
\

BORLAND

First Edition
Printed in U.S.A.
98

-'\ :

: \ \

...... :,

~ --..

._-
~ :

, .-'

-,
.-'

-'-,

-.;..<;- ..

User's Guide

Version 2.0

Copyrighto 1988
All rights reserved

Borland International
1800 Green Hills Road

P.O. Box 660001
Scotts Valley, CA 95066-0001

R2

This manual was produced with
Sprin~The Professional Word Processor

All Borland products are trademarks or registered trademarks of
Borland International, Inc. Other brand and product names are trademarks

or registered trademarks of their respective holders.
Copyrighto 1988 Borland International.

Printed in the US.A.

1098

Table of Contents

Inuoduction 1
The Tur'bo C Package 1
What's New in Tur'bo C 2.0 2
Requirements .. 2
The Tur'bo C Implementation 2
Volume I: The Turbo C User's Guide 3
Volume IT: The Turbo C Reference Guide 4
Recommended Reading .. 5
Typographic Conventions 5
Borland's No-Nonsense License Statement 6
How to Contact Borland 6

Chapter 1 Before You Begin 9
In This Chapter 10
The README File 10
The HELPMELIXX: File 10
Installing Tur'bo C on Your System. .. 10

IfYou Are Installing Turbo C on a Floppy-Disk System 11
Running IN'STALL 11
Setting Up Turbo C on a Laptop System .. 11
MicroCalc .. 12

Where to Now? 12
Programmers !..earning C .. 12
ExperiencedCProgrammers 12
Tur'bo Pascal Programmers 13
Tur'bo Prolog Programmers .. 13

Chapter 2 Getting Started 15
In This Chapter... 15
HELLO.C: Building and Running a Single-File Program 16

Step 1: l.oad TC 16
Step 2: Choose the Working Directory (Optional) 16
Step 3: Set Up Your Working Environment. .. 17
Step 4: l.oad the Source File into the Editor 18
Step 5: Build the Executable File .. 19
Step 6: Run the Program 19

What Have You Accomplished? 20
Editing Your Program. .. 20
If You Did Something Wrong 22
Sending Your Output to a Printer .. 22

Writing Your Second Turbo C Program. .. 22
Writing to Disk 23
Running SUM.C 23

Chapter 3 Putting It All Together-Compiling and Running Your
Progrann 25

In This Chapter... 25
Building Files in TC, Revisited 26
Debug~gYourP~~m 26

Catching Syntax Errors: The Error-Tracking Feature 26
The Message Window 27
Correcting a Syntax Error 27

Catching Run-Time Errors: The Integrated Debugger 28
Projects: Using Multiple Source Programs 29

Building a Multi-Source File Program 30
E~r Tracking Revisited 31

Stopping a Make 31
Syntax E~rs in Multiple Source Files 32
Keeping and Getting Rid of Messages .. 33

The Power of Project-Make 33
Explicit Dependencies 34
Autodependency Checking .. 35

What? More Make Features? .. 35
External Object and Library Files 35
Overriding the Standard Files e. • • 36

Compiling and Linking from a Command Line. .. 37
The TCC Command Line 37

Options on the Command Line .. 37
File Names on the Command Line.. 38
The Executable File .. 38
Some Sample Command Lines 38

The TURBOC.CFG File. .. 39
The TCCONFIG.EXE Conversion Utility for Configuration Files 40

The MAKE Utility 41
BUlLTIN'S.MAK 41

Running Turbo C Programs from the DOS Command Line 42
Moving Ahead with Turbo C 42

Chapter 4 Debugging Your Progrann 43
In This Chapter... 43
How the Integrated Debugger Works 44

Example 1: Debugging a Simple Program. .. 46
Setting and Using a Breakpoint. 49
Using etrl-Break ..•..•.......................••..•..•••....... 50
Stepping Over Function Calls 50
Evaluating an Expression 51

/I

The nextword and wordlen Functions .. 52
Stop and Think 52
What You've Accomplished. .. 53
The Default Expression in the Evaluate Window. 53
Changing the Value of an Evaluated Expression 54
Qualifying Variable Names. 55
FOI'IIlat Specifiers 56

Exercise 2: Finding the Bug in wordlen 60
Fixing the Bug 62
What You've Accomplished. 62
More about Breakpoints .. 62

Exercise 3: Back to the Program 63
Editing and Deleting Watch Expressions .. 64
Zooming and Switching Windows .. 65
Scrolling Watch Expressions 66

Exercise 4: Debugging the Print Loop 66
Exercise 5: Working with Large Programs 67

Finding the Definition of a Function 67
The Call Stack 68
Returning to the Execution Position .. 68
When You Can't Use the Integrated Debugger. 69

About Multiple Source Files 69
Survey of Debugger Commands and Hot Keys .. 69
Guidelines for Effective Software Testing .. 72

Develop a Standard Approach 72
Test Modifications Thoroughly .. 73
Design Defensively .. 73
Debug from the Bottom Up .. 74
Look for Classes of Bugs 74

Debugging Inline Assembly Code 75

Chapter 5 The Turbo C Integrated Development Environment 77
In This Chapter... 77

What You Should Read. .. 78
How to Get Help .. 78

Part I: Using TC .. 80
TC Command-Line Switches. .. 80
Finding Your Way around TC 82
The TC Hot Keys .. 83
Menu Structure 85

Menu-Naming Conventions 88
The Main Menu .. 88
The Qttick-Ref Lines 89
The Edit Window 89

Qttick Guide to Editing Commands .. 91
How to Work with Source Files in the Edit Window 92

III

Creating a New Source File 92
Loading an Existing Source FOlle 92
Saving a Source File 93
Writing an Output File .. 93

The Message Window 94
The Watch Window .. 94
The Integrated Debugger 95

Controlling the Debugger 96
The Debugger Screen Display .. 96
Debugging Menu Commands and Hot Keys 97

Part II: The Menu Commands .. 100
The File Menu 100

Load 101
Pick 101
New 101
Save 101
Write To 101
Directory. .. 102
Change Dir .. 102
OS Shell .. 102
Quit•.••••...................................... 102

The Edit Command. .. 102
The Run Menu .. 103

Run 103
Program Reset 104
Go to Cursor. .. 104
Trace Into ..•.. 105
Step Over 105
User Screen .. 106

The Compile Menu .. 106
Compile to OBI 107
Make EXE File 107
Link EXE File .. 108
Build All 108
Primary C File 108
Get Info .. 108

The Project Menu 109
Project Name 110
Break Make On 110
Auto Dependencies 111
Clear Project .. 111
Remove Messages .. 112

The Options Menu 112
Compiler. .. 113

The Model menu .. 113

Iv

Defines 114
The Code Generation Menu 114
The Optimization Menu 118
The Source Menu. .. 119
The Errors Menu .. 120
The Names Menu 122

Linker 122
The Map File Menu 123
Initialize Segments 123
Default Libraries 123
Graphics Libraries. .. 124
Warn Duplicate Symbols 124
Stack Warning 124
Case-sensitive Link .. 124

Environment 124
Message Tracking 125
Keep Messages. .. 125
Config Auto Save 125
Edit Auto Save. .. 126
Backup Files 126
Tab Size .. 126
Zoomed Windows 126
The Screen Size Menu .. 127

Directories 127
Include Directories 128
Ubraty Directories 128
Output Directoty .. 129
Turbo C Directoty .. 129
Pick File Name 129
Current Pick File 129

Arguments 129
Save Options 130
Retrieve Options 130

The Debug Menu. .. 130
Evaluate 131
Find Function .. 133
Call Stack 134
Source Debugging .. 134
Display Swapping .. 135
Refresh Display 135

The Break/Watch Menu.. 135
Add Watch 137
Delete Watch 137
Edit Watch 137
Remove All Watches .. 137

v

Toggle Breakpoint .. 138
Clear All Breakpoints 138
View Next Breakpoint 138

Part III: More about Configuration and Pick Files 140
What Is a Configuration File? 140
The TC Configuration Files 140

What Is Stored in TC Configuration Files? 141
Creating a TC Configuration File 141
Changing Configuration Files Midstream. .. 142
Where Does TC.EXE Look for TCCONFIG.TC? 142
TCINST vs. the Configuration File: Who's the Boss? 142
What Does Options/Environment/Config Auto Save Do? 143

What Are Pick Lists and Pick Files? 143
The Pick List. .. 143
The Pick File .. 144

When and How Do You Get a Pick File? 144
When Does Turbo C Save Pick Files? .. 145

Part IV: Additional Features and Editing Commands 146
More on Tabs 146
Autoindent, Unindent, and Optimal Fill 146

Examples 147
Pair Matching 148

A Few Details about Pair Matching 148
Directional and Nondirectional Matching. .. 149

Nestable Delimiters 150
The Search for Comment Delimiters 150

Editing Key Assignment 152

Chapter 6 Programming in Turbo C 155
In This Chapter... 155
The Seven Basic Elements of Programming 156

Output 157
The printf Function .. 157

The FOrnlat String 157
Other Output Functions: puts and putchar .. 158

Data Types 159
Float Type .. 159
The Three ints 160
Unsigned 161
Defining a String 161

Using a Character Array 161
Using a Character Pointer 162

Identifiers 163
Operations 163

The Assignment Operator 163
Unary and Binary Operators 164

vi

Increment (++) and Decrement (--) Operators 164
Bitwise Operators 165
Combined Operators 166
Address Operators 166

Input 167
The scanf Function 167

Whitespace .. 168
Passing an Address to scanf 168

Using gets and getch for Input 168
Conditional Statements 169

Relational Operators .. 169
Logical Operators 170
More about Expressions .. 171

Assignment Statements 171
The Comma Operator. .. 171

The if else Statement 172
Loops 173

The while Loop 173
The for Loop. .. 175
The do...while Loop .. 176

Functions 177
Breaking Down the Program. 178

The get_parms Function. .. 179
The get_ratio Function 179
The put_ratio Function. .. 179

Global Declarations 179
Function Declarations 180
Function Definitions 180
Comments 181

Summary 182

Chapter 7. More Programming in Turbo C 183
In This Chapter 183
A Survey of Data Structures 183

Pointers .. 184
Dynamic Allocation 186
Pointers and Functions .. 187
Pointer Arithmetic. .. 188

Arrays 190
Arrays and Pointers 191
Arrays and Strings 191
Multidimensional Arrays 191
Arrays and Functions 193

Structures 194
Structures and Pointers 195

The switch Statement 196

vII

Commands That Interrnpt the Flow of Control 199
The return Statement 199
The break Statement .. 200
The continue Statement 201
The goto Statement 201
The Conditional OPerator (?:) 202

Streams and Stream I/O 203
What Axe Streams? 203
Text vs. Binary Streams 203
Buffering Streams 204
Predefined Streams .. 205

Style in C Programming: Modem vs. Oassic 205
Using Function Prototypes and Full Function Definitions 206
Using enum Definitions 207
Using typedef 207
Declaring void functions 208
Make Use of Extensions 208

String literals .. 208
Hexadecimal Character Constants 209
signed Types 209

Pitfalls in C Programming .. 209
Path Names with C Strings 209
Using and Misusing Pointers 210

Using an Uninitialized Pointer 210
Strings .. 211

Confusing Assignment (=) with Equality (==) ...••••.•.•.•••••••. 212
Forgetting the break in switch Statements 213
Array Indexing•....................................... 213
Failure to Pass-by-Address 214

Sailing Away 215

Chapter 8 Turbo C's Video Functions 217
In This Chapter... 217
Some Words about Video Modes 217
Some Words about Windows and VieWPOrts .. 218

What Is a Window? .. 218
What Is a Viewport? 219
Coordinates 219

Programming in Text Modes .. 219
The Console I/O Functions .•....••................•........... 219

Text OUtput and Manipulation .. 220
Window and Mode Control. .. 221
Attn"bute Control .. 221
State Qt.lery •••. . ••. •. ••••. . •. • • •. 222

Text Windows 223
The text_modes Type 224

vlll

Text Colors .. 225
High-Performance Output: The directvideo Variable 226

Programming in Graphics Mode 226
The Graphics Library Functions 227

Graphics System Control 228
A More Detailed Discussion 229

Drawing and Filling 231
Manipulating the Screen and Viewport. .. 233
Text Output in Graphics Mode 234
Color Control .. 236

Pixels and Palettes .. 236
Background and Drawing Color .. 237
Color Control on a CGA 237
Color Control on the EGA and VGA 239

Error Handling in Graphics Mode 240
State Query .. 241

Chapter 9 Notes for Turbo Pascal Programmers 243
In This Chapter... 243
Program StnIcture .. 244

An Example 245
A Comparison of the Elements of Programming 246

Output 246
Data Types 247
Operations 248
Input 250
Block Statement .. 251
Conditional Execution 251
Iteration 255

The while Loop 255
The do..while Loop .. 255
The for Loop .. 256

Subroutines 257
Function Prototypes 259

A Major Example 261
A Survey of Data Stru.ctures 263

Pointers .. 264
Arrays 265
Strings ...•.•.....•.. 266
Stru.ctures 270
Unions 271

Programming Issues .. 273
Case Sensitivity 273
Type-Casting 273
Constants, Variable Storage, Initialization 274

Constant Types 274

Ix

Variable Initialization 275
Variable Storage 275

Dynamic Memory Allocation 276
Command-Line Arguments. .. 277
File I/O 278

Common Pitfalls for Pascal Programmers
UsingC 280

PITFALL #1: Assignment vs. Comparison 280
PITFALL #2: Forgetting to Pass Addresses (Especially with scan£) .. 281
PITFALL #3: Omitting Parentheses on Function Calls 281
PITFALL #4: Warning Messages 282
PITFALL #5: Indexing Multidimensional Arrays 282
PITFALL #6: Forgetting the Difference between Character Arrays and
Character Pointers .. 283
PITFALL #7: Forgetting That C is Case Sensitive 283
PITFALL #8: Leaving Semicolons Off the Last

Statement in a Block 283

Chapter 10 Interfacing Turbo C with Turbo Prolog 285
In This Chapter 285
linking Turbo C and Turbo Prolog: An Overview 286
Example 1: Adding Two Integers .. 288

Turbo C Source File: CSUM.C .. 288
Compiling CSUM.C to CSUM.OBJ .. 288

Turbo Prolog Source File: PROSUM.PRO .. 289
Compiling PROSUM.PRO to PROSUM.OB} 289

Linking CSUM.OB} and PROSUM.OBJ 289
Example 2: Using the Math library 290

Turbo C Source File: CSUM1.C .. 290
Turbo C Source File: FACTRL.C 291

Compiling CSUM1.C and FACTRL.C to .OB} 291
Turbo Prolog Source File: FAcrsUM.PRO .. 292

Compiling FAcrsUM.PRO to FACI'SUM.OB} 293
Linking CSUM1.0BJ, FACTRL.OBJ, and FACI'SUM.OB} 293

Example 3: Flow Patterns and Memory Allocation 293
Turbo C Source File: DUBLIST.C 294

Calling Turbo Prolog from Turbo C .. 295
Lists and Functors 297
Compiling DUBLIST.C .. 299

Example 4: Drawing a 3-D Bar Chart .. 299
Turbo C Source File: CBAR.C 300

Compiling CBAR.C .. 300
Turbo Prolog Program: PBAR.PRO 300

Compiling PBAR.PRO to PBAR.OB} 300
Linking PBAR.OB} with the Module CBAR.OB} 301

That's All There Is to It 301

x

Chapter 11 Turbo C Language Reference 303
In This Chapter... 303

Comments (K&R 2.1) 304
Identifier (K&R 2.2) .. 304
Keywords (K&R 2.3) .. 305
Constants (K&R 2.4) 305

Integer Constants (K&R 2.4.1) 305
Character Constants (K&R 2.4.3) 306
Floating Constants (K&R 2.4.4) .. 308

Strings (K&R 2.5) .. 308
Hardware SPeCifics (K&R 2.6) .. 308

Conversions (K&R6) 309
char, int, and enum (K&R 6.1) 309
Pointers (K&R 6.4) .. 309
Arithmetic Conversions (K&R 6.6) 310

OPerators (K&R Section 7.2) 311
Type SPeCifiers and Modifiers (K&R 8.2) .. 311

The enum Type 311
The void Type 312
The signed Modifier 312
The const Modifier 313
The volatile Modifier 313
The cdecl and pascal Modifiers 314

pascal 314
cdecl 314

The near, far, and huge modifiers 315
Structures and Unions (K&R Section 8.5) 316

Word Alignment 316
Bitfields .. 316

Statements (K&R 9) 317
External Function Definitions (K&R 10.1) 317

Function Type Modifiers (K&R 10.1.1) 317
The pascal Function Modifier 317
The cdecl Function Modifier 318
The interrupt Function Modifier 319
The near, far, and huge Function Modifiers 319
Function Prototypes (K&R 10.1.2) .. 320

ScoPe Rules (K&R 11) .. 324
Compiler Control Lines (K&R 12) 324

Token Replacement (K&R 12.1) .. 324
File Inclusion (K&R 12.2) 325
Conditional Compilation (K&R 12.3) .. 326
Line Control (K&R 12.4) .. 327
Error Directive (ANSI C 3.8.5) .. 327
Pragma Directive (ANSI C 3.8.6) 328

xl

#pragtN inline 328
#pragtm warn .. 328
#pragtlla saveregs 329

Null Directive (ANSI C 3.7) .. 329
Predefined Macro Names (ANSI C 3.8.8) 329
Turbo C Predefined Macros. .. 330

Anachronisms (K&R 17) 331

Chapter 12 Advanced Programming in Turbo C 333
Mem0IY' Models 333

The 8086 Registers .. 334
General-Purpose Registers 334
Segment Registers .. 335
Special Purpose Registers 335

Mem0IY' Segmentation .. 335
Address Calculation 336

Near, Far, and Huge Pointers 337
Near Pointers .. 337
Far Pointers 337
Huge Pointers 338

Turbo C's Six Memory Models 339
Mixed-Model Programming: Addressing Modifiers 344

Declaring Functions to Be Near or Far .. 345
Declaring Pointers to Be Near, Far, or Huge .. 346

Pointing to a Given Segment:Offset Address 348
Building Proper Declarators 348

Using Library Files 350
Linking Mixed Modules 351

Mixed-Language Programming 353
Parameter-Passing Sequences: C and Pascal .. 353

C Parameter-Passing Sequence .. 353
Pascal Parameter-Passing Sequence .. 354

Assembly Code Interface .. 356
Setting Up to Call.ASM from Turbo C 356

Defining Data Constants and Variables 358
Defining Global and External Identifiers .. 358

Setting Up to Call Turbo C from .ASM 360
ReferencingFunctions 360
Referencing Data. .. 360

Defining Assembly Language Routines. • 361
Passing Parameters 361
Handling Return Values•............................ 362

Register Conventions 365
Calling C Functions from .ASM Routines 366

Low-Level Programming: Pseudo-Variables, Inline Assembly, and
Interrupt Functions .. 367

xii

Pseudo-Variables 368
Using Inline Assembly Language .. 370

Opcodes 373
String Instnlctions 374
Repeat Prefixes 374
Jump Instructions 374
Assembly Directives ~ • . . • . . • . • • . •. 375

Inline Assembly References to Data and Functions 375
Inline Assembly and Register Variables 375
Inline Assembly, Offsets, and Size Overrides 375

Using C Structure Members 376
Using Jump Instructions and Labels 377

Intermpt Functions .. 377
Using ww-l.evel Practices. .. 378

Using Floating-Point Libraries 380
Emulating the 8087/80287 Chip 381
Using the 8087/80287 Math Coprocessor Chip 382
IfYou Don't Use Floating Point... 382
The 87 Environment Variable 384
Registers and the 8087/80287 385
Using matherr with Floating Point. .. 385

Caveats and Tips 386
Turbo C's Use of RAM ~ 386
Should You Use Pascal Conventions? 386

Summary 386

Bibliography 387

Index 389

xiII

List of Figures

Figure 4.1: Typical Steps in the Debugging Process 45
Figure 5.1: The Main TC Screen 80
Figure 5.2: The TC Menu Structure 86
Figure 5.3: The TC Main Menu Bar 88
Figure 5.4: The File Menu 100
Figure 5.5: The Run Menu 103
Figure 5.6: The Compile Menu 107
Figure 5.7: The Compile/Get It:\fo screen 109
Figure 5.8: The Project Menu 110
Figure 5.9: The Project/Break Make On Menu 111
Figure 5.10: The Options Menu 112
Figure 5.11: The Options/Compiler Menu 113
Figure 5.12: The O/C/Model Menu 114
Figure 5.13: The O/C/Code Generation Menu 115
Figure 5.14: The O/C/Optimization Option 118
Figure 5.15: The O/C/Source Menu 119
Figure 5.16: The O/C/Errors Menu 120
Figure 5.17: Displaying the Common Errors 121
Figure 5.18: The O/C/Names Option 122
Figure 5.19: The Options/linker Menu 123
Figure 5.20: The Options/Environment Menu 125
Figure 5.21: The Options/Directories Menu 128
Figure 5.22: The Debug Menu 130
Figure 5.23: The Break/Watch Menu 136
Figure 5.24: How Unindent Works 147
Figure 5.25: Search for Match to Square Bracket or Parenthesis 150
Figure 5.26: Nested Comments Toggled On-Forward Search

with I\Q 1\[••• 151
Figure 5.27: Nested Comments Toggled Off-Forward Search

with I\Q 1\[•••••••••••••••••••••••••••••.••••••••••.•• 151
Figure 5.28: Nested Comments Toggled Off-Backward Search

with I\Q 1\] ••• 151
Figure 8.1: A Window in 8Ox25 Text Mode 224
Figure 12.1: 8086 Registers 334
Figure 12.2: Tiny Model Memory Segmentation 340
Figure 12.3: Small Model Memory Segmentation 341
Figure 12.4: Medium Model Memory Segmentation 341
Figure 12.5: Compact Model Memory Segmentation 342
Figure 12.6: Large Model Memory Segmentation 342
Figure 12.7: Huge Model Memory Segmentation 343

xlv

List of Tables

Table 4.1: Debugging Format Specifiers 57
Table 4.2: Priority and Defaults in Format Specifier Classes 59
Table 4.3: Debugger Commands and Hot Keys 70
Table 4.4: Menu Commands and Hot Keys Used with the Debugger 71
Table 5.1: Turbo C Hot Keys 84
Table 5.2: Watch Window Editing Commands 95
Table 5.3: Debugger Commands and Hot Keys 97
Table 5.4: Menu Commands and Hot Keys Used with the Debugger 99
Table 5.5: Format Specifiers Recognized in Debugger Expressions 132
Table 9.1: Pascal and C Operators 249
Table 9.2: File I/O Similarities 278
Table 11.1: Keywords Reserved by Turbo C 305
Table 11.2: Turbo C Integer Constants without L or U 306
Table 11.3: Turbo C Escape Sequences 307
Table 11.4: Turbo C Data Types, Sizes, and Ranges 309
Table 11.5: Methods Used in Usual Arithmetic Conversions 310
Table 12.1: Memory Models 344
Table 12.2: Pointer Results 345
Table 12.3: Declarators without Typedefs 349
Table 12.4: Declarators with Typedefs 350
Table 12.5: Identifier Replacements and Memory Models 358
Table 12.6: Turbo C Pseudo-Variables 369
Table 12.7: Opcode Mnemonics 373
Table 12.8: String Instructions 374
Table 12.9: Jump Instructions 374

xv

N T R o D u c T o N

Turbo C is for C programmers who want a fast, efficient compiler; for
Turbo Pascal programmers who want to learn C with all the "Turbo"
advantages; and for anyone just learning C who wants to start with a fast,
easy-to-use implementation.

The C language is a structured, modular, compiled, general-purpose
language traditionally used for systems programming. It is portable, so you
can easily transfer application programs written in C from one system to
another. You can use C for almost any programming task, anywhere. But
while traditional C compilers plod along, Turbo C flies through compil­
ation, and gives you more time to test and perfect your programs.

The Turbo C Package

Your Turbo C package consists of a set of distribution disks and the two­
volume manual-the Turbo C User's Guide (this book) and the Turbo C
Reference Guide. The distribution disks contain all the programs, files, and
libraries you need to create, compile, link, and run your Turbo C programs;
they also contain sample programs, several stand-alone utilities, a context­
sensitive help file, an integrated debugger, and additional C documentation
not covered in these guides.

The User's Guide is designed as a handbook and guide for the beginner and
a useful refresher course for the experienced C user. The Reference Guide is
first and foremost a detailed list and explanation of Turbo C's extensive
library functions. It also contains information on the Turbo C editor, error
messages, utilities (CPP, MAKE, TLINK, TLIB, GREP, BGIDB], and
OBJXREF), command-line options, Turbo C syntax, and customization.
Unless you are already a C programmer, you will probably want to begin
with the User's Guide before wading into the deeper waters of the Reference
Guide.

Introduction

What's New in Turbo C 2.0

Turbo C 2.0 includes many new and improved features:

• integrated debugging: Step and trace through code, set breakpoints,
watch and evaluate expressions

• a faster compiler (20 to 30%) and linker
• EMS storage for the edit buffer: Gives you up to 64K more memory for

compiling and running
• faster memory allocation and string functions
• faster floating-point emulation
• new signal and raise functions
• an __emit__ feature that lets you insert machine code into your program

at compile time
• an enhanced BGI graphics library, with many new functions, including

installable drivers and fonts

• support for command-line wildcard expansion
• linker can create .COM files for tiny model programs
• support for Borland's new standalone debugger
• autodependency checking for the MAKE utility
• support for long double constants and variables
• new editor features, including block indent/unindent and optimal fill

Requirements

Turbo C nms on the mM PC family of computers, including the XT, AT,
and PS/2, along with all true IBM compatibles. Turbo C requires DOS 2.0
or higher and at least 448K of RAM; it will ron on any 80-column monitor.
One floppy disk drive is all that's required, although we recommend two
floppy drives or a hard disk with one floppy drive.

Turbo C includes floating-point routines that let your programs make use
of an 80><87 math coprocessor chip. It will emulate the chip if it is not
available. The 80x87 chip can significantly enhance performance of your
programs, but it is not required.

The Turbo C Implementation

Turbo C supports the Draft-Proposed American National Standards
Institute (ANSI) C standard, fully supports the Kernighan and Ritchie

2 Turbo C Use,'s Guide

definition, and includes certain optional extensions for mixed-language and
mixed-model programming that allow you to exploit your PC's
capabilities.

Volume I: The Turbo C User's Guide

The Turbo C User's Guide (this volume) introduces you to Turbo C, shows
you how to create and run programs, and includes background information
on topics such as compiling, linking, debugging, and project making. Here
is a breakdown of the chapters in the User's Guide:

Chapter 1: Before You Begin tells you how to install Turbo C on your
system. It also suggests how you should go about using the rest of the
User's Guide.

Chapter 2: Getting Started teaches you basics about using the Turbo C
integrated development environment (TC) to load, compile, run, edit and
save a simple Turbo C program.

Chapter 3: Putting It All Together-Compiling and Running Your
Program shows how to use the Turbo C Run command, and explains how
to "make" (rebuild) a program's constituent files.

Chapter 4: Debugging Your Program introduces you to the Turbo C
integrated debugger and walks you through a sample program with built­
in bugs to demonstrate various features of the debugger.

Chapter 5: The Turbo C Integrated Development Environment explains
Turbo C's text editor, integrated debugger, and menu system, and discusses
pick files and configuration files.

Chapter 6: Programming in Turbo C introduces you to some of the basic
steps involved in creating and running Turbo C programs and takes you
through a set of short, progressive sample programs.

Chapter 7: More Programming in Turbo C provides summary
explanations of additional C programming elements including arrays,
pointers, structures, and statements.

Chapter 8: Turbo C's Video Functions first briefly discusses video modes
and windows, then describes programming in text mode versus pro­
gramming in graphics mode.

Chapter 9: Notes for Turbo Pascal Programmers uses program examples
to compare Turbo Pascal to Turbo C, describes and summarizes the
significant differences between the two languages, and gives some tips on
avoiding programming pitfalls.

Introduction 3

Chapter 10: Interfacing Turbo C with Turbo Prolog shows how to
interface modules written in Turbo C with Turbo Prolog programs and
provides several examples that demonstrate the process.

Chapter 11: Turbo C Language Reference lists all aspects and features of
this implementation that differ from Kernighan and Ritchie's definition of
the language, and details the Turbo C extensions not given in the current
draft of the ANSI C standard.

Chapter 12: Advanced Programming in Turbo C provides details about
the start-up code, memory organization in the different memory models,
pointer arithmetic, assembly-language interface, and the use of floating­
point.

Volume II: The Turbo C Reference Guide

The Turbo C Reference Guide is written for experienced C programmers; it
provides implementation-specific details about the language and the run­
time environment. In addition, it describes each of the Turbo C functions,
listed in alphabetical order. These are the chapters and appendixes in the
programmer's Reference Guide:

Chapter 1: Using Turbo C Library Routines lists Turbo C's (.h) files and
each of its library routines by category, discusses function main and its
arguments, and concludes with a description of each of the Turbo C global
variables.

Chapter 2: The Turbo C Library is an alphabetical reference of all Turbo C
library functions. Each entry gives syntax, include files, an operative
description, return values, and portability information for the function,
together with a reference list of related functions and examples of how the
functions are used.

Appendix A: The Turbo C Interactive Editor gives a more thorough
explanation of the editor commands for those who need more information
than is given in Chapter 5 of the User's Guide.

Appendix B: Compiler Error Messages lists and explains each of the error
messages and summarizes the possible or probable causes of the problem
that generated the message.

Appendix C: Command-Line Options lists the command-line entry for
each of the user-selectable TCC (command-line compiler) options.

Appendix D: Turbo C Utilities discusses the utilities included in the Turbo
C package: CPP, the preprocessor; MAKE, the program builder; TLINK, the
Turbo Link utility; TUB, the Turbo librarian; GREP, the file search utility;

4 Turbo C User's Guide

BGIOBJ, a conversion utility for graphics drivers and fonts; and the object
module cross-referencer OBJXREF.

Appendix E: Language Syntax Summary uses modified Backus-Naur
Ponns to define the syntax of all Turbo C constructs.

Appendix F: TCINST: Customizing Turbo C takes you on a walk through
the customization program (TCINST), which lets you customize your
keyboard, modify default values, change your screen colors, and so on.

Appendix G: MicroCalc explains how to compile, ron, and use MicroCalc,
the sample spreadsheet program included on the Turbo C distribution
disks.

Recommended Reading

You will find these documents useful supplements to your Turbo C
manuals:

• The most widely known description of C is found in The C Programming
Language by Brian W. Kernighan and Dennis M. Ritchie (New Jersey:
Prentice-Hall, 1978).

• The ANSI Subcommittee X3Jll on Standardization of C is presently
creating a formal standard for the language, and Turbo C supports this
upcoming ANSI C standard.

Ifyou are learning C for the first time, we recommend that you use Turbo C
to work through the exercises in Kernighan and Ritchie. If you are
experienced with C, you should have little difficulty using Turbo C.

Refer to the bibliography in the back of this manual for other books on C
and TurboC.

Typographic Conventions

All typefaces used in this manual were produced by Borland's Sprint: The
Professional Word Processor, on a PostScript laser printer. Their uses are as
follows:

Monospace type

[]

Introduction

This typeface represents text as it appears onscreen
or in a program, or anything you must type (such
as command-line options or switches).

Square brackets in text or DOS command lines
enclose optional input or data that depends on

5

<>

Boldface

Italics

Keycaps

your system. Text of this sort should not be typed
verbatim.

Angle brackets in text or on OOS command lines
enclose optional input or data that depends on
your system. Text of this sort should not be typed
verbatim.

Angle brackets in the function reference section
enclose the names of include files.

Turbo C function names (such as printf) and
structure names are shown in boldface when they
appear in text (but not in program examples). This
typeface is also used, in text but not in program
examples, for Turbo C keywords such as char,
switch, near, and cdecl.

Italics indicate variable names (identifiers) that
appear in text. They are also used to emphasize
certain words (especially new terms).

This special typeface indicates a key on your key­
board. It is often used to describe a particular key
you should press; for example, 'Tress Esc to exit a
menu."

Borland's No-Nonsense License Statement

This software is protected by both United States copyright law and
international treaty provisions. Therefore, you must treat this software just
like a book with the following single exception: Borland International
authorizes you to make archival copies of Turbo C for the sole purpose of
backing up your software and protecting your investment from loss.

By saying, "just like a book," Borland means, for example, that this
software may be used by any number of people and may be freely moved
from one computer location to another so long as there is no possibility of
its being used at one location while it's being used at another.

How to Contact Borland

The best way to contact Borland is to log on to Borland's Forum on
CompuServe: Type GO BOR from the main CompuServe menu and choose
"Borland Programming Forum B (Turbo Prolog & Turbo C)" from the

6 Turbo C User's Guide

Borland main menu. Leave your questions or comments there for the
support staff to process.

If you prefer, write a letter with your comments and send it to:

Technical Support Department
Borland International
1800 Green Hills Road

P.O. Box 660001
Scotts Valley, CA 95066-0001, USA

You can also telephone our Technical Support department at 408-438-5300.
Please have the following information handy before you call:

• Product name and serial number on your original distribution disk.
Please have your serial number ready, or we will be unable to process
your call.

• Product version number. The version number for Turbo C is displayed
when you first load the program and before you press any keys.

• Computer brand, model, and the brands and model numbers of any
additional hardware.

• Operating system and version number. (The version number can be
determined by typing VER at the MSDOS prompt.)

• Contents of your AUTOEXEC.BAT file.
• Contents of your CONFIG.SYS file.

Introduction 7

8 Turbo C User's Guide

c H A p T E R

1

Before You Begin

Your Turbo C package actually includes two different versions of the C
compiler: the integrated development environment version and a separate,
stand-alone, command-line version. When you install Turbo C on your
system, you copy files from the distribution disks to your working floppies
or to your hard disk. There is no copy protection, and an installation pro­
gram is included to make it simple to install Turbo C. The distribution
disks are formatted for double-sided, double-density disk drives and can be
read by IBM Pes and close compatibles. For reference, we include a list of
the distribution files in the README file on the Installation Disk.

We assume you are already familiar with DOS commands. For example,
you will need the DISKCOPY command to make backup copies of your
distribution disks. If you do not already know how to use DOS com­
mands, refer to your DOS reference manual before starting to set up Turbo
C on your system.

You should make a complete working copy of the distribution disks when
you receive them, then store the original disks away in a safe place. Do not
run Turbo C from the distribution disks; they are your original (and on1y~

backups in case anything happens to your working files.

H you are not familiar with Borland's No-Nonsense License Statement, now
is the time to read the agreement in the Introduction (it's also at the front of
this book) and mail us your filled-in product registration card.

Chapter 7, Before You Begin 9

In This Chapter...

We begin this chapter with instructions for accessing the README file and
installing Turbo C on your system. The rest of the chapter is devoted to
some recommendations on which chapters you should read next, based on
your programming language experience.

The README File

It is very important that you take the time to look at the README file on
the Installation Disk before you do anything else with Turbo C. This file
contains last-minute information that may not be in the manual. It also lists
every file on the distribution disks, with a brief description of what each
one contains.

To access the README file, insert the Installation Disk in Drive A, switch
to Drive A by typing A: and pressing Enter, then type README and press Enter
again. Once you are in README, use the Up and Down arrow keys to scroll
through the file. Press Esc to exit.

The HELPME!.DOC File

Your Installation Disk also contains a file called HELPME!.DOC, which
contains answers to problems that users commonly run into. Consult it if
you find yourself having difficulties.

Installing Turbo C on Your System

Your Turbo C package includes all the files and programs necessary to run
both the integrated-environment and command-line versions of the
compiler, along with start-up code and library support for six memory
models and 8087/80287 coprocessor emulation. If you are installing Turbo
C for the first time, or installing the upgrade from the previous version
(1.5), the INSTALL program makes it easy.

10 Turbo C User's Guide

If You Are Installing Turbo C on a Floppy-Disk
System

If your system has one or two floppy disk drives but no hard drive, you
must have a set of three formatted, empty disks ready before you run
INSTALL.

Each time you run INSTALL, it will let you install Turbo C with one
memory model. If you want to install more than one memory model, you
must have additional sets of disks, one for each memory model you want to
install.

Running INSTALL

The Turbo C installation program INSTALL is designed to walk you
through the installation process. All you have to do is follow the instruc­
tions that appear onscreen at each step. Please read them carefully.

To run INSTALL:

1. Insert the distribution disk labeled Installation Disk in Drive A.
2. Type A: and press Enter.
3. Type INSTALL and press Enter.

From this point on, just follow the instructions that INSTALL displays
onscreen.

As soon as INSTALL is finished ronning, you are ready to start using Turbo
C.

Note: After you have tried out the Turbo C integrated development envi­
ronment, you may want to permanently customize some of the options. We
give you a program called TCINST that will make this easy to do. See
Appendix F in the Turbo C Reference Guide for instructions.

Setting Up Turbo C on a Laptop System

If you have a laptop computer (one with an LCD or plasma display), in
addition to carrying out the procedures given in the previous sections, you
should set your screen parameters before using Turbo C. The Turbo C Inte­
grated Development Environment version (TC.EXE) works best if you enter
MODE BW80 at the DOS command line before running Turbo C.

Chapter 71 Before You Begin 11

Alternatively, you can install TC for a black-and-white screen with the
Turbo C customization program, TCINST. Refer to Appendix F in the Turbo
C Reference Guide. With this customization program, you should choose
IIBlack and White" from the Screen Modes menu.

MicroCaIe

We have included the source code for a spreadsheet program called
MicroCalc. Before you try to compile it, read Appendix G in the Turbo C
Reference Guide.

Where to Now?

Now that you have finished installing Turbo C, you are ready to start
digging into this guide and using Turbo C. But since this user's guide is
written for four different types of users, certain chapters are written with
your particular Turbo C programming needs in mind. Take a few moments
to read the following, then take off and fly with Turbo C speed!

Programmers Learning C

If you are just now learning the C language, you will want to start with
Chapters 2 and 3, which introduce you to the Turbo C integrated
development environment and show you how to load, compile, link, and
run a simple Turbo C program, as well as how to edit and save your own
creations. Chapter 4 will introduce you to the Turbo C integrated debugger.
Next, read Chapters 6 and 7. These are written in tutorial fashion and take
you through the process of creating and compiling C programs. If you are
not sure how to use the integrated development environment, you will
need to read Chapter 5. Chapter 8 will introduce you to Turbo C's exciting
graphics features.

Experienced C Programmers

If you are an experienced C programmer, you should have little difficulty
porting your programs to the Turbo C implementation. You will want to
read Chapter 11, IITurbo C Language Reference," however, for a summary
of how Turbo C compares to Kernighan and Ritchie and to the draft ANSI
C standard. When you are ready to port or create C programs with Turbo
C, you will need to read Chapter 3, 'Totting It All Together-Compiling,
Debugging, and Running," Chapter 4 about how to use the Turbo C

12 Turbo C User's Guide

integrated debugger, and Chapter 12, "Advanced Programming in Turbo
C." If you are interested in exploring what you can do with Turbo C
graphics, read Chapter 8.

Turbo Pascal Programmers

Chapter 9, 'Notes for Turbo Pascal Programmers," is written specifically
for you; in it, we provide some examples that compare Turbo Pascal pro­
grams with equivalent Turbo C programs, and we elaborate on some of the
significant differences between the two languages.

If you have programmed with Turbo Pascal, you are familiar with the
seven basic elements of programming. To get up to speed with Turbo C,
you will want to read Chapters 5, 6, and 7. (If you have used another
menu-driven Borland product, such as SideKick or Turbo Basic, you will
only need to skim Chapter 5.) You should also look at Chapter 3, on
compiling and running your Turbo C programs, and Chapter 4, on the
Turbo C integrated debugger.

Turbo Prolog Programmers

If you have used Turbo Prolog and would like to know how to interface
your modules with Turbo C, you should read Chapter 10.

Chapter 7, Before You Begin 13

14 Turbo C User's Guide

c H A p T E R

2

Getting Started

Now you have Turbo C installed on your system, and you are ready to start
programming. But first you have to find out a few basics, like how to run
Turbo C, how to use a text editor to create and modify your programs, and
how to compile and run them.

You can use any ASCII text editor to create your programs, and then
compile and run them from the OOS command-line using the command
line compiler (the TCC version of Turbo C). However, you will probably
find it easier, at least at first, to work in the Turbo C integrated
development environment (the TC version of Turbo C), which provides
you with an editor, a menu system of Turbo C commands, an integrated
debugger, and a built-in Project-Make facility that lets you compile and run
your programs from within the TC environment.

Note: We will explain as we go along how to use the TC menus to perform
the exercises in this chapter. If you want a comprehensive explanation of
the whole TC menu system, refer to Chapter 5 in this manual.

In This Chapter...

We start out by teaching you a few basic skills that you will need to use
Turbo C: loading the Turbo C integrated development environment (TC),
loading a program into Turbo C, and building and running the program.

Next, we show you how to modify your program, using the TC Editor.

Finally, we show you how to create an all-new Turbo C program and save
it to its own file before you build and ron it.

Chapter2. Getting Started 15

HELLO.C: Building and Running a Single­
File Program

Let's start out easy. Before you plunge in and start writing programs of
your own in Turbo C, let's practice using the integrated development
environment (TC) version of Turbo C with a program that already exists.

In the directory where you installed your example programs, there is a file
called HELLO.C that contains the source code for a very simple program.
Working with it will demonstrate for you the six steps to building and
running a single-file Turbo C program.

Step 1: Load TC

If you installed Turbo C with the INSTALL program, TC should already be
in your main Turbo C directory. Just go into that directory and load TC by
typing TC on the DOS command line and pressing Enter.

Note: If you want to do your programming in a separate working directory
instead of in the directory that contains TC, you have to tell DOS where to
find the TC program:

• Specify the directory with TC in it by using the DOS PAlH command.
(See PATH in your DOS manual; be careful that you do not destroy
existing PATHs when you enter the TC path.).

• In 3.x versions of DOS, you can type the path name to TC directly on the
command line, for example, \TURBOC\TC.

Step 2: Choose the Working Directory (Optional)

If your current directory is the one that contains HELLO.C, you can skip
this step.

Choose the drive and directory that contain HELLO.C, the source file you
want to load. Do this by going to the pull-down File menu (press F10, then
F, or just press All-F). Select Change Dir (use the arrow keys to position the
highlight bar and press Enter, or just type C). When the New Directory
prompt box appears, type in the name of the directory that contains
HELLO.C and press Enter. This directory becomes the current directory.

Note: When the New Directory prompt box comes up, it lists the current
directory. That means you can use the File/Change Dir option to check
what directory you are in; simply choose it, so that the New Directory
prompt box appears, then press Esc to get back to the menus without
changing the current directory.

16 Turbo C User's Guide

Step 3: Set Up Your Working Environment

If you used the INSTALL program to install Turbo C on your system, the
working environment has been set up for you already. You may want to
read this section anyway, to verify that your environment is set up
correctly.

To set up and save your working environment, press F10, then 0 (or press
Alt·O) to invoke the Options menu from the main menu bar. Then select
Directories to bring up the Directories menu. You will need two of the
items on this menu: Include Directories and Library Directories.

Choose Include Directories, then type the name of the drive and directories
that contain the Turbo C standard include files (.h files), separating the
directory names with semicolons. The include directories will usually be
C:\TURBOC\INCLUDE and C:\TURBOC\INCLUDE\SYS; you would
type

C:\TURBOC\INCLUDEiC:\TURBOC\INCLUDE\SYS

and press Enter.

Now choose Library Directories, and type in the name of the drive and
directory that contains the Turbo C library and startup files. (This will
usually be C:\TURBOC\LIB.) Other directory names may be entered;
separate them with semicolons.

Note: At this point, if you wish, you can set the output directory (where
your compiled program will be stored) with the Options/Directories/
Output Directory command. If you do choose an output directory, all
compiler and linker output will be written to that directory instead of to the
directory you are currently in. In our present example case, it is not
necessary to set an output directory.

For most simple cases, this is all the setup necessary for building C pro­
grams.

You can save the settings for your working environment in a configuration
file that is loaded automatically when you start TC. Press Esc to get back to
the Options menu, then choose Save Options to write the current options to
a configuration file on disk. The default file, TCCONFIG.TC, will be written
to the current directory.

Note: When it starts up, TC looks in the current directory for a file called
TCCONFIG.Te, which it loads if the file is present. If you wish, you can
give the configuration file another name by typing in the new name and
pressing Enter. If you do this, however, you will need to load this config­
uration file explicitly the next time you enter TC, either by typing its name
on the TC command line with the / c switch (see Chapter 5 on TC

Chapter2. Getting Started 17

command-line switches), or by using the Options/Retrieve Options com­
mand.

Note: When you are working on a particular program, it is useful to have a
default configuration file in the same directory as the program and to start
TC from that directory. However, if the configuration file is not found in the
current directory, TC will also look in the Turbo C directory. This means
that you can keep one general purpose configuration file in the Turbo C
directory and others in your various source file directories that use dif­
ferent settings.

Step 4: Load the Source File into the Editor

Now load HELLO.C. Choose the Load command from the File menu, or
press F3, the file load hot key. A prompt box will appear containing the
wildcard notation *.C. Type in HELLO (you do not need to include the .C
extension), and press Enter.

Note: If you aren't sure about the name of the file you want to load, or you
want to see a listing of all the source files in the current directory, just press
Enter instead of typing in the file name. TC will display a menu of all the
available .C source files in the directory. To choose a file, use the arrow keys
to move the highlight bar to the name of the file you want, then press Enter.

The HELLO.C file is now displayed in the TC Editor window. It should
look like this:

1* HELLO.C -- Hello, world */

'include <stdio.h>

main()
(

printf(UHello, world\nU);

Note: It is possible to load TC, the source file, and the configuration file
from the command line, which eliminates having to bother with Steps 2, 3,
and 4. The integrated development environment accepts two command­
line arguments that accomplish this: the file name of a source code file to be
loaded into the editor, and a Ie switch immediately followed by the name
of the configuration file you want to load with the source file. These two ar­
guments can be in any order. Thus,

te hello Icmyeonfig

will place HELLO.C in the editor and load the configuration file
MYCONFIG.TC. (Note that there is "no space between the Ie switch and the

18 Turbo C User's Guide

file name, and that the default extension .C is assumed for the edit file and
the default extension .TC is assumed for the configuration file.)

Step 5: Build the Executable File

When you build a program, you first compile the source code to create an
object file (a machine code file with an .OBI extension). Then you send the
object file to the linker to be converted to an executable file with a .EXE
extension. The linker copies into your object file certain necessary
subroutines from the standard run-time library files. (You told Turbo C
where to find these library files, remember, back when you set up your
working environment.)

In this simple case of a single-file program, you can build and run the pro­
gram without creating a project file (more on project files in Chapter 3).

Though there are other approaches, the easiest way to build your program
is to press F10, then C to bring up the Compile menu (or press AIt-e), then
choose Make EXE File (or press F9, the make .EXE file hot key). Observe
that the Compile menu tells you the name of the object (.OBD file that will
be compiled and the .EXE file that will be built.

The Compiling window will appear on the screen, and Turbo C should
successfully compile and link your program. If all goes well, the Compiling
window will give you a flashing Press any key message.

Note: If there is anything wrong with your program, you will see error
messages or warnings in the Message window at the bottom of the screen.
If this happens, make sure that your program is typed in exactly as it is in
Step 4, then compile it again.

Step 6: Run the Program

At this point, you should have an executable program.

Now, to run your program, choose Run from the Run menu, or press Ctrl-F9,
the run program hot key.

What happened? You saw the screen flash, and then you were back in the
main TC screen. To see the output from the program, select Run/User
Screen, or press AJt-F5. This brings up the User screen, which is where your
screen output went.

The User screen should contain the message

Hello, world

Chapter2. GeHfng Started 19

Mer you have examined your program output, press any key to return to
the TC screen.

What Have You Accomplished?

Now get out of Turbo C (choose the Quit command from the File menu or
press Alt-X).

Let's look at what you've created.

At the DOS prompt, type dir hello. *and press Enter. You'll get a list of files
that looks something like this:

HELLO C 104 5-11-88 2:57p
HELLO OBJ 458 5-11-88 3:01p
HELLO EXE 8884 5-11-88 3:01p

The first file, HELLO.C, is the source for your program. It contains the text
(the source code) of your program. You can display it on the screen; just enter
(at the DOS prompt> the command type hello. c. As you can see, HELLO.C
isn't very big-only 104 bytes.

The second file, HELLO.OBI, is your object file. It contains the binary
machine instructions (the object code) produced by the Turbo C compiler. If
you use the DOS TYPE command to display this file onscreen, you'll get
mostly gibberish.

The last file, HELLO.EXE, is the actual executable file produced by the Turbo
Linker. It contains not only the code in HELLO.OBI, but also all the
necessary support routines (such as printf) that the linker copied in from
the library file. To run any executable file, you just type its name at the DOS
prompt, without the .EXE extension.

To run HELLO.EXE, type hello at the DOS prompt, and press Enter. The
message Hello, world will appear on the screen, and the DOS prompt will
come back again.

Editing Your Program

Tradition has it that your first C program should always be the Hello, world
program found in the classic work, The C Programming Language by
Kernighan and Ritchie. This is the little HELLO.C program you have just
finished building and running.

Are you feeling brave? Now that you are somewhat familiar with the Turbo
C integrated development environment, let's try doing some programming

20 Turbo C User's Guide

of your own. We'll start by making some modifications to the HELLO.C
program. To do this, you must learn to use the TC Editor.

If you're not already there, get back into Turbo C by typing tc hello at the
DOS prompt. You'll find yourself back in Te, with your program already
loaded in.

Now let's modify your program so that you can interact with it a little.

Notice the flashing cursor in the upper left comer of the screen. You can
move this cursor around the Edit window with the arrow keys. To enter
code, just move the cursor to the right spot and type in the code. You can
delete a line of code by pressing Cirl-~ and insert a line by pressinging Clrl-N.
Make sure you are in Insert mode (the word Insert should appear in the
status line at the top of the Edit window; if it doesn't, press Ins to toggle it
on). (For complete information on how to use the TC Editor, see Chapter 5
in this manual and Appendix A in the Turbo C Reference Guide.)

Go ahead and edit your program so it looks like this:

'include <stdio.h>

mainO
(

char name(150);

printf(AWhat's your name?\nA);

scanf(U%s·,name);
printf(AHello, %s\nA,name);

)

You've added three lines to HELLO.C. The first line (char name [150) ;)
declares a variable named name, which can hold a string of up to 150
characters (letter, digit, punctuation, etc.). (Position 150 is reserved. for a
special character that we'll tell you about later.) The second line you added.
calls the function printf to write out the message What's your name? The
third new line calls the function scanf to read a name into the variable
name.

Next, press Ctrl-F9 to run your program. Notice that Turbo C is smart
enough to know that you have modified your source code, so it recompiles
the program before nmning it.

This time when your program nms two things happen: The User screen
appears, with the message What's your name? and the cursor waiting on the
next line. Type in your name and press Enter. Press Alt-F5. The User screen
now says Hello, <your_name>. Note that it only read the first name you
typed in; you'llieam why in Chapter 6. For now, press any key to return to
the TC screen.

Chapter2, Getting started 21

If You Did Something Wrong

As you write programs, you will make errors or receive warnings. An error
is a mistake in your program that prevents Turbo C from compiling it to
make object code. A warning is just that: a message that points out a
possible problem. Errors and warnings appear in the Message window at
the bottom of the TC screen. There are many different errors and warnings;
they are covered in more detail in Appendix B of the Turbo C Reference
Guide.

Sending Your Output to a Printer

Are you wondering how to send your HELLO.EXE program output to a
printer instead of to the screen? We'll show you how here, although we
won't go into the details of how this works just yet; you have plenty to
learn for now, and we want to save some of the fun for later.

Load HELLO.C into the Editor, and modify it to look like this:

'include <stdio.h>

mainO
(

fprintf (stdprn, "Hello, World\n");

Make sure your printer is ready, then compile and build your program just
as you did before, by pressing Ctrl-F9. Your printer should print out the
message Hello, world.

Note that this time we've used the fprintf function instead of printf. As
you gain more expertise with Turbo C and venture into the Turbo C
Reference Guide, you'll learn more about these elements we've added.

Writing Your Second Turbo C Program

Now let's modify your HELLO.C program some more, and store it in a new
file. You should still be in the Editor, but if you aren't (if there is no flashing
cursor), either press AIt-E for the quick shortcut, or press F10 to activate the
menu system, and E to select the Editor. Now change your program so that
it looks like this:

22 Turbo C User's Guide

'include <stdio.h>

mainO
{

int at b, sumi

printf(AEnter two numbers: A)i
scanf(A%d %dA,&a,&b)i
sum = a + bi
printf("The sum is %d \n",sum)i

You have made five changes to the original program. You have

• replaced the line defining name with one defining other variables (a, b,
and sum, all integers)

• changed the message in the printf statement
• changed the format string and variable list in the scam statement

• added the assignment statement sum = a + b;

• changed the format string and argument list in the final printf statement

Don't let the percent signs (%), ampersands (&), and backslashes (\)
confuse you; we'll explain what they mean in Chapter 6.

Writing to Disk

Now, do not press the F2 function key. Ifyou do, this program will be saved
as HELLO.C (you are going to save it under a different name).

Instead, press A/t-F to get to the File menu. Press W to select the Write To
command. Turbo C will ask you to type in the new name for this program;
type sum.c and press Enter. Your second program has now been saved on
disk as SUM.C.

Running SUM.C

Press Ctrl·F9. Turbo C will compile your program. If there are any errors, go
back into the editor and be sure that what you've typed in matches exactly
what is given in the example.

Once there are no errors, Turbo C will link in the appropriate library
routines and then run your program. The User screen will appear, with this
message:

Enter two numbers:

Chapter2, Getting Started 23

Your program is waiting for you to enter two integer values, separated by
blanks and/or tabs and/or carriage returns. Be sure to press Enter after
typing the second value. Your program now prints the sum of those two
values on the User screen; select Run/User Screen (or press A/t-FS) to see the
result. Press any key to return to Turbo C.

Congratulations! You've now written two completely different Turbo C
programs using several of the basic elements of programming. Are you
wondering what those elements are? You can find out by reading Chapter
6, before going on to Chapter 7.

24 Turbo C Users Guide

c H A p T E R

3

Putting It All Together-Colllpiling
and Running Your Progralll

Now that you have had some experience using Turbo C, let's move on to
some more complicated issues-more advanced features of the Turbo C
integrated development environment, and command-line Turbo C.

Turbo C provides a flexible environment for C program development; it
comes with default option settings to get you started, but you can easily
change these defaults to best meet your programming needs. Turbo C also
provides various support tools to perform the routine chores associated
with program development, such as error tracking and file-system
management.

If you are not familiar with Borland's easy-to-use integrated development
environment (TC), you should look over Chapter 5 before compiling and
mnning your programs through TC's menu system. It is a logical and easy
system to learn, and it won't take long for you to feel comfortable using it.

In This Chapter...

Because you can compile and run your Turbo C programs either from the
integrated development environment or from a standard DOS command
line, we discuss both processes in this chapter. However, because the inte­
grated development environment is a complete package, powerful and
easy to use, we think you will want to know about it first.

We begin this chapter with a brief review of how you compile and link
Turbo C source files through the integrated development environment to

Chapter 3. PuttIng It All Together-Compiling and Running Your Program 25

produce executable programs. This is followed by a brief discussion of TC
Turbo C's debugging features.

We then demonstrate how to ron your programs from the integrated devel­
opment environment; we also introduce TC's built-in Project facility,
Project-Make, and demonstrate how to use it.

After showing you how to run programs within the integrated devel­
opment environment, we explain how to use the command line for
compiling, linking, making (rebuilding), and running your Turbo C pro­
grams. In addition to the integrated development environment version of
Turbo C, your package includes a stand-alone compiler (TCC), linker, and
MAKE utility. Specific details on these stand-alone programs are given in
ApPendixes C and D of the Turbo C Reference Guide.

Building Files in Te, Revisited

Building a new program in the Turbo C integrated development envi­
ronment (TC) usually entails going through the following steps:

1. Set directory options so the compiler and linker know where to find and
store things.

2. Load the program you want to build into the TC Editor. (Note: If the
program consists of more than one module, you need to create a project
file that lists the names of your modules.)

3. Build the executable program file.

The exact procedure in these general steps differs dePending on whether
you're working with one file or several files as your source.

Debugging Your Program

Finding and fixing errors in your programs is always one of the more
frustrating aspects of programming. The Turbo C integrated development
environment (TC) makes your job a lot easier by providing debugging
features to help you out on both the compile-time and the ron-time levels.

Catching Syntax Errors: The Error-Tracking Feature

One of the best reasons to use TC is that it lets you fix syntax (compile­
time) errors and evaluate any warnings the compiler gives you. TC collects
compiler and linker messages in a buffer and then displays them in the

26 Turbo C User's Guide

Message window. This lets you look at all the messages at once while you
still have direct access to your source code.

To try this out, add some sYntax errors to the HELLO.C program. Remove
the t from the include statement on the first line. Next take out the trailing
quotation mark in the printf string on the fifth line. The now-buggy file
should look like this:

include <stdio.h>

main ()
I

print! (lIHello world\n);
}

Now compile the file again by pressing A/t·F9 (the compile to .OB} hot key).
The Compiling window will tell you how many errors and warnings you
have introduced (there should be two errors and no warnings).

The Message Window

When you see the message Press any key in the Compiling window, press
the spacebar. The Message window will become active, and a highlight bar
will be placed on the first error or warning. Since the first error occurred in
the file that is currently in the editor, you will also see a highlighted line in
the Edit window. This marks the place in your source code where the
compiler generated the error or warning.

At this point you can use the cursor keys to move the Message window's
highlight bar up and down to view other messages. Notice how the
highlight bar in the Edit window tracks where the compiler thinks each
error occurred in your source. When you place the highlight bar on the
"compilin~'message, the editor shows you your last position in that file.

If the text in the Message window is too long to see, you can use the Left
and Right arrow keys to scroll the message horizontally. To view more
messages at once, you can zoom the Message window by pressing F5.
When the Message window is zoomed, you cannot see the Edit window, so
no tracking occurs. For now, leave the windows in split-screen mode.

Correcting a Syntax Error

To correct an error, place the Message window highlight bar on the first
error message and then press Enter. Your cursor shifts to the Edit window
and is placed at the spot that generated the error message. Notice that the
status line of the editor shows the message you chose (this is useful when
you work in zoomed mode). You can now correct the error that generated

Chapter 3. Putting It All Together-Compiling and Running Your Program 27

the message. (You'll have to put the # you took out earlier back in the first
line.)

Since there is more than one error message, there are two ways to proceed
to fix the next error.

The first method is to return to the Message window by pressing F6 and
choosing the next message you want to fix, as previously described.

However, you do not need to return to the Message window to get to the
next error. Instead, you can simply press AJt-FB and the editor will place the
cursor at the location of the error listed next in the message Window. You
can also move backward to the previous error by pressing Alt-Fl.

There are certain advantages to both these methods, and usually circum­
stances dictate which method is preferable. Sometimes one silly mistake in
the source can confuse the compiler, producing many messages. In this
case, choosing and fixing the first message makes the next few error
messages meaningless. When this happens, it is more convenient to use
method one-to return to the Message window after fixing the first error,
scroll down to the next meaningful message, then choose it. In other cases,
however, you may wish to check each message in sequence; pressing Alt-FB
is more effective in such situations.

Remember that Alt-Fl and Alt-FB are hot keys; that is, they work from any­
where within Te. Thus if you are in the Message window and you press
AJt-FB, you don't get the message that is currently highlighted but the one
after it. (If you want to choose the current message, press Enter.) If there are
no further compiler messages, Alt-FB has no effect.

Note: You cannot choose linker messages this way, and they will not track
in your source.

In the course of fixing sYntax errors, it is often necessary to add and delete
text. The editor keeps track of this: When you proceed to the next error, it
correctly positions the cursor on the error. You don't need to remember line
numbers or keep track of added or deleted lines of text.

Catching Run-Time Errors: The Integrated Debugger

Once you have fixed all the syntax errors, your program will compile
perfectly well. But it still may not run the way it should, because it may
contain logic (run-time) errors. The error-tracking feature is no help in
finding these.

To catch run-time errors, TC features an integrated debugger. You can run
your program through the debugger, stop it at any point, check the value of
variables, and even change values to test how your program will react. For

28 Turbo C User's Guide

a tutorial on how to use the TC integrated debugger, read Chapter 4 in this
manual.

Projects: Using Multiple Source Programs

One of the great things about TC is its ability to handle separate
compilation of multiple source files. And TC's Project-Make facility makes
it even more effective.

In the examples in Chapter 2, you were working with only one source file,
so you could just use the Compile/Make EXE File command to make an
executable file. When you build a program from more than one C source
file, however, you have to tell TC exactly which files are involved. That
means you have to create a project file.

Creating a project file is as simple as listing the names of your C source
files. Even though, as you will see, you can list a lot of different files in your
project file let's keep it simple for now with a two-file program.

One basic case is to have a main program file and a support file that
contains functions or data referenced from the main file. For example, the
main file called MYMAIN.C might look like this:

'include <stdio.h>

main (int argc, char *argv[])
(

char is;

if (argc > 1)
s = argv[l];

else
s = Athe universeA;

printf(A%s %s.\nA,GetString(),s);

}

And the support file called MYFUNCS.C might look like this:

char ss [] = AThe restaurant at the end ofA;

char *GetString(void)
{

return ss;
}

Go ahead and create MYMAIN.C and MYFUNCS.C.

These two files now give you something to work with to build a project file.
The project file will simply contain two lines naming the files to be

Chapter 3. Putting ItAll Together-Compiling and Running Your Program 29

compiled and linked. Create a new file, and type in the two file names, like
this:

mymain
myfuncs

You don't have to type in the .C extensions. TC assumes any file without an
extension is a .C file (though you can add the .C if you want to). The order
of the files is not important either, except that it determines the order in
which files are compiled. The following project file would have the same
end result as the previous:

myfuncs
mymain

Now save your file as MYPROG.PRJ (select Write To from the File menu).
That's all.

Notice that the name of the project file (MYPROG.PRJ) is not the same as
the name of the main file (MYMAIN.C). The two names could have been the
same (but not the extensions), but they do not have to be. The important
thing to remember is that the name of your executable file (and any map
file produced by the linker) will be based on the project file's name. In this
case the executable file will be MYPROG.EXE (and possibly a map file
called MYPROG.MAP).

Also note that you can specify complete path names for any of the files
listed in the project file. In this way, you can build a program without
having all the source files in the same directory.

Building a Multi-Source File Program

Now that you have a project file, all you need to do is tell TC what project
you want to make. This is done by entering the name of the project file on
the project menu. Press AJt·p to get to the Project menu and choose Project
Name. You can explicitly type in the name of your project file or you can
use wildcards to find it in a list of file names in a specified directory. (But
remember, if you haven't saved the file, it won't be on disk.) Once your
project name is entered, you can simply press F9 (Make) to make the
executable file. To ron this program, press Ctrl·F9 (Run/Run).

Note that running a program includes doing a make. This means that pres­
sing Ctrl·F9 can initiate a compile and link cycle if the files in the project
need to be recompiled. This means you could have omitted the explicit
make (F9). Select Run/User Screen (or press A/t·FS) to see your output. Press
any key to return to the TC Editor.

30 Turbo C User's Guide

Error Tracking Revisited

In the example of a single-file program, you saw that syntax errors that
generate compiler warning and error messages can be viewed and chosen
from the Message window. Likewise, the Message window handles errors
from multiple-file compilations (or makes).

To see this, introduce some syntax errors into the two files, MYMAIN.C
and MYFUNCS.C. From MYMAIN.C, remove the first angle bracket in the
first line and remove the c in char from the fifth line. These changes should
generate three errors and three warnings in MYMAIN.

Now load MYFUNCS.C and remove the first r from return in the fifth line.
This change will produce two errors and one warning.

Editing these files makes them out-of-date with respect to their object files,
so doing a make will recompile them. Since you want to see the effect of
tracking in multiple files, you need to modify the criterion that Project­
Make uses to decide when to stop. This is done by setting a special toggle
in the Project menu.

Stopping a Make

There are several reasons why the make cycle stops in TC. Obviously,
Project-Make stops once an executable file has been produced. But Project­
Make will also stop to report some type of error.

For example, Project-Make will always stop if it can't find one of the source
files (or one of the dependency files-to be discussed later) listed in the
project file. You can also force Project-Make to stop by pressing etrl-Break.

A make can also stop when the compiler generates messages. You can
choose the type of message you want it to stop on by setting the Project/
Break Make On menu toggle. The Break Make On menu defaults to Break
Make On...Errors-which is normally the setting you'll want to use.
However, you can have a make stop after compiling a file with warnings,
with errors, or with fatal errors, or have it stop before it tries to link.

The usefulness of each of these modes is really determined by the way you
like to fix errors and warnings. If you like to fix errors and warnings as
soon as you see them, you should set Break Make On to Warnings or
maybe to Errors. If you prefer to get an entire list of errors in all the source
files before fixing them up, you should set the toggle to Fatal Errors or to
Link.

Chapter 3. Putting It All Together-Compiling and Running Your Program 31

Syntax Errors in Multiple Source Files

To demonstrate errors in multiple files, set Project/Break Make On to Fatal
Errors. To do this, press Alt-P to get to the Project menu, and choose Break
Make On. Now choose Fatal Errors from the Project/Break Make On menu.

At this point, you should have introduced syntax errors into MYMAIN.C
and MYFUNCS.C. Press F9 (Make) to "make the project." The Compiling
window will show the files being compiled and the number of errors and
warnings in each file and the total for the make. When the Press any key
message flashes, press the spacebar.

Your cursor should now be positioned on the first error or warning in the
Message window. And if the file that message refers to is in the editor,
there will be a highlight bar in the Edit window showing you where the
compiler detected a problem. Again, you can scroll up and down in the
Message window to view the different messages. Note that there is a
"Compiling" message for each source file that was compiled. These mess­
ages are not errors or warnings but serve as "file boundaries," separating
the various messages generated by each file.

When you scroll down past a file boundary, the Edit window mayor may
not track in the next file, depending on the setting of the Message Tracking
toggle in the Options/Environment menu. The default value is to track
only in the current file.

Thus, moving to a message that refers to a file other than the one in the
editor causes the Edit window's highlight bar to turn off. Ifyou choose one
of these messages (that is, press Enter on it), TC will load the file it
references into the Editor and place you in the Editor with the cursor on the
error. If you then return to the Message window by pressing FB, tracking
will resume in that file.

But by setting the Message Tracking toggle to All Files, you can track mes­
sages across file boundaries. This means that, when you scroll through the
Message window, TC will automatically load the appropriate file into the
editor so you can see where each message refers. Try it.

You can also tum tracking off completely, by setting the Message Tracking
toggle to Off. In this case, you simply choose the message you wish to work
on and then press Enter. The file the message refers to will then be loaded
into the editor with the cursor placed on the error.

Note that Alt-F7and AJt-FB (Previous error and Next error) are not affected by
the setting of the Message Tracking toggle. These hot keys will always find
the next or previous error and will load the file if necessary.

32 Turbo C User's Guide

Keeping and Getting Rid of Messages

Normally, whenever you start to make a project, the Message window is
cleared out to make room for new messages. Sometimes, however, it is
desirable to keep messages around between makes.

Consider the following example: You might have a project that has many
source files and you have Break Make On set to stop on Errors. In this case,
you may get several warning messages in several files, but then one file
contains an error so that the make stops. You fix that error and want to find
out if the compiler will accept the fix. But if you just do a make or compile
again, you will lose your earlier warning messages, which you may yet
want to look at. How can you avoid this? All you have to do is to turn on
the Keep Messages toggle in the Options/Environment menu.

When the Keep Messages toggle is set to On, messages are not cleared out
when you start up a make. The only messages removed are the ones that
result from the files you recompile. Thus, the old messages for a given file
are replaced with any new messages that the compiler may generate.

If at some point you are done with the messages, you can get rid of them by
choosing Project/Remove Messages. This zaps all the current messages.
Setting Keep Messages to Off and nmning another make will also get rid of
any old messages.

It's a good idea to get into the habit of clearing the messages when you
change projects. To facilitate this, there is a shortcut in the Project menu,
called Clear Project, that clears both the project name and the current
messages. After choosing Project/Clear Project, you can define a new
project or compile and run single-file programs by simply loading them
into the editor or defining the primary .C file name with the Primary C File
command.

The Power of Project-Make

In the last description of making a project, you dealt with the most basic
situation: just a list of C source file names. Project-Make provides a lot of
pow~ to go beyond this simple situation. To see this you need to under­
stand how a make works.

I

A make works by comparing the date of the source file with the date of the
object file generated by the compiler. This comparison of creation dates
defines several implicit dependencies in a simple project list.

Chapter 3. PuttIng It All Together-CompilIng and Running Your Program 33

Given the earlier example using MYPROG.PRJ, you have the following de­
pendencies:

MYMAIN.OBJ is dependent on MYMAIN.C
MYFUNCS.OBJ is dependent on MYFUNCS.C
MYPROG.EXE is dependent on MYMAIN.OBJ, MYFUNCS.OBJ, and

MYPROG.PRJ

This means the object file MYMAIN.OBJ is out-of-date if MYMAIN.C is
newer than MYMAIN.OBJ; thus MYMAIN.C will be recompiled. Notice the
executable file is always dependent on all object files in the project and on
the project file itself. This means that, if any of the objects or the project file
MYPROG.PRJ itself has a newer date than MYPROG.EXE, the make will
relink MVPROG.EXE. These implicit dependencies arise from the simple
list of file names of the C files in your project.

Explicit Dependencies

However, bigger projects require a more sophisticated make facility that
allows you to specify explicit dependencies. This is useful when a partic­
ular C source file depends on other files. It is common for a C source to
include several header files (.h files) that define the interface to external
routines. If the interface to those routines changes, you would like the file
that uses those routines to be recompiled. This is done with explicit depen­
dencies.

For example, say you have a main program file, MYMAIN.C, that includes
a header file MYFUNCS.H. A make will recompile MYMAIN.C and
MYFUNCS.C if MYFUNCS.H changes-if you specify the following depen­
dencies in your project file:

MYMAlN.C (MYFUNCS.H)
MYFUNCS (MYFUNCS.H)

Notice that this project file makes the MYFUNCS.C file dependent on the
MYFUNCS.H file. This is a good consistency check for your files. So now
you have the same implicit dependencies as well as some explicit depen­
dencies, like so:

MYMAIN.OBJ is dependent on MYMAIN.C and MYFUNCS.H
MYFUNCS.OB] is dependent on MYFUNCS.C and MYFUNCS.H
MYPROG.EXE is dependent on MYMAIN.OBJ, MYFUNCS.OB], and

MYPROG.PRJ

Any C file listed in a project file can have as many explicit dependencies as
it needs. Simply place the files you want the C source to be dependent on in
parentheses, separated by blanks, commas, or semicolons.

34 Turbo C User's Guide

For example if you want MYMAIN.C to be dePendent on MYFUNCS.H,
YOURS.H, and OTHER.H, you would type

MYMAIN.C (MYFUNCS.H, YOURS.H, OTHER. H)

Note: When autodependency checking is on, any included file will be
checked, but explicit dependencies will not.

Autodependency Checking

Project-Make has the capacity for automatically checking dependencies
between source files in the project list and their corresponding object files.
Project-Make opens the .OBI file and looks for information about files
included in the source code. This information is always placed in the .OB}
file by both TC and TCC when the source module is compiled. Then every
file that was used to build the .OB} file is checked for time and date against
the timeldate information in the .OB} file. The.C source file is recompiled
if the dates are different.

Note: In order for this feature to work, you must toggle On the Projectl
Auto Dependencies switch in the integrated environment.

That is all there is to dependencies. This method gives you the power of
more traditional makes without all the hassle of a complicated make
sYntax.

What? More Make Features?

There are two other features that add to the power of the make:

• you can specify external object and library files to be linked into your
project

• you can override the standard startup files and libraries

External Object and Library Files

From time to time, you might want to use some routines that came from
another source, such as assembly language or another compiler. Or maybe
you have some library files that perform special functions not provided in
the standard libraries.

Chapter 3, PuttIng It All Together-Compiling and RunnIng Your Program 35

In these cases, you can include the name of the object or library files in your
project with an explicit extension, like this (note that, when listing files, the
order is not important>:

MYMAIN (MYFUNCS. H)
MYFUNCS (MYFUNCS.H)
SPECIAL.OBJ
OTHER.LIB

When Project-Make sees a file with an explicit .OB} extension, it simply
includes that file in the list of files to be linked together. It does not try to
compile it or find its source, or read in autodependency information.
Similarly, a name in your project file with a .UB extension gets put into the
list of libraries the linker searches when trying to resolve external
references. Again, it does not try to compile or build the library.

Note that files of these types cannot have explicit dependency lists (they
will be ignored). However, you can include these names in your C source
dependency list like any other file you want your source to depend on.

For example,

MYMAIN (HYFUNCS.H, SPECIAL.OBJ)
MYFUNCS (HYFUNCS.H, OTHER. LIB)
SPECIAL.OBJ
OTHER. LIB

What this means is that, if for some reason these .OB} or .LIB files become
updated, the C source will be recompiled.

Overriding the Standard Files

In some cases, it is necessary to override the standard startup files or
libraries. This is usually recommended only for experienced users, and is
not a common practice for beginners. But if you ever feel the need, here's
how to do it.

To override the startup file, you must place a file called COx.OB} as the first
name in your project file-where x stands for any DOS name (for example,
COMINE.OB}). What is critical is that the name start with CO, that it is the
first file in your project, and that it have an explicit .OB} extension.

To override the standard library, all you need to do is place a special library
name anywhere in the list of names in your project file. The name of the
library must start with a C, followed by a letter representing the model
(such as S for the small model); the remaining characters, up to six, may be
anything you want for a file name. You must use an explicit .LIB extension
(for example, CSMYFILE.UB or CSNEW.LIB).

36 Turbo C User's Guide

When the standard library is overridden, make does not try to link in the
math libraries as based on the Floating Point toggle setting in the O/C/
Code Generation menu. If you wish to have these libraries linked in when
you override the standard library, you must explicitly include them in your
project file.

Compiling and Linking from a Command
Line

In addition to using the integrated development environment, you can ron
your Turbo C programs with the old-fashioned type of command-line
interface. While the integrated development environment mode is best for
developing and ronning your programs, you may sometimes prefer to use
the command line; in some advanced programs, the command-line
interface may be the only way to do something intricate. For example, if
your Turbo C programs include inline assembly code, you will need to use
the command-line version of Turbo C (TCC) rather than TC, the integrated
development environment version.

TCC compiles C source files and links them together into an executable file.
It works similarly to the UNIX CC command. TCC will also invoke TASM
to assemble .ASM source files. Note that to compile only you have to use the
-e option at the command line.

The Tee Command Line

To invoke Turbo C from the command line, enter Tee at the DOS prompt
and follow it with a set of command-line arguments. Command-line
arguments include compiler and linker options and file names. The generic
command-line format is

tee [option option option .•• J filename filename

Options on the Command Line

Each command-line option is preceded by a hyphen (-) and separated from
the tee command, other options, and following file names by at least one
space. You can explicitly turn a command-line option off by following the
option with a dash. (For example, -K- explicitly turns the unsigned chars
option off.) Turbo C's command-line options are described in Appendix C
of the Turbo C Reference Guide.

Chapter 3. PuttIng ItAll Together-Compiling and Running Your Program 37

File Names on the Command Line

Mer the list of options, tyPe file names on the command line. The compiler
compiles files according to the following set of roles:

filename compile filename.c
filename.c compiletilename.c
filename.xyz compile filename.xyz
filename.obj include as object at link time
filename. lib include as library at link time
filename.asm invoke TASM to assemble to .OBI

The compiler will then invoke the linker and supply the linker with the
names of the appropriate C startup file and standard C libraries.

The Executable File

Normally, the compiler derives the name of the executable file from the first
source or object file name supplied on the command line. The executable
program is given that first file name with the .EXE extension.

If you want to specify a different name for the executable file, use the -e
option. After the tee command and before any file names, enter -e imme­
diately followed by the name you want to give the executable file (no
whitespace between the eand the file name).

Some Sample Command Lines

The following example illustrates proper sYntax for invoking Turbo C from
the DOS command line:

tee -IB:\inelude -LB:\lib -etest start.e body.obj end

For this example command line, the command tee invokes Turbo C at the
DOS prompt. Turbo C then interprets the command-line options as
meaning

• The include directory is B:\ INCLUDE (-1B: \include).
• The libraries are in the B:\Lm directory (-LB: \lib).
• The executable result should be placed in a file called

TEST.EXE (-etest).

Turbo C interprets the listed files to mean that this program consists of

• a source file called START.C to be compiled
• an object file called BODY.OBI to be included at link time

38 Turbo C User's Guide

• another source file called END.C to be compiled

Here is another example of a Turbo C compile-time command line:

tcc -IB:\include -LB:\lib2 -rom -C -K sl s2.c z.asm mylib.lib

This compile-time command line directs Turbo C to

• look for the include files in the B:\INCLUDE directory (-IB: \include)

• look for the libraries in the B:\LIB2 directory (-LB: \lib2)

• use the Medium memory model (-rom)

• allow nested comments (-c)

• make chars unsigned (-K)

Turbo C interprets the list of file names to mean

• The source files called Sl.C and S2.C are to be compiled.
• The file Z.ASM is to be assembled (using TASM).

• The executable file will be named Sl.EXE.
• The library file MYUB.UB is to be linked in at link time

The TURBOC.CFG File

You can set up a list of options in a configuration file called TURBOC.CFG,
which can be used in addition to options entered on the command line.
This configuration file contains options as they would be entered on the
command line.

If you've listed your commonly used options in TURBOC.CFG, you won't
need to enter them on the command line when you use TCC.EXE. If you
don't want to use certain options that are listed in TURBOC.CFG, you can
override them with switches on the command line.

You create the TURBOC.CFG file using any standard ASCII editor or word
processor (such as the Turbo Editor in the integrated development envi­
ronment version). You can list options (separated by spaces) on the same
line or list them on separate lines. Then, when you compile your program
from the command line, Turbo C uses the options supplied in
TURBOC.CFG, in addition to the ones given on the command line.

When you ron TCC, it looks for TURBOC.CFG in the current directory. If it
doesn't find it there and if you're running DOS 3.x, it then looks in the start
directory (where TCC.EXE resides). Note that TURBOC.CFG is not the
same as TCCONFIG.TC, which is the default integrated development envi­
ronment version of a configuration file.

Chapter 3. PuttIng It All Together-Compiling and Running Your Program 39

Options given on the command line override the same options specified in
TURBOC.CFG. This ability to override configuration file options with com­
mand-line options is an important one. If, for example, your configuration
file contains several options, including the -a option (which you want to
turn 01/>, you can still use the configuration file but override the -a option
by listing -a- in the command line.

How are command-line options and TURBOC.CFG options combined and
overridden? There are two kinds of TURBOC.CFG options:

• the - 1 and -L options
• all the other options in the file

Under any circumstances, command-line options are evaluated from left to
right, and the following rules apply:

• For any option that is not an -lor -L option, a duplication on the right
overrides the same option on the left. (Thus an off switch on the right
cancels an on switch to the left.)

• The - I and -L options on the left, however, take precedence over those on
the right.

When the options from the configuration file are combined with the com­
mand-line options, the -1 and -L options from TURBOC.CFG are appended
to the right of the command-line options, and the remaining TURBOC.CFG
options are inserted on the left of the command line's list of options, imme­
diately after the tee command.

Thus, because of the way the command line and TURBOC.CFG are com­
bined, the TURBOC.CFG -land -L options are on the extreme right, so the
include and library directories specified in the command line are the first
ones that Turbo C searches for the include and library files. This gives the
- I and -L directories on the command line priority over those in the config­
uration file. All other options from the TURBOC.CFG file are inserted to the
left of the command-line options, which again, correctly, gives the com­
mand-line options priority over them.

The TCCONFIG.EXE Conversion Utility for Config­
uration Files

The integrated environment and command-line compiler have a number of
common options, listed in Table Col of Appendix C in the Turbo C Reference
Guide, "TCC Command-Line Options." TCCONFIG.EXE takes a config­
uration file created by one environment and converts it for use by the other.

40 Turbo C User's Guide

The conversion command is

TCCONFIG SourceFile [DestinationFile]

TCCONFIG automatically determines the direction of the conversion: It
examiI'les the source file to see whether it is an integrated environment (TC)
configuration file or a command-line compiler (TCC) configuration file.

The destination file name is optional. If you don't specify a file name,
TCCONFIG uses the default name TCCONFIG.TC or TURBOC.CFG, de­
pending on the conversion direction. You can give any file name; the com­
mand-line compiler, however, only looks for a file named TURBOC.CFG
when it runs. It won't run on any other name.

When it creates the TCCONFIG.TC file, TCCONFIG uses default values for
any items not specified by the command-line compiler configuration file
(TURBOC.CFG). Going in the other direction, it includes in TURBOC.CFG
only the options in TCCONFIG.TC that differ from the default values.

TCCONFIG returns you to the DOS prompt when the conversion is done.

The MAKE Utility

Turbo C's stand-alone MAKE utility, a more powerful version of Project­
Make, permits you to describe source and object file dependencies. It is
based on the UNIX MAKE utility. The MAKE utility evaluates those depen­
dencies to ensure that the files are correctly compiled and linked.

What is the advantage to using a MAKE utility? As with Project-Make, you
do not have to keep track of which program components have changed
since you last compiled them. Stand-alone MAKE is more powerful than
Project-Make, however, because it is a general-purpose program builder.
Before linking your complex program's object files, MAKE recompiles any
files that need to be updated. Then it simply incorporates the newly
compiled files with those that did not need to be recompiled and creates a
new, executable program file.

Appendix D in the Turbo C Reference Guide contains a detailed explanation
of the stand-alone MAKE utility.

BUlLTINS.MAK

BUlLTINS.MAK is an optional file in which you can store MAKE macros
and rules that you use again and again, so you don't have to keep typing
them into your makefiles. See Appendix 0 of the Turbo C Reference Guide
for information on how to write makefiles and set up a BUlLTINS.MAK
file.

Chapter 3. Putting It All Together-Compiling and Running Your Program 41

Running Turbo C Programs from the DOS
Command Line

To run executable Turbo C programs from the DOS command line, simply
type the executable file name at the DOS prompt. It is not necessary to
include the .EXE extension. For example, to execute the program TEST.EXE,
you would just type test at the DOS prompt and press Enter. The TEST pro­
gram would then run (execute).

Moving Ahead with Turbo C

Now that you have seen how to compile, link, run, and make your Turbo C
programs, both with the integrated development environment and through
standard command lines, you are ready to put Turbo C through its paces.
As you expand your knowledge about the language and about this imple­
mentation, you will want to refer to the second volume of this handbook,
the Turbo C Reference Guide, for information about the run-time envi­
ronment, the library files, and Turbo C's implementation of the C language,
as well as a number of useful stand-alone utilities included with Turbo C to
make your job easier. Check out Chapter 4 for a guided tour of Turbo C's
integrated debugger, Chapters 6 and 7 for an overview of the C
programming language, Chapter 8 for an introduction to the Turbo C
graphics functions, and Chapter 12 on advanced programming techniques.

If you know Turbo Pascal or Turbo Prolog, you will also want to read
Chapters 9 and 10, respectively, for some tips on how to use either of these
languages with this fast, powerful C programming package.

42 Turbo C User's Guide

c H A p T E R

4

Debugging Your Progra11l

When you first run a program after correcting compile and link errors, it
still is not likely to work correctly. A new program almost always contains
numerous bugs-errors in design and coding-that you must identify and
fix. Finding and fixing a program's bugs is called debugging.

It's hard to find bugs merely by watching the afflicted program's behavior,
so most programmers use a debugger to help them locate the bugs in their
programs. A debugger is a piece of software that lets you take control of
your program as it runs. You can stop your program's execution at any
point, run it one statement at a time, and inspect the data it is processing.

In This Chapter...

Turbo C's integrated environment contains a debugger, called the
integrated debugger. In this chapter, we explain how to use the Turbo C
integrated debugger.

The chapter begins with a series of examples that demonstrate how to use
the integrated debugger. In the first example, we show you how to use the
debugger's simplest features to identify an "easy" bug. The following
examples illustrate more advanced features of the debugger.

There follows a survey of the debugger menu commands and related menu
commands, with the corresponding hot keys or hot key combinations, and
a description of what each command does.

Finally, we present some guidelines that will make debugging easier for
you. Many of the guidelines concern how to design and write a program, as

Chapter 4, Debugging Your Program 43

well as how to debug one. You can apply most of these ideas to any
computer language, not just to Turbo C.

How the Integrated Debugger Works

Turbo C's integrated debugger is a source-level debugger. This means that
you control the debugger with the same ''language'' you use to write your
programs. For example, you might display the value of an element in an
array by telling the debugger to display the value of an expression like

rptr->image[nptr+Ox80]

You debug a program simply by running it with the Run/Run menu option
(hot key: Ctrl-F9). The debugger takes over if the program was compiled
with the Source Debugging toggle set to On. (To set this toggle, choose
Debug/Source Debugging.)

Before you run the program, you can set breakpoints on one or more lines
in the source file. When the running program encounters a breakpoint, it
halts just before executing the first statement on the line bearing the
breakpoint and returns control of the debugger to you.

While the program is halted, you can study and manipulate it in many
ways. For example, you can

• display the value of a variable or expression
• set up a list of expressions in a special window and observe how their

values change

• change the value of a variable
• clear existing breakpoints or set new ones

• run the program one line at a time
• edit files, recompile and relink the program, or use any other feature of

Turbo C's menu system

• make the program continue running until it encounters another
breakpoint

Figure 4.1 illustrates the typical course of a debugging session. (Note that it
doesn't show everything you can do with the integrated debugger at each
step.)

44 Turbo C User's Guide

Write or modify
program

Make
(compile and link)

program

Fix bugs

Fix bugs

YES

NO

Set or change
breakpoints

YES

Debug program

Agure 4.1 : Typical steps In the Debugging Process

Chapter 4. Debugging Your Program 45

*

Example 1: Debugging a Simple Program

For your first debugging experience with Turbo C, you'll use the program
shown in the following example. We'll refer to this program as WOROCNT.
It is meant to display the contents of a text file and tabulate word lengths;
that is, report how many words are one character long, how many are two
characters long, and so forth. Unfortunately, WORDCNT contains several
bugs. You're going to use the debugger to find them.

You'll find WOROCNT in the file WORDCNT.C on one of the distribution
disks. Copy it into your Turbo C directory so you'll be sure to have a fresh,
buggy version!

If you're working in a directory other than the one that contains Turbo C,
make a working copy of WORDCNT.C. Also make a working copy of the
data file WORDCNT.DAT. Both files are on the distribution disks and in
your Turbo C directory.

/*****
* Read a text file; count the number of words of length 1, 2, 3, etc.
*
* NOTE: This program is for use with the debugging tutorial

in the debugging chapter of the User's Guide. It
intentionally contains bugs.

*****/
'include <stdio.h>
'include <ctype.h>

Idefine MAXWORDLEN
'define NUL
'define SPACE

16
«char) 0)
«char) Ox20)

*

46

/*****
* Find the next word in the line buffer.
* IN: wordptr points to the first character of a word or a preceding

space.
* RETURN: A pointer to the first character of the word. If there are no

more words, a pointer to the terminating NUL.
*****/
char *nextword(char *wordptr)
(

/* Advance to the first non-space. */
while (*wordptr==SPACE)

wordptr++;
return(wordptr);

Turbo C User's Guide

FILE
char

int
static

/*****
* Find the length of a word. A word is defined as a sequence of characters
* terminated by a space or a NUL.
* IN: wordptr points to a word.
* RETURN: The length of the word.
*****/
int wordlen(char *wordptr)
{

char *wordlimit;

wordlimit : wordptr;
while (*wordlimit &*wordlimit!:SPACE)

wordlimit++i
return(wordlimit-wordptr)i

/*****
* The main function.
*****/
void main(void)
(

infile; / Input file. */
linebfr(1024), /* Input line buffer, very long fOI safety. */

* wordptr; /* Pointer to next word in linebfr. */
ii /* Scratch variable. */

int wordlencnt[MAXWORDLEN),
/* Word lengths are counted in elements 1 to

MAXWORDLEN. Element 0 isn't used. The array is
static so that the elements need not be set to
zero at run time. */

overlencnt; /* Overlength words are counted here. */

printf(U WARNING: This is an example program for the practice\n");
printf(U debugging session. If you are not running this under the.\n");
printf("Integrated Development Environment, press control-break now.\n")i
printf("See the debugging chapter of the User's Guide for details.\n\n");

printf("Enter the input file's name: ");
gets (linebfr) i

if (!strlen(linebfr)) {
prlntf("You must specify an input file name!\n")i
exit () i

infile = fopen (linebfr, "r") i

if (!infile) {
printf ("Can't open input file! \n II) i

exit () i

Chapter 4, Debugging Your Program 47

/* Each loop processes one line. NOTE: If a line is longer than the
input buffer, the program may produce invalid results. The very large
buffer makes this unlikely. */
while (fgets(linebfr, sizeof(linebfr), infile)

printf(P%s\n",linebfr)i
/* Check for buffer overflow &remove the trailing newline. */

i = strlen(linebfr)i
if (linebfr[i-l] != '\n')

printf("Overlength line beginning\n\t%10s\n", linebfr)i
else

linebfr[i-l] = NULi

/* lineptr points to the 1st word in linebfr (past leading spaces). */
wordptr = nextword(linebfr)i

/* Each loop processes one word. The loop ends when [nextword]
returns NULL, indicating there are no more words. */
while (*wordptr) I
/* Find the length of this word, increment the proper element of the

length count array, and point to the space following the word. */
i = wordlen(wordptr)i
if (i > MAXWORDLEN)

overlencnt++i
else

wordlencnt[i]tti
wordptr t= ii

/* Find the next word (if any). */
wordptr = nextword(wordptr)i

/* Print the word length counts. Each loop prints one. */
printf(" Length Count\nD)i
for (i=1i i<MAXWORDLENi itt)

printf(" %5d %Sd\nD
, i, wordlencnt(i])i

printf("Greater %5d\n", overlencnt)i

1* Close the file and quit. *1
fclose(infile) i

)

Be sure the Debug/Source Debugging and O/C/C/OBI Debug
Infonnation toggles are both set to On. Start up TC by typing

TC WORDCNT

at the DOS prompt. Build the program (choose Compile/Build All). Turbo
C will compile and link WORDCNT, prepare it for execution, and then halt.
Now choose Run/Trace Into (or press Fl).

At this point, the debugger has scrolled the beginning of main into the Edit
window. It has highlighted the line containing the declaration of the main

48 Turbo C User's Guide

function (void main (void), indicating that this will be the first line to be
executed when you ron WORDCNT. This highlight is called the execution
bar, and it marks the execution position: the line containing the next
statement to be executed.

To make WORDCNT ron, choose Run/Run. WOROCNT prompts you to
enter the name of an input file. Type WORDCNT .DAT and press Enter.
WORDCNT should read and display the first line of the data file, then lock
up your computer, because of the bugs in the program. Enter Ctr/·Break to
unlock it, and press Esc to verify. Then choose Run/Program Reset (or
press the hot key, Ctrl·F2) to end the debug session and press F7 (Run/Trace
Into) to start a new one.

Setting and Using a Breakpoint

As the source file comments explain, the first part of main prompts for the
input file's name and opens the file. The fact that WORDCNT read and
displayed the first line of the input file suggests strongly this part of the
code is working-well enough, at least, not to be responsible for the
malfunction we've observed. Therefore, you can run through the first part
of main and stop when you reach the suspicious part. To accomplish this,
you must set a breakpoint on the line where you want to stop.

Use PgDn and Down arrow to move the cursor to the line that begins

while (fgets(••••

(It'S just below the long comment that begins Each loop processes ..•.)
Notice that the execution bar doesn't move. That's because you aren't
nmning statements in the program; you're just moving the editor's cursor.

To set a breakpoint on the line at the cursor, choose Break/Watch/Toggle
Breakpoint (or its hot key combination, Ctrl·FB). The debugger will highlight
the line to indicate that a breakpoint is set there. Notice that the appearance
of this breakpoint highlight is different from the appearance of the
execution bar.

Now choose Run/Run (or its hot key combination, Ctr/·F9). WOROCNT will
continue (in this case, start) nmning.

After WOROCNT prompts you to enter the name of an input file, it will
halt and wait for keyboard input. The debugger shows you what
WOROCNT wants by displaying the Execution screen, which shows the
program's output just as if the program were running without the
debugger. Type WORDCNT. DAT and press Enter. WORDCNT will continue
nmning until it encounters the breakpoint; then it will stop and the Edit
window will reappear. The cursor and the execution bar are now on the
while statement.

Chapter4, Debugging Your Program 49

Note that the breakpoint you set on the while statement is still there. You
can't see it because the execution bar obscures it, but it will reappear when
the execution bar moves on. WORDCNT will stop every time it reaches this
breakpoint until you toggle the breakpoint off.

Using Ctrl-Break

In addition to any breakpoints you might set, you also have an "instant"
breakpoint during execution: pression Ctrt-Break. This means that, barring a
major crash, you can interntpt your program at any time. When you press
Ctrl-Break, you drop out of your program and back into the TC Editor, with
the execution bar on the next line to execute and ready to step through the
rest of the program. A prompt appears, telling you to press Esc to verify the
break:

ij User break in :O~~.c. Press ESC. I]

What actually happens is that the debugger is in contact with DOS, the
BIOS, and other services, and so it knows whether the code currently
executing is a DOS routine, a BIOS routine, or the program itself. When you
press Clrl-Break, the debugger waits until the program itself is executing.
Then it starts stepping every machine-level instruction until it comes to one
at the beginning of a C source code line. At that point it breaks, so that the
execution bar is on that line of code.

II a second Clrl-Break is detected before the debugger locates and displays
the source code line, the debugger terminates the program immediately
and doesn't try to find the line of source code. In such a case, the program
terminates without flushing any output or calling any exit functions. (This
is similar to terminating via the _exit function.> Therefore, you should press
Clrl-Break twice only when your program is stuck in an infinite loop and one
CITI-Break doesn't abort it.

Stepping Over Function Calls

Now that you've reached a part of WOROCNT where a bug may be, you
must proceed more cautiously. Run the next part of main one line at a time,
pausing after each line to see whether it has had the desired effect.

To run one line of main, choose Run/Step Over. The debugger will run the
while statement and read the first line of input. Then it will move the
highlight down to the next line containing executable statements. Choose
Run/Step Over again to run the following call to printf.

50 Turbo C User's Guide

Did the while statement have the desired effect? To find out, select User
Screen from the Run menu, or press Alt-F5. This command displays the
Execution screen. You can see the first line of input on the screen, so you
may conclude that both the while and the printf worked correctly. Press
any typing key to redisplay the Edit window.

The debugger has a hot key for Run/Step Over; it is FB. Press FB now to
execute the next statement, which computes the length of the input line and
assigns it to the variable i.

Warning! Tracing into or stepping over a call to the library function
longjmp will not stop at the next line (because that function never returns).
It will cause your program to run to the next breakpoint or to completion.

Evaluating an Expression

Did the assignment statement have the desired effect? You can find out by
displaYing the value of i.

Choose Debug /Evalua teo The debugger opens a pop-up window
containing three fields. We'll refer to these fields by their functions:

1. The Evaluate field: Here you enter the expression you want to evaluate
and possibly modify. (Note: If the expression you enter is too long for
the Expression field box, you can scroll the expression using Right arrow,
Left arrow, Home, and End.)

2. The Result field: Here the debugger displays the expression's value.

3. The New Value field: Here you enter the new value you want the
expression to have (optional).

Notice that the Evaluate field contains a word. This is the field's default
value, copied from the word at the cursor in the Edit window. We'll
consider its uses in a moment. For the present, type the expression i in its
place, and press Enter. The debugger displays the value of i in the Result
field. It is 43, which is correct. Press Esc to escape from the menu system.

The next group of statements checks whether the line read by fgets ends
with a newline character. If it doesn't, the input line was too long to fit in
the buffer, and the program displays a warning message. If the line does
end with a newline character everything is OK; the program removes the
newline from the string so that it won't be counted as a character in the last
word.

Before you execute the if statement, it is helpful to display the input line to
see what result you should expect. Move the cursor to an occurrence of the
word linebfr in the Edit window, and choose Debug/Evaluate (or its hot

Chapter 4. Debugging Your Program 51

key combination Ctrl-F4) again. The debugger displays linebfr in the Debug/
Evaluate window's Evaluate field. Press Enter.

The debugger should display

To be. or not to be: that is the question.\n

\n represents a newline character, just as it does in a C source program.

Now run the if statement by choosing F8. The execution bar moves to the
else clause, so the if statement did the right thing. Run the assignment
statement in the else clause, then evaluate linebfr again. (You can use the
hot key Ctrl-F4 for Debug/Evaluate.) The newline character (\n) has been
removed. So far, so good.

The nextword and wordlen Functions

The next statement calls nextword, a function that locates the next (in this
case, the first) word in a string. Run this statement using F8 and evaluate
wordptr to see what value nextword returned. You should find that wordptr
points to the T in To be or not to be: that is the question. If it does,
nextword is functioning correctly, at least in this simple case.

Next the program enters a while loop. Each iteration of the loop should
process one word in linebfr, then advance wordptr to the next word. After
the loop has processed the last word, wordptr should be pointing to the null
character that terminates the line, and the loop should end.

Run the while statement. The execution bar moves to the first statement in
the body of the loop, which calls the function wordlen. This function
determines the length of the word at wordptr. Run the statement and
evaluate i. The value of i is 0, which is not correct; the length of the first
word on the line should be 2. We've found a bug!

Stop and Think

Before you rush off to fix the bug, though, it's worth your while to consider
its effect on the program. An erroneous word length of 0 will have two
effects. First, it will increment the wrong element of wordlencnt, element O.
Second, it will cause the statement wordptr += i to leave the value of wordptr
unchanged. That, in turn, will make the second iteration of the while loop
begin with the same value of wordptr as the first. Since wordlen returned 0
the first time it was called, it presumably will return 0 the second time, too.
Thus the value of wordptr will be the same the third time through the while
loop, and the fourth time, and so on, forever. That fits the observed

52 Turbo C Userls Guide

behavior of WORDCNT perfectly. This bug is the one that makes
WORDCNT lock up your computer.

What was the point of this exploration? You might have found that the bug
explained only part of WORDCNT's misbehavior, or that it wasn't related
to the misbehavior at all. In either case, you'd probably want to ron more of
the program to see what would happen next. As it is, you can concentrate
on fixing the bug you've found with a high degree of confidence that the
program's behavior will be corrected, or at least improved.

What You've Accomplished

You've found that WORDCNT is misbehaving because of a bug in wordlen.
You still must find out exactly what is wrong with wordlen. We'll return to
that in a moment. First, we'll take some time out to review the debugger
commands you've used, and to learn more about them.

In your first effort at debugging WORDCNT, you have done the following
things:

• ensured that the Debug/Source Debugging and O/C/C/OB] Debug
Information toggles are set to On

• selected Compile/Build All to prepare WORDCNT for debugging
• used editor commands to move the cursor to the suspicious part of

WORDCNT; selected Break/Watch/Toggle Breakpoint to set a
breakpoint there; selected Run/Run (or its hot key combination Ctrl-F9) to
ron WORDCNT up to the breakpoint

.used Run/User Screen or its hot key AIt-F5 to inspect your program
output on the User screen.

• selected Run/Step Over (or pressed its hot key, FB) to ron the statements
in main, one line at a time

• selected Debug/Evaluate (or pressed its hot key command, Ctr/-F4) to
display the values of several variables

• thought about the bug you found, and concluded that it explains
WORDCNT's observed misbehavior and so warrants immediate
correction

The Default Expression in the Evaluate Window

Recall that Debug/Evaluate copies the word at the cursor in the Edit
window into the Evaluate field. You can often save work by putting the
cursor at a variable you want to evaluate before you choose Debug/
Evaluate. Even if the expression you want is different, you may be able to

Chapter 4,.Debugging Your Program 53

enter it more quickly by editing the default expression than by typing it in
from scratch. Furthennore, you can copy more text from the Edit window
to the default expression by pressing Right arrow. Each time you press Right
arrow, it copies one additional character.

For example, suppose you want to evaluate the expression linebfrli-1],
which appears in the source file in the line

if (linebfr(i-l) != '\0')

Move the cursor to linebfr and choose Debug/Evaluate. The Evaluate field
displays the default expression linebfr. Press Right arrow five times to append
[i-1] to the expression. Then press Enter.

Changing the Value of an Evaluated Expression

Debug/Evaluate can change the values of some types of expressions. It can
change the value of any expression that represents a single data element,
such as i, linebfr[i], or "'(linebfr+i>.

Try evaluating the variable i and then changing its value. When you press
Enter to evaluate i, the debugger displays the value of i in the Result field.
Go to the New Value field (use Down arrow) and specify the value you want
to assign to i. For example, you can edit the New Value field to say i+1 (to
increment i by 1), or type in 17. When you press Enter, the debugger
evaluates what you entered, changes the value of i, and displays the new
value in the Result field. (Note: Remember, once you have pressed Enter in
the New Value box, the value of the variable being evaluated changes, and
pressing Esc will not undo the change.) Press Esc to leave Debug/Evaluate,
invoke the command again, and redisplay the value of i to confirm that it
has been changed. Then change it back and leave Debug/Evaluate again.

You can modify the value of an expression to correct the effects of a bug,
letting you run your program somewhat further in order to find additional
bugs. You can also use it to gain insight into your program's behavior. For
example, suppose you want to see how a certain function behaves when it
is passed an invalid parameter value. It may be hard to make the program
pass the function that particular value, but you can often get the same
result by changing the value of some variable just before the program calls
the function.

If you leave the New Value field by pressing Esc instead of Enter, the
debugger does not change the expression's value. Press Esc if you modify
the new value by accident, or modify it and then change your mind.

You can evaluate any legal C expression, provided it doesn't contain

• function calls

54 Turbo C User's Guide

• defined or type-defined symbols or macros (*wordptr == Ox20 is OK;
*wordptr == SPACE is not OK, since SPACE is defined)

• local or static variables not in the scope of the function being executed,
unless they are fully qualified

Qualifying Variable Names

There are three typical situations where you may want to qualify a variable
name used in an expression.

• To examine static variables in another module, use:

• .<module name>.<variable name>

• To examine local variables in a global function, use:

• <function name>.<variable name>

• To examine local variables in a static function use:

• .<module name>.<function name>.<variable name>

For example, suppose your program contains two modules, FIRSTMOD
and MODULE2:

/* FIRSTMOD.C */
int a = 1;
main()
(

int b = 2;
myfunc() ;
printf("%d", i);

1* MODULE2.C */
static int e = 3;
static void localfunc(void)
(

int d = 4;
printf("End of the road\n");

)

void myfunc(void)
(

int c = 5;
localfunc () ;

To watch the global variable a, simply use:

a

Chapter4, Debugging Your Program 55

To watch the local variable b in function main use:

main.b

To watch the local variable c in function myfunc use:

myfunc.c

To watch the local variable d in the static function loca1func, use:

.module2.localfunc.d

To watch the static variable e in MODULE2, use:

.module2.e

The need for qualifiers depends on the current instruction pointer. H your
program is mnning in main, there's no need to qualify the variable b with
the function bane main. Ukewise, if your program is running inside the
MODULE2 module, it is not necessary to qualify the variable e with the
module name.

It's not possible to watch an auto (local) variable in an inactive scope. Since
the function myfunc calls localfunc, it is possible to watch the local
variables of myfunc from localfunc;
the variables in myfunc are not removed when localfunc is called.
However, once myfunc returns to main, you can no longer view its local
variables. Variables local to a function are discarded when the function
returns to its caller.

Format Specifiers

To control exactly how information is displayed in the Debug/Evaluate
window, Turbo C allows you to add optional format specifiers to expressions
in the Evaluate field (the same is true for the Watch window). A format
specifier follows the expression, separated from it by a single comma. It
may be either upper or lowercase.

A format specifier consists of an optional repeat count (an integer), followed
by zero or more format characters; no spaces are required between the repeat
count and the format characters. Table 4.1 lists the available format
characters, and describes their effect.

The repeat count is used to display consecutive variables, a typical example
of which is the elements of an array. For example, if list is an array of 10
integers, the expression list would display

list: (10, 20, 30, 40, 50, 60, 70, 80, 90, 100)

H you want to look at a particular range of the array, you can specify the
index of the first element you want to examine, and add a repeat count:

56 Turbo C User's Guide

listI5),3: 60, 70, 80

This technique is particularly useful for dealing with arrays that are too
large to be displayed completely on a single line.

Repeat counts aren't limited to arrays; any variable may be followed by a
repeat count. The general sYntax var, <n> simply displays n consecutive
variables of the same type as var, starting at the address of var. Note
however, that the repeat count is ignored if your expression is not
equivalent to a variable. A good role of thumb is that a given construct is a
variable if it can legally appear on the left hand side of an assignment
statement, or if it can be used as an argument to a function.

Table 4.1: DebuggIng Format Specifiers

Character

C

S

D

HorX

F<n>

M

Function

Character. Shows s~ial display characters for control
characters (ASCII 0 through 31); for example, a I\C would
be displayed as a Happy Face. Affects characters and
strings.

String. Shows control characters (ASCII 0 through 31) as
ASCII values using the appropriate C escape sequences.
Since this is the delault character and string display format,
the S specifier is only useful in conjunction witli the M
specifier.

Decimal. All integer values are displayed in decimal.
Affects simple integer expressions as well as arrays and
structures containing integers.

Hexadecimal. All integer values are displayed in
hexadecimal with the Ox prefix. Affects simple in~er
expressions as well as arrays and structures containing
integers.

Floating-point. n is an integer between 2 and 18 spec!fying
the nuriilier of significant dIgitS to display. Affects only
floating-point values.

Memory dump. Displays a memory dump, starting with
the address ofthe inOicated expression. The expression
must be a construct that would be valid on thelefthand
side of an assignment statement, i.e. a construct that
denotes a memory address; otherwise, the M specifier is
ignored. By defaUlt, each byte of the variable is shown as
two hexadecimal digits. Adding a D specifier with the M
causes the bXtes to De displayed in decimal, and adding an
H or Xs~er causes the bytes to be displayed in
hexadeomal. A C or an S specifier causes the variable to be
displayed as a string (with or without special characters).
The default number of bytes displayed corresponds to the

Chapter4. Debugging Your Program 57

Table 4.1: Debugging Format Specifiers (continued)

P

size of the variable, but a repeat count may be used to
specify an exact number of bytes.

Pointer. Displays p<?inters in seg:ofs format with additional
information abOut the address ~mted to, rather than the
default hardware-oriented seg:ofs format. Specifically, it
tells you the region of memory in which the s~ent is
located, and the name of the variable at the offset address,
if that is appropriate. The memory regions are as follows:

Memory Region

0000:0000 - OOOO:03FF

0000:0400 - OOOO:04FF

0000:0500 - Turbo C

Turbo C - User Program PSP

User Program PSP

User Program - top of RAM

AOOO:OOOO - AFFF:FFFF

0000:0000 - B7FF:FFFF

BBOO:OOOO - BFFF:FFFF

COOO:OOOO - EFFF:FFFF

FUOO:OOOO - FFFF:FFFF

Evaluate Message

Interrupt vector table

BIOS data area

MSDOS/TSR's

TurboC

User Process PSP

Name of a static user
variable if its address falls
inside the variable's
allocated memory;
otherwise nothing

EGA Video RAM

Monochrome Display RAM

Color Display RAM

EMS Pages/Adaptor BIOS
ROM's

BIOS ROM's

R StructurelUnion. Displays field names as well as values,
such as { X: 1, Y: 10, Z:5 }. Mfects only structures and
unions.

Here are some general rules that apply to format specifiers:

1. A format specifier takes effect only if it is appended to a variable of the
appropriate type. Otherwise it is ignored.
Note that if the expression being evaluated causes multiple objects to be
displayed (for example, as in a structure), and you suffix the expression
with more than one format specifier, the appropriate format specifier
will be applied to each object. For example, if you enter struct,F5H to
display a structure containing integers and reals, integers will be

58 Turbo C User's Guide

displayed in hexadecimal (H) and reals in floating-point format to five
significant digits (FS).

2. If you enter more than one format specifier of the same type for an
expression, type-dependent priority determines which of the conflicting
specifiers will be used: The one with the highest priority is chosen. This
whole issue, of course, is really relevant only for structures and unions.
For simple variables and arrays of simple variables, you will typically
enter only one format specifier.

Table 4.2: Priority and Defaults In Format Specifier Classes

CSHD
CSHD
HDC·S·
HDC·S·
HDC·S·
HDC·S·
CSPH
PH
HDC·S·

Type

char
unsigned char
int
unsigned int
lon$
unsigned long
charptr
otherptr
enum

float
double
long double
array of char
other array

structure

syecifiers in Order
o Priority Default

S
S
D
D
D
D
S
P
D (followed by member
name)

Fn F7
Fn FIS
Fn FI8
CSHD S
elements enclosed in braces 0 and separated by
commas
R

• character type format s~fierswill be accepted only for values that
fall within-the appropnate range (-128 to 127 for signed types and 0 to
255 for unsignea types).

Note: The H format specifier used by itself with a pointer variable
displays the pointer as a hexadecimal integer value.

To demonstrate the use of format specifiers, assume that the following
structure and variables have been declared:

struct (
int account;
char name[10];

) client = (5000, "Jones")

int list[5] = (0,10,20,30,40);
char *ptr = list;

void main ()
(

Chapter 4, Debugging Your Program 59

Then, entering the following expressions in the Evaluate field will produce
the corresponding evaluation in the Result field:

Evaluate

list
list(2),3
list(2),3x
list,m
ptr
ptr,p
*ptr,3
client
client,r

Result

{ 0, 10, 20, 30, 40 }
20, 30, 40
Ox14, Ox1E, Ox28
00 00 OA 00 00 14 00 1E 00 28 00
D5:0198
D5:0198 (_list)
0, 10, 20
(5000, DJones\O\O\O\O\OA)
{ account:sOOO, name:DJones\O\O\O\O\OA }

Exercise 2: Finding the Bug in wordlen

Now let's return to WOROCNT and find out what's wrong with the
wordlen function.

It's generally a good idea to see if you can figure out what's wrong just by
studying the code. In fact, it's often the quickest way to find a bug once
your attention has been drawn to the right place. But this time, please resist
the temptation and play along with these exercises.

If you're still in the debugging session you started in Exercise 1, cancel it by
choosing Run/Program Reset (or pressing its hot key, CtrI·F2). This makes
Turbo C release any memory WORDCNT allocated, close the file it opened,
and end the current run of WORDCNT.

On the other hand, if you've left the integrated environment or used it to
run other programs since you completed Exercise 1, load WORDCNT.C
again. Then set a breakpoint on the while (fgets (.•• statement again.

Now choose Run/Run to start a new debugging session. Turbo C will
prepare WORDCNT for execution again. Turbo C lets the program run
until it stops at the breakpoint.

At the filename prompt, type in WORDCNT. OAT and press Enter.

Choose Run/Step Over to run WORDCNT up to the statement that calls
wordlen. Then choose Run/Trace Into (or use its hot key, F7) to make the
debugger go into wordlen, rather than run the statement that calls it.

60 Turbo C User's Guide

Run/Trace Into nms a program one line at a time, like Run/Step Over, but
it steps into function calls instead of over them. In this case, it leaves the
execution bar at the declaration of wordlen.

Study wordlen's logic a moment. The function expects one parameter, a
pointer to a word in a line buffer, which it names wordptr. It assigns the
value of wordptr to a local variable, wordlimit. Then a while loop advances
wordlimit until it points at a space ending the word or the null character
ending the line. It returns the difference between wordlimit and wordptr as
the length of the word.

Run two lines to execute wordlen's definition through the assignment
statement. You may use either Run/Trace Into or Run/Step Over; since
wordlen calls no lower functions, the two commands will have the same
effect.

Evaluate the string that wordlimit points to; it's the first line of input, as it
should be. Run the while statement. The execution bar should move to the
following line, which increments wordlimit. Instead it moves to the line after
that, which contains a return statement. This maybe the bug you're looking
for.

Consider what will happen next. Since wordlimit has not been incremented,
the difference between wordlimit and wordptr is 0, and wordlen will return
O. This is the bug you're looking for. You've narrowed down the scope of
the bug from "something in wordlen" to "something in the expression of
wordlen's while statement." Once again, it's worthwhile to look at the code
and see if you can deduce what's wrong.

If you can't, try evaluating the parts of the guilty expression to see how
they work together. You'll find that the value of "wordlimit is ASCII T. You
can't evaluate "wordlimit != SPACE, since SPACE is a #defined symbol; but
you can evaluate "wordlimit!= "(the value of SPACE is ' '), and its value is
1 (true). The value of the whole expression ought to be tme, and it's false.
Somethings wrong with the & operator.

In fact, & is the wrong operator. It is C's bitwise and operator, which ands
each bit of one operand with the corresponding bit of the other. Since
"wordlimit!= SPACE is always 0 or 1, "wordlimit & "wordlimit!= SPACE is 0
whenever ·wordlimit is even. The operator should be &&, which gives a
result of 1 whenever both of its operands are nonzero. (Try evaluating the
whole expression with one &and then with two to see the difference.)

(If you didn't figure out the problem yourself, don't feel bad. Confusing &
with && and I with I I is one of the most common errors novice C
programmers make. After you've found this error in your own code a few
times, you'llleam to recognize it readily.)

Chapter 4. Debugging Your Program 61

Fixing the Bug

To fix the bug, all you need to do is change the & to &&. Save the corrected
program file (press F2) to protect yourself from losing the change you made
if your program should crash during a subsequent debugging session.
Then choose Run/Run again. Since you have modified the source code,
you will be asked if you want to rebuild. Press Y, and the program will
compile and link. Presto, you're ready to debug the corrected program.

We'll go hunting for more bugs after another brief time-out to summarize
what you've learned and take a closer look at some of the features you've
encountered.

What You've Accomplished

You have cancelled your first debugging session with Run/Program Reset
or its hot key, Ctrl-F2. Then you ran WORDCNT up to the call to wordlen by
setting a breakpoint there and choosing Run/Run (or its hot key
combination Ctrl-F9).

You traced into the call to wordlen with Run/Trace Into (hot key Fl). That
let you step through wordlen and find the bug. You fixed the bug, saved
the source file, and prepared the updated program for debugging with
Run/Run.

More about Breakpoints

If you didn't leave Turbo C after working through the first exercise, the
breakpoint you set at while (fgets (... was still set when you started the
second one. That's why Run/Run let WORDCNT run to the breakpoint
instead of running to the end of the program. As you can see, breakpoints
"stick" from one debugging session to the next. This is so even if you edit
and remake your program in between. Turbo C moves each breakpoint up
or down to keep it on the right statement.

Breakpoints stick even if you set them in a program file, save the file, and
edit other files. You lose your breakpoints only when you:

• leave the integrated environment
• delete the lines they are set on in the source file
• clear them all by choosing Break/Watch/Clear All Breakpoints

However, Turbo C can lose track of its breakpoints in two cases:

• If you edit a file that contains breakpoints, then abandon (fail to save) the edited
version of the file. Turbo C cannot remember where the breakpoints were

62 Turbo C User's Guide

set in the original version of the file, and so will display them on the
wrong lines.
H you must abandon the edited version of a source file, clear all
breakpoints (choose Break/Watch/Clear All Breakpoints) and recreate
the ones you need. Note that Break/Watch/Clear All Breakpoints clears
all the breakpoints in your programs, not just those in the source file you
are editing.

• If you edit a file and then continue the current debugging session, or start a new
session without recompiling and relinking. The breakpoints are actually set
in the right places, but because the source file no longer matches the
executable program, the breakpoint highlights appear on the wrong
lines. (The execution bar also appears on the wrong lines.)

You aren't likely to get into this situation by accident because Turbo C
displays the warning prompt Source modif ied, rebuild'? when you try to
continue or restart the debugging session.

Before you compile a source file,you can set breakpoints on lines that
contain no executable statements, such as comments and blank lines. In that
case, Turbo C will warn you before it runs the program that the
breakpoints are set on source lines that contain no executable code. Once
you have compiled a file, Turbo C knows which lines contain executable
statements, and will warn you ifyou try to set breakpoints on those lines.

You can move the cursor to the next breakpoint in a file by choosing Break/
Watch/View Next Breakpoint. Note that this command moves the cursor to
the next breakpoint in the current project, not the next breakpoint that will
be executed when the program is run. You can use Break/Watch/View
Next Breakpoint to review the breakpoints in a program when you want to
clear some but not all of them.

Exercise 3: Back to the Program

Let's see if the change you made fixed the bug.

If you have left the integrated environment or run other programs since
completing Exercise 2, load WORDCNT C into the integrated environment
again. Choose Run/Run to start a new debugging session. Run
WORDCNT up to the call to wordleni trace into it and step through it. This
time it should work correctly and return a value of 2. Success!

Your work is not over, though. Much of this program has not yet been
tested, and it may contain more bugs.The next thing you should test is the
inner while loop in main. The most thorough approach is to step through
main until the entire first line of input has been processed and control

Chapter 4, Debugging Your Program 63

leaves the loop. Verify that each step does the right thing and that control
leaves the loop at the right point.

Does that sound like a great deal of work? The debugger's Watch window
makes it a lot easier. The Watch window displays one or more expressions
and their current values. Each time the debugger halts, it re-evaluates each
expression in the Watch window. Thus you can watch the expressions'
values change as you run your program.

You're going to create watch expressions for all the data elements that are
important in the inner while loop: the variable i, the string beginning at
wordptr, and the first few elements of wordlencnt.

The Watch window normally occupies the lower part of the screen during a
debugging session, just as the Message window does during a compile and
link. It is initially one line high and is empty. If the Watch window is
invisible, it's because the Edit window is zoomed to full screen; press F5 to
return to a split-screen environment and reveal the Watch window.

Choose Break/Watch/Add Watch (or press the hot key combination, ClrI­
Fl). The debugger opens a window and prompts you to enter a watch
expression. Like Debug/Evaluate, Break/Watch/Add Watch uses the word
at the Edit window's cursor as a default expression. If the default
expression doesn't happen to be i, type i; press Enter. The debugger adds the
expression i and its current value to the Watch window.

Repeat this procedure for the five expressions wordptr and wordlencntl1}
through wordlencnt[4}. As you add each watch expression, the Watch
window grows to accommodate it. Now step through the while loop until
WORDCNT has processed the entire first line of input. As you go, you can
watch WORDCNT advance wordptr a word at a time and increment the
appropriate elements of wordlencnt. Stop when wordptr reaches the end of
the line and the execution bar leaves the inner while loop. The loop
appears to be working correctly.

Editing and Deleting Watch Expressions

You can edit and delete watch expressions in the Watch window, as well as
add them.

To edit and delete watch expressions, begin with the Watch window active.
If you're in the menu system, press F10 to leave it. Press F6 to switch from
the Edit window to the Watch window. The watch editor highlights the
expression about to be edited or deleted; you can move the highlight with
the Home, End, Up arrow, and Down arrow keys.

64 Turbo C User's Guide

First let's edit a watch expression. Move the highlight to wordlencnf[4] and
choose Break/Watch/Edit Watch (or press Enter). The debugger opens a
window containing the watch expression, and prompts you to edit it.

Change the array index from 4 to 6 and press Enter. The debugger changes
the watch expression in the Watch window and displays the value of the
new expression.

Move the highlight to the expression wordlencnf[3] and choose Break/
Watch/Delete Watch (or press Del or CtrI-Y). The debugger deletes the watch
expression.

Press F6 to activate the Edit window. Notice the diamond-shaped symbol
that appears before the highlighted watch expression to mark it when the
Watch window is deactivated. Press F6 again to reactivate the Watch
window.

You can delete all the watch expressions at once by choosing Break/Watch/
Remove All Watches. (You needn't make the Watch window active to do
this). Delete all the watch expressions now. The Watch window returns to
its original empty state.

Press F6 again to reactivate the Edit window. Each time you enter this
command, it switches the active window from the Edit window to the
Watch window, or vice versa.

Zooming and Switching'Windows

The rules for zooming and switching windows in the debugger are an
extension of the rules you have already learned for the editor, compiler, and
linker.

The screen is normally split between the Edit window and the Watch
window during a debugging session, just as it is normally split between the
Edit window and the Message window when you're compiling and linking.

To switch between the two visible windows-Edit and Message, or Edit
and Watch-press F6.

To zoom the active wind~:w to full screen, press F5. When the active
window is already zoomed, pressing F5 returns the screen to the split­
screen display. Try this now with the Edit window and the Watch window.

To display the Execution screen, select Run/User Screen, or press Alt-F5. Try
this now. Press any typing key to return to the prior display.

Use Alt-F6 to change the contents of a window:

• When the Edit window is active, the file loaded just before the current
file is reloaded.

Chapter4, Debugging Your Program 65

.If the Watch window or Message window is active, pressing Alt-F6 toggles
between the Watch editor and the Message tracking window.

Scrolling Watch Expressions

As you add expressions to the Watch window, it will grow to fill about half
of your screen. If you add more expressions, some will scroll out of the
window. You can get them back by scrolling the window display with the
PgUp, PgDn, Up arrow, and Down arrow keys.

If an individual watch expression is too long to fit in the window, you can
see its beginning and end by scrolling it with the Home, End, Left arrow, and
Right arrow keys (in the same way Debug/Evaluate lets you scroll long
expressions and values).

Exercise 4: Debugging the Print Loop

You've now debugged the whole of the while loop that reads and processes
the input file. There are a few places in this loop where bugs might still
lurk, but to reach them you'll have to feed WORDCNT specific types of
input, such as empty lines. Therefore, we'll defer searching for such bugs
and go on to the for loop that prints the results.

You need to run WORDCNT up to the line that begins the for loop (it's
around Line 117). As you know, you can do that by moving the cursor to
the line, setting a breakpoint, and choosing Run/Run. This time you're
going to use another technique that's more convenient if you eXPeCt to stop
at a certain point only once.

Move the cursor to the line that begins the for loop, and choose Run/Go to
Cursor. (You can also use the hot key, F4.) The debugger runs WOROCNT
and stops on the line at the cursor. (It would stop at a breakpoint if it
encountered one first, but none are set in this part of the code.)

Run one statement, moving the execution bar to the printf in the for loop.
Notice that there is no breakpoint highlight on the for line. Run/Go to
Cursor is a one-time oPeration; it does not set a Permanent breakpoint.

Start stepping through the for loop with Run/Trace Into. Notice that Run/
Trace Into does not trace into the printf function. That's because printf isn't
defined in a source file compiled with debug information. The debugger
can run such functions, but it can't trace into them. (In this case, there's
another reason why you can't trace into the function: The source file for
printf isn't on your disk.)

66 Turbo C User's Guide

Each time you run a line that contains a printf call, the debugger swaps to
the Execution screen. This permits printf to perform its output in the
proper context. The debugger displays the Execution screen every time you
run a statement containing a function, since it can't tell which functions will
or won't write to the screen.

You probably won't be able to read the program's output in the brief time
the Execution screen is visible, so redisplay it with Run/User Screen or Alt·
F5 to see what WORDCNT is doing to the screen.

Note: On the other hand, if you notice that output from your program is
overwriting your source code in the Edit window, you will want to get rid
of it by choosing Debug/Refresh Display to refresh the screen. Then check
to make sure that the Debug/Display Swapping option is set to either
Smart or Always.

(For more information on these options, see the discussion in Chapter 5.)

This completes the fourth exercise. We'll leave it to you to decide whether
there's a bug in the for loop, and if so, how to fix it.

Note: We promise that WORDCNT contains several more bugs. Can you
find them? Each of them is mentioned somewhere in the section
"Guidelines for Effective Software Testing," later in this chapter.

Exercise 5: Working with Large Programs

The debugger has several features to help you work with large source files
and multi-file programs. In the next few sections, we'll demonstrate them.

To use one of the features we're going to demonstrate, you must compile
your program with the Options/Compiler/Code Generation/Standard
Stack Frame option on. Check this option now. If it's off, turn it on, then
make sure that WORDCNT is loaded into the Edit window and recompile
by pressing A1t-F9.

Start a new debugging session by choosing Run/Step Over or pressing the
corresponding hot key, FB.

Finding the Definition of a Function

Debug/Find Function scrolls a function's definition into the Edit window.
It can find any function in your program that was compiled with the
Debug/Source Debugging and O/C/C/OB] Debug Information toggles
set to On.

Chapter 4. Debugging Your Program 67

Debug/Find Function is useful if you discover a bug while you are
'working in one part of a program, but must fix it by changing another part.
Or it can show you a function's code or comments to help you remember
how the function works.

To try out this command, move the cursor to that infamous line in main
that calls wordlen. Choose Run/Go to Cursor; then move the cursor to the
name wordlen and choose Debug/Find Function. The debugger opens a
window and prompts you to enter a function name; Since wordlen is the
function you want to find, type it in, then press Enter. The debugger
displays the definition of wordlen in the Edit window.

The Call Stack

When you're debugging a program that calls many levels of functions, you
sometimes need to see the call stack, which tells you what functions the
program has called, and in which order, to reach the current execution
position. This is the feature that requires the Options/Compiler/Code
Generation/Standard Stack Frame option to be on.

Trace into wordlen, then choose Debug/Call Stack, or press Ctrl-F3. The
debugger displays the call stack in a pop-up window. The function now
being executed is at the top of the stack, and main is at the bottom. Notice
that the call stack displays not only the names of the functions the program
has called, but the values of their parameters.

You can display the currently executing line of any function on the call
stack by moving the call stack window's highlight to that function and
pressing Enter. For example, to display the currently executing line of main,
move the highlight to the call stack entry for main and press Enter. The
debugger scrolls the part of main containing the call to wordlen into the
Edit window. If there were additional entries on the call stack, you could
display the currently executing line of any other function by choosing
Debug/Call Stack again and choosing another call stack entry.

Note: If you are having problems with the call stack or with qualified
variable names, make sure that the Options/Compiler/Code Generation/
Standard Stack Frame toggle is set to On, then recompile your program.

Returning to the Execution Position

You can also use the Debug/Call Stack option to return to the execution bar
after looking at another part of your program. To scroll the line with the
execution bar back into the Edit window, just choose the topmost function
on the call stack. Try it now.

68 Turbo C User's Guide

This ends the exercises relating to the debugger.

When You Can't Use the Integrated Debugger

Some programs, for example any that take over Interrupt 9, cannot be
debugged with the Integrated Debugger. Use the stand-alone Turbo
Debugger instead.

About Multiple Source Files

All the debugger's commands work with programs that consist of multiple
source files. For example, if you choose Debug/Find Function to find a
function that is defined in a source file other than the one in the Edit
window, the debugger loads the appropriate file into the window. If you
have made changes to the file currently in the window, the debugger asks
whether you want to save them before loading the new file.

Similarly, when you choose a function on the call stack (using Debug/Call
Stack), the debugger reloads the Edit window with the source file
containing the execution position (that is, the next line to be executed in the
current function). If you have made changes to the other file, the debugger
asks whether you want to save them before reloading the original file. If
your program consists of many source files, it is wise to debug only a few at
a time. It is easier to keep control of your work if only a few parts of the
program are changing at once.

Survey of Debugger Commands and Hot
Keys

This tutorial has presented the integrated debugger's most often-used
commands. There are more commands that you may want to learn when
you have gained some mastery of the debugger. To find them, refer to the
two tables below.

Many debugger commands and other menu commands can be invoked by
using hot keys or key combinations. To avoid presenting a confusing
amount of detail, we've mentioned only the most important ones. Table 43
shows all the hot keys for the debugging commands you have learned.

Chapter 4. DebuggIng Your Program 69

Table 4.3: Debugger Commands and Hot Keys

Hot Key Menu Command Description

F4

CtrI-F2

F7

F8

CtrI-F4

CtrI-F3

70

Run/Go to Cursor

Run/Program Reset

Run/Trace Into

Run/Step Over

01C/C/Standard Stack Frame

O/CIC/OBI Debug Information

Debug/Evaluate

Debug/Find Function

DebuglCall Stack

Debug/SourceDebug~ng

Runs pro~, stopping on line at
the cursor. Will initiate a
debug~ng session.

Cancels current debugging
session, releases allocated
memory, and closes files. Valid
only in debug~gsessions.

Runs next statement in the current
function. H it calls a lower-level
function compiled with Debug!
Source Debugging and 0/C/C/
OBI Debug mformation set to On,
traces into that function. Will
initiate a debugging session.

Runs next statement in the current
function. Does not trace into
called functions. Will initiate a
debugging session.

Toggles the Options/CompilerI
Coae GeneratlonlStandara Stack
Frame option. This option must be
set to on when a program is
compiled if the Debug/CalI Stack
Optfon is to work correctly.

Toggles the O/C/C/OBI Debug
Infurmation option. Only source
files compiled and linkeCl with
this option set to On can be
debugged.

Evaluates a C expression; allows
you to modify the value of a
variable.

Finds a function's definition and
displays it in the Edit window.
Valid only in debu~ngsessions.

Displays call stack. You can
display the currently executing
line ofa function by choosing that
function's name frOm the call
stack. Valid only in debugging
sessions.

Controls whether debugging is
allowed. When it is set to On,
both integrated and standalone
debugging are possible. When it
is set to Standalone, you can
debug pro~amsonly with the
stanaafone debugger, although
you can still run ffiem in TC.
When it is set to None, no

Turbo C User's Guide

Table 4.3: Debugger Commands and Hot Keys (continued)

etrt-F7

CtrI-F8

Break/Watch/Add Watch

Break/Watch/Delete Watch

Break/Watch/Edit Watch

Break/Watch/Remove All Watches

Break/Watch/Toggle Breakpoint

Break/Watch/Clear Breakpoints

Break/Watch/Next Breakpoint

debugging infonnation is placed
in the :EXE file, so you cannot
debug your program with either
debugger.

Adds a watch expression.

Deletes a watch expression.

Lets you edit a watch expression.

Deletes all watch expressions.

Sets or clears a breakpoint on the
line at the cursor posItion.

Clears all breakpoints in the pro­
gram.

Displays next breakpoint.

Table 4.4 shows other menu commands often used with the integrated
debugger. (Refer to Chapter 5 to learn the other menu command hot keys.>

Table 4.4: Menu Commands and Hot Keys Used wtth the Debugger

Hot Key Menu Command Desaiption

F5

Alt·FS

F6

Alt-F6

Run/Run

Project/Remove Messages

Chapter 4. Debugging Your Program

Zooms and unzooms the active
window between full-screen and
split-screen modes.

Switches the display to the User
screen. Press any key to return to the
integrated environment.

Switches active window between the
Edit window and the Watch or
Message window.

IfEdit window is active, switches to
the last file loaded into the Editor. H
lower window is active, switches
between Watch window and Message
window.

Runs a program, with or without the
debugger. Compiles source file(s) and
links program if necessary. When the
programnas been compiled and
linked with Debug/Source Debugging
and O/C/C/OBJDebug Information
set to On, runs program to a
breakpoint or to the end of the pro­
gram.

Deletes contents of the Message
window.

71

Guidelines for Effective Software Testing

There's a lot more to testing software than knowing how to use a debugger.
Figuring out whether and why a program is misbehaving is one of the most
challenging phases of programming.

The rest of this chapter will suggest some techniques that can make your
testing work easier.

Develop a Standard Approach

Evolve a standard approach to software testing: a checklist of steps that
your exPerience shows will lead you to a reliable program.

There is no one "right" way to test a program; your checklist will dePend
on the tyPes of programs you write, your strengths and weaknesses as a
programmer, and your Personal style. The following checklist may serve as
a starting point:

• Feed the program some input that is simple but not trivial. Trace into the
code using Debug/Evaluate, and watch expressions liberally to check the
values of data items. Correct the bugs you find, one or a few at a time.

• Feed the program other sets of data that will let you exercise the parts
you couldn't test in the preceding step.

• Test every statement in your program. You may find bugs where you
didn't susPect they could exist. In WORDCNT, for example, testing every
statement would reveal a vagrant semicolon after an else that has
disasterous effects when the program encounters a word more than
MAXWORDLEN characters long. (The semicolon is normally beyond the
right edge of the Edit window, and so you'd be unlikely to notice it any
other way.)

• Be alert for individual statements or expressions that must be tested
more than one way, like these:

if (strcmp (a, b)) • • •

strcmp can return three values, 0 (a equals b), -1 (a is less than b), or +1 (a
is greater than b). This suggests that you should test the statement with
three sets of input values to verify that strcmp makes it do the right thing
in each case.

x = (x>O) ? func(x) : 0 ;

This statement contains an "implicit if' that can produce two different
results.

• Give special attention to boundary conditions: conditions that make a
program escaPe from a loop, fill an array, and so on. Bugs are especially

72 Turbo C User's Guide

likely to be manifested as failures to handle boundary conditions
correctly.
WOROCNT contains two related examples of boundary condition bugs.
First, the final for loop fails to print the element of wordlencnt that
represents words MAXWORDLEN characters long. Second, the
definition of wordlencnt allocates one element too few, so that that
element doesn't even exist.

• Put aside the debugger and test the entire program for correct behavior.
If the program will be used by other people who will expect it to be
well-behaved, test its response to every type of error it could possibly
encounter. A program that handles most types of errors well is said to be
robust.

• If other people will be using your program, have at least one other
person test it. Choose someone whose skills and needs are typical of your
program's intended users, but who has enough persistence and
enthusiasm to dig out obscure bugs and report them accurately. Don't
choose a programmer unless your program is meant to be used by
programmers.

Test Modifications Thoroughly

When you modify a program, retest the affected parts thoroughly. You may
have to retest parts that haven't changed but are affected by the changes.

If the program is complex, keep a record of the tests you have performed.
When you modify the program, this record will help you repeat all the tests
whose results could possibly be affected by the change. If the tests involve
particular input files, save the files.

Design Defensively

You can avoid bugs by designing your program defensively, just as you can
avoid accidents by driving your car defensively.

Write your code cleanly, with consistent indention, liberal comments, and
descriptive variable names.

Keep your code simple. Express complicated operations in many simple
statements rather than a few complex ones. Turbo C's code optimization
will make your code reasonably efficient, and it will be much easier to
debug, read, and modify.

Chapter 4, Debugging Your Program 73

Try to build up your program from functions whose purposes are simple
and well-defined. This will make it easier to set up test cases and analyze
their results. It will also make your program easier to read and modify.

Try to minimize the number of data elements each function requires and
the number of elements it changes. This too will make it easier to set up test
cases and analyze their results, and to read and modify your program. It
will also tend to limit the amount of havoc a misbehaving function can
cause, allowing you to ron the function several times in a single debugging
session. A program designed this way is said to be loosely coupled.

Don't try to squeeze the last bit of efficiency out of your program when you
write it. When you try to make code as efficient as it can be, it also tends to
become hard to read and debug. If your program turns out to be too slow
when it's done, that's the time to decide which parts are worth speeding
up, and how best to do it.

Be alert for opportunities to write functions that can be used more than one
way in your program, or can be reused in other programs. Writing and
debugging one generalized function is usually easier than writing two or
more specialized ones.

Debug from the Bottom Up

As far as possible, concentrate on debugging your program's lowest-level
functions (the ones that don't call other functions) first. Then work upward
toward main. In this way, you'll get a foundation of reliable functions that
you can step over when they are called in other parts of your code.

Look for Classes ofBugs

When you find a bug, look carefully for other bugs of the same kind and/or
in the same part of the program. For example, if you find a function call
that says

fp = fopen ("rb" , filename) i

but which should be

fp = fopen (filename, "rb") ;

check your code for other calls to fopen and similar functions that exhibit
the same error.

74 Turbo C User's Guide

Debugging Inline Assembly Code

If you are using the integrated development environment in conjunction
with Borland's TASM assembler, you may step through assembly level code
without having to use an external debugger. (For full-featured assembly
level debugging, however, you should get Borland's standalone debugger.)

When an assembly language module is assembled with TASM's -zi switch,
TC can recognize lines and symbols from the assembly source. If you step
into an assembly level function, TC will display the assembly language
source code for that function. You may use normal TC debugging
commands such as Debug/Go to cursor (F4), Debug/Trace Into (F7), and
Debug/Step Over (FS) with your assembly language source code.

Most symbols defined in your assembly language source code will be
available for you to use in evaluating expressions and watch expressions.
In addition, you have access to the pseudo-registers l.AX, _BX, etc.) and a
special_FLAGS variable that reflects the state of the CPU's flags register.
However, since TC is a C development environment, it will not recognize
every assembler construct or expression.

Chapter 4, Debugging Your Program 75

76 Turbo C User's Guide

c H A p T E R

5

The Turbo C Integrated
Development Environment

TC, the Turbo C integrated development environment, is much more than
just a fast C compiler; it is a fast, efficient C compiler with a built-in editor,
debugger, and other utilities that are easy to learn and easy to use. With TC,
you don't need to use a seParate editor, debugger, compiler, linker, and
Make utility in order to create and ron your C programs. All these features
are built right into TC, and they are all accessible from one clear and simple
display-the main TC screen.

In This Chapter...

This chapter is divided into four sections: Part I, ''Using TCf' Part IT, ''The
Menu Commands;" Part III, "More about Configuration and Pick Files;"
and Part IV, "Additional Features and Editing Commands."

In Part I, ''Using TC," we

• introduce the TC command-line switches and hot keys
• describe the components of the main TC screen
• explain how to use the TC main menu choices
• demonstrate how to get into the Edit window and use the TC Editor

(editing commands are covered in Appendix A in the Turbo C Reference
Guide, ''The Turbo C Interactive Editor")

• introduce you to the TC integrated debugger (for detailed information on
how to use the debugger, see Chapter 4, ''Debugging Your Program")

Chapter 5. The Turbo C Integrated Development Environment 77

In Part II, 'The Menu Commands," we

• examine and explain each menu item's function
• summarize the compile-time options

In Part III, "More about Configuration and Pick Files," we

• discuss what a configuration file is and how you create and use it in TC

• discuss how to create and use a pick file in TC

In Part W, "Additional Features and Editing Commands," we

• discuss editing features not available through the menu system
• explain how to customize your editing keys with the Turbo C

customization program TCINST.EXE

What You Should Read

If you are not familiar with Borland's integrated development
environments, you will want to read Parts I and II first. If you are well­
versed in working with menu-driven products such as SideKick or Turbo
Pascal, you may want to skim these sections before reading Parts III and W.

How to Get Help

Turbo C, like other Borland products, gives context-sensitive onscreen help
at the touch of a single key. You can get help at any point within any TC
menu.

To call up the Help system, press F1. The Help window explains the func­
tions of the item on which you're currently positioned. Any help screen
may contain a keyword (a highlighted item) that you can choose to get more
infonnation. Use the arrow keys to move to any keyword and press Enter to
get more detailed help on the chosen item. You can use the Home and End
keys to go to the first and last keywords on the screen, respectively.

Ifyou want to return to a previous help screen, you can press Alt-F1 whether
you are inside or outside the Help system. TC lets you back up through 20
previous help screens.

To get to the help index, press F1 again once you're in the Help system.

You may find that while you are in the TC Editor you need help on various
library functions. If you position the cursor under the function name (such
as printf) you want information on, then press Ctrl-F1, you can bring up a
help screen with the information you want.

78 Turbo C User's Guide

To exit from the Help system and return to your menu choice, press Esc or
any of the hot keys described in the next section.

Chapter 5, The Turbo C Integrated Development Environment 79

Part I: Using TC

To load the Turbo C integrated development environment (TC), type TC
and press Enterat the DOS prompt.

The startup screen that appears includes the main TC screen and a box
containing product version information. When you press any key, the
version information disappears (pressing Shift-F10 any time will display it
again), but the main screen remains (see Figure 5.1).

Look closely at the main TC screen; it consists of four parts: the main menu,
the Edit window, the Message window, and the Quick Reference (Quick­
Ref) Line.

laD Edit lun Comptle Project Options Debug Break/watch
F==========~Edtt =============.

Line 1 Col 1 Insert Indent Tlb Fill Unindent G:NONAME.C

1-----------Messlge ------------f

n-Help FS-Zocm Fa-Switch F7-Trlce F8-Step FI-Make Flo-Menu

Rgure 5.1 :The MaIn TC SCreen

TC Command-Line Switches

The Turbo C integrated development environment accepts the following
command-line switches:

• The Ie switch causes a configuration file to be loaded. Enter the te com­
mand, followed by Ie and the configuration file name, with no space
between the two:

te Icmyconfig.te

80 Turbo C User's Guide

(See Part ill of this chapter for more on configuration files and pick files.)

• The Ib switch causes TC to recompile and link all the files in your project,
print the compiler messages to the standard output device, and then
return to DOS. This switch allows you to invoke TC from a batch file, so
you can automate builds of projects. Before the build, TC will load either
a default configuration file or one given specially with the Ie switch. TC
determines what .EXE to build based on the project file, the primary file,
or the file currently loaded into the TC Editor, in that order of
precedence. Enter the te command with either Ib alone or Ie and the con­
figuration file name followed by lb.

te lemyeonfig.te Ib

te Ib

Unless the loaded configuration file specifies a project or primary file,
you can specify the name of a program to be compiled and linked on the
command line. Type in the program name after the te command,
followed by Ib:

te myprog Ib

• The 1m switch lets you do a make rather than a build (that is, only
outdated source files in your project are recompiled and linked). Follow
the instructions for the Ib switch, but use 1m instead.

• The Id switch causes TC to work in dual monitor mode, if it detects
appropriate hardware. Otherwise, the Id switch is ignored. Dual monitor
mode is used when you are running or debugging a program, or shelling
to DOS (File/OS Shell).
When you type in the Id switch on TC's command line, it enables dual
monitor mode, as long as the required hardware is present (for example,
a monochrome card and a color card). If your system has two monitors,
DOS treats one monitor as the active monitor. Use the DOS MODE com­
mand to switch between the two monitors (MODE COBO, for example, or
MODE MONO). In dual monitor mode, the normal TC screen will apPear on
the inactive monitor, and program output will go to the active monitor.
Thus, when you type te Id at the DOS prompt on one monitor, TC will
come up on the other monitor. When you want to test your program on a
particular monitor, you must exit TC, switch the active monitor to the
one you want to test with, then issue the te Id command again. Program
output will then go to the monitor where you typed the te command.
WARNING:

• Do not change the active monitor (by using the DOS MODE command,
for example) while you are in a DOS shell (File/OS Shell).

• User programs that directly access ports on the inactive monitor's
video card are not supported, and can cause unpredictable results.

Chapter 5, The Turbo C Integrated Development EnvIronment 81

• When you run or debug programs that explicitly make use of dual
monitors, do not use the TC dual monitor switch (/d).

Finding Your Way around TC

To help you gain familiarity with the Turbo C integrated development en­
vironment, here are some navigating basics:

From anywhere in TC:

• Press FI to get information about your current position (help on running,
compiling, and so on).

• Press F5 to zoom/unzoom active window.

• Press F6 to switch windows.
• Press FlO to toggle between the menus and the active window.

• Press Alt-F6 to change the contents of a window (switch from Message
window to Watch window and back, or toggle between the current file
and the previous file).

• Press Aft plus the first letter of any main menu command (F, E, R, C, P, 0,
D, or B) to invoke the specified command. For example, pressing Alt-E
from anywhere in the system will take you to the Edit window; Aft-F takes
you to the File menu.

From within a menu:

• Use the highlighted capital letter to choose a menu item, or use the arrow
keys to move to the option, then press Enter.

• Press Esc to exit a menu.

• In the main menu, or in one of the pull-down menus invoked from the
main menu, pressing Esc will take you directly back to the active win­
dow. (When it is active, the window will have a double bar at its top and
its name will be highlighted.)

• Press FlO to get from any menu level to the previously active window.

• Use the Right and Left arrow keys to move from one pull-down menu to
another.

To exit TC and return to DOS:

Go to the File menu and choose Quit (press 0, or move the highlight bar to
Quit and press Enten. If you choose Quit without saving your current work
file, the Editor will query whether you want to save it. (You can also use the
hot key Aft-X to quit and return to DOS.)

82 Turbo C User's Guide

The TC Hot Keys

Before we describe the various menu options available to you, there are a
number of hot keys (shortcuts) you should be aware of. Hot keys are keys
set up to perform a certain function. For example, as discussed previously,
pressing AIt and the first letter of a main menu command will take you to
the specified option's menu or perform an action. The only other Alt/first­
letter command is Alt-X, which is really just a shortcut for File/Quit.

In addition to these Alt-first-Ietter commands, TC has a special User screen
hot key, AIt-F5, that you use to switch from the main TC screen and a User
screen where your program output is displayed. It is equivalent to the menu
command User Screen on the Run menu.

When you are using TC, you see one of two screens-the main TC screen or
the User screen. The main TC screen is what you see when you edit,
compile, link, and debug your programs. The User screen is what you see
when you run a Turbo C executable program or temporarily exit to DOS
through the File/OS Shell menu command. When you are using the inte­
grated debugger, you will often swap the TC and User screens. TC is able to
preserve the contents of the latter screen continuously in a saved User
screen buffer, updating it each time you choose a ron command (like Run,
Trace Into, or Step Over) or File/OS Shell. To view this saved screen, select
User Screen from the Run menu, or press Alt-F5.

Note: In dual monitor mode, the User screen is already displayed on one of
the two monitors in the system. Thus, the Run /User Screen command and
AIt-F5 will be disabled.

How TC determines whether it needs to clear the User screen depends on
the video mode. When TC is invoked from DOS, or when you return to it
from the DOS shell, it remembers the video mode and cursor type. These
two states are reset independently of one another whenever you shell to
DOS (File/OS Shell) or exit the integrated environment (File/Quit), if the
current state is found to be different than the remembered state. There is
one exception to this: If you shell to DOS during a debugging session
(when a program is running), the mode and cursor type are left in the state
your program put them.

Table 5.1 lists all the hot keys you can use in TC. Remember that, when
these keys are pressed, their specific function is carried out no matter
where you are in the TC environment. There is one exception: Whenever
you are presented with a dialog box that requests specific keys to be
pressed, the hot keys are disabled until you have pressed the requested key.

Chapter 5. The Turbo C Integrated Development Environment 83

Key(s)

F1

F2

F3

F4

F5

F6

.F7
FB

F9

F10
Ctrl-F1

Ctrl-F2

Ctrl·F3

Ctrl·F4

CtrI-Fl

Ctrl-FB

Ctrl-F9

Shift·F10

AIt-F1

Alt·F3

AIt-F5

Alt·F6

AJt·F7
All-F8

AIt-F9

Alt·B

AIt-c

AIt-D

AlI-E

AIt-F

AJt-D

84

Table 5.1: Turbo C Hot Keys

Function

Brings up a Help window with infonnation about your
current position

Saves the file currently in the Editor

Lets you load a file (an input box will appear)

Runs program to line the cursor is on

Zooms and unzooms the active window

Switches active windows

Runs program in debug mode, tracing into functions

Runs program in debug mode, stepping over function calls

Performs a "make"

Toggles between the menus and the active window

Calls up context help on functions (TC Editor only)

Resets running program

Brings up call stack

Evaluates an expression

Adds a watch expression

Toggles breakpoints On and Off

Runs program

Displays the version screen

Brings up the last help screen you referenced

Lets you pick a file to load

Switches between main TC screen and User screen

Switches contents of active window

Takes you to previous error

Takes you to next error

Compiles to .OB} the file loaded in the TC Editor

Takes you to the Break/Watch menu

Takes you to the Compile menu

Takes you to the Debug menu

Puts you in the Editor

Takes you to the File menu

Takes you to the Options menu

Turbo C User's Guide

Table 5.1 :Turbo C Hot Keys (continued)

AJt-p Takes you to the Project menu

A/t-R Takes you to the Run menu

All-X Quits TC and returns you to DOS

Menu Structure

Figure 5.2 shows the complete structure of TC's main menu and its
successive pull-down menus. There are three general types of items on the
TC menus: commands, toggles and settings.

Commands Perform a task (running, compiling, storing options, and
so on).

Toggles

Settings

Switch a TC feature On or Off (Auto Dependencies, Test
Stack Overflo\\T, and so on) or let you cycle through and
choose one of several options by repeatedly pressing the
Enter key until you reach the item desired (such as
Message Tracking or Floating Point).

Allow you to specify certain compile-time and ron-time
information to the compiler, such as directory locations,
names of files, macro definitions, and so on.

Chapter 5. The Turbo C Integrated Development Environment 85

Initializo se9lllenta Off
Default libraries Off
Graphics library On
Warn duplicate symbols On
Stack varning On
CIlIIO sensitive link On

Curront file
No
Off
Off
On
8
Off

rUe

MOllllago trackinq
Keop IlIOssaqeD
Ccnfig auto Clave
Edit auto Clave
Backup filoD
Tab sizo
Zoomed vindovs
Screen lineD

I I i
Project nllme

~ Activatea the Editor1 Make break on Errora
(Preas FlO to return t Auto dependencies Off

menu bar) Cloar project
R_ove _ssallOS

Run Ctrl-F9
Progrlllll resot Ctrl-F2 II Warnings 1Go to cursor F4 Errors
Traco into F7 Fatal orrorsr

Load F3 Step over Fa Link I..- Pick Alt-F3 Ollor screen Alt-FS

Ncv
Savo F2 Compilo to OBJ C:NONAME.OBJ Include directories:
Writo to Make EXE file C:NONAME.EXE Library directories:
Directory Link EXE file OUtput directory:
Change dir Build all Turbo C directory:
os ahell Primary C file Pick file name:
Ouit Alt-X Get info Curront Dick file:

.... Rocent files -

.. NONNlE.C
GETOPT.C
GOTODEC.C
-- load filo -- - Map file Detaila:'

Figure 5.2: The TC Menu structure

86 Turbo C User's Guide

Ctrl-F7Add watchDebVAJOpt10na
I I -. Delete watoh- Compiler Edit watch-- Linker Evaluate Ctrl-F4 Remove all watohes

Environment Call stack Ctrl-F3 Toggle breakpoint Ctrl-F8
Directories Find function Clear all breakpoints
Arquments Refresh display Vi_ next breakpoint
Save options Display swappinq Smart
Retrieve optiona Source debugginq On

Hodel SllIall Tiny Calling convention C
Defines SllIall Inatruction set 80186/80286

g:~i,J:~r:~ion MediUlll Floatinq point 8087/80287
COIllpact Default char type Siqned

Source Larqe Aliqrwont Byte
Errors Huge Generate underbars On
Namos Merge duplicate strings On

Standard stack frame On

Code n4lllCsi Test stack overflow On
Data n4lllCs Line nUlllhers On
BSS names OBJ debug information On

- Optilldze for Size
.. Identifier lenqth

32 :1 I~se register variables On
Nested comments Oft' Reqister optilldzation Off- ANSI keywords only Oft' JWlIp optimization Off

Errors : stop after 25 A: Non-portable pointer conversion On
Warnings stop after 100 B: Non-portable pointer assignment On
Display warninqs On C: Non-portable pointer cOlllparison On
Portability warnings D: Conatant out of range in comparison on
ANSI violationa E: Conatant is long Oft'
COlml1on errors F: Conversion may lose siqnificant diqits Oft'
Less common errors- G: Mixing pointers to signed and unaigned char Oft'

A: •ident' not part of Dtructure On--- B: Zero lonqth Dtructure On
C: Void functions llIay not return a value On
D: Both return and return of a value UDe On
E: Suspicious pointer converDion On
F: Undefined structure •ident' On
G: Redefinition of • ident' is not identical On
H: Hexadecimal or octal constant too large On

A: Function should return a value Off
B: Unreachable code On
C: Code haD no effect On
D: PODsible UDe of •idcnt' before definition On
E: •ident' iD aDSiqned a value which is never used On
F: Parlll'llCter •ident' is never used On
G: Possibly incorrect aDDiqnment On

A: Superfluous , with function or array Off
B: • ident' declared but never used Oft'
C: AIllbiquouD operators need parentheses Oft'
D: Structure passed by value Oft'
E: No declaration for function •idont • Off
F: Call to function with no prototypo Off

Agure 5.2: The Te Menu structure. continued

Chapter 5. The Turbo C Integrated Development Environment 87

Project

Options

Compile

Me~u-NamingConventions

In this book, we often refer to menu items by an abbreviated name. The
abbreviated name for a given menu item is represented by the sequence of
letters you press to choose that item from the main menu. For example:

• At the main menu, the menu offering compile-time options related to
error messages is Options/Compiler/Errors; it may also be referred to as
O/C/Errors (press 0 CE, in that order).

• At the main menu, the menu for specifying the name of the include
directories is Options/Directories/Include Directories; it may be referred
to as OlD/Include Directories (press 0 DI, in that order).

The Main Menu

rile Bdit Run Compile Project Options Debug Break/watch

Agure 5.3: The Te MaIn Menu Bar

At the top of the main TC screen is the TC main menu bar (see Figure 5.3),
which offers eight choices:

File Handles files (loading, saving, picking, creating, writ­
ing to disk), manipulates directories (listing, changing),
quits the program, and invokes 005.

Edit Lets you create and edit source files.

Run Controls a running program. Uyou have compiled and
linked your program with the Debug/Source
Debugging and O/C/C/OBI Debug Information
toggles set to On, you can also initiate a debugging
session from this menu.

Compiles and makes your programs into object and
executable files.

Allows you to sPecify what files are in your program
and manage your project.

Allows you to choose compiler options (such as
memory model, compile-time options, diagnostics, and
linker options) and define macros. Also records the
Include, Output, and Library file directories, saves
compiler options, and loads options from the config­
uration file.

88 Turbo C User's Guide

Debug Allows you to check or alter the value of variables,
locate any function, and inspect the call stack while
your program is running. Also lets you choose whether
your program will compile with debugging infor­
mation in the executable code.

Break/watch Lets you add, delete, and edit watch expressions and
set, clear, and go to breakpoints.

Note that one main menu item is a command: Edit simply takes you into
the Editor. The other menu items invoke pull-down menus with many
options and/or subsequent menus.

The Quick-Ref Lines

Whether you're in one of the windows or one of the menus, the default
Quick-Ref Line appears at the bottom of the screen. This line provides an at­
a-glance function-key reference for your current position.

When you first enter TC, the default Quick-Ref Line looks like this:

FI-Help FS-Zoom F6-Switch F7-Trace F8-Step F9-Make FlO-Menu

Now hold down the Alt key for a few seconds. The Quick-Ref Line will
change to describe what function will be performed when you combine
other keys with the Alt key. It looks like this:

Alt: Fl-Last help F3-Pick F6-Swap r7/F8-Prev/Next error r9-Compile

The Edit Window

In this section, we describe the components of the main TC screen and
explain how to work in the TC Edit window.

First, to get into the Edit window, press F10 to invoke the main menu, then
either move the highlight to the Edit option and press Enter or press Efrom
anywhere in the main menu. To get into the Edit window from anywhere
in the system, just press All-E. Once you're in the Edit window, notice that
there are double lines at the top of it and its name is highlighted-that
means it's the active window.

Besides the Edit window, where you can see and edit several lines of your
source file, the TC screen has two information lines you should note: the
status line and the Quick-Ref Line.

Chapter 5. The Turbo C Integrated Development Environment 89

The status line at the top of the TC screen gives information about the file
you are editing, where in the file the cursor is located, and which editing
modes are activated. It looks like this:

Line Col Insert Indent ~ab Fill Unindent * C: FILINAMB .1X'l

*

!ab

Fill

Col n

Unindent

Indent

Insert

Linen Cursor is on file line number n.

Cursor is on file column number n.

Insert mode is On; toggle Insert mode On and Off
with Insert or Ctrl-V. See Appendix A in the Turbo C
Reference Guide for an explanation of Insert and
Overwrite modes.

Autoindent is On. Toggle it Off and On with Ctrl-D I.
See Appendix A in the Turbo C Reference Guide for an
explanation of Autoindent mode.

Tab mode is On. Toggle it On and Off with Ctrl-D T.

When Tab mode is on, the Editor will fill the
beginning of each line optimally with tabs and
spaces. This option is toggled with Ctrl-O F. See
Appendix A in the Turbo C Reference Guide.

The backspace will outdent a level whenever the
cursor is on the first nonblank character of a line or
on a blank line. This option is toggled with Ctrl-O U.
See Appendix A in the Turbo C Reference Guide.

The asterisk appears before the file name whenever
the file has been modified and has not yet been
saved.

C:FILENAMZ.BXT The drive (C:), name (FILENAME), and extension
(.EXTI of the file you are editing.

The Quick-Ref Line at the bottom of the TC screen displays which hot key
performs what action:

Fl-selp FS-ZOom F6-SwitCh F7-!raoe FS-Step F9-Make FlO-Menu

90 Turbo C User's Guide

F8(Step)

F9(Make)

F10(Menu)

To choose one of these functions, press the indicated function key:

F1 Opens a Help window that provides information
about the TC editing commands.

F5 Expands the active window (in this case, the Edit
window) to full screen. Press F5 again to get back to
the split-screen environment.

F6 Switches you from one active window to another
(Edit vs. Message/Watch).

F7(Trace) Lets you run your program one line at a time in
debugging mode, tracing into functions as they are
called.

Lets you run your program one line at a time in
debugging mode, stepping over function calls.

Makes (compiles and links) your.EXE file.

Takes you from the Edit window to the main menu,
and from any menu to the Edit window.

The TC Editor uses a command structure similar to that of SideKick's
Notepad and Turbo Pascal's editor; if you're unfamiliar with the editor
these products use, Appendix A in the Turbo C Reference Guide describes the
editing commands in detail. The most commonly used commands are listed
below.

If you're entering code in the Edit window while you're in Insert mode,
you can press Enter to end a line (the TC Editor has no wordwrap). The
maximum line width is 248 characters; the Edit window is 77 columns
wide. If you type past column 77, the window scrolls as you type. The TC
screen's status line gives the cursor's location in the file by line and column.

After you've entered your code into the Edit window, press F10 to invoke
the main menu. Your file will remain onscreen; you need only press E (for
Edit) at the main menu to return to it.

Quick Guide to Editing Commands

Here is a summary of the TC Editor commands you will use most often:

• Scroll the cursor through your text with the Up/Down arrow,
Left/Right arrow, and PgUp/PgDn keys

• delete a line with Ctrl-Y
• delete a word with Ctrl-T
• mark a" block with Ctrl-K B<beginning) and Ctrl-K K(end)

Chapter 5, The Turbo C Integrated Development Environment 91

• move a block with CtrI-K V
• copy a block with Ctrl-K C
• delete a block with Ctrl-K Y

See Appendix A in the Turbo C Reference Guide for a more detailed
explanation of the Editor commands.

How to Work with Source Files in the Edit Window

When you invoke the Edit window before loading a particular file, the TC
Editor automatically names the file NONAME.C. At this point you have all
the features of the Editor at your fingertips. You can

• Create a new source file either as NONAME.C or another file name.

• Load and edit an existing file.
• Pick a file from a list of source files and load it into the Edit window.

• Save the file seen in the Edit window.
• Write the file in the Editor to a new file name.

• Alternate between the Edit window and the Message window for finding
and correcting compile-time errol'S.

While you are creating or editing a source file, but before you have com­
piled it, you do not need the Message window. So you can press F5 to zoom
the Edit window to full screen. Press F5 again to unzoom the Edit window
(return to split-screen mode).

Creating a New Source File

To create a new file, choose either of the following methods:

• At the main menu, choose File/New, then press Enter. This opens the Edit
window with a file named NONAME.C.

• At the main menu, choose File/Load. The Load File Name prompt box
opens; type in the name of your new source file. (Pressing the hot key F3
anywhere within TC will accomplish the same thing.)

Loading an Existing Source File

To load and edit an existing file, you can choose two options: File/Load or
File/Pick.

92 Turbo C User's Guide

Ifyou choose File/Load at the main menu, you can

• Type in the name of the file you want to edit; paths are accepted-for
example, C:\TURBOC\TESTFILE.C.

• Enter a mask in the Load File Name prompt box (using the DOS
wildcards" and ?), and press Enter. Entering *. * will display all the files
in the current directory as well as any other directories. Directory names
are followed by a backslash (\). Choosing a directory displays the files in
that directory. Entering c: *.c, for example, will bring up only the files
with that extension in the root directory.
Press the Up/Down and Left/Right arrow keys to highlight the file name you
want to choose. Then press Enter to load the chosen file; you are placed in
the Edit window.

If you choose File/Pick or press Alt-F3 (see the discussion of the File/Pick
menu later in this chapter), you can quickly pick the name of a previously
loaded file.

There is an additional hot key to reload the previously loaded file. Press
Alt-F6 (change window contents) to switch between the file currently in the
editor and the previously loaded file.

Saving a Source File

• From anywhere in the system, press F2.
• From the main menu, choose File/Save.

Writing an Output File

You can write the file in the Editor to a new file or overwrite an existing file.
You can write to the current (default> directory or specify a different drive
and directory.

At the main menu, choose File/Write To. Then, in the New Name prompt
box, type the full path name of the new file name; for example,

C:\DIR\SUBDIR\FILENAME.EXT

and press Enter.

If the file already exists, the Editor will verify that you want to overwrite
the existing file before proceeding.

Press Esc to return to the active window (the Edit window). You can also
press AIt-E or F10.

Chapter 5. The Turbo C Integrated Development Environment 93

Note: For a comprehensive explanation of the TC Editor, refer to Appendix
A in the Turbo C Reference Guide.

The Message Window

You will use the Message window to view diagnostic messages when you
compile and debug your source files. TC's unique error-tracking feature
lists each compiled file's warnings and error messages in the Message
window and simultaneously highlights the corresponding position of the
appropriate source file in the Edit window (depending upon the setting of
the Message Tracking command on the Option/Environment menu).

When the cursor is in the Message window, the Quick-Ref tine hot keys
perform the following functions:

rl-Help Opens a Help window that summarizes the TC error­
tracking leature.

rs-zoom Expands the Message window to full screen.

r6-Svitch Makes the Edit window the active window.

r7-!race

ra-Step

r9-Make

riO-Menu

Lets you run your program one line at a time in source
debug mode, tracing into functions as they are called.

Lets you run your program one line at a time in source
debug mode, stepping over function calls.

Makes the .EXE file.

Takes you from the active window to the main menu,
and from any menu to the active window.

The Watch Window

The Watch window replaces the Message window when you are running
your program with the integrated debugger. It contains watch expressions
(expressions you insert into the Watch window from your program) and
the current value of each expression. A watch expression is reevaluated
after each step or run, since its value may have changed. The Watch
window enables you to keep track of the value of important expressions
while your program is running.

As you add expressions to the Watch window, the window expands until it
reaches the size specified by the TCINST Resize Windows option. After
that you can still add expressions, but you will have to scroll the window to
see them all, using the PgUp, PgDn, Up arrow, and Down arrow keys.

94 Turbo C User's Guide

The current expression in the Watch window is marked by a highlight bar
when the window is active, and by a bullet (.) in the left margin when it is
not.

To edit expressions in the Watch window, you can generally use the same
edit commands that you use in the Edit window. For example, CIr/-Ydeletes
a watch expression, and Ctrt·N inserts a watch expression. The basic Watch
window editing commands are listed in the following table.

Table 5.2: WJtch Window Editing Commands

Key(s)

Ctr/·E or Up arrow

Ctr/·Xor Down arrow
Ctr/-S or Left arrow
etrl-D or Right arrow
Enter

Ctrl·N or Ins

Ctr/- 'f, Del, or Ctrl-G

Function

Moves cursor up

Moves cursor down

Scrolls watch expression right

Scrolls watch expression left

Edits watch expression

Inserts watch expression

Deletes watch expression

When the cursor is in the Watch window, the Quick-Ref Line hot keys
perform the following functions:

F1 Opens a Help window that summarizes the TC.

F5 Expands the Watch window to full screen.

F6 Makes the Edit window the active window.

Ins

Del

Enter

Lets you add a watch expression to the Watch window.

Lets you delete a watch expression from the Watch
window.

Lets you edit the current watch expression in the Watch
window.

The Integrated Debugger

The Turbo C integrated development environment includes a special built­
in debugging feature called the integrated debugger to help you find errors
("bugs") in your programs. For a detailed description of how to use the
integrated debugger, refer to Chapter 4. This chapter will introduce you to
the menu features you need to run a debugging session.

Chapter 5, The Turbo C Integrated Development EnvIronment 95

The debugger operates by allowing you to stop your program at any point
as it is executing, so you can check or even alter the value of variables.

Controlling the Debugger

The parts of the program you want to debug must be compiled with the 0/
C/C/OBI Debug Information toggle and the Debug/Source Debugging
toggle both set to On. The integrated environment then invokes the inte­
grated debugger automatically when you run the program.

When you start a debugging session with Run/Run, Turbo C compiles the
source file(s) (if necessary), links the program (if necessary), and prepares
the program to run. Then it runs the program until it reaches either a break­
point or the end of the program.

To start a debugging session when no breakpoints have been set, press FB
(Run/Step Over). The debugger will stop on the declaration of the function
main.

Once Turbo C has prepared the program to run, you are in a debugging
session, and you can use any other feature of Turbo C.

You can run your program

• one line at a time, either skipping over function calls or stepping through
the function

• from your current position to a pre-established breakpoint
• from your current position to wherever you have positioned the cursor

You can use any of these methods or all of them, in combination, and in any
order.

It is generally unwise to continue running the program after you have
modified any of the source files you are debugging. Instead, recompile your
program by choosing Compile/Make EXE File. In fact, if you have made
changes to your source file, Turbo C will ask if you want to rebuild your
.EXE file when you issue a run command like Step Over or Trace Into.
Once the rebuild has been made, TC will not ask you again until a further
change has been made in your source files.

The Debugger Screen Display

The debugger screen display consists of the Edit window on top and the
Watch window on the bottom. You can toggle between these windows by
pressing F6.

96 Turbo C User's Guide

As watch expressions are added to the Watch window, it grows to its
maximum size (controlled by the TCINSTutility's Resize Windows option),
and then scrolls.

Your current position in the program is called the execution position. It is
indicated in the Edit window by a highlight bar called the execution bar.

Debugging Menu Commands and Hot Keys

Table 5.3 shows the special debugging menu commands.

Table 5.3: Debugger Commands and Hot Keys

Hot Key Menu Command Description

F4

CtrI-F2

F1

F8

CtrI-F4

Run/Go to Cursor

Run/Program Reset

Run/Trace Into

Run/Step Over

O/C/C/Standard Stack Frame

O/C/C/OBJ Debug Information

Debug/Evaluate

Debug/Find Function

Runs pro~m, stopping on line at
the cursor. Will initiate a
debugging session.

Cancels current debugging
session, releases allocated
memory, and closes files. Valid
only in debugging sessions.

Runs next statement in the current
function. If it calls a lower-level
function compiled with Debug/
Source Debugging and 0/C/C/
OBJ Debug Information toggles
set to On, traces into that function.
Will initiate a debugging session.

Runs next statement in the current
function. Does not trace into
called functions. Will initiate a
debugging session.

Toggles the Options/Comp-Her/
Coae Generatlon/StandarCl Stack
Frame option. This option must be
set to on when a program is
compiled if the Debug/Call Stack
option is to work correctly.

Toggles the O/C/C/OBJ Debug
InfOrmation option. Only source
files compiled and linked with
this option set to On can be
debugged.

Evaluates a C expression; allows
you to modify tne value of a
variable.

Finds a function's definition and
displays it in the Edit window.
Valid only in debugging sessions.

Chapter 5, The Turbo C Integrated Development EnvIronment 97

Table 5.3: Debugger Commands and Hot Keys (continued)

CtrI·F3 Debug/Call Stack Displays call stack. You can
display the currently executing
line ofa function by choosing that
function's name frOm the call
stack. Valid only in debugging
sessions.

Debug/Source Debugging

Break/Watch/Clear Breakpoints

Break/Watch/Add Watch

Break/Watch/Delete Watch

Break/Watch/Edit Watch

Break/Watch/Remove All Watches

Break/Watch/Toggle Breakpoint

CtrI-F7

CtrI·FB

98

Controls whether debugging is
allowed. When it is set to on,
both integrated and stand-alone
debu8si!tg are possible. When it
is set to standalone, you can
debug pro8J:.Clms only with the
stancfalone debugger, although
you can still run ffiem in TC.
When it is set to None, no
debugging information is placed
in the .:EXE file, so you cannot
debug your program with either
debugger.

Adds a watch expression.

Deletes a watch expression.

Lets you edit a watch expression.

Deletes all watch expressions.

Sets or clears a breakpoint on the
line at the cursor poSItion.

Clears all breakpoints in the pro­
gram.

Break/Watch/View Next Breakpoint Displays next breakpoint.

Turbo C User's Guide

Table 5.4 shows other menu commands that are often used when you are
running the debugger.

Table 5.4: Menu Commands and Hot Keys Used wtth the Debugger

Hot Key Menu Command Description

F5

Alt·F5

F6

Alt-F6

CtrI-F9 Run/Run

Project/Remove Messages

Zooms and unzooms the active
window between full-screen and
split-screen modes.

Switches the display to the User
screen. Press any key to return to the
integrated enviionment.

Switches active window between the
Edit window and the Watch or
Message window.

IfEdit window is active, switches to
the last file loaded into the Editor. H
lower window is active, switches
between Watch window and Message
window.

Runs a program, with or without the
debugger. Compiles source file(s) and
links program if necessary. When the
pro~nas been compiled and
linked with Debug/Source Debugging
and O/C/C/OBJDebug Information
set to On, runspro~ to a
breakpoint or to the end of the pro­
gram.

Deletes contents of the Message
window.

Chapter 5, The Turbo C Integrated Development EnvIronment 99

Part II: The Menu Commands

The main menu contains the major choices you'll use to load, edit, compile,
link, debug, and ron Turbo C programs. The eight menu choices include
File, Edit, Run, Compile, Project, Options, Debug, and Break/Watch, each
of which will be descnbed here. A few of the options within the main menu
pull-downs are actually for use in advanced programming; they are
described in more detail in Chapter 3.

Note: The references to "make" in this chapter refer to Project-Make, not to
the stand-alone MAKE utility. Project-Make is a program building tool
similar to MAKE; refer to Chapter 3 for more on Project-Make. The MAKE
utility is described in Appendix D in the Turbo C Reference Guide.

The File Menu

The File pull-down menu offers various choices for loading existing files,
creating new files, and saving files. When you load a file, it is placed in the
Editor. When you finish with a file, you can save it to any directory or file
name. In addition, from the File menu you can change to another directory,
temporarily go to a DOS shell, or exit Turbo C.

~ Edtt Run Comptle Project Opttons Debug Break/watch
Edit

~
Col 1 Insert Indent Tab Ftll Untndent G:NONAME.C

New
Save F2
Wrtte to
Directory
Change dir
OS shell
Quit Alt-X

Message

F1-Help FS-Zoom F&-Swttch F7-Trace Fl-Step Fi-Make F10-Menu

Rgure 5.4: The Rle Menu

100 Turbo C User's Guide

Load

Loads a file. You can use OOS-style masks (for example, *.c) to get a listing
of file choices, or you can load a specific file. Simply type in the name of the
file you want to load.

Note: If you enter an incorrect drive or directory, you'll get an error box
onscreen. You'll get a verify box if you have an unsaved, modified file in
the Editor while you're trYing to load another file. In either case, the hot
keys are disabled until you press the key specified in the error or verify
box.

Pick

Lets you pick a file from a pick list of the previous eight files loaded into the
Edit window. The file chosen is then loaded into the Editor, and the cursor
is positioned at the location where you last edited that file. If you choose
the "--load file--" item from the pick list, you'll get a Load File Name
prompt box exactly as if you had chosen File/Load or pressed F3. A/t-F3 is a
shortcut for the File/Pick command. The integrated environment can save
this list of file names from one editing session to another, ifyou create a pick
file to hold it.

See the section on the Options/Directories/Pick File Name command
(page 129) for details on how to create a pick file.

New

Specifies that the file is to be a new one. You are placed in the Editor; by
default, this file is called NONAME.C. (You can change this name later
when you save the file.)

Save

Saves the file in the Editor to disk. If your file is named NONAME.C and
you go to save it, the Editor will ask if you want to rename it. From
anywhere in the system, pressing the F2 hot key will save your file.

Write To

Prompts for a file name and writes the contents of the Editor to that file. If a
file by that name already exists, this command causes it to be overwritten.

Chapter 5. The Turbo C Integrated Development Environment 101

Directory

Displays the directory and file set you want (to get the CWTent directory,
just press Enter). F4 allows you to change the wildcard mask. Choose a file
name to load that file into the Editor.

Change Dir

Displays the current directory and allows you to change to a specified drive
and directory.

OS Shell

Leaves Turbo C temporarily and takes you to the DOS prompt. To return to
Turbo C, type EXIT. This is useful when you want to run a DOS command
without quitting Turbo C.

Note: In dual monitor mode, the DOS shell will come up on the TC screen
rather than the User screen. This allows you to shell to DOS without
disturbing the output of your program. Since your program output is
available on one monitor in the system, Run/User Screen and Alt-F5 will be
disabled.

Quit

Quits Turbo C and returns you to the DOS prompt.

The hot key for this command is AIt-x.

The Edit Command

The Edit command invokes the built-in screen Editor.

You can invoke the main menu from the Editor by pressing F10 (or All and
the first letter of the main menu command you desire). Your source text
remains displayed on the screen; you need only press Esc or E at the main
menu to return to it (or press Alt-E from anywhere).

102 Turbo C User's Guide

The Run Menu

The Run menu's commands run your program, and also start and end
debugging sessions. In order to use any of the Run commands except Run/
Run, you must have· compiled and linked your program with the Debug/
Source Debugging toggle set to On.

file Edit ~ Compile Project Options Debug Break/watch

Ijii" 2~1!' b Fl1l Unlndent G:NONAME.CLine 1
Program reset tr:::F2
Go to cursor F4
Trace Into F7
Step over F8
User screen Alt-F5

Message

Alt: Fl-Last help F3-Ptck F&-Swap F7/FI-Prev/Next error F9-Complle

Figure 5.5: The Run Menu

Run

Run/Run runs your program, using the arguments you pass to it with
Options/Arguments. If the source code has been modified since the last
compilation, it will also invoke Project-Make to recompile and link your
program. (Project-Make is a program building tool incorporated into the
integrated environment; see Chapter 3 for more on this feature.)

If you don't want to debug your program, compile and link it with the
Debug/Source Debugging toggle set to None or to Standalone. If you
compile your program with this toggle set to On, the resulting executable

Chapter 5. The Turbo C Integrated Development Environment 103

code will contain debugging information that will affect the behavior of the
Run/Run command in the following ways:

Ifyou have not modified your source code since the last compilation:

• The Run/Run command will cause your program to run to the next
breakpoint, or to the end ifno breakpoints have been set.

If you have modified your source code since the last compilation:

• Ifyou are already stepping through your program using Run/Step Over
(F8) or Run/Trace Into (F7), Run/Run will cause a prompt to appear
onscreen asking whether you want to rebuild your program.

• Ifyou press ~ Project-Make will recompile and link your program, and
set it to run from the beginning. '

• If you press H, your program will run to the next breakpoint, or to the
end if no breakpoints are set.

• If you are not yet stepping through your program, Project-Make will
recompile your program and set it to run from the beginning.

The hot key for the Run/Run command is Ctrl·F9.

Program Reset

Run/Program Reset cancels the current debugging session. It releases
memory your program has allocated, and closes any open files. The hot key
for Run/Program Reset is Ctrl·F2.

Go to Cursor

Run/Go to Cursor runs your program from the execution bar to the line
the Edit window cursor is on. If the cursor is at a line that does not contain
an executable statement, the command warns you by bringing up an Esc
box. Run/Go to cursor can also initiate a debug session.

Go to Cursor does not set a permanent breakpoint, but does allow the pro­
gram to stop at a permanent breakpoint if it encounters one before the line
the cursor is on. If this occurs, you must reissue the Go to Cursor com­
mand.

Use Go to Cursor to advance the execution bar to the part of your program
you want to debug. Ifyou want your program to stop at a certain statement
every time it reaches that point, set a breakpoint on that line.

The hot key for Run/Go to Cursor is F4.

104

Trace Into

Run/Trace Into runs the next statement in the current function. If the
statement contains no calls to functions accessible to the debugger, Trace
Into halts at the next executable statement.

If the statement does contain a call to a function accessible to the debugger,
Trace Into halts at the beginning of the function's definition. Subsequent
Trace Into or Step Over commands will run the statements in the function's
definition. When the debugger leaves the function, it will resume eval­
uating the statement that contains the call.

A function is accessible to the debugger if it is defined in a source file that
was compiled with both the O/C/C/OB} Debug Information and the
Debug/Source Debugging toggles set to On, and the debugger can find the
source file on your disk.

Use Trace Into to move the execution position into a function called by the
function you are now debugging.

The hot key for the Run/Trace Into command is Fl.

Step Over

Run/Step Over executes the next statement in the current function. It does
not trace into calls to lower-level functions, even if they are accessible to the
debugger.

Use Step Over to run the function you are now debugging, one statement
at a time.

Here is an example of the difference between Run/Trace Into and Run/
Step Over. These are the first twelve lines of a program loaded into the
Editor:

int findit (void)
(

return(2)i
}

void main (void)
I
int i, ji

i == findit 0 i
printf(n%d\n", i)i
j == 0; •••

Chapter 5. The Turbo C Integrated Development Environment

1* Line 1 *1

1* Line 6 *1

1* Line 10 *1
1* Line 11 *1
1* Line 12 *1

105

findit is a user-defined function in a module that has been compiled with
debugging information. Let's say that the execution bar is on Line 10 of
your program.

• Ifyou now select Run/Trace Into, the execution bar will move to the first
line of the findit function (Line 1 of your program), allowing you to step
through the function.

• If you select Run/Step Over, the findit function will execute and the
return value will be assigned to i. Then the execution bar will move to
Line 11.

If the execution bar had been on Line 11 of your program, it would have
made no difference which command you selected; Run/Trace Into and
Run/Step Over would both have executed the printf function and moved
the execution bar to Line 12. This is because the printf function does not
contain debug information.

The hot key for the Run/Step Over command is FB.

User Screen

The User Screen is where Turbo C displays the output from your program.

When your program finishes executing, you are returned to the main TC
screen. To look at your output, choose User Screen from the Run menu, or
press the corresponding hot key, AJt-F5.

When you are through examining your output, press any key to return to
the Integrated Development Environment.

The Compile Menu

You use the items on the Compile menu to compile to an .OBI file (Compile
to DB]), to make an .EXE file (Make EXE File), to link an .EXE file (Link EXE
File), to Build All, to set a Primary C File, and to get information about the
last compilation or run (Get Info).

106 Turbo C User's Guide

File Edit Run ~ Project Options Debug Break/watch

Line 1 Col 1'·l~:R'Ii!.nn· G:NOHAME.C
a e ie • 0 .

Link EXE fHe
Bund all
Prilllllry C ftle:
Get info

Message

Fl-Help FS-Zoom F6-Switch F7-Trace F8-Step FI-Make flO-Menu

Rgure 5.6: The Compile Menu

Compile to OBI

This command compiles a .c file to an .OBI file. It always displays the name
of the file to be produced; for example, C:EXAMPLE.OBJ. The .OBI file name
listed is derived from one of two names, in the following order:

• the primary .C file name, or, ifnone is specified,
• the name of the last file you loaded into the Edit window

When Turbo C is compiling, a window pops up to display the compilation
results. When compiling/making is complete, press any key to remove this
compiling window. If any errors occurred, you are automatically placed in
the Message window at the first error (which is highlighted). This Compile
command and its options are explained in more detail in Chapter 3.

The hot key for this command is AIt-F9.

Make EXE File

This command invokes Project-Make to make an .EXE file. It always
displays the name of the .EXE file to be produced; for example,

C: EXAMPLE. EXE.

Chapter 5, The Turbo C Integrated Development Environment 107

The .EXE file name listed is derived from one of three names in the
following order:

• the project file (.PRJ) specified with Project/Project Name, or, if none is
specified,

• the primary C file name specified with Primary C File, or, if none is
specified,

• the name of the last file you loaded into the Edit window.

The hot key for this command is F9.

Link EXE File

Takes the current .OBI and .UB files (either the defaults or those defined in
the current project file) and links them without doing a make; this produces
a new .EXE file.

Build All

Rebuilds all the files in your project regardless of whether they are out of
date. This option is similar to Compile/Make EXE File, except that it is
unconditional; Compile/Make EXE File rebuilds only the files that aren't
current. This command first sets the date and time of all the project's .OBI
files to zero, then does a make. (Thus, if you break a Build All command
with Ctrl-Break, you can cause it to pick up where it left off simply by
choosing C/Make EXE File.)

Primary C File

The Primary C File command is useful (but not required) when you're
compiling a single .C file that includes multiple header (.H) files. If an error
is found during compilation, the file containing the error (which might be a
.C file or a .H file) is automatically loaded into the Editor so you can correct
it. (Note that the .H file is only automatically loaded if you have changed
the default setting of Options/Environment/Message Tracking to All Files;
using the default settings will not cause automatic loading of the .H file.)
The primary .C file is then recompiled when you press Alt-F9, even if it is
not in the Editor.

Get Info

Compile/Get Info calls up a window that gives you information on

108 Turbo C User's Guide

• primary file
• object file name associated with the current file

• name of current source file
• size in bytes of current source file

• program exit code

• available memory

File Edit Run ~ Project Options Debug Break/watch

Line 1 Col Com He to OBJ G:HELLO.OBJ * G:HELLO.C

Current dtrectory : G:\PUBLIC\NETfILES\C\C2\
Current file : G:\PUBLIC\NETFILES\C\C2\HELLO.C
File stze : 104 (Max: 64605)
EMS usage : OK

1*

linclud

IMinO
(

) Lines comptled: 0
Total warnings: 0
Total errors : 0

No program runni ng.
Program exit code
Available memory: 112K

I Press any key
...=':':':'=:.===='::===-=-=,:,~==,======-====,====~=

t----------- Message ------------t
Fl-Help FS-Zoom F6-Switch F7-Trace Fl-Step F9-Make flO-MenU

Rgure 5.7: The CompUe/Get Info screen

The Project Menu

The commands on the Project menu allow you to combine multiple source
and object files to create finished programs.

For more information on Project, refer to Chapter 3.

Chapter 5, The Turbo C Integrated Development EnvIronment 109

File Edit Run Compile ~ Options Debug Break/watch

Line 1 Col 1 Insert 111oI,-'("u- Errors
C

rea rna e on
Auto dependencies Off
Clear project
Remove messages

Message

fI-Help F5-Zoom F'-Switch F7-Trace F8-Step F9-Make fiG-Menu

Rgure 5.8: The Project Menu

Project Name

Chooses a project file containing the names of the files to be compiled and/
or linked. The project name is given to the .EXE and .MAP files when they
are created. A typical project file has the extension .PRJ.

Break Make On

This menu lets you specify the default condition for stopping a make: if the
file has Warnings, Errors, or Fatal Errors, or before linking (Link).

110 Turbo C User's Guide

FUe Edit Run Compile ~ Options Debug Break/watch

Errors
Ltne 1 Col 1 Insert Project name

~es
Clear project ~arn1ns
Remove messages •

L.....------I Fata errors
Link

C

1------------ Message -----------1
F1-Help F5-Zoom F6-Switch F7-Trace F8-Step FI-Make F1O-Menu

Figure 5.9: The Project/Break Make On Menu

Auto Dependencies

This option is a toggle. If you set it to On, Project-Make will automatically
check dependencies for every .OBI file on disk that has a corresponding .C
source file in the project list.

Project-Make opens the .OBI file and looks for information about files
included in the source code. This information is always placed in the .OBI
file by both TC and TCC when the source module is compiled. Then every
file that was used to build the .OBI file is checked for time and date against
the time/date information in the .OBI file. The .C source file is recompiled
if the dates are different.

This is called an autodependency check.

If the Auto Dependencies option is toggled to Off, no such file checking
will be done.

Clear Project

This command clears the project name and resets the Message window.

Chapter 5. The Turbo C Integrated Development Environment 111

Remove Messages

This command clears the error messages from the Message window.

The Options Menu

The Options menu contains settings that determine how the integrated en­
vironment works. These settings affect things like compiler and linker
options, library and include directories, program run-time arguments, and
so on. The items on this menu call up more menus, one setting, and two
commands that perform managerial tasks, as follows:

• Compiler (calls up more menus)
• Linker (calls up more menus)
• Environment (calls up more menus)
• Directories (calls up more menus)

• Arguments (setting)
• Save Options (performs task)
• Retrieve Options (performs task)

File Edit Run Compile Project ~ Debug Break/watch
Edtt

Line 1 Col 1 Insert Indent Ta 'f'lnltli 14 NONAME.C
tnker

Environment
Directories
Arguments
save opUons
Retrieve options

Message

F1-Help FS-Zoan Fa-Switch F7-Trace F8-Step f9-Make flO-Menu

Agure 5.10: The Options Menu

112 Turbo C User's Guide

Compiler

The options on this menu allow you to specify particular hardware config­
urations, memory models, debug techniques, code optimizations, diag­
nostic message control, and macro definitions. The items in this menu,
described in the next several pages, are as follows:

• Model
• Defines
• Code Generation
• Optimization
• Source
• Errors
• Names

File Edit Run Comptle Project &mImi13 Debug Break/watch
Edit

Line 1 Col 1 Insert Indent Ta 1"'ui.iiiA NONAME.C

'iWnes
'$EII_

Code generation
Optimization
Source.... Errors
IIllllIes

Message

Fl-Help F5-ZOOm F&-Switch F7-Trace FS-Step F9-Make FlO-Menu

Agure 5.11: The Options/Complier Menu

The Model menu

These commands are the different memory model switches available in
Turbo C. The memory model chosen determines the default method of
memory addressing. The options are Tiny, Small, Compact, Medium,
Large, and Huge. The default memory model is Small, so normally the
word IISmall" appears to the right of the menu choice Model. Refer to
Chapter 12 for more information about these memory models.

Chapter 5. The Turbo C Integrated Development Environment 113

Model Small

~
~

Compact
Large

1....------1 .Huge

Compiler

File Edit lun Compile Project tmlIImI Debug Break/watch
F=========== Edtt,...--------,======1

Line 1 Col 1 Insert Indent Ta NONAME.C

.nes
Code generation
Optimization
Source
Errors
Names

J------------ Message -------------4
Fl-Help FS-ZoClt'l F6-Switch F7-Trace F8-Step FI-Make flO-Menu

Rgure 5.12: The OICIModel Menu

Defines

Choosing Defines opens up a macro definition box in which you can pass
macro definitions to the preprocessor. Multiple "defines" can be separated
by semicolons (;). Values can be assigned optionally With an equal sign (=).

Leading and trailing spaces are stripped, but embedded spaces are left
intact. If you want to include a semicolon in a macro, you must place a
backslash (\) in front of it.

Here's a macro that defines the symbol BETA_TEST, sets ONE to 1, and
COMPILER equal to the string TURBOC:

BETA_TEST; ONE = 1; COMPILER = TURBOC

The Code Generation Menu

These options tell the compiler to prepare the object code in various ways.

114 Turbo C User's Guide

---Emulation
Signed
Byte
On
Off
On
Off
Off
On

Code generation

Model
Defines

Compiler

~t'Mgn ...j,
ns ruc on set

Floating point
Default char type
Alignment
Generate underbars
Merge duplicate strings
Standard stack frame
Test stack overflow
Line numbers
OBJ debug info1"lDlltton

Fl1e Edit lun Coq»t1e Project BJDr:DB Debug Break/watch
p==============- Edttr-------,c::::====~

Line 1 Col 1 Insert Indent Ta

~---------- Message -------------4
Fl-Help FS-Zoom f6-Switch f7-Trace Fl-Step fI-Make flO-MenU

Figure 5.13: The O/C/Code Generation Menu

Calling Convention:

Causes the compiler to generate either a C calling sequence or a Pascal
(fast) calling sequence for function calls. The differences between C and
Pascal calling conventions are in the way each handles stack cleanup,
number and order of parameters, case and prefix (underbar) of external
identifiers.

Do not change this option unless you're an expert and have read Chapter 12 on
advanced programming techniques.

Instruction Set

Permits you to specify a different target CPU; this is a toggle between an
8088/8086 instmction set and an 8Ox86 instruction set. The default gener­
ates 80x86 code. Turbo C can generate extended 80x86 instructions. You
will also use this option to generate 80x86 programs running in the real
mode, such as with the IBM PC AT under MS-DOS 3.x.

Chapter 5, The Turbo C Integrated Development Environment 115

Floating Point

This toggle allows for three options:

• 8087/80287, which generates direct 8087/80287 inline code.
• Emulation, which detects whether you have an 8087/80287 and uses it if

you do-<>therwise, it emulates the 8087/80287 just as accurately, but at a
slower pace.

• None, which assumes you're not using floating point. (If None is chosen
and you use floating-point calculations in your program, you will get
link errors.)

Default Char Type:

Toggles between Signed and Unsigned char declarations. If you choose
Signed, the compiler will treat all char declarations as if they were signed
char type; and vice versa for choosing Unsigned. The default value is
Signed.

Alignment

This allows you to toggle between word-aligning and byte-aligning. With
word-aligning, noncharacter data aligns at even addresses. With byte­
aligning, data can be aligned at either odd or even addresses, depending on
which is the next available address. Word-alignment increases the speed
with which 8086 and 80286 processors fetch and store the data.

Generate Underbars:

By default, this option is toggled to On.

Don't change this unless you're an expert and have read Chapter 12 on advanced
programming techniques.

Merge Duplicate Strings:

This optimization merges strings when one string matches another, produ­
cing smaller programs. The default is Off.

Standard Stack Frame:

Generates a standard stack frame (standard function entry and exit code).
This is helpful when you use a debugger-it simplifies the process of
tracing back through the stack of called subroutines. The default is On.

The Standard Stack Frame option is a toggle. If a source file is compiled
with this option set to Off, any function that does not use local variables
and has no parameters is compiled with abbreviated entry and return code.
This makes the code shorter and faster, but prevents Debug/Call Stack
from "seeing" the function. Thus, the toggle should always be set to On
when a source file is compiled for debugging.

116 Turbo C User's Guide

Test Stack Overflow:

Generates code to check for a stack overflow at run time. Although this
costs space and time in a program, it can be a real lifesaver; a stack
overflow can be a difficult bug to track down. The default is Off.

Line Numbers:

Includes line numbers in the object map file (for use by a symbolic
debugger). This increases the size of the object and map files but will not
affect speed of the executable program. (The size of the executable program
will increase if the DebugI Source Debugging toggle is set to On, and you
are linking in object files that were created with the O/C/C/Line numbers
switch toggled on; the additional size is due to the debugging information.)
The default is Off.

Since the compiler may group together common code hom multiple lines
of source text during jump optimization, or may reorder lines (which
makes line-number tracking difficult), we recommend setting Optionsl
CompilerI Optimization/Jump Optimization to Off when this option is On.

OBJ Debug Information:

Controls whether debugging information is included in object (.OBI> files.
This toggle defaults to On, which allows both integrated debugging and
debugging with the standalone Turbo Debugger.

Chapter 5. The Turbo C Integrated Development Environment 117

The Optimization Menu

The options in this menu allow you to optimize your code to your own pro­
gramming needs.

Ftle Edit

Une 1 Campi ler

Break/watch

NOHAME.C

Small

ion

Madel
Defines
~ratlon.. .

~ii"If'1eI ft'IIe re9ster var a es
Register optimization
Jump optimization

it-
Off
Off

t------------ Message ------------1

Fl-Help FS-Zoom F5-Swltch F7-Trace ~Step F1-Make FlO-Menu

Agure 5.14: The O/C/Optlmlzatlon Option

Optimize For:

Changes Turbo C's code generation strategy. Normally the compiler uses
Optimize for...Size, choosing the smallest code sequence possible. With this
item toggled to Optimize for...Speed, the compiler will choose the fastest
sequence for a given task.

Use Register Variables:

Suppresses or enables the use of register variables. With this option set to
On, register variables are automatically assigned for you. With this option
set to Off, the compiler does not use register variables even if you have
used the register keyword (see ApPendix C in the Turbo C Reference Guide
for more details).

Generally, you can keep this option set to On unless you are interfacing
with preexisting assembly code that does not support register variables.

118 Turbo C User's Guide

Register Optimization:

Suppresses redundant load operations by remembering the contents of
registers and reusing them as often as possible.

Note: You should exercise caution when using this option because the
compiler cannot detect whether a value has been modified indirectly by a
pointer. Refer to Appendix C in the Turbo C Reference Guide for a detailed
explanation of this limitation.

Jump Optimization:

Reduces the code size by eliminating redundant jumps and reorganizing
loops and switch statements. The loop reorganizations can speed up tight
inner loops.

Note: When this switch is set to On, the sequences of tracing and stepping
in the integrated debugger can be confusing, since there may be multiple
lines of source code associated with a particular generated code sequence.
For best results, turn this switch Off while you are debugging.

The Source Menu

The items on this menu govern how the compiler treats your source code
during the initial phases of the compilation.

File Edit Run Compile Project ~ Debug Break/watch
F========-======- Edit

Line 1 Col 1 Insert Indent Ta 1i.I"i'''14 NONAME.C

urce

Model Small
Defines
Code generation
~timization•
eilYMrR$"'''-es e ccmnen s

ANSI keywords only Off

t------------ Message ----------~

Fl-Help FS-Zoom Fa-Switch F7-Trace Fa-Step FI-Make flO-Menu

Figure 5.15: The Ole/Source Menu

Chapter 5. The Turbo C Integrated Development Environment 119

Identifier Length:

Specifies the number of significant characters in an identifier. All identifiers
are treated as distinct only if their first N characters are distinct. This
includes variables, preprocessor macro names, and structure member
names. The number given can be any value from 1 to 32; the default is 32.

Nested Comments:

Allows you to nest comments in Turbo C source files. Nested comments are
not normally allowed in C implementations, and they are not portable.

ANSI Keywords Only:

Toggle to On when you want the compiler to recognize only ANSI
keywords and treat any Turbo C extension keywords as normal identifiers.
These keywords include near, far, huge, asm, cdecl, pascal, interrupt, _es,
_ds, _cs, _ss, and the register pseudo-variables CAX, _BX, •••). This option
also defines the symbol_STDC_ during compiles.

The Errors Menu

With the commands on this menu, you govern how the Turbo C compiler
deals with and responds to diagnostic messages.

Compi ler

Ftle Edt t lun Colq)t1e Project mmm Debug Break/watch
F""'lI'========== Edtt.,:;;.;:::::::....-----.====:::OO::=C11

Ltne 1 Col 1 Insert Indent Ta HONAME.C

Model Small
Deftnes
Code generatton
Opttmtzatton
Source
Errors

'aitti..l·..·m..arn1ngs: S op a r
Dtspl~ wamtngs On
Portabtltty warnIngs
ANSI vIolatIons
Ccmnon errors
Less COlIIDOn errors

1------------ Message -------------1
fl-Help f5-ZOOm F&-Swttch f7-Trace ~Step FI-Make flO-Menu

Agure 5.16: The Ole/Errors Menu

120 Turbo C User's Guide

Errors: Stop After:

This option causes compilation to stop after a specified number of errors
have been detected. The default is 25; however, you can enter any number
from 0 to 255. (Entering 0 will cause compilation to continue indefinitely.)

Warnings: Stop After:

Choosing this option causes the compilation to stop after 100 warnings
have been detected. However, 100 is only the default; the legal range is 0 to
255, where entering 0 will cause compilation to continue indefinitely or
until the error limit has been reached.

Display Warnings:

By default, this is set to On, which means that any or all of the following
warning types can be displayed if chosen:

• Portability Warnings

• ANSI Violations

• Common Errors
• Less Common Errors

When this item is set to Off, none of the warnings will be displayed. These
warning messages are discussed in more detail in Appendixes Band C in
the Turbo C Reference Guide.

File Edit Run Compile Project ~ Debug I
p=;============- Ed1t~~~~~~Line 1 Col 1 Insert Indent Tall.

olrrloii14
Model
Defines
Code generation
Optimization
Source
Errors -I

Errors : stop after 25
Warnings: stop after 100
Display warnings On
Portability warnings

'··WiffMEmmGm"IQtW*£liIi-"·
B: lfrii'eaCfiiliTe cue- On
c: Code has no effect On
D: Possible use of 'ident' before definition On
E: 'ident' is assigned a value which is never used On

1--------1 F: Parameter 'ident' is never used On
G: Possibly incorrect assigrment On

F1-Help FS-Zoom Fa-Switch F7-Trace Fa-Step F9-Make F10-Menu

Rgure 5.17: Displaying the Common Errors

Chapter 5, The Turbo C Integrated Development Environment 121

The Names Menu

With the items in this menu, you can change the default segment, group,
and class names for code, data, and BSS sections.

Campi ler

file Edit lun Compile Project tmDI!DB Debug areak/watch
p:;::::;==========~ Edtt,.-------,====="'=t

Line 1 Col 1 Insert Indent Ta NONAME.C

Model Small
Defines
Code generation
Optimization
Source
Errors
Names

'1titi'.,#iui4'
Data names
ISS names

to----------- Message -------------t
Fl-Help fS-Zoom Fa-Switch F7-Trace Fa-Step Fi-Make flO-Menu

Agure 5.18: The O/C/Names Option

When you choose one of these items, the asterisk (It) on the next menu that
appears tells the compiler to use the default names.

Don't change this option unless you are an expert and have read Chapter 12 on
advanced programming techniques.

Linker

The items on this menu deal with setting options for the linker. Refer to
Appendix D in the Turbo C Reference Guide for more information about
these settings.

122 Turbo C User's Guide

File Edit Run Compile Project ~ Debug Break/watch
Edtt

INONAME.CLine 1 Col 1 Insert Indent Ta tm#er

'tlJ'ize segments I~-Of
Default libraries Off
Graphics library On
Varn duplicate symbols On
Stack wami ng On
Case-sensitive link On

Message

Fl-Help F5-Zoom FI-Switch F7-Trace Fa-Step fI-Make flO-Menu

Figure 5.19: The Optlons/Unker Menu

The Map File Menu

Chooses the type of map file to be produced. For values other than Off, the
rnap file is placed in the output directory defined with Options /
Directories/Output Directory. By default, this is set to the Off option; your
other choices are Segments, Publics, and Detailed.

Initialize Segments

Tells the linker to initialize uninitialized segments. (This is normally not
needed, and will make your .EXE files larger than necessary.)

Default Libraries

When you're linking with modules created by a compiler other than Turbo
C, the other compiler may have placed a list of default libraries in the object
file.

If this option is set to On, the linker will try to find any undefined routines
in these libraries as well as in the default libraries supplied by Turbo C.

If this option is set to Off, only the default libraries supplied by Turbo C
will be searched; any defaults in .OBI files will be ignored.

Chapter 5. The Turbo C Integrated Development Environment 123

Graphics Libraries

Turns on and off the Automatic searching of the BGI graphics library.
When this toggle is set to On, it is possible for you to build and run single­
file graphics programs without using a project file. Turning the toggle Off
speeds up the link step, because the linker does not have to link in the BGI
graphics library file. The default is On.

Note: You can set this toggle to Off and still build programs that use BGI
graphics, provided you name the BGI graphics library in your project file.

Warn Duplicate Symbols

Turns On and Off the linker warning for duplicate symbols in object and
library files. The default is Off.

Stack Warning

Disables the No stack message generated by the linker. (It is normal for a
program generated under the tiny model to generate this message if the
message is not disabled.)

Case-sensitive Link

Turns case sensitivity On and Off during linking. Normally, this option will
be set to On, since C is a case-sensitive language.

Environment

This menu's entries let you automatically back up your source file in the
Editor and tailor the Turbo C working environment to suit your program­
mingneeds.

124 Turbo C User's Guide

File Edtt Run Coq)t1e Project tmtIImI Debug Break/watch
F============= Edttr---------,=====9

Ltne 1 Col 1 Insert Indent Ta Comptler NONAME.C
Linker
Envi ronment

Message Tracking Current File
Keep messages No
Conftg auto save On
Edtt auto save Off
Backup files On
Tab stze 8
ZOomed wt ndo. Off
SCreen 1tnes

J------------ Message ------------1
Fl-Help FS-Zoom F6-Swttch F7-Trace Fl-Step FI-Make FlO~u

Rgure 5.20: The Options/Environment Menu

Message Tracking

Turbo C will track syntax errors in the Editor when you scroll through the
error messages in the Message window. This three-way toggle tells Turbo C
which files to track in.

The default (Track. ..Current file) will track errors only in the file currently
in the Editor. Track. ..All Files will load and track in every file for which
there is a message. You can also tum tracking Off.

Keep Messages

This is a toggle; when it is set to On, Turbo C saves the error messages
currently in the Message window, appending any messages from further
compiles to the window. When a file is compiled, any messages for that file
are removed from the Message window and new messages are added to
the end. When this toggle is set to Off, messages are automatically cleared
before a compile or make.

Config Auto Save

Normally, Turbo C saves the current configuration (writes it to disk) only
when you choose the Options/Save Options command. With Config Auto

Chapter 5. The Turbo C Integrated Development Environment 125

Save toggled to On, Turbo C also saves the file whenever you choose Run/
Run or File/OS Shell, or when you exit the integrated environment, if the
configuration file has never been saved or has been at all modified since it
was last saved.

With Config Auto Save set to On, if the configuration file has not yet been
saved, Turbo C chooses a file name for the automatically saved file. This is
the name of the last configuration file you stored or retrieved, or
TCCONFIG.TC (in the current directory) if you haven't yet loaded, re­
trieved, or saved a configuration file.

Edit Auto Save

With this feature toggled to On, Turbo C automatically saves the source file
in the Editor whenever you use the Run/Run or File/OS Shell command, if
the file has been modified since the last time you saved it.

Backup Files

By default, Turbo C automatically creates a backup of the source file in the
Editor when you do use File/Save; the backup file is given the extension
.BAK. You can toggle this backup feature On and Off with this option.

Tab Size

When the Editor Tab mode is On and you press the Tab key, the Editor
inserts a tab character in the file and the cursor jumps to the next tab stop.
This menu item allows you to dictate how far apart the tab stops are; any
number in the range 2 through 16 is allowed. The default is 8.

To change the way tabs are displayed in a file, just change Tab Size to the
size you prefer, and the Editor redisplays all tabs in that file in the size you
chose. You can save this new tab size in your configuration file (choose
Save Options from the Options menu).

Zoomed Windows

If your Turbo C integrated environment screen is set up with the Edit
window and Message window both showing, choosing Zoomed Win­
dows...On zooms both windows to full screen, with the active window
visible.

Use F6 to switch from one window to the other, just as you do when both
windows are showing.

126 Turbo C User's Guide

To "unzoom" the windows (return to the setup where both windows are
showing) just choose Zoomed Windows...Off.

The Screen Size Menu

When you choose Screen Size, another menu appears; the items on this
Screen Size menu allow you to specify whether your integrated envi­
ronment screen displays text in 25 lines or 43/50 lines. One or two of these
items will be enabled, dePending on the tyPe of video adapter in your PC.

• 25Lines

This is the standard PC display: 25 lines by 80 columns. This menu item
is always enabled; it's the only screen size available to systems with a
Monochrome Display Adapter (MDA) or Color Graphics Adapter (CGA).

• 43/50 Lines

If your PC is equipped with an EGA or VGA, this menu item is enabled,
as well as 25 line standard display. Select it to transform your text to 43
lines by 80 columns if you have an EGA, or 50 lines by 80 columns if you
have a VGA.

Directories

The entries in this menu tell Turbo C where to find the files it needs to
compile, link, and output executable files, and where to find the config­
uration file, pick file, and help file.

Chapter 5. The Turbo C Integrated Development Environment 127

File Edit IIIn Compile Project mmm Debug Break/watch
Edtt

Line 1 Col 1 Insert Indent Ta Compiler NOHAME.C
Linker
Environment

,u'i4'··'i'4
·11!ti",m,.iil4~~""'J.m&mmUiWL rary trectortes: : TU L B
Output dt rectory:
Turbo C dtrectory:
Ptck ftle name:
Current ptck ftlel

Message

Fl-Help F5..ZoOlII F&..Swltch F7..Trace F8-Step n-Make flO-Menu

Figure 5.21: The Options/DIrectories Menu

Include Diredories

Specifies the directories that contain your standard include files. Standard
include files are those given in angle brackets «» in an 'include statement
(for example, 'include <myfile.h». Multiple directories are separated by
semicolons (;). See Chapter 3 for more information about this option.

Library Diredories

Specifies the directories that contain your Turbo C startup object files
(CO?OBJ} and run-time library files (.LIB files). Lets you list multiple
library directories, up to a maximum of 127 characters (including white­
space).

Use the following guidelines when entering library directories:

• You must separate multiple directory path names with a semicolon (;).

• Whitespace before and after the semicolon is allowed, but not required.
• Relative and absolute path names are allowed, including path names

relative to the logged position in drives other than the current one.

For example,

C:\TURBOC\LIB; C:\TURBOC\MYLIBS; A:NEWTURBO\MATHLIBS; A: •• \VIDLIBS

128 Turbo C User's Guide

Output Directory

Your .OB], .EXE, and .MAP files are stored here; Turbo C looks for them
here when doing a Make or Run. If the entry is blank, the files are stored in
the current directory.

Turbo C Directory

This is used by the Turbo C system to find the configuration file (.TC) and
the help file (TCHELP.TCH). For Turbo C to find your default config­
uration file (TCCONFIG.TC) at startup (if it's not in your current directory),
you must install this path with TCINST, the external customization pro­
gram.

Pick File Name

This item defines the name of a pick file to load. Entering a name here loads
that pick file (if it exists) and defines where Turbo C will save the pick file
when you exit. When you change the pick file name, Turbo C saves the cur­
rent pick file before loading the new one.

If no pick file name is listed here, then Turbo C only writes a pick file if the
Options/Directories/Current Pick File setting contains a file name.

To create a pick file, you must define a pick file name. You do this by
entering a file name in the prompt box called up by the Options/
Directories/Pick File Name setting. Once you have defined a pick file
name, Turbo C will update that pick file on disk whenever you exit the
integrated environment. This pick file name will be saved in your config­
uration file when you choose Options/Save Options.

Current Pick File

This menu item shows the file name and location of the current pick file, if
there is one. This item is always disabled; it is for information only. Current
Pick File shows a file name when a default pick file is loaded or when you
enter one with the Pick File Name command. If you change the pick file
name or exit the integrated environment, Turbo C stores the current pick
list information in this listed pick file.

Arguments

This setting allows you to give your running programs command-line
arguments exactly as if you had typed them on the DOS command

Chapter 5. The Turbo C Integrated Development EnvIronment 129

line(redirection is not supported). It is only necessary to give the arguments
here; omit the program name.

Save Options

Saves all your chosen Compiler, Linker, Environment, Debug, and Project
options in a configuration file (the default file is TCCONFIG.TC). On start­
up, Turbo C looks in the current directory for TCCONFIG.TC; if it doesn't
find the file, then Turbo C looks in the Turbo C directory for the same file.

Retrieve Options

Loads a configuration file previously saved with the Options/Save Options
command.

The Debug Menu

The Debug menu's commands control features of the integrated debugger
other than breakpoints and watch expressions (which are on the Break/
Watch menu.)

File Edit Run Compile Project Options ~ Break/watch
ditE -

Line 1 Col 1 Insert Indent Tab
~f3.. llC r:
Ftnd functton
Refresh display
Display swapping Smart
Source debugging On

IlAtcb

Fl-Help fS-ZOan Fa-Switch F7-Trllce Fa-Step "-Make flO-Menu

Rgure 5.22: The Debug Menu

130 Turbo C User's Guide

Evaluate

Evaluate evaluates a variable or expression, displays its value, and, if
appropriate, lets you modify the value.

The command opens a pop-up window containing three fields: the Eval­
uate field, the Result field, and the New Value field. It fills the Evaluate
field with a default expression consisting of the word at the cursor in the
Edit window. You may evaluate the default expression by pressing Enter, or
you may edit or replace it first. You can also extend the default expression
by copying additional characters from the Edit window with the Right arrow
key.

You may evaluate any valid C expression that doesn't contain

• function calls
• symbols or macros defined with #define or typedef
• local or static variables not in the scope of the function being executed,

unless they are fully qualified

If the debugger can evaluate the expression, it displays the value in the
Result field.

If the expression refers to a variable or simple data element, you may move
the cursor down to the New Value field and enter an expression as the new
value.

If it is meaningful to modify the expression's value, but you do not want to
do so, press Esc to close the window. If you have changed the contents of
the New Value field and have not pressed Enter, the debugger will ignore
the change you have made when you exit the window.

Debug/Evaluate displays each type of value in an appropriate format. For
example, it displays an int as an integer in base 10, and an array as a
pointer in base 16. To get a different display format, suffix the expression
with a comma followed by one of the format specifiers shown in Table 5.5.

Use a repeat expression to display the values of consecutive data elements.
For example, for an array of integers named xarray,

xarray (0),5 displays 5 consecutive integers in decimal

xarray [0) ,5x displays 5 consecutive integers in hexadecimal

An expression used with a repeat count must represent a single data ele­
ment. The debugger views the data element as the first element of an array
if it isn't a pointer, or as a pointer to an array if it is.

Chapter 5. The Turbo C Integrated Development Environment 131

Table 5.5: Format Specifiers Recognized In Debugger Expressions (continued)

Table 5.5: Format Speclflers Recognized In Debugger Expressions

Character Function

C

S

D

HorX

F<n>

M

P

132

Character. Shows s~ial display: characters for control
characters (ASCII 0 through 31); by default, such characters
are shown using the appropriate C escape sequences (\n,
\ t, etc). Affects Characters and strings.

String. Shows control characters (ASCII 0 through 31) as
ASCII values using the appropriate C escape sequences.
Since this is the deJault character and string display fonnat,
the S specifier is only useful in conjunction witli the M
specifier.

Decimal. All integer values are displayed in decimal.
Affects simplein~r expressions as well as arrays and
structures containing integers.

Hexadecimal. All integer values are displayed in
hexadecimal with the Ox prefix. Affects simple integer
expressions as well as arrays and structures containing
integers.

Floating-point n is an in~erbetween 2 and 18 spec~g
the number ofsi~cantdIgits to display. The deIault
value is 7. Affects only floating-point values.

Memo~ dump. DisElays a memory dump, starting with
the address oflhe inQicated expression. The expression
must be a construct that would be valid on thelefthand
side of an assignment statement, i.e. a construct that
denotes a memory address; otherwise, the M sJ'E:Cifier is
ignored. By defaUlt, each byte of the variable is shown as
two hexadecimal digits. Adding a 0 specifier with the M
causes the bXtes to De displayed in decimal, and adding an
H or Xs~er causes the bytes to be displayed in
hexadeamal. A C or an S specifier causes the variable to be
displayed as a string (with or without special characters).
The default number of bytes displayed corresponds to the
size of the variable, but a repeat count may be used to
specify an exact number of bytes.

Pointer. Displays ~inters in seg:ofs fonnat with additional
information abOut the address ~mted to, rather than the
default hardware-oriented seg:ofs fonnat. Specifically, it
tells you the region of memory in which the s~ent is
located, and the name of the variable at the offSet address,
if that is appropriate. The memory regions are as follows:

Turbo C User's Guide

Table 5.5: Format Specifiers Recognized In Debugger Expressions (continued)

Memory Region

0000:0000 - OOOO:03FF

0000:0400 - OOOO:04FF

OOOO:OSOO - Turbo C

Turbo C - User Program PSP

User Program PSP

User Program - top of RAM

AOOO:OOOO - AFFF:FFFF

0000:0000 - B7FF:FFFF

BBOO:OOOO - BFFF:FFFF

COOO:OOOO - EFFF:FFFF

FOOO:OOOO - FFFF:FFFF

Evaluate Message

Interrupt vector table

BIOS data area

MSDOS/TSR's

TurboC

User Process PSP

Name of a static user
variable if its address falls
inside the variable's
allocated memory;
otherwise nothing

EGA Video RAM

Monochrome Display RAM

Color Display RAM

EMS Pages/Adaptor BIOS
ROM's

BIOS ROM's

R StructurelUnion. Displays field names as well as values,
such as { X: I, Y: 10, Z: 5 }. Affects only structures and
unions.

The hot key for Debug/Evaluate is CtrI-F4.

Find Function

Find Function displays the definition of a function in the Edit window. The
command can find any function in your program that was compiled with
the Debug/Source Debugging and O/C/C/OBI Debug Information
options set to On, and whose source file is available. If the function is not in
the currently displayed file, the command automatically loads the proper
file.

You must be in a debugging session to use Find Function.

Chapter 51 The Turbo C Integrated Development Environment 133

Call Stack

Call Stack displays a pop-up window containing the call stack. The call
stack shows the sequence of functions your program called to reach the
function now nmning. main is at the bottom of the stack; the function now
nmning is at the top.

Each entry on the call stack displays the name of the function called and the
values of the parameters passed to it.

Initially the entry at the top of the stack is highlighted. To display the
current line of any other function on the call stack, move the highlight to
that function's name and press Enter. The cursor will be positioned on the
line containing the call to the function next above it on the stack. For
example, if the call stack looked like this:

func2 ()
func1 ()
main ()

(that is, main calls funcI, and funcI calls funa), and you wanted to see the
currently executing line of £UncI, you would place the highlight on funcl in
the call stack and press Enter. The code for funcI would appear in the Edit
window, with the cursor positioned on the call to funa.

To return to the current line of the function now being ron (that is, to the
execution position), highlight the topmost function in the call stack and
press Enter.

Some functions may be omitted from the call stack if your program is
compiled with the O/C/C/Standard Stack Frame option set to Off. See the
description of 0 /C/C/Standard Stack Frame for more information.

The hot key for O/C/C/Stack Frame is CtrI-F3.

Source Debugging

The Debug/Source Debugging option is a three-way toggle you can set to
On, Standalone, or None.

Programs linked with this toggle set to On can be debugged with either the
TC integrated debugger or the standalone Turbo Debugger. When it is set
to Standalone, programs can be debugged only with Turbo Debugger,
although they can still be ron in TC. When the toggle is set to None,
programs cannot be debugged with either debugger, because no debugging
information has been placed in the .EXE file.

134 Turbo C User's Guide

Display Swapping

Debug/Display Swapping is a three-way toggle that can be set to Smart
(the default setting), Always, or None.

When you run your program in debug mode with the default Smart set­
ting, the debugger looks at the code being executed to see whether the code
will generate output to the screen. If the code does output to the screen (or
if it calls a function), the screen is swapped from the Edit screen to the User
screen long enough for output to take place, then is swapped back.
Otherwise, no swapping occurs.

Note: The Smart default setting is not particularly smart in the following
respects:

.It swaps on any function call, even if the function does no screen output.
• In some situations, the Editor screen may be modified without being

swapped; for example, if a timer interrupt routine writes to the screen.

The Always setting causes the screen to be swapped every time a statement
executes. You should choose this setting any time the Editor screen is likely
to be overwritten by your running program.

The None setting causes the debugger not to swap the screen at all. It
should be used. for debugging sections of code that you are certain do not
output to the screen.

Note: If you are debugging in dual monitor mode (that is, you used the TC
command-line /d switch) you can see your program's output on one mon­
itor and the TC screen on the other. Therefore, TC never swaps screens and
the Debug/Screen Swapping setting has no effect.

Refresh Display

If the Editor screen should accidentally be overwritten, you can use this
option to restore its previous contents.

The Break/Watch Menu

The Break/Wafch menu's commands control breakpoints and watch ex­
pressions.

A breakpoint is a location in a program where execution should halt, to give
you time to examine the value of critical variables and expressions and
otherwise make sure that your program is behaving as it should.

Chapter 5, The Turbo C Integrated Development Environment 135

A breakpoint is marked by a breakpoint highlight. A breakpoint's highlight is
obscured by the execution bar when the program halts at that breakpoint,
but reappears when the execution bar moves on.

A watch expression is an expression whose value is displayed in the Watch
window, and is reevaluated whenever the program halts. The rules for
entering a valid watch expression are the same as those for entering a valid
expression in Debug/Evaluate, except that watch expressions may not con­
tain side effects such as i H. Conversion-type characters and repeat counts
may be used in watch expressions, as in Debug/Evaluate; for example,

i,x

displays the contents of integer i in hexadecimal format.

As you add expressions to the Watch window, it will grow to its maximum
size as specified by the TCINST utility's Resize Windows option (initially
about half the screen). H you add more expressions, some expressions will
scroll out of the window. You can get them back by scrolling the Watch
window display with the PgUp, PgDn, Up arrow, and Down arrow keys.

The current watch expression in the Watch window is marked by a high­
light bar when the Watch window is active, and by a bullet (.) in the left
column when it is not.

File Edit Run Compile Project Options Debug ~~
Edit

Line 1 Col 1 Insert Indent Tab Fill U~MG!h-'DOMDeeewac
Edit watch
Remove all watches

Toggle breakpoint Ctrl-F8
Clear all breakpoints
'iew next breakpoint

watcb

A1t: F1-Last help F3-Pick F&-Swap F7/F8-Prev/Next error F9-Canptle

Rgure 5.23: The Break/Watch Menu

136 Turbo C User's Guide

Add Watch

Add Watch inserts a watch expression into the Watch window. When you
choose this command, the debugger opens a pop-up window and prompts
you to enter a watch expression. The default expression is the word at the
cursor in the Edit window. When you type a valid expression and press
Enter, the debugger adds the expression and its current value to the Watch
window.

The hot key for this command is Ctrl·F7. Additionally, if the Watch window
is the active window, you can insert a new watch expression by pressing Ins
or Ctrl·N.

Delete Watch

Delete Watch deletes the current watch expression from the Watch window.

The Watch window must be visible (that is, the Edit window cannot be
zoomed) in order for you to use this command. The current watch expres­
sion is marked by a highlight bar if you are in the Watch window, and by a
bullet in the left margin ifyou are in the Edit window.

To delete the watch expression marked with the bullet when you are in the
Edit window, choose Break/Watch/Delete Watch. To delete a watch ex­
pression that is not current, you must move to the Watch window, position
the highlight bar on the desired watch expression, and press either Del or
Ctrl·~

Edit Watch

Edit Watch allows you to edit the current watch expression in the Watch
window.

When you choose Break/Watch/Edit Watch, the debugger opens a pop-up
window containing a copy of the current watch expression. Edit the expres­
sion and press Enter. The debugger replaces the original version of the
expression with the edited one. You can also edit a watch expression from
inside the Watch window by positioning the highlight bar on it and
pressing Enter.

Remove All Watches

Remove All Watches deletes all watch expressions from the Watch window.

Chapter 5, The Turbo C Integrated Development Environment 137

Toggle Breakpoint

Toggle Breakpoint sets or clears a breakpoint on the line where the cursor
is positioned. When a breakpoint is set, it is marked by a breakpoint
highlight.

The hot key for this command is Ctr/-FB.

Your program will halt whenever it encounters a breakpoint in the course
of running. When the program halts, the execution bar is on the line where
the breakpoint is set. The breakpoint highlight is obscured by the execution
bar, but reappears when the execution bar moves on.

When a source file is edited, each breakpoint "sticks" to the line where it is
set. It is lost only when you leave the integrated environment, when you
delete the source line it is set on, or when when you clear it with the Break/
Watch/Toggle Breakpoint command or the Break/Watch/Clear All Break­
points command.

Turbo C will"lose track" of its breakpoints in two cases:

• If you edit a file containing breakpoints and then abandon the edited
version of the file. (Turbo C cannot remember where the breakpoints
were set before the file was edited, and so will display them on the
wrong lines.)

• If you edit a file containing breakpoints and then continue the current
debugging session, without remaking the program (Turbo C displays the
warning prompt Source modified, rebuild?).

Before you compile a source file, you can set a breakpoint on any line, even
a blank line or a comment. When you compile and run the file, Turbo C
validates any breakpoints that are set and gives you a chance to remove,
ignore, or change invalid breakpoints. When you are debugging the file,
Turbo C knows which lines contain executable statements, and will warn
you ifyou try to set invalid breakpoints.

Clear All Breakpoints

Clear All Breakpoints removes all breakpoints from your program.

View Next Breakpoint

View Next Breakpoint moves the cursor to the next breakpoint in the pro­
gram. Note that it moves the cursor to the next breakpoint in the order that
the breakpoints were set, not the order in which your program will encounter

138 Turbo C User's Guide

breakpoints. This command does not ron your code; it only positions active
breakpoints in the Editor window.

Chapter5, The Turbo C Integrated Development Environment 139

Part III: More about Configuration and Pick
Files

What Is a Configuration File?

Basically, a configuration file is a file that contains information pertinent to
Turbo C. In it, you store such information as your chosen compiler options,
your linker options, and various directories that Turbo C will need to
search when compiling and linking your programs.

There are two types of Turbo C configuration files: one you use with
TCC.EXE (command-line Turbo C), and the other you use with TC.EXE (the
Turbo C integrated environment). There is only one command-line config­
uration file; it must be named TURBOC.CFG. The integrated environment
configuration file can have any file name. The file TCCONFIG.TC is the
default (assumed) integrated development environment configuration file.

In this section we cover the integrated environment configuration files in
detail. If you want to know more about how to use TURBOC.CFG, refer to
liThe TURBOC.CFG File" in Chapter 3.

The TC Configuration Files

When you enter the Turbo C integrated environment for the first time,
there is no configuration file. TC.EXE will start up with all the menu
toggles and settings set to their internal defaults (Options/Compiler/
Model will be set to Small, Options/Compiler/Calling Convention set to
C, Options/Environment/Keep Messages set to No, and so on). In the
course of using the integrated environment, you will probably want to
change some of the menu toggles and settings.

If you exit Turbo C without saving the new settings in a configuration file,
the next time you invoke the integrated environment it will again start up
with all the menu items set to their previous defaults. But if you save the
new settings to a configuration file, the next time the integrated envi­
ronment starts up the menu items will be set to the values you chose. You
won't have to go through the process of resetting them.

140 Turbo C Userls Guide

TCCONFIG.TC

When you start up TC.EXE, it looks for a configuration file named
TCCONFIG.TC. It looks for that file in certain locations (we'll explain
exactly where it looks later); if TC.EXE can't find a TCCONFIG.TC file, the
integrated environment starts up using the default settings that are built
into TC.EXE.

Other TC Configuration Files

You can also start up TC.EXE at the DOS prompt with a request for a
specific configuration file, using the Ie switch (refer to the section on 'IOfC
Command-Line Switches," beginning on page 80, for more information).
For example, if you type

te /cmyeonfig

at the DOS prompt, Turbo C will look for a configuration file named
MYCONFIG.TC in the current directory (if you give no extension, Turbo C
assumes the extension .TC).

If Turbo C can't find the configuration file you named, it will issue a warn­
ing message to that effect. It won't look for any other configuration file, but
it will still start up, using the built-in default settings.

What Is Stored in TC Configuration Files?

The information stored in the TC configuration files can be broken down
into two categories: compiler-linker options and TC.EXE-specific values.

The compiler-linker options govern the compiler and linker, and they all
have corresponding options in the command-line version of Turbo C. The
TC.EXE-specific values are related to the integrated environment itself.
Some examples of these values specific to the integrated environment are
Project/Project Name, Options/Directories/Pick File Name, and the
Option/Environment menu options.

Creating a TC Configuration File

How do you create a TC configuration file? Unlike the command-line con­
figuration file (TURBOC.CFG), the integrated environment configuration
file is not one you can create or modify with an Editor. Instead, choose the
Options/Save Options command from the Options menu, and the inte­
grated environment will create the configuration file for you.

Chapter 5, The Turbo C Integrated Development EnvIronment 141

If you set Options/Environment/Config Auto Save to On, your current
settings will be saved in the default TC configuration file (TCCONFIG.TC)
whenever you exit the integrated environment.

Changing Configuration Files Midstream

It's easy to change to a different .TC configuration file from within the inte­
grated environment. To do this:

• Choose Options/Retrieve Options from the Options menu. A pop-up
box will appear, displaying the last configuration file name you entered
(it defaults to *.TC the first time).

• You can type in a mask (like *. tc or nconfig. *), then press Enter to bring
up a directory listing of .TC files. You then choose a file from the direc­
tory list, or you can type in a specific configuration file name, then press
Enter to load that file.

Where Does TC.EXE Look for TCCONFIG.TC?

There are two places TC.EXE will look for the default configuration file
TCCONFIG.TC. First, it will search the default (current working) directory.
If it does not find TCCONFIG.TC there, it will then search the Turbo C
directory, if you have previously set the Turbo C directory using TCINST.

To find out more about the Turbo C directory and TCINST, read Appendix
F, "Customizing Turbo C," in the Turbo C Reference Guide.

TCINST vs. the Configuration File: Who's the Boss?

You can use TCINST to set any of the items found on Turbo C's menus,
then store those settings directly in TC.EXE. If there is no TC configuration
file to be found when you start up your customized TC.EXE, those settings
you customized will be the defaults.

However, if TC.EXE starts up and finds a TCCONFIG.TC file in the default
directory (or in the Turbo C directory), that configuration file's settings will
take precedence over any default settings you installed with TCINST.

Furthermore, if you invoke TC.EXE using the / c switch, and Turbo C finds
the configuration file you specified, that file's settings will take precedence
over the TCINST-installed defaults.

142 Turbo C User's Guide

What Does Options/EnvironmentlConfig Auto Save
Do?

Normally, Turbo C will save the current configuration file (write it to disk)
only when you give the Options/Save Options command. However, you
can direct Turbo C to save the configuration file automatically under
certain circumstances.

Just set the Options/Environment/Config Auto Save toggle to On. With
Config Auto Save set to On, Turbo C will also save the file whenever you
choose Run/Run or File/OS Shell, or when choose File/Quit to exit the
integrated environment-if the configuration file has never been saved, or
if it has been at all modified since it was last saved. If the configuration file
has not yet been saved, Turbo C will choose a file name for the automat­
ically saved file from two possibilities:

• the name of the last configuration file you stored or retrieved
• TCCONFIG.TC (in the current directory), if you haven't yet loaded,

stored, or retrieved a configuration file

What Are Pick Lists and Pick Files?

The pick list and pick file are two features of the Turbo C integrated envi­
ronment that work together to save the state of your editing sessions. The
pick list remembers what files you are editing while you are in the integrated
environment. The pick file remembers what files you were editing after you
leave the integrated environment or after you change contexts within the inte­
grated environment. (Changing contexts means loading a new config­
uration file or defining a new pick file name.)

The Pick List

You call up the pick list by choosing File/Pick or pressing the Alt-F3 hot key.
File/Pick provides a list of the eight files most recently loaded into the
Editor. The top file listed is the file currently in the Editor. If there is more
than one file name in the pick list, the second file name listed is highlighted;
this is the file previously loaded into the Editor.

To load a file from the pick list into the Editor, use the arrow keys to move
the highlight bar to the appropriate file name, then press Enter. When you
do this, Turbo C will load the chosen file into the Editor, and the Editor will
position the cursor in that newly loaded file at the location you last left it.
In addition, any marked block and markers in the file will be exactly as you
left them.

Chapter 5. The Turbo C Integrated Development EnvIronment 143

The pick list is a handy tool for moving back and forth among your files as
you develop your program. By pressing Alt-F3 and then Enter, you can
alternate files (this is the same as pressing Alt-F6 when you are in the
Editor).

If the file you want is not on the pick list, you can choose --load file-- (the
last entry on the pick list menu). This will bring up a Load File Name input
box, and you can type in the name of the file you want (using DOS-style
wildcards if appropriate). You can also press the F3 hot key to choose File/
Load automatically.

The Pick File

The pick file stores file-related information, including the contents of the
pick list. For each entry (file) in the pick list, Turbo C stores the file name,
cursor position, marked block, and markers.

In addition to information about each file, the pick file contains data on the
state of the Editor when you last exited. This includes the most recent
search-and-replace strings and search options.

To create a pick file, you must define a pick file name. You can do this by
choosing Options/Directories/Pick File Name and entering a file name.
Once you have defined a pick File Name, Turbo C updates that pick file on
disk whenever you exit the integrated environment.

When and How Do You Get a Pick File?

There are two menu items you can look at for information about the pick
file: Options/Directories/Pick File Name and Options/Directories/Cur­
rent Pick File.

Q: How do you know whether you already have a pick file?
k You have a pick file if the Options/Directories/Current Pick File menu

setting is not blank (contains a file name).

Q: Why does that file name appear in Options/Directories/Current Pick
File?

k Either a file name has been listed explicitly in Options/Directories/
Pick File Name, or (if the Options/Directories/Pick File Name setting
is blank) you have loaded a default pick file.

Q: Suppose the Options/Directories/Pick File Name setting explicitly lists
a file name. How did that file name get there?

k You get a file name in Pick File Name by

• entering it yourself in the current session

144 Turbo C User's GuIde

• entering it in a previous session, saving the configuration file, then
using that configuration file in the current session

• installing it with TCINST

Q: Suppose Options/Directories/Pick File Name is blank, but Options/
Directories/Current Pick File contains a file name. How did that
default pick file get loaded?

A:. There was a default pick file, TCPICK.TCP, in the current directory or
(if not there) in the Turbo C directory, and Turbo C loaded it automat­
ically on startup.

Once a pick file is loaded, the integrated Environment remembers the full
path name. This information is displayed in the Options/Directories/
Current Pick File setting.

When Does Turbo C Save Pick Files?

Turbo C saves the file named in Options/Directories/Current Pick File
whenever you exit the integrated environment. In addition, any time the
pick file name is changed (either directly by entering a new name from the
menu, or indirectly, by loading a configuration file that contains a different
pick file name) Turbo C first saves the existing pick file.

Turbo C will not save a pick file to disk when you exit TC if the Options/
Directories/Current Pick File setting is blank.

Chapter 5, The Turbo C Integrated Development EnvIronment 145

Part IV: Additional Features and Editing
Commands

Some useful Turbo C editing features available in the integrated envi­
ronment cannot be accessed from the menu system. This section contains
information on how to take advantage of these features when you are
editing source code.

More on Tabs

• When the Editor's Tab mode is off, pressing the Tab key inserts enough
space characters to move the cursor to the next "soft" tab stop. Soft tab
stops align with the first letter of each word in the line of text imme­
diately above the current line. (When Tab mode is On, of course, pressing
the Tab key inserts enough spaces to move the cursor to the next tab stop,
as designated by Options/Environment/Tab Size; the default is 8.)

• When you send a marked block of text from the Editor to a file (or to
PRN) with the Ctrl-K Wcommand, the Editor treats all tab characters as
hardware tabs and writes (or prints) them "as is." This generally Yields tab
stops at every eighth column. However, when you send text from the
Editor to the printer with the Ctrl-K P command, the Editor treats tab
characters as software tabs and prints them as the appropriate number of
space characters <equal to the tab size you chose with Options/Envi­
ronment/Tab Size).

Autoindent, Unindent, and Optimal Fill

Autoindent is an editing feature that, following a hard return, positions the
cursor under the first nonblank character in the preceding nonblank line.

When you first run TCINST (the Turbo C Customization program), Auto­
indent mode will be turned On automatically, since the default for the
TCINST Options/Environment/Options for Editor/ Autoindent toggle is
On.

Thereafter, in the Edit window, you can toggle Autoindent On or Off by
pressing Ctrl-O lor Ctrl-Q I. (That is, hold down the Control key and press 0 or
0, then press I.)

Unindent is an editing feature that outdents the cursor; that is, it moves the
cursor one or more spaces to the left to line up with the previous inden­
tation level.

146 Turbo C User's Guide

a = 3;
i = 1;
while (i <= 25)

{
product = a * i;
printf("%d. %d", i, product);
++i;
}
...-Autoindent will return you to this column.

• Pressing the backspace once to outdent will
step you back to tliis column.

Figure 5.24: How Unlndent Works

To use Unindent, position the cursor on the first nonblank character of a
line, or on a blank line. Press Backspace. The cursor will be moved to the
same column as the previous indentation level; in this case, Backspace may
move back more than one space.

Optimal fill mode has no effect unless Tab mode is also set to On. When
both these modes are enabled, the beginning of every autoindented and
unindented line is filled optimally with tabs and spaces. This produces
lines with a minimum number of characters. Ctrl-D F toggles Optimal fill On
and Off.

Examples

• Options/Environment/Tab Size is set to 8 (tab stops are in columns 1,9,
17, 25, ...); Autoindent, Tab, and Insert modes are On; and the cursor is at
the end of a line that begins at column 27.

• Press Enter to insert a new line; the Editor positions the cursor at
column 27 in that new line.

• Without moving the cursor, type a character on the new line.

• The Editor fills the beginning of the new line with three tab characters
(to column 25) and two space characters (to column 27) for a total of
five inserted fill characters.

• If, in this same example, Options/Evironment/Tab Size is set to 5 (tab
stops in columns 1, 6, 11, 16, 21, 26, ...), the Editor fills with five tab
characters (to column 26) and one space character.

• Or, if Tab Size is set to 6 (tab stops I, 7, 13, 19,25, ...), and you move the
cursor to column 18 before typing your first characters, the Editor fills

Chapter 5. The Turbo C Integrated Development Environment 147

with two tab characters (to column 13) and five space characters (to
column 18).

Pair Matching

There you are, debugging your source file that is full of functions, paren­
thesized expressions, nested comments, and a whole slew of other con­
stmcts that use delimiter pairs. In fact, your file is teeming with

• braces: (and)
• angle brackets: < and>

• parentheses: (and)
• square brackets: [and]
• comment markers: /''' and'"/
• double quotes: n

• single quotes: I

Finding the match to a particular paired constmct can be tricky. Suppose
you have a complicated expression with a number of nested sub­
expressions, and you want to make sure all the parentheses are properly
balanced. Or say you're at the beginning of a function that stretches over
several screens, and you want to jump to the end of that function. With
Turbo C's handy pair-matching commands, the solution is at your
fingertips. Here's what you do:

1. Place the cursor on the delimiter in question (for example, the opening
brace of some function that stretches for a couple of screens).

2. To locate the mate to this selected delimiter, simply press Ctrl-Q Clrt-[. (In
the example given, the mate should be at the end of the function.)

3. The Editor immediately moves the cursor to the delimiter that matches
the one you selected. If it moves to the one you had intended to be the
mate, you know that the intervening code contains no unmatched
delimiters of that type. If it moves to the wrong delimiter, you know
there's trouble in River City; now all you need to do is track down the
source of the problem.

A Few Details about Pair Matching

We've told you the basics of Turbo C's "Match Pair" commands; now you
need some details about what you can and can't do with these commands,
and notes about a few subtleties to keep in mind. This section covers the
following points:

148 Turbo C User's Guide

• There are actually two Match Pair editing commands: one for forward
matching (CtrI-Q Ctrt-{) and the other for backward matching (Ctrl-Q Ctrt-]).

• The way the Editor searches for comment delimiters (/* and */) is
slightly different from the the way it performs the other searches.

• If there is no mate for the delimiter you've selected, the Editor doesn't
move the cursor.

Directional and Nondirectional Matching

Two Match Pair commands are necessary because some delimiters are
directional, while others are not.

For example, suppose you tell the Editor to find the match for an opening
brace (() or an opening square bracket ([). The Editor knows the matching
delimiter can't be located before the one you've selected, so it searches
forward for a match. Opening braces and opening square brackets are
directional; the Editor knows in which direction to search for the mate, so it
doesn't matter which Match Pair command you give. Given either com­
mand, the Editor still searches in the correct direction.

Similarly, if you tell the Editor to find the mate to a closing brace ()) or a
closing parenthesis ()), it knows that the mate can't be located after the
selected delimiter, so it automatically searches backward for a match.
Again, because these delimiters are directional, it doesn't matter which
Match Pair command you give; the Editor always searches in the correct
direction.

However, if you tell the Editor to find the match for a double quote (It) or a
single quote (I), it doesn't know automatically which way to go. You must
specify the search direction by giving the correct Match Pair command. If
you give the command Ctrl-Q Ctrl-[, the Editor searches forward for the
match; if you give the command Ctrl-Q Ctrl-}, it searches backward for the
match.

The following table summarizes the delimiter pairs, whether they imply
search direction, and whether they are nestable. <Nestable delimiters are
explained after this table.)

Chapter 5, The Turbo C Integrated Development Environment 149

Delimiter Direction Are They
Pair Implied? Nestable?

() Yes Yes
() Yes Yes
[] Yes Yes

< > Yes Yes

1* *1 Yes Yes and No
II If No No

No No

Nestable Delimiters

What does nestable mean? Simply that, when it is searching for the mate to a
directional delimiter, the Editor keeps track of how many delimiter levels it
enters and exits during the search.

This is best illustrated with some examples:

matched pair

~
arrl [arr2 [xl l

y
matched pair

matched pair matched pair

~~
(x > 0) && (y < 0)

matched pair

Rgure 5.25: Search for Match to Square Bracket or Parenthesis

The Search for Comment Delimiters

Because comment delimiters are two-character delimiters, you must take
care when you highlight one for a Match Pair search. In either case, the
Editor recognizes only the first of the two characters: the slash (/) part of a
/'" comment delimiter, or the asterisk ("') part of a ", / delimiter. If you place
the cursor on the second character in either of these delimiters, the Editor
won't know what you're looking for, so it won't do any searching at all.

150 Turbo C User's Guide

Also, as shown in the preceding table, comment delimiters are sometimes
nestable, sometimes not ("Yes and No"). This is not a vagary or an inability
to decide: It is a test dependent on multiple conditions. ANSI-eompatible C
programs cannot contain nested comments, but Turbo C provides an
optional O/C/S/Nested Comments feature that you can toggle On and
Off. This feature affects the nestability of comment delimiters when it
comes to pair matching.

• If Options/CompilerlSource/Nested Comments is toggled On, the
Editor treats comment delimiters as nestable and keeps track of the
delimiter levels it enters and exits in the search for a match.

• If Options/CompilerlSource/Nested Comments is toggled Off, the
Editor does not treat comment delimiters as nestable; when a I· pair is
selected, the first • I pair the Editor finds is the match (and vice versa).

Note: If unmatched delimiters of the same type in comments, quotes, or
conditional compilation sections fall between the matched pair, this affects
the search.

Here are some examples to illustrate these differences:

/* /* /* /* Here are some nested comments. */ */ */ *(
l match level match level --'.

selected found

Figure 5.26: Nested Comments Toggled On-Forward search with I\Q 1\(

Note: A backward search from the found ·1 will yield the selected I· when
OptionsI CompilerI SourceI Nested Comments is toggled On.

/* /* /* /* Here are some nested comments. *(*/ */ */
I match level match level .

selected found

Rgure 5.27: Nested Comments Toggled Off--Forward Search with I\Q 1\(

/* /* /* /* Here are some nested comments. */ */ */ */

I match level match level I
selected found

Rgure 5.28: Nested Comments Toggled Off-Backward Search with I\Q 1\)

Chapter 5. The Turbo C Integrated Development Environment 151

Editing Key Assignment

Turbo C's interactive Editor provides many editing functions that are
assigned to certain keys or key combinations. These are explained in detail
in Appendix A in the Turbo C Reference Guide.

TCINST is Turbo C's optional customization program. One of its menus
allows you to assign the Turbo C editing functions to other keys, if you
prefer. This is known as rebinding the keys.

Note: This feature is covered in detail in Appendix F in the Turbo C
Reference Guide, so we'll cover just the basics here.

To change Turbo C's editing commands, follow this general procedure:

1. Load TCINST.EXE (at the DOS prompt, tyPe tcinst and press Enter).
From the main customization menu, choose the Editor commands
menu. The Install Editor screen will come up, displaying three columns
of text:

• The first column (on the left) describes the editing functions available.
• The second column lists the primary keystrokes (what you press to

invoke a particular editing function).
• The third column lists the secondary keystrokes (optional alternate

keystrokes you can press to invoke the same editing function).

2. The bottom lines of text in the Install Editor screen summarize the keys
you use to change entries in the primary and secondary keystroke
columns. Press Enter to enter the keystrok~iting mode, then use the
Left and Right arrow keys to move the highlight bar to either the primary
or secondary column.

3. Use the Up and Down arrow keys to highlight the editing command you
intend to rekey.

4. Press Enter to choose the highlighted editing command; the defined key­
stroke(s) for that command appears in a pop-up window.

5. Press Backspace to delete individual keystrokes from right to left in the
pop-up window, or press F3 to clear all defined keystrokes from the
window.

6. Keystroke combinations come in three flavors: WordStar-like, Ignore
Case, and Verbatim. Press F4 to cycle through these until the one you
want is highlighted on the bottom line of the screen. Refer to Appendix
F in the Turbo C Reference Guide for more information about these three
variations.

7. Type in the new defined keystrokes for that editing function (up to a
maximum of six keystrokes). If you want to erase the last keystroke you
assigned, press Backspace. If you want to abandon the new key assign-

152 Turbo C User's Guide

ments to that function, press F2 to restore the originally assigned keys,
or Esc to restore them and leave the keystroke-editing mode.

8. Once you're satisfied with the new (or restored) key assignment(s) to a
given function, press Enter to accept them.

9. When you've finished assigning keys (you've accepted the last modifi­
cation), press Esc to leave the Install Editor screen and return to
TCINST's main menu.

Note: If you override a standard Turbo C key, you will not be able to use
that Turbo C shortcut while you are in the Editor.

Chapter 51 The Turbo C Integrated Development Environment 153

154 Turbo C Userls Guide

c H A p T E R

6

Prograntnting in Turbo C

Have you ever programmed in C before? You may have heard various
stories about how C is a difficult language to learn. Nonsense. It is true that
some C programmers delight in writing obscure programs that are difficult
to read and debug, but there's nothing that says you have to do the same.
The basic elements of the C programming language are easy to understand
and use.

In This Chapter...

In this chapter, we will teach you the basic elements of the C language and
show you how to use them in your programs. The next chapter, "More
About Programming in Turbo C," teaches you more about C, and Chapter
12, "Advanced Programming in Turbo C," tells you all about memory
models, intelTUpts, assembly language programming, and other advanced
topics.

Of course, we can't teach you everything about programming in C in one
or two chapters; there are entire books about that. See the bibliography in
the back of the Turbo C Reference Guide for a list of books about the C
language that you may want to refer to.

Before you work through this chapter, you should read Chapter 5, "The
Turbo C Integrated Development Environment," and learn how to use the
menus and text editor in Turbo C. You should also have made backup
copies of your Turbo C disks and installed Turbo C as described in Chapter
1.

Chapter 6. Programming In Turbo C 155

Once you've done all that, sit down, turn on your computer (if it isn't
already on), and get ready to learn about programming in Turbo C.

The Seven lJasic Elements of Programming

The purpose of most programs is to solve a problem. Programs solve
problems by manipulating information. Your job is to

• get the information into the program

• arrange for someplace to keep it
• give the instroctions to manipulate it
• get it back out of the program to the user

You can organize your instroctions so that

• some are executed only when a specific condition (or set of conditions) is
true

• some are rePeated a number of times
• some are broken off into chunks that can be executed at different

locations in your program

We've just described the seven basic elements of programming: input, data
types, operations, output, conditional execution, loops, and subroutines. This list
is not comprehensive, but it does describe those elements that programs
usually have in common.

Most programming languages have all these; many, including C, have
additional features as well. But to learn a new language quickly, it is
usually most efficient to learn how that language implements these seven
elements, then build from there. Here's a brief description of each element:

Input means reading values in from the keyboard, from a disk, or from an
I/O port.

Data types are constants, variables, and structures that contain numbers
(integer and real), text (characters and strings), or addresses (of variables
and structures).

Operations assign one value to another, combine values (add, divide, etc.),
and compares values (equal, not equal, etc.).

Output means writing information to the standard output (stdout), to a
disk, or to an I/O port.

Conditional execution means that your program executes a set of
instructions only if a specified condition is true (and skips them if it is
false).

156 Turbo C User's Guide

Loops (iterations) execute a set of instmctions some fixed number of times
or while some condition is true.

Subroutines are separately named sets of instructions that can be executed
anywhere in the program just by a reference to the name.

Now we'll take a look at how to use these elements in Turbo C.

Output

It may seem funny to talk about output first, but a program that does not
somehow output information isn't of much use. Output usually takes the
form of information written to the screen (words and pictures), to a storage
device (floppy or hard disk), or to an I/O port (serial port, printer port).

The printf Function

You've already used the most common output function in C: the printf
routine. The purpose of printf is to write information to the screen. Its
format is both simple and flexible:

printf«format string>,<item>,<item>, •••);

The Format String

The format string is just a string that begins and ends with double quotes
(''like this"); printf's purpose is to write that string to the standard output
(stdout). First, though, printf substitutes in the string certain items listed
after the string, according to the format commands found in the string itself.
For example, your last program had the following printf statement:

print f (liThe sum is %d \0 11
, sum) ;

The %d in the format string is one kind of format command called a format
specification. All format specifications start with a percent sign (%) and are
(usually) followed by a single letter, indicating the type of data to be
inserted and how the data is to be formatted.

You should have exactly one item listed for each format specification. H the
item is of a data type that doesn't directly correspond to the format
specification, you will get unpredictable results. The items themselves can
be variables, constants, expressions, function calls. In short, they can be
anything that yields a value appropriate to the corresponding format
specification.

Chapter 61 Programming In Turbo C 157

The %d used in this specification says that it expects an integer. Here are
some other commonly used format specifications:

%u unsigned integer

%ld long integer

%p pointer value

%f floating-point

%e floating-point in exponential format

%c character

%s string

%x or %X integer in hexadecimal format

You can set the width of the output field in which the data is printed out by
placing a number between the %and the letter that follows; for example, to
set an integer field to 4 spaces wide, you would type %4d. The value will be
printed out right justified (with leading blanks), so that the total field width
is4 spaces.

Ifyou need to print a percent sign, just insert %t.

The \n in the string isn't a format specification. It is known (for historical
reasons) as an escape sequence, and it represents a special character being
inserted into the string. In this case, the \n inserts a newline character. It
causes the cursor to move to the start of a new line after the string is written
out.

A complete list of all escape sequences can be found in Chapter 11. Here are
a few of the more commonly used ones:

\f formfeed

\t tab

\b backspace

\xhhh insert the character represented by ASCII code hhh, where hhh
equals 1 to 3 hexadecimal digits

And if you need to print a backslash, just insert \ \. If you want more detail
on how printf works, turn to the printf entry in Chapter 2 of the Turbo C
Reference Guide.

Other Output Functions: puts and putchar

There are two other output functions that you might be interested in: puts
and putchar.

158 Turbo C User's Guide

The function puts writes a string to the screen followed by a newline
character.

For example, you could rewrite HELLO.C as

'include <stdio.h>

main()
(

puts("Hello, world");

Note that we dropped the \n at the end of the string; it isn't needed, since
puts adds one.

The function putchar writes a single character to the screen and does not
add a \n. The statement putehar (eh) is equivalent to printf ("%e", eh).

Why might you want to use puts and/or putchar instead of printf? One
good reason is that the routine that implements printf is rather large;
unless you need it (for numeric output or special formatting), you can make
your program both smaller and quicker by using puts and putchar instead.
For example, the .EXE file created by compiling the version of HELLO.C
that uses puts is much smaller than the .EXE file for the version that uses
printf.

Data Types

When you write a program, you're working with some kind of information,
most of which falls into one of four basic types: integers, floating-point
numbers, text, and pointers.

Integers are the numbers you learned to count with (1,5, -21, and 752, for
example).

Floating-point numbers have fractional portions (3.14159) and exponents
(2.579xt()24). These are also known as real numbers.

Text is made up of single characters (a, Z, !, 3) and strings ("This is only a
test.").

Pointers don't hold information; instead, each one contains the address of
some location in the computer's memory that does hold information.

Float Type

C supports these four basic data types in various forms. You've already
used two of them: integers (inO and characters (char). Now you will
modify your last program to use a third type: floating point (float).

Chapter 6. Programming In Turbo C 159

Go into the Turbo C editor and change your program to look like this:

linclude <stdl0.h>

mainO
(

int a,b;
float ratio;

printf(AEnter two numbers: A);
scanf(A%d %dA,&a,&b);
ratio =a / b;
prlntf(AThe ratio is %f \nA,ratio);

)

Save this as RATIO.C by bringing up the menus and choosing the Filel
Write To command. Then press Ctrl·F9 to compile and ron the program.
Enter two values (such as 10 and 3) and note the result .(ooסס3.00)

You were probably expecting an answer of 3.333333; why was the answer
just 3? Because a and bare both of type int, so the result of alb was of type
int. That was converted to type float when you assigned it to ratio, but the
conversion took place after the division, not before.

Go back and change the tyPe of a and b to float; also change the format
string "%d %d" in seanf to "U %fll. Save the code (press F2), then compile and
ron. The result is now 3.333333, as you expected.

There are also two large versions of type float, known as double and long
double. As you might have guessed, variables of type double are twice as
large as variables of type float, and variables of type long double are even
larger. This means that they have more significant digits and a larger range
of exponents. The specific sizes and ranges of values for these types in
Turbo C can be found in Chapter 11.

The Three ints

In addition to the type int, C supports short int and long int, usually
abbreviated as short and long. The actual sizes of short, int, and long
dePend upon the implementation; all that C guarantees is that a variable of
type short will not~ larger (that is, will not take up more bytes) than one
of type long. In Turbo C, these types occupy 16 bits (short), 16 bits (int),
and 32 bits (long).

160 Turbo C User's Guide

Unsigned

C allows you to declare certain types (char, short, int, long) to be unsigned.
This means that instead of having negative values, those types only contain
non-negative values (greater than or equal to zero).

Variables of those types can then hold larger values than signed types. For
example, in Turbo C a variable of type int can contain values from -32768
to 32767; one of type unsigned int can contain values from 0 to 65535. Both
take up exactly the same amount of space (16 bits, in this case); they just use
it differently. Again, see Chapter 11 for specific details.

Defining a String

C does not support a separate string data type, but it does provide two
slightly different approaches to defining strings. One is to use a character
array; the other is to use a character pointer.

Using a Character Array

Choose the Load command from the File menu and bring your edited
version of HELLO.C back in. Now edit it to appear as follows:

'include <stdio.h>
'include <string.h>

MainO
(

char msg(30);

strcpy(msg,nHello, world\n-);
puts(msg);

)

The [30) after msg tells the compiler to set aside space for up to 29
characters, that is, an array of 29 char variables. (The 30th space will be
filled by a null character-\O--{)ften referred to in this user's guide as a null
terminator.) The variable msg itself doesn't contain a character value; it
holds the address (some location in memory) of the first of those 29 char
variables.

When the compiler finds the statement

strcpy(msg,"Hello, world");

it does two things:

• It creates the string "Hello, world", followed by a null (\0) character
(ASCll code 0) somewhere within the object code file.

Chapter 6, Programming In Turbo C 161

• It generates the code to call a subroutine named strcpy, which copies the
characters from that string, one at a time, into the memory location
pointed to by msg. It does this until it copies the null character at the end
of the "Hello, world" string.

When you call puts (msg), you pass the value in msg-the address of the first
letter it points to-to puts. Then puts checks to see if the character at that
address is the null character. If it is, then puts is finished; otherwise, puts
prints that character, adds one (1) to the address, and checks for the null
character again.

Because of this dependency on a null character, strings in C are known as
being null terminated: a sequence of characters followed by the null
character. This approach removes any arbitrary limit on the length of
strings; instead, a string can be any length, as long as there is enough
memory to hold it.

Using a Character Pointer

The second method you can use to define strings is a character pointer. Edit
your program to look like this:

'include <stdio.h>
'include <string.h>

main ()
(

char *msg;

msg ::;: "Hello, world\n";
puts(msg);

The asterisk (*) in front of msg tells the compiler that msg is a pointer to a
character; in other words, msg can hold the address of some character.
However, the compiler sets aside no space to store characters and does not
initialize msg to any particular value.

When the compiler finds the statement

msg ::;: "Hello, world\n";

it does two things:

.As before, it creates the string "Hello, world\n", followed by a null
character somewhere within the object code file.

• It assigns the starting address of that string-the address of the character
H-tomsg.

The command puts (msg) works just as it did before, printing characters
until it encounters the null character.

162 Turbo C User's Guide

There are some subtle differences between the array and pointer methods
for defining strings, which we'll talk about in the next chapter.

Identifiers

Up until now, we've been giving names to variables without worrying
about whatever restrictions there might be. Let's talk about those
restrictions now.

The names you give to constants, data types, variables, and functions are
known as identifiers. Here are some of the identifiers used so far:

char, int, float predefined data tyPes
main main function of program
name, a, b, sum, msg, ratio user-defined variables
scanf, printf, puts predeclared functions

Turbo C has a few roles about identifiers; here's a quick summary:

• All identifiers must start with a letter (a•••z or A...Z) or an underscore
(-).

• The rest of an identifier can consist of letters, underscores, and/or digits
(0...9). No other characters are allowed.

• Identifiers are case-sensitive. This means that lowercase letters (a .. .z) are
not the same as uppercase letters (A...Z). For example, the identifiers
indx, Indx, and INDX are different and distinct from one another.

• The first 32 characters of an identifier are significant.

Operations

Once you get that data into the program (and into your variables), what are
you going to do with it? Probably manipulate it somehow, using the
operators available. And C has lots and lots of operators.

The Assignment Operator

The most basic operation is assignment, as in ratio :: alb or ch = getch (). In
C, assignment is a single equal sign (=)i the value on the right of the equal
sign is assigned to the variable on the left.

You can stack up assignments, such as sum := a :: b. In a case like this, the
order of evaluation is right to left, so that b would be assigned to a, which
in turn would be assigned to sum, giving all three variables the same value
(namely, b's original value).

Chapter 6, Programming In Turbo C 163

Unary and Binary Operators

C supports the usual set of binary arithmetic operators:

• multiplication (.)
• division (/)
• modulus (%)
• addition (+)

• subtraction (-)

Turbo C supports unary minus (a + (-b), which performs an arithmetic
negation. Turbo C also supports unary plus (a + (+b), as per the ANSI C
standard.

Increment (++) and Decrement (-) Operators

C has some special unary and binary operators as well. The most well
known unary operators are increment (++) and decrement (--). These allow
you to use a single operator that adds 1 to or subtracts 1 from any value; the
addition or subtraction can be done in the middle of an expression, and you
can even decide whether you want it done before or after the expression is
evaluated. Consider the following lines of code:

sum = a + b++;
sum = a + ++b;

The first says, "Add a and b together, assign the result to sum, and
increment b by one." The second says, "Increment b by one, add a and b
together, and assign the result to sum."

These are very powerful operators, but you have to be sure you understand
them correctly before using them. Modify SUM.C as follows, then try to
guess what its output will be before you run it.

164 Turbo C User's Guide

'include <stdio.h>

main()
(

int a,b,sum;
char *format;

format = aa = %d b = %d sum = %d \na;
a = b = 5;
sum = a + b; printf(format,a,b,sum);
sum = a++ + b; printf(format,a,b,sum);
sum =++a + b; printf(format,a,b,sum);
sum = --a + b; printf(format,a,b,sum);
sum = a-- + b; printf(format,a,b,sum);
sum =a + b; printf(format,a,b,sum);

Bitwise Operators

For bit-level operations, C has the following operators:

• shift left «<)
• shift right (»)
• AND (&)
.OR(I)
.XORe')
.NOT(-)

These allow you to perform very low-level operations on values. To see the
effect of these operators, type in and run this program:

'include <stdio.h>

main()
(

int a,b,c;
char *formatl,*format2;

formatl = • %04X %s %04X = %04X\n N;

format2 = a %c%04X = %04X\na;
a = OxOFFO; b = OxFFOO;
c = a «4; printf(formatl,a,"«",4,c);
c = a »4; printf(formatl,a,"»",4,c);
c = a &b; printf(formatl,a,"& ",b,c);
c = a I b; printf(formatl,a,·1 ·,b,c);
c = a Ab; printf(formatl,a,"A ·,b,c);
c = -a; printf(format2,'-',a,c);
c =-a; printf(format2,'-',a,c);

Chapter 6, Programming In Turbo C 165

Again, see if you can guess the output of this program before running it.
Note that field-width specifiers have been used to nicely align the output;
the %04X specifier says that we want the output to use leading zeros, to be
four digits wide, and to be in hexadecimal (base 16).

Combined Operators

C allows you to use a little shorthand when writing expressions that
contain multiple operators. You can combine the assignment operator (=)
with the operators discussed so far (unary, binary, increment, decrement,
and bitwise).

Just about any expression of the form

<variable> =<variable> <operator> <exp>;

can be replaced with

<variable> <operator> =<exp>;

Here are some examples of such expressions and how they can be
condensed:

a = a + b;

a = a- b;

a =a *b;

a = a / b;
a = a % bi

a = a «bi

a = a» b;

a=a&b;
a = a I b;

a = a A bi

is condensed to a += bi

is condensed to a -= bi

is condensed to a *= bi

is condensed to a / = b;

is condensed to a %= b;

is condensed to a «= b;

is condensed to a »= bi

is condensed to a &= b;

is condensed to a I=b;

is condensed to a A= bi

Address Operators

C supports two special address operators: the address-of operator (&) and
the indirection operator (*).

The & operator returns the address of a given variablei if sum is a variable
of type int, then &sum is the address (memory location) of that variable.
Likewise, if msg is a pointer to type char, then *msg is the character to
which msg points.

166 Turbo C User's Guide

Type in the following program and see what you get.

'include <stdio.h>

main ()
(

int sum;
char *msg;

sum = 5 + 3;
msg = AHello, there\n";
printf(n sum = %d &sum = %p \nn,sum,&sum);
printf("*msg = %c msg = %p \nA,*msg,msg)i

}

The first line prints out two values: the value of sum (8) and the address of
sum (assigned by the compiler). The second line also prints out two values:
the character to which msg points (H) and the value of msg, which is the
address of that character (also assigned by the compiler).

Input

C has several input functions; some take input from a file, others from the
keyboard. When you need detailed information about the Turbo C input
functions, refer to the entries on ...scanf and read in the Reference Guide and
Chapter 11 in this manual.

The scanf Function

For interactive input, you'll probably use scanf most of the time. scanf is
the input analog to printf; its format is

scanf«format string>,<addr>,<addr>, •••)

scanf uses many of the same %<letter> formats that printf does: %d for
integers, %f for floating-point values, %s for strings, and so on.

However, there is one important difference with scanf: The items following
the format string must be addresses, not values. The program SUM.C
contains the following call:

scanf(A%d %d",&a,&b);

This call tells the program that it expects you to type in two decimal
(integer) values separated by a space; the first will be stored at the address
associated with aand the second at the address associated with b. Note that
it uses the address-of (&) oPerator to pass the addresses of a and b to scanf.

Chapter 6, Programming In Turbo C 167

Whitespace

The space between the two %d format commands actually represents more
than just a space. It indicates that you can have any amount of whitespace
between the values. What is whitespace? Any combination of blanks, tabs,
and newlines. C compilers and programs typically ignore whitespace in
most circumstances.

But what if you wanted to separate the numbers with a comma instead of a
blank? Then you could change the line to read

This allows you to enter the values with a comma between them.

Passing an Address to scan!

What ifyou want to input a string? TyPe in and run the following program:

'include <stdio.h>

main()
(

char name(150);

printf("What is your name: A);
scanf ("%s", name);
print! ("Hello, b\n", name);

Since name is an array of characters, the value of name is the address of the
array itself. Because of that, you don't use the & operator in front of name;
you simply say scanf ("%sa ,name).

Note that we used the array approach (char name [150];) rather than the
pointer approach (char "name;). Why? Because the array declaration
actually sets aside memory to hold the string, while the pointer declaration
does not. If we wanted to use char *name, then we'd have to explicitly
allocate memory for Itname.

Using gets and getch for Input

Using scanf to input strings introduces another problem, though. Run your
program again, but this time type in your full name. Note that the program
only uses your first name in its reply. Why? Because, to scanf, the blank
you typed after your first name signaled the end of the string you were
entering.

168 Turbo C User's Guide

There are two possible solutions to this. Here's the first:

'include <stdio.h>

mainO
(

char first(30),middle[30),last[30];

printf("Hhat is your name: "I;
scanf("%s %s %s",first,middle,last);
printf (IlHello, Dr. %s, or should I say %s?\n" ,last, first);

This, of course, assumes that you have some middle name; in this example,
scam won't continue until you've actually typed in three strings. But what
ifyou want to read in the entire name as a single string, blanks and all?

Here's· the second solution:

'include <stdio.h>

main()
(

char name[150]i

printf("Hhat is your name: ");
gets(name);
printf("Hello, %s\nU,name);

)

The function gets reads in everything you type until you press Enter. It does
not store the Enter in the line; but it does stick a null character (\O) at the
end.

Finally, there's the function getclt. It reads a single character from the
keyboard without echoing it to the screen (unlike scam and gets). Note that
it doesn't take a character parameter; instead getch is a function of type
char, and its value can be assigned directly to ch.

Conditional Statements

There are some operators we haven't talked about yet: relational and logical
operators. There are also some complexities about expressions that we
saved for this discussion of conditional (true or false) statements.

Relational Operators

Relational operators allow you to compare two values, Yielding a result
based on whether the comparison is tme or false. If the comparison is false,

Chapter 6. Programming In Turbo C 169

then the resulting value is 0; if true, then the value is 1. Here's a list of the
relational operators in C:

> greater than
>= greater than or equal to
< less than
<= less than or equal to
-- equal to
!= not equal to

Why would you care if something were true or false? Load and run the
program RATIO.C and see what happens when you enter 0 for the second
value. Your program prints a Divide by zero error message and halts.

Now make the following changes to your program and run it again.

'include <stdio.h>

main()
(

float a,b,ratio;

printf("Enter two numbers: n);
scanf("%f %fU,&a,&b);
if (b ;; 0.0)

printf(IIThe ratio is undefined\n");
else (

ratio ; a I b;
printf(nThe ratio is %f \n",ratio);

The statement on the two lines after the call to scaM is known as an if
statement. You can read it as: '1f the value of the expression (b == 0.0) is
true, immediately call printf. If the value of the expression is False, assign
alb to ratio, then call printf."

Now if you enter 0 as the second value, your program prints the message

The ratio is undefined

in the Execution screen, then returns to Turbo C. If the second value is
nonzero, the program calculates and prints out the ratio.

Logical Operators

There are also three logical operators: AND (&&), OR (I I), and NOT (0.
These are not to be confused with the bitwise operators (&, I, -) previously
described. These logical operators work with logical values (true and false),
allowing you to combine relational expressions.

170 Turbo C User's Guide

How do they differ from the corresponding bitwise operators?

• These logical operators always produce a result of either 0 (false) or 1
(true), while the bitwise operators do true bit-by-bit operations.

• The logical operators && and I I will short circuit. Suppose you have the
expression exp1 && exp2. If expl is false, then the entire expression is false,
so exp2 will never be evaluated. Likewise, given the expression
exp1 II exp2, exp2 will never be evaluated if expl is true.

More about Expressions

Before we go on to loops, we have a few more comments about
expressions. Things like (b == 0.0) and (a <= q* r) are pretty straight­
forward. However, C allows you to make things more complicated than
that.

Assignment Statements

Any assignment statement enclosed in parentheses is an expression that
has the same value as that which was being assigned.

For example, the expression (sum = 5+3) has the value 8, so that the
expression ((sum = 5+3) <= 10) would always Yield a value of true (1)
(since 8 <= 10).

More exotic is this example:

if ((ch=qetch()) == 'q')
puts("Ouitting, huh?\n A);

else
puts("Good move; we'll have another go at it\n");

Can you figure out what this does? When your program hits the expression
((ch=getch (») == , q'), it stops until you press a character, assigns that
character to ch, then compares that same character to the letter q. If the
character you pressed equals q, then the message uQuitting, huh?1I is
printed on the screen; otherwise, the other message (IIGood move ••• II) is
printed.

The Comma Operator

You can use the comma operator (,) to put multiple expressions inside a
set of parentheses. The expressions are evaluated from left to right, and the
entire expression assumes the value of the last one evaluated. For example,
ifoldch and ch are both of type char, then the expression

Chapter 6. Programming In Turbo C 171

(oldch = ch, ch = getch())

assigns ch to oldch, gets a character from the keyboard and assigns it to ch,
and then assumes the (assigned) value of ch.

For example,

ch = 'a';
if«oldch =ch, ch = 'b') == 'a')

puts("aye");
else

puts("bee");

The if... else Statement

Look again at the if statement in the previous examples. The if statement
takes the following generic format:

if (value)
statement!;

else
statement2 ;

where value is any expression that resolves to (or can be converted to) an
integer value. If value is nonzero (true), statementl is executed; otherwise,
statement2 is executed.

We must explain two important points about if...else statements in general.

First, the else statement2 portion is optional; in other words, this is a valid
if statement:

if (value)
statementl;

In this case, statementl is executed if and only if value is nonzero. If value is
zero, then statementl is skipped, and the program continues.

Second, what if you want to execute more than one statement if a particular
expression is true (or false)? Answer: use a compound statement. A
compound statement consists of

• a left brace (()
• some number of statements, each ending with a semicolon (;)

• a right brace ())

The ratio example uses a single statement for the if clause

if (b == 0.0)
printf(IIThe ratio is undefined\n");

172 Turbo C User's Guide

and a compound statement for the else clause

else l
ratio = a I b;
printf(aThe ratio is %f \na,ratio);

)

You might also notice that the body of your program (the function main) is
simply a compound statement. .

Loops

Just as there are statements (or groups of statements) that you want to
execute conditionally, there are other statements that you may want to
execute repeatedly. This kind of construct is known as a loop.

There are three basic kinds of loops (though two are just special cases of the
other one): the while loop, the for loop, and the do...while loop. We'll
cover them in that order.

The while Loop

The while loop is the most general loop and can be used to replace the
other two; in other words, a while loop is all you need, and the others are
just there for your convenience. Load up HELLO.C and modify it as
follows:

'include <stdio.h>

malnO
(

lnt len;

len =0;
puts(UType in a sentence, then press <Enter>");
while (getchar() != '\n')

len++;
printf(a\nYour sentence was %d characters long\n",len);

This program lets you type in a sentence and counts the number of
keystrokes, until you press Enter (\0). It then tells you how many characters
(not counting the Enter) you typed.

Chapter 6. Programming In Turbo C 173

The format of the while statement is

while (expression)
statement

where expression resolves to a zero or nonzero value, and statement is either
a single or a compound statement.

The while loop evaluates expression. If it's true, then statement is executed,
and expression is evaluated again. If expression isn't true, the while loop is
finished and the program continues on.

Take a look at another example of the while loop, based on HELLO.C:

linclude <stdio.h>

mainO
(

char *msg;
int indx;

msg = "Hello, world";
indx = 1;
while (indx <= 10) (

printf("time 1%2d: %5\n",indx,msg);
indx++;

When you compile and run this program, it prints out the following lines:

time I 1: Hello, world
time I 2: Hello, world
time I 3: Hello, world

and so on, down to

time 110: Hello, world

The printf statement was executed exactly ten times, with indx going from
1 to 10 during those ten executions.

Ifyou think about it, you may see a way to write that loop a little tighter:

indx = 0;
while (indx++ < 10)

printf (lltime 1%2d: %5\n ll
, indx,msg);

Study this second while loop until you understand why it functions exactly
the same way as the first version. Then go on and learn about the for loop.

174 Turbo C User's Guide

The for Loop

The for loop is the one found in most major programming languages,
including C. However, the C version of the for loop is very flexible and
very powerful, as you'll see.

The basic idea is that you execute a set of statements some fixed number of
times while a variable (known as the index variable) steps through a range of
values.

For example, modify the previous program to read as follows:

'include <stdio.h>

mainO
{

char *msgi
int indxi

msg = "Hello, world"i
for (indx = 1; indx <= 10; indxtt)

printf("time n2d: %s\n",indx,msg);

As you can see when you run it, this does the same thing as both while
loops already shown and, in fact, is precisely equivalent to the first one.
Here's the generic format of the for loop statement:

for (exp1i exp2i exp3)
statement

As with while, the for statement executes just one statement, but that
statement can be a compound statement «(...}).

Note what's inside the parentheses following the word for; there are three
sections separated by semicolons.

• expl is usually an assignment to the index variable.
• exp2 is a test for loop continuation.
• exp3 is usually some modification of the index variable.

The generic for loop is equivalent to the following code:

exp1;
while (exp2) (

statement;
exp3i

You can leave out any or all of the expressions, though the semicolons must
remain. If you leave out exp2, it is assumed to have a value of 1 (true), so
the loop never terminates (this is known as an infinite loop).

Chapter 6, Programming In Turbo C 175

On the other hand, you can use the comma operator to put in multiple
expressions for each expression.

For example, try these modifications on HELLO.C:

'include <stdio.h>

mainO
{

char *msg;
int up, down;

msg = ABello, world";
for (up = 1, down = 9; up <= 10; up++, down--)

printf("%s: %2d down, %2d to go\n",msg,up,down);

Note that the first and last expressions in this for loop have two expressions
each, initializing and modifying the variables up and down. You can make
these expressions arbitrarily complex. (Perhaps you have heard the legends
of C hackers who crammed most of their programs into the three
expressions of a for statement, leaving only a few statements for the loop to
execute.)

The do...while Loop

The final loop is the do•••while loop. Modify RATIO.C as follows:

'include <stdio.h>
'include <conio.h>

maln()
{

float a,b,ratio;

do (
printf("\nEnter two numbers: a);

scanf("'f %f",&a,&b);
if (b = 0.0)

printf("The ratio is undefined\n");
else (

ratio = a / b;
printf("The ratio is %f \n",ratio);

}

printf("Press 'q' to quit, any other key to continue");
} while (getch() != 'q');

This program calculates a ratio, then asks you to press a key. Ifyou press q,
the expression at the bottom is False and the loop ends. If you press some
key other than q, the expression is True and the loop rePeats.

176 Turbo C User's GuIde

Here's the generic fonnat for the do...while loop:

do statement while (exp);

The main difference between the while loop and the do...while loop is that
the statements in the do...while loop always execute at least once. This is
similar to the repeat...untilloop in Pascal, with one major difference: The
repeat loop executes until its condition is true; do...while executes while its
condition is true.

Functions

You've learned how to execute code conditionally and iteratively. Now, what
if you want to perform the same set of instructions on different sets of data
or at different locations in your program? Answer: You put those
statements into a subroutine, which you then call as needed.

In C, all subroutines are known as functions. In theory, every function
returns some value. In practice, the values returned by many functions are
ignored, and more recent definitions of C (including the draft ANSI C
standard and Turbo C) allow you to declare functions of type void, which
means they don't return values at all.

In C, you can both declare and define a function. When you declare a
function, you let the rest of your program know about it so that other
functions (including main) can call it. When you define a function, you give
the actual code for the function itself. For example, consider this rewrite of
RATIO.C:

'include <stdio.h>
'include <conio.h>

1* Function declarations *1

void get-parms(float *pl, float *p2);
float get_ratio(float dividend, float divisor);
void put_ratio(float ratio);

const float INFINITY; 3.4E+38;

1* Main function: starting point for program *1
mainO
(

float a,b,ratio;
do (

get-parms(&a,&b); 1* Get parameters *1
ratio = get_ratio(a,b); It Calculate ratio *1
put_ratio(ratio); It Print answer out *1
printf("press q to quit, any other key to continue ");

) while (getch 0 !; , q');
1* End of main *1

Chapter 6. Programming In Turbo C 177

/* Function definitions */
void get-parms(float *pl,float *p2)
(

printf ("\nEnter two numbers: ") ;
scanf("%f %f",pl,p2);

float get_ratio(float dividend, float divisor)
{

if (divisor == 0.0)
return (INFINITY);

else
return (dividend / divisor);

void put_ratio(float ratio)
(

if (ratio == INFINITY)
printf(IIThe ratio is undefined\n");

else
printf(IIThe ratio is %f\n",ratio);

Breaking Down the Program

The first three lines of the program are the function declarations; their
purpose is to declare the function type as well as the type and number of
the parameters for purposes of error-ehecking.

The next line defines a floating-point constant called INFINI1Y (it is a C
convention to name constants in uppercase). This constant has a very high
positive value---about the highest you can have with type float-and is
used to flag a divide-by-zero. Note that since it is declared outside of all
functions, it is "visible" inside all of the functions (including main).

Next comes the function main, which is the main body of your program.
Every C program has a function called main; when your program starts
executing, main is called, and everything proceeds from there. Once main
is through executing, your program is finished, and you return to Turbo C
(or, if you executed from a DOS prompt, to DOS).

The function main can be placed anywhere in the program; often it's the
first function, following any prototypes or other global declarations. That
makes it easy to find and helps to document the function of the entire
program.

After main come the actual definitions of the three functions declared in
the prototypes: get_parms, get_ratio, and put_ratio. Let's take a look at
each of these definitions.

178 Turbo C User's Guide

The get-parms Function

The get_parms function doesn't return a value of a given type, so we've
declared it to be of type void. Its purpose is to read in two values and store
them somewhere. Where? We have to pass two parameters to get_parms;
these parameters are the addresses where the values should be stored.
Look carefully: The two parameters are not of type float but are pointers to
type float. In other words, they are supposed to be addresses of float
variables.

That's exactly what we pass: When we call get_parms in main, the
parameters are &a,&b instead of just a,b. Notice also that when scanf is
called inside of geCparms, there are no address-of operators in front of pl
and p2. Why? Because pl and p2 are addresses already; they're the
addresses of a and b.

The get_ratio Function

The get_ratio function does return a value (of type float) calculated from
the two float values passed to it (dividend and divisor). The value returned
depends upon whether or not divisor is O. If it is, get_ratio returns
INFINIlY. If divisor is not 0, get_ratio returns the actual ratio. Note the
format of the return statement.

The put_ratio Function

The put_ratio function doesn't return a value, so it is of type void. It has
just a single parameter-ratio-which is used to determine what to print to
the screen. If ratio equals INFINIlY, then it is considered undefined;
otherwise, ratio is printed out.

Global Declarations

Constants, data types, and variables declared outside of any function
(including main) are considered to be global from that point on. This means
that they can be used by any function in the entire program following their
declaration. If you were to move the declaration of INFINIlY to the end of
the program, you would get two compiler errors, one in get_ratio and one
in put_ratio, for using an undeclared identifier.

Chapter 6. Programming In Turbo C 179

Function Declarations

You can use two different styles in declaring functions: the IIclassic" style
and the "modem" style. The classic style, found in many C texts and
programs, takes this form:

type funcname();

This specifies the function's name (funcname) and the type of data value it
returns (type). It does not give any parameter information, so no error­
checking can be done. If you rewrote the function declarations in RATIO.C
using this style, they would look like this:

void get-parms();
float get_ratio();
void put_ratio();

The modem style uses a constntct from the ANSI extensions known as a
function prototype. This declaration adds parameter information:

type funcname(pinfo,pinfo,etc.);

where pinfo takes one of the following formats:

type
type pname

In other words, for each formal parameter you can specify just the data
type, or you can give it a name as well. If the function takes a variable
number of parameters, then you can use the ellipsis (...) for the last
parameter.

This is the preferred approach, since it allows the compiler to check the
numbers and types of the parameters in actual calls to the function. This
approach also allows the compiler to perform proper conversions when
possible. The function declarations found in the previous version of
RATIO.C are function prototypes. More information about function
prototypes can be found in Chapters 11 and 12.

Function Definitions

As with function declarations, there are two styles of function definitions:
classic and modern.

180 Turbo C User's Guide

The classic format of a function definition is like this:

type funcname(pnames)
parm definitions;
(

local declarations;
statements;

The modem format moves the parameter definitions into the parentheses
following funcname:

type funcnarne(pinfo,pinfo,etc.)

In this example, however, the term pinfo represents all the information
about a given parameter; its tyPe modifiers and identifier name. This makes
the first line of the function definition look just like the corresponding
function prototype, with one important exception: There is no semicolon (;)
following the definition, whereas a function prototyPe is always ended by a
semicolon. For example, the function get_parms in the classic style looks
like this:

void get-parrns(pl, p2)
float *pl; float *p2;
(... }

and in the modem style it looks like this:

void get-parrns (float *pl, float *p2)
{ ... }

Note that any declarations (constants, data tyPes, variables) made within a
given function (including main) are visible (that is, can be used and
referenced) only within that function. Also note that C does not allow
nested functions; you can't declare one function inside another, the way
you can in, say, Pascal.

Functions can also be placed in any order in the program and are
considered global throughout the entire program, including within
functions declared prior to those being used. Be careful using a function
before it's defined or declared: When the compiler encounters a function it
hasn't seen before, it assumes the function returns an inl If you later define
it to return something else, say a char*, you'll get an error.

Comments

Sometimes, you want to insert notes in your program to remind you (or
inform someone else) of what certain variables mean, what certain
functions or statements do, and so on. These notes are known as comments.

Chapter 6, Programming In Turbo C 181

C, like most other programming languages, allows you to insert comments
into your program. The compiler does not compile a comment. It
recognizes the special character sequences that begin and end it and
ignores any text between them

To start a comment, you put in the slash-star character sequence (j'lt). From
then on, the compiler will skip over everything until it encounters the star­
slash ('It j) sequence that ends the comment.

Comments can even extend across multiple lines, like this:

/* This is a long
comment, extending
over several lines. */

Look in the expanded version of RATIO.C on page 177 for additional
examples of comments.

Summary

In this chapter we have introduced you to the seven basic elements of
programming and shown you how you use each of them in Turbo C.

In Chapter 7 we will have more to say about them, and about other Turbo
C features.

182 Turbo C User's Guide

c H A p T E R

7

More Prograntming in Turbo C

In the last chapter, we gave you a taste of working with Turbo C, just
enough to whet your appetite. Now you're ready to dig into some of the
more subtle and esoteric issues of C programming, and we're here to help
you.

In This Chapter...

In this chapter, we cover the following:

• data structures (including pointers, alTays, and structures)

• the switch statement
• commands that interrupt flow of control, including return, break,

continue, goto, and the conditional expression operator (1 :)
• streams and stream I/O: how to read from and write to a disk file or

hardware device
• programming style in C, especially with regards to some of the new C

extensions
• some common pitfalls for C programmers

A Survey of Data Structures

We covered basic data types in the last chapter-things such as integers,
floating-point numbers, characters, and their variants. Now we are going to
talk about how to use these elements to build data structures-collections of
data elements. But first, we'll explore an important concept in C-pointers.

Chapter 7. More Programming In Turbo C 183

Pointers

Most variables you've looked at so far hold data, that is, the actual
information your program is manipulating. But sometimes you want to
keep track of where some data is, rather than just its value. For that, you
probably need pointers.

If you feel shaky about the concepts of addresses and memory, here's a
quick review. Your computer holds your program and the associated data
in its memory (often called RAM, meaning Random Access Memory). At
its lowest level, your computer's memory is composed of bits, microscopic
electronic circuits that can "remember" (while the computer's power is on)
one of two values, which are usually interpreted as being 0 and 1.

Eight bits are grouped together into 1 byte. Groups of bytes are often given
names as well; commonly, 2 bytes is considered a word; 4 bytes is
considered a longword; and on the IBM PC, 16 bytes is considered a
paragraph.

Each byte in your computer's memory has a unique address, much as does
each house on a given street. But unlike most streets, consecutive bytes
have consecutive addresses; if a given byte has an address of N, then the
preceding byte has an address of N-l, and the following byte has an
address of N+1.

A pointer is a variable that holds the address of some data, rather than the
data itself. Why is this useful? First, you can use a pointer to point to
different data and different data structures. By changing the address the
pointer contains, you can manipulate (assign, remeve, change) information
in various locations. This allows you, for example, to traverse a linked list
of structures with only one pointer.

Second, using pointers allows you to create new variables while your
program is executing. C lets your program ask for some amount of memory
(in bytes), returning an address that you can store in a pointer. This is
known as dynamic memory allocation; using it, your program can adapt to
how much (or little) memory is available on a given computer.

Third, you can use a pointer to access different locations in a data structure,
such as an array, a string, or a structure. A pointer really points to just one
location in memory (the sum of a segment and its offset); by indexing the
pointer, you can access any succeeding byte(s).

You're undoubtedly convinced now that pointers are handy. So how do you
use them in C? First, you have to declare them. Consider the following
program:

184 Turbo C User's Guide

mainO
(

int ivar,*iptr;

iptr = &ivar;
ivar = 421;
printf("location of ivar: %p\n",&ivar);
printf("contents of ivar: %d\n", ivar);
printf("contents of iptr: %p\n", iptr);
printf("value pointed to: %d\n",*iptr);

This main has declared two variables: ivar and iptr. The first, ivar, is an
integer variable; that is, it holds a value of type into The second, iptr, is a
pointer to an integer variable; that is, it holds an address of a value of type
into You can tell that iptr is a pointer because it has an asterisk (It) in front of
it when it is declared. In C, this asterisk is known as the indirection operator.

In main, these assignments are as follows:

• the address of ivar is assigned to iptr
• the integer value 421 is then assigned to ivar

The address-of operator (&) mentioned in the previous chapter gets the
address of ivar.

Type in and run the preceding program; you'll get output that looks like
this:

location of ivar: 166E
contents of ivar: 421
contents of iptr: 166E
value pointed to: 421

The first two.lines show the address and contents of ivar. The third shows
the address that iptr contains. As you can see, it's the address of the
variable ivar; that is, the location in memory where your program decided
to create ivar. The last value printed is the data stored at that address, the
same data already assigned to ivar.

Note that the third call to printf used the expression iptr to get its contents,
the address of ivar. Then the last printf call used the expression Itiptr to
fetch the data stored at that address.

Here's a slight variation on the previous program.

Chapter 7, More Programming In Turbo C 185

mainO
t

int ivar, *iptr;

iptr = 'ivar;
*iptr = 421;
printf("loeation of ivar: %p\nn,&ivar);
printf(ncontents of ivar: %d\n", ivar);
printf("contents of iptr: %p\n", iptr);
printf("value pointed to: %d\nn,*iptr);

}

This still assigns the address of ivar to iptr, but instead of assigning 421 to
ivar, main assigns it to !tiptr. The results? Exactly the same as the previous
program. Why? Because the statement *iptr = 421 is the same as the
statement ivar = 421. And why is that so? Because ivar and !tiptr refer to the
same memory location-so both statements assign the value 421 to that
location.

Dynamic Allocation

Here's another variation of the program:

'include <alloe.h>

mainO
(

lnt *lptr;

lptr = (lnt *) malloe(sizeof(int));
*lptr =421;
prlntf(Aeontents of iptr: %p\n", lptr);
printf(Avalue pointed to: %d\nn,*iptr);

This version dropped the declaration of ivar altogether. Instead, it's
assigning to iptr the value returned by some function named malloc:, which
is declared in alloc.h (hence the 'include directive at the start). It then
assigns the value 421 to !tiptr, which is the address iptr points to. Ifyou run
this program, you'll get a different value for iptr than you did before, but
!tiptr will still be 421.

What does the statement iptr = (int *) malloc (sizeof (int)) do? We'll
break it down one part at a time.

• The expression sheaf (int) returns the number of bytes that a variable of
type int requires; using Turbo C on the IBM PC, the value it yields is 2.

• The function malloc(num} grabs num consecutive bytes of the available
(unused) memory in your computer. It then returns the starting address
of those bytes.

186 Turbo C User's Guide

• The expression (int *) means you will consider that starting address to
be a pointer to type into This is known as type-casting. In this ease, Turbo
C doesn't require it. But because many other C compilers do require it, if
you leave it off, you will get the warning message Nonportable pointer
assignment•

• Finally, this address is stored in iptr. This means you have dynamically
created an integer variable, which you can refer to as "'iptr.

Given all this, the entire statement can be described as: "Allocate from the
computer's memory enough space for a variable of type int, then assign the
starting address of that memory to iptr, which is a pointer to type int."

Was all this necessary? Yes. Why? Because without it you would have no
guarantee that iptr was pointing to an unused area of memory. iptr would
have some value in it, and that is the address it would use, but you
wouldn't know if that section of memory was being used for other reasons.
The rule for using pointers is simple: Always assign an address to a
pointer before using it. Rather, don't assign an integer value to "'iptr
without first assigning an address to iptr.

Pointers and Functions

In the last chapter, we explained how you declare parameters for functions.
Perhaps now you understand why you use pointers for formal parameters
whose values you wish to change. For example, consider the following
function:

void swap(int *a, int *b)
{

int temp;
temp = *a; *a = *b; *b =temp;

This function, swap, has declared the two formal parameters, a and h, to be
pointers to into This means they expect an address of an integer variable
(rather than its value) to be passed. Any changes made are made to the data
at the addresses passed in.

Chapter 7. More Programming In Turbo C 187

Here's a main function that calls swap:

mainO
(

int 1, j;

1 =421;
j = 53;
printf("before: 1 = %4d j =%4d\nA,i,j);
swap(&i,&j);
printf(Aafter: i = %4d j =%4d\n",i,j);

}

You'll notice that this program does indeed swap the values of i and j. You
can think of this program as being the equivalent of

ma1nO
(

int i, j;
int *a,*b,temp;

1 :: 421;
j = 53;
printf(Abefore: i =%4d j =%4d\nA,i,j);
a = &i;
b =&j;
temp = *a; *a =*b; *b =temp;
printf("after: i = %4d j:: %4d\nD,i,j);

This program, of course, produces the same results: The call swap(&i,&j)
assigns the values (they are addresses) of the two actual parameters (&i and
&j) to the two formal parameters (a and b), then executes the statements in
swap.

Pointer Arithmetic

What if you wanted to modify the program so that iptr points to three
integers instead of just one?

188 Turbo C User's Guide

Here's one possible solution:

'include <alloc.h>

main()
{

'define NUMINTS 3
lnt *list, i;

list = (int *) calloc(NUMINTS,sizeof(int»;
*list = 421;
*(list+1) =53;
*(listt2) = 1806;

printf("list of addresses: ");
for (i = 0; i<NUMINTS; itt)

printf(A%4p A, (listtl»;

printf(A\nlist of values : A);
for (i =0; i<NUMINTS; itt)

printf(A%4d A,*(list+i»;

printf(A\n ll
) ;

Instead of using malloc, this routine uses calloc, which takes two
parameters: how many items to allocate space for and the size of each item
in bytes. So now list points to a chunk of memory 6 (3 x 2) bytes long, big
enough to hold three variables of type into

Note very carefully the three statements that follow. The first statement is
familiar: *list = 421. It simply says, IIstore 421 in the int variable located at
the address in list."

The next statement (* (list+1) = 53) is important to understand. At first
glance, you might interpret this as, "store 53 in the int variable located 1
byte beyond the address in list." If so, you're probably concerned, since this
would be right in the middle of the previous int variable (which is 2 bytes
long). This, of course, would alter the value that you previously stored.

Don't worry; your C compiler is more intelligent than that. It knows that
list is a pointer to type int, and so the expression list + 1 refers to the byte
address of list t (1 * sizeof (int)), so that the value 53 does not clobber
the value 421 at all.

likewise, (list+2) refers to the byte address of list + (2*sizeof (int)), and
1806 gets stored without affecting the previous two values.

In general, ptT + i denotes the memory address ptr + a It sizeo/ant».

Type in and run the preceding program; the output will look something
like this:

Chapter 7. More Programming In Turbo C 189

list of addresses: 06AA 06AC 06AE
list of values: 421 53 1806

Note that the addresses are 2 bytes apart, not just 1, and the three values
have been kept separate.

To sum up all of this: If you use ptr, a pointer to type, then the expression
(ptr + i) denotes the memory address (ptr + (i*sizeof (type)), where
sizeaf (type) returns the number of bytes that a variable of type requires.

Arrays

Most high-level languages, including C, allow you to define arrays, that is,
indexed lists of a given data type. For example, you can rewrite the last
program to look like this:

mainO
(

Idefine NUMINTS 3
lnt listINUMINTS),i;

listlO] =421;
list 11] =: 53;
list [2] = 1806;
printf(Mlist of addresses: a);
for (i = 0; i < NUMINTS; iff)

printf("%p A,&list[i]);
printf{A\nlist of values : A);
for (i =0; i < NUMINTS; iff)

printf ("%4d ", list [i)) ;
printf ("\n") ;

The expression int list [NUMINTS J declares list to be an array of ints, with
space set aside for exactly three int variables. The first variable is referred
to as listlOI, the second as listl1l, and the third as listl21.

The general declaration for any array is

type name (size] ;

where type is some data type, name is the name you give the array, and size
is the number of elements of type that name contains. The first element in
the array is namelOI, while the last is namelsize-ll; the total size of the array
in bytes is size" (sizeaf (type).

190 Turbo C User's Guide

Arrays and Pointers

You may have already figured out that there is a close relationship between
arrays and pointers. In fact, if you run the previous program, your output
will look very familiar:

list of addresses: 163A 163C 163£
list of values: 421 53 1806

The starting address is different, but that is the only change. The truth is,
you can use the name of an array as if it were a pointer; similarly, you can
index a pointer as if it were an array.

Consider the following important identities:

(list + i) == &(list!i))
*(list + i) == list!i)

In both cases, the expression on the left is equivalent to the expression on
the right; you can use one in place of the other, regardless of whether you
declared list as a pointer or as an array.

The only difference between declaring list as a pointer and declaring it as
an array is in allocation. If you declare list as an array, your program
automatically sets aside the requested amount of space. If you declare list
as a pointer, you must explicitly create space for it using calloc or a similar
function call, or you must assign to it the address of some space that has
already been allocated.

Arrays and Strings

We talked about strings in the previous chapter and referred to declaring a
string in two slightly different ways: as a pointer to characters and as an
array of characters. Now you can better understand that difference.

If you declare a string as an array of char, the space for that string is
allocated. If you declare a string as a pointer to char, no space is allocated;
you must either allocate it yourself (using malloc or something similar) or
assign to it the address of an existing string. An example of this is given in
the section "Pitfalls in C Programming' later in this chapter.

Multidimensional Arrays

Yes, you can have multidimensional arrays. They are declared like this:

type name!size1) [slze2) ••• [sizeN);

Chapter 7, More Programming In Turbo C 191

Consider the following program, which initializes a couple of two­
dimensional arrays, then performs matrix multiplication on them:

main()
(

int a[3][4] = ((5, 3, -21, 42),
(44, 15, 0, 6),
(91, 6, 81, 2) };

int b[4] [2] = ((22, 1),
(91, -53),
(45, 0),
(12, 1));

int e[3][2],i,j,k;
for (i = 0; i < 3; itt) {

for (j = 0; j < 2; jt+)
eli] [j] = 0;
for (k = 0; k < 4; kt+)

e[i](j] += a[i][k] * b[k][j];

)

for (i = 0; i < 3; itt) (
for (j=O; j<2; j++)

printf(~e(%d] (%d] = %d ",i,j,e(i] [j]);
printf ("\n~);

Take note of two things in the preceding program: The syntax for
initializing a two-dimensional array consists of nested {... } lists separated
by commas, and square brackets ([]) that are used around each index
variable.

Some languages use the sYntax [i, j]j that is legal sYntax in C, but is the
same as saying just [j], since the comma is interpreted as the comma
operator ("evaluate i, then evaluate j, then let the entire expression assume
the value of j"). Be sure to put square brackets around every index variable.

Multidimensional arrays are stored in what is known as row-eolumn order.
This means that the last index varies the most rapidly. In other words,
given the array arr[3][21, the elements in arr are stored in the following
order:

arr [0] (0]

arr[O] [1]
arr[l] [0]
arr[l] [1]
arr[2] [0]
arr[2] [1]

The same principle holds true for arrays of three, four, or more dimensions.

192 Turbo C User's Guide

Arrays and Functions

What happens when you pass an array to a function?

Look at this function, which returns the index of the lowest value in an
arrayofint

int lmin(int list[),int size)
(

int i, minindx, min;

minindx = 0;
min = list[minindx);

for (i =1; i < size; iff)
if (list[i) < min) (

min = list [i);

minindx = i;
)

return(minindx);

Here you see one of the great strengths of C: You don't need to know how
large listll is at compile time. Why? Because the compiler is content to
consider listll to be the starting address of the array, and it doesn't really
care where it ends. A call to the function lmin might look like this:

mainO
(

'define VSIZE 22
int i, vectorIVSIZE);

for (1 =0; i < VSIZE; iff)
vector[!) = rand();
printf(·vectorl%2d] =%6d\na,i,vectorli]);

)

i =1min(vector,VSIZE);
printf(-minimum: vector[%2d] = %6d\n-,i,vectorli));

)

Question: What exactly is passed to !min? Answer: The starting address of
vector. This means that if you were to make changes to list within lmin,
those changes would be made to vector as well. For example, you could
write the following function:

void setrand(int list[),int size);
(

int i;
for (i =0; i < size; i++) list[i] =rand();

Chapter 7. More Programming In Turbo C 193

Then you could make the call setrand (vector, VSIZE) in main to initialize
vector.

How about multidimensional arrays passed to functions? Do you have the
same flexibility? Suppose you wanted to modify setrand to work on a two­
dimensional array.

You'd have to do something like this:

void setrand(int matrix[) [CSIZE],int rsize)
(

int i,j;
for (i = 0; i < rsize; itt) (

for (j = 0; j < CSIZE; j++)
matrix [i) [j] = rand();

CSIZE is a global constant fixing the size of the second dimension of the
array. In other words, any array you passed to setrand would have to have
a second dimension of CSIZE.

There is another solution, however. Suppose you have an array
matrix[15][71 that you want to pass to setrand. If you use the original
declaration of setrand (int list [], int size), you can call it as follows:

setrand(matrix,15*1);

The array matrix will then look to setrand like a on~imensional array of
size 105 (which is 15 x 7), and everything will work just fine.

Structures

Arrays and pointers allow you to build lists of items of the same data type.
What if you want to construct something out of different data types?
Declare a structure.

A structure is a conglomerate data stmcture, a lumping together of different
data types. For example, suppose you wanted to keep track of information
about a star: name, spectral class, coordinates, and so on. You might declare
the following:

typedef struct (
char name(25);
char class;
short subclass;
float decl,RA,dist;

} star ;

194 Turbo C User's Guide

This defines the struc:t type star. Each of the variables declared within the
structure (name, class, and so on) is a member of that strocture.

Having declared it-that is, having placed the previous definition at the
start of your program file-you can use it as a data type to declare structure
variables of type star.

main 0
(

star mystar;

strcpy(mystar.name,"Epsilon Eridani");
mystar.class ='K';
mystar.subclass = 2;
mystar.decl = 3.5167;
mystar.RA =-9.633;
mystar.dist = 0.303;

/* Rest of function main() */

You refer to each member of a strocture variable by preceding its name
with the structure variable's name followed by a period. The construct
varname.memname is considered equivalent to the name of a variable of the
the same type as memname, and you can use it to perform all the same
operations.

Structures and Pointers

You can declare pointers to stroctures, just as you can declare pointers to
other data types. This ability is essential for creating linked lists and other
dynamic data structures. In fact, pointers to structures are used so often in
C that there is a special symbol for referring to the member of a structure
pointed to by a pointer.

Chapter 7, More Programming In Turbo C 195

Consider the following rewrite of the previous program.

'include <alloc.h>

mainO
(

star *mystar;

mystar = (star *) malloc(sizeof(star»;
strcpy(mystar -> name,NEpsilon EridaniH

);

mystar -> class = 'K';
mystar -> subclass = 2;
mystar -> decl =3.5161;
mystar -> RA =-9.633;
mystar -> dist =0.303;

/* Rest of function main() */

This rewrite declares mystar to be a pointer to type star, rather than to be a
variable of type star. It allocates space for mystar via the call to malloc. Now
when you refer to the members of mystar, you use ptrname -> memname. The
symbol -> means "member of the stmcture pointed to bYi" it is a shorthand
notation for (*pfrname).memname.

The switch Statement

You may find yourself building long ifnelse ifnelse if•. constructs. Look at
the following function:

'include <ctype.h>

do_main_menu(short *done)
(

char cmd;

*done =0;
do (

cmd =toupper(getch(»;
if (cmd == 'F') do_file_menu(done);
else if (cmd == 'R') run_program();
else if (cmd == 'e') do_compile();
else if (cmd == 'M') do_make();
else if (cmd == 'P') do_project_menu();
else if (cmd == '0') do_option_menu();
else if (cmd == 'E') do_error_menu();
else handle_others(cmd, done);

} while (!*done);

196 Turbo C User's Guide

This is so common in programming that C has a special control structure
for it: the switch statement. Here's that same function, but rewritten using
the switch statement:

'include <ctype.h>

do_main_menu(short *done)
(

char coo;

*done =0;
do (

cmd = toupper(getch());
switch (cmd) (

case 'F': do_file_menu(done); break;
case 'R': run-program(); break;
case 'e': do_compile(); break;
case 'M': do_make(); break;
case 'P': do-project_menu(); break;
case '0': do_option_menu(); break;
case 'E': do_error_menu(); break;
default: handle_others(cmd,done);

} while (!*done);

This function enters a loop that reads in a character, converts it to
uppercase, and stores it in and. It then executes the switch statement based
on the value of cmd. The loop continues until the variable done gets
assigned a non-zero value (presumably in the functions do_file_menu or
handle_others).

The switch statement takes the value of and and compares it against each
of the case labels. If there is a match, execution starts at that label and
continues until either you encounter a break statement, or you reach the
end of the switch statement. If there is no match, and you've included the
label default in your switch statement, then execution starts there; if there
is no default, then the entire switch statement is skipped.

In the switch statement, value must be integer compatible. In other words, it
has to be easily converted to an integer; it can be a char, any enum type,
and (of course) an int with all its variants. You cannot use reals (such as
float and double), pointers, strings, or other data stmctures (though you
can use integer-eompatible elements of a data stmcture).

Although value can be any expression (constant, variable, function call, or
any combination thereof), the case labels themselves have to be constants.
What's more, you can only list one value per case keyword.

Chapter 7, More Programming In Turbo C 197

If do_main_menu hadn't used the function toupper to convert cmd to
uppercase, then the switch statement might have looked like this:

switch (cmd) (
case 'f':
case 'F': do_file_menu(done);

break;
case 'r' :
case 'R' : run-program();

break;

This statement executes the function do_file_menu if cmd is either a lower­
case or uppercase F, and so on for the rest of the options.

Remember, you must use the break statement when you're finished with
a given case. Otherwise, the remaining statements will be executed (until,
of course, you encounter a break statement). If you had left off the break
statement following the call to do_file_menu, typing the letter F would
result in a call to do_file_menu, followed by a call to run_program.

There are times when you want to do that though; consider this code:

typdef enum { sun, mon, tues, wed, thur, fri, sat } days;

main 0
(

days todaYi

switch (today)
case mon:
case tues:
case wed:
case thur:
case fri: puts("go to work!"); break;
case sat: printf("clean the yard and Ali
case sun: puts(nrelax !");

With this switch statement, the values man through fri all end up executing
the same puts statement, after which the break statement causes you to
leave the switch. However, if today equals sat, then the printf is executed,
following which the puts (a relax! a) statement is executed; if today equals
sun, then only the last puts is executed.

198 Turbo C User's Guide

Commands That Interrupt the Flow of
Control

There are additional commands for use within control structures or to
simulate other control structures. The return statement lets you exit
functions early. The break and continue statements are designed to be used
within loops and help you skip over statements. The goto statement allows
you to jump around in your code. And the conditional expression (1:) lets
you compress certain if...else statements onto just one line.

A word of advice: Think twice before using these (except, of course, for
return). There are situations where they represent the best solution, but
more often than not you can solve your problem without resorting to them.
ESpecially avoid the use of the goto statement; given the return, break, and
continue statements, there shouldn't be much need for it.

The return Statement

There are two major uses of the return statement. First, if a function returns
a value, you must use it in order to pass that value back to the calling
routine.

For example,

int imax(int a, int b)i
(

if (a > b)

return(a)i
else

return(b)i

Here, the routine uses the return statement to pass back the larger of the
two values accepted.

The second major use of the return statement is to exit a function at some
point other than its end. For example, a function might detect a condition
early on that requires that it terminate. Rather than put the rest of the
function inside of an if statement, you can just call return to exit. If the
function is of type void, you can use return with no value passed back at
all.

Chapter 7. More Programming In Turbo C 199

Consider this modification of the lmin function given earlier:

int lmin(int list[), int size)
(

int i, mdnindx, min;

if (size <= 0)
return(-l);

In this case, if the parameter size is less than or equal to zero, then there is
nothing in list; therefore, return is called right off the bat, to get out of the
function. Note that an error value of -1 is returned. Since -1 is never a valid
index into an array, the calling routine knows that it did something wrong.

The break Statement

Sometimes you want to exit a loop quickly and easily, before you reach its
end.

Consider the following program:

'define LIMIT 100
'define MAX 10

main()
(

1nt i,j,k,score;
int scores [LIMIT] [MAX);

for (1 =0; i < LIMIT; iff)
j =0;
while (j < MAX-1) (

printf(Nplease enter score '%d: N,j);
scanf(N%dN, &score);
if (score < 0)

break;
scores [i) [++j) = score;

)

scores [i) [0) = j;

Note the statement if (score < 0) break;. This says that if the user enters a
negative value for the score, the while loop is terminated. The variable j is
used both to index scores and to keep track of the total number of scores in
each row; that count is then stored in the first element of the row.

You may recall the break statement from its use in the switch statement in
the last chapter. In that case, it caused the program to exit the switch

200 Turbo C User's Guide

statement; here, it causes the program to exit the loop and proceed with the
program. The break statement can be used with all three loops (for, while,
and do...while), as well as in the switch statement; however, it cannot be
used in an if...else statement or just in the main body of a function.

The continue Statement

Sometimes, you don't want to get out of the loop completely; you just want
to skip the rest of the loop and start at the top again. In those situations,
you can use the continue statement, which does just that.

Look at this program:

'define LIMIT 100
'define MAX 10

main()
(

int i,j,k,score;
int scores [LIMIT) [MAX);

for (i = 0; i < LIMIT; iff)
j = 0;
while (j < MAX-1) (

printf ("please enter score nd: II, j) ;
scanf("%d",score);
if (score < 0)

continue;
scores [i) [++j) = score;

}

scores [i) [0] = j;

When the continue statement is executed, the program skips over the rest
of the loop and does the loop test again. As a result, this program works
differently from the one before. Instead of exiting the inner loop when the
user enters a score of -1, it assumes that an error has been made and goes
to the top of the while loop again. Since j has not been incremented, it asks
for the same score again.

The goto Statement

Yes, there is a goto statement in C. The format is simple: goto label, where
label is some identifier, associated with a given statement. However, most
intelligent uses of the goto statement are taken care of by the three previous
statements, so consider carefully whether you really need to use it.

Chapter 7, More Programming In Turbo C 201

Note: If you do use the goto statement, bear in mind that ANSI (and
therefore Turbo C) has changed the syntax of labels. A label now must
always be followed by a statement (that is, at the vety least a semicolon).
This means that code like this is no longer accepted:

(

jump_label:
)

Ifany of your programs contain code like this, change it to this:

(

jump_label:
1* need a statement here! */

The Conditional Operator (?:)

Suppose you want to choose between two expressions (and the resulting
values), based on some condition.

As we have seen, this is usually accomplished with an if•.else statement,
such as

int imin(int a, int b)
{

if (a < b)

return(a);
else

return(b);

The if...else statement is used often enough to warrant a special operator.
Its format is

exprl ? expr2 : expr3

This is interpreted as follows: "If exprl is true, then evaluate expr2 and let
the entire expression assume its value; otherwise, evaluate expr3 and
assume its value." Using this construct, you can rewrite the function imin
as follows:

202 Turbo C Use,'s Guide

int imin(int a, int b)
(

return((a < b) ? a : b);

Better yet, you can rewrite imin as an inline macro:

'define imin (a, b) ((a < b) ? a : b)

Now whenever your program sees the expression imin(el,e2), it replaces it
with ((el<e2) ? el : e2) and continues compilation. This is actually a more
general solution, since a and b are no longer limited to being int they can
be any type that allows the < relationship.

Streams and Stream I/O

What Are Streams?

Streams are the most portable means for reading or writing data using
Turbo C. They are designed to allow flexible and efficient I/O that is not
affected by the underlYing file or device hardware.

A stream is a file or physical device (a printer or monitor, for example) that
you manipulate with a pointer to a FILE object (defined in stdio.h). The
FILE object contains various information about the stream, including the
current position of the stream, pointers to any associated buffers, and error
or end-of-file indicators.

Your program should never create or copy FILE objects themselves; instead,
it should use the pointers returned from functions like fopen. Be sure that
you do not confuse FILE pointers with DOS file handles (which are used in
low-level DOS or UNIX-eompatible I/O).

You must open a stream before you can perform I/O on it. Opening the
stream connects it to the named DOS file or device. The routines that open
streams are fopen, fdopen, and £reopen. When you open a stream, you
indicate whether you want to read or write to the stream, or do both. You
also indicate whether you will treat the data of that stream as text or binary
data. This last distinction is important because of a minor incompatibility
between C stream I/O and DOS text files.

Text vs. Binary Streams

Text streams are used for normal DOS text files, such as a file created with
the Turbo C editor. C stream I/O assumes that text files are divided into

Chapter 7, More Programming In Turbo C 203

lines separated by a single newline character (which is the ASCII linefeed).
DOS text files, however, are stored on disk with two characters between
each line, an ASCn carriage-return and a linefeed. In text mode, Turbo C
translates caniage-return/linefeed (CR/LF) pairs into a single linefeed on
input; linefeeds are translated to CR/LF pairs on output.

Binary streams are much simpler than text streams. No such translations
are performed. Any character is read or written without change.

A file can be accessed in either text or binary mode without any problems
as long as you are aware of and understand the translations taking place in
text streams. Turbo C doesn't "remember" how a file was created or last
accessed.

If no translation mode is specified when a stream is opened, it is opened in
the default translation mode given by the global variable Jmode. By
default, Jmode is set to text mode.

Buffering Streams

Streams associated with files are typically buffered. This allows I/O at the
individual character level, such as with gete and pute, to be very fast. You
can supply your own buffer, change the size of the buffer used, or force the
stream to use no buffer at all by calling setvbuf or setbuf.

Buffers are automatically flushed when the buffer is full, the stream is
closed, or the program terminates normally. You can use fflush and flushall
to flush the buffers manually.

Normally, you use streams to read or write data sequentially. I/O takes
place at the current file position. Whenever you read or write data, the
program moves the file position to immediately after the just-accessed data.
A stream that is connected to a disk file can also be accessed randomly. You
can use fseek to position a file, then issue several read or write operations
to access the data after that point.

When you are both reading and writing data to a stream, you should not
freely mix reading and writing operations. You must flush the stream's
buffer between reading and writing. A call to fflush, flushall, or fseek
clears the buffer and allows you to switch operations. For maximum
portability, you should flush even when no buffer is present, since other
systems may have additional restrictions on mixing input and output
operations even without a buffer.

204 Turbo C User's Guide

Predefined Streams

In addition to streams created by calling fopen, five predefined streams are
available whenever your program begins execution.

Name 110 Mode Stream

stdin Input Text Standard Input
stdout Output Text Standard Output
stderr Output Text Standard Error
stdaux Both Binary Auxiliary I/O
stdpm Output Binary Printer Output

The stdaux and stdprn streams are specific to DOS and are not portable to
other systems.

The stdin and stdout can be redirected by DOS, while the others are
connected to specific devices: stderr to the console (CON:), stdprn to the
printer (PRN:), and stdaux to the auxiliary port.

The auxiliary port depends on your machine's configuration; it is typically
COM1:. Consult your DOS documentation for information about
redirecting input or output on a DOS command line. Unless they are
redirected, stdin and stdout are connected to the console (CON: device).
Furthermore, if not redirected, stdin is line buffered, while stdout is
unbuffered. The other predefined streams are unbuffered.

To process a predefined stream in a mode other than its default (for
example, to process stdprn in text mode), use setmode. The predefined
stream names are constants; you cannot assign values to them. If you want
to reassociate one of them to a file or device, use £reopen.

Style in C Programming: Modem vs. Classic

There is a trend today in C programming to introduce techniques that
make C easier to use. This counteracts classic traditions or methods of C
programming. Most have been made possible by language extensions
defined by the ANSI C Standards Committee. This section should give you
a feeling for how things have been done in the past and how the new
standards can help you write better C programs.

Turbo C, of course, supports both the classic programming style and the
modem style.

Chapter 7. More Programming In Turbo C 205

Using Function Prototypes and Full Function
Definitions

In the classic style of C programming, you declare functions merely by
specifying the name and tyPe returned.

For example, you would define the function swap as

int swap();

No parameter information is given, either as to number or type. The
classic-style definition of the function looks like this:

int swap (a,b)
int *a,*b;
(

/* Body of function */

This style results in very little error-ehecking, which in tum can result in
some very subtle and hard-to-trace bugs. Avoid it.

The modem style involves the use of function prototypes for function
declarations and parameter lists for function definitions.

Redeclare swap using a function prototype:

int swap(int *a, int *b);

Now when your program compiles, it has all the information it needs to do
complete error-ehecking on any call to swap. And you can use a similar
format when you define the function:

int swap(int *a, int *b)
I

/* Body of function */

The modem style increases the error-ehecking performed even if you don't
use function prototypes; if you do use prototypes, this will cause the
compiler to ensure that the declarations and definitions agree.

206 Turbo C User's Guide

Using enum Definitions

In classic C, lists of values are defined using the 'define directive, like this:

'define sun 0
'define mon 1
'define tues 2
'define wed 3
'define thur 4
'define fri 5
'define sat 6

In the modem style, however, you can declare enumerated data types using
the keyword enum, as shown here:

typedef enum {sun, mon, tues, wed, thur, fri, sat} days;

This has the same effect as the classic method, right down to setting sun = 0
and sat = 6; however, the modern method does more information hiding
and abstraction than the long list of idefine directives. And you can declare
variables to be of type days.

Using fypedef

In classic-style C, user-defined data types were seldom named, with the
exception of structures and unions-and even with them you had to
precede any declaration with the keyword strud or union.

In modern-style C, another level of information hiding is available through
the ty.pedef directive. This allows you to associate a given data type
(including structs and enums) with a name, then declare variables of that
type.

Here are some sample type definitions with variable declarations:

typedef lnt *intptr;
typedef char namestr[30];
typedef enum (male, female, unknown) sex;
typedef struct (

namestr last,flrst;
char ssn [9];
sex gender;
short age;
float gpa;

) student;
typedef student class[lOO];

class
student
intptr

histl04,psl02;
valedictorian;
lptri

Chapter 71 More Programming In Turbo C 207

Using typedefs makes the program more readable; it also allows you to
change a single location-the place where a type is actually defined-and
have that change propagated through the entire program.

Declaring void functions

In the original definition of C, every function returned a value of some
type; if no type was declared, the function was assumed to be of type inl In
a similar fashion, functions that returned "generic" (untyped) pointers
were usually declared to return a pointer to char, just because they had to
return something.

Now there is a standard type void, which can be thought of as a kind of
null type. Any function that does not explicitly return a value should be
declared as being of type void. Note that many of the runtime memory
allocation routines (such as malloc) are declared to be of type void *. This
means they return an untyped pointer, which you can then (in Turbo C)
assign to a pointer of any type without type-easting (though you should
type cast anyway, to preserve portability).

Make Use ofExtensions

There are a number of minor extensions to the C language that aid program
readability, replace some anachronisms, and allow you to move forward.
Here's a brief listing.

String Literals

In classic C, you had to use continuation characters or some kind of
concatenation in order to have large string literals in your program.

In modem-style C, you can easily spread a large literal across several lines,
like this:

main()
(

char *msg;

msg ::: "Four score and seven years ago, our fathers"
" brought forth upon\nthis continent a newn

n nation, dedicated to the ideal that all I'
" men\nare created equal";

printf ("%s",msg);.

208 Turbo C User's Guide

Hexadecimal Character Constants

In classic C, escape sequences specifying particular ASCII codes were all
done in octal (base 8). This was because C was originally developed on
machines where binary numbers were usually represented in octal form.

Today, most computers use hexadecimal (base 16) to represent binary
numbers. Because of this, modern C allows you to declare character
constants in hex notation. The general format is ' \xDD', where DD
represents one or two hexademical digits (0..9, AuF). These escape
sequences can be assigned directly to char variables, or they can be
embedded in strings; for example, ch = , \x2 0' .

signed Types

Classic C assumed that all integer-based types were signed, and so
included the tyPe modifier unsigned so that you could specify otherwise.
By default, variables of tyPe char were considered signed, which meant
that the underlying range of values was -128 to 127.

On microcomputers today, however, the char type is often thought of as
being unsigned, and Turbo C has a compiler option to allow you to make
that the default. In such a case, however, you may still want to be able to
declare a signed char. In modern C, you can do so, since signed is
recognized as a valid modifier.

Pitfalls in C Programming

There are a number of common errors that programmers make when they
first start coding in C. Here's a list of some of them, along with suggestions
about how to avoid them.

Path Names with C Strings

Everyone knows that the backslash (\) in MS-DOS indicates a directory
name. However, in C, the backslash is the escape character in a string. This
conflict causes a bit of a problem if you give a path name with a C string.

Chapter 7. More Programming In Turbo C 209

For example, ifyou had the statement

file =fopen(Ac:\new\tools.dat R , Ar");

you'd expect to open the file TooLS.OAT in the NEW directory on drive C.
Y9u won't. Instead, the \0 gets you the escape sequence for the newline
character (LF), and the \ t gets you the tab character.

The result is your file name will have embedded in it the newline and tab
characters. DOS would reject the string as an improper file name, since file
names may not have newline or tab in them. The proper string is

nc:\\new\\tools.dat"

Using and Misusing Pointers

Pointers may well be the single most confusing issue to novice C
programmers. When do you use pointers, and when don't you? When do
you use the indirection operator ("')? When do you use the address-of
operator (&)? And how can you avoid really messing up the operating
system when you ron your program?

Using an Uninitialized Pointer

One serious mistake is to assign a value to the address contained by a
pointer without having assigned an address to that pointer.

For example,

main()
{

int *iptr;

*iptr = 421;
printf("*iptr = %d\n",*iptr);

What makes this pitfall so dangerous is that you can often get away with it.
In the previous example, the pointer iptr has some random address in it;
that's where the value 421 is stored. This program is small enough that
there is very little chance of anything being clobbered. In a larger program,
though, there is an increasing chance of that happening, since you may well
have other information stored at the address that iptr happens to contain.
And if you're using the tiny memory model, where the code and data
segments occupy the same space, you run the risk of corrupting the
machine code itself. Remember to use malloc to set aside memory at the
address the pointer points to, and to place that address in the pointer.

210 Turbo C User's Guide

Strings

You may recall that you can declare strings as pointers to char or as arrays
of char. You may also recall that these are the same, except for one very
important difference: If you use a pointer to char, no space for the string is
allocated; if you use an array, space is allocated, and the array variable
holds the address of that space.

Failure to understand this difference can lead to two types of errors.
Consider the following program:

main ()
(

char *name;
char msg(lO);

printf("Hhat is your name? P);
scanf{P%sP,name);
msg = "Hello, ";
printf("%s%s",msg,name);

)

At first glance, this might apPear to be Perfectly fine; a little clumsy, but still
allowable.

But this has introduced two separate errors.

The first error has to do with the statement

scanf("%slt,name)

The statement itself is legal and correct. Since name is a pointer to char, you
don't need to use the address-of (&) oPerator in front of it.

However, the program has not allocated any memory for name; the name
you type in will be stored at whatever random address that name happens
to have. You will get a warning on this (Possible use of ' name' before
definition), but no error.

The second problem will cause an error. The problem lies in the statement
msq = "Hello, It. The compiler thinks you are trying to change msg to the
address of the constant string "Hello, u. You can't do that, because array
names are constants that cannot be modified (just like 7 is a constant, and
you can't say '7 = i"). The compiler will give you an error message Lvalue
required.

What are the solutions to these errors? The simplest approach is to switch
the ways in which name and msg have been declared:

Chapter 7, More Programming In Turbo C 211

main()
(

char namelIO];
char *msg;

printf(AWhat is your name? a);
scanf(A%sA,name);
msg = AHello, A;
printf(A%s%sA,msg,name);

)

This works perfectly well. The variable name has space set aside to hold
your name as you type it in, while msg lets you assign to it the address of
the constant string "Hello, II.

If, however, you are bound and determined to keep the declarations the
way they were, then you'll need to make the following changes to the code:

'include <alloc.h>

main()
(

char *name;
char msg[lO];

name = (char *) malloc(lO);
printf(AWhat Is your name? a);
scanf("%sA,name);
strcpy(msg,AHello, A);
printf(A%s%sA,msg,name);

The call to malloc sets aside 10 bytes of memory and assigns the address of
that memory to name, taking care of our first problem. The function strcpy
does a character-by-eharacter copy from the constant string lIoello, II to the
arraymsg.

Confusing Assignment (=) with Equality (==)

In the languages Pascal and BASIC, a comparison for equality is made with
the expression if (a :: b). In C, that is a valid constnlct, but it has quite a
different meaning.

Look at this code fragment:

if (a = b)

puts("EqualA);
else

puts("Not equal");

212 Turbo C User's Guide

If you're a Pascal or BASIC programmer, you might ex~ct this to print
Equal if a and b have the same value, and Not equal otherwise. That's not
what happens. In C, the expression a = b means "assign the value of b to a,"
and the entire expression takes on the value of b. So, the previous fragment
will assign the value of b to a, then print Equal if b has a nonzero value,
otherwise it will print Not equal.

What you really want is the following:

if (a :::: b)

puts("Equal);
else

puts("Not equal");

Forgetting the break in switch Statements

You may remember that the break statement is used in a switch statement
to end a particular case. Please continue to remember that. If you forget to
put a break statement in for a given case, the case(s) after it is executed as
well.

Array Indexing

Don't forget that arrays start at [0], not at [1]. A common error is to write
code like this:

mainO
{

int list[lOO],i;

for (1 =1; i <= 100; iff)
list[i] = iii;

)

This program leaves the first location in list-namely listIOl-uninitialized,
and it stores a value in a nonexistent location of list-list11001-possibly
overwriting other data in the process.

The correct code should be written like this:

mainO
(

int list[100],ii

for (i :: 0; i < 100; iff)
list[i] = iii;

Chapter 7. MOre Programming In ~Urbo C 213

Failure to Pass-by-Address

Look at the following program and figure out what's wrong with it:

main()
(

int a,b,sum;

printf("Enter two values: A);
scanf(A%d %dn,a,b);
sum = a + b;
printf(nThe sum is %d\n",sum);

Give up? The error is in the statement scanf(U%d %dU,a/b). Remember that
seanf requires you to pass addresses instead of values? The same is tme of
any function whose formal parameters are pointers. The previous program
will compile and run, since scanf will take whatever random values are in a
and b and use them as addresses in which to store the values you enter.

The correct statement should read scanf (U%d %dU, &a, &b); that way, the
addresses of a and b are passed to seanf, and the values you enter are
correctly stored in those variables. This same pitfall can happen with your
own functions. Remember the function swap defined back in the section on
pointers?

What would happen ifyou called it like this:

mainO
(

int i,j;

i = 421;
j = 53;
printf("before: i =%4d j =%4d\nn,i,j);
swap(i, j);
printf("after: i = %4d j = %4d\n",i,j);

The variables i and j would have the same values before and after the call to
swap; however, the values at data addresses 421 and S3 would have their
values swapped, which could cause some subtle and hard-to-trace
problems.

How do you avoid this? Use function prototypes and full function
definitions.

Actually, you would have gotten a compiler error in the previous version of
main if swap were defined as it was earlier in this chapter.

214 Turbo C User's Guide

If, however, you defined it in the following manner, the program would
compile just fine:

void swap(a,b)
int *a,*b;
(

Moving the definitions of a and b out of the parentheses disables the error­
checking that would go on otherwise, which is the best reason for not using
the classic style of function definition.

Sailing Away

As we said at the start of the previous chapter, we can't give you a
complete tutorial on C in just two chapters. But we have gotten you under
way. What you should do now-if you haven't been doing it all along-is
key in these example programs, compile them, run them, and (most
important> modify them to see what happens when you change things
around. Best of luck, and bon voyage.

Chapter 7, More Programming In Turbo C 215

216 Turbo C User's Guide

c H A p T E R

8

Turbo C's Video Functions

Turbo C comes with a complete library of graphics functions, so that you
can produce onscreen charts and diagrams in color or black and white.

In This Chapter...

First, we will briefly discuss video modes and windows. After that, we will
explain how to program in text mode and in graphics mode.

Turbo C's new video functions are based on corresponding routines in
Turbo Pascal. If you are not already familiar with controlling your PC's
screen modes or creating and managing windows and viewports, take a
few minutes to read the following words on those topics.

Some Words about Video Modes

Your PC has some kind of video adapter. This can be a Monochrome
Display Adapter (MDA) for your basic text-only display, or it can be
capable of displaying graphics, such as a Color Graphics Adapter (CGA),
an Enhanced Graphics Adapter (EGA), or a Hercules Monochrome
Graphics Adapter. Each adapter can operate in a variety of modes; the
mode specifies whether the screen displays 80 or 40 columns (text mode
only), the display resolution (graphics mode only), and the display type
(color or black and white).

The screen's operating mode is defined when your program calls one of the
mode-defining functions (textmode, initgraph, or setgraphmode).

Chapter 8, Turbo C's Video Functions 217

• In text mode, your PC's screen is divided into cells (80 or 40 columns wide
by 25 lines high). Each cell consists of an attribute and a character. The
character is the displayed ASCII character, while the attribute specifies
how the character is displayed (its color, intensity, etc.). Turbo C provides
a full range of routines for manipulating the text screen, fo~ writing text
directly to the screen, and for controlling the cell attributes.

• In graphics mode, your PC's screen is divided into pixels; each pixel
displays a single dot on the screen. The number of pixels (the resolution)
depends on the type of video adapter connected to your system and the
mode that adapter is in. You can use functions from Turbo C's new
graphics library to create graphic displays on the screen: You can draw
lines and shapes, fill enclosed areas with patterns, and control the color
of each pixel.

In text modes, the upper left comer of the screen is position (1,1), with x­
coordinates increasing from left to right, and y-coordinates increasing from
screen-top to screen-bottom. In graphics modes, the upper left comer is
position (0,0), with the x- and y-coordinate values increasing in the same
manner.

Some Words about Windows and Viewports

Turbo C provides functions for creating and managing windows on your
screen in text mode (and viewports in graphics mode). If you are not
familiar with windows and viewports, you should read this brief overview.
Turbo C's new window- and viewport-management functions are ex­
plained in "Programming in Text Mode" and ''Programming in Graphics
Mode" later in this chapter.

What Is a Window?

A window is a rectangular area defined on your PC's video screen when
it's in a text mode. When your program writes to the screen, its output is
restricted to the active window. The rest of the screen (outside the window)
remains untouched.

The default window is a full-screen text window. Your program can change
this default full-screen text window to a text window smaller than the full
screen (with a call to the window function). This function specifies the
window's position in terms of screen coordinates.

218 Turbo C User's Guide

What Is a Viewport?

In graphics mode, you can also define a rectangular area on your PC's
video screen; this is a viewport. When your graphics program outputs
drawings and so on, the viewport acts as the virtual screen. The rest of the
screen (outside the viewport) remains untouched. You define a viewport in
terms of screen coordinates with a call to the setviewport function.

Coordinates

Except for these window- and viewport-defining functions, all coordinates
for text-mode and graphics-mode functions are given in window- or
viewport-relative terms, not in absolute screen coordinates. The upper left
comer of the text-mode window is the coordinate origin, referred to as
(1,1); in graphics modes, the viewport coordinate origin is position (0,0).

Programming in Text Modes

In this section, we give a brief summary of the functions you use in text
mode: For more detailed information about these functions, refer to
Chapter 2 of the Turbo C Reference Guide.

In Turbo C, the direct console I/O package (cprintf, cputs, and so on) has
been enhanced to provide higher-performance text output and extended to
provide window management, cursor positioning, and attribute control
functions. These functions are all part of the standard Turbo C libraries;
they are prototyped in the header file como.h.

The Console I/O Functions

Turbo C's text-mode functions work in any of the five possible video text
modes. The modes available on your system depend on the type of video
adapter and monitor you have. You specify the current text mode with a
call to textmode. We explain how to use this function later in this chapter
and under the textmode entry in Chapter 2 of the Turbo C Reference Guide.

These text-mode functions are divided into four separate groups:

• text output and manipulation
• window and mode control
• attribute control
• state query

Chapter8, Turbo C's Video Funcffons 219

We cover these four text-mode function groups in the following sections.

Text Output"and Manipulation

Here's a quick summary of the text output and manipulation functions:

==

Writing and reading text:

cprintf sends formatted output to the screen
cputs sends a string to the screen
putch sends a single character to the screen
getche reads a character and echoes it to the screen

Manipulating teXt (and the cursor) onscreen:

clrscr
clreol
delline
gotoxy
insline
movetext

clears the text window
clears from the cursor to the end of the line
deletes the line where the cursor rests
positions the cursor
inserts a blank line below the line where the cursor rests
copies text from one area onscreen to another

Moving blocks of text into and out of memory:

gettext copies text from an area onscreen to memory
puttext copies text from memory to an area onscreen

==
Your screen-output programs will come up in a full-screen text window by
default, so you can immediately write, read, and manipulate text without
any preliminary mode-setting. You write text to the screen with the direct
console output functions cprintf, cputs, and putch, and echo input with the
function getche. Text wraps within the window as follows: If text extends
beyond the window's right border, the text extending beyond the right
border is moved down to the beginning of the next line.

Once your text is on the screen, you can erase the active window with
clrsa, erase part of a line with clreol, delete a whole line with delline, and
insert a blank line with insline. The latter three functions operate relative to
the cursor position; you move the cursor to a specified location with
gotoxy. You can also copy a whole block of text from one rectangular
location in the window to another with movetext.

You can capture a rectangle of onscreen text to memory with gettext, and
put that text back on the screen (anywhere you want) with puttext.

220 Turbo C User's Guide

Window and Mode Control

There are two window- and mode-control functions:

--
textmode sets the screen to a text mode
window defines a text-mode window

==
You can set your screen to any of several video text modes with textmode
(limited only by your system's type of monitor and adapter). This initializes
the screen as a full-screen text window, in the particular mode specified,
and clears any residual images or text.

When your screen is in a text mode, you can output to the full screen, or
you can set aside a portion of the screen-a window-to which your
program's output is confined. To create a text window, you call window,
specifying what area on the screen it will occupy.

Attribute Control

Here's a quick summary of the text-mode attribute control functions:

==

Setting foreground and background:

textcolor sets the foreground color (attribute)
textbackground sets the background color (attribute)
textattr sets the foreground and background colors (attributes) at

the same time

Converting intensity:

highvideo
lowvideo
nOlDlvideo

sets text to high intensity
sets text to low intensity
sets text to original intensity

==
The attribute-control functions set the current attribute, which is
represented by an 8-bit value: the four lowest bits represent the foreground
color, the next three bits give the background color, and the high bit is the
"blink enable" bit.

Chapter 8. Turbo C's Video Functions 221

Subsequent text is displayed in the current attribute. With the attribute­
control functions, you can set the background and foreground (character)
colors separately (with textbackground and textcolor) or combine the color
specifications in a single call to textattr. You can also specify that the
character-the foreground-will blink. Most color monitors in color modes
will display the true colors. Non-color monitors may convert some or all of
the attributes to various monochromatic shades or other visual effects, such
as bold, underscore, reverse video, and so on.

You can direct your system to map the high-intensity foreground colors to
low-intensity colors with lowvideo (which turns off the high-intensity bit
for the characters). Or you can map the low-intensity colors to high
intensity with highvideo (which turns on the character high-intensity bit).
When you're through playing around with the character intensities, you
can restore the settings to their original values with normvideo.

State Query

Here's a quick summary of the state-query functions:

==

gettextinfo

wherex
wherey

fills in a texCinfo structure with infonnation about the
current text window
gives the x-eoordinate of the cell containing the cursor
gives the y-coordinate of the cell containing the cursor

==

Turbo C's console I/O functions include some designed for state query.
With these functions, you can retrieve information about your text-mode
window and the current cursor position within the window.

The gettextinfo function fills a text_info structure (defined in conio.h) with
several details about the text window, including:

• the current video mode
• the window's position in absolute screen coordinates
• the window's dimensions
• the current foreground and background colors
• the cursors current position

Sometimes you might need only a few of these details. Rather than
retrieving all the text window information, you can find out just the
cursors (window-relative) position with wherex and wherey.

222 Turbo C User's Guide

Text Windows

The default text window is full screen; you can change this to a less-than­
full-screen text Window with a call to the window function. Text windows
can contain up to 25 lines (the maximum number of lines onscreen in any
text mode) and up to 40 or 80 columns (depending on your text mode).

The coordinate origin of a Turbo C text window is the upper left corner of the
window. The coordinates of the window's upper left comer are (1,1); the
coordinates of the bottom right corner of a full-screen 80-column text
window are (80,25).

An Example

Suppose your 100% PC-eompatible system is in 80-eolumn text mode, and
you want to create a window. The upper left comer of the window will be
at screen coordinates (10, 8), and the lower right comer of the window will
be at screen coordinates (50, 21). To do this, you call the window function,
like this:

window (10, 8, 50, 21);

Now that you've created the text-mode window, you want to move the
cursor to· the window position (5,8) and write some text in it, so you decide
to use gotoxy and cputs.

gotoxy(5, 8);
cputs(lf Happy Birthday, Frank Borland");

Figure 8.1 illustrates these ideas.

Chapter 8. Turbo C's Video Functions 223

Screen
Column 1

Screen
Uno 25

-

t 111111111111111111111111111111111111111
111111111111111111111111111111111111111
111111111111111111111111111111111111111
111111111111111111111111111111111111111
111111111111111111111111111111111111111
111111111111111111111111111111111111111
IllRiIni B1rthda.. Frank Borland I1111111
11111 1111111 ~IIIIIIIIIIIIII 1111111
111111111111111111111111111111111111111
111111111111111111111111111111111111111
111111111111111111111111111111111111111
I111111I1I11111111111111111111111111111

4

i--

Window
Linot

Wmdow
Line

Scrcc!n
Linet

Window
Columnt

Window
Column 41

Screen
Column8D

Figure 8.1: A Window In 8OX25 Text Mode

The text_modes Type

You can put your monitor into one of five PC text modes with a call to the
textmode function. The enumeration type text_modes, defined in conio.h,
enables you to use symbolic names for the mode argument to the textmode
function, instead of "raw" mode numbers. However, if you use the sym­
bolic constants, you must 'include <conio.h> in your source code.

The numeric and symbolic values defined by text_modes are as follows:

Symbolic Numeric Video
Constant Value Text Mode

LASTMODE -1 Previous text mode enabled.
BW40 0 Black & White, 40 columns
C40 1 16-Color, 40 columns
BW80 2 Black & White, 80 columns
C80 3 16-Color,80 columns
MONO 7 Monochrome, 80 columns

224 Turbo C User's Guide

For example, the following calls to textmode will put your color monitor in
the indicated operating mode:

Call

textmode(O)
textmode(BW80)
textmode(C40)
textmode(3)

Text Colors

Operating Mode

Black&White, 40 column
Black&White, 80 column
16-Color, 40 column
16-Color, 80 column

For a detailed description of how cell attributes are laid out, refer to the
textattr entry in Chapter 2 of the Turbo C Reference Guide.

When a character occupies a cell, the color of the character is the foreground;
the color of the cell's remaining area is the background. Color monitors with
color video adapters can display up to 16 different colors; monochrome
monitors substitute different visual attributes (highlighted, underscored,
reverse video, and so on) for the colors.

The include file conio.h defines symbolic names for the different colors. If
you use the symbolic constants, you must 'include <conio.h> in your source
code.

The following table lists these symbolic constants and their corresponding
numeric values. Note that only the first eight colors are available for the
foreground and background; the last eight (colors 8 through 15) are
available for the foreground (the characters themselves) only.

Chapter 8. Turbo C's Video Functions 225

Symbolic Numeric Foreground or
Constant Value Background?

BLACK 0 both
BLUE 1 both
GREEN 2 both
CYAN 3 both
RED 4 both
MAGENTA 5 both
BROWN 6 both
LIGHTGRAY 7 both
DARKGRAY 8 foreground only
LIGHTBLUE 9 foreground only
LIGHTGREEN 10 foreground only
LIGHTCYAN 11 foreground only
LIGHTRED 12 foreground only
LIGHTMAGENTA 13 foreground only
YELLOW 14 foreground only
WHITE 15 foreground only
BLINK 128 foreground only

You can add the symbolic constant BLINK (numeric value 128) to a
foreground argument if you want the character to blink.

High-Performance Output: The directvideo Variable

Turbo C's console I/O package includes a variable called directvideo. This
variable controls whether your program's console output goes directly to
the video RAM (directvideo =1) or goes via BIOS calls (directvideo =0).

The default value is directvideo = 1 (console output goes directly to the
video RAM). In general, going directly to video RAM gives very high
performance (SPelled f-a-s-t-e-r o-u-t-p-u-t), but doing so requires your
computer to be 100% IBM PC-compatible: Your video hardware must be
identical to IBM display adapters. Setting directvideo = 0 will work on any
machine that is IBM BIOS-compatible, but the console output will be
slower.

Programming in Graphics Mode

In this section, we give a brief summary of the functions you use in
graphics mode. For more detailed information about these functions, refer
to Chapter 2 of the Turbo C Reference Guide.

226 Turbo C User's Guide

Turbo C provides a separate library of over 70 graphics functions, ranging
from high-level calls (like setviewport, bar3d, and drawpoly) to bit­
oriented functions (like getimage and putimage). The graphics library
supports numerous fill and line styles, and provides several text fonts that
you can size, justify, and orient horizontally or vertically.

These functions are in the library file GRAPHICS.LIB, and they are
prototyped in the header file GRAPHICS.H. In addition to these two files,
the graphics package includes graphics device drivers (*.BGI files) and
stroked character fonts (*.CHR files); we discuss these additional files in
following sections.

In order to use the graphics functions:

• If you're using TC.EXE, toggle Options/Linker/Graphics library to On.
When you make your program, the linker will automatically link in the
Turbo C graphics library.

• If you're using TCC.EXE, you have to list GRAPHICS.LIB on the
command line. For example, if your program, MYPROG.C, uses
graphics, the TeC command line would be

tee myprog graphics.lib

Important Note: There is only one graphics library, not separate versions
for each memory model (in contrast to the standard libraries CS.LIB,
CC.LIB, CM.LIB, etc., which are memory-model sPecific). Each function in
GRAPHICS.LIB is a far function, and those graphics functions that take
pointers take far pointers. For these functions to work correctly, it is
important that you 'include <graphics. h> in every module that uses
graphics.

Important Note: Because graphics functions use far pointers, graphics are
not supported in the tiny memory model.

The Graphics Library Functions

Turbo C's graphics functions comprise seven categories:

• graphics system control

• drawing and filling
• manipulating screens and viewPOrts

• text output
• color control

,A • error handling

• state query

Chapter 8. Turbo C's Video Functions 227

Graphics System Control

Here's a quick summary of the graphics system control functions:

==

c10segraph
detedgraph

graphdefaults

-SDphfreemem

...,graphgetmem

getgraphmode
getmoderange

initgraph

installuserdriver

installuserfont

restorecrtmode
setgraphbufsize
setgraphmode

shuts down the graphics system
checks the hardware and determines which graphics
driver to use; recommends a mode
resets all graphics system variables to their default
settings
deallocates graphics memory; hook for defining your
own routine
allocates graphics memory; hook for defining your own
routine
returns the current graphics mode
returns lowest and highest valid modes for specified
driver
initializes the graphics system and puts the hardware
into graphics mode
installs a vendor-added device driver to the Bel device
driver table
loads a stroked font file not known to the graphics
routines
registers a linked-in or user-loaded driver file for
inclusion at link time
restores the original (pre-initgraph) screen mode
specifies size of the internal graphics buffer
selects the specified graphics mode, clears the screen,
and restores all defaults

==
Turbo C's graphics package provides graphics drivers for the following
graphics adapters (and true compatibles):

• Color Graphics Adapter (CGA)

• Multi Color Graphics Array (MCGA)
• Enhanced Graphics Adapter (EGA)
• Video Graphics Array (VGA)

• Hercules Graphics Adapter
• AT&T 400-line Graphics Adapter
.3270 PC Graphics Adapter

• ffiM 8514 Graphics Adapter

To start the graphics system, you first call the initgraph function. initgraph
loads the graphics driver and puts the system into graphics mode. You can

228 Turbo C User's Guide

tell initgraph to use a particular graphics driver and mode, or to autodetect
the attached video adapter at ron time and pick the corresponding driver. If
you tell initgraph to autodetect, it calls detedgraph to select a graphics
driver and mode. If you tell initgraph to use a particular graphics driver
and mode, you must be sure that the hardware is present. If you force
initgraph to use hardware that is not present, the results will be
unpredictable.

Once a graphics driver has been loaded, you can find out the name of the
driver by using the getdrivename function and how many modes a driver
supports with getmaxmode. getgraphmode will tell you which graphics
mode you are currently in. Once you have a mode number, you can find
out the name of the mode with getmodename. You can change graphics
modes with setgraphmode and return the video mode to its original state
(before graphics was initialized) with restorecrtmode. restorecrtmode
returns the screen to text mode, but it does not close the graphics system
(the fonts and drivers are still in memory).

graphdefaults resets the graphics state's settings (viewport size, draw
color, fill color and pattern, etc.) to their default values.

installuserdriver and installuserfont allow you to add new device drivers
and fonts to your BGI.

Finally, when you're through using graphics, call closegraph to shut down
the graphics system. closegraph unloads the driver from memory and
restores the original video mode (via restorecrtmode).

A More Detailed Discussion

The previous discussion provided an overview of how initgraph operates.
In the following paragraphs, we describe the behavior of initgraph,
...,graphgetmem, andgraphfreemem in some detail.

Normally, the initgraph routine loads a graphics driver by allocating
memory for the driver, then loading the appropriate .BGI file from disk. As
an alternative to this dynamic loading scheme, you can link a graphics
driver file (or several of them) directly into your executable program file.
You do this by first converting the .BGI file to an .OBI file (using the BGIOBI
utility), then placing calls to registerbgidriver in your source code (before
the call to initgraph) to register the graphics driver(s). When you build your
program, you need to link the .OBI files for the registered drivers.

After determining which graphics driver to use (via detectgraph), initgraph
checks to see if the desired driver has been registered. If so, initgraph uses
the registered driver directly from memory. Otherwise, initgraph allocates
memory for the driver and loads the .BGI file from disk.

Chapter 8, Turbo C's Video Functions 229

Note: Using registerbgidriver is an advanced programming technique, not
recommended for novice programmers. This function is described in more
detail in Appendix D in the Turbo CReference Guide.

During run time, the graphics system might need to allocate memory for
drivers, fonts, and internal buffers. If this is necessary, it calls
-IP'aphgetmem to allocate memory, and calls ...,graphfreemem to free it. By
default, these routines simply call malloc and free, respectively.

You can override this default behavior by defining your own
~raphgetmemand ~raphfreememfunctions. By doing this, you can
control graphics memory allocation yourself. You must, however, use the
same names for your own versions of these memory-allocation routines:
They will override the default functions with the same names that are in
the standard C libraries.

Note: If you have provided your own -IP'aphgetmem or ...,graphfreemem,
you may get a "duplicate symbols" warning message because these
functions are also in the graphics library. Just ignore the warning.

230 Turbo C User's Guide

Drawing and Filling

Here's a quick summary of the drawing and filling functions:

==

Drawing:

an:
circle
drawpoly
ellipse
getan:coords
getaspectratio
getlinesettings

line
linerel

lineto
moveto
moverel
rectangle
setaspectratio
setlinestyle

Filling:

bar
bat.3d
fillellipse
fillpoly
800dfill
get6llpattem
getfillsettings
pieslice
sector
setfillpattem
setfillstyle

draws a circular arc
draws a circle
draws the outline of a polygon
draws an elliptical arc
returns the coordinates of the last call to arc or ellipse
returns the aspect ratio of the current graphics mode
returns the current line style, line pattern, and line
thickness
draws a line from (%0, yO) to (xl, yl)
draws a line to a point some relative distance from the
current position (CP)
draws a line from the current position (CP) to (x,y)
moves the current position (CP) to (x,y)
moves the current position (CP) a relative distance
draws a rectangle
changes the default aspect ratio<orrection factor
sets the current line width and style

draws and fills a bar
draws and fills a 3-D bar
draws and fills an ellipse
draws and fills a polygon
flood-fills a bounded region
returns the user~efinedfill pattern
returns information about the current fill pattern and color
draws and fills a pie slice
draws and fills an elliptical pie slice
selects a user~efined fill pattern
sets the fill pattern and fill color

==

With Turbo C's drawing and painting functions, you can draw colored
lines, arcs, circles, ellipses, rectangles, pieslices, 2- and 3-dimensional bars,
polygons, and regular or irregular shaPes based on combinations of these.
You can fill any bounded shaPe (or any region surrounding such a shaPe)
with one of 11 predefined patterns, or your own user-defined pattern. You
can also control the thickness and style of the drawing line, and the location
of the current position (CP).

Chapter 8. Turbo C's Video Functions 231

You draw lines and unfilled shapes with the functions arc, circle, drawpoly,
ellipse, line, linerel, lineto, and rectangle. You can fill these shapes with
floodfill, or combine drawing/filling into one step with bar, bar3d,
fillellipse, fillpoly, pieslice, and sector. You use setlinestyle to specify
whether the drawing line (and border line for filled shapes) is thick or thin,
and whether its style is solid, dotted, etc., or some other line pattern you've
defined. You can select a predefined fill pattern with setfillstyle, and define
your own fill pattern with setfillpattern. You move the CP to a specified
location with moveto, and move it a specified displacement with movere!.

To find out the current line style and thickness, you call getlinesettings. For
information about the current fill pattern and fill color, you call
getfillsettings; you can get the user-defined fill pattern with getfillpattem.

You can get the aspect ratio (the scaling factor used by the graphics system
to make sure circles come out round) with getaspectratio, and get
coordinates of the last drawn arc or ellipse by calling getarccoords.1f your
circles are not perfectly round, use setaspectratio to correct them.

232 Turbo C User's Guide

Manipulating the Screen and Viewport

Here's a quick summary of the image-manipulation functions:

==

Screen Manipulation

cleardevice
setactivepage
setvisualpage

clears the screen (active page)
sets the active page for graphiCS output
sets the visual graphics page number

Viewport Manipulation

clearviewport clears the current viewport
getviewsettings returns information about the current viewport
setviewport sets the current output viewport for graphics output

Image Manipulation
getimage
imagesize

putimage

Pixel Manipulation

getpixel
putpixel

saves a bit image of the specified region to memory
returns the number of bytes required to store a
rectangular region of the screen
puts a previously saved bit image onto the screen

gets the pixel color at (x,y)
plots a pixel at (x,y)

==
Besides drawing and painting, the graphics library offers several functions
for manipulating the screen, viewports, images, and pixels. You can clear
the whole screen in one fell swoop with a call to cleardevice; this routine
erases the entire screen and homes the CP in the viewport, but leaves all
other graphics system settings intact (the line, fill, and text styles; the
palette; the viewport settings; and so on).

Depending on your graphics adapter, your system has between one and
eight screen-page buffers, which are areas in memory where individual
whole-screen images are stored dot-by-dot. You can specify which screen
page is the active one (where graphics functions place their output) and
which is the visual page (the one displayed onscreen) with setactivepage
and setvisualpage, respectively.

Once your screen's in a graphics mode, you can define a viewport (a
rectangular "virtual screen") on your screen with a call to setviewport. You
define the viewport's position in terms of absolute screen coordinates and
specify whether clipping is on (active) or off. You clear the viewport with

Chapter 8. Turbo C's Video Functions 233

c:learviewp~rt. To find out the current viewport's absolute screen
coordinates and clipping status, call getviewsettings.

You can capture a portion of the onscreen image with getimage, call
imagesize to calculate the number of bytes required to store that captured ,.
image in memory, then put the stored image back on the screen (anywhere
you want) with putimage.

The coordinates for all output functions (drawing, filling, text, and so on) i

are viewport-relative.

You can also manipulate the color of individual pixels with the functions
getpixel (which returns the color of a given pixel) and putpixel (which
plots a specified pixel in a given color).

Text Output in Graphics Mode

Here's a quick summary of the graphics-mode text output functions:

--

gettextsettings

outtext
outtextxy
registerbgifont
settextjustify

settextstyle

setusermarsize
textheight
textwidth

returns the current text font, direction, size, and
justification
sends a string to the screen at the current position (CP)
sends a string to the screen at the specified position
registers a linked-in or user-loaded font
sets text justification values used by outtext and
outtextxy
sets the current text font, style, and character
magnification factor
sets width and height ratios for stroked fonts
returns the height of a string in pixels
returns the width of a string in pixels

==

The graphics library includes an 8xB bit-mapped font and several stroked
fonts for text output while in graphics mode.

• In a bit-mapped font, each character is defined by a rnatrix of pixels.
• In a stroked font, each character is defined by a series of vectors that tell

the graphics system how to draw that character.

The advantage of using a stroked font is apparent when you start to draw
large characters. Since a stroked font is defined by vectors, it will still retain
good resolution and quality when the font is enlarged. On the other hand,
when you enlarge a bit-mapped font, the matrix is multiplied by a scaling

234 Turbo C User's Guide

factor; as the scaling factor becomes larger, the characters' resolution
becomes coarser. For small characters, the bit-mapped fon t should be
sufficient, but for larger text you should select a stroked font.

You output graphics text by calling either outtext or outtextxy, and control
the justification of the output text (with respect to the CP) with
settextjustify. You choose the character font, direction (horizontal or
vertical), and size (scale) with settextstyle. You can find out the current text
settings by calling gettextsettings, which returns the current text font,
justification, magnification, and direction in a textsettings structure.
setusercharsize allows you to modify the character width and height of
stroked fonts.

If clipping is on, all text strings output by outtext and outtextxy will be
clipped at the viewport borders. If clipping is off, these functions will throw
away bit-mapped font output if any part of the text string would go off the
screen edge; stroked font output is tnmcated at the screen edges.

To determine the onscreen size of a given text string, call textheight (which
measures the string's height in pixels) and textwidth (which measures its
width in pixels).

The default 8x8 bit-mapped font is built into the graphics package, so it is
always available at run time. The stroked fonts are each kept in a separate
.CHR file; they can be loaded at ron time or converted to .OBI files (with
the BGIOBI utility) and linked into your .EXE file.

Normally, the settextstyle routine loads a font file by allocating memory for
the font, then loading the appropriate .CHR file from disk. As an alter­
native to this dynamic loading scheme, you can link a character font file (or
several of them) directly into your executable program file. You do this by
first converting the .CHR file to an .OBI file (using the BGIOBJ utility), then
placing calls to registerbgifont in your source code (before the call to
settextstyle) to register the character font(s). When you build your program,
you need to link in the .OBI files for the stroked fonts you register.

Note: Using registerbgifont is an advanced programming technique, not
recommended for novice programmers. This function is described in more
detail in Appendix D in the Turbo C Reference Guide.

Chapter 8. Turbo C's Video Functions 235

Color Control

Here's a quick summary of the color control functions:

==

Get color information

getbkcolor
getcolor
getdefaultpalette
gebnaxcolor

getpalette
getpalettesize

Set one or more colors

setaUpalette
setbkcolor
setcolor
setpalette

returns the current background color
returns the current drawing color
returns the palette definition structure
returns the maximum color value available in the current
graphics mode
returns the current palette and its size
returns the size of the palette lookup table

changes all palette colors as specified
sets the current background color
sets the current drawing color
changes one palette color as specified by its arguments

==

Before summarizing how these color control functions work, we first
present a basic description of how colors are actually produced on your
graphics screen.

Pixels and Palettes

The graphics screen consists of an array of pixels; each pixel produces a
single (colored) dot on the screen. The pixel's value does not specify the
precise color directly; it is an index into a color table called a palette. The
palette entry corresponding to a given pixel value contains the exact color
information for that pixel.

This indirection scheme has a number of implications. Though the
hardware might be capable of displaYing many colors, only a subset of
those colors can be displayed at any given time. The number of colors that
can be displayed at anyone time is equal to the number of entries in the
palette (the palette's size). For example, on an EGA, the hardware can
display 64 different colors, but only 16 of them at a time; the EGA palette's
size = 16.

The size of the palette determines the range of values a pixel can assume,
from 0 to (size - 1). The gebnaxcolor function returns the highest valid pixel
value (size -1) for the current graphics driver and mode.

236 Turbo C User's Guide

When we discuss the Turbo e graphics functions, we often use the term
color, such as the current drawing color, fill color and pixel color. In fact,
this color is a pixel's value: it's an index into the palette. Only the palette
determines the true color on the screen. By manipulating the palette, you
can change the actual color displayed on the screen even though the pixel
values (drawing color, fill color, and so on) have not changed.

Background and Drawing Color

The background color always corresponds to pixel value O. When an area is
cleared to the background color, that area's pixels are simply set to O.

The drawing color is the value to which pixels are set when lines are drawn.
You choose a drawing color with setcolor(n), where n is a valid pixel value
for the current palette.

Color Control on a CGA

Due to graphics hardware differences, how you actually control color
differs quite a bit between the eGA and the EGA, so we'll present them
separately. Color control on the AT&T driver, and the lower resolutions of
the MCGA driver is similar to eGA color control.

On the CGA, you can choose to display your graphics in low resolution
(32Ox200), which allows you to use four colors, or high resolution (640x200),
in which you can use two colors.

eGA Low Resolution

In the low resolution modes, you can choose from four predefined four­
color palettes. In any of these palettes, you can only set the first palette
entry; entries 1, 2, and 3 are fixed. The first palette entry (color 0) is the
background color. This background color can be anyone of the 16 available
colors (see table of CGA background colors below).

You choose which palette you want by the mode you select (CGACO,
CGAC1, CGAC2, CGAC3); these modes use color palette 0 through color
palette 3, as detailed in the following table. The CGA drawing colors, and
the equivalent constants, are defined in graphics.h.

Chapter 8, Turbo C's Video Functions 237

Palette
Number

Constant assigned to color number (pixel value)
123

o
1
2
3

CGA_LIGHTGREEN CGA_LIGHTRED
CGA_LIGHTCYAN CGA_LIGHTMAGENTA
CGA_GREEN CGA_RED
CGA_CYAN CGA_MAGENTA

CGA_YELLOW
CGA_WHITE
CGA_BROWN
CGA_LIGHTGRAY

To assign one of these colors as the eGA drawing color, call setcolor with
either the color number or the corresponding constant name as an
argument; for example, if you are using palette 3 and you want to use cyan
as the drawing color:

setcolor (1) ; or setcolor (CGA_CYAN) ;

The available eGA background colors, defined in graphics.h, are listed in
the following table.

Numeric
Value Symbolic Name

o BLACK
1 BLUE
2 GREEN
3 CYAN
4 RED
5 MAGENTA
6 BROWN
7 LIGHTGRAY
8 DARKGRAY
9 LIGHTBLUE
10 LIGHTGREEN
11 LIGHTCYAN
12 LIGHTRED
13 LIGHTMAGENTA
14 YELLOW
15 WHITE

To assign one of these colors to the eGA background color, use
setbkcolor(color), where color is one of the entries in the preceding table.
Note that for eGA, this color is not a pixel value (palette index); it directly
specifies the actual color to be put in the first palette entry.

238 Turbo C User's Guide

eGA High Resolution

In high resolution mode (640x200), the eGA displays two colors: a black
background and a colored foreground. Pixels can take on values of either 0
or 1. Because of a quirk in the CGA itself, the foreground color is actually
what the hardware thinks of as its background color; you set it with the
setbkcolor routine. (Strange but tme.)

The colors available for the colored foreground are those listed in the
preceding table. The CGA uses this color to display all pixels whose value
equals 1.

The modes that behave in this way are CGAHI, MCGAMED, MCGAHI,
ATT400MED, and ATT400HI.

eGA Palette Routines

Because the eGA palette is predetermined, you should not use the
setallpalette routine on a CGA. Also, you should not use setpalette (index,
actual_color), except for index = O. (This is an alternate way to set the eGA
background color to actuaCcolor.)

Color Control on the EGA and VGA

On the EGA, the palette contains 16 entries from a total of 64 possible
colors, and each entry is user-settable.

You can retrieve the current palette with getpalette, which fills in a
structure with the palette's size (16) and an array of the actual palette
entries (the "hardware color numbers" stored in the palette). You can
change the palette entries individually with setpalette, or all at once with
setallpalette.

The default EGA palette corresponds to the 16 CGA colors, as given in the
previous color table: black is in entry 0, blue in entry 1, ..., white in entry
15. There are constants defined in GRAPHICS.H that contain the corre­
sponding hardware color values: these are EGA_BLACK, EGA_WHITE,
and so on. You can also get these values with getpalette.

The setbkcolor(color) routine behaves differently on an EGA than on a
eGA. On an EGA, setbkcolor copies the actual color value that's stored in
entry #color into entry #0.

As far as colors are concerned, the VGA driver behaves like the EGA
driver; it just has higher resolution (and smaller pixels).

Chapter 8. Turbo C's Video Functions 239

Error Handling in Graphics Mode

Here's a quick summary of the graphics-mode error-handling functions:

==

grapherronnsg
graphresult

returns an error message string for the specified error code
returns an error code for the last graphics operation that
encountered a problem

==

If an error occurs when a graphics library function is called (such as a font
requested with settextstyle not being found), an intemal error code is set.
You retrieve the error code for the last graphics operation that reported an
error by calling graphresull The following error return codes are defined:

error 8raphks_e"o~

code constant

o grOk
-1 grNolnitGraph
-2 grNotDetected
-3 grFileNotFound
-4 grInvalidDriver
-S grNoLoadMem
-6 grNoScanMem
-7 grNoFloodMem
-8 grFontNotFound
-9 grNoFontMem
-10 grInvalidMode
-11 grError
-12 grIOerror
-13 grInvalidFont
-14 grInvalidFontNum
-15 grInvalidDeviceNum
-18 grInvalidVersion

corresponding
error message string

No error
(BGI) graphics not installed (use initgraph)
Graphics hardware not detected
Device driver file not found
Invalid device driver file
Not enough memory to load driver
Out of memory in scan fill
Out of memory in flood fill
Font file not found
Not enough memory to load font
Invalid graphics mode for selected driver
Graphics error
Graphics I/O error
Invalid font file
Invalid font number
Invalid device number
Invalid version of file

A call to grapherrorrnsg (graphresult ()) will return the error strings listed in
the previous table.

The error return code accumulates, changing only when a graphics
function reports an error. The error return code is reset to 0 only when
initgraph executes successfully, or when you call graphresult. Therefore, if
you want to know which graphics function returned which error, you

240 Turbo C User's Guide

should store the value of graphresult into a temporary variable and then
test it.

State Query

Here's a quick summary of the graphics mode state query functions:

==

getarccoords

getaspectratio
getbkcolor
getcolor
getdrivemame
getfillpattem
getfillsettings
getgraphmode
getlinesettings

getmaxcolor
getmaxmode
getmaxx
getmaxy
getmodename
getmoderange
getpalette
getpixel
gettextsettings

getviewsettings
getx
gety

returns information about the coordinates of the last call
to arc or ellipse
returns the aspect ratio of the graphics screen
returns the current background color
returns the current drawing color
returns name of current graphics driver
returns the user-defined fill pattern
returns information about the current fill pattern and color
returns the current graphics mode
returns the current line style, line pattern, and line
thickness
returns the current highest valid pixel value
returns maximum mode number for current driver
returns the current x resolution
returns the current y resolution
returns name of a given driver mode
returns the mode range for a given driver
returns the current palette and its size
returns the color of the pixel at x,y
returns the current text font, direction, size, and
justification
returns information about the current viewport
returns the x coordinate of the current position (CP)
returns the y coordinate of the current position (CP)

==

In each of Turbo C's graphics functions categories there is at least one state
query function. These functions are mentioned under their respective
categories and also covered here. Each of the Turbo C graphics state query
functions is named get<something> (except in the error-handling category).
Some of them take no argument and return a single value representing the
requested information; others take a pointer to a structure defined in
graphics.h, fill that structure with the appropriate information, and return
no value.

The state query functions for the graphics system control category are
getgraphmode, getmaxmode, and getmoderange: The first returns an

Chapter 8. Turbo C's Video Functions 241

integer representing the current graphics driver and mode, the second
returns the mode range for a given driver, and the third returns the range
of modes supported by a given graphics driver. getmaxx and getmaxy
return the maximum x and y screen coordinates for the current graphics
mode.

The drawing and filling state query functions are getarccoords,
getaspectratio, getfillpattern, getfillsettings, and getlinesettings.
getarccoords fills a stmcture with coordinates from the last call to arc or
ellipse; getaspectratio tells the current mode's aspect ratio, which the
graphics system uses to make circles come out round. getfillpattem returns
the current user-defined fill pattern. getfillsettings fills a structure with the
current fill pattern and fill color. getlinesettings fills a stmcture with the
current line style (solid, dashed, and so on), line width (normal or thick),
and line pattern.

In the screen- and viewport-manipulation category, the state query
functions are getviewsettings, getx, gety, and getpixeI. When you have
defined a viewport, you can find out its absolute screen coordinates and
whether clipping is active by calling getviewsettings, which fills a structure
with the information. getx and gety return the (viewport-relative) x- and
y-eoordinates of the CPo getpixel returns the color of a specified pixel.

The graphics mode text-output function category contains one all-inclusive
state query function: gettextsettings. This function fills a structure with
information about the current character font, the direction in which text
will be displayed (horizontal or bottom-to-top vertical), the character
magnification factor, and the text-string justification (both horizontal and
vertical).

Turbo C's color-control function category includes three state query
functions. getbkcolor returns the current background color, and getcolor
returns the current drawing color. getpalette fills a structure with the size
of the current drawing palette and the palette's contents. getmaxcolor
returns the highest valid pixel value for the current graphics driver and
mode (palette size - 1).

Finally, getmodename and getdrivername return the name of a given
driver mode and the name of the current graphics driver, respectively.

242 Turbo C User's Guide

c H A p T E R

9

Notes for Turbo Pascal Prograntnters

Now, before you go any farther, go back to Chapters 7 and 3 and at least
skim through them. Learn how C implements the basic elements of pro­
gramming. We will cover some of the same ground in this chapter, but
there are many details in those two chapters that you won't find here.

In a nutshell, Pascal is a fairly disciplined and structured language,
whereas C is rather free-wheeling and flexible. But C is also caveat
programmer; the same freedom that gives power to an experienced user can
get a beginner in a lot of trouble. Pascal takes care of you better than C
does, and thus is more suited as a language to learn the fundamentals of
programming.

Turbo C and Turbo Pascal are moving toward the center of this C-Pascal
language spectrum: Turbo C adds some structure to C, and Turbo Pascal
adds some flexibility to Pascal.

In This Chapter...

This chapter is not meant to be a comprehensive discussion of C and its
many fine features; its goal is to help you, as a Turbo Pascal programmer,
learn enough about Turbo C to start writing programs quickly. Expertise
and insight will come only with time, practice, and the hundreds of lines of
code that you will write.

In this chapter, we'll show you the similarities and differences between
Pascal and Turbo C programming. We start off with the basics: program
structure and the elements of 'programming. After that, we use a major
example to illustrate our discussion of data structures. The end of this

Chapter 9, Notes for Turbo Pascal Programmers 243

chapter is devoted to a discussion of programming issues that you need to
be aware of, and an overview of common pitfalls that trap Pascal
programmers learning C.

Throughout this chapter, we use examples of program code to illustrate tIte
points we're making. Each example consists of a Turbo Pascal program or
fragment on the left, and its equivalent in Turbo C on the right.

Program Structure

As you know, program structure in Turbo Pascal takes the following form:

program ProgName;
< declarations:
coll8t
type freely mixed
vax
proc:edur8s and functions >
begin (Main body of prog ProgName }

< statements >
end. (End of prog ProgName }

The main body of the program is executed; if it calls additional procedures
and functions, they are executed as well. All identifiers----constants, types,
variables, procedures, and functions-must be declared before they are
used. Procedures and functions are organized in a nearly identical manner.

Program structure in C is a little more flexible:

< preprocessor commands >
< type definitions >
< function prototypes > freely mixed
< variables >
< functions >

Functions, in turn, have the following structure:

<type> FuncName«parm declarations»
(

<local declarations>
<statements>

Of all the functions you declare, one must be named main; that is the main
body of your program. In other words, when your Turbo C program starts
execution, main is called, and it can in turn call other functions. A C
program consists entirely of functions. However, some functions are of type
void, meaning that they return no values; so they are like Pascal

244 Turbo C User's Guide

procedures. Also (unlike Pascal) you are free to ignore any values that a
function returns.

An Example

Following are two programs, one written in Turbo Pascal, the other written
in Turbo C, which illustrate some of the similarities and differences
between the two in program structure:

Turbo Pascal TurboC

)

1* End of main *f

int max(int a, int b)
(

int temp;
temp = *a; *a = *b; *b = temp;

if (a > b)

return(a);
else

return(b);

i,j,k;

i =10; j =15;
k=max(i,j)i
swap(&i,&k);
printf("i = %2d j = %2d",i,j)i
printf(" k = %2d\n",k)i

int

)

1* End of maxI) *1

void swap(int *a, int *b)

}

1* End of swap() *1

main()
(

program MyProg;
var

1,J,K : integer;

function Max(A,B : integer) integer;
beqin

if A > B
tho Max := A

begin (Main body of MyProg I

I := 10; J := 15;
K := Max(I,J);
Swap(I,K) ;
Write('! = , ,1:2,' J = ',J:2);
Writeln(' K= , ,K:2)

ad.
(End of program MyProg

elee Max := B
end;
(End of function Max

procedure Swap(var A,B : integer);
var

Temp : integer;
begin

Temp := A; A := B; B := Temp
ad;
(End of procedure Swap)

If we had chosen to, we could have declared i, j, and k inside of main,
instead of as global variables. In many cases, that's better programming
practice, since it eliminates the chance (and temptation) of directly

Chapter 9, Notes for Turbo Pascal Programmers 245

modifying global variables within functions, while still creating variables
that exist throughout the course of the program.

Right now the C program on the right probably looks bizarre to you. But by
the time you finish this chapter, you'll be right at home with iti in fact,
you'll probably be writing things that look even more bizarre.

A Comparison of the Elements of
Programming

Back in Chapter 7, we talked about the seven basic elements of program­
ming-output, data types, operations, input, conditional execution,
iterative execution, and subroutines. Let's look at those again, seeing how
Pascal and C both resemble and differ from each other.

Output

The main output commands in Turbo Pascal are Write and Writeln. Turbo
C, on the other hand, has a variety of commands, based on what exactly
you want to do. The most commonly used, and the one that requires the
most overhead, is prlntf, which takes the format:

printf«format strin9>,<item>,<item>, •••);

where <format string> is a string literal or a string variable (remember, C uses
double quotes> and the <item>s are optional variables, expressions, etc.,
that match up with format commands in the format string; see Chapter 7
for more details. To get a newline (=Writeln) in C, insert the escape
sequence \n (newline) at the end of the format string.

Here are some example routines in Turbo Pascal with equivalent (or near
equivalent> C routines:

246 Turbo C User's Guide

print! (IlHello, world. \n") ;
printf("What's your name? ");
printf(If\"Hello,\" said John\n");

printf("%d + %d = %d\n",a,b,c);
printf("You owe us $%6.2f\n",amt);

printf (IIYour name is %s?\n", name)
printf(IIThe answer is %c\n",ans);

printf(" a = %4d",a);
printf(" a*a = %6d\n",a*a);

Turbo Pascal

var
A,B,C : integer;
Amt : real;
Name : atring[20];
Ans : char;

Writeln('Hello, world.');
Write('What"s your name? ');
Writeln('"Hello," said John');

Writeln(A,' + ' ,B,' = , ,C);
Writeln('You owe us $' ,Amt:6:2);

Writeln('Your name is ',Name,'?');
Writeln('The answer is ' ,Ans);

Write(' A = , ,A:4);
Writeln(' A*A = ',(A*A) :6);

int
float
char
char

TurboC

a,b,c;
amt;
name[21]; (or *name)
ans;

Two other C output routines you'll probably want to be aware of are puts
and putchar. puts takes a single string as its argument and writes it out,
automatically adding a new line. putchar is even simpler: It writes a single
character. So, for example, the following commands are equivalent:

Writeln (Name);
Writeln('Hi, there!'); Writeln;

Write(Ch);

Data Types

puts(Name);
puts("Hi, there!\n");

putchar(ch);

Most Turbo Pascal data types have equivalents in Turbo C. C actually has a
greater variety of data tyPes, with different sizes of integers and floating­
point values, as well as the modifiers signed and unsigned.

Chapter 9, Notes for Turbo Pascal Programmers 247

Here's a table giving rough equivalents between Pascal and C data types.

Turbo Pascal TurboC

char (1 byte) chr(O - 255) char (1 byte) -128 - 127
byte (1 byte) o - 255 unsigned char (1 byte) o - 255
integer (2 bytes) -32768 - 32167 short (2 bytes) -32168 - 32767

int (2 bytes) -32768 - 32767
word (2 bytes) o - 65535 unsigned int (2 bytes) o - 65535
long int (4 bytes) -231 - (231_1) long (4 bytes) _231 - (231 _1)

unsigned long (4 bytes) o - (232-1)
real (6 bytes) 1£-38 - 1E+38 float (4 bytes) ± 3.4 E ±38
double (8 bytes) ± 1.7 E ±308 double (8 bytes) ± 1.7 E ±308
extended· (10 bytes) ± 3. 4E-4932 - long double (10 bytes) ± 3.4E-4932 -

1.1E+4932 1.1E+4932
boolean (1 byte) False, True o= false,

nonzero = true

Note that there is no Boolean data type in C; expressions that require a
Boolean value interpret a value of zero as being false and any other value as
being true.

In addition to the data types listed, Turbo C supports enumerated data
tyPes; however, unlike Pascal, these are effectively just pre-assigned integer
constants and are completely compatible with all integral types.

type
Days

Turbo Pascal

(Sun,Mon, Tues, Wed,
Thurs,Fri,Sat);

TurboC

enum days = (Sun,Mon,Tues, Wed,
Thurs,Fri,Sat);

val'

Today : Days;

Operations

enum days today;

Turbo C has all the operators of Turbo Pascal, and then some.

One of the more basic differences between the two languages is how
assignment is handled. In Pascal, assignment (:=) is a statement. In C,
assignment (=) is an operator that may be used in an expression.

248 Turbo C User's Guide

Table 9.1 shows a side-by-side comparison of oPerators in Turbo Pascal and
Turbo C. They are listed in order of precedence, with oPerations grouped
together having the same precedence.

Table 9.1: Pascal and C Operators

Operator Pascal C

unary minus
unary plus
logical not
bitwise complement
address
pointer reference
size of
increment
decrement

multiplication
inte~erdivision
floating division
modulus

addition
subtraction

shift right
shift left

greater than
greater or equal

less than
less or equal

equal
not equal

bitwise AND
bitwise OR
bitwiseXOR

logical AND
logical OR

assignment

A :=-B;
A:= +B;
not Flag
A:=notB;
A := Addr(B);
A := IntPtr";
A := SizeOf(B);
A := Succ(A);
A := Pred(A);

A:=B*C;
A:= BdivC;
X:=B / C;
A:=BmodC;

A:=B+C;
A:=B-C;

A:= BshrC;
A:=BshlC;

A>B
A>=B

A<B
A<=B

A=B
A<>B

A:=BandC;
A:= Bor C;
A:= BxorC;

Flagl and Flag2
Flaglor Flag2

A:=B;
A:=A<op> B;

a=-b;
a=+b;
!flag
a=-b;
a=&b;
a = *intptr;
a = sizeof(b);
a++ and ++a
a--and--a

a = b *c;
a = b / c;
x = b / c;
a = b % c;

a =b +c;
a = b-c;

a = b» c;
a = b« c;

a> b
a>=b

a< b
a<=b

a==b
a!=b

a =b&c;
a = b I c;
a = b" c;
flagl && flag2
flagl I I flag~

a =b;
a <op> = b;

There are some important differences in C operators and operator
precedence.

First, the increment (++) and decrement (-) oPerators can be placed before or
after the variable name. If the oPerator is placed before the variable, then
the variable is incremented (or decremented) before the rest of the

Chapter 9, Notes for Turbo Pascal Programmers 249

expression is evaluated; if after, the expression is evaluated first, then the
variable is incremented (or decremented).

Second, the logical operators in C (&&, I I) are short-circuit operators. This
means that if the first item determines the truth of the expression, then the
second is never evaluated. So, unlike Pascal, C lets you safely write this:

while (i <= limit && list[i] != 0) ••• ;

where limit is the largest allowable index into the list array.

If the first item (i <= limit) is false, then C knows that the entire expression
must be false, and it doesn't evaluate the second item (list [i] != 0), which
would be an index range error.

Third, C allows you to take the general expression

A = A <op> B

where <ap> is any binary operator (except for && and I I), and replace it
with

A <op> =B

So, for example, instead of A = A * B, you could write A *= B, and so on.

Input

Again, in Turbo Pascal, you have one basic input command, ReadO, with a
few variations (ReadlnO, Read(f,), etc.). In Turbo C, the main function used
for keyboard input is scanf, which takes the format

scanf«format string>,<addrl>,<addr2>, •••);

where <format string> is a string with format indicators (as in printf), and
each <addr> is an address into which scanf stores the incoming data. This
means that you will often need to use the address-of operator (&). There
are other commonly used commands as well: gets, which reads in an entire
string until you press Enter; and getch, which reads a character straight
from the keyboard with no echo.

250 Turbo C User's Guide

Here are some Pascal input commands with corresponding C commands:

Turbo Pascal

Readln(A,B);
Readln(Name);

Readln(X,A);
Readln(Ch);
Read(Kbd,Ch);

TurboC

scanf(~%d %d~,&a,&b);

scanf(W%sW,name);
/* or gets(name); */

scanf(N%f %d",&x,&a);
scanf("%c",ch);
ch =: getch () ;

Be aware of one important distinction between these two ways of reading
in a string (scanf and gets). scanf reads in all characters until whitespace
(blanks, tabs, newline) is encountered. By contrast, gets will read everything
in (including blanks and tabs) until you press Enter.

Block Statement

Both Pascal and C have the concept of a block statement (a collection of
statements that can be put in anywhere a single statement can). In Pascal,
the block statement takes the form

begin <statement>; <statement>; ••• <statement> and;

In C, it takes this form:

(<statement>; <statement>; ••• <statement>;)

While the form is very similar, there are two important differences:

• In Pascal you don't have to put a semicolon after the last <statement> in a
block; in C, you do.

• In C you never put a semicolon after the closing brace ()) of a block; in
Pascal, you might have to.

Conditional Execution

Both Pascal and C support two conditional execution constructs: the if/then/
else statement and the case statement.

The if/then/else is very similar for both of them:

Chapter 9, Notes for Turbo Pascal Programmers 251

if <bool expr>
than <statement>
alsa <statement>

if «expr»
<statement>;

else
<statement>;

In both Pascal and C, the else clause is optional, and <statement> can be
replaced with a block statement (as already described). There are a few
important differences, though.

• In C, the <expr> doesn't have to be Boolean; it just has to somehow
resolve to a zero or nonzero value, where zero is considered false, and
nonzero is considered true.

• In C, the <expr> must be in parentheses.

• In C, there is no then.
• In C, semicolons are always required after the statements-unless, of

course, you have a block statement there instead.

Here are a few examples in Pascal and C:

Turbo Pascal

if B = 0
thaD Writeln('C is undefined')

alae begin
C := A div B;
Writeln('C = , ,C)

and;

C := A * B;
1f C < > 0

than C := C + B;
alae C := A

TurboC

if (B == 0)

putS("C is undefined");
else (

c =a I b;
printf("c = %d\n",c);

if ((c = a * b) != 0)

C += b;
else

c = a;

The case statement is also implemented in both Pascal and C (in which it's
known as the switch statement), but with some important differences.

252 Turbo C User's Guide

Here's the general format for Pascal and C:

Turbo Pascal TurboC

cu. <expr> of
<list> : <statement>;
<list> : <statement>;

<list> : <statement>;
.ls. <statements>

ad;

switch «expr» (
case <item> : <statements>
case <item> : <statements>

case <item> : <statements>
default : <statements>

Besides the cosmetic changes, there are critical distinctions as well.

First, in Pascal, <list> can be a list of values; in Turbo Pascal, it can include
ranges (A.. .Z) as well. In C, <item> is exactly one value. In both languages,
you're limited to ordinal and constant values: integers, characters, and
enumerated data types.

Second (and this is very important>, in Pascal, <statement> is either a single
statement or a block statement; once it is executed, the rest of the case
statement is skipped over. In C, <statements> consists of zero or more
statements, each ending with a semicolon. However, once they are
executed, control does not pass to the end of the switch statement; instead,
it continues down the list of <statements> until and unless it hits a break
statement. Then, and only then, is the rest of the switch statement skipped.
It may help to think of each case <i tem> : as a label, with the switch «expr»
statement determining which one to jump to.

Chapter 9. Notes for Turbo Pascal Programmers 253

Here are a few examples:

Turbo Pascal

case Ch of
'c' : DoCompile;
'R' : begin

if not Compiled
the DoCompile
RunProgram;

end;
, S' : SaveFile;
, E' : EditFile;
'Q' : begin

if not Saved
the SaveFile

end;
ed;

case Today of
Mon •• Fri : Writeln('go work!');
Sat, Sun : begin

if Today = Sat the begin
Write('clean the ');
Write('yard and ')
ed;

Writeln('relax!')
ed

ed;

TurboC

switch (ch)
case 'c' DoCompile(); break;
case 'R'

if (! compiled)
DoCompile () ;

RunProgram();
break;

case'S' SaveFile(); break;
case 'E' : EditFile(); break;
case 'Q' :

if (!saved)
SaveFile () ;

break;

switch (today)
case Mon :
case Tue :
case Wed :
case Thur:
case Fri : putS("go work!");

break;
case Sat : print! ("%S", "clean the II

"yard and ");
case Sun: puts("relax !");

Note the second set of examples. The case <item> parts of the switch
statement label each case you want to handle; in the case of Mon through
Thur, the <statements> sections are empty, and control falls downward until
it finds the statements labeled by case Fri :. The break statement then
causes control to skip to the end of the switch statement. However, the
program takes advantage of the same feature with the weekend; the label
case Sat : causes the printf statement to execute, after which control falls
to the following puts statement.

254 Turbo C User's Guide

Iteration

C, like Pascal, has three types of loops: while, do...while, and for, which
correspond closely to Pascal's three loops (while, repeat..until, and for).
We'll present them in that order.

The while Loop

Of the three loops, the while loop is most similar in both languages. Here
are the formats:

while <bool expr> do
<statement>;

while «expr>l
<statement>;

In both languages, you use a block statement to put more than one
statement in the loop. The only real difference, again, is C's greater
flexibility in what it accepts for <expr>. For example, compare the following
two loops:

Read(Kbd,Chl;
while Ch <> ' q' do begin

Write(Chl; Read (Kbd,Chl
ud;

The do..while Loop

while «(ch = getch () I != , q' I
putchar(ch);

The do...while loop is similar to Pascal's repeat...untilloop; here are the
formats:

repeat
<statements>

until <bool expr>;

do
<statement>;

while «expr»;

But, there are two important differences between these two loops:

• The do..while loop executes while <expr> is true, whereas the
repeat..until executes until <bool expr> is true.

• The repeat..until statement doesn't require a block statement for multiple
statements, while the do..while does.

Here's an example of each:

repeat
Write('Enter a value: 'I;
Readln(A)

until (Low <= A) and (A <= High);

do (
printf("Enter a value: "Ii
scanf("%d",&a);

) while (a < low I I a > high);

Chapter 9, Notes for Turbo Pascal Programmers 255

Note another important difference between C and Pascal: In C, relational
operators (>, <, etc.) have a higher precedence than logical operators
(&&, I I). This means that you don't have to surround each relational
expression with parentheses, as you often have to in Pascal.

The for Loop

The for loop shows the greatest differences between Pascal and C. In
Pascal, the for loop is rather fixed and inflexible; in C, it is almost too
flexible, allowing some constructs that tend to lose all resemblance to a for
loop.

Here are the formats of both:

for <indx> := <start> to <finish> do
<statement>;

for «exprl>; <expr2>; <expr3»
<statement>;

In C (as it really is in Pascal), the for statement is simply a special case of
the while statement. The given format is equivalent to

<exprl>;
while «expr2»

<statement>;
<expr3>;

<exprl> is used for initialization, <expr2> for testing the end of the loop,
and <expr3> to increment or otherwise modify the loop variable(s).

256 Turbo C User's Guide

Here are a few examples, some of which use the while loop in Pascal:

Turbo Pascal;'

for I := 1 to 10 do begin
Hrite('I = , ,1:2);
Write(' 1*1 = ',(I*Il :4);
Writeln(' 1**3 = ',(1*1*1) :6}

ad;

I := 17; K := I;
while (I > -450) do begin

K := K + I;
Writeln('K = , ,K,' I = ,,I);
I := I - 15

ad;

X := 0/2.0;
while (Abs(X*X-O) > 0.01) do

X := (X + 0/X}/2.0;

TurboC

for (i = 1; i <= 10; iH) (
printf("i = %2d ",i);
printf("i*i = %4d ",i*i};
printf("i**3 = %6d\n",i*i*i};

for (i = 17, k = i; i > -450; i -= 15)
(

k += i,
printf("k = %d i = %d\n",k,i);

for (x = d/2; fabs(x*x-d) > 0.01;
x = (x+d/x)/2)
; /* Empty statement */

Notice that these loops are doing more and more inside the for section,
until the last one actually has no statement to execute; all the work is done
within the header of the loop itself.

Subroutines

Both Pascal and C have subroutines; Pascal has procedures and functions,
while C has just functions. However, you can declare functions to be of
type void, which means that they return no value at all; if you want to, you
can also ignore the value that a function does return.

Chapter 9. Notes for Turbo Pascal Programmers 257

Here are the formats for functions in both languages:

Turbo Pascal

function FName«parm decls» : <type>;
<local declarations>

begin
<statements>

ad;

TurboC

<type> FName«parm decls»

<local declarations>
<statements>

In Pascal, <pann decls> takes the form <pnames> : <type>; for each set of
parameters, while in C it's <type> <pnames>.

There are other important differences as well, but they're best shown by
example. Here are a few:

Turbo Pascal

function Max(A,B : integer) integer;
begin

if A > B
tha Max : '" A
else Max :'" B

ad;

TurboC

int max(int a, int b)
{

if (a > b)

return(a);
else

return(b);

Note that in C the return statement is used to return a value through the
function, while Pascal has you assign a value to the function name.

258 Turbo C User's Guide

Turbo Pascal

procedure Swap(var X,Y : real);
var

Temp : real;
becJh

Temp ::::: X;
X ::::: Y;
Y := Temp

ud;

TurboC

void swap(float *x, float *y)

float temp;
temp :::: *x;
*x :::: *y;
*y =temp;

In Pascal, you have two types of parameters: var (pass-by-address) and
value (pass-by-value). In C, you only have pass by value. If you want a
pass-by-address parameter, then that's what you have to do: Pass the
address, and define the formal parameter as a pointer. That's what was
done for swap.

Here's sample code calling these routines:

Turbo Pascal

o ::::: 1.5;
R := 9.2;
Writeln('O =,,0:5:1,' R = , ,R:5:1);
Swap(O,R);
Writeln('O:::: , ,0:5:1,' R = ',R:5:1);

TurboC

q :::: 1.5;
r :::: 9.2;
printf(Aq = %5.1f r :::: %5.1f\n",q,r);
swap(&q,&r);
printf("q:::: %5.1f r = %5.1f\n",q,r);

Note the use of the address-of operator (&) in the C code when passing q
and r to swap.

Function Prototypes

There is an important difference between Pascal and C concerning
functions: Pascal always does error-ehecking to make sure that the number
and types of parameters declared in the function match those used when
the function is called.

Chapter 9, Notes for Turbo Pascal Programmers 259

In other words, suppose you define the Pascal function

function Max(I,J : integer) : integer;

and then try to call it with real values (A :=Max (B, 3.52) ;).

What will happen? You'll get a compilation error telling you that there is a
type mismatch, since 3.52 is not an acceptable substitute for an integer.

Not so in C. By default, C does no error checking on function calls: It does
not check the number of parameters, parameter types, or even the type
returned by the function. This allows you a certain amount of flexibility,
since you can call a function before it is ever defined. But it can also get you
into deep trouble; see "Pitfall #2" later in this chapter. So, how do you
avoid this?

Turbo C supports function prototypes. You can think of these as being
somewhat analogous to forward declarations in Pascal. You typically place
function prototypes near the start of your file, before you make any calls to
those functions. The key point to remember is that the function
prototype-which is a kind of declaration-must precede the actual call to
the function.

A function prototype takes the format:

<type> FName«type> <pname>, <type> <pname>, etc.);

This is very similar to how Pascal declares functions, but with a few
differences. Commas (not semicolons) are used to separate the definition of
each parameter; also, you can't list multiple <pname>s for a single <type>.

Here are some sample prototypes, based on the routines already given, as
well as on the routines in "A Major Example" (following):

int max(int a, int b);
void swap(float *x, float *y);
void swapitem(listitem *i, listitem *j);
void sortlist(list 1, int cl;
void dumplist(list 1, int c);

Unlike the Pascal forward statement, the C function prototype does not
force you to do anything different when you actually define your function;
in other words, you define your function just as you would otherwise (or
you can define it using modem C style). In fact, if your function definition
doesn't match the prototype, Turbo C will give you a compilation error.

Turbo C supports both the classic and modem styles, although-since C is
migrating toward using the modem style-we recommend that you use
function prototypes and prototype-style function definitions.

Using function prototypes can prevent a lot of problems, especially when
you start compiling libraries of C routines. You should create a separate file

260 Turbo C User's Guide

and put in it function headers for all the routines in a given library. When
you want to use any routines in that library, you include the header file into
your program (with the directive tinclude). That way, error checking can
take place at compile time, possibly saving you a fair amount of grief.

A Major Example

Now here's a long example, a complete program using most of what you've
learned up until now, and then some. It defines an array myList, whose
length is defined by the constant LMax and whose base type is defined as
Listltem (which here is just Integer). It initializes that array to a set of
numbers in descending order, displays them using the DumpList routine,
sorts them in ascending order with SortList, then displays them again.

Note that the C version of this program is not necessarily the best C
version. It has been written to correspond as much as possible to the Pascal
version; the few places where it doesn't correspond are designed to
demonstrate certain differences between C and Pascal.

Chapter 9. Notes for Turbo Pascal Programmers 261

Turbo Pascal

pr~ DoSort;
conat

LMax = 100;
type

Item = integer;
List =array(l •• LMax) of Item;

var
myList : List;
Count,I : integer;
Ch : char;

procedure SortList(var L : List;
C : integer);

var
Top,Min,K : integer;

procedure SwapItem(var I,J : Item);
var

Temp: Item;
begin

Temp := I; I := J; J := Temp
end; (of proc SwapItem)

begin (Main body of SortList

for Top := 1 to C-1 do begin
Min :::: Top;
for K := Top + 1 to C do

if LlK) < LlMin)
then Min :::: K;

SwapItem(LlTop),L[Min))
end

end; (of proc SortList)

procedure DumpList(L : List;

var
I : integer;

beqin

for I := 1 to C do
Hriteln('L[',I:3,') = ',L[I]:4)

end; (End of proc DumpList)

262

TurboC

'define LMAX 100

typedef int item;
typedef item listlLMAX];

list myList;
int count, i;

void swapitem(item *i,item *j)

item temp;
temp = *i; *i = *j; *j ::: temp

/* swapitem */

void sortlist(list 1, int c)
(

int top,min,k;
for (top = 0; top < c-1; top++) (

min =top;
for (k = top + 1; k <= c; k++)

if (Ilk] < Ilmin))
min = k;

swapitem(&l[top],&llmin));
)

/*end of sortlist */

void dumpIist(list I,int c)
C : integer);

int i;
for (i = 0; i <= c; iff)

printf("ll%3d) = %4d\n",i,lli));
/* dumplist() */

Turbo C User's Guide

begin (Main body of DoSort)
for I := 1 to LMax do

myList(I] := Random(1000);
Count := !.Max;
DumpList(myList,Count);
Read (Kbd,Ch) ;
SortList(myList,Count);
DumpList(myList,Count);
Read (Kbd, Ch)

end. (of DoSort)

mainO
{

for (i = 0; i < LMAX; iff)
myList[i] = rand() %1000;

count = LMAX;
dumplist(myList,count);
qetch();
sortlist(myList,count);
dumplist(myList,count);
qetch();

} /* main */

There are some important things to note here:

• In the Pascal version, we nested the procedure Swapltem inside of the
procedure SortList; in C, you can't nest functions, so we had to move
swapitem outside of sortlist.

• In C, arrays always start at location 0 and go up through size-I. For
example, the first location in myList is myListlO], while the last is
myListlLMAX-ll. That's why the various for loops are set up the way
they are.

• We didn't have to use the address-of and pointer operators when we
passed myListll to sortlist. Why? Because C always passes the address of
arrays used as parameters, rather than the array itself, since it can't pass
all the values in the array without causing serious problems. Likewise,
when we declare the formal parameter list 1; in dumplist and sortlist,
C knows to create that array at the address passed to it, so we don't have
to mess with pointer operators.

• We didn't need function prototypes in this example because each
function is defined before it is used. If we wanted to, we could place
them in the program anywhere after defining the data types item and list,
and they would have looked like this:

void swapitem(item *1, item *j);
vold sortlist(llst 1, lnt c);
vold dumpllst(list 1, int c);

Again, note that using the function prototype does not change how you
define the function.

A Survey of Data Structures

In this section we'll give you an overview of how data structures in C do
(and don't) resemble Turbo Pascal data structures. The elements we'll talk
about are pointers, arrays, strings, structures, and unions.

Chapter 9. Notes for Turbo Pascal Programmers 263

Pointers

It's possible to program for a long time in Pascal and never use pointers;
not so in C. Why? Because, as mentioned before, C only uses pass-by-value
parameters for its functions. If you want to modify a formal parameter and
have that change the actual parameter, you have to pass the address
yourself, then declare the formal parameter to be a pointer to the actual
data type. Furthermore, strings are implemented in C as pointers to char, so
any string manipulation will need pointers as well.

Here's a quick comparison of pointer declarations and use in Pascal and C,
with a few examples of each:

Turbo Pascal TurboC

Declaration: <pname> : A<type>;
IntPtr : Alnteger;
Buff1 : Alntarray;
Buff2 : array[O •• N] of IntPtr;
PHead : ANode;
Head : Node;

<type>
int
int
int
node
node

*<pname>;
*intptr;
buff! [];
*buff2[];
*phead;
head;

Use: <pname>A := <value>;
IntPtrA := 22;
BufferA[152] := 0;
PHeadA.Next := nil;

*<pname> = <value>;
*intptr = 22;
buff! [152] = 0;
(*phead) .next = NULL;
/* or phead->next =NULL; */

Note the use of parentheses for the last example (phead) in C, as well as the
special symbol (-» in the second version for phead. Here are some more
examples:

1. Buff!A[152]
2. Buff2 [152] A
3. Head.DataA

4. Head.Next
5. PHeadA.Next

:= 0;
:= OJ
:= OJ
:= nil;
:= nil;

buff1[152] = 0;
*buff2[152] =0;
*head.data = 0;
head. next = NULL;
(*phead) .next = NULL; /* or phead -> next =

NULL; */

The first example presumes that buffl points to an array of integers.

The second example indiCates that buff2 is an array of pointers to integers,
so it is indexed before it is referenced.

The third assumes that head is a record (a struct in C) with a field next,
which is a pointer to an integer.

264 Turbo C User's Guide

The fourth assumes that head also has a field next, which is a pointer to
something (it's unclear what>.

The last example shows that phead is a pointer to a record (also a struct), and
that record has a field next, which is a pointer.

The symbol-> is used as shorthand notation; that is, the expression

pname -> fname = value;

says that pname is a pointer to some type of record, /name is the name of
some field in that record, and that value is going to be assigned to the fname
field in the record to which pname points.

Arrays are fairly simple creatures in C, compared to Pascal. Arrays in C can
have integer, character, or enumerated-type indices, while Pascal allows
you to use any ordinal type. All array index ranges in C start at 0 and go to
n-l (where n is the size of the array). This is very unlike Pascal, which lets
you start and end the index ranges wherever you choose.

In C, array indexing is like pointer arithmetic, and the same identity holds
true: The Pascal ali] is equivalent to both ali] and *(a + i) in C.

The general format for arrays in the two languages follows:

<name> : array[<low>•• <high>] of <type>; <type> <name>[<size>];

where <size> is equal to (l + <high> - <low».

Multidimensional arrays in C are declared much like in Pascal: Either
<type> is itself an array of some sort, or you add additional sizes on the
end, like this:

<type> <name> «sizel>] [<size2>] «size3>];

Note that, unlike Pascal, you cannot write arr[x) [y) as arr[x, y) (see ''Pitfall
#5" following).

In C, a block of memory large enough for <size> instances of <type> is set
aside, and <name> is a constant pointer to the beginning of that block.

This aids passing arrays to functions; more importantly, it means that
(unlike Pascal) the function does not have to know how big the array is at
compile time.

The result: You can pass arrays of different sizes (but the same type) to a
given function.

Chapter 9. Notes for Turbo Pascal Programmers 265

Consider, for example, the following function, which receives an array of
type int and returns the lowest value in the array:

int amin(int all, int n); /* Function declaration */
(

int min,i;

min = a(O);

for (i =1; i < n; itt)
if (ali] < min)

min =ali);
return (min);

)

You can pass an integer array of any size to this function; it will find the
lowest value of the first n elements. Losing this flexibility is one of the
biggest complaints C programmers have when using Pascal.

Strings

Standard Pascal doesn't define strings as a seParate data type; Turbo Pascal
does, and supplies a number of procedures and functions for working with
them.

C (including Turbo C) does not define a separate string data type; instead, a
string is defined as either an array of char or a pointer to char, which (as
you've seen) are almost the same thing.

Here are some comparative declarations:

Turbo Pascal

<name> : striDgI<size»;
type

BigStr =atriDg(255);
StrPtr = ABigStr;

TurboC

char <name>«size>];

typedef char bigstrI256];
typedef char *strptr;

var
Line
Buffer
Word
Ptr

: atdq(80);
: BigStr;
: striDg(35);
: StrPtr;

char line(81);
bigstr buffer;
char word(36);
strptr ptr;

The key differences between strings in Turbo Pascal and strings in Turbo C
are closely tied to the differences between arrays in the two languages.

266 Turbo C User's Guide

In Turbo Pascal, the declaration

S : atring[N]

is equivalent to

S : array of [O •• N] of char

The string has a maximum length of N characters; the current length is
stored in 5101, while the actual string itself starts in location 5111. You can
directly assign string literals and constants to a string variable; Pascal will
do the byte-by-byte transfer and correctly adjust the length.

In Turbo C, you can declare a string as

char strarr[N]

or as

char *strptr

The first declaration sets aside N memory for holding a string, then
represents the address of those bytes with strarr. The second declaration
only sets aside bytes for the pointer strptr, which points to char types.

In C, a string's length is not stored separately; instead, a string terminator is
used to mark the end of the string. This terminator is the null character
(ASCll 0), which requires an extra byte at the end of the string; the string
itself starts in strarrl01.

Because of this, the string strarr can only hold N-l "real" characters, since 1
byte will have to be reserved for the null-terminator. That's why the C
declarations in the comparison table all have lengths one greater than their
corresponding Pascal declarations.

Furthermore, since strarr is not the actual collection of bytes, you cannot
directly assign string literals. Instead, you must use the routine strcpy (or
one of its derivatives) to do a byte-by-byte transfer from one string to
another: strcpy(strarr, "Hello, world!");. J-Iowever, you can directly read
into strarr using scanf or gets.

The other method of string declaration, char *strptr, requires you to use
more care. In this case, strptr is just a pointer to char; no space for any string
has been allocated, just the few bytes for the pointer itself.

You can assign string literals directly to strptr; since those literals are
created as part of the object code itself, you merely assign their addresses to
strptr. If you assign strarr to strptr, then both strarr and strptr now point to
the same string; the same thing occurs if you assign another string pointer
to strptr.

Chapter 9, Notes for Turbo Pascal Programmers 267

So, how do you get strpfr to pOint to its own private string instead of
somewhere else? By allocating space to it:

strptr = (char *) malloc (N) ;

This will set aside N bytes of available memory, using the malloc routine
and assign to strptr the address of that string. You can then use strcpy to
copy strings (literals and variables) into those allocated bytes.

The Pascal equivalents for this (StrPtr, Ptr) are only very rough equivalents.
Instead of being "Char, StrPtr is defined as "BigStr. This is so that Turbo
Pascal will recognize Ptr as being a shing; it also helps to avoid any range­
checking problems. Note in the following example that only the amount of
space requested is actually allocated to Ptr.

Here is a list of roughly comparable statements; refer to the Turbo C
Reference Guide for a complete list of Turbo C's string (str...) functions. These
statements presume the type declarations given in the previous
comparison:

268 Turbo C User's Guide

Turbo Pascal TurboC

var
Line, Name
First, Temp
Ptr
I,Len,Err

: BigStr;
Itring(80);
StrPtr;
integer;

main ()
{

bigstr line, name;
char first[81],temp(81);
char *ptr;
int i,len;
extern char *strchr(char *s,ehar

chI;

begin
Write('Enter name: ');
Readln(Name);
I := Pos(' , ,Name);
if I = 0 than

First := Name
else

First := Copy(Name,l,I-l);
Len := Length(First);
Writeln('Len = , ,Len);
Temp := Concat('Hi, , ,Name);

Writeln (Temp) ;
if Name <> First

then Name := First;
I := 823; Str(I,Temp);
Val(Temp,I,Err);
GetMem(Ptr,81);
Ptr~ := 'This is a test.';
Writeln('Ptr = , ,Ptr~);
FreeMem(Ptr,81);

and.

printf("Enter name: A);
gets(name);
ptr = strehr(name,' .');
if (ptr == NULL)

strcpy(first,name);
else

strnepy(first,name, ptr-name-l);
len = strlen(first);
printf(Alen = %d\n",len);
strcpy(temp,"Hi, A);
streat(temp,name);
puts(temp);
if (strcmp(name,first))

strcpy(name,first);
i =823; sprintf(temp,"%d",i);
i =atoi(temp);
ptr = (char *) malloc(81);
strepy(ptr,"This is a test.");
printf(Aptr = %s\n",ptr);
free(ptr);

The use of Ptr in the Pascal source code is something of a kludge; it's
included here only to give you a feeling for what the equivalent C code
does.

One last point: The function prototypes for the C routines called in this
example are listed in header (.h) files; so, for proper error-ehecking, you
should place the following Hnclude statements at the start of the Turbo C
program.

'include <stdio.h>
'include <string.h>
'include <stdlib.h>
'include <alloe.h>

Chapter 9, Notes for Turbo Pascal Programmers 269

Structures

Both Pascal and C allow you to define aggregate, heterogeneous data
structures. In Pascal, they're called records; in C, structures. Here's the
format for both:

Turbo Pascal TurboC

type typedef struct (

<rname> = record <type> <fnames>;
<fnames> : <type>; <type> <fnames>;
<fnames> : <type>;

<type> <fnames>;
<fnames> : <type> } <rname>;

ad;

var
<vnames> : <rname>; <rname> <vnames>;

There's also a more concise format in C for directly declaring structure
variables, much as there is in Pascal:

Turbo Pascal

var
<vnames> : record
<fnames> : <type>;

<fnames> : <type>
end;

TurboC

struct <rname> (
<type> <fnames>;

<type> <fnames>;
<vnames>;

In this case, <mame> of the structure is optional; you should put it there if
you plan to declare other variables to be of type <rname>. Beyond that,
records in Pascal and structures in C are pretty much the same. Here's an
example:

270 Turbo C User's Guide

Turbo Pascal

type
Student =record
Last,First : string[20];
SSN : string(11);
Age : integer;
Tests: array[1 •• S] of integer;
GPA : real

end;

var
Current : Student;

begin
Current.Last = 'Smith';
Current.Age = 21;
Current. Tests [1] = 97;
Current.GPA = 3.94;

ad.

TurboC

struct student I
char last[20],first[20];
char ssn[l1);
lnt age;
lnt tests[S];
float gpa;

) current ;

main ()
I

strcpy(current.last = "Smith");
current.age = 21;
current.tests[O] = 97;
current.gpa = 3.94;

The only major difference between Pascal and C here is that Pascal has the
with statement and C doesn't. We could rewrite the Pascal previous code to
say with Current do and then refer to the fields without the Current in front
of them. In C, you always have to have the current. in front. C also has the
member access operator (-», which is used when the identifier on the left of
the operator is a pointer to a structure rather a structure itself. For example,
if pstudent is a pointer to a strud, then

pstudent -) last = "Jones";

assigns the string Jones to the last name.

Unions

Again, Pascal and C support similar concepts. In Pascal, it is called a free
union variant record; in C, it's just called a union. Here are the definitions of
each, along with an example:

Chapter 9. Notes for Turbo Pascal Programmers 271

Turbo Pascal

type
<uname> =record
<f1eldlist>

case <type> of
<vlist> : «fieldlist»;
<vlist> : «fieldlist»;

<vlist> : «fieldlist»
end;

TurboC

union <uname> (
<type> <fnames>;
<type> <fnames>;

<type> <fnames>;

In the Pascal version, <fieldlist> is the usual record sequence of </names> :
<type>;, repeated as needed.

There are two major differences between Pascal and C on this one:

• First, Pascal makes you put the union at the end of a regular record,
whereas C does not. However, you can declare the union first, then
declare a field in a structure to be of that union type.

• Second, Pascal allows you to have multiple types for each variant in the
union. C does let you have multiple fields (hence </names», but all must
be of the same type.

Here's a sample to study, written to make the Pascal and C versions as
close to each other as possible (although, admittedly, they are not fully
equivalent>:

Turbo Pascal

type
trick word =recozd

case integer of
o : (w : integer);
1 : (lob,hib: byte);

end;
var xp:trick_word;

TurboC

typedef union (
int w;
struct (

char lob;
char hib;

Ib;
I trick_word;
trick_word xc;

Note that neither the C nor the Pascal definition of trick_word is portable.
They both depend on the byte-order of the 8086.

272 Turbo C User's Guide

In C unions, as with structures, you can insert a <vnames> field between the
closing brace and the semicolon to directly declare variables of that type. In
that case, you can leave off <uname> if you're not going to declare any more
such variables. Field references in Pascal are xp.w, xp.hib, and xp.lob; in C,
they are xc.w, xc.b.hib, and xc.b.lob.

Programming Issues

As a Pascal programmer, you shouldn't have a difficult time getting up to
speed with Turbo C. But there are a few areas of programming that are
implemented somewhat differently in the two languages. We'll discuss
each of these programming issues in this section.

Case Sensitivity

Pascal is not case sensitive; C is. This means that the identifiers indx,Indx,
and INDX all refer to the same variable in Pascal but would refer to three
different variables in C.

Note: Since function calls are not resolved until the C program is linked,
differences due to case may not show up until then. For your own good, be
careful with case in C.

Type-Casting

Pascal, as a rule, allows only limited type-casting (converting data from one
type to another). The function OrdO will cast from any ordinal type to
integer; Chr() will cast from integer (or a related type) to char. Turbo Pascal
allows some additional type-easting (called retyping) between all ordinal
types (integer, char, boolean, and enumerated data type). C is much freer,
allowing you to attempt to cast from any type to any type, with results that
are not always favorable.

Here's the standard format for each, with a few examples:

Chapter 9. Notes for Turbo Pascal Programmers 273

Turbo Pascal

<var> := <type>«expr»;
var Ch : char;

I := integer(Ch);
Ch := char(Today);
Today := Days(3);

TurboC

<var> = «type»<expr>;
char ch;

i = (int) ch;
ch = (char) today;
today = (days) 3;

In addition, Turbo C will do a lot of automatic type-casting, mostly
between types that are integer compatible (types whose underlying
representation is an integer value). Because of that, all three previous
statements could have left out the explicit cast. You could have written

i =ch;
ch =today;
today = 3;

Constants, Variable Storage, Initialization

Turbo Pascal does not initialize variables that you declare. Neither does it
preserve the value of variables declared within procedures (and functions)
between calls to those subroutines. The major exception to this is that typed
constants are initialized, and they will hold their values between calls to a
subroutine in which they are defined (including any value you might
assign to them during execution). In C, all global variables are initialized to
oby default unless you explicitly initialize them to a different value.

Note: You should keep in mind that uninitialized variables are not
necessarily created in the order that they are declared.

Turbo C gives you two tyPes of constants, allows you to pre-initialize any
variables, and lets you declare variables within a function as being static.

Constant Types

The two types of constants take the format:

'define <cname> <value>
const <type> <cname> = <value>;

The first tyPe (#define ...) more closely matches Pascal's const definition, in
that <value> is directly substituted wherever <cname> is found.

274 Turbo C User's Guide

/* 82, not 162! */

The second type (canst. . .) is more like Turbo Pascal's typed constant,
except that you really can't change <cname>; any attempt to modify or
assign a new value to it will result in a compilation error.

Bear in mind that C allows constant expressions, for example, char s [SIZE +
1]. A canst variable won't do here. A manifest constant will, but it's
substituted as ifby a word processor with sometimes surprising results:

'define MAX_SIZE 80 + 1
char sIMAX_SIZE * 2];

A more careful definition would be

'define MAX_SIZE (80 + 1)

In other words, to be safe, it's always wise to parenthesize expressions in a
'define.

Variable Initialization

Turbo C lets you initialize any variable in a manner that does match Turbo
Pascal's tyPed constant. The format is as follows:

<type> <vname> =<value>;

Items requiring more than one value (arrays, structures) should have the
values enclosed in braces and separated by commas ("like_this", lIand_this",
lIand_this_too").

lnt x = 1, Y= 2;
char namel] = "Frank";
char answer = 'Y';
char key = 3;
char list 12] 110] = {"First", "Second"};

Variable Storage

C defines several storage classes for variables; the two most important are
external and automatic (local). Global variables (those declared outside of
any function, including main) are by default external. This means that they
are initialized to 0 at the start of program execution-unless, of course, you
initialize them yourself.

Variables declared within functions (including within main) are, by
default, automatic. They are not initialized to anything, unless you do it,
and they lose their values between calls to that function. However, you can
declare such variables to be static; that way, they will be initialized to 0

Chapter 9. Notes for Turbo Pascal Programmers 275

(once, at the start of program execution), and they will retain their values
between calls to the function.

In the following example

init test(void)
{

int i;
static lnt count;

}

the variable i resides on the stack and must be initialized by function test
each time the function is called. The static variable count, on the other hand,
resides in the global data area and is initialized to zero when the program
is first executed. Count retains its previous value each time function test is
invoked.

Dynamic Memory Allocation

In Turbo Pascal, there are several different methods for managing the heap.
Given these Turbo Pascal declarations

type
ItemType = integer;
ItemPtr = "ItemType;

var
p : ItemPtr;

here are three different methods of allocating and deallocating dYnamic
memory:

/* New and Dispose */
New(p); { Automatically allocates required amount of storage}

Dispose(p); { Automatically deal locates amount of storage allocated}

1* New, Mark, and Release */
New(p}; { Automatically allocates required amount of storage}

Mark(p);
Release{p); { Deallocates all dynamic memory from p" to end of heap }

/* Freemem and Getmem */
GetMem(p, SizeOf(ItemType)); (Must specify amount of storage to allocate)

FreeMem(p, SizeOf(ItemType)); (Must specify amount of storage to deallocate)

In Turbo C, allocating and deallocating dYnamic memory is done using
routines that are quite similar to Turbo Pascal's GetMem and Dispose:

276 Turbo C User's Guide

<type> *<ptr>i

<ptr> = «type>*) calloc«num>,<s!ze»i
/* or <ptr> = «type>*) malloc«total size»; */
/* or <ptr> = «type>*) realloc«op>,<nusz»; */
free«ptr»i

typedef int ItemType;
ItemType *Pi

p = (ItemType*) malloc(sizeof(ItemType))i

free(p);

All three of the C routines (calloc, malloc, and realloc) return a generic
pointer, which can be cast to the appropriate type. All three also return
NULL if there is not enough memory available on the heap.

• The function calloc expects you to pass it the number of items to create
and the size (in bytes) of one item; it creates the items, sets them all to 0,
and returns a pointer to the entire block. This is very handy for dynamic
creation of arrays.

• malloc is told how many bytes to allocate.

• free just frees up the memory pointed to by <ptr>.

Command-Line Arguments

When you create an .EXE file using Turbo Pascal, your program can read in
any arguments that you might type on the line, using the ParamCount and
ParamStr functions. For example, if you were to create a program called
DUMPIT.EXE and execute it as follows:

A>dumpit myfile.txt other.txt 72

ParamCount would return a value of 3, and ParamStr would return the
following values:

ParamStr (1)

ParamStr(2)
ParamStr (3)

myfile.txt
other.txt
72

Likewise, Turbo C (following standard C conventions) allows you to
declare the identifiers argc, argo, and env as parameters to main as follows:

main(int argc, char *argv[}, char *env[});
(

•••body of main •••

Chapter 9, Notes for Turbo Pascal Programmers 277

where argc is the number of arguments, and argvll is an array of strings
holding the parameters. With the same example, argc would yield 4, and
argoll would point to the following:

argvlO]
argvll]
argvl2]
argvl3]
argvl4]

A: \DUMPIT.EXE
myfile.txt
other. txt
72
(null)

In C, under 3.x versions of MS-DOS, argo[O] is defined (whereas ParamStr(O)
is not) and contains the name of the program being executed. For MS-DOS
2.x, argv[O] points to the null string (""). Also note that argv[4] actually
contains NULL.

The third argument, envll, is an array of strings, each holding a string of the
form

envvar = value

where envvar is the name of an environment variable, and value is the string
value to which envvar is set.

File I/O

In standard Pascal, you have two types of files: text (declared as text) and
data (declared as file of <type». The sequence for opening, modifying, and
closing the file is almost identical for both types. Turbo Pascal also provides
a third file type (untyped files) that is quite similar to the binary file
operations used in Turbo C.

C files are usually treated as streams of bytes; text versus data distinctions
are largely up to you, though the t (text) and b (binary) modifiers on fopen
can be significant.

Here are some rough equivalencies between the two languages:

Table 9.2: Rle I/O SImilarities

TmboP~c~ TmboC

var
I : integer;
X : real;
Ch : char;
Line : Itrlng[80];
myRec : RecType;
buffer: array(l •• 1024] of char

Fl : text;
F2 : file of RecType;

278

int i;
float x;
char Chi
char line[80];
struct rectype myrec;
char bufferl1024]

FILE *f1;
FILE *f2;

Turbo C User's Guide

Table 9.2: Ale I/O SImilarIties (continued)

Assign«fvar>,<fname>};
Reset«fvar»;
Reset«untyped fvar>, <blocksize>};

Assign«fvar>,<fname»;
Rewrite«fvar»;
Rewrite«untyped fvar>, <blocksize»;

Write(Fl,Line);

Write(Fl,I,X);
Writeln(Fl,I,X);
Write(F2,MyRec);

Seek(F2,<rec'»;
Flush«fvar»;
Close«fvar»;
BlockWrite(F3,buffer,SizeOf(buffer));

Assign«fvar>,<fname»;
Append«text fvar»;

Read(Fl,Ch};
Readln(Fl,Line);
Readln(Fl,I,X);

Read(F2,MyRec);
BlockRead(F3,buffer,SizeOf(buffer));

Write(Fl,Ch);

FILE *f3;

<fvar> = fopen«fname>,A r");
1* or <fvar> = fopen«fname>,"r+"); *1
1* or fl = fopen«fname>," r+t"); */
1* or f2 = fopen«fname>," rfb ll

); *1
<fvar> = fopen«fname>,"w");
1* or <fvar> = fopen«fname>,"w+"); *1
1* or fl = fopen«fname>,"w+t"); */
1* or f2 = fopen«fname>,"w+b"); *1
<fvar> = fopen«fname>,"af");
1* or <fvar> = fopen«fname>,Aa+t"); *1
1* or <fvar> =fopen«fname>,"a+b"); *1
ch = getc(fl);
fgets(line, 80, fl);
fgets(line, 80, fl);sscanf(line,"%d
U",&i,&x);
fread(&myrec,sizeof(myrec),1,f2);
fread(buffer,1,sizeof(buffer),f3);

fputc (ch, fl) ;
1* or fprintf(fl,"%c",ch); *1
fputs (line, fl) ;
1* or fprintf(fl,"%s",line); *1
fprintf (fl, II%d %f", i, x) ;
fprintf(fl,"%d %f\n",i,x);
fwrite(&myrec,sizeof(myrec),1,f2);

fseek(f2,<rec'>*sizeof(rectype),O);
fflush«fvar» ;
fclose«fvar»;
fwrite(buffer,1,sizeof(buffer),f3);

: file;F3

You should refer to the Turbo C Reference Guide for more details on how
each of these Turbo C I/O routines work.

Here's a short example of a program that dumps a text file (whose name is
given on the command line) to the screen:

Chapter 9, Notes for Turbo Pascal Programmers 279

Turbo Pascal

program DumpIt;
var

F : Text;
Ch : char;

begiA
Assign(F,ParamStr(l));
{$I-} Reset(F); {$I+}
if IOResult <> 0 thaD begin

Nriteln('Cannot open ',ParamStr{l));

Halt (l);

ud;
"bile not EOF (F) do begin

Read(F,Ch);
Nrite(Ch)

ad;
Close (F)

encl.

TurboC

'include <stdio.h>
main{int argc, char *argv[])
(

FILE if;
lnt Chi

f = fopen(argv[l],"r");
if (f == NULL) (

printf("Cannot open
b\n",argv[l]) ;
return (1) ;

while Itch =getc(f)) != EOF)
putchar(ch);

fclose{f);)

Common Pitfalls for Pascal Programmers
Using C

There are enough similarities between Pascal and C that Pascal
programmers working in C fall prey to certain predictable mistakes. Here
are some of the pitfalls to avoid. There is a rough order to this list, based on
a combination of how likely they are to occur, how difficult they would be
for a Pascal programmer to see, and whether or not the compiler might
catch them. (Chapter 3 also discusses some common pitfalls.)

PITFALL #1: Assignment vs. Comparison

In Pascal, A = Bis the Boolean expression A equals Band returns true or false.
In C, A = B is the assignment A gets the value of B; however (and this is
critical to understand), this expression also returns a value, namely the
value of B (which has just been assigned to A). The single most pernicious
bug for Pascal programmers is the statement

if (A =B) <statement>;

280 Turbo C User's Guide

This is perfectly legal in C, and is evaluated as follows:

• The value of B is assigned to A.
• The expression A = B takes on the value of B.
• H its value is nonzero (which, in C, is true), <statement> is executed.

What you really want to write is

if (A == B) <statement>;

which does what you think it should: H A and B are equal, then <statement>
is executed.

Remember: In C, the is equal to comparator is double equal signs (==), not a
single equal sign (=). The single equal sign in C is the assignment operator.

PITFALL #2: Forgetting to Pass Addresses
(Especially with scant>

As we've explained, C only lets you pass parameters to a function by value;
if you want to pass a parameter by address, you need to explicitly pass the
address yourself. Suppose you've written the function swap as shown
earlier in the chapter. You might make the mistake of calling it like this:
swap (q, r);, when q and r are of type float. In that case, swap will take the
values of q and r, interpret them as addresses, then cheerfully swap the
values at those addresses.

How do you avoid this pitfall? The best way is to use function prototypes;
that way, Turbo C can do the appropriate error checking when you
compile. For swap, you would put the following prototype somewhere
near the start of your source file:

void swap(float *x, float *y);

Now, if you compile your program with the statement swap(q, r); you'll get
an elTOr telling you that you have a type mismatch in parameter x in a call
to swap.

PITFALL #3: Omitting Parentheses on Function Calls

In Pascal, a procedure that takes no parameters is called merely by using
the procedure name :

AnyProcedure;
i := AnyFunction;

Chapter 9. Notes for Turbo Pascal Programmers 281

In C, a call to a. function--even one that has no parameters-must always
include a left (open) and right (close) parenthesis. It's easy to do this:

AnyFunction;
i =AnyFunction;

when you really want this:

AnyFunction () ;
i = AnyFunction();

1* Code has no effect */
1* Stores the address of AnyFunction in i */

/* Calls AnyFunction *1
/* Calls AnyFunction, stores result in i *1

PITFALL #4: Warning Messages

In addition to generating error messages, Turbo C also reports nonfatal
warnings, Using the incorrect function calls from the previous example,
these are the warnings that Turbo C would report

Harning test.c 5: Code has no effect in function main
Harning test.c 6: Nonportable pointer assignment in function main

Both statements are actually legal and, since no errors occurred, an .OBI file
would be created. Beware! These types of warnings would always be fatal
errors in Turbo Pascal. Don't get in the habit of taking Turbo C warning
messages lightly.

PITFALL #5: Indexing Multidimensional Arrays

Suppose you have a two-dimensional array named matrix, and you want to
reference location (i,j). As a Pascal programmer, you might be inclined to
write something like this:

x = matrix[i,j);

That will compile all right in C; however, it won't do what you were
expecting.

In C, it is legal to have a series of expressions separated by commas; in such
a case, the entire expression takes on the value of the last expression, so the
preceding statement is equivalent to

x = matrix[j];

It's definitely not what you wanted, but that is still a legal statement in C.
All you'll get is a warning, since C thinks you are trying to assign the
address of matrix[j]-that is, the jth row of matrixI I-to x.

In C, you must explicitly sUlTound each array index with brackets. What
you really wanted to write was

282 Turbo C User's Guide

x = matrix Ii] (j];

Remember: For multidimensional arrays, you must put each index in its
own set of brackets.

PITFALL #6: Forgetting the Difference between
Character Arrays and Character Pointers

Suppose that you have the following statements:

char *strl,str2130];
strl = "This is a test";
str2 = "This is another test";

The first assignment is acceptable; the second isn't. Why? strl is a pointer to
a string; when the compiler sees that assignment statement, it creates the
string This is a test somewhere in your object file and assigns its address
to strl.

By contrast, str2 is a constant pointer to a block of 30 bytes somewhere; you
can't change the address it contains. What you ought to write instead is

strcpy(str2,"This is another test");

A byte-by-byte copy is done from the constant string This is another test
to the address pointed to by str2.

PITFALL #7: Forgetting That C is Case Sensitive

In Pascal, the identifiers indx, Indx, and INDX are all the same; upPercase
and lowercase letters are treated identically. In C, they are not.

So if you declare

int Indx;

then later try to write

for (indx=l; indx<lO; indx++) <statement>;

the compiler will give you an error, saying that it doesn't recognize indx.

PITFALL #8: Leaving Semicolons Off the Last
Statement in a Block

If you're a Pascal purist who only puts semicolons where they are required
(as opposed to where they are allowed>, you'll have problems with this for

Chapter 9. Notes for Turbo Pascal Programmers 283

a while. Luckily, the compiler will catch it and flag it pretty clearly. Just
remember that every C statement, with two major exceptions, must have a
semicolon after it.

One major exception is the function definition

<type> FuncName«parm names»

which should not have a semicolon after it.

This is not to be confused with the function prototype

<type> FuncName«type> <pname>,<type> <pname>, •••)i

which is used to declare the function but not to actually define it, somewhat
like a forward declaration in Pascal.

The other major exception is the set of preprocessor commands ('<cmd»,
such as

'include <stdio.h>
'define LMAX 100

H you forget and enter 'define LMAX 100;, the preprocessor will substitute
100; every place it finds LMAX, semicolon and all.

Remember in C, you simply have to be more careful; it's not the forgiving
language Pascal is.

284 Turbo C User's Guide

c H A p T E R

10

Interfacing Turbo C with Turbo
Prolog

With the introduction of Turbo C, you can now merge two powerful
languages currently available for a PC. By linking Turbo C modules with
Turbo Prolog modules, you can incorporate artificial intelligence (AI) into
your Turbo C applications. If you are an experienced C programmer, you
are already aware of Turbo C's several advantages over other C imple­
mentations. Ifyou are just learning C, now is a good time to see how Turbo
C and Turbo Prolog enhance one another.

Turbo C is a procedural language, and Turbo Prolog is a language based
upon logic programming. Linking your Turbo C application with Turbo
Prolog can provide the following AI advantages:

• role-based control structure
• easy integration of natural language

Linking with Turbo Prolog also provides added AI power to your Turbo C
application, so that you can solve advanced problems by simply describing
the problem and letting Turbo Prologs inference engine do the work. In
many Turbo C applications, linking in Turbo Prolog programs will
significantly reduce software development time and increase code clarity
and program flexibility.

In This Chapter...

In this chapter, we explain the steps to compile and link Turbo C and Turbo
Prolog programs, and provide four examples that demonstrate the process.

Chapter 10, Interfacing Turbo C with Turbo Prolog 285

The first example is a simple program that demonstrates compilation and
linking. The second goes a little further and shows how to link in added C
libraries. The third demonstrates allocating memory. The last example
describes a practical graphics program that shows some of the power you
gain by combining the two languages.

Linking Turbo C and Turbo Prolog: An
Overview

Compiling and linking your Turbo C modules with Turbo Prolog modules
and programs is straightforward. You only need to keep in mind the
following points:

Compiling your program modules:

• Your C functions must have the _0 suffix to be called by Turbo Prolog
(see the first C example program, CSUM.C, in this chapter), unless you
use the as "<filename>" extension in Turbo Prolog.

• Your Turbo Prolog main module (the one containing a goal) replaces
your C main module.

• The Turbo Prolog main module must have your C functions declared as
global predicates. (See the first Prolog example program, PROSUM.PRO,
in this chapter.)

• All program modules must compile to the large memory model (which is
the only size memory model Turbo Prolog compiles in).

• If your program calls the Turbo Prolog library for version 1.1 through 2.0,
you must compile your modules with register allocation turned of! (-r-).

• Generate underbars should be set to of! (-u-).

Linking your program modules:

• INIT.OB] must be the first object file linked. (This is Turbo Prolog's
initialization module and is found on the Turbo Prolog library disk.)

• If you need Turbo C library routines, use CL.LIB, and if using real
arithmetic, EMU.LIB and MAlHL.UB.

The Link command line must have the fonn

tlink Inlt <T_Prolog_Main> Other_files <T_Proloq_Main.sym>,
(exename], (your_libs] prolog (ernulib mathl] cl

(This should be on a single command line.)

In addition to the preceding points, you should keep in mind the following:

• Turbo Prolog predicates may call functions written in Turbo C that are
similar to built-in Turbo Prolog predicates.

286 Turbo C User's Guide

• All calls to Turbo C library functions must be prefixed by an underbar
<_). Note: All Turbo C library functions are prefixed by underbars.
Because underbar generation is turned off, calls to library functions must
have the underbars explicitly added. User-defined functions do not need
the underbars.

• malloc, caUoc, free, and other Turbo C memory allocation functions are
replaced in Turbo Prolog by alloc_gstack, _malloc, and _free.
alloc_gstack, _malloc, and _free are available in Turbo Prolog for
memory allocation within your Turbo C functions.
alloc-8stack allocates memory on the global stack and is called as

void *alloc_gstack(int size)

_malloc allocates memory on the Prolog heap and is called as
void *_malloc(int size)

_free releases memory allocated on the Prolog heap and is called by
_free (void *ptr,int size)

When alloc-8stack is used, the memory will automatically be freed when
a fail happens, causing Turbo Prolog to backtrack across the memory
allocation.

• printf, putc, and related screen output functions are not functional when
you link Turbo C and Turbo Prolog. However, wrch can write a character
to a Prolog window, and zwf has the same functionality as writef in
Turbo Prolog. zwf is similar to a limited printf:

zwf(FormatString,Argl,Arg2, •••)

FormatString is a printf-type format string. Refer to the Turbo Prolog
Reference Manual to see which conversion specifications are supported.
zwf and wrch are in PROLOC.UB.
C functions called by Turbo Prolog should not have return values and
should be defined as void. The flow patterns for the arguments are
specified by the Turbo Prolog global predicate declaration. For example:

factorial (integer, real) - (i,o) language c

lets Turbo Prolog know that factorial is a function that has two
arguments-the first an integer, the second a real (floating point). The
(i,o) means that the first argument (the integer) is passed in, and the
second argument is a pointer to a floating point that will be assigned
within factorial. The c lets Turbo Prolog know that the function uses C
calling conventions. (See DUBLIST.C and PLIST.PRO in the third
example program in this chapter (page 294).)
Notice that values are returned by reference. For more information on
flow patterns, see the discussion of alternate flow patterns in example 3.

Chapter 10, Interfacing Turbo C with Turbo Prolog 287

Example 1: Adding Two Integers

The following example combines a Turbo C function (one that adds two
integer numbers) with a Turbo Prolog module that writes the C function
result in the current window.

Turbo C Source File: CSUM.C

1*
The output routine zwf works nearly like the C output
routine printf. It prints the output in the current window.
*1

extern void zwf(char *format, •••);

void sum_O(int parml,int parm2, int *res-p)
(

zwf(AThis is the sum function: parml=%d, parm2=%dA,parml,parm2);
*res-p = parml + parm2;

) 1* End of sum_O *1

Compiling CSUM.C to CSUM.OBJ

After you have edited and saved C5UM.C, you need to choose the
compile-time options. Turbo C provides you with two methods for doing
this:

1. Choose the following compile-time options from the TC (Turbo C
integrated development environment> menus:

o /C/Model/Large (-rol)
O/C/Optimization/Jump Optimization ... On (-0)
O/C/Code Generation/Generate Underbars Off (-u-)
O/C/Optimization/Use Register Variables Off (-r-)

Once you have selected these options, choose Options/Store Options
from the TC main menu; when the setup parameters are saved, choose
Compile/Compile to OBJ. Turbo C will compile C5UM.C with the
selected options, producing the object module CSUM.OBJ.

2. H you prefer to compile CSUM.C with a standard DOS command line
instead of using TC's menus, enter the following at the DOS prompt:

tcc -ml -0 -c -u- -r- csum

288 Turbo C User's Guide

Note: Turbo Prolog only compiles to the large memory model; so if you are
going to link Turbo C with Turbo Prolog, you must use the -ml (large
memory model) compile option.

Turbo Prolog Source File: PROSUM.PRO

global predicates
sum(integer,integer,integer) - (i,i,o) language c

/* The flow pattern of sum is defined as (i,i,o)
specifying that the third argument is the

returned value and the first two are inputs. */

goal sum(7,6,X),write(ISum=",X).

Compiling PROSUM.PRO to PROSUM.OBJ

After you have edited and saved PROSUM.PRO, you need to compile it to
an object (.OBJ) file, so it will link with the Turbo C object module. To do
this, choose Compile from the Turbo Prolog main menu, then choose OBJ
File. When Turbo Prolog finishes compiling the source file to an object file,
you can link and run this example.

Linking CSUM.OBJ and PROSUM.OBJ

To link Turbo Prolog modules with Turbo C modules, you can use either
TC (Turbo C's integrated development environment) or TLINK (the stand­
alone linker included with your Turbo C package). Beyond the tlink
command, the linker command-line arguments consist of Turbo Prolog
main modules, assorted other modules, output files, and libraries; except
where noted, these must appear in the following order:

Turbo Prolog Initialization:

• INIT.OBJ (Turbo Prolog initialization module)

Turbo Prolog Main Module:

• a main Turbo Prolog module that contains a goal

Assorted Modules:
(These modules do not need to appear in any particular order.)

• assembler .OBI modules
• Turbo C .OBI modules
• Turbo Prolog .OBI modules

Chapter 10. Interfacing Turbo C with Turbo Prolog 289

Symbol Table Module:

• Turbo Prolog main symbol table name (this is required and must appear
last in the list of modules).

Output File Names:

• the name of the executable file to be generated

Libraries:

• List all libraries containing routines needed by the assorted modules.
Order is important: first, user-defined libraries; next, PROLCX;.LIB; then
if needed, EMU.LIB and MATI-IL.LIB; and last, CL.LIB.

In this example, we use Turbo Link (note the tlink command) and give it
the following arguments:

• the Turbo Prolog programs INIT.OBJ and PROSUM.OBJ
• the Turbo C object module CSUM.OBJ
• the symbol table PROSUM.SYM and the executable file TEST.EXE
• the libraries PROLOG.LIB and CL.UB (use EMU.LIB and MATI-IL.Lffi to

do floating point)

Note: PROSUM.5YM is a file that contains the symbol table of the name
and type of variables in the program PROSUM.OBJ.

This is the link command line for our first example:

tlink init prosum csum prosum.sym,test.exe"prolog+cl

Example 2: Using the Math Library

The second example is similar to the first; it shows how to write two Turbo
C functions and how to combine these functions with a Turbo Prolog
program. We present each of the Turbo C functions in its own separate
source file; CSUM1.C adds two real numbers together and returns the sum,
and FACTRL.C calculates the factorial of an integer. The Turbo Prolog
program, FACTSUM.PRO, writes the program results in two Prolog
windows. This example uses the Turbo C large memory-model math
library, MATHL.LIB.

Turbo C Source File: CSUM1.C

290 Turbo C User's Guide

extern void zwf(char *format, •••);
void sum_O(double parmI, double parm2, double *res-p)
(

tresy=parml+parm2; .
zwf(nThis is the sum function: parml=%f, parm2=%f, result=%fn,

parml,parm2,tres_p);

Turbo C Source File: FACTRL.C

void factorial_O(int top, double *result)
(

double x;
int i;
if (top<l)
(

*result =0.0;
return;

)

*result = 1.0;
x = 2.0;
while (top-- > 1)
(

*result = *result * x;
x++;

)

} It End of factorial_O tl

1* Product of factorial series *1

Compiling CSUM1.C and FACTRL.C to .OBI

As in the first example, you must compile the two Turbo C modules to
object (.OB}) files before linking them with the other modules and with the
Turbo Prolog main program. You can choose and save compile-time
options with the TC Options/Store options command, then choose the
Compile/Compile to OBJ command for each of the .C source files. Or you
can opt to compile both .C source files from a standard C command line,
using the tee command. In either case, you must choose at least the
following compile-time options:

O/C/Model/Large (-ml)
O/C/Optimization/Jump Optimization ... On (-0)
O/C/Code Generation/Generate Underbars Off (-u-)
O/C/Optimization/Use Register Variables Off (-r-)

Chapter 70, Interfacing Turbo C with Turbo Prolog 291

Turbo Prolog Source File: FACTSUM.PRO

FACTSUM.PRO is the main Turbo Prolog program, which makes two
windows: One displays the output from your Turbo C modules, and the
other displays the Turbo Prolog program output. This is the order in which
the modules and pr~graminteract:

1. FACTSUM.PRO prompts the user to input an integer Int, which the
Turbo Prolog program then passes to FACfRL.C.

2. The Turbo C function factorial in FACTRL.C returns Result, the factorial
of Int, to FACTSUM.PRO.

3. FACTSUM.PRO writes Result in a window and again prompts the user
for a number (this time, a rea!).

4. FACTSUM.PRO passes this second input number, Real, and the
previously calculated factorial, Result, to the module CSUM1.C.

5. The Turbo C function sum in CSUMl.C adds Real and Result, then
returns the answer, Sum, to FACTSUM.PRO.

6. FACTSUM.PRO writes Sum in a window, and the program is finished.

Here is the Turbo Prolog program FACTSUM.PRO:

/*
Declaration of the Turbo C module must be located after the Turbo Prolog
domains and database declarations (if any are present). All global modules
are called from Turbo Prolog as global predicates, and must be followed by
the flow pattern and language specification.

*/
global predicates

sum(real,real,real) - (i,i,o) language c
factorial (integer, real) - (i,o) language c

/*
This is a very simple example that has only external clauses
(Turbo C modules), so only a goal section is needed. However,
in any real application, a clauses section would also be needed.

*/
goal

makewindow(l, 49,3l,
n A Turbo Prolog window to the Turbo C program n,O,O,l5,80),

makewindow(2,41,3,
n A Turbo Prolog window to the Turbo Prolog program n,l5,O,lO,80),

/* Prompt user for first input */
write("Enter an integer; Turbo C will calculate the factorial: "),
readint(Int),nl,
shiftwindow(l), /* Change output window to Turbo C window */

/* Call Turbo C factrl module and calculate the factorial */
factorial(Int,Result),

292 Turbo C User's Guide

shiftwindow(2), /* Change output window to Turbo Prolog window */

/* Prompt user for second input */
write(AEnter a real number to add to the factorial A),
readreal(Real),nl,
shiftwindow(l), /* Change output window to Turbo C window */

/* Call Turbo C csuml module and calculate the sum */
sum(Result,Real,Sum),
shiftwindow(2), /* Change output window to Turbo Prolog window */

/* Write result of first calculation in window */
write(AThe factorial of A,Int,A is A,Result),nl,

/* Write result of second calculation in window */
write(AThe result: A,Result,A + A,Real,A = A,Sum),nl.

Compiling FACTSUM.PRO to FACTSUM.OBJ

As in the first example, you must compile the Turbo Prolog program source
file to an object (.OB]) file before linking it with the modules. Choose
Compile from the Turbo Prolog main menu, as before, then choose OBJ
File.

Linking CSUM1.0BJ, FACTRL.OBJ, and
FACTSUM.OB/

In the link command used in this example,

• The Turbo Prolog object modules are INIT.OBJ and FAcrsUM.OBJ.

• The Turbo C object modules are CSUMl.OBJ and FAcrRL.OBJ.

• The output file names are FACTSUMSYM (symbol table) and SUM.EXE
(executable file).

• The libraries needed are PROLOG.LIB, EMU.LIB, MATHL.LIB, and
CL.LIB.

This is the command linking the modules:

tlink init factsum factrl csuml factsum.sym,sum"prolog+emu+mathl+cl

Example 3: Flow Patterns and Memory
Allocation

The following program presents the code for creating a Turbo Prolog
functor and list in Turbo C and returning these new stmctures to Turbo

Chapter 10. Interfacing Turbo C with Turbo Prolog 293

Prolog. This example also demonstrates how memory can be allocated in
Turbo Prolog's global stack. lists are recursive structures of three elements,
and functors are C structures with two members (these are described more
fully after this example).

• A Turbo C module DUBLIST.C contains three functions. The first two
can take an integer list and return a structure with the first integer in it,
or can take a structure with an integer and return a list with that integer.
The third function takes an integer n and generates a list of two integers;
the first being n and the second 2n.

• It is important to notice that there can be alternate flow patterns for each
Turbo Prolog global predicate, and that each flow pattern requires an
alternate Turbo C function. For the following example, clist_O must
correspond to the first flow pattern (i,o), and clist_l to the second flow
pattern (o,i).

global predicates
cUst (ilist, ifunc) - (i,o) (0, i) language c

• The (i,o) specifies that ilist is to be passed into your Turbo C function
clist_O, and ifunc is a pointer to a structure that will be defined within the
Turbo C function clist_O. The (0, i) specifies that ifunc is passed into
clist_l, and ilist is a pointer to a list structure that will be defined within
clist_l .

• If an additional flow pattern was specified in your Turbo Prolog global
domains, a clist_2 would be needed to handle the additional flow
pattern.

Turbo C Source File: DUBLIST.C

void fail_cc(void)i
void *alloc_9stack(int size)i
struct iUst {

char functor;

lnt val;
struct ilist *nexti

/* Type of the list element *f
f* 1 = a list element *f

/* 2 = end of list *f
/* The actual element */

f* Pointer to the next node *f
}i

struct ifunc (
char type;
int value;

};

void clist_O(struct ilist tin, struct ifunc **out)
{

if (in->functor != 1)

294

f* Type of functor *f
f* Value of the functor *f

Turbo C User's Guide

fail_cc () i

tout = alloc_9stack(sizeof(struct ifunc))i

(*out)->value = in->val;
(*out)->type = 1i

1* Fail if empty list *1

1* This sets out to f(X) *1
1* Set the functor type *1

1* This returns [2*X] as a list *1
1* Set the list type. If this is not *1
1* done, no meaningful value will be *1

1* returned *1

1* This sets the first
1* element of the list to n *1

void clist_1(struct ilist **out, struct ifunc tin)
(

int temp = 0;
struct ilist *endlist =alloc_9stack(sizeof(struct ilist))i
endlist->functor = 2i

temp = in->valuei
temp += tempi
tout = alloc_gstack(sizeof(struct ilist)i
(*out)->val = temp;
(*out)->functol = 1;

(*out)->next = endlist;

void dublist_O(int n, struct ilist **out)
(

1*
This function creates the list [n,n+n]

*1
struct ilist *tempi
struct ilist *endlist = alloc_9stack(sizeof(struct ilist);

endlist->functor =2i

temp = alloc_gstack(sizeof{struct ilist))i
temp->val = n;
temp->functor = 1i
tout = tempi

1* Now we have to allocate a second list element *1
temp = alloc_9stack{sizeof(struct ilist));

temp->val = n + n; 1* This assigns the value n + n to *1
temp->functor = 1i 1* The second element *1
temp->next = endlisti 1* Set the node after the second to an *1

1* end of list node *1
(*out)->next = tempi 1* after the first element *1

Calling Turbo Prolog from Turbo C

Not only can Turbo Prolog call predicates written in Turbo C, Turbo C can
also call Turbo Prolog predicates. If a global predicate is declared to exist in
Turbo Prolog as language c, and there are Turbo Prolog clauses for that

Chapter 10. Interfacing Turbo C with Turbo Prolog 295

predicate, Turbo Prolog will generate a routine that can be called by Turbo
c.
The following Turbo Prolog program declares two C language global
predicates; message and hello_c. The message predicate can be called from
a C module by using the function name message_O in the C source code.

global predicates
message (string) - (i) language c
hello_c - language c

clause.
message(S) :­

makewindow(13,1,1,"n,lO,lO,3,SO),
write(S), readchar(_),
removewindow.

goal
message ("Hello from Turbo Prolog"),
hello c.

The goal section of this example calls the Turbo C function hello_c, which,
in turn, calls the Turbo Prolog predicate message_O to display a message.

void message_O(char * str);

void hello_c_O(void)
(

message_O(lfHello from Turbo e");

You can use this feature to give easy access to Turbo Prolog's powerful
library from other languages.

You can easily define your own library routines in a Turbo Prolog module
like this:

project "dwrmy" /* Use your own project name here */

global predicatas
myfail language c as IffailA
mymakewindow(integer, integer, integer, string, integer, integer,integer, integer)

- (i,i,i,i,i,i,i,i) language c as IfmakewindowA
myshiftwindow(integer) - (i) language c as IIshiftwindowll

myremovewindow language c as AremovewindowA
write_integer (integer) - (1) language c as Ifwrite_integer"
write_real (real) - (i) language c as Awrite_realA
write_string (string) - (i) language c as Awrite_string lf
myreadchar(char) - (0) language c as AreadcharA
myreadline(string) - (0) language c as AreadlineA

extprog language c as Ifextprogn

clausal
myfail :- fail.

296 Turbo C User's Guide

mymakewindow(Wno, Wattr, Fattr, Text, Srow, Scol, Rows, Cols) :-
makewindow(Wno, Wattr, Fattr, Text, Srow, Scol, Rows, Cols).

myshiftwindow(WNO) :- shiftwindow(WNO).

myremovewindow :- removewindow.

write_integer (I) :- write(I) •

write_real(R) :- write(R).

write_string(S) :- write(S).

myreadchar(CH) :- readchar(CH).

myreadline(S) :- readln(S).

The following C procedure, extprog, demonstrates using these new library
routines. extprog creates a Turbo Prolog window, then does some reading
and writing in it.

void makewindow(lnt who, lnt wattr, int fattr, char *title, lnt
row, int srow, int SCOl)i

void write_string(char *text)i
void readchar(char *Ch)i
void readline(char *in_strll)i
void rernovewindow(void)

void extprog(vold)
(

char dununychari
char *Namei

makewindow(1,7,7,AHello there·,5,5,15,60)i
write_string(A\n\n1sn't it easyA)i
readchar(&dummychar)i
write_string(A\nEnter your name: A)i
readline(&Name)i
write_string("\nYour name is: ");
write_string(Name)i
readchar(&dummychar)i
removewlndow () ;

The only restriction in calling Turbo Prolog from Turbo C is that the Turbo
Prolog program must be the main program because Turbo Prolog needs to
set up the heap and stacks.

Lists and Functors

Turbo Prolog lists and functors are structures in Turbo C (see DUBUST.C).

Lists are recursive structures that have three elements. The first element is
the tyPe; the value may be 1 if it is a list element, and 2 if it is an end of the

Chapter 10. Interfacing Turbo C with Turbo Prolog 297

list. The second element is the actual value; it must be the same type as the
element in Turbo Prolog.

For example, a list of reals would be

struct alist (
char funct;
double elem;
struct alist *next;

/* The list elements are real */

The third element is a pointer to the next node.

Turbo Prolog functors are C structures that have two elements. The first
element corresponds to the Turbo Prolog domain declaration. (Refer to
your Turbo Prolog Reference Guide for more information on domain
declarations in Turbo Prolog.) For example,

domains
func = i(integer); s(string)

predicate.
call (func)

goal
caU(X)

The Turbo Prolog functor func has two types: The first is an integer, and the
second is a string. So in this example, the value of the type member of the
Turbo C structure may be 1 or 2; 1 corresponding to the first type, and 2 to
the second type.

The second element of the Turbo C structure is the actual value of this
element of the functor and is defined as the union of the possible tyPes of
the argument.

union val (
int ivaI;
char *svar;

};
struct func (

char type;

union val value;

/* Type may be 1 or 2 corresponding to
the Turbo Prolog domain declarations */

/* The value of the functor element */

Note: The functions alloc~stack, _malloc, and _free must be used for
memory management (these are found in PROLOG.LIB). These functions
are needed to

1. allocate memory for Turbo C structures stored in the Turbo Prolog heap
or stack

2. release memory in Turbo Prolog's heap

298 Turbo C User's Guide

When alloc~stack is used, the memory will automatically be released
when a fail occurs, causing Turbo Prolog to backtrack across the memory
allocation.

Here is the Turbo C sYntax for each:

void *alloc_gstack(size)

void *_malloc(size)

_free(void *ptr,size)

1* Allocates storage in stack *1

1* Allocates storage 1n heap *1

1* Releases heap space *1

1* Binds Y to (6] *1

1* Binds X to f(3) *1

1* Binds Z to [6,12] *1

Here is the Turbo Prolog main module, PLIST.PRO, which calls the
functions in DUBLIST.C and prints the results.

domaiu
iUst = integer*
ifunc = f(integer)

global predicates
clist (lUst, ifunc) - (i,o) (0,1) language c
dublist(integer,ilist) - (i,o) language c

goal
clearwindow,
clist(13] ,X),
write("X = ",X),nl,
clist (Y, X) ,
write("Y = ",Y),nl,
dublist(6,Z),
write (Z), n1.

Compiling DUBLIST.C

As in the first two examples, you must compile the Turbo C module
DUBLIST.C to an object (.OB]) file before linking it with the Turbo Prolog
main module PLIST.PRO.

This is the link command:

tl1nk init plist dublist plist.sym, dublist, ,prolog+emu+mathl+cl

Example 4: Drawing a 3-D Bar Chart

In this example, we show you how to compile and link the C and Prolog
modules to create a unified, mixed-language program that combines AI
flexibility with C graphics-handling capability. Specifically, the code
provided includes the following:

• a Turbo C module CBAR.C that draws bar charts using input from
another file

Chapter 10, Interfacing Turbo C with Turbo Prolog 299

• a Turbo Prolog main module PBAR.PRO that requests input from the
user

Turbo C Source File: CBAR.C

The source code for this program is the file CBAR.C on your distribution
disks.

Compiling CBAR.C

As in the first three examples, you must compile the Turbo C module
CBAR.C to an object (.OBD file before linking it with the Turbo Prolog main
module PBAR.PRO.

Turbo Prolog Program: PBAR.PRO

The source code for this program is the file PBAR.PRO on your disk. PBAR
is a Turbo Prolog program that prompts the user to make, save, load, or
draw a bar chart.

If the user wishes to make a bar chart, this program will accept input
specifications for the chart, position each bar in a window and call your C
module to draw the bar. After each bar is drawn, it is asserted (a Prolog term
for inserted) into the database.

The user may opt to save the bar chart; PBAR will save a description of the
current bar chart into a file for later use.

If the user selects the load option, PBAR will delete the current bar chart
description and load a user-specified bar chart description from a file.

Given the final option, draw, PBAR will use the description in the database
in a recursive call to the Turbo C BAR module, which will then draw a bar
chart to the specifications currently in the database.

Compiling PBAR.PRO to PBAR.OB]

As in example 1, you must compile the Turbo Prolog main module source
file to an object (.OBD file before linking it with the Turbo C modules.

300 Turbo C User's Guide

Linking PBAR.OBJ with the Module CBAR.OBJ

In the following link command, PBAR.OB] is linked with the previously
compiled Turbo C module, CBAR.OB]. The components of this link
command are

• the Turbo Prolog object modules INIT.OBJ and PBAR.OBJ

• the Turbo C object module CBAROBJ
• the symbol table PBAR.5YM and the output file BARCHART.EXE

(executable file)

• the libraries PROLOG.LIB and CL.LIB

This is the link command:

tlink init pbar cbar pbar.sym,barchart"prolog+cl

Thafs All There Is to It

With these four examples, we have shown you how to link Turbo Prolog
modules with your Turbo C programs. If you are an experienced Turbo
Prolog programmer but would like to know more about programming in
C, we recommend reading Chapters 7 and 3 in this manual. If you are an
experienced C programmer and would like to find out more about Turbo
Prolog, we recommend consulting a Turbo Prolog tutorial, such as Using
Turbo Prolog by P. Robinson (McGraw-Hill).

Chapter 10. Interfacing Turbo C with Turbo Prolog 301

302 Turbo C User's Guide

c H A p T E R

11

Turbo C Language Reference

The traditional reference for C is The C Programming Language (First
Edition), by Brian W. Kernighan and Dennis M. Ritchie (which we will refer
to as "K&R" from now on). Their book doesn't define a complete standard
for C; that task has been left to the American National Standards Institute
(ANSI). Instead, K&R presents a minimum standard so that a program
using only those aspects of C found in K&R can be compiled by any C
implementation that supports the K&R definition.

Turbo C not only supports the K&R definition, it also implements most of
the ANSI extensions. In doing so, Turbo C seeks to improve and extend the
C language by adding new features and increasing the power and
flexibility of old ones. We don't have space to reprint K&R or the ANSI
standard here; instead, we'll tell you about the additions to the K&R
definition that Turbo C provides, noting which come from the ANSI
standard and which are our own improvements.

In This Chapter...

.To make cross-referencing easier for you, this chapter follows (more or less)
the outline of Appendix A in K&R, which is titled C Reference Manual. Not
all sections of that appendix are referenced here; for any section we passed
over, you may assume that there are no significant differences between
Turbo C and the K&R definition. Also, to more easily accommodate some
of the ANSI and Turbo C extensions, we have presented some information
in the same order as given in the ANSI C standard rather than adhere to the
K&R organization.

Chapter 11. Turbo C Language Reference 303

Comments (K&R 2.1)

The K&R definition of C does not allow comments to be nested. For
example, the construct

1* Attempt to comment out myfunc() *1

1*
myfunc ()
I

printf(AThis is my function\nA); 1* The only line *1

*1

would be interpreted as a single comment ending right after the phrase The
only line; the dangling brace and end-of-comment would then trigger a
syntax error. By default, Turbo C does not allow comment nesting;
however, you can correctly compile a program (such as that shown) with
nested comments by using the -c compiler option (Nested comments...ON
in the O/C/Source menu). A more portable approach, though, is to bracket
the code to be commented out with lif 0 and tendif.

Comments are replaced with a single-space character after macro
expansion. In other implementations, comments are removed completely
and are sometimes used for token pasting. See ''Token Replacement" in this
chapter.

Identifier (K&R 2.2)

An identifier is just the name you give to a variable, function, data type, or
other user-defined object. In C, an identifier can contain letters (A.• .Z, Q •• •z)
and digits (0...9) as well as the underscore character (_). However, an
identifier can only start with a letter or an underscore.

Case is significant; in other words, the identifiers indx and Indx are
different. In Turbo C, the first 32 characters of an identifier are significant
within a program; however, you can modify this with the -if compiler
option, where # is the number of significant characters. (This is the menu
option O/C/S/Identifier Length.)

Likewise, the first 32 characters are significant for global identifiers
imported from other modules. However, you can decide whether case is
significant for those identifiers by using the Case-Sensitive Link...On
option from the Options/Linker menu or the Ie option on a TLINK
command line. Note, however, that identifiers of type pascal are never case
sensitive at link time.

304 Turbo C User's GuIde

Keywords (K&R 2.3)

Table 11.1 shows the keywords reserved by Turbo C; these cannot be used
as identifier names. Those preceded by IIAN" are ANSI extensions to K&R;
those preceded by "TC" are Turbo C extensions. The keywords enby and
fortran, mentioned in K&R, are neither used nor reserved by Turbo C.

Table 11.1: Keywords Reserved by Turbo C

TC asm
auto
break
case

TC cdecl
char

AN const
continue
default
do
double
else

AN enum

extern
TC far

float
for
goto

TC huge
if
int

TC interrupt
long

TC near
TC pascal

register

return
short

AN signed
sizeof
static
struct
switch
typedef
unsigned
union

AN void
AN volatile

while

TC cs
TC -ds
TC -es
TC -ss
TC -AU
TC -AL
TC -AX
TC -SH
TC -aL
TC -ap
TC -ax

TC CH
TC -CL
TC -cx
TC -DH
TC -Dr
TC -OL
TC -ox
TC -FLAGS
TC -sr
TC -SP

Constants (K&R 2.4)

Turbo C supports all the constant types defined by K&R, with a few
enhancements.

Integer Constants (K&R 2.4.1)

Constants from 0 to 4294967295 (base 10) are allowed. (Negative constants
are simply unsigned constants with the unary minus operator.) Both octal
(base 8) and hexadecimal (base 16) representations are accepted.

The suffix L (or l) attached to any constant forces it to be represented as a
long. Similarly, the suffix U (or u) forces it to be unsigned, and it will be
unsigned long if the value of the number itself is greater than 65535,
regardless of which base is used. Note: You can use both Land U suffixes
on the same constant.

Table 11.2 summarizes the representations of constants in all three bases.

Chapter 11. Turbo C Language Reference 305

Table 11.2: Turbo C Integer Constants wlthout l or U

Decimal Constants

o - 32161
32768 - 2147483647

2147483648 - 4294967295

> 4294967295

00 - 077777
0100000 - 0117777

02000000 - 017777777777
020000000000 - 031777777777

> 037777777777

int
long
unsigned long

Will overflow without warning; the
resulting constant will be the
low-order bits of the actual value

Octal Constants
int
unsigned int
long
unsigned long

Will overflow (as previously described)

OxOOOO - Ox7FFF
Ox8000 - OxFFFF

Ox10000 - Ox7FFFFFFF
Ox80000000 - OxFFFFFFFF

> OxFFFFFFFF

Hexadecimal Constants

int
unsigned int
long
unsigned long

Will overflow (as previously described)

Character Constants (K&R 2.4.3)

Turbo C supports two-character constants, for example, 'An', '\n\t', and '\
007\007'. These constants are represented as 16-bit int values with the first
character in the low-order byte and the second character in the high-order
byte. Note that these constants are not portable to other C compilers.

One-character constants, such as 'A', '\t', and '\007', are also represented
as 16-bit int values. In this case, the low-order byte is sign extended into the
high byte; that is, if the value is greater than 127 (base 10), the upper byte is
set to -1 (=OxFF). This can be disabled by declaring that the default char
type is unsigned (use the -K compiler option or choose Default Char
Type...Unsigned in the Options/Compiler/Source menu), which forces the
high byte to be zero regardless of the value of the low byte.

Turbo C supports the ANSI extension of allowing hexadecimal repre­
sentation of character codes, such as '\x1F', '\x82', and so on. Either x or X
is allowed, and you may have one to three digits.

Turbo C also supports the other ANSI extensions to the list of allowed
escape sequences. Escape sequences are values inserted into character and
string constants, preceded by a backslash (\). Table 11.3 lists all allowed
sequences; those marked with an asterisk (.) are extensions to K&R.

306 Turbo C User's Guide

Sequence

Table 11.3: Turbo C Escape Sequences

Value Char What It Does

OX07
OX08
OXOC
OxOA
OXOO
Ox09
OxOB
OxSc
0x27
0x22
Ox3F

• \a
\b
\f
\n
\r
\t

• \v
\\
\'.\"

• \1
·\0
• \H OxH

•ANSI extensions to K&R

BEL
BS
FF
LF
CR
HT
VT
\
1

"
1
any
any

Audible bell
Backspace
Formfeed
Newline (linefeed)
Carriage return
Tab (horizontal)
Vertical tab
Backslash
Single quote (apostrophe)
Double quote
Question mark
o = string of octal disits
H = string of hex digits

Note: Due to a change in the ANSI C Standard, character constants are no
longer limited to three consecutive digits. As long as the value of the
character constant can be represented within the limits of data type char (0
- Oxff for Turbo C), the length of the constant does not matter. Larger
numbers will generate a compiler error, Numeric constant too large. For
example,the octal number \777 is larger than the maximum value allowed,
\377, and will generate an error.

This change might cause problems with old code that assumes only the first
three characters are converted. For example, using Turbo C l.x to define a
string with a bell (ASCII 7) followed by numeric characters, a programmer
might write:

printf(A\0072.1A Softheads Operating System");

This is intended to be interpreted as \007 and 2.1A Softheads Operating
System. However, Turbo C 2.0 will compile it as \0072 and .1A Softheads
Operating System.

To avoid such problems, rewrite your code like this:

printf("\007" "2.1A Softheads Operating System");

Ambiguities may also arise if an octal escape sequence is followed by a
non-octal digit. For example, because 8 and 9 are not legal octal digits, the
constant \258 would be interpreted as a two-eharacter constant made up of
the characters \25 and 8.

Chapter 77, Turbo C Language Reference 307

Floating Constants (K&R 2.4.4)

All floating constants are by definition of type double as specified in K&R.
However, you can coerce a floating constant to be of type float by adding
an F suffix to the constant.

Strings (K&R 2.5)

According to K&R, a string constant consists of exactly one string unit,
containing double quotes, text, double quotes (''like this"). You must use
the backslash (\) as a continuation character in order to extend a string
constant across line boundaries.

Turbo C allows you to use multiple string units in a string constant; it will
then do the concatenation for you. For example, you could do the
following:

mainO
(

char *p;

p = "This is an example of how Turbo e"
" will automatically\ndo the concatenation for"
• you on very long strings,\nresulting in nicer"
" looking programs.";

printf(p) ;

The output of the program is:

This is an example of how Turbo Cwill automatically
do the concatenation for you on very long strings,
resulting in nicer looking programs.

Hardware Specifics (K&R 2.6)

K&R recognizes that the size and numeric range of the basic data types
(and their various permutations> are very implementation specific and
usually derive from the architecture of the host computer. This is troe for
Turbo C, just as it is for all other C compilers. Table 11.4 lists the sizes and
resulting ranges of the different data types for Turbo C.

308 Turbo C User's Guide

Type

Table 11.4: Turbo C Data Types. Sizes. and Ranges

Size (bits) Range

unsigned char
char
enum
unsigned short
short
unsigned int
int
unsigned long
long
float
double
long double
pointer
pointer

8
8

16
16
16
16
16
32
32
32
64
80
16
32

0-255
-128 -127

-32768 - 32767
0-65535

-32768 - 32767
0-65535

-32768 - 32767
o- 4294967295

-2147483648 - 2147483647
3.4E-38 - 3.4E+38

1.7E-308 - 1.7E+308
3.4E4932 - 1.1E+4932

(near, _cs, _ds, _es, _ss pointers)
(far, huge pointers)

Conversions (K&R 6)

Turbo C supports the standard mechanisms for automatically converting
from one data type to another. The following sections indicate additions to
K&R or implementation-specific information.

char, int, and enum (K&R 6.1)

Assigning a character constant to an integer object results in a full 16-bit
assignment, since both one- and two-character constants are represented as
16-bit values (see K&R 2.4.3). Assigning a character object (such as a
variable) to an integral object will result in automatic sign extension, unless
you've made the default char type unsigned (with the -K compiler option).
Objects of type signed char always use sign extension; objects of type
unsigned char always set the high byte to zero when converted to into

Values of type enum convert straight to int with no modifications;
similarly, int values can be converted straight to an enumerated type. enum
values and characters convert exactly, as do int values and characters.

Pointers (K&R 6.4)

In Turbo C, different pointers in your program can be of different sizes,
depending upon the memory model or pointer type modifers you use. For
example, when you compile your program in a particular memory model,

Chapter 11, Turbo C Language Reference 309

the addressing modifiers (near, far, huge, _cs, _ds, _es, _ss) in your source
code can override the pointer size given by that memory model.

A pointer must be declared as pointing to some particular type, even if that
type is void (which really means a pointer to anything). However, having
been dechired, th't pointer can point to an object of any other type. Turbo C
allows you to reassign pointers like this, but the compiler will warn you
when pointer reassignment happens-unless the pointer was originally
declared to be of type pointer to void. However, pointers to data types
cannot be converted to pointers to functions, and vice versa.

Arithmetic Conversions (K&R 6.6)

K&:R refers to the usual arithmetic conversions, which specify what happens
when any values are used in an arithmetic expression (operand, operator,
operand). Here are the steps used by Turbo C to convert the operands in an
arithmetic expression:

1. Any noninteger or nondouble types are converted as shown in Table
11.5. After this, any two values associated with an operator are either
int (including the long and unsigned modifiers) or double.

2. If either operand is of type long double, the other operand is converted
to long double.

3. If either operand is of type double, the other operand is converted to
double.

4. Otherwise, if either operand is of type unsigned long, the other
operand is converted to unsigned long.

5. Otherwise, if either operand is of type long, then the other operand is
converted to long.

6. Otherwise, ifeither operand is of type unsigned, then the other operand
is converted to unsigned.

7. Otherwise, both operands are of type into

The result of the expression is the same type as that of the two operands.

Table 11.5: Methods Used In Usual ArIthmetic Conversions

Type Converts to Method

char
unsi~edchar
signed char
sliort
enum
float

310

int
int
int
int
int
double

Sign-extended
Zero-filled high byte (always)
Sign-extended (always)
If unsigI!ed, then unsigned int
Same value
Pads mantissa with D's

Turbo C User's Guide

Operators (K&R Section 7.2)

Turbo C supports the unary plus operator, while K&R does not. This
operator has no effect, but provides symmetry with the negation operator.

Normally, Turbo C will regroup integral expressions, rearranging commu­
tative operators (such as'" and binary +) in an effort to create an efficiently
compiled expression. However, Turbo C will not reorganize expressions
containing floating-point quantities. Consequently, you must use
parentheses to force the order of evaluation in floating point expressions.

For example, ifa, b, c, and f are all of type float, then the expression

f =a + (b + c);

forces the expression (b + c) to be evaluated before adding the result to a.

Type Specifiers and Modifiers (K&R 8.2)

Turbo C supports the following basic types not found in K&R:

• unsigned char
• unsigned short
• unsigned long
• long double
• enumeration
• void

The types int and short are equivalent in Turbo C, both being 16 bits. See
"Hardware Specifics" for more details on how different types are
implemented.

The enum Type

Turbo C implements enumerated types as found in the ANSI standard. An
enumerated data type is used to describe a discrete set of integer values.
For example, you could declare the following:

enum days (sun, mon, tues, wed, thur, fri, sat };

The names listed in days are integer constants with the first (sun) being
automatically set to zero, and each succeeding name being one more than
the preceding one (mon = 1, tues = 2, and so on). However, you can set a
name to a specific value; following names without specified values will
then increase by one, as before. For example,

enum coins (penny = 1, nickle = 5, dime = 10, quarter = 25};

Chapter 77. Turbo C Language Reference 311

A variable of an enumerated type can be assigned any value of type
int-no type checking beyond that is enforced.

The void Type

In K&R, every function returns a value; if no type is declared, then the
function is of type inl Turbo C supports the type void as defined in the
ANSI standard. This is used to explicitly document a function that does not
return a value. Likewise, an empty parameter list can be documented with
the reserved word void. For example,

void putmsg(void)
I

printf(nHello, world\nn)i

main()
. I

putmsg()i

As a special construct, you can cast an expression to void in order to
explicitly indicate that you're ignoring the value returned by a function. For
example, if you want to pause until the user presses a key but ignore what
is typed, you might write this:

(void) getch () i

Finally, you can declare a pointer to void. This doesn't create a pointer to
nothing; it creates a pointer to any kind of data object, the type of which is
not necessarily known. You can assign any pointer to a void pointer (and
vice versa) without a cast. However, you cannot use the indirection
operator (If-) with a void pointer, since the underlying type is undefined.

The signed Modifier

In addition to the three types of adjectives defined by K&R-Iong, short,
and unsigned-Turbo C supports three more: signed, const, and volatile
(all of which are defined in the ANSI standard).

The signed modifier is the opposite of unsigned and explicitly says that the
value is stored as a signed (two's complement> value. This is done
primarily for documentation and completeness. However, if you compile
with the default char type unsigned (instead of signed), you must use the
signed modifier in order to define a variable or function of type signed
char. The modifier signed used by itself signifies signed int, just as
unsigned by itself means unsigned inl

312 Turbo C User's Guide

The const Modifier

The const modifier, as defined in the ANSI standard, prevents any
assignments to the object or any other side effects, such as increment or
decrement. A const pointer cannot be modified, though the object to which
it points can be. Note: The modifier const used by itself is equivalent to
const into Consider the following examples:

const float pi = 3.1415926;
const maxint = 32767;
char *const str = "Hello, world";
char const *str2 = lIHello, world";

/* A constant pointer */
/* A pointer to a constant string */

Given these, the following statements are illegal:

pi = 3.0;
i = maxint++;
str = IIHi, there!lI;

/* Assigns a value to a const */
/* Increments a const */

/* Points str to something else */

Note, however, that the function call strcpy (str, "Hi, there! It) is legal, since
it does a character-by-character copy from the string literal "Hi, there! II

into the memory locations pointed to by str.

The volatile Modifier

The volatile modifier, also defined by the ANSI standard, is almost the
opposite of const. It indicates that the object may be modified; not only by
you, but also by something outside of your program, such as an interrupt
routine or an I/O port. Declaring an object to be volatile warns the
compiler not to make assumptions concerning the value of the object while
evaluating expressions containing it, since the value could (in theory)
change at any moment. It also prevents the compiler from making the
variable a register variable.

volatile int ticks;
interrupt timer()
(

ticks++;

wait(int interval)
(

ticks = 0;
while (ticks < interval); /* Do nothing */

These routines (assuming timer has been properly associated with a
hardware clock interrupt) will implement a timed wait of ticks specified by
the argument interval. Note that a highly optimizing compiler might not

Chapter 11. Turbo C Language Reference 313

load the value of ticks inside the while loop, since the loop doesn't change
the value of ticks.

The cdecl and pascal Modifiers

Turbo C allows your programs to easily call routines written in other
languages, and vice versa. When you mix languages like this, you have to
deal with two important issues: identifiers and parameter passing.

When you compile a program in Turbo C, all the global identifiers in the
program-that is, the names of functions and global variables-are saved
in the resulting object code file for linking purposes. By default, those
identifiers are saved in their original case Oower, upper, or mixed). Also, an
underscore (_) is prepended to the front of the identifier, unless you have
selected the -u- (Generate Underbars...Om option.

Likewise, any external identifiers you declare in your program are
presumed to have the same format. Linking is (by default) case sensitive, so
identifiers used in different source files must match exactly in both spelling
and case.

pascal

In certain situations, such as referencing code written in other languages,
this default method of saving names can be a problem.

So Turbo C gives you a way around the problem. You can declare any
identifier to be of tyPe pascal. This means that the identifier is converted to
uppercase and that no underscore is stuck on the front. (U the identifier is a
function, this also affects the parameter-passing sequence used; see
"Function Type Modifiers" for more details.) It no longer matters what case
is used in the source code; for linking purposes, it's considered uppercase
only.

cdecl

You can make all the global identifiers in a source file of type pascal by
compiling with the -p (Calling Convention... Pascal) option. However, you
may then want to ensure that certain identifiers have their case preserved
and keep the underscore on the front, especially if they're C identifiers
from another file.

You can do so by declaring those identifiers to be cdecl (which also has an
effect on parameter passing for functions).

314 Turbo C User's Guide

You'll notice, for example, that all the functions in the header files
(STOIO.H, and so on) are of type cdecl. This ensures that you can link with
the library routines, even if you compile using -po

See K&R Section 10.1.1 in this chapter, as well as Chapter 12, for more
details.

The near, far, and huge modifiers

Turbo C has three modifiers that affect the indirection operator (..); that is,
they modify pointers to data. These are near, far, and huge. The meaning of
these keywords is explained in greater detail in Chapter 12, but here's a
brief overview.

Turbo C allows you to compile using one of several memory models. The
model you use determines (among other things) the internal format of
pointers to data. If you use a small data model (tiny, small, medium), all
data pointers are only 16 bits long and give the offset from the Data
Segment (OS) register. Ifyou use a large data model (compact, large, huge),
all pointers to data are 32 bits long and give both a segment address and an
offset.

Sometimes, when using one size of data model, you want to declare a
pointer to be of a different size or format than the current default. You do
so using the modifiers near, far, and huge.

A near pointer is only 16 bits long; it uses the current contents of the Data
Segment (OS) register for its segment address. This is the default for small
data models. Using near pointers limits your data to the current 64K data
segment.

A far pointer is 32 bits long, and contains both a segment address and an
offset. This is the default for large data models. Using far pointers allows
you to refer to data anywhere in the 1-Mb address space of the Intel 8088/
8086 processors.

A huge is also 32 bits long, again containing both a segment address and an
offset. However, unlike far pointers, a huge pointer is always kept
normalized. The details of this are given in Chapter 12, but here are the
implications:

• Relational operators (==, !=, <, >, <=, >=) all work correctly and
predictably with huge pointers; they do not with far pointers.

• Any arithmetic operations on ahuge pointer affect both the segment
address and the offset because of normalization; on a far pointer, only the
offset is affected.

Chapter 77. Turbo C Language Reference 315

• A given huge pointer can be incremented through the entire 1-Mb
address space; a far pointer will eventually wrap around to the start of its
64 Kb segment.

• Using huge pointers requires additional time because the normalization
routines have to be called after any arithmetic operations on the pointers.

Structures and Unions (K&R Section 8.5)

Turbo C follows the K&R implementation of structures and unions and
provides the following additional fea tures.

Word Alignment

If you use the -a compiler option (Alignment...Word), Turbo C will pad the
structure (or union) with bytes as needed for word alignment. This ensures
three things:

• The structure will start on a word boundary (even address).
• Any non-char member will have an even offset from the beginning of the

structure.

• A byte will be added (if necessary) at the end to ensure that the entire
strocture contains an even number ofbytes.

BitfieIds

In Turbo C, a bitfield can be either a signed or unsigned int and can
occupy from 1 to 16 bits. Bitfields are allocated from low-order to high­
order bits within a word.

For example,

struct mystruct (
lnt 1 : 2;
unsigned j : 5;
int : 4;
lnt k : 1;
unsigned m: 4;

) a,b,c;

produces the following layout:

316 Turbo C User's Guide

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

x x x x x x x x x x x x x x x X

.J .. ~ ...
~ ~

~- ...
-. , --, ~ .. "' ~

m k (unused) j i

Integer fields are stored in two's complement form with the leftmost bit
being the sign bit. For example, a signed int bitfield 1 bit wide (such as a.k)
can only hold the values -1 and 0, since any nonzero value will be
interpreted as -1.

Statements (K&R 9)

Turbo C implements all the statements described in K&R without exception
and without modification.

External Function Definitions (K&R 10.1)

In Turbo C, extern declarations given inside a function obey proper block
scope; they will not be recognized beyond the scope of the block in which
they are defined. However, Turbo C will remember the declarations in
order to compare them with later declarations of the same object.

Turbo C implements most of the ANSI enhancements to the K&R definition
of functions. This includes additional function modifiers, as well as
function prototypes. Turbo C also has a few enhancements of its own, such
as functions of type interrupt.

Function Type Modifiers (K&R 10J.1)

In addition to extern and static, Turbo C has a number of type modifiers
specific to function definitions: pascal, cded, interrupt, near, far, and huge.

The pascal Function Modifier

The pascal modifier is specific to Turbo C and is intended for functions
(and pointers to functions) that use the Pascal parameter passing sequence.
This allows you to write C functions that can be called from programs
written in other languages; likewise, it will allow your C programs to call

Chapter 11, Turbo C Language Reference 317

extemal routines written in languages other than C. The function name is
converted to all uppercase for linking purposes.

Note: Using the -p compiler option (Calling Convention... Pascal) will
cause all functions (and pointers to those functions) to be treated as if they
were of type pascal. Also, functions declared to be of type pascal can still
be called from C routines, so long as the C routine sees that the function is
of type pascal. For example, if you have declared and compiled the
following function:

pascal putnums(lnt l, lnt j, lnt k)
(

printf(IIAnd the answers are: %d, %d, and %d\n",i,j,k);
}

another C program could then link it in and call it, given the following
declarations:

pascal putnums(lnt l, lnt j, lnt k);

main ()
I

putnums (1, 4, 9) ;

Functions of type pascal cannot take a variable number of arguments,
unlike functions such as printf. For this reason, you cannot use an ellipsis
(...) in a pascal function definition. (See "Function Prototypes" for an
explanation of using the ellipsis to define a function with a variable number
of arguments.)

The cdecl Function Modifier

The cded modifier is also specific to Turbo C. Like the pascal modifier, it is
used with functions and pointers to functions. Its purpose is to override the
-p compiler directive and allow a function to be called as a regular C
function. For example, if you were to compile the previous program with
the -p option set, but wanted to use printf, you might do something like
this:

318 Turbo C User's Guide

extern cdecl printf();
putnums(int i, int j, lnt k);

cdecl main ()
(

putnums (1, 4, 9) ;

putnums(int i, lnt j, lnt k)
(

printf(IIAnd the answers are: %d, %d, and %d\n",l,j,k);
)

If a program is compiled with the -p option, all functions used from the
run-time library will need to have cdecl declarations. If you look at the
header files (such as STOIO.H), you'll see that every function is explicitly
defined as cded in anticipation of this. Note that main must also be
declared as cdecl; this is because the C start-up code always tries to call
main with the C calling convention.

The interrupt Function Modifier

The interrupt modifier is another one specific to Turbo C. interrupt
functions are designed to be used with the 8086/8088 interrupt vectors.
Turbo C will compile an interrupt function with extra function entry and
exit code so that registers AX, BX, CX, OX, SI, 01, ES, and OS are preserved.
The other registers of BP, SP, SS, CS, and IP are preserved as part of the C­
calling sequence or as part of the interrupt handling itself. Here is an
example of a typical interrupt definition:

void interrupt myhandler()
{

You should declare interrupt functions to be of type void. Interrupt
functions may be declared in any memory model. For all memory models
except huge, OS is set to the program data segment. For the huge model,
OS is set to the module's data segment.

The near, far, and huge Function Modifiers

The near, far, and huge modifiers are specific to Turbo C. They can be
combined with cdecl or pascal, but not interrupt.

A non-interrupt function may be declared to be near, far, or huge. This will
override the default settings for a given memory model. A near function
uses near calls, and a far or huge function uses far call instnIctions.

Chapter 77. Turbo C Language Reference 319

In the tiny, small, and compact memory models, an unqualified function
defaults to type near. In the medium and large models, an unqualified
function defaults to type far. In the huge memory model, it defaults to type
huge.

A huge function is the same as a far function, except that the OS register is
set to the data segment address of the source module when a huge function
is entered, but left unset for a far function.

Functions of type huge are useful when you must interface with code in
assembly language that doesn't use the same memory allocation as Turbo
C.

Function Prototypes (K&R 10.1.2)

When you are declaring a function, K&R only allows a function declarator
consisting of the function name, its type, and an empty set of parentheses.
The parameters (if any) are declared only when you actually define the
function itself.

The ANSI standard-and Turbo C-allow you to use function prototyPes
to declare a function. These are declarators that include information about
the function parameters. The compiler uses that information to check
function calls for validity. The compiler also uses that information to coerce
arguments to the proper type. Suppose you have the following code
fragment:

long lmax(long vI, long v2);

main()
(

int limit = 32;
char ch ='A';
long mval;

mval = lmax(limit,ch);

Given the function prototyPe for lmax, this program will convert limit and
ch to long using the standard rules of assignment before they are placed on
the stack for the call to lmax. Without the function prototype, limit and ch
would have been placed on the stack as an integer and a character,
respectively; in that case, the stack passed to lmax would not match in size
or content what lmax was expecting, leading to problems. Since K&R, C
does not do any checking of parameter type or number, using function
prototypes aids greatly in tracking down bugs and other programming
errol'S.

320 Turbo C User's Guide

Function prototypes also aid in documenting code. For example, the
function strcpy takes two parameters: A source string and a destination
string. The question is, which is which? The function prototype

char *strcpy(char *dest, char *source);

makes it clear. If a header file contains function prototypes, then you can
print that file to get most of the information you need for writing programs
that call those functions.

A function declarator with parentheses containing the single word void
indicates a function that takes no arguments at all:

f(void)

Otherwise, the parentheses contain a list of declarators separated by
commas. The declarator may be in the form of a cast, as in

func(int *, long);

or it may include an identifier, as in

func(int * count, long total);

In the two lists of declarators just mentioned, the function func accepts two
parameters: a pointer to int named count and a long (integer) named total. If
an identifier is included, it has no effect except to be used in the diagnostic
message, if and when a parameter-type mismatch occurs.

A function prototype normally defines a function as accepting a. fixed
number of parameters. For C functions that accept a variable number of
parameters (such as prlntfl, a function prototype may end with an ellipsis
(...), like this:

flint *count, long total, •••)

With this form of prototype, the fixed parameters are checked at compile
time, and the variable parameters are passed as if no prototype were
present.

Here are some more examples of function declarators and prototypes.

Chapter 77, Turbo C Language Reference 321

int fO;

int f (void) ;

int (*fp) (lnt);

int p(int,long);

int printf(char *format, •••);

char far * s(char *source, int kind);

int pascal q(void);

1* Afunction returning an int with no
information about parameters. This is
the K&R "class ic style. 1I *1

1* A function returning an int that
takes no parameters. *1

1* Afunction returning an int that
accepts two parameters: the first, an
inti the second, a long. *1

1* Apascal function returning an int
that takes no parameters at all. *1

It A function returning a far pointer
to a char and accepting two
parameters: the first, a pointer to a
char; the second, an into *1

1* Afunction returning an int and
accepting a pointer to a char fixed
parameter and any number of additional
parameters of unknown type. *1

1* Apointer to a function returning
an int and accepting a single int
parameter. *1

Here is a summary of the rules governing how Turbo C deals with
language modifiers and formal parameters in function calls, both with and
without prototypes.

Rule #1: The language modifiers for a function definition must match the
modifiers used in the declaration of the function at all calls to the function.

Rule #2: A function may modify the values of its formal parameters, but
this has no effect on the actual arguments in the calling routine, except for
interrupt functions. See "Interrupt Functions" in Chapter 12 for more
information.

When a function prototype has not been previously declared, Turbo C
converts integral arguments to a function call according to the integral
widening (expansion) roles described in "Arithmetic Conversions." When a
function prototype is in scope, Turbo C converts the given argument to the
type of the declared parameter as ifby assignment.

When a function prototype includes an ellipsis (...), Turbo C converts all
given function arguments as in any other prototype (up to the ellipsis). The
compiler will widen any arguments given beyond the fixed parameters,
according to the normal rules for function arguments without prototypes.

If a prototype is present, the number of arguments must match (unless an
ellipsis is present in the prototype). The types must be compatible only to
the extent that an assignment can legally convert them. You can always use

322 Turbo C User's Guide

an explicit cast to convert an argument to a type that is acceptable to a
function prototype.

The following example should clarify these points:

int strcmp(char *sl, char *S2)i
char *strcpY()i
int sampl(float, int, •••)i

samp2 ()
(

char *sx, *CPi
double Zi
long ai
float qi

if (strcmp(sx, cp))
strcpy(sx, cp, 44)i

sampl(3, a, q)i
strcpy(cp)i
sampl(2)i

1* Full prototype *1
1* No prototype *1

1* Full prototype *1

1* 1. Correct *I
1* 2. OK in Turbo C but not portable *1

1* 3. Correct *1
1* 4. Run-time error *1

1* 5. Compile error *1

}

The five calls (numbered by comment) in this example illustrate different
points about function calls and prototypes.

In call #1, the use of strcmp exactly matches the prototype and everything
is proper.

In call #2, the call to strcpy has an extra argument (strcpy is defined for two
arguments, not three). In .this case, Turbo C will waste a little time and code
pushing an extra argument. However, there is no sYntax error because the
compiler has not been told about the arguments to strcpy. This call is not
portable.

In call #3, the prototype directs that the first argument to sampl be
converted to float and the second argument to into The compiler will warn
about possible loss of significant digits because a conversion from long to
int chops the upper bits. (You can eliminate this warning with an explicit
cast to int). The third argument, q, lines up with the ellipsis in the
prototype, so it is converted to double according to the usual arithmetic
conversions; the whole call is correct.

In call #4, strcpy is again called, but now with too few arguments. This will
cause an execution error, and it may crash the program. The compiler will
say nothing (even though the number of parameters differs from that in a
previous call to the same function!), since there is no function prototype for
strcpy.

Chapter 77. Turbo C Language Reference 323

In call #5, sampl is called with too few arguments. Since sampl requires a
minimum of two arguments, this statement is an error. The compiler will
give a message about too few arguments in a call.

Important Note: If your function prototype does not match the actual
function definition, Turbo C will detect this ifand only if that definition is in
the same file as the prototype. If you create a library of routines with a
corresponding header file of prototypes, you might consider including that
header file when you compile the library, so that any discrepancies between
the prototypes and the actual definitions will be caught.

Scope Rules (K&R 11)

Turbo C is more liberal in allowing nonunique identifiers than K&R
specifies a compiler need be. There are four distinct classes of identifiers in
this implementation:

Variables, typedefs, and enumeration members must be unique within the
block in which they are defined. Externally declared identifiers must be
unique among externally declared variables.

Structure, union, and enumeration tags must be unique within the block in
which they are defined. Tags declared outside of any function must be
unique within all tags defined externally.

Structure and union member names must be unique within the structure
or union in which they are defined. There is no restriction on the type or
offset of members with the same member name in different stntctures.

Coto labels must be unique within the function in which they are declared.

Compiler Control Lines (K&R 12)

Turbo C supports all the control commands found in K&R. These
preprocessor directives are source lines with an initial #, which can be
preceded or followed by whitespace.

Token Replacement (K&R 12.1)

Turbo C implements the K&R definition of idefine and fundef with the
following additions.

324 Turbo C User's Guide

• The following identifiers may not appear in a 'define or lundef directive:

STDC- -
FILE- -
LINE
DATE- -
TIME- -

• Two tokens can be pasted together in a macro definition by separating
them with ## (plus optional whitespace on either side). The preprocessor
removes the whitespace and the ##, combining the separate tokens. This
can be used to construct identifiers; for example, given the construct

'define VAR(i, j) (i It j)

VAR (x, 6) would expand to (x6). This replaces the sometimes-used (but
nonportable) method of using (i / **/ j) •

• Nested macros mentioned in a macro definition string are expanded only
when the macro itself is expanded, not when the macro is defined. This
mostly affects the interaction of iundef with nested macros.

• The # symbol can be placed in front of a macro argument in order to
stringize the argument (convert it to a string). When the macro is
expanded, #<formal arg> is replace with I/<actual arg>l/. So, given the
following macro definition:

'define TRACE(flag) printf(lflag A=%d\n A, flag)

the code fragment

highval = 1024;
TRACE(highval);

becomes

highval = 1024;
printf(Ahighval A A= %d\nA, highval);

which, in tum, becomes

highval = 1024;
printf(Ahighval=%d\nA, highval);

• Unlike other implementations, Turbo C does not expand macro
arguments inside sbings and character constants.

File Inclusion (K&R 12.2)

Turbo C implements the finclude directive as found in K&R but has the
following additional feature: If the preprocessor can't find the include file
in the default directory, assuming that you used the form

'include "filename"

Chapter 77, Turbo C Language Reference 325

then it searches the directories specified with the compiler option - I.

If you used the form finclude <filename>, only those directories specified
with -I are searched. (Directories listed under the menu option 0/
Environment/Include Directories are equivalent to those given with the
-1pathname command-line option.)

You can construct the 'include path name, including delimiters, using
macro expansion. If the next line after the keyword begins with an
identifier, the preprocessor scans the text for macros. However, if a string is
enclosed in quotes or angle brackets, Turbo C will not examine it for
embedded macros.

So, if you have the following:

'define myinclude ·c:\tc\include\mystuff.hn

'include myinclude
'include nmyinclude.h-

then the first iinclude statement will cause the preprocessor to look for C:\
TC\INCLUDE\MSTUFF.H, while the second will cause it to look for
MYINCLUDE.H in the default directory.

Also, you cannot use string literal concatenation and token pasting in
macros that are used in an finclude statement. The macro expansion must
produce text that reads like a normal finclude directive.

Conditional Compilation (K&R 12.3)

Turbo C supports the K&R definition of conditional compilation by
replacing the appropriate lines with a line containing only whitespace. The
lines thus ignored are those beginning with iif, Hfdef, Hfndef, leIse, felif,
and iendif directives, as well as any lines that are not to be compiled as a
result of the directives. All conditional compilation directives must be
completed in the source or include fil~ in which they are begun.

Turbo C also supports the ANSI operator defined (symbol). This will
evaluate to 1 (true) if the symbol has been previously defined (using
'define) and has not been subsequently undefined (using fundef)i
otherwise, it evaluates to 0 (false). So the directive

lif defined(mysym)

is the same as

lifdef mysym

The advantage is that you can use defined repeatedly in a complex
expression following the iif directive, such as

lif defined(mysym) II definedlyoursym)

326 Turbo C User's Guide

Finally, Turbo C (unlike ANSI) allows you to use the sizeof operator in a
preprocessor expression. Thus, you can write the following:

lif (sizeof(void *) ;; 2)
Idefine SDATA

'else
'define LDATA
lendif

Line Control (K&R 12.4)

Turbo C supports the K&R definition of nine. Macros are expanded in
i line as they are in the iinclude directive.

Error Directive (ANSI C 3.8.5)

Turbo C supports the 'error directive, which is mentioned (but not
explicitly defined) in the ANSI standard. The format is

'error errmsg

and the message issued is

Fatal: filename linel Error directive: errmsg

Typically, programmers include this directive in a preprocessor conditional
that catches some undesired compile-time condition. In the normal case,
that condition won't be true. In the event that the condition is true, you
want the compiler to print an error message and stop the compile. You do
this by putting an 'error directive within a conditional that is true for the
undesired case.

For example, suppose you 'define MYVAL, which must be either 0 or 1.
You could then include the following conditional in your source code to test
for an incorrect value of MYVAL:

lif (MYVAL !; 0 && MYVAL !; 1)
lerror MYVAL must be defined to either 0 or 1
'endif

The preprocessor scans the text to remove comments but displays any
remaining text without looking for embedded macros.

Chapter 11. Turbo C Language Reference 327

Pragma Directive (ANSI C 3.8.6)

Turbo C supports the Ipragma directive, which (like ferror) is vaguely
defined in the ANSI standard. Its purpose is to permit implementation­
specific directives of the form:

tpraqma <directive name>

With Ipragma, Turbo C can define whatever directives it desires without
interfering with other compilers that support #pragma. Why? Because, by
definition, if the compiler doesn't recognize the directive name, it ignores
the ipragrna directive.

#pragma inline

Turbo C recognizes three 'pragma directives. The first is

tpragma inline

This directive is equivalent to the -B compiler option. It tells the compiler
that there is inline assembly language code in your program (see Chapter
12). This is best placed at the top of the file, since the compiler restarts itself
with the -B option when 'pragma inline is encountered. Actually, you can
leave off both the -B option and the 'pragma inline directive, and the
compiler will restart itself anyway as soon as it encounters asm statements;
the purpose of the option and the directive is to save some compile time.

#pragmawam

The second Ipragrna directive is

tpracpna warn

This directive allows you to override specific -wxxx command-line options
(or specific Display Warnings...On options).

For example, if your source code contains the directives

tpragma warn +xxx
fpraqma warn -yyy
fpraqma warn .zzz

the xxx warning will be turned on (even if on the O/e/Errors menu it was
toggled to om, the yyy warning will be turned off, and the zzz warning will
be restored to the value it had when compilation of the file began.

A complete list of the three-letter abbreviations and the warnings to which
they apply is given in Appendix C in the Turbo C Reference Guide.

328 Turbo C User's Guide

#pragma saveregs

This pragma guarantees that a huge function will not change the value of
any of the registers when it is entered. This directive is sometimes needed
for interfacing with assembly language code. The directive should be
placed immediately before the function definition. It applies to that
function alone.

Null Directive (ANSI C 3.7)

For the sake of completeness, the ANSI standard and Turbo C recognize the
null directive, which simply consists of a line containing the character t.
This directive is always ignored.

Predefined Macro Names (ANSI C 3.8.8)

The ANSI standard requires five predefined macros to be made available
by the implementation. Turbo C implements all five. Note that each of
these starts and ends with two underscore characters (__).

LINE The number of the current source-file line being processed,
a decimal constant. The first line of a source file is defined
to be 1.

The name of the current source file being processed, a
sbing literal.

This macro changes whenever the compiler processes an
iinclude directive or a #line directive, or when the include
file is complete.

The date the preprocessor began processing the current
source file, a string literal.

Each inclusion of _DATE_ in a given file is guaranteed to
contain the same value, regardless of how long the
processing takes. The date appears in the format mmm dd
yyyy, where mmm equals the month (Jan, Feb, etc.), dd
equals the day (1...31, with the first character of dd a blank
if the value is less than 10), and yyyy equals the year (1986,
1987, etc.).

The time the preprocessor began processing the current
source file, a string literal.

Chapter 77, Turbo C Language Reference 329

Each inclusion of_TIME_ is guaranteed to contain the
same value, regardless of how long the processing takes. It
takes the format hh:mm:ss, where hh equals the hour
(00...23), mm equals minutes (00...59), and ss equals
seconds (00...59).

The constant 1, ifyou compile with the ANSI compatibility
(-A) flag (ANSI Keywords Only...ON); otherwise, the macro
is undefined.

Turbo C Predefined Macros

The Turbo C preprocessor defines several additional macros for your use.
As with the ANSI-prescribed macros, each starts and ends with two
underscore characters.

TURBOC Gives the current Turbo C version number, a hexadecimal
constant. Version 1.0 is OxOl00; version 1.2 is OxOl02; and so
on.

PASCAL Signals -p flag; set to the integer constant 1 if -p flag is
used; undefined otherwise.

MSOOS The integer constant 1 for all compiles.

CDECL Signals that the -p flag was not used (Calling
Convention...C): set to the integer constant 1 if -p was not
used; undefined otherwise.

The following six SYmbols are defined based on the memory model chosen
at compile time. Only one is defined for any given compilation; the others,
by definition, are undefined. For example, if you compile with the small
model, _SMALL_ is defined and the rest are not, so that the directive fif
defined(_SMALL_) will be true, while lif defined(_HUGE_) (or any of the
others) will be false. The actual value for any of these defined macros is 1.

TINY

SMALL

MEDIUM

_ COMPACT_

LARGE

HUGE

330

The tiny memory model selection options

The small memory model selection options

The medium memory model selection options

The compact memory model selection options

The large memory model selection options

The huge memory model selection options

Turbo C User's Guide

Anachronisms (K&R 17)

None of the anachronisms mentioned in K&R exist in Turbo C.

Chapter 72, Advanced Programming In Turbo C 331

332 Turbo C User's Guide

c H A p T E R

12

Advanced Programming in Turbo C

We knew you'd get around to this chapter sooner or later. You've
undoubtedly worked through the earlier chapters at an alarming rate,
absorbing knowledge like a sponge absorbs water. And now you want to
explore new and more rarified realms. Glad to have you here.

We'll cover three major topics in this chapter. First, we'll talk about memory
models, from tiny to huge. We'll tell you what they are, how to choose one,
and why you would (or would not) want to use a particular memory
model. Next, we'll discuss the issues in mixed-language programming.
You've seen that some already in Chapter 10, which talked about mixing
Turbo C and Turbo Prolog. Here, we'll be talking about how to mix with
other languages, including Pascal and assembly language. After that, we'll
look at three aspects of low-level programming in Turbo C: inline assembly
code, pseudo-variables, and interrupt-handling. Finally, we'll look at
floating-point issues. So let's get started.

Memory Models

What are memory models, and why do you have to worry about them? To
answer that question, we have to take a look at the computer system you're
working on. Its central processing unit (CPU) is a microprocessor belonging
to the Intel iAPx86 family; probably an 8088, though possibly an 8086, an
80186, an 80286, or an 80386. For now, we'll just refer to it as an 8086.

Chapter 12, Advanced Programming In Turbo C 333

The 8086 Registers

General Purpose Registers

AX

BX
ex
DX

AH AL

BH BL

CH CL

DH DL

Segment Address Registers

accwnulator (math operations)

base (indexing)

count (indexing)

data (holding data)

CS I Icode segment ~inter
DS data segment pomterf-----------SS stack segment pointer

ES extra segment pointer

Special Purpose Registers

SP
BP

SI

DI I

stack pointer

base pointerf----------- source indexf----------- destination mdex1--_---------'
Rgure 12.1: 8086 Registers

Figure 12.1 shows the registers found in the 8086 processor, with a brief
description of what each is used for. There are two more registers-IP
(instruction pointer) and the flag register-but Turbo C can't access them,
so they aren't shown here.

General-Purpose Registers

The general-purpose registers are the ones used most often to hold and
manipulate data. Each has some special functions that only it can do. For
example,

• Many math operations can only be done using AX.
• BX can be used to hold the offset portion of a far pointer.
• ex is used by some of the 8086's LOOP instructions.

334 Turbo C User's Guide

• OX is used by certain instructions to hold data.

But there are many operations that all these registers can do; in many cases,
you can freely exchange one for another.

Segment Registers

The segment registers hold the starting address of each of the four
segments. As described in the next section, the 16-bit value in a segment
register is shifted left 4 bits (multiplied by 16) to get the true ZD-bit address
of that segment.

Special Purpose Registers

The 8086 also has some special purpose registers.

• The 51 and 01 registers can do many of the things the general-purpose
registers can, plus they are used as index registers. Theyre also used by
Turbo C for register variables.

• The 5P register points to the current tOJH>f-stack and is an offset into the
stack segment.

• The BP register is a secondary stack pointer, usually used to index into
the stack in order to retrieve parameters.

The base pointer (BP) register is used in C functions as a base address for
arguments and automatic variables. Parameters have positive offsets from
BP, which vary depending on the memory model and the number of
registers saved on function entry. BP always points to the saved previous
BP value. Functions that have no parameters and declare no arguments will
not use or save BP at all.

Automatic variables are given negative offsets from BP, with the first
automatic variables having the largest magnitude negative offset.

Memory Segmentation

The Intel 8086 microprocessor has a segmented memory architecture. It has a
total address space of 1 Mb, but it is designed to directly address only 64K
of memory at a time. A 64K chunk of memory is known as a segment;
hence the phrase, "segmented memory architecture."

Now, how many different segments are there, where are they located, and
how does the 8086 know where they're located?

Chapter 72. Advanced Programming In Turbo C 335

• The 8086 keeps track of four different segments: code, data, stack, and
extra. The code segment is where the machine instmctions are; the data
segment, where information is; the stack is, of course, the stack; and the
extra segment is used (usually) for extra data.

• The 8086 has four 16-bit segment registers (one for each segment) named
CS, OS, 55, and ES; these point to the code, data, stack, and extra
segments, respectively.

• A segment can be located anywhere in memory-at least, almost
anywhere. For reasons that will become clear as you read on, a segment
must start on an address that's evenly divisible by 16 (in base 10).

Address Calculation

Okay, so how does the 8086 use these segment registers to calculate an
address? A complete address on the 8086 is composed of two 16-bit values:
the segment address and the offset. Suppose the data segment address-the
value in the OS register-is 2F84 (base 16), and you want to calculate the
actual address of some data that has an offset of 0532 (base 16) from the
start of the data segment; how is that done?

Address calculation is done as follows: Shift the value of the segment
register 4 bits to the left (equivalent to one hex digit), then add in the offset.

The resulting 20-bit value is the actual address of the data, as illustrated
here:

DS register (shifted): 0010 1111 1000 0100 0000 2F840
Offset: 0000 0101 0011 0010 00532

Address: 0010 1111 1101 0111 0010 2FD72

The starting address of a segment is always a 20-bit number, but a segment
register only holds 16 bits-so the bottom 4 bits are always assumed to be
all zeros. This means-as we said-that segments can only start every 16
bytes through memory, at an address where the last 4 bits (or last hex digit)
are zero.

So, if the OS register is holding a value of 2F84, then the data segment
actually starts at address 2F840. By the way, a chunk of 16 bytes is known
as a paragraph, so you could say that a segment always starts on a
paragraph boundary.

The standard notation for an address takes the form segment:offset; for
example, the previous address would be written as 2F84:0532. Note that
since offsets can overlap, a given segment:offset pair is not unique; the
following addresses all refer to the same memory location:

336 Turbo C User's Guide

0000:0123
0002:0103
0008:00A3
0010:0023
0012:0003

One last note: Segments can (but do not have to) overlap. For example, all
four segments could start at the same address, which means that your
entire program would take up no more than 64K-but that's all the space
you would have for your code, your data, and your stack.

Near, Far, and Huge Pointers

What do pointers have to do with memory models and Turbo C? A lot. The
type of memory model you choose will determine the default type of
pointers used for code and data. However, you can explicitly declare a
pointer (or a function) to be of a specific tyPe, regardless of the model being
used. Pointers come in three flavors: near (16 bits), far (32 bits) and huge
(also 32 bits); let's look at each.

Near Pointers

A 16-bit (near) pointer relies on one of the segment registers to finish
calculating its address; for example, a pointer to a function would add its
16-bit value to the left-shifted contents of the code segment (CS) register. In
a similar fashion, a near data pointer contains an offset to the data segment
(OS) register. Near pointers are easy to manipulate, since any arithmetic
(such as addition) can be done without worrying about the segment.

Far Pointers

A far (32-bit) pointer contains not only the offset within the segment, but
also (as another 16-bit value) the segment address, which is then left-shifted
an4 added to the offset. By using far pointers, you can have multiple code
segments; that, in turn, allows you to have programs larger than 64K.
likewise, with far data pointers you can address more than 64K worth of
data.

When you use far pointers for data, you need to be aware of some potential
problems in pointer manipulation. As explained in the section on address
calculation, you can have many different segment:offset pairs refer to the
same address. For example, the far pointers 0000:0120, 0010:0020, and
OOallסס:0012 resolve to the same 2D-bit address. However, if you had three

Chapter 72. Advanced Programming In Turbo C 337

different far pointer variables-a, b, and c-containing those three values
respectively, then all the following expressions would be false:

if (a :::: b)

if (b :::: c) ...

if (a = c) •••

A related problem occurs when you want to compare far pointers using the
>, >=, <, and <= operators. In those cases, only the offset (as an unsigned)
is used for comparison purposes; given that a, b, and c still have the values
previously listed, the following expressions would all be true:

if (a > b)

if (b > c) •••

if (a > c) •••

The equals (==) and not-equals (!=) operators use the 32-bit value as an
unsigned long (not as the full memory address). The comparison operators
«=, >=, <, and» use just the offset.

The == and != operators need all 32 bits, so the computer can compare to
the NULL pointer (0000:0000). If you used only the offset value for equality
checking, any pointer with 0000 offset would be equal to the NULL pointer,
which is not what you want.

One more thing you should be aware of: Ifyou add values to a far pointer,
only the offset is changed. If you add enough to cause the offset to exceed
FFFF (its maximum possible value), the pointer just wraps around back to
the beginning of the segment. For example, if you add 1 to 5031:FFFF, the
result would be 5031:0000 (not 6031:0000). Likewise, if you subtract 1 from
5031:0000, you would get 5031:FFFF (not 5030:000F).

If you want to do pointer comparisons, it's safest to use either near
pointers-which all use the same segment address-or huge pointers,
described next.

Huge Pointers

Huge pointers are also 32 bits long and, like far pointers, contain both a
segment address and an offset. Unlike far pointers, however, they are
normalized, to avoid the problems described in "Far Pointers."

What is a nonnalized pointer? It is a 32-bit pointer which has as much of its
value in the segment address as possible. Since a segment can start every 16
bytes (10 in base 16), this means that the offset will only have a value from
oto 15 (0 to F in base 16).

How do you nonnalize a pointer? Simple: Convert it to its 2Q-bit address,
then use the right 4 bits for your offset and the left 16 bits for your segment

338 Turbo C User's Guide

address. For example, given the pointer 2F84:0532, we convert that to the
absolute address 2FD72, which we then normalize to 2FD7:0002. Here are a
few more pointers with their nonnalized equivalents:

0000:0123
0040:0056
5000:9401
?418:003F

0012:0003
0045:0006
5940:0001
811B:OOOF

Now you know that huge pointers are always kept normalized. Why is this
important? Because it means that for any given memory address, there is
only one possible huge address-segment:offset pair-for it. And that
means that the == and != operators return correct answers for any huge
pointers.

In addition to that, the >, >=, <, and <= operators are all used on the full
32-bit value for huge pointers. Normalization guarantees that the results
there will be correct also.

Finally, because of normalization, the offset in a huge pointer automatically
wraps around every 16 values, but-unlike far pointers-the segment is
adjusted as well. For example, if you were to increment 811B:OOOF, the
result would be 811C:OOOO; likewise, if you decrement 811C:OOOO, you get
811B:OOOF. It is this aspect of huge pointers that allows you to manipulate
data structures greater than 64K in size.

There is a price for using huge pointers: additional overhead. Huge pointer
arithmetic is done with calls to special subroutines. Because of this, huge
pointer arithmetic is significantly slower than that of far or near pointers.

Turbo C's Six Memory Models

Avoiding overhead-except when you want it-is just what Turbo C allows
you to do. There are six different memory models you can choose from:
tiny, small, medium, compact, large, and huge. Your program requirements
determine which one you pick. Here's a brief summary of each:

Tiny: As you might guess, this is the smallest of the memory
models. All four segment registers (CS, OS, 55, E5) are set
to the same address, so you have a total of 64K for all of
your code, data, and arrays. Near pointers are always used.
Use this when memory is at an absolute premium. Tiny
model programs can be converted to .COM format by
linking with the It option.

Small: The code and data segments are different and don't over­
lap, so you have 64K of code and 64K of static data. The
stack and extra segments start at the same address as the

Chapter 72. Advanced Programming In Turbo C 339

data segment. Near pointers are always used. This is a
good size for average applications.

Medium: Far pointers are used for code, but not for data. As a result,
static data is limited to 64K, but code can occupy up to 1
Mh. This is best for large programs that don't keep much
data in memory.

Compact The inverse of medium: Far pointers are used for data, but
not for code. Code is then limited to 641<, while data has a
l·Mb range. This choice is best if your code is small but
you need to address a lot of data.

Large: Far pointers are used for both code and data, giving both a
1-Mb range. It is needed only for very large applications.

Huge: Far pointers are used for both code and data. Turbo C
normally limits the size of all static data to 64K; the huge
memory model sets aside that limit, allowing static data to
occupy more than 64K.

The following illustrations (Figures 12.2 through 12.7) show how memory
in the 8086 is apportioned for the six Turbo C memory models.

~eDt Reglsten: Segment Size:
CS,DS,SS-.....-----------

_TEXT class 'CODE'
code

DGROUP _DATA class 'DATA'
initialized data

SP(TOS)

SlartinaSP'-....------"""'----....J'
FIgure 12.2: llnv Model Memory segmentation

Free
Space

340 Turbo C User's Guide

Segment Registers:
CS ---+.--------------...,

_TEXT class 'CODE'
code

DS,SSi J)ATA class "DATA'
inilialized dala

DGROUP 1----------------4
_BSS class 'BSS'
uninilialized data

SP(TOS)~

Starting SP-.........-------......l------t'

Rgure 12.3: Small Model Memory Segmentation

Segment Registers:
CS ---+.----------------.

J)ATAclass "DATA'
initialized dll18

CS-+l:=t::=l+~:--~~~~--.....J

Segment Size:

up to 64 K bytes

Free
Space

Free
Space

Segment Size:

each sfile
up to 64 Kbyles

(CS poinll to
cmlycme
sfilc at • time)

SP(TOS)

BSS class 'BSS'
-uninitialized dll18

Free
Space

Free
Space

Figure 12.4: Medium Model Memory Segmentation

Chapter 12. Advanced Programming In Turbo C 341

Segment Registers: Segment Size:
cs,DS ---..--------------.

_TEXT class 'CODE'
code

up to 64 K bytes

_DATA class 'DATA'
initializcd dala

ss----.
SP(TOS)

Starting SP-....01---------1-------1

Free
Space

CS

Agure 12.5: Compact Model Memory segmentation

~~LIWlill:...., (CS points to
~~----I only one.......-----1 sfile at a time)

cachsfile
up to 64 K bytes

Segment Registers: Segment Size:
CS ---......~--~---------...

DS ------1.....------------~1......
..J)ATA class 'DATA'

inilializcd data

SS----.

SP(TOS)

Starting SP'--......--------I---------t

Free
Space

Agure 12.6: large Model Memory segmentation

342 Turbo C User's Guide

(CS and OS poiDl
toonlyooe
sme at a time)

cs
Segment Registers: Segment Size:
CS ---.....r--.......~--------_

DS-+l:4jt::=1-+--~

SS----.

StartiogSP-....-------I-------4

Figure 12.7: Huge Model Memory segmentation

each sfile
up to 64 K bytes

cachsfilc
up to 64 K bytes

Free
Space

Table 12.1 summarizes the different models and how they compare to one
another. The models are often grouped according to whether their code or
data models are small (64K) or large (1 Mb); these groups colTesPOnd to the
rows and columns in Table 12.1. So, for example, the models tiny, small,
and compact are known as small code models because, by default, code
pointers are near; likewise, compact, large, and huge are known as large
data models because, by default, data pointers are far. Note that this is also
tme for the huge model-the default data pointers are far, not huge. If you
want huge data pointers, you must declare them explicitly as huge.

Chapter 12. Advanced Programming In Turbo C 343

Table 12.1: Memory Models

Code Size
Data Size

64K

1Mb

64K

Tiny
(data, code overlap;

total size = 641()

Small
(no overlap;

total size = 128K)

ComPact
(big data,

small code)

1Mb

Medium
(small data,
big code)

Large
(big data, code)

Huge
(same as large
but static data

>64K)

Important Note: When you compile a module (a given source file with
some number of routines in it), the resulting code for that module cannot
be greater than 64K, since it must all fit inside of one code segment. This is
true even if you're using a large code model (medium, large, huge). Hyour
module is too big to fit into one (64K) code segment, you must break it up
into different source code files, compile each file separately, then link them
together. Similarly, even though the huge model permits static data to total
more than 64K, it still must be less than 64K in each module.

Mixed-Model Programming: Addressing
Modifiers

Turbo C introduces seven new keywords not found in standard (Kernighan
and Ritchie or ANSI) C: near, fcu, huge, _cs, _ds, _es, _55. These can be
used as modifiers to pointers (and in some cases, to functions), with certain
limitations and warnings.

In Turbo C, you can modify functions and pointers with the keywords
near, far, or huge. We explained near, far, and huge data pointers earlier in
this chapter. near functions are invoked with near calls and exit with near
returns. Similarly, far functions are called far and do far returns. huge

344 Turbo C User's Guide

functions are like far functions, except that huge functions can set OS to a
new value, while far functions cannot.

There are also four special near data pointers: _cs, _ds, _ss, and _es. These
are 16-bit pointers that are specifically associated with the corresponding
segment register. For example, if you were to declare a pointer to be

char _ss *Pi

then p would contain a 16-bit offset into the stack segment.

Functions and pointers within a given program will default to near or far,
depending on the memory model you select. If the function or pointer is
near, then it is automatically associated with either the CS or the OS
register.

Table 12.2 shows just how this works. Note that the size of the pointer
corresponds to whether it is working within a 64K memory limit (near,
within a segment> or inside the general 1 Mb memory space (far, has its
own segment address).

Table 12.2: Pointer Results

Memory Model

T·
S~l
Medium
Compact
Large
Huge

Function Pointers

near,_cs
near,_cs
far
near,_cs
far
far

Data Pointers

near,_ds
near,_ds
near,_ds
far
far
far

Declaring Functions to Be Near or Far

On occasion, you'll want (or need) to override the default function type of
your memory model shown in Table 12.1 (page 344).

For example, suppose you're using the large memory model, but you've
got a recursive (self-ealling) function in your program, like this:

double power(dotible x,int exp)
(

if (exp <= 0)
return(O)i

else
return(x*power(x,exp-l))i

Chapter 72, Advanced Programming In Turbo C 345

Every time power calls itself, it has to do a far call, which uses more stack
space and clock cycles. By declaring power as near, you eliminate some of
the overhead by forcing all calls to that function to be near:

double near power(double x,int exp)

This guarantees that power is callable only within the code segment in
which it was compiled, and that all calls to it are near calls.

This means that if you are using a large code model (medium, large, or
huge), you can only call power from within the module where it is defined.
Other modules have their own code segment and thus cannot call near
functions in different modules. Furthermore, a near function must be either
defined or declared before the first time it is used, or the compiler won't
know it needs to generate a near call.

Conversely, declaring a function to be far means that a far return is
generated. In the small code models, the far function must be declared or
defined before its first use to ensure it is invoked with a far call.

Look back at the power example. It is wise to also declare power as static,
since it should only be called from within the current module. That way,
being a static, its name will not be available to any functions outside the
module. Since power always takes a fixed number of arguments, you could
optimize further by declaring it pascal, like this:

static double near pascal power(double x, int exp)

Declaring Pointers to Be Near, Far, or Huge

You've seen why you might want to declare functions to be of a different
model than the rest of the program. Why might you want to do the same
thing for pointers? For the same reasons given in the preceding section:
either to avoid unnecessary overhead (declaring near when the default
would be far) or to reference something outside of the default segment
(declaring far or huge when the default would be near).

There are, of course, potential pitfalls in declaring functions and pointers to
be of nondefault types. For example, say you have the following small
model program:

346 Turbo C User's Guide

void myputs(s)
char *s;
(

int i;
for (i=O; sri] != 0; itt) putc(s[i));

mainO
(

char near *mystr;

mystr = "Hello, world\n";
myputs(mystr);

This program works fine, and, in fact, the near declaration on mystr is
redundant, since all pointers, both code and data, will be near.

But what if you recompile this program using the compact (or large or
huge) memory model? The pointer mystr in main is still near (it's still a
16-bit pointer). However, the pointer 5 in myputs is now far, since that's the
default. This means that myputs will pull two words out of the stack in an
effort to create a far pointer, and the address it ends up with will certainly
not be that of mystr.

How do you avoid this problem? The solution is to define myputs in
modem C style, like this:

void myputs(char *s);
(

/*body of myputs*/

Now when Turbo C compiles your program, it knows that myputs expects
a pointer to char; and since you're compiling under the large model, it
knows that the pointer must be far. Because of that, Turbo C will push the
data segment (OS) register onto the stack along with the 16-bit value of
mystr, forming a far pointer.

How about the reverse case: Parameters to myputs declared as far and
compiling with a small data model? Again, without the function prototype,
you will have problems, since main will push both the offset and the
segment address onto the stack, but myputs will only expect the offset.
With the prototype-style function definitions, though, main will only push
the offset onto the stack.

Moral: If you're going to explicitly declare pointers to be of type far or
near, then be sure to use function prototypes for any functions that might
use them.

Chapter 72. Advanced Programming In Turbo C 347

Pointing to a Given Segment:Offset Address

How do you make a far pointer point to a given memory location (a specific
segment:offset address)? You can use the built-in library routine MK_FP,
which takes a segment and an offset and returns a far pointer. For example:

MK_FP{seqment_value, offset_value)

Given a far pointer, fp, you can get the segment component with
FP_SEG(fp) and the offset component with FP_OFF(fp). For more
information about these three Turbo C library routines, refer to the Turbo C
Reference Guide.

Building Proper Declarators

A declarator is a statement in C that you use to declare functions, variables,
pointers, and data types. And C allows you to build very complex
declarators. This section gives you some examples of declarators so that
you can get some practice at designing (and reading) them; it'll also show
you some pitfalls to avoid.

Traditional C programming has you build your complete declarator in
place, nesting definitions as needed. Unfortunately, this can make for
programs that are difficult to read (and write).

Consider, for example, the declarators in Table 12.3, assuming that you are
compiling under the small memory model (small code, small data).

348 Turbo C User's Guide

int f1 ();

int *pl;
int *f2 ();
int far *p2;
int far *f3 () ;
int * far f4 () ;

int (*fpl) (int);

Table 12.3: DeclaratorswithoutTypedefs

function returning int
pointer to int
function returning pointer to int
far pointer to int
near function returning far pointer to int
far function returning near pointer to int

pointer to function returning int and

accepting int parameter

int (*fp2) (int tip);

int (far *fp3) (int far tip)

int (far *listI5]) (int far tip);

pointer to function returning int and

accepting pointer to int

far pointer to function returning int and

accepting far pointer to int

array of five far pointers to functions

returning int and accepting far pointers to

int

int (far *gopher(int (far * fpI5])\ near function accepting array of
(int far tip))) (int far tip); five far pointers to functions returning int

and accepting far pointers to int, and
returning one such pointer

These are all valid declarators; they just get increasingly hard to
understand. However, with judicious use of typedef, you can improve the
legibility of these declarators.

Here are the same declarators, rewritten with the help of typedef
statements:

Chapter 12. Advanced Programming In Turbo C 349

Table 12.4: Declorators with Typedefs

int f1 ();

typedef int *intptr;
intptr pl;
intptr f2 () ;

typedef int far *farptr;
farptr p2;
farptr f3 () ;
intptr far f4();

typedef int (*fncptrl) (int);
fncptrl fpl;

typedef int (*fncptr2) (intptr);
fncptr2 fp2;

typedef int (far *ffptr) (farptr);
ffptr fp3;

typedef ffptr ffplist[5];
ffpllst list;

ffptr gopher(ffplist);

function returning int

pointer to int
function returning pointer to int

far pointer to int
near function returning far pointer to int
far function returning near pointer to int

pointer to function returning int and accepting
int parameter

pointer to function returning int and accepting
pointer to int

far pointer to function returning int and
accepting far pointer to int

array of five far pointers to functions
returning int and accepting far pointers to int

near function accepting array of five far
pointers to functions returning int and
accepting far pointers to int, and returning
one such pointer

As you can see, there's a big difference in legibility and clarity between this
typedef declaration of gopher and the previous one. If you'll use typedef
statements and function prototypes wisely, you'll find your programs
easier to write, debug, and maintain.

Using Library Files

Turbo C offers a version of the standard library routines for each of the six
memory models. Running in the Integrated Environment (TC), Turbo C is
smart enough to link in the appropriate libraries in the proper order,
depending on which model you've selected. Likewise, running as a stand­
alone compiler (TeC), Turbo C is smart enough to link automatically.

If, however, you're using TLINK (the Turbo C linker) directly (as a stand­
alone linker), you need to specify which libraries to use. If you're not going
to use all six memory models, then you only need to copy (to your working
disk or your hard disk) the files for the model(s) you are using. Here's a list
of the library files needed for each memory model:

350 Turbo C User's Guide

Tiny COT.OB}, MATHS.UB, CS.LIB
Small COS.OBI, MATHS.LIB, CS.LIB
Cpmpact caC.OBI, MATHC.Lffi, CC.LIB
Medium COM.OBI, MAlHM.LIB, CM.Lm
Large COL.OBI, MATHL.LIB, CL.Lffi
Huge COH.OBI, MATHH.UB, CH.UB

Note that the tiny and small models use the same libraries, but have
different startup files (COT.OB} vs. COS.OBI>. Also, if your system has an
8087/80287 math coprocessor, then you'll need the file FP87.LIB; if instead
you want to emulate the 8087/80287, you'll need the file EMU.LIB.

Here are some example TLINK command lines:

tlink cOm abc, prog, mprog, fpS? mathm em
tlink cOc dei, plan, mplan, emu mathc cc

The first will produce an executable program called PROG.EXE, with the
medium-model libraries and the 8087/80287 support library linked in. The
second command line will Yield PLAN.EXE, compiled as a compact-model
program that emulates the 8087/80287 floating-point routines if a
coprocessor is not available at run time.

Note: The order of objects and libraries is very important. You must always
put the C start-up module (COx.OBI> first in the list of objects. The library
list should contain, in this specific order:

• your own libraries (if any)
• FP87.LIB or EMU.LIB, followed by MATHx.LIB (only necessary if you are

using floating point>

• Cx.LIB (standard Turbo C run-time library file)

(The x in COx, MATHx, and Cx refers to the letter specifying the memory
model: t, 5, m, c, I, or h.)

Linking Mixed Modules

What if you compiled one module using the small memory model, and
another module using the large model, then wanted to link them together?
What would happen?

The files would link together fine, but the problems you would encounter
would be similar to those described in "Declaring Functions to Be Near or
Far." If a function in the small module called a function in the large module,
it would do so with a near call, which would probably be disastrous.
Furthermore, you could face the same problems with pointers as described
in "Declaring Pointers to Be Near, Far, or Huge," since a function in the

Chapter 72, Advanced Programming In Turbo C 351

small module would expect to pass and receive near pointers, while a
function in the large module would expect far pointers.

The solution, again, is to use function prototypes. Suppose that you put
myputs into its own module and compile it with the large memory model.
Then create a header file called MYPUTS.H (or some other name with an .H
extension), which would have the following function prototype in it:

void far myputs(char far *s);

Now, if you put main into its own module (called MYMAIN.C), set things
up like this:

tinclude <stdio.h>
tinclude Umyputs.hM

mainO
(

char near *mystr;

mystr = AUello, world\nA;
myputs(mystr);

}

When you compile this program, Turbo C reads in the function prototype
from MYPUTS.H and sees that it is a far function that expects a far pointer.
Because of that, it will generate the proper calling code, even if it's com­
piled using the small memory model.

What if, on top of all this, you need to link in library routines? Your best bet
is to use one of the large model libraries and declare everything to be far.
To do this, make a copy of each header file you would normally include
(such as SIDIO.H), and rename the copy to something appropriate (such as
FSTDIO.H).

Then edit each function prototype in the copy so that it is explicitly far, like
this:

int far cdecl printf(char far * format, •••);

That way, not only will far calls be made to the routines, but the pointers
passed will be far pointers as well. Modify your program so that it includes
the new header file:

'include <fstdio.h>

mainO
(

char near *mystr;
mystr = AUello, world\nA;
printf (mystr) ;

352 Turbo C User's Guide

Compile your program with TCC, then link it with TLINK, specifying a
large model library, such as CL.LIB. Mixing models is tricky, but it can be
done; just be prepared for some difficult bugs if you do things wrong.

Mixed-Language Programming

Turbo C eases the way for your C programs to call routines written in other
languages and, in return, for programs written in other languages to call
your C routines. In this section, we make it clear how easy interfacing
Turbo C to other languages can be; we also provide support information
for such interface.

We will talk first about the two major sequences for passing parameters,
and then get on with showing you how to write your own assembly
language module.

Parameter-Passing Sequences: C and Pascal

Turbo C supports two methods of passing parameters to a function. One is
the standard C method, which we will explain first; the other is the Pascal
method.

C Parameter-Passing Sequence

Suppose you have declared the following function prototyPe:

void funca(int pl, int p2, int p3);

By default, Turbo C uses the C parameter-passing sequence, also called the
C calling convention. When this function (funca) is called, the parameters
are pushed on the stack in right-to-Ieft order (p3, p2, p1), following which
the return address is pushed on the stack. So, if you make the call

main()
(

int i, j;
long k;

i = 5; j = 7; k = Ox1407AA;
funca(i,j,k);

}

the stack will look like this (just before the return address is pushed):

Chapter 72, Advanced Programming In Turbo C 353

SP + 06: 0014
SP + 04: 01AA k = p3
SP + 02: 0001 j; p2
SP: 0005 i =pI

(Remember that, on the 8086, the stack grows from high memory to low
memory, so that i is currently at the top of the stack.) The routine being
called doesn't need to know (and, for that matter, can't know) exactly how
many parameters have been pushed onto the stack. All it assumes is that
the parameters it expects are there.

Also-and this is very important-the routine being called should not pop
parameters off the stack. Why? Because the calling routine will. For
example, the assembly language that the compiler produces from the C
source code for this main function looks something like this:

mov word ptr lbp-S],S
mov word ptr Ibp-6],1
mov word ptr Ibp-2],00I4h
mov word ptr Ibp-4],01AAh
push word ptr [bp-2]
push word ptr Ibp-4]
push word ptr Ibp-6]
push word ptr lbp-S]
call near ptr funca
add sp,8

; set i = 5
; Set j ; 1

; Set k ; Ox1401AA

; Push high word of k
; Push low word of k

; Push j
; Push i

; Call funca (push addr)
; Adjust stack

Note carefully that last instruction: add sp,8. The compiler knows at that
point exactly how many parameters have been pushed onto the stack; it
also knows that the return address was pushed by the call to funca and was
already popped off by the ret instruction at the end of £unca.

Pascal Parameter-Passing Sequence

The other approach is the standard Pascal method for passing parameters
(also known as the Pascal calling convention). Note that this does not mean
you can call Turbo Pascal functions from Turbo C: You can't. This sequence
pushes the parameters on left-to-right, so that if funca is declared as

void pascal funca(int pI, int p2, int p3);

then, when this function is called, the parameters are pushed on the stack
in left-to-right order (pl, p2, p3), following which the return address is
pushed on the stack. So, if you make the call

354 Turbo C User's Guide

mainO
(

int i, j;
long k;

i = 5; j = 7; k = Ox1407AA;
funca (i, j, k) ;

I

the stack will look like this (just before the return address is pushed):

SP + 06: 0005 i =pl
SP + 04: 0007 j = p2
SP + 02: 0014
SP: 07AA k =p3

So, what's the big difference? Well, besides switching the order in which
the parameters are pushed, the Pascal parameter-passing sequence assumes
that the routine being called (funca) knows how many parameters are
being passed to it and adjusts the stack accordingly. In other words, the
assembly language for the call to funca now looks like this:

push word ptr (bp-S)
push word ptr (bp-6)
push word ptr (bp-2)
push word ptr (bp-4)
call near ptr funca

; Push i
; Push j

; Push high word of k
; Push low word of k

; Call funca (push addr)

Note that there is no add sp,8 instruction after the call. Instead, funca uses
the instruction ret 8at termination to clean up the stack before returning to
main.

By default, all functions you write in Turbo C use the C method of
parameter passing. The only exception is when you use the -p compiler
option (Calling Convention...Pascal), in which case all functions use the
Pascal method. In that situation, you can force a given function to use the C
method of parameter passing by using the modifier cded, as in

void cdecl funca(int pl, int p2, int p3);

That overrides the -p compiler directive.

Now, why would you want to use the Pascal calling convention at all?
There are three major reasons.

• You may be calling existing assembly language routines that use that
calling convention.

• You may be calling routines written in another language.
• The calling code produced is slightly smaller, since it doesn't have to

clean up the stack afterwards.

Chapter 12. Advanced Programming In Turbo C 355

What problems might arise from using the Pascal calling convention?

First, it's not as robust as the C calling convention. You cannot pass a
variable number of parameters (as you can with the C convention), since
the routine being called has to know how many parameters are being
passed and clean up the stack accordingly. Passing either too few or too
many parameters will almost certainly lead to serious problems, whereas
doing so to a C-convention routine usually has no ill effects (beyond,
possibly, wrong answers).

Second, if you use the -p compiler option, then you must be sure to include
any header files for standard C functions that you call. Why? Because if you
don't, Turbo C will use the Pascal calling convention to call each of those
functions-and your program will surely crash because (1) the parameters
will be in the wrong order, and (2) nobody will clean up the stack.

The header files declare each of those functions as cded, so if you finclude
them, the compiler will see that and use the C calling convention instead.
However, because cdecl identifiers are underscored while pascal identifiers
are not, you will get lots of link errors-unless you selected Generate
Underbars...Off and linked with no case-sensitivity. Then you're in big
trouble.

The upshot is this: If you're going to use the Pascal calling convention in a
Turbo C program, be sure to use function prototyPes as much as possible,
with each function explicitly declared as cdecl or pascal. It's useful in this
case to enable the "prototype required" warning option to ensure that
every function called has a prototyPe.

Assembly Code Interface

Now you know how each of the calling conventions work, which tells you
what the Turbo C compiler does. What do you do in the routine being
called? Take a look now at how to write assembly language routines that
you can call from Turbo C.

Note: In this section, we assume that you know how to write 8086 assembly
language routines and how to define segments, data constants, and so on. If
you are unfamiliar with these concepts, read the Turbo Assembler Reference
Guide for more information.

Setting Up to Call .ASM from Turbo C

You should write assembly language routines as modules to be linked into
your C programs. However, there are certain conventions that you must
follow to (1) ensure that the linker can get the necessary information, and

356 Turbo C User's Guide

(2) ensure that the file format jibes with the memory model used for your C
program. The general layout is as follows:

Identifier Name FileName

<code>

<code>

<dseg>
< data>

<data>

_BSS

_BSS

SEGMENT BYTE PUBUC 'CODE'
ASSUME CS: < code >, OS: < dseg >
< code segment >
ENOS

GROUP _DATA,_BSS
SEGMENT WORD PUBLIC 'DATA'
< initialized data segment >
ENDS

SEGMENT WORD PUBLIC 'BSS'
< uninitialized data segment >
ENDS

END

The identifiers <text>, <data>, and <dseg> in this layout have specific
replacements, depending on the memory model being used; Table 12.5
(page 358) shows what you should use for each model. filename in Table
12.5 is the name of the module; it should be used consistently in the NAME
directive and in the identifier replacements.

Note that with the huge memory model, there is no _BSS segment, and the
GROUP definition is dropped completely. In general, _BSS is optional; you
only define it ifyou will be using it.

The best way to create an assembly language template is to compile an
empty program to .ASM (using the TCC option -5) and look at the
generated assembly code.

Chapter 12, Advanced Programming In Turbo C 357

Table 12.5: Identifier Replacements and Memory Models

Model Identifier Replacements Code and Data Pointers

Tiny, Small

Compact

Medium

Large

Huge

<code> = TEXT Code: OW TEXT:xxx
<data> =-DATA Data: OW DGROUP:xxx
<dseg> =DGROUP

<code> = TEXT Code: OW TEXT:xxx
<data> = -DATA Data: DO OCROUP:xxx
<dseg> =DGROUP

<code> = filename TEXT Code: ODxxx
<data> = DATA - Data: OW DGROUP:xxx
<dseg> =DGROUP

<code> = filename TEXT Code: DDxxx
<data> = DATA - Data: DO DGROUP:xxx
<dseg> =DGROUP

<code> = filename TEXT Code: OOxxx
<data> =filename -DATA Data: DDxxx
<dseg> = filename-=,DATA

Defining Data Constants and Variables

Memory models also affect how you define any data constants that are
pointers to code, data, or both. Table 12.5 shows what those pointers should
look like, where xxx is the address being pointed to.

Note carefully that some definitions use OW (Define Word), while others
use DO (Define Doubleword), indicating the size of the resulting pointer.
Numeric and text constants are defined normally.

Variables are, of course, defined just the same as constants. If you want
variables that are not initialized to specific values you can declare them in
the _BSS segment, entering a question mark (?) where you would normally
put a value.

Defining Global and External Identifiers

Now you have created a module, but that isn't going to do you much good
unless your Turbo C program knows what functions it can call and what
variables it can reference. Likewise, you may want to be able to call your
Turbo C functions from within your assembly language routines, or you
may want to be able to reference variables declared within your Turbo C
program.

When making these calls, you need to understand something about the
Turbo C compiler and linker. When you declare an external identifier, the

358 Turbo C Userls Guide

compiler automatically sticks an underscore (_) on the front before saving
that identifier in the object module. This means that you should put an
underscore on the front of any identifiers in your assembly language
module that you want to reference from your C program. Pascal identifiers
are treated differently than C identifiers-they are upPercased and are not
prefixed with an underscore character.

Underscores for C identifiers are optional, but on by default. They can be
turned off with the -u- command-line option. However, if you are using the
standard Turbo C libraries, you will encounter problems unless you rebuild
the libraries. (To do this, you will need another Turbo C product-the
source code to the run-time libraries; contact Borland International for more
information.)

If any asm code in your source file references any C identifiers (data or
functions), those identifiers must begin with underscore characters.

The Turbo Assembler (TASM) is not case-sensitive; in other words, when
you assemble a program, all identifiers are saved as uppercase only. The Imx
switch to TASM makes it case-sensitive for externals. The Turbo Clinker
does the same thing with extern identifiers, so things should match up fine.
You'll notice that in our examples, we put keywords and directives in
upPercase, and all other identifiers and opcodes in lowercase; this matches
the style found in the TASM reference manual. You are free to use all
upPercase (or all lowercase), or any mixture thereof, as you please.

To make the identifiers (names of routines and variables) visible outside of
your assembly language module, you need to declare them as being
PUBUC.

So, for example, if you were to write a module that had the integer
functions max and min, and the integer variables MAXINT, lastmax and
lastmin, you would put the statement

PUBLIC _max, _min

in your code segment, and the statements

PUBLIC _MAXINT, _lastmax, _lastmin
MAXINT ow 32767
lastmin OW 0

_lastmax OW 0

in your data segment.

Chapter 72. Advanced Programming In Turbo C 359

Setting Up to Call Turbo C from .ASM

You use the EXTRN statement to let your assembly language module
reference functions and variables that are declared in your Turbo C
program.

Referencing Functions

To be able to call a C function from an assembly language routine, you
must declare it in your module with the statement

EXTRN <fname> : <fdist>

where </name> is the name of the function, and <fdist> is either near or far,
depending on whether the C function is near or far. If <fdist> is near, the
EXTRN statement must appear within the code segment of your module; if
it's far, the EXTRN statement should appear outside of any segment. So you
could have the following in your code segment:

EXTRN _myCfuncl:near, _myCfunc2:far

allowing you to call myCfuncl and myCfunc2 from within your assembly
language routines.

Referencing Data

To reference variables, you should place the appropriate EXTRN state­
ment(s) inside of your data segment, using the format

EXTRN <vname>: <size>

where <vname> is the name of the variable, and <size> indicates the size of
the variable.

The possible values for <size> are as follows:

• BYTE (1 byte)
• WORD (2 bytes)
• DWORD (4 bytes)
• QWORD (8 bytes)
.TBYTE (10 bytes)

Arrays must use the size of the array elements for <size>. Structures should
be declared with the most frequently used size in the structure substituted
for <size>.

So, ifyour C program had the following global variables:

360 Turbo C User's Guide

int i,jarray(lO);
char ch;
long result;

you could make them visible within your module with the following
statement:

EXTRN_i:WORD,_jarray:WORD,_ch:BYTE,_result:DWORD

Last Important Note: If you're using the huge memory model, the EXTRN
statements must appear outside of any segments. This applies to both
procedures and variables.

Defining Assembly Language Routines

Now that you know how to set everything up, it's a good time to look at
how to actually write a function in assembly language. There are some
important things to consider: parameter passing, returning values, and
register conventions.

Suppose you want to write the function min, which you can assume has the
following function prototype in C:

int extern min(int vl, int v2);

You want min to return the minimum of the two values passed to it. The
overall fonnat of min is going to be

PUBLIC min
min PROC near

min ENDP

This assumes, of course, that min is going to be a near function; if it were a
far function, you would substitute far for near. Note that we've added the
underscore to the start of min, so that the Turbo C linker can correctly
resolve the references.

Passing Parameters

Your first decision is which parameter-passing convention to use; barring
an adequate reason to use it, you should avoid the Pascal convention and
go with the C method instead. This means that when min gets called, the
stack is going to look like this:

SP + 04: v2
SP + 02: vl
SP: return addr

Chapter 12, Advanced Programming In Turbo C 361

You want to get to the parameters without popping anything off the stack,
so you'll save the base pointer (BP), move the stack pointer (SP) into the
base pointer, then use that to index directly into the stack to get your
values. Note that when you push BP onto the stack, the relative offsets of
the parameters will increase by two, since there will now be two more bytes
on the stack.

Handling Return Values

Your function, returns an integer value; where do you put that? For 16-bit
(2-byte) values (char, short, int, enum, and near pointers), you use the AX
register; for 32-bit (4-byte) values (including far and huge pointers), you
use the OX register as well, with the high-order word (segment address for
pointers) in OX and the low-order word in AX.

float, double, and long double values are returned in the 8087/80287 top­
of-stack (TOS) register, ST(O); if the 8087/80287 emulator is being used,
then the value is returned in the emulator TOS register.

Structure values are returned by placing the value in a static data location,
then returning a pointer to that location (AX in the small data models,
OX:AX in the large data models).

The calling function must then copy that value to wherever it's needed.
Structures that are 1 or 2 bytes long are returned in AX (like any normal
int>, while 4-byte structures are returned in AX and OX.

For the min example, all you're dealing with is a 16-bit value, so you can
just place the answer in AX.

Here's what your code looks like now:

PUBLIC
min PROC

push
mov
mov
cmp
jle
mov

exit: pop
ret

min ENDP

min
near
bp
bp,sp
ax, [bp+4l
ax, [bp+6l
exit
ax,lbp+6l
bp

; Save bp on stack
; Copy sp into bp
; Move vl into ax
; Compare with v2

; If vl > v2
; Then load ax with v2

; Restore bp
; And return to C

What if you declare min as a far function-how will that change things?
The major difference is that the stack on entry will now look like this:

362 Turbo C User's Guide

SP + 06: v2
SP + 04: vl
SP + 02: return segment
SP: return offset

This means that the offsets into the stack have increased by two, since two
extra bytes (for the return segment> had to be pushed onto the stack. Your
far version of min would look like this:

min

exit:

min

PUBLIC
PROC
push
mov
mov
cmp
jle
mov
pop
ret
ENDP

min
far
bp
bp,sp
ax, Ibp+61
ax, [bp+8]
exit
ax, [bp+6]
bp

; Save bp on stack
; Copy sp into bp
; Move vl into ax
; Compare with v2

; If vl > v2
; Then load ax with v2

; Restore bp
; And return to C

Note that all the offsets for vl and v2 increased by two, to reflect the
additional bytes on the stack.

Now, what if (for whatever reason) you declare min as a pascal function;
that is, you decide to use the Pascal parameter-passing sequences.

Your stack on entry will now look like this (assuming min is back to being a
near function):

SP + 04: vl
SP + 02: v2
SP: return addr

In addition, you will need to follow Pascal conventions for the identifier
min: uppercase and no underscore.

Besides having swapped the locations of vl and v2, this convention also
requires min to clean up the stack when it leaves, by specifying in the RET
instroction how many bytes to pop off the stack. In this case, you have to
pop off four additional bytes for vl and v2 (the return address is popped off
automatically by RET).

Here's what the modified routine looks like:

Chapter 72. Advanced Programming In Turbo C 363

PUBLIC MIN
MIN PROC near ; Pascal version

push bp ; Save bp on stack
rnov bp,sp ; Copy sp into bp
mov ax, [bp+6] ; Move vl into ax
cmp ax, [bp+4] ; Compare with v2
jle exit ; If vl > v2
mov ax, [bp+4] ; Then load ax with v2

exit: pop bp ; Restore bp
ret 4 ; Clear stack and return

MIN ENDP

Here's one last example to show you why you might want to use the C
parameter-passing sequence. Suppose you redefined min as follows:

int extern min(int count, int vl, int v2, •••);

min can now accept any number of integers and will return the minimum
value of them all. However, since min has no way of automatically
knowing how many values are being passed, make the first parameter a
count value, indicating how many values follow it.

For example, you might use it as follows:

i = min(S, j, limit, indx, lcount, 0);

assuming i, j, limit, indx, and lcount are all of type int (or a compatible type).
The stack upon entry will look like this:

SP + 08:
SP + 06:
SP + 04:
SP + 02:
SP:

(etc.)
v2
vl
count
return addr

The modified version of min now looks like this:

364 Turbo C User's Guide

; Save bp on stack
; Copy sp into bp

; Set ax = 0
; Hove count into cx

; Compare with 0
; If <= 0, then exit

; Move first value into ax
; And test loop

; Compare with next value
If next value is lower

; Then load ax with next value
; Move to new value

; Then loop back
; Restore bp

; And return to C

min
near
bp
bp,sp
ax,O
cx, [bp+4]
cx,ax
exit
ax, [bp+4]
ltest
ax, [bp+6]
ltest;
ax, [bp+6]
bp,2
compare
bp

PUBLIC
min PROC

push
mov
mov
mov
cmp
jle
mov
jmp

compare: cmp
jle
mov

ltest: add
loop

exit: pop
ret

min ENDP

Note that this version correctly handles all possible values of count.

• Ifcount <= 0, min returns O.
• Ifcount = 1, min returns the first value in the list.
• If count >= 2, min makes successive comparisons to find the lowest value

in the parameter list.

Register Conventions

You used several registers (BP, SP, AX, BX, CX) in min; were you able to do
so safely? What about any registers that your Turbo C program might be
using?

As it turns out, you wrote this function correctly. Of those you used, the
only register that you had to worry about was BP, and you saved that on
the stack on entry, then restored it from the stack on exit.

The other two registers that you have to worry about are 51 and DI; these
are the registers Turbo C uses for any register variables. If you use them at
all within an assembly language routine, then you should save them
(probably on the stack) on entering the routine, and restore them on
leaving. However, if you compile your Turbo C program with the -r­
option (Use Register Variables...Off), then you don't have to worry about
saving 51 and DJ.

Note: You must use caution if you use the -r- option. Refer to Appendix C
in the Turbo C Reference Guide for details about this register variables
option.

Chapter 12, Advanced Programming In Turbo C 365

The registers CS, OS, SS, and ES may have corresponding values,
depending on the memory model being used. Here are the relationships:

Tiny CS = OS = SS; ES = scratch

Small, Medium CS != OS, OS = SS; ES = scratch

Compact, Large C5 != OS != 55; E5 =scratch (one CS per module)

Huge C5 != OS != 55; ES = scratch (one C5 and one 05 per
module)

Calling C Functions from .ASM Routines

Yes, you can go the other way: You can call your C routines from within
your assembly language modules. First, though, you have to make the C
function visible to your assembly language module. We've already dis­
cussed briefly how to do this: Declare it as EXTRN, with either a near or a
far modifier. For example, say you've written the following C function:

long docalc(int *factl, int fact2, int fact3);

For simplicity, assume docalc is a C function (as opposed to Pascal).
Assuming you're using the tiny, small, or compact memory model, you'd
declare it as this in your assembly module:

EXTRN docalc:near

Likewise, if you were using the medium, large, or huge memory models,
you'd declare it as _docalc:far.

docalc is to be called with three parameters:

• the address of a location named xval
• the value stored in a location named imax
• a third constant value of 421 (base 10)

You should also assume that you want to save the result in a 32-bit location
named ans. The equivalent call in C would then be

ans = docalc(&xval,imax,421);

You'll need to push 421 on the stack first, then imax, then the address of
xval, and then call docalc. When it returns, you'll need to clean up the stack,
which will have six extra bytes on it, and then move the answer into ans
andans+2.

Here's what your code will look like:

366 Turbo C User's Guide

mov ax,421
push ax
push imax
lea ax,xval
push ax
call docalc
add sp,6
mov ans,ax
mov ans+2,dx

; Get 421, push onto stack

; Get imax, push onto stack
; Get &xval, push onto stack

; Call docalc
; Clean up stack

; Move 32-bit result into ans
; Including high-order word

What if docalc used the Pascal parameter-passing sequence instead? Then
you would have to reverse the order of the parameters, and you wouldn't
haye to worry about cleaning up the stack upon return, since the routine
would (should) have done that for you. Also, you would need to SPell
docalc in the assembly source using Pascal conventions (upPercase and no
underscore).

The EXTRN statement is then

EXTRN DOCALC:near

and the code to call docalc is

; Get fmax, push onto stack
; Get 421, push onto stack

; Get &xval, push onto stacklea ax,xval
push ax
push imax
mov ax,421
push ax
call OOCALC
mov ans,ax
mov ans+2,dx

; Call docalc
; Move 32-bit result into ans

; InclUding high-order word

That's all you need to know to get started interfacing other languages with
TurboC.

Low-Level Programming: Pseudo-Variables,
Inline Assembly, and Interrupt Functions

What if you want to do some low-level work, but don't want to go to all the
trouble of setting up a separate assembly language module? Turbo C still
has the answer for you-three answers, in fact: pseudo-variables, inline
assembly, and interrupt functions. Take a look at the rest of this chapter to
see how each of these can help you get the job done.

Chapter 12. Advanced Programming In Turbo C 367

Pseudo-Variables

The CPU in your system (the 8088/8086/80186/80286 processor) has a
number of registers, or special storage areas, that it uses to manipulate
values. Each register is 16 bits (2 bytes) long; most of them have some
special purpose, though several can be used for general purposes as well.
See "Memory Models" at the beginning of this chapter for specific details
on these CPU registers.

Sometimes in low-level programming, you may want to directly access
these registers from your C program.

• You might want to load values into them before calling a system routine.
• You might want to see what values they currently hold.

Turbo C makes it very easy for you to access these registers through
pseudo-variables. A pseudo-variable is simply an identifier that corresponds
to a given register: You can use it as if it were a variable of type unsigned
int or unsigned char.

Table 12.6 shows a complete list of the pseudo-variables you can use, their
types, the registers they correspond to, and what those registers are usually
used for.

368 Turbo C User's Guide

Table 12.6: Turbo C Pseudo-Variables

Pseudo-
variable Type Register Purpose

AX unsigned int AX GeneralI accumulator
-AL unsigned char AL Lower byte of AX
=AH unsigned char AH Upper byte of AX.

BX unsigned int BX General/indexinf
-BL unsigned char BL Lower byte of B
=BH unsigned char BH Upper byte of BX

ex unsigned int CX Generallcoun~and loops
-CL unsigned char CL Lower byte of
=CH unsigned char CH Upper byte of CX

OX unsigned int OX Generai/holdin&data
-OL unsigned char OL Lower byte of D
=OH unsigned char OH Upper byte of OX

_CS unsigned int CS Code segment address
_OS unsigned int OS Data segment address
_SS unsigned int SS Stack segment address
_ES unsigned int ES Extra segment address

SP unsigned int SP Stack ~inter (offset to SS)
-BP unsigned int BP Base p'ointer (offset to SS)
-OI unsigned int OI Used for register variables
=SI unsigned int 51 Used for register variables

Why would you even want to directly access these variables from Turbo C?

You might need to set registers to certain values before calling low-level
system routines. For example, you can call certain routines in your
computer's ROM by executing the tNT (interrupt) instruction, but first you
have to put the necessary information into certain registers, like this:

void readchar(unsigned char page, unsigned char *ch, unsigned char *attr);
(

_AU = 8;
_8H = page;
geninterrupt(OxlO)
*ch = _fUJ;
*attr :;: _AH;

1* Service code: read char, attribute *1
1* Specify which display page *1

1* Call INT lOh services *1
1* Get ASCII code of character read *1

1* Get attribute of character read *1

As you can see, the service code and the display page number are both
being passed to the INT 10h routine; the values returned are copied over
into ch and attr.

The pseudo-variables can be treated just as if they were regular global
variables of the appropriate type (unsigned int, unsigned char). However,

Chapter 72, Advanced Programming In Turbo C 369

since they refer to the CPU's registers, rather than some arbitrary location
in memory, there are some restrictions and concerns you must be aware of.

• You cannot use the address-of operator (&) with a pseudo-variable, since
a pseudo-variable has no address.

• Since the compiler is constantly generating code that uses the registers
(after all, that's what most of the 8086's instructions do), you have
absolutely no guarantee that values you place in pseudo-variables will be
preserved for any length of time.

This means you must assign values right before using them and read
values right after obtaining them, as in readchar (previous example). This
is especially true of the general-purpose registers (AX, AH, AL, and so
on), since the compiler freely uses these for temporary storage. On top of
that, the CPU changes them in ways you might not expect; for example,
using CX when it sets up a loop or does a shift operation, or using OX to
hold the upper word of a 16-bit multiply.

• You can't rely on values of pseudo-variables remaining the same across a
function call. As an example of this, take the following code fragment:

_cx =18;
myFunc() ;
i =_cx;

Not all registers are saved during a function call, so you have no
guarantee that i will get assigned a value of 18. The only registers that
you can count on having the same values before and after a function call
are _CS, _BP, _51, and _01.

• You need to be very careful modifying certain registers, since this could
have unexpected and untoward effects. For example, directly storing
values to _CS, _55, _SP, or _BP can (and almost certainly will) cause your
program to behave erratically, since the machine code produced by the
Turbo C compiler uses those registers in various ways.

Using Inline Assembly Language

You've already seen how to write separate assembly language routines and
link them in to your Turbo C program. But Turbo C also lets you write
assembly language code right inside your C program. This is known as
inline assembly.

To use inline assembly in your C program, you can use the -B compiler
option. If you don't, and the compiler encounters inline assembly, it (the
compiler) will issue a warning and restart itself with the -B option. You can
avoid this with the ipragrna inline statement in your source, which in effect
enables the -B option for you when the compiler encounters it.

370 Turbo C User's Guide

You must have a copy of Turbo Assembler (TASM). The compiler first
generates an assembly file, and then invokes TASM on that file to produce
the .OBI file.

Of course, you also need to be familiar with the 8086 instruction set and
architecture. While you're not writing complete assembly language
routines, you still need to know how the instructions you're using work,
how to use them, and how not to use them.

Having done all that, you need only use the keyword asm to introduce an
inline assembly language instruction. The format is

asm <opcode> <operands> <i or newline>

where

• <opcode> is a valid 8086 instruction (several tables of allowable opcodes
will follow).

• <operands> contains the operand(s) acceptable to the <opcode>, and can
reference C constants, variables, and labels.

• < ; or newline> is a semicolon or a newline, either of which signals the
end of the asm statement.

A new asm statement can be placed on the same line, following a
semicolon, but no asm statement can continue to the next line.

Semicolons should not be used to start comments (as they may in TASM).
When commenting asm statements, use C-style comments, like this:

asm mov ax,dsi
asm pop aXi asm pop dSi asm ireti
asm push ds

/* This comment is OK */
/* This is legal too */

iTHIS COMMENT IS INVALID!!

Note that the last line will generate an error, since (as it declares) the
comment there is invalid.

The <opcode> <operand> pair is copied straight to the output, embedded in
the assembly language that Turbo C is generating from your C instructions.
Any C symbols are replaced with appropriate assembly language
equivalents.

The inline assembly facility is not a complete assembler, so many errors will
not be immediately detected. TASM will catch whatever errors there might
be. However, TASM might not identify the location of errors, particularly
since the original C source line number is lost.

Chapter 12, Advanced ProgrammIng In Turbo C 371

Each asm statement counts as a C statement. For example,

myfuncO
(

lnt l;
lnt x;

if (i > 0)

asm moy x,4
else

1 :;: 1;

This construct is a valid C if statement. Note that no semicolon was needed
after the mov x, 4 instruction. asm statements are the only statements in C
that dePend on the occurrence of a newline. This is not in keeping with the
rest of the C language, but this is the convention adopted by several UNIX­
based compilers.

An assembly statement can be used as an executable statement inside a
function, or as an external declaration outside of a function. Assembly
statements located outside any function are placed in the DATA segment,
and assembly statements located inside functions are placed in the CODE
segment.

Here is an inline assembly version of the function min (introduced in
"Handling Return Values" earlier in this chapter).

lnt min (lnt VI, lnt V21
(

asm moy ax,Vl
asm cmp ax,V2
asm jle mlnexlt
asm moy ax,V2
mlnexlt:
return CAX) ;

This example demonstrates why using inline assembly with Turbo C is
more versatile and powerful than calling .ASM routines. This one inline
assembly example works for modules compiled with large code, small
code, Pascal calling convention, or C calling convention.

The .ASM equivalent must always be changed, dePending on the memory
model and the calling convention (C or Pascal). In the .ASM equivalent of
min, you must always account for parameter offsets and the spelling of the
identifier Lmin or MIN); not so with this inline assembly version.

Note: There is a new feature called _emit_ that allows Turbo Pascal style
inline coding. For more information on _emit-l see the entry in Chapter 2
of the Turbo C Reference Guide.

372 Turbo C User's Guide

Any of the 8086 instruction opcodes may be included as inline assembly
statements. There are four classes of instructions allowed by the Turbo C
compiler:

• normal instructions-the regular 8086 opcode set
• string instroctions-special string-handling codes
• jump instructions-various jump opcodes
• assembly directives-data allocation and definition

Note that all operands are allowed by the compiler, even if they are
erroneous or disallowed by the assembler. The exact format of the operands
is not enforced by the compiler.

Opcodes

The following is a summary list of the opcode mnemonics that can be used
as normal instructions:

Table 12.7: Opcode Mnemonics

aaa
aad
aam
aas
adc
add
and
bound
call
cbw
ele
eld
eli
erne
emp
ewd
daa
das
dec
div
enter
f2xm1
fabs
fadd
faddp
fbld
fbstp
fchs
felex

feom
feomp
feompp
fdeestp**
fdisi
fdiv
fdivp
fdivr
fdivrp
feni
ffree**
fiadd
ficom
ficomp
fidiv
fidivr
fild
fimul
finestp**
finit
fist
fistp
fisub
fisubr
fld
fldl
fldew
fldenv
fld12e

fldl2t
fldlg2
fldln2
fldpi
fldz
fmul
fmulp
fndex
fndisi
fneni
fninit
fnop
fnsave
fnstcw
fnstenv
fnstsw
fpatan
fprem
fptan
frndint
frstor
fsave
fseale
fsqrt
fst
fstcw
fstenv
fstp
fstsw

fsub
fsubp
fsubr
fsubrp
ftst
fwait
fxam
fxeh
fxtract
fyl2x
fyl2xpl
hIt
idiv
imul
in
inc
int
into
iret
lahf
Ids
lea
leave
les
mov
mul
neg
not

or
out
pop
popa
popf
push
pusha
pushf
reI
rer
ret
rol
ror
sahf
sal
sar
sbb
shl
shr
ste
std
sti
sub
test
wait
xchq
xlat
xor

Note: When using 80186 instruction mnemonics in your inline assembly
statements, you must include the -1 command-line option. This forces

Chapter 72. Advanced Programming In Turbo C 373

appropriate statements into the assembly language compiler output so that
Turbo Assembler will expect the mnemonics. Also, if you are using an
older assembler, these mnemonics may not be supported at all.

Another Note: If you are using inline assembly in routines that use
floating-point emulation (the TCC option -f), the opcodes marked with
are not supported.

String Instructions

In addition to the listed opcodes, string instructions given in the following
table may be used alone or with repeat prefixes.

Table 12.8: String Instructions

cmps
cmpsb
cmpsw
ins
insb

insw
lods
lodsb
lodsw
movs

movsb
movsw
msb
outs

outsb
outsw
seas
scasb

scasw
stos
stosb
stosw

Repeat Prefixes

The following repeat prefixes may be used:

rep repe repne repnz repz

Jump Instructions

Jump instructions are treated specially. Since a label cannot be included on
the instruction itself, jumps must go to C labels (discussed in ''Using Jump
Instructions and Labels"). The allowed jump instructions are given in Table
12.9:

Table 12.9: Jump Instructions

ja jge jnc jnp js
jae jl jne jns jz
jb jle jog jnz loop
jbe jmp jnge jo loope
jc jna jnl jp loopne
jcxz jnae jnle jpe loopnz
je jnb jno jpo loopz
jg jnbe

374 Turbo C User's Guide

Assembly Directives

The following assembly directives are allowed in Turbo C inline assembly
statements:

db dd dw extrn

Inline Assembly References to Data and Functions

You can use C symbols in your asm statements; Turbo C will automatically
convert them to appropriate assembly language operands and will tack
underscores onto identifier names. Any symbol can be used, including
automatic Oocal) variables, register variables, and function parameters.

In general, a C symbol can be used in any position where an address
operand would be legal. Of course, a register variable can be used
wherever a register would be a legal operand.

If the assembler encounters an identifier while parsing the operands of an
inline assembly instruction, it searches for the identifier in the C symbol
table. The names of the 8086 registers are excluded from this search. Either
uppercase or lowercase forms of the register names may be used.

Inline Assembly and Register Variables

The two most frequently used register declarations in a function are treated
as register variables, and all other register declarations are treated as
automatic Oocal) variables. If the keyword register occurs in a declaration
that cannot be a register, the keyword is ignored.

Only short, int (or the corresponding unsigned types), or 2-byte pointer
variables can be placed in a register. SI and 01 are the 8086 registers used
for register variables. Inline assembly code may freely use SI or 01 as
scratch registers if no register declarations are given in the function. The C
function entry and exit code automatically saves and restores the caller's SI
and 01.

If there is a register declaration in a function, inline assembly may use or
change the value of the register variable by using 51 or 01, but the preferred
method is to use the C symbol in case the internal implementation of
register variables ever changes.

Inline Assembly, Offsets, and Size Overrides

When programming, you don't need to be concerned with the exact offsets
of local variables. Simply using the name will include the correct offsets.

Chapter 12. Advanced Programming In Turbo C 375

However, it may be necessary to include appropriate WORD PTR, BYTE
PTR, or other size overrides on assembly instruction. A DWORD PTR
override is needed on LES or indirect far call instroctions.

Using C Structure Members

You can, of course, reference structure members in an inline assembly
statement in the usual fashion, that is, <variable>.<member>. In such a case,
you are dealing with a variable, and you can store or retrieve values.
However, you can also directly reference the member name (without the
variable name) as a form of numeric constant. In this situation, the constant
equals the offset (in bytes) from the start of the strocture containing that
member. Consider the following program fragment:

struct myStruct {
lnt a_a;
lnt a_b;
lnt a_c;

} myA ;

myfunc()
{

asm mov ax, myA.a_b
asm mov bx, (di].a_c

We've declared a strocture type named myStruct with three members, a_a,
a_b, and a_c; we've also declared a variable myA of type myStruct. The first
inline assembly statement moves the value contained in myA.a_b into the
register AX. The second moves the value at the address [di] +offset (a c)
into the register BX (it takes the address stored in 01 and adds to it the
offset of a_c from the start of myStrucf). In this sequence, these assembler
statements produce the following code:

mov ax, DGROUP : myA+2
mov bx, (di+4)

Why would you even want to do this? If you load a register (such as 01)
with the address of a structure of type myStruct, you can use the member
names to directly reference the members. The member name actually may
be used in any position where a numeric constant is allowed in an assembly
statement operand.

The structure member must be preceded by a dot (.) to signal that a
member name, rather than a normal C symbol, is being used. Member
names are replaced in the assembly output by the numeric offset of the

376 Turbo C User's Guide

structure member (the numeric offset of a_c is 4), but no type information is
retained. Thus members may be used as compile-time constants in
assembly statements.

However, there is one restriction. If two structures that you are using in
inline assembly have the same member name, you must insert between the
dot and the member name the structure tyPe in parentheses, as if it were a
cast. For example:

asm rnov bx,(di].(struct tm)tm_hour

Using Jump Instructions and Labels

You may use any of the conditional and unconditional jump instructions,
plus the loop instructions, in inline assembly. They are only valid inside a
function. Since no labels can be given in the asm statements, jump
instructions must use C goto labels as the object of the jump. Direct far
jumps cannot be generated.

Indirect jumps are also allowed. To use an indirect jump, you can use a
register name as the OPerand of the jump instruction. In the following code,
the jump goes to the C goto label a.

int x()
{

a: /* This is the goto label RaM */

asm jmp a

Interrupt Functions

/* Goes to label RaR */

The 8086 reserves the first 1024 bytes of memory for a set of 256 far
pointers-known as interrupt vectors-to SPeCial system routines known as
interrupt handlers. These routines are called by executing the 8086
instruction

int <intI>

where <int#> goes from Oh to FFh. When this hapPens, the computer saves
the code segment (CS), instruction pointer (IP), and status flags, disables
the interrupts, then does a far jump to the location pointed to by the
corresponding interrupt vector. For example, one interrupt call you're
likely to see is

int 2ih

Chapter 72. Advanced ProgrammIng In Turbo C 377

which calls most DOS routines. But many of the interrupt vectors are
unused, which means, of course, that you can write your own interrupt
handler and stick a far pointer to it into one of the unused interrupt
vectors.

To write an interrupt handler in Turbo C, you must define the function to
be of type interrupt; more sPecifically, it should look like this:

void interrupt myhandler(bp, di, si, ds, es, dx,
ex, bx, ax, ip, es, flags, •••);

As you can see, all the registers are passed as parameters, so you can use
and modify them in your code without using the pseudo-variables
discussed earlier in this chapter. Also note that you can have additional
parameters <flags, ...) passed to the handler; those should be defined
appropriately.

A function of tyPe interrupt will automatically save (in addition to 51, 01,
and BP) the registers AX. through DX, ES, and OS. These same registers are
restored on exit from the interrupt handler.

Interrupt handlers may use floating-point arithmetic in all memory models.
Any interrupt handler code that uses an 8087/80287 must save the state of
the chip and restore it on exit from the handler.

An interrupt function may modify its parameters. Changing the declared
parameters will modify the corresponding register when the interrupt
handler returns. This may be useful when you are using an interrupt
handler to act as a user service, much like the DOS !NT 21 services. Also,
note that an interrupt function exits with an IRET (return from interrupt)
instruction.

So, why would you want to write your own interrupt handler? For one
thing, that's how most memory-resident routines work. They install
themselves as interrupt handlers. That way, whenever some special or
Periodic action takes place (clock tick, keyboard press, and so on), these
routines can intercept the call to the routine handling the interrupt and see
what action needs to take place. Having done that, they can then pass
control on to the routine that was there.

Using Low-Level Practices

You've already seen a few examples of how to use these different low-level
practices in your code; now it's time to look at a few more. For starters, you
will write an actual interrupt handler that does something harmless yet
visible (or, in this case, audible): It will beep whenever it's called.

First, you need to write the function itself. Here's what it would look like:

378 Turbo C User's GuIde

linclude <dos.h>

void interrupt mybeep(unsigned bp, unsigned di, unsigned si,
unsigned ds, unsigned es, unsigned dx,
unsigned cx, unsigned bx, unsigned ax)

int i, j;
char originalbits, bits;
unsigned char bcount = ax » 8;

/* Get the current control port setting */
bits = originalbits = inportb(Ox61);

for (i = 0; i <= bcount; i++) (

/* Turn off the speaker for awhile */
outportb(Ox61, bits &Oxfc);
for (j = 0; j <= 100; j++)

; /* empty statement */

/* Now turn it on for some more time */
outportb(Ox61, bits I 2);
for (j = 0; j <= 100; j++)

; /* another empty statement */

/* Restore the control port setting */
outportb(Ox61, originalbits);

Next, you need to write a function to install your intermpt handler. You
will pass it the address of the function and its interrupt number (0...255 or
OxOO...0xFF). The function must do three things:

• disable intermpts so that nothing funny happens while it is updating the
vector table

• store the function address passed into the appropriate location

• enable intermpts so that everything is working fine again

Here's what your installation routine looks like:

void install(void interrupt (*faddr) (), int inurn)
(

setvect(inurn, faddr);

Finally, you will want to call your beep routine to test it out. Here's a
function to do just that:

void testbeep(unsigned char bcount, lnt inurn)
(

_AH = bcount;
geninterrupt(inum);

Chapter 72, Advanced Programming In Turbo C 379

Your main function will look like this:

mainO
{

char Chi

install(mybeep,lO)i
testbeep(3,lO)i
ch = getchO i

Using Floating-Point Libraries

There are two types of numbers you work with in C: integer (int, short,
long, etc.) and floating point (float, double). Your computer's processor is
set up to easily handle integer values, but it takes more time and effort to
handle floating-point values.

However, the iAPx86 family of processors has a corresponding family of
math coprocessors, the 8087 and the 80287.

The 8087 and 80287 (both of which we refer to here as lithe coprocessor")
are special hardware numeric processors that can be installed in your PC.
They execute floating-point instructions very quickly. If you use floating
point a lot, you'll probably want a coprocessor. The CPU in your computer
interfaces to the 8087/80287 via special interrupts.

Turbo C is designed to help you adapt your program to your computer and
to your needs.

• If you don't need to use floating-point values at all, you can tell the
compiler that.

• If you do need to use floating-point values but your computer doesn't
have a math coprocessor (8087/80287), you can tell Turbo C to link in
special routines to make it look as though you do have one. In that case,
if your program is run on a system with a coprocessor, the chip will be
used automatically, and your program runs much faster.

• If you're writing programs only for systems that have a math
coprocessor, you can instruct the Turbo C compiler to produce code that
always uses the 8087/80287 chip.

The following TCC and TLINK examples assume that the TURBOC.CFG
file exists with the correct -L and -I paths set, and that the library and
start-up object files are stored in a subdirectory named \LIB.

380 Turbo C User's Guide

Emulating the 8087180287 Chip

What if you want to use floating point, but your computer doesn't have a
math coprocessor? Or what if you have to write a program for computers
that might or might not have one? Relax; Turbo C handles that situation
well.

With the emulation option, the compiler will generate code as if the 8087/
80287 were present, but will link in the emulation library (EMU.UB). When
the program runs, it will use the 8087/80287 if it is present; if no
coprocessor is present at run time, the program will use special software
that emulates the 8087/80287.

The emulation library works like this:

• When your program starts to run, the C start-up code will determine if
an 8087/8CJ1.87 is present.

• If the coprocessor is there, the program will allow the special interrupts
for the 8087/80287 to be passed straight through to the 8087/80287 chip.

• If the coprocessor is not there, the program causes the interrupts to be
intercepted and diverted to the emulation routines.

Suppose you modify RATIO.C to look like this:

mainO
{

float a,b,ratio;

printf(AEnter two values: A);
seanf("%f %f·,&a,&b);
ratio = alb;
printf(AThe ratio is %O.2f\nN,ratio);

If you are using TC (the integrated environment), you need to go to the
Options menu, choose Compiler, choose Code Generation, then toggle the
Floating-point item until the field following it reads Emulation. When you
compile and link your program, Turbo C will automatically select the
proper options and libraries for you.

Ifyou're using TCC (the stand-alone compiler), your command line should
look like this:

tee -mX ratio

If you link the resulting code manually, you must specify both the
appropriate math library (depending on the model size) and the EMU.UB
file. The emulation option (-f) is on by default, so you don't need to give it
unless your TURBOC.CFG file contains one of the other floating-point
switches (-f- or -f87).

Chapter 12. Advanced Programming In Turbo C 381

Your invocation of TLINK should look like this:

tlink lib\eOX ratio, ratio, ratio, lib\emu.lib
lib\mathX.lib lib\eX.lib

where X is a letter indicating the proper model library.

Note: The tlink command is given all on one line.

Also remember that the order of the libraries is very important.

Using the 8087180287 Math Coprocessor Chip

If you are absolutely sure your program will be ron only on systems that
have an 8087 or 80287 chip, you can create programs that will take
advantage of that chip. At the same time, your resulting .EXE files will be
smaller, since Turbo e won't have to include the 8087/80287 emulation
routines (EMU.ill).

If you are using Te (the integrated environment), you need to go to the
Options menu, choose Compiler, choose Code Generation, then toggle the
Floating-point item until the field following it says 8087/80287. When you
compile and link your program, Turbo e will automatically select the
proper options and libraries for you.

If you're using Tee (the stand-alone compiler), you need to use the -f87
option on your command line, like this:

tee -f8l -mX ratio

This tells Turbo e to generate inline calls to the 8087/80287 chip. When
TLINK is invoked, the files FP87.Lffi and MATHx.Lffi are linked in.

If you manually link the resulting code, you must specify both the
appropriate math library (depending on the model size) and the FP87
library, like this:

tlink lib\eOX ratio, ratio, ratio, lib\fp8l.1ib
lib\mathX.lib lib\eX.lib

where, as always, X is a letter indicating the proper model library.

If You Don't Use Floating Point...

Hyour program doesn't use any floating-point routines, the linker will not
link in any of the floating-point libraries (EMU.UB or FP87.LIB, along with
MATHx.Lffi) at link time, even ifyou listed them on the command line. You
can optimize the link step by omitting these libraries from the linker
command line (if, as we said, your program uses no floating point).

382 Turbo C User's GuIde

Suppose you want to compile and link the following program (saved as
RATIO.C):

main()
(

int a,b,ratio;

printf(aEnter two values: a);
scanf(R'd %d·,&a,&b);
ratio = alb;
printf("The ratio is %d\n",ratio);

Since this program uses no floating-point routines, you can choose to
compile it with floating-point emulation on, or with no floating point at all.

If you are using TC (the integrated environment) and choose to compile
with emulation on, just choose Compile to OBI from the Compile menu.
(Emulation On is the default.) The linker will include the floating-point
libraries at the link step~ but none will actually be linked.

If you want to speed up the linking process, you can specify "no floating
point." Go to the Options menu, choose Compiler, choose Code
Generation, then choose the Floating Point toggle.

Repeatedly pressing Enter at this command cycles you through three
options: None, Emulation, and 8087/80287. You want the None option. You
can then press Esc three times to get back to the menu bar (or just press
F10).

When you compile and link this program with Floating point set to None,
Turbo C does not attempt to link in any floating-point math routines.

If you're using TCC (the stand-alone compiler), you need to use the -f­
option on your command line, like this:

tee -f- -mX ratio.e

This tells Turbo C that you have no floating-point instructions in your
program. It also says that you used the x memory model, where x is a letter
indicating the desired model (t =tiny, s =small, c =compact, m= medium,
1 = large, h = huge).

Since RATIO.C is a stand-alone program, TCC will automatically invoke
TLINI<, linking in COx.OBI and Cx.UB, and producing RATIO.EXE.

Chapter 72. Advanced Programming In Turbo C 383

If you used the "compile only" (-c) option on the TCC command line, you
need to manually link the resulting code. In this situation, you don't need
to (and shouldn't) specify any math library; your invocation of TLINK
should look like this:

tlink lib\cOx ratio, ratio, ratio, lib\cx.lib

This links together COx.OB] and RATIO.OB}, uses the library Cx.UB, and
produces the files RATIO.EXE and RATIO.MAP.

The 87 Environment Variable

If you build your program with 8087/80287 emulation (in other words, you
choose Floating point...Emulation from the menus or you include the -f
option on the TCC command line), the COx.OB} start-up module will use
8087/80287 auto-detection logic when you run the program. This means
that the start-up code will automatically check to see if an 8087/80287 is
available.

If the 8087/80287 is available, then the program will use it; if it is not there,
the program will use the emulation routines.

There are some instances in which you might want to override this default
auto-detection behavior. For example, your own run-time system might
have an 8087/80287, but you need to verify that your program will work as
intended on systems without a coprocessor. Or your program may need to
run on a PC-eompatible system, but that particular system returns incorrect
information to the auto-detection logic (saying that a nonexistent 8087/
80287 is available, or vice versa).

Turbo C provides an option for overriding the start-up code's default auto­
detection logic; this option is the 87 environment variable.

You set the 87 environment variable at the DOS prompt with the SET
command, like this:

C> SET 87=N

or like this:

C> SET 87=Y

Setting the 87 environment variable to N (for No) tells the start-up code
that you do not want to use the 8087/80287 (even though it might be
present in the system).

Conversely, setting the 87 environment variable to Y (for Yes) means that
the coprocessor is there, and you want the program to use it. Let the
Programmer beware!! Ifyou set 87 =Ywhen, in fact, there is no 8087/80287

384 Turbo C User's Guide

available on that system, your program will crash and burn in a logical
inferno.

The 87 environment variable is able to override the default auto-detection
logic because, when you start to run your program, the start-up code first
checks to see if the 87 variable has been defined.

• If the 87 variable has been defined, the start-up code looks no further,
and your program runs in the prescribed mode.

• If the 87 variable has not been defined, the start-up code goes through its
auto-detection logic to see if an 8087/80287 chip is available, and the
program runs accordingly.

If the 87 environment variable has been defined (to any value) but you
want to undefine it, enter the following at the DOS prompt:

C> SET 81=

(That is, press Enter immediately after typing the equal sign.)

Registers and the 8087180287

There are a couple of points concerning registers that you should be aware
of when using floating point.

First, in 8087/80287 emulation mode, register wraparound is not
supported.

Second, if you are mixing floating point with inline assembly, you may
need to take special care when using registers. This is because the 8087/
80287 register set is emptied before Turbo C calls a function. You might
need to pop and save the 8087/80287 registers before calling functions that
use the coprocessor, unless you are sure that enough free registers exist.

Using matherr with Floating Point

When an error is detected in one of the floating-point routines during
execution of a program, that routine automatically calls _matherr with
several arguments. _matherr then stuffs an exception structure (defined in
math.h) with its arguments and calls matherr with a pointer to that
structure.

The matherr routine is a hook that you can use to write your own error­
resolution routine. By default, matherr does nothing but return O. However,
you can modify matherr to deal with floating-point routine errors in any
way you desire. Such a modified matherr then returns nonzero if the error
was resolved, or 0 if it was not.

Chapter 72, Advanced Programming In Turbo C 385

For more information about matherr and _matherr refer to the matherr
description in Chapter 2 of the Turbo C Reference Guide.

Caveats and Tips

Turbo C's Use ofRAM

Turbo C does not generate any intermediate data structures to disk when it
is compiling (Turbo C writes only .OBI files to disk); instead it uses RAM
for intermediate data structures between passes. Because of this, you might
encounter the message OUT OF MEMORY ••• if there is not enough memory
available for the compiler.

The solution to this problem is to make your functions smaller, or to split
up the file that has large functions. You might also delete any RAM­
resident programs you have installed to free up more memory for Turbo C
to use.

Should You Use Pascal Conventions?

No-not unless you have read and really understood this chapter.

Remember, if you are compiling your main file with Pascal calling
conventions, make sure to declare main as a C function:

cdecl main(int argc, char * argYl), char * envp[))

Summary

You've seen how to use all three aspects of low-level programming in
Turbo C (pseudo-variables, inline assembly, interrupt functions); you've
learned about interfacing with other languages, including assembly; you've
been introduced to some of the details of using floating-point routines; and
you've discovered how the different memory models on the 8086 interact.
Now it's up to you to use these techniques to gain complete control of your
computer; best of luck.

386 Turbo C User's Guide

Bibliography

Alonso, Robert. Turbo C DOS Utilities, John Wiley and Sons.

Bemap, Steve. Turbo C for Beginners, COMPUTE! Publications.

Davis, Stephen R. Turbo C: The Art of Program Design, Optimization and
Debugging, M&T Publishing.

Derman, Bonnie (editor) and Strawberry Software. Complete Turbo C, Scott,
Foresman & Co.

Edmead, Mark. Rlustrated Turbo C, WordWare Publishing.

Harbison, Samuel P., and Guy L. Steel. C: A Reference Manual, Prentice-Hall.

Kelly-BootIe, Stan. Mastering Turbo C, Sybex.

Kernighan, Brian W., and Dennis M. Ritchie. The C Programming Language
(First Edition), Prentice-Hall.

LaFore, Robert. Turbo C Programming for the IBM, Howard W. Sams & Co.

Porter, Kent. Stretching Turbo C, Brady Books.

Schildt, Herbert. Advanced Turbo C, Osborne/McGraw-Hill.

Schildt, Herbert. Turbo C: The Complete Reference, Osborne/McGraw-Hill.

Schildt, Herbert. Using Turbo C, Osborne/McGraw-Hill.

Stevens, Al. Turbo C: Memory Resident Utilities, Screen Input and Output, MIS:
Inc.

Young, Michael. Systems Programming with Turbo C, Sybex.

Zimmerman, Beverly and Scott. Programming with Turbo C, Scott, Foresman
& Co.

Bibliography 387

388 Turbo C User's Guide

Index

Index

389

8086 333
address segment:offset notation
336
registers 334-335

8087380
80287380
8087/80287

auto-detection of 384
emulation 116
floating-point emulation 351
inline code 116
math coprocessor 351

8088/8086 instruction set 115
87 environment variable 384
!= operator 170, 339
&& operator 170
++ operator 164
- operator 164
« operator 165
<= operator 170
== operator 170, 339
>= operator 170
» operator 165
1: operator 202
I I operator 170
! operator 170
% operator 164
& operator 165, 166, 185
*operator 164, 166, 185
+ operator 164
- operator 164
/ operator 164
< operator 170
= operator 163,171
> operator 170
1\ operator 165
I operator 165
- operator 165
symbol 325
8Ox86 instruction set 115
-A compiler option 316
.ASM source files 37
-B compiler option 328
.COM files 339
#define (preprocessing directive) 207
.EXE files

building 19
making 107
named from project file 30

390

naming by Project-Make 108
Pascal 277

Jmode (global variable 204
-I compiler option 40, 326
-K compiler option 306, 309
-L compiler option 40
.0Bl files 109

compiling to 107
naming by Project-Make 107

-P compiler option 318
#pragma inline statement 370

A
active window 218
adapters, video 217

graphics, compatible with Turbo C
228

Add Watch command 64, 71, 98, 137
addition operator (+) 164
address, mailing, Borland 7
address, passing by 259
address-of operator 250, 259
address-of operator (&) 166, 185
address operators 166
addresses 184

calculation 335, 336-337
passing 168, 187
space, pointers and 315

advanced programming 333-386
_AH pseudo-variable 369
AH register 369
_AL pseudo-variable 369
AL register 369
alignment, structures 316
Alignment toggle 116
alloc..,gstack (Prolog function) 287
anachronisms 331
AND operator (&) 165
ANSI C standard 2, 5, 303

violations 121
ANSI Keywords Only toggle 120
argc (identifier) 277
arguments

command-line 37, 277
to function main 103, 129

Arguments setting 103, 129
argv (identifier) 277
arithmetic, pointer 188

Turbo C User's Guide

arithmetic conversions 310
arithmetic operations

pointers and 315
arrays 190,263

and pointers 191
character 161, 168
declaration 190
multidimensional 191,265, 282

passing 194
passing 193
pointers vs. 283
Turbo C vs. Pascal 265

artificial intelligence 285
asm(ke~ord)371

aspect ratio 232
Assembler, Turbo 370
assembly code

inline370
assembling 37
C structure members in 376
calling functions 375
debugging with integrated
debugger 75
floating point in 385
goto in 377
jump instructions in 377
referencing data in 375
register variables in 375
restriction on structure member
names 377
size overrides in 375
variable offsets in 375

interfacing with 320,356-367
layout of source files 357
routines 356

calling C functions from 360, 366
example of 361
passing parameters to 361
referencing C data from 360
referencing C functions from 360
register conventions in 365
return values in 362

template 357
assignment 280

operator 248, 280
stacked 163
statements, value of 171

assignment operator (:;) 163, 171

Index

attributes
0011218, 225

blink 226
colors 225

control functions 221
screen, controlling 221

auto (keyword) 274
Auto Dependencies toggle 111
autodependency checking 35, 111
Autoindent mode 146
Autoindent toggle 146
auxiliary port 205
_AX pseudo-variable 369
AX register 334, 362, 369

B
-B compiler option 370
background

color 221, 225, 237
setting 221

Backup (source) Files toggle 126
backup files, automatically created

126
backward pair matching 149
bar chart (example program) 299
_BH pseudo-variable 369
BH register 369
binary mode 203
binary operators 164
binary streams 204
BIOS, calls to 226
bit 184
bit-mapped fonts 234
bitfields, in structures 316
bitwise operators 165
_BL pseudo-variable 369
BL register 369
blink enable bit 221
block statements 251
Boolean data type 248
Borland

CompuServe Forum 6
license statement 6, 9
mailing address 7
technical support 6

bottom-up debugging 74
boundary conditions 72
_BP pseudo-variable 369

391

BP register 335, 361, 369
break (keyword) 197, 198, 199,200
Break Make On menu 31, 110
break statement 253
Break/Watch menu 89, 135
breakpoints 44, 96, 135

cancelled 62
deleting 138
inserting 138
lost track of by TC 62, 138
moving cursor to 138
setting 49
sticking, from one debug session
to another 62

buffered streams 204
Build All command 108
builds, vs makes 108
BillLTINS.MAI< 41
_BX pseudo-variable 369
BX register 334, 369
byte 184

alignment 116
BYTE (assembler) 360

c
C calling sequence 115
C Reference Manual 303
COx.OBJ351
call stack 68, 134

displaying executing line of
function from 68
returning to execution bar from 68

Call Stack command 68, 70, 98, 134
Calling Convention toggle 115, 314
calling sequences

Cn5
Pascaln5

calloc (function), Turbo Prolog and
287

case (keyword) 197, 252
Case-sensitive Link toggle 124
case sensitivity 163, 273, 304

in Turbo Assembler 359
linking with no 356

case statement 252
cdecl (keyword) 314, 318, 355
CDECL (macro) 330

392

cells
attributes 218, 225

blink 226
colors 225

characters in 218
screen 218

CGA, color control on
high resolution 239
low resolution 237

_CH pseudo-variable 369
CH register 369
Change Dir command 16, 102
char (keyword) 161,264,309
char declarations, signed vs unsigned

116
character codes, hexadecimal 306
character constants, hexadecimal 209,

306
character pointer 162
characters 159

array of 161, 168
in screen cells 218
pointers to 162, 168

CL.LIB, Turbo Prolog and 286
_CL pseudo-variable 369
CL register 369
classic C style 180
Clear All Breakpoints command 62,

63,138
Clear Breakpoints command 71, 98
Clear Project command 33, 111
clearing Witch window 137
clipping 235
Code Generation menu 114
code segment 335
colors

background 221, 225, 237
control

functions 236
onCGA237
on EGA/VGA 239

drawing 237
foreground 221, 225
screen 236

COM1205
combined operators 166
comma operator 171, 176
command line

arguments 18,37, 129, 277

Turbo C User's Guide

compiling and linking from 37
configuration file 140
file names on 38
format 37
options 37

order of evaluation 40
turning off 37

running programs from 42
switches 80

automated build 81
configuration file 18, SO, 142
dual monitor 81
floating-point 382, 383, 384
floating-point emulation 381
make 81

syntax 38
TurboC37,14O,SeealsoTCC

commands See also menu commands
control flow interrupt 199
debugging, table of 69,71,97,99
editing 91
pair-matching 148

backward 149
forward 149

comments 181
delimiters 149

pair matching 150, 151
nested 120, 304

commutative operators 311
COMPAcr (macro) 330
compact memory model 340, 347
comparison operator 2SO
Compile/Build All command 48
Compile menu 19, 88, 106
compile time

debugging 125
error messages 94

Compile to OBJ command 107
compiler-linker options, in configuration

file 141
Compiler menu 113
compiler options 140
compiling

for debugging 44, %, 103, 104, 134
from command line 37
from the integerated development
environment 26
to an .EXE file 106
to an .OBJ file 106,107

Index

Compiling window 19
compound statement 172
CompuServe Forum, Borland 6
conditional compilation 326
conditional execution 156, 251
conditional operator (?:) 202
conditional statements 169, 202
Config Auto Save toggle 125, 143
configuration files 17, 140, 145

automatic save 126
changing 142
command-line 39, 140
creating 39, 141
data

compiler-linker options 141
pick file name 141
project name 141

directory 129
integrated development envi-

ronment 140
loading 18, 130
menu settings saved in 140, 142
naming 126
overridden by command-line

options 39, 40
precedence over TCINST settings

142
saving 130
TC140
user-specified 141

conglomerate data structures 194
console I/O functions 219
const (keyword) 313
const variable 275
constants 178

character 306
floating-point 308
hexadecimal character 209
integer 305
naming restrictions 163
pointer 283
string 308
Turbo C vs. Pascal 274
typed 274

context-sensitive help 78
contexts, changing 143
continue (keyword) 199,201
control flow interrupt commands 199

393

conventions
calling 115
menu-naming in TC 88
typographic 5

conversion pointers 309
conversions 273

arithmetic 310
char 309
enum309
int 309

coordinates, screen 219
in text mode 218
origin 219, 223

coprocessor
8087/80287 math 351
chip, floating-point 380

copyright law 6
CPU 333, 368

target, specifying 115
_cs (keyword) 344
_CS pseudo-variable 369
CS register 336, 337, 369
Current Pick File setting 129, 144, 145
cursor, running to line with 66
Cx.LIB351
_ex pseudo-variable 369
CX register 334, 369

D
data

constants, defining in assembly code
routines 358
range 308
segments 33S
size (bits) 308
structures 183, 194, 263, 270

conglomerate 194
dynamic 195

tyPes 156, 159,247,308
conversions 273, 309
signed 209

DATE (macro) 329
DO statement (assembler) 358
Debug menu 89, 130
debugger 43

integrated 28, 43, 44, 95, 130, 135
used on inline assembly code 75

source level 44

394

debUgging 43
&vs&&61
I vs II 61
bottom-up 74
boundary conditions 73
cancelling session 104
commands, table of69, 71, 97, 99
compile-time 125
compiling a program for 44, 96,
103, 104, 134
desk checking 60
evaluating expressions 51, 131
example (WORDeNT) 46
functions accessible to debugger
66
guidelines 72
infinite loop 53
initiating a session 104, 105
large source files 67
modifying value of expressions
131
moving cursor to next breakpoint
63
multi-file programs 67, 69
process, stRAB in 44
recompiling during %
reevaluating expressions 54
restarting session 49
run-time 44
running to cursor 66
starting a run 49
stepping over function calls 50
tracing into functions 105

declarations
function 177, 180, 206
global 179
improving legibility 348
Turbo C vs. Pascal 263
void functions 208

declarators 348, 349
decrement operator 249
decrement operator (-) 164
default (keyword) 197
Default Char Type toggle 116, 306
default data pointers 343
Default Libraries toggle 123
define directive 324
defined (operator) 326
Defines setting 114

Turbo C User's Guide

definitions
enumerated types 207
function 177, 180
strings 161

Delete Watch command 65, 71, 98,
137

delimiters
directional 149
levels 150
nestable 150
nondirectional149
unmatched 151

dependencies
checking, automatic 111
explicit 34
file, checked by MAKE 41
implicit 33

_DH pseudo-variable 369
DH register 369
_DI pseudo-variable 369
DI register 335, 365, 369
diagnostic messages 94, 120
direct video output 226
directional delimiters 149
directional pair matching 149
directives

conditional 326
define 324
elif 326
else 326
endif 326
error 327
if 326
ifdef326
ifndef326
include 325
line 327
null 329
pragma328
preprocessor 114, 324
undef324

directories
changing 102
configuration file 129
help file 129
include file 140

choosing 17
library file 140

choosing 17

Index

Directories menu 127
Directory command 102
Display Swapping toggle 67, 135
Display Wlrnings toggle 121
distribution disks 1

backing up 6, 9
division, integer 160
division operator (f) 164
_DL pseudo-variable 369
DL register 369
do...while loops 176, 255
do (keyword) 176
DOS

commands, MODE 81
exiting to 82, 102
shelling to 102

double (keyword) 160,308
draWing color 237
drawing functions 231
_ds (keyword) 344
_OS pseudo-variable 369
OS register 336, 337, 369
dual monitor mode 81, 83, 102, 135
duplicate symbols linker warning 124
DW statement (assembler) 358
DWORD (assembler) 360
_DX pseudo-variable 369
DX register 334, 362, 369
dynamic data structures 195
dynamic memory allocation 184,186,

276
Turbo Prolog and 287, 293

E
Edit Auto Save toggle 126
Edit command 88, 89, 102
Edit Watch command 65, 71, 98, 137
Edit window 48, 51, 80, 89, 92
editing commands 91
editing keys

assignment 152
combinations 152

editing modes, displayed in status line
90

Editor 89
EGA, color control on 239
EGA/VGA setting 127
elif directive 326

395

else (keyword) 172, 196,252
else directive 326
EMU.L1B 351, 381, 382

Turbo Prolog and 286
emulation

8087/80287116
8087/80287 floating-point 351
floating-point 381
option See -f emulation option

endif directive 326
entry (keyword) 305
entry codes, function 116
enum (keyword) 207, 309, 311
enumerated data types 248, 311

definition 207
env (identifier) 277
environment

variable 278
working 17

Environment menu 124, 143
equal to operator (=) 170
errors 22

common 121
directive 327
functions for handling, graphics
240
less common 121
messages 120

compile-time 26,27,31,94
graphics 240
linker 28

run-time, correcting 28
syntax 26, 31, 32

correcting 27
tracking 32, 94, 281

in a multi-file program 31
linker errors 28
syntax errors 26, 27

Errors: Stop After setting 121
Errors menu 120
_es (keyword) 344
_ES pseudo-variable 369
ES register 336, 369
escape sequences 158, 209, 210, 306
Evaluate command 51, 54, 70, 97, 131
Evaluate field 51, 131
Evaluate window 56
executable files 20

named by TCC 38

396

execution
conditional 251
iterative 255

execution bar 49, 97
execution position 49, 97
Execution screen 51, 65
exit codes

displayed 109
function 116

explicit dependencies 34
expressions 163, 171

default in Expression field 51, 53
evaluating during debugging 51,
131
invalid for evaluating 54
modifying value of during
debugging 131
reevaluating during debugging 54
repeat 131
watch 64, 135

deleting from Watch window 65,
137
editing 65, 137
inserting in Watch window 137
scrolling 66

extensions, Turbo C 208
extern (keyword) 317
external identifiers 358
extra segment 335
EXTRN statement (assembler) 360,

366

F
factorial (function), Turbo Prolog and

292
far (keyword) 315, 337, 344, 352
far functions 345
far pointers 337

arithmetic on 338
comparing 338

kiopen (function) 203
fflush (function) 204
fields

multiple 272
width 158

specifiers 166
FILE (macro) 329
File menu 88, 100, 143, 144

Turbo C User's Guide

FILE object 203
files

.COM339

.EXE
building 19
making 107
named from project file 30
naming by Project-Make 108
Pascal 277

.OBJ 109
compiling to 107
naming by Project-Make 107

backup, automatically created 126
configuration 17, 140, 145

automatic save 126
changing 142
command-line 39, 140
creating 39, 141
integrated development envi­
ronment 140
loading 18, 130
menu settings saved in 140, 142
naming 126
overridden by command-line
options 39, 40
precedence over TCINST
settings 142
saving 130
TC140
user-specified 141

dependencies, checked by MAKE
41

executable 20
named by TCC 38

font, registering 235
graphics driver, linking 229
HELPMELIXX: 10
1/0278
including 325
information in dependency checks

35,111
library

external 36
run-time 128

names, on command line 38
object 20

external 36
startup 128

out-of-date, recompiled 34

Index

pick 143
contains Editor information 144
contains file data 144
contains pick list 144
creating 129, 144
current 129
loading 129
name saved in configuration file
129
saved by Turbo C 145

project 29, 30, 110
graphicS library listed in 227

README 10
source 20

.ASM37
automatic save 126
creating 92
loading 18, 92
loading multiple into Editor 32
multiple 29, 30, 32
name of 109
overwriting 93
saving 93
size of 109
working with in Edit window 92
writing to disk 23, 93

standard
include 128

standard library, overriding 36
fill patterns 232
filling functions 231
Find Function command 67, 70, 97,

133
flag register 334
float (keyword) 159, 178, 308
floating constants 308
floating point

arithmetic
interrupt functions and 378

emulation 381
error detection in 385
expressions, order of evaluation in

311
libraries 380
numbers 159
programs that don't use 382

Floating Point toggle 116, 381, 382,
383,384

397

flow of control interrupt commands
199

flow patterns, Turbo Prolog and 287,
293

flushall (function) 204
flushing stream buffers 204
font files, loading and registering 235
fonts, bit-mapped vs stroked 234
fopen (function) 203, 278
for (keyword) 175
for loops 175, 256
foreground

color 221, 225
setting 221

format commands 157
format specifications 157
format specifiers 56, 131
format strings 157
fortran (keyword) 305
forward declarations 260
forward pair matching 149
forward statement 260
FP87.LIB 351, 382
FP_OFF348
FP_SEG348
fprintf (function) 22
free (function)

Turbo Prolog and 287
free union variant record 271
freopen (function) 203, 205
£seek (function) 204
functions 177

accessible to debugger 66, 105
attribute control 221
calling in inline assembly code 375
cdecl type 318
color control 236
console I/O 219
declaration 177, 180, 206
declarator 320
declaring '157
declaring as near or far 345
definitions 177, 178, 180, 206,317
drawing 231
entry codes 116
error checking '159
error-handling, graphics 240
exit codes 116
far 345

398

fdopen203
£flush 204
filling 231
flushall 204
fopen203
fprintf22
freopen 203, 205
fseek204
getch 169
gets 169
graphics system control functions
228
image manipulation 233
input 179
interrupt type 319
main 178
malloc 186, 212
mode control 221
naming restrictions 163
near 345
nested 181,263
output 179
parameter lists 206
parentheses and 281
pixel manipulation 233
printf 21, 157
prototypes 180, 206, 260, 284, 320,
347,352

with Pascal-calling convention
356

putchar 159
puts 159
recursive 345
scanf21, 167, 168
screen manipulation 233
setbuf204
setmode205
setvbuf204
state query 222, 241
strcpy 162,212
text manipulation 220
text output

graphics mode 234
text mode 220

Turbo C vs. Pascal 257
type modifiers for 317
viewport manipulation 233
void 208
window control 221

Turbo C User's Guide

G
generate underbars option 356
Generate Underbars toggle 116/ 314

Turbo Prolog and 286
Get Info command 108
getch (function) 169/ 250
gets (function) 169/250/267
global declarations 179
global identifiers, defining in

assembly code
routines 358

global stack <Turbo Prolog) 294
global variables 245/ 275

Jmode204
Go to Cursor command 66/ 70/ 97/

104
goto (keyword) 199/ 201/377
graphics

drivers
linking 229
loading and selecting 228, 229

mode See screen operating mode
system control 228
Turbo Prolog and 299

GRAPHICS.H 227
GRAPHICS.LIB 227
Graphics Libraries toggle 124
greater than operator (» 170
greater than or equal to operator (>=)

170
guidelines, debUgging 72

H
hardware tabs 146
header files 260/ 269
Hello, world program 20
help

file directory 129
getting 78/ 91, 94/ 95
index 78
screens 91

exiting 79
invoking 78
keywords 78
on library functions 78

HELPME!.DOC file 10
hexadecimal character codes 306
hexadecimal character constants 209

Index

hot keys 82/ 83/ 90
add watch expression 64/ 71, 95, 98
change wild card mask 102
change window contents 66, 71,
82/93/99
compile to .OBJ file 27, 67, 107/ 108
debugging 69, 71/ 97, 99
delete watch expression 65, 95
edit watch expression 95
evaluate expression 52, 70, 97, 133
exiting to DOS 20, 82, 102
get help 82
go to cursor 66, 70,97, 104
go to Editor 93, 102
insert watch expression 137
invoke help screen 91
load a file 18/ 92
main menu choices 82
make .EXE file 91, 94/ 108
make and run program 23, 30, 71,
99/ 160
make program 19, 30, 32
next error 28, 32
pick file to load 93
previous error 28, 32
program reset 104
reset program 70/ 97
save file 93, 101, 160
setI clear breakpoint 49, 71, 98
show call stack 70, 98
step over functions 51, 70, 91, 94,
97,106
swap screens 19, 24,51,65/67, 71,
83,99,106

disabled 102
switch windows 28, 64, 65, 71, 82,

91,94/95,96,99
table of 83
toggle breakpoint 138
trace into functions 48, 60, 70,91,

94,97,105
windowI menu toggle 82, 91, 94,

102
zoom windows 65, 71, 82, 91, 99

Message window 94 .
Watch window 64/ 95

huge (keyword) 315, 337, 344
HUGE (macro) 330
huge memory model 340, 347

399

huge pointers 338
comparing

!= operator 339
== operator 339

overhead of 339

I
1/0278

stream 203, 204
Identifier Length setting 120,304
identifiers

case 304,314
defining in assembly code routines
358
global 314
length 304
naming restrictions 163
nonunique 324
Pascal-type vs. C-type 314

if...else statements 172
if (keyword) 170, 172
if directive 326
if statement 170
if/then/else statement 251
ifdef directive 326
ifndef directive 326
Ignore Case keystroke commands

152
implicit dependencies 33
include directive 269, 325
Include Directories setting 17, 128
include files 269

directories 140
choosing 17

standard 128
increment operator 249
increment operator (++) 164
index

help 78
range error 250
variable 175

indexing 282
indirection operator 315
indirection operator (It) 166, 185
infinite loop 175
INIT.OBI, Turbo Prolog and 286
initialization

module 286

400

variables 274, 275
Initialize Segments toggle 123
inline assembly code See assembly

code, inline
input 156, 179

from keyboard 167, 169
functions 167
interactive 167
Turbo C vs. Pascal 250

INsrALL 11
Install Editor screen 152
installing Turbo C 11

on a laptop system 11
Instruction Set toggle 115
int(keYlVord) 160,309
INT instruction 377
integers 159

constants 305
division of 160
values compatible with 197

integrated debugger 28, 43, 44, 95,
130, 135

integrated development environment
140
configuration files 140

intensity, setting 221
interfacing

with assembly code 356-367
with other languages 318

interrupt (keyword) 317,319,378
interrupts

functions 377
example of 378
floating-point arithmetic in 378

handlers 377
vectors 319, 377

invoking
help screens 78
main menu 102

IP (instruction pointer) register 334
iterations 157, 173
iterative execution 255

J
Jump Optimization toggle 119
jumps

eliminating redundant 119

Turbo C User's Guide

instructions in inline assembly
code 377

K
Keep Messages toggle 33, 125
Kernighan and Ritchie 2, 5, 20, 303
keyboaniinput250
keys, rebinding 152
keystroke commands

Ignore Case 152
Verbatim 152
WordStar·like 152

keystroktHditing mode 152
keystrokes, primary and secondary

152
keywords 305

_cs344
_ds344
_es 344
_ss 344
ANSI 120
asm371
cdecl355
far 337, 344, 352
got0377
help screen 78
huge 337, 344
interrupt 378
near 337, 344
typedef349

L
labels

in inline assembly code 377
revised ANSI syntax 202

LARGE (macro) 330
large code models 343
large data models 343
large memory model 340, 347
legends 176
less than operator «) 170
less than or equal to operator «=)

170
Library Directories setting 17, 128
library files

directories 140
choosing 17

Index

external 36
for memory models 351
run·time 128
using 350

library functions, help screens about
78

license statement, Borland 6, 9
LINE (macro) 329
line directive 327
Line Numbers toggle 117
line style 232
link, case sensitive 124
Link EXE File command 108
linked lists 195
linker 122

error messages 28
options, in configuration file 140
Turbo Prolog and 289
using directly 350

Linker menu 122
linking 106

from command line 37
mixed modules 351
Turbo C and Turbo Prolog 285
without a make 108

Load command 18,92,93,101,144
load operations, suppressing redundant

119
loading

source files into TC 18
TC16

logical AND operator (&&) 170
logical Nor operator (!) 170
logical operators 169, 170,250,255
logical OR operator (I I) 170
long (keyword) 160
longwords 184
loop reorganizations 119
loops 157, 173, 255

do...while 176
for 175
infinite 175
repeat...until (Pascal) 177
while 173

low·level operations 165
low-level programming 367·380

401

M
macros

CDECL330
COMPACf330
converting to strings 325
DATE 329
defining 114
expanding 325
FILE 329
HUGE 330
LARGE 330
LINE 329
MEDIUM 330
MSDOS330
nested 325
PASCAL 330
predefined 329, 330
SMALL 330
SfDC330
TIME 329
TINY 330
TURBOC330

main (function) 178
when to declare with cdecl319

main menu SO, 100
bar 88
options 102

Make EXE File command 19, 29, 107
108 '

makes 100, 106
.OBJ file 107
projects 33
stopping 31, 110
vs builds 108

malloc (function) 186, 212
Turbo Prolog and 287

map file, object 117
Map file menu 123
masking

with Load command 101
math library, Turbo Prolog and 290
matherr (function), with floating point

385
MATHL.LIB 290

Turbo Prolog and 286
MATHx.LIB 351
MEDIUM (macro) 330
medium memory model 340

402

member access operator 271
memory

addressing 113
allocation 186, 276

dynamic 184, 186
explicit 191, 212
explicit for structures 196
for arrays 191
graphics system 230
Turbo Prolog and 287

available 109
dump 57, 132
RAM 184
segmentation 335

memory models 113, 315, 320, 339,
346,347,333-353
illustrations 340-343
hbrary files for 351
startup module for 351
switches 113
Turbo Prolog and 289

memory-resident routines 378
menu commands 85

Add Watch 64, 71, 98, 137
Build All 48, 108
Call Stack 68,70,98,134
Change Dir 16,102
Oear All Breakpoints 62, 63, 138
Oear Breakpoints 71, 98
Clear Project 33, 111
Compile to OBJ 107
Delete Watch 65, 71, 98, 137
Edit 88, 89, 102
Edit Watch 65, 71, 98, 137
Evaluate 51, 54, 70, 97, 131
Fmd Function 67, 70, 97, 133
Get Info 108
Go to Cursor 66, 70, 97, 104
Link EXE File 108
Load 18,92,93,101,144
Make EXE File 19, 29, 96, 107, 108
New 92, 101
Next Breakpoint 71
OS Shell 81, 102, 143
Program Reset 49, 70, 97, 104
Quit 82, 102, 143
Refresh Display 67,135
Remove All Watches 65, 71, 98, 137
Remove Messages 33, 71, 99, 112

Turbo C User's Guide

Retrieve Options 18, 130, 142
Run 49, 71, 99, 103, 143
Save 93, 101
Save Options 17, 125, 129, 130, 141,
143
Step Over 50,70, 96, 97, 105
Toggle Breakpoint 49, 71, 98, 138
Trace Into 48, 60, 70,97, 105
User Screen 19, 24,51, 65, 67, 83,
102, 106
View Next Breakpoint 63, 98, 138
Write To 93, 101

menu settings 85
Arguments 103, 129
Current Pick File 129,144,145
Defines 114
Errors: Stop After 121
Identifier Length 120
Include Directories 17,128
Library Directories 17, 128
Output Directory 17, 129
Pick File Name 129, 144
Primary C File 108
Project Name 30, 110
Tab Size 126, 146, 147
Turbo C Directory 129
Warnings: Stop After 121

menu toggles 85
Alignment 116
ANSI Keywords Only 120
Auto Dependencies 111
Backup (source) Files 126
Calling Convention 115,314
Case-sensitive Link 124
Config Auto Save 125, 143
Default Char Type 116
Default Libraries 123
Display Swapping 67, 135
Display Warning 121
Edit Auto Save 126
Floating Point 116, 381, 382, 383,
384
Generate Underbars 116,314
Graphics Libraries 124
Initialize Segments 123
Instruction Set 115
Jump Optimization 119
Keep Messages 33, 125
Line Numbers 117

Index

Merge Duplicate Strings 116
Message Tracking 32, 108, 125
Nested Comments 120, 151
OBJ Debug Information 48, 70, 96,
97, 105, 117, 133
Optimization For 118
Register Optimization 119
Source Debugging 44, 48, 96, 103,
104, 105, 133, 134
Stack Warning 124
Standard Stack Frame 67, 68, 70,
97, 116, 134
Test Stack Overflow 117
Use Register Variables 118
Warn Duplicate Symbols 124
Zoomed Windows 126

menus
Break Make On 31, 110
Break/Watch 89, 135
choosing from 82
Code Generation 114
Compile 19, 88, 106
Compiler 113
Debug 89, 130
Directories 127
Environment 124, 143
Errors 120
exiting 82
File 88, 100, 143, 144
Linker 122
main SO, 88, 100
Map file 123
Mode1113
Names 122
naming conventions in TC 88
Optimization 118
Options 88, 112, 141, 142, 143
Pick 93,101,143
Project 88, 109
pulldown, moving through 82
Run 88, 103, 143
Screen Size 127
Source 119
structure of system 85, 86

Merge Duplicate Strings toggle 116
Message Tracking toggle 32, 108, 125
Message window 19, 22, 27, 28, 31,

33,80,94
clearing 125

403

syntax errors in 107
mixed-language programming 353
mixed modules

linking 351
modem C style 180
modifiers

cdecl 314, 318
const313
far 315
function type 317
huge 315
intenupt 319
near 315
pointer 315
signed 312
volatile 313

modules
linking mixed 351
size limit 344

modulus operator (%) 164
MSDOS (macro) 330
multi-source programs 29

building 30
multidimensional arrays 191, 265

passing 194
multiple fields 272
multiple operators 166
multiple source files 32

loading into Editor 32
multiple string units 308
multiple types 272
multiplication operator (.) 164

N
Names Menu 122
naming conventions for TC menus 88
near (keyword) 315, 337, 344
near functions 345
near pointers 337
negation operators 311
negative offsets 335
nestable delimiters 150
nested comments 120
Nested comments command-line

option 304
Nested Comments toggle 120, 151
nested functions 181, 263
nested macros 325

404

nested subexpressions
pair matching 148

New command 92, 101
New Value field 51, 54,131
newline character 210
Next Breakpoint command 71
nondireetional delimiters 149
nondireetional pair matching 149
normalized pointers 315, 338
not equal to operator (!=) 170
NOT operator (-) 165
null character 161
null directive 329
null string 278
null terminator (strings) 161, 162

o
DB] Debug Information toggle 48, 70,

96,97,105,117,133
object code 20
object files 20

external 36
map 117
startup 128

offsets 184, 338
component of a pointer 189, 348

opcode mnemonics for inline
assembly 373

operating mode of screen
defining 217
graphics mode 218, 226

setting 228, 229
selecting 229
text mode 218

restoring 229
setting 224

operations 156
low level 165

operators 163,165,311
addition (+) 164
address 166, 259
address.of 250
address.of (&) 166, 185
AND(&) 165
assignment 248, 280
assignment (=) 163,171
binary 164
combined 166

Turbo C User's Guide

comma 171, 176
commutative 311
comparison 280
conditional (1:) 202
decrement 249
decrement (-) 164
division (J) 164
equal to (==) 170
greater than (» 170
greater than or equal to (>=) 170
increment 249
increment (++) 164
indirection 315
indirection (It) 166, 185
less than «) 170
less than or equal to(<=) 170
logical 169, 170, 250, 255

AND (&&) 170
NOT(!) 170
OR(II) 170

member access 271
modulus (%) 164
multiplication (.) 164
negation 164, 311
NOT(-) 165
not equal to (!=) 170
OR (I) 165
order of precedence 248
relational 169, 255

pointers and 315
shift left « <) 165
shift right (») 165
short<ircuit 250
subtraction (-) 164
ternary (1:) 202
Turbo C vs. Pascal 248
unary 164
unary minus (-) 164
unary plus 311
unary plus (+) 164
XOR (1\) 165

Optimal fill mode 146, 147
examples 147

Optimization For toggle 118
Optimization menu 118
optimizing code 118

for size 116, 118
for speed 116, 118

options, command-line 37

Index

-140
-L40
order of evaluation 40
turning off 37

Options menu 88, 112, 141, 142, 143
OR operator (I) 165
order, row<olumn 192
OS Shell command 81, 102, 143
outdenting 146
output 156, 157, 158, 179,226

functions 220
to screen 157
Turbo C vs. Pascal 246

Output Directory setting 17, 129
overflow, stack 117
overhead 339
overriding standard library files 36

P
pair matching 148

angle brackets 148
backward 149
braces 148
commands 148
comment delimiters 148, 150, 151
directional 149
double quotes 148
examples 151
forward 149
nested subexpressions 148
nondirectional149
parentheses 148
single quotes 148
square brackets 148

palettes 236
paragraphs 184, 336

boundary 336
parameters

lists 206
order on stack 353
passing 314
passing sequence

C353
C vs. Pascal 353-356
Pascal 354, 363, 367

parentheses with functions 281
Pascal See Turbo Pascal

calling conventions 386

405

calling sequence 115
parameter-passing sequence 314,
354,363,367

pascal (keyword) 314
function type modifier 317,318
identifiers of type 304

PASCAL (macro) 330
passing by address 259
passing by value 259
passing by var 259
path names, in project file 30
Pick File Name setting 129, 144
pick files 143

contents
Editor information 144
file data 144
pick list 144

creating 129, 144
current 129
loading 129
name 144
name saved in configuration file

129
saved byTurboC 145

pick lists 101, 143, 144
Pick menu 93, 101, 143
pitfalls in C programming 209

= vs== 212
array indexing from 0 213
for Pascal programmers 280
function calls 281
misuse of pointers 210
misuse of strings 211
passing by address 214
the break in switch statements 213
using backslash in path names 209

pixels, setting color of 236
plus, unary 164
pointer arithmetic 188
pointers 159, 184, 264

and arrays 191
and FILE objects 203
and structures 195
arithmetic on 338, 339
arrays vs. 283
character 161, 162,168
comparing 338

!= operator 339
== operator 339

406

constant 283
conversion 309
declarations 264
declaring as near, far, or huge

346-347
default data 343
far 315, 337
huge 315, 338

overhead of 339
manipulation 337
near 315, 337
normalized 315, 338
offsets of 189
relational operators and 315
string manipulation and 264
Turbo C vs. Pascal 264
void tyPe and 312

portability
of nested comments 120
of predefined streams 205
warnings 121

positive offsets 335
pragma directive 328

inline328
saveregs 329
wam328

predefined streams 205
portability of 205
redirected 205

prefix oPCOdes, repeat 374
preprocessor 330

directives 114, 284, 324
primary .C file 108, 109
Primary C File setting 108
primary keystrokes 152
printf (function) 21, 157, 174, 246

Turbo Prolog and 287
Program Reset command 49, 70,97,

104
programming

basic elements 156
in Turbo C 155
Turbo C VB. Pascal 244

programs
multi-source 29

building 30
running 19
structure, C vs. Pascal 244

project files 29

Turbo C User's Guide

Project-Make 29, 33, 100, 103, 107
Project menu 88, 109
Project Name setting 30, 110
projects 109

clearing 33
files 29, 30, 110

graphics library listed in 227
making 33

Prolog See Turbo Prolog
PROLOG.UB 298
prototypes, function ISO, 206

advantages of using 214
pseudO-Variables 368
putc (function), Turbo Prolog and

'1B7
putchar (function) 159, 247
puts (function) 159, 247

Q
Quick-Ref Line SO, 89, 90, 94, 95
Quick Reference Line SO, See also

Quick-Ref Une
Quit command 82, 102, 143
quitting Turbo C integrated devel­

opment environment 82
QWORD (assembler) 360

R
RAM memory 184, 386

Turbo C's use of 386
random access streams 204
Read (Pascal function) 250
reading streams 204
Readln (Pascal function) 250
README file 10
real mode 115
real numbers 159
rebinding keys 152
recompiling during debugging 96
records 264

in Pascal 270
recursive functions 345
recursive structures, Turbo Prolog and

297
redirecting predefined streams 205
redirection 129
referencing data in inline assembly

code 375

Index

Refresh Display command 67, 135
register (keyword) 118, 375
Register Optimization toggle 119
registers

8086 334-335
illustrations 334

8087/S0287 top-of-stack 362
AH369
AL369
allocation, Turbo Prolog and '1B6
AX 334, 362, 369
BH369
BL369
BP 335, 361,369
BX 334, 369
CH369
CL369
conventions 365
CS 336, 337, 369
CX334,369
OH369
01 335, 365, 369
OL369
OS 336, 337, 369
OX 334, 362, 369
ES336,369
flag 334
IP (instruction pointer) 334
optimizing use of 119
segment 335, 336
SI 335, 365,369
SP 335,361,369
55336,369
variables 118, 313

in inline assembly code 375
relational operators 169,255

pointers and 315
Remove All Watches command 65,

71,98,137
Remove Messages command 33, 71,

99,112
repeat... until loops (Pascal) 177,255
repeat count 56
repeat expression 131
repeat prefix opcodes 374
reserved words 305
resolution, screen 218
restrictions on calling Turbo Prolog

from other languages 297

407

Result field 51, 131
Retrieve Options command 18 130

142 ' ,

return (keyword) 199
return statement 2S8
retyping 273
routines, assembly code 356
row<olumn order 192
Run command 49, 71, 99, 103, 143
Run menu 88, 103, 143
run time

errors, correcting 28
library files 128

running a program 19

S
Save command 93, 101
Save Options command 17, 125, 129,

130, 141, 143
saved User screen buffer 83
scaling factor 232
scanf (function) 21, 167, 168, 250, 267
scope rules 324
Screen Size menu 127
screens

attributes, controlling 221
colors 236
coordinates 219

in text mode 218
help 91
main TCBO
operating mode 203

controlling 221
defining 217
graphics mode 218, 226, 228, 229
selecting 229
text mode 218, 224, 229

resolution 218
swapping, smart 135
TC83
User 83

scrolling watch expressions 66
secondary keystrokes 152
segment:offset address notation 336

making far pointers from 348
segmented memory architecture 335
segments 184, 336, 339

component of a pointer 348

408

initializing 123
memory 335
naming 122
registers 335,336

semicolons 251, 283
setbuf (function) 204
setmode (function) 205
settings See also menu settings

43/50 Lines 127
25 Lines 127
EGA/VCA 127
environment, saved in configuration file
140, 142
standard display 127

setvbuf (function) 204
shelling to DOS 102
shift left operator «<) 165
shift right operator (») 165
short (keyword) 160
short-circuit operators 171, 250
shortcuts See hot keys
_SI pseudo-variable 369
SI register 335, 365, 369
sign extension 309
signed (keyword) 209, 312
size overrides in inline assembly

code 375
sizeof (keyword) 186,189,326
small

code models 343
data models 343
memory model 339, 346

SMALL (macro) 330
smart screen swapping 135
soft tabs 146
software interrupt instruction 377
software tabs 146
source code 20
Source Debugging toggle 44, 48, 96,

103, 104, 105, 133, 134
source files 20

.ASM37
automatic save 126
creating 92
loading 18, 92
multiple 29, 30,32

loading into Editor 32
name of 109
overwriting 93

Turbo C User's Guide

saving 93
size of 109
working with in Edit window 92
writing to disk 93

source-level debugger 44
Source menu 119
_SP pseudo-variable 369
SP register 335, 361, 369
_ss (keyword) 344
_55 pseudo-variable 369
55 register 336, 369
stack

call 68, 134
displaying executing line of
function from 68
returning to execution bar from
68

frame, standard 67,116
global (Turbo Prolog) 294
overflow 117
segment 335

Stack Warning toggle 124
stand-alone utilities

configuration file converter
(TCCONFIG.EXE) 40
program manager (MAKE) 41

standard display setting 127
standard files

include 128
library, overriding 36

standard stack frame 67
Standard Stack Frame toggle 67, 68,

70, 97, 116, 134
startup modules for memory models

351
startup object files 128
state queries 222, 241
statements 317

assignment
valueof171

block 251
break 253
case2S2
retum258
switch 252

static (keyword) 274
static variables 274
status line 89
STDC (macro) 330

Index

Step Over command SO, 70, 96, 97,
105

strepy (function) 162,212,321
streams 203

binary 204
buffered 204
buffers, flushing 204
1/0203,204
opening 203
predefined 205

portability 205
redirecting 205

random access 204
text 204

strings 159, 191
arrays of 161
concatenation 308
defining 161
merging duplicate 116
multiple 308
null terminated 162
passing 168
pointers and 264
Turbo C vs. Pascal 266

stroked fonts 234
struct (keyword) 194, 207, 264, 271
structure of menu system 85, 86
structures

additions to K&R alignment 316
and pointers 195
bitfields 316
data 194, 263
declaration 194
member access 195, 196
operator 196
recursive 297
Turbo C vs. Pascal records 270

style, C programming, classic vs modem
180,206

subroutines 157, 177,257
subtraction operator (-) 164
sum function

Turbo Prolog and 292
switch (keyword) 197
switch statement 252
switches, command-line 80

automated build 81
configuration file 18,80, 142
dual monitor 81

409

floating-point 382, 383, 384
floating-point emulation 381
make 81

syntax
command-line 38
errors 26, 31, 32

correcting 27, 28
system control, graphics 228
system requirements, Turbo C 2

T
Tab Size setting 126, 146, 147
tabs 146

hardware 146
soft 146
software 146

target CPU, specifying 115
TASM 37, 75, 371
TBYfE (assembler) 360
TC 77, 140, See also Turbo C

integrated development
environment
configuration files, creating 141
screen 83
values specific to

environment options 141
pick file name 141
project name 141

TC screen BO
TCC 37, 140, See also command-line

TurboC
TCCONFIG.EXE 40
TCCONFIG.TC 17, 130, 140, 141, 142,

143
conversion to TURBOC.CFG 40
directory of 142

TCINST 142, 145, 146, 152
Autoindent toggle 146
settings, precedence of configuration file
over 142

technical support, Borland 6
template, assembly code 357
ternary operators 202
Test Stack Overflow toggle 117
text

data type 159
manipulation

and output 220

410

functions 220
mode 204, See screen operating

mode, See operating mode of
screen

stream 204
then (Pascal keyword) 252
TIME (macro) 329
TI~(macro)330

tiny memory model 339
TLiNK

Turbo Prolog and 289
using directly 350

Toggle Breakpoint command 49, 71,
98,138

toggles See also menu toggles
Autoindent 146

tokens
pasting 304
replacement 324

TOO register 362
Trace Into command 48, 60, 70, 97,

105
Turbo Assembler 37, 75, 371
TurboC

calling Turbo Prolog 295
command-line 140
installing 11

on a laptop system 11
integrated development envi­

ronment 77, 140, See also TC
loading 16, 18, 80

interactive Editor 89
structure members in inline

assembly code 376
system requirements 2
Turbo Pascal vs. 243
working environment 124

Turbo C Directory setting 129
Turbo Pascal 243
Turbo Prolog

calling from Turbo C 295
interfacing with 285
linking with 285

TURBOC (macro) 330
TURBOC.CFG 39, 140,380

conversion to TCCONFIG.TC 40
tutorial, Turbo C 155
type<asting 187, 273
type mismatch 281

Turbo C User's Guide

,..'

typed constants 274
typedef (keyword) 194, 207, 349
types

const313
enum311
enumeration 311
long double 311
modifiers 311
multiple 272
signed 312
specifiers 311
unsigned char 311
unsigned long 311
unsigned short 311
void 311, 312
volatile 313

typographic conventions 5

u
unary operators 164

minus (-) 164
plus 311
plus (+) 164

undef directive 324
undefined routines, searched by TC compiler

123
underscores 314

leading, in assembly code, routines
359

Unindent mode 146
union (keyword) 207
unions 271, 316
unmatched delimiters 151
unsigned (keyword) 161, 312
Use Register Variables toggle 118
User screen 83
User Screen command 19, 24, 51,65,

67,83, 104 106
user-specified configuration file 141
utilities, stand-alone See stand-alone

utilities

V
value, passing by 259
var, passing by 259
variables

const275

Index

defining in assembly code routines
358
global 245, 275
index 175
initialization 274, 275
naming restrictions 163
offsets in inline assembly code 375
register 313
static 274
storage 275

Verbatim keystroke commands 152
VGA, color control on 239
video adapters 217

graphics, compatible with Turbo C
228

View Next Breakpoint command 63,
98, 138

viewports 219
violations, ANSI 121
void (keyword) 177,208,257,314

321
interrupt functions and 319

void functions 208
volatile (keyword) 313

w
Warn Duplicate SYmbols toggle 124
warnings 22, 120, 121, 282

portability 121
Warnings: Stop After setting 121
watch expressions 64, 94, 135

default 64
deleting from Watch window 65,
137
editing 65, 137
inserting in Watch window 64, 137
scrolling 66

Watch window 56, 64, 94, 136
clearing 137

while (keyword) 173, 176
while loops 173, 200, 2S5
whitespace 168
windows

active 89
Compiling 19
controlling 221
Edit 48, 51, SO, 89,92
Evaluate 56

411

Message 19, 22, 27, 28, 50, 94
switching 91
text 218, 223

creating 223
Watch 56, 64, 94, 136
zooming 27, 91, 92

with statement 271
WORD (assembler) 360
WORDCNT46
words 184

alignment 116,316
WordStar-like keystroke commands

152
working environment 17, 124
wrch (Prolog function), Turbo Prolog and

'1B7

412

Write (Pascal function) 246
Write To command 93, 101
Writeln (Pascal function) 246
writing

files to disk 23, 101
streams to disk 204

X
XOR operator (1\) 165

Z
Zoomed Windows toggle 126
zwf (Prolog function), Turbo Prolog and

'1B7

Turbo C User's Guide

BORLAND

IlORLJ,H{lINlERHATIOHAl. INC., lSOO GREEN HILLS ROAD. PD. BOX 660001. scans IlALLEY. CA. 95060-(Q)1 PART I l~MN-COI.l-01·20 BOll 081.

