Covers Tu}ba Ce¢
& Turbio C® ++

COMPLETE Rererence SUA‘L,

BORLAND-OSBORNE/McGRAW-HILL
PROGRAMMING SERIES

"*’(

e
—
o
-
e
\
e
+
+

| —the——] | HERBERT
* COMPLETE SCHILDT

) REFERENCE

SCHILDT
535

Turbo C®/C++:
The Complete Reference

Turbo C®/C++:
The Complete Reference

Herbert Schildt

Osborne McGraw-Hill

Berkeley New York St.Louis San Francisco
Auckland Bogotd Hamburg London Madrid
Mexico City Milan Montreal New Delhi Panama City
Paris S3o Paulo Singapore Sydney
Tokyo Toronto

Osborne McGraw-Hill
2600 Tenth Street
Berkeley, California 94710
U.S.A.

Osborne McGraw-Hill offers software for sale. For information on
software, translations, or book distributors outside of the U.S.A., please
write to Osborne McGraw-Hill at the above address.

Quite a few Turbo C and Turbo C++ structure definitions have been
presented and discussed in this book. The definitions originate in the
Turbo C and Turbo C++ manuals and disk files. These structure defini-
tions are used with permission from Borland International, Inc., devel-
oper of Turbo C and Turbo C++.

TURBO C®/C++: THE COMPLETE REFERENCE

Copyright © 1990 by McGraw-Hill, Inc. All rights reserved. Printed in
the United States of America. Except as permitted under the Copyright
Act of 1976, no part of this publication may be reproduced or distributed
in any form or by any means, or stored in a database or retrieval
system, without the prior written permission of the publisher, with the
exception that the program listings may be entered, stored, and exe-
cuted in a computer system, but they may not be reproduced for publi-
cation.

234567890 DOC 99876543210

ISBN 0-07-881535-5

Information has been obtained by Osborne McGraw-Hill from sources believed to be reliable. However, because of the
possibility of human or mechanical error by our sources, Osborne McGraw-Hill, or others, Osborne McGraw-Hill does not
guarantee the 'y, adequacy, or complet of any information and is not responsible for any errors or omissions or the
results obtained from use of such information.

PART ONE

ONE

THREE

FOUR

FIVE

SIX

SEVEN

EIGHT

NINE

TEN

ELEVEN

PART TWO

TWELVE

Introduction
Why This Book Is for You

.................

The C Language

....................

An Overview of C

ooooooooooooooooooo

Variables, Constants, Operators, and
Expressions

ooooooooooooooooooooooooo

oooooooo

Program Control Statements

Functions

ooooooooooooooooooooooooooo
oooooooooooooooooooooooooooooo

oooooooooooooooooooooooooooo

Structures, Unions, and User-Defined
Variables

ooooooooooooooooooooooooooo

Input, Output, and Disk Files

The Turbo C Preprocessor

ooooooooooo

Turbo C’s Memory Models

Turbo C’s Screen and Graphics
Functions

ooooooooooooooooooooooooooo

The Turbo C Environment

The Turbo C Integrated
Programming Environment

ooooooooo

[u—y
-3

61

Z

MAZ>r0 > —> u-Zm-H2

on

THIRTEEN

FOURTEEN

PART THREE

FIFTEEN

SIXTEEN

SEVENTEEN

EIGHTEEN

NINETEEN

TWENTY

TWENTY-ONE

TWENTY-TWO

TWENTY-THREE

TWENTY-FOUR

PART FOUR

The Turbo C Text Editor

oooooooooooo

Compiler and Linker Options

The Turbo C Library

oooooooooooooooo

Linking, Libraries, and
Header Files

oooooooooooooooooooooooo

I/O Functions

ooooooooooooooooooooooo

String, Memory, and Character
Functions

ooooooooooooooooooooooooooo

Mathematical Functions

oooooooooooo

Time-, Date-, and System-Related
Functions

Dynamic Allocation

Directory Functions

Process Control Functions

oooooooooo

Text Screen and Graphics
Functions

ooooooooooooooooooooooooooo

Miscellaneous Functions

oooooooooooo

Turbo C++

oooooooooooooooooooooooooo

TWENTY-FIVE

TWENTY-SIX

TWENTY-SEVEN

TWENTY-EIGHT

TWENTY-NINE

THIRTY

PART FIVE

THIRTY-ONE

THIRTY-TWO

THIRTY-THREE

APPENDIX A

APPENDIX B

APPENDIX C

An Overview of C++ccoivun...

A Closer Look at Classes and
Objects ...ovviiiiiiiiii i

Function and Operator
Overloading

Inheritance, Virtual Functions, and
Polymorphism

Using C++'s I/0 Class Library
Miscellaneous C++ Topics
The Turbo C++ Environment

The Turbo C++ Integrated
Development Environment

Using the Turbo C++ Editor

Using the Command-Line Compiler,
VROOMM, and Multiple-File
Projectsccoiiiiiiiiiiiiiinn..

Using Turbo C++’s Debugger
Using Turbo C’s Debugger

Interfacing to Assembly Language
Routinescccoiiiiina..

APPENDIX D

Multiple-File Programs and Libraries
Using TurboC

PART ONE

ONE

The C Language

An Overviewof C
The Origins of the C Language ...
A Middle-Level Language
A Structured Language
A Programmer’s Language
Compilers Versus Interpreters ...
The Form of a C Program

The Library and Linking

Separate Compilation

Turbo C's Memory Map
A Review of Terms

..........

..........

..........

..........

..........

..........

..........

Variables, Constants, Operators, and

Expressions
Identifier Names
DataTypescevveveeen...
Type Modifiers
Access Modifiers
Declaration of Variables
Local Variables
Formal Parameters
Global Variables
Storage Class Specifiers
extern 0.,
static Variables
static Local Variables
static Global Variables
Register Variables
Assignment Statements
Type Conversion in Assignments
Variable Initializations
Constants
Backslash Character Constants
Operators
Arithmetic Operators
Increment and Decrement ...
Relational and Logical Operators
Bitwise Operators
The ? Operator

..........

..........

..........

..........

..........

..........

..........

..........

..........

..........

........

..........

..........

..........

..........

..........

..........

........

..........

..........

17
17
18
19
20
21
22
24
25
27
28
29
29
31
33
34
34
36
37
37
38
39
40
41
44
48

nw-H2M-A20N MO0 mMro>»-

THREE

FOUR

The & and * Pointer Operators .
The sizeof Compile-Time Operator
The Comma Operator
The . and —>Operators
[Jand ()ccvvvvnvnnnn..
Precedence Summary
Expressions 0.,
Type Conversion in Expressions
Castscoiviiiniinnn,
Spacing and Parentheses
C Shorthand

Program Control Statements
True and FalseinC
C Statements
Conditional Statements
1
Nestedifs
The if-else-if Ladder
The ? Alternative
switch
Nested switch Statements
Loops «..vviiiiiiiiiiiiiiii,

for Loop Variations
The Infinite Loop
for Loops with No Bodies
while it

exit() ...
continue,
Labelsand goto

Functions
The return Statement
Returning from a Function
Return Values
Returning Values from main() .

.......

.........

.........

ooooooooo

.........

.........

ooooooooo

ooooooooo

.........

.........

.........

.........

.........

ooooooooo

.........

ooooooooo

ooooooooo

.........

.........

ooooooooo

ooooooooo

.........

ooooooooo

.........

49
51
52
53
b4
54
54
55
56
57
58

61
61
62
62
62
64
65
66
69
73
73
73
75
78
79
80
82
83
85
86
87

91
91
91
93
95

FIVE

SIX

Scope Rules of Functions
Function Arguments
Call by Value, Call by Reference ...
Creating a Call by Reference
Calling Functions with Arrays
Arguments tomain()
Functions Returning Noninteger Values
Using Function Prototypes
Standard Library Function Prototypes
Prototyping Functions that Have No
Parameters
Returning Pointers
Classic Versus Modern Parameter
Declarations
Recursionco0ovunn
Pointers to Functions
Implementation Issues
Parameters and General-Purpose
Functions
Efficiencyc0iiiinn.

Arrays ...,
Single-Dimension Arrays

......

......

......

......

......

......

......

......

Passing Single-Dimension Arrays to Functions

Strings i,
Two-Dimensional Arrays
Arrays of Strings
Multidimensional Arrays
Arrays and Pointers
Allocated Arrays
Array Initialization
Unsized-Array Initializations
A Tic-Tac-Toe Example

Pointerscciiint.
Pointers Are Addresses
Pointer Variables
The Pointer Operators
Pointer Expressions

......

oooooo

oooooo

oooooo

......

95
96
96
97
99
103
108
110
113

113
115

117
118
120
123

123
123

125
127
128
130
134
136
137
139
143
144
146

150
150
151
153

SEVEN

EIGHT

Pointer Assignments
Pointer Arithmetic
Pointer Comparisons
Turbo C’s Dynamic Allocation Funections
Pointers and Arrays 0.
Pointers to Character Arrays
Arrays of Pointers
Pointers to Pointers
Initializing Pointers
Pointers to Functions
Problems with Pointers

Structures, Unions, and User-Defined
VariablesoiiianL
Structuresciiiiiiiiiiiiii.
Referencing Structure Elements
Arrays of Structures
An Inventory Example
Passing Structures to Functions
Passing Structure Elements to Functions
Passing Entire Structures to Functions .
Structure Pointers
Declaring a Structure Pointer
Accessing Structure Pointers
Arrays and Structures Within Structures
Bitfieldscciiiiiiiiiiiiiiia.,
Unionsiiniiiiiiiiiiii ittt
Enumerations i,
Using sizeof to Ensure Portability
typedef

Input, Output, and Disk Files
Streams and Files
Streams i it
Text Streamsccoiiiieinnnnn.
Binary Streams 0000,
Files ..ottt
The ANSI C I/O System:
Conceptual vs. Actual

153
154
155
157
159
160
162
163
165
166
169

173
176
177
177
183
183
184
185
186
186
190
191
194
196
199
200

204
204
205
205
205

207

NINE

ConsoleI/O .. iiii ittt et e

getche() and putchar()
gets()andputs()

Formatted Console I/O

printf()
SCANf() o et e

The ANSIC FileSystem

The File Pointerccovviviunn...

gete() o i e e
felose() voviiiiii i i i
ferror() andrewind()
Using fopen(), gete(), pute(), and fclose() .
getw()andputw()
fgets() and fputs()
fread() and fwrite()
fseek() and Random AcecessI/O
The Standard Streams
fprintf() and fscanf()
Erasing Files,

The UNIX-Like File Routines

open(), creat(), and close()
write() andread(),
unlink() ...v vttt e e e e
Random Access Files and Iseek()

Choosing an Approach

The Turbo C Preprocessor
The Turbo C Preprocessor
#define il
FEITOT ittt itiiieenenenenennnennas
#include i,
Conditional Compilation Directives

#if, #else, #elif, and #endif
#ifdef and #ifndef

Fundef ... e e
FhNe . e

FPragma ...ttt
Predefined Macro Names covvvunnn

207
208
210
211
212
214
219
220
220
222
223
224
224
225
227
227
228
229
233
233
235
236
237
239
241
241
243

TEN

ELEVEN

Turbo C’'s Memory Models
The 8086 Family of Processors
Address Calculation
Near Versus Far Pointers P
Memory Models ccoviiieinnnn..

Tiny Modelccoiiiiiinennnnn
Small Modelcciciinnn.
Medium Model
Compact Modelot
Large Modelccvivnt
Huge Modelcciieinin...
Selecting a Model
The Memory Model Compiler Options

Overriding a Memory Model

.21 o

huge ..ot

Turbo C's Segment Specifiers
A Memory Display and Change Program

The display _mem() Function

The change_mem() Function

The Entire Memory Display and Change
Program i,

Turbo C’s Screen and Graphics

Functionsccoviiaaet.
The PC Video Adapters and

Modes of Operation
The Text Screen Funetions

Windowsciiiiiiiiiiiinn.,
Basic Input and Output
The Screen Manipulation Functions
Text Attribute Control
The Text Screen Status Functions
The directvideo Variable
A Short Demonstration Program

Turbo C's Graphics Functions

Viewportscooiiiiiiiiiinin...
Video Mode Control Functions

263
264
267
267
268
268
268
268
269
269
269
270
27
271
272
273
273
274
274
275

275

PART TWO

TWELVE

THIRTEEN

The Basic Graphing Functions
Text Output in Graphics Mode
Graphics Mode Status
The Graphics Screen
Manipulation Funections ...

The Turbo C Environment

The Turbo C Integrated
Programming Environment
Executing TurboC
The Main Menu
Fileco...

Break/watch
The Edit and Message Windows .
The Hot Keys

Helpccivviiinine,

Switching Windows and Zoom

Make

The ALTX Key Combination ..
The TCINST Program

Compile

Project

Options

Debug

Editor Commands

Screen Mode

Set Colors

Resize Windows

Quit/save

The Turbo C Text Editor

Editor Commands

..........

..........

ooooooooooo

...........

oooooooooo

oooooooo

ooooooooooo

ooooooooooo

...........

...........

...........

...........

ooooooooooo

...........

...........

...........

ooooooooooo

ooooooooooo

...........

...........

302
306
308

309

FOURTEEN

9Invoking the Editor and Entering Text
Deleting Characters, Words, and Lines

Moving, Copying, and Deleting Blocks of Text

More on Cursor Movement
Find and Find with Replace
Setting and Finding Place Markers
Saving and Loading Your File
Understanding Autoindentation

Moving Blocks of Text to and from Disk Files

Pair Matching
Miscellaneous Commands
Invoking Turbo C with a File Name
Command Summary000eennn.

Compiler and Linker Options

Integrated Development Environment Options

Compiler Options covviivnenn..
Modelcviiiiiiiiiiiiiiiinn..
Definescciiiiiiiiiiiiiiiiinnn
Code Generationccvvuen...
Optimization
0101 o< Y

Linker Options cccvviieiiinnnn..
MapFileccciiiiiiiiiin..
Injtialize Segments
Default Libraries

Graphies Libraryc.ovnn.
Warn Duplicate Symbols
Stack Warning.ccviiinn..
Case-Sensitive Link

Environment Options
The Directories Option
Argumentscci it
Saving and Loading Options

The TCCONFIG.TC File
Using Other Configuration Files

The Command-Line Version of TurboC

337
338
338
339
340
340
341
342
342
343
344
344

347
348
348
348
349
351
351
353
353
355
355
356
356
356
356
356
357
357
358
359
359
359
360
360

PART THREE

FIFTEEN

SIXTEEN

Compiling with the
Command-Line Compiler
What's in a File Name?
TLINK: The Turbo C Standalone Linker
Linking Turbo C Programs
TLINK Options ccvvvvneenn...

The Turbo C Library

Linking, Libraries, and

Header Files

The Linkercciiiiiiiiinennnn.

The C Standard Library
Library Files Versus Object Files

Header Filescciiiiiinnnnnn.
Macros in Header Files

I/O Functionscooveee.
The I/O Funetions ccvvivvnvnnn.
int access(const char *filename, int mode)

int _chmod(const char *filename,

int get _set,int attrib)
int chmod(const char *filename, int mode)
int chsize(char handle, long size)
void clearerr(FILE #stream)
int close(int fd)
int _close(intfd)
int creat(const char *filename, int pmode)
int _ creat(const char *filename, int attrib)
int creatnew(const char *filename, int attrib)
int creattemp(const char *filename,

intattrib) i,
int dup(int handle)
int dup2(int old __handle, int new _handle)
inteofintfd)
int fclose(FILE *stream)
int feloseall(void)

360
364
365
366
367

384

385
386

387

FILE *fdopen(int handle, char *mode)

int feof FILE *stream)
int ferror(FILE *stream)
int fllush(FILE *stream);
int fgete(FILE #stream);
int fgetchar(void)t

int *fgetpos(FILE *stream, fpos_t *pos)
char *fgets(char *str, int num,

FILE *stream)cccieunnnn..
long filelength(int handle)
int fileno(FILE *stream)
int flushall(void);cceoeo....

FILE *fopen(const char *fname,

const char *mode)

int fprintf(FILE *stream,

const char *format, arg-list)
int fpute(int ch, FILE *stream)
int fputchar@intch)

int fputs(const char *str, FILE *stream)
size _t fread(void *buf, size __t size,

size_t count, FILE *stream)

FILE *freopen(const char *fname,

const char *mode, FILE *stream)
int fscanf(FILE #stream, const char *format,
arglist) ... i

int fseek(FILE #*stream, long offset,

intorigin) i,

int fsetpos(FILE #*stream,

const fpos_t*pos)

int fstat(int handle, struct stat *statbuf)

long ftell(FILE *stream)

size __t fwrite(const void *buf, size _t size,

size_t count, FILE *stream)
int gete(FILE *stream)

int getch(void)

int getche(void)
int getchar(void)
char *gets(char *str)
int getw(FILE *stream)
int isatty(int handle)

388
389
390
390
391
392
393

394
395
395
396

397

399
399
400
401

402
403
404
405
406
407
408

409
410

411
412
412
414
414

int lock(int handle, long offset,

long length) 415
long lseek(int handle, long offset,

intorigin)0 ... 416
int open(const char *filename, int access,

unsigned mode) 417
int_open(const char *filename, int access) . 417
void perror(const char *str) 420
int printf(const char *format, arg-list) 420
int pute(int ch, FILE #stream) 423
int putchar(@nteh) 424
int puts(const char *str) 425
int putw(int i, FILE *stream) 425
int read(int fd, void *buf, unsigned count) .. 426
int _read(int fd, void *buf,

unsigned count) 426
int remove(const char *fname) 427
int rename(const char *oldfname,

const char *newfname); 428
void rewind(FILE *stream) 429
int scanf(const char *format, arg-list) 429
void setbuf(FILE *stream, char *buf) 434
int setmode(int handle, int mode) 435
int setvbuf(FILE *stream, char *buf,

int mode, size __tsize) 436
int sopen(const char *filename, int access,

int shflag, int mode) 436
int sprintf(char *buf, const char *format,

arg-list) ... 439
int sscanf(char *buf, const char *format,

arglist) i i, 439
int stat(char *filename,

struct stat *statbuf) 440
long tellint fd) 441
FILE *tmpfile(void) 442
char *tmpnam(char *name) 443
int ungete(int ch, FILE *stream) 443
int unlink(const char *fname) 444

int unlock(int handle, long offset,
longlength) 445

int vprintf(const char *format,

va_listarg_ptr), 446
int viprintf(FILE *stream, const char *format,

va_listarg_ptr), 446
int vsprintf(char *buf, const char *format,

va_listarg_ptr), 446
int vscanf(const char *format,

va_listarg_ptr), 448
int vfscanf(FILE #*stream,

const char *format, va_list arg__ptr) ... 448
int vsscanf(const char *buf,

const char *format, va_list arg_ptr) ... 448
int write(int handle, void *buf, int count) .. 449
int _write(int handle, void *buf, int count) . 449

SEVENTEEN String, Memory, and Character

Functionscvvae.. 451
int isalnum@ntch) 452
int isalpha(intch) 452
int isasciiintch) 453
intisentrlintch), 454
int isdigit@intch) 455
int isgraph@intch), 455
int islower(intch) 456
intisprint(intch) 457
int ispunct(intch), 458
int isspace(intch) 458
int isupper(ch)c i, 459
int isxdigit@intch) L L., 460
void *memcepy(void *dest, const void *source,

int ch, size_tecount); 461
void *memchr(const void *buffer, int ch,

size_tecount) 461
int mememp(const void *bufl,

const void *buf2, size_t count) 462

int memicmp(const void *bufl,
const void *buf2, size__t count) 462

void *memcpy(void *dest, const void *source,

size_tcount) 463
void *memmove(void *dest,

const void *source, size__t count) 464
void *memset(void *buf, int ch,

size_tecount) 465

void movedata(unsigned sourceseg,
unsigned sourceoff, unsigned destseg,

unsigned destoff, size_t count) 466
void movemem(void *source, void *dest,

unsigned count) 466
void setmem(void *buf,

unsigned count, charch) 467
char *stpepy(char *strl, const char *str2) ... 467
char *streat(char *strl, const char *str2) ... 468
char *strehr(const char *str,intch) 469
int stremp(const char *strl,

const char *str2), 470
int streoll(char *strl, char *str2) 471
char *strepy(char *strl, const char *str2) .. 471
size _t strespn(const char *strl,

const char *str2) 471
char *strdup(const char *str) 472
char * _strerror(const char *str) 473
char *strerror@int num) 474
int striecmp(const char *strl,

const char *str2) 474
int strempi(const char *strl,

const char *str2) 474
size __t strlen(const char *str) 475
char *strlwr(char #str) 476
char *strncat(char *strl, const char *str2,

size_tcount), 476
int strnemp(const char *strl,

const char *str2, size_tcount) 477
int strniecmp(const char *strl,

const char *str2, size_tcount) 477

int strnempi(const char *strl,
const char *str2, size_tecount) 477

char *strncpy(char *dest, const char *source,

gsize_tecount)0 0.... 478
char *strnset(char *str, int ch,

size_teount);c0iiiiiinn. 479
char *strpbrk(const char *strl,

const char *str2)ccvvunn.. 480
char *strrchr(const char #str,intch) 480
char *strrev(char #str) 481
char *strset(char *str,intch) 482
size _t strspn(const char *strl,

const char *str2) 482
char *strstr(const char *strl,

const char #str2) 483
char *strtok(char *strl, const char *str2) .. 484
char *strupr(char *str) 485
size __t strxfrm(char *dest,

const char *source, size_t count) 486
int tolower(int ch)
int _tolower(intch) 486
int toupper(int ch)
int _toupper(intch) 487

EIGHTEEN Mathematical Functions 489

double acos(double arg) 489
double asin(double arg) 490
double atan(double arg) 491
double atan2(double y, doublex) 492
double cabs(struct complex znum) 492
double ceil(doublenum) 493
double cos(double arg) 494
double cosh(double arg) 494
double exp(double arg) 495
double fabs(double num) 495
double floor(double num) 496
double fmod(double x, doubley) 496
double frexp(double num, int *exp) 497
double hypot(double x, doubley) 497
double ldexp(double num, int exp) 498

double log(double num) 498

double logl0(double num) 499

int matherr(struct exception *err) 500
double modf(double num, int *i) 501
double poly(double x, int n, double ¢[]) 502
double pow(double base, double exp) 502
double powlO(intn) 503
double sin(double arg) 504
double sinh(double arg) 505
double sqrt(double num) 505
double tan(double arg) 506
double tanh(double arg) 506

NINETEEN Time-, Date-, and System-Related

Functionsoooal. 509
int absread(int drive, int numsects,

int sectnum, void *buf) 511
int abswrite(int drive, int numsects,

int sectnum, void *buf) 511

char *asctime(const struct tm *ptr) 512

int bdos(int fnum, unsigned dx, unsigned al)
int bdosptr(int fnum, void *dsdx,

unsignedal), 513
int bioscom(int emd, char byte, int port) .. 514
int biosdisk(int emd, int drive, int head,

int track, int sector, int nsects,

void *buf) i . 517
int biosequip(void) 517
int bioskey(int emd) 519
int biosmemory(void) 521
int biosprint(int cmd, int byte, int port) ... 521
long biostime(int ecmd, long newtime) 522
clock__telock(void)cccvu... 523
struct country *country(int countrycode,

struct country *countryptr) 524
char *ctime(const time__t *time) 525
void ctrlbrk(int (*fptr)(void)) 526
void delay(unsigned time) 527

double difftime(time __t time2,
time__ttimel) 528

void disable(void)citiiiiin... 529

int dosexterr(struct DOSERROR *err) ... 529
long dostounix(struct date *d,

structtime #t)o i L 530
void enable(void), 531
unsigned FP_OFF(void far *ptr) 531
unsigned FP_SEG(void far #ptr) 531
void ftime(struct timeb *time) 532
void geninterrupt(intintr) 533
int getcbrk(void) i 533
void getdate(struct date *d) 534
void gettime(struct time #t) 534
void getdfree(unsigned char drive,

struct dfree *dfptr) 535
char far *getdta(void) 536
void getfat(unsigned char drive,

struct fatinfo *fptr) 537
void getfatd(struct fatinfo *fptr) 537
int getftime(int handle,

struct ftime *ftptr) 538
unsigned getpsp(void), 539
void interrupt(*getvect(int intr))() 539
int getverify(void) 540
struct tm *gmtime(const time_t *time) ... 540
void harderr(int (*int_handler)()) 541
void hardresume(int code) 541
void hardretn(int code) 541
int inport(int port) 543
unsigned char inportb(int port) 543

int int86(int int __num,

union REGS #*in _regs,

union REGS *out_regs) 543
int int86x(int int _ num,

union REGS #*in _regs,

union REGS *out _regs,

struct SREGS *segregs) 543
int intdos(union REGS *in__regs,

union REGS *out_regs) 544

int intdosx(union REGS #*in__regs,
union REGS *out _regs,

struct SREGS *segregs) 544
void intr(int intr _num,

struct REGPACK *reg) 545
void keep(unsigned char status,

unsigned size)00 ... 546
struet tm *localtime(const time _t *time) .. 547
time _t mktime(struct tm *p) 548
void far *MK _ FP(unsigned seg,

unsigned off)ot 549
void outport(int port, int word) 549
void outportb(int port,

unsigned char byte) 549
char #parsfnm(const char *fname,

struct fcb *febptr, int option) 550
int peek(unsigned seg, unsigned offset) 551
char peekb(unsigned seg, unsigned offset) .. 551
void poke(unsigned seg,

unsigned offset, int word) 551
void pokeb(unsigned seg,

unsigned offset, char byte) 551
int randbrd(struct feb *febptr, int count)
int randbwr(struct fcb *fcbptr, int count) .. 552
void segread(struct SREGS *sregs) 553
int setcbrk@ntcecb) 553
void setdate(struct date *d)
void settime(struct time *t) 554
void setdta(char far *dta) 5565
int setftime(int handle, struct ftime =t) 555
void setvect(int intr,

void interrupt(*isr)()) 556
void setverify(int value) 556
void sleep(unsigned time) 557
int stime(time_t *t) 558
time__t time(time_t *time) 559
void tzset(void) v, 559

void unixtodos(long utime, struct date *d,
struct time *t), 560

TWENTY Dynamic Allocation 561
int allocmem(unsigned size,

unsigned *s€g)iiiiiiiiieeann. 562
int brk(void *eds) 563
void *calloc(size _t num, size _t size) 563
unsigned coreleft(void)

/* small data models */ 564
unsigned long coreleft(void)

/*large datamodels */ 564
void far *farcalloc(unsigned long num,

unsigned long size) 565
unsigned long farcoreleft(void) 565
void farfree(void far #ptr) 566
void far *farmalloc(unsigned long size) 567
void far *farrealloc(void far *ptr,

unsigned long newsize) 567
void free(void *ptr), 567
int freemem(unsigned seg) 568
int heapcheck(void) 569
int farheapcheck(void) 569
int heapcheckfree(unsigned fill) 570
int farheapcheckfree(unsigned fill) 570
int heapchecknode(void *ptr) 571
int farheapchecknode(void far *ptr) 571
int heapfillfree(unsigned fill) 572
int farheapfillfree(unsigned fill) 572
int heapwalk(struct heapinfo *hinfo) 573
int farheapwalk(struct farheapinfo *hinfo) .. 573
void *malloc(size _t size) 575
void *realloc(void *ptr, size _t newsize) ... 576
void *sbrk(int amount) 577
int setblock(unsigned seg, unsigned size) .. 578

TWENTY-ONE Directory Functions 579
int chdir(const char *path) 579

int findfirst(const char *name,
struct fiblk *ptr, int attrib) 580

void fnmerge(char *path, const char *drive,
const char *dir, const char *fname,

constchar *ext) 581
int fnsplit(const char *path, char *drive,

char *dir, char *fname, char *ext) 581
int geteurdir(int drive, char *dir) 583
char *getewd(char *dir, intlen) 584
int getdisk(void), 585
int mkdir(const char #path) 586
char smktemp(char «fname) 586
int rmdir(const char *path) bR7
char *searchpath(const char *fname) 588
int setdisk(@nt drive) 589

TWENTY-TWO Process Control Functions 591

void abort(void), 591
int atexit(void (*fune)()) 592
int execl(char *fname, char *argo, ...,

char *argN, NULL) 593
int execle(char *fname, char *argo, ...,

char *argN, NULL, char #envp[]) 593
int execlp(char *fname, char *argo, ...,

char #*argN, NULL) 593
int execlpe(char *fname, char *argo, ...,

char *argN, NULL, char *envp[]) 593
int execv(char *fname, char *arg[]) 593
int execve(char *fname, char *argl[1,

char *envp[]), 593
int execvp(char *fname, char *arg[]) 593
int execvpe(char *fname, char *arg|],

char *envp[D)ccoiiiiina.. 593
void exit(int status) 595
void _exit(int status) 595
int spawnl(int mode, char *fname,

char *arg0, ..., char *argN, NULL) 596

int spawnle(int mode, char *fname,
char *arg0, ..., char *argN, NULL,
char *envp[])ciiiiiiiiinnn. 596

int spawnlp(int mode, char *fname,

char *argQ, ..., char *argN, NULL) 596
int spawnlpe(int mode, char *fname,

char *arg, ..., char *argN, NULL,

char *envp[])ccoiiiiiiinn. 596
int spawnv(int mode, char *fname,

char *arg[]) it 596
int spawnve(int mode, char *fname,

char *arg[], char *envp[]) 596
int spawnvp(int mode, char *fname,

char *¥arg{])o, 596
int spawnvpe(int mode, char *fname,

char *arg[], char *envp[]) 596

TWENTY-THREE Text Screen and

Graphics Functions 601

void far arc(int x, int y, int start, int end,

intradius)vviiiiiiiiiiiiienn. 602
void far bar(int left, int top, int right,

int bottom)
void far bar3d(int left, int top, int right,

int bottom, int depth, int topflag) 603
void far circle(int x, int y, int radius) 604
void far cleardevice(void)
void far clearviewport(void) 604
void far closegraph(void) 606
void clreol(void)cciiiiiiiiiennn 606
void clrser(void) ... v vt 606
int cprintf(const char *fmt,..) 607
int cputs(const char *str) 608
int ecscanf(char *fmt, ...) 609
void delline(void) 610
void far detectgraph(int far *driver,

intfar*mode)c..a.. 611
void far drawpoly(int numpoints,

int far *points) 0oL, 612

void far ellipse(int x, int y, int start, int end,
int xradius, int yradius) 612

void far fillellipse(int x, int y,

intxr,intyr), 613
void far fillpoly(int numpoints,

int far #points) 614
void far floodfill(int x, int y, int border) 615
void far getarccoords(struct arccoordstype

far *coords) i, 616
void far getaspectratio(int far *xasp,

int far *yasp) i, 617
int far getbkeolor(void) 618
int far geteolor(void) 619
struct palettetype *far

getdefaultpalette(void) 619
char *far getdrivername(void) 620
void far getfillpattern(char far *pattern) .. 621
void far getfillsettings(struct fillsettingstype

far*sinfo) o il 622
int far getgraphmode(void) 623
void far getimage(int left, int top, int right,

int bottom, void far *buf) 625
void far getlinesettings(struct

linesettingstype far *info) 627
int far getmaxcolor(void) 628
int far getmaxmode(void) 629
int far getmaxx(void) 629
int far getmaxy(void) 629
char *far getmodename(int mode) 630
void far getmoderange(int driver, int far

*lowmode, int far *himode) 631
void far getpalette(struct palettetype

far*pal) i i, 632
int far getpalettesize(void) 635
unsigned far getpixel(int x,inty) 636
int gettext(int left, int top, int right,

int bottom, void *buf) 636

void far gettextsettings(struct
textsettingstype far *info) 637

void far getviewsettings(struct viewporttype

far*info) i i,
int far getx(void) il
int far gety(void),
void gotoxy(int x,inty)
void far graphdefaults(void)
char *far grapherrormsg(int errcode)
void far _ graphfreemem(void far *ptr,

unsigned size)0ciiiiiiiieean,
void far *far _ graphgetmem(unsigned

1 1/) RO
int far graphresult(void)
void highvideo(void)
unsigned far imagesize(int left, int top,

int right, int bottom)
void far initgraph(int far *driver,

int far *mode, char far *path)
void insline(void)ci ..
int far installuserdriver(char far

*drivername, int huge (*func)(void))
int far installuserfont(char far *fontname)
void far line(int startx, int starty, int endx,

intendy),
void far lineto(int x,inty);
void far linerel(int deltax, int deltay)
void lowvideo(void)
void far moverel(int deltax, int deltay)
int movetext(int left, int top, int right,

int bottom, int newleft, int newtop)
void far moveto(int x,inty)
void normvideo(void)
void far outtext(char far *str)
void var outtextxy(int x, int y, char *str)
void far pieslice(int x, int y, int start, int end,

intradius)c.vtiiiiiiiiiien..
void far putimage(int x, int y, void var *buf,

Imtop) ...iiiiiiii i e i
void far putpixel(int x, int y, int color)
int puttext(int left, int top, int right,

int bottom void *buf)

638
639
639
640
640
641

642

642
642
643

644

645
647

648
649

649
649
649
650
651

652
652
653
653
653

654

655
657

657

void far rectangle(int left, int top, int right,

int bottom)
int registerbgidriver(void (*driver)(void))
int registerbgifont(void (*font)(void))
void far restorecrtmode(void)
void far sector(int x, int y, int start,

int end,int xr,intyr)
void far setactivepage(int page)
void far setallpalette(struct palettetype far

*pal) L e e
void far setaspectratio(int xaspect,

int yaspeet) i,
void far setbkcolor(int color)
void far setcolor(int color)
void far setfillpattern(char far *pattern,

intcolor)
void far setfillstyle(int pattern, int color)
unsigned far

setgraphbufsize(unsigned size)
void far setgraphmode(int mode)
void far setlinestyle(int style,

unsigned pattern, int width)
void far setpalette(int index, int color)
void far setrgbpalette(int color, int r, int g,

1101) I
void far settextjustify(int horiz, int vert)
void far settextstyle(int font, int direction,

intsize) i i,
setusercharsize(int mulx, int divx, int muly,

intdivy) i,
void far setviewport(int left, int top, int right,

int bottom, int clip)
void far setvisualpage(int page)
void far setwritemode(int wmode)
void textattr(nt attr)
void textbackground(int color)
void textcolor(int color)
int far textheight(char far *str)
void textmode(int mode)
int far textwidth(char far #str)

658
659
659
659

660
661

662

662
663
665

665
666

668
668

669
671

673
673

674

675

676
677
678
679
680
681
682
683
684

int wherex(void) 685

int wherey(void), 685
void window(int left, int top, int right,
int bottom) 685
TWENTY-FOUR Miscellaneous Functions 687
int abs@ntnum), 687
void assertintexp) 688
double atof(const char *str) 689
int atoi(const char *str) 690
int atol(const char #str) 691

void *bsearch(const void *key,
const void *base, size __t num, size__t size,
int (*compare)(const void *,

constvoid *)) 692
unsigned int _clear87(void) 693
unsigned int _ control87(unsigned fpword,

unsigned fpmask) 694
div_t div(int numer, int denom) 694
char *ecvt(double value, int ndigit, int *dec,

int *sign) ... i oiliiiie, 695
void _ _emit__ _(arg,..) 696
char *fcvt(double value, int ndigit, int *dec,

int *sign) ... o i, 696
void __fpreset(void) 697
char *gevt(double value,

int ndigit, char *buf) 697
char *getenv(const char *name) 698
char *getpass(const char *str) 699
unsigned getpid(void) 700
char *itoa(int num, char *str, int radix) ... 700
long labslong num) 701
ldiv__t ldiv(long numer, long denom) 702

void *Ifind(const void *key, const void *base,
size _t *num, size __t size,
int (*compare)(const void *,
constvoid *#)), 702

void *1search(const void *key,

const void *base, size _t *num, size _t size,

int (*compare)(const void *,

constvoid *)) i
void longjmp(jmp _buf envbuf, int val)
char *ltoa(long num, char *str, int radix)
char *ultoa(unsigned long num, char *str,

intradix)iiiiiii e
unsigned long _Irotl(unsigned long 1, int i)
unsigned long _lrotr(unsigned long 1,

intd) ...
MAX(X,Y) o evee e e
14071 ¢10:4%) TP
void nosound(void)
int putenv(const char *evar)
void gsort(void *base, size _t num,

size__t size, int (*compare)(const void *,

constvoid *)),
int raise(int signal),
int rand(void),
int random(int num)
void randomize(void)
unsigned _ rotl(unsigned val, int num)
unsigned _rotr(unsigned val, int num) ...
void _setcursortype(int type)
int setjmp(mp _buf envbuf)
void (*signal (int signal,

void (*sigfune) (int fune)))(int)
void sound(unsigned freq)
void srand(unsigned seed)
unsigned int _status87(void)
double strtod(const char *start,

char **end)c.c 0.
long strtol(const char *start, char *end,

intradix),
unsigned long strtoul(const char *start,

char **end, intradix)

702
704
705

705

706
707
707
708
709

709
711
712

713
713
713
714
715

716
718
718
719
719
721

721

PART FOUR

TWENTY-FIVE

TWENTY-SIX

void swab(char *source, char *dest,

intnum) ... e i i e
int system(const char *str)
void va__start(va_list argptr, last_parm)
void va__end(va_list argptr)
type va_arg(va_list argptr, type)

Turbo C++ vviiiit i iiiieiennnns

An Overview of C++
The Origins of C++ cciiuiiiinnn...
What Is Object-Oriented Programming?

Objects ...vviiiiiiiiiiii it
Polymorphism
Inheritanceiiiina...

Some C++ Fundamentals
Compiling a C++ Program
Introducing C++ Classes
Function Overloading
Operator Overloading
Inheritanceciiiiiiiiienn.
Constructors and Destructors
The C++ Keywordscciunn.

A Closer Look at Classes and
Objects ettt ettt e,

Parameterized Constructors
Friend Funetionsccovivieeeennnn.
Default Function Arguments

Using Default Arguments Correctly

Classes and Structures Are Related
Unions and Classes Are Related
In-Line Functionscciivieennen..

Creating In-Line Functions Inside a Class

More About Inheritance
Multiple Inheritance
Passing Objects to Functions
Arrays of Objectso,
Pointers to Objectst

722
722
723
723
723

TWENTY-SEVEN Function and Operator

Overloading 783
Overloading Constructor Functions 783
Local Variables in C++ 785
Dynamic Initialization 786
Applying Dynamic Initialization to
Constructorscoviiiiinivnnn. 788
The this Keyword 789
Operator Overloading 791
Friend Operator Functions 797
Referencescciiieiiiennnnn.. 801
Nonparameter Reference Variables 804
Using a Reference to
Overload a Unary Operator 806

Another Example of Operator Overloading 809

TWENTY-EIGHT Inheritance, Virtual Functions, and

Polymorphism 815
Pointers to Derived Types 815
Virtual Functions 818
Why Virtual Functions? 822
Pure Virtual Functions and Abstract Types ... 826
Early Versus Late Binding 829
Constructors and Destructors in
Derived Classescivviiinnnennnnn 829
Multiple Base Classesccvvvvnn.. 832
TWENTY-NINE Using C++’s I/O Class Library 835
Why C++ Has Its Own I/O System 835
Ci+ Streams cvitiiiiiiiiiiiien. 836
The C++ Predefined Streams 837
The C++ Stream Classes 837
Creating Your Own Insertors and Extractors .. 837
Creating Insertors 838
Overloading Extractors 841
Formatting I/O 843
Formatting Using the ios

Member Funetionsccvcvun.. 843

THIRTY

PART FIVE

THIRTY-ONE

Using Manipulators
Creating Your Own Manipulator Functions
Creating Parameterless Manipulators
Creating Parameterized Manipulators
FileI/Ociiiiiiiiiiiian..
Opening and Closing a File
Reading and Writing Text Files ...
BinaryI/Occovnen.
Detecting EOF
Random Access
A Short Note About the Old Stream Class
Librarycciiiiiiiiinnnn..

Miscellaneous C++ Topics
Dynamic Allocation Using new and delete
Overloading new and delete
static Class Members
virtual Base Classes
Using the asm Keyword
Linkage Specification
The .* and —>* Operators
Creating Conversion Functions
Granting Accessciiiiiinn.
The overload Anachronism
Differences Between C and C++
Turbo C++'s Complex and BCD Classes
The Message-Based Philosophy
Final Thoughts

The Turbo C++ Environment .

The Turbo C++ Integrated

Development Environment ...
Executing the Turbo C++ IDE
Using the Mouse
The Main Menu

Dialog Boxescccvvnunnn

......

......

oooooo

......

......

......

......

......

oooooo

oooooo

......

oooooo

oooooo

847
849
849
851
854
855
857
859
861
862

864

865
870
874
877
881
882
883
885
887
888
889
890
894
897

Turning On Full Menus 906

Exploring the Main Menu 907
The System Menu 907
File 908
Editciiiiiiiiiii i 909
Search, 909
Run 909
Compilecciiiiiiiiiiiinnnn. 910
Debugiiiiiiii i 910
Project i 910
Options o, 911
Window i, 912
Help ...l 914

The HotKeyscciiiiiiiiiiint. 915

Using Turbo C++'s Context-Sensitive Help 915

Understanding Windows 917
Sizing and Moving Windows 918
The Editor Window 919
The Message Window 919
The Status Line 919

THIRTY-TWO Using the Turbo C++ Editor 921

Editor Commands 921

Invoking the Editor and Entering Text 922

Deleting Characters, Words, and Lines 923

Moving, Copying, and Deleting Blocks of Text . 924

Using the Clipboard 927

More on Cursor Movement 928

Find and Replace 929

Setting and Finding Place Markers 931

Saving and Loading Your File 932

Understanding Autoindentation 932

Moving Blocks of Text to and from Disk Files . 933

Pair Matching, 933

Miscellaneous Commands 934

Changing the Editor Defaults 935

Invoking Turbo C++ with a File Name 936

Command Summarycoveuennn.. 936

THIRTY-THREE Using the Command-Line Compiler,
VROOMM, and Multiple-File

Projects i, 939
Compiling Using the Command-Line Compiler ... 939
Using a Response File 943
Compiling Multiple-File Programs Using
theIDE0ttt 945
Projects and the Project Option 946
Using the VROOMM Overlay System 948
APPENDIX A Using Turbo C++’s Debugger 951
Preparing Your Programs for Debugging 951
What Is a Source-Level Debugger? 951
Debugger Basiesccciiiiiiiiinn 952
Single-Stepping 953
Setting Breakpoints 954
Watching Variables 954
Watched-Expression Format Codes 955
Qualifying a Variable’s Name 958
Watching the Stack 959
Evaluating an Expression 960
Modifying a Variable 960
Inspecting a Variable 961
Use the Register Window 961
APPENDIX B Using Turbo C’s Debugger 963
Preparing Your Programs for Debugging 963
What Is a Source-Level Debugger? 963
Debugger Basics i, 964
Single-Stepping il 965
Setting Breakpoints, 965
Watching Variables 966
Watching Expressions 967
Qualifying a Variable’s Name 968
Watched-Expression Format Codes 969
Watching the Stack 971

Evaluating an Expression 972

APPENDIX C

APPENDIX D

Changing a Variable's Value
Finding a Function

Interfacing to Assembly Language
Routinesl
Calling Conventions
The Calling Conventions of Turbo C/C++ ..
Creating an Assembly Code Function
Usingasm00iiiininnnneeenn.

Multiple-File Programs and Libraries

Using TurboC
Projects and the Project Option
Trying It Yourself
Specifying Additional Dependencies
The Standalone Make
TLIB, The Turbo C Librarian

Millions of programmers worldwide have come to rely on Borland’'s
Turbo Language products to develop programs ranging from simple
utilities to large commercial and real-time applications. Now with our
introduction of Turbo C++ and our earlier release of Turbo Pascal 5.5,
Borland has brought object-oriented programming into familiar lan-
guages on high-performance, production-oriented programming plat-
forms.

Borland's goal is to be the leader in high productivity and compre-
hensive object-oriented development environments and tools for profes-
sionals to novices. Our strategy is to provide state-of-the-art products to
our customers. BorlandeOsborne/McGraw-Hill is committed to providing
the best books to support that strategy. Turbo C/Turbo C++: The Com-
plete Reference ably demonstrates those commitments.

Turbo C/C++: The Complete Reference is written for Turbo C and/or
Turbo C++ users. Whether you're just beginning or have been program-
ming for years, you will benefit from this important volume. Packed with
a wealth of information, it speaks to all users of these languages. You
get a solid overview of the features that Turbo C and Turbo C++ have in
common and a complete discussion of all library functions. The introduc-
tion to C++ and object-oriented programming is outstanding.

In short, regardless of your programming level, Turbo C/C++: The
Complete Reference is the book to help you realize the benefits of
object-oriented programming while maintaining the performance and

efficiency of C.

Philippe Kahn
Chief Executive Officer
Borland International, Inc.

O=0s<m=0m

xli

This book is about both Turbo C and Turbo C++.

Since Borland first introduced Turbo C in the mid-1980s, it has
become one of the world’s most widely used (and liked) C compilers. It
is known for both its speed of compilation and the efficiency of the code
it produces. In fact, Turbo C has been used to produce some of the

best-known software products. Another important feature of Turbo Cis

that it complies with the ANSI C standard. This means that programs
you write using Turbo C are portable and easily maintained. At the time
of this writing, both C and Turbo C are widely used. In fact, it will most
likely be a very long time before C is deemed obsolete as a program-
ming language.

As the popularity of C increased during the 1980s, a new way to
program was beginning to emerge. This programming method is called
object-oriented programming (OOP for short), and the C version of this
approach is called C++. Because of the importance of object-oriented
programming, C++ is expected to grow in popularity. Some predict that
it will become the dominant language of the 1990s.

To address the demand for a high-quality C++ compiler, Borland
began work on Turbo C++ in 1988, adding the C++ OOP extensions to
the extremely powerful Turbo C. It was not an easy task. Although easy
for the programmer to use, C++ is a rigorous exercise in compiler
construction. In fact, the Turbo C++ project has been the largest and
most ambitious Borland has undertaken. To create Turbo C++, Borland
assembled a group of some of the best compiler programmers available.

20—-NCU0—Z2—

xliil

xliv Turbo C/C++: The Complete Reference

Their efforts paid off: Turbo C++ retains the speed and efficiency of
Turbo C but adds support for object-oriented programming. Turbo C++
is truly a language for the 1990s.

Whether you use Turbo C or Turbo C++, the purpose of this guide
is to help you unleash the power of these two impressive compilers.

About This Book

This book provides a comprehensive source of information about both
the Turbo C and Turbo C++ programming languages and their environ-
ments. It includes numerous example programs that illustrate the ele-
ments that form each language. It is designed for programmers at all
skill levels. If you are just learning to program in Turbo C or Turbo
C++, this book makes an excellent companion to any tutorial, providing
answers to your specific questions. If you are an experienced C or C++
programmer, this book serves as a handy desk reference.

How This Book Is Organized

This book is divided into five parts:

Part One—The C Language

Part Two—The Turbo C Environment
Part Three—The Turbo C Library

Part Four —Turbo C++

Part Five—The Turbo C++ Environment

Part One provides a thorough discussion of the Turbo C language.
Part Two describes the Turbo C environment, including the integrated
development environment (IDE) and the editor. Part Three describes all
of Turbo C's library functions. These functions are also available in
Turbo C++. Part Four discusses in depth the Turbo C++ object-oriented
features. The examples in this section assume that you are a proficient C

Introduction xlv

programmer. The book ends with Part Five, which discusses the Turbo
C++ environment. Even though similar, the Turbo C and Turbo C++
environments differ in several important ways. For example, Turbo C++
incorporates the use of a mouse; Turbo C does not.

The organization of this book allows the Turbo C user to quickly
find material related to that language and environment, while at the
same time letting the Turbo C++ programmer find the material appro-
priate to that environment. Further, if you are currently a C program-
mer and want to become proficient at Turbo C++, the organization of
this book prevents you from "wading through” reams of information that
you already know. You can simply concentrate on the Turbo C++ sec-
tions of the book.

Conventions Used In This Book

In this book, keywords, operators, function names, and variable names
are shown in bold when referenced in text. Placeholders are shown in
italics. Also, when referencing a function name in text, the name is
followed by parentheses. In this way, you can easily distinguish a vari-
able name from a function name.

Diskette Offer

There are many useful and interesting functions and programs con-
tained in this book. If you are like me, you would like to use them, but
hate typing them into the computer. If you type something wrong, you
spend hours trying to get the program to work. For this reason, I am
offering the source code for all the functions and programs contained in
this book on diskette. Just fill in the order blank on the next page and
mail it, along with your payment, to the address shown. Or, if you're in a
hurry, call (217) 586-4021 to place your order. (VISA and MasterCard
accepted.)

xivi Turbo C/C++: The Complete Reference

Please send me copies, at $24.95 each, of the programs
in Turbo C/C++: The Complete Reference on an IBM-compatible dis-
kette. (Foreign orders: Checks must be drawn on a U.S. bank. Please
add $5 shipping and handling.)

Name

Address

City State ZIP

Telephone

Diskette size (check one): 5 1/4” 3 12"

Method of payment: Check VISA MC

Credit card number:

Expiration date:

Signature:

Send to:
Herbert Schildt
RR 1, Box 130
Mahomet, IL 61853

or phomne: (217) 586-4021
This offer is subject to change or cancellation at any time.

Please allow 3 to 6 weeks for delivery. Osborne/McGraw-Hill assumes NO responsi-
bility for this offer. This is solely an offer of the author, Herbert Schildt, and not of
Osborne/McGraw-Hill.

If you want a comprehensive reference guide to both Turbo C and
Turbo C++, this book is for you. This book is for both beginning pro-
grammers and seasoned pros. Because of the way the book is organized,
it is ideally suited to users of either compiler. If you are currently a C
programmer who is moving to C++, then this book is particularly well
suited for you because it separates the Turbo C language from the
Turbo C++ language, thus allowing you to quickly begin learning about
Turbo C++. On the other hand, if all you want to know about is Turbo C,
this book still provides complete coverage of this important compiler.

In addition to covering both the Turbo C and C++ languages, this
book also covers the integrated programming environment, the Turbo
C/C++ editor, all library functions, and various compiler options.

One last point: because the information in this book was reviewed
for technical accuracy by Borland International, Inc., you can be assured
of its quality. Special thanks to Robert Goosey for his aid in the prepa-
ration of the chapters in Part Three of this book.

XROOW w—I- <IS

'CO< =0m wn-—

—

The C Language

ming language. Because Turbo C++ is a superset of Turbo C, virtually
everything presented in this section is applicable to Turbo C++. If you
are new to C and C++, you will need to learn to program in C before you
learn to program in C++.

Since Turbo C closely conforms to the ANSI C standard, most of
the information presented in Part One is also valid for any ANSI C
standard environment.

Part One of this guide presents a discussion of the Turbo C program- T

An Overview of C

O
N
E

This chapter presents an overview of the origins, uses, and philosophy of
the programming language C.

The Origins of the C Language

Dennis Ritchie invented and first implemented the programming lan-
guage C on a DEC PDP-11 that used the UNIX operating system. The
language is the result of a development process that started with an
older language called BCPL. Martin Richards developed BCPL, which
influenced Ken Thompson's invention of a language called B, which led
to the development of C in the 1970s.

For many years the de facto standard for C was the version sup-
plied with the UNIX System V operating system. It is described in The
C Programming Language by Brian Kernighan and Dennis Ritchie
(Prentice-Hall, 1978). The growing popularity of microcomputers led to
the creation of a large number of C implementations. In what could
almost be called a miracle, the source code accepted by most of these
implementations is highly compatible. However, because no standard
existed, there were discrepancies. To rectify this situation, ANSI estab-
lished a committee in the beginning of the summer of 1983 to create an
ANSI standard for the C language. The standard was finally adopted in
1990, and Turbo C fully implements the resulting ANSI standard for C.
Turbo C is a fast, efficient compiler, and provides both an integrated
programming environment and the more traditional command-line ver-
sion to satisfy the needs and desires of a wide variety of programmers.

6 Turbo C/C++: The Complete Reference

A Middle-Level Language

C is often called a middle-level computer language. This does not mean
that C is less powerful, harder to use, or less developed than a high-
level language such as BASIC or Pascal; nor does it imply that C is
similar to, or presents the problems associated with, assembly language.
The definition of C as a middle-level language means that it combines
elements of high-level languages with the functionalism of assembly
language. Table 1-1 shows how C fits into the spectrum of languages.

As a middle-level language, C allows the manipulation of bits, bytes,
and addresses —the basic elements with which the computer functions.
The C code is very portable. (Portability means that it is possible to
adapt software written for one type of computer to another.) For exam-
ple, if a program written for an Apple II+ can be moved easily to an
IBM PC, that program is portable.

All high-level programming languages support the concept of data
types. A data type defines a set of values that a variable can store along
with a set of operations that can be performed on that variable. Com-
mon data types are integer, character, and real. Although C has five
basic built-in data types, it is not a strongly typed language like Pascal
or Ada. In fact C will allow almost all type conversions. For example,

Highest level Ada

Modula-2

Pascal

COBOL

FORTRAN

BASIC
Middle level C

FORTH

Macro-assembly language
Lowest level Assembly language

Table 1-1. C's Place in the World of Languages

An Overview of C 7

character and integer types may be freely intermixed in most expres-
sions. Traditionally C performs no run-time error checking such as
array-boundary checking or argument-type compatibility checking.
These checks are the responsibility of the programmmer.

A special feature of .C is that it allows the direct manipulation of
bits, bytes, words, and pointers. This suits it to system-level program-
ming, where these operations are common. Another important aspect of
C is that it has only 32 keywords (27 from the Kernighan and Ritchie
standard and 5 added by the ANSI standardization committee), which
are the commands that make up the C language. (Turbo C contains 11
more keywords to support various enhancements and extensions.) As a
comparison, consider that BASIC for the IBM PC contains 159 key-
words!

A Structured Language

Although the term block-structured language does not strictly apply to
C, C is commonly called a structured language because of structural
similarities to ALGOL, Pascal, and Modula-2. (Technically, a block-
structured language permits procedures or functions to be declared
inside other procedures or functions. In this way the concepts of "global”
and "local” are expanded through the use of scope rules, which govern
the "visibility” of a variable or procedure. Since C does not allow the
creation of functions within functions, it is not really block structured.)

The distinguishing feature of a structured language is compartmen-
talization of code and data. Compartmentalization is the language’s
ability to section off and hide from the rest of the program all informa-
tion and instructions necessary to perform a specific task. One way of
achieving compartmentalization is to use subroutines that employ local
(temporary) variables. By using local variables, the programmer can
write subroutines so that the events that occur within them cause no
side effects in other parts of the program. This capability makes it very
easy for C programs to share sections of code. If you develop compart-
mentalized functions, you only need to know what a function does, not
how it does it. Remember that excessive use of global variables (vari-
ables known throughout the entire program) may allow bugs to creep
into a program by allowing unwanted side effects. (Anyone who has
programmed in BASIC is well aware of this problem!)

8

Turbo C/C++: The Complete Reference

A structured language allows you a variety of programming possi-
bilities. It directly supports several loop constructs, such as while,
do-while, and for. In a structured language the use of goto is either
prohibited or discouraged and is not the common form of program
control as it is in BASIC and FORTRAN. A structured language allows
you to indent statements and does not require a strict field concept.

Here are some examples of structured and nonstructured lan-

guages:

Structured Nonstructured
Pascal FORTRAN
Ada BASIC

C COBOL
Modula-2

Structured languages tend to be newer; nonstructured languages
are older. Today it is widely maintained that the clarity of structured
languages makes programming and maintenance easier than with non-
structured languages.

The main structural component of C is the function—C’s stand
alone subroutine. In C functions are the building blocks in which all
program activity occurs. They allow the separate tasks in a program to
be defined and coded separately, thus allowing your programs to be
modular. After a function has been created, you can rely on it to work
properly in various situations, without creating side effects in other
parts of the program. The fact that you can create stand-alone functions
is extremely critical in larger projects where one programmer’s code
must not accidentally affect another's.

Another way to structure and compartmentalize code in C is to use
code blocks. A code block is a logically connected group of program
statements that is treated as a unit. In C a code block is created by
placing a sequence of statements between opening and closing curly
braces. In this example,

if(x<10) {
printf("too low, try again");
reset_counter(-1);

An Overview of C 9

the two statements after the if and between the curly braces are both
executed if x is less than 10. These two statements together with the
braces are a code block. They are a logical unit: One of the statements
cannot execute without the other. Code blocks not only allow many
algorithms to be implemented with clarity, elegance, and efficiency, but
also help the programmer conceptualize the true nature of the routine.

A Programmer’s Language

One might respond to the statement, "C is a programmer’s language,”
with the question, "Aren't all programming languages for
programmers?”’ The answer is an unqualified "No!” Consider the classic
examples of nonprogrammer’s languages, COBOL and BASIC. COBOL
was designed to enable nonprogrammers to read and, presumably, un-
derstand the program. BASIC was created essentially to allow nonpro-
grammers to program a computer to solve relatively simple problems.

In contrast, C stands almost alone in that it was created, influenced,
and field-tested by real working programmers. The end result is that C
gives the programmer what the programmer wants: few restrictions,
few ecomplaints, block structures, stand alone functions, and a compact
set of keywords. It is truly amazing that by using C, a programmer can
achieve nearly the efficiency of assembly code, combined with the struc-
ture of ALGOL or Modula-2. It is no wonder that C is easily the most
popular language among topflight professional programmers.

The fact that C can often be used in place of assembly language
contributes greatly to its popularity among programmers. Assembly
language uses a symbolic representation of the actual binary code that
the computer executes. Each assembly language operation maps into a
single task for the computer to perform. Although assembly language
gives programmers the potential for accomplishing tasks with maximum
flexibility and efficiency, it is notoriously difficult to use when developing
and debugging a program. Furthermore, since assembly language is
unstructured, the final program tends to be spaghetti code—a tangled
mess of jumps, calls, and indexes. This lack of structure makes assembly
language programs difficult to read, enhance, and maintain. Perhaps
more important, assembly language routines are not portable between
machines with different central processing units (CPUs).

10 Turbo C/C++: The Complete Reference

Initially, C was used for systems programming. A systems program
is part of a large class of programs that forms a portion of the operating
system of the computer or its support utilities. For example, the follow-
ing are usually called systems programs:

* Operating systems
* Interpreters

* Editors

¢ Assembly programs
¢ Compilers

* Database managers

As C grew in popularity, many programmers began to use it to
program all tasks because of its portability and efficiency. Because there
are C compilers for almost all computers, it is possible to take code
written for one machine and compile and run it on another with few or
no changes. This portability saves both time and money. In addition, C
compilers tend to produce tighter and faster object code than most
BASIC compilers, for example.

Perhaps the most significant reason that C is used in all types of
programming tasks is that programmers like it! It has the speed of
assembly language and the extensibility of FORTH but few of the
restrictions of Pascal or Modula-2. Each C programmer can create and
maintain a unique library of functions that have been tailored to his or
her personality and can be used in many different programs. Because it
allows —indeed, encourages—separate compilation, C allows program-
mers to manage large projects easily and minimize duplication of effort.

Compilers Versus Interpreters

The terms compiler and interpreter refer to the way in which a program
is executed. In theory, any programming language can be either com-

An Overview of C 11

piled or interpreted, but some languages are usually executed one way
or the other. For example, BASIC is usually interpreted and C is usually
compiled. (Recently, however, C interpreters have gained in popularity
as debugging aids.) The way a program is executed is not defined by the
language in which it is written. Interpreters and compilers are simply
sophisticated programs that operate on your program source code.

An interpreter reads the source code of your program one line at a
time and performs the specific instructions contained in that line. A
compiler reads the entire program and converts it into object code,
which is a translation of the program source code in a form that can be
directly executed by the computer. Object code is also called binary code
and machine code. Once a program is compiled, a line of source code is
no longer meaningful in the execution of the program.

When you use an interpreter, it must be present each time you wish
to run your program. For example, in BASIC you have to execute the
BASIC interpreter first and then load your program and type RUN
each time you want to use it. The BASIC interpreter then examines
your program one line at a time for correctness and then executes it.
This slow process occurs every time the program runs. By contrast, a
compiler converts your program into object code that can be directly
executed by your computer. Because the compiler translates your pro-
gram only once, all you need to do is execute your program directly,
usually by the simple process of typing its name. Thus, compilation is a
one-time cost, while interpreted code incurs an overhead cost each time
a program runs.

Two terms that you will often see in this book and in your C
compiler manual are compile time, which refers to the events that occur
during the compilation process, and run time, which refers to the events
that occur while the program is actually executing. You usually see these
terms in discussions of errors, as in the phrases "compile-time errors”
and "run-time errors.”

The Form of a C Program

Table 1-2 lists the 43 keywords that, combined with the formal C syntax,
form the Turbo C programming language.

12 Turbo C/C++: The Complete Reference

The 32 keywords as defined by the ANSI standard

auto double int struct
break else long switch
case enum register typedef
char extern return union
const float short unsigned
continue for signed void
default goto sizeof volatile
do if static while
The Turbo C extended keywords

asm _cs _ds _€es
_S8 cdecl far huge
interrupt near pascal

Table 1-2. A List of Turbo C Keywords

All C keywords are lowercase. In C uppercase and lowercase are
different: else is a keyword; ELSE is not. A keyword may not be used
for any other purpose in a C program—that is, it may not serve as a
variable or function name. :

All C programs consist of one or more functions. The only function
that absolutely must be present is called main(), and it is the first
function called when program execution begins. In well-written C code,
main() outlines what the program does. The outline is composed of
function calls. Although main() is technically not part of the C lan-
guage, treat it as if it were. Don’t try to use main as the name of a
variable, for example.

The general form of a C program is illustrated in Figure 1-1, where
f1() through fN()represent user-defined functions.

The Library and Linking

Technically speaking, it is possible to create a useful, functional C
program that consists solely of the statements actually created by the

An Overview of C 13

global declarations
main()

local variables
statement sequence

f10)

{
local variables
statement sequence

}
£20)

local variables
statement sequence

}

(@)

{
local variables
statement sequence

}

Figure 1-1. The general form of a C program

programmer. However, this is rarely done because C does not, within
the actual definition of the language, provide any method of performing
I/0 operations. As a result, most programs include calls to various
functions contained in C's standard library.

Turbo C comes with a standard library that provides functions that
perform most commonly needed tasks. When you call a function that is
not part of the program you wrote, Turbo C "remembers” its name.
Later the linker combines the code you wrote with the object code
already found in the standard library. This process is called linking.

The functions that are kept in the library are in relocatable format.
This means that the memory addresses for the various machine-code
instructions have not been absolutely defined; only offset information
has been kept. When your program links with the functions in the

14 Turbo C/C++: The Complete Reference

standard library, these memory offsets are used to create the actual
addresses used. There are several technical manuals and books that
explain this process in more detail. However, you do not need any fur-
ther explanation of the actual relocation process to program in Turbo C.

Separate Compilation

Most short C programs are completely contained within one source file.
However, as a program gets longer, so does its compile time, and long
compile times make for short tempers! Hence, Turbo C allows a pro-
gram to be broken into pieces and contained in many files and for each
file to be compiled separately. Once all files have been compiled, they are
linked together, along with any library routines, to form the complete
object code. The advantage of separate compilation is that a change in
the code of one file does not necessitate the recompilation of the entire
program. On all but the simplest projects, the time saving is substantial.

Turbo C’'s Memory Map

A compiled Turbo C program creates and uses rour logically distinct
regions of memory that serve specific functions. The first region is the
memory that actually holds the code of your program. The next region is
the memory where global variables are stored. The remaining two
regions are the stack and the heap. The stack is used for a great many
things while your program executes. It holds the return address of
function calls, arguments to functions, and local variables. It is also used
to save the current state of the CPU. The heap is a region of free
memory, which your program can use via Turbo C’s dynamic allocation
functions for things like linked lists and trees.

An Overview of C 15

Stack

l
T

Heap

Global variables

Program code

Figure 1-2. A conceptual memory map of a C program

Although the exact physical layout of each of the four regions of mem-
ory differs, based on the way you tell Turbo C to compile your program,
the diagram in Figure 1-2 shows conceptually how your C programs
appear in memory.

A Review of Terms

The terms that follow will be used frequently throughout the remainder
of this book. You should be completely familiar with their meaning.

Source code The text of a program that a
user can read; commonly
thought of as the program. The
source code is input into the C
compiler.

16 Turbo C/C++: The Complete Reference

Object code

Linker

Library

Compile time

Run time

Translation of the source code of
a program into machine code,
which the computer can read
and execute directly. Object code
is the input to the linker.

A program that links separately
compiled functions together into
one program. It combines the
functions in the standard C li-
brary with the code that you
wrote. The output of the linker
is an executable program.

The file containing the standard
functions that can be used by
your program. These functions
include all I/O operations as well
as other useful routines.

The events that occur while your
program is being compiled. A
common occurrence during com-
pile time is a syntax error.

The events that occur while your
program is executing.

Variables, Constants, Operators, and T
Expressions w

Variables and constants are manipulated by operators to form expres-
sions. These are the atomic elements of the Turbo C and C++ language.
This chapter will examine each element closely.

Identifier Names

The names that are used to reference variables, functions, labels, and
various other user-defined objects are called identifiers. An identifier in
Turbo C can vary from 1 to 32 characters. The first character must be a
letter or an underscore with subsequent characters being either letters,
numbers, or the underscore. Turbo C also allows the $ to be used in an
identifier name, but this is nonstandard and its use is not recommended.
Here are some examples of correct and incorrect identifier names:

18 Turbo C/C++: The Complete Reference

correct incorrect
count lcount

test23 hilthere

high __balance high . . balance

In C, upper- and lowercase are treated differently. Hence, count,
Count, and COUNT are three separate identifiers. An identifier cannot
be the same as a Turbo C keyword, and it should not have the same
name as functions that you wrote or that are in the Turbo C library.

Data Types

There are five atomic data types in C: character, integer, floating point,
double floating point, and valueless. The sizes of these types are shown
in Table 2-1.

Values of type char are used to hold ASCII characters or any 8-bit
quantity. Variables of type int are used to hold integer quantities.
Variables of type float and double are used to hold real numbers. (Real
numbers have both an integer and a fractional component.)

‘ The void type has three uses. The first is to declare explicitly a
function as returning no value; the second is to declare explicitly a
function as having no parameters; the third is to create generic pointers.
Each of these uses is discussed in subsequent chapters.

Type Bit Width Range

char 8 0 to 255

int 16 —32768 to 32767

float 32 3.4E—-38 to 3.4E +38
double 64 1.7E -308 to 1.7E + 308
void 0 valueless

Table 2-1. Size and Range of Turbo C's Basic Data Types

Variables, Constants, Operators, and Expressions 19

Turbo C supports several aggregate types, including structures,
unions, bit fields, enumerations, and user-defined types. These complex
types are discussed in Chapter 7.

Type Modifiers

Excepting type void, the basic data types may have various modifiers
preceding them. A modifier is used to alter the meaning of the base type
to fit the needs of various situations more precisely. The list of modifiers
is shown here:

signed
unsigned
long
short

The modifiers signed, unsigned, long, and short may be applied to
character and integer base types. However, long may also be applied to
double. Table 2-2 shows all allowed combinations that adhere to the
ANSI C standard, along with their bit widths and range assuming a
16-bit word.

The use of signed on integers is redundant (but allowed) because
the default integer declaration assumes a signed number.

The difference between signed and unsigned integers is in the way
the high-order bit of the integer is interpreted. If a signed integer is
specified, then the compiler will generate code that assumes the high-
order bit of an integer is to be used as a sign flag. If the sign flag is 0,
then the number is positive; if it is 1, then the number is negative. For
example:

127 in binary is 0 0
0

000000 01111111
-—127inbinaryis% 000000 01111111
sign bit

The reader is cautioned that most computers (including those based
on the 8086 family of processors) will use two's complement arithmetie,
which will cause the representation of —127 to appear different. How-
ever, the use of the sign bit is the same. A negative number in two’s

20 Turbo C/C++: The Complete Reference

Type Bit Width Range

char 8 —128 to 127

unsigned char 8 0 to 255

signed char 8 —-128 to 127

int 16 —32768 to 32767

unsigned int 16 0 to 65535

signed int 16 —32768 to 32767

short int 16 —321768 to 32767

unsigned short int 16 0 to. 65535

signed short int 16 —321768 to 32767

long int 32 —2147483648 to
2147483647

signed long int 32 —21477483648 to
2147483647

float 32 34E —-38 to 34E +38

double 64 1.7E —308 to 1.7E +308

long double 64 1/7E —308 to 1.7E +308

Table 2-2. All Possible Combinations of Turbo C's Basic Types and Modifiers

complement form has all bits reversed and one is added to the number.
For example, —127 in two's complement appears like this:

11111111 100000O0O0T1

Signed integers are important for a great many algorithms, but
they only have half the absolute magnitude of their unsigned brothers.
For example, here is 32,767:

01111111 11111111

If the high-order bit were set to 1, the number would then be inter-
preted as —32,768. However, if you had declared this to be an unsigned
int, then when the high-order bit is set to 1, the number becomes 65,535.

Access Modifiers

C has two type modifiers that are used to control the ways in which
variables may be accessed or modified. These modifiers are called const
and volatile.

Variables, Constants, Operators, and Expressions 21

Variables of type const may not be changed during execution by
your program. For example,

const int a;

will create an integer variable called a that cannot be modified by your
program. It can, however, be used in other types of expressions. A const
variable will receive its value either from an explicit initialization or by
some hardware-dependent means. For example, this gives count the
value of 100:

const int count = 100;

Aside from initialization, no const variable can be modified by your
program.

The modifier volatile is used to tell the compiler that a variable’s
value can be changed in ways not explicitly specified by the program.
For example, a global variable’'s address can be passed to the clock
routine of the operating system and used to hold the real-time of the
system. In this situation the contents of the variable are altered without
any explicit assignment statements in the program. This is important
because Turbo C automatically optimizes certain expressions by making
the assumption that the content of a variable is unchanging inside that
expression. Also, some optimizations may change the order of evaluation
of an expression during the compilation process. The volatile modifier
prevents these changes from occurring.

It is possible to use const and volatile together. For example, if
0x30 is assumed to be the address of a port that is changed by external
conditions only, then the following declaration is precisely what you
would want to prevent any possibility of accidental side effects:

const volatile unsigned char *port=0x30;

Declaration of Variables

All variables must be declared before they are used. The general form of
a declaration is shown on the next page.

22

Turbo C/C++: The Complete Reference

type variable _list;

Here, type must be a valid C data type and variable _list may consist of
one or more identifier names with comma separators. Some declarations
are shown here:

int i, j, 1;
short int si;
unsigned int ui;

double balance, profit, loss;

Remember, in C, the name of a variable has nothing to do with its type.

There are three basic places where variables will be declared: inside
functions, in the definition of function parameters, or outside all func-
tions. These variables are called local variables, formal parameters, and
global variables.

Local Variables

Variables that are declared inside a function are called local variables.
In some C literature, these variables may be referred to as automatic
variables in keeping with C's use of the (optional) keyword auto that
can be used to declare them. Since the term local variable is more
commonly used, this guide will continue to use it. Local variables can be
referenced only by statements that are inside the block in which the
variables are declared. Stated another way, local variables are not
known outside their own code block. You should remember that a block
of code is begun when an opening curly brace is encountered and
terminated when a closing curly brace is found.

One of the most important things to understand about local vari-
ables is that they exist only while the block of code in which they are
declared is executing. That is, a local variable is created upon entry into
its block and destroyed upon exit.

The most common code block in which local variables are declared
is the function. For example, consider these two functions:

Variables, Constants, Operators, and Expressions 23

void funcl(void)
int x;

x = 10;
}

void func2(void)
int x;

x = -199;

The integer variable x was declared twice, once in funcl() and once in
func2(). The x in funcl() has no bearing on, or relationship to, the x in
func2() because each x is only known to the code within the same block
as the variable’s declaration.

The language contains the keyword auto, which can be used to
declare local variables. However, since all nonglobal variables are as-
sumed to be auto by default, it is virtually never used.

It is common practice to declare all variables needed within a
function at the start of that function’s code block. This is done mostly to
make it easy for anyone reading the code to know what variables are
used. However, it is not necessary to do this because local variables can
be declared within any code block. To understand how this works,
consider the following function.

void f(void)

{
int t;
scanf("%d", &t);

if(t==1) {
char s[80]; /* this is existent only
inside this block */
printf("enter name:");
gets(s);
process(s);

/* s is not known here */

Here, the local variable s is known only within the if code block. Since s
is known only within the if block, it may not be referenced elsewhere —
not even in other parts of the function that contains it.

24

Turbo C/C++: The Complete Reference

One reason you might want to declare a variable within its own
block instead of at the top of a function is to prevent its accidental
misuse elsewhere in the function. In essence, declaring variables inside
the blocks of code that actually use them allows you to compartmental-
ize your code and data into more easily managed units.

Because local variables are destroyed upon exit from the function in
which they are declared, they cannot retain their values between func-
tion calls. (As you will see shortly, however, it is possible to direct the
compiler to retain their values through the use of the static modifier.)

Unless otherwise specified, storage for local variables is on the
stack. The fact that the stack is a dynamic and changing region of
memory explains why local variables cannot, in general, hold their
values between function calls.

Formal Parameters

If a function is to use arguments, then it must declare variables that will
accept the values of the arguments. These variables are called the
formal parameters of the function. They behave like any other local
variables inside the function. As shown in the following program frag-
ment, their declaration occurs inside the parentheses that follow the
function name.

/* return 1 if c is part of string s; 0 otherwise */
is_in(char *s, char c)

while(*s)
if(*s==c) return 1;
else s++;

return 0;

The function is_in() has two parameters: s and c¢. You must tell C
what type of variable these are by declaring them as shown above. Once
this has been done, they may be used inside the function as normal local

Variables, Constants, Operators, and Expressions 25

variables. Keep in mind that, as local variables, they are also dynamic
and are destroyed upon exit from the function.

You must make sure that the formal parameters you declare are the
same type as the arguments you will use to call the function. If there is
a type mismatch, unexpected results can occur. Unlike many other
languages, C is very robust and generally will do something, even if it is
not what you want. There are few run-time errors and no bounds
checking. As the programmer, you have to make sure that errors do not
occur.

As with local variables, you may make assignments to a function’s
formal parameters or use them in any allowable C expression. Even
though these variables perform the special task of receiving the value of
the arguments passed to the function, they can be used like any other
local variable.

Global Variables

Unlike local variables, global variables are known throughout the entire
program and may be used by any piece of code. Also, they will hold their
values during the entire execution of the program. Global variables are
created by declaring them outside of any function. They may be ac-
cessed by any expression regardless of what function that expression is
in.

In the following program, you can see that the variable count has
been declared outside of all functions. Its declaration comes before the
main() function. However, it could have been placed anywhere prior to
its first use, as long as it was not in a function. Common practice is to
declare global variables at the top of the program.

#include <stdio.h>
void funcl(void), func2(void);
int count; /* count is global */
main(void)
count = 100;

funcl();
return 0; /* return success to the system */

26

Turbo C/C++: The Complete Reference

}
void funcl(void)
{

int temp;

temp = count;
func2();
printf("count is %d", count); /* will print 100 */

void func2(void)
int count;

for(count=1; count<10; count++)
putchar('.');

Looking closely at this program fragment, it should be clear that
although neither main() nor funcl() has declared the variable count,
both may use it. However, func2() has declared a local variable called
count. When func2() references count, it will be referencing only its
local variable, not the global one. Remember that if a global variable and
a local variable have the same name, all references to that name inside
the function where the local variable is declared refer to the local
variable and have no reference to the global variable. This is a conve-
nient benefit. However, forgetting this can cause your program to act
very strangely, even though it "looks” correct.

Storage for global variables is in a fixed region of memory set aside
for this purpose by the compiler. Global variables are very helpful when
the same data is used in many functions in your program. You should
avoid using unnecessary global variables, however, for three reasons:

1. They take up memory the entire time your program is executing,
not just when they are needed.

2. Using a global variable where a local variable will do makes a
function less general because it relies on something that must be
defined outside itself.

3. Using a large number of global variables can lead to program
errors because of unknown, and unwanted, side effects.

One of the principal points of a structured language is the compart-
mentalization of code and data. In C, compartmentalization is achieved

Variables, Constants, Operators, and Expressions 27

through the use of local variables and functions. For example, here are
two ways to write mul() —a simple function that computes the product
of two integers.

Two Ways to Write mul()
General Specific

int x, y;
mul(int x, int y) mul (void)

return(x*y); return(x+*y);

Both functions will return the product of the variables x and y.
However, the generalized, or parameterized, version can be used to
return the product of any two numbers, whereas the specific version can
be used to find only the product of the global variables x and y.

Storage Class Specifiers

There are four storage class specifiers supported by C. They are

extern
statie
register
auto

These are used to tell the compiler how the variable that follows should
be stored. The storage specifier precedes the rest of the variahle decla-
ration. Its general form is

storage __specifier type var _name;

Each specifier will be examined in turn.

28 Turbo C/C++: The Complete Reference

extern

Because C allows separately compiled modules of a large program to be
linked together to speed up compilation and aid in the management of
large projects, there must be some way of telling all the files about the
global variables required by the program. Remember, you can declare a
global variable only once. If you try to declare two global variables with
the same name inside the same file, Turbo C prints the error message
that it does not know which variable to use. The same type of problem
occurs if you declare all the global variables needed by your program in
each file. Although the compiler would not issue any error messages at
compile time, you would actually be trying to create two (or more) copies
of each variable. The trouble would start when Turbo C attempted to
link your modules together. The linker would display an error message
because it would not know which variable to use. The solution is to
declare all of your globals in one file and use extern declarations in the
other, as shown in Table 2-3.

In File 2, the global variable list was copied from File 1 and the
extern specifier was added to the declarations. The extern specifier tells
the compiler that the following variable types and names have been

File 1 File 2
int x, y; extern int x, y;
char ch; extern char ch;
main(void) void func22(void)
{ {
. x = y/10;
}
} void func23(void)
{
void funcl(void) y = 10;
{ }
x = 123;
}

Table 2-3. Using Global Variables in Separately Compiled Files

Variables, Constants, Operators, and Expressions 29

declared elsewhere. In other words, extern lets the compiler know what
the types and names are for these global variables without actually
creating storage for them again. When the two modules are linked, all
references to the external variables are resolved.

When a declaration creates storage for a variable, it is called a
definition. extern statements are declarations, but not definitions. They
simply tell the compiler that a definition exists elsewhere in the pro-
gram.

When you use a global variable inside a function that is in the same
file as the declaration for the global variable you may elect to use
extern, although you don’t have to and it is rarely done. The following
program fragment shows the use of this option:

int first, last; /* global definition of first
and last */

main(void)

extern int first; /* optional use of the
extern declaration */
[* oo %/
}

Although extern variable declarations can occur inside the same file
as the global declaration, they are not necessary. If the C compiler
encounters a variable that has not been declared, the compiler checks
whether it matches any of the global variables. If it does, the compiler
assumes that the global variable is the one being referenced.

static Variables

static variables are permanent variables within their own function or
file. They differ from global variables because they are not known
outside their function or file but they maintain their values between
calls. This feature makes them very useful when you write generalized
functions and function libraries, which may be used by other program-
mers. Because the effect of static on local variables is different from its
effect on global ones, they will be examined separately.

static Local Variables

When static is applied to a local variable it causes the compiler to create
permanent storage for it in much the same way that it does for a global

30

Turbo C/C++: The Complete Reference

variable. The key difference between a static local variable and a global
variable is that the static local variable remains known only to the block
in which it is declared. In simple terms, a static local variable is a local
variable that retains its value between function calls.

It is very important to the creation of stand-alone functions that
static local variables are available in C because there are several types
of routines that must preserve a value between calls. If static variables
were not allowed then globals would have to be used —opening the door
to possible side effects. A simple example of how a static local variable
can be used is illustrated by the count() function in this short program:

#include <stdio.h>
#include <conio.h>

int count(int i);
main(void)

do {
count(0);
} while(lkbhit());
printf("count called %d times", count(1));
return 0;

count(int i)
static int c=0;

if(i) return c;
else c++;
return 0;

Sometimes it is useful to know how many times a function has been
executed during a program run. While it is certainly possible to use a
global variable for this purpose, a better way is to have the function in
question keep track of this information itself, as is done by the count()
function. In this example, if count() is called with a value of 0 then the
counter variable c is incremented. (Presumably in a real application, the
function would also perform some other useful processing.) If count() is
called with any other value, it returns the number of times it has been
called. Counting the number of times a function is called can be useful
during the development of a program so that those functions called most
frequently can receive the most attention.

Variables, Constants, Operators, and Expressions 31

Another good example of a function that would require a static
local variable is a number series generator that produces a new number
based on the last one. It is possible for you to declare a global variable
for this value. However, each time the function is used in a program, you
would have to remember to declare that global variable and make sure
that it did not conflict with any other global variables already de-
clared —a major drawback. Also, using a global variable would make this
function difficult to place in a function library. The better solution is to
declare the variable that holds the generated number to be static, as in
this program fragment:

series(void)
static int series_num;

series_num = series_num+23;
return(series_num);

In this example, the variable series__num stays in existence be-
tween function calls, instead of coming and going the way a normal local
variable would. This means that each call to series() can produce a new
member of the series based on the last number without declaring that
variable globally.

You may have noticed something that is unusual about the function
series() as it stands in the example. The static variable series__num is
never explicitly initialized. This means that the first time the function is
called, series_num will have the value zero, by default. While this is
acceptable for some applications, most series generators will need a
flexible starting point. To do this requires that series _num be initial-
ized prior to the first call to series(), which can be done easily only if
series_num is a global variable. However, avoiding having to make
series _num global was the entire of point of making it static to begin
with. This leads to the second use of static.

static Global Variables

When the specifier static is applied to a global variable it instructs the
compiler to create a global variable that is known only to the file in

32

Turbo C/C++: The Complete Reference

which the static global variable is declared. This means that even
though the variable is global, other routines in other files may have no
knowledge of it or alter its contents directly; thus it is not subject to
side effects. For the few situations where a local static cannot do the
job, you can create a small file that contains only the functions that need
the static global variable, separately compile that file, and use it without
fear of side effects.

To see how a static global variable can be used, the series genera-
tor example from the previous section is recoded so that a starting
"seed” value can be used to initialize the series through a call to a second
function called series__start(). The entire file containing series(),
series _start(), and series _num follows:

/* This must all be in one file - preferably by itself */
static int series_num;

int series(void);
void series_start(int seed);

series(void)

series_num = series_num + 23;
return(series_num);

/* initialize series_num */
void series_start(int seed)

series_num = seed;

Calling series _start() with some known integer value initializes the
series generator. After that, calls to series() will generate the next
element in the series.

The names of static local variables are known only to the function
or block of code in which they are declared, and the names of static
global variables are known only to the file in which they reside. This
means that if you place the series() and series _start() functions in a
separate file, you can use the functions, but you cannot reference the
variable series_num. It is hidden from the rest of the code in your
program. In fact, you may even declare and use another variable called
series_num in your program (in another file, of course) and not con-
fuse anything. In essence, the static modifier allows variables to exist
within the functions that need them, without confusing other functions.

Variables, Constants, Operators, and Expressions 33

static variables enable you to hide portions of your program from
other portions. This can be a tremendous advantage when trying to
manage a very large and complex program. The static storage specifier
lets you create very general functions that can go into libraries for later
use.

Register Variables

C has one last storage specifier that originally applied only to variables
of type int and char. However, the ANSI C standard has broadened its
scope. The register specifier requests Turbo C to store a variable
declared with this modifier in a manner that allows the fastest access
time possible. For integers and characters, this typically means in the
register of the CPU rather than in memory, where normal variables are
stored. For other types of variables, Turbo C may use any other means
to decrease their access time. In fact, it can also simply ignore the
request altogether.

The register specifier may be applied to local variables and to the
formal parameters in a function. You cannot apply register to global
variables.

In general, operations on register variables occur much faster than
on variables stored in memory. In fact, when the value of a variable is
actually held in the CPU no memory access is required to determine or
modify its value. This makes register variables ideal for loop control.
Here is an example of how to declare a register variable of type int and
use it to control a loop. This function computes the result of M® for
integers.

int_pwr(int m, register int e)
register int temp;
temp = 1;

for(; e; e--) temp *= m;
return temp;

In this example, both e and temp are declared to be register
variables because both are used within the loop. In general practice,

34 Turbo C/C++: The Complete Reference

register variables are used where they will do the most good, that is, in
places where many references will be made to the same variable. This is
important because not all variables can be optimized for access time.

Turbo C allows two variables to be held in CPU registers at any one
time. In effect, this means that you can have two per function. You don't
have to worry about declaring too many register variables, though,
because Turbo C will automatically do its best to reduce access time of
any variable declared using register. Throughout this book most loop
control variables will be register.

Assignment Statements

The general form of the assignment statement is
variable _name = expression;

where an expression may be as simple as a single constant or as
complex as a combination of variables, operators, and constants. Like
BASIC and FORTRAN, C uses a single equal sign to indicate assign-
ment (unlike Pascal or Modula-2, which use the := construct). The
target, or left part, of the assignment must be a variable, not a function
or a constant.

Type Conversion in Assignments

Type conversion refers to the situation in which variables of one type
are mixed with variables of another type. When this occurs in an
assignment statement, the type conversion rule is very easy: The value
of the right (expression) side of the assignment is converted to the type
of the left side (target variable), as illustrated by this example:

int x;
char ch;
float f;

Variables, Constants, Operators, and Expressions 35

void func(void)

ch = x; [* 1 %/
x = f; /% 2 */
f = ch; /%3 */
f=x; [* 4 x/

In line 1, the left, high-order bits of the integer variable x are
lopped off leaving ch with the lower 8 bits. If x was between 256 and 0
to begin with, then ch and x would have identical values. Otherwise, the
value of ch would reflect only the lower order bits of x. In line 2, x
receives the nonfractional part of f. In line 3, f converts the 8-bit integer
value stored in ch to the same value except in the floating-point format.
This also happens in line 4, except that f will convert an integer value
into floating-point format.

When converting from integers to characters, long integers to inte-
gers, and integers to short integers, the basic rule is that the appropri-
ate amount of high-order bits will be removed. This means 8 bits will be
lost when going from an integer to a character, and 16 bits will be lost
when going from a long integer to an integer.

Table 2-4 synopsizes these assignment type conversions. You must

Target Type Expression Type Possible Info Loss

signed char char If value > 127, then
targets will be negative

char short int High-order 8 bits

char int High-order 8 bits

char long int High-order 24 bits

short int int None

short int lont int High-order 16 bits

int long int High-order 16 bits

int float Fractional part and
possibly more

float double Precision, result rounded

double long double Precision, result rounded

Table 2-4. The Outcome of Common Type Conversions Assuming a 16-Bit Word

36 Turbo C/C++: The Complete Reference

remember two important points that can affect the portability of the
code you write:

1. The conversion of an int to a float, or a type float to double and
so on, will not add any precision or accuracy. These kinds of conver-
sions will only change the form in which the value is represented.

2. Some C compilers (and processors) will always treat a char
variable as positive, no matter what value it has when converting it
to an integer or float (as does Turbo C). Other compilers may treat
char variable values greater than 127 as negative numbers when
converting. Generally speaking, you should use char variables for
characters, and use int, short int, or signed char when needed to
avoid a possible portability problem in this area.

To use Table 2-4 to make a conversion not directly shown, simply
convert one type at a time until you finish. For example, to convert from
a double to an int, first convert from a double to a float and then from
a float to an int.

If you have used a computer language like Pascal, which prohibits
this automatic type conversion, you may think that C is very loose and
sloppy. However, keep in mind that C was designed to make the life of
the programmer easier by allowing work to be done in C rather than
assembler. To do this, C has to allow such type conversions.

Variable Initializations

You can give variables in C a value at the time they are declared by
placing an equal sign and a constant after the variable name. This is
called an initialization and its general form is

type variable _name = constant;
Some examples are

char ch = 'a';
int first = 0;

float balance = 123.23;

Variables, Constants, Operators, and Expressions 37

Global and static global variables are initialized only at the start of
the program. Local variables are initialized each time the block in which
they are declared is entered. However, static local variables are only
initialized once —not each time the block is entered. All global variables
are initialized to zero if no other initializer is specified. Local and
register variables that are not initialized will have unknown values
before the first assignment is made to them.

Constants

Constants in C refer to fixed values that may not be altered by the
program. They can be of any data type, as shown in Table 2-5.

C supports one other type of constant in addition to those of the
predefined data types. This is a string. All string constants are enclosed
between double quotes, such as "this is a test”. You must not confuse
strings with characters. A single character constant is enclosed by
single quotes, such as 'a’. Because strings are simply arrays of charac-
ters, they will be discussed in Chapter 5.

Backslash Character Constants

Enclosing all character constants in single quotes works for most print-
ing characters, but a few, such as the carriage return, are impossible to

Data Type Constant Examples

char ‘a’ \n' '9’

int 1123 21000 —234

long int 35000 —34

short int 10 -12 90

unsigned int 10000 987 40000

float 123.23 4.34e-3

double 123.23 12312333 —0.9876324

Table 2-5. Constant Examples for Data Types

38

Turbo C/C++: The Complete Reference

enter from the keyboard. For this reason, C uses the special backslash
character constants, shown in Table 2-6.

You use a backslash code exactly the same way you would any other
character. For example,
ch = '\t';
printf("this is a test\n");
first assigns a tab to ch and then prints "this is a test” on the screen
followed by a newline.

Operators

C is very rich in built-in operators. An operator is a symbol that tells the
compiler to perform specific mathematical or logical manipulations.
There are three general classes of operators in C: arithmetic, relational
and logical, and bitwise. In addition, C has some special operators for
particular tasks.

Code Meaning

\b Backspace

\f Form feed

\n Newline

\r Carriage return

\t Horizontal tab

Y Double quote

V Single quote character
\0 Null

A\ Backslash

W Vertical tab

\a Alert

\o Octal constant

\x Hexadecimal constant

Table 2-6. Backslash Codes

Variables, Constants, Operators, and Expressions 39

Arithmetic Operators

Table 2-7 lists the arithmetic operators allowed in C. The operators +,
—, %, and / all work the same way in C as they do in most other
computer languages. They can be applied to almost any built-in data
type allowed by C. When / is applied to an integer or character, any
remainder is truncated; for example, 10/3 equals 3 in integer division.

The modulus division operator % also works in C the way it does in
other languages. Remember that the modulus division operation yields
the remainder of an integer division. However, as such, % cannot be
used on type float or double. The following code fragment illustrates its
use:

int x, y;

10;
3

X
Yy
printf("%d", x/y); /* will display 3 */

printf("%d", x%y); /* will display 1, the remainder of
the integer division */

X
y

1;
2;

printf("%d %d", x/y, x%y); /* will display 0 1 */

The reason the last line prints a 0 and 1 is because 1/2 in integer
division is 0 with a remainder of 1. 1%2 yields the remainder 1.

Operator Action

- Subtraction, also unary minus
+ Addition

* Multiplication

/ Division

% Modulus division

—— Decrement

++ Increment

Table 2-7. Arithmetic Operators

40 Turbo C/C++: The Complete Reference

The unary minus, in effect, multiplies its single operand by —1. That
is, any number preceded by a minus sign switches its sign.

Increment and Decrement

C allows two very useful operators not generally found in other com-
puter languages. These are the increment and decrement operators, ++
and —-—. The operation ++ adds 1 to its operand, and —— subtracts 1.
Therefore, the following are equivalent operations:

X = x+1;

is the same as

++X3

Also,

X = x-13

is the same as

-=X3

Both the increment and decrement operators may either precede or
follow the operand. For example,

X = X+1;

can be written
+HX3

or

X++

Variables, Constants, Operators, and Expressions 41

However, there is a difference when they are used in an expression.
When an increment or decrement operator precedes its operand, C
performs the increment or decrement operation prior to using the
operand’s value. If the operator follows its operand, C uses the
operand’s value before incrementing or decrementing it. Consider the

following:
x = 10;
y = g

In this case, y is set to 11. However, if the code had been written as

x = 10;

Y = xt4;

y would have been set to 10. In both cases, x is set to 11; the difference
is when it happens. There are significant advantages in being able to
control when the increment or decrement operation takes place.

The precedence of the arithmetic operators is as follows:

highest ++ ——
- (unary minus)
*/ %

lowest + -

Operators on the same precedence level are evaluated by the compiler
from left to right. Of course, parentheses may be used to alter the order
of evaluation. Parentheses are treated by C in the same way they are by
virtually all other computer languages: They give an operation, or set of
operations, a higher precedence level.

Relational and Logical Operators

In the term relational operator the word relational refers to the rela-
tionships values can have with one another. In the term logical operator
the word logical refers to the ways these relationships can be connected

42

Turbo C/C++: The Complete Reference

together using the rules of formal logic. Because the relational and
logical operators often work together, they will be discussed together
here.

The key to the concepts of relational and logical operators is the
idea of true and false. In C, true is any value other than 0. False is 0.
Expressions that use relational or logical operators will return 0 for
false and 1 for true.

Table 2-8 shows the relational and logical operators. The truth table
for the logical operators is shown here using 1s and 0Os:

p q . p&&q piq Ip
0 0 0 0 1
0 1 0 1 1
1 1 1 1 0
1 0 0 1 0

Both the relational and logical operators are lower in precedence
than the arithmetic operators. This means that an expression like 10 >

Relational Operators

Operator Action
> Greater than
>= Greater than or equal
< Less than
<= Less than or equal
== Equal
1= Not equal
Logical Operators
Operator Action
&& AND
i OR
! NOT

Table 2-8. Relational and Logical Operators

Variables, Constants, Operators, and Expressions 43

1+12 is evaluated as if it were written 10 > (1+12). The result is, of
course, false.
Several operations can be combined in one expression, as shown

here:
10>5 && 1(10<9) || 3< =4

which will evaluate true.
The following shows the relative precedence of the relational and

logical operators:

highest !

lowest

As with arithmetic expressions, it is possible to use parentheses to
alter the natural order of evaluation in a relational or logical expression.
For example,

1&&0

will be false because the ! is evaluated first, then the && is evaluated.
However, when the same expression is parenthesized as shown here, the
result is true.

11 && 0)

Remember, all relational and logical expressions produce a result of
either 0 or 1. Therefore the following program fragment is not only
correct, but also prints the number 1 on the display:

44

Turbo C/C++: The Complete Reference

int x;

x = 100;
printf("%d", x>10);

Bitwise Operators

Unlike many other languages, C supports a complete complement of
bitwise operators. Since C was designed to take the place of assembly
language for most programming tasks, it needed the ablilty to support
all (or at least many) operations that can be done in assembler. Bitwise
operations are the testing, setting, or shifting of the actual bits in a byte
or word, which correspond to C's standard char and int data types and
variants. Bitwise operators cannot be used on type float, double, long
double, void, or other more complex types. Table 2-9 lists these opera-
tors.

The bitwise AND, OR, and NOT (one’s complement) are governed
by the same truth table as were their logical equivalents except that
they work on a bit-by-bit level. The exclusive OR " has the truth table
shown here:

- O
O = O Q0
[T = = =}

As the table indicates, the outcome of an XOR is true only if exactly one
of the operands is true; it is false otherwise.

Operator Action

& AND

| OR

" Exclusive OR (XOR)
~ One's complement
>> Shift right

<< Shift left

Table 2-9. The Bitwise Operators

Variables, Constants, Operators, and Expressions 45

Bitwise operations most often find application in device drivers,
such as modem programs, disk file routines, and printer routines, be-
cause the bitwise operations can be used to mask off certain bits, such as
parity. (The parity bit is used to confirm that the rest of the bits in the
byte are unchanged. It is usually the high-order bit in each byte.)

The bitwise AND is most commonly used to turn bits off. That is,
any bit that is 0 in either operand causes the corresponding bit in the
outcome to be set to 0. For example, the following function reads a
character from the modem port using the function read _modem() and
resets the parity bit to 0.

char get_char_from_modem(void)
char ch;

ch = read_modem(); /* get a character from the
modem port */
return(ch & 127);

Parity is indicated by the eighth bit, which is set to 0 by ANDing it
with a byte that has bits 1 through 7 set to 1 and bit 8 set to 0. The
expression ch & 127 means to AND together the bits in ch with the bits
that make up the number 127. The net result is that the eighth bit of ch
will be set to 0. In the following example, assume that ch had received
the character ‘A’ and had the parity bit set:

parity bit
v
11000001 ch containing an 'A’
with parity set
01111111 127 in binary
&E - —————————— do bitwise AND
01000001 'A’ without parity

The bitwise OR, as the reverse of AND, can be used to turn bits on.
Any bit that is set to 1 in either operand causes the corresponding bit in
the outcome to be set to 1. For example, 128 | 3 is

46 Turbo C/C++: The Complete Reference

1000000 O 128 in binary
000 O0O0O0T171 3 in binary

| e ——_——————— bitwise OR
10000011 result

An exclusive OR, usually abbreviated XOR, will turn a bit on only if
the bits being compared are different. For example, 127 * 120 is

01111111 127 in binary

01111000 120 in binary
e — — bitwise XOR

000O0O01T11 result

In general, bitwise ANDs, ORs, and XORs apply their operations
directly to each bit in the variable individually. For this reason, among
others, bitwise operators are not usually used in conditional statements
the way the relational and logical operators are. For example if x=7,
then x && 8 evaluates to true (1), whereas x & 8 evaluates to false (0).

Reminder: Relational and logical operators always produce a result
that is either 0 or 1, whereas the similar bitwise operations may produce
‘any arbitrary value in accordance with the specific operation.

In other words, bitwise operations may create values other than 0
or 1, while the logical operators will always evaluate to 0 or 1.

The shift operators, > > and < <, move all bits in a variable to the
right or left as specified. The general form of the shift right statement is

variable > > number of bit positions
and the shift left statement is

variable < < mwmber of bit positions

Variables, Constants, Operators, and Expressions 47

x as Each Statement Value of
Executes b
char x;
x=1T; 00000111 7
Xx=x << 1; 00001110 14
X=X << §; 01110000 112
X=X << 2; 11000000 192
Xx=x>>1; 01100000 96
X=X >> 2; 00011000 24

Each left shift multiplies by 2. You should notice that information has been lost af-
ter x< <2 because a bit was shifted off the end.

Each right shift divides by 2. Notice that subsequent divisions will not bring back
any lost bits.

Table 2-10. Multiplication and Division with Shift Operators

As Dbits are shifted off one end, bits are brought in the other end.
Remember, a shift is not a rotate. That is, the bits shifted off one end do
not come back around to the other. The bits shifted off are lost, and 0s
are brought in. However, a right shift of a negative number shifts in
ones.

Bit shift operations can be very useful when decoding external
device input, like D/A converters, and reading status information. The
bitwise shift operators can also be used to perform very fast multiplica-
tion and division of integers. A shift left will effectively multiply a
number by 2 and a shift right will divide it by 2, as shown in Table 2-10.

The one’s complement operator, ~, will reverse the state of each
bit in the specified variable. That is, all 1s are set to 0, and all Os are set
to 1.

The bitwise operators are used often in cipher routines. If you
wished to make a disk file appear unreadable, you could perform some
bitwise manipulations on it. One of the simplest methods would be to
complement each byte by using the one’s complement to reverse each
bit in the byte as shown here:

48 Turbo C/C++: The Complete Reference

Original byte 00101100
After 1st complement 110100 1 1tsame
After 2nd complement 001 01100

Notice that a sequence of two complements in a row always produces
the original number. Hence, the first complement would represent the
coded version of that byte. The second complement would decode it to
its original value.

You could use the encode() function shown here to encode a char-
acter:

/* A simple cipher function. */
char encode(char ch)

return(“ch); /* complement it */

The 7 Operator

C has a very powerful and convenient operator that can be used to
replace certain statements of the if-then-else form. The ternary operator
? takes the general form

Exp1 ? Exp2 : Exp3

where Expl, Exp2, and Exp3 are expressions. Notice the use and
placement of the colon.

The ? operator works like this. Exp? is evaluated. If it is true, then
Exp2 is evaluated and becomes the value of the expression. If Expl is
false, then Exp3 is evaluated and its value becomes the value of the
expression. For example:

x = 10;
y = x>9 ? 100 : 200;
In this example, y will be assigned the value 100. If x had been less than

or equal to 9, y would have received the value 200. The same code
written using the if/else statement would be:

Variables, Constants, Operators, and Expressions 49

x = 10;

if(x>9) y = 100;
else y = 200;

The ? operator will be discussed more fully in Chapter 3 in relation-
ship to C's other conditional statements.

The & and * Pointer Operators

A pointer is the memory address of a variable. A pointer variable is a
variable that is specifically declared to hold a pointer to a value of its
specified type. Knowing a variable’s address can be of great help in
certain types of routines. Pointers have two main functions in C:

1. They can provide a very fast means of referencing array ele-
ments.

2. They allow C functions to modify their calling parameters.

These topics and uses will be dealt with later. Chapter 6 is devoted
exclusively to pointers. However, the two operators that are used to
manipulate pointers will be presented here.

The first pointer operator is &. It is a unary operator that returns
the memory address of its operand. Remember that a unary operator
only requires one operand. For example,

m = &count;

places into m the memory address of the variable count. This address is
the computer’s internal location of the variable. It has nothing to do
with the value of count. The operation of the & can be remembered as
returning the "the address of.” Therefore, the above assignment state-
ment could be read as "m receives the address of count.”

To better understand the above assignment, assume the variable
count uses memory location 2000 to store its value. Also assume that
count has a value of 100. After the above assignment, m will have the
value 2000.

50

Turbo C/C++: The Complete Reference

The second operator, *, is the complement of the &. It is a unary
operator that returns the value of the variable located at the address
that follows. For example, if m contains the memory address of the
variable count, then

q = m

places the value of count into q. Following the above example, q will
have the value 100 because 100 is stored at location 2000, which is the
memory address that was stored in m. The operation of the * can be
remembered as "at address.” In this case, the statement could be read as
"q receives the value at address m."

Unfortunately the multiplication sign and the "at address” sign are
the same and the bitwise AND and the "address of” sign are the same.
These operators have no relationship to each other. Both & and * have a
higher precedence than all other arithmetic operators except the unary
minus, with which they are equal.

Variables that will hold memory addresses, or pointers as they are
called in C, must be declared by putting a * in front of the variable name
to indicate to the compiler that it will hold a pointer to that type of
variable. For example, to declare a pointer type variable for a char ch
you would write

char *ch;

Here, ch is not a character, but rather a pointer to a character —there is
a big difference. The type of data that a pointer will be pointing to, in
this case char, is called the base type of the pointer. However, the
pointer variable itself is a variable that will be used to hold the address
to an object of the base type. Hence, a character pointer (or any pointer
for that matter) will be of sufficient size to hold an address as defined by
the architecture of the computer on which it is running. The key point to
remember is that a pointer should only be used to point to data that is
of that pointer’s base type.

You can mix both pointer and nonpointer directives in the same
declaration statement. For example,

int x, *y, count;

Variables, Constants, Operators, and Expressions 51

declares x and count to be integer types, and y to be a pointer to an
integer type.

Here, the * and & operators are used to put the value 10 into a
variable called target:

/* Assignment with * and &. */
main(void)

int target, source;
int *m;

source = 10;
m = &source;
target = *m;

return 0;

The sizeof Compile-Time Operator

sizeof is a unary compile-time operator that returns the length, in bytes,
of the variable or parenthesized type-specifier it precedes. For example,

float f;

printf("%f *, sizeof f);
printf("%d", sizeof(int));

displays 4 2.

Remember that to compute the size of a type you must enclose the
type name in parentheses (like a cast). This is not necessary for variable
names.

The principal use of sizeof is to help generate portable code when
that code depends upon the size of the C built-in data types. For
example, imagine a database program that needs to store six integer
values per record. To make the database program portable to the widest
variety of computers, you must not assume that an integer is 2 bytes;
you must determine its actual length using sizeof. This being the case,
the following routine could be used to write a record to a disk file:

/* write a record to a disk file */
put_rec(FILE *fp, int rec[6])
{

52 Turbo C/C++: The Complete Reference

int size, num;

size = sizeof(rec);
num = fwrite(rec, size, 1, fp);
if(num<>1) printf("write error");

}

The key point of this example is that, coded as shown, put_rec() will
compile and run correctly on any computer —including those with 4-byte
integers. Correctly using sizeof means that you can use Turbo C to
develop code that will ultimately run in a different environment.

The Comma Operator

The comma operator is used to string together several expressions. The
left side of the comma operator will always be evaluated as void. This
means that the expression on the right side will become the value of the
total comma-separated expression. For example,

x = (y=3, y+1);

first assigns y the value 3 and then assigns x the value of 4. The
parentheses are necessary because the comma operator has a lower
precedence than the assighment operator.

Essentially, the comma causes a sequence of operations to be per-
formed. When it is used on the right side of an assignment statement,
the value assigned is the value of the last expression of the comma
separated list. For example:

y = 10;

x = (y=y-5, 25/y);

After execution, x will have the value 5 because y's original value of 10
is reduced by 5, and then that value is divided into 25, yielding 5 as the
result.

You might think of the comma operator as having the same mean-
ing the word and has in normal English when it is used in the phrase
"do this and this and this.”

Variables, Constants, Operators, and Expressions 53

The . and —> Operators

The . (dot) operator and the —> (arrow) operator are used to reference
individual elements of structures and unions. Structures and unions are
compound data types that can be referenced under a single name.
Unions and structures will be thoroughly covered in Chapter 7, but a
short discussion of the operators used with them is given here.

The dot operator is used when operating on the actual structure or
union. The arrow operator is used when a pointer to a structure or
union is used. Suppose you were given the structure

struct employee {
char name[80];
int age;
float wage;

} emp;

struct tom *p = &emp; /* address of emp into p */

To assign the value 123.23 to element wage of structure emp, you would
write

emp.wage = 123.23;

However, the same assignment using a pointer to structure emp would
be

emp—>wage = 123.23;

There is a very important difference between older versions of C
and Turbo C in regard to the way they pass structures and unions to
functions. It is important to understand this difference if you will be
porting your code to a great many environments. In the older approach,
only a pointer to a structure or union is actually passed to a function.
(Notice that this is an exception to C’s call-by-value method of parame-
ter passing.) However, as specified by the ANSI standard, the entire
structure or union is actually passed, making it consistent with the way
other types of arguments are passed to functions. Since Turbo C follows
the ANSI standard, it uses the latter approach.

54 Turbo C/C++: The Complete Reference

[land [}

In C, parentheses do the expected job of increasing the precedence of
the operations inside of them.

Square brackets perform array indexing, and will be discussed fully
in Chapter 5. Simply, given an array, the expression within the square
brackets provides an index into that array. For example,

#include <stdio.h>
char s[80];
main(void)

s[3]='X";
printf("%c", s[3]);

return 0;

first assigns the value ‘X’ to the fourth element (remember, all arrays in
C begin at 0) of array s, and then prints that element.

Precedence Summary

Table 2-11 lists the precedence of all C operators. Note that all opera-
tors, except the unary operators and ?, associate from left to right. The
unary operators, *, &, —, and ? associate from right to left.

Expressions

Operators, constants, and variables are the constituents of expressions.
An expression in C is any valid combination of those pieces. Because
most expressions tend to follow the general rules of algebra, they are
often taken for granted. However, there are a few aspects of expres-
sions that relate to C specifically and will be discussed here.

Variables, Constants, Operators, and Expressions 55

Type Conversion in Expressions

When constants and variables of different types are mixed in an expres-
sion, they are converted to the same type. The compiler will convert all
operands "up” to the type of the largest operand. This is done on an
operation-by-operation basis as described in the following type conver-
sion rules:

1. All chars and short ints are converted to ints. All floats are
converted to doubles.

2. For all operand pairs if one of the operands is a long double, the
other operand is converted to long double.

Otherwise, if one of the operands is double, the other operand
is converted to double.

Otherwise, if one of the operands is long, the other operand is
converted to long.

Otherwise, if one of the operands is unsigned, the other oper-
and is converted to unsigned.

Highest OL[1—».
! ~ +4+ —— — (type) * & sizeof
*/ %
+._
<< >>
< <=>>=

===

&

i
&&
i

?

Lowest

Table 2-11. Precedence of C Operators

56 Turbo C/C++: The Complete Reference

char ch;
int i;
float f;
double d;

result=(ch /i) + f * d) — (+ i);

int double douLle
[[|
[| I
int double double

double

double

Figure 2-1. An example of type conversion

Once these conversion rules have been applied, each pair of oper-
ands will be of the same type and the result of each operation will be the
same as the type of both operands. Please note that the second rule has
several conditions that must be applied in sequence.

For example, consider the type conversions that occur in Figure
2-1.

First, the character ch is converted to an integer and float f is
converted to double. Then the outcome of ch/i is converted to a double
because f*d is double. The final result is double because, by this time,
both operands are double.

Casts

It is possible to force an expression to be of a specific type by using a
construct called a cast. The general form of a cast is:

Variables, Constants, Operators, and Expressions 57

(type) expression

where type is one of the standard C data types or a user-defined type.
For example, if you wished to make sure the expression x/2 would be
evaluated to type float you could write it:

(float) x/2

Casts are often considered operators. As an operator, a cast is
unary and has the same precedence as any other unary operator.

Although casts are not usually used a great deal in programming,
there are times when they can be very useful. For example, suppose you
wish to use an integer for loop control, yet perform computation on it
requiring a fractional part, as in the following program:

#include <stdio.h>

/* Print 1 and i/2 with fractions. */
main(void)
{
int i;
for(i=1; 1<=100; ++i)
printf("%d / 2 is: %f", i, (float) i /2);
return 0;)

}

Without the cast (float), only an integer division would have been
performed; but the cast ensures that the fractional part of the answer
will be displayed on the screen.

Spacing and Parentheses

To aid readability, an expression in Turbo C may have tabs and spaces
in it at your discretion. For example, the following two expressions are
the same.

x=10/y"~ (127/x) ;

x =10 /y “(127/x);

58 Turbo C/C++: The Complete Reference

Use of redundant or additional parentheses does not cause errors or
slow down the execution of the expression. You are encouraged to use
parentheses to clarify the exact order of evaluation, both for yourself
and for others who may have to read your program later. For example,
which of the following two expressions is easier to read?

x=y/3-34*temp&127;
x=(y/3) - (34*(temp & 127));

C Shorthand

C has a special shorthand that simplifies the coding of a certain type of
assignment statement. For example

x = x+10;
can be written, in C shorthand, as
x += 10;

The operator pair + = tells the compiler to assign to x the value of x
plus 10.

This shorthand works for all the binary operators in C (those that
require two operands). The general form of the shorthand

var = var operator expression;
is the same as

var operator = expression;
For another example,

x = x-1003

Variables, Constants, Operators, and Expressions 59

is the same as
x -= 100;

You will see shorthand notation used widely in professionally writ-
ten C programs and you should become familiar with it.

Program Control Statements

This chapter discusses C’s rich and varied program control statements.
These include the loop constructs while, for, and do/while, the if and
switch conditional statements, and the break, continue, and goto state-
ments. (Although the return statement technically affects program con-
trol, its discussion is deferred until the following chapter on functions.)
The exit() function is discussed here because it also can affect the flow
of a program.

mm>= I -

True and False in C

Most program control statements in any computer language, including
C, rely on a conditional test that determines what course of action is to
be taken. The conditional test produces either a true or false value.
Unlike many other computer languages that specify special values for

62

Turbo C/C++: The Complete Reference

true and false, a true value in C is any nonzero value, including negative
numbers. A false value is zero. This approach to true and false is
implemented in C primarily because it allows a wide range of routines to
be coded very efficiently.

C Statements

According to the C syntax, a statement can consist of one of the
following: a single statement, a block of statements, or nothing (in the
case of empty statements). In the descriptions presented here, the term
statement is used to mean all three possibilities.

Conditional Statements

if

C supports two types of conditional statements: if and switch. In
addition, the ? operator is an alternative to the if in certain circum-
stances.

The general form of the if statement is

if(expression) statement;
else statement;

where statement may be either a single statement or a block of state-
ments. (Remember that in C a block is a group of statements sur-
rounded by braces.) The else clause is optional.

The general form of the if with blocks of statements is

Program Control Statements 63

if(expression) {
statement sequence
}
else {
statement sequence

}

If the expression is true (anything other than 0), the statement or
block that forms the target of the if is executed; otherwise, the state-
ment or block that is the target of the else is executed. Remember, only
the code associated with the if or the code that is associated with the
else executes, never both.

For example, consider the following program, which plays a very
simple version of "guess the magic number” game. It prints the message
"+ Right **" when the player guesses the magic number.

#include <stdio.h>

/* Magic number program. */
main(void)

int magic = 123; /* magic number */
int guess;

printf("Enter your guess: ");
scanf("%d", &guess);

if(guess == magic) printf("** Right **");

return 0;

This program uses the equality operator to determine whether the
player’s guess matches the magic number. If it does, the message is
printed on the screen.

Taking the magic number program further, the next version illus-
trates use of the else statement to print a message when the wrong
number is tried.

#include <stdio.h>

/* Magic number program - improvement 1. */
main(void)

int magic = 123; /* magic number */

64

Turbo C/C++: The Complete Reference

int guess;

printf("Enter your guess: ");
scanf("%d",&guess);

if(guess == magic) printf("** Right **");
else printf(".. Wrong ..");

return 0;

Nested ifs

One of the most confusing aspects of if statements in any programming
language is nested ifs. A nested if is an if statement that is the object of
either an if or else. The reason that nested ifs are so troublesome is
that it can be difficult to know what else associates with what if. For
example:

if(x)
if(y) printf("1");
else printf("2");

To which if does the else refer?

Fortunately, C provides a very simple rule for resolving this type of
situation. In C, the else is linked to the closest preceding if that does
not already have an else statement associated with it. In this case, the
else is associated with the if(y) statement. To make the else associate
with the if(x) you must use braces to override its normal association, as
shown here:

if(x) {
if(y) printf("1");

else printf("2");

The else is now associated with the if(x) because it is no longer part of
the if(y) object block. Because of C’s scope rules, the else now has no
knowledge of the if(y) statement because they are no longer in the same
block of code.

Program Control Statements 65

A further improvement to the magic number program provides the
player with feedback on how close each guess is. This is accomplished
through the use of a nested if.

#include <stdio.h>

/* Magic number program - improvement 2. */
main(void)

int magic = 123; /* magic number */
int guess;

printf("Enter your guess: ");
scanf("%d", &guess);

if(guess == magic) {
printf("** Right ** ");
printf("%d is the magic number", magic);

else {
printf(".. Wrong .. ");
if(guess > magic) printf("Too high");
else printf("Too Tow");

return 0;

The if-else-if Ladder

A common programming construct is the if-else-if ladder. It looks like
this:

if (expression)
statement,;

else if (expression)
statement;

else if (expression)
statement;

.

else
statement;

66 Turbo C/C++: The Complete Reference

The conditions are evaluated from the top downward. As soon as a
true condition is found, the statement associated with it is executed, and
the rest of the ladder is bypassed. If none of the conditions are true, the
final else is executed. The final else often acts as a default condition;
that is, if all other conditional tests fail, the last else statement is
performed. If the final else is not present, then no action takes place if
all other conditions are false.

Using an if-else-if ladder the magic number program becomes

#include <stdio.h>

/* Magic number program - improvement 3. */
main(void)

int magic = 123; /* magic number */
int guess;

printf("Enter your guess: ");
scanf("%d", &guess);

if(guess == magic) {
printf("** Right ** ");
printf("%d is the magic number", magic);

else if(guess > magic)
printf(".. Wrong .. Too High");
else printf(".. Wrong .. Too Tow");

return 0;

The ? Alternative

The ? operator can be used to replace if/else statements of the general
form:

if(condition)
expression

else
expression

The key restriction is that the target of both the if and the else must be
a single expression —not another C statement.

Program Control Statements 67

The ? is called a ternary operator because it requires three oper-
ands and takes the general form

Exp1 ? Exp2 : Exp3

where Expl, Exp?, and Exp3 are expressions. Notice the use and
placement of the colon.

The value of an ? expression is determined as follows. Expl is
evaluated. If it is true, then Exp2 is evaluated and becomes the value of
the entire ? expression. If Expl is false, then Exp3 is evaluated and its
value becomes the value of the expression. For example:

x = 10;

y = x>9 ? 100 : 200;

In this example, y is assigned the value 100. If x had been less than or
equal to 9, y would have received the value 200. The same code written
using the if/else statement would be

x = 10;

if(x>9) y = 100;
else y = 200;

The use of the ? operator to replace if/else statements is not
restricted to assignments. Remember that all functions (except those
declared as void) can return a value. Hence, it is permissible to use one
or more function calls in a C expression. When the function’s name is
encountered, the function is, of course, executed so that its return value
can be determined. Therefore, it is possible to execute one or more
function calls using the ? operator by placing them in the expressions
that form the operands.

For example:

#include <stdio.h>
int fl(int n), f2(void);
main(void)

int t;

printf(": ");
scanf("%d", &t);

68

Turbo C/C++: The Complete Reference

/* print proper message */
t ? f1(t)+f2() : printf("zero entered");

}
fl(int n)

printf("%d ",n);
return 0;

f2(void)
{

printf("entered");
return 0;

In this simple example, if you enter a 0, the printf() function is called
and the "zero entered” message appears. If you enter any other number,
then both f1() and f2() are executed. It is important to note that the
value of the ? expression is discarded in this example; it is not necessary
to assign it to anything. Even though neither £1() nor f2() returns a
meaningful value, they cannot be defined as returning void because
doing so prevents their use in an expression. Therefore, the functions
default to returning a 0.

Using the ? operator, it is possible to rewrite the magic number
program again as shown here:

#include <stdio.h>

/* Magic number program - improvement 4. */
main(void)

int magic = 123; /* magic number */
int guess;

printf("Enter your guess: ");
scanf("%d", &guess);
if(guess == magic) {
printf("** Right ** ");
printf("%d is the magic number", magic);

else
guess > magic ? printf("High") : printf("Low");

return 0;

}

Program Control Statements 69

Here, the ? operator causes the proper message to be displayed based
on the outcome of the test guess >magiec.

switch

Although the if-else-if ladder can perform multiway tests, it is hardly
elegant. The code can be very hard to follow and can confuse even its
author at a later date. For these reasons, C has a built-in multiple-
branch decision statement called switch. A variable is successively
tested against a list of integer or character constants. When a match is
found, a statement or block of statements is executed. The general form
of the switch statement is

switch(variable) {

case constanti:
statement sequence
break;

case constant2:
statement sequence
break;

case constant3:
statement sequence
break;

default:
statement sequence

}

where the default statement is executed if no matches are found. The
default is optional and, if not present, no action takes place if all
matches fail. When a match is found, the statement associated with that

70

Turbo C/C++: The Complete Reference

case is executed until the break statement is reached or, in the case of
the default (or last case if no default is present), the end of the switch
statement is encountered.

There are three important things to know about the switch state-
ment:

1. The switch differs from the if in that switch can only test for
equality whereas the if can evaluate a relational or logical expres-
sion.

2. No two case constants in the same switch can have identical
values. Of course, a switch statement enclosed by an outer switch
may have case constants that are the same.

3. If character constants are used in the switch, they are automati-
cally converted to their integer values.

The switch statement is often used to process keyboard commands,
such as menu selection. As shown here, the function menu() displays a
menu for a spelling checker program and calls the proper procedures:

void menu(void)
char ch;

printf("1. Check Spelling\n");

printf("2. Correct Spelling Errors\n");
printf("3. Display Spelling Errors\n");
printf("Strike Any Other Key to Skip\n");
printf(" Enter your choice: ");

ch = getche(); /* read the selection from
the keyboard */

switch(ch) {

case 'l':
check_spelling();
break;

case '2':
correct_errors();
break;

case '3':
display_errors();
break;

Program Control Statements 71

default :
printf("No option selected");

Technically, the break statements are optional inside the switch
statement. They are used to terminate the statement sequence associ-
ated with each constant. If the break statement is omitted, execution
continues into the next case’s statements until either a break or the end
of the switch is reached. You can think of the cases as labels. Execution
starts at the label that matches and continues until a break statement is
found, or the switch ends. For example, the function shown here makes
use of the "drop through” nature of the cases to simplify the code for a
device driver input handler:

void inp_handler(void)
int ch, flag;

ch = read_device(); /* read some sort of device */
flag = -1;

switch(ch) {
case 1: /* these cases have common statement */
case 2: /* sequences */
case 3:
flag = 0;
break;
case 4:
flag = 1;
case 5:
error(flag);
break;
default:
process(ch);

}
This routine illustrates two facets of the switch statement. First, you

can have empty conditions. In this case, the first three constants all
execute the same statements:

flag = 0;
break;

Second, execution continues into the next case if no break state-
ment is present. If ch matches 4, flag is set to 1 and, because there is no

72

Turbo C/C++: The Complete Reference

break statement, execution continues and the statement error(flag) is
executed. In this case, flag has the value 1. If ch had matched 5,
error(flag) would have been called with a flag value of —1. The ability
to run cases together when no break is present enables you to create
very efficient code because it prevents the unwarranted duplication of
code.

It is important to understand that the statements associated with
each label are not code blocks but rather statement sequences. (Of
course, the entire switch statement defines a block.) This technical
distinetion is important only in certain special situations. For example,
the following code fragment is in error and will not even compile
because it is not possible to declare a variable in a statement sequence:

/* This is incorrect. */
switch(c) {
case 1:
int t;

However, a variable could be added as shown here:

/* This is correct. */
switch(c) {

int t;

case 1:

Of course, it is possible to create a block of code as one of the
statements in a sequence and declare a variable within it as shown here:

/* This is also correct. */
switch(c) {
case 1:
if(1) { /* always true, used to create block */
int t;

Program Control Statements 73

Nested switch Statements

It is possible to have a switch as part of the statement sequence of an
outer switch. Even if the case constants of the inner and outer switch
contain common values, no conflicts will arise. For example, the follow-
ing code fragment is perfectly acceptable:

switch(x) {
case 1:
switch(y) {
case 0: printf("divide by zero error");
break;
case 1: process(x,y);
}
break;
case 2:

Loops

for

In C, and all other modern programming languages, loops allow a set of
instructions to be performed until a certain condition is reached. This
condition may be predefined as in the for loop, or open-ended as in the
while and do loops.

The general format of C’s for loop is probably familiar to you because it
is found in one form or another in all procedural programming lan-
guages. However, in C it has unexpected flexibility and power.

The general form of the for statement is

for(initialization; condition; increment) statement;

The for statement allows many variants, but there are three main parts:

74

Turbo C/C++: The Complete Reference

1. The initialization is usually an assignment statement that is
used to set the loop control variable.

2. The condition is a relational expression that determines when
the loop will exit.

3. The increment defines how the loop control variable will change
each time the loop is repeated.

These three major sections must be separated by semicolons. The
for loop continues to execute as long as the condition is true. Once the
condition becomes false, program execution resumes on the statement
following the for loop.

For a simple example, the following program prints the numbers 1
through 100 on the terminal:

#include <stdio.h>
main(void)
int x;
for(x=1; x<=100; x++) printf("%d ", x);

return 0;

In the program, x is initially set to 1. Since x is less than 100,
printf() is called, x is increased by 1, and x is tested to see if it is still
less than or equal to 100. This process repeats until x is greater than
100, at which point the loop terminates. In this example, x is the loop
control variable, which is changed and checked each time the loop
repeats.

Here is an example of a for loop that contains multiple statements:

for(x=100; x!=65; x-=5) {
z = sqrt(x);
printf("The square root of %d, %f", x, z);

Both the sqrt() and printf() calls are executed until x equals 65. Note
that the loop is megative running: x was initialized to 100, and 5 is
subtracted from it each time the loop repeats.

Program Control Statements 75

An important point about for loops is that the conditional test is
always performed at the top of the loop. This means that the code inside
the loop may not be executed at all if the condition is false to begin with.
For example:

x = 10;
for(y=10; yl=x; ++y) printf("%d", y);

printf("%d", y);

This loop never executes because x and y are in fact equal when the loop
is entered. Because the conditional expression is false, neither the body
of the loop nor the increment portion of the loop is executed. Hence, y
still has the value 10 assigned to it, and the output is only the number 10
printed once on the screen.

for Loop Variations

The preceding discussion described the most common form of the for
loop. However, several variations are allowed that increase its power,
flexibility, and applicability to certain programming situations.

One of the most common variations is achieved by using the comma
operator to allow two or more variables to control the loop. (You should
recall that the comma operator is used to string together a number of
expressions in a sort of "do this and this” fashion. It is described in
Chapter 2.) For example, this loop uses the variables x and y to control
the loop, with both variables being initialized inside the for statement.

for(x=0, y=0; x+y<10; ++x) {
scanf("%d", &y);

Here, commas separate the two initialization statements. Each time
x is incremented the loop repeats, and y's, value is set by keyboard
input. Both x and y must be at the correct value for the loop to
terminate. It is necessary to initialize y to 0 so that its value is defined

76

Turbo C/C++: The Complete Reference

prior to the first evaluation of the conditional expression. If y were not
defined it might, by chance or earlier program usage, contain a 10,
thereby making the conditional test false and preventing the loop from
executing.

Another example of using multiple loop-control variables is found in
the reverse() function shown here. The purpose of reverse() is to copy
the contents of the first string argument back-to-front into the second
string argument. If it is called with "hello” in s, upon completion, r
contains "olleh.”

/* Copy s into r backwards. */
void reverse(char *s, char *r)
int i, Jj;

for(i=strlen(s)-1, j=0; i>=0; j++,i--) r[i] = s[il;
r[i] = '\0'; /* append null terminator */

The conditional expression does not necessarily involve simply test-
ing the loop control variable against some target value. In fact, the
condition may be any relational or logical statement. This means that
you can test for several possible terminating conditions. For example,
this function could be used to log a user onto a remote system. The user
is given three tries to enter the password. The loop terminates when
either the three tries are used up or the correct password is entered.

void sign_on(void)

char str[20];
int x;

for(x=0; x<3 && strcmp(str, "password"); ++x) {
printf("enter password please:");
gets(str);

if(x==3) hang_up();

Remember, stremp() is a standard library function that compares
two strings and returns 0 if they match.

Another interesting variation of the for loop is created by remem-
bering that each of the three sections of the for may consist of any valid

Program Control Statements 77

C expression. They need not actually have anything to do with what the
sections are usually used for. With this in mind, consider the following
example:

#include <stdio.h>

int readnum(void), prompt(void);
int sqraum(int num);

main(void)
int t;

for(prompt(); t=readnum(); prompt())
sqroum(t);
return 0;

prompt (void)

printf(": ");
return 0;

readnum(void)
int t;

scanf("%d", &t);
return t;

sqraum(int num)

printf("%d\n", num*num);
return 0;

}

If you look closely at the for loop in main(), you will see that each part
of the for comprises function calls that prompt the user and read a
number entered from the keyboard. If the number entered is 0, the loop
terminates because the conditional expression is false; otherwise the
number is squared. Thus, in this for loop the initialization and increment
portions are used in a nontraditional, but completely valid sense.

Another interesting trait of the for loop is that pieces of the loop
definition need not be there. In fact, there need not be an expression
present for any of the sections; they are optional. For example, this loop
runs until 123 is entered:

for(x=0; x!=123;) scanf("%d", &x);

78 Turbo C/C++: The Complete Reference

Notice that the increment portion of the for definition is blank. This
means that each time the loop repeats, x is tested to see if it equals 123,
but no further action takes place. If, however, you type 123 at the
keyboard, the loop condition becomes false and the loop terminates.

It is not uncommon to see the initialization occur outside the for
statement. This most frequently happens when the initial condition of
the loop control variable must be computed by some complex means.
For example:

gets(s); /* read a string into s */
if(*s) x = strlen(s); /* get the string's length */

for(;x<10;) {
printf("%d", x);
++X3

}

Here, the initialization section has been left blank and x is initialized
before the loop is entered.

The Infinite Loop

One of the most interesting uses of the for loop is the creation of the
infinite loop. Since none of the three expressions that form the for loop
are required, it is possible to make an endless loop by leaving the
conditional expression empty. For example:

for(;;) printf(" this loop will run forever.\n");

Although you may have an initialization and inerement expression it is
more common among C programmers to use the for(;;) with no expres-
sions to signify an infinite loop.*

Actually, the for(;;) construct does not necessarily create an infinite
loop because C’s break statement, when encountered anywhere inside

LThere is a small, but persistent, group of C programmers that use the while(1)
method of creating an infinite loop. They both work equally well. The for(;;) method
is recommended only because it is the more common form.

Program Control Statements 79

the body of a loop, causes immediate termination. (The break statement
is discussed later in this chapter.) Program control then picks up at the
code following the loop, as shown here:

ch = "\0';

for(s;) {
ch = getchar(); /* get a character */
if(ch=="'A") break; /* exit the Toop */

printf("you typed an A");

This loop will run until A is typed at the keyboard.

for Loops with No Bodies

A statement, as defined by the C syntax, may be empty. This means that
the body of the for (or any other loop) may also be empty. This fact can
be used to improve the efficiency of certain algorithms as well as to
create time delay loops.

One of the most common tasks to occur in programming is the
removal of spaces from an input stream. For example, a database may
allow a query such as "show all balances less than 400.” The database
needs to have each word of the query fed to it separately, without
spaces. That is, the database input processor recognizes "show” but not
" show” as a command. The following loop removes any leading spaces
from the stream pointed to by str:

for(3 *str==' '; str++) ;

As you can see, there is no body to this loop—and no need for one
either.

Time delay loops are often used in programs. The following shows
how to create one using for:

for(t=0; t<SOME_VALUE; t++) ;

80 Turbo C/C++: The Complete Reference

while

The second loop available in C is the while. The general form is
while(condition) statement;

where statement, as stated earlier, is either an empty statement, a
single statement, or a block of statements that is to be repeated. The
condition may be any expression, with true being any nonzero value.
The loop iterates while the condition is true. When the condition be-
comes false, program control passes to the line after the loop code.

The following example shows a keyboard input routine that simply
loops until A is pressed:

void wait_for_char(void)
char ch;

ch = '\0'; /* initialize ch */
while(ch!='A') ch = getchar();

First, ch is initialized to null. As a local variable, its value is not known
when wait__for_char() is executed. The while loop then begins by
checking to see if ch is not equal to 'A’. Because ch was initialized to
null beforehand, the test is true and the loop begins. Each time a key is
pressed on the keyboard, the test is tried again. Once an 'A’ is input,
the condition becomes false because ch equals 'A’, and the loop termi-
nates.

As with the for loop, while loops check the test condition at the top
of the loop, which means that the loop code may not execute at all. This
eliminates having to perform a separate conditional test before the loop.
A good illustration of this is the function pad(), which adds spaces to
the end of a string up to a predefined length. If the string is already at
the desired length, no spaces will be added.

/* Add spaces to the end of a string. */
void pad(char *s, int length)

int 1;

Program Control Statements 81

1 = strlen(s); /* find out how long it is */

while(1<length) {
s(11 = * '; /* insert a space */
T4+

}

s[1] = '"\0'; /* strings need to be
terminated in a null */

The two arguments to pad() are s, a pointer to the string to
lengthen, and length, the number of characters that s will be length-
ened to. If the string s is already equal to or greater than length, the
code inside the while loop never executes. If s is less than length,
pad() adds the required number of spaces to the string. The strlen()
function, which is part of the standard library, returns the length of the
string.

Where several separate conditions may be needed to terminate a
while loop, it is common to have only a single variable forming the
conditional expression with the value of this variable being set at various
points throughout the loop. For example:

void funcl(void)
int working;
working = 1; /* i.e., true */

while(working) {
working=processl();
if(working)
working=process2();
if(working)
working=process3();

Here, any of the three routines may return false and cause the loop to
exit.

There need not be any statements at all in the body of the while
loop. For example,

while((ch=getchar()) 1= 'A') ;

82

Turbo C/C++: The Complete Reference

simply loops until A is typed at the keyboard. If you feel uncomfortable
with the assignment inside the while conditional expression, remember
that the equal sign is really just an operator that evaluates to the value
of the right-hand operand.

do/while

Unlike the for and while loops that test the loop condition at the top of
the loop, the do/while loop checks its condition at the bottom of the
loop. This means that a do/while loop always executes at least once. The
general form of the do/while loop is

do {
statement sequence;
} while(condition);

Although the braces are not necessary when only one statement is
present, they are usually used to improve readability and avoid confu-
sion (to the reader, not the compiler) with the while.

This do/while reads numbers from the keyboard until one is less
than or equal to 100.

do {
scanf("%d", &num);
} while(num>100);

Perhaps the most common use of the do/while is in a menu selec-
tion routine. When a valid response is typed it is returned as the value
of the function. Invalid responses cause a reprompt. The following shows
an improved version of the spelling checker menu that was developed
earlier in this chapter:

void menu(void)
char ch;
printf("1. Check Spelling\n");

printf("2. Correct Spelling Errors\n");
printf("3. Display Spelling Errors\n");

Program Control Statements 83

printf(" Enter your choice: ");

do {
ch = getche(); /* read the selection from
the keyboard */
switch(ch) {
case '1':
check_spelling();
break;
case '2':
correct_errors();
break;
case '3':
display_errors();
break;

}
} while(ch!='1' && ch!='2" & ch!='3");

In the case of a menu function, you always want it to execute at
least once. After the options have been displayed, the program loops
until a valid option is selected.

break

The break statement has two uses. The first is to terminate a case in
the switch statement, and is covered earlier in this chapter in the
section on the switch. The second use is to force immediate termination
of a loop, bypassing the normal loop conditional test. This use is exam-
ined here.

When the break statement is encountered inside a loop, the loop is
immediately terminated and program control resumes at the next state-
ment following the loop. For example:

#include <stdio.h>
main(void)

int t;

for(t=0; t<100; t++) {

printf("%d ", t);
if(t==10) break;

84

Turbo C/C++: The Complete Reference

return 0;

This prints the numbers 0 through 10 on the screen and then terminates
because the break causes immediate exit from the loop, overriding the
conditional test t <100 built into the loop.

The break statement is commonly used in loops in which a special
condition can cause immediate termination. For example, here a key-
press can stop the execution of the look _up() routine:

Took_up(char *name)

char tname[40];

int loc;
loc = -1;
do {

loc = read_next_name(tname);
if(kbhit()) break;
} while(!strcmp(tname, name));
return loc;

You can use this function to find a name in a database file. If the file is
very long and you are tired of waiting, you could strike a key and return
from the function early. The kbhit() function returns 0 if no key has
been hit; nonzero otherwise.

A break will cause an exit from only the innermost loop. For
example,

for(t=0; t<100; +=t) {
count = 1;
for(s;) {
printf("%d ", count);
count++;
if(count==10) break;

prints the numbers 1 through 10 on the screen 100 times. Each time the
break is encountered, control is passed back to the outer for loop.

A break used in a switch statement affects only that switch and
not any loop the switch happens to be in.

Program Control Statements 85

exit()

The function exit(), which is found in the standard library, causes
immediate termination of the entire program. Because the exit() funec-
tion stops program execution and foreces a return to the operating
system, its use is somewhat specific as a program control device, yet a
great many C programs rely on it. The exit() function has this general
form:

void exit(int status);

It uses the stdlib.h header file. The value of status is returned to the
operating system.

exit() is traditionally called with an argument of 0 to indicate that
termination is normal. Other arguments are used to indicate some sort
of error that a higher-level process will be able to access.

A common use of exit() occurs when a mandatory condition for the
program’s execution is not satisfied. For example, imagine a computer
game in which a color graphics card must be present in the system. The
main() function of this game might look like

#include <stdlib.h>
main(void)

if(lcolor_card()) exit(1);
play()s
return 0;

}

where color _card() is a user-defined function that returns true if the
color card is present. If the card is not in the system, color_card()
returns false and the program terminates.

As another example, exit() is used by this version of menu() to
quit the program and return to the operating system:

void menu(void)
char ch;

printf("1. Check Spelling\n");
printf("2. Correct Spelling Errors\n");

86

Turbo C/C++: The Complete Reference

printf("3. Display Spelling Errors\n");
printf("4. Quit\n");
printf(" Enter your choice: ");

do {
ch = getchar(); /* read the selection from
the keyboard */
switch(ch) {
case 'l':
check_spelling();
break;
case '2':
correct_errors();
break;
case '3':
display_errors();
break;
case '4':
exit(0); /* return to 0S */

}
} while(ch!='1"' && chl='2"' & ch!='3');

continue

The continue statement works somewhat like the break statement. But,
instead of forcing termination, continue forces the next iteration of the
loop to take place, skipping any code in between. For example, the
following routine displays only positive numbers:

do {
scanf("%d", &num);
if(x<0) continue;
printf("%d ", x);
} while(x!=100);

In while and do/while loops, a continue statement causes control
to go directly to the conditional test and then continue the looping
process. In the case of the for, first the increment part of the loop is
performed, next the conditional test is executed, and finally the loop
continues. The previous example could be changed to allow only 100
numbers to be printed, as shown here:

Program Control Statements 87

for(t=0; t<100; ++t) {
scanf("%d", &num);
if(x<0) continue;
printf("%d ", x);

In the following example, continue is used to expedite the exit from
a loop by forcing the conditional test to be performed sooner:

void code(void)
char done, ch;

done = 0;
while(!done) {
ch = getchar();
if(ch=="%"') {
done = 1;
continue;

}
putchar(ch+1); /* shift the alphabet one
position */
} .
}

You could use this function to code a message by shifting all characters
one letter higher; for example, 'a’ would become 'b’. The function
terminates when a '$’ is read, and no further output oceurs because the
conditional test, brought into effect by continue, finds done to be true
and causes the loop to exit.

Labels and goto

Although goto fell out of favor some years ago, it has managed to polish
its tarnished image a bit recently. This book will not judge its validity as
a form of program control. It should be stated, however, that there are
no programming situations that require its use; it is a convenience,
which, if used wisely, can be beneficial in certain programming situa-
tions. As such, goto is not used extensively in this book outside of this
section. (In a language like C, which has a rich set of control structures
and allows additional control using break and continue, there is little
need for it.) The chief concern most programmers have about the goto

88

Turbo C/C++: The Complete Reference

is its tendency to confuse a program and render it nearly unreadable.
However, there are times when the use of the goto actually clarifies
program flow rather than confuses it.

The goto requires a label for operation. A label is a valid C identi-
fier followed by a colon. The label must be in the same function as the
goto that uses it. For example, a loop from 1 to 100 could be written
using a goto and a label as shown here:

x =1;

Toopl:
X+
if(x<100) goto loopl;

One good use for the goto is to exit from several layers of nesting.
For example:

for(...) {
for(...) {
while(...) {
if(...) goto stop;

.
}
}

stop:
printf("error in program\n");

Eliminating the goto would force a number of additional tests to be
performed. A simple break statement would not work here because it
would only exit from the innermost loop. If you substituted checks at
each loop, the code would then look like

done = 0;
for(...) {
for(...) {
while(...) {
if(...) {
done = 1;

break;

Program Control Statements 89

}
if(done) break;

if(done) break;

You should use the goto sparingly, if at all. But if the code would be
much more difficult to read or if execution speed of the code is critical,
by all means use the goto.

Functions

Functions are the building blocks of C in which all program activity
occurs. The general form of a function is

type-specifier function _name(parameter list)

body of the function

The type-specifier specifies the type of value that the function returns
using the return statement. It can be any valid type. If no type is
specified, the function is assumed to return an integer result. The
parameter list is a comma-separated list of variables that receive the
values of the arguments when the function is called. A function may be
without parameters, in which case the parameter list contains only the
keyword void.

The return Statement

The return statement has two important uses. First, it causes an imme-
diate exit from the function it is in. That is, it causes program execution
to return to the calling code. Second, it can be used to return a value.
Both of these uses are examined here.

Returning from a Function

There are two ways that a function terminates execution and returns to
the caller. One way is when the last statement in the function has

92 Turbo C/C++: The Complete Reference

executed and, conceptually, the function’s ending } is encountered. (Of
course, the curly brace isn't actually present in the object code, but you
can think of it in this way.) For example, this function simply prints a
string backward on the screen:

void pr_reverse(char *s)
register int t;

for(t=strien(s)-1; t>-1; t--) printf("%c", s[t]);

Once the string has been displayed, there is nothing left for the function
to do, so it returns to the place it was called from.

However, not many functions use this default method of terminating
their execution. Most functions rely on the return statement to stop
execution either because a value must be returned or to simplify a
function’s code and make it more efficient by allowing multiple exit
points. It is important to remember that a function may have several
return statements in it. For example, the function shown here returns
either the index of the first occurrence of the substring pointed to by sl
within the string pointed to by s2 or —1 if no match is found:

find_substr(char *sl, char *;2)

register int t;
char *p, *p2;

for(t=0; si[t]; t++) {
p = &sl1[t];
p2 = s2;
while(*p2 && *p2==+p) {
pH;
p2t+;

}
if(1*p2) return t;

return -1;

Notice how the two return statements help simplify this function.

Functions 93

Return Values

All functions, except those of type void, return a value. This value is
explicitly specified by the return statement. If a function is not specified
as void and if no return value is specified, then an unknown garbage
value is returned. As long as a function is not declared as void it can be
used as an operand in any valid C expression. Therefore, each of the
following expressions is valid in Turbo C:

x = power(y);
if(max(x, y) > 100) printf("greater");

for(ch=getchar(); isdigit(ch);) ... ;

However, a function cannot be the target of an assignment. A
statement such as

swap(x, y) = 100; /* incorrect statement */

is wrong. Turbo C will flag it as an error and not compile a program
that contains a statement like this.

Keep in mind that if a function is declared as void it cannot be used
in any expression. For example, assume that f() is declared as void. The
following statements will not compile:

int t;
t = f(); /* no value to assign to t */

f()+f(); /* no value to add */

Although all functions not of type void have return values, when
you write programs you generally use three types of functions. The first
is simply computational. It is designed specifically to perform operations

94

Turbo C/C++: The Complete Reference

on its arguments and return a value based on that operation—it is
essentially a "pure” function. Examples of this sort of function are the
standard library functions sqr() and sin().

The second type of function manipulates information and returns a
value that simply indicates the success or failure of that manipulation.
An example is fwrite(), which is used to write information to a disk file.
If the write operation is successful, fwrite() returns the number of
items successfully written. If an error occurs, the number returned is
not equal to the number of items it was requested to write.

The last type of function has no explicit return value. In essence,
the function is strictly procedural and produces no value. An example is
srand(), which is used to initialize the random-number-generating func-
tion rand(). Sometimes, functions that don't produce an interesting
result often return something anyway. For example, printf() returns
the number of characters written. It would be very unusual to find a
program that actually checked this. Therefore, although all functions,
except those of type void, return values, you don’t necessarily have to
use them for anything. A very common question concerning function
return values is, "Don’t I have to assign this value to some variable
since a value is being returned?” The answer is no. If there is no
assignment specified, then the return value is simply discarded. Con-
sider the following program, which uses mul():

#include <stdio.h>

mul (int a, int b);

main(void)
int x, y, z;
x =10; y=20;
z = mul(x, y); /* 1 %/
printf("%d", mul(x, y)); /* 2 */
mul(x, y); /* 3 %/

return 0;

}
mul(int a, int b)

return a*b;

Line 1 assigns the return value of mul() to z. In line 2, the return value
is not actually assigned, but it is used by the printf() function. Finally,

Functions 95

in line 3, the return value is lost because it is neither assigned to
another variable nor used as part of an expression.

Returning Values from main()

When you use a return statement in main(), your program returns a
termination code to the calling process (usually to the operating sys-
tem). The returned value must be an integer. For many operating
systems, including DOS and OS/2, a return value of 0 indicates that the
program terminated normally. All other values indicate that some error
occurred.

All the programs in this book return values from main(), although
technically this is optional. If you don’t specify a return value, then
Turbo C returns an unknown value to the operating system. For this
reason, it is a good idea to use an explicit return statement.

Scope Rules of Functions

The scope rules of a language are the rules that govern whether a piece
of code knows about, or has access to, another piece of code or data.

Each function in C is a discrete block of code. A function’s code is
private to that function and cannot be accessed by any statement in any
other function except through a call to that function. (It is not possible,
for instance, to use the goto to jump into the middle of another func-
tion.) The code that makes up the body of a function is hidden from the
rest of the program and, unless it uses global variables or data, it can
neither affect nor be affected by other parts of the program. In other
words, the code and data that are defined within one function cannot
interact with the code and data defined in another function because the
two functions have a different scope.

Variables that are defined within a function are called local vari-
ables. A local variable comes into existence when the function is entered
and is destroyed upon exit. Therefore, local variables cannot hold their
value between function calls. The only exception to this rule is when the
variable is declared with the static storage-class specifier. This causes

926

Turbo C/C++: The Complete Reference

the compiler to treat it like a global variable for storage purposes, but
still limit its scope to within the function. (Chapter 2 contains a complete
discussion of global and local variables.)

All functions in C are at the same scope level. That is, it is not
possible to define a function within a function.

Function Arguments

If a function is to use arguments, it must declare variables that accept
the values of the arguments. These variables are called the formal
parameters of the function. They behave like other local variables inside
the function and are created upon entry into the function and destroyed
upon exit. As shown in the following example, the parameter declaration
occurs after the function name and before the function’s opening brace:

/* return 1 if ¢ is part of string s; 0 otherwise */
is_in(char *s, char c)

while(*s)
if(*s==c) return 1;
else s++;

return 0;

The function is_in() has two parameters: s and c. This function re-
turns 1 if the character c is part of the string s and 0 otherwise.

As with local variables, you can make assignments to a function’s
formal parameters or use them in any allowable C expression. Even
though these variables perform the special task of receiving the value of
the arguments passed to the function, they can be used like any other
local variable.

Call by Value, Call by Reference

In general, subroutines can be passed arguments in one of two ways.
The first is called call by value. This method copies the value of an

Functions 97

argument into the formal parameter of the subroutine. Changes made to
the parameters of the subroutine have no effect on the variables used to
call it.

Call by reference is the second way a subroutine can have argu-
ments passed to it. In this method, the address of an argument is copied
into the parameter. Inside the subroutine, the address is used to access
the actual argument used in the call. This means that changes made to
the parameter affect the variable used to call the routine.

With a few exceptions, C uses call by value to pass arguments. This
means that you generally cannot alter the variables used to call the
function. (You will find out later in this chapter how to generate a call by
reference by using a pointer to allow changes to the calling variables.)
Consider the following function:

#include <stdio.h>

int sqr(int x);

main(void)
int t=10;
printf("%d %d", sqr(t), t);
return 0;

?qr(int x)

X = X*X;
return(x);

In this example, the value of the argument to sqr(), 10, is copied into
the parameter x. When the assignment x=x#*x takes place, the only
thing modified is the local variable x. The variable t, used to call sqr(),
still has the value 10. Hence, the output will be "100 10".

Remember that only a copy of the value of the argument is passed
to that function. What occurs inside the function has no effect on the
variable used in the call.

Creating a Call by Reference

Even though C's parameter-passing convention is call by value, it is
possible to cause a call by reference by passing a pointer to the

98

Turbo C/C++: The Complete Reference

argument. Since this passes the address of the argument to the function,
it is then possible to change the value of the argument outside the
function. :

Pointers are passed to functions just like any other value. Of course,
it is necessary to declare the parameters as pointer types. For example,
the function swap(), which exchanges the value of its two integer
arguments, is shown here:

void swap(int *x, int *y)
int temp;

temp = *x; /* save the value at address x */
X = %y, / put y into x */
y = temp; / put x intoy */

The * operator is used to access the variable pointed to by its operand.
(A complete discussion of the * is found in Chapter 2. Also, Chapter 6
deals exclusively with pointers.) Hence, the contents of the variables
used to call the function are swapped.

It is important to remember that swap() (or any other function
that uses pointer parameters) must be called with the addresses of the
arguments. The following program shows the correct way to call
swap():

#include <stdio.h>
void swap(int *x, int *y);
main(void)

int x, y;

x = 10;

y = 20;

swap (&x, &y);
printf("%d %d" , x, y);
return 0;

}

In this example, the variable x is assigned the value 10, and y is
assigned the value 20. Then swap() is called with the addresses of x
and y. The unary operator & is used to produce the addresses of the
variables. Therefore, the addresses of x and y, not their values, are
passed to the function swap().

Functions 99

Calling Functions with Arrays

Arrays will be covered in detail in Chapter 5. However, the operation of
passing arrays as arguments to functions is dealt with here because it is
an exception to the standard call by value parameter-passing conven-
tion.

When an array is used as an argument to a function, only the
address of the array is passed, not a copy of the entire array. When you
call a function with an array name, a pointer to the first element in the
array is passed to the function. (Remember that in C an array name
without any index is a pointer to the first element in the array.) The
parameter declaration must be of a compatible pointer type. There are
three ways to declare a parameter that is to receive an array pointer.
First, it can be declared as an array, as shown here:

#include <stdio.h>
void display(int num[10]);
main(void) /* print some numbers */
int t[10], i;
for(i=0; i<10; ++i) t[i]=i;
display(t);
return 0;
void display(int num[10])
t int i3

for(i=0; i<10; i++) printf("%d ", num[i]);

Even though the parameter num is declared to be an integer array of
10 elements, Turbo C automatically converts it to an integer pointer
because no parameter can actually receive an entire array. Only a
pointer to an array is passed, so a pointer parameter must be there to
receive it.

A second way to declare an array parameter is to specify it as an
unsized array, as shown here,

void display(int num[])
{

100

Turbo C/C++: The Complete Reference

int i;

for(i=0; i<10; i++) printf("%d ", num[i]);

where num is declared to be an integer array of unknown size. Since C
provides no array boundary checks, the actual size of the array is
irrelevant to the parameter (but not to the program, of course). This
method of declaration also actually defines num as an integer pointer.

The final way that num can be declared—and the most common
form in professionally written C programs—is as a pointer, as shown
here:

void display(int *num)

int i;

for(i=0; i<10; i++) printf("%d ", num[i]);
}

This is allowed because any pointer can be indexed using [] as if it were
an array. (Actually, arrays and pointers are very closely linked.)

All three methods of declaring an array parameter yield the same
result: a pointer.

On the other hand, an array element used as an argument is treated
like any other simple variable. For example, the program just examined
could have been written without passing the entire array, as shown
here:

#include <stdio.h>

void display(int num);

main(void) /* print some numbers */
int t[10], 1i;
for(i=0; i<10; ++i) t[i]=i;
for(i=0; i<10; i++) display(t[il);
return 0;

void display(int num)

printf("%d ", num);

Functions 101

As you can see, the parameter to display() is of type int. It is not
relevant that display() is called by using an array element, because
only that one value of the array is passed.

It is important to understand that when an array is used as a
function argument, its address is passed to a function. This is an excep-
tion to C's call by value parameter-passing convention. This means that
the code inside the function operates on and potentially alters the actual
contents of the array used to call the function. For example, consider
the function print_upper() which prints its string argument in upper-
case:

#include <stdio.h>

#include <ctype.h>

void print_upper(char *string);

main(void) /* print string as uppercase */
char s[80];

gets(s);
print_upper(s);

return 0;

void print_upper(char *string)
register int t;
for(t=0; string[t]; ++t) {
string[t] = toupper(string[t]);
printf("%c", string[t]);

}

After the call to print__upper(), the contents of array s in main() are
changed to uppercase. If this is not what you want to happen, you could
write the program like this:

#include <stdio.h>

#include <ctype.h>

void print_upper(char *string);

main(void) /* print string as uppercase */

char s[80];

102 Turbo C/C++: The Complete Reference

gets(s);
print_upper(s);
return 0;

}
void print_upper(char *string)
register int t;

for(t=0; string[t]; ++t)
printf("%c", toupper(string[t]));

In this version, the contents of array s remain unchanged because its
values are not altered.

A classic example of passing arrays to functions is found in the
standard library function gets(). Although the gets() in Turbo C's
library is more sophisticated and complex, the function shown in the
following example will give you an idea of how it works. To avoid
confusion with the standard function, this one is called xgets().

/* A simplified version of the standard
gets() Tibrary function. */

void xgets(char *s)

register char ch;
register int t;

for(t=0; t<79;) {
ch = getche();
switch(ch) {
case '\r':
s[t] = '\0'; /* null terminate the string */
return;
case '\b':
if(t>0) t--3
break;
default:
s[t] = ch;
t++;

}
}
s[79] = "\0';

The xgets() function must be called with a character pointer, which can
be either a variable that you declare to be a character pointer or the
name of a character array, which by definition is a character pointer.

Functions 103

Upon entry, xgets() establishes a for loop from 0 to 79. This prevents
larger strings from being entered at the keyboard. If more than 80
characters are typed, the function returns. Because C has no built-in
bounds checking, you should make sure that any variable used to call
xgets() can accept at least 80 characters. As you type characters on the
keyboard, they are entered in the string. If you type a backspace, the
counter t is reduced by 1. When you enter a carriage return, a null is
placed at the end of the string, signaling its termination. Because the
actual array used to call xgets() is modified, upon return it will contain
the characters typed.

Arguments to main()

Turbo C supports three arguments to main(). The first two are the
traditional arguments: arge and argv. These are also the only argu-
ments to main() defined by the ANSI standard. They allow you to pass
command-line arguments to your C program. A command-line argu-
ment is the information that follows the program’s name on the com-
mand line of the operating system. For example, when you compile
programs using Turbo C’s command-line version, you type something
like

tee program _name

where program _name is the program you wish compiled. The name of
the program is passed to Turbo C as an argument.

The arge parameter holds the number of arguments on the com-
mand line and is an integer. It will always be at least 1 because the
name of the program qualifies as the first argument. The argv parame-
ter is a pointer to an array of character pointers. Each element in this
array points to a command-line argument. All command-line arguments
are strings; any numbers have to be converted by the program into the
proper internal format. The following short program prints "Hello”, then
your name if you type it directly after the program name:

104 Turbo C/C++: The Complete Reference

#include <stdio.h>
main(int argc, char *argv[])

if(arge!=2) {
printf("You forgot to type your name\n");
return 1;

}
printf("Hello %s", argv[1]);

return 0;

}

If you title this program name and your name is Chris, to run the
program you would type "name Chris". The output from the program
would be "Hello Chris”. For example, if you were logged into drive A,
you would see

A>name Chris
Hello Chris
A>

after running name.

Command-line arguments must be separated by a space or a tab.
Commas, semicolons, and the like are not considered separators. For
example,
run Spot run
is composed of three strings, while

Herb,Rick,Fred

is one string —commas are not legal separators.

If you want to pass a string that contains spaces or tabs as a single
argument, you must enclose that string within double quotes. For exam-
ple, to Turbo C, this is a single argument:

"this is a test"

It is important that you deleare argv properly. One common method is

Functions 105

char *argv[];

The empty brackets indicate that it is an array of undetermined length.
You can now access the individual arguments by indexing argv. For
example, argv[0] points to the first string, which is always the
program’s name; argv[1] points to the next string, and so on.

A short example using command-line arguments is the following
program called countdown. It counts down from a value specified on
the command line and beeps when it reaches 0. Notice that the first
argument containing the number is converted into an integer using the
standard function atoi(). If the string "display” is present as the second
command-line argument, the count will also be displayed on the screen.

/* Countdown program. */

#include <stdio.h>

main(int argc, char *argv[])
int disp, count;

if(argc<2) {
printf("You must enter the length of the count\n");
printf("on the command 1ine. Try again.\n");
return 1;

}

if(argc==3 && !strcmp(argv[2],"display")) disp = 1;
else disp = 0;

for(count=atoi(argv[1]); count; --count)
if(disp) printf("%d ", count);

printf("%c", 7); /* this will ring the bell on most
computers */
return 0;

}

Notice that if no arguments are specified, an error message is printed.
It is common for a program that uses command-line arguments to issue
instructions if an attempt has been made to run it without the proper
information being present.

To access an individual character in one of the command strings,
you add a second index to argv. For example, the following program
displays all the arguments with which it was called, one character at a
time.

106 Turbo C/C++: The Complete Reference

#include <stdio.h>
main(int argc, char *argv[])
int t, i;
for(t=0; t<argc; ++t) {
i=0;
while(argv[t][i]) {
printf("%c", argv[t][i]);
++i3
}
printf(" ");

return 0;

Remember that the first index accesses the string and the second index
accesses that character of the string.

You generally use arge and argv to get initial commands into your
program. In theory, you can have up to 32,767 arguments, but most
operating systems do not allow more than a few. You normally use these
arguments to indicate a file name or an option. Using command-line
arguments gives your program a very professional appearance and
facilitates the program'’s use in batch files.

If you link the file WILDARGS.OBJ, provided with Turbo C, with
your program, command-line arguments like * EXE automatically ex-
pand into any matching file names. (Turbo C automatically processes the
wildeard file name characters and increases the value of arge appropri-
ately.) For example, if you link the following program with WILDARGS
.OBJ, it tells you how many files match the file name specified on the
command line:

/* Link this program with WILDARGS.0BJ. */

#include <stdio.h>

main(int argc, char *argv[])
register int i;
printf("%d files match specified name\n", argc-1);
printf("They are: ");

for(i=1; i<argc; i++)

Functions 107

printf("%s ", argv[il);

return 0;

If you call this program WA, then executing it in the following manner
tells you the number of files that have the .EXE extension, and lists
their names:

C>WA *.EXE

In addition to arge and argv, Turbo C also allows a third command-line
argument called env. The env parameter tells your program to access
the environmental information associated with the operating system.
The env parameter must follow arge and argv and is declared like this:

char *env[]

As you can see, env is declared like argv. Like argv it is a pointer to an
array of strings. Each string is an environmental string defined by the
operating system. The env parameter does not have a corresponding
argc-like parameter that tells your program how many environmental
strings there are. Instead, the last environmental string is null. The
following program displays all the environmental strings currently de-
fined by the operating system:

/* This program prints all the environmental
strings.
*/

#include <stdio.h>
main(int argc, char *argv[], char *env[])
int t;

for(t=0; env[t]; t++)
printf("%s\n", env[t]);

return 0;

Notice that even though argc and argv are not used by this program,
they must be present in the parameter list. Turbo C does not actually
know the names of the parameters. Instead, their usage is determined
by the order in which the parameters are declared. In fact, you can call

108 Turbo C/C++: The Complete Reference

the parameters anything you like. Since arge, argv, and env are tradi-
tional names, it is best to use them so anyone reading your program will
instantly know that they are arguments to main().

It is quite common for a program to need to find the value of one
specific environmental string. For example, under DOS, knowing the
value of the PATH string allows your program to utilize the currently
defined search paths. The following program shows how to find the
string that defines the default search paths. It uses the standard library
function strstr(), which has this prototype:

char *strstr(const char *stri, const char *str2);

The strstr() function searches the string pointed to by str1 for the first
occurrence of the string pointed to by str2. If it is found, a pointer to the
first occurrence is returned. If no match exists, then strstr() returns
null.

/* This program searches the environmental
strings for the one that contains the
current PATH.

*/

#include <stdio.h>

#include <string.h>

main(int argc, char *argv[], char *env[])
int t;
for(t=0; env[t]; t++) {

if(strstr(env[t], "PATH"))
printf("%s\n", env[t]);

return 0;

Functions Returning Noninteger Values

When the return type of a function is not explicitly declared, it automat-
ically defaults to int. For many functions this default is acceptable.
However, when it is necessary to return a different data type you must
use this two-step process:

Functions 109

1. The function must be given an explicit type specifier.

2. The compiler must be told the type of the function before the
first call is made to it.

Only in this way can Turbo C generate correct code for functions
returning noninteger values.

Functions can be declared to return any valid C data type. The
method of declaration is similar to that of variables: The type specifier
precedes the function name. The type specifier tells the compiler what
type of data the function is to return. This information is critical if the
program is going to run correctly, because different data types have
different sizes and internal representations.

Before you can use a function that returns a noninteger type, its
type must be made known to the rest of the program. Unless directed to
the contrary, Turbo C assumes that a function is going to return an
integer value. If the function actually returns some other type, then
Turbo C will have generated the wrong code for the return value. In
general, the way to inform Turbo C about the return type of a function
involves using a forward reference. A forward reference declares the
return type of a function but does not actually define what the function
does. The function definition occurs elsewhere in the program.

There are two ways to create a forward reference. The first is the
traditional method used by pre-ANSI-standard versions of C. The sec-
ond is to use a function prototype (which is the method used in this
book). The traditional forward reference method is explained here be-
cause much old C code is still in existence. The function prototype
method is examined later in this chapter.

The traditional method of informing Turbo C about the return type
of a function simply declares the return type and name of the function
near the top of the program. For example, to tell Turbo C that a
function called myfune() returns a double value, you would put this
declaration near the top of your program:

double myfunc();

Even if myfunc() has parameters, in this method none are shown
within the parentheses. When Turbo C reads this line, it knows that
myfunc() returns a double and generates the correct return code. For
example, the following is a correct (although old-style) program:

110 Turbo C/C++: The Complete Reference

#include <stdio.h>
#include <math.h>

double myfunc(); /* forward declaration of myfunc() */
main(void)
printf ("%1f", myfunc(10.0));
return 0;
double myfunc(double x)
{

return sqrt(x) * 2.0; /* return sqr root of x * 2 */

As you can see, even though myfunc() has one parameter, the tradi-
tional forward declaration says nothing about it.

Frankly, while both Turbo C and the ANSI C standard still allow
the preceding function declaration method as a means to telling Turbo C
about the return type of a function, it cannot be recommended. The
reason for this is that the function prototype, which was added by the
ANSI committee, provides a much better alternative.

Using Function Prototypes

The ANSI C standard expands on the traditional forward function
declaration. This expanded declaration is called a function prototype.
Except for the example in the preceding section, every program in this
book includes a function prototype for all functions used in the program.

A function prototype performs two special tasks. First, it identifies
the return type of the function so that Turbo C can generate the correct
code for the return data. Second, it specifies the type and number of
arguments used by the function. The prototype takes this general form:

type function _name(parameter list);

The prototype normally goes near the top of the program and must
appear before any call is made to the function.

Functions 111

In addition to telling the compiler about the return type of the
function, function prototypes enable C to provide strong type-checking
somewhat similar to that provided by languages such as Turbo Pascal.
The prototypes allow Turbo C to find and report any illegal type conver-
sions between the type of arguments used to call a function and the type
definition of its parameters. They also allow Turbo C to report when a
function is called with too few or too many arguments.

When possible, Turbo C automatically converts the type of an argu-
ment into the type of the parameter that is receiving it. However, some
type conversions are simply illegal. When a function is prototyped, any
illegal type conversion will be found and an error message will be issued.
As an example, the following program causes an error message to be
issued because there is an attempt to call func() with a pointer instead
of the float required. (It is illegal to transform a pointer into a float.)

/* This program uses function prototypes to
enforce strong type checking in the calls
to func().

The program will not compile because of the
mismatch between the type of the arguments

specified in the function's prototype and
the type of arguments used to call the function.

*/
#include <stdio.h>
float func(int x, float y); /* prototype */
main(void)
int x, *y;
x =10; y = &x;
func(x, y); /* type mismatch */
return 0;
float func(int x, float y)

printf("%f", y/(float)x);
return y/(float) x;

Using a prototype also allows Turbo C to report when the number
of arguments used to call a function disagrees with the number of

112 Turbo C/C++: The Complete Reference

parameters defined by the function. For example, this program will not
compile because func() is called with the wrong number of arguments:

/*
The program will not compile because of the
mismatch between the number of parameters
specified in the function's prototype and
the number of arguments used to call the function.

*/
#include <stdio.h>
float func(int x, float y); /* prototype */
main(void)
func(2, 2.0, 4); /* wrong number of args */
return 0;
Eloat func(int x, float y)

printf("%f", y/(float)x);
return y/(float) x;

Technically, when you prototype a function, you do not need to
include the actual parameter names. For example, both of these are
valid prototypes:

char func(char *, int);

char func(char *str, int count);

However, if you include each parameter name, Turbo C uses the names
to report any type mismatch errors.

Some functions, such as printf(), can take a vanable number of
arguments. A variable number of arguments are specified in a prototype
using three periods. For example, the prototype to printf() is

int printf(const char *fmt, .. .);

To create functions with a variable number of arguments, refer to the
description of the standard library function va__arg() in Part Four of
this book.

Functions 113

Aside from telling the compiler about a function’s return data type,
use of function prototypes helps you trap bugs before they occur by
preventing a function from being called with invalid arguments. They
also help verify that your program is working correctly by not allowing
functions to be called with the wrong number of arguments.

Standard Library Function Prototypes

Any standard library functions used by your program should be proto-
typed. To accomplish this, you must include the appropriate header file
for each library function. Header files use the .H extension and are
provided along with Turbo C. Turbo C's header files contain two main
elements: the definitions used by the functions and the prototypes for
the standard functions related to the header file. For example, STDIO.H
is included in almost all programs in this book because it contains the
prototype for the printf() function. By including the appropriate header
file for each library function used in a program it is possible for Turbo C
to catch any accidental errors you may make when using them.

Turbo C’s header files and the category of functions for which each
is used is shown in Table 4-1. In Part Four of this book, the header file
required by each library function is shown along with its description.

Although we will look more closely at Turbo C's compiler options
later in this book, you should be aware that you can let Turbo C warn
you when a function prototype has not been included for any function in
your program. To do this in the integrated environment, select Options.
Under Options select Compiler followed by Messages. From this menu
select Frequent errors. Finally, activate the Call to function without
prototype option. If you are using the command-line compiler, use the
—wpro option.

Prototyping Functions that Have No Parameters

As you know, a function prototype tells Turbo C about the type of data
returned by a function as well as the type and number of parameters
used by the function. However, since prototypes were not part of the

114 Turbo C/C++: The Complete Reference

File Name Related Functions

alloc.h Dynamic memory allocation

assert.h Defines assert()

bios.h BIOS interface functions

conio.h Direct console I/O functions

ctype.h Character-related functions

dir.h Directory-related functions

dos.h DOS interface functions

errno.h Defines various error codes

fentLh Defines various constants used by the UNIX-like file system
float.h Defines floating point limits
graphics.h Graphics-related functions

io.h Low-level I/O functions

limits.h Defines various integer limits

locale.h Country-specific functions

math.h Mathematical functions

mem.h Memory manipulation functions
process.h Process control functions

setjmp.h Required by setjmp() and longjmp()
share.h Support for file-sharing

signal.h Support for signal() and raise()
stdargs.h Support for variable-length arguments
stddef.h Defines standard types and macros
stdio.h Standard I/0 functions

stdlib.h Miscellaneous functions

string.h String-related functions

sys\stat.h File-related constants

sys\timeb.h Supports the ftime() function
sys\types.h Defines time _t, which is used by the time functions
time.h Time- and date-related functions
values.h Various implementation-dependent constants

Table 4-1. Turbo C's Header Files

original version of C, a special case is created when you need to proto-
type a function that takes no parameters. The reason for this is that the
ANSI C standard stipulates that when no parameters are included in a
function’s prototype, no information whatsoever is specified about the

Functions 115

type or number of the function’s parameters. This is necessary to
ensure that older C programs can be compiled by modern compilers,
such as Turbo C. When you specifically want to tell Turbo C that a
function actually takes no parameters you must use the keyword void
inside the parameter list. For example, examine this short program:

#include <stdio.h>

void displayl0(void);

main(void)
displayl0();

return 0;

void displayl0(void)
{
int i;

for(i=0; i<10; i++)
printf("sd *, i);

In this program, the prototype to displayl0() explicitly tells the com-
piler that displayl0() takes no arguments. Since the parameter list of
the function must agree with its prototype, the void must also be
included in the declaration of displayl0() as well as in its definition
later in the program. Assuming the foregoing prototype, Turbo C will
not compile a call to displayl0() that looks like the following example:

display10(100);
However, if the void had been left out of the parameter list specification,

no error would have been reported and the argument would simply have
been ignored.

Returning Pointers

Although functions that return pointers are handled in exactly the same
way as any other type of function, a few important concepts need to be
discussed.

116 Turbo C/C++: The Complete Reference

Pointers to variables are neither integers, nor unsigned integers.
They are the memory addresses of a certain type of data. The reason for
this distinction lies in the fact that when pointer arithmetic is performed
it is relative to the base type—that is, if an integer pointer is incre-
mented it will contain a value that is 2 greater than its previous value
(assuming 2-byte words). More generally, each time a pointer is incre-
mented, it points to the next data item of its type. Since each data type
may be of a different length, the compiler must know what type of data
the pointer is pointing to in order to make it point to the next data item.
(The subject of pointer arithmetic is covered in detail in Chapter 6.)

For example, the following is a function that returns a pointer to a
string at the place where a character match was found:

char *match(char c, char *s)
register int count;

count = 0;
while(c!=s[count] && s[count]) count++;
return(&s[count]);

The function match() attempts to return a pointer to the place in a
string where the first match with ¢ is found. If no match is found, a
pointer to the null terminator is returned.

A short program that uses match() is shown here:

#include <stdio.h>
#include <conio.h>

char *match(char c, char *s);
main(void)
char s[80], *p, ch;

gets(s);

ch = getche();

p = match(ch, s);

if(p) /* there is a match */
printf("%s ", p);

else
printf("no match found");

return 0;

Functions 117

This program reads a string and then a character. If the character is in
the string, it prints the string from the point of the match. Otherwise, it
prints "no match found”.

Classic Versus Modern Parameter Declarations

The original version of C uses its own method to declare function
parameters, which sometimes is called the traditional or classic form.
The declaration approach used in this book is called the modern form.
Turbo C adheres closely to the ANSI standard for C, which supports
both forms but strongly recommends the modern form. (In fact, it is
rare to see new C code that is written using the classic function declara-
tions.) However, it is important for you to know the classic form because
there are literally millions of lines of C code in existence that use it.
Also, many programs published in books and magazines that are more
than a couple of years old use this form.

The classic function parameter declaration consists of two parts: a
parameter list, which goes inside the parentheses that follow the func-
tion name, and the actual parameter declarations, which go between the
closing parentheses and the function’s opening curly brace. The general
form of the classic parameter definition is shown here:

type function _name(parml, parm?,...parmN)
type parmli;
type parm?2;

type parmN;

Sfunction code

}
For example, this modern declaration:

char *f(const char *strl, int count, int index)

{ .

118 Turbo C/C++: The Complete Reference

will look like this in its classic form:

char *f(strl, count, index)
char *strl;
int count, index;

{
y

Notice that in the classic form more than one parameter can be listed
after the type name.

There is one slight distinction that Turbo C makes between the
classic and modern declaration methods. If you declare a float parame-
ter using the classic declaration method, Turbo C automatically elevates
it to a double at the time of the call. Using the modern declaration
approach prevents this automatic type promotion, and the parameter
and its argument remain floats.

Remember that even though the classic declaration form is out-
dated, Turbo C can still correctly compile programs that use this ap-
proach. Therefore, you need not worry if you want to compile a program
that uses classic function declarations.

Recursion

In C, functions can call themselves. A function is recursive if a state-
ment in the body of the function calls itself. Sometimes called circular
definition, recursion is the process of defining something in terms of
itself.

Examples of recursion abound. A recursive way to define an integer
number is as the digits 0, 1, 2, 8, 4, 5, 6, 7, 8, 9, plus or minus an integer
number. For example, the number 15 is the number 7 plus the number
8; 21 is 9 plus 12; and 12 is 9 plus 3.

For a computer language to allow recursion, a function must be able
to call itself. A simple example is the function factr(), which computes
the factorial of an integer. The factorial of a number N is the product of

Functions 119

all the whole numbers from 1 to N. For example, 3 factorial is 1 X 2 X
3, or 6. Both factr() and its iterative equivalent are shown here.

/* Compute the factorial of a number. */
factr(int n) /* recursive */

{

int answer;

if(n==1) return(1);
answer = factr(n-1)+*n;
return(answer);

/* Compute the factorial of a number. */
fact(int n) /* non-recursive */

int t, answer;

answer = 1;

for(t=1; t<=n; t++)
answer=answer*(t);

return(answer);

The operation of the nonrecursive version of fact() should be clear.
It uses a loop starting at 1 and ending at the number, and progressively
multiplies each number by the moving product.

The operation of the recursive factr() is a little more complex.
When factr() is called with an argument of 1, the function returns 1;
otherwise it returns the product of factr(n—1) #*n. To evaluate this
expression, factr() is called with n—1. This happens until n equals 1
and the calls to the function begin returning.

Computing the factorial of 2, the first call to factr() causes a
second call to be made with the argument of 1. This call returns 1, which
is then multiplied by 2 (the original n value). The answer is then 2. You
might find it interesting to insert printf() statements into factr() to
show the level and the intermediate answers of each call.

When a function calls itself, new local variables and parameters are
allocated storage on the stack, and the function code is executed with
these new variables from the beginning. A recursive call does not make
a new copy of the function. Only the arguments are new. As each
recursive call returns, the old local variables and parameters are re-
moved from the stack and execution resumes at the point of the function
call inside the function. Recursive functions could be said to "telescope”
out and back.

120 Turbo C/C++: The Complete Reference

Most recursive routines do not significantly save code size or mem-
ory. The recursive versions of most routines may execute a bit more
slowly than the iterative equivalent because of the added function calls;
but this is not significant in most cases. Many recursive calls to a
function could cause a stack overrun, but this is unlikely. Because
storage for function parameters and local variables is on the stack and
each new call creates a new copy of these variables, the stack space
could become exhausted. If this happens, a stack overflow occurs. You
can have Turbo C watch for stack overflow by turning off the No Stack
Warning menu entry inside the Linker entry under the Options menu
of the integrated environment or by specifying the —N option when
using the command-line version of Turbo C.

The main advantage to recursive functions is that they can be used
to create versions of several algorithms that are clearer and simpler
than their iterative siblings. For example, the QuickSort sorting algo-
rithm is quite difficult to implement in an iterative way. Some problems,
especially Al-related ones, also seem to lend themselves to recursive
solutions. Finally, some people seem to think recursively more easily
than iteratively.

When writing recursive functions, you must have an if statement
somewhere to force the function to return without the recursive call
being executed. If you don’t do this, once you call the function, it never
returns. This is a very common error when writing recursive functions.
Use printf() and getchar() liberally during development so that you
can watch what is going on and abort execution if you see that you have
made a mistake.

Pointers to Functions

A particularly confusing yet powerful feature of C is the function
pointer. Even though a function is not a variable, it still has a physical
location in memory that can be assigned to a pointer. The address
assigned to the pointer is the entry point of the function. This pointer
can then be used in place of the function’s name. It also allows functions
to be passed as arguments to other functions.

To understand how function pointers work, you must understand a
little about how a function is compiled and called in Turbo C. As each

Functions 121

function is compiled, source code is transformed into object code and an
entry point is established. When a call is made to a function while your
program is running, a machine language "call” is made to this entry
point. Therefore, a pointer to a function actually contains the memory
address of the entry point of the function.

The address of a function is obtained by using the function’s name
without any parentheses or arguments. (This is similar to the way an
array’'s address is obtained by using only the array name without
indexes.) For example, consider the following program, paying very
close attention to the declarations:

#include <stdio.h>
#include <string.h>

void check(char *a, char *b, int (*cmp) (char *, char *));
main(void)

char s1[80], s2[80];

int (*p) ()

p = strcmp; /* get address of strcmp() */

gets(sl);
gets(s2);

check(sl, s2, p);
return 0;

}
void check(char *a, char *b, int (*cmp) (char *, char *))

printf(“"testing for equality\n");
if(1(*cmp) (a, b)) printf("equal®);
else printf("not equal");

When the function check() is called, two character pointers and one
function pointer are passed as parameters. Inside the function check(),
the arguments are declared as character pointers and a function pointer.
Notice how the function pointer is declared. You must use exactly the
same method when declaring other function pointers, except that the
return type or parameters of the function can be different. The paren-
theses around the *cmp are necessary for the compiler to interpret this
statement correctly. Without the parentheses around *cmp Turbo C
would be confused.

When you declare a function pointer, you can still provide a proto-
type to it as the preceding program illustrates. However, in many cases

122

Turbo C/C++: The Complete Reference

you won't know the names of the actual parameters so you can leave
them blank, or you can use any names you like.

Once inside check(), you can see how the stremp() function is
called. The statement

(*cmp) (a, b)

performs the call to the function, in this case stremp(), which is pointed
to by emp with the arguments a and b. This statement also represents
the general form of using a function pointer to call the function it points
to.

It is possible to call check() using stremp directly, as shown here:

check(sl, s2, strcmp);

This statement would eliminate the need for an additional pointer vari-
able.

You may be asking yourself why anyone would want to write a
program this way. In this example, nothing is gained and significant
confusion is introduced. However, there are times when it is advanta-
geous to pass arbitrary functions to procedures or to keep an array of
functions. The following helps illustrate a use of function pointers. When
an interpreter is written, it is common for it to perform function calls to
various support routines, for example, the sine, cosine, and tangent
functions. Instead of having a large switch statement listing all of these
functions, you can use an array of function pointers with the proper
function called. You can get the flavor of this type of use by studying the
expanded version of the previous example. In this program, check() can
be made to check for either alphabetical equality or numeric equality by
simply calling it with a different comparison function:

#include <stdio.h>
#include <ctype.h>
#include <string.h>
#include <std1ib.h>

void check(char *a, char *b, int (*cmp) (char *, char *));
int numcmp(char *a, char *b);

main(void)

char s1[80], s2[80];

Functions 123

gets(sl);
gets(s2);

if(isalpha(*sl))
check(sl, s2, strcmp);
else
check(sl, s2, numcmp);
return 0;

}

void check(char *a, char *b, int (*cmp) (char *, char *))
printf("testing for equality\n");
if(!(*cmp) (a, b)) printf("equal™);
else printf("not equal");

}

numcmp (char *a, char *b)

if(atoi(a)==atoi(b)) return 0;
else return 1;

Implementation Issues

When you create C functions you should remember a few important
things that affect their efficiency and usability. These issues are the
subject of this section.

Parameters and General-Purpose Functions

A general-purpose function is one that is used in a variety of situations,
perhaps by many different programmers. Typically, you should not base
general-purpose functions on global data. All the information a function
needs should be passed to it by its parameters. In the few cases in which
this is not possible, you should use static variables.

Besides making your functions general-purpose, parameters keep
your code readable and less susceptible to bugs caused by side effects.

Efficiency

Functions are the building blocks of C and crucial to the creation of all
but the most trivial programs. Nothing said in this section should be
construed otherwise. In certain specialized applications, however, you

124

Turbo C/C++: The Complete Reference

may need to eliminate a function and replace it with in-line code. In-line
code is the equivalent of a function’s statements used without a call to
that function. In-line code is used instead of function calls only when
execution time is critical.

There are two reasons in-line code is faster than a function call.
First, a "call” instruction takes time to execute. Second, arguments to be
passed have to be placed on the stack, which also takes time. For almost
all applications, this very slight increase in execution time is of no
significance. But if it is, remember that each function call uses time that
would be saved if the code in the function were placed in line. For
example, below are two versions of a program that prints the square of
the numbers from 1 to 10. The in-line version runs faster than the other
because the function call takes time.

in line function call
main(void) main(void)
int x; int x;
for(x=1; x<11; ++x) for(x=1; x<l11l; ++x)
printf("%d", x*x); printf("%d", sqr(x));
return 0; return 0;
}

sqr(int a)
{

return a*a;

As you create programs, you must always weigh the cost of func-
tions in terms of execution time against the benefits of increased read-
ability and modifiability.

Arrays F

\"4
E

An array is a collection of variables of the same type that are refer-
enced by a common name. A specific element in an array is accessed by
an index. In C all arrays consist of contiguous memory locations. The
lowest address corresponds to the first element; the highest address
corresponds to the last element. Arrays may have from one to several
dimensions.

Single-Dimension Arrays

The general form of a single-dimension array declaration is

type var _name[sizel;
In C arrays must be explicitly declared so that the compiler can allocate
space for them in memory. Here, type declares the base type of the
array, which is the type of each element in the array. Size defines how
many elements the array will hold. For a single-dimension array, the
total size of an array in bytes is computed as shown here:

total bytes = sizeof(base type) * number of elements

All arrays have 0 as the index of their first element. Therefore,
when you write

char p[10];

125

126

Turbo C/C++: The Complete Reference

you are declaring a character array that has 10 elements, p[0] through
p[9). For example, the following program loads an integer array with
the numbers 0 through 9 and displays them:

#include <stdio.h>
main(void)

int x[10]; /* this reserves 10 integer elements */
int t;

for(t=0; t<10; ++t) x[t]=t;

for(t=0; t<10; ++t) printf("%d ", x[t]);
return 0;

In C there is no bounds checking on arrays. You could overwrite either
end of an array and write into some other variable's data, or even into a
piece of the program’s code. It is the programmer’s job to provide
bounds checking when it is needed. For example, make certain that the
character arrays that accept character input using gets() are long
enough to accept the longest input.

Single-dimension arrays are essentially lists of information of the
same type. For example, Figure 5-1 shows how array a appears in
memory if it is declared as shown here and starts at memory location
1000:

char a[7];
a[0] a[l] a[2] a[3] a[4] a[5] a[6]
1000 1001 1002 1003 1004 1005 1006

Figure 5-1. A seven-element characater beginning at location 1000

Arrays 127

Passing Single-Dimension Arrays to Functions

When passing single-dimension arrays to functions, call the function
with the array name without any index. This passes the address of the
first element of the array to the function. In C it is not possible to pass
the entire array as an argument; a pointer is automatically passed
instead. For example, the following fragment passes the address of i to
funcl():

main(void)
int 1[10];

funcl(i);

If a function is to receive a single-dimension array, you may declare
the formal parameter as a pointer, as a sized array, or as an unsized
array. For example, to receive i into a function called funcl(), you could
declare funcl() as either

funcl(int *a) /* pointer */

or

funcl(int a[10]) /* sized array */

128 Turbo C/C++: The Complete Reference

or

funcl(int a[]) /* unsized array */
{

All three methods of declaration tell the compiler that an integer pointer
is going to be received. In the first declaration a pointer is used; in the
second the standard array declaration is employed. In the third declara-
tion, a modified version of an array declaration simply specifies that an
array of type int of some length is to be received. As far as the function
is concerned, it doesn’t matter what the length of the array actually is
because C performs no bounds checking, anyway. In fact, as far as the
compiler is concerned,

Iuncl(int a[32])

also works because Turbo C generates code that instructs funcl() to
receive a pointer —it does not actually create a 32-element array.

Strings

By far the most common use of single-dimension arrays is for character
strings. Although C defines no string type, it supports some of the most
powerful string manipulation functions found in any language. In C a
string is defined to consist of a character array of any length that is
terminated by a null. A null is specified as \0’ and is 0. For this reason
it is necessary to declare character arrays to be one character longer

Arrays 129

than the largest string that they are to hold. For example, if you wished
to declare an array s that holds a 10-character string, you would write

char s[11];

This makes room for the null at the end of the string.

Although C does not have a string data type, it still allows string
constants. A string constant is a list of characters enclosed between
double quotes. For example, here are two string constants:

"hello there" "this is a test"

It is not necessary to add the null to the end of string constants
manually; the C compiler does this for you automatically.

Turbo C supports a wide range of string manipulation functions.
Some of the most common are strepy(), strcat(), strlen(), and
stremp(), whose prototypes are shown here:

char *strepy(char *s1, const char *s2);
char #strcat(char *s1, const char *s2);
int strlen(const char *s1);

int stremp(const char *si1, const char *s2); -

All of the functions use the string.h header file. The strepy() function
copies the string pointed to by s2 into the one pointed to by s1. It
returns s1. The strecat() function concatenates the string pointed to by
s2 to the one pointed to by s1. It also returns s1. The strlen() function
returns the length of the string pointed to by s1. The stremp() function
compares sI and s2. It returns 0 if the two strings are equal, greater
than 0 if the string pointed to by s1 is greater than the one pointed to by
s2, and less than zero if the string pointed to by s is less than the
string pointed to by s2. All comparisons are done lexicographically
(according to dictionary order). (These and other string functions are
discussed in detail in Part Four of this book.)

130 Turbo C/C++: The Complete Reference

The following program illustrates the use of these string functions:

#include <string.h>

#include <stdio.h>

main(void)

¢ char s1[80], s2[80];
gets(sl); gets(s2);
printf("lengths: %d %d\n", strlen(sl), strlen(s2));
if(!stremp(sl, s2)) printf("The strings are equal\n");

strcat(sl, s2);
printf("ss\n", sl1);

return 0;

}

If this program is run and the strings "hello” and "hello” are entered, the
output is

lengths: 5 5
The strings are equal
hellohello

It is important to remember that stremp() returns false if the

strings are equal, so be sure to use the ! to reverse the condition, as
shown in this example, if you are testing for equality.

Two-Dimensional Arrays

Turbo C allows multidimensional arrays. The simplest form of the multi-
dimensional array is the two-dimensional array. A two-dimensional ar-
ray is, in essence, an array of one-dimensional arrays. Two-dimensional
arrays are declared using this general form:

type array _name[2nd dimension sizel[1st dimension sizel;

Hence, to declare a two-dimensional integer array d of size 10,20, you
would write

Arrays 131

int d[10][20];

Pay careful attention to the declaration. Unlike some computer lan-
guages, which use commas to separate the array dimensions, C places
each dimension in its own set of brackets.

Similarly, to access point 3,5 of array d, use

d[3](5]

In the following example, a two-dimensional array is loaded with the
numbers 1 through 12, which it then displays on the screen:

#include <stdio.h>
main(void)
int t,i, num[3][4];

for(t=0;t<3;++t)
for(i=0;i<4;++i)
num[t] [i]=(t*4)+i+1;

/* display them */
for(t=0;t<3;++t) {
for(i=0;i<4;++i)
printf("%d *, num[t][i]);
printf("\n");

return 0;

In this example, num[0][0] has the value 1; num[0][1], the value 2,
num[0][2] the value 3; and so on. The value of num[2][3] is 12.

Two-dimensional arrays are stored in a row-column matrix, where
the first index indicates the row and the second indicates the column.
This means that the rightmost index changes faster than the leftmost
when accessing the elements in the array in the order they are actually
stored in memory. See Figure 5-2 for a graphic representation of a
two-dimensional array in memory. In essence, the leftmost index can be
thought of as a "pointer” to the correct row.

The number of bytes of memory required by a two-dimensional
array is computed using the following formula:

132

Turbo C/C++: The Complete Reference

bytes = 2nd dimension * 1st dimension * sizeof (base type)

Therefore, assuming 2-byte integers, an integer array with dimensions
10,5 would have 10 X 5 x 2 or 100 bytes allocated.

When a two-dimensional array is used as an argument to a function,
only a pointer is passed to the first element. However, a function
receiving a two-dimensional array as a parameter must minimally define
the length of the first dimension, because the compiler needs to know
the length of each row if it is to index the array correctly. For example,
a function that will receive a two-dimensional integer array with dimen-

sions 5,10 would be declared like this:

Iuncl (int x[][10])

Second index

Memory address n;/’/
11 02 03

0,4 05 | 0,

00 | O, 6 | 07
0 1,112 13|14 |15 |16 | 1,7
’ /
B ——»f 20| 21|22 (23|24 |25 |26 |27
E \
30 | 31] 32 | 33 (|34 |35 |36 |37
40 | 41 | 42 | 43 | 44 | 45 | 46 | 47

Figure 5-2.

A two-dimensional array in memory

Arrays 133

You can specify the second dimension as well, but it is not necessary.
The compiler needs to know the first dimension in order to work on
statements such as

x[2]1[4]

inside the function. If the length of the rows is not known, it is impos-
sible to know where the next row begins.

The short program shown here uses a two-dimensional array to
store the numeric grade for each student in a teacher’s classes. The
program assumes that the teacher has three classes and a maximum of
30 students per class. Notice how the array grade is accessed by each of
the functions.

#include <conio.h>
#include <ctype.h>
#include <stdio.h>
#include <stdlib.h>

#define CLASSES 3
#define GRADES 30
int grade[CLASSES] [GRADES] ;

void disp_grades(int g[][GRADES]), enter_grades(void);
int get_grade(int num);

main(void) /* class grades program */
char ch;

for(s;) {
do {
printf("(E)nter grades\n");
printf("(R)eport grades\n");
printf("(Q)uit\n");
ch = toupper(getche());
} while(ch!="E' && ch!='R' && ch!='Q');

switch(ch) {

case 'E':
enter_grades();
break;

case 'R':
disp_grades(grade);
break;

case 'Q':
return 0;

134 Turbo C/C++: The Complete Reference

}

/* Enter each student's grade. */
void enter_grades(void)

int t, i;

for(t=0; t<CLASSES; t++) {
printf("Class # %d:\n", t+1);
for(i=0; i<GRADES; ++i)
grade[t][i] = get_grade(i);

}

/* Actually input the grade. */
get_grade(int num)

char s[80];

printf("enter grade for student # %d:\n", num+l);
gets(s);
return(atoi(s));

/* Display the class grades. */
void disp_grades(int g[][GRADES])
{

int t, i;

for(t=0; t<CLASSES; ++t) {
printf("Class # %d:\n", t+l1);
for(i=0; i<GRADES; ++i)
printf("grade for student #%d is %d\n",i+1, g[t][i]);

Arrays of Strings

It is not uncommon in programming to use an array of strings. For
example, the input processor to a database may verify user commands
against a string array of valid commands. A two-dimensional character
array is used to create an array of strings with the size of the left index
determining the number of strings and the size of the right index
specifying the maximum length of each string. For example, this de-
clares an array of 30 strings, each having a maximum length of 79
characters:

char str_array[30][80];

Arrays 135

To access an individual string is quite easy: You simply specify only
the left index. For example, this statement calls gets() with the third
string in str__array.

gets(str_array[2]);
This is functionally equivalent to

gets(&str_array[2][0]);

but the previous form is much more common in professionally written C
code.

To improve your understanding of how string arrays work, study
the following short program that uses one as the basis for a very simple
text editor:

#include <stdio.h>

#define MAX 100
#define LEN 80

char text[MAX][LEN];

/* A very simple text editor. */
main(void)

register int t, i, j;

for(t=0; t<MAX; t++) {
printf("%d: ", t);
gets(text[t]);
if(!*text[t]) break; /* quit on blank line */

/* this displays the text one character at a time */
for(i=0; i<t; i++) {
for(j=0; *text[i][j]; J++) printf("%c", text[il[i]);
printf("%c", '\n');

return 0;

This program inputs lines of text until a blank line is entered. Then it
redisplays each line. For purposes of illustration, it displays the text one

136 Turbo C/C++: The Complete Reference

character at a time by indexing the first dimension. However, because
each string in the array is null-terminated, the routine that displays the
text could be simplified like this:

for(i=0; i<ty i++)
printf("%s\n", text[i]);

Multidimensional Arrays

C allows arrays of greater than two dimensions. The general form of a
multidimensional array declaration is

type name[sizeN]. . [size2][sizel];

Arrays of more than three dimensions are rarely used because of the
amount of memory required to hold them. Storage for all global arrays
is allocated permanently at the beginning of the execution of your
program. For example, a four-dimensional character array with dimen-
sions 10,6,9,4 would require 10 X 6 X 9 X 4 or 2,160 bytes. If the array
were 2-byte integers, 4,320 bytes would be needed. If the array were
double (assuming 8 bytes per double), then 34,560 bytes would be
required. The storage required increases exponentially with the number
of dimensions.

A point to remember about multidimensional arrays is that it takes
the computer time to compute each index. This means that accessing an
element in a multidimensional array will be slower than accessing an
element in a single-dimensional array. For these and other reasons,
when large multidimensional arrays are needed, often they are dynami-
cally allocated a portion at a time using C’s dynamic allocation funec-
tions. This approach is called a sparse array.

When passing multidimensional arrays into functions, you must
declare all but the leftmost dimension. For example, if you declare array
m as

int m[4][3]1[6]1[5];

then a function, funel(), receiving m, could look like

Arrays 137

funcl(int d[]1[3][6][5])
{

.

Of course, you are free to include the leftmost dimension if you like.

Arrays and Pointers

Pointers and arrays are closely related in C. For example, an array
name without an index is a pointer to the first element in the array. In
this array,

char p[10];
the following statements are identical:

p
&p[0]

Put another way,
p == &p[0]

evaluates true because the address of the first element of an array is the
same as the address of the array.

Any pointer variable can be indexed as if it were declared to be an
array of the base type of the pointer. For example:

int *p, i[10];
p =i
p[5] = 100; /* assign using index */

(p+5) = 100; / assign using pointer arithmetic */

138

Turbo C/C++: The Complete Reference

Both assigment statements place the value 100 in the sixth element of i.
The first statement indexes p; the second uses pointer arithmetie. Either
way, the result is the same. (Pointers and pointer arithmetic are dealt
with in detail in Chapter 6.)

The same holds true for arrays of two or more dimensions. For
example, assuming that a is a 10-by-10 integer array, these two state-
ments are equivalent:

a

%a[0][0]

Further, the 0,4 element of a may be referenced either by array-
indexing, a[01[4], or by the pointer, *((*a)+4). Similarly, element 1,2 is
either a[1][2] or *(*a)+12). In general, for any two-dimensional array

al71[k] is equivalent to *((*a)+ (j*row length)+k)

Pointers are sometimes used to access arrays because pointer arith-
metic is often a faster process than array-indexing. The gain in speed
using pointers is the greatest when an array is being accessed in purely
sequential fashion. In this situation, the pointer may be incremented or
decremented using C’s highly efficient increment and decrement opera-
tors. On the other hand, if the array is to be accessed in random order,
then the pointer approach may not be much better than array-indexing.

In a sense, a two-dimensional array is like an array of row pointers
to arrays of rows. Therefore, one easy way to use pointers to access
two-dimensional arrays is by using a separate pointer variable. The
following function prints the contents of the specified row for the global
integer array num.

int num[10][10];

pr_row(int j)
int *p, t;

p = num[j]; /* get address of first
element in row j */

Arrays 139

for(t=0; t<10; ++t) printf("%d ", *(p+t));

This routine can be generalized by making the calling arguments be the
row, the row length, and a pointer to the first array element, as shown
here:

/* General */
pr_row(int j, int row_dimension, int *p)

int t;

p=p+ (j* row_dimension);
for(t=0; t<row_dimension; ++t)
printf("%d ", *(p+t));

Arrays of greater than two dimensions can be thought of in the
same way. For example, a three-dimensional array can be reduced to a
pointer to a two-dimensional array, which can be reduced to a pointer to
a one-dimensional array. Generally, an N-dimensional array can be
reduced to a pointer and an N-1 dimensional array. This new array can
be reduced again using the same method. The process ends when a
single-dimension array is produced.

Allocated Arrays

In many programming situations it is impossible to know how large an
array will be needed. In addition, many types of programs need to use
as much memory as is available, yet still run on machines having only
minimal memory. A text editor or a database are examples of this. In
these situations, it is not possible to use a predefined array because its
dimensions are established at compile time and cannot be changed
during execution. The solution is to create a dynamic array. A dynamic
array uses memory from the region of free memory called the keap and
is accessed by indexing a pointer to that memory. (Remember that any
pointer can be indexed as if it were an array variable.)

140

Turbo C/C++: The Complete Reference

In C you can dynamically allocate and free memory by using the
standard library routines malloc(), which allocates memory and re-
turns a void * pointer to the start of it, and free(), which returns
previously allocated memory to the heap for possible reuse. The proto-
types for malloc() and free() are

void *malloc(size _t num _bytes);
void free(void *p);

Both functions use the stdlib.h header file. Here, num__bytes is the
number of bytes requested. The type size__t is defined in stdlib.h as
being capable of holding the largest amount of memory that may be
allocated at any one time. If there is not enough free memory to fill the
request, malloc() returns a null. It is important that free() be called
only with a valid, previously allocated pointer; otherwise damage could
be done to the organization of the heap and possibly cause a program
crash.
The code fragment shown here allocates 1000 bytes of memory.

char *p;

p = malloc(1000); /* get 1000 bytes */

The p points to the first of 1000 bytes of free memory. Notice that no
cast is used to convert the void pointer returned by malloc() into the
desired char pointer. Because malloc() returns a void pointer, it can be
assigned to any other type of pointer and is automatically converted into
a pointer of the target type.

This example shows the proper way to use a dynamically allocated
array to read input from the keyboard using gets().

/* Print a string backwards using dynamic allocation. */
#include <stdlib.h>

#include <stdio.h>

#include <string.h>

main(void)

char *s;
register int t;

Arrays 141

s = malloc(80);
if(!s) {

printf("memory request failed\n");
return 1;

gets(s);
for(t=strien(s)-1; t>=0; t--) printf("%c", s[t]);
free(s);
return 0;

As the program shows, s is tested, prior to its first use, to ensure that a
valid pointer is returned by malloc(). This is absolutely necessary to
prevent accidental use of a null pointer. (Using a null pointer will almost
certainly cause a system crash.) Notice how the pointer s is indexed as
an array to print the string backwards.

It is possible to have multidimensional dynamic arrays, but you
need to use a function to access them because there must be some way
to define the size of all but the leftmost dimension. To do this, a pointer
is passed to a function that has its parameter declared with the proper
array bounds. To see how this works, study this short example, which
builds a table of the numbers 1 through 10 raised to their first, second,
third, and fourth powers:

#include <stdlib.h>
#include <stdio.h>

int pwr(int a, int b);
void table(int p[5][11]), show(int p[5][11]);

/* This program displays various numbers raised to
integer powers. */
main(void)

int *p;
p = malloc(40*sizeof(int));
if(p) {

printf("memory request failed\n");
return 1;

/* here, p is simply a pointer */
table(p);
show(p);

142 Turbo C/C++: The Complete Reference

return 0;

/* Build a table of numbers. */
void table(int p[5][11]) /* now the compiler thinks that
p is an array */
register int i, j;
for(j=1; j<l1; j++)
for(i=1; i<5; i++) p[i1[i] = pwr(i, 1);
/* Display the table. */
void show(int p[5][11])
{
register int i, j;
printf("%10s %10s %10s %10s\n","N","NA2","NA3", "NA4");
for(j=1; j<l1; j++) {
for(i=1; i<5; i++) printf("s10d ", p[i]1[i]);
printf("\n");
}

/* Raise a to the b power. */
pwr(int a, int b)
{

register int t=1;

for(; b; b--) t = t¥a;
return t;

The output produced by this program is

N NA2 NA3 NA4
1 1 1 1
2 4 8 16
3 9 27 81
4 16 64 256
5 25 125 625
6 36 216 1296
7 49 343 2401
8 64 512 4096
9 81 729 6561
10 100 1000 10000

As this program illustrates, by defining a function parameter to the
desired array dimensions you can "trick” Turbo C into handling multidi-
mensional dynamic arrays. Actually, as far as the compiler is concerned,
you have a 4,10 integer array inside the functions show() and table();

Arrays 143

the difference is that the storage for the array is allocated manually,
using the malloc() statement rather than automatically, by using the
normal array declaration statement. Also, note the use of sizeof to
compute the number of bytes needed for a 4,10 integer array. This
guarantees the portability of this program to computers with different-
sized integers.

Array Initialization

C allows the initialization of global and local arrays at the time of
declaration. The general form of array initialization is similar to that of
other variables, as shown here:

type-specifier array _namelsizeN]. . [sizel] = { value-list };

The value-list is a comma-separated list of constants that are type-
compatible with type-specifier. The first constant is placed in the first
position of the array, the second constant in the second position, and so
on. The last entry in the list is not followed by a comma. Note that a
semicolon follows the }. In the following example, a 10-element integer
array is initialized with the numbers 1 through 10:

int i[10] = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10};
This means that i[0] has the value 1 and i[9] has the value 10.
Character arrays that hold strings allow a shorthand initialization
in the form
char array _namelsize] = "string";
In this form of initialization, the null terminator is automatically ap-
pended to the string. For example, this code fragment initializes str to

the phrase "hello”.

char str[6] = "hello";

144 Turbo C/C++: The Complete Reference

This is the same as writing
char str[6] = {'h', 'e', '1', '1', 'o', '\0'};

Notice that in this version you must explicitly include the null termina-
tor. Because all strings in C end with a null, you must make sure that
the array you declare is long enough to include it. This is why str is six
characters long even though "hello” is only five characters. When the
string constant is used (as in the previous approach), the compiler
automatically supplies the null terminator.

Multidimensional arrays are initialized in the same fashion as
single-dimensional ones. For example, the following initializes sqrs with
the numbers 1 through 10 and their squares:

int sqrs[10][2] = {

3

Here, sqrs[0]1[0] contains 1, sqrs[0][1] contains 1, sqrs[1][0] contains 2,
sqrs[11[1] contains 4, and so forth.

Unsized-Array Initializations

Imagine that you are using an array initialization to build a table of
error messages as shown here:

char el[12]
char e2[13]
char e3[18]

"read error\n";
"write error\n";
“"cannot open file\n";

wonon

As you might guess, it is very tedious to count the characters in each
message manually to determine the correct array dimension. It is pos-
sible to let C dimension the arrays automatically by using unsized arrays.

Arrays 145

If the size of the array is not specified in an array initialization state-
ment, the C compiler automatically creates an array big enough to hold
all the initializers present. Using this approach, the message table be-
comes

char el[] = "read error\n";
char e2[] = "write error\n";
char e3[] = "cannot open file\n";

Given these initializations, this statement
printf("%s has length %d\n", e2, sizeof e2);
prints

write error
has length 13

Aside from being less tedious, the unsized-array initialization method
allows any of the messages to be changed without fear of accidentally
counting wrong.

Unsized-array initializations are not restricted to only single-
dimensional arrays. For multidimensional arrays you must specify all
but the leftmost dimensions in order to allow C to index the array
properly. (This is similar to specifying array parameters.) In this way,
you can build tables of varying lengths and the compiler automatically
allocates enough storage for them. For example, the declaration of sqrs
as an unsized array is shown here:

int sqrs[][2] = {
4,
9,
16,
25,
36,
49,
64,
, 81,

10, 100
IH

v e v w

OONOOTE WN -
-

146 Turbo C/C++: The Complete Reference

The advantage to this declaration over the sized version is that the table
may be lengthened or shortened without changing the array dimensions.

A Tic-Tac-Toe Example

This chapter concludes with a longer example that illustrates many of
the ways arrays can be manipulated using C.

Two-dimensional arrays are commonly used to simulate board game
matrices, as in chess and checkers. Although it is beyond the scope of
this book to present a chess or checkers program, a simple tic-tac-toe
program can be developed.

The tic-tac-toe matrix is represented using a 3-by-3 character array.
You are always "X" and the computer is "0”. When you move, an "X” is
placed in the specified position of the game matrix. When it is the
computer’s turn to move, it scans the matrix and puts its 'O’ in the first
empty location of the matrix. (This makes for a fairly dull game—you
might find it fun to spice it up a bit!) If the computer cannot find an
empty location, it reports a draw game and exits. The game matrix is
initialized to contain spaces at the start of the game. The tic-tac-toe
program is shown here.

#include <stdio.h>

#include <stdlib.h>

/* A simple game of Tic-Tac-Toe. */

#define SPACE ' '

char matrix[3][3] = { /* the tic-tac-toe matrix */
SPACE, SPACE, SPACE,
SPACE, SPACE, SPACE,

SPACE, SPACE, SPACE
|8

void get_computer_move(void), get_player_move(void);
void disp_matrix(void);

int check(void);

main()

char done;

printf("This is the game of Tic-Tac-Toe.\n");
printf("You will be playing against the computer.\n");

Arrays

done=SPACE;

do {
disp_matrix(); /* display the game board */
get_player_move(); /* get your move */
done=check(); /* see if winner */

if(done!=SPACE) break; /* winner!*/
get_computer_move(); /* get computer's move */
done=check(); /* see if winner */

} while(done==SPACE);

if(done=='X"') printf("You won!\n");

else printf("I won!!!l\n");

disp_matrix(); /* show final positions */

return 0;

}

/* Input the player's move. */
void get_player_move(void)

int x, y;

printf("Enter coordinates for your X: ");

scanf("%d%d",8&x, 8y);

X=-3 Y--3

if(matrix[x] [y]!=SPACE) {
printf("Invalid move, try again.\n");
get_player_move();

else matrix[x][yl='X";

}

/* Get the computer's move */
void get_computer_move(void)

register int t;
char *p; .

p = (char *) matrix;
for(t=0; *p!=SPACE & t<9; ++t) p++;
if(t==9) {

printf("draw\n");

exit(0); /* game over */

else *p = '0';

/* Display the game board. */
void disp_matrix(void)
{

int t;

for(t=0; t<3; t++) {
printf(" %c | %c | %c ", matrix[t][0],
matrix[t][1], matrix [t][2]);

if(t1=2) printf("\n---{--=l---\n");

147

148 Turbo C/C++: The Complete Reference

printf("\n");

/* See if there is a winner. */
check(void)

int t;
char *p;

for(t=0; t<3; t++) { /* check rows */
p = &matrix[t][0];
if(xp==+(p+1) & *(p+1)==*(p+2)) return *p;

for(t=0; t<3; t++) { /* check columns */
p = &matrix[0][t];
if(*p==%(p+3) &8 *(p+3)==*(p+6)) return *p;

/* test diagonals */
if(matrix[0] [0]==matrix[1][1] &% matrix[1][1]==matrix[2][2])
return matrix[0] [0];

if(matrix[0] [2]==matrix[1] [1] && matrix[1][1]==matrix[2][0])
return matrix[0][2];

return SPACE;
}

The array is initialized to contain spaces because a space is used to
indicate to get_player__move() and get_computer _move() that a
matrix position is vacant. The fact that spaces are used instead of nulls
simplifies the matrix display function disp__matrix() by allowing the
contents of the array to be printed on the screen without any transla-
tions. Note that the routine get _player _move() is recursive when an
invalid location is entered. This is an example of how recursion can be
used to simplify a routine and reduce the amount of code necessary to
implement a function.

In the main loop, each time a move is entered the function check()
is called. This function determines if the game has been won and by
whom. The check() function returns an 'X’ if you have won, or an 'O’ if
the computer has won. Otherwise, it returns a space. check() works by
scanning the rows, the columns, and then the diagonals looking for a
winning configuration.

The routines in this example all access the array matrix differently.
You should study them to make sure that you understand each array
operation.

Pointers S

The correct understanding and use of pointers is critical to the creation
of most Turbo C programs for four reasons:

1. Pointers provide the means by which functions can modify their
calling arguments.

2. Pointers are used to support Turbo C’s dynamic allocation sys-
tem.

3. The use of pointers can improve the efficiency of certain routines.

4. Pointers are commonly used to support certain data structures
such as linked lists and binary trees.

In addition to being one of C's strongest features, pointers are also
its most dangerous feature. For example, uninitialized or wild pointers
can cause the system to crash. Perhaps worse, it is very easy to use
pointers incorrectly, which causes bugs that are very difficult to find.

Because arrays and pointers are interrelated in C, you will want to
examine Chapter 5, which covers arrays.

149

150 Turbo C/C++: The Complete Reference

Pointers Are Addresses

A pointer contains a memory address. Most commonly, this address is
the location of another variable in memory. If one variable contains the
address of another variable, the first variable is said to point to the
second. For example, if a variable at location 1004 is pointed to by a
variable at location 1000, location 1000 will contain the value 1004. This
situation is illustrated in Figure 6-1.

Note: The 8086 family of processors uses a segmented memory archi-
tecture scheme, under which a memory address consists of both a
segment and an offset portion. There are six different ways for Turbo C
to organize memory, called memory models, and each model affects the
way pointers are represented internally. For the purposes of this chap-
ter, the memory organization does not matter and the examples work
with all memory models. Chapter 10 covers the special cases that relate
specifically to each memory model.

Pointer Variables

If a variable is going to hold a pointer, it must be declared as such. A
pointer declaration consists of a base type, an *, and the variable name.

Memory
Address Contents
1000 1004

1001
1002
1003
1004

.

Figure 6-1. One variable pointing to another

Pointers 151

The general form for declaring a pointer variable is
type *name;

where type is any valid C type (the pointer’s base type), and name is the
name of the pointer variable.

The base type of the pointer defines what type of variables the
pointer can point to. Technically, any type of pointer can point anywhere
in memory, but C assumes that what the pointer is pointing to is an
object of its base type. Also, as you will see, all pointer arithmetic is done
relative to its base type, so the base type of a pointer is very important.

The Pointer Operators

There are two special pointer operators: * and &. The & is a unary
operator that returns the memory address of its operand. (A unary
operator requires only one operand.) For example,

m = &count;

places into m the memory address of the variable count. This address is
the computer's internal location of the variable. It has nothing to do
with the value of count. The operation of the & can be remembered as
returning "the address of.” Therefore, the preceding assignment state-
ment could be read as "m receives the address of count.”

To improve your understanding of the assignment, assume the
variable count uses memory location 2000 to store its value. Also as-
sume that count has a value of 100. Then, after the above assignment,
m will have the value 2000.

The second operator, #, is the complement of &. It is a unary
operator that returns the value of the variable located at the address
that follows. For example, if m contains the memory address of the
variable count,

q=*m;

152 Turbo C/C++: The Complete Reference

places the value of count into q. Following through with this example, q
has the value 100 because 100 is stored at location 2000, which is the
memory address that was stored in m. The operation of the * can be
remembered as "at address.” In this case the statement could be read as
"q receives the value at address m.”

The following program illustrates the foregoing discussion:

#include <stdio.h>
main(void)

int count, q;
int *m;

count = 100; /* count is assigned 100 */

m = &count; /* m receives count's address */

q = *m; /* q is assigned count's value
indirectly through m */

printf("%d", q); /* prints 100 */

return 0;

}

The above program displays the value 100 on the screen. j

Unfortunately, the multiplication sign and the "at address” sign are
the same, and the bitwise AND and the "address of” sign are the same.
These operators have no relationship to each other. Both & and * have a
higher precedence than all other arithmetic operators except the unary
minus, with which they are equal.

You must make sure that your pointer variables always point to the
correct type of data. For example, when you declare a pointer to be of
type int, the compiler assumes that any address it holds points to an
integer value. Because C allows you to assign any address to a pointer
variable, the following code fragment compiles (although Turbo C will
issue a warning message) but does not produce the desired result.

#include <stdio.h>

main(void)

float x, y;
int *p;

x = 100.123;

Pointers 153

p = &x;
Yy = *p;
printf("%f", y); /* this will be wrong */

return 0;

}
This does not assign the value of x to y. Because p is declared to be an

integer pointer, only 2 bytes of information will be transferred to y, not
the 4 that normally make up a floating point number.

Pointer Expressions

In general, expressions involving pointers conform to the same rules as
any other C expression. This section will examine a few special aspects
of pointer expressions.

Pointer Assignments

As with any variable, a pointer may be used on the right-hand side of
assignment statements to assign its value to another pointer. Note, for
example:

#include <stdio.h>
main(void)

int x;
int *pl, *p2;

pl = &x;
p2 = pl;

/* This will display the addresses held by
pl and p2. They will be the same.

*/

printf("%sp %p", pl, p2);

return 0;

}

Here, both pl and p2 will contain the address of x.

154 Turbo C/C++: The Complete Reference

Pointer Arithmetic

Only two arithmetic operations can be used on pointers: addition and
subtraction. To understand what occurs in pointer arithmetic, let p1 be a
pointer to an integer with a current value of 2000, and assume that
integers are 2 bytes long. After the expression

plt+;

the content of pl is 2002, not 2001! Each time pl is incremented, it
points to the next integer. The same is true of decrements. For example,

pl--;

will cause pl to have the value 1998, assuming that it previously was
2000.

Each time a pointer is incremented, it points to the memory location
of the next element of its base type. Each time it is decremented it
points to the location of the previous element. In the case of pointers to
characters this appears as "normal” arithmetic. However, all other point-
ers increase or decrease by the length of the data type they point to.
For example, assuming 1-byte characters and 2-byte integers, when a
character pointer is incremented, its value increases by 1; however,
when an integer pointer is incremented its value increases by 2. This
happens because all pointer arithmetic is done relative the base type of
the pointer so that the pointer is always pointing to another element of
the base type. Figure 6-2 illustrates this concept.

You are not limited to increment and decrement, however. You may
also add or subtract integers to or from pointers. The expression

pl = pl + 9;

makes pl point to the ninth element of pl’'s type beyond the one it is
currently pointing to.

Besides addition and subtraction of a pointer and an integer, the
only other operation you can perform on a pointer is to subtract it from
another pointer. For the most part, subtracting one pointer from an-
other only makes sense when both pointers point to a common object,
such as an array. The subtraction then yields the number of elements of

Pointers 155

the base type separating the two pointer values. Aside from these
operations, no other arithmetic operations can be performed on pointers.
You cannot multiply or divide pointers; you cannot add pointers; you
cannot apply the bitwise shift and mask operators to them; and you
cannot add or subtract type float or double to pointers.

Pointer Comparisons

It is possible to compare two pointers in a relational expression. For
instance, given the pointers p and q, the following statement is perfectly
valid:

if(p<q)printf("p points to lower memory than q\n");

In Turbo C, there are some special problems associated with far pointer
comparisons. Because of this, the material presented here is applicable
only to near or huge pointers. (The difficulties associated with far
pointers are discussed in Chapter 10 when the Turbo C memory models
are explained.)

char *ch=3000;

int *1=3000;
ch 3000 .
i
ch+1 30001
ch+2 3002
i+1
ch+3 3003
ch+4 3004
i+2
ch+5 3005
Memory

Figure 6-2. All pointer arithmetic is relative to its base type

156

Turbo C/C++: The Complete Reference

Generally, pointer comparisons are used when two or more pointers
are pointing to a common object. As an example, imagine that you are
constructing a stack routine to hold integer values. A stack is a list that
uses "first in, last out” accessing. It is often compared to a stack of
plates on a table—the first one set down is the last one to be used.
Stacks are used frequently in compilers, interpreters, spreadsheets, and
other system-related software. To create a stack, you need two routines:
push() and pop(). The push() function puts values on the stack and
pop() takes them off. The stack is held in the array stack, which is
STCKSIZE elements long. The variable tos holds the memory address
of the top of the stack and is used to prevent stack underflows. Once the
stack has been initialized, push() and pop() may be used as a stack for
integers. These routines are shown here with a simple main() function
to drive them:

#include <stdio.h>
#include <stdlib.h>

#define STCKSIZE 50

void push(int i);
int pop(void);

int *pl, *tos, stack[STCKSIZE];
main(void)
int value;

pl = stack; /* assign pl the start of stack */
tos = pl; /* let tos hold top of stack */

do {
printf(“Enter a number (-1 to quit, 0 to pop): ");
scanf("%d", &value);
if(value!=0) push(value);
else printf("this is it %d\n", pop());
} while(valuel=-1);
return 0;

void push(int 1)
{
pli+;
if(pl==(tos + STCKSIZE)) {
printf("stack overflow");
exit(1);

*pl = 1

Pointers 157

}
pop(void)

if(pl==tos) {
printf("stack underflow");
exit(1);

}

pl--;

return *(pl+l);

Both the push() and pop() functions perform a relational test on the
pointer p1 to detect limit errors. In push(), pl is tested against the end
of stack by adding STCKSIZE (the size of the stack) to tos. In pop(),
pl is checked against tos to be sure that a stack underflow has not
occurred.

In pop(), the parentheses are necessary in the return statement.
Without them, the statement would look like

return *pl + 1;
which would return the value at location p1 plus 1, not the value of the

location pl1+1. You must be very careful to use parentheses to ensure
the correct order of evaluation.

Turbo C’s Dynamic Allocation Functions

Once compiled, all C programs organize the computer’s memory into
four regions, which hold program code, global data, the stack, and the
heap. The heap is an area of free memory that is managed by C's
dynamic allocation functions malloc() and free().

The malloc() function allocates memory and returns a void pointer
to the start of it, and free() returns previously allocated memory to the
heap for possible reuse. The general forms for malloc() and free() are

void *malloc(size _t num _ bytes);

void free(void *p);

158

Turbo C/C++: The Complete Reference

Both functions use the stdlib.h header file. Here, num _bytes is the
number of bytes requested. If there is not enough free memory to fill
the request, malloc() returns a null. The type size__t is defined in
stdlib.h and specifies a type that is capable of holding the largest
amount of memory that may be allocated with a single call to malloce().
It is important that free() be called only with a valid, previously
allocated pointer; otherwise the organization of the heap could be dam-
aged, which might cause a program crash.
The code fragment shown here allocates 1000 bytes of memory:

char *p;

p = malloc(25);

After the assignment, p points to the first of 25 bytes of free memory.
Notice that no type cast is used with malloe(); the pointer type is
converted automatically to the same type as the pointer variable on the
left side of the assignment. As another example, this fragment allocates
space for 50 integers. It uses sizeof to ensure portability.

int *p;

p = malloc(50*sizeof(int));

Since the heap is not infinite, whenever you allocate memory, it is
imperative to check the value returned by malloc() to make sure that it
is not null before using the pointer. Using a null pointer may crash the
computer. The proper way to allocate memory and test for a valid
pointer is illustrated in this code fragment:

if((p=malloc(100))==NULL) {
printf("Out of memory.\n");
exit(1);

The macro NULL is defined in stdlib.h. Of course, you can substitute
some other sort of error handler in place of exit(). The point is that you
do not want the pointer p to be used if it is null.

You should include the header file stdlib.h at the top of any file that
uses malloc() and free() because it contains their prototypes.

Pointers 159

Later in this book you will see pointers and dynamic allocation used
to create linked lists, sparse arrays, and the like. Also, Chapter 5 shows
some other examples of malloc() and free().

Pointers and Arrays

There is a close relationship between pointers and arrays. Consider this
fragment:

char str[80], *pl;
pl = str;

Here, p1 has been set to the address of the first array element in str. If
you wished to access the fifth element in str you could write

str[4]
or
*(pl+4)

Both statements return the fifth element. Remember, arrays start at 0,
so a 4 is used to index str. You add 4 to the pointer pl to get the fifth
element because pl currently points to the first element of str. (Remem-
ber that an array name without an index returns the starting address of
the array, which is the first element.)

In essence C allows two methods of accessing array elements. This
is important because pointer arithmetic can be faster than array-
indexing. Since speed is often a consideration in programming, the use
of pointers to access array elements is very common in C programs.

To see an example of how pointers can be used in place of array-
indexing, consider these two simplified versions of the puts() standard
library function—one with array-indexing and one with pointers. The
puts() function writes a string to the standard output device.

160 Turbo C/C++: The Complete Reference

/* use array */
puts(char *s)

register int t;

for(t=0; s[t]; ++t) putch(s[t]);
return 1;

/* use pointer */
puts(char *s)

while(*s) putch(*s++);
return 1;

Most professional C programmers would find the second version easier
to read and understand. In fact, the pointer version is the way routines
of this sort are commonly written in C.

Sometimes novice C programmers make the mistake of thinking
that they should never use array-indexing because pointers are much
more efficient. But this is not the case. If the array is going to be
accessed in strictly ascending or descending order, pointers are faster
and easier to use. However, if the array is going to be accessed ran-
domly, array-indexing may be as good as using pointer arithmetic be-
cause it will be about as fast as evaluating a complex pointer expression.
Also, when you use array-indexing, you are letting the compiler do some
of the work for you.

Pointers to Character Arrays

Many string operations in C are usually performed by using pointers
and pointer arithmetic because strings tend to be accessed in a strictly
sequential fashion.

For example, here is one version of the standard library function
stremp() that uses pointers:

/* use pointers */
strcmp(char *sl, char *s2)

while(*s1)
if(*sl-*s2)
return *sl-*s2;
else {

Pointers 161

sl+t;
S2++;

}

return 0; /* equal */

Remember, all strings in C are terminated by a null, which is a false
value. Therefore, a statement such as

while (*s1)

is true until the end of the string is reached. Here, stremp() returns 0 if
sl is equal to s2. It returns less than 0 if sl is less than s2; otherwise it
returns greater than 0.

Most string functions resemble the stremp() with regard to the
way it uses pointers, especially where loop control is concerned. Using
pointers is faster, more efficient, and often easier to understand than
using array-indexing.

One common error that sometimes creeps in when using pointers is
illustrated by the following program:

/* This program is incorrect. */

#include <stdio.h>
#include <string.h>

main(void)
char *pl, s[80];

pl =s; /* assign pl the starting address of s */
do {
gets(s); /* read a string */

/* print the decimal equivalent of each
character */
while(*pl) printf(" %d", *pl++);

} while(strcmp(s, "done"));
return 0;

}

Can you find the error in this program?

The problem is that pl is assigned the address of s only once—
outside the loop. The first time through the loop, pl does point to the
first character in s. However, in the second (and subsequent iterations),

162 Turbo C/C++: The Complete Reference

it continues from where it left off, because it is not reset to the start of
the array s. This causes the next string input using gets() to be put
after the null terminator of the first string, meaning that p1 continues to
point to the null terminator of the first string. The proper way to write
this program is

/* This program is correct. */

#include <stdio.h>
#include <string.h>

main(void)

char *pl, s[80];

do {
pl = s; /* assign pl the starting address of s */
gets(s); /* read a string */
/* print the decimal equivalent of each

character */

while(*pl) printf(" %d", *pl++);

} while(strcmp(s, "done"));
return 0;

Here, each time the loop iterates, pl is set to the start of string s.

Arrays of Pointers

Pointers may be arrayed like any other data type. The declaration for an
int pointer array of size 10 is

int *x[10];

To assign the address of an integer variable called var to the third
element of the array, you would write:

x[2] = &var;
To find the value of var, you would write

*x[2]

Pointers 163

If you want to pass an array of pointers into a function, you can use
the same method used for other arrays—simply call the function with
the array name without any indexes. For example, a function that will
receive array x would look like:

void display_array(int *q[])

{
int t;

for(t=0; t<10; t++)
printf("%d ", *q[t]);

Remember, q is not a pointer to integers, but to an array of pointers to
integers. Therefore it is necessary to declare the parameter q as an
array of integer pointers as shown here. It may not be declared simply
as an integer pointer because that is not what it is.

A common use of pointer arrays is to hold pointers to error mes-
sages. You can create a function that outputs a message given its code
number, as shown here:

void serror(int num)

static char *err[] = {
“cannot open file\n",
"vead error\n",
"write error\n",
"media failure\n"

}8

printf("%s", err[num]);

As you can see, printf() inside serror() is called with a character
pointer that points to one of the various error messages indexed by the
error number passed to the function. For example, if num is passed a 2,
the message "write error” is displayed.

It is interesting to note that the command-line argument argv is an
array of character pointers.

Pointers to Pointers

An array of pointers is the same as pointers to pointers. The concept of
arrays of pointers is straightforward because the indexes keep the
meaning clear. However, pointers to pointers can be very confusing.

164

Turbo C/C++: The Complete Reference

A pointer to a pointer is a form of multiple indirection, or a chain of
pointers. Consider Figure 6-3.

In the case of a normal pointer, the value of the pointer is the
address of the variable that contains the value desired. In the case of a
pointer to a pointer, the first pointer contains the address of the second
pointer, which contains the address of the variable, which contains the
value desired.

Multiple indirection can be carried on to whatever extent desired,
but there are few cases where using more than a pointer to a pointer is
necessary, or even wise. Excessive indirection is difficult to follow and
prone to conceptual errors. (Do not confuse multiple indirection with
linked lists, which are used in databases and the like.)

A variable that is a pointer to a pointer must be declared as such.
This is done by placing an additional asterisk in front of its name. For
example, this declaration tells the compiler that newbalance is a pointer
to a pointer of type float.

float **newbalance;

It is important to understand that newbalance is not a pointer to a
floating point number but rather a pointer to a float pointer.
In order to access the target value indirectly pointed to by a pointer

Pointer Variable

address > value

Single Indirection
Pointer Pointer Variable

address _ address value

Multiple Indirection

Figure 6-3. Single and multiple indirection

Pointers 165

to a pointer, the asterisk operator must be applied twice as is shown in
this short example:

#include <stdio.h>
main(void)
int x, *p, **q;

X
p
q

10;
&x;
&p;

n o on

printf("%d", **q); /* print the value of x */

return 0;

}

Here, p is declared as a pointer to an integer, and q as a pointer to a
pointer to an integer. The call to printf() prints the number 10 on the
screen.

Initializing Pointers

After a pointer is declared, but before it has been assigned a value, it
contains an unknown value. If you try to use the pointer prior to giving
it a value, you probably will crash not only your program but also the
operating system of your computer —a very nasty type of error!

By convention, a pointer that is pointing nowhere should be given
the value null to signify that it points to nothing. However, just because
a pointer has a null value does not make it "safe.” If you use a null
pointer on the left side of an assignment statement you still risk crash-
ing your program or operating system.

Because a null pointer is assumed to be unused, you can use the null
pointer to make many of your pointer routines easier to code and more
efficient. For example, you could use a null pointer to mark the end of a
pointer array. If this is done, a routine that accesses that array knows
that it has reached the end when the null value is encountered. This
type of approach is illustrated by the search() function shown here:

/* look up a name */
search(char *p[], char *name)

register int t;

166 Turbo C/C++: The Complete Reference

for(t=0; p[t]; ++t)
if(!strcmp(p[t], name)) return t;

return -1; /* not found */

}

The for loop inside search() runs until either a match or a null pointer
is found. Because the end of the array is marked with a null, the
condition controlling the loop fails when it is reached.

It is common in professionally written C programs to initialize
strings. You saw an example of this in the serror() function in the
previous section. Another variation on this theme is the following type of
string declaration:

char *p = "hello world\n";

As you can see, the pointer p is not an array. The reason this sort of
initialization works has to do with the way Turbo C operates. All C
compilers create what is called a string table, which is used internally by
the compiler to store the string constants used by the program. There-
fore, this declaration statement places the address of "hello world,” into
the pointer p. Throughout the program p can be used like any other
string. For example, the following program is perfectly valid:

#include <stdio.h>
#include <string.h>
char *p = "hello world";
main(void)
register int t;
/* print the string forward and backwards */
printf(p);
for(t=strien(p)-1; t>-1; tf') printf("%c", p[t]);

return 0;

}

Polinters to Functions

In Chapter 4, you were introduced to a particularly confusing yet
powerful feature of C, the function pointer. Even though a function is

Pointers 167

not a variable, it still has a physical location in memory that can be
assigned to a pointer. A function’s address is the entry point of the
function. Because of this a function pointer can be used to call a funec-
tion. In this section, we will look at another use for the function pointer.

In certain types of programs the user can select one option from a
long list of possible actions. For example, in an accounting program, you
may be presented with a menu that has 20 or more selections. Once the
selection has been made, the routine that routes program execution to
the proper function can be handled two ways. The most common way is
to use a switch statement. However, in applications that demand the
highest performance there is a better way. An array of pointers can be
created with each pointer in the array containing the address of a
function. The selection made by the user is decoded and is used to index
into the pointer array, causing the proper function to be executed. This
method can be very fast —much faster than the switch method.

To see how an array of function pointers can be used as described,
imagine that you are implementing a very simple inventory system that
is capable of entering, deleting, and reviewing data, as well as exiting to
the operating system. If the functions that perform these activities are
called enter(), delete(), review(), and quit(), respectively, the follow-
ing fragment correctly initializes an array of function pointers to these
functions:

void enter(void), delete(void), review(void), quit(void);
int menu(void);

void (*options[])(void) = {

enter,

delete,

review,

quit
Pay special attention to the way an array of function pointers is de-
clared. Notice the placement of the parentheses and square brackets.

Although the actual inventory routines are not developed, the fol-

lowing program illustrates the proper way to execute the funtions by

using the function pointers. Notice how the menu() function automati-
cally returns the proper index into the pointer array.

#include <std1ib.h>
#include <stdio.h>
#include <conio.h>

168 Turbo C/C++: The Complete Reference

#include <string.h>

void enter(void), delete(void), review(void), quit(void);
int menu(void);

void (*options[])(void) = {
enter,
delete,
review,
quit
}s
main(void)
int i;
i = menu(); /* get user's choice */

(*options[i])(); /* execute it */
return 0;

}
menu(void)
char ch;
do {
printf("1l. Enter\n");
printf("2. Delete\n");
printf("3. Review\n");
printf("4. Quit\n");
printf("Select a number: ");
ch = getche();
printf("\n");
} while(!strchr("1234", ch));
return ch-49; /* convert to an integer equivalent */
}

void enter(void)

printf("in enter");

void delete(void)

printf("in delete");

void review(void)

printf("in review");

void quit(void)

Pointers 169

{
printf("in quit");
exit(0);

}

The program works like this. The menu is displayed, and the user enters
the number of the selection desired. Since the number is in ASCII, 49
(the decimal value of 0) is subtracted from it in order to convert it into a
binary integer. This value is then returned to main() and is used as an
index to options, the array of function pointers. Next, the call to the
proper function is executed.

Using arrays of function pointers is very common, not only in
interpreters and compilers but also in database programs, because often
these programs provide a large number of options and efficiency is
important.

Problems with Pointers

Nothing will get you into more trouble than a "wild” pointer! Pointers
are a mixed blessing. They give you tremendous power and are neces-
sary for many programs. But when a pointer accidentally contains a
wrong value, it can be the most difficult bug to track down. The pointer
itself is not the problem; the problem is that each time you perform an
operation using it, you are reading or writing to some unknown piece of
memory. If you read from it, the worst that can happen is that you get
garbage. However, if you write to it, you write over other pieces of your
code or data. This may not show up until later in the execution of your
program, and may lead you to look for the bug in the wrong place.
There may be little or no evidence to suggest that the pointer is the
problem.

Because pointer errors are such nightmares, you should do your
best never to generate one. Toward this end, a few of the more common
errors are discussed here.

The classic example of a pointer error is the uninitialized pointer.
For example:

/* This program is wrong. */

main(void)

170

Turbo C/C++: The Complete Reference

{

int x, *p;
x = 10;
*p:x;
return 0;

This program assigns the value 10 to some unknown memory location.
The pointer p has never been given a value, therefore it contains a
garbage value. This type of problem often goes unnoticed when your
program is very small because the odds are in favor of p containing a
"safe” address—one that is not in your code, data, stack, heap, or
operating system. However, as your program grows, so does the proba-
bility of p having a pointer into something vital. Eventually your pro-
gram stops working. The solution to this sort of trouble is to make sure
that a pointer is always pointing at something valid before it is used.

A second common error is caused by a simple misunderstanding of
how to use a pointer. For example:

#include <stdio.h>

/* this program is wrong */
main(void)

int x, *p;
10;

X3
rintf("%d", *p);
return 0;

X
p
p

The call to printf() does not print the value of x, which is 10, on the
screen. It prints some unknown value because the assignment

P=x;

is wrong. That statement has assigned the value 10 to the pointer p,
which was supposed to contain an address, not a value. To make the
program correct, you should write

Pointers 171

p = &x;

The fact that pointers can cause very tricky bugs if handled incorrectly
is no reason to avoid using them. Simply be careful and make sure that
you know where each pointer is pointing before using it.

Structures, Unions, and User-Defined
Variables

The C language gives you five ways to create custom data types:
1. The structure is a grouping of variables under one name and is
sometimes called a conglomerate data type.

2. The bit-field is a variation of the structure and allows easy access
to the individual bits within a word.

3. The union enables the same piece of memory to be defined as
two or more different types of variables.

4. The enumeration is a list of symbols.

5. The typedef keyword simply creates a new name for an existing
type.

Structures

In C, a structure is a collection of variables that are referenced under
one name, providing a convenient means of keeping related information
together. A structure declaration forms a template that may be used to

174

Turbo C/C++: The Complete Reference

create structure variables. The variables that make up the structure are
called structure elements. Generally, all the elements in the structure
are related to each other logically. For example, the name and address
information found in a mailing list is normally represented as a struc-
ture.

To understand structures, it is best to begin with an example. The
following code fragment declares a structure template that defines the
name and address fields of a mailing list structure. The keyword struct
tells the compiler that a structure is being declared.

struct addr {

char name[30];

char street[40];

char city[20];

char state[3];
unsigned Tong int zip;

h

The declaration is terminated by a semicolon because a structure decla-
ration is a statement. Also, the structure name addr identifies this
particular data structure and is its type specifier. The structure name is
often referred to as its tag.

At this point in the code, no variable has actually been declared.
Only the form of the data has been defined. To declare an actual
variable with this structure, you would write

struct addr addr_info;

This declares a structure variable of type addr called addr _info. When
you declare a structure, you are essentially defining a complex variable
type composed of the structure elements. Not until you declare a vari-
able of that type does one actually exist.

Turbo C automatically allocates sufficient memory to accommodate
all the variables that make up a structure variable. Figure 7-1 shows
how addr_info appears in memory assuming 1-byte characters and
2-byte integers.

You may also declare one or more variables at the same time that
you declare a structure. For example,

struct addr {
char name[30];
char street[40];

Structures, Unions, and User-Defined Variables 175

char city[20];
char state[3];
unsigned long int zip;
} addr_info, binfo, cinfo;

declares a structure type called addr and declares variables addr _ info,
binfo, and cinfo of that type.

If you need only one structure variable, the structure tag name is
not needed. This means that

struct {
char name[30];
char street[40];
char city[20];
char state[3];
unsigned long int zip;
} addr_info;

declares one variable named addr_info as defined by the structure
preceding it.
The general form of a structure declaration is

struet structure _tag _name {
type variable _name;
type variable _name;
type variable _name;

} structure _variables;

Name 30 bytes

Street 40 bytes

City 20 bytes addr —info
State 3 bytes

Zip 4 bytes

Figure 7-1. The addr_info structure as it appears in memory

176 Turbo C/C++: The Complete Reference

The structure _tag _name is the name of the structure—not a variable
name. The structure_variables is a comma-separated list of
variable names. Remember, either structure__tag_name or
structure _variables is optional, but not both.

Referencing Structure Elements .

Individual structure elements are referenced by using the . (usually
called the "dot”) operator. For example, the following code assigns the
zip code 12345 to the zip field of the structure variable addr_info
declared earlier:

addr_info.zip = 12345;

The structure variable name followed by a period and the element name
references that individual structure element. All structure elements are
accessed in the same way. The general form is

structure _name.element _name

Therefore, to print the zip code to the screen, you could write
printf("%1d", addr_info.zip);

This prints the zip code contained in the zip variable of the structure
variable addr _ info.

In the same fashion, the addr _info.name character array can be
used with gets() as shown here:

gets(addr_info.name);

This passes a character pointer to the start of the element name.

To access the individual elements of addr__info.name, you could
index name. For example, you could print the contents of
addr _info.name one character at a time by using this code:

Structures, Unions, and User-Defined Variables 177

register int t;

for(t=0; addr_info.name[t]; ++t) putch(addr_info.name[t]);

Arrays of Structures

Perhaps the most common use of structures is in arrays of structures.
To declare an array of structures, you must first define a structure, and
then declare an array variable of that type. For example, to declare a
100-element array of structures of type addr, which was declared earlier
in this chapter, you would write

struct addr addr_info[100];

This creates 100 sets of variables that are organized as declared in the
structure type addr.

To access a specific structure within the addr_info array, the
structure variable name is indexed. For example, to print the zip code of
the third structure, you would write

printf("%1d", addr_info[2].zip);

Like all array variables, arrays of structures begin their indexing at 0.

An Inventory Example

To help illustrate how structures and arrays of structures are used,
consider a simple inventory program that uses an array of structures to
hold the inventory information. The functions in this program interact
with structures and their elements in various ways to illustrate struc-
ture usage.

178

Turbo C/C++: The Complete Reference

In this example, the information to be stored includes
item name
cost

number on hand

You can define the basic data structure, called inv, to hold this informa-
tion as

#define MAX 100

struct inv {
char item[30];
float cost;
int on_hand;

} inv_info[MAX];

In the inv structure, item is used to hold each inventoried item’s name.
The element cost contains the item’s cost, and on _hand represents the
number of items currently available.

The first function needed for the program is main().

main(void)
char choice;

init_list(); /* initialize the structure array*/
for(;;) {
choice = menu_select();
switch(choice) {
case 1: enter();
break;
case 2: delete();
break;
case 3: list();
break;
case 4: return 0;

}
}

In main(), the call to init _list() prepares the structure array for use
by putting a null character into the first byte of the item field. The
program assumes that a structure variable is not in use if the item field
is empty. The init _list() function is defined as follows.

Structures, Unions, and User-Defined Variables 179

/* Initialize the structure array. */
void init_list(void)

register int t;

for(t=0; t<MAX; ++t) inv_info[t].item[0] = '\0';

The menu _select() function displays the option messages and returns
the user’s selection:

/* Input the user's selection. */
menu_select(void)

char s[80];
int c;

printf("\n");
printf("1l. Enter an item\n");
printf("2. Delete an item\n");
printf("3. List the inventory\n");
printf("4. Quit\n");
do {
printf("\nEnter your choice: ");
gets(s);
c = atoi(s);
} while(c<0 || c>4);
return c;

}

The enter() function prompts the user for input and places the informa-
tion entered into the next free structure. If the array is full, the mes-
sage "list full” is printed on the screen. The function find_free()
searches the structure array for an unused element.

/* Input the inventory information. */
void enter(void)

{

int slot;

slot = find_free();

if(slot == -1) {
printf("\nlist full");
return;

}

printf("enter item: ");
gets(inv_info[slot].item);

printf("enter cost: ");
scanf("%f", &inv_info[slot].cost);

180 Turbo C/C++: The Complete Reference

printf("enter number on hand: ");
scanf ("%d%*c",&inv_info[slot].on_hand);

/* Return the index of the first unused array
Tocation or -1 if the no free locations exist.

*/

find_free(void)

{

register int t;

for(t=0; inv_info[t].item[0] && t<MAX; ++t) ;
if(t == MAX) return -1; /* no slots free */
return t;

}

Notice that find _free() returns a —1 if every structure array variable
is in use. This is a "safe” number to use because there cannot be a —1
element of the inv__info array.

The delete() function requires the user to specify the number of
the item that needs to be deleted. The function then puts a null charac-
ter in the first character position of the item field.

/* Delete an item from the list. */
void delete(void)

register int slot;
char s[80];

printf("enter record #: ");

gets(s);

slot = atoi(s);

if(slot >= 0 && slot < MAX) inv_info[slot].item[0]="\0";

The final function the program needs is list(). It prints the entire
inventory list on the screen.

/* Display the 1ist on the screen. */
void Tist(void)

register int t;

for(t=0; t<MAX; ++t) {
if(inv_info[t].item[0]) {
printf("item: %s\n", inv_info[t].item);
printf("cost: %f\n", inv_info[t].cost);
printf("on hand: %d\n\n", inv_info[t].on_hand);

Structures, Unions, and User-Defined Variables 181

}
printf("\n\n");

The complete listing for the inventory program is shown here. If
you have any doubts about your understanding of structures, you should
enter this program into your computer and study its execution by
making changes and watching their effects.

/* A simple inventory program using an array of structures */

#include <stdio.h>
#include <stdlib.h>

#define MAX 100

struct inv {
char item[30];
float cost;
int on_hand;

} inv_info[MAX];

void init_list(void), list(void), delete(void);
void enter(void);
int menu_select(void), find_free(void);

main(void)
char choice;

init_list(); /* initialize the structure array*/
for(s;) {
choice = menu_select();
switch(choice) {
case 1: enter();
break;
case 2: delete();
break;
case 3: list();
break;
case 4: return 0;

}
}

/* Initialize the structure array. */
void init_list(void)

register int t;

for(t=0; t<MAX; ++t) inv_info[t].item[0] = '\0';

182 Turbo C/C++: The Complete Reference

/* Input the user's selection. */
menu_select(void)

char s[80];
int c;

printf("\n");
printf("l. Enter an item\n");
printf("2. Delete an item\n");
printf("3. List the inventory\n");
printf("4. Quit\n");
do {
printf("\nEnter your choice: ");
gets(s);
c = atoi(s);
} while(c<0 i c>4);
return c;

/* Input the inventory information. */
void enter(void)

{

int slot;

slot = find_free();

if(slot == -1) {
printf("\nlist full");
return;

}

printf("enter item: ");
gets(inv_info[slot].item);

printf("enter cost: ");
scanf("%f", &inv_info[slot].cost);

printf("enter number on hand: ");
scanf("%d%*c", &inv_info[slot].on_hand);

}

/* Return the index of the first unused array
Tocation or -1 if the no free locations exist.
*/

find_free(void)
{
register int t;
for(t=0; inv_info[t].item[0] && t<MAX; ++t) ;

if(t == MAX) return -1; /* no slots free */
return t;

/* Delete an item from the list. */
void delete(void)

register int slot;

Structures, Unions, and User-Defined Variables 183

char s[80];

printf("enter record #: ");

gets(s);

slot = atoi(s);

if(slot >= 0 && slot < MAX) inv_info[slot].item[0] = '\0';
}

/* Display the 1ist on the screen. */
void list(void)

register int t;

for(t=0; t<MAX; ++t) {
if(inv_info[t].item[0]) {
printf("item: %s\n", inv_info[t].item);
printf("cost: %f\n", inv_info[t].cost);
printf("on hand: %d\n\n", inv_info[t].on_hand);

}
}
printf("\n\n");

Passing Structures to Functions

So far, all structures and arrays of structures used in the examples have
been assumed to be either global or defined within the function that uses
them. In this section special consideration will be given to passing
structures and their elements to functions.

Passing Structure Elements to Functions

When you pass an element of a structure variable to a function, you are
actually passing the value of that element to the function. Therefore, you
are passing a simple variable (unless, of course, that element is an array,
in which case an address is passed). For example, consider this struc-
ture:

struct fred {
char x;
int y;
float z;

184 Turbo C/C++: The Complete Reference

char s[10];
} mike;

Here are examples of each element being passed to a function:

func(mike.x); /* passes character value of x */
func2(mike.y); /* passes integer value of y */
func3(mike.z); /* passes float value of z */
func4(mike.s); /* passes address of string s */

func(mike.s[2]); /* passes character value of s[2] */

However, if you wished to pass the address of individual structure
elements to achieve call by reference parameter passing, you would
place the & operator before the structure name. For example, to pass
the address of the elements in the structure mike, you would write

func(&mike.x); /* passes address of character x */
func2(&mike.y); /* passes address of integer y */
func3(&mike.z); /* passes address of float z */
func4(mike.s); /* passes address of string s */

func(&mike.s[2]); /* passes address of character s[2] */

Notice that the & operator precedes the structure name, not the
individual element name. Note also that the string element s already
signifies an address, so that no & is required. However, when accessing
a specific character in string s, as shown in the final example, the & is
still needed.

Passing Entire Structures to Functions

When a structure is used as an argument to a function, the entire
structure is passed using the standard call by value method. This means

Structures, Unions, and User-Defined Variables 185

that any changes made to the contents of the structure inside the
function to which it is passed do not affect the structure used as an
argument.

When using a structure as a parameter, the most important thing to
reme<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>