
allows one name to be used for several related but slightly different
purposes. The purpose of polymorphism is to let one name be used to
specify a general class of action. Depending upon what type of data it is
dealing with, a specific instance of the general case is executed. For
example, you might have a program that defines three different types of
stacks: one for integer values, one for floating-point values, and one for
longs. If you create three sets of functions called push() and pop(), the
compiler will select the correct routine depending on the type of data
with which it is called.

The first object-oriented programming languages were interpreters,
so polymorphism was supported at run-time. However, because C++ is a
compiled language, polymorphism is supported at both run-time and
compile time.

Inheritance

Inheritance is the process by which one object can acquire the proper­
ties of another object. This is important because it supports the concept
of classification. If you think about it, most knowledge is made manage­
able by hierarchical classifications. For example, a Red Delicious apple is
part of the apple ciass, which in turn is part of the fruit class, which is
under the larger food class. Without the use of classifications, each
object would have to define all of its characteristics explicitly. Using
classifications, an object need only define those qualities that make it
unique within its class. It is the inheritance mechanism that makes it
possible for one object to be a specific instance of a more general case.

Some C++ Fundamentals

Since C++ is a superset of C, most C programs are C++ programs as
well. (There are a few minor differences between Turbo C and Turbo

An Overview of C++ 731

C++ that will prevent a small number of C programs from being com­
piled by a C++ compiler. These differences will be discussed in Chapter
30.) You can write C++ programs that look just like C programs, but you
won't be taking full advantage of C++ 's capabilities. Further, although
C++ allows you to write C-like programs, most C++ programmers use a
style and certain features that are unique to C++. Since it is important
to use C++ to its full potential, this section introduces a few of these
features before moving on to the "meat" of C++.

Let's begin with an example. Examine this C++ program:

#include <iostream.h>
#include <stdio.h>

main(void)
{

}

inti;
char str[SO];

cout « "I like Turbo C++.\n"; II this is a single-line comment
I* you can still use C-style comments, too *I

pri ntf ("You can use pri ntf (), but most C++ programs don't. \n");

II input a number using>>
cout << "enter a number: ";
cin » i;

II now, output a number using<<
cout << "your number is " << i << "\n";

II read a string
cout << "enter a string: ";
cin >> str;
II print it
cout « str;

return O;

N3 you can see, this program looks different from the average C
program. The header file, iostream.h, is defined by C++ and is used to
support C++ I/O operations. The only reason stdio.h is included is
because of the printf() statement. stdio.h is not needed if your C++
program uses only I/O operations specific to C++.

The following line introduces some new C++ features:

cout « "I like Turbo C++. \n"; I I this is a single line comment

732 Turbo CIC++: The Complete Reference

The statement

cout « "I like Turbo C++.\n";

displays "I like Turbo C++ ." on the screen followed by a carriage return,
linefeed combination. In C++, the < < has an expanded role. It is still
the left-shift operator, but when it is used as shown in this example, it is
also an output operator. The word cout is an identifier that is linked to
the screen. Like C, C++ supports I/O redirection, but for the sake of
discussion, we can assume that cout refers to the screen. You can use
cout and the < < to output any of the built-in data types plus strings of
characters.

It is important to note that you can still use printf() (as the
program illustrates) or any other of C's I/O functions, but many pro­
grammers feel that using cout < < is more in the spirit of C++.

More generally, a Turbo C++ program can use any library function
supported by Turbo C. These functions are described in Part Three of
this book. However, in cases where C++ provides an alternate approach,
that alternate is generally used instead of a C-like library function
(although, there is no rule that enforces this).

In the previous example, a C++ comment follows the output expres­
sion. In C++, comments are defined two ways. AC-like comment works
the same in C++ as in C. However, in C++ you can also define a
single-line comment using //. When you start a comment using //,
whatever follows is ignored by the compiler until the end of the line is
reached. In general, use C-like comments when creating multiline com­
ments and C++, single-line comments when only a single-line comment is
needed.

Next, the program prompts the user for a number. The number is
read from the keyboard using this statement:

cin » i;

In C++, the > > operator retains its right-shift meaning, but when used
as shown, it causes i to be given a value read from the keyboard. The
identifier cin refers to the keyboard. In general you can use cin > > to
load a variable of any of the basic data types or a string.

Although not illustrated by the program, you are free to use any of
C's input functions, such as scanf(), instead of using cin > >. How­
ever, as with cout, many programmers feel that cin > > is more in the
spirit of C++.

An Overview of C++ 733

Another interesting line in the program is shown here:

cout << "your number is " << i << "\n";

This code displays the following phrase (assuming i has the value 100):

your number is 100

followed by a carriage return, linefeed pair. In general, you can run
together as many < < output operations as you want.

The rest of the program demonstrates how you can read and write
a string using cin > > and cout < < .

Compiling a C++ Program

Turbo C++ can compile both C and C++ programs. In general, if a
program ends in .CPP it is compiled as a C++ program. If it ends in any
other extension, it is compiled as a C program. Therefore, the simplest
way to cause Turbo C++ to compile your C++ program as a C++ pro­
gram is to give it the .CPP extension.

If you don't want to give your C++ program the .CPP extension,
you must either specify the -P option when using the command line or
you must change the default settings of the integrated development
environment. To do this, first select the Options menu, then the Com­
piler option, followed by the C++ option. You will then be able to set an
option that causes the integrated environment to compile all programs
as C++ programs.

Introducing C++ Classes

To create an object in C++, you must first define its general form using
the keyword class. A class is similar syntactically to a structure. As an
example, this class defines a type called queue, which is used to create a
queue object:

734 Turbo CIC++: The Complete Reference

II this creates the class queue
class queue {

int q[lOO];
int sloe, rloc;

public:

};

void init(void);
void qput(int i);
int qget(void);

A class can contain private as well as public parts. By default, all items
defined in the class are private. For example, the variables q, sloe, and
rloc are private, meaning they cannot be accessed by any function that
is not a member of the class. This is one way encapsulation is
achieved- access to certain items of data may be tightly controlled by
keeping them private. Although not shown in this example, you can also
define private functions, which can only be called by other members of
the class.

To make parts of a class public (accessible to other parts of your
program) you must declare them after the public keyword. All variables
or functions defined after public are accessible by all other functions in
the program. Essentially, the rest of your program accesses an object
through its public functions. Although you can have public variables,
you should try to limit or eliminate their use. Instead, you should make
all data private and control access to it through public functions. One
other point: Notice that the public keyword is followed by a colon.

The functions init(), qput() and qget() are called member func­
tions because they are part of the class queue. Only member functions
'h~'tTO !lntaoC?Q. fn th.a n.,.;·uai-.o nfl~C'! n-f +ha nl0icici ;"" nl'h;nh .f.hn"TT n"Mn. rl.nnln-,..,,:J
..,..,...., ., """,..., _...,..., "'"' u.u.'-' J:'.&. .A. Y """"""' J:-'(.41.L IJl.:I' V~ 1.1.l.l\..r '-'.&.&.t<Q'D .L.1..1. VY .1..1..1.\..J..I. "1.l.U:•.r a.I. 't:i U't:i\....la.J. CUe

Once you have defined a class, you can create an object of that type
using the class name. In essence, the class's name becomes a new data
type specifier. For example, this code creates an object called intqueue
of type queue:

queue intqueue;

You can also create variables when defining class by putting the vari­
able names after the closing curly brace, in exactly the same way as you
do with a structure.

The general form of a class declaration is

class class-name {
private data and functions

public:
public tiata and functions

} object name list;

An Overview of C++ 735

Of course, the object name list may be empty.
Inside the declaration of queue, prototypes to the member functions

were used. It is important to understand that in C++, when you need to
tell the compiler about a function, you must use its full prototype form.
C++ does not support the old, traditional function declaration methods.
(Actually, in C++, all functions must be prototyped. Prototypes are not
optional.)

When it comes time to actually code a function that is a member of
a class, you must tell the compiler which class the function belongs to.
For example, here is one way to code the qput() function:

void queue::qput{int i)
{

i f(sloc==lOO) {

}

cout «"queue is full";
return;

sloe++;
q[sloc] = i;

}

The :: often is called the scope resolution operator. Essentially, it tells
the compiler that this version of qput() belongs to the queue class. Or,
put differently, that this qput() is in queue's scope. In C++, several
different classes can use the same function names. The compiler knows
which function belongs to which class because of the scope resolution
operator and the class name.

To call a member function from a part of your program that is not
part of the class you must use the object's name and the dot operator.
For example, this fragment calls init() for object a:

queue a, b;

a.init();

It is very important to understand that a and b are two separate
objects. This means that initializing a does not cause b to be initialized.
The only relationship a has with b is that they are objects of the same
type.

736 Turbo CIC++: The Complete Reference

Only when a member function is called by code that does not belong
to the class must the class name and the dot operator be used. Other­
wise, a member function can call another member function directly,
without using the dot operator.

The program shown here demonstrates all the pieces of queue
class.

#include <iostream.h>

II this creates the class queue
class queue {

int q[lOO];
int sloe, rloc;

public:

};

void init(void);
void qput(int i);
int qget(void);

void queue::init(void)
{

rloc = sloe = 0;
}

void queue::qput(int i)
{

}

i f(sl oc==lOO) {

}

cout << "queue is ful 111 ;

return;

sl oc++;
q[sloc] = i;

int queue;;qget{void)
{

if(rloc == sloe) {

}

cout << "queue underflow";
return 0;

rloc++;
return q [rl oc];

main(void)
{

queue a, b; II create two queue objects

a. init();
b. init();

a.qput(lO);
b.qput{19);

a.qput{20);
b.qput(l);

cout << a.qget() « 11 11 ;

cout « a.qget() « 11 11 ;

cout << b.qget() « 11 11 ;

cout « b.qget() « 11 \n 11 ;

return O;

An Overview of C++ 737

Remember that the private parts of an object are accessible only by
functions that are members of that object. For example, the statement

a.rloc = 0;

could not be in the main() function of the previous program.

Note: By convention, in most C programs the main() function is the
first function in the program. However, in the queue program the
member functions of queue are defined before the main() function.
While there is no rule that dictates this (they could be defined anywhere
in the program), this is the most common approach used when writing
C++ code. (In fact, the classes and member functions associated with a
program are usually contained in a header file in real life.)

Function Overloading

One way that C++ achieves polymorphism is through the use of function
overloading. In C++, two or more functions can share the same name as
long as their parameter declarations are different. In this situation, the
functions that share the same name are said to be overloaded. For
example, consider this program:

#include <iostream.h>

II sqr_it is overloaded three ways
int sqr_it(int i);
double sqr_it(double d);
long sqr_it(long l);

738 Turbo CIC++: The Complete Reference

main(void)
{

cout « sqr_it(lO) « 11 \n";

cout « sqr_it(ll.O) « 11 \n";

cout « sqr_it(9L) « 11 \n";

return O;

int sqr_it(int i)
{

}

cout « "Inside the sqr _it() function that uses ";
cout «"an integer argument.\n";

return i *i;

double sqr_it(double d)
{

}

cout « "Inside the sqr_it() function that uses ";
cout « "a double argument.\n";

return d*d;

long sqr_it(long l)
{

}

cout « "Inside the sqr_it() function that uses ";
cout «"a long argument.\n";

return l *l;

This program creates three similar but different functions called
sqr _it(), each of which returns the square of its argument. AB the
program illustrates, the compiler knows which function to use in each
case because of the type of the argument. The value of overloaded
functions is that they allow related sets of functions to be accessed using
a common name. In a sense, function overloading lets you create a
generic name for an operation; the compiler resolves which function is
actually needed to perform the operation.

Function overloading is important because it can help manage com­
plexity. To understand how, consider this example. Turbo C++ contains
the functions itoa(), ltoa(), and utoa() in its standard library. Collec­
tively, these functions convert different types of numbers into their
string equivalents. Even though these functions perform almost identi­
cal actions, in C three different names must be used to represent these

An OveNiew of C++ 739

tasks, which makes the situation more complex than it actually is. Even
though the underlying concept of each function is the same, the pro­
grammer has three things to remember. However, in C++ it is possible
to use the same name, such as numtoa(), for all three functions. Thus,
the name numtoa() represents the general action that is being per­
formed. It is left to the compiler to choose the specific version for a
particular circumstance; the programmer need only remember the gen­
eral action being performed. Therefore, by applying polymorphism,
three things to remember are reduced to one. If you expand the concept,
you can see how polymorphism can help you understand very complex
programs.

A more practical example of function overloading is illustrated by
the following program. As you know, C (and C++) do not contain any
library functions that prompt the user for input and then wait for a
response. However, this program creates three functions called
prompt() that perform this task for data of types int, double, and
long:

#include <iostream.h>

void prompt(char *str, int *i);
void prompt(char *str, double *d);
void prompt(char *str, long *l);

main(void)
{

}

int i;
double d;
long l;

prompt ("Enter an integer: ", &i) ;
prompt ("Enter a double: ", &d) ;
prompt("Enter a long: ", &l);

cout << i << " " << d << 11 11 << l ;

return O;

void prompt(char *str, int *i)
{

}

cout « str;
cin » *i;

void prompt(char *str, double *d)
{

cout << str;

740 Turbo CIC++: The Complete Reference

cin » *d;

void prompt(char *str, long *l)
{

}

cout « str;
cin » *l;

Note: You can use the same name to overload unrelated functions, but
you should not. For example, you could use the name sqr _it() to create
functions that return the square of an int and the square root of a
double. However, these two operations are fundamentally different and
applying function overloading in this manner defeats its purpose. In
practice, you should only overload closely related operations.

Operator Overloading

Another way that polymorphism is achieved in C++ is through operator
overloading. For example, in C++ you can use the < < and > >
operators to perform console I /0 operations. This is possible because in
the iostream.h header file, these operators are overloaded. When an
operator is overloaded it takes on an additional meaning relative to a
certain class. However, it still retains all of its old meanings.

In general, you can overload C++ 's operators by defining what they
mean relative to a specific class. For example, think back to the queue
class developed earlier in this chapter. It is possible to overload the +
operator relative to objects of type queue so that it appends the con­
tents of one stack to another. However, the + still retains its original
meaning relative to other types of data. You will learn how to overload
operators in Chapter 27.

Inheritance

Inheritance is one of the major traits of an object-oriented programming
language. In C++, inheritance is supported by allowing one class to

An Overview of C++ 741

incorporate another class into its declaration. For example, here is a
class, called road_ vehicle, that very broadly defines vehicles that
travel on the road. It stores the number of wheels a vehicle has and the
number of passengers it can carry.

class road_vehicle {
int wheels;
int passengers;

public:

};

void set_wheels(int num);
int get_wheels(void);
void set_pass(int num);
int get_pass(void);

We can now use this broad definition of a road vehicle to define specific
objects. For example, this declares a class called truck using
road_ vehicle.

class truck : public road_vehicle {
int cargo;

public:

};

void set_cargo(int size);
int get_cargo(void);
void show(void);

Notice how road_ vehical is inherited. The general form for inheritance
is:

class new-class-name : access inherited-class {
II body of new class

}

Here, access is optional, but if present it must be either public, private,
or protected. You will learn more about these options in Chapter 28.
For now, all inherited classes will use public, which means that all the
public elements of the ancestor are also public in the class that inherits
it. Therefore, in the example, members of the class truck have access to
the member functions of road_ vehicle just as if they had been declared
inside truck. However, the member functions do not have access to the
private part of road_ vehicle.

742 Turbo CIC++: The Complete Reference

The following program illustrates inheritance by creating two sub­
classes of road_ vehicle- truck and automobile:

#include <iostream.h>

class road_vehicle {
int wheels;
int passengers;

public:

};

void set_wheels(int num);
int get_wheels(void);
void set_pass(int num);
int get_pass(void);

class truck : public road_vehicle {
int cargo;

public:

};

void set_cargo(int size);
int get_cargo(void);
void show(void);

enum type {car, van, wagon};

class automobile : public road_vehicle {
enum type car_type;

public:

};

void set_type(enum type t);
enum type get_type(void);
void show(void);

void road_vehic1e::set_wheels(int num)
{

wheels = num;
}

int road_vehicle::get_wheels(void)
{

return wheels;
}

void road_vehicle::set_pass(int num)
{

passengers = num;
}

int road_vehicle::get_pass(void)
{

return passengers;
}

void truck::set_cargo(int num)
{

cargo = num;

}

int truck::get_cargo(void)
{

return cargo;
}

void truck::show(void)
{

cout << "wheels: " « get_wheels() « "\n";
cout « "passengers: " « get_pass() « "\n";

An Overview of C++ 743

cout « "cargo capacity in cubic feet: " « cargo « "\n";
}

void automobile::set_type(enum type t)
{

car_type = t;
}

enum type automobile::get_type(void)
{

return car_type;
}

void automobile::show(void)
{

cout « "wheels: " << get_whee ls() « "\n";
cout << "passengers: " << get_pass() « "\n";
cout << "type: ";
switch(get_type()) {

case van: cout << "van\n";
break;

case car: cout << "car\n";
break;

case wagon: cout << "wagon\n";
}

}

main(void)
{

truck tl, t2;
automobile c;

tl.set_wheels(18);
tl.set_pass(2);
tl.set_cargo(3200);

t2.set_wheels(6);
t2.set_pass(3);
t2.set_cargo(1200);

tl.show();
t2.show();

c.set_wheels(4);
c.set_pass(6);
c.set_type(van);

744 Turbo CIC++: The Complete Reference

c.show();

return O;
}

As this program illustrates, the major advantage of inheritance is that
you can create a base classification that can be incorporated into more
specific classes. In this way, each object can represent its own classifica­
tion precisely.

Notice that both truck and automobile include member functions
called show(), which display information about each object. This is
another aspect of polymorphism. Since each show() is linked with its
own class, the compiler can easily tell which one to call in any circum­
stance.

Constructors and Destructors

It is very common for some part of an object to require initialization
before it can be used. For example, think back to the queue class
developed earlier in this chapter. Before queue could be used, the
variables rloc and sloe had to be set to 0 using the function init().
Because the requirement for initialization is so common, C++ allows
objects to initialize themselves YvThen they are created. This auto111atic
initialization is performed through the use of a constructor function.

A constructor function is a special function that is a member of the
class and has the same name as that class. For example, here is how
the queue class looks when converted to use a constructor function for
initialization:

II this creates the class queue
class queue {

int q[lOO];
int sloe, rloc;

public:

};

queue(void); II constructor
void qput(int i);
int qget(void);

An Overview of C++ 745

Notice that the constructor queue() has no return type specified. In
C++, constructor functions cannot return values.

The queue() function is coded like this:

II This is the constructor function.
queue::queue(void)
{

sloe = rloc = O;
cout « "queue initialized\n";

}

Keep in mind that the message "queue initialized" is output as a way to
illustrate the constructor. In actual practice, most constructor functions
will not output or input anything.

An object's constructor is called when the object is created (when
the object's declaration is executed). Also, for local objects, the con­
structor is called each time the object declaration is encountered.

The complement of the constructor is the destructor. In many
circumstances, an object needs to perform some action or actions when
it is destroyed. Local objects are created when their block is entered
and destroyed when the block is left. Global objects are destroyed when
the program terminates. There are many reasons why a destructor
function may be needed. For example, an object may need to deallocate
memory that it had previously allocated. In C++, it is the destructor
function that handles deactivation. The destructor has the same name as
the constructor but it is preceded by a - . The following is an example
of queue class and its constructor and destructor functions. (Keep in
mind that the queue class does not require a destructor, so the one
shown here is just for illustration.

II this creates the class queue
class queue {

int q[lOO];
int sloe, rloc;

public:

}:

queue(void); II constructor
Nqueue(void); II destructor
void qput(int i);
int qget(void):

II This is the constructor function.
queue::queue(void)
{

sloe = rloc = O;

746 Turbo CIC++: The Complete Reference

cout «"queue initialized\n";
}

II This is the destructor function.
queue::Nqueue(void)
{

cout « "queue destroyed\n";
}

To see how constructors and destructors work, here is a new
version of the sample program from earlier in this chapter:

#include <iostream.h>

II this creates the class queue
class queue {

int q[lOO];
int sloe, rloc;

public:

};

queue(void); II constructor
Nqueue(void}; II destructor
void qput(int i);
int qget(void);

II This is the constructor function.
queue::queue(void)
{

sloe = rloc = 0;
cout « "queue initialized\n";

}

II This is the destructor function.
queue::Nqueue(void}
{

cout « "queue destroyed\n";

void queue::qput(int i)
{

if(sloc==lOO) {
cout <<"queue is full";
return;

sloe++;
q[sloc] = i;

}

int queue::qget(void)
{

if(rloc == sloe) {
cout « "queue underflow";

return O;

rl oc++;
return q [rl oc] ;

}

main(void)
{

queue a, b; // create two queue objects

}

a.qput(lO);
b.qput(19);

a.qput(20);
b.qput(l);

cout « a.qget() « 11 11 ;

cout « a.qget() « 11 11 ;

cout « b.qget() « 11 11 ;

cout << b.qget() « 11 \n 11 ;

return O;

This program displays the following:

queue initialized
queue initialized
10 20 19 1
queue destroyed
queue destroyed

asm
catch
class
delete
friend
inline
new

Table 25-1.

operator
private
protected
public
this
virtual
template

The C++ Keywords

An Overview of C++ 747

748 Turbo CIC++: The Complete Reference

The C++ Keywords

In addition to those keywords defined by the C language and those
specific to Turbo C, C++ contains the keywords shown in Table 25-1. Of
these, catch and template are reserved for future use. You cannot use
any of them as names for variables or functions.

Now that you have been introduced to many of Turbo C++ 's major
features, the remaining chapters in this section will examine them in
greater detail.

A Closer Look at Classes and Objects

Classes and objects created using classes are two of C++ 's most impor­
tant features. This chapter examines classes, objects, and related issues
in detail.

Parameterized Constructors

Often, when an object is created it is necessary, or desirable, to initialize
various data elements with specific values. Using a constructor function
it is possible to initialize various variables when the object is created.
However, in C++, the concept of object initialization is expanded to allow
the initialization of objects using programmer-defined values. This is
accomplished by passing arguments to an object's constructor function.
For example, it is possible to enhance the queue class that ended the
previous chapter to accept an argument that will act as the queue's ID
number. First, queue is changed to look like this:

II this creates the class queue
class queue {

int q[lOO];
int sloe, rloc;
int who: II holds the queue's ID number

public:

}:

queue(int id); II constructor
Nqueue(void); II destructor
void qput(int i);
int qget(void);

The variable who is used to hold an ID number that identifies the
queue. Its actual value is determined by what is passed to the construc­
tor function in id when a variable of type queue is created. The queue()
constructor function looks like this:

T
w
E
N
T
y
-
s
I
)(

750 Turbo CIC++: The Complete Reference

II This is the constructor function.
queue::queue(int id)
{

}

sloe = rloc = 0;
who = id;
cout « "queue " <<who« " initialized\n";

To pass an argument to the constructor function, you must associ­
ate the value or values being passed with an object when it is being
declared. C++ supports two ways to accomplish this. The first method

queue a= queue(lOl);

creates a queue called a and passes the value 101 to it. However, the
second method, sometimes called the shorthand method, is shorter and
more to the point. In the shorthand method the argument or arguments
must follow the object's name and be enclosed in parentheses. This code
accomplishes the same thing as the previous declaration:

queue a(lOl);

Since the shorthand method is used by virtually all C++ programmers,
this book uses the shorthand form exclusively. The general form of
passing arguments to constructor functions is

class-type var(arg-list);

Here, arg-list is a comma-separated list of arguments that are passed io
the constructor.

The following version of the queue program demonstrates passing
arguments to constructor functions:

#include <iostream.h>

II this creates the class queue
class queue {

int q[lOO];
int sloe, rloc;
int who; II holds the queue's ID number

public:
2ueue(int id); II constructor
queue(void); II destructor

void qput(int i);

int qget(void);
}:

A Closer Look at Classes and Objects 751

II This is the constructor function.
queue::queue(int id)
{

}

sloe = rloc = O:
who = id;
cout « "queue • « who « " initialized\n":

II This is the destructor function.
queue::Nqueue(void)
{

cout « "queue • « who « " destroyed\n":
}

void queue::qput(int i)
{

}

if(sloc==lOO) {

}

cout « "queue is full":
return:

sloe++:
q[sloc] = i;

int queue::qget(void)
{

if(rloc == sloe) {

}

cout « "queue underflow";
return 0;

rloc++:
return q[rloc];

}

mafn(void)
{

}

queue a(l), b(2); II create two queue objects

a.qput(lO);
b.qput(19);

a.qput(20);
b.qput(l);

cout « a.qget() « " ":
cout « a.qget() « " ":
cout « b.qget() « " ";
cout « b.qget() « "\n":

return O;

This program produces the following output:

752 Turbo CIC++: The Complete Reference

queue 1 initialized
queue 2 initialized
10 20 19 1
queue 2 destroyed
queue 1 destroyed

As you can see by looking at main(), the queue associated with a is
given the ID number 1, and the queue associated with b is given the
number 2.

Although the queue example only passes a single argument when
an object is created, it is possible to pass several. For example, here,
objects of type widget are passed two values:

#include <iostream.h>

class widget {
inti;
int j;

public:
widget(int a, int b);
void put_widget(void);

} ;

widget::widget(int a, int b)
{

i = a;
j = b;

void widget::put_widget(void)
{

cout << i << II II << j << n\n n;
}

main(void)
{

}

widget x(lO, 20), y(O, O);

x.put_widget();
y. put_wi dget () ;

return 0;

'!'his program displays

10 20
0 0

A Closer Look at Classes and Objects 753

Friend Functions

It is possible for a nonmember function of a class to have access to the
private parts of that class by declaring it as a friend of the class. For
example, here frd() is declared to be a friend of the class cl:

class cl {

public:
friend void frd(void};

};

AB you can see, the keyword friend precedes the entire function decla­
ration.

One reason that friend functions are allowed in C++ is to accommo­
date situations in which, for the sake of efficiency, two classes must
share the same function. To see an example, consider a program that
defines two classes called line and box. The class line contains all
necessary data and code to draw a horizontal dashed line of any speci­
fied length, beginning at a specified x, y coordinate using a specified
color. The box class contains all code and data to draw a box at the
specified upper left and lower right coordinates in a specified color. Both
classes use the same_ color () function to determine whether both a
line and a box are drawn in the same color. These classes are declared
as shown here:

class line;

class box {
int color; II color of box
int upx, upy; II upper left corner
int lowx, lowy; II lower right corner

public:
friend int same_color(line 1, box b};
void set_color(int c};
void define_box(int xl, int yl, int x2, int y2};
void show_box(void};

} ;

class line {

754 Turbo CIC++: The Complete Reference

int color;
int startx, starty;
int len;

public:
friend int same_color(line 1, box b);
void set_color(int c);
void define_line(int x, int y, int l);
void show_line();

} ;

The same_ color () function, which is a member of neither class but a
friend of both, returns true if both the line object and the box object,
which form its arguments, are drawn in the same color; it returns non-0
otherwise. The same_ color ()function is defined as:

II return true if line and box have same color.
int same_color(line 1, box b)
{

}

if(l.color==b.color) return 1;
return O;

As you can see, the same_ color () function needs access to the private
parts of both line and box to perform its task efficiently. (Remember
that public interface functions can be created to return the colors of
both line and box, and any function could have compared their colors.
However, such an approach requires extra function calls, which in some
cases is inefficient.)

Notice the empty declaration of line at the start of the class
declarations. Since same_ color () in box references line before line is
declared, line must be forward referenced. If this is not done, the
compiler will not know what line is when encountered in the declaration
of box. In C++, a forward reference to a class is simply the keyword
class followed by the type name of the class. Usually, the only time that
forward references are needed is when friend functions are involved.

Here is a program that demonstrates the line and box classes and
illustrates how a friend function can access the private parts of a class:

#include <iostream.h>
#include <conio.h>

class line;

class box {
int color; II color of box

A Closer Look at Classes and Objects 755

int upx, upy; II upper left corner
int lowx, lowy; II lower right corner

public:
friend int same_color(line 1, box b);
void set_color(int c);
void define_box(int xl, int yl, int x2, int y2);
void show_box(void);

} ;

class line {
int color;
int startx, starty;
int len;

pubHc:
friend int same_color(line 1, box b);
void set_color(int c);
void define_line(int x, int y, int l);
void show_line();

} ;

II return true if line and box have same color.
int same_color(line 1, box b)
{

}

if(l.color==b.color) return 1;
return 0;

void box::set_color(int c)
{

color = c;
}

void line::set_color(int c)
{

color = c;
}

void box::define_box(int xl, int yl, int x2, int y2)
{

}

upx = xl;
upy = yl;
lowx = x2;
lowy = y2;

void box::show_box(vofd)
{

inti;

textcolor(color);

gotoxy(upx, upy);
for(i=upx; i<=lowx; i++) cprintf("-");

gotoxy(upx, lowy-1);
for{i=upx; i<=lowx; i++) cprintf("- 11);

756 Turbo CIC++: The Complete Reference

gotoxy(upx, upy);
for{i=upy; i<=lowy; i++) {

cprintf(" i ");
gotoxy(upx, i);

}

gotoxy(lowx, upy);
for(i=upy; i<=lowy; i++) {

cprintf(" i ");
gotoxy(lowx, i);

}
}

void line::define_line(int x, int y, int l)
{

}

startx = x;
starty = y;
l en = l;

void line::show_line(void)
{

inti;

textcolor(color);

gotoxy(startx, starty);

for(i=O; i<len; i++) cprintf("-");

main(void)
{

box b;
line 1;

b.define_box(lO, 10, 15, 15);
b.set_color{3);
b.show_box();

l.define_line(2, 2, 10);
l.set_color(2);
l.show_line();

if(!same_color(l, b)) cout « "not the same";
cout « "\npress a key";
getch();

II now, make line and box the same color
l.define_line(2, 2, 10);
l.set_color(3);
l • show;._l i ne () ;

if(same_color(l, b)) cout « "are the same color";

A Closer Look at Classes and Objects 757

return O;
}

Default Function Arguments

C++ allows a function to assign a default value to a parameter when no
argument corresponding to that parameter is specified in a call to that
function. The default value is specified in a manner syntactically similar
to a variable initialization. For example, this declares f() as taking one
integer variable that has a default value of 1:

void f(int i = 1)
{

}

Now, f() can be called one of two ways as these examples show.

f(lO); //pass an explicit value

f(); //let function use default

The first call passes the value 10 to i. The second call gives i the default
value 1.

Default arguments in C++ enable a programmer to manage greater
complexity. In order to handle the widest variety of situations, a func­
tion frequently contains more parameters than are required for its most
common use. When using default arguments, you need only specify
arguments that are not the defaults in that particular situation.

To better understand the reason for default arguments, let's de­
velop a practical example. One useful function not found in Turbo C++ 's
library, called xyout(), is shown here:

//Output a string at specified X,Y location.
void xyout(char *str, int x = 0, int y = 0)
{

if(!x) x = wherex();
if(!y) y = wherey();
gotoxy(x, y);
cout « str;

758 Turbo CIC++: The Complete Reference

This function displays, in text mode, the string pointed to by str begin­
ning at the x,y location defined by x and y. However, if neither x nor y
are specified, the string is output at the current text mode x, y location.
(You can think of this function as an advanced version of puts().) The
functions wherex(), wherey(), and gotoXY() are part of Turbo C++'s
library. The wherex() and wherey() functions return the current x and
y coordinates, respectively. The current x and y coordinates define
where the following output operation will begin. The gotoXY() function
moves the cursor to the specified x, y location. Chapters 11 and 23
discuss Turbo C's screen control functions in depth.

The following short program demonstrates how to use XYOUt():

#include <iostream.h>
#include <conio.h>

void xyout(char *str, int x=O, int y=O)
{

}

if(!x) x = wherex();
if(ly) y = wherey();
gotoxy(x, y);
cout « str;

main(void)
{

}

xyout("hello", 10, 10);
xyout(" there");
xyout("I like C++", 40); II this is still on line 10

xyout("This is on line 11.\n", 1, 11);
xyout("This follows on line 12.\n");
xyout("This follows on line 13.");

return 0;

Look closely at how XYOUt() is called inside main(). This program
produces output similar to that shown in Figure 26-1. .Ai3 this program

hello there I like C++
This is on line 11.
This follows on line 12.
This follows on line 13.

Figure 26-1. Sample output from the xyout() program

A Closer Look at Classes and Objects 759

illustrates, although it is sometimes useful to specify the exact location
where text will be displayed, often, you simply can continue on from the
point at which the last output occurred. By using default arguments, you
can use the same function to accomplish both goals -there is no need
for two separate functions.

Notice that in main(), xyout() is called with either three, two, or
one arguments. When called with only one argument, both x and y
default. However, when called with two arguments, only y defaults.
There is no way to call xyout() with x defaulting and y being specified.
More generally, when a function is called, all arguments are matched to
their respective parameters in order from left to right. Once all existing
arguments have been matched, any remaining, default arguments are
used.

When creating functions that have default argument values the
default values must be specified only once and this must be the first time
the function is declared within the file. For example, if xyout() is
defined after main() (as is the more common case), the default argu­
ments must be declared in xyout()'s prototype, but the values are not
repeated in xyout() 's definition. The following program illustrates this:

#include <iostream.h>
#include <conio.h>

void xyout(char *str, int x = 0, int y = O);

main(void)
{

}

xyout("hello", 10, 10);
xyout(" there");
xyout("I like C++", 40); //this is still on line 10

xyout("This is on line 11.\n", 1, 11);
xyout("This follows on line 12.\n");
xyout("This follows on line 13.");

return O;

/* Since x and y's defaults have already been specified
in xyout()'s prototype, they cannot
be repeated here.

*/
void xyout(char *str, int x, int y)
{

}

if(!x) x = wherex();
if(ly) y = wherey();
gotoxy(x, y);
cout « str;

760 Turbo CIC++: The Complete Reference

If you try specifying new or even the same default values in xyout() 's
definition, Turbo C++ will display an error and not compile your pro­
gram.

Even though default arguments cannot be redefined, each version of
an overloaded function can specify different default arguments.

When defining parameters, it is important to understand that all
parameters that take default values must appear to the right of those
that do not. That is, you cannot specify a nondefaulting parameter once
you have defined a parameter that takes a default value. For example, it
would have been incorrect to define xyout() as:

11 wrong!
void xyout(int x = 0, int y = 0, char *str)

Here is another incorrect attempted use of default parameters.

II wrong !
int f(int i, int j=lO, int k)

Once the default parameters begin, no non-defaulting parameter may
occur in the list.

You can also use default parameters in an object's constructor
function. For example, here is a slightly different version of the queue()
constructor function, shown earlier in this chapter.

II This is the constructor function that uses
II a default value.
queue::queue(int id=O)
{

sloe = rloc = O;
who = id;
cout << ••queue " <<who<< " initialized\n";

In this version, if an object is declared without any initializing values, id
defaults to 0. For example,

queue a, b(2);

creates two objects, a and b. The id value of a is 0 and b is 2.

Using Default Arguments Correctly

Although default arguments can be very powerful tools when used
correctly, they can be misused. Default arguments should allow a func­
tion to perform its job efficiently and easily while still allowing consider-

A Closer Look at Classes and Objects 761

able flexibility. Toward this end, all default arguments should represent
the way the function is used most of the time. For example, using a
default argument makes sense if the default value is used 90 percent of
the time. However, if a common value occurs in only 10 percent of the
calls, and the rest of the time the arguments corresponding to that
parameter vary widely, it is not a good idea to provide a default argu­
ment. When there is no single value that is normally associated with a
parameter, there is no reason for a default argument. In fact, declaring
default arguments when there is insufficient basis destructures your
code because it misleads and confuses anyone reading your program. At
what percentage of frequency you should elect to use a default argu­
ment is, of course, subjective. But, 51 percent seems a reasonable break
point.

Classes and Structures Are Related

In C++ the struct has some expanded capabilities compared to its C
counterpart. In C++, classes and structs are closely related. In fact,
with one exception, they are interchangeable because the C++ struct can
include data and the code that manipulates that data in the same way
that a class can. Structures may also contain construction and destruc­
tion functions. The only difference is that by default the members of a
clrtss are private while, by default, the members of a struct are public.
Consider this program:

#include <iostream.h>

struct cl {
int get_i(void}; //these are public
void put_i(int j); //by default

private:
int i;

} ;

int cl::get_i(void}
{

return i;
}

void cl::put_i(int j)
{

i = j;
}

762 Turbo CIC++: The Complete Reference

main(void)
{

cl s;

s .put_i(lO);
cout << s.get_i();

return O;
}

This simple program defines a structure type called cl in which get_ i()
and put_i() are public and i is private. Notice that a struct uses the
keyword private to introduce the private elements of the structure.

The following program shows an equivalent program using a class
instead of struct.

#include <iostream.h>

class cl {
inti; //private by default

public:
int get_i(void);
void put_i(int j);

} ;

int cl::get_i(void)
{

return i;
}

void cl::put_i(int j)
{

i = j;
}

main(void)
{

cl s;

s.put_i(lO);
cout << s.get_i();

return 0;
}

For the most part, C++ programmers use class to define the form
of an object and struct in the same way that it is used in C. However,
from time to time you will see C++ code that uses the expanded abilities
of structures.

A Closer Look at Classes and Objects 763

Unions and Classes Are Related

Just as structures and classes are related in C++, unions are also related
to classes. A union is essentially a structure in which all elements are
stored in the same location. A union can contain constructor and de­
structor functions as well as member and friend functions. For example,
the following program uses a union to display the characters that make
up the low- and high-order bytes of an integer (assuming 2-byte inte­
gers):

#include <iostream.h>

union u_type {
u_type(int a): II public by default
void showchars(void);
inti;
char ch [2):

}:

II constructor
u_type::u_type(int a)
{

i = a:
}

II show the characters that comprise an int
void u_type::showchars(void)
{

cout << ch [O] << 11 11 :

cout « ch [1] << 11 \n";
}

main(void)
{

u_type u(lOOO);

u. showchars ();

return O;
}

As you can see, since a union resembles a structure, its members are
public by default.

One interesting feature of C++ unions not found in C is the anony­
mous union. An anonymous union is a union that has neither a tag­
name nor any variables specified in its declaration. The names of the

764 Turbo CJC++: The Complete Reference

members of the union are accessed directly without using any form of
the dot or arrow operator. For example, here is a short example using
an anonymous union.

#include <iostream.h>

main(void)
{

}

II This declares an anonymous union.
union { II no tag name

inti;
char ch [2];

} ; II no variables specified

I* Now reference i and ch without referencing
a union name or dot or arrow operators.

*I
i = 88;
cout « i << 11 11 << ch [O] ;

return O;

Anonymous unions have some restrictions. For obvious reasons, the
names of the members of an anonymous union must be different from all
other identifiers in the scope of the union. (That is, the member names
must not conflict with other identifiers within the union's scope.) Also,
global anonymous unions must be specified as static. Finally, anony­
mous unions cannot include private or protected elements.

Remember, just because C++ gives unions greater power and flexi­
bility does not mean that you have to use them. In cases where you
simply need a C-style union you are free to use one in that manner.
However, in cases where you can encapsulate a union along with the
routines that manipulate it, you add considerable structure to your
program.

In-Line Functions

While not pertaining specifically to object-oriented programming, C++
contains one very important feature not found in C. This feature is

A Closer Look at Classes and Objects 765

called in-line functions. An in-line function is a function that is ex­
panded at the point at which it is called instead of actually being called.
This is much like a parameterized function-like macro in C, but more
flexible. There are two ways to create an in-line function. The first is to
use the inline modifier. For example, to create an in-line function called
f that returns an int and takes no parameters, you must declare it like
this:

inline int f(void}
{

}

The general form of inline is

inline function_ declaration

The inline modifier precedes all other aspects of a function's declara­
tion.

The reason for in-line functions is efficiency. Every time a function
is called, a series of instructions must be executed to set up the function
call, including pushing any arguments onto the stack, and returning
from the function. In some cases, many CPU cycles are used to perform
these procedures. However, when a function is expanded in line, no such
overhead exists, and the overall speed of your program increases. How­
ever, in cases where the in-line function is large, the overall size of your
program also increases. For this reason, the best in-line functions are
those that are very small. Larger functions should be left as normal
functions.

AB an example, the following program uses inline to make the
program from the previous section more efficient:

#include <iostream.h>

class cl {
inti; //private by default

public:
int get_i(void};
void put_i(int j};

} ;

766 Turbo CIC++: The Complete Reference

inline int cl::get_i{void)
{

return i;
}

inline void cl::put_i(int j)
{

i = j;
}

main(void)
{

cl s;

s.put_i(lO);
cout << s.get_i{);

return O;
}

When you compile this version of the program and compare it to a
compiled version of the previous program, the in-line version is several
bytes smaller.

It is important to understand that, technically, inline is a request,
not a commarul, to the compiler to generate in-line code. There are
various situations that can prevent the compiler from complying with
the request. For functions returning values, if a loop, a switch, or a
goto exists, the compiler will not generate in-line code. For functions
not returning values, if a return statement exists, in-line code will not
be generated. You cannot have in-line recursive functions nor can you
create in-line functions that contain static variables.

Creating In-Line Functions Inside a Class

There is another way, in C++, to create an in-line function-by defining
the code to a function inside a class definition. Any function that is
defined inside a class definition is automatically made into an in-line
function. It is not necessary to precede its declaration with the keyword
inline. For example, the previous program can be rewritten as shown
here:

#include <iostream.h>

class cl {

A Closer Look at Classes and Objects 76 7

int i; II private by default
public:

II automatic inline functions
int get_i(void) {return i; }
void put_i(int j) { i = j; }

} ;

main(void)
{

cl s;

s.put_i(lO);
cout << s.get_i();

return O;
}

Notice the way the function code is arranged. For very short functions,
this arrangement reflects common C++ style. However, you could also
write them as shown here:

class cl {
inti; II private by default

public:
II inline functions
int get_i(void)
{

return i;
}

void put_i(int j)
{

}
} ;

i = j;

In professionally written C++ code, short functions like those illus­
trated in the example, are commonly defined inside the class definition.
This convention is followed in most of the C++ examples in this book.

More About Inheritance

As you saw in the previous chapter, it is possible for one class to inherit
the attributes of another class. This section examines some more details
relating to inheritance.

768 Turbo CIC++: The Complete Reference

Let's begin with the terminology. A class that is inherited by
another class is called the base class. Sometimes it is also referred to as
the parent class. The class that does the inheriting is called the derived
class, or the child class. This book uses the terms base and derived
because they are the traditional terms.

In C++, a class can categorize its elements into three classifications:
public, private, or protected. As you know, a public element can be
accessed by any other function in the program. A private or protected
element can be accessed only by member or friend functions.

When one class inherits another class, all private elements of the
base class are inaccessible to the derived class. For example, in the
following program

class X {
int i;
int j;

public:
void get_ij(void);
void put_ij(void);

} ;

class Y : public X {
int k;

public:
int get_k(void);
void make_k(void);

} ;

the elements of Y can access X's public functions get_ij() and
put_ij(), but cannot access i or j because they are private to X.

You can grant the derived class access to a class's private elements
by making them protected. For example,

class X {
protected:

int i;
int j;

public:
void get~ij(void);
void put_ij(void);

} i

class Y : public X {
int k;

public:
int get_k(void);

void make_k(void);
} ;

A Closer Look at Classes and Objects 769

gives Y access to i and j even though they are still inaccessible to the
rest of the program. When you make an element protected you restrict
its access to only the member functions of the class, but you allow this
access to be inherited. When an element is private, access is not inher­
ited.

The general form for inheriting a class is

class class-name : access class-name {

}

Here, access must be either private or public. (It can also be ommitted,
in which case public is assumed if the base class is a structure; or
private if the base class is a class.) If access is public, all public and
protected elements of the base class become public and protected
elements of the derived class, respectively. If access is private, all
public and protected elements of the base class become private ele­
ments of the derived class. To understand the ramifications of these
conversions, let's work through an example. Consider the following
program:

#include <iostream.h>

class X {
protected:

inti;
int j;

public:
void get_ij(void);
void put_ij(void);

} ;

II In Y, i and j of X become protected members.
class Y : public X {

int k;
public:

int get_k(void);
void make_k(void);

} ;

II Z has access to i and j of X, but not to

770 Turbo CIC++: The Complete Reference

II k of Y, since it is private by default.
class Z : public Y {
public:

void f(void);
} ;

void X::get_ij(void)
{

}

cout << "Enter two numbers: ";
cin » i » j;

void X::put_ij(void)
{

cout << i << " • << j << "\n";
}

int Y::get_k(void)
{

return k;
}

void Y::make_k(void)
{

k = i*j;
}

void Z: :f(void)
{

i = 2;
j = 3;

}

main(void)
{

}

Y var;
Z var2;

var.get_ij(j;
var.put_ij ();

var.make_k();
cout << var.get_k();
cout « "\n";

var2. f();
var2.put_ij ();

return O;

Since Y declares X as public, the protected elements of X become
protected elements of Y, which means that they can be inherited by Z
and this program compiles and runs correctly. However, changing X's

A Closer Look at Classes and Objects 771

status in Y to private, as shown in the following program, causes Z to
be denied access to i and j, and the functions get_ij() and put_ij()
that access them, because they have been made private in Y.

#include <iostream.h>

class X {
protected:

inti;
int j;

public:
void get_ij(void);
void put_ij(void);

} ;

II Now, i and j are converted to private members of Y.
class Y : private X {

int k;
public:

int get_k(void);
void make_k(void);

} ;

II Because i and j are private in Y, they
II may not be inherited by Z.
class Z : public Y {
public:

void f(void);
} ;

void X::get_ij(void)
{

cout << "Enter two numbers: ";
cin » i » j;

void X::put_ij(void)
{

cout << i << 11 11 << j << 11 \n 11 ;

int Y::get_k(void)
{

return k;
}

void Y::make_k(void)
{

k = i*j;

II This function no longer works.
void Z: :f(void)
{

772 Turbe C/C++: The Complete Reference

II i = 2; i and j are no longer accessible
II j = 3;
}

main(void)
{

Y var;
Z var2;

II var.get_ij(); no longer accessible
II var.put_ij(); no longer accessible

var.make_k();
cout << var.get_k();
cout « "\n";

var2.f();
II var2.put_ij(); no longer accessible

return O;
}

When Xis made private in Y's declaration, it causes i, j, get_ij(), and
put_ij() to be treated as private in Y, which means they cannot be
inherited by Z; thus, Z's class can no longer access them.

One final point about private, protected, and public. These key­
words can appear in any order and any number of times in the declara­
tion of struct or class. For example, this code is perfectly valid:

class my_class {
protected:

int i;
int j;

public:
void fl (vof d);
void f2{void);

protected:
int a;

public:
int b;

} ;

However, it is usually considered good form to have only one heading
inside each class or struct declaration.

Multiple Inheritance

It is possible for one class to inherit the attributes of two or more
classes. To accomplish this, use a comma-separated inheritance list in
the derived class's base class list. The general form is

A Closer Look at Classes and Objects 773

class derived-class-name : base-class list
{

}

For example, in this program Z inherits both X and Y.

#include <iostream.h>

class X {
protected:

int a;
public:

void make_a(int i);
};

class Y {
protected:

int b;
public:

void make_b(int i);
} ;

II Z inherits both X and Y
class Z : public X, public Y {
public:

int make_ab(void);
} :

void X::make_a(int i)
{

a= i;
}

void Y::make_b(int 1)
{

b = i;
}

int Z::make_ab(void)
{

return a*b;
}

main(void)
{

z i;

i.make_a(lO);
i .make_b(l2);

774 Turbo CIC++: The Complete Reference

cout << i.make_ab();

return 0;
}

In this example, Z has access to the public and protected portions of
both X and Y.

In the preceding example, neither X, Y, nor Z contained constructor
functions. However, the situation is more complex when a base class
contains a constructor function. For example, let's change the preceding
example so that the classes X, Y, and Z each have a constructor
function:

#include <iostream.h>

class X {
protected:

int a;
public:

X(void);
};

class Y {
protected:

int b;
public:

Y(void};
} ;

II Z inherits both X and Y
class Z : public X, public Y {
public:

Z(void};
int make ab(void): } ; - . . .

X: :X(void)
{

a = 10;
cout « "initializing X\n";

}

Y: :Y(void)
{

}

cout « "initializing Y\n";
b = 20;

Z: :Z(void}
{

cout « "initializing Z\n";
}

int Z::make_ab(void)
{

return a*b;
}

main(void)
{

z i;
cout << i.make_ab();

return O;
}

A Closer Look at Classes and Objects 775

When this program runs, it displays the following:

initializing X
initializing Y
initializing Z
200

Notice that the base classes are constructed in the order they appear
from left to right in Z' s declaration. In C++ the constructor functions
for any inherited base classes are called in the order in which they
appear. Once the base class or classes have been initialized the derived
class's constructor executes.

As long as no base class takes any arguments, the derived class
need not have a constructor function even though one or more base
classes do. However, when a base class contains a parameterized con­
structor function, any derived class must also contain a constructor
function. This allows a means of passing arguments to the constructor
functions of the base class or classes. To pass arguments to a base class,
you specify them after the derived class's constructor function declara­
tion, as shown in this general form:

derived-constructor<.arg-list) :
base1(arg-list), base2(arg-list), .. ., baseN(arg-list)

{

}

Here, base1 through baseN are the names of the base classes inherited
by the derived class. Notice that the colon is used to separate the

776 Turbo C/C++: The Complete Reference

derived class's constructor function from the argument lists of the base
classes. It is very important to understand that the argument lists
associated with the base classes can consist of constants, global parame­
ters, or the parameters to the derived class's constructor function. Since
an object's initialization occurs at run-time, you can use as an argument
any identifier that is defined within the scope of the class.

The following program illustrates how to pass arguments to the
base classes of a derived class by modifying the preceding program:

#include <iostream.h>

class X {
protected:

int a;
public:

X(int i);
};

class Y {
protected:

int b;
public:

Y(int i);
} i

II Z inherits both X and Y
class Z : public X, public Y {
public:

Z(int x, int y);
int make_ab(void);

} ;

X::X(int i)
{

a= 1;
}

Y::Y(int i)
{

b = i;
}

II Initialize X and Y via Z's constructor.
II Notice that Z does not actually use x or y
II itself, but it could, if it so chooses.
Z: :Z(int x, int y) : X(x), Y(y)
{

cout « "initializing\n";
}

int Z::make_ab(void)
{

A Closer Look at Classes and Objects 777

return a*b;
}

main(void)
{

Zi(l0,20);

cout << i.make_ab();

return O;
}

Notice how the constructor Z does not actually use its parameters
directly. Instead, in this example, they are simply passed along to the
constructor functions for X and Y. There is no reason, however, that Z
could not use these or other arguments.

Passing Objects to Functions

An object can be passed to a function in the same way as any other data
type. Objects are passed to functions using the normal C++ call-by-value
parameter passing convention. This means that a copy of the object is
passed to the function, not the actual object itself. Therefore, any
changes made to the object inside the function do not affect the object
used to call the function. The following program illustrates this point:

#include <iostream.h>

class OBJ {
inti;

public:
void set_i(int x) { i = x; }
void out_ i () { cout « i « 11 11 ; }

};

void f(OBJ x);

main(void)
{

OBJ o;

o.set_i(lO);
f(o);
o.out_i(); //still outputs 10, value of i unchanged

778 Turbo CIC++: The Complete Reference

return O:
}

void f(OBJ x)
{

}

x.out_i(); II outputs 10
x.set_i(lOO); II this affects only local copy
x.out_i(); II outputs 100

Ai3 you will see later it is also possible to pass only the address of an
object to a function. When an address to an object is passed, alterations
made to the object inside the function affect the object used in the call.

Arrays of Objects

You can create arrays of objects in the same way that you create arrays
of any other data types. For example, the following program establishes
a class called display that holds information about the various display
monitors that can be attached to a PC. Specifically, it contains the
number of colors that can be displayed and the type of video adapter.
Inside main() an array of three display objects is created, and the
objects that make up the elements of the array are accessed using the
normal indexing procedure.

II An example of arrays of objects

#include <iostream.h>

enum disp_type {mono, cga, ega, vga};

class display {
int colors: II number of colors
enum disp_type dt: II display type

public:
void set_colors(int num) {colors = num:}
int get_colors() {return colors:}
void set_type(enum disp_type t) {dt = t:}
enum disp_type get_type() {return dt;}

} :

char names [4] [5] = {
"mono",

11 cga 11 ,

11 ega 11 ,

11 vga 11

} ;

main(void)
{

display monitors[3];
register inti;

monitors[O].set_type(mono);
monitors[O].set_colors(l);

monitors[l].set_type(cga);
monitors[l].set_colors(4);

monitors[2].set_type(vga);
monitors[2].set_colors(16);

for(i=O; i<3; i++) {

A Closer Look at Classes and Objects 779

cout « names[monitors[i] .get_type()] « " ";
cout « "has " « monitors[i] .get_colors();
cout << " colors" << "\n";

return O;
}

This program produces the following output:

mono has 1 colors
cga has 4 colors
vga has 16 colors

Although not related to arrays of objects, notice how the two­
dimensional character array names is used to convert between an enu­
merated value and its equivalent character string. In all enumerations
that do not contain explicit initializations, the first constant has the
value 0, the second 1, and so on. Therefore, the value returned by
get_ type() can be used to index the names array, causing the appro­
priate name to be printed.

Multidimensional arrays of objects are indexed in precisely the
same way as arrays of other types of data.

Pointers to Objects

In C you can access a structure directly, or through a pointer to that
structure. Similarly, in C++ you can reference an object either directly

780 Turbo CIC++: The Complete Reference

(as has been the case in all preceding examples) or by using a pointer to
that object. Pointers to objects are among C++ 's most important fea­
tures.

To access an element of an object when using the actual object
itself, you use the dot (.) operator. To access a specific element of an
object when using a pointer to the object, you must use the arrow
operator (- >). The use of the dot and arrow operators for objects is
the same as their use for structures and unions.

You declare an object pointer using the same declaration syntax as
you do to any other type of data. The following program creates a
simple class called P _example, and defines an object of that class
called ob and a pointer for an object of type P _example called p. It
then illustrates how to access ob directly and indirectly using a pointer.

II A simple example using an object pointer.

#include <iostream.h>

class P_example {
int num;

public:

};

void set_num(int val) {num =val;}
void show_num();

void P_example::show_num()
{

cout << num << "\n";
}

main(void)
{

}

P_example ob, *p; II declare an object and pointer to it

ob.set_num(l); II access ob directly

ob.show_num();

p = &ob; II assign p the address of ob
p->show_num(); II access ob using pointer

return 0;

Notice that the address of ob is obtained using the & (address of)
operator in the same way the address is obtained for any type of
variable.

A Closer Look at Classes and Objects 781

When a pointer is incremented or decremented, it is increased or
decreased in such a way that it will always point to the next element of
its base type. The same thing occurs when a pointer to an object is
incremented or decremented; the next object is pointed to. The following
example modifies the preceding program so that ob is a two-element
array of type P _example. Notice how p is incremented and decre­
mented to access the two elements in the array.

II Incrementing an object pointer
#include <iostream.h>

class P_example {
int num;

public:

};

void set_num(int val) {num =val;}
void show_num();

void P_example::show_num()
{

cout << num << "\n";
}

main(void)
{

P_example ob[2], *p;

ob[O].set_num(lO); II access objects directly
ob[l].set_num(20);

p = &ob[O]; II obtain pointer to first element
p->show_num(); II show value of ob[O] using pointer

p++; II advance to next object
p->show_num(); II show value of ob[l] using pointer

p--; II retreat to previous object
p->show_num(); II again show value of ob[O]

return O;

The output from this program is 10, 20, 10.

Function and Operator Overloading

Chapter 25 introduced two of C++ 's most important features, function
and operator overloading. This chapter examines these topics in detail.
In the course of these discussions, other, related topics are also dis­
cussed.

Overloading Constructor Functions

Although performing a unique service, constructor functions are not
much different from other types of functions; they too can be over­
loaded. To overload a class's constructor function, simply declare the
various forms it will take and define each action relative to these forms.
For example, the following program declares a class called timer that
acts as a countdown timer (such as a darkroom timer). When an object
of type timer is created, it is given an initial time value. When the run()
function is called, the timer counts down to 0 and then rings the bell. In
this example, the constructor is overloaded to allow the time to be
specified in seconds as either an integer or a string, or in minutes and
seconds by specifying two integers.

T
w
E
N
T
y

784 Turbo CIC++: The Complete Reference

This program makes use of Turbo C's clock() function, which
returns the number of system clock ticks since the program began
running. Dividing this value by the macro CLK_ TCK converts the
return value of clock() into seconds. Both the prototype for clock()
and the definition of CLK_ TCK are found in the header file TIME.H.

#include <iostream.h>
#include <stdlib.h>
#include <time.h>

class timer{
int seconds;

public:
II seconds specified as a string
timer(char *t) {seconds= atoi(t);}

II seconds specified as integer
timer(int t) { seconds = t; }

II time specified in minutes and seconds
timer(int min, int sec) { seconds = min*60 + sec; }

void run(void);
} :

void timer::run(void)
{

}

clock_t tl, t2;

tl = t2 = clock()ICLK_TCK;
while(seconds) {

if(tllCLK_TCK+l <= (t2=clock())ICLK_TCK) {
seconds--;

}
}

t1 = t2;

cout « "\a"; 11 ring the bell

main(void)
{

}

timer a(lO), b("20"), c(l, 10);

a.run(); II count 10 seconds
b.run(); II count 20 seconds
c.run(); II count 1 minute, 10 seconds

return O:

As you can see, when a, b, and c are created inside main() they are
given initial values using the three different methods supported by the

Function and Operator Overloading 785

overloaded constructor functions. Each approach causes the appropriate
constructor to be used and initializes all three variables properly.

In the program just shown, you may see little value in overloading a
constructor function because you could simply decide on a single way to
specify the time. However, if you were creating a library of classes for
someone else to use, you might want to supply constructors for the most
common forms of initialization, allowing the programmer to choose the
most appropriate form for his or her application.

Local Variables In C++

Before continuing with the discussion of overloaded functions, the decla­
ration of local variables must be discussed.

In C you must declare all local variables used within a block at the
start of that block. You cannot declare a variable in a block after
another statement has occurred. For example, in C, this fragment is
incorrect:

/* incorrect in C */
f()
{

inti;

i = 10;

int j;

}

Because the statement i = 10 falls between the declaration of i and that
of j, a C compiler will flag an error and refuse to compile this function.
However, in C++ this fragment is perfectly acceptable and will compile
without error. For example, the following is an acceptable C++ program:

#include <iostream.h>
#include <string.h>

main(void)
{

inti;

786 Turbo CIC++: The Complete Reference

}

i = 10;

int j = 100; II perfectly legal in C++

cout << i *j << "\n";

cout « "Enter a string: ";
char str[80]; II also legal in C++
ci n » str;

II display the string in reverse order
int k; II in C++, declare k where it is needed
k = strlen(str);
k--;
while(k>=O) {

cout « str[k];
k--;

return 0;

As this program illustrates, in C++ you can declare local variables
anywhere within a block of code. Since much of the philosophy behind
C++ is the encapsulation of code and data, it makes sense that you can
declare variables close to where they are used instead of only at the
beginning of the block. In this example, the declarations of i and j are
separated simply for illustration. However, you can see how the localiza­
tion of k to its relevant code helps encapsulate that routine. Declaring
variables close to the point where they are used helps you avoid acciden­
tal side effects.

Dynamic lnltlallzatlon

In C++, both local and global variables can be initialized at run-time.
This is sometimes referred to as dynamic initialization. Using dynamic
initialization, a variable can be initialized at run-time using any C++
expression valid at the time the variable is declared. This means you can
initialize a variable using other variables or function calls as long as the
overall expression has meaning when the declaration is encountered.
This differs from C, in which a variable's initial value must be known at

Function and Operator Overloading 787

compile time, requiring a constant expression that cannot use variables
or function calls. For example, these are perfectly valid variable initial­
izations in C++ (but not in C):

int n = atoi(gets(str));

long pos = ftell(fp);

double d = 1.02 * count I deltax;

We can make use of dynamic initialization to improve the example
program from the preceding section, as shown here:

#include <iostream.h>
#include <string.h>

main(void)
{

}

inti;

i = 10;

int j = 100;

cout « i*j « "\n";

cout « "Enter a string: ";
char str[SO];
cin » str;

II ***********************************
II initialize k dynamically at runtime
int k = strlen(str)-1;
II ***********************************

whil e(k>=O) {
cout « str[k];
k--;

return O;

Here, k is dynamically initialized because the call to strlen() is resolved
at run-time. This further illustrates how declaring variables close to
where they are used can be valuable.

788 Turbo CIC++: The Complete Reference

Applying Dynamic lnltlallzatlon to Constructors

Like simple variables, objects can be initialized dynamically when they
are created. This means you can create exactly the type of object you
need using information that is known only at run-time. To illustrate how
dynamic initialization works, let's rework the timer program from ear­
lier in this chapter.

In the first example of the timer program there is little to be gained
by overloading the timer() constructor because all objects of its type
were initialized using constants. However, in cases when an object will
be initialized at run-time, there may be significant advantages in allow­
ing various initialization formats to be used. This allows the programmer
the flexibility of using the constructor that most closely matches the
format of the data available at the moment. For example, in this version
of the timer program, two objects, b and c, are constructed at run-time
using dynamic initialization:

#include <iostream.h>
#include <stdlib.h>
#include <time.h>

class timer{
int seconds;

public:
II seconds specified as a string
timer(char *t) {seconds= atoi(t);}

II seconds specified as integer
timer(int t) { seconds = t; }

II time specified in minutes and seconds
timer(int min, int sec) { seconds = min*60 + sec; }

void run(void);
} ;

void timer::run(void)
{

clock_t tl, t2;

tl = t2 = clock()ICLK_TCK;
while(seconds) {

if(tllCLK_TCK+l <= (t2=clock())/CLK_TCK) {
seconds--;

}
}

t1 = t2;

cout «"\a"; II ring the bell

Function and Operator Overloading 789

main(void}
{

}

timer a(lO};

a.run(};

cout « "Enter number of seconds: ";
char str[SO];
cin » str;
timer b(str}; II initialize at runtime
b. run(};

cout << "Enter minutes and seconds: ";
int min, sec;
cin >> min >> sec;
timer c(min, sec}; II initialize at runtime
c.run(};

return O;

AB you can see, object a is constructed using an integer constant.
However, objects b and c are constructed using information entered by
the user. Since the user enters a string for b, it makes sense for timer()
to be overloaded to accept the string. In similar fashion, object c is also
constructed at run-time using information input by the user. In this
case, since the time is entered as minutes and seconds, it is logical to use
this form to construct object c. By allowing various initialization for­
mats, the programmer need not perform any unnecessary conversions
from one form to another when initializing an object.

Overloading constructor functions allows the programmer to handle
greater complexity by allowing objects to be constructed in the most
natural manner relative to their specific use. Since there are three
common ways to pass timing values to an object, it makes sense that
timer() be overloaded to accept each way. However, overloading
timer() to accept days or nanoseconds is probably not a good idea­
littering your code with constructors that handle seldom-used contin­
gencies destabilizes your program. You must decide what constitutes
valid constructor overloading and what is frivolous.

The this Keyword

Before moving on to operator overloading, it is necessary for you to
learn about another of C++ 's keywords, this, which is an essential
ingredient for many overloaded operators.

790 Turbo CIC++: The Complete Reference

Each time a member function is invoked, it is automatically passed a
pointer to the object that invoked it. You can access this pointer using
this. The this pointer is an implicit parameter to all member functions.

As you know, a member function can access the private data of its
class directly. For example, given the following class:

class cl {
inti;

};

a member function can assign i the value 10 using this statement:

i = 10;

Actually, this statement is shorthand for the statement

this->i = 10;

To see how the this pointer works, examine this short program:

#include <iostream.h>

class cl {
int i ~

public:
void load_i(int val) { this->i =val; } //same as i =val
int get_i(void) {return this->i; } //same as return i

} ;

main(void)
{

}

cl o;

o. load_i (100);
cout << o.get_i();

return 0;

This program displays the number 100.

Function and Operator Overloading 791

While the preceding example is trivial-in fact, no one would actu­
ally use the this pointer in this way-the following section shows why
the this pointer is so important.

Operator Overloading

A feature of C++ that is related to function overloading is operator
overloading. With very few exceptions, most of C++ 's operators can be
given special meanings relative to specific classes. For example, a class
that defines a linked list might use the + operator to add an object to
the list. Another class might use the + operator in an entirely different
way. When an operator is overloaded, none of its original meaning is
lost. It simply means that a new operation relative to a specific class is
defined. Therefore, overloading the + to handle a linked list does not
cause its meaning relative to integers (that is, addition) to be changed.

To overload an operator you must define what that operation means
relative to the class that it is applied to. To do this you create an
operator function, which defines its action. The general form of an
operator function is

type classname::operator#(arg-list)
{

11 operation defined relative to the class
}

Here, the operator that you are overloading is substituted for the # and
type is the type of value returned by the specified operation. To facilitate
their use in complex expressions, the return value of an operator often is
of the same type as the class for which the operator is being overloaded.
(Although it could be of any type you choose.) The specific nature of
arg-list is determined by several factors, as you will soon see.

Operator functions must be either members or friends of the class
for which they are being used. Although very similar, there are some
differences between the way a member operator function is overloaded

792 Turbo CIC++: The Complete Reference

and the way a friend operator function is overloaded. In this section,
only member functions will be overloaded. Later in this chapter, you will
see how to overload friend operator functions.

To see how operator overloading works, let's start with a simple
example that creates a class called three_ d that maintains the coordi­
nates of an object in three-dimensional space. This program overloads
the + and = operators relative to the three_ d class:

#include <iostream.h>

class three_d {
int x, y, z; II 3-d coordinates

public:
three_d operator+(three_d t);
three_d operator=(three_d t);

void show(void) ;
void assign(int mx, int my, int mz);

} ;

II Overload the+.
three_d three_d::operator+(three_d t)
{

}

three_d temp;

temp.x = x+t.x;
temp.y = y+t.y;
temp.z = z+t.z;
return temp;

II Overload the =.
three_d three_d::operator=(three_d t)
{

}

x = t.x;
y = t.y;
z = t.z;
return *this;

II show X, Y, Z coordinates
void three_d::show(void)
{

}

cout << x << 11 • 11 ;

cout << y << ", ";
cout << z << "\n";

II Assign coordinates
void three_d::assign(int mx, int my, int mz)
{

x = mx;

}

y =my;
z = mz;

main(void)
{

three_d a, b, c:

a.assign(l, 2, 3);
b.assign(lO, 10, 10);

a.show();
b.show();

Function and Operator Overloading 793

c = a+b; // now add a and b together
c.show();

}

c = a+b+c; // add a, band c together
c.show();

c = b =a; // demonstrate multiple assignment
c.show();
b.show();

return O;

This program produces the following output:

1, 2, 3
10, 10, 10
11, 12, 13
22, 24, 26
1, 2, 3
1, 2, 3

As you examine this program, you may be surprised to see that both
operator functions had only one parameter each, even though they
overloaded binary operations. This is because when a binary operator is
overloaded using a member function only one argument is explicitly
passed to it. The other argument is implicitly passed using the this
pointer. Thus, in the line

temp.x = x + t.x;

the x refers to this - > x, which is the x associated with the object that
prompted the call to the operator function. In all cases, it is the object

794 Turbo CIC++: The Complete Reference

on the left side of an operation that causes the call to the operator
function. The object on the right side is passed to the function.

In general, when using a member function, no parameters are
needed when overloading a unary operator, and only one parameter is
required when overloading a binary operator. (You cannot overload the
? ternary operator.) In either case, the object that causes the activation
of the operator function is implicitly passed through the this pointer.

To understand how operator overloading works, let's examine the
preceding program carefully, beginning with the overloaded operator +.
When two objects of type three_ d are operated on by the + operator,
the magnitudes of their respective coordinates are added together, as
shown in the operator+ () function associated with this class. Notice,
however, that this function does not modify the value of either operand.
Instead, an object of type three_ d, which contains the result of the
operation, is returned by the function. To understand why the + opera­
tion does not change the contents of either object, think about the
standard arithmetic + operation as applied like this: 10+12. The out­
come of this operation is 22, but neither 10 nor 12 are changed by it.
Although there is no rule that states that an overloaded operator cannot
alter the value of one of its operands, it usually makes sense for the
overloaded operator to stay consistent with its original meaning. Fur­
ther, related to the three_ d class, we don't want the + to alter the
contents of an operand.

Another key point about the how the + operator is overloaded is
that it returns an object of type three_ d. Although the function could
have returned any valid C++ type, the fact that it returns a three_ d
object allows the + operator to be used in more complex eApr-essioi1s,
such as a+ b + c. Here, a+ b generates a result that is of type three_ d.
This value can then be added to c. Had any other type of value been
generated by a+ b, it could not have been added to c.

Contrasting with the + operator, the assignment operator does,
indeed, cause one of its arguments to be modified. (This is, after all, the
very essence of assignment.) Since the operator= () function is called
by the object that occurs on the left side of the assignment, it is this
object that is modified by the assignment operation. However, even the
assignment operation must return a value because in C++ (as well as C),
the assignment operation produces the value that occurs on the right
side. Thus, to allow statements like

a = b = c = d;

Function and Operator Overloading 795

it is necessary for operator= () to return the object pointed to by this,
which will be the object that occurs on the left side of the assignment
statement, allowing a string of assignments to be made. The assignment
operation is one of the most important uses of the this pointer.

You can also overload unary operators, such as + + or --. AB
stated earlier, when overloading a unary operator using a member
function, no object is explicitly passed to the operator function. Instead,
the operation is performed on the object that generates the call to the
function through the implicitly passed this pointer. For example, here is
an expanded version of the previous example program that defines the
increment operation for objects of type three_d.

#include <iostream.h>

class three_d {
int x, y, z; II 3-d coordinates

public:
three_d operator+(three_d op2); II opl is implied
three_d operator=(three_d op2); II opl is implied
three_d operator++{void); II opl is also implied here

void show(void) ;
void assign.(int mx, int my, int mz);

} ;

three_d three_d::operator+{three_d op2)
{

}

three_d temp;

temp.x = x+op2.x; II these are integer additions
temp.y = y+op2.y; II and the+ retains its original
temp.z = z+op2.z; II meaning relative to them
return temp;

three_d three_d::operator={three_d op2)
{

}

x = op2.x; II these are integer assigments
y = op2.y; II and the= retains its original
z = op2.z; II meaning relative to them
return *this;

II Overload a unary operator.
three_d three_d::operator++(void)
{

}

x++;
y++;
z++;
return *this;

796 Turbo CIC++: The Complete Reference

II show X, Y, Z coordinates
void three_d::show(void)
{

}

cout << x << ", ";
cout << y << ", ";
cout << z << "\n";

II Assign coordinates
void three_d::assign(int mx, int my, int mz)
{

}

x = mx;
Y = my;
z = mz;

main(void)
{

}

three_d a, b, c;

a.assign(l, 2, 3);
b.assign(lO, 10, 10);

a.show();
b.show();

c = a+b; II now add a and b together
c.show();

c = a+b+c; II add a, b and c together
c.show();

c = b =a; II demonstrate multiple assignment
c.show();
b.show();

c++; II increment c
c.show();

return 0;

One important point to keep in mind when you overload + + or - - is
that it is not possible to determine from within the operator function
whether the operator precedes or follows its operand. That is, your
operator function cannot know whether the expression that causes the
call to the function is

++0;

or

O++;

Function and Operator Overloading 797

where 0 is the object being subjected to the operation.
The action of an overloaded operator as applied to the class for

which it is defined need not have any relationship to that operator's
default use with C++ 's built-in types. For example, the < < and > > as
applied to cout and cin have little in common with the same operators
applied to integer types. However, for the purpose of structure and
readability of your code, an overloaded operator should reflect, when
possible, the spirit of the operator's original use. For example, the +
relative to three_ d is conceptually similar to the + relative to integer
types. There is little benefit, for example, in defining the + operator
relative to a particular class in such a way that it acts more like you
would expect the I I operator to perform. While you can give an over­
loaded operator any meaning you like, it is best, for clarity, to relate its
new meaning to its original meaning.

Some restrictions to overloading operators also apply. First, you
cannot alter the precedence of any operator. Second, you cannot alter
the number of operands required by the operator, although your opera­
tor() function could choose to ignore an operand. Finally, except for the
=, overloaded operators are inherited by any derived classes. Each
class must define explicitly its own overloaded = operator if one is
needed. (Of course, you can overload one or more operators relative to
the derived class if necessary.)

The only operators you cannot overload are

. :: ·* ?

Friend Operator Functions

It is possible for an operator function to be a friend of a class rather
than a member. AB you learned earlier in this chapter, friend functions
do not have the implied argument this. Therefore, when a friend is used
to overload an operator, both operands are passed when overloading
binary operators and a single operand is passed when overloading unary
operators. The only operators that cannot use friend functions are = ,
(), [], and - >. The rest can use either member or friend functions to
implement the specified operation relative to its class. For example,
here is a modified version of the preceding program using a friend
instead of a member function to overload the + operation:

798 Turbo CIC++: The Complete Reference

#include <iostream.h>

class three_d {
int x, y, z; II 3-d coordinates

public:
friend three_d operator+(three_d opl, three_d op2);
three_d operator=(three_d op2); II opl is implied
three_d operator++(void); II opl is implied here, too

void show(void) ;
void assign(int mx, int my, int mz);

} ;

II This is now a friend function.
three_d operator+(three_d opl, three_d op2)
{

}

three_d temp;

temp.x = opl.x + op2.x; II these are integer additions
temp.y = opl.y + op2.y; II and the+ retains its original
temp.z = opl.z + op2.z; II meaning relative to them
return temp;

three_d three_d::operator=(three_d op2)
{

}

x = op2.x; II these are integer assignments
y = op2.y; II and the = retains its original
z = op2.z; II meaning relative to them
return *this;

II Overload a unary operator.
three_d three_d::operator++(void)
{

}

x++;
y++;
z++;
return *this;

II show X, Y, Z coordinates
void three_d::show(void)
{

}

cout << x << 11 , 11 ;

cout << y << 11 , 11 ;

cout << z << 11 \n 11 ;

II Assign coordinates
void three_d::assign(int mx, int my, int mz)
{

}

x = mx;
Y = my;
z = mz;

Function and Operator Overloading 799

main(void)
{

}

three_d a, b, c;

a.assign(l, 2, 3);
b.assign(lO, 10, 10);

a.show();
b.show();

c = a+b; II now add a and b together
c.show();

c = a+b+c; II add a, band c together
c. show();

c = b = a; II demonstrate multiple assignment
c. show();
b. show();

c++; II increment c
c. show();

return O;

Ai; you can see by looking at operator+(), now both operands are
passed to it. The left operand is passed in opl and the right operand in
op2.

In many cases, there is no benefit to using a friend function instead
of a member function when overloading an operator. However, there is
one situation in which you must use a friend function. Ai; you know, a
pointer to an object that invokes a member operator function is passed
in this. In the case of binary operators, the object on the left invokes
the function. This works as long as the object on the left defines the
specified operation. For example, assuming an object called 0, which has
assignment and addition defined for it, this is a valid statement:

0 = O + 10; II will work

Since the object 0 is on the left of the + operator, it invokes its
overloaded operator function, which (presumably) is capable of adding
an integer value to some element of 0. However, this statement doesn't
work:

0 = 10 + 0; II won't work

800 Turbo CIC++: The Complete Reference

The reason this statement does not work is that the object on the left of
the operator is an integer, which is a built-in type for which no operation
involving an integer and an object of O's type is defined.

You can use built-in types on the left side of an operation if the + is
overloaded using two friend functions. In this case, the operator func­
tion is explicitly passed both arguments and it is invoked like any other
overloaded function, based upon the types of its arguments. One version
of the + operator function handles object+ integer and the other han­
dles integer+object. Overloading the + (or any other binary operator)
using a friend allows a built-in type to occur on the left or right side of
the operator. The following program illustrates how to accomplish this:

#include <iostream.h>

class CL {
public:

};

int count;
CL operator=(int i);
friend CL operator+(CL ob, inti);
friend CL operator+(int i, CL ob);

CL CL::operator=(int i)
{

}

count= i;
return *this;

II This handles ob+ int.
CL operator+(CL ob, int i)
{

CL temp;

temp.count= ob.count+ i;
return temp;

II This handles int +ob.
CL operator+(int i, CL ob)
{

}

CL temp;

temp.count= ob.count+ i;
return temp;

main(void)
{

CL obj;

Function and Operator Overloading 801

obj = 10;
cout «obj.count« 11 11 ; // outputs 10

}

obj = 10 + obj; // add object to integer
cout «obj.count« 11 11 ; //outputs 20

obj =obj + 12; // add integer to object
cout <<obj.count; // outputs 32

return O;

AB you can see, the operator+ () function is overloaded twice to accom..,
modate the two ways in which an integer and an object of type CL can
occur in the addition operation.

Although you can use a friend function to overload a unary opera­
tor, such as ++,you first need to know about another feature of C++,
called the reference, which is the subject of the next section.

References

By default, C and C++ pass arguments to a function using call-by-value.
Passing an argument using call-by-value causes a copy of that argument
to be used by the function and prevents the argument used in the call
from being modified by the function. In C (and optionally in C++), when
a function needs to be able to alter the values of the variables used as
arguments, the parameters must be explicitly declared as pointer types
and the function must operate on the calling variables using the *
pointer operator. For example, the following program implements a
function called swap(), which exchanges the values of its two integer
arguments:

#include <iostream.h>

void swap(int *a, int *b);

main(void)
{

int x, y;

x = 99;
y = 88;

802 Turbo CIC++: The Complete Reference

cout << x << 11 11 << y << 11 \n 11 ;

swap(&x, &y); II exchange their values

cout << x << 11 11 << y << 11 \n 11 ;

return O;
}

II C-like, explicit pointer version of swap().
void swap(int *a, int *b)
{

}

int t;

t = *a;
*a = *b;
*b = t;

When calling swap(), the variables used in the call must be preceded by
the & operator in order to produce a pointer to each argument. This is
the way that a call-by-reference is generated in C. However, even
though C++ still allows this syntax, it supports a cleaner, more transpar­
ent method of generating a call-by-reference using a reference parameter.

In C++, it is possible to tell the compiler to automatically generate a
call-by-reference rather than a call-by-value for one or more parameters
of a particular function. This is accomplished by preceding the parame­
ter name in the function's declaration by the&. For example, here is a
function called f() that takes one reference parameter of type int.

void f(int &f)
{

f =rand(); II this modifies calling argument
}

This declaration form is also used in the function's prototype. Notice
that the statement f = rand() does not use the * pointer operator.
When you declare a reference parameter, the C++ compiler automati­
cally knows that it is a pointer and dereferences it for you.

Once the compiler has seen this declaration, it automatically passes
f() the address of any variable it is called with. For example, given this
fragment

int val;

f(val); II get random value
printf("%d", val);

Function and Operator Overloading 803

the address of val, not its value, is passed to f(). Thus, f() can modify
the value of val.

To see reference parameters in actual use, the swap() function is
rewritten using references. Look carefully at how swap() is declared
and called:

#include <iostream.h>

void swap(int &a, int &b); II declare as reference parameters

main(void)
{

}

int x, y;

x = 99;
y = 88;

cout << x << 11 11 << y << 11 \n 11 ;

swap(x, y); II exchange their values

cout << x << 11 11 << y << 11 \n 11 ;

return 0;

II Here, swap() is defined as using call-by-reference,
II not call-by-value.
void swap(int &a, int &b)
{

}

int t;

t = a;
a = b; II this swaps x
b = t; II this swaps y

Notice that by making a and b reference parameters, there is no need to
use the & or the * operators. In fact, it would be an error to do so.
Remember that the compiler automatically generates the addresses of
the arguments used to call swap() and automatically dereferences a
and b.

There are several restrictions that apply to reference variables:

1. You cannot reference a reference variable. That is, you cannot
take its address.

2. You cannot create arrays of references.

804 Turbo CIC++: The Complete Reference

3. You cannot create a pointer to a reference.

4. References are not allowed on bit fields.

Note: Some C++ programmers associate the & with the type rather
than the variable when declaring a reference variable. For example,
here is another way to write the prototype to swap():

void swap(int& a, int& b);

Further, some C++ programmers also specify pointers by associating
the * with the type rather than the variable, as shown here:

fl oat* p;

The trouble with associating the & or * with the type rather than the
variable is that, according to formal C++ syntax, neither the & nor the
* is transitive over a list of variables and can lead to confusing
declarations. For example, the following declaration creates one, not
two, integer pointers. Here, b is declared as an integer (not an integer
pointer) because, as specified by the C++ syntax, when used in a
declaration the * and & are linked to the individual variable that they
precede, not to the type that they follow:

int* a, b;

It is important to understand that as far as the C++ compiler is
concerned it doesn't matter whether you write int *P or int* p. Thus,
if you pref er to associate the * or & with the type rather than the
variable, feel free to do so. However, to avoid confusion, this book will
continue to associate the * and the & with the variable that they
modify rather than the type.

Nonparameter Reference Variables

Even though references are included in C++ primarily for supporting
call-by-reference parameter passing, it is possible to declare a reference
variable that is not a parameter to a function. However, nonparameter

Function and Operator Overloading 805

reference variables are seldom a good idea because they tend to confuse
and destructure your program. With these reservations in mind, we will
take a short look at them here.

Non parameter reference variables are sometimes called indepen­
dent or standalone references. Since a reference variable must point to
some object, an independent reference must be initialized when it is
declared. Generally, this means that it will be assigned the address of a
previously declared variable. Once this is done, the reference variable
can be used anywhere that the variable it references can. In fact, there
is virtually no distinction between the two. For example, consider this
program:

#include <iostream.h>

main(void)
{

}

int j, k;
int &i = j; II independent reference

j = 10;

cout « j « 11 11 « i ; I I outputs 10 10

k = 121;
i = k; II copies k's value into j

II not k's address

cout « 11 \n 11 « j; 11 outputs 121

return O;

This program displays the following output:

10 10
121

The address pointed to by the reference variable is fixed and cannot be
changed. Thus, when the statement i = k is evaluated, it is k's value
that is copied into j (pointed to by i), not its address. For another
example, i + + does not cause i to point to a new address. Instead, k is
increased by 1. Remember that references are not pointers.

You can also use an independent reference to point to a constant.
For example, the following is valid.

806 Turbo CIC++: The Complete Reference

int &i = 100;

In this case, i references the location in your program's constant table
where the value 100 is stored.

Ai3 stated earlier, in general it is not a good idea to use independent
references because they are not necessary and tend to confuse your
code.

Using a Reference to Overload a Unary Operator

You can overload a friend unary operator using a reference parameter.
To begin, think back to the original version of the overloaded + +
operator relative to the three_ d class. It is shown here for your
convenience:

II Overload a unary operator.
three_d three_d::operator++(void)
{

}

x++;
y++;
z++;
return *this;

Ai3 you know, each member function has as an implicit argument a
pointer to itself that is referenced inside the member function using the
keyword this. For this reason, when overloading a unary operator using
a member function, no argument is explicitly declared. The only argu­
ment needed in this situation is the implicit pointer to the object that
activated the call to the overloaded operator function. Since this is a
pointer to the object, any changes made to the object's private data
affect the object that generates the call to the operator function. Unlike
member functions, a friend function does not receive a this pointer and
therefore cannot reference the object that activated it. For this reason,
trying to create a friend operator+ + () function as shown here does
not work:

II THIS WILL NOT WORK
three_d operator++(three_d opl)
{

}

opl.x++;
opl.y++;
opl.z++;
return opl;

Function and Operator Overloading 807

The reason this function does not work is because only a copy of the
object that activated the call to operator+ + () is passed to the function
in parameter opl. Thus, the changes inside operator+ + () do not affect
the called object.

You might at first think that the solution to the above program is to
define the friend operator function as shown here, using a pointer to the
object that activates the call:

II THIS WILL NOT WORK
three_d operator++(three_d *opl)
{

}

opl->x++;
opl->y++;
opl->z++;
return *opl;

While this function is correct syntactically, Turbo C++ does not know
how to correctly activate it. For example, assuming this version of the
operator+ + () function, this code fragment does not compile:

three_d ob(l, 2, 3};
&ob++; II will not compile

The trouble is that the statement &ob+ + is inherently ambiguous.
The way to use a friend when overloading a unary + + or - - is to

use a reference parameter. In this way the compiler knows in advance
that it must generate an address when it calls the function. This avoids
the ambiguity introduced by the previous attempt. Here is the entire
three_ d program, using a friend operator+ + () function:

II This version uses a friend operator++(} function.
#include <iostream.h>

class three_d {
int x, y, z; II 3-d coordinates

public:
friend three_d operator+(three_d opl, three_d op2);
three_d operator=(three_d op2}; II opl is implied

808 Turbo CIC++: The Complete Reference

II use a reference to overload the++
friend three_d operator++(three_d &opl);

void show(void) ;
void assign(int mx, int my, int mz);

} ;

II This is now a friend function.
three_d operator+(three_d opl, three_d op2}
{

}

three_d temp;

temp.x = opl.x + op2.x; II these are integer additions
temp.y = opl.y + op2.y; II and the + retains its original
temp.z = opl.z + op2.z; II meaning relative to them
return temp;

three_d three_d::operator=(three_d op2}
{

}

x = op2.x; II these are integer assigments
y = op2.y; II and the = retains its original
z = op2.z; II meaning relative to them
return *this;

II Overload a unary operator using a friend function.
II This requires the use of a reference parameter.
three_d operator++(three_d &opl)
{

}

opl.x++;
opl.y++;
opl.z++;
return opl;

II show X, Y, Z coordinates
void three_d::show(void)
{

cout << x << 11 , 11 ;

cout << y << 11 , 11 ;

cout << z << 11 \n 11 ;

}

II Assign coordinates
void three_d::assign(int mx, int my, int mz)
{

}

x = mx;
Y = my;
z = mz;

main(void}
{

three_d a, b, c;

}

a.assign(l, 2, 3);
b.assign(lO, 10, 10);

a.show();
b.show();

Function and Operator Overloading 809

c = a+b; II now add a and b together
c.show();

c = a+b+c; II add a, band c together
c.show();

c = b =a; II demonstrate multiple assignment
c.show();
b.show();

c++; II increment c
c.show();

return 0;

Reminder: In general, you should use member functions to implement
overloaded operators. Remember that friend functions are allowed in
C++ mostly to handle some special-case situations.

Another Example of Operator Overloading

This section develops another example of operator overloading that
implements a string type and defines several operations relative to that
type. Even though C's approach of implementing strings as character
arrays rather than as a type is both :flexible and efficiently implemented,
to beginners it can lack the conceptual clarity of the way strings are
implemented in languages such as BASIC. However, using C++ it is
possible to combine the best of both worlds by defining a string class
and operations that are related to that class.

To begin, the following class declares the type str _type:

#include <iostream.h>
#include <string.h>

class str_type {
char string[SO);

public:
str_type(char *str = "\O") { strcpy(string, str); }

8 IO Turbo CIC++: The Complete Reference

str_type operator+(str_type str); II concatenate
str_type operator=(str_type str); II assign

II output the string
void show_str(void) { cout << string; }

} ;

As you can see, str _type declares one string in its private portion. For
the sake of this example, no string can be longer than 80 bytes. The
class has one constructor function that can be used to initialize the
array string with a specific value or assign it a null string in the absence
of any initializer. It also declares two overloaded operators that perform
concatenation and assignment. Finally, it declares the function
show_ str(), which outputs string to the screen. The overloaded opera­
tor functions are shown here:

II Concatenate two strings.
str_type str_type::operator+(str_type str) {

str_type temp;

}

strcpy(temp.string, string);
strcat(temp.string, str.string);
return temp;

II Assign one string to another.
str_type str_type::operator=(str_type str)

strcpy(string, str.string);
return *this;

}

Given these definitions, the following main() illustrates their use:

main(void)
{

str_type a("Hello "). b("There"), c;

c = a + b;

c.show_str();

return O;
}

This program outputs "Hello There" on the screen. It first concatenates
a with b and then assigns this value to c. Keep in mind that both the =

Function and Operator Overloading 811

and the + are defined only for objects of type str _type. For example,
this statement is invalid because it tries to assign object a a normal C++
string:

a = "this is currently wrong";

However, the str _type class can be enhanced to allow such a state­
ment. To expand the types of operations supported by the str _type
class so that you can assign normal C++ strings to str _type objects or
concatenate a C++ string with a str _type object, you need to overload
the + and = operations a second time. First, the class declaration is
changed, as shown here:

class str_type {
char string[80];

public:
str_type(char *str = "\O") { strcpy{string, str); }

str_type operator+(str_type str); II concatenate objects
str_type operator+{char *str}; II concatenate object with

II a string

str_type operator=(str_type str); II assign object to
II object

char *operator=(char *str); II assign string to object

void show_str(void) { cout << string; }
} ;

Next, the overloaded operator+ () and operator= () are implemented,
as shown here:

II Assign a string to an object
str_type str_type::operator=(char *str)
{

}

str_type temp;

strcpy(string, str);
strcpy(temp.string, string);
return temp;

II Add a string to an object
str_type str_type::operator+(char *str)
{

}

str_type temp;

strcpy(temp.string, string);
strcat(temp.string, str);
return temp;

812 Turbo CIC++: The Complete Reference

Look carefully at these functions. Notice that the right-side argument is
not an object of type str _type but rather simply a pointer to a null­
terminated character array-that is, a normal string in C++. However,
notice that both functions return an object of type str _type. Although
the functions could, in theory, have returned some other type, it makes
the most sense to return an object since the targets of these operations
are also objects. The advantage to defining string operations that accept
normal 0++ strings as the right-side operand is that it allows some
statements to be written in a natural way. For example, these are now
valid statements:

str_type a, b, c;

a= "hi there"; II assign an object a string

c = a + " George"; II concatenate an object with a string

The following program incorporates the additional meanings for the
+ and = operations and illustrates their use.

II Expanding the string type.
#include <iostream.h>
#include <string.h>

class str_type {
char string[80];

public:
str_type(char *str = "\O") { strcpy(string, str); }

str_type operator+(str_type str);
str_type operator+(char *str);

str_type operator=(str_type str);
str_type operator=(char *str);

void show_str(void) { cout << string; }
} ;

str_type str_type::operator+(str_type str) {
str_type temp;

}

strcpy(temp.string, string);
strcat(temp.string, str.string);
return temp;

str_type str_type::operator=(str_type str) {
strcpy(string, str.string);
return *this;

}

Function and Operator Overloading 813

str_type str_type::operator=(char *str)
{

}

str_type temp;

strcpy(string, str);
strcpy(temp.string, string);
return temp;

str_type str_type::operator+{char *str)
{

}

str_type temp;

strcpy(temp.string, string);
strcat(temp.string, str);
return temp;

main (void)
{

}

str_type a("Hello "), b("There"). c;

c = a + b;

c.show_str();
cout << 11 \n 11 ;

a = "to program in because";
a.show_str();
cout << 11 \n 11 ;

b = c = "C++ is fun";

c = c+ 11 11 +a+ 11 11 +b;
c.show_str();

return O;

This program displays the following on the screen:

Hello There
to program in because
C++ is fun to program in because C++ is fun

On your own, try creating other string operations. For example, you
might try defining the - so that it performs a substring deletion. For
example, if object A's string is "This is a test" and object B's string is
"is", then A-B yields "th a test". In this case, all occurrences of the
substring are removed from the original string.

Inheritance, Virtual Functions,
and Polymorphism

Crucial to object-oriented programming is polymorphism. AB applied to
C++, polymorphism is the process by which different implementations of
a function can be accessed using the same name. For this reason,
polymorphism is sometimes characterized by the phrase "one interface,
multiple methods." This means that a general class of operations can be
accessed in the same fashion even though the specific actions associated
with each operation may differ.

In C++, polymorphism is supported both at run-time and at compile­
time. Operator and function overloading are examples of compile-time
polymorphism. However, as powerful as operator and function overload­
ing are, they cannot perform all tasks required by a true, object­
oriented language. Therefore, C++ also allows run-time polymorphism
through the use of derived classes and virtual functions, which are
discussed in this chapter.

This chapter begins with a short discussion of pointers to derived
types because they are needed to support run-time polymorphism.

Pointers to Derived Types

Pointers to base types and derived types are related. ABsume that you
have a base type called B _class and a type called D _class, that is
derived from B _class. In C++, any pointer declared as a pointer to
B_class can also be a pointer to D_class. For example, given

B_class *p; II pointer to object of type B_class
B_class B_ob; II object of type B_class
D_class D_ob; II object of type D_class

T
w
E
N
T
y

81 6 Turbo CIC++ : The Complete Reference

the following is perfectly valid:

p = &B_ob; II p points to object of type B_class

p = &D_ob; I* p pointer to object of type D_class,
which is an object derived from B_class. *I

Using p, all elements of D _ob inherited from B _ob can be accessed.
However, elements specific to D _ob cannot be referenced using p
(unless a type cast is employed).

For a concrete example, consider this short program, which defines
a base class called B _class and a derived class called D _class. The
derived class implements a simple automated telephone book.

II Using pointers on derived class objects.

#include <iostream.h>
#include <string.h>

class B_class {
char name [80];

public:
void put_name(char *s) {strcpy(name, s); }
void show_name(void) {cout «name « " ";}

} ;

class D_class : public B_class {
char phone_num[SO];

public:
void put_phone(char *num) {

strcpy(phone_num, num);
}
void show_phone() {cout « phone_num « "\n";}

main(void)
{

B_class *p;
B_class B_ob;

D_class *dp;
D_class D_ob;

p = &B_ob; II address of base

II Access B_class via pointer.
p->put_name("Thomas Edison");

II Access D_class via base pointer.
p = &D_ob;
p->put_name("Albert Einstein");

}

Inheritance, Virtual Functions, and Polymorphism 81 7

II Show that each name went into proper object.
B_ob.show_name();
D_ob.show_name{);
cout << 11 \n 11 ;

I* Since put_phone and show_phone are not part of the
base class, they are not accessible via the base
pointer p and must be accessed either directly,
or, as shown here, through a pointer to the
derived type.

*I
dp = &D_ob;
dp->put_phone("555 555-1234");
p->show_name(); //either p or dp can be used in this line
dp->show_phone{);
return O;

In this example, the pointer p is defined as a pointer to B _class.
However, it can point to an object of the derived class D _class and can
be used to access those elements of the derived class that are defined by
the base class. However, remember that a base pointer cannot access
those elements specific to the derived class without the use of a type
cast. This is why show_ phone() is accessed using the dp pointer,
which is a pointer to the derived class.

!f you want to access elements defined by a derived type using a
base type pointer, you must cast it into a pointer of the derived type.
For example, this line of code properly calls the show _phone() func­
tion of D _ob:

((D_class *)p)->show_phone();

The outer set of parentheses are necessary to associate the cast with p
and not with the return type of show_ phone(). While there is techni­
cally nothing wrong with casting a pointer in this manner, it is best
avoided because it simply adds confusion to your code.

While a base pointer can be used to point to any type of derived
object, the reverse is not true. That is, you cannot use a pointer to a
derived class to access an object of the base type.

One final point: a pointer is incremented and decremented relative
to its base type. Therefore, when a pointer to a base class is pointing to
a derived class, incrementing or decrementing it does not make it point
to the next object of the derived class. Therefore, you should consider it
invalid to increment or decrement a pointer when it is pointing to a
derived object.

81 8 Turbo CIC++ : The Complete Reference

The fact that a pointer to a base type can be used to point to an
object derived from that base is extremely important and fundamental
to C++. In fact, as you will soon learn, it is crucial to the way C++
implements run-time polymorphism.

Virtual Functions

Run-time polymorphism is achieved through the use of derived types
and virtual functions. In short, a virtual function is a function that is
declared as virtual in a base class and redefined in one or more derived
classes. Virtual functions are special because when one is accessed using
a pointer of the base class to an object of a derived class, C++ deter­
mines which function to call at run-time based on the type of object
pointed to. Thus, when different objects are pointed to, different ver­
sions of the virtual function are executed.

A virtual function is declared as virtual inside the base class by
preceding its declaration with the keyword virtual. However, when a
virtual function is redefined by a derived class, the keyword virtual
need not be repeated (although it is not an error to do so).

As a first example of virtual functions, examine this short program:

II A short example that uses virtual functions.
#include <iostream.h>

class Base {
pubiic:

virtual void who(void) { II specify a virtual function
cout << "Base\n";

}
};

class first_d : public Base {
public:

void who(void) { II define who() relative to first_d
cout « "First derivation\n";

}
};

class second_d : public Base {
public:

void who(void) { II define who() relative to second_d
cout << "Second derivation\n";

}

Inheritance, Virtual Functions, and Polymorphism 819

};

main(void)
{

}

Base base_obj;
Base *p;
first_d first_obj;
second_d second_obj;

p = &base_obj;
p->who(); //access Base's who

p = &first_obj;
p->who(); //access first_d's who

p = &second_obj;
p->who(); //access second_d's who

return O;

This program produces the following output:

Base
First derivation
Second derivation

Let's examine the program in detail to understand how it works.
As you can see, in Base, the function who() is declared as virtual.

This means that the function can be redefined by a derived class. Inside
both first_d and second_d, who() is redefined relative to each class.
Inside main(), four variables are declared. The first is base_obj, which
is an object of type Base; p, which is a pointer to Base objects; and
first_obj, and second_obj, which are objects of the two derived
classes. Next, p is assigned the address of base_ obj, and the who()
function is called. Since who() is declared as virtual, C++ determines at
run-time which version of who() is referred to by the type of object
pointed to by p. In this case, it is an object of type Base, so the version
of who() declared in Base is executed. Next, pis assigned the address
of first_obj. (Remember that a base class pointer can be used to
reference any derived class.) Now when who() is called, C++ again
examines what type of object is pointed by p to determine what version
of who() to call. Since p points to an object of type first_ d, that
version of who() is used. Likewise, when p is assigned the address
second_ obj, the version of who() declared inside second_d is exe­
cuted.

820 Turbo CIC++: The Complete Reference

The key point to using virtual functions to achieve run-time poly­
morphism is that you must access those functions through the use of a
pointer declared as a pointer to the base class. Although you can call a
virtual function explicitly using the object name as you would call any
other member function, it is only when a virtual function is accessed
through a pointer to the base class that run-time polymorphism is
achieved.

The redefinition of a virtual function in a derived class is a special
form of function overloading. However, the reason that this term is not
used in the preceding discussion is that several restrictions apply. First,
the prototypes for virtual functions must match. As you know, when
overloading normal functions, the return type and the number and type
of parameters can differ. However, when overloading a virtual function,
these elements must be unchanged. If the prototypes of the functions
differ, then the function is simply considered overloaded, and its virtual
nature is lost. Also, if only the return types of the function differ, an
error occurs. (Functions that differ only in their return types are inher­
ently ambiguous.) Another restriction is that a virtual function must be a
member, not a friend, of the class for which it is defined. However, a
virtual function can be a friend of another class. Also, destructor func­
tions can be virtual, but constructors cannot.

Because of the restrictions and differences between overloading
normal functions and "overloading'' virtual functions, the term overrid­
ing is used to describe the virtual function redefinition.

Once a function is declared as virtual it stays virtual no matter how
many layers of derived classes it can pass through. For example, if
second_ d is derived from first_ d instead of Base, as shovv'n in the
following example, who() is still virtual, and the proper version is still
correctly selected:

II Derive from first_d, not Base
class second_d : public first_d {
public:

void who(void) { II define who() relative to second_d
cout « "Second derivation\n";

}
};

When a derived class does not override a virtual function, then the
version of the function in the base class is used. For example, try this
version of the preceding program:

Inheritance, Virtual Functions, and Polymorphism 821

#include <iostream.h>

class Base {
public:

virtual void who(void) {
cout << "Base\n";

}
};

class first_d : public Base {
public:

void who(void) {
cout « "First derivation\n";

}
};

class second_d : public Base {
II who() not defined
};

main(void)
{

Base base_obj;
Base *p;
first_d first_obj;
second_d second_obj;

p = &base_obj;
p->who(); II access Base's who()

p = &first_obj;
p->who(); II access first_d's who()

p = &second_obj;
p->who(); I* access Base's who() because

second_d does not redefine it *I

return 0;

This program now outputs the following:

Base
First derivation
Base

Keep in mind that inherited characteristics are hierarchical. To
illustrate this point, imagine that in the preceding example second_d is
derived from first_d instead of Base. When who() is referenced rela­
tive to an object of type second_ d (in which who() is not defined) it is
the version of who() declared inside first_ d that is called since it is the

822 Turbo CIC++: The Complete Reference

class closest to second_ d. In general, when a class does not override a
virtual function, C++ uses the first definition that it finds in reverse
order of derivation.

Why Virtual Functions?

As stated at the start of this chapter, virtual functions in combination
with derived types allow C++ to support run-time polymorphism. Poly­
morphism is essential to object-oriented programming because it allows
a generalized class to specify those functions that will be common to any
derivative of that class, while allowing a derived class to specify the
exact implementation of some or all of those functions. In other words,
the base class dictates the general interface that any object derived
from that class will have, but lets the derived class define the actual
method. This is why the phrase "one interface, multiple methods" is
often used to describe polymorphism.

Part of the key to successfully applying polymorphism is under­
standing that base and derived classes form a hierarchy that moves
from greater to lesser generalization (base to derived). Hence, when
used con-ectly, the base class provides all elements that a derived class
can use directly plus the basis for those functions that the derived class
must implement on its own.

Having a consistent interface with multiple implementations is im­
portant because it helps the progranuner handle increasingly compiex
programs. For example, when you develop a program, all objects you
derive from a particular base class are accessed in the same general
way, even if the specific actions vary from one derived class to the next.
This means that you need to remember only one interface rather than
several. Further, the separation of interface and implementation allows
the creation of class libraries, which can be provided by a third party. If
these libraries are implemented con-ectly, they provide a common inter­
face that you can use to derive your own specific classes.

To get an idea of the power of the "one interface, multiple methods"
concept, examine this short program. It creates a base class called
figure. This class is used to store the dimensions of various two­
dimensional objects and to compute their areas. The function

Inheritance, Virtual Functions, and Polymorphism 823

set_ dim() is a standard member function because its operation is
common to all derived classes. However, show_ area() is declared as
virtual because the way the area of each object is computed varies. The
program uses figure to derive two specific classes, called square and
triangle.

#include <iostream.h>

class figure {
protected:

double x, y;
public:

void set_dim(double i, double j) {
x = i;
y = j;

}
virtual void show_area(void) {

cout « "No area computation defined ";
cout « "for this class.\n";

}
} ;

class triangle public figure {
public:

};

void show_area(void) {

}

cout « "Triangle with height 11 ;

cout << x << 11 and base 11 << y;
cout << 11 has an area of 11 ;

cout << x * 0.5 * y << ".\n";

class square : public figure {
public:

void show_area(void) {

}

cout « "Square with dimensions 11 ;

cout << x << 11 x11 << y;
cout << 11 has an area of 11 ;

cout << x * y << ".\n";

};

main(void)
{

figure *p; /* create a pointer to base type */

triangle t; /* create objects of derived types */
square s;

p = &t;
p->set_dim(lO.O, 5.0);
p->show_area();

824 Turbo CIC++: The Complete Reference

}

P = &s;
p->set_dim(lO.O, 5.0);
p->show_area();

return 0;

AB you can see by examining this program, the interface to both square
and triangle is the same even though both provide their own methods
for computing the area of each of their objects.

Given the declaration for figure, it is possible to derive a class
called circle that computes the the area of a circle given its radius. To
do so you must create a new derived type that computes the area of a
circle. The power of virtual functions is based in the fact that you can
easily derive a new type that shares the same common interface as other
related objects. For example, here is one way to do it:

class circle : public figure {
public:

} ;

void show_area(void) {

}

cout « "Circle with radius ";
cout << x;
cout << " has an area of ";
cout << 3.14 * x * x;

Before trying to use circle, look closely at the definition of
show _area(). Notice that it uses only the value of x, which is assumed
to hold the :tadius. (Remember that the area of a circle is computed
using the formula 'l'l'R2.) However, the function set_ dim() as defined in
figure assumes that it will be passed, not just one, but two values. Since
circle does not require this second value, what is the best course of
action?

There are two ways to resolve this problem. First, you can call
set_ dim() using a dummy value as the second parameter when using a
circle object. This has the disadvantage of being sloppy as well as
requiring you to remember a special exception, which violates the "one
interface, many methods" approach.

A better way to resolve this problem is to give the y parameter
inside set_ dim() a default value. In this way, when calling set_ dim()

Inheritance, Virtual Functions, and Polymorphism 825

for a circle, you need specify only the radius. When calling set_ dim()
for a triangle or a square, you would specify both values. The expanded
program is shown here:

#include <iostream.h>

class figure {
protected:

double x, y;
public:

}

void set_dim(double i, double j=O) {
x = i;
y = j;

}
virtual void show_area(void) {

}

cout « "No area computation defined ";
cout « "for this class.\n";

class triangle : public figure {
public:

};

void show_area(void) {

}

cout « "Triangle with height ";
cout << x << " and base " << y;
cout << " has an area of ";
cout << x * 0.5 * y << ".\n";

class square : public figure {
public:

};

void show_area(void) {

}

cout « "Square with dimensions ";
cout << x << "x" << y;
cout << " has an area of ";
cout << x * y << ".\n";

class circle : public figure {
public:

} ;

void show_area(void) {

}

cout « "Circle with radius ";
cout << x;
cout « " has an area of ";
cout << 3.14 * x * x;

main(void)
{

figure *p; /* create a pointer to base type */

826 Turbo CIC++: The Complete Reference

}

triangle t; /* create objects of derived types */
square s;
circle c;

p = &t;
p->set_dim(lO.O, 5.0);
p->show_area();

P = &s;
p->set_dim(lO.O, 5.0);
p->show_area();

P = &c;
p->set_dim(9.0);
p->show_area();

return 0;

This points out that when defining base classes it is important to be
as flexible as possible. Don't give your program unnecessary restric­
tions.

Pure Virtual Functions and Abstract Types

When a virtual function that is not overridden in a derived class is called
for an object of that derived class, the version of the function as defined
in the base class is used. However, in many circumstances there is no
meaningful definition of a vli:tu.al function inside the base class. For
example, in the base class figure, used in the preceding example, the
definition of show _area() is simply a place holder. It does not compute
and display the area of any type of object. There are two ways you can
handle this situation. One way is to simply have it report a warning
message, as shown in the example. While this approach can be useful in
certain situations, it is not appropriate for all circumstances. There can
be virtual functions that must be defined by the derived class in order
for the derived class to have any meaning. For example, the class
triangle has no meaning if show_ area() is not defined. In this sort of
case, you want some method to ensure that a derived class does, indeed,
define all necessary functions. C++ 's solution to this problem is the pure
virtual function.

Inheritance, Virtual Functions, and Polymorphism 827

A pure virtual function is a function declared in a base class that
has no definition relative to the base. Since it has no definition relative
to the base, any derived type must define its own version -it cannot
simply use the version defined in the base. To declare a pure virtual
function, use this general form:

virtual type June_ name(parameter list) = O;

where type is the return type of the function and June_ name is the
name of the function. For example, in the following version of figure,
show_ area() is a pure virtual function:

class figure {
double x, y;

public:
void set_dim(double i, double j=O) {

x = i;
y = j;

}
virtual void show_area(void) = 0; II pure

} ;

By declaring a virtual function as pure, you force any derived class
to define its own implementation. If a class fails to do so, Turbo C++
reports an error. For example, if you try to compile this modified
version of the figure program, in which the definition for show_ area()
has been removed from the circle class, you will see an error message:

I*

*I

This program will not compile because the class
circle does not override show_area().

#include <iostream.h>

class figure {
protected:

double x, y;
public:

void set_dim(double i, double j) {
x = i;
y = j;

}
virtual void show_area(void) = O; II pure

} ;

828 Turbo CIC++: The Complete Reference

class triangle : public figure {
public:

};

void show_area(void) {

}

cout « "Triangle with height ";
cout << x << " and base " << y;
cout « " has an area of ";
cout « x * 0.5 * y << 11 .\n";

class square : public figure {
public:

};

void show_area(void) {

}

cout « "Square with dimensions ";
cout << x << "x" << y;
cout << " has an area of ";
cout << x * y << ".\n";

class circle : public figure {
II no definition of show_area() will cause an error
};

main(void)
{

}

figure *p; I* create a pointer to base type *I

triangle t; I* create objects of derived types *I
square s;

p = &t;
p->set_dim(l0.0, 5.0);
p->show_area();

P = &s;
p->set_dim(lO.O, 5.0);
p->show_area();

return 0;

If a class has at least one pure virtual function, that class is said to
be abstract. Abstract classes have one important feature: There can be
no objects of that class. Instead, an abstract class must be used only as
a base that other classes will inherit. The reason that an abstract class
cannot be used to declare an object is that one or more of its member
functions have no definition. However, even if the base class is abstract,
you still can use it to declare pointers, which are needed to support
run-time polymorphism.

Inheritance, Virtual Functions, and Polymorphism 829

Early Versus Late Binding

There are two terms that are commonly used when discussing object­
oriented programming languages: early binding and late binding. Rela­
tive to C++, these terms refer to events that occur at compile time and
events that occur at run-time, respectively.

In object-oriented terms, early binding means that an object is
bound to its function call at compile type. That is, all information
necessary to determine which function will be called is known when the
program is compiled. Examples of early binding include standard func­
tion calls, overloaded function calls, and overloaded operator function
calls. The principal advantage to early binding is efficiency-it is both
faster and often requires less memory than late binding. Its disadvan­
tage is a lack of flexibility.

Late binding means that an object is bound to its function call only
at run-time, not before. Late binding is achieved in C++ by using virtual
functions and derived types. The advantage to late binding is that it
allows greater flexibility. It can be used to support a common interface
while allowing various objects that use that interface to define their own
implementations. Further, it can be used to help you create class librar­
ies, which can be reused and extended.

Whether your program uses early or late binding depends on what
your program is designed to do. (Actually, most large programs use a
combination of both.) Late binding is one of C++ 's most powerful addi­
tions to the C language. However, the price you pay for this power is
that your program will run slightly slower. Therefore, it is best to use
late binding only when it adds to the structure and manageability of
your program. Keep in mind that the loss of performance is very small,
so when the situation calls for late binding, you should most definitely
use it.

Constructors and Destructors In Derived Classes

When using derived classes, is important to understand how and when
constructor and destructor functions are executed in both the base and
derived classes. Let's begin with constructors.

830 Turbo CIC++: The Complete Reference

It is possible for a base class and a derived class to each have a
constructor function. (In fact, in the case of multiple inheritance, it is
possible for all involved classes to have constructors, but we will start
with the simplest case.) When a base class contains a constructor, that
constructor is executed before the constructor in the derived class. For
example, consider this short program:

#include <iostream.h>

class Base {
public:

Base(void) {cout « "\nBase created\n";}
};

class D_classl : public Base {
public:

D_classl(void) {cout << "D_classl created\n";}
};

main(void)
{

}

D_classl dl;

II do nothing but execute constructors
return 0;

This program creates an object of type D _ classl. It displays this
output:

Base created

Here, dl is an object of type D _ classl, which is derived using Base.
Thus, when dl is created, first Base() is executed, then D _ classl() is
called.

It makes sense for constructors to be called in the same order in
which the derivation takes place. Because the base class has no knowl­
edge of the derived class, any initialization it needs to perform is
separate from and possibly prerequisite to any initialization performed
by the derived class, so it must be executed first.

Opposite from constructors, a destructor function in a derived class
is executed before the destructor in the base. The reason for this is also
easy to understand. Since the destruction of the base class implies the

Inheritance, Virtual Functions, and Polymorphism 831

destruction of the derived class, the derived destructor must be exe­
cuted before it is destroyed. This program illustrates the order in which
constructors and destructors are executed:

#include <iostream.h>

class Base {
public:

Base(void) {cout « "\nBase created\n";}
"'Base(void) {cout « "Base destroyed\n\n";}

};

class D_classl : public Base {
public:

D_classl(void) {cout « "D_classl created\n";}
"'o_classl(void) {cout « "D_classl destroyed\n";}

};

main(void)
{

D_classl dl;

cout << "\n";

return O;
}

This program produces the following output:

Base created
D_classl created

D_classl destroyed
Base destroyed

AB you know, it is possible for a derived class to be used as a base
class in the creation of another derived class. When this happens,
constructors are executed in the order of the derivation and destructors
in the reverse order. For example, consider this program, which uses
D _ classl to derive D _ class2:

#include <iostream.h>

class Base {
public:

Base(void) {cout « "\nBase created\n";}
"'Base(void) {cout « "Base destroyed\n\n";}

};

832 Turbo CIC++: The Complete Reference

class O_classl : public Base {
public:

D_classl(void) {cout « "D_classl created\n";}
ND_classl(void) {cout « "D_classl destroyed\n";}

};

class D_class2 : public D_classl {
public:

O_class2(void) {cout « "O_class2 created\n";}
ND_class2(void) {cout << "O_class2 destroyed\n";}

};

main(void)
{

}

D_classl dl;
D_class2 d2;

cout << "\n";

return O;

The program produces this output:

Base created
D_classl created

Base created
O_classl created
O_class2 created

D_class2 destroyed
o_classl destroyed
Base destroyed

o_classl destroyed
Base destroyed

Multiple Base Classes

It is possible to specify more than one base class when creating a
derived type. To do so, use a comma-separated list of the classes that
will be inherited. For example, consider this program:

#include <iostream.h>

class Basel {

Inheritance, Virtual Functions, and Polymorphism 833

public:
Basel(void) {cout « "\nBasel created\n";}
NBasel(void) {cout « "Basel destroyed\n\n";}

};

class Base2 {
public:

Base2(void) {cout « "Base2 created\n";}
NBase2(void) {cout « "Base2 destroyed\n";}

};

II multiple base clases
class D_classl : public Basel, public Base2 {
public:

D_classl(void) {cout « "D_classl created\n";}
ND_classl(void) {cout « "D_classl destroyed\n";}

};

main(void)
{

D_classl dl;

cout << 11 \n 11 ;

return 0;
}

In this program, D _ classl is derived from both Basel and Base2. The
program produces this output:

Basel created
Base2 created
D_classl created

D_classl destroyed
Base2 destroyed
Basel destroyed

AB you can see, when a list of base classes is used, the constructors are
called in order from left to right. Destructors are called in order from
right to left.

Using C++'s 1/0 Class Library

Although Turbo C++ supports all of Turbo C's I/0 functions, most C++
programs ignore them in favor of C++ 's 1/0 operators. Using C++ 's
method of 1/0 helps you to think in an object-oriented manner and to
see the value of the "one interface, multiple methods" philosophy.

This chapter presents an overview of Turbo C++ 's I/0 class library.
It also discusses how to overload the < < and > > operators so that
you can input or output objects of classes that you design. C++ 's 1/0 is
very large and it isn't possible to cover every function or feature here,
but this chapter introduces you to the most important and commonly
used functions and features.

Why C++ Has Its Own 1/0 System

If you have programmed in other languages, you know that C has one of
the most flexible, yet powerful 1/0 systems. (In fact, it may be safe to
say that among the world's structured languages, C's I/O system is
unparalleled.) In spite of the power of C's I/0 functions, the C 1/0
system provides no support for user-defined objects. This is why C++
defines its own 1/0 functions. For example, in C if you create this
structure:

struct my_struct {
int count;
char s [80];
double balance;

} cust;

there is no way to customize or extend C's I/0 system so that it knows
about and can perform 1/0 operations directly on a variable of type
my _struct.

T
W'
E
N
T
y

836 Turbo CIC++: The Complete Reference

However, using C++ 's approach to I/O it is possible to overload the
< < and > > operators so that they know about classes that you
create. This includes the console I/O operations you have been using
throughout this part of the book as well as file I/0. (As you will see,
console and file I/O are linked in C++ as they are in C.)

Although C++ 's I/O system and C's I/O contain virtually the same
operations, the fact that C++ 's system can be made aware of user­
defined types greatly increases its flexibility and helps prevent bugs.
For example, in this call to scanf():

char str[80];
inti;

scanf("%d%s", str, &i);

the string and the integer are inverted in the argument list; the %d is
matched with the string str and the %s with the integer i. However,
while this produces peculiar results, a call such as this is not technically
an error in C. (It is conceivable that in some highly unusual situation,
you might want to use a call to scanf() as shown.) However, it is more
likely that this call to scanf() is, indeed, an error. In short, when calling
scanf(), C has no means of providing strong type checking. In C++,
however, I/O operations for all built-in types are defined relative to the
< < and > > operators so that there is no way for such an inversion to
take place. Instead, the correct operation is automatically determined by
the type of the operand. This feature can also be extended to user­
defined objects. (If needed, you can still cause something like the un-

C++ Streams

The C and C++ I/O systems have one important thing in common: they
both operate on streams, which are discussed in Part One of this book.
(That discussion is not repeated here.) The fact that C and C++ streams
are similar means that what you know about streams is completely
applicable to C++. Also, with a few small exceptions, you can mix C and

Using C++ 's 1/0 Class Library 837

C++ I/O operations in the same program. Therefore, you can begin to
evolve existing C programs toward C++ without having to convert every
I/O operation at the outset.

The C++ Predefined Streams

Like C, C++ contains several predefined streams that are opened auto­
matically when your C++ program begins execution. They are cin, cout,
cerr, and clog. As you know, cin is the stream associated with standard
input and cout is the stream associated with standard output. The
difference between cerr and clog, which are both linked to standard
output, is that cerr is not buffered, so any data sent to it is immediately
output. Alternatively, clog is buffered, and output is only written when a
buff er is full.

By default, the C++ standard streams are linked to the console, but
they can be redirected to other devices or files by your program. Also,
they can be redirected by the operating system.

The C++ Stream Classes

The Turbo C++ I/O system is defined by a hierarchy of classes that
relate to streams. These definitions are found in the header file io­
stream.h. The lowest level class is called streambuf and it provides the
basic stream operations but no formatting support. The next class in the
hierarchy is called ios, which provides the basic support for formatted
I/O. It is also used to derive three classes that you can use to create
streams: istream, ostream, and iostream. Using istream, you can
create an input stream; using ostream, you can create an output stream;
and using iostream, you can create a stream capable of both input and
output.

Creating Your Own lnsertors and Extractors

In the preceding four chapters, special member functions were created
in order to output or input a class's data. While there is nothing wrong

838 Turbo CIC++: The Complete Reference

with this approach, C++ allows a much better way of performing I/O
operations on classes by overloading the < < and > > operators.

In the language of C++, the < < operator is referred to as the
insertion operator because it inserts characters into a stream. Likewise,
the > > operator is called the extraction operator because it extracts
characters from a stream. The operator functions that overload the
insertion and extraction operators are generally called insertors and
extractors, respectively.

The insertion and extraction operators are already overloaded (in
iostream.h) to perform stream I/0 on any of C++ 's built-in types. This
section explains how to define these operators relative to classes that
you define.

Creating lnsertors

C++ provides an easy way to create insertors for classes that you create.
This simple example creates an insertor for the three_ d class (first
defined in Chapter 27):

class three_d {
public:

int x, y, z; II 3-d coordinates
three_d(int a, int b, int c) {x=a; y=b; z=c;}

} ;

To create an insertor function for an object of type three_ d, you must
define what an insertion operation means relative to the class three_ d.
To do this, you must overload the < < operator, as shown here:

II Display X, Y, Z coordinates (three_d's insertor).
ostream &operator<<(ostream &stream, three_d obj)
{

stream<< obj.x << ", ";
stream<< obj.y << ", ";
stream<< obj.z << "\n";
return stream; II return the stream

Many of the features in this function are common to all insertor func­
tions. First, notice that it is declared as returning a reference to an
object of type ostream. This is necessary to allow several insertors of

Using C++ 's 1/0 Class Library 839

this type to be strung together. Next, the function has two parameters.
The first is the reference to the stream that occurs on the left side of the
< < operator; the second parameter is the object that occurs on the
right side. Inside the function, the three values contained in an object of
type three_ d are output, and stream is returned. Here is a short
program that demonstrates the insertor:

#include <iostream.h>

class three_d {
public:

int x, y, z; II 3-d coordinates
three_d(int a, int b, int c) {x=a; y=b; z=c:}

} :

II Display X, Y, Z coordinates - three_d insertor
ostream &operator<<(ostream &stream, three_d obj)
{

stream << obj .x << 11 , 11 :

stream<< obj.y << 11 , 11 ;

stream<< obj.z << 11 \n 11 ;

return stream; II return the stream

main(void)
{

three_d a(l, 2, 3), b(3, 4, 5), c(5, 6, 7);

cout << a << b << c;

return O;
}

If you eliminate the code that is specific to the three_ d class you are
left with the general form of an insertor function, as shown here:

ostream &operator< < (ostream &stream, class_ type obj)
{

}

II type specific code goes here
return stream; II return the stream

What an insertor function actually does is up to you. Just make sure
that you return stream.

You might wonder why the insertor function was not coded, shown
as follows.

840 Turbo CIC++: The Complete Reference

II Limited version - don't use.
ostream &operator<<(ostream &stream, three_d obj)
{

cout << obj.x << ", ";
cout << obj.y << ", ";
cout « obj .z « "\n";
return stream; II return the stream

In this version, the cout stream is hard-coded into the function. How­
ever, remember that the < < operator can be applied to any stream.
Therefore, you must use the stream passed to the function if it is to
work correctly in all cases.

In the three_ d insertor program, the overloaded insertor function
is not a member of three_ d. In fact, neither insertor nor extractor
functions can be members of a class. This is because when an operator
function is a member of a class, the left operand (implicitly passed using
the this pointer) is assumed to be an object of the class that generated
the call to the operator function. There is no way to change this.
However, when overloading insertors, the left argument is a stream and
the right argument is an object of the class. Therefore, overloaded
insertors can not be member functions.

The fact that insertors must not be members of the class they are
defined to operate on raises a serious question: How can an overloaded
insertor access the private elements of a class? In the previous program,
the variables x, y, and z were made public so that the insertor could
access them. But, hiding data is an important part of .object-oriented
programming, and forcing all data to be public is inconsistent with the
object-oriented approach. Ho;vever, there is a solution: An insertor can
be a friend of a class. AB a friend of the class it is defined for, it has
access to private data. To see an example of this, the three_ d class and
sample program are reworked here, with the overloaded insertor de­
clared as a friend.

#include <iostream.h>

class three_d {
int x, y, z; II 3-d coordinates - - now private

public:
three_d(int a, int b, int c) {x=a; y=b; z=c;}
friend ostream &operator<<(ostream &stream, three_d obj);

} ;

II Display X, Y, Z coordinates - three_d inserter

Using C++ 's 1/0 Class Library 841

ostream &operator<<(ostream &stream, three_d obj)
{

}

stream<< obj.x << ", ";
stream << obj .y << ", ";
stream« obj.z « "\n";
return stream; // return the stream

main(void)
{

three_d a(l, 2, 3), b(3, 4, 5), c(5, 6, 7);

cout << a << b << c;

return 0;
}

Notice that the variables x, y, and z are now private to three_ d, but
can still be accessed directly by the insertor. Making insertors (and
extractors) friends of the classes they are defined for preserves the
encapsulation principle of object-oriented programming.

Overloadlng Extractors
To overload an extractor, use the same general approach as when
overloading an insertor. For example, this extractor inputs 3-D coordi­
nates. Notice that it also prompts the user.

II Get three dimensional values - extractor.
istream &operator>>(istream &stream, three_d &obj)
{

}

cout <<"Enter X,Y,Z values: ";
stream>> obj.x >> obj.y >> obj.z;
return stream;

Extractors must return a reference to an object of type istream. Also,
the first parameter must be a reference to an object of type istream.
The second parameter is a reference to the variable that will be receiv­
ing input. Because it is a reference, the second parameter can be
modified when information is input.

The general form of an extractor is

istream &operator> > (istream &stream, object_ type &obj)
{

842 Turbo CIC++: The Complete Reference

}

II put your extractor code here
return stream;

Here is a program that demonstrates the extractor for objects of
type three_ d.

#include <iostream.h>

class three_d {
int x, y, z; II 3-d coordinates

public:
three_d(int a, int b, int c) {x=a; y=b; z=c;}
friend ostream &operator<<(ostream &stream, three_d obj);
friend istream &operator>>(istream &stream, three_d &obj);

} ;

II Display X, Y, Z coordinates - insertor.
ostream &operator<<(ostream &stream, three_d obj)
{

}

stream << obj .x << ", ";
stream << obj .y << ", ";
stream<< obj.z << "\n";
return stream; II return the stream

II Get three dimensional values - extractor
istream &operator>>(istream &stream, three_d &obj)
{

cout <<"Enter X,Y,Z values:";
stream>> obj.x >> obj.y >> obj.z;
return stream;

main(void)
{

}

three_d a(l, 2, 3);

cout « a;

cin » a;
cout « a;

return D;

Like insertors, extractor functions cannot be members of the class
they are designed to operate upon. AB shown in the example, they can
be friends or simply independent functions.

· Except for the fact that you must return a reference to an object of
type istream, you can do anything you like inside an extractor function.

Using C++ 's 1/0 Class Library 843

However, for the sake of structure and clarity, it is best to limit the
actions of an extractor to the input operation.

Formatting 1/0

As you know, using printf() you can control the format of information
displayed on the screen. For example, you can specify field widths and
left- or right-justification. You can also accomplish the same type of
formatting using C++ 's approach to 1/0. There are two ways to format
output. The first uses member functions of the ios class. The second
uses a special type of function called a manipulator. We will begin by
looking at formatting using the member functions of ios.

Formatting Using the ios Member Functions

The following enumeration is defined in iostream.

II formatting flags
enum {

};

skipws = OxOOOl,
left = Ox0002,
right = Ox0004,
internal = Ox0008,
dee = OxOOlO,
oct = Ox0020,
hex = Ox0040,
showbase = Ox0080,
showpoint = OxOlOO,
uppercase = Ox0200,
showpos = Ox0400,
scientific = Ox0800,
fixed = OxlOOO,
unitbuf = Ox2000,
stdio = Ox4000

The values defined by this enumeration are used to set or clear flags
that control some of the ways information is formatted by a stream.

844 Turbo CIC++: The Complete Reference

When the skipws flag is set, leading white-space characters (spaces,
tabs, and newlines) are discarded when performing input on a stream.
When skipws is cleared, white-space characters are not discarded.

When the left flag is set, output is left-justified. When right is set,
output is right-justified. When the internal flag is set, a numeric value is
padded to fill a field by inserting spaces between any sign or base
character. (You will learn how to specify a field width shortly.)

By default, numeric values are output in decimal. However, you can
override this default. For example, to output in decimal, set the dee flag.
Setting the oct flag causes output to be displayed in octal. Setting the
hex flag causes output to be displayed in hexadecimal.

Setting showbase causes the base of numeric values to be shown.
Setting showpoint causes a decimal point and trailing Os to be

displayed for all floating-point output-whether needed or not.
By default, when scientific notation is displayed, the 'e' is in lower­

case. Also, when a hexadecimal value is displayed, the 'x' is in lowercase.
When uppercase is set, these characters are displayed in uppercase.

Setting showpos causes a leading plus sign to be displayed before
positive integer values.

By setting the scientific flag, floating-point numeric values are
displayed using scientific notation. When fixed is set, floating-point
values are displayed using normal notation. By default, when fixed is
set, six decimal places are displayed. When neither flag is set, the
compiler chooses an appropriate method.

When unitbuf is set, the C++ I/0 system performance is improved
because output is partially buffered. When set, the buffer is flushed after
each insertion operation. This flag is on by default in Turbo C-:-+.

When stdio is set, each stream is flushed after each output. Flush­
ing a stream causes output to be written to the physical device linked to
the stream.

The format flags are held in a long integer. To set a flag, use the
setf() function, using the common form shown here:

long setf(long flags);

This function returns the stream's previous settings of the format flags
and turns on those flags specified by flags. For example, to turn on the
showbase flag, you can use the following statement.

Using C++ 's 1/0 Class Library 845

stream.setf(ios::showbase):

Here, stream can actually be any stream you wish to affect. For exam­
ple, this program turns on both the showpos and scientific flags for
cout:

#include <iostream.h>

main(void)
{

}

cout.setf(ios::showpos):
cout.setf(ios::scientific):
cout << 123 << " " << 123.23 << " ";

return O;

The output produced by this program is

+123 +l.2323e+02

You can OR together as many flags as you like in a single call. For
example, you can change the program so that only one call is made to
setf() by ORing together scientific and showpos, as shown here.

cout.setf(ios::scientific : ios::showpos);

To turn off a flag, use the unsetf() function. Its prototype is shown
here:

long unsetf(long flags);

The function returns the previous flag settings and turns off those flags
specified by flags.

Sometimes it is useful to know the current flag settings. You can
retrieve the current flag values using the flags() function. Its prototype
is

long flags(void);

This function returns the current value of the flags relative to the
associated stream.

846 Turbo CIC++: The Complete Reference

This form of flags() sets the flag values to those specified by flags
and returns the previous flag values:

long flags(long flags);

To see how flags() and unsetf() work, examine this program. It in­
cludes a function called showflags() that displays the state of cout's
flags.

#include <iostream.h>

void showflags (long f);

main (void)
{

long f;

f = cout.flags();

showfl ags (f);
cout.setf(ios::showpos);
cout.setf(ios::scientific);

f = cout.flags();
showfl ags (f);

}

cout.unsetf(ios::scientific);

f = cout.flags();
showfl ags (f);

return 0;

void showflags(long f)
{

}

long i;

for(i=Ox4000; i; i = i >> 1)
if (i & f) cout « "1 ";
else cout << "O ":

cout << 11 \n 11 ;

When run, the program produces this output:

0 1 0 0 0 0 0 0 0 0 0 0 0 0 1
0 1 0 1 1 0 0 0 0 0 0 0 0 0 1
0 1 0 0 1 0 0 0 0 0 0 0 0 0 1

Using C++ 's 1/0 Class Library 847

In addition to the formatting flags, you can also set a stream's field
width, the fill character, and the number of digits displayed after a
decimal point, using these functions:

int width(int len);
char fill(char ch);
int precision(int num);

The width() function returns the stream's current field width and sets
the field width to len. By default the field width varies, depending upon
the number of characters it takes to hold the data. The fill() function
returns the current fill character, which is a space by default, and makes
the current fill character the same as ch. The fill character is the
character used to pad output to fill a specified field width. The preci­
sion() function returns the number of digits displayed after a decimal
point and sets that value to num. Here is a program that demonstrates
these three functions:

#include <iostream.h>

main(void)
{

}

cout.setf(ios::showpos);
cout.setf(ios::scientific);
cout << 123 << 11 11 << 123.23 << 11 \n 11 ;

cout.precision(2); //two digits after decimal point
cout.width(lO); //in a field of ten characters
cout << 123 << 11 11 << 123.23 << 11 \n";

cout.fill('#'); //fill using#
cout.width(lO); //in a field of ten characters
cout << 123 << 11 11 << 123.23;

return 0;

The program displays this output:

+123 +l.2323e+02
+ 123 + 1. 23e+02

######+123 +l.23e+02

Using Manipulators

The C++ I/O system includes a second way to alter the format parame­
ters of a stream. This way uses special functions called manipulators,

848 Turbo CIC++: The Complete Reference

which can be included in an I/O expression. The standard manipulators
are shown in Table 29-1.

To access these manipulators, you must include iomanip.h in your
program.

A manipulator can be used as part of an I/O expression. Here is an
example program that uses manipulators to change the format of out­
put:

#include <iostream.h>
#include <iomanip.h>

main(void)
{

cout << setprecision(2) << 1000.243 << endl;
cout « setw(20) « "Hello there.";

return O;
}

It produces this output:

1000.24
He 11 o there.

Manipulator Purpose

dee Format numeric data in decimal
endl Output a newline character and flush

the stream
ends Output a null
flush Flush a stream
hex Format numeric data in hexadecimal
oct Format numeric data in octal
resetiosflags(long f) Turn off the flags specified inf
setbase(int base) Set the number base to base
setfill(int ch) Set the fill character to ch
setiosflags(long f) Turn on the flags specified inf
setprecision(int p) Set the number of digits displayed

after a decimal point
setw(int w) Set the field width to w
ws Skip leading white space

Table 29-1. The C++ Manipulators

Input/Output

Input and output

Output
Output
Output
Input and output
Input and output
Input and output
Output
Input and output
Input and output

Input and output
Input and output
Input

Using C++ 's 1/0 Class Library 849

Notice how the manipulators occur in the chain of I/0 operations. Also,
notice that when a manipulator does not take an argument, such as endl
in the example, it is not followed by parentheses. This is because the
address of the function is passed to the overloaded < < operator.

This program uses setiosftags() to set cout's scientific and show­
pos flags:

#include <iostream.h>
#include <iomanip.h>

main(void)
{

}

cout << setiosflags(ios::showpos);
cout << setiosflags(ios::scientific);
cout « 123 « " " « 123.23;

return O;

The following program uses ws to skip any leading white space when
inputting a string into s.

#include <iostream.h>

main(void)
{

}

char s [80);

cin >> ws >> s;
cout « s;

Creating Your Own Manipulator Functions

You can create your own manipulator functions. There are two types of
manipulator functions: those that take an argument (parameterized) and
those that don't (parameterless). There are some differences between
the way each is created. This section discusses how to create each type,
starting with parameterless manipulators.

Creating Parameterless Manipulators

All parameterless manipulator output functions have this skeleton:

850 Turbo CIC++: The Complete Reference

ostream &manip-ndme(ostream &stream)
{

}

II your code here
return stream;

Here, manip-name is the name of the manipulator. It is important to
understand that even though the manipulator has as its single argument
a pointer to the stream upon which it is operating, no argument is used
when the manipulator is inserted in an output operation.

The following program creates a manipulator called setup() that
turns on left-justification, sets the field width to 10, and specifies the
dollar sign as the fill character.

#include <iostream.h>
#include <iomanip.h>

ostream &setup(ostream &stream)
{

}

stream.setf(ios::left);
stream<< setw(lO) << setfill('$');
return stream;

main(void)
{

cout << 10 << " " << setup << 10;

return O;
}

Custom manipulators are useful for two reasons. First, you might
need to perform an I/O operation on a device for which none of the
predefined manipulators apply- a plotter, for example. In this case,
creating your own manipulators makes it more convenient when output­
ting to the device. Second, you may find that you are repeating the same
sequence of operations many times. You can consolidate these opera­
tions into a single manipulator, as the preceding program illustrates.

All parameterless manipulator input functions have this general
form:

istream &manip-name(istream &stream)
{

}

II your code here
return stream;

Using C++ 's 1/0 Class Library 851

For example, this program creates the prompt() manipulator to
display a prompting message and switches numeric input to hexadeci­
mal:

#include <iostream.h>
#include <iomanip.h>

istream &prompt(istream &stream)
{

cin » hex;
cout << "Enter number using hex format: ";

return stream;
}

main(void)
{

int i;

cin >>prompt>> i;
cout « i;

return O;

It is crucial that your manipulator return stream. If this is not
done, then your manipulator cannot be used in a series of input or
output operations.

Creating Parameterized Manipulators

Creating a manipulator function that takes an argument is more difficult
than creating one that doesn't. Before discussing the theory, let's look
at an example. The following program creates a parameterized version
of setup() from the previous section. In this version, you can specify the
field width as an argument to setup().

#include <iostream.h>
#include <iomanip.h>

852 Turbo CIC++: The Complete Reference

II Insertion (output) manipulator.
ostream &setup(ostream &stream, int length)
{

}

stream.setf(ios::left);
stream<< setw(length) << setfill('$');
return stream;

II Overload.
OMANIP (int) setup(int length) {

return OMANIP (int) (setup, length);
}

main(void)
{

cout << 10 << " ";
cout << setup(?) << 10;

return O;

As you can see, setup() is now overloaded. When setup(7) is encoun­
tered in the output expression, the second version of setup() is exe­
cuted, with the value 7 passed to the length parameter. This version
then executes the first version with the value 7 again passed in length
and is used by the setw() manipulator to set the field width. The stream
cout is passed to stream in the first version of setup().

The class OMANIP is defined in iomanip.h, and is used to create
manipulators that take an argument. In general, whenever you want to
create a manipulator that takes an argument, you need to create two
overloaded manipulator functions. In one, you need to define two param­
eters: The first is ·a reference to the stream and the second is the
parameter that .vill be passed to the function. The second version of the
manipulator defines only one parameter, which is the one specified when
the manipulator is used in an I/0 expression. This second version of the
manipulator is used to generate a call to the first version. You will use
these general forms for creating parameterized output manipulators:

ostream &manip-name(ostream &stream, type param)
{

}

II your code here
return stream;

II Overload

Using C++ 's 1/0 Class Library 853

OMANIP (type) manip-name(type param) {
return OMANIP (type) (manip-name, param);

}

Here, type specifies the type of parameter used by the manipulator. By
default, you can only use types int and long for type. However, if you
want to use a different type of parameter, you must first alert Turbo
C++ by using the IOMANIPdeclare macro (defined in iomanip.h), as
shown here:

IOMANIPdeclare(type);

Here, type is the type of the parameter that you want your manipulator
to have. For example, this program shows how to pass a double value to
a manipulator function:

#include <iostream.h>
#include <iomanip.h>

IOMANIPdeclare(double); //specify double parameters

ostream &out_d(ostream &stream, double length)
{

}

stream << setprecision(2) << length;
return stream;

OMANIP (double) out_d(double length) {
return OMANIP (double) (out_d, length);

}

main(void)
{

cout << out_d(123.123456);

return 0;
}

You can use parameters of any valid type, including classes that you
define. However, the parameter to IOMANIPdeclare must be a single
identifier. Therefore, if you need to use a pointer or reference type, you
need to define a new type name using typedef. For example, to tell the
compiler about a character pointer parameter to a manipulator, you
must use this statement sequence:

854 Turbo CIC++: The Complete Reference

typedef char * charptr:

IOMANIPdeclare(charptr):

Input manipulators can also take a parameter, as illustrated by this
program:

#include <iostream.h>
#include <iomanip.h>

II Extraction (input) manipulator.
istream &setup(istream &stream, int length)
{

}

cout << "Enter a string ";
cout << 1 ength « " characters 1 ong: ":
return stream:

II Overloaded.
IMANIP(int) setup(int length) {

return IMANIP(int)(setup, length);
}

main(void)
{

}

char str[SO]:

cin >> setup(22) >> str:
cout « str;

return O;

Notice that the format is the same as for output manipulators with two
exceptions: The input stream istream must be used and the class IMA­
NIP is specified.

Fiie 1/0

You can use the C++ I/O system to perform file I/O. Although the end
result is the same, C++ 's approach to file I/O differs somewhat from the
ANSI C I/O system discussed earlier. For this reason, you should pay
special attention to this section.

Using C++ 's 1/0 Class Library 855

In order to perform file I/O, you must include the header file
fstream.h in your program. It defines several important classes and
values.

Opening and Closing a File

In C++, a file is opened by linking it to a stream. There are three types
of streams: input, output, and input/output. To open an input stream you
must declare the stream to be of class ifstream. To open an output
stream, it must be declared as class ofstream. Streams that will per­
form both input and output operations must be declared as class
fstream. For example, this fragment creates one input stream, one
output stream, and one stream capable of both input and output:

ifstream in; // input

ofstream out; // output

fstream both; // input and output

Once you have created a stream, one way to associate it with a file
is by using the open() function. This function is a member of each of the
three stream classes. Its prototype is

void open(char *filename, int mode, int access);

Here, filename is the name of the file and can include a path specifier.
The value of mode determines how the file is opened. It must be one (or
more) of these values (defined in fstream.h):

ios::app
ios::ate
ios::in
ios::nocreate
ios::noreplace
ios::out
ios::trunc

You can combine two or more of these values by ORing them together.

856 Turbo CIC++: The Complete Reference

Including ios::app causes all the output to that file to be appended
to the end. This value can only be used with files capable of output.
Including ios::ate causes a seek to the end of the file to occur when the
file is opened.

The ios::in specifies that the file is capable of input. The ios::out
specifies that the file is capable of output. However, creating a stream
using ifstream implies input and creating a stream using ofstream
implies output, so in these cases it is unnecessary to supply these values.

Including ios::nocreate causes the open() function to fail if the file
does not already exist. The ios::noreplace value causes the open()
function to fail if the file already exists.

The ios::trunc value causes the contents of a preexisting file by the
same name to be destroyed and the file is truncated to 0 length.

The value of access determines how the file can be accessed. In
Turbo C++, these values correspond to DOS's file attribute codes. They
are

Attribute

0

1

2

4

8

Meaning

Normal file, open access

Read-only file

Hidden file

System file

Archive bit set

You can OR two or more of these together.
The following fragment opens a normal output file:

ofstream out;
out.open("test", ios::out, O);

However, you will seldom (if ever) see open() called as shown because
both the mode and access parameters have default values: For ifstream,
mode is ios::in, and for ofstream it is ios::out. The access parameter
has a default value of 0 (normal file). Therefore, the preceding statement
should look like this:

out.open("test"); II defaults to output and normal file

Using C++ 's 1/0 Class Library 857

To open a stream for both input and output, you must specify both
the ios::in and the ios::out mode values, as shown in this example:

fstream mystream;
mystream.open("test", ios::in : ios::out);

If open() fails, mystream will be 0.
Although opening a file using the open() function is allowed, most

of the time you will not do so because the ifstream, ofstream, and
fstream classes include constructor functions that automatically open
the file. The constructor functions have the same parameters and de­
faults as the open() function. Therefore, the most common way to open
a file is shown here:

ifstream mystream("myfile"); //open file for input

If, for some reason, the file cannot be opened, the value of the
associated stream variable is 0. You can use the following code to
confirm that the file has actually been opened:

ifstream mystream("myfile"); //open file for input
if(!mystream) {

}

cout « "cannot open file";
II process error

To close a file, use the member function close(). For example, to
close the file linked to a stream called mystream, use this statement:

mystream.close();

The close() function takes no parameters and returns no value.

Reading and Writing Text Flies

To read from or write to a text file you simply use the < < and
> > operators with the stream you opened. For example, the following
program writes an integer, a floating-point value, and a string to a file
called TEST.

858 Turbo CIC++: The Complete Reference

#include <iostream.h>
#include <fstream.h>

main(void)
{

ofstream out("test");
if(!out) {

}

cout << "Cannot open file";
return l;

out << 10 << " " << 123.23 << "\n";
out << "This is a short text file.";

out.close();

return O;

The following program reads an integer, a float, a character, and a
string from the file created by the preceding program:

#include <iostream.h>
#include <fstream.h>

main(void)
{

char ch;
int i;
float f;
char str[80];

ifstream in("test");
if(!in) {

cout « "Cannot open file";
return 1;

in» i;
in » f;
in » ch;
in » str;

cout << i << 11 11 << f << 11 11 << ch << 11 \n";
cout « str;

in.close();
return 0;

When reading text files using the > > operator, keep in mind that
certain character translations occur. For example, white-space charac­
ters are omitted. If you want to prevent any character translations, you
must use C++ 's binary 1/0 functions, discussed in the next section.

Using C++ 's 1/0 Class Library 859

Binary 1/0

There are two ways to write and read binary data to or from a file.
First, you can write a byte using the member function put() and read a
byte using the member function get(). The get() function has many
forms, but the most commonly used version is shown here along with
put():

istream &get(char &ch);
ostream &put(char ch);

The get() function reads a single character from the associated stream
and puts that value in ch. It returns the stream. The put() function
writes ch to the stream and returns the stream.

This program displays the contents of any file on the screen. It uses
the get() function.

#include <iostream.h>
#include <fstream.h>

main(int argc, char *argv[])
{

}

char ch;

if(argc!=2) {

}

cout « "Usage: PR <fil ename>\n";
return 1;

ifstream in(argv[l]);
if(!in) {

}

cout « "Cannot open file";
return 1;

while(in) { // in will be 0 when eof is reached
in.get(ch);
cout « ch;

}

return O;

When in reaches the end of the file it will be 0, causing the while loop to
stop.

860 Turbo CIC++: The Complete Reference

There is a more compact way to code the loop that reads and
displays a file, as shown here:

while(in.get(ch))
cout « ch;

This works because get() returns the stream in and in will be 0 when
the end of the file is encountered.

This program uses put() to write a string to a file.

#include <iostream.h>
#include <fstream.h>

main(void)
{

}

char *p = "hello there";

ofstream out("test");
if(!out) {

}

cout « "Cannot open file";
return 1;

while(*p) out.put(*p++);

out.close();

return O;

To read and write blocks of binary data, use C++ 's read() and
write() member functions. Their prototypes are

istream &read(unsigned char *buf, int num);
ostream &write(const unsigned char *buf, int num);

The read() function reads num bytes from the associated stream and
puts them in the buff er pointed to by buf. The write() function writes
num bytes to the associated stream from the buffer pointed to by buf.

The following program writes and then reads an array of integers:

#include <iostream.h>
#include <fstream.h>

main(void)
{

int n[5] = {1, 2, 3, 4, 5};
register inti;

ofstream out("test");
if(!out) {

}

cout « "Cannot open file";
return 1;

Using C++ 's 1/0 Class Library 861

out.write((unsigned char*) &n, sizeof n);

out.close();

for(i=O; i<5; i++) // clear array
n[i] = O;

i fstream in ("test");
in.read((unsigned char*) &n, sizeof n);

for(i=O; i<5; i++) // show values read from file
cout « n[i] « " 11 ;

in.close();

return 0;

Note that the type casts inside the calls to read() and write() are
necessary when operating on a buffer that is not defined as a character
array.

If the end of the file is reached before num characters have been
read, read() simply stops and the buffer contains as many characters as
were available. You can find out how many characters have been read
using another member function called gcount(), which has this proto­
type:

int gcount();

It returns the number of characters read by the last binary input
operation.

Detecting EOF

You can detect when the end of the file is reached using the member
function eof(), which has the prototype

int eof();

862 Turbo CIC++: The Complete Reference

It returns non-0 when the end of the file has been reached; otherwise it
returns 0.

Random Access
In C++ 's I/O system you perform random access using the seekg() and
seekp() functions. Their most common forms are

istream &seekg(streamoff offset, seek_dir origin);
ostream &seekp(streamoff offset, seek_dir origin);

Here, streamoff is a type defined in iostream.h that is capable of
containing the largest valid value that offset can have.

The C++ I/O system manages two pointers associated with a file.
One is the get pointer, which specifies where in the file the next input
operation will occur. The other is the put pointer, which specifies where
in the file the next output operation will occur. Each time an input or an
output operation takes place, the appropriate pointer is automatically
advanced. However, using the seekg() and seekp() functions, it is
possible to access the file in a nonsequential fashion.

The seekg() function moves the associated file's current get pointer
offset number of bytes from the specified origin, which must be one of
these three values:

Value

ios::beg

ios::cur

ios::end

Meaning

Beginning of file

Current location

End of file

The seekp() function moves the associated file's current put
pointer offset number of bytes from the specified origin, which must be
one of the same three values.

This program demonstrates the seekp() function. It allows you to
specify a file name on the command line followed by the specific byte in
the file you want to change. It then writes an 'X" at the specified
location. Notice that the file must be opened for read/write operations.

#include <iostream.h>
#include <fstream.h>
#include <stdlib.h>

main(int argc, char *argv[])
{

if(argc!=3) {

Using C++ 's 1/0 Class Library 863

cout « "Usage: CHANGE <filename> <byte>\n";
return 1;

}

}

fstream out(argv[l], ios::iniios::out);
if(!out) {

}

cout « "Cannot open fi.l e";
return l;

out.seekp(atoi(argv[2]), ios::beg);

out. put('X');
out.close();

return 0;

The next program uses seekg() to display the contents of a file
beginning with the location you specify on the command line:

#include <iostream.h>
#include <fstream.h>
#include <stdlib.h>

main(int argc, char *argv[])
{

}

char ch;

if(argcl=3) {

}

cout « "Usage: NAME <filename> <starting location>\n";
return 1;

ifstream in(argv[l]);
if(!in) {

}

cout « "Cannot open file";
return 1;

in.seekg(atoi(argv[2]), ios::beg);

while(in.get(ch))
cout « ch;

return O;

864 Turbo CIC++: The Complete Reference

You can determine the current position of each file pointer using
these functions:

streampos tellg();
streampos tellp();

Here, streampos is a type defined in iostream.h that is capable of
holding the largest value that either function can return.

AB you have seen, C++ 's I/O system is both powerful and flexible.
Although this chapter discusses the most important and commonly used
functions, C++ includes several other I/O functions. You should consult
your Turbo C++ user guide.

A Short Note About the Old Stream Class Library

When C++ was first invented, a smaller and slightly different I/O class
library was created. This library is defined in the file stream.h. How­
ever, when C++ Version 2.0 was released by AT&T, the I/O library was
enhanced and was put in the file iostream.h. Although Turbo C++
implements the 2.0 version of C++, you can still access the old stream.h
class if you need to compile an older, existing C++ program. However,
you should use the iostream.h library when writing new programs.

Miscellaneous C++ Topics

This chapter discusses several aspects of C++ not covered in the previ­
ous chapters. It also looks at some differences between C and C++, as
well as design philosophy.

Dynamic Allocation Using new and delete

As you know, C uses the functions malloc() and free() (among others)
to dynamically allocate memory and to free dynamically allocated mem­
ory. However, C++ contains two operators, new and delete, that per­
form the functions of allocating and freeing memory in a more efficient
and easier way. Their general forms are shown here:

pointer_ var = new var_ type;
delete pointer_ var;

Here, pointer_ var is a pointer of type var_ type. The new operator
allocates sufficient memory to hold a value of type var_ type and re­
turns an address to the allocated memory. Any valid data type can be
allocated using new. The delete operator frees the memory pointed to
by pointer_ var.

Like malloc(), new returns a null pointer if the allocation request
fails. Therefore, you must always check the pointer produced by new
before using it. Also, like malloc(), new allocates memory from the
heap.

Because of the way dynamic allocation is managed, you must only
use delete with a pointer to memory that was allocated using new.
Using delete with any other type of address causes serious problems.

866 Turbo CIC++: The Complete Reference

There are several advantages to using new over malloc(). First,
new automatically computes the size of the type being allocated. You
don't have to make use of the sizeof operator, which saves you some
effort, and prevents the wrong amount of memory from being allocated.
Second, it automatically returns the correct pointer type-you don't
need to use a type cast. Third, as you will soon see, it is possible to
initialize the object being allocated using new. Finally, it is possible to
overload new (and delete) relative to a class.

Here is a simple example of new and delete:

#include <iostream.h>

main(void)
{

int *p;

p = new int; II allocate memory for int
if(!p) {

cout « "allocation failure\n";
return 1;

*p = 20; II assign that memory the value 20
cout << *p; II prove that it works by displaying value

delete p; II free the memory

return O;

This program assigns to p an address in memory that is large enough to
hold an integer. It then assigns that memory the value 20 and displays
the contents of that memory on the screen. Finally, it frees the dynami­
cally allocated memory.

As stated, you can initialize the memory allocated using the new
operator. To do this, specify the initial value inside parentheses after the
type name. For example, this program uses initialization to give the
memory pointed to by p the value 99:

#include <iostream.h>

main(void)
{

int *p;

p =new int (99); II initialize to 99
if(!p) {

cout « "allocation failure\n";
return 1;

Miscellaneous C++ Topics 86 7

cout « *p;

delete p;

return O;

You can allocate arrays using new. The general form for a singly
dimensioned array is

pointer_ var = new var_ type [size];

Here, size specifies the number of elements in the array.
When you free a dynamically allocated array, you must use this

form of delete:

delete [size] pointer_ var;

Again, size specifies the number of elements in the array. You must
specify the size of the array because when you free the memory of an
array containing objects, existing destructor functions for each object
must be executed. (You will see an example of this soon.)

This program allocates space for 10 floats, assigns the array the
values 100 to 109, and displays the contents of the array on the screen:

#include <iostream.h>

main(void)
{

float *p;
int i;

p =new float [10); II get a 10-element array
if(!p) {

cout « "allocation failure\n";
return 1;

II assign the values 100 through 109
for(i=O; i<lO; i++) p[i] = 100.00 + i;

II display the contents of the array
for(i=O; i<lO; i++) cout « p[i) « " ";

delete [10] p; II delete the entire array

return O;

868 Turbo CIC++: The Complete Reference

It is important to remember that when allocating an array, you cannot
initialize it.

You can allocate memory for any valid type, including objects. For
example, in this program, new allocates memory for an object of type
three_d:

#include <iostream.h>

class three_d {
public:

int x, y, z; II 3-d coordinates
three_d(int a, int b, int c);
"'three_d () {cout « "destructi ng\n";}

} ;

three_d::three_d(int a, int b, int c)
{

cout « "constructing\n";
x = a;
y = b;
z = c;

II Display X, Y, Z coordinates - three_d insertor
ostream &operator<<(ostream &stream, three_d obj)
{

}

stream << obj .x << ", ";
stream << obj .y << ", ";
stream« obj.z « "\n";
return stream; II return the stream

main(void)
{

three_d *p;

p = new three_d (5, 6, 7);
if{!p) {

}

cout « "allocation failure\n";
return 1;

cout << *p;

delete p;

return O;

Notice that this program makes use of the insertor function for the
three_d class created in Chapter 27. When you run the program, you
will see that three_d's constructor function is called when new is

Miscellaneous C++ Topics 869

encountered, and its destructor function is called when delete is
reached. Also note that the initializers are automatically passed to the
constructor by new.

As the following program illustrates, you can allocate an array of
user-defined objects using new:

#include <iostream.h>
class three_d {
public:

int x, y, z; II 3-d coordinates
three_d(int a, int b, int c) ;
three_d () {cout « "constructi ng\n";} 11 needed for arrays
"'three_d() {cout « "destructing\n";}

} ;

three_d::three_d(int a, int b, int c)
{

}

cout « "constructing\n";
x = a;
y = b;
z = c;

II Display X, Y, Z coordinates - three_d insertor
ostream &operator<<(ostream &stream, three_d obj)
{

stream << obj.x << ", ";
stream << obj .y << 11 , ";

stream « obj .z « "\n";
return stream; II return the stream

}

main(void)
{

}

three_d *p;
inti;

p =new three_d [10);
if(!p) {

cout « "allocation failure\n";
return 1;

for(i=O; i<lO; i++) {
p[i] .x = 1;
p[i] .y = 2;
p[i] .z = 3;

}

for(i=O; i<lO; i++) cout « *p;

delete [10) p;

return O;

870 Turbo CIC++: The Complete Reference

Notice that a second constructor function has been added to the
three_ d class. Because allocated arrays cannot be initialized, a con­
structor function that does not have any parameters is needed. If you
don't supply this constructor, an error message is displayed. In this
example, it performs no service, but in other classes it might.

Overloading new and delete

It is possible to overload new and delete. You might want to do this
when you want to use some special allocation method. For example, you
may want allocation routines that automatically begin using a disk file as
virtual memory when the heap has been exhausted. Whatever the rea­
son, it is a very simple matter to overload these operators.

The skeletons for the functions that overload new and delete are

void *operator new(size_ t size)
{

II perform allocation
return pointer_ to_ memory;

}

void operator delete(void *p)
{

11 free memory pointed to by p
}

The type size_ t is defined by Turbo C++ as an integer type capable of
containing the largest single piece of memory that can be allocated. The
parameter size contains the number of bytes needed to hold the object
being allocated. The overloaded new function must return a pointer to
the memory that it allocates or 0 if an allocation error occurs. Beyond
these constraints, the overloaded new function can do anything you
require.

Miscellaneous C++ Topics 871

The delete function receives a pointer to the region of memory to
free.

The new and delete operators can be overloaded either globally, so
that all uses of these operators call your custom versions, or relative to
just one or more classes. Let's begin with an example of overloading
new and delete relative to the three_ d type. For the purpose of
illustration, no new allocation scheme will be used. Instead, the over­
loaded functions simply invoke malloc() and free(). However, you are
free to implement any alternative allocation scheme you like.

To overload the new and delete operators relative to a class, simply
make the overloaded operator functions members of the class. For
example, here the new and delete operators are overloaded relative to
the three_ d class:

#include <iostream.h>
#include <stdlib.h>

class three_d {
public:

int x, y, z; II 3-d coordinates
three_d(int a, int b, int c) ;
Nthree_d() {cout « "destructing\n";}
void *operator new(size_t size);
void operator delete(void *p);

} ;

three_d::three_d(int a, int b, int c)
{

}

cout << "constructing\n";
x = a;
y = b;
z = c;

II Overload new relative to three d
void* three_d::operator new(size=t size)
{

}

cout « "in three_d new\n";
return malloc(size);

II Overload delete relative to three d
void three_d::operator delete(void *p)
{

}

cout « "in three_d delete\n";
free(p);

872 Turbo CIC++: The Complete Reference

II Display X, Y, Z coordinates - three_d insertor
ostream &operator<<(ostream &stream, three_d obj)
{

stream<< obj.x << ", ";
stream << obj .y << 11 , ";

stream« obj.z « "\n";
return stream; II return the stream

}

main(void)
{

}

three_d *p, *pl;

p =new three_d (1, 2, 3);
pl= new three_d (4, 5, 6);
if(!p : : lpl) {

}

cout « "allocation failure\n";
return l;

cout << *P << *pl;

delete p;
delete pl;

return D;

It is important to understand that when new and delete are overloaded
relative to a specific class, the use of these operators on any other type
of data causes the original new or delete to be employed. The over­
loaded operators are only applied to the types for which they are
defined. This means that if you add this line to main(), the global new
is executed:

int *i = new int;

You can overload new and delete globally by overloading these opera­
tors outside of any class declaration. When new and delete are over­
loaded globally, C++ 's original new and delete are ignored and global
operators are used for all allocation requests. Of course, if you have
defined any versions of new and delete relative to one or more classes,
the class-specific versions are used when allocating objects of the class
for which they are defined. In other words, when either new or delete

Miscellaneous C++ Topics 873

are encountered, the compiler first checks to see whether they are
defined relative to the class they are operating on. If so, those specific
versions are used. If not, C++ uses the globally defined new and delete.
However, if these have been overloaded, the overloaded versions are
used instead.

To see an example of overloading new and delete globally, examine
this program:

#include <iostream.h>
#include <stdlib.h>

class three_d {
public:

int x, y, z; II 3-d coordinates
three_d(int a, int b, int c) ;
"'three_d () {cout « "destructing\n";}

} ;

three_d::three_d(int a, int b, int c)
{

}

cout « "constructing\n";
x = a;
y = b;
z = c;

II Overload new globally.
void * operator new(size_t size)
{

}

cout « "in new new\n";
return malloc(size);

II Overload delete globally.
void operator delete(void *p)
{

}

cout « "in new delete\n";
free(p);

II Display X, Y, Z coordinates - three d inserter
ostream &operator<<(ostream &stream, three_d obj)
{

stream<< obj.x << ", ";
stream<< obj.y << ", ";
stream<< obj.z « "\n";
return stream; II return the stream

main(void)
{

three_d *p, *pl;

874 Turbo CIC++: The Complete Reference

}

p = new three_d (1, 2, 3);
pl= new three_d (4, 5, 6);
if(!p : : !pl) {

}

cout « "allocation failure\n";
return l;

cout << *P << *pl;

delete p;
delete pl;

int *i = new int;
if(! i) {

}

cout « "allocation failure\n";
return l;

*i = 10;
cout << *i << 11 \n 11 ;

return O;

If you run this program, you will see that the built-in new and delete
operators have, indeed, been overloaded.

static Class Members

The keyword static can be applied to members of a class. Its meaning in
this context is similar to its original meaning in C. When you declare a
member of a class as static, you are telling the compiler that no matter
how many objects of the class are created, there is only one copy of the
static member. A static member is shared by all objects of the class. All
static data is initialized to 0 when the first object of its class is created
and no other initialization is allowed.

As an example, examine the following program:

#include <iostream.h>

class counter {
static int count;

public:
void setcount(int i) {count = i;};
void showcount() {cout « count « " ";}

};

main (void)
{

counter a, b;

a.showcount(); II prints 0
b.showcount(); II prints 0

a.setcount(lO); II set static count to 10

a.showcount(); II prints 10
b.showcount(); II also prints 10

Miscellaneous C++ Topics 875

Turbo C++ initializes count to 0. This is why the first calls to show­
count() both display 0. Next, object a sets count to 10. Then, both a
and b use showcount() to display its value. Because there is only one
copy of count shared by both a and b, both cause the value 10 to be
displayed.

Remember, when you declare a member of a class as static you are
causing only one copy of that member to be created and then shared by
all objects of that class.

You can also have static member functions. When a member func­
tion is declared as static, only one copy of it exists and it is used by all
objects of the class it belongs to. The static member functions have
access to all static data and other static functions declared in a class,
but they have two important restrictions: They cannot manipulate non­
static data or call non-static functions. This is because a static member
function does not have a this pointer; it has no way of knowing which
object's non-static data to access. For example, if there are two objects
of a class that contains a static function called f(), and if f() attempts
to access a non-static variable, called var defined in the class, which
copy of var should the call be routed to? The compiler has no way of
knowing. This is why static functions can only access other static
functions or data.

The following short program illustrates one of the many ways static
functions can be used. It is not uncommon for an object to require
access to some scarce resource, such as a shared file in a network. Ai;
the program illustrates, the use of static data and functions provides a
method by which an object can check on the status of the resource and
access it if available:

#include <iostream.h>

enum access_t {shared, in_use, locked, unlocked};

876 Turbo CIC++: The Complete Reference

II a scarce resource control class
class access {

static enum access_t acs;
II ...

public:
static void set_access(enum access_t a)
static enum access_t get_access()
{

return acs;
}
II ...

};

main(void)
{

access objl, obj2;

objl.set_access(locked);

II ... intervening code

II see if obj2 can access resource
if(obj2.get_access()==unlocked) {

obj2.set_access(in_use);
cout « "access resource\n";

}
else cout « "locked out\n";

II
}

{acs = a;}

When you compile this program, '1ocked out" is displayed. You might
want to play with the program a little to make sure you understand the
effect of static on both data and functions.

k3 stated, static functions can only access other static functions or
static data within the same class. To prove this, try compiling this
version of the program:

#include <iostream.h>

enum access_t {shared, in_use, locked, unlocked};

II a scarce resource control class
class access {

static enum access_t acs;
int i; II non-static
II ...

public:
static void set_access(enum access_t a) {acs = a;}
static enum access_t get_access()

{
i = 100; II this will not compile
return acs;

}
11 .••

};

main(void)
{

access objl, obj2;

objl.set_access(locked);

II ... intervening code

II see if obj2 can access resource
if(obj2.get_access()==unlocked) {

obj2.set_access(in_use);
cout << "access resource\n";

}
else cout « "locked out\n";

11 ..•
}

Miscellaneous C++ Topics 877

Turbo C++ issues an error message and does not compile your program
because get_ access() attempts to access a non-static variable.

Although you may not see an immediate need for static members,
as you continue to write programs in C++, you will find them very useful
in certain situations because they allow you to avoid the use of global
variables.

virtual Base Classes

AB you know, in C++, the virtual keyword is used to declare virtual
functions that will be overridden by a derived class. However, virtual
also has another use that enables you to specify virtual base classes. To
understand what a virtual base class is and why the keyword virtual
has a second meaning, let's begin with the short, incorrect program
shown here:

II This program contains an error and will not compile.
#include <iostream.h>

class base {

878 Turbo CIC++: The Complete Reference

public:
inti;

};

II dl inherits base.
class dl : public base {
public:

int j;
};

II d2 inherits base.
class d2 : public base {
public:

int k;
};

II d3 inherits both dl and d2. This means that there
II are two copies of base in d3!
class d3 : public dl, public d2 {
public:

int m;
};

main(void)
{

}

d3 d;

d.i = 10; II this is ambiguous, which i???
d.j = 20;
d.k = 30;
d.m = 40;

II also ambiguous, which i???
cout << d.i << 11 11 ;

cout << d.j << 11 " << d.k << 11 ";

cout « d.m;

return O;

hi the comments in the program indicate, both dl and d2 inherit base.
However, d3 inherits both dl and d2, meaning that there are two copies
of base present in an object of type d3. Therefore, in an expression like

d.i = 20;

it is uncertain whether the i referred to is the· one in dl or the one in d2.
hi you can see, the statement is inherently ambiguous.

There are two ways to remedy the preceding program. The first is
to apply the scope resolution operator to i and manually select one i.

Miscellaneous C++ Topics 879

For example, this version of the program compiles and runs as expected:

#include <iostream.h>

class base {
public:

int i;
};

II dl inherits base.
class dl : public base {
public:

int j;
};

II d2 inherits base.
class d2 : public base {
public:

int k;
};

II d3 inherits both dl and d2. This means that there
II are two copies of base in d3!
class d3 : public dl, public d2 {
public:

int m;
};

main(void)
{

}

d3 d;

d.d2::i = 10; II scope resolved, using d2's i
d.j = 20;
d.k = 30;
d.m = 40;

II scope resolved, using d2's i
cout << d.d2::i << 11 11 ;

cout << d.j << 11 11 << d.k << 11 11 ;

cout « d.m;

return 0;

As you can see, by applying the ::, the program has manually selected
d2's version of base. However, this raises a deeper issue: What if only
one copy of base is actually required? Is there some way to prevent two
copies from being included in d3? The answer, as you probably have
guessed, is yes. And the solution is achieved by using virtual base
classes.

880 Turbo CIC++: The Complete Reference

When two or more objects are derived from a common base class,
you can prevent multiple copies of the base class from being present in
an object derived from those objects by declaring the base class as
virtual when it is inherited. For example, here is a version of the
example program in which d3 contains only one copy of base:

#include <iostream.h>

class base {
public:

int i;
}:

II dl inherits base as virtual.
class dl : virtual public base {
public:

int j;
};

II d2 inherits base as virtual.
class d2 : virtual public base {
public:

int k;
};

II d3 inherits both dl and d2. However, now there is
II only one copy of base in d3.
class d3 : public dl, public d2 {
public:

int m;
}:

main(void)
{

d3 d;

d.i ~ 10; II no ionger ambiguous
d.j = 20;
d.k = 30;
d.m = 40;

cout « d.i « 11 11 ; II no longer ambiguous
cout << d.j << 11 11 << d.k << 11 11 ;

cout « d.m;

return O;

AB you can see, the keyword virtual precedes the rest of the inherited
class's specification. Now that both dl and d2 have inherited base as
virtual, any multiple inheritance involving them will cause only one copy
of base to be present. Therefore, in d3, there is only one copy of base
and d.i = 10 is perfectly valid and unambiguous.

Miscellaneous C++ Topics 881

One further point to keep in mind: Even though both dl and d2
specify base as virtual, base is still present in any objects of either type.
For example, the following sequence is perfectly valid:

II define a class of type dl
dl myclass;

myclass.i = 100;

Virtual base classes and normal base classes differ only when an object
inherits the base more than once. When virtual base classes are used,
only one base class is present in the object. Otherwise, multiple copies
are found.

Using the asm Keyword

In a Turbo C++ program you can embed assembly language directly into
your C++ program using the asm keyword. The asm keyword has three
slightly different general forms:

asm instruction;
asm instruction newline
asm {

instruction sequence
}

Here, instruction is any valid 80x86 assembly language instruction.
Unlike any other Turbo C++ statement, an asm statement does not have
to end with a semicolon. It can end with either a semicolon or a newline.

The asm keyword passes whatever instructions follow it directly to
TASM, Borland's Turbo Assembler. You must have this assembler
present if you intend to use asm.

As a first simple example, this program uses asm to execute an INT
5 instruction, which invokes the PC's print screen function.

II Print the screen.
#include <iostream.h>

882 Turbo CIC++: The Complete Reference

main(void)
{

}

asm int 5;
return O;

If you want to send a sequence of assembly language statements to
TASM, surround them with braces, as shown in this example:

#include <iostream.h>

main(void)
{

}

II this effectively does nothing
asm {

push ds
pop ds

}

return O;

If you want to put a comment on the same line as an assembly language
statement, use C-like, not TASM-like, comments. (In TASM, a comment
begins with a semicolon, but this won't work in Turbo C++.)

Note: A thorough working knowledge of assembly language program­
ming is required to use the asm statement. If you are not proficient at
assembly language, it is best to avoid using it as nasty errors may
result.

Linkage Specification

In Turbo C++ you can specify how a function is linked. Specifically, you
can tell Turbo C to link a function as a C function or as a C++ function.
By default, functions are linked as C++ functions. However, by using a
linkage specification you can cause a function written in a different
language to be linked into your program. The general form of a linkage
specifier is

extern "language" function-prototype

Miscellaneous C++ Topics 883

where language denotes the desired language. In Turbo C++, language
must be either C or C++.

This program causes myCfunc() to be linked as a C function:

#include <iostream.h>

extern "C" void myCfunc(void);

main(void)
{

myCfunc():

return O;

II This will link as a C function.
void myCfunc(void)
{

cout «"This links as a C function.\n";
}

Note: The extern keyword is a necessary part of the linkage specifica­
tion. Further, the linkage specification must be global; it cannot be used
inside a function.

You can specify more than one function at a time using this form of
the linkage specification:

extern "language" {
prototypes

}

The need to use a linkage specification is rare, and will not be used by
most programs.

The . * and - > * Operators

The ·* and - > * are called pointer-to-member operators. Their job is to
allow you to access a member of a class given a pointer to that member.
The reason these two operators are needed is because a pointer to a
member does not fully define an address. Instead, it provides an offset

884 Turbo CIC++: The Complete Reference

into an object of the member's class at which that member can be found.
Therefore, to access a member of a class given a pointer to it requires
that both the class and the member be used. Since the * operator cannot
link a class with a pointer to a member, the ·* and - > * operators were
created.

Let's begin with an example. The following program displays the
summation of the number 7. It accesses the function sum_it() and the
variable sum using member pointers.

#include <iostream.h>

class myclass {
public:

int sum;
void myclass::sum_it(int x);

};

void sum_it(int x) {
int i;

sum = 0;
for(i=x; i; i--) sum+= i;

}

main(void)
{

}

int myclass::*dp; II pointer to an integer class member
void (myclass::*fp)(int x); II pointer to member function
myclass c;

dp = &myclass::sum; II get address of data
fp = &myclass::sum_it; II get address of function

(c.*fp}{7); // comµute summation of i
cout « "summation of 7 is " « c.*dp;

return O;

Inside main(), this program creates two member pointers: dp, which
points to the variable sum, and fp, which points to the function
sum_ it(). Note carefully the syntax of each declaration. The scope
resolution operator is used to specify which class is referred to. The
program also creates an object of myclass called c. Next, the program
obtains the addresses of sum and sum_it(). As stated earlier, these
addresses are really just offsets into an object of myclass where sum
and sum_ it() are found. Next, the program uses a function pointer fp
to call the sum_ it() function of c. The extra parentheses are necessary

Miscellaneous C++ Topics 885

in order to correctly associate the ·* operator. Finally, the summed
value is displayed by accessing e's sum through dp.

When you are accessing a member of an object using an object or a
reference, you must use the ·* operator. However, if you are using a
pointer to the object, you must use the - > * operator, as illustrated in
this version of the preceding program:

#include <iostream.h>

class myclass {
public:

int sum;
void myclass::sum_it(int x);

};

void myclass::sum_it(int x) {
int i;

sum = 0;
for(i=x; i; i--) sum+= i;

}

main(void)
{

}

int myclass::*dp; II pointer to an integer class member
void (myclass::*fp)(int x); II pointer to member function
myclass *c, d; II c is now a pointer to an object

c = &d; II give c the address of an object

dp = &myclass::sum; II get address of data
fp = &myclass::sum_it; II get address of function

(c->*fp)(7); II now, use-> to call function
cout « "summation of 7 is " « c->*dp; II use ->

return 0;

In this version c is now a pointer to an object of type myclass, and the
- > * operator is used to access sum and sum_ it().

Creating Conversion Functions

Sometimes you will create a class that you want to freely mix in an
expression with other types of data. While overloaded operator func­
tions can provide a means of mixing types, sometimes a simple conver­
sion is all that you need. In these cases, you can use a type conversion

886 Turbo CIC++: The Complete Reference

function to convert your class into a type compatible with that of the
rest of the expression. The general form of a type conversion function is

operator (type)() {return value;}

Here, type is the target type that you are converting your class to and
value is the value of the class after conversion. A conversion function
must be a member of the class for which it is defined.

To illustrate how to create a conversion function, let's use the
three_ d class once again. Suppose that you want to convert an object
of type three_ d into an integer so that it can be used in an integer
expression. Further, the conversion will take place by using the product
of the three dimensions. To accomplish this, you use a conversion func­
tion that looks like this:

operator int() { return x * y * z; }

The following program illustrates how the conversion function works:

#include <iostream.h>

class three_d {
int x, y, z; II 3-d coordinates

public:
three_d(int a, int b, int c) {x=a; y=b; z=c;}

three_d operator+(three_d op2) ;
friend ostream &operator<<(ostream &stream, three_d obj);

operator int() {return x*y*z;}
} ;

II Display X, Y, Z coordinates - three_d insertor
ostream &operator<<(ostream &stream, three_d obj)
{

stream << obj .x << ", ";
stream << obj .y << ", ";
stream<< obj.z << "\n";
return stream; II return the stream

three_d three_d::operator+(three_d op2)
{

three_d temp(O, 0, O);

temp.x = x+op2.x; II these are integer additions

Miscellaneous C++ Topics 887

temp.y = y+op2.y; II and the+ retains its original
temp.z = z+op2.z; II meaning relative to them
return temp;

}

main(void)
{

three_d a(l, 2, 3), b(2, 3, 4);

cout « a « b;

cout << b+lOO; II displays 124 because of conversion to int
cout << 11 \n 11 ;

cout << a+b; II displays 3, 5, 7 - no conversion

return 0;

This program displays the output

1, 2, 3
2, 3, 4
124
3, 5, 7

As the program illustrates, when a three_ d object is used in an integer
expression, such as cout < < b + 100, the conversion function is applied
to the object. In this specific case, the conversion function returns the
value 24, which is then added to 100. However, when no conversion is
needed, as in cout < < a+ b, the conversion function is not called.

Remember that you can create different conversion functions to
meet different needs. You could define one that converts to double or
long, for example. Each is applied automatically.

Granting Access

When you declare a base class as private, all elements (including public
elements) of the base class become private elements of any derived class
that inherits it. However, in some instances you may wish to grant
certain public elements of the base class public status in the derived
class. To accomplish this, you must use an access declaration. An access
declaration has the general form

base-class-name::element;

888 Turbo CIC++: The Complete Reference

The access declaration is put in the public portion of the derived class.
Here is a simple example that illustrates how to use an access

declaration:

#include <iostream.h>

class B_class {
public:

int i , j;
};

class D_class : private B_class {
public:

II access declaration
B_class::i; II i from B_class is now public again

int k;
} ;

main(void)
{

D_class d;

d.i = 10; II legal because i is made public in D_class
d.k = 20;

II d.j = 30; II illegal because j is private in D_class

cout << d.i * d.k;

return O;
}

In this example, B _class is inherited by D _class as private. This
means that both i and j become private elements of D _class. However,
inside D _class, an access declaration specifies ihat i be public again.

You can also use an access declaration to grant protected elements
in the base class protected status in a derived class. Keep in mind,
however, that you cannot raise or lower an element's access status. For
example, a private element of the base cannot become a public element
in a derived class.

The overload Anachronism

In the first versions of C++ created by Bjarne Stroustrup, overloaded
functions had to be explicitly declared as such using the overload

Miscellaneous C++ Topics 889

keyword. For example, if myfunc() was to be overloaded, you would
need to put this line of code in your program:

overload myfunc;

However, beginning with the 2.0 specification for C++, the overload
keyword is no longer needed. For compatibility with older C++ pro­
grams, it is allowed in C++ programs, but its use is now considered
anachronistic.

Differences Between C and C++

For the most part, C++ is a superset of ANSI-standard C and virtually
all C programs are also C++ programs. However, a few differences exist,
the most important of which are discussed here.

One of the most important yet subtle differences between C and
C++ is that in C, a function declared like this:

int f();

says nothing about any parameters to that function. That is, in C when
there is nothing specified between the parentheses following the
function's name, there may be parameters, but nothing is being stated
about any parameters in the declaration. However, in C++, the preced­
ing function declaration means that the function does not have parame­
ters. That is, in C++, these two declarations are equivalent:

int f();
int f(void);

In C++, the void is optional. Many C++ programmers include the void as
a means of making it clear to anyone reading the program that a
function does not have any parameters, but this is technically unneces­
sary in declaring such a function.

890 Turbo CIC++: The Complete Reference

In C++, all functions must be prototyped. This is an option in C
(although good programming practice suggests full prototyping be used
in a C program).

A small, but potentially important, difference between C and C++ is
that in C, a character constant is automatically elevated to an integer.
In C++, it is not.

In C, it is not an error to declare a global variable several times,
even though this is bad programming practice. In C++, it is an error.

In C, an identifier can be up to 31 characters long. In C++, no such
limit exists. However, from a practical point of view, extremely long
identifiers are unwieldy and are seldom needed.

Turbo C++ 's Complex and BCD Classes

In addition to the classes and overloaded operators defined by io­
stream.h and its derivatives, Turbo C++ includes two additional class
libraries that perform complex and BCD arithmetic.

As you may know, a complex number has two parts: a real part and
an imaginary part. The real part is an ordinary number; the imaginary
part is a multiple of the square root of -1. To use complex numbers,
you must include complex.h in your program.

To construct a complex number, use the complex constructor func­
tion. It has this prototype:

complex(double real_part, double imaginary _part);

The < < and > > operators are overloaded relative to complex num­
bers. For example, this program constructs an imaginary number and
displays it on the screen:

#include <iostream.h>
#include <complex.h>

main(void)
{

complex num(lO, 1);

cout << num;

return O;
}

Miscellaneous C++ Topics 891

The program outputs the following:

(10, 1)

This output also illustrates the general format used when displaying
complex numbers.

You can mix complex numbers with any other type of number,
including integers, floats, and doubles. The arithmetic operators +, -,
*•and I are overloaded relative to complex numbers as are the relational
operators = = and ! = . This program illustrates how complex and regu­
lar numbers can be mixed in an expression:

#include <iostream.h>
#include <complex.h>

main(void)
{

complex num(lO, 1);

num = 123.23 + num I 3;

cout << num;

return O;
}

Turbo C++ has overloaded many mathematical functions, such as sin()
(which returns the sine of its argument), relative to complex numbers. It
also defines several functions that apply specifically to complex numbers.
The complex functions are shown in Table 30-1.

Turbo C++ also defines the bed class. AB you may know, real
numbers can be represented inside the computer a number of different
ways. The most common is as binary floating-point values. However,
another way to represent a real number is to use Binary Coded Deci­
mal, or BCD for short. In BCD, base 10, rather than base 2 is used to
represent a number. The major advantage to the BCD representation is
that no round-off errors occur. For example, using binary floating point,
the number 100.23 cannot be accurately represented and is rounded to
100.230003. However, using BCD, no rounding occurs. For this reason,
BCD numbers are often used in accounting programs and the like. The
major disadvantage to BCD numbers is that BCD calculations are
slower than binary floating-point calculations. To use BCD numbers you
must include bcd.h in your programs.

892 Turbo CIC++: The Complete Reference

Name

complex abs(complex n)
double acos(complex n)
double arg(complex n)

complex asin(complex n)
complex atan(complex n)
complex atan2(complex n)

double conj(complex n)

complex cos(complex n)
complex cosh(complex n)
complex exp(complex n)
double imag(complex n)
complex log(complex n)

complex loglO(complex n)
double norm(complex n)
complex polar(double magnitude,
double angle)
complex pow(complex x, complex y)

complex pow(complex x, double y)

complex pow(double x, complex y)

double real(complex n)
complex sin(complex n)
complex sinh(complex n)
complex sqrt(complex n)

complex tan(complex n)
complex tanh(complex n)

Table 30-1. The Complex Functions

Purpose

Returns the absolute value of n
Returns the arc cosine of n
Returns the angle of n in the complex
coordinate plane
Returns the arc sine of n
Returns the arc tangent of n
Returns the arc tangent2 of n
Returns the conjugate of n
Returns the cosine of n
Returns the hyperbolic cosine of n
Returns e to the nth
Returns the imaginary part of n
Returns the natural log of n
Returns the log base 10 of n
Returns the square of n
Returns the complex number given its
polar coordinates

Returns x to the y power
Returns the real part of n
Returns the sine of n
Returns the hyperbolic sine of n
Returns the square root of n
Returns the tangent of n
Returns the hyperbolic tangent of n

The bed class has these constructor functions:

bcd(int n)
bcd(double n)
bcd(double n, int digits)

The first two are self-explanatory. The third creates a BCD number that
uses digits number of digits after the decimal point.

Miscellaneous C++ Topics 893

In Turbo C++, BCD numbers have a range of 10-125 to 10125 with 17
digits of precision.

To convert a number from BCD format to normal binary floating­
point format, use real(). Its prototype is

long double real(bcd n)

The bed class overloads the arithmetic and relational operators as well
as the functions shown in Table 30-2.

The following is a sample program that illustrates the advantage of
BCD numbers when preventing round-off errors is important:

#include <iostream.h>
#include <bcd.h>

main(void)
{

float f = 100.23, fl = 101.337;
bed b(l00.23), bl(lOl.337);

cout « f+fl « 11 11 « b+bl;

return 0;
}

Name

bed abs(bcd n)
bed acos(bcd n)
bed asin(bcd n)
bed atan(bcd n)
bed cos(bcd n)
bed cosh(bcd n)
bed exp(bcd n)
bed log(bcd n)
bed loglO(bcd n)
bed pow(bcd x, bed y)
bed sin(bcd n)
bed sinh(bcd n)
bed sqrt(bcd n)
bed tan(bcd n)
bed tanh(bcd n)

Table 30-2. The BCD Functions

Purpose

Returns the absolute value of n
Returns the arc cosine of n
Returns the arc sine of n
Returns the arc tangent of n
Returns the cosine of n
Returns the hyperbolic cosine of n
Returns e to the nth
Returns the natural log of n
Returns the log base 10 of n
Returns x to the y power
Returns the sine of n
Returns the hyperbolic sine of n
Returns the square root of n
Returns the tangent of n
Returns the hyperbolic tangent of n

894 Turbo CIC++: The Complete Reference

This program displays the following on the screen:

201.567001 201.567

The Message-Based Phllosophy

A few words are in order about a programming philosophy that fits very
well with object-oriented programming in general and C++ in particular.
This programming philosophy is based on the concept of messages. In a
message-based approach, all (or at least most) data is held privately
inside a class. To retrieve or alter an item of data, you send the object a
message to this effect. Code outside the class never operates directly on
any data privately held by the class. Instead, the only things capable of
altering data are the member (or friend) functions of the object that
contains the data. This approach reduces the possibility of accidental
side effects. It also lets you govern precisely what values the private
data of an object can have because the member functions that access the
data can filter out incorrect values.

In C++, to send an object a message you must call a member (or
friend) function. To better understand this concept, think about a class
that manages access to a database. In normal C code, to modify an
entry in the database, you simply write a line of code like this (assume
that database is an array of C-like structures):

database[record].balance = 100.75;

However, using a message-based approach and C++, you call a member
function with the record number and new value as arguments. For
example, you could use a statement like this (here, database is an
object):

database.newbalance(record, 100.75);

In this case, no other code actually "touches" the data protected within
the object.

Miscellaneous C++ Topics 895

To see how the message-based approach works in practice, here is a
class that emulates a stopwatch, along with a short main() to illustrate
its use:

#include <iostream.h>
#include <time.h>
#include <conio.h>

class stopwatch {
clock_t timel, time2;

public:
stopwatch() {timel = time2 = O;}
void reset() {timel = time2 = O;}
void start() {timel = clock()/CLK_TCK;}
void stop() {time2 = clock()/CLK_TCK;}
clock_t elapsed() {return time2 - timel;}

} :

main(void)
{

}

stopwatch timer;

cout « "wait a while, then press a key\n":
timer. start();

while(!kbhit()) ; //wait for keypress

timer.stop():
cout << (long) timer.elapsed():
cout << " seconds have elapsed\n";

return 0;

This program displays the number of seconds between the time it starts
running and the time you press a key. It uses Turbo C++ 's clock()
function, which returns a value that, when divided by CLK_ TCK, is the
number of seconds since the program started running. The type
clock_ t is defined in the time.h header file required by the clock()
function. This type is essentially a long integer. The macro CLK_ TCK
is also defined in this file.

The stopwatch class declares the variables timel and time2 as
private members. They can only be accessed by sending messages
through the member functions. For example, you send a message to
start the clock by calling the start() function. This function then sets
the value of timel. You send a message to stop the clock by calling

896 Turbo CIC++: The Complete Reference

stop(). To obtain the elapsed time, you call the elapsed() function. At
no time does any other part of the program access tirnel or tirne2
directly.

Although the implementation of stopwatch is correct to a point, it
does not provide all the protection for tirnel and tirne2 that it could.
For example, there is nothing that prevents the start() function from
being called a second time before a call to stop(). Also, there is nothing
that prevents stop() from being called before start() has been called.
However, using the message-based architecture, it is possible not only to
closely regulate access to private data, but to prevent it from being
misused. For example, here is an improved version of the program that
prevents the accidental misuse of the stopwatch:

#include <iostream.h>
#include <time.h>
#include <conio.h>

class stopwatch {
clock_t timel, time2;
int ready;

public:
stopwatch() {timel = time2 = O; ready = l;}
void reset() {timel = time2 = O; ready = l;}
void start();
void stop() ;
clock_t elapsed();

} ;

void stopwatch::start()
{

if(! ready)
cout << "timer has not been reset\n";

else {
timel = clock()/CLK_TCK;
ready = O;

}
}

void stopwatch::stop()
{

if(ready)
cout « "timer has not been started\n";

else {

}
}

time2 = clock()/CLK_TCK;
ready = 1;

clock_t stopwatch::elapsed()

{
if(!ready) {

}

cout « "timer has not been stopped\n";
return -1;

else
return time2 - timel;

Miscellaneous C++ Topics 897

main(void)
{

}

stopwatch timer;

cout « "wait a while, then press a key\n";
timer.start();

while(!kbhit()) ; II wait for keypress
getch(); II read and dispose of keystroke

timer.stop();
cout << (long) timer.elapsed();
cout « " seconds have elapsed\n";

timer.stop(); II this will cause error message because
II the timer is not currently running

timer.start();
cout « "now running, wait a while, then press a key\n";

while(!kbhit()) ; II wait for keypress

timer.stop(); II now, this will work
cout << (long) timer.elapsed();
cout « " seconds have elapsed\n";

return 0;

In this version, it is not possible to accidentally misuse the stopwatch
because the ready flag is turned on only when the stopwatch is not
running.

Although you don't have to use a message-based approach to pro­
gramming in C++, much of C++ 's power comes from this feature. If you
master this method, your programs will be more bug free, extensible,
and flexible.

Final Thoughts

If you are new to object-oriented programming, but want to become
proficient, the best approach is to write many object-oriented programs.

898 Turbo CIC++: The Complete Reference

Programming is best learned by doing. Also, look at examples of C++
programs written by other people. If possible, study C++ code written
by several different programmers, paying attention to how each pro­
gram is designed and implemented. Look for shortcomings as well as
strong points. This will broaden the way you think about programming.
Finally, experiment. Push your limits. You will be surprised how quickly
you become an expert C++ programmer!

The Turbo C++ Environment

Part Five of this guide to Turbo C/C++ covers the Turbo C++ program­
ming environment, including both the Turbo C++ integrated develop­
ment environment (IDE) and the command-line compiler.

If you have used the Turbo C environment, the Turbo C++ IDE will
be familiar. However, there are many differences, so read carefully the
chapters in this section.

p
A
R
T

F
I
v
E

The Turbo C++ Integrated Development
Environment

Turbo C++ has two separate modes of operation. The first is called the
integrated development environment (IDE). Using the IDE, editing,
compiling, and executing programs are controlled by single keystrokes
and easy-to-use, intuitive menus. The second method of operation in­
volves the traditional approach where you first use an editor to create a
program source file, then compile, link, and run the program from the
command line. The command-line approach is covered in Chapter 33.

Although the Turbo C++ IDE is based on the Turbo C IDE, many
differences exist. This chapter assumes that you have installed Turbo
C++ according to the instructions given in the Borland manual.

Executing the Turbo C++ f DE

To execute the integrated version of Turbo C++, simply type "TC"
followed by a carriage return. When Turbo C++ begins execution you
see the screen shown in Figure 31-1. It consists of these four parts, in
order from top to bottom:

• The main menu

• The editor window

• The message window

• The status line

Each of these areas is examined briefly in this chapter.

T
H
I
R
T
y
-
0
N
E

902 Turbo CIC++: The Complete Reference

=File Edit Search Run CoMpile Debug Project Options Window IJelp
Main
men~ C•l

Edi~~
window

Figure 31-1.

NONAMEBB,C

The Turbo C++ opening screen

Using the Mouse

The Turbo C++ IDE can be operated using either the keyboard or the
mouse. Although a mouse is not required, mouse support has been
carefally integrated into the Turbo C++ IDE, and a mouse is certainly
an excellent addition.

To make the discussion of the IDE more clear, a few mouse opera­
tions and terms are defined here. In general, to select an item, position
the mouse pointer over that item and press the left mouse button. Doing
this is called clicking on an item. Sometimes, you need to double click in
order to select something. Double clicking means that you press the left
mouse button twice in rapid succession without moving the mouse be­
tween clicks. Some objects can be dragged across the screen. To drag an
object using a mouse, position the mouse pointer on the appropriate part
of the object, press and hold down the left mouse button, and then move
the mouse. AI3 you move the mouse, the object moves in the same

The Turbo C++ Integrated Development Environment 903

direction. When the object reaches the desired part of the screen, stop
moving the mouse and release the left button.

The Main Menu

To activate the main menu, press the Flo key. When you do this, one of
the menu items becomes highlighted.

The main menu is used either to tell Turbo C++ to do something,
such as load a file or compile a program, or to set an option. Once the
main menu is activated, there are two ways to make a main menu
selection using the keyboard. First, you can use the arrow keys to
highlight the item you want and then press ENTER. Second, you can
simply type the first letter of the desired menu item. For example, to
select Edit, you type an E. You can enter the letters in either upper- or
lowercase. If you have a mouse, you simply click on the main menu item
that you want to activate. Table 31-1 summarizes each menu selection.

When you select a main menu item, a pull-down menu is displayed
that contains a list of choices. This menu allows you to select an action
that relates to the main menu item. To make a selection using the arrow
keys, highlight the item you want and press ENTER. Or, you can simply
type the letter of the option that is displayed in a different color on color
monitors or boldface on monochrome monitors. (Most of the time, the
different color letter is the first letter, but not always.) If you have a
mouse, click on the desired item. You can cancel a menu at any time by
pressing the ESC key or by clicking on another part of the screen using
the mouse.

Sometimes a menu entry will not be available in a given situation.
When this occurs, no letter is shown in a different color, and if you move
the highlight to the option (or click on it with the mouse), it is displayed
as a black bar.

Some pull-down menus produce secondary pull-down menus that
display additional options relating to the first. Secondary pull-down
menus operate the same as primary pull-down menus. When an option is
shown with a dark arrow to its right, it will display another pull-down
menu.

904 Turbo CIC++: The Complete Reference

Item

File

Edit
Search
Run

Compile
Debug

Project
Options
Window
Help

Table 31-1.

Options

Displays the version number, clears or restores the screen,
and executes various utility programs supplied with Turbo
C++
Loads and saves files, handles directories, invokes DOS, and
exits Turbo C++
Performs various editing functions
Performs various text searches and replacements
Compiles, links, and runs the program currently loaded in the
environment
Compiles the program currently in the environment
Sets various debugger options, including the setting of break­
points
Manages multifile projects
Sets various compiler, linker, and environmental options
Controls the way various windows are displayed
Activates the context-sensitive help system

Summary of the Main Menu Items

Some menu entries are on/off selections. To reverse the state of an
on/off entry, move the highlight to that entry and press ENTER. You can
also click on it using the mouse, or type the letter that is in a different
color.

Dialog Boxes

If a pull-down menu item is followed by three periods, selecting the item
displays a dialog box. Dialog boxes allow input that is not easily accom­
plished using a menu. Dialog boxes consist of one or more of the
following items:

Action buttons
Check boxes
Input boxes

The Turbo C++ Integrated Development Environment 905

List boxes
Radio buttons

An action button is an option that affects your activity inside a
dialog box. Most dialog boxes have at least three action buttons: Delete,
Cancel, and Help. To activate one of these using the keyboard, press
the TAB key until the desired action is highlighted and then press ENTER.
If you have a mouse, click on the appropriate button. There may be
other action buttons in a dialog box that are related to the specific
function of the dialog box.

A check box looks something like this:

[X] option

Here, option is some option that can be enabled or disabled. When the
box has an ''X" in it, that option is selected. If the box is empty, that
option is not selected. To change the state of a check box, TAB to the box
and press the SPACEBAR. The SPACEBAR acts as a toggle: Each time you
press it, the state of the box reverses. You can also change the state of a
check box by clicking on it with the mouse.

An input box allows you to enter text, such as a file name. To
activate the input box, either press TAB until the box is active or click on
it using the mouse. Once it is activated, enter text using the keyboard
and press ENTER when done.

A list box presents a list of items from which you can choose. To
activate the list box, either press TAB until the box is active or click on it
using the mouse. Once it is activated, highlight the item you want and
press ENTER, or double click on the item using the mouse.

Radio buttons make up a list of mutually exclusive options that
takes this general form:

()option 1
(.)option 2

()option N

906 Turbo CIC++: The Complete Reference

Since the options are mutually exclusive, only one can be active at any
one time. The active option has a period between the parentheses. To
highlight radio buttons, TAB to them or click on them using the mouse.
Use the arrow keys to change the location of the period, or click on the
desired selection using the mouse.

An example of one of Turbo C++ 's dialog boxes is shown in Figure
31-2.

Now that you know how to use Turbo C++ menus, let's begin our
tour of the IDE.

Turning On Full Menus

Because Turbo C++ has such a large number of options, by default not
all menu items are displayed. Instead, only the most commonly used
options are presented. In order to see what all the available options are,

= File Edit Search Run CoMpile Debug Project Options Window Help
[I] NONAMEOO,C

Figure 31-2. An example Turbo C++ dialog box

The Turbo C++ Integrated Development Environment 907

you must turn on the full menus. To do this, activate the main menu by
pressing FlO. Next, move the highlight on the main menu to the Options
entry and press ENTER. Your screen will look like Figure 31-3. Move the
highlight to the Full menus entry and press ENTER to turn it on.

Exploring the Main Menu

This section examines each entry of the main menu.

The System Menu

From the main menu, highlight the System menu symbol (at the far left
of the main menu) and press ENTER. The System menu tells you informa­
tion about your version of Turbo C++. It also lets you clear the work

• 1·1
llOllAME00,C

Figure 31-3. The Options pull-down menu

iJMPi !er >-
Make,,,
Directories,,,

EnuirmJMent 1-
----- --

Save

908 Turbo CIC++: The Complete Reference

File

area and redisplay the screen. (You will need to redisplay the screen
when a program overwrites the video memory when it executes.)

Using the System menu, you can also execute various utility pro­
grams supplied by Turbo C.

Highlighting the File option activates the File pull-down menu, as
shown in Figure 31-4.

The Open option prompts you for a file name and then loads that
file into the editor. If the file does not exist, one is created. The Open
option also displays a list of files from which you can choose. Use the
arrow keys to highlight the file you wish to load and press ENTER, or
double click on the desired file name. New opens another editing

- I i le Edit Search

:!]pen •••
New
Saue
Save as,,,
Saue all

Change dir •• ,
Print
Get info".

F3

F2

Run Conp • f•1 1 I

NONAME00,C

Figure 31-4. The File pull-down window

I

Edit

The Turbo C++ Integrated Development Environment 909

window and lets you create a new file. The file is called NONAMEn.C,
where n is a value between 0 and 99. You can rename the file when you
save it. The Save option saves the file in the active window. The Save as
option lets you save a file using a different file name. The Save all option
saves the files in all open windows. Change dir changes the default
directory to the one you specify. The Print option prints the file in the
active window. The Get info option displays information about the file in
the active window. The DOS shell option loads the DOS command
processor and lets you execute DOS commands. You must type EXIT to
return to Turbo C++. Finally, the Quit option quits Turbo C++.

The Edit option allows you to perform several editor operations. These
commands and the operation of the editor are discussed at length in
Chapter 32.

Search

Run

The Search main menu entry allows you to perform various types of
searches and search-and-replaces on the text in the active window. Since
the Search options relate to the editor, they are discussed in Chapter
32.

The Run option activates a submenu containing six selections:

Run
Program reset
Go to cursor
Trace into
Step over
Arguments ...

91 O Turbo CIC++: The Complete Reference

The Run option executes the current program. If the program has not
yet been compiled, Run compiles it for you.

The next four options relate to the execution of a program using the
debugger. To use them you must compile your program with the debug­
ging information option turned on, as it is by default. Although the
operation of the debugger is deferred until Appendix A in this book, the
following descriptions will give you an idea about what they do. The
Program reset option terminates your program when it is being run in
a debug mode. Go to cursor executes your program until it reaches the
line of code on which the cursor is positioned. The Trace into option
executes your program one statement at a time. If the next statement
includes a subroutine call, the subroutine is traced. The Step over option
executes the next line of code, but does not trace into any subroutines
that may be called.

The Arguments entry is used to pass command-line arguments to a
program that is run from the IDE.

Comp lie

When you highlight the Compile menu, you see the screen shown in
Figure 31-5. The first option allows you to compile the file currently in
the editor to an .OBJ file. (An .OBJ file is a relocatable object file that is
ready to be linked into an .EXE file that can be executed.) The second
option compiles your program directly into an executable file. The third
option lets you link your current program. The Build all option recom­
piles all the files related to your program. The Remove messages option
clears the message window.

Debug

The Debug option lets you control the way Turbo C++ 's integrated
debugger operates. In most cases, the default settings work just fine
and you will not need to change them.

Project

The Project option is used to aid in the development and maintenance of
large, multifile programs. Appendix D discusses multifile programs.

The Turbo C++ Integrated Development Environment 911

Figure 31-5. The Compile pull-down menu options

Options

When you select Options, you see the entries shown here:

Full menus

Compiler
Transfer ...
Make .. .
Linker .. .
Directories ...
Environment
Save ...

Except for the first, each of these entries allows you to change the way
Turbo C++ operates.

The Compiler option lets you change aspects about the way Turbo
C++ generates code. The Tran sf er option lets you add programs to the

'

912 Turbo CIC++: The Complete Reference

Turbo C++ System menu. Programs listed in the System menu can be
executed from within Turbo C++ without leaving the IDE. The Make
option changes how your program is compiled. The Linker option
changes the way your program is linked. The Directories option lets
you set the default directories Turbo C++ uses. The Debugger option
lets you set various debugger options. The Environment option lets you
change the way the IDE operates. The Save option lets you determine
how various IDE options are saved for future use.

Window

Turbo C++ 's IDE is based on the window. Turbo C++ 's windows are
very versatile. The Window option allows you to perform various opera­
tions on a window. The Window pull-down menu looks like that shown in
Figure 31-6.

The first entries let you perform various operations on the active
window. If you select Size/Move, you can change the size of the active

• 1·1
NONAl1E00,C

Figure 31-6. The Window pull-down menu

The Turbo C++ Integrated Development Environment 913

window or move it to a new location on the screen. The Zoom option
increases the size of the active window so that it fills the entire screen.
Once a window has been zoomed, selecting Zoom a second time returns
the window to its normal size.

The IDE allows several windows to be open at the same time. There
are two ways that multiple windows can be displayed by Turbo C++:
tiled or cascaded. By default, windows are cascaded: Each time a new
one is created, it partially overlays one or more other windows. Figure
31-7 shows an example of several cascaded windows. If you select the
Tile option, no window overlays another. Each is given a reduced part of
the screen. Figure 31-8 shows the windows shown in Figure 31-7 in tiled
format.

If you have several open windows, you can progressively jump from
one to the next by selecting Next. You can remove a window from the
screen by selecting Close.

= File Edit Search Run CoMpile Debug Project Options Window Help
MYPROG,CPP 1--------,

..----------- MYPROG2,CPP --------2--------,
~--------- MYPROG3 ,CPP 3--------,
l•l======== MYPROG4,CPP m1

Figure 31-7. Cascaded windows

914 Turbo CIC++: The Complete Reference

=' File Edit Search Run CoMpile Debu!I Project Options Window Help

Figure 31-8. Tiled windows

The second part of the Window menu allows you to activate one of
Turbo C++ 's built-in windows. The Message window is the one used by
Turbo C++ to output information to you. The Output window displays
the output generated when a program executes inside a window in the
IDE. The User screen shows the full screen out.put of a program. If you
select this option, you must press F5 to return to the IDE screen. The
Watch window is used in debugging. The Register window displays the
contents of each register of the CPU. The Project and Project notes
windows relate to projects.

To list all open windows, select List. You can activate a window by
selecting one from the list.

Help

When you activate the Help option, you see the following menu selec­
tions:

The Turbo C++ Integrated Development Environment 91 5

Contents
Index
Topic search
Previous topic
Help on help

The Contents option displays the table of contents to the help
system. The Index option activates an index of topics covered by the
help system. To make a selection, move the highlight to the topic you
want and press ENTER. You will then see information relating to the topic
you selected. To exit the help system, press ESC.

When you select the Topic search option, information is displayed
about the keyword that the cursor is currently located on. To review the
previous topic, select Previous topic. You can receive help about the
help system by selecting Help on help.

From the main menu, press ESC to activate the editor window.

The Hot Keys

Turbo C++ 's most common operations can be activated directly, without
going through the main menu, by using hot keys. (You probably remem­
ber seeing some of these key combinations displayed to the right of
various pull-down menu entries.) These keys are ready for use whenever
you need them. The hot keys are summarized in Table 31-2.

Using Turbo C++ 's Context-Sensitive Help

Turbo C++ contains an on-line help system that gives information about
any feature of Turbo C++ simply by pressing the Fl key. Turbo C++ 's
help system works a little differently when you use the Fl hot key to
activate it than it does when you use the main menu. The difference is
that, when activated by pressing Fl, C++ 's help system is context sensi­
tive -it displays help information that relates to what you are doing.

916 Turbo CIC++: The Complete Reference

Hot key

Fl

F2

F3

F4

F5

F6

F7

F8

F9

FlO

ALT-0

ALT-n

ALT-Fl

ALT-F3

ALT-F4

ALT-F5

ALT-F7

ALT-F8

ALT-F9

ALT-SPACEBAR

ALT-C

ALT-D

ALT-E

ALT-F

ALT-H

ALT-0

ALT-P

ALT-R

ALT-S

ALT-W

ALT-X

CTRL-Fl

CTRL-F2

CTRL-F3

CTRL-F4

CTRL-F5

CTRL-F7

CTRL-F8

CTRL-F9

Table 31-2.

Meaning

Activates the on-line help system
Saves the file currently being edited
Loads a file
Executes program until cursor is reached
Zooms the active window
Switches between windows
Traces program into function calls
Traces program, skips function calls
Compiles and links program
Activates the main menu
Lists open windows
Activates window n (n must be 1 through 9)
Shows previous help screen
Deletes active window
Opens an Inspector window
Toggles between user screen and IDE
Previous error
Next error
Compiles file to .OBJ
Activates main menu
Activates Compile menu
Activates Debug menu
Activates editor
Activates File menu
Activates Help menu
Activates Options menu
Activates Project menu
Activates Run menu
Activates Search menu
Activates Window menu
Quits Turbo C++
Requests help about the item that contains the cursor
Resets program
Shows function call stack
Evaluates an expression
Changes size or location of active window
Sets a watch expression (debugging)
Sets or clears a break point
Executes the current program

The Hot Keys

The Turbo C++ Integrated Development Environment 917

More specifically, it displays information that relates to the current
focus of activity. For example, if the editor is currently active, activating
the help system by pressing Fl displays information about the editor. If a
menu item is highlighted, pressing Fl gives you information about that
item.

To see how this works, activate the main window and highlight the
Options entry. Now press Fl. AB you can see, information relating to the
Options entry is displayed. When you are done with the help system,
press ESC.

Before moving on, you might want to try the context-sensitive help
feature on your own. AB you will see, it is a powerful aid.

Understanding Windows

The Turbo C++ IDE is based upon the window, which is a portion of the
screen. All windows have similar characteristics. The features common
to most windows are shown in Figure 31-9. All windows have a title,
which describes what the window is being used for, and most have a
number that identifies the window. All windows include a zoom box,
which enlarges or reduces the size of a window; a close box, with which
you can remove a window; and a resize corner, which allows you to
change the size of a window. The zoom box, close box, and resize corner
can only be accessed using a mouse. (If you don't have a mouse, you can
perform the same operations with special keyboard commands.)

Some, but not all, windows have horizontal and vertical scroll bars,
which allow you to scroll text in the window. They work only with a
mouse. When scrolling vertically, you can scroll one line at a time by
clicking on the up or down arrow of the vertical scroll bar. The slider
box moves along the scroll bar, indicating your relative position in the
file. If you press and hold the left mouse button down while on an arrow,
the text scrolls continuously. You can click anywhere on the scroll bar,
and the corresponding location in the file is displayed. Finally, you can
drag the slider box along the bar and the text scrolls accordingly. These
operations are paralleled by the horizontal scroll bar, except that text is
moved from side to side.

918 Turbo C/C++: The Complete Reference

Close box Title

['=== /
Title

Zoom box

.__ Scroll up arrow

/ [•]1
r Sliderbox

~ VertiMI "''°" b.,.

I._ Scroll down arrow

·.w~.' ·.'*ittffi. '"'IJI.·. 1.• .. *1."w"lf·~·l!l· ··.~.11!illli.'.•··.F··'·'·.'~.!%.!"'.'.'.~.··.·.·'r"'.".'.'.t.·.''.".'··.··.:.1~.·.''.i'.i' .. '1·1"" .••..• ·l'.·.1 ... l'~.:.1~."'.·'.l'l".'.·!!'iiii.I!'~.· •. 1,,:·,•.·. ~.... Resize/move corner ~·,~il!{t~- ,;~iittJ;;t;~l~i~~~~ifiH™~Th'~llll~ ~h~JI if.~ii,~HC--J--
t t t t

Scroll Slider
left box

arrow

Figure 31-9.

Horizontal
scroll
bar

Common window features

Scroll
right
arrow

When a window is displayed on the screen, it is said to be open.
Although there can be several open windows on the screen at the same
time, only one can be active. When a window is active, it is the focus of
any input you generate from the keyboard. There are several ways to
make a window active. If you know the number of the window, you can
simply hold down the ALT key and press the number of the window you
want. The windows are numbered 1 through 9. Pressing ALT-0 displays a
list of all windows currently in use. You can activate a window by
selecting it from that list. Or, if you have a mouse, you can activate a
window by simply clicking on it.

Sizing and Moving Windows

By far, the easiest way to resize or move a window is by using the
mouse. To move a window, move the mouse pointer so that it is on the
top border of the window. Press and hold the left button and drag the
window to its new location. To change the size of a window, move the

The Turbo C++ Integrated Development Environment 919

mouse pointer to the resize corner of the window, press and hold the left
mouse button, and move the mouse in the appropriate direction.

To resize or move a window if you do not have a mouse, first make
the window that you want to operate on active. Next, activate the
Window main menu entry and select the Size/Move option. Now, using
the arrow keys you can move the window around the screen. To change
its size, hold down the shift key while using the arrow keys.

Keep in mind that dialog boxes and menus are not windows and
they cannot be resized or moved.

The Editor Window

The editor window is where you create the source code for your C++
programs. AB you can see, the title of this window is NONAMEOO.C.
The reason for this is that when you executed Turbo C++, you did not
specify any file name, so the editor automatically gives the file a tempo­
rary name. (You can change the name when you save a file.) Keep in
mind that you can have several open editor windows at any one time.

The editor window can be moved or resized. You might want to
experiment changing its size or location.

We will look more closely at the editor windows in Chapter 32.

The Message Window

The message window lies beneath the edit window and is used to display
various compiler or linker messages. It is most commonly used to
display any error messages generated by the compiler. You can move or
resize the message window.

The Status Line

The line on the bottom of the screen is called the status line. It displays
a short comment relating to whatever you are currently doing. For
example, when the Window main menu option is selected, the status line
displays the following:

Fl Help ! Open, arrange, and list windows

The information displayed on the status line is valuable because it
provides clues about whatever is the current focus of the IDE.

Using the Turbo C++ Editor

This chapter discusses the Turbo C++ IDE editor. If you already know
how to use the Turbo C editor then you will feel right at home because
its operation is similar to the original Turbo C editor. The main addi­
tions found in the Turbo C++ editor are that it supports the mouse, that
several of the text manipulation and search commands can be executed
using menus, and that multiple edit windows can be created to allow
concurrent editing of two or more files.

Although the powerful Turbo C++ editor contains about 50 com­
mands, you will not have to learn all of them at once. The most impor­
tant deal with insertion, deletion, block moves, searching, and replace­
ment. Once you have mastered these basic areas, it will be easy to learn
the rest of the editor commands and put them to use as you need them.
Also, to help you learn to use the editor, Turbo C++ 's on-line context­
sensitive help system is at your disposal.

Much of this chapter parallels Chapter 13, which discusses the
Turbo C editor. The material is repeated here for the convenience of
those readers learning Turbo C++ who are not familiar with Turbo C.
Further, this chapter covers the subtle differences between the Turbo C
editor and the Turbo C++ editor.

Editor Commands

With few exceptions, all editor commands begin with a control charac­
ter. Many are then followed by another character. For example, the
sequence CTRL-Q F is the command that tells the editor to find a string. To
execute this command, hold down the control key and press Q, then
press F in either upper- or lowercase.

Although all editor commands can be entered from the keyboard,
some are also available from the main menu and some can be executed
using the mouse. When menu or mouse alternatives exist, they are
pointed out.

922 Turbo CIC++: The Complete Reference

Invoking the Editor and Entering Text

When Turbo C++ begins executing, the editor window is active. When
you activate the main menu to perform some operation, you can return
to the editor window by pressing ESC.

The top line of the editor window displays the name of the file
currently being edited, which is also the title of the editor window. The
bottom left of the editor window shows the current line and column
position of the cursor.

When the editor window is active and you are not giving it a
command, it is ready to accept input. This means that when you strike
keys on the keyboard, they appear in the editor at the current cursor
location.

By default, the editor is in insertion mode. As you enter text, it is
inserted in the middle of what (if anything) is already there. The oppo­
site, overwrite mode, overwrites existing text with new text. You can
toggle between these two modes by pressing the INS key. You can tell
which mode is currently active by the shape of the cursor: In insertion
mode, the cursor is represented as a blinking underscore; In overwrite
mode, it is a blinking rectangle.

Activate the editor window and type the following lines:

This is a
test of the
Turbo C++ editor.

If you make a mistake, you can use the BACKSPACE key to correct it. Your
screen now looks like Figure 32-1. Notice the position of the cursor and
the values associated with the line and column display at the lower left
of the editor window. Also, notice that an asterisk has appeared to the
left of the line and column indicators. The asterisk is displayed only
after a change has been made to the file.

Because the Turbo C++ editor is a screen editor, you can use the
arrow keys to move the cursor about the text. Also, when you click the
mouse, the cursor moves to the position of the mouse pointer. At this
time, use either the arrow keys or the mouse to position the cursor at
the far left side of the line "test of the." Now, type "very small" followed
by ENTER. Because you are in insert mode, the existing line is moved to

Using the Turbo C++ Editor 923

= File Edit Search Run Conpile DebLLg Project Options Window Help
[I]

This Is a
test of the
Turbo C++ editor,

Figure 32-1.

NONAME00,C

Editor screen with text entered

the right instead of being overwritten. Had you toggled the editor to
overwrite mode, the original line would have been overwritten. Your
screen now looks like Figure 32-2.

Deleting Characters, Words, and Lines

You can delete a single character two ways: with the BACKSPACE key or
with DEL. The BACKSPACE key deletes the character immediately to the left
of the cursor, while DEL deletes the character the cursor is under.

You can delete the entire word to the right of the cursor by typing
CTRL-T. A word is any set of characters delimited by one of the following
characters:

space $ I - + * ' A [] () • ; , < >

924 Turbo CIC++: The Complete Reference

= File Edit Search Run Conpile Debug Project Options Window Help
[I]

This is a
uery sriall
test of the
Turbo C++ editor,

NONAME00,C

Figure 32-2. Editor screen after inserting a line

You can remove an entire line by typing CTRL-Y. It does not matter
where the cursor is positioned in the line; the entire line is deleted.

If you wish to delete from the current cursor position to the end of
the line, type the sequence CTRL-Q Y.

Moving, Copying, and Deleting Blocks of Text

The Turbo C++ editor allows you to manipulate a block of text by
moving or copying it to another location or deleting it altogether. To do
any of these things you must first define the block. A block can be as
small as a single character or as large as your entire file. You can define
a block using the keyboard or using the mouse. To define a block using
the keyboard, move the cursor to the start of the block and type the
sequence CTRL-K B. Next, move the cursor to the end of the block and type

Using the Turbo C++ Editor 925

the sequence CTRL-K K. The block that you have defined will be high­
lighted. To define a block using the mouse, first position the mouse
pointer at the start of the block. Next, press and hold the left mouse
button and drag the mouse to the end of the block. Finally, release the
button.

To practice, move the cursor to the "t" at the start of the third line
and type Ctrl-K B. Next, move the cursor to the end of the last line of the
example and type CTRL-K K (or use the mouse to highlight the block). Your
screen should look like Figure 32-3.

To move a block of text, place the cursor where you want the text to
go and type the sequence CTRL-K v. This removes the previously defined
block of text from its current position and places it at the new location.

To copy a block, type the sequence CTRL-K c. For example, move the
cursor to the top of the file and type CTRL-K c. Your screen will look like
Figure 32-4.

= File Edit Search Run CoMpile Debug Project Options Window Help
NONAME00,C

Figure 32-3. Editor screen after defining a block

926 Turbo CIC++: The Complete Reference

" File Edit Search Run CoMpile Debug Project Options Window Help
[I] NONAME00.C l=Ctl
est of the

Turbo C++ editor. •
This is a
uery sMall
test of the
Turbo C++ editor.

Figure 32-4. Editor screen after block move

To delete the currently marked block, type the sequence CTRL-K Y.
You can also execute this command by activating the Edit option in the
main menu and then selecting the Cut entry. Either way you execute
this command, the block you delete is automatically put into a special
editor window called the clipboard. You will see how to use the clipboard
nn.n._
OVV.l.l.

You can mark a single word as a block by positioning the cursor
under the first character in the word and typing CTRL-K T.

To indent an entire block one character position use the command
CTRL-K I. To remove an indent, use CTRL-K U.

Using the Turbo C++ Editor 927

Using the Clipboard

Using the Edit main menu options, you can make use of the clipboard to
add greater flexibility when moving or copying text. Also, using the
clipboard, you can easily move text between two editor windows.

In general, the clipboard is a temporary depository for fragments of
text that have been copied from a file. To move text into the clipboard
you mark the region and then either delete that block or, using the Edit
menu, select the Copy option. If you select Copy, the block is not
deleted from the file, but it is still copied into the clipboard.

To retrieve a block of text from the clipboard, use the Edit menu's
Paste command. This causes the most recently deleted or copied block
of text in the clipboard to be copied into the active editor window at the
current cursor location.

You can see the contents of the clipboard by selecting the Show
clipboard option in the Edit menu. This also activates the clipboard
window so that you can select any part of the contents of the clipboard.

If you wish to delete a block without copying it into the clipboard,
select the block and execute the Clear option in the Edit menu.

You can display more than one file at a time by loading another file
or selecting the New option in the File menu, which creates another
editor window. To copy text from one window to another, simply define
the block in the source window, copy it to the clipboard, and then paste
it into the target window.

Hint: When you activate the help system and request information on a
C++ feature, frequently a programming example is included. If this is
the case, you can automatically move the example code into the clip­
board by selecting the Copy example option in the Edit menu.

928 Turbo CIC++: The Complete Reference

More on Cursor Movement

The Turbo C++ editor has a number of special cursor commands, which
are summarized in Table 32-1. Of course, you can also move the cursor
by positioning the mouse pointer at the desired location and clicking.

Command

CTRL-A

CTRL-S

CTRL-D

CTRL-F

CTRL-E

CTRL-R

CTRL-X

CTRL-C

CTRL-W

CTRL-Z

PGUP

PGDN

HOME

END

CTRL-QE

CTRL-QX

CTRL-QR

CTRL-QC

CTRL-PGUP

CTRL-PGDN

CTRL-HOME

CTRL-END

Table 32-1.

Action

Moves to the start of the word that is to the left of the cursor
Moves left one character
Moves right one character
Moves to the start of the word to the right of the cursor
Moves the cursor up one line
Moves the cursor up one full screen
Moves the cursor down one line
Moves the cursor down one full screen
Scrolls screen down
Scrolls screen up
Moves the cursor up one full screen
Moves the cursor down one full screen
Moves the cursor to the start of the line
Moves the cursor to the end of the line
Moves the cursor to the top of the screen
Moves the cursor to the bottom of the screen
Moves the cursor to the beginning of the file
Moves the cursor to the end of the file
Moves the cursor to the beginning of the file
Moves the cursor to the end of the file
Moves the cursor to the top of the screen
Moves the cursor to the bottom of the screen

The Cursor Commands

Using the Turbo C++ Editor 929

Find and Replace

To find a specific sequence of characters you type CTRL-Q F. You are then
prompted by the dialog box shown in Figure 32-5 for the string you wish
to find. You can also specify various search options, which modify the
way the search is conducted.

The default setting causes the search to proceed from the current
cursor position forward. You can change this so that the search pro­
ceeds in the opposite direction by selecting the Backward option. You
can also have the search cover the entire file by selecting the Entire
scope option.

By default, the search is case-sensitive, meaning that upper- and
lowercase characters are treated as different. However, you can cause
upper- and lowercase to be treated as if they are the same-for exam­
ple, an a will match an A.

= File Edit Search Run CoMpile Debug Pro,ject Options Window Help
[I] HOHAME00,C l=ctl
est of the

Turbo C++ editor, •
This is a
uer!l sl'lall
test or the
Turbo C++ ed

Figure 32-5. The Find dialog box

930 Turbo CIC++: The Complete Reference

By default, a match is produced if the string you enter is contained
within another, larger string. (This is called a substring match). For
example, if you enter "is" for the search string, the editor will find a
match in the word "this." You can cause the search to match only whole
words by checking the Whole words only box.

You can confine the search to a block by selecting the Selected text
option.

If you check the Regular expression box, you can use the wildcard
characters shown in Table 32-2 in your search string. The following
examples show how wildcard characters work:

Expression
h .. lo
Atest

test$
[two]
X*

Matches
hello (and others)
test (at start of line)
test (at end of line)
t, w, or o
x, xx, xxx, etc.

You can repeat a search by simply typing CTRL-L. This is very
convenient when you are looking for something specific in the file.

To activate the replace command you type CTRL-Q A. Its operation is
identical to the find command except that it allows you to replace

Character

$

*

+

[string]

\

Table 32-2.

Purpose

Matches the start of a line
Matches the end of a line
Matches any character
Matches any number (including 0) of occurrences of the char­
acter it follows
Matches any number (except 0) of occurrences of the charac­
ter it follows
Matches a single occurrence of any one character in string.
You may specify a range using the hyphen. If the first charac­
ter in the string is a ', then the construct will match any
characters except those in the string
Causes the character it precedes to be treated literally and
not as a wildcard

The Regular Expression Wildcard Characters

Using the Turbo C++ Editor 931

the string you are looking for with another. When you activate the
command, you will see the dialog box shown in Figure 32-6.

AB you can see, the options available in the Replace dialog box are
similar to those available with Find. In addition, the editor asks for a
confirmation before making a change. You can turn off this feature by
deselecting Prompt on replace.

You can enter control characters into the search string by first
typing CTRL-P followed by the control character.

Both find and replace may be activitated using the Search main
menu option.

Setting and Finding Place Markers

You can set up to four place markers in your file by typing CTRL-K n,
where n is the number of the place marker (0 through 3). After a
marker has been set, the command CTRL-Q n, where n is the marker

"' File Edit Search Run CoMpile Debug Project Options Wimlow Help
tlOtlAME00,C

p ac

Figure 32-6. The Replace dialog box

932 Turbo C/C++: The Complete Reference

number, places the cursor at that marker. Place markers are especially
convenient in large files.

Saving and Loading Your File

To save your file, exit the editor and return to the main menu by
pressing FlO. Select the File option. The Save option saves what is
currently in the editor into a disk file by the name shown in the window
title. If you are editing a new file, invoking the Save option causes the
file to be saved as NONAMEOO.C. Because you will probably want to
use a different file name, Turbo C prompts you for a name. (When using
the Save option, this prompt occurs only if NONAMEnn.C is the name
of the source file. Otherwise, the file is saved without further interac­
tion.)

If you wish to save the contents of the editor under a file name
other than that shown on the editor status line, use the Save as option.
(To access this option, Full menus must be on.) This allows you to enter
the name of the file under which you wish to write the current contents
of the editor, and makes that the default file.

You can also save your file from within the editor by pressing the F2
key. This is the same as choosing the Save option from the File menu.

To load a file, you can either press F3 from within the editor or
select the Open option in the File menu. This displays a dialog box that
prompts you for the name of the file you wish to load. There are two
ways to specify the file name using the keyboard: You can type it in, or
you can TAD to the list of files shown in the dialog box and make a
selection. By default, all files with the .C extension are displayed. If you
have a mouse, double-click on the desired file to load it.

By default, when you save a file that already exists on disk, the old
version of the file is not overwritten. Instead, it is kept as a backup file
and its extension is changed to .BAK. Later in this chapter, you will
learn how to turn off automatic backup.

Understanding Autolndentatlon

As you most likely know, good programmers use indentation to help
make the programs they write clearer and easier to understand. To

Using the Turbo C++ Editor 933

assist in this practice, each time you hit ENTER the Turbo C++ editor
automatically places the cursor at the same indentation as the previous
line. You toggle this feature on and off by typing CTRL-0 I. To see how
autoindentation works, enter the following few lines exactly as they are
shown here:

This is an illustration
of the autoindentation
mechanism

of the Turbo C++
editor.

As you enter the text notice how Turbo C++ automatically maintains the
last indentation level. You will find this feature quite handy when enter­
ing C++ source code.

Moving Blocks of Text to and from Disk Flies

It is possible to move a block of text into a disk file for later use. This is
done by first defining a block and then typing CTRL-K w. You are prompted
for the name of the file under which you wish to save the block. The
original block of text is not removed from your program.

To read a block into your file, type the command CTRL-K R. You are
then prompted for the file name. The contents of that file are read in at
the current cursor location.

These two commands are most useful when you are moving text
between two or more files, as is often the case during program develop­
ment.

Pair Matching

There are several delimiters in C++ that work in pairs,such as, { }, [],
and (). In very long or complex programs, it is sometimes difficult to
find the companion to a delimiter. The Turbo C++ editor can find the
companion delimiter for the following delimiter pairs automatically:

934 Turbo CIC++: The Complete Reference

{}
[]
()
< >
/* */ ,, ,,
I I

To find the matching delimiter, place the cursor on the delimiter
you wish to match and type CTRL-Q [for a forward match or CTRL-Q J for a
backward match. The editor moves the cursor to the matching delimiter.

Some delimiters are nestable and some are not. The nestable delim­
iters are: { }, [], (), < >, and sometimes the comment symbols (when
the nested comments option is enabled). The editor finds the matching
delimiter in accordance with C++ syntax. If for some reason the editor
cannot find a proper match, the cursor is not moved.

Miscellaneous Commands

You can abort any command that requests input by typing an ESC at the
prompt or by clicking the mouse on a part of the screen outside the
dialog box. For example, if you execute the Find command and then
change your mind, simply type ESC or click the mouse outside the box.

If you wish to enter a control character into the file, first type CTRL-P
followed by the control character you want.

To undo changes made to a line before you have moved the cursor
off that line, simply type CTRL-Q L. You can also undo changes to a line by
selecting the Restore line option in the Edit menu. Remember that
once the cursor has been moved off the line, you cannot undo any
changes.

If you wish to move the cursor to the start of a block, enter CTRL-Q B.
Typing CTRL-Q K moves the cursor to the end of a block.

Using the Turbo C++ Editor 935

To print a file, use the CTRL-K P command. This command prints the
entire file if no block is defined. Otherwise, it prints only the defined
block.

One particularly useful command is CTRL-Q P, which moves the cursor
to its previous position. This is handy if you want to search for some­
thing and then return the cursor to its original location.

By default, when you strike the TAB key, the tab character is entered
into your file. However, using the command CTRL-0 T inserts an equivalent
amount of spaces in place of a tab. The CTRL-0 T command toggles
between the two ways tabs are processed.

By default, when you press the BACKSPACE key at the start of a new
line, the cursor automatically moves to the left one indentation level
each time it is pressed. You can toggle this feature using the CTRL-0 u
command to move the cursor back only one space each time the BACK­
SPACE key is pressed, no matter how deeply indented it is.

Changing the Editor Defaults

You can change some aspects of the way the editor operates by selecting
Options from the main menu and then selecting the Environment
entry. Next, select the Editor item. (You must have Full menus turned
on to do this.) You will see the dialog box shown in Figure 32-7.

Create backup files, Insert mode, and Autoindent mode are self
explanatory. If you turn the Use tab character option off, the appropri­
ate number of spaces will be substituted for the tab character. The
Optimal fill option controls what characters Turbo C++ uses when it
autoindents. When on, it mixes spaces and tabs. When off, it uses spaces
only. When Backspace unindents is on, each time you press BACKSPACE
on a blank line, the cursor backs up one indentation level. If the option
is off, the cursor backs up one character each time BACKSPACE is pressed.
When Cursor through tabs is on, the cursor moves through a tab, one
space at a time. When the option is off, the cursor jumps to the next tab
position.

There are also places provided where you can change the tab size
and the default file name extension.

936 Turbo CIC++: The Complete Reference

= File Edit Search Run CoMpile Debug Pro,iect Options Window Help
[I] NONAME00,C l=ctl
est of the •

Turbo C++ editor, •
This is a
uery sMall
test of the
Turbo Ct+ editor,

Figure 32-7. The Editor Options dialog box

Invoking Turbo C++ with a File Name

AB mentioned earlier, you can specify the name of the file you want to
edit when you invoke Tu.rbo C++. To do tI'Js you simply put the na111e of
the file after the "TC" on the command line. For example, "TC
MYFILE.CPP" executes Turbo C++ and loads MYFILE.CPP into the
editor. If MYFILE.CPP does not exist, it will be created. If you don't
supply an extension, then Turbo C++ automatically appends ".C". For
example, "TC MYFILE" will execute Turbo C++ and cause MYFILE.C
to be loaded into the editor. If, for some reason, you do not want to use
an extension on the file name, put a period after the name. This causes
Turbo C++ to not append the .C extension.

Command Summary

Table 32-3 shows all the Turbo C++ editor commands.

Cursor Commands

Command
LEFT ARROW or CTRL-S

RIGHT ARROW or CTRL-D

CTRL-A

CTRL-F

UP ARROW or CTRL-E

DOWN ARROW or CTRL-X

CTRL-W

CTRL-Z

PGUP or CTRL-R

PGDN or CTRL-C

HOME or CTRL-Q s
END or CTRL-Q D

CTRL-Q E

CTRL-QX

CTRL-Q R

CTRL-QC

CTRL-QB

CTRL-QK

CTRL-Q P

Insert Commands
Command
INS or CTRL-V

ENTER or CTRL-N

Delete Commands
Command
CTRL-Y

CTRL-QY

BACKSPACE

DEL or CTRL-G

CTRL-T

Block Commands
Command
CTRL-KB

CTRL-KK

CTRL-KT

CTRL-KC

CTRL-KY

CTRL-KH

Using the Turbo C++ Editor 937

Action
Moves left one character
Moves right one character
Moves left one word
Moves right one word
Moves up one line
Moves down one line
Scrolls up
Scrolls down
Moves up one page
Moves down one page
Moves to start of line
Moves to end of line
Moves to top of screen
Moves to bottom of screen
Moves to beginning of file
Moves to end of file
Moves to start of block
Moves to end of block
Moves to last cursor position

Action
Toggles insert mode
Inserts a blank line

Action
Deletes entire line
Deletes to end of line
Deletes character on left
Deletes character at cursor
Deletes word to the right

Action
Marks start of block
Marks end of block
Marks a word
Copies a block
Deletes a block
Hides or displays a block

Table 32-3. Turbo C++ Editor Command Summary by Category

938 Turbo CIC++: The Complete Reference

Block Commands

Command
CTRL-KV

CTRL-KR

CTRL-KW

CTRL-K I

CTRL-KU

CTRL-KP

Find Commands
Command
CTRL-Q F

CTRL-QA

CTRL-Q n
CTRL-L

Pair Matching
Command
CTRL-Q [

CTRL-Q]

Miscellaneous Commands
Command
CTRL-U

CTRL-0 I

CTRL-P

F!O

F3

CTRL-QW

F2

CTRL-K n
CTRL-OT

CTRL-QL

CTRL-0 U

Action
Moves a block
Writes a block to disk
Reads a block from disk
Indents a block
Exdents a block
Prints a block

Action
Finds
Finds and replaces
Finds a place marker
Repeats find

Action
Matches pair forward
Matches pair reverse

Action
Aborts
Toggles autoindentation mode
Controls character prefix
Exits editor
Creates new file
Restores overwritten error message
Saves
Sets a place marker
Toggles tab mode
Undoes
Toggles backspace mode

Table 32-3. The Turbo C++ Editor Command Summary by Category
(continued)

Using the Command-Line Compiler,
VROOMM, and Multiple-File Projects

This chapter examines three important features of Turbo C++: the
Turbo C++ command-line compiler, managing multiple-file projects in
Turbo C++, and Turbo C++ 's VROOMM overlay capability.

Complllng Using the Command-Line Compiler

Unlike Turbo C++'s IDE, which provides a complete development envi­
ronment, Turbo C++ 's command-line compiler performs only two tasks:
It compiles and links your C++ program. In this case, you use your own
text editor to create a program and then use the command-line compiler
to translate it into executable code. This procedure represents the
traditional method of compilation and linking. The main reason that you
might want to use the command-line compiler instead of the IDE is if
you have a favorite text editor that you want to use. Whatever the
reason, if you choose to use the command-line version of Turbo C++, you
will be happy to know that it compiles your programs in the same way
that the compiler inside the IDE does.

If you already know how to run the Turbo C command-line com­
piler, you know how to run the Turbo C++ command-line compiler­
their operation is virtually identical. The only significant differences are
in the options accepted by each.

The name of the command-line compiler is TCC.EXE. The simplest
way to compile a program using the command-line version of Turbo C++
is to use this general form:

C > TCC program-name

H
I
R
T
y

940 Turbo C/C++: The Complete Reference

For example, if you want to compile a program called MYPROG.CPP,
type the following at the DOS prompt;

TCC MYPROG.CPP

Assuming that there are no errors in the program, this compiles and
links MYPROG.CPP with the proper library files.

Like the IDE compiler, the command-line compiler allows you to
control its exact operation using command-line options. All compiler/
linker options come before the file name on the command line. Also, all
options begin with a dash (minus sign). Generally, following an option
with a dash turns that option off. Table 33-1 shows the options available
in the command-line version of Turbo C++. Keep in mind that the
options are case-sensitive.

In addition to options, you can also specify a list of other files that
you want compiled or linked into your program. In this way, you can
compile and link multiple-file programs using the command-line com­
piler. If a file ends in .C or .CPP, it is compiled and linked. If it ends in
.OBJ, the file is linked with the rest of your program. If a file ends in
.LIB, the file is treated as an additional library and its contents are
searched, if necessary.

Including options and multiple files, the general form of the com­
mand line is

TCC f option1 option-2 . .. optionN] fnarne1 fname2 ... fnafrrieN

where option refers to a compiler or linker option and fname is either a
C or C++ source file, an .OBJ file, or a library.

For example, to compile MYPROG.CPP so that it is optimized for
speed, type the following on the command line:

TCC -G MYPROG.CPP

One of the most interesting options is -S. This option causes Turbo C++
to generate a file that contains the assembly language code produced by

Command-Line Compiler, VROOMM, Multiple-File Projects 941

Option

-A
-AK
-AU
-a
-a-
-B
-b
-c
-c
-Dname

Meaning

Recognize ANSI keywords only
Recognize K&R keywords only
Recognize UNIX C keywords only
Use word alignment for data
Use byte alignment for data
In-line assembly code in source file
Treat enumerations as integers
Accept nested comments
Compile to .OBJ only
Defines a macro name

-Dname =string Defines and gives a value to a macro name
Merge duplicate strings -d

-d-
-Exxx
-fname
-f
-ff
-f-
-f87
-:f287
-G
-gN
-!path
-iN
-jN
-K
-K-
-k
-Lpath
-Ix
-M
-me
-mh
-ml
-mm

Table 33-1.

Do not merge duplicate strings
Specifies name of assembler
Specifies executable file name
Use floating-point emulation
Optimize for fast floating point
No floating point
Use 8087
Use 80287
Optimize code for speed
Stop after N warning errors
Specifies the path to the include directory
Specifies identifier length
Stop after N fatal errors
char unsigned
char signed
Use standard stack frame
Specifies library directory
Pass an option to the linker
Create map file
Use compact memory model
Use huge memory model
Use large memory model
Use medium memory model

Turbo C++'s Command-Line Options

942 Turbo C/C++: The Complete Reference

Option

-mm!
-ms
-ms!
-mt
-mt!
-N
-npath
-0
-oname
-P
-p
-p-
-Qe-
-Qe-
-Qx
-r
-r-

-rd
-s
-T
-Uname
-u
-Vx
-v
-w
-w-
- x
-Y
-Yo
-y
-z
-z

-1
-1-
-2

Table 33-1.

Meaning

Use medium memory model, but DS ! = SS
Use small memory model
Use small memory model, but DS ! = SS
Use tiny memory model
Use tiny memory model, but DS ! = SS
Check for stack overflows
Specifies output directory
Optimize jumps
Specify .OBJ file name
Compile as a C++ program
Use Pascal calling conventions
Use C calling conventions
Use all EMS memory
Use no EMS memory
Use all extended memory
Use register variables
Do not use register variables
Use only declared register variables
Generate assembly code output
Pass an option to the assembler
Undefine a macro name
Generate underscores
Specify virtual table options
Include debug information
Display warning errors (see Table 33-2)
Do not display \V:L.-ning errors
Suppress autodependency output
Program contains overlay modules
Compile as an overlay
Embed line numbers into object code
Register optimization on
Specifies segment names (see Turbo C++ reference
guide)
Generate 80186/80286 instructions
Do not generate 80186/80286 instructions
Generate 80286 protected-mode instructions

Turbo C++'s Command-Line Options (continued)

Command-Line Compiler, VROOMM, Multiple-File Projects 943

the compiler. If your file is called MYPROG.CPP, the assembly language
output will be in MYPROG.ASM. Not only is it interesting to see how
Turbo C++ generates code, but it can also be useful. For example, by
studying the code generated for various types of expressions and state­
ments, you can learn what type of code produces the most efficient
executable code. Further, if you are an accomplished assembly language
programmer, you can actually "hand optimize" the assembly language
version of your program.

The -w option lets you control what type of warning messages are
displayed when you compile your program. The available options are
shown in Table 33-2. You should keep in mind that some options relate
only to C++ programs.

It is important to keep in mind that not all warning messages
actually pertain to errors. For example, enabling the -wlin warning
message causes the compiler to tell you if it uses a temporary variable to
perform an initialization. This is not an error in the normal sense.

The Turbo C++ command-line compiler automatically adds the .C
extension to any file name if no extension is specified. For example, both
of these command lines are functionally the same

C>TCC MYPROG.C
C>TCC MYPROG

and cause the program to be compiled as a C rather than a C++
program. If you want to compile your program using C++, you must
include the .CPP extension (and you must explicitly specify it) or you
must use the -P compiler option.

You can compile a file with an extension other than .C or .CPP by
specifying the extension. For example, to compile MYPROG.TMP, the
command line will look like this:

C>TCC MYPROG.TMP

However, this will be compiled as a C, not C++, program.

Using a Response Fiie

If your command line is quite long and tedious to type, you can use a
response file, which is a text file that contains the information you would

944 Turbo CIC++: The Complete Reference

Option

-wamb
-wapt
-watt
-waus
-wbbf
-wbei
-wbfs
-wbig
-wcin
-wept
-wdcl
-wdef
-wdpu
-wdup
-weas
-weff
-wext
-wflo
-whid
-will
-winl
-wlin
-wlvc
-wncf
-wncl
-wnod
-wobi
-wofp
-womf
-wovl
-wpar
-wpia
-wpin
-wpro
-wrch
-wret

-wrng
-wrpt

Table 33-2.

Warning

Ambiguous statement needs parentheses
Pointer assignment is nonportable
Assignment to this is obsolete
Variable assigned a value that is never used
Bit-fields must be either signed or unsigned
Wrong type used in initialization
Untyped bit-field defaulted to signed integer
Hexadecimal constant is too large
Constant is too long
Pointer comparison is nonportable
Declaration needs tag-name or variable
Possible use of a variable before it is defined
Declare a function using a prototype
Redefinition of a macro is not identical
Assigning an integer to an enumeration variable
Code has no effect
Identifier is declared as both extern and static
Initialization may not occur
A function hides another virtual function
Incorrectly formed #pragma directive
Function not expanded in-line
A temporary variable is used in initialization
A temporary variable is used in a function call
N on-const function called a const object
A const member is not initialized
No declaration for function
Base initialization with a class name is obsolete
Old-style function declaration is obsolete
Syntax obsolete, use ::
The overload keyword is obsolete
A parameter is not used by a function
Possibly incorrect assignment statement
Initialization is incorrectly bracketed
Function must be prototyped
Function has unreachable code
Function uses both return and return with a
value
Constant is out of range
Return type conversion is nonportable

The - w Warning Message Options

Command-Line Compiler, VROOMM, Multiple-File Projects 945

Option

-wrvl
-wscp

-wsig
-wstr
-stu
-wstv
-wsus
-wucp
-wuse
-wvoi
-wzdi
-wzst

Table 33-2.

Warning

Function should return a value
Identifier cannot be used as both variable and
tag name
Significant digits may be lost in conversion
Function may not be part of structure or union
Undefined structure
Structure passed by value
Suspicious pointer conversion
Mixing pointer types
Variable declared but not used
A void function cannot have a return value
Division by zero
Zero length structure detected

The -w Warning Message Options (continued)

normally specify on the command line. Using a response file lets you
avoid repeatedly typing the same long command line. To use the file,
simply specify its full name, preceded by an @ sign after the TCC. For
example, assume that you want to compile and link three files called
PROGl.CPP, PROG2.CPP, and PROG3.CPP. Further, you want the
compiler to warn you about any variables declared but not used. The
response file for this scenario is shown here:

-wuse PROGl.CPP PROG2.CPP PROG3.CPP

Assuming that this file is called MYRESP, you use this command line to
compile your program:

C>TCC @MYRESP

You can use as many response files as you like. The contents of each
are processed in the order in which they occur.

Compiling Multiple-File Programs Using the IDE

Most real-world C++ programs are too large to easily fit into one file.
Extremely large files are difficult to edit, and making a small change in

946 Turbo CIC++: The Complete Reference

the program requires that the entire program be recompiled. Although
Turbo C++ is very fast at compiling, repeatedly recompiling a long file
can be tedious.

The solution to these problems is to break the program into smaller
pieces, compile each piece, and then link them together. This process is
known as separate compilation and linking, and it forms the backbone
of most development efforts. You have already seen how to compile and
link multiple-file programs using the command-line compiler. In this
section, you will see how to compile and link multiple-file programs
using the IDE.

Projects and the Project Option

In the Turbo C++ integrated environment, multiple-file programs are
called projects. Each project is associated with a project file that deter­
mines what files are part of the project. The Project main menu option
lets you manage project files. All project files must end with a .PRJ
extension.

If you are familiar with Turbo C, then Turbo C++ 's approach to
multiple-file programs will be familiar. However, be aware that there are
differences, so read this section carefully.

When you select the Project option, you are presented with these
choices:

Open project ...
Close project
Add item ...
Delete item
Local options .. .
Include files .. .

To create a project, you must first select Open project. You are
then prompted for the name of the project, which must have the exten­
sion .PRJ. To clear a project, use Close project. Once you have created
a project file, use Add item to put into the project file the names of the
files that form the project. For example, if the project file is called

Command-Line Compiler, VROOMM, Multiple-File Projects 94 7

MYPROJ.PRJ, and your project contains the two files TESTl.CPP and
TEST2.CPP, you enter the two files TESTl.CPP and TEST2.CPP. To
remove an item, select Delete item. You specify various options using
Local options. The Include files option lets you see what #include
files are used by each file in your project.

As an example, assume that you have a project file that contains the
files TESTl.CPP and TEST2.CPP. Further assume that neither
TESTl.CPP nor TEST2.CPP have yet been compiled. There are two
ways to compile and link these files. First, you can select the Run main
menu option. When there is a .PRJ file specified in the Project option,
this file is used to guide Turbo C++ in compiling your program. The
contents of the .PRJ file are read, and each file that needs to be
compiled is compiled to an .OBJ file. Next, those files are linked and the
program is executed.

The second way you can compile a project is to use the built-in
Make facility. By pressing F9, or by selecting the Make option under the
Compile main menu option, you cause Turbo C++ to compile and link all
files specified in the project file. The only difference between this and
the Run option is that the program is not executed. In fact, you can
think of the Run option as first performing a Make, and then executing
the .EXE file.

Whenever you Make a program, only those files that need to be
compiled are actually compiled. Turbo C++ determines this by checking
the time and date associated with each source file and its .OBJ file. If
the .CPP file is more recent than the .OBJ file, Turbo C++ knows that
the .CPP file has been changed and recompiles it. Otherwise, it simply
uses the .OBJ file. In this situation, the target .OBJ file is said to be
dependent on the .CPP file. The same sort of thing is true of the .EXE
file. As long as the .EXE file is more recent than all of the .OBJ files in
the project, nothing is recompiled. Otherwise, the necessary files are
compiled and the project is relinked.

In addition to checking the dates on .CPP, .OBJ, and .EXE files,
Turbo C++ checks to see if any header files used by your program have
changed. If this is the case, any file that uses a changed header file is
automatically recompiled.

Without a doubt, the project capabilities of Turbo C++ are among its
most important aspects because they let you manage multiple-file pro­
grams with little difficulty. Also, as you will see in the next section, they
allow you to take advantage of Turbo C++'s VROOMM technology.

948 Turbo CIC++: The Complete Reference

Using the VROOMM Overlay System

With the introduction of Turbo C++, Borland has made available its
VROOMM (Virtual Runtime Object-Oriented Memory Manager) tech­
nology to all programmers. Using overlays is a time-honored method of
dealing with a program that is too big to fit in available memory. When
overlays are used, pieces of your program are stored on disk and
swapped into memory only when needed. This reduces the amount of
memory required by the program, but it slows down execution speed
because of the time it takes to load a module.

In general, to use overlays you need an overlay manager that swaps
parts of your program into memory from disk. You also need to break
your program into several smaller pieces suitable for overlays. What
makes the VROOMM technology special is that it automatically handles
the details of overlays for you. You don't need to calculate any sizes or
determine any calling dependencies. In fact, to let your large programs
take advantage of VROOMM, you simply change a few compiler options.
Nothing else needs to change.

When compiling for overlays, you must use either the medium,
large, or huge memory model. If you don't do this, the linker will not
link your program.

Since you will only use VROOMM on a very large program, that
program most likely will be split among several files.

To enable your program to use VROOMM you need to set some
options in the IDE or specify an option if using the command-line
compiler, From within the IDE, make sure that fu!l menus arc active
and that you have defined a project file for your program. (Projects are
described in the previous section.) After you select the Options entry on
the main menu, select Compiler, followed by Code generation. Turn on
the Overlay support check box. Also, select either the medium, large, or
huge memory models. Return to the main menu. Now, activate the
Options entry a second time and select Linker. Turn on the Overlay
EXE check box. Finally, to specify which files in your project will be

Command-Line Compiler, VROOMM, Multiple-File Projects 949

overlayed, first highlight each file in the project window and then, using
the main menu, select the Project entry and select the Local options
entry. You will· then be able to specify each file for overlaying.

If you are using the command-line version of Turbo C++, you must
specify the -Yo option before the files that you want to be overlays.
Also, if there is a part of your program that you want to stay resident,
precede its file name with -Y. Since you must compile any program
using overlays for the medium, large, or huge memory models, you must
also specify either the -mm, -ml, or -mh option. For example, this
series of command lines compiles a program consisting of the files
prog.cpp, progl.cpp, and prog2.cpp. Notice that prog.cpp is resident all
the time. The other two files will be overlaid.

tee -ml -Yo -e progl.epp
tee -ml -Yo -e prog2.epp
tee -ml -Y prog.epp prog2.obj prog3.obj

Using the VROOMM overlay manager, when a piece of code is called
that is not currently in memory, it is read from disk into a buffer set
aside for overlays. If the buffer is already full, another module is
discarded. By default, the buffer set aside for overlaying is twice the size
of the largest overlayable module. However, you can increase the size of
the buffer (and thereby increase performance) by setting the built-in
global variable _ ovrbuffer. The size of the buffer is specified in para­
graphs (16 bytes). Experimentation may prove the easiest way to deter­
mine what buffer size is best for your program. Remember that except
for running out of memory, there is nothing wrong with making the
buff er as large as you can because it reduces the number of disk
accesses.

When using overlays, keep in mind that you will want to keep parts
of your program resident and other parts as overlays. The best modules
to make into overlays are those parts of your programs that are exe­
cuted infrequently- for example, a help system or a sort. However,
you should not make any module that depends upon timing an overlay.

Using Turbo C++'s Debugger

Turbo C++ includes a built-in source-level debugger in its integrated
development environment. This appendix introduces the debugger and
explores some of its most important features.

Although the Turbo C++ debugger is similar in operation to the
Turbo C debugger, several differences exist. Therefore, even if you
already know how to use the Turbo C debugger, you should still read
this appendix.

Preparing Your Programs for Debugging

Although Turbo C++ 's debugger is available for use at the press of a
key, you must make sure that your programs are compiled for a debug­
ging session, and you must include debugging information in your
program's executable file. By default, the proper debugging information
is automatically included in your program. The option that controls the
inclusion of debugging information is found under the Debugger entry
in the Options menu. Make sure that Source debugging is on. The
debugging information contained in the compiled version of your pro­
gram helps Turbo C++ link your source code to its object code.

What Is a Source-Level Debugger?

To understand what a source-level debugger is and why it is so valuable,
it is necessary to understand how a traditional debugger works. A

p
p
E .·N<

952 Turbo CIC++: The Complete Reference

traditional debugger is designed to provide object-code debugging, in
which you monitor the contents of the CPU's registers or memory. To
use a traditional debugger, the linker generates a symbol table that
shows the memory address of each function and variable in memory. To
debug a program, you use this symbol table and begin executing your
program, monitoring the contents of various registers and memory
locations. Most debuggers allow you to step through your program one
instruction at a time, and to set breakpoints in the object code. How­
ever, the biggest drawback to a traditional debugger is that the object
code of your program bears little resemblance to the source code. This
makes it difficult, even with the use of a symbol table, to know exactly
what is happening.

A source-level debugger offers a vast improvement over the older,
traditional form in that it allows you to debug your program using the
original source code. The debugger automatically links the compiled
object code associated with each line in your program with its corre­
sponding source code. You no longer need to use a symbol table. You
can control the execution of your program by setting breakpoints in the
source code. You can watch the values of various variables using the
variables' names. You can step through your program one statement at
a time and watch the contents of the program's call stack. Also, commu­
nication with Turbo C++ 's debugger is accomplished using C-like ex­
pressions, so there is nothing new to learn.

Debugger Basics

This section introduces the most common debugging commands. To get
started, enter the following demonstration program at this time:

#include <iostream.h>

void sqr_it(int n);

main(void) {
int i:

for(i=O; i<lO; i++) {
cout << i << 11 11 ;

sqr_it(i);
}
return O;

}

void sqr_it(int n)
{

cout << n*n << 11 ";

}

Using Turbo C++ 's Debugger 953

After you have entered the program, compile and run it to make
sure that you entered it correctly. It prints the values 0 through 9 along
with their squares.

Single-Stepping

Single-stepping is the process by which you execute your program one
statement at a time. To accomplish this, press the F7 key (called the
Trace into key in Turbo C++). Notice that the line containing the
main() function declaration is highlighted. This is where your program
begins execution. Note also that the line #include < iostream.h > and
sqr _it()'s prototype are skipped over. Statements that do not generate
code, such as the preprocessor directives, obviously cannot be executed,
so the debugger automatically skips them. Variable declaration state­
ments without initializers are also skipped when single-stepping as they
are not action statements that can be traced.

Note: Pressing F7 is the same as selecting the Trace into option in the
Run menu.

Press F7 several times. Notice how the highlight moves from line to
line. Also notice that when the function sqr _it() is called, the highlight
moves into the function and then returns from it. The F7 key causes the
execution of your program to be traced into function calls.

There can be times when you only want to watch the performance
of the code within one function. To accomplish this, use the FS (step-over)
key. Each time this key is pressed, another statement is executed, but
calls to functions are not traced. The FS key is very useful when you
want to watch what is happening inside of only one function. Pressing F8

is the same as selecting the Step over entry in the Run menu.
Experiment with the FS key at this time. Notice that the highlight

never enters the sqr _it() function.

954 Turbo CIC++: The Complete Reference

Setting Breakpoints

As useful as single-stepping is, it can be very tedious in a large pro­
gram -especially if the piece of code that you want to debug is deep in
the program. Instead of pressing F7 or F8 repeatedly to get to the section
you want to debug, it is easier to set a breakpoint at the beginning of
the critical section. A breakpoint is, as the name implies, a break in the
execution of your program. When execution reaches the breakpoint,
your program stops running and control returns to the debugger, allow­
ing you to check the value of certain variables or to begin single­
stepping the routine.

To set a breakpoint, move the cursor to the appropriate line in your
program, invoke the Debug menu, and select the Toggle breakpoint
option. (You can also use the hot key CTRL-F8.) The line of code at which
the breakpoint is set is shown in either high-intensity video or in
another color, depending on your video adapter and monitor. You can
have several active breakpoints in a program.

Once you have defined one or more breakpoints, execute your pro­
gram using the Run/Run option. Your program runs until it encounters
the first breakpoint. As an example, set a breakpoint at the line

cout << n*n << " ";

inside sqr _it(), and then run the program. As you can see, execution
stops at that line.

To remove a breakpoint, position the cursor on the line contairJng
the breakpoint you want to remove and select the Debug/Toggle break­
point option. Or press the CTRL-F8 hot key. You can toggle breakpoints on
and off as needed.

Watching Variables

While debugging, you commonly need to see the value of one or more
variables as your program executes. This is very easy to do using Turbo
C++ 's debugger. To define a variable to watch, select the Debug/

Using Turbo C++ 's Debugger 955

Watches option and select Add watch, or press the CTRL-F7 hot key. In
the pop-up window, enter the name of the variable you want to watch.
The debugger automatically displays the value of the variable in the
watch window as the program executes. If the variable is global, its
value is always available. However, if the variable is local, its value is
reported only when the function containing that variable is being exe­
cuted. When execution moves to a different function, the variable's value
is unknown. Keep in mind that if two functions both use the same name
for a variable, the value displayed relates to the function currently
executing.

As an example, activate the Watches entry. To watch the value of i
in the example program, enter i. If you are not currently running the
program or if execution has been stopped inside the sqr _it() function,
you will first see the message

Undefined symbol 'i'

However, when execution is inside the main() function, the value of i is
displayed.

You are not limited to watching only the contents of variables. You
can watch any valid C expression involving those variables with two
restrictions: The expression cannot call a function, and it cannot use any
#define values.

Watched-Expression Format Codes

Turbo C++ 's debugger allows you to format the output of a watched
expression by using format codes. To specify a format code, use this
general form:

expression, format-code;

The format codes are shown in Table A-1. If you don't specify a format
code, the debugger automatically provides a default format.

You can display integers in either decimal or hexadecimal. The
debugger automatically knows the difference between long and short
integers because it has access to the source code.

956 Turbo CIC++: The Complete Reference

Format Code Meaning

C Display as a character with no translation
D Display in decimal
F Display in floating point
H Display in hexadecimal
M Show memory
P Display in pointer
R Display class, structure, or union element names and values
S Display as a character with appropriate character translations
X Display in hexadecimal (same as H)

Table A-1. Debugger Format Codes

When specifying a floating-point format, you can tell the debugger
to show a certain number of significant digits after the decimal point by
adding a number to the F format. For example, if average is a float
then this tells the debugger to show five significant digits:

average,F5

Remember that the number is optional. The debugger automatically
knows the difference between floats and doubles.

Pointers are displayed using segment/offset notation. However, a
near pointer does not display a value for the segment. Instead, DS is
substituted because an near pointers reside in the data segment. On the
other hand, far pointers are shown using the full segment/offset. You
can display the value pointed to by using the * operator in front of the
pointer in the watched expression.

Character arrays are displayed as strings. By default, the debugger
translates non-ASCII characters into codes. For example, a CTRL-D is
displayed as "\4." However, if you specify the C format code, all charac­
ters are displayed as is, using the PC's extended character set.

When a structure or a union is displayed, the values associated with
each field are shown using an appropriate format. By including the R
format command, the name of each field is also shown. To see an
example, enter the following program. Try watching both sample and
sample,R.

#include <string.h>

struct inventory {
char i tem[lO];
int count;
float cost;

} sample;

main(void)
{

}

strcpy(sample. item, "hammer");
sample.count = 100;
sample.cost = 3.95;

return O;

Using Turbo C++ 's Debugger 957

After the three assignments have taken place, the output shown in the
Watch window looks like this:

sample: {"hammer", 100, 3.95}
sample,R: {item: "hammer", count: 100, cost: 3.95}

As you might expect, you can also watch an object of a class. When
you watch an object, you are shown the current value of any data that is
contained within the object. As with structures and unions, if you use
the R format specifier, the names of each data item are also displayed.
When watching an object of a class, all private, protected, and public
data is displayed. For example, if the previous program is changed as
shown here:

#include <string.h>

class inventory {
inti; //private data

public:
inventory() {i=lOO;}
char item[lO];
int count;
fl oat cost;

} sample;

main(void)
{

strcpy(sample. item, "hammer");
sample.count = 100;
sample.cost = 3.95;

return 0;

958 Turbo CIC++: The Complete Reference

the following output is obtained when watching sample,R:

sample,R: {i: 100, item: "hammer", count: 100, cost: 3.95}

AB you can see, even though i is private to inventory, for the purposes
of debugging, it is accessible to the debugger.

Using the Debug/Watches menu, it is possible to delete a watched
expression, modify a watched expression, or remove all watched expres­
sions. By default, when modifying an expression, the one modified is the
last one entered. To specify another watched expression to modify, first
switch to the watch window, and then move the highlight to the expres­
sion you want to modify. Finally, invoke the Edit watch option in the
Watches menu.

auallfylng a Variable's Name

You can watch the value of a local variable no matter what function is
currently executing by qualifying its name using this format:

filenamefunction-name.variable-name;

The filename is optional in single-file programs, and the function-name
is optional when there is only one variable by the specified name.

AB an example, assume that you want to watch both the count in
fl() and the count in :f2(), given this fragment:

fl(void)
{

int count:

}

f2(void)
{

int count;

}

To specify these variables, use

fl. count
f2.count

Using Turbo C++ 's Debugger 959

You should use this concept to watch global variables in other files.
However, to watch variables in other files you must specify the file name
at the beginning. For example, if fl() were in a file called MYFILE,
refer to fl()'s count, using this expression:

MYFILE. fl. count

Watching the Stack

During the execution of your program, you can display the contents of
the call stack using the Call stack option under the Debug menu (or by
pressing CTRL-F3). This option displays the order in which the various
functions in your program are called. It also displays the value of any
function parameters at the time of the call. To see how this feature
works, enter this program:

#include <iostream.h>
void fl(void), f2(int i);

main{void)
{

}

fl();
return O;

void fl(void)
{

inti;

for{i=O; i<lO; i++) f2(i);
}

void f2{int i)
{

cout << "in f2, value is " << i << " ";
}

960 Turbo CIC++: The Complete Reference

Set a breakpoint at the line containing the cont statement in f'2(), and
then inspect the call stack. The first time the breakpoint is reached, the
call stack looks like this:

f2 (O)
fl()
main()

Keep in mind that only functions written by you show up on the call
stack. Calls to library functions are not recorded.

Evaluating an Expression

You can evaluate any legal C expression by selecting the Evaluate/
modify option in the Debug menu (or by pressing CTRL-F4). To evaluate
an expression, enter it in the Expression field. You will see its value in
the Result field. Expressions can contain constants and variables de­
fined in the program you are debugging. However, you cannot call any
function or use any #define value.

A special feature of the Evaluate/modify option is that it automati­
cally copies the identifier that is at the current cursor location into the
Expression field. By repeatedly pressing the right arrow key, you can
cause characters following that identifier to also be entered into the
Expression field.

Modifying a Variable

Using the Evaluate/modify option in the Debug menu, you can set the
value of any variable. To do this, specify the name of the variable you
want to change in the Expression field. Next, TAB to the New value field
and enter the value you want the variable to have. By changing a
variable's value using the debugger, you can quickly get past a simple
bug so that you can continue your debugging session. Also, in some
situations you may have a loop that iterates a great number of times. To

Using Turbo C ++ 's Debugger 961

get past it, change the loop-control variable so that the loop exits.
Remember, of course, that changing a variable's value using the debug­
ger is only a temporary fix.

Inspecting a Variable

Although watching a variable using the Watches option is generally
sufficient, in the most demanding of circumstances, you may need to
monitor more closely what happens to a variable. To do this, use the
Inspect option in the Debug menu. This option displays the contents
and address of a variable. Knowing a variable's address can be of value
when bugs involving things like wild pointers occur. Keep in mind that
you can inspect any type of variable, including structures, unions, and
objects. In the case of these types of variables, the names of the fields
are displayed along with each value.

Use the Register Window

One final debugging tool at your disposal is Turbo C++ 's register win­
dow. If you select the Window main menu option and then select the
Register entry, a small window pops up that displays the contents of
each register in the CPU, as well as the state of each flag. When
single-stepping, or each time a breakpoint is encountered, the contents
of the register window change to reflect the values contained in the
CPU registers.

Using Turbo C's Debugger

Beginning with version 2.00, Turbo C has included a built-in source-level
debugger in its integrated development environment. This appendix
discusses its use. (If you use Turbo C++, read Appendix A rather than
this appendix.)

Although similar to Turbo C++'s debugger, Turbo C's debugger
works somewhat differently. Therefore, even if you already know how to
run Turbo C++ 's debugger, you should still read this appendix carefully.

Preparing Your Programs for Debugging

To use Turbo C's debugger, you must include debugging information in
your program's .OBJ files. The addition of debugging information to
your program is controlled by the OBJ debug information option in the
Code generation menu of the Compiler menu under the Options main
menu selection. This option should be turned on (its default setting). The
debugging information contained in the compiled version of your pro­
gram helps Turbo C link your source code to its object code.

What Is a Source-Level Debugger?

To understand what a source-level debugger is and why it is so valuable,
it is necessary to understand how a traditional debugger works. A
traditional debugger is designed to provide object-code debugging, in
which you monitor the contents of the CPU's registers or memory. To
use a traditional debugger, the linker generates a symbol table that

p
p
E
N
D
I
}(

964 Turbo CIC++: The Complete Reference

shows the memory address of each function and variable in memory. To
debug a program, you use this symbol table and begin executing your
program, monitoring the contents of various registers and memory
locations. Most debuggers allow you to step through your program one
instruction at a time, and to set breakpoints in the object code. How­
ever, the biggest drawback to a traditional debugger is that the object
code of your program bears little resemblance to the source code. This
makes it difficult, even with the use of a symbol table, to know exactly
what is happening.

A source-level debugger offers a vast improvement over the older,
traditional form in that it allows you to debug your program using the
original source code. The debugger automatically links the compiled
object code associated with each line in your program with its corre­
sponding source code. You no longer need to use a symbol table. You
can control the execution of your program by setting breakpoints in the
source code. You can watch the values of various variables using the
variables' names. You can step through your program one statement at
a time and watch the contents of the program's call stack. Also, commu­
nication with Turbo C's debugger is accomplished using C-like expres­
sions, so there is nothing new to learn.

Debugger Basics

This section introduces the most common debugging commands. To get
started, enter the following demonstration program at this time:

#include <stdio.h>

void sqr_it(int num);

main(void)
{

}

int i;

for(i=O; i<lO; i++) {
printf("%d ", i);
sqr_it(i);

}
return O;

void sqr_it(int num)
{

Using Turbo C's Debugger 965

printf("%d ", num*num);
}

After you have entered the program, compile and run it to make
sure that you entered it correctly. It prints the values 0 through 9 along
with their squares.

Sing le-Stepping

Single-stepping is the process by which you execute your program one
statement at a time. To accomplish this press the F7 key (called the
Trace into key in Turbo C). Notice that the line containing the main()
function declaration is highlighted. This is where your program begins
execution. Note also that the line #include < stdio.h > and sqr _it() 's
prototype are skipped over. Statements that do not generate code, such
as the preprocessor directives, obviously cannot be executed, so the
debugger automatically skips them. Variable declaration statements
without initializations are also skipped when single-stepping as they are
not action statements that can be traced.

Press F7 several times. Notice how the highlight moves from line to
line. Also notice that when the function sqr _it() is called, the highlight
moves into the function and then returns from it. The F7 key causes the
execution of your program to be traced into function calls.

There can be times when you only want to watch the performance
of the code within one function. To accomplish this, use the F8 key, which
Turbo C calls the Step over key. Each time this key is pressed, another
statement is executed, but calls to functions are not traced. The F8 key is
very useful when you want to watch what is happening inside of only
one function.

Experiment with the F8 key at this time. Notice that the highlight
never enters the sqr _it() function.

Setting Breakpoints

Ai3 useful as single-stepping is, it can be very tedious in a large pro­
gram - especially if the piece of code that you want to debug is deep in

966 Turbo CIC++: The Complete Reference

the program. Instead of pressing F7 or FB repeatedly to get to the section
you want to debug, it is easier to set a breakpoint at the beginning of
the critical section. A breakpoint is, as the name implies, a break in the
execution of your program. When execution reaches the breakpoint,
your program stops running and control returns to the debugger, allow­
ing you to check the value of certain variables or to begin single­
stepping the routine.

To set a breakpoint, move the cursor to the appropriate line in your
program, invoke the Break/watch menu, and select the Toggle break­
point option. (You can also use the hot key CTRL-F8.) The line of code at
which the breakpoint is set is shown in either high-intensity video or in
another color, depending on your adapter and monitor. Remember that
you can have several active breakpoints in a program.

Once you have defined one or more breakpoints, execute your pro­
gram using the Run/Run option. Your program runs until it encounters
the first breakpoint. As an example, set a breakpoint at the line

printf("%d ", num*num);

inside sqr _it(), and then run the program. As you can see, execution
stops at that line.

To remove a breakpoint, position the cursor on the line containing
the breakpoint you want to remove and select the Break/watch/Toggle
breakpoint option. Or press CTRL-F8. You can toggle breakpoints on and
off as needed. Also, to clear all breakpoints, use the Clear breakpoints
option.

To find the next breakpoint without executing the program, ui:;e the
View next breakpoint option in the Break/watch menu. It automati­
cally positions the cursor at the next breakpoint.

Watching Variables

While debugging you commonly need to see the value of one or more
variables as your program executes. This is very easy to do using Turbo
C's debugger. To define a variable to watch, select Add watch from the
Break/watch menu. Or simply press the CTRL-F7 hot key. In the pop-up

Using Turbo C's Debugger 967

window, enter the name of the variable you want to watch. The debug­
ger automatically displays the value of the variable in the watch window
as the program executes. If the variable is global, its value is always
available. However, if the variable is local, its value is reported only
when the function containing that variable is being executed. When
execution moves to a different function, the variable's value is unknown.
Keep in mind that if two functions both use the same name for a
variable, the value displayed relates to the function currently executing.

AB an example enter i to watch the value of i in the example
program. If you are not currently running the program or if execution
has been stopped inside the sqr _it() function, you will first see the
message

Undefined symbo 1 ' i '

However, when execution is inside the main() function, the value of i is
displayed.

Watching Expressions

You are not limited to watching only the contents of variables. You can
watch any valid C expression involving those variables. For example,
you can monitor the contents of the array matrix in the program that
follows by specifying the watch expression matrix[i](j]. Each time ei­
ther i or j changes, the related array value is displayed. Further, you
could use the expression sum/(i+(3*j)) to display a running average of
the elements in the array.

#include <stdio.h>

void sum_matrix(int matrix[3][3]);

main(void)
{

}

int i, j;
int matrix [3][3];

for(i=O; i<3; i++)
for(j=O; j<3; j++)

matrix[i)[j) = (i+l) * (j+l);
sum_matrix(matrix);

return O;

968 Turbo CIC++: The Complete Reference

void sum_matrix(int matrix[3][3])
{

}

int i , j;
int sum;

sum = O;
for(i=O; i<3; i++)

for(j=O; j<3; j++)
sum += matrix[i] [j);

printf("matrix sum is %d\n", sum);

There are two restrictions on the type of expressions you can watch:
The expression cannot call a function, and it cannot use any #define
values.

auallfylng a Variable's Name

You can watch the value of the local variable no matter what function is
currently executing by qualifying its name using this format:

filename.function-name. variable-name;

The filename is optional in single-file programs, and the function-name
is optional when there is only one variable by the specified name.

AB an example, assume that you want to watch both the count in
fl() and the count in :i2(), given this fragment:

fl()
{

i.nt count;

}

f2()
{

int count;

}

To specify these variables, use

fl.count
f2.count

Using Turbo C's Debugger 969

You should use this concept to watch static global variables in other
files. When doing so, you must include the file name at the start of the
watch variable's name.

Watched-Expression Format Codes

Turbo C's debugger allows you to format the output of a watched
expression by using format codes. To specify a format code, use this
general form:

expression,format-code;

The format codes are shown in Table B-1. If you don't specify a format
code, the debugger automatically provides a default format.

You can display integers in either decimal or hexadecimal. The
debugger automatically knows the difference between long and short
integers because it has access to the source code.

Format Code Meaning

C Display as a character with no translation
D Display in decimal
F Display in floating point
H Display in hexadecimal
M Show memory
P Display in pointer
R Display structure or union names and values
S Display as a character with appropriate character translations
X Display in hexadecimal (same as H)

Table B-1. Debugger Format Codes

970 Turbo CIC++: The Complete Reference

When specifying a floating-point format, you can tell the debugger
to show a certain number of significant digits after the decimal point by
adding a number to the F format. For example, if average is a float,
this line tells the debugger to show five significant digits:

average, F5

Remember that the number is optional. The debugger automatically
knows the difference between floats and doubles.

Pointers are displayed using segment/offset notation. However, a
near pointer does not display a value for the segment. Instead, DS is
substituted because all near pointers reside in the data segment. On the
other hand, far pointers are shown using the full segment/offset. You
can display the value pointed to by using the * operator in front of the
pointer in the watched expression.

To better understand how to watch pointers and the values they
point to, enter this short program:

#include <stdio.h>
#include <stdlib.h>

main(void)
{

}

int *p;
int i;

p = (int *) malloc(lO):

for(i=O: i<lO; i++) {
"""" - .: . ·p - It

p++;
}
return O;

Watch the expressions p and *P· Assuming you compile with the default
small memory model, p displays a value similar to DS:0264. The DS
indicates that the pointer is in the data segment. Try changing the
declaration of p to

int far *p;

Now, since p is a far pointer, its address looks something like this:

Using Turbo C's Debugger 971

6CD0:0262

Here, the DS is not shown because far pointers do not point into the
data segment.

Character arrays are displayed as strings. By default, the debugger
translates non-ASCII characters into codes. For example, a CTRL-D is
displayed as "\4". However, if you specify the C format code, all charac­
ters are displayed as is, using the PC's extended character set.

When a structure or a union is displayed, the values associated with
each field are shown using an appropriate format. By including the R
format command, the name of each field is also shown. To see an
example, enter the following program. Try watching both sample and
sample,R.

#include <stdio.h>
#include <string.h>

struct inventory {
char i tem[lD];
int count;
float cost;

} sample;

main(void)
{

}

strcpy(sample.ftem, "hammer");
sample.count = 100;
sample.cost = 3.95;

return O;

Using the Break/watch menu, it is possible to delete a watched
expression, modify a watched expression, or remove all watched expres­
sions. By default, when modifying an expression, the one modified is the
last one entered. To specify another watched expression to modify, first
switch to the watch window by pressing F6, and then move the highlight
to the expression you want to modify. Finally, invoke the Edit watch
option.

Watching the Stack

During the execution of your program you can display the contents of
the call stack using the Call stack option under the Debug menu. This

972 Turbo CIC++: The Complete Reference

option displays the order in which the various functions in your program
are called. It also displays the value of any function parameters at the
time of the call. It does not display any local variables or return
addresses. To see how this feature works, enter this program:

#include <stdio.h>
void fl(void), f2(int i);

main(void)
{

}

fl();
return O;

void fl (void)
{

int i;

for(i=O; i<lO; i++) f2{i);
}

void f2(int i)
{

printf("in f2, value is %d", i);

Set a breakpoint at the line containing the call to printf() in f2(). The
first time the breakpoint is reached, the call stack looks like this:

f2(0)
fl()
main()

Keep in mind that only functions written by you show up on the call
stack. Calls to library functions are not recorded.

Evaluating an Expression

You can evaluate any legal C expression by selecting the Evaluate
option in the Debug menu. Simply enter the expression in the Evaluate
field of the Evaluate window. You can use constants and variables
defined in the program you are debugging as part of the expression.
However, you cannot call any function or use any #define value.

Using Turbo C's Debugger 973

Changing a Variable's Value

You can use the Evaluate option in the Debug menu to change the
value of a variable. To do so, first specify the name of the variable in the
Evaluate field, then TAB to the New value field and enter the new value.

Finding a Function

When debugging a large program, it can be troublesome and time
consuming to search through the program looking for the start of a
function's code. The debugger can find the beginning of functions for
you automatically using the Find function option in the Debug menu.
When selected, it prompts you for the name of the function, and then it
automatically puts the cursor on the first line of the function.

Interfacing to Assembly Language
Routines

Although the subject of assembly language interfacing is covered in
significant detail in both the Turbo C and Turbo C++ user manuals, it is
such a difficult and confusing subject that it will be examined here from
a different perspective.

AB efficient and powerful as Turbo C/C++ is, you must sometimes
write a routine using assembler to

• Increase speed and efficiency of the routine

• Perform some machine-specific function unavailable in Turbo
CIC++

• Use third-party routines

Although Turbo C/C++ produces extremely fast, compact object code, no
compiler consistently creates code as fast or compact as the code writ­
ten by an excellent programmer using assembler. Most of the time the
small difference does not matter or does not warrant the extra time
needed to write in assembler. However, there are special cases where a
specific function is coded in assembler to decrease its execution time.
For example, a floating-point math package might be coded in assembler
because it is used frequently and has great effect on the execution speed
of a program that uses it. There are also situations in which special
hardware devices need exact timing, and you must code in assembler to
meet this strict timing requirement. Stated another way, even though
Turbo C/C++ produces very fast, efficient code, in run-time-sensitive
tasks, you will want to hand optimize various critical sections. Remem­
ber that you the programmer know what the code is actually doing, so
you can often perform optimizations that the compiler cannot.

976 Turbo CIC++: The Complete Reference

Certain instructions cannot be executed by a Turbo C/C++ program.
For example, there is no built-in bitwise rotate operation in C. To
efficiently perform this operation you will need to resort to assembly
language.

It is very common in professional programming environments to
purchase subroutine libraries for things like graphics, floating-point
math, and the like. Sometimes it is necessary to take these in object
format because the developer will not sell the source code. Occasionally
it is possible simply to link these routines in with code compiled by your
compiler; at other times you must write an interface module to correct
any differences in the interface used by Turbo CIC++ and the routines
you purchased.

A word of warning: The interfacing of Turbo CIC++ code with
assembly code is definitely an advanced topic. This chapter is intended
for readers who have some familiarity with assembly language program­
ming. (This chapter does not teach how to program in assembler; it
assumes you know how.) If you do not fall into this category, you will
still find the material interesting but please do not try the examples! It
is very easy to do something slightly wrong and create a disaster, such
as erasing your hard disk.

Each processor has a different assembly language. In this chapter
the examples use the 808618088/80286 processor, assuming a DOS envi­
ronment.

To try the examples in this chapter, you must have an assembler.
Generally, this will be TASM (Turbo Assembler) supplied by Borland.
This is needed to assemble the assembly language programs.

There are two ·ways of combining assembly code routines with
Turbo CIC++. The first involves the creation, assembly, and linkage of a
separate assembly language routine with C functions. The second
method uses the nonstandard extension added to Turbo CIC++ called
asm to embed in-line assembly code instructions directly into C func­
tions. Before we begin, you need to know something about the way
Turbo CIC++ calls functions.

Note: The information contained in this chapter is applicable to both
Turbo C and Turbo C++. However, all the examples are C programs so
that they work with either environment.

Interfacing to Assembly Language Routines 977

Calllng Conventions

In general, a calling convention is the method that the implementor of a
C compiler chooses to pass information into functions and to return
values. The usual solutions use either the internal register of the CPU
or the system stack to pass information between functions. Generally, C
compilers use the stack to pass arguments to functions and registers to
hold function return values. If an argument is one of the basic data
types, the actual value is placed on the stack. If the argument is an
array, its address is placed on the stack. When a C function begins
execution, it retrieves its arguments' values from the stack. On termina­
tion, it passes back to the calling routine a return value in the register
of the CPU. (Although it could, in theory, pass the return value on the
stack, this is seldom done.)

In addition to defining the way parameters and return values are
handled, the calling convention determines exactly which registers must
be preserved and which ones you can use freely. Often a compiler
produces object code that needs only a portion of the registers available
in the processor. You must preserve the contents of the registers used
by your compiler, generally by pushing their contents onto the stack
before using them. Any other registers are generally free for your use.

When you write an assembly language module that must interface
to code compiled by Turbo CIC++, you must follow all the conventions
defined and used by Turbo CIC++. Only by doing this can you hope to
have assembly language routines correctly interfaced to your C code.

The Calllng Conventions of Turbo CIC++

In this section you will learn how Turbo CIC++ passes arguments to and
returns values from a function. Only the default C parameter-passing
method is examined (the optional pascal is not) since it is by far the
most common. Like most C compilers, Turbo CIC++ passes arguments
to functions on the stack. The arguments are pushed onto the stack
right to left. That is, given the call func(a, b, c), c is pushed first,
followed by b, and then a. The number of bytes occupied on the stack by
each type is shown in Table C-1.

978 Turbo CIC++: The Complete Reference

Type
char
short
signed char
signed short
unsigned char
unsigned short
int
signed int
unsigned int
long
unsigned long
float
double
long double
(near) pointer
(far) pointer

Table C-1.

Number of Bytes
2
2
2
2
2
2
2
2
2
4
4
4
8

10
2 (offset only)
4 (segment and offset)

The Number of Bytes on the Stack Required for Each Data Type
When Passed to a Function

Upon entry into an assembly code procedure, the contents of the
BP register must be saved on the stack, and the current value of the
stack pointer (SP) must be placed into BP. The only other registers that
you must preserve are SI and DI if your routine uses them.

Before returning, your assembly language function must restore the
values of BP, SI, and DI, and reset the stack pointer.

If your assembly language function returns a value, it is placed in
the AX register if it is an 8- or 16-bit value. Otherwise it is returned
according to Table C-2.

Creating an Assembly Code Function

Without a doubt, the easiest way to learn to create assembly language
functions is to see how Turbo CIC++ generates code by using the - S

Type

char
unsigned char
short
unsigned short
int
unsigned int
long

unsigned long

float
double
long double
struct & union

class
(near) pointer
(far) pointer

Interfacing to Assembly Language Routines 979

Register(s) and Meaning

AX
AX
AX
AX
AX
AX
Low-order word in AX
High-order word in DX
Low-order word in AX
High-order word in DX
Return on 8087 stack or at TOS in emulator
Return on 8087 stack or at TOS in emulator
Return on 8087 stack or at TOS in emulator
Address to value AX:DX (in Turbo C++, structures
that are one or two bytes long are returned in AX and
structures four bytes long are returned in AX and DX.
All other structures are returned as indicated in the
table)
Address to value AX:DX
AX
Offset in AX, segment in DX

Table C-2. Register Usage for Return Values for Turbo C/C++

compiler option with the command-line version of Turbo C/C++. (It is
not possible to produce an assembly language listing from the inte­
grated development environment.) This option outputs an assembly lan­
guage listing of the code that it generates. By examining this file you
can learn a great deal about how to interface with the compiler and how
Turbo C/C++ actually works.

Let's begin with the following short program:

int add(int a, int b};

int sum;
main(void)
{

}

sum= add(lO, 20);
return 0;

add(int a, int b)
{

int t;

980 Turbo CIC++: The Complete Reference

t = a+b;
return t;

}

The variable sum is intentionally declared as global so that you can see
examples of both local and global data. If this program is called test,
this command line creates test.asrn.

>tee -S test

The contents of test.asrn are shown here:

ifndef ??version
?debug macro

endm
endif
?debug S "test.c"

TEXT segment byte public 'CODE'
DGROUP group _DATA,_BSS

assume cs:_TEXT,ds:DGROUP,ss:DGROUP
_TEXT ends

DATA segment word public 'DATA'
d@ label byte
d@w label word
_DATA ends
_BSS segment word public 'BSS'
b@ label byte
b@w label word

?debug C E9545CDC140479322E63
BSS ends

_TEXT segment byte public 'CODE'
?debug L 4

_main proc near
?debug L 6
mov ax,20
push ax
mov ax,10
push ax
call near ptr _add
pop ex
pop ex
mov word ptr DGROUP:_sum,ax
?debug L 7
xor ax,ax
jmp short @l

@l:
?debug L 8
ret

_main endp
?debug L 10

add - proc near
push bp
mov bp,sp

Interfacing to Assembly Language Routines 981

push si
?debug L 14
mov si,word ptr [bp+4]
add si,word ptr [bp+6]
?debug L 15
mov ax,si
jmp short @2

@2:
?debug L 16
pop Si
pop bp
ret

_add endp
_TEXT ends
_BSS segment word public 'BSS'
_sum label word

db 2 dup (?)
_BSS ends

?debug C E9
_DATA segment word public 'DATA'
s@ label byte
_DATA ends
_TEXT segment byte public 'CODE'
_TEXT ends

public _main
public _sum
public _add
end

The program begins by establishing the various segments required by a
Turbo C/C++ program. These vary between the different memory mod­
els. (This file was produced by the small model compiler. All the other
examples in this chapter also use the small model.) Notice that two
bytes are allocated in the _ BSS segment for the global variable sum
near the end of the listing. The underscores in front of add and sum are
added by the compiler to avoid confusion with any internal compiler
names. They are added to the front of all function and global variable
names. After this the code to the program begins. In Turbo C/C++ the
code segment is called _TEXT.

The first thing that happens inside the _main procedure is that
the two argum~nts to _add are pushed on the stack and _add is
called. On return from the _add function, the two pop ex instructions
restore the stack to its original state. The next line moves the return
value from _add into sum. Finally, _main returns.

The function _add begins by saving SI and BP on the stack and
then placing the value of SP into BP. At this point the stack looks like
this:

982 Turbo CIC++: The Complete Reference

SI - Top of stack

BP

a

b

The next three lines of code add the numbers together. Notice that
Turbo CIC++ is using the register SI to hold the value of the local
variable t. Even though the program did not specify that t should be a
register type, Turbo C automatically made it one as part of Turbo
CIC++ 's compiler optimizations. If the program had had more than two
register variables, space for them would have been made on the stack.
Finally, the answer is placed into AX, BP and SI are popped, and _add
returns.

Inside _add the parameters to the function are accessed by index­
ing BP (which is currently pointing to the stack). The exact location of
the parameters varies depending upon the number of local variables
inside the function. As stated, Turbo CIC++ automatically made t into a
register variable and no stack space was used.

You can literally assemble this assembly language file using TASM,
link it using TLINK (Turbo Linker), and run it. If you want to try this,
use the following link line (assuming that the file is called Test):

tlink \tc\lib\cOs y, y.exe,,\tc\lib\cs

The file Cos.obj contains startup and DOS-specific header information.
The library Cs.lib is Turbo CIC++'s standard small model library. (Refer
to the Turbo CIC++ manual for more information on these files.) What
makes this assembly language file more interesting is that you can
modify it to make it run faster but leave the C source code untouched.
For example, you could remove the instructions that pushed and popped
SI inside the _add function (because it is apparent that SI is not used
elsewhere in the program) and then assemble the file. Doing this is
called hand optimization.

Interfacing to Assembly Language Routines 983

Now that you have seen how Turbo CIC++ compiles functions, it is a
short step to writing your own assembly language functions. One of the
easiest ways to do this is to let the compiler generate an assembly
language skeleton for you. Once you have the skeleton, all you have to
do is fill in the details. For example, suppose it is necessary to create an
assembly routine that multiplies two integers together. To have the
compiler generate a skeleton for this function, first create a file contain­
ing only this function:

mul (int a, int b)
{
}

Next, compile the file with the - S option so that an assembly language
file is produced. The file looks like this:

i fndef ??version
?debug macro

endm
end if
?debug S "sample.c"

_TEXT segment byte public 'CODE'
DGROUP group _DATA,_BSS

assume cs:_TEXT,ds:DGROUP,ss:DGROUP
_TEXT ends

DATA segment word public 'DATA'
d@ 1 abel byte
d@w label word

DATA ends
_BSS segment word public 'BSS'
b@ label byte
b@w 1 abel word

?debug C E9B772DC140479342E63
_BSS ends
_TEXT segment byte public 'CODE'
; ?debug L 2
_mul proc near

push bp
mov bp,sp

@1:
?debug L 4
pop bp
ret

_mul endp
_TEXT ends

?debug C E9
_DATA segment word public 'DATA'
s@ 1 abel byte

DATA ends
_TEXT segment byte public 'CODE'

984 Turbo CIC++: The Complete Reference

_TEXT ends
public
end

_mul

In this skeleton, the compiler has done all the work of defining the
proper segments and setting up the stack and registers. All you have to
do is fill in the details. The finished mul() function is shown here:

?debug

_TEXT
DGROUP

_TEXT
_DATA
d@
d@w
_DATA
_BSS
b@
b@w

_BSS
_TEXT

i fndef
macro
endm
endif
?debug
segment
group
assume
ends

??version

S "test.c"
byte public 'CODE'
_DATA,_BSS
cs:_TEXT,ds:DGROUP,ss:DGROUP

segment word public 'DATA'
label byte
label word
ends
segment word public 'BSS'
label byte
label word
?debug C E9B772DC140479342E63
ends
segment byte public 'CODE'
?debug L 2

' **
; this is added to let the C program know about _mul

public _mul
i
_mul proc near

push bp
mn\J h"' ""t-'•"'t'

here is the code to multiply the numbers

mov ax, [bp+4] ; a
imul word ptr [bp+6] ;b

•** .
@1:

?debug L 4
pop bp
ret

_mul endp
_TEXT ends

?debug C E9
_DATA segment word public 'DATA'
s@ label byte

Interfacing to Assembly Language Routines 985

DATA ends
-TEXT segment byte public 'CODE'
=TEXT ends

public _mul
end

Once this file is assembled it can be linked to any C program that
requires it. For example, this program prints the number 10 on the
screen (remember to link in mul()):

#include <stdio.h>

int mul(int a, int b);

main(void)
{

printf("%d ", mul(2, 5));

return 0;
}

Notice that a line of code has been added at the end of the file. It is the
line public _ mul. This statement tells the assembler that the identifier
_ mul should be made available to any routine that needs it. This
enables the C program to call _ mul. You have to do this with any
function that you want to be able to call from a C program. If there is
data that the C program must know about, it should also be made
public. The rule is very simple. Place the names of functions that you
want public in the CODE segment and the names of variables in the
DATA segment.

The opposite of this is when you want to call a C function or access
a variable defined in a C program from an assembly language function.
In this case you must declare as external the objects your assembly
language routine needs by using the extrn assembler command. The
general form of the extrn statement is

extrn <object> : <attribute>

If object is a function, attribute can be either near or far. If you are
using a small code model, use near; otherwise, use far. For variables,
attribute can be one of the following values:

986 Turbo CIC++: The Complete Reference

Value Size in Bytes

byte 1

word 2

dword 4

qword 8

tbyte 10

For example, if your assembler routine needed to access the global
integer variable count and the function search(), you would place these
statements at the start of the assembly language file:

extrn _count : word
extrn _search : near

Keep in mind that the name of any assembly language function or
external data to be called by a Turbo CIC++ program must have an
underscore in front of it.

A slightly more challenging situation arises when pointers are
passed to a function. In this case, to access and alter the value of the
argument requires indirect addressing methods. For example, assume
that you need to create an assembly language function that negates the
integer pointed to by the argument to the function. Assuming that this
function is called neg(), the following fragment prints the number -10
on the screen:

v ::: in.
" .i.v,

neg(&x);

printf("%d", neg); /*prints -10 */

In C, the neg() function looks like this:

neg (int *a)
{

*a = -*a;

The neg() function coded in assembler looks like this, assuming that the
small data model is used:

?debug

_TEXT
DGROUP

_TEXT
_DATA
d@
d@w
_DATA
_SSS
b@
b@w

_BSS
_TEXT

_neg

Interfacing to Assembly Language Routines 987

1fndef ??version
macro
endm
endif
?debug S "test.c"
segment byte public 'CODE'
group _DATA,_BSS
assume cs:_TEXT,ds:DGROUP,ss:DGROUP
ends
segment word public 'DATA'
label byte
label word
ends
segment word public 'BSS'
label byte
1 abel word
?debug C E9C680DB14057931302E63
ends
segment byte public 'CODE'
?debug L 2
proc near
push bp
mov bp,sp
?debug L 4

The negate code

@l:

_neg
_TEXT

_DATA
s@
_DATA
_TEXT
_TEXT

mov bx, word ptr [bp+4]
mov ax, word ptr [bx]
neg ax
mov word ptr [bx],ax

?debug L 5
pop bp
ret
endp
ends
?debug C E9
segment word public 'DATA'
label byte
ends
segment byte public 'CODE'
ends
public _neg
end

get the address
load the arg
negate it
store it

The key lines of code are

mov
mov
neg
mov

bx, word ptr [bp+4)
ax, word ptr[bx]
ax
word ptr [bx],ax

get the address
1 oad the arg
negate it
store it

First, the address of the argument is loaded from the stack. Next,
the relative addressing mode of the 8086 is used to load the integer to

988 Turbo CIC++: The Complete Reference

be negated. The neg instruction reverses the sign, and the last instruc­
tion places the value back at the location pointed to by BX.

The best way to learn more about interfacing assembly language
code with your C programs is to write short functions in C that do
something similar to what you want the assembly language version to
do, and create an assembly language file using the assembly language
compiler option. Most of the time all you have to do is hand optimize this
code instead of actually creating an assembly language routine from the
ground up.

As you have seen, it is really quite easy to use assembly language
functions with your Turbo CIC++ code if you follow the rules precisely.

Using asm

Although the keyword asrn is not supported by the ANSI C standard,
Turbo C has added it to allow in-line assembly code to be made part of a
C program without using a completely separate assembly language
module. This has two advantages:

1. You are not required to write and maintain all the interface code.

2. All the code is in "one place," making support a little easier.

Note: The asm keyword is fo1·1nally part of ihe C++ ianguage; it is not
an addition added only by Borland. Although the use of asrn as de­
scribed here is valid for Turbo C++, in C++ asrn is more :flexible. Consult
Chapter 30 for details.

To put in-line assembly code in a Turbo CIC++ function, you simply place
the keyword asrn at the beginning of each line of assembly code and
then enter the assembly language statement. All code that follows the
asrn must be correct assembly code for the computer that you are using.
Turbo C simply passes this code through, untouched, to the TASM
assembler. You should use Turbo CIC++'s -B option, which informs
Turbo CIC++ that in-line assembly code occurs in the program. If you
don't, Turbo CIC++ will have to restart itself by first calling TASM.

Interfacing to Assembly Language Routines 989

Note: For Turbo C, in-line assembly code can be compiled only using
the command-line compiler, not the IDE version.

A very simple example of in-line assembly code is shown here. It is
used to output information to a port, presumably for initialization pur­
poses.

void init_portl(void)
{

printf("Initializing Port\n");
asm out 26,255
asm out 26,0
}

Here, the C compiler automatically provides the code to save regis­
ters and to return from the function. Notice that asm statements do not
require a semicolon to terminate; an assembly language statement is
terminated by the end of the line.

You could use in-line assembly code to create mul(), from the
previous section, without actually creating a separate assembly language
file. Using this approach, the code for mul() is shown here:

mul(int a, int b)
{
asm mov ax,word ptr 4[bp]
asm word ptr 6[bp]
}

Remember that Turbo CIC++ provides all customary support for setting
up and returning from a function call. All you have to do is to provide
the body of the function and follow the calling conventions to access the
arguments. Although the use of a nonstandard feature certainly reduces
portability, the use of assembly code probably reduces it more. So the
use of asm can be recommended, especially for short assembly code
fragments.

If you wish to place comments in asm statements you must use the
standard C /* and */ method. Do not use the the semicolon convention
used by most assemblers; it confuses Turbo C/C++.

Assembly code statements that are found inside a function are
placed in the CODE segment. Those found outside any function are
placed in the DATA segment.

990 Turbo CIC++: The Complete Reference

Whatever method you use, remember that you are creating machine
dependencies that make your program difficult to port to a new machine.
However, for the demanding situations that require assembly code, it is
usually worth the effort.

Multiple-File Programs and Libraries
Using Turbo C

This appendix explains how to compile programs that are split between
two or more files using Turbo C. (Managing multiple-file projects in
Turbo C++ is covered in Chapter 33). Because the manner of creating,
compiling, and linking multiple-file programs differs between the inte­
grated environment and the command-line version of Turbo C, both
environments are discussed here. This appendix also covers the Turbo C
library manager (TLIB).

Projects and the Project Option

In the Turbo C integrated environment, multiple-file programs are
called projects. Each project is associated with a project file that deter­
mines what files are part of the project. The main menu Project option
lets you specify a project file. All project files must end with a .PRJ
extension.

Once you have defined a project file inside the Project menu, you
enter into that file the names of the files that form the project. For
example, if the project file is called MYPROJ.PRJ and your project
contains the files TESTI.C and TEST2.C, you would edit MYPROJ
.PRJ to look like this:

TESTl.C
TEST2.C

For the sake of discussion, assume that neither TESTI.C nor
TEST2.C has yet been compiled. To compile and link these files, select

992 Turbo CIC++: The Complete Reference

the Run main menu option. When you specify a .PRJ file in the Project
option, this file guides Turbo C in compiling your program. The contents
of the .PRJ file are read and each file that needs to be compiled is
compiled to an .OBJ file. Next, the files are linked and the program is
executed.

You can also compile a project with the built-in Make facility. By
pressing F9, or by selecting the Make option under the Compile main
menu option, you cause Turbo C to compile and link all files specified in
the project file. However, the program is not executed.

Whenever you Make a program, only those files that need to be
compiled are actually compiled. Turbo C determines this by checking the
time and date associated with each source file and its .OBJ file. If the .C
file is newer than the .OBJ file, Turbo C knows that the .C file has been
changed and recompiles it. Otherwise, it simply uses the .OBJ file. In
this situation, the target .OBJ file is said to be dependent on the .C file.
The same is true of the .EXE file. AP, long as the .EXE file is newer than
all of the .OBJ files in the project, nothing is recompiled. Otherwise, the
necessary files are compiled and the project is relinked.

Trying It Yourself

To see how this process works, first select the Project option from the
main menu and select Project name. You are then prompted for the
name of the project. Use MYPROJ.PRJ. Next, using the File option,
load the file TESTl.C. (This should be a new file. If not, use a different
name). Enter and save the following code:

/* file TESTl.C */
#include <stdio.h>
void count(void);

main(void)
{

printf("This is file l.\n");

count(); /*this is in TEST2.C */
return O;

Next, edit TEST2.C. Enter and save the following code:

Multiple-File Programs and Libraries Using Turbo C 993

/* file TEST2.C */
#include <stdio.h>

void count(void)
{

}

int i;

for(i=O; i<lO; i++)
printf("%d ", i);

Now you can compile and run the program by selecting the Run
option. As you can see, Turbo C compiles both files and links them
automatically. If you select Run again, Turbo C checks the dates on the
files, sees that nothing needs to be recompiled, and runs the program.

Specifying Addltlonal Dependencies

Just as the standard library functions have header files, so can your
program. In fact, customized header files are common in C programs
that use multiple files because they are used to declare extern variables
as well as any #defines needed by your program. If you change a
header file, any file depending on that header must be recompiled; thus,
it is important to specify this relationship.

To specify a dependency, put the name of the file (or files) in
parentheses on the same line as the dependent file. For example, assume
that MYPROG.H is a header file necessary to TEST2.C from the previ­
ous example. In this case MYPROJ.PRJ will look like this:

TESTl.C
TEST2.C (MYPROG.H)

To see how this works, edit MYPROJ.PRJ to look like that shown
in the previous example. Next, modify TESTl.C and TEST2.C as shown
here (remember to keep them as separate files):

/* file TESTl.C */
int max;
void count(void);
#include <stdio.h>

main(void)
{

printf("This is file l.\n");

994 Turbo CIC++: The Complete Reference

max = 100;
count(); /*this is in TEST2.C */
return O;

/* file TEST2.C */

#include "myprog.h" /*read in the header file*/
#include <stdio.h>

void count(void)
{

}

int i;

for(i=O; i<max; i++)
printf("%d ", i);

Finally, create the header file MYPROG.H as shown here:

/* header file MYPROG.H */

extern int max;

AB you can see, the keyword extern is used to prevent Turbo C from
creating two separate copies of max. The header file specifies that
somewhere a variable named max is declared as an integer.

Now, select the Run option. If you performed the edits in the
sequence just described, the date of the header file will be newer than
its dependent file TEST2.C. TEST2.C is automatically recompiled and
the program is relinked.

The Standalone Make

Turbo C comes with a standalone version of Make for use with the
command line. Make is a very sophisticated program, and this appendix
covers only its most commonly used features. If you intend to make
extensive use of Make, you should study Appendix D of The Turbo C
Reference Guide, which fully describes Make.

The Make program automates the recompilation process for large
programs composed of several files when you are using the command­
line version of Turbo C. Its operation is similar to the Project/Make

Multiple-File Programs and Libraries Using Turbo C 995

facilities of the integrated environment, except that it is more flexible.
AB you probably know, in the course of program development many
small changes are made to some of the files, and then the program is
recompiled and tested. It is often easy to forget which of the files need
to be recompiled. This situation can lead either to unnecessarily recom­
piling all the files, or failing to recompile a file that should be recom­
piled, potentially adding several hours of frustrating debugging. The
Make program solves this problem by automatically recompiling only
those files that have been altered.

The Make program is driven by a make file, which contains a list of
target files, dependent files, and commands. A target file is produced by
its dependent files. For example, T.C would be the dependent file of
T.OBJ, because T.C is required to make T.OBJ. Like its cousin in the
integrated environment, Make works by comparing the date and time of
a dependent file and its target file. If the target file is older than its
dependent file, or if it does not exist, the specified command sequence is
executed. The general form of the make file is

target-jilel : dependent-file list
command-sequence

target-file2 : dependent-file list
command-sequence

target-file3 : dependent-file list
command-sequence

target-fileN : dependent-file list
command-sequence

The target file name must start in the left column, followed by a colon
and its list of dependent files. The command sequence associated with
each target must be preceded by at least one space or a tab. Comments
are preceded by a # and may follow the dependent file list and the
command sequence. If they appear on a line of their own, they must
start in the left column. Each target file specification must be separated
from the next by at least one blank line.

The simple program illustrated in Figure D-1 shows how Make
works. The program is divided into four files called test.h, test.c, test2.c,
and test3.c.

996 Turbo CIC++: The Complete Reference

test.h extern int count;

test.c

test2.c

test3.c

int count=O;
void test2(void), test3(void);
#include <stdio.h>

main{void)
{

}

printf("count=%d\n",count);
test2();
printf("count=%d\n",count);
test3();
printf("count=%d\n",count);
return O;

#include "test.h"

void test2(void)
{

count = 30;
}

#include "test.h"

void test3(void)
{

count = -100;
}

Figure D-1. A simple four-file program

A make file that can be used to recompile the program when
changes are made looks like this:

test.exe: test.obj test2.obj test3.obj
tee test.obj test2.obj test3.obj

test.obj: test.c
tee test test2.obj test3.obj

test2.obj: test2.c test.h
tee -etest test2 test.obj test3.obj

test3.obj: test3.c test.h
tee -etest test3 test.obj test2.obj

Multiple-File Programs and Libraries Using Turbo C 997

To compile the necessary modules and create an executable program of
a file called MAKEFILE, the command line looks like this:

C>MAKE

When no other file name is specified, Make executes whatever is in the
file called MAKEFILE, if it exists. To specify a different make file, use
the - f option, which tells Make to use the file that follows as its make
file. For example, this command line tells Make to use the MYMAKE
make file:

C>MAKE -fMYMAKE

Make only re-creates those files with dates prior to the files they
depend upon. In some situations, such as when the system clock is in
error, you may wish to force Make to reconstruct a file that does not
appear out-of-date. To do this, use the TOUCH utility, which updates
the specified file's creation date. The command line for the TOUCH
program uses this general form:

TOUCH.filename [filename .. :filename]

TLIB, The Turbo C Librarian

Beginning with Version 1.5, Turbo Chas included TLIB, the Turbo C
librarian. The TLIB program allows you to create libraries containing
functions that you have created. As you probably know, a library is a
collection of functions in object format. Although in many ways a library
is like a separately compiled module, it differs from an .OBJ file in one
very special way: Only those library functions that are actually used by
the program linked with the library become part of the program. For
example, when a separately compiled file is linked with other files, all of
the functions contained in that file become part of the executable pro­
gram whether used by the program or not. However, when a library file
is linked with other files, the executable program contains only those
library functions that are used by the program.

998 Turbo CIC++: The Complete Reference

The ability to build your own libraries is very helpful when you are
working on a large project that contains several programs. For example,
imagine that you are creating a system of programs to run a nuclear
power plant. You need a set of routines to monitor the core temperature,
to insert and retract the control rods, and to watch for faults in the
system. You will want to put the routines that perform these functions
into a library so that they can be linked into each program that you
write as needed. For example, the program that runs prestartup system
diagnostics on the reactor may not need to monitor the control rods, so
that code will not be linked into this program.

It is quite easy to create your own libraries using TLIB. In essence,
there are three operations: add a module to a library, remove a module
from a library, and extract a .OBJ file from a library. The general form
of the TLIB command line is

TLIB libraryname [op]module_ name [op]module_ name . ..

where op is an operator that specifies the TLIB action and
module_ name is the name of the module that is acted on. The library
affected is specified by libraryname. The valid values of op are:

Operator

+

*

- +or+-

-*or*-

Action

Adds a module to the specified library

Removes a module from the specified library

Extracts an .OBJ file from the specified library

Replaces the specified module with a new copy
(this is shorthand for remove and add)

Extracts the specified module and removes it
from the library (this is shorthand for extract
and remove)

TLIB assumes the extension .LIB for the libraryname and the
extension .OBJ for each module_ name. In fact, in order to add a
module to a library, it must be in .OBJ format. The file may contain as
few as one function or as many as are practical for your specific applica­
tion. Although each function in the module is treated separately when
linked to a program, only the entire module can be manipulated by
TLIB. For example, it is not possible to extract one function from a
module using TLIB.

Multiple-File Programs and Libraries Using Turbo C 999

To create a library, you simply specify the name of a nonexistent
library and add modules to it. For example, this line creates the library
NEWLIB.LIB and adds the module MYMOD to it:

TLIB NEWLIB +MYMOD

This next example adds the modules APPLES, ORANGES, and
GRAPES to NEWLIB:

TLIB NEWLIB +APPLES +ORANGES +GRAPES

This removes MYMOD from the library:

TLIB NEWLIB -MYMOD

(), 54
[], 54

A

abort function, 591-592
abs function, 687-688
Absolute code, 372
absread function, 511-512
abswrite function, 511-512
Abstract types, 828
Access declaration, 887-888

general form, 887
access function, 378-379
Access mode, 418
Access modifiers, 20-21, (listed, 437-438)

constant, 21
volatile, 21

Access parameter, 419
acos function, 489-490
Action buttons, in C++ dialog box, 904-906
Address calculation, 264-267
ALGOL language, 7
Algorithms, implementing with code

blocks, 9
Alignment, compiler option, 350
Allocation, dynamic, 561-578
Allocation functions, dynamic, 157-159,

561-578
using new and delete, 865-870

allocmem function, 562-563
ALT-X, 329
ANSI C File system, 219-236
ANSI C IJO system, 207

actual and conceptual contrasted, 207
ANSI standard, established C language,

5, 203
Approach, choices for I/O system, 243
arc function, 602
Arguments

comparing command-line, 463
option, 359

argsused directive, 257
Arithmetic operators, 39-40
Arrays, 125-148

calling functions with, 99-100
counting characters from, 464

Arrays, continued
definition of, 125
initialization, 143-146
of objects, 778-779
pointers and, 137-139, 158-160,

162-163
of structures, 177-183
structures within structures with,

190-191
Arrays, allocated, 139-143

dynamic, 139-141
multidimensional dynamic, 141-143

Arrays, multidimensional, 136-137
declaration form, 136

Arrays, single-dimensional, 125-126
declaration form, 125-126
passing to functions, 127-128
string manipulation functions for,

128-130
Arrays, two-dimensional, 130-136

declaration form, 130-131
number of memory bytes form,

131-132
storage of, 131, (table, 152)
strings for, 134-136

Arrow operator, 53, 187, 193
ASCII conversion, 453-454
asctime function, 512-513
asin function, 490-491
asm keyword, 881-882, 988-990

forms, 881
in-line asembly code, 989

Assembler, 975
Assembly code function, 978-988

hand optimization, 982
writing language with, 983-988

Assembly language interfacing,
975-990

Assert function, 688-689
Assignment statements, 34
Assignments

type conversion in, 34-36
Asynchronous communication port,

manipulating, 514
atan function, 491
atan2 function, 492

I
N
D
E
x

1002 Turbo CIC++: The Complete Reference

atexit function, 592
atoi function, 690-691, 701
atol function, 691, 722
atot function, 689-690, 691, 720
Autoindentation, 341-342, 932-933

B

Background colors, setting, 618-619,
Oisted, 618)

Backslash character constants, 37-38
Backslash codes, (table, 38)
bar function, 603
bar 3d function, 603
Bars, drawing, 603
BCD classes, 890, 892-894, (table, 893)
BCPL language, 5
bdos function, 513-514
Bell Laboratories, 727
Binary code, 11
Binary stream, definition of, 205
Binding

early, 829
late, 829

BIOS level disk routines, 517
bioscom function, 514-516
biosdisk function, 517
biosequip function, 517-519
bioskey function, 519-520
biosmemory function, 521
biosprint function, 521-522
Biostime function, 522-523
Bit rotation, 706-707
Bit-fields, 191-194

dev code, 193, (illus., 193)
Bitwise operator, 44-48
Block-structured language, 7
Breakpoints

setting in debugger C, 965-966
setting in debugger C++, 954

Break statement, 83-84
in switch statement, 69-72

Break/watch option, 326-327
brk function, 563
Broken-down time, 509
bsearch function, 692-693, 711
Buffers, 206

flushing, 396
write, 383

Buffer pointer, 285
Buffered file system, devices of, 204
Byte

c

copying initial 25 into array buffer,
466

copying low-order, 465
counting number of, 426
discarding high-order, 400

C language
C and C++ contrasted, 889-890
characteristics, 9
memory models, 263-277
origins, 5
place in language world, (table, 6)

C program, form of, 11-12
C shorthand, 58-59
C standard library, 373
C++, 725-748

classes of, 733-737
compiling, 733
fundamentals, 730-733
keywords, 748
origins, 727-728
streams, 836-837

Calendar time, 509
setting, 526

Call stack
in debugger C, 971-972
in debugger C++, 959-960

Calling conventions, 977-978
definition of, 977

calloc function, 563-564
definition of, 561

Case sensitivity
lowercase function, 456-457
uppercase function, 459-460

Case-sensitive link, 356
cell function, 493
CGA codes, (listed, 633)
change mem function, 275
Character checking, alphanumeric,

452-453
Characters

checking for control, 454
printable, 451, 456

chdir function, 579
Check boxes, in C++ dialog box, 904-906
chmod function, 379-380
chsize function, 380-381
circle function, 604
Circles, drawing, 604
Classes

anonymous union, 763-764
relationship of with structures,

761-763
relationship of with unions,

763-764
clear87 function, 693, 694, 719
cleardevice function, 604-606
clearviewport function, 604-605
clearerr function, 381-382
Clipboard, 927
clock function, 523-524
close function, 237-239, 382-383

explanation of, 206
closegraph function, 606
clreol function, 606-607
clrscr function, 606-607
Code

absolute, 372
block, 8-9
compartmentalization, 7
relocatable, 372

Code generation, 349-350
alignment, 350
calling convention, 349
default character type, 350
floating point, 349
instruction set, 349
line numbers, 350
merging duplicate strings in, 350
standard stack framing, 350

Color functions for setting, 663-665
Comma operator, 52
Command-line arguments, 103-104
Command-line compiler, 360-365,

939-943
options, 361, (table, 362, 941-942)
TCC.EXE, 360
TLINK, 365-368
warning messages, (table, 363)

Compact model, 268-269

Index 1003

Compile. See also Compiler,
Compiler options

conditional directives, 251-255
main menu selection for C, 323-324
menu in C++, 910, (illus., 911)

Compile time, 11
Compile-time operator, 51-52, 199-200
Compiler. See also command-line com-

piler
interpreter distinguished from, 10-11

Compiler options, 347-355
code generation, 349-350
errors, 353, (table, 354)
model, 348
names, 353
optimization, 351
source, 351-352

Complex classes, 890-892, (table, 892)
Conditional compilation directives,

251-255
Conditional statements, 62-73
Console I/O, 207-211

functions, (table, 211)
Constructor functions, 744-748, 868-869

dynamic initialization and, 788-789
overloading, 783-785

Constructors, 750-752, 829-832
Constructors, in derived classes, 829-832

order, 831-832
Constructors, parameterized, 749-752

passing arguments with, 750-752
shorthand method, 750

Context-sensitive help, 915, 917
Continue statement, 86-87
Control-break handler, 527
Control characters, 451
control87 function, 694

fpmask, 694
fpword, 694

Conversion functions, creating, 885-887
Copy,461
coreleft function, 564-565
cos function, 494
cosh function, 494-495
country function, 524-525
cprintf function, 607-608
cputs function, 608-609
creat function, 237-239, 384-385

1004 Turbo CIC++: The Complete Reference

cscanf function, 609-610
ctime function, 525-526
Currency symbols, setting, 524-525
Cursor, set function for, 714-715

D

Data types, 18-19, (table, 18, 37)
character, 18
definition of, 6
double floating point, 18
floating point, 18
integer, 18
size and range, (table, 18)
valueless, 18

Date
functions, 509-560
set function for, 554

Debug
main menu option in C, 325-326
main menu option in C++, 910

Debugger, C, 963-973
call stack, 971-972
changing variable values with, 973
expression evaluation, 972
finding functions with, 973
preparing programs for, 963
qualifying a variable name with,

968-969
setting breakpoints for, 965-966
single-stepping with, 965
watehed-ex-pr·ession format codes,

969-971, (table, 969)
Debugger, C++, 951-961

call stack, 959-960
commands, 952-953
expression evaluation, 960
inspecting variables, 961
modifying variables, 960-961
preparing programs for, 951
qualifying a variable name with,

958-959
register window, 961
setting breakpoints for, 954
single-stepping with, 953
watched-expression format codes,

955-958, (table, 956)

Debugger, C++, continued
watching expressions with, 967-968
watching variables, 954-955, 966-967

Decrement operator, 40-41
Default function arguments, 757-761

correct use of, 760-761
Default libraries, in linker, 356
Default palette, get function for, 619-620
Default statement, 69-70
Define directive, 246-249
delay function, 527-528
Delete

characters in C, 337-338, (table, 345)
characters in C++, 923-924
lines in C, 337-338, (table, 345)
lines in C++, 610-611, 923-924
words in C, 337-338, (table, 345)
words in C++, 923-924

Delete operator, 865-874
overloading, 870-874

delline function, 610-611
Destructor function, 745-748, 868, 869
Destructors, in derived classes, 829,

830-832
order, 831-832

detectgraph function, 611
Dialog boxes, 904-906

action buttons in, 904-906
check boxes in, 904-906
input boxes in, 904-906
list boxes in, 904
radio buttons in, 904

Digits
checking, 455
checking for hexadecimal, 460

Directories, 358-359
change function, 579

Direct video RAM output, 293
disable function, 529
Disk get function for, 585
Disk drives, displaying number installed,

519
Disk files, 203-243
Disk tranfer address (DTA), 536
display mem function, 274
div function, 694-695, 702

numerator/denominator, 694

DOS attn'bute byte, organization of, 239
DOS system call, accessing, 513
dos.h, definition of, 510
Dot operator, 53, 176, 193
Drawing

arcs, 602
bars, 603
circles, 604
ellipses, 612-613
polygons, 612

drawpoly function, 612
Driver name, get function for, 620-621
DTA See Disk tranfer address
dup function, 385-386
Dynamic allocation functions, 157-159,

561-578
using new and delete, 865-870

Dynamic initialization, 786-789

E

applying to constructors, 788-789
local and global variables in, 786-787

Echo, 411
ecvt function, 695-696, 698
EditOr, for C, 327, 335

command summary, (table, 344-346)
copying blocks of text with, 338
deleting blocks of text with, 338
deleting characters, words, and lines

with, 337-338, (table, 345)
entering text with, 335-337,

(illus., 336)
find and find with replace in, 339-340,

(table, 340)
invoking, 335
invoking with a file name, 344
miscellaneous commands in, 343-344
moving blocks of text to and from

disk files with, 842
moving blocks of text with, 338
saving and loading files in, 340-341
setting and finding place

markers, 340
special cursor commands in,

(table, 344)

Index

Editor, for C++, 909, 921
command summary, 936,

(table, 937-938)

1005

copying blocks of text with, 924-926
cursor commands in, (table, 928)
deleting blocks of text with, 924-926
deleting characters, words, and lines

with, 923-924
entering text with, 922-923
find in, 929-931
find with replace in, 929-931
invoking, 922
invoking with a file name, 936
miscellaneous commands in, 934-935
moving blocks of text to and from

disk files with, 933
moving blocks of text with, 924-926
saving and loading files in, 932
setting and finding place

markers, 931
using clipboard in, 927

Editor commands, C++, 921
Editor window, C++, 919
EGA codes, (listed, 634)
#Elif directive, 251-254
Ellipse

function, 612-613
fillellipse function, 613-614

#Else directive, 251-252
emit function, 696
enable function, 531
End of file (EOF), 208, 389, 392, 401
End of file function, 386-387
#Endif directive, 251-254
Enumerations, 196-199

enum, 196
in currency, 196-199

Environment options, 357-358
backup files, 358
keep messages, 357
edit automatic save, 357
message tracking, 357
screen size, 358
tab size, 358
zoomed windows, 358

EOF, 208. See also End offile
function

#Error directive, 249-250

1006 Turbo CIC++: The Complete Reference

Error flags, resetting, 381
Error message, 420. See also Messages,

error
Evaluation, expression in debugger C,

972
Evaluation, expression in debugger C++,

960
exec functions, 593-595
exit function, 85-86, 595-596
exp function, 495
Expressions, 54-58

case construction of, 56-57
parentheses in, 57-58
spacing in, 57-58
type conversion in, 55
watching in debugging C, 967-968

Extern storage class specifier, 28-29
Extractors, overloading, 841-843

F

fabs function, 495-496
far function, 271-272, 295
Far heap, 562, 566-567, 569

check, 569-570
check node, 571-572

far pointer, 272
farcalloc function, 565
farcoreleft function, 565-566
farfree function, 566-567
farheap check function, 569-570
farhcapcheckfree function, 570-571
farheapchecknode function, 571-572
farheapfillfree function, 572-573
farheapwalk function, 573
farmalloc function, 567
farrealloc function, 567
fclose

function, 224, 225-227, 387-388
using, 206

fcloseall function, 387-388
fcvt function, 696-697, 698
fdopen function, 388-389
feof function, 223, 389
ferror function, 224, 390
fflush function, 390-391
fgetc function, 391-392
fgetchar function, 392-393

fgets function, 227, 394
File option

c, 322-323
C++, 908-909

File pointer, 220
File position indicator

for start of file, 205
setting, 405

fileno function, 395-396
filelength function, 395
Files, 205-207

displaying current, 393
erasing, 235-236
finding length of, 395
header, 373-376, (table, 375)
library contrasted to object, 373
locking, 445-446
opening temporary, 442

Fill pattern, get function for, 621-622
fillellipse function, 613-614
fillpoly function, 614-615
findfirst function, 580-581
findnext function, 580-581
Flags, 844-846
floodfill function, 615-616
floor function, 496
flushall function, 396
Flushing, definition of, 206
fmod function, 496-497
fnmerge function, 581-583
fnsplit function, 581-583
fopen function, 220-222, 225-226, 397-398,

(table, 397)
Format codes, watched-expression,

969-971, (table, 430)
in debugger C++, 955-958,

(table, 956)
Format commands, 421, 431, (table, 421)
Format specifiers, 430
Format string, 212
Formatting I/O, 843-849
Forward reference, 109
fpreset function, 697
fprintf function, 233-235, 399
fputc function, 399-400
fputchar function, 400-401
fputs function, 227, 401-402
fread function, 228-229, 402-403

free function, 137-143, 567-568
definition of, 561

freemem function, 568-569
frexp function, 497
Friend functions, 753-757

accessing the private parts of a
class with, 754-757

importance of, 753
Friend operator functions, 797-801
fropen function, 403-404
fscanf function, 233-235, 404
fseek function, 229-232, 405-406
fsetpos function, 406-407
fstat function, 407-408
ftell function, 408-409
ftime function, 532-533
Full menus, C++, 906-907
Function arguments, 96-103

call by reference, 97-98
call by value, 96-97
calling with arrays, 99-103
formal parameters of, 96
gets, 102
swap, 98

Function overloading, 737-740
Function prototypes, 110-115

absence of parameters in 113-115
header files, 113, (table, 114)
standard library, 113
usage, 110-113

Functions
returning noninteger values, 108-110
UNIX-like unbuffered I/O,

(table, 236)
fwrite function, 228, 409-410

G

/gcvt function, 696, 697-698
geninterrupt function, 533
getarecords function, 616-617
getaspectratio function, 617-618
getbkcolor function, 618-619
getc function, 223, 410-411
getchar function, 209, 412
getche function, 208-210

variations of, 209

Index

getcolor function, 619
getcurdir function, 583-585
getcwd function, 584-585
getdefaultpalette function, 619-620
getdisk function, 585
getdfree function, 535-536
getdrivername function, 620-621
getdta function, 536
getenv function, 698-699
gettat function, 537
gettatd function, 537
getfillpattern function, 621-622
getfillsettings function, 622-623
getftime function, 538-539
getgraphmode function, 623-625
getimage function, 625-627
getlinesettings function, 627-628
getmaxcolor function, 628-629
getmodename function, 630-631
getmoderange function, 631-632
getmaxmode function, 629
getmaxx function, 629-630
getpalette function, 632-635
getpalettesize function, 635
getpass function, 699
getpsp function, 539
getpixel function, 636
gets function, 210-211, 412-413
gettext function, 636-637
gettextsettings function, 637-638
getvect function, 539-540
getverify function, 540
getviewsettings function, 638-639
getw function, 227, 414
getx function, 639
Global variables, 561

allowing bugs in with, 7
storing, 14

gmtime function, 540-541
Goto statement, 87-89
gotoxy function, 640

1007

Graph mode, get function for, 623-625
graphdefaults function, 640-641
grapherrormsg function, 641
graphfreemem function, 642
Graphics drivers, 296-298, (table, 298)
Graphics library, in linker, 356

1008 Turbo CIC++: The Complete Reference

Graphics mode status, 308-309
character element in, 309
direction element in, 309
font element in, 309

Graphics screen manipulation functions,
309-315, (table, 310)

demonstration, 311-312, (illus., 313)
viewport demonstration program,

314-315, (illus., 314)
graphresult function, 642-643
Graphing functions, 302-305

demonstration of, 304-305
pattern values, 303

Graphs

H

defaults on, 640-641
error message for, 641
setting buffer size for, 668

Handle, 386, 388, 416
association with character device, 415
definition of, 237
file descriptor, 409

harderr function, 541-542
hardresume function, 541-542
hardretn function, 541-542
Header files, 113, 373-374, (table, 114)

macros in, 374-376
standard, (table, 375)

Heap, 561, 565, 570, 572
definition of, 14

heapcheck function, 569-570
heapcheckfree function, 570-571
heapchecknode function, 571
heapfillfree function, 572-573
heapwalk function, 573-575
Help

context-sensitive in C++, 915, 917
in C, 329
in C++, 914-915

highvideo function, 643-644
Hot keys, C, 327-328

summary, (table, 328)
Hot keys, C++, 915

summary, (table, 916)

hypot function, 497-498

I

IDE, 331
identifiers, 17-18
idiv function, 695, 702
If conditional statement, 62-69

? operator in, 66-69
< - if-else-if ladder, 65-66
nested ifs, 64-65
recursion functions, 120

#If directive, 251-252
Ifdef directive, 254-255
Ifndef directive, 254-255
Image, size of, 644
imagesize function, 644
Increment operator, 40-41
#Include operator, 250-251
Indentation, automatic in C++, 932-933
Inheritance, 730, 740-744, 767-772

private classification, 768-772
protected classification, 768-772
public classification, 768-772
terminology, 768

Inheritance, multiple, 772-777
general form of, 772-773
with a constructor function, 774-776

Initialization, dynamic, 786-789
constructors and, 788-789
local and global va...~ables, 786-787

initgraph function, 645-647
In-line directive, 258
In-line functions, 764-767

creating inside a class, 766-767
definition of, 765
inline modifier, 765-766

inport function, 543
inportb function, 543
Input, 203-243. See also I/O
Insertors, 837-841
insline function, 647-648
Install. See also TCINST installation

program
driver, 648-649
font, 649

installuserdriver function, 648-649

installuserfont function, 649
Int86 function, 543-544
int86x function, 543-544
Integrated environment, 347
Interpreter

BASIC, 11
distinguished from compiler, 10-11

intdos function, 544-545
intdosx function, 544-545
intr function, 545-546
I/O, 854-864

binary, 859-861
detecting end of file, 861-862
mixing of, 243
opening and closing, 854-857
random access, 862-864
reading and writing text files,

857-858
I/O, formatting, 843-849

manipulators, 847-849, (table, 848)
member functions, 843-847

I/0 functions, 377-450
isalnum function, 452
isalpha function, 452-453
isascii function, 453-454
isatty function, 414-415
iscntrl function, 454-455
isdigit function, 455
iseek function, 241-243
isgraph function, 455-456
islower function, 456-457
isprint function, 232, 457-458
ispunct function, 458
isspace function, 458-459
isupper function, 459-460
isxdigit function, 460-461
itoa function, 700-701

J

Justification
left, 422

K

right for output, 213
setting text, 673-67 4

Keywords, in C, 7, (list, 12)
keep function, 546-547

Index 1009

L

labs function, 492-493, 688, 701
Languages, structured and nonstructured

distinguished, 8
ldexp function, 498
lfind function, 702-704
Library, 12-14

files, 373
Linkage specification, 882-883
Linker, 13, 16

default libraries, 356
graphics library, 356
map file, 355
options, 355-357
stack warning, 356
TLINK, 365-368
warn duplicate symbols, 356

Linking, 13, 371-372
definition of, 371

Line directive, 256
line function, 649-650
Line settings, function for getting,

627-628
Local variables, 561. See also Variables

in C++ '
localtime function, 547-548
lock function, 415
log function, 498-499
Logarithm, calculating, 498-499
Logical operator, 41-44
longcoreleft function, 564-565
Long integers, 214
longjmp function, 704-705 ·

setting, 704
Loop constructs, support for, 8
Loops, 73-84

break statement for, 78-79, 83-84
continue statement for, 86-87
do/while, 82-83
infinite, 78-79
variations of, 75-78
while, 82-83

Lowercase, keywords in, 12
lowvideo function, 650-651
lrot function, 706-707, 714
lrotr function, 706-707, 714
!search function, 702-704

1010 Turbo CIC++: The Complete Reference

lseek function, 416-417
ltoa function, 705-706

M

Macros
in header files, 374-376
predefined names of, 259-262

main function, 12
arguments, 103-108

Main menu, C, 319-322
pull-down menu, 320-322, (illus., 321)
selection of, 320, (table, 321)

Main menu, C++, 903-904
pull-down menu, 903
selection of, 903
summary, (table, 904)

Make option, C, 329
MAKE program, standalone version of,

994-997
four-file program in, (illus., 996)
general form, 995

malloc function, 140-143, 157-159, 575-576
Manipulator functions, 849-854

parameterized, 851-854
parameterless, 849-851

Mathematical functions, 489-507
matherr function, 500-501
math.h function, 489
max function, 707-708
maxdir function, 583
ma..ximum color, get ft1nction for, 628-629
memccpy function, 461
memchr function, 461-462
memcmp function, 462-463
memcpy function, 463-464
memmove function, 464-465
Memory allocation, 472
Memory map, 14, (illus., 15)
Memory models, 267-270

overriding, 271-273
memset function, 465
Message windows, C, 327
Messages, error, 473-474
min function, 707-708
Minimum field width specifier, 422

Mode
legal values for, 221
name, 630-631
permission, 384
range, 631-632
values for, (table, 397)

Model selection, 269-270
Modifiers, segment override type, 271
modf function, 501
Mouse, 902-903
movedata function, 466
movemem function, 466-467
moverel function, 651
movetext function, 652
moveto function, 652
mkdir function, 586
mktime function, 548-549
Multiple base classes, 832-833
Multiple-file libraries, C, 991-999
Multiple-file programs, C, 991-999
Multiple-file programs, C++, 945-947

project option, 946-947

N

Names, qualifying variable in debugger
c, 968-969

Names, qualifying variable in debugger
C++, 958-959

near function, 272
near pointer, 272
Nested comments, 352
Nested includes, definition of, 250
Nested structure, 191
New operator, 865-874

advantages of, 866
allocating arrays with, 867-870
overloading, 870-874

normvideo function, 653
nosound function, 708-709
No stack warning, 120
Null, definition of, 222
Null pointer, 394, 468, 469, 483-484
Null terminated string, 475, 478-480
Null terminator, 468, 478-481, 483

0

OBJ debug, C, 963
Object code, definition of, 11
Object files, 373
Object-oriented programming, 728-729

inheritance, 730, 740-744
objects in, 729-730
polymorphism, 730, 815-818

Offset, definition of, 266
open function, 237-239, 417-420

access modifiers in, 418-419
Open operation, 205
Operator overloading, 740,

791-797, 809-813
function and form of, 791
restrictions, 797
string operations and, 809-813
this, 793, 795

Operators, 38-54
arithmetic, 39-40
arrow, 53, 187, 193
bitwise, 44-48
comma, 52
compile-time, 51-52, 199-200
decrement, 40-41
definition of, 38
delete, 865-870
dot, 53, 176, 193
increment, 40-41
logical, 41-44
new, 865-870
pointer, 50-51, 151-153, 190
relational, 41-44
scope resolution, 735, 797

Option directive, 258-259
Options, C++, 911-912
Options, integrated environment, 325,

347-360
arguments, 359
compiler, 348-355
directories, 358-359
linker, 355-357
loading, 359-360
retrieving, 359-360

outport function, 549-550
outportb function, 549-550
Output, 203-243. See also I/O

Index 1011

outtext function, 653-654
Overload anachronism, 888-889

p

Pair-matching, editor in C, 342-343,
(table, 346)

finding companion delimiter by,
342-343

Pair-matching, editor in C++, 933-934
Palette

get function for, 632-635
get function for size of, 635
set all function, 662

Paragraph boundary,
definition of, 266

Parameter declarations, 117-118
classic form of, 117
modern form of, 117-118

parsfnm function, 550-551
Pascal language, 7
Passing objects to functions, 777-778
Password verification routine, 470
peek function, 551
peekb function, 551
Permission mode, 384
perror function, 420
pieslice function, 654-655
Pixels

get function for, 636
put function for, 657

Pointer comparisons, 155-157
far, 155, 267, 272
huge, 155,270,273
near, 155,267, 272
stack, 156-157

Pointer expressions, 153
arithmetic, 154-155, (table, 155)

Pointer operator, 49, 50-51, 151-153,
184, 190

•,50-51, 151-153, 190
&, 49, 151-153

Pointer variables, 150-151
Pointers, 149-171, 270

array of function, 167
arrays and, 137-139, 159-160
definition of, 270
importance to C, 149

1012 Turbo CIC++: The Complete Reference

Pointers, continued
indexing contrasted to arrays,

159-160
initializing, 165-166
memory address, 150, (table, 150)
near contrasted to far, 267
problems, 169-171
returning, 115-117
to character arrays, 160-162
to derived types, 815-818
to functions, 120-123, 166-169
to member operators, 883-885
to objects, 779-781
to pointers, 163-165, (table, 164)

poke function, 551
pokeb function, 551
poly function, 502
Port, asynchronous communication, 514

setting baud, 515-516
Ports, serial, 518
Portability, definition of, 6
pow function, 502-503
powlO function, 503-504
Pragma directive, 257-259
Preprocessor directives, 245
Printable characters, 451
Printer port, controlling, 521-522
Printers, setting number of, 519
Printf function, 212-214, 420-423,

(table, 421)
Processors, 8086 family of, 263-264
Programs, prepai-ing for debugging

in C, 963
Projects, C, 991-992. See also Multiple-file

programs
additional dependencies, 993-994
option for main menu, 324-325

Projects, C++, 910, 945-947
compiling with IDE, 945-946
option, 946-947

Punctuation, checking for correct, 458
putc function, 222, 225-226, 423-424
putchar function, 208-210, 424
putenv function, 699, 709
putimage function, 655-657
putpixel function, 657
puts function, 210-211, 425

puttext function, 657-658
putw function, 227, 425-426

Q

qsort function, 693, 704, 709-711

R

raise function, 711-712
rand function, 712, 713, 719
randbrd function, 552-553
randbwr function, 552-553
Random access files, 241-243
Random access I/0, 229-232
random function, 713
randomize function, 713
read function, 239-241, 426-427
realloc function, 576-577
Rectangle, 658-659
Recursion, 118-120

definition of, 118
factr function, 119
if statement, 120
stack overflow, 120

Reference variables, 801-809
nonparameter, 804-806
overloading unary operator with,

806-809
restrictions on, 803-804

Register storage class specifier, 33-34
Register window, in debugger C++, 961
registerbgidriver function, 659
Registers

base-pointer, 264
8086, 264-265
index, 264
segment, 264
special-purpose, 264

Relational operators, 41-44
Relocatable code, 372
Relocatable format, 13
remove function, 235-236, 427-428
rename function, 428-429
Response file, C++, 943-945

warning message options in, (table,
944-945)

restorecrtmode function, 659
Retrieve option, 359-360

Return statement, 91-95
values, 93-95
values from main function, 95
void, 93

Returning pointers, 115-117
match function in, 116

rewind function, 224, 429
Richards, Martin, (BCPL developer), 5
Ritchie, Dennis, 5
rmdir function, 587-588
rot! function, 707, 713-714
rotr function, 707, 713-714
Routines, UNIX-like file, 236-243
Run option, C, 323
Run option, C++, 909-910
Run time, 11

s
Save option, 359-360
Saveregs directive, 259
Saving and loading files, C, 340-341
Saving and loading files, C++, 932
sbrk function, 577
scanf function, 214-219, 429-434,

(table, 430)
Scanset, definition of, 218
Scope rules, 7

of functions, 95
Screen manipulation functions, 284-288,

(table, 284)
searchpath function, 588
Sector, 206
Segment, 266

offset method defined, 266
Segment specifiers, C, 273
segread function, 553
setactivepage function, 661
setallpalette function, 662
setaspectratio function, 662-663
setblock function, 578
setbuf function, 434-435
setcbrk function, 553-554
sector function, 660-661, (illus., 660)
Separate compilation, advantages of, 14

Index

setbkcolor function, 663-664
setcolor function, 665
setcursortype function, 714-715
setdate function, 554
setdta function, 555
setfillpattern function, 665-666
setfillstyle function, 666-668
setgbpalette function, 673
setgraphbufsize function, 668
setgraphmodel function, 668-669
setdisk function, 589
setftime function, 555-556
setjmp function, 704-705, 715-716
setlinestyle function, 669-671
setmem function, 467
setmode function, 435
setpalette function, 671-673
settextjustify function, 673-674
settextstyle function, 674-675
settime function, 554
setusercharsize function, 675-676
setvbuf function, 436
Setvect function, 556
setverify function, 556-557
setviewport function, 676-677
setvisualpage function, 677-678
setwritemodel function, 678-679
shfl.ag, 438
Short integers, 214
Shorthand, C, 58-59
sleep function, 557-558
signal function, 716-717
sin function, 504
Single-stepping, in C debugger, 965
sinh function, 505

1013

SIZEOF compile operator, 51-52, 199-200
sopen function, 436-439
sound function, 709, 718
Spaghetti code, 9
Spawn functions, 596-599
Specifier. See also Static storage class

specifier
minimum-field-width, 213

sprintf function, 439
sqrt function, 505
Square roots, determining, 505
srand function, 718-719

1014 Turbo CIC++: The Complete Reference

sscanf function, 439-440
Stack, definition of, 14
Standard library, C, 373
Start, definition of, 258
Startup directive, 257-258
stat function, 440-441
Static class members, 874-875
Static member functions, 875-877

data, 875-877
Static storage class specifier, 29

global variables, 31-33, 561
local variables, 29-31, 95, 561

Status line, in C++, 919
stdlib.h function, 687
stime function, 558
Storage class specifiers, 27-34
stpcpy function, 467-468
strcat function, 468-469
strchr function, 469-470
strcmp function, 470
strcoll function, 471
strcpy function, 471
strcspn function, 471-472
strdup function, 472-473
Stream

clearing, 391
error checking in, 390
flushing buffer of, 387

Stream class library, 864
Streams

and files, 204-207
devices for, 206
standard, 233

strerror function, 473-474
stricmp function, 474-475
strlen function, 475-476
strlwr function, 476
strncat function, 476-477
strncmp function, 477-478
strncpy function, 478-479
strnset function, 479-480
strpbrk function, 480
strrchr function, 480-481
strrev function, 481-482
strset function, 482
strspn function, 482-483

strstr function, 483-484
strod function, 719-720
strtok function, 484-485
strtol function, 721-722
Stroustrup, Bjarne, 727-728
strupr function, 485-486
Structure pointers, 185-190

accessing, 186-190
declaring, 186

Structured programming, 729
Structures, 173-177

arrays of, 177
declaration, 173-17 4
elements of, 174
passing to functions, 183-184
pointers, 185-190
referencing, 176-177
relationship to classes of, 761-762
structures within, 190-191

strxfrm function, 486
System function, 699, 722-723
System menu, C++, 907-908
Systems program, definition of, 10,

(list, 10)
swab function, 722
Switch conditional statement, 69-73, 83-84

default, 69-70
nested, 73

T

tan runction, 506
Tangents, 506-507
tanh function, 506-507
TCINST installation program, 329-334

compile, 330
debug,331
editor commands, 331-332,

(illus., 331)
options, 330
quit and save, 334
resizing windows, 333
screen mode, 332
setting colors, 332, (illus., 333)

tell function, 441-442
Temporary files, opening, 442

Text
copying blocks of, C, 338, (table, 345)
copying blocks of, C++, 924-926
deleting blocks of, C, 338, (table, 345)
deleting blocks of, C++, 924-926
get function for, 636-637
get function for settings for, 637-638
moving, C, 338, (table, 345)
moving, C++, 924-926
moving blocks to and from disk files,

c, 342
moving blocks to and from disk files,

C++, 933
Text attribute control, 288-292

blinking, 289-290
color, 289, 681-682
color macro names and integer

equivalents for, (table, 291)
functions, (table, 289)
intensity, 288
setting background, 289-290, 680-681
video modes, (table, 291)

Text output in graphics mode, 306-308
Text screen status functions, 292-293
Text stream, definition of, 205
textattr function, 679-680
textbackground function, 680-681
textcolor function, 681-682
textheight function, 682-683
textmodel function, 683-684
textwidth function, 684-685
this (keyword), 789-791
Time

calculating elapsed since Jan. 1,
1970, 532

determining Greenwich Mean, 540-
541, 547-548, 558

determining local, 540-541, 547-548,
558-559

Time functions, 509-560
TLIB (Turbo C Librarian), 997-999

advantages, 998
creating, 999
operating, 998

Index 1015

TLINK, 365-368
initialization module names, 366
library names, 366
options, 367-368, (table, 367)

tmpfile function, 442
tmpname function, 443
tolower function, 486-487
toupper function, 487
Type conversion, 34-36
Type modifiers, 19-20
typedef function, 200-201
tzset function, 559-560

u
ultoa function, 705-706
Unbuffered file system, definition of, 203
#Undef directive, 255-256
Unformatted text, 203
ungetc function, 443-444
Unions, 194-196

anonymous, 763-764
relationship to class, 763-764
type, 194

unixtodos function, 560
UNIX, converting to DOS, 560
unlink function, 241, 444-445
unlock function, 445-446

v
va arg function, 723-724
va end function, 723-724
va start function, 723-724
Value, changing variable in

debugger C, 973
Variables, 21-27

in C++, 785-786
declaring, 21-22
formal parameters of, 24-25
global, 25-27
initializations of, 36-37
inspection of, 961
local, 22-24

1016 Turbo CIC++: The Complete Reference

Variables, continued
modification, 960-961
watching in debugger, 954-955,

966-967
Vectors

get function, 539-540
setting, 556

Verify, 556-557
get function, 540

Verify flag, DOS, 540, 557
VGA codes, Oisted, 634)
Video mode control functions, 296-302

drivers, (table, 298)
macros, 297
palettes and colors, 297-302,

(table, 299, 300)
Video modes, 279-281

IBM microcomputer, (table, 280)
Video page, 310-311
Vie'Wports,296, 601
Virtual base classes, 877-881
Virtual functions, 818-826

definition of, 827
pure, 826-828

vprintf function, 446-447
VROOMM overlay system, 948-949
vscanf function, 448-449

w
Warn directive, 259
wherex function, 685
White-space characters, 430
window function, 239-241
Windows, 281-284, 601

default, 281
input and output functions, 282-284,

(table, 282)
multiple, 287-288

Windows, C++, 912-914, 917-919
cascade, (illus., 913)
editor, 919
message, 919
pull-down menu for, (illus., 912)
sizing and moving, 918-919
tiled, (illus., 914)

Write buffers, flushing, 383
write function, 239-241, 449-450

The manuscript for this book was prepared and submitted
to Osborne/McGraw-Hill in electronic form. The

acquisitions editor for this project was Jeff Pepper, the
associate editor for this project was Emily Rader, the

technical reviewers were Robert Goosey, Grant Larkin,
and Eric Nagler, and the project editor was

Madhu Prasher.

Text design by Judy Wohlfrom and Lynda Higham, using
Century Expanded for text body

and Eras Demi for display.

Cover art by Bay Graphics Design, Inc. Color separation
and cover supplier, Phoenix Color Corporation. Screens

produced with InSet, from InSet Systems, Inc. Book
printed and bound by R.R. Donnelley & Sons Company,

Crawfordsville, Indiana.

ISBN 0-07-881729-3

'II 5 2 9 9 5

9 780078 817298

