60485300

(G2 CONTROL DATA

DMS-170

CYBER DATABASE

CONTROL SYSTEM

VERSION 2

APPLICATION PROGRAMMING
REFERENCE MANUAL

CDC® OPERATING SYSTEMS:
NOS 2
NOS/BE 1



REVISION RECORD

Revision

A (05/14/82)

B (08/26/83)

C (02/20/84)

D (04/23/86)

REVISION LETTERS I, O, Q, AND X ARE NOT USED

Description

Initial release under NOS 2 and NOS/BE 1; PSR level 564. This manual represents a
complete reorganization of documentation of the COBOL 5, FORTRAN, and Query Update
application programming interfaces to CDCS. This manual supersedes the FORTRAN Data Base
Facility (FDBF) 1 reference manual (Pub. No. 60482200). This manual also documents new
features of CDCS (namely, data base transactions, data base versions, and the immediate

return option) at product levels as follows: CDCS 2.3, COBOL 5.3, FDBF 1.3, Query
Update 3.4.

Released at PSR level 587. This revision documents improved duration loading
capabilities of CDCS and miscellaneous technical corrections.

Released at PSR level 599. This revision documents FORTRAN interface support of
concatenated keys and miscellaneous technical corrections.

Released at PSR level 647. This revision removes references to FORTRAN 4.

Address comments concerning this manual to:

CONTROL DATA CORPORATION
Publications and Graphics Division

©COPYRIGHT CONTROL DATA CORPORATION P. 0. BOX 3492

1982, 1983, 1984, 1986
All Rights Reserved
Printed in the United States of America

ii

SUNNYVALE, CALIFORNIA 94088-3492

or use Comment Sheet in the back of this manual

60485300 D

JJ

J )



i

y»

LIST OF EFFECTIVE PAGES

New features, as well as changes, deletions, and additions to information in this manual are indicated by bars

in the margins or by a dot near the page number if the entire page is affected.

indicates pagination rather than content has changed.

Page

Front Cover
Title Page

ii

i1i/dv

v

vi

vii

viii

ix/x

xi

1-1

1-2

1-3

1-4 thru 1-8
2-1 thru 2-11
2-12

2-13 thru 2-22
3-1

3-2 thru 3-4
3-5

3-6

3-7

3-8 thru 3-18
3-18.1

3-18,2

3-19

3-20 thru 3-26
4=1 thru 4~16
5-1 thru 5-22
6—-1

6-2 thru 6-5
7-1 thru 7-6
8-1 thru 8-4
A-1 thru A-4
B-1

B~-2

B-3

B~4
B-4.1/B=4,2
B-5

B-6

B-7

B-8 thru B-12
B-13

B-14 thru B-16
B-16.1/B-16,2
B-17 thru B-22
B-23

B~24
B-24,1/B~-24.2
B~25 thru B-29
B-30

B-31

60485300 D

Revision

OUPOQOWEPOUPUOPEI>ODUP>P>PPUDEPIPIPUDCODPPUOODPUOU»>»OBIPUOOO>»UODDI

c-1

c-2

c-3

C-4

c-5

C-6 thru C-9
D-1 thru D-3
D-4 thru D-7
E~1 thru E-3
F-1

G-1

G-2

G-3

G-4

H-1

H=2 thru H-4
H-5 thru H-12
I-1

I-2

J-1

J=2

J=-3

Index-1 thru -3
Index—4
Index-5

Comment Sheet/Mailer

Back Cover

Revision

IO WODOUO>P>PUDPUORPEOEII>POL>D>ED> T >

A bar by the page number

iii/iv






ﬁﬁih\
€@ﬁ>\

PREFACE

e T -

This manual describes application program inter-
faces to CONTROL DATA® CYBER Database Control
System (CDCS) Version 2. CDCS 1is one of the
principal components of the DMS-170 data management
system, The primary function of CDCS is to control
access by an application program to a data base,
For an application program to interface with CDCS,
it must be coded in ome of the following pro-
gramming languages: COBOL Version 5, FORTRAN
Version 5, or Query Update Version 3. FORTRAN
programs must also be coded with Data Manipulation
Language (DML) statements which are provided by the
FORTRAN Data Base Facility (FDBF) Version 1.

The products that make up the CDCS~application
program interface are CDCS 2.3, FDBF 1.3, COBOL
S5.3,and Query Update 3.4. As described in this
manual, these products operate under control of the
following operating systems:

NOS 2 for the CONTROL DATA CYBER 180 Computer
System; CYBER 170 Computer System; CYBER 70
Computer System Models 71, 72, 73, and 74; and
6000 Computer Systems

NOS/BE 1 for the CDC® CYBER 180 Computer Sys-
tem;j CYBER 170 Computer System; CYBER 70
Computer System Models 71, 72, 73, and 74; and
6000 Computer Systems

The following manuals are of primary interest:

Publication

COBOL Version 5 Reference Manual

CYBER Record Manager

Advanced Access Methods Reference Manual

DMS~-170

This wmanual is designed for use by application
programmers. The programmers are assumed to be
experienced programmers who are familiar with the
COBOL or FORTRAN application programming languages
or the Query Update processing language. The pro-
grammers are also assumed to be familiar with data
management concepts and with Control Data computers
and software products.

Detailed information for the application programmers
about subschemas is contained in the CDCS 2 Data
Administration reference manual. Related material
is contained in the publications listed below.

The NOS Manual Abstracts and the NOS/BE Manual
Abstracts are instant-sized manuals containing
brief descriptions of the contents and inteanded
audience of all NOS and NOS product set manuals,
and NOS/BE and NOS/BE product set manuals, respec-
tively, The abstracts manuals can be useful in
determining which manuals are of greatest interest
to a particular user. The Software Publications
Release History serves as a guide in determining
which revision level of software documentation
corresponds to the Programming Systems Report (PSR)
level of installed site software.

The publications are 1listed alphabetically 1in

groupings that indicate relative importance to
readers of this manual,

Publication
Number

60497100

60499300

CYBER Database Control System Version 2

Data Administration Reference Manual

DMS-170

60485200

CYBER Database Control System Version 2

FORTRAN Application Programming User Guide
FORTRAN Version 5 Reference Manual

Query Update Version 3 Reference Manual

60485300 D

60483500
60481300

60498300



vi

The following manuals are of secondary interest:

Publication

Publication Number
Network Products

Transaction Facility Version 1 Reference Manual 60459500
NOS Version 2 Manual Abstracts 60485500
NOS Version 2 Reference Set, Volume 3 System Commands 60459680
NOS/BE Version 1 Manual Abstracts 84000470
NOS/BE Version 1 Reference Manual 60493800
Software Publications Release History 60481000

CDC manuals can be ordered from Control Data Corporation,

Literature and Distribution Services, 308 North Dale Street,
St. Paul, Minnesota 55103.

This product 18 intended for use only as
described in this document. Control Data can-
not be responsible for the proper functioning .
of undescribed features or parameters.

60485300 A

J )

J

g



"

Lo

CONTENTS

NOTATIONS

1. INTRODUCTION TO DATA BASE PROCESSING
WITH DMS-170

Data Base Definition
Schema Definition
Subschema Definition
Master Directory Definition
Data Base Processing
COBOL Processing
FORTRAN Processing
Query Update Processing
Special Features Involved in CDCS
Processing
Concurrency
File Privacy
Relations
Constraints
Data Base Versions
Data Base Procedures
Recovery
Data Base Transaction
Immediate Return
Input/Output Processing
Processing Through CDCS and TAF

2. COBOL INTERFACE

COBOL Subschema

Subschema Listing

Information Provided by Data Administrator

Subschema Directory

Program Coding

Environment Division
SUB-SCHEMA Clause
File-Control Entry

Data Division

Procedure Division
CLOSE Statement
C.DMRST Routine
C.I0ST Routine
C.LOK Routine
C.UNLOK Routine
DB$ASK Routine
DB$BEG Routine
DB$CMT Routine
DBSDBST Routine
DB$DROP Routine
DBSGTID Routine
DBSLKAR Routine
DBSRPT Routine
DB$SIR Routine
DB$SVERS Routine
DB$WAIT Routine
DELETE Statement
OPEN Statement
READ Statement
REWRITE Statement

60485300 D

—
|
—

I USURK]
wWwwwMhNN -

._.,_..—._.T,_.,_.p_.

2-1
2-1
2-4
2-5
2-5
2-5
2-5
2-5
2-5
2-8
2-8
2-8
2-8
2-9
2-9
2-9
2-10
2-10
2-10
2-10
2-10
2-11
2-11
2-12
2-12
2-12
2-12
2-13
2-14
2-15

START Statement
USE FOR ACCESS CONTROL Declarative
Statement
USE FOR DEADLOCK Declarative Statement
WRITE Statement
COBOL Subprograms
Compilation and Execution
Recompilation Guidelines
Status Checking
Data Base Status Block
Additional Status Checking Elements
Program Debugging

3. FORTRAN INTERFACE

FORTRAN Subschema
Subschema Listing
Information Provided by Data Administrator
Subschema Directory
FORTRAN DML
Language Elements
Keywords
Constants
Variables
DML Statements
Syntax Requirements
ASSIGNID Statement
BEGINTRAN Statement
CLOSE Statement
COMMITTRAN Statement
DELETE Statement
DMLDBST Routine
DMLRPT Routine
DMLSIR Routine
DROPTRAN Statement
FINDTRAN Statement
INVOKE Statement
LOCK Statement
NEWVERSION Statement
OPEN Statement
PRIVACY Statement
READ Statement
REWRITE Statement
START Statement
SUBSCHEMA Statement
TERMINATE Statement
UNLOCK Statement
WRITE Statement
Listing Control Directives
DML Control Statement
DML Control Statement Parameters
DML Control Statement Example
Compilation/Execution
Sample Job Structures
Recompilation Guidelines
Status Checking
Data Base Status Block
ERR and END Specifiers
Additional Status Checking Elements
Informative Diagnostic Codes

2-15

2-16
2-17
2-18
2-18
2-19
2-19
2-19
2-19
2-20
2-20

3~1
31

3-4
3-5
3-5
3-5
3-5

3-5
3-5
35
3-8
3-8

3-8
39
3-9
3-10
3-10
3-10
3-11
311
3-11
3-12
3-13
3-14
3-14
3-16
3-17
3-18
3-18.1
3-18.1
3-18.1
3-18.2
319
3-19
3-20
3-20
3-21
3-21
3-21
3-22
3-24
3-24
3-25

vii



4. QUERY UPDATE INTERFACE

Query Update Subschema
Subschema Listing

Information Provided by Data Administrator

Subschema Directory
Directive Syntax

ACCESS

CREATE

DISPLAY

EXHIBIT

EXTRACT

INVOKE

MODIFY

RECOVERY

REMOVE

STORE

UPDATE

VERSION

VIA
Query Update Processing With CDCS

Execution

Catalog File

Record Locking Mechanism

Error Processing

USER-ID Register

Recompilation Guidelines

5. CDCS FEATURES AND PROCESSING
CONSIDERATIONS

Execution Time Processing
Error Processing
CDCS Diagnostics
User Error File
Relations Defined
Hierarchical Tree Structure
Ranks of a Relation
Parent /Child Relationship
Record Qualification
CDCS Relation Processing
Opening a Relation
Positioning a Relation
Reading a Relation
Reading a Relation Randomly
Reading a Relation Sequentially
Reading Relations in Parallel
Reading a Relation Defined With
Record Qualifications
Reading a Relation When Data Base
Versions Exist
Updating Files Joined in a Relation
Closing a Relation
Informative Conditions
Null Record Occurrence
Control Break
Example of Null Record and Control
Break Conditions
Transaction Processing
Processing Operations
Processing Considerations
Examples of Transaction Processing
CDCS Processing in Transaction Mode
Concurrent Access to a Data Base
CDCS Locking
Locking Outside of a Transaction
Locking Within a Transaction
Processing Considerations
Deadlock

viii

4-1

4-1
4-1
4-5
4-5
46
46
4-8
49
4-9
4-10
4-11
4-11
4-12
4-12
4-13
4=13
4-13
4-14
4-14
b=14
4-15
4-16
4-16
4-16
4-16

5-1
5-1
5-1
5-2
5-2
5-3
5-3
5-4
5-4
5-5

5-5
=5
5~5

5-6
5-7

5-7
5-8
5-8
5-8
5-8
5-8

5-8
5-10
5-10
5-11
5-11
5-11
5-12
5-14
5-14
5-15
5-16
5-16

Immediate Return Feature 5-17
Resource Conflicts 5-18
Using the Immediate Return Feature 5-18
Processing Considerations 5-18

Constraints Defined 5-18
Single~File Constraint 5-19
Two-File Constraint 5-19
CDCS Constraint Processing 520

Guidelines for File Creation 5~20
Guidelines for Insertion Operations 5-20
Guidelines for Deletion Operations 5-21
Guidelines for Modification Operatiomns 5-21

TAF-CDCS Processing 522

6. COBOL EXAMPLE 61

7. FORTRAN EXAMPLES 7-1

FORTRAN 5 Example 7-1

8. QUERY UPDATE EXAMPLE 8-1

APPENDIXES

A Standard Character Sets A-1

B Diagnostic Messages B-1

C Glossary Cc-1

D Syntax Summaries D-1

E Future System Migration Guidelines E-1

F  Keyword Used in DML Statements and

Variables and Common Blocks Generated
by the DML Preprocessor F-1

G CDCS Batch Test Facility G-1

H Data Base Environment for Examples H-1

I Collating Sequences for Data Base Files I-1

J Summary of Data Definitions in DMS-170 J=-1

INDEX

FIGURES

1-1 Defining a Data Base 1-2

1-2  Subschema Describing a Portion of the

Data Base 1-3

1-3  Relationship of the Elements Iavolved

in Processing a Data Base 1-4

1-4  Processing Using Data Base Versions 1-6

1-5  CDCS/TAF Interface 1-8

2-1 Sample COBOL Subschema 2-2

2-2  SUB-SCHEMA -Clause Format 2-5

2-3 CLOSE Statement Format 2-8

2-4  C.DMRST Routine Format 2-8

2-5 C.I0ST Routine Format 2-9

2-6  C.LOK Routine Format 2-9

2-7 C.UNLOK Routine Format 2-9

2-8 DB$ASK Routine Format 2=9Y

2-9 DBS$BEG Routine Format 2-10

2-10 DB$CMT Routine Format 2-10

'2-11 DB$DBST Routine Format 2-10

2-12 DBSDROP Routine Format 2-10

2-13 DBSGTID Routine Format 2-10

60485300 D

J

2 J



o

65’“\

2-14
2-15
2-16
2-17
2-18

2-19
2-20
2-21
2-22
2-23
2-24
2-25

2-26

2-27
2-28
2-29
2-30

3-1
3-2
3-3
3-4
3-5
3-6
3-7
3-8
3-9
3-10
3-11
3-12
3-13
3-14
3-15
3-16

3-17
3-18
3-19
3-20
3-21
3-22
3-23
3-24
3-25
3-26
3-27
3-28
3-29
3-30

3-31
3-32

3-33

4-1
4=2
4-3
4-4
4-5
4-6
4-7
4-8

DB$LKAR Routine Format

DBSRPT Routine Format

DB$SIR Routine

DB$SVERS Routine Format

COBOL Example Showing Use of Version
Master and an Alternate Version

DB$WAIT Routine Format

DELETE Statement Format

OPEN Statement Format

READ Statement Format

REWRITE Statement Format

START Statement Format

USE FOR ACCESS CONTROL Declarative
Statement

USE FOR ACCESS CONTROL Procedure
Example

USE FOR DEADLOCK Declarative Statement

USE FOR DEADLOCK Procedure Example

WRITE Statement Format

Example of a COBOL Description of a
Data Base Status Block

Sample FORTRAN Subschema

ASSIGNID Statement Format

BEGINTRAN Statement Format

CLOSE Statement Format

COMMITTRAN Statement Format

DELETE Statement Format

Example of Use of the DELETE Statement

DMLDBST Routine Format

DMLRPT Routine Format

DMLSIR Routine

DROPTRAN Statement Format

FINDTRAN Statement Format

INVOKE Statement Format

LOCK Statement Format

NEWVERSION Statement Format

Example of Use of the NEWVERSION
Statement

OPEN Statement Format

Example of Use of OPEN Statement

PRIVACY Statement Format

PRIVACY Statement Examples

READ Statement Format

Example of Use of READ Statement

REWRITE Statement Format

START Statement Format

SUBSCHEMA Statement Format

TERMINATE Statement Format

UNLOCK Statement Format

WRITE Statement Format

Example of Use of the WRITE Statement

Example of Listing Control Statements
in a FORTRAN Program

DML Control Statement Format

Program Compilation and Execution With
CDCS at a System Control Point

Example of a Data Base Status Block
Used for Deadlock Processing

Sample Query Update Subschema

Format of an Expression

ACCESS Directive Format

ACCESS Directive Examples

CREATE Directive Format

CREATE Directive Examples

DISPLAY Directive Format

EXHIBIT Directive Format

60485300 D

3-9

3-10
3-10
3-10
3-11
3-11
3-11
3-12
3-12

3-13
3-13
3-13
3-14
3-14
3-15
3-16
3-16
317
3-18
3-18.1
3-18.1
3-18.1
3-18.1

3-18.2
3-19

3-21

3-22
4-2
4-6
4-7
4=7
4-8
4-8
4-9
4-9

4-9
4-10
4-11
4-12
4-13
4-14
4-15
4-16
4-17
4-18
4-19
4-20

EXHIBIT Directive Examples

EXTRACT Directive Format

INVOKE Directive Format

INVOKE Directive Examples

MODIFY Directive Format

RECOVERY Directive Format

REMOVE Directive Format

STORE Directive Format

UPDATE Directive Format

VERSION Directive Format

VIA Directive Format

Examples of Using a Catalog File

Two-File Relationship Example

Three-File Relationship Example

Tree Structure for CONTRACTS-PRODUCTS-
EMPLOYEES Relationship

Complex Tree Structure for CONTRACTS-
PRODUCTS-EMPLOYEES Relationship

File Positioning Example

Record Occurrences for Three Related
Files

Record Occurrences in User”s Work
Areas After Reading

Three Relation Example

Example of Files Joined by a Relatiom
and Grouped by Version

Null Record Uccurrence Examples

Example of Null Occurrence and
Control Break Conditionms

Transaction Processing Situation

Transaction Processing Using COBOL

Deadlock Situation

Single—~File Constraint Example

Two-File Constraint Example

COBOL Subschema

COBOL Program

Report Generated by COBOL Program

FORTRAN 5 Subschema

FORTRAN 5 Program

Report Generated by FORTRAN 5 Program

Query Update Subschema

Query Update Application

TABLES

2-1
2-2

2-3
3-1
32
3-20 1
3-3
4-1
4=2

4-3
bty

COBOL Statements and Routines

Schema Access Control Lock and
Corresponding ON Phrase Usage Option

Contents of Data Base Status Block

FORTRAN DML Statements and Routines

Schema Access Control Lock and
Corresponding Mode Option Usage

Syntax Correspoundence to Read
Characteristics

Contents of the Data Base Status Block

Informative Diagnostic Codes

Corresponding Subschema and Query
Update Data Types

Query Update Directives

Recommended Query Update Directives

Schema Access Control Locks and
Corresponding ACCESS Directive
Usage Options

Operations of Transaction Processing

4-10
4-11
411
4-11
4-12
4=12
4-12
4-13
4-13
4-13
4-14
4-15

5-3
53

54
5=5

5-6

5-6

57

59
5-12
5-13
517
519
5~20
6~2
6-3
6-5
7-2

7-6
8-2
8-3

2-17
2-21
3-6

3-14

3-15
3-23
3-25

44

46
4-6

4-7
5-11

ix/x






(w

NOTATIONS

Reference

formats are presented throughout the
manual to illustrate essential elements of syntax.
The notations used in the reference formats follow
two conventions: the COBOL convention and the
FORTRAN convention. The COBOL convention is used
in formats that describe syntax for COBOL state-
ments and Query Update directives. The FORTRAN
convention is used in formats that describe syntax
for the FORTRAN Data Manipulation Language (DML)
statements and for all control statements. The
differences in the conventions are in the inter-
pretation of uppercase words, the omission of
underlined uppercase words from the FORTRAN con-
vention, and the use of punctuation.

The notations used in reference formats are de-
scribed as follows:

UPPERCASE COBOL convention. Uppercase words
are reserved words and must appear
exactly as shown. Reserved words
can be used only as specified in
the reference formats. If not
underlined, they are optional.

FORTRAN convention. Uppercase
words are keywords and must appear
exactly as shown. Keywords can be
used only as specified 1in the
reference formats.

UNDERLINED
UPPERCASE

COBOL convention. Underlined
uppercase words are required when
the format in which they appear is
used.

FORTRAN convention. Underlined
uppercase words are not used.

Lowercase words are generic terms
that represent the words or sym-
bols supplied by the user. When
generic terms are repeated in a
format, a number is appended to
the term for identificatiom.

Lowercase

{1 Brackets enclose optional portions
of a reference format. All of the
format within the brackets can be
omitted or included at the user’s
option. If items are stacked
vertically within brackets, only
one of the stacked items can be
used.

60485300 A

{1} Braces enclose one item or several
vertically stacked items in a
reference format. When one item
is enclosed in braces and followed
by ellipses, the item can be re-
peated at the user’s option. When
several items are enclosed in
braces, only ome of the enclosed
items must be used.

Il Vertical bars enclose two or more
vertically stacked items in a
reference format when at least one
of the enclosed items must be used.
Each of the vertically stacked
items can be used once.

o1

Vertical bars within brackets
enclose two or more vertically
stacked items in a reference for-
mat when each of the stacked items
can be used once or omitted. Any
items can be used in any order.

cee Ellipses immediately follow a pair
of brackets or braces to indicate
that the enclosed material can be
repeated at the user’s option.

Punctuation use differs for the conventions as
follows:

COBOL convention

Punctuation symbols shown within the formats
are required wunless enclosed in brackets
and specifically noted as optional. In
general, commas and semicolons are optional.
One or more spaces separate the elements in
a reference format.

FORTRAN convention
Punctuation symbols shown within formats
are required unless enclosed in brackets

and specifically noted as optional.

Numbers shown within formats are decimal unless
otherwise specified.

xi






o

(&

INTRODUCTION TO DATA BASE PROCESSING 1
WITH DMS-170

DMS-170 is a data management system for Control
Data computer systems. Through this data manage-
ment system, a data base can be defined, maintained,
and controlled in an enviromment totally independ-
ent of the applications that are accessing it.
Conventional files otherwise owned and processed by
a number of distinct applications can be described
through the data description language facilities of
DMS-170. Consequently, the responsibility for
tasks such as data description, data conversion,
and validity checking 1is transferred from the
application programmer to the data administrator.

The DMS-170 data management system is composed of
the following elements:

Data Description Language (DDL), which creates
the schema definition, as well as the COBOL,
FORTRAN and Query Update subschema definitions.

CDC CYBER Database Control System (CDCS), which
controls, monitors, and interprets data base
requests from COBOL, FORTRAN, and Query Update
application programs.

CDC CYBER Record Manager (CRM), which handles
all input/output processing requests on a data
base from an application program.

Data Manipulation Languages (DML), which pro-
vide for data base access through the COBOL and
FORTRAN programming languages. The COBOL DML
congists of features within the COBOL language.
The FORTRAN DML consists of DML statements that
are used within a FORTRAN-coded program and
preprocessed by a DML preprocessor before
FORTRAN compilation.

Query Update language, which provides for data
base access in both interactive and batch
modes. Query Update is a language that enables
individuals with varying levels of technical
expertise to access and manipulate the data
base and to produce special-purpose reports.

Each element of the DMS-170 system is used either
in the definition or in the processing of a data
base. The definition of the data base is accom-
plished through the capabilities of DDL and CDCS.

60485300 A

Processing of the data base involves retrieval and
updating of the data by application programs through
the facilities of CDCS.

The DMS-170 environment defines two roles: the data
administrator and the application programmer. The
data administrator is responsible for the defini-
tion of a data base. The data administrator is a
person or group of persons who develop and define
the data base as well as monitor and control the
day-to-day processing of that data base. The
application programmer uses the interface capa-
bilities of COBOL, FORTRAN, and Query Update to
develop programs for data base processing. The
application programs use the detailed descriptions
and facilities of CDCS when performing data base
processing.

CDC offers guidelines for the use of the software
described in this manual. These guidelines appear
in appendix E. Before using the software described
in this manual, the reader is strongly urged to
review this appendix. The guidelines recommend use
of this software in a manner that reduces the
effort required to migrate application programs to
future hardware or software systems.

DATA BASE DEFINITION

To define a data base, the data administrator uses
the DDL. Through this language, four types of data
descriptions can be created: the schema, the COBOL
subschema, the FORTRAN subschema, and the GQuery
Update subschema. Each of these data descriptions
follows specific structuring conventions, includes
unique clauses and statements, and conforms to an
individual set of rules.

The relationship of the elements involved in defin-
ing a data base is shown in figure 1-1. The figure
indicates that the schema directory must be avail-
able to the DDL compiler to generate subschema
directories.

The data descriptions in the schema and subschema
are organized into file-like structures. By con-

vention, the following terms are used when referring
to these structures:

Area in the schema

Realm in the subschema



Schema
———E
Source
DDL
Compiler
Subschema »
Source
Listings

Schema
Directory

Subschema
Libraries

Figure 1-1. Defining a Data Base

The schema description of an area applies to all
data within the structure. The subschema defini-
tion of a realm usually applies to a portion of
data within the structure but can apply to all the
data. The area provides the actual description of
the data; the realm provides the description of
data from the standpoint of the application program.

The term file is often used in this manual to refer
to either an area or a realm.

SCHEMA DEFINITION

The schema is a detailed description in English-
like syntax of the data in a data base. The schema
description 1is created by DDL statements that name
the schema, organize the schema into areas, describe
each record type together with the characteristics
of the data comprising the record, and describe
relationships and constraints among areas. The
schema also includes access control locks that
provide privacy at the area level. The DDL source
statements describing the data are used as input to
the DDL compiler and are compiled into an object
schema, or schema directory. The data adminis-
trator then uses the schema to define any number of
subschenmas.

SUBSCHEMA DEFINITION

A subschema is a detailed description of selected
portions of data described by a schema. The sub-
schema defines the portion of the data base avail-
able to the application program; the application
program uses the subschema descriptions to access
the data base. The subschema is based on the
schema.

1-2

The subschema specifies realms and the contents and
structure of records. The subschema indicates
changes in data format required by an application
program, identifies relations to be used, and speci-
fies record qualification for relatiom processing.

The data descriptions in the subschema are orga-
nized into realms that correspond to areas in the
schema. The realms included in a subschema can be
a subset of the areas in the schema. The data
items within the realm in a subschema can be a
subset of the data items described for the corre-
sponding area in the schema. Figure 1-2 illustrates
the situation in which a subschema describes a
portion of a data base.

Although only one schema is allowed for each data
base, any number of subschemas can be defined to
meet the needs of different types of applications.
Subschemas are defined by the data administrator
for use by application programs written in COBOL,
FORTRAN, and Query Update.

The data administrator should provide the applica-
tion programmer with a listing of the subschema.
The listing 1s used to obtain the names and de-
scriptions of the data referenced by the application
program.

MASTER DIRECTORY DEFINITION

The data administrator must create a master direc-
tory before any application program accessing data
base files can execute. The master directory
contains information for all the elements of the
data base known to CDCS. These elements include
the schema, subschema, descriptions of data base
files, and definitions of any data base versions.
(Data base versions are described later in this
section.)

60485300 A

JJ

™
/5“Q3



ind

=
-

Physical Data Base
(Data Base Files)

Logical Data Base
(Description)

Shows schema Schema Areas

description. A, B,C, 0D
Shows schema and Subschema
subschema descriptions. Realms

A, C, D

A schema describes all
data base files with
area descriptions.

A subschema describes
portions of data base
files with realm

descriptions.

Figure 1-2. Subschema Describing a Portion of the Data Base

DATA BASE PROCESSING

Once a data base has been defined by the data
administrator, it can be accessed by the following
application languages: COBOL 5, FORTRAN 5, and
Query Update 3. Processing of the data base by
COBOL, FORTRAN, and Query Update programs is
controlled and monitored by CDCS., These appli-
cation languages can be used in either batch or
interactive mode.

Figure 1-3 shows the relationship between the

elements involved in processing a data base through
CcDCS.,

COBOL PROCESSING

A COBOL program accesses data base files through
conventional input/output statements. The files
are opened and closed and records are read, written,
deleted, and updated using similar means as for
files that are not part of a data base. Relation
processing 1is also accomplished by conventional
COBOL statements. Data retrieved by the program is
accessed according to the way it is described in
the COBOL subschema.

When a COBOL program utilizing CDCS is to be com-
piled, the file containing the subschema directory
must first be attached. Once the program is com-
piled using the subschema, it can be executed later
without reattaching the subschema directory.

Execution of an input/output statement for a data
base file in a COBOL program causes the COBOL
object~time routines to route I/0 calls to CDCS.

60485300 D

FORTRAN PROCESSING

A FORTRAN program accesses data base files through
DML statements coded within the FORTRAN program.
The DML consists of FORTRAN~like statements. These
statements allow the FORTRAN user to access and
modify data base files.

Before a program containing FORTRAN DML statements
is compiled, the DML preprocessor is called via a
control statement to translate the DML statements
into FORTRAN specification statements and CALL
statements. Data descriptions are obtained from
the FORTRAN subschema directory, which wust be
attached during the preprocessing phase. Following
the preprocessing, compilation of the FORTRAN
program proceeds as for a conventional FORTRAN
program; the translated DML statements are compiled
like other FORTRAN statements. Once the program is
preprocessed using the subschema, it can be com-
piled and executed later without reattaching the
subschema directory.

QUERY UPDATE PROCESSING

Query Update functions within the data base environ-
ment whenever a Query Update subschema is specified
by a Query Update user. The Query Update language,
which 1is a special nonprocedural, interactive
language, can be used by both programmers and non-
programming personnel to perform several functions.
Through simple directives, search, retrieval,
update, and display operations can be performed on
data base files as well as om conventional files.
In addition, a single Query Update directive can be
used in relation processing to display to the user
data from more than one file. A comprehensive
report writing capability is an integral part of
Query Update.



COBOL User

FORTRAN User

Query Update User

C0BOL
Subschema
Directory

COBOL SEmm— coBOL ———>| Executing
Program Compiler coBOL
Job
FORTRAN-DML FORTRAN
Progranm Subschema
Directory
DML ‘ > FORTRAN » Executing
Preprocessor Compiler FORTRAN
Job

Query Update
Directives

Subschema
Directory

[ —1 Query [

Update

cbCs

CYBER Record
Manager

Data Base
Files

Figure 1-3. Relationship of the Elements Involved in Processing a Data Base

60485300 A

JJ

r

J )



o

(L]

AR

SPECIAL FEATURES INVOLVED IN CDCS
PROCESSING

The special features described in the following
subsections can affect the way an application
program executes. Some features are used auto-
matically with all CDCS processing; other features
nust be specifically requested by the data adminis-
trator during data base definition.

Concurrency

An important feature provided by CDCS is the con-
currency feature. Concurrency means that two or
more application programs can access the same data
base file and the same data at the same time.
Programs can access a file concurrently for re-
trieval or update purposes. During concurrent
update operations, CDCS provides a locking mecha-
nism by which files and records can be locked and
unlocked at appropriate times. Automatic locking
and unlocking are performed by CDCS when certain
input/output operations are specified. In addi-~
tion, explicit lock and unlock requests can be
issued from the application program.

A deadlock situation can occur when two programs
attempt to access files or records that have been
locked by CDCS or by other programs. When this
situation occurs, CDCS selects one of the contend-
ing programs, releases all locked resources held by
that program, and issues an error status code.
Appropriate code to handle recovery from a deadlock
should be included in application programs.

File Privacy

Another valuable feature provided by CDCS is the
access control (privacy checking) mechanism.
Through this mechanism, access to data base files
can be controlled on the basis of criteria speci-
fied by the data administrator. When the data
administrator has specified controlled access to a
data base file, an application program must specify
the appropriate access control key (privacy key) to
gain access to the controlled data base file. The
data administrator should provide the user with any
information necessary to access controlled data
base files.

Relations

The relation processing component of CDCS allows
data base files to be linked together into a logi-
cal structure called a relation. A relation is
defined in the schema by the data administrator.
Any relation that is available to the application
program is defined by the data administrator in the
subschema.

An application can access a relation by specifying
a single read request (a display or extract request
for Query Update). When the request is processed
by CDCS, CDCS returns a record occurrence from each
file in the relation to the application’s working

storage area.

60485300 A

Limitations can be placed on a relation by restric-
tions included in the subschema. These restrictions
are in the form of qualification criteria that must
be satisfied before a record occurrence is made
available to the application.

A subschema listing provides the name of any rela-
tion and indicates what specific restrictions apply.

Constraints

The constraint component of CDCS is an independent
feature that allows controls to be placed on update
operations involving logically associated files.
Constraints protect the integrity of the data base
by allowing updates to be performed only when
specific conditions are satisfied. Constraints are
specified by the data administrator in the schema
and are enforced by CDCS. Information concerning
constraints should be provided by the data adminis-
trator to the application programmer.

Data Base Versions

The data base version feature of CDCS allows an
application program to use the same schema and
subschema to access more than one group of perma-
nent files corresponding to the areas in the schema,
each group of which is defined as a data base
version. Data base versions are defined by the
data administrator in the master directory. If no
data base versions are defined, a version named
MASTER is assumed by default. If alternate data
base versions are defined, one version named MASTER
exists along with the alternate data base versions.

By specifying use of different versions, an appli-
cation program can perform operations on different
groups of files, each group forming a data base
version. Within a single execution, an application
program can perform processing on any number of
data base versions. However, an application pro-
gram can perform processing on only one data base
version at a given time.

Figure 1-4 illustrates the use of data base ver-
sions. When the application program specifies a
version name, CDCS makes available to the program
all the files of that data base version that are
associated with the realms included in the sub-
schema being used. The illustration shows file Ml
being shared by the versions MASTER and TEST.

Data Base Procedures

Data base procedures are special subprograms written
by the data administrator to perform a variety of
supplemental operations not otherwise performed by
CDCS. The procedures are called at execution time
when specific conditions occur during CDCS process—

ing. The conditions under which data base proce-
dures are to be executed are specified in the
schema. If a data base procedure requires a
response from an application program, the data

administrator must provide the application pro-
grammer with the information required by the data

base procedure.

1-5



Example 1. Application Program AP1
Using Version MASTER

Version - - cbCS
MASTER

Master
Directory
with Version
Definitions

Example 2. Application Program AP1
Using Version TEST

| _
I
APY

Version

cbCs

Master
Directory
with Version
Definitions

TVersion Definitions:

Version Area A Area B Area C
MASTER File M1 File M2 File M3
TEST File M1 File T2 File T3

I
I
'
I
I
|

[_____
l

Figure 1-4. Processing Using Data Base Versions

Recovery

The recovery feature of CDCS provides for recon-

struction of a damaged or inconsistent data base
and provides for the removal of updates made with

erroneous logic. The data administrator can restore
the data base to a previous checkpoint or the
beginning of a job when an application program
failure or 1logic error occurs. The application
program can define recovery points as an aid to
recovery operations.

1-6

The transaction feature of CDCS is the application
programming interface to automatic recovery. The
transaction feature of CDCS is described in the
following subsection.

Data Base Transaction

The data base transaction feature of CDCS provides
the FORTRAN or COBOL application program with the
ability to group a series of data base updates into
a logical unit, called a data base transaction.

60485300 A

J

JJ

Ww



The application program specifies the beginning of
the transaction, performs the update operations,
and specifies the end of the transaction, which can
be either a commit or a drop. When the application
program specifies a commit operation, all updates
made within the transaction become permanent. When
the application program specifies a drop operationm,
all wupdates within the transaction are undone;
therefore, the data base remains in the state it
was in before the beginning of the transaction.

If the application program fails to commit a
transaction because of system or program failure,
automatic recovery is performed; that 1is, the
transaction is dropped and the data base is re-
stored to its state before the beginning of the
transaction.

Transaction processing also provides an application
program with the ability to determine the point at
which to restart processing after a system fail-
ure. The application program can use this feature
to determine the last transaction that was com-
mitted before the system failure occurred. The
program can then determine the point at which
processing should be restarted.

Immediate Return

The immediate return feature of CDCS provides COBOL
and FORTRAN application programs with the ability
to receive an immediate response from CDCS when
either a resource conflict or a fatal error occurs.
When this feature is utilized, CDCS returns control
to the application program.

Resource conflicts occur when CDCS attempts to gain
access to realms or records locked by other users.
Normally, the application program waits for CDCS to
gain access to these realms or records; however,
when the immediate return feature is enabled, the
application program can contain logic to determine
the action taken in this situation.

When a fatal error occurs and the immediate return
feature is enabled, CDCS disconnects the applica-
tion program and disables the immediate return
feature. A FORTRAN or COBOL program can complete
any processing necessary before program termination.

The immediate return feature cannot be enabled
before CDCS is invoked.

INPUT/OUTPUT PROCESSING

The input/output capabilities of CRM handle all
operations concerning the physical storage and
access of data in a data base. When an application
program requests execution-time processing of
input/output statements for data base files, CDCS

60485300 A

directs the request to CRM. CRM processes the
requests according to the requirements and restric-
tions for conventional files. Because CRM handles
all the input and output processing, an application
program might receive CRM errors.

All data base files supported by CDCS are coaven-
tional extended CYBER Record Manager Advanced
Access Methods (AAM) files. File organization
information is stored in the schema directory.
This information includes the data item that is
defined as the primary key. Records are stored in
the data base by the value of the primary key.
Duplicate primary keys are not permitted in a data
base file.

The data administrator can also define alternate
keys. The value of the primary or alternate keys
can be used to access records in data base files.

PROCESSING THROUGH CDCS AND TAF

CDCS supports the Transaction Facility (TAF), which
allows processing through TAF under NOS. Process-
ing through TAF provides for high speed handling or
repetitive executions of a relatively small number
of jobs called tasks. The tasks can be executed by
many different people from many locations. A task
usually performs one of the following manipulations
on a data base:

Stores a new record
Alters or deletes an existing record

Produces formatted output

An example of TAF~-transaction processing is an
online banking system. Tellers in many locations
use terminals connected online to a central proc~-
essor to make deposits or withdrawals for an account
and to print confirmations. A task (a deposit or
withdrawal) 1is initiated by a teller; once ini-
tiated, the task is executed through TAF and CDCS.
The task can communicate with the terminal through
TAF and the Network Access Method (NAM) and can
initiate subsequent tasks.

Figure 1-5 shows the CDCS/TAF interface. Access to
the data base through TAF is concurrent with access
in both batch and interactive modes. All access to
the data base is monitored by CDCS.

Special commands must be used for processing through
TAF. Refer to the Transaction Facility reference
manual for information about these commands.

In this manual, any reference to a tramsaction or
to transaction processing refers to data base
operations and not to TAF operations.



N————1
TASK : MASTER
LIBRARY. QIRECTORY)

N— 1

TRANSACTION, ' ‘

- DATA
NAM - TAF - CDCS BASE

-

S

LOG
FILES

S—

]

A
\

]
Y

TRANSACTION,,

Figure 1-5. CDCS/TAF Interface

60485300 A

D)

J )



e

COBOL INTERFACE

COBOL application programs can be used to access
and manipulate a data base controlled by CYBER Data
Base Control System (CDCS). The COBOL interface
with CDCS consists of the COBOL subschema, the
COBOL statements and routines used to access the
data base, and the status checking elements avail-
able to a COBOL program.

In this section a basic knowledge of COBOL is
assumed. The COBOL reference manual should be
consulted for detailed information about COBOL.

COBOL SUBSCHEMA

The DMS-170 data base files that are to be accessed
by a COBOL application program must be described in
a directory called a COBOL subschema. The data
administrator, working with the application program-
mers, is responsible for creating the subschemas.

When the subschema is compiled, a listing is pro-
duced. The 1listing provides information required
by the application programmer to code the COBOL
application program. The data administrator should
provide the application programmer with a compila-
tion listing of the subschema.

Some information required to access data base files
is not included in the subschema listing. It is
the responsibility of the data administrator to
provide the application programmer with any neces-
sary additional information.

This subsection documents the information provided
by the subschema listing and the additional infor-
mation that the data administrator must provide
when the information is necessary for data base
processing.

SUBSCHEMA LISTING

A subschema compilation 1listing can be used to
obtain data names, item descriptors, and other
information needed to process a realm. If a list-
ing of the subschema used by the application program
is not available, the parameter LO=M can be speci-
fied on the COBOL5 control statement. Specification
of this parameter results in a listing that con-
tains the description of each data item defined in
the referenced subschema.

The information provided by the subschema is indi-
cated by the following alphabetic list of items.
Not all items are included 1in every subschema;
those items that always appear in the subschema
listing are so indicated. Figure 2-1 shows an
example of each item in a sample subschema.

60485300 A

Alias names

The Alias Division identifies the data
names and the names of records and realms
that are used in the subschema in place of
the name used in the schema. The name that
follows the keyword BECOMES in the AD clause
is the name that must be referenced in a
COBOL application program.

Alternate key

The notation ALTERNATE KEY indicates a data
item that is an alternate record key. The
realm for which the data item is an alter-
nate key is also indicated.

Checksum

Always present. A checksum is a one-word
attribute generated by the DDL compiler for
the subschema. The checksum of the sub-
schema referenced by the COBOL application
program 1is incorporated in the object
program at compilation time and wmust agree
at execution time with the checksum asso-
ciated with the subschema in the master
directory. Refer to the subsection Recom-
pilation Guidelines for more information.

Data description entry (name and description)

Always present. Data description entries
are entries identified by a level number 02
or greater. Data description entries
identify the name and description of data
items. For any data name described by only
a PICTURE clause, the usage of DISPLAY is
assumed. Any USAGE clause in the subschema
indicates usage as described in the COBOL
reference manual. The sample subschema
includes only a few of the data description
entries that could be in a subschema. For
detailed information about data description
entries, refer to the CDCS 2 Data Adminis-
tration reference manual.

Only data base 1items represented by data
description entries are available to the
application program. Data read from the
data base and received in the working stor—
age area of an application program is mapped
according to the subschema description.

Group item

A group item is made up of other data items.
The lower level number, 03 in the sub-
schema, denotes the group item name. The
group item name can be used in COBOL state-
ments to qualify the name of a data item
that is in the group item.

2-1



Cc

¢ ¢

C

(2 40 | 399ys) ewdyssqns 10807 o1dues -2 dunbLy

4

/@ﬁ

/

€L TYNIGNO »» "(%)X 3¥NLIId NOTLY207 €0
*L-dW02 ST 39vsn
2L IYNIQYO *x 66A(8)6 3UNLIId QLA-NOILVSN3dWO) €0
"L-dW0d SI 39vsn
1L IVNIQHO ** 66A(Y)6 3UNLIIJ QLA-SY¥NOH €0
0L  TYNIQ¥O ¥ *66A ()6 3YNLII NOILVSNIK0I-10 SO
6  TYNIQHO * *66A(£)6 3¥NLIId SYNOH-10 SO
8  IYNIQYO »x "66ACY)6 3¥NLITd  NOTLYSN3JWOI-93Y SO
L IUNIQYO »x “66A(S)6 3¥NLITd S¥NOH-93¥ SO
*S3WIL 2L S¥NII0
9  TYNIQNO *x 1-dW0J SI 39¥SN  NOILVSN3JWOI~-ATHLNOW €0
S CTYNIGYO ** *(2)X 3NLIId 3002-ALI¥NI3S €0
9 IUNIQYO *¥ *(01)X 3ANLIId QI-19na0dd €0
€ IYNIQNO xx *(9)X 3¥NLIId ON-03S SO
Koy aofely — 2 TYNIGHO #x “(®X Janiiid —(QI-dW3 S0
I IYNIG¥O »x SATILYINOD €0
we3l dnouay os|e I4-YHOM NIHLIM xx \\ *J34-Y¥0M 1O
‘£ay pajeualeduo)d
8L TYNIQHO »x “ (%)X 3¥NLIId INIWL¥Yd3E €0
2L IYNIGYO »x 6 3¥NLITd 93A31-30V49 €0
9L  TYNIQYUO *x ¥ 3¥NLIId $SV13-80F SO
Sl IWNIQ¥0 #* *6666 3¥NLITd SLI9IC SO
9L IYNIGYO xx *666 3¥NLIId XI438d SO
€L IYNIGHO »» *666 3¥NLIId 3007-v3a¥V S0
2L IUNIQYO *x *ON-3INOHd S3NIJ3q3Y INOHd €0
Ll TYNIG¥O *x *(01)6 3¥NLIId ON-3NOHd €0
aweu ejeq N
uoL3diaossp ejeq .
LeuLp4o ‘ .
W93l BURYISqNS —m= 4  JYNIQHO *¥ “()V 3¥NLIId STYILINI-dW3 €0
€ TUNIGYO »+ *(02)V 3¥NLIId IWYN-LSYI-dW3 €0
*1~dK0J ST 39V¥sn
2 IYNIQHO »x 66A(9)6 3UNLIId A¥VIVS €0
3WeuU pJoddy . L TYNIQUO *»x °(8)X 3¥NLIId qI-dW3 €0
R0 TdH3 NIHLIM ¥+ - *)3¥-di3 10

“NOISIAIG G¥0J3¥

== *37I4-NYOM “33A07dWI QY

aueu w|eay

*NOISIAIG WIV3Y

“NOILYJ07 S3W0238 3402-201 viva qQv
©J34-dW3 S3K0I39 I3YJW3 qY0I3¥ avV

aweu seLly

P °334-3Y0M SIW0I38 I3¥80r QY0I3Y QY
“3TI4-NH0M S3N0238 TIV1I3AE0r WIV3Y QY

"NOISIAIQ SVITW

3ueU PWAYISYNS

auRU BWIYIS

\

= *9Q-9NTYNLIVINNYK NIHLIM T3INNOSY3d-1INdO¥d SS

“256+42°¢ 00 (62028)

°NOISIAIG 3TLIL

* 9NILSIT 3J¥NOS »

1S000
0s000
6%000
8%000
24%000
9%000
$%000
%000
£%000
24000
19000
0%000
6£000
8£000
2£000
9£000
S£000
%2000
££000
2¢000
1£000
0£000
62000
82000
42000
92000
22000
12000
02000
61000
81000
21000
91000
SL000
%1000
£1000
21000
L1000
0Lcoo0
60000
80000
20000
90000
$0000
%0000
€0000
20000
10000

60485300 A




(2 40 2 393ys) ewsydsqng 10807 dldues -2 3JnBiJ

wns23y)

2uey
Tiuey

U0L30L 4759y

ey uojje|ay

wieas pajeloosse
pue A3y ajeudally
wgeas pajeLoosse

pue A8y Ausewidq

°S33S d) %¢£°0
“SIILSONOVIA O
———- JINUNILNIVW 37114 40 ON3

“q3sn W) e00.llYy

*3137dW0J 144d

= 09142%22£001L%1999020 TINNOSY3d-1INA0¥d
VYW3HISENS

WNSHIZHI
——— JINVNILINIVW 37Id VW3HIS-ENS NI93a

= 33A077dW3 - V3¥VY

= J14-MYOM - Y3IUV _——»—SNIOI' 713¥-dW3

uopjely —

XXENY SJILSILVLS  NOILYI3Y¥

ANdNI 3JY¥NOS YW3HIS-ENS 40 GN3

Y

A\
\nrpmz 39 3000-ALTYNI3S 3WIHM IF¥-NUOM LITHLSIY

X

=134-dW3 ST Ny
“NOISIAIG NOILYI3Y

AT4-NY0M - WIV3Y ¥OJ G3Q33AN SI ONIddVW Q¥0IY
33A07dW3 - WIY3Y¥ ¥0d4 03433N SI SNIddVW 4¥0I3Y
3TTJ-YOM YI¥Y ¥0d AIILYONOD

= 33A0TdW3 VAUV ¥OJ IN3IWLAVCIQ

™= 33A07dW3 V34V Y04 QI-dW3

Prryey

EXERX
45000
95000
§S000
45000
£S000

AREXN
reRRY
9£000
££000
S1000
25000

100 NOTLVII3Y

AN AUVWINd
AN 3LVNYILTY
AN AVVWIYd

C C

™,

@\1\
1y

60485300 A

f@**\
(ﬁ=\



Major key

A major key 1s the leading data name of a
group item that is defined as a record key.
In this example, CONCATKEY 1is the group
item that is a record key. EMP-ID is the
major key and can be used in major key
processing.

Primary key

Always present for each realm included in
the subschema. The notation PRIMARY KEY
indicates each data item that is a primary
record key. The realm for which the data
item is a primary record key is also indi-
cated.

Ranks of the relation

The realms joined in a relation are listed
by realm name in oxrder of rank. The first
realm listed has a rank of 1; the second, a
rank of 2; and so forth.

Realm (file) names

Always present. The Realm Division identi-
fies the realms available to the application
program. Unless ALL 1is specified, only
those realms included in the Realm Division
are available to the application program.

The complete realm name always appears in
the subschema listing on a line with the
notation PRIMARY KEY and the data name of
the primary key for the realm.

Record names, associated realms and data names

Always present. An 0l level data descrip-
tion identifies the record name. Each
record available to the application program
is included in the subschema listing.

The notation WITHIN identifies the partic-
ular realm associated with a record by
giving the first seven characters of the
realm name.

The data descriptions of 02 level or greater
that follow the record name identify the
data names that comprise the record.

The record name can be used in COBOL state-
ments to qualify any data name within the
record. .

Relation names

The RN clause in the Relation Division
identifies a relation name. An RN clause
is included for each relation available to
the application program.

Restriction

A RESTRICT clause in the Relation Division
identifies a restriction. If a restriction
is placed on a relation, only records that
meet all the qualification criteria speci-
fied in the RESTRICT clause are returned to
the application program when the relation
is read.

If the RESTRICT clause contains a data name
that is not included in the subschema, the
data name must be defined in the Data Divi-
sion of the program with the same usage as
the data name used for comparison. The
data name must be set to a value before any
read that uses the relation.

Schema name

Always present. The SS clause in the Title
Division identifies the schema. The schema
name follows the keyword WITHIN.

Subschema item ordinmal

Always present. The subschema item ordinal
is a unique identifier within a record that
is assigned to each data name in a sub-
schema when the subschema is compiled. A
subschema item ordinal is used in conjunc-
tion with the data base status block.

Subschema name

Always present. The SS clause in the Title
Division identifies the subschema name. An
application program must reference the sub-
schema in the SUB-SCHEMA clause by using
the subschema name.

INFORMATION PROVIDED BY DATA
ADMINISTRATOR

It is the responsibility of the data administrator
to provide the following information when it is
required for data base processing:

Constraints

If constraints are defined in the schema
and updates are likely to violate them, the
application programmer should be provided
with information about the constraints.
Refer to section 5 for more information
about constraints.

Join items of the relation

Files are joined in a relation by identical
data items that exist in two files. The
information about the join items is con-
tained in the schema. Usually, an applica-
tion programmer does not need to know the
join items to use a relation. Often the
programmer can determine the join items
from the subschema listing. (Refer to sec-
tion 5 for more information on relations.)
However, 1in some situations, the data
administrator should provide the applica-
tion programmer with the information about
join items.

Permanent file information for the subschema
library

The subschema directory must be available
for compilation of the COBOL application

program; therefore, the application pro-
grammer must be provided with the infor-
mation required to attach the subschema
library file containing the subschema
directory.

60485300 A

J )

J )



L

Privacy keys

If an area has been defined with an access
control lock in the schema, a USE FOR ACCESS
CONTROL statement must be included in the
COBOL application program to access the
realm. The application programmer must be
provided with all access control keys

required for data base access. (Refer to
the description of the USE FOR ACCESS
CONTROL Declarative Statement subsection

for further information.)

Requirements imposed by any data base procedure

If data base procedures are defined in the
schema, the application programmer must be
provided with information required by the
data base procedures.

Transaction update limits

If limits have been imposed on the number
of transactions allowed for all users of
the schema, the application programmer
should be provided with this information.

Version name

If alternate data base versions are defined
for the data base, the application program-
mer must be provided with information about
the name and use of the alternate data base
versions.

SUBSCHEMA DIRECTORY

When the subschema source input is compiled, the
object subschema, called the subschema directory,
is generated. The subschema directory is usually
included in a subschema library. The subschema
directory must be available to the COBOL compiler;
therefore, the subschema library must be attached
before compilation.

During compilation, the COBOL compiler includes in
the COBOL program the descriptions of all files,
data names, and relations that are described in the
subschenma.

PROGRAM CODING

Coding a COBOL program that accesses a data base is
basically the same as coding any other COBOL pro-
gram. Table 2-1 shows the COBOL statements and
routines that can be used. This table also briefly
describes the statements and routines and indicates
their position in a COBOL program. The statemeats
and routines are described in more detail in the
following subsections. The following subsections
also describe restrictions and requirements imposed
on the COBOL program.

60485300 A

ENVIRONMENT DIVISION

In the Environment Division, the SPECIAL-NAMES
paragraph and the FILE-CONTROL paragraph are af-
fected by subschema use. The SUB-SCHEMA clause is
required in the SPECIAL-NAMES paragraph. Only
restricted File-Control entries can be specified
for data base files.

SUB-SCHEMA Clause

The SUB-SCHEMA clause, shown in figure 2~2, appears
in the SPECIAL-NAMES paragraph and is required to
identify the subschema and acknowledge subschema
use.

SUB-SCHEMA IS subschema-name

Figure 2-2. SUB-SCHEMA Clause Format

Subschema-name specifies the 1- to 30-character
subschema name, which is obtained from the Title
Division of the subschema. The subschema directory
must reside on the file identified by the D param-
eter of the compiler call statement.

File-Control Entry

The File-Control entry is not required; however, it
can be included for compatibility with previous
versions of CDCS and COBOL. It must be included if
a FILE STATUS clause is used. In the FILE-CONTROL
paragraph a limited File-Control entry can be coded
for any realm for which a FILE STATUS clause applies
in returning CRM errors and end-of-file status to
the program. If the PFILE-STATUS clause is to be
used, the File-Control entry must include the SELECT
clause to specify the realm name and the ASSIGN
clause to specify the local file name associated
with the realm, as well as the FILE STATUS clause
itself. (The local file name in the ASSIGN clause
is ignored, however, because the file 1is not
attached at the user control point.) If no File-
Control entries are specified, the FILE-CONTROL and
INPUT-OUTPUT SECTION headers are not required.

The file-name for the SELECT clause 1is ob-
tained from the Realm Division of the subschema;
implementor-name—-1 is the first 7 characters of the
realm name.

DATA DIVISION

File Description and associated Record Description
entries for a realm are contained in the COBOL sub-
schema. Therefore, the File Section in the Data
Division of a COBOL program must not include an FD
entry or Record Description entry for any realm.
Files that are not data base files can be described
in the File Section.



TABLE 2-1. COBOL STATEMENTS AND ROUTINES

2-6

Statement Function Position in Program
Establishing and Terminating Data Base Access
SUB-SCHEMA Identifies the subschema to be used by Must appear in the SPECIAL-NAMES
the program or subprogram. paragraph of the Environment Division.
DB$VERS Changes the data base version used by Anywhere in the Procedure Division as
an application program. long as no realms are open; must not ap-
pear in a transaction.
Opening and Closing a Realm or Relation
OPEN Initiates processing of a realm. Anywhere in the Procedure Division,
realm except within a transaction; can only
be executed when the specified realm is
closed.
OPEN Initiates processing of the realms Anywhere in the Procedure Division,
relation Joined in a relation. except within a transaction; can only be
executed if the realms in the specified
relation are closed.
CLOSE Ends processing of a realm. Anywhere in the Procedure Division,
realm except within a transaction; can only be
executed if the specified realm is open.
A realm can be opened or closed any
number of times in the same run-unit.
CLOSE Ends processing of the realms joined Anywhere in the Procedure Division,
relation in a relation. except within a transaction. The realms
in a relation can be opened and closed
any numbers of times in the same run-
unit.
Manipulating a Data Base
START Logically positions a realm for sub- Anywhere in the Procedure Division after
realm sequent retrieval of records through the relevant realm is opened.
a sequential READ statement.
START Logically positions the root realm of Anywhere in the Procedure Division after
relation the specified relation for subsequent the relevant realm is opened.
retrieval of records through a READ
relation statement.
READ Transfers data from a record in the Anyvwhere in the Procedure Division after
realm specified realm to the data items in- the relevant realm is opened.
cluded in the subschema description of
the record.
READ Transfer data from a record in each of Anywhere in the Procedure Division after
relation the realms joined in the relation to the relevant realm is opened.
the data items included in the sub-
schema descriptions of the records.
C.1OK Establishes a lock that prevents Anywhere in the Procedure Division after
other programs from updating the the relevant realm is opened, except
the specified realm. within a transaction.
C.UNLOK Releases a lock on a specified realm; Anywhere in the Procedure Division after
releases any locks the program holds the relevant realm is opened, except
on records in the specified realm. within a transaction.
DB$LKAR Establishes a lock on the specified Anywhere in the Procedure Division after

realm that prevents other programs
from reading and/or updating the realm.

the relevant realm is opened, except
within a transaction.

60485300 A

M



C#ﬁ?\
G@R\

(kﬁ‘

TABLE 2-1. COBOL STATEMENTS AND ROUTINES (Contd)

Statement Function Position in Program
Manipulating a Data Base (Contd)

DELETE Logically removes a record from a Anywhere in the Procedure Division after
realm. the relevant realm is opened; should be

preceded by READ, C.LOK, or DB$LKAR.

REWRITE Logically replaces a record in a Anywhere in the Procedure Division after
realm. the relevant realm is opened; should be

preceded by READ, C.LOK, or DBSLKAR.

USE FOR Establishes the right of a program to Must be the first sentence after a

ACCESS access a realm or realms, section header within the declaratives

CONTROL portion of the Procedure Division; must
not appear within a transaction.

USE FOR Identifies the procedure to be used Must be the first seutence after a

DEADLOCK when a deadlock situation occurs. section header within the declaratives
portion of the Procedure Division.

WRITE Causes a record to be stored in a Anywhere in the Procedure Division
realm consisting of the current after the relevant realm is opened.
values of the data items included
in the subschema description of
the record.

Processing a Data Base Transaction

DB$ASK Obtains the restart identifier Anywhere in the Procedure Division,

assigned by CDCS. except within a transaction. Normally,
DBSASK is specified before a trans-
action is initiated.

DB$BEG Identifies and begins a transaction. Anywhere in the Procedure Division after
the relevant realm is opened; trans-
action processing must be allowed for
the schema.

DB$CMT Causes all updates of a successful Anywhere in the Procedure Division after

transaction to be made permanent. the associated DB$BEG; a tramsaction
must have been initiated.

DB$DROP Cancels an active transaction; the Anywhere in the Procedure Division after
records updated within the transaction DB$BEG but before DB$CMT.
are restored to the states that they
were in before the transaction began.

DBSGTID Determines the appropriate place to Anywhere in the Procedure Division,
restart transaction processing when usually in the program logic used when
when a program is recovering from a recovering from a system failure.
system failure.

Miscellaneous

DB$DBST Communicates the location and length Anywhere in the Procedure Division.
of the data base status block.

DBSRPT Defines a recovery point to CDCS. Anywhere in the Procedure Division,

except within a tramsaction.

DBSWAIT Forces a deadlock situation when Anywhere in the Procedure Division after
CDCS is running as CDCSBTF so that the relevant realm is opened.
deadlock code can be tested.

Note: Other routines that provide status information are available; however, the use of DB$DBST is

recommended.

60485300 A

2-7




A database status block, described later im this
section, can be defined in the Working-Storage
Section or the Common-Storage Section of a COBOL
program to provide CDCS with an area of memory to
which it can return error and status information.

PROCEDURE DIVISION

In the Procedure Division, a data base file is
processed as 1f it had been described in the File
Section of the Data Division. Record names and
data names are obtained from the Record Division of
the subschema as described in the preceding sub-
section. Some statements cannot be wused when
accessing a data base. A data base can be proc-
essed using any of the Procedure Division state-
ments except the following:

ACCEPT

DISPLAY

GIVING phrase of SORT or MERGE
USING phrase of MERGE

Some of the Procedure Division statements and
routines cannot be used within a data base trans-
action. (Any reference to a transaction in this
section refers to a data base transaction.) A
transaction begins when the DB$BEG routine is
entered and includes any statements used for up-
dates within the transaction. A tramsaction ends
when either the DBSDROP or the DBSCMT routine is
entered.

The following subsections describe the Procedure
Division statements and routines used to access a
data base and state whether they can be used within
a transaction. The statements are listed alpha-
betically.

CLOSE Statement

The CLOSE statement, shown in figure 2-3, ends
processing of the specified realm or of the realms
joined in the specified relation. The CLOSE state-
ment is not allowed within a transaction.

Format 1:

CLOSE realm-name-1 [, realm—name-2] ...

Format 2:

CLOSE relation-name-1 [, relation-name-2] ...

Figure 2-3. CLOSE Statement Format

The CLOSE realm statement (format 1) terminates the
availability of one or more specified realms. This
statement is a subset of the format 1 CLOSE state-
ment that appears in the COBOL reference manual.
In the CLOSE realm statement, realm-name specifies
the realm to be closed.

2-8

The CLOSE relation statement (format 2) terminates
the availability of each of the realms comprising
the specified relation. The CLOSE relation state-
ment is performed as 1if a separate close were
executed for each realm, in the order of rank of
the realms in the relation. Realms closed by a
CLOSE relation statement should not be explicitly
closed by a CLOSE realm statement.

C.DMRST Routine

The C.DMRST routine, shown in figure 2-4, obtains
the status of the realms within a relation. This
routine scans the realms in the order the realms
are traversed, beginning with the root realm (the
realm in a relation with rank 1) and continuing
until a nonzero error code is encountered or all
realms have been scanned. C.DMRST should be entered
after execution of a READ relation statement to
determine whether an error occurred during the
relation read operation and on which realm the
error occurred. The C.DMRST routine can be exe-
cuted as many times as needed to check for errors
or relation conditions on the remaining realms in
the relation.

ENTER "C.DMRST" USING relation-name,

rlm-name, err—code

Figure 2-4. C.DMRST Routine Format

The USING phrase specifies the name of the relation
to be checked for file status and two data items
for returned informatiom.

If an error, a null condition, or a control
break occurs for a realm, rlm—-name receives the
implementor-name (the local file name) of the realm.
If none of the preceding conditions occur, the
contents of rlm-name are undefined. Rlm-name must
be specified as a word—aligned (synchronized left)
elementary data item described as PICTURE X(7).

If an error, a null condition, or a control break
occurs in a realm, err-code receives the CDCS status
or error code. If no errors, null records, or
control breaks occur on any of the realms in the
relation, err-code receives a zero. Err-code
must be specified as a numeric integer data item
with a size greater than two and a usage of
COMPUTATIONAL~-1.

The use of the DBSDBST routine 1is recommended
rather than the use of the C.DMRST routine, since
the DB$DBST routine provides the user with more
relevant information about relation processing.

C.I0ST Routine

The C.IOST routine, shown in figure 2-5, obtains
CRM error codes. The CRM error codes are returned

for the error that occurred while processing the
realm specified in the statement.

In the USING phrase, realm-name must specify the
name of the realm in which the error was detected.

60485300 A

JJ

JJ

(2



ENTER "C.IOST" USING realm-name, err-code,

err-type

Figure 2-5. C€.IOST Routine Format

Err-code receives the decimal equivalent of one of
the CRM error codes (an octal value) listed in the
CRM Advanced Access Methods reference manual.
Err-code should be specified as a 3-digit integer
described as USAGE IS COMPUTATIONAL-1 in its Data
Description entry.

Err-type receives either the letter T or the letter
F (the severity of the error as classified by
COBOL); the significance of these letters can be
found in the COBOL reference manual. Err-type must
be specified as a l-character alphanumeric data
item described in its Data Description entry as
PICTURE X.

The use of the DBS$DBST routine is recommended
rather than the use of the C.IOST routine. The use
of the DBSDBST routine provides the user with more
relevant information than this routine provides.

C.LOK Routine

The C.LOK routine, shown in figure 2-6, prevents
other jobs from updating the specified realm until
either the C.UNLOK routine is entered or a CLOSE
statement is entered. Once the realm has been
locked, other programs can access it through read,
but not update, operations. The realm must be
successfully opened before it can be locked. The
realm lock provided by this routine is comparable
to the protected lock provided by the DBSLKAR
routine. (See the DBS$LKAR Routine subsection for
more information about realm locks.) The C.LOK
routine is not allowed within a transaction.

The USING phrase indicates the realm to be locked.
Realm-name must be included in the subschema.

ENTER "C.LOK" USING realm-name

Figure 2-6. C.LOK Routine Format

C.UNLOK Routine

The C.UNLOK routine, shown in figure 2~7, releases
the lock on a specified realm; the routine also
releases all record locks the run-unit holds on
records in the specified realm. The C.UNLOK rou-
tine is not allowed within a transaction.

The USING phrase indicates the realm to be unlocked.
Realm~name must be included in the subschema.

ENTER "C.UNLOK" USING realm-name

Figure 2-7. C.UNLOK Routine Format

60485300 A

DB$ASK Routine

The DB$ASK routine, shown in figure 2-8, obtains
information for a program restart operation after a
system failure. This routine is normally specified
in the restart section of the run-unit.

ENTER "DBSASK" USING restart-id,

tran-id, err-code

Figure 2-8. DB$ASK Routine Format

In the USING phrase, restart-id identifies the
1- to 10-character restart identifier that was
assigned to the program prior to the system fail-
ure. Restart-id wmust be specified either as a
nonnumeric literal or as a word-aligned (synchro-
nized left) alphanumeric data item described as
PICTURE X(10) in its Data Description entry.

Tran-id veceives the 1~ to 10-character transaction
identifier of the last completed transaction. The
tran-id that is returned is a left-justified and
blank field in the 10-character field. Tran-id is
returned only if prior to the system failure a
transaction associated with the specified restart
identifier was committed. Tran-id must be speci-
fied as a word-aligned (synchronized left) alpha-
numeric data item described in its Data Description
entry as PICTURE X(10).

Tran—id receives the characters *¥%kkkkkkix (10
asterisks) if the restart identifier is unknown to
CDCS. The restart identifier is unknown to CDCS if
the wrong value is specified for restart-id or if
the run-unit terminated normally. If the run-unit
terminated normally, a new restart identifer should
be obtained before processing continues.

If a transaction identifier 1is returned, no new
restart 1identifer need be obtained; the restart
identifer specified as restart-id is reassigned to
the run-unit.

If no transaction has been committed for the speci-
fied restart identifier, tran~id receives spaces.
The DBSASK routine completes execution normally.
No new restart identifier need be obtained; the
restart identifier specified as restart-id is
reassigned to the run-unit.

If an error occurs in the execution of the DB$ASK
routine, err-code receives the appropriate 3-digit
integer error code. Err-code should be described
as USAGE IS COMPUTATIONAL-]1 in its Data Description
entry.

Error information 1is also returned in the data base
status block if ome 1is supplied. (Refer to the
Data Base Status Block subsection for more infor-
mation about this feature.)

The user must ensure that all of the parameters of

this routine are specified. Omission of any
parameter causes indeterminate results.

2-9



DB$BEG Routine

The DBS$BEG routine, shown in figure 2-9, defines
the beginning of a transaction to CDCS. Records
that are subsequently updated remain exclusively
locked until the transaction is either completed or
dropped. Updates (write, rewrite, and delete oper-
ations) are considered temporary until the trans-
action is successfully completed. If an attempt is
made to execute the DB$BEG routine when transaction
processing is not allowed for the schema, a fatal
error occurs. Refer to section 5 for a description
of tramsaction processing.

ENTER "DB$BEG" USING tran-id, err-—code

Figure 2-9. DBS$BEG Routine Format

In the USING phrase, tran-id is the 1- to 10-
character transaction identifier supplied by the
user. Tran-id should be specified as either a
nonnumeric literal or as a word-aligned (synchro-
nized left) alphanumeric data item described in its
Data Description entry as PICTURE X(10).

Err-code receives the appropriate 3-digit integer
CDCS error code 1f an error occurs during the
execution of the DB$BEG routine. Err-code should
be described as USAGE is COMPUTATIONAL-1 in its
Data Description entry.

The user must ensure that all of the parameters of
this routine are specified. Omission of any param-
eter causes indeterminate results.

DB$CMT Routine

The DB$CMT routine, shown in figure 2-10, indicates
the completion of a transaction to CDCS. Execution
of the DB$CMT routine causes all updates made
within the present transaction to become permanent;
all records locked within the transaction are re-~
leased and made accessible to other application
programs. If a transaction has not been initiated
(refer to the DB$BEG routine) and an attempt is
made to execute the DB$CMT routine, a fatal error
occurs.

ENTER "DB$CMT" USING err-code

Figure 2-10. DBSCMT Routine Format

In the USING phrase, err-code receives the 3-digit
integer CDCS error code if an error occurs during
the execution of the DB$CMT routine. Err-code must
be described as USAGE IS COMPUTATIONAL-1 in its
Data Description entry. Err—code must be provided;
if err-code is omitted, results are indeterminate.

DB$DBST Routine

The DB$DBST routine, shown in figure 2-11, communi-
cates the location and length of the data base
status block to CDCS. Only one data base status
block can exist at a time for a run-unit. This
routine can be called at any time in a COBOL pro-
gram. Each time DBS$DBST is entered, the status
block is intialized to zero or spaces; therefore,

ENTER "DBSDBST" USING status-block, len

Figure 2-11. DB3$DBST Routine Format

this routine should not be entered after a request
to CDCS because status elements could be set after
the request. If DB$DBST 1s called more than once
in a program, the data base status block defined in
the last call executed is the one that is updated
by CDCS.

The data base status block specified in the USING
phrase as status-block receives data base status
information after each CDCS request. Status-block
must be specifed as the Ol level data-name of the
group item or table to which the information is
returned.

Len identifies the length of the data base status
block. Len must be specified as a COMPUTATIONAL-1
data item which defines the length of the block in
words. (Refer to the Data Base Status Block sub-
section for more information.)

DB$DROP Routine

The DB$DROP routine, shown in figure 2-12, cancels
the current transaction. Execution of the DBSDROP
routine causes CDCS to restore the records updated
within the transaction to their original states
that existed just before the transaction was ini-
tiated (refer to the DB$BEG routine). Execution of
the DB$DROP routine also causes CDCS to release all
record locks established during the transaction.
If a transaction has not been initiated and an
attempt to execute the DBS$DROP routine is made, a
fatal error occurs.

ENTER "DB3DROP" USING err-code

Figure 2-12. DB$DROP Routine Format

In the USING phrase, err-code receives the appro-
priate 3-digit integer CDCS error code if an error
occurs during the execution of the DB$DROP rou-
tine, Err-code must be described as USAGE IS
COMPUTATIONAL-1 in 1its Data Description entry.
Err-code must be provided; if err-code is omitted,
results are indeterminate.

DB$GTID Routine

The DB$GTID routine, shown in figure 2-13, obtains
the restart identifier assigned by CDCS. This
identifier can subsequently be used to determine
the status of a transaction when a system failure
occurs. This routine must unot appear within a
transaction. If the data administrator has not
assigned a restart identifier file to the data
base, this routine cannot be used; if the routine
is used, an error results.

ENTER "DBSGTID" USING restart-id, err-code

Figure 2-13. DB$GTID Routine Format

60485300 A

)

JJ

™
™



3

D)

If the DBYGTID routine executes successfully, CDCS
returns the assigned restart identifier. The
restart identifier should be saved for use in case
of a system failure. Because the restart identi-
fier is saved for recovery of data base files, it
should not be saved on a data base file. The appli-
cation should contain logic to save the restart
identifier outside of the progranm.

In the USING phrase, restart-id receives the 1- to
10-character restart identifier. Restart-id must
be specified as a word-aligned (synchronized left)
alphanumeric data item described as PICTURE X(10)
in its Data Description entry.

Err-code receives the appropriate 3-digit integer
CDCS error code if an error occurs during the exe-
cution of the DB$GTID routine. Err-code should be
described as USAGE IS COMPUTATIONAL-1 in its Data
Degscription entry.

The user must ensure that all of the parameters of
this routine are specified. Omission of any param—
eter causes indeterminate results.

DB$LKAR Routine

The DB$LKAR routine, shown in figure 2-14, provides
two modes of locking a realm: exclusive and pro-
tected. Exclusive locking prohibits concurrent
reading or updating of the realm; protected locking
allows concurrent reading of a realm, but prohibits
concurrent updating. A realm lock remains in effect
until either the C.UNLOK routine is entered or the
realm is closed (a CLOSE statement is entered).
For transaction processing, the use of this routine
is not recommended. The DB$LKAR routine is not
allowed within a transactiom.

ENTER "DBSLKAR" USING realm-name,

Lock-type, err—code

Figure 2-14. DBSLKAR Routine Format

When a realm has been locked, the recommended
procedure for deleting or rewriting a record in
that realm is to read the record and then perform
the delete or rewrite operation. This procedure
offers protection for the data base, because pro-
gram logic can check for an error on the read
before proceeding with the delete or rewrite.
Another procedure can also be used: the value of
the primary key can be set to the value of the key
of the record to be deleted or rewritten, and then
the delete or rewrite operation can be performed.
This procedure does not offer as much protection to
the data base.

The use of a realm lock limits access by other
users to the realm; also, it overrides the record
lock and the checking capabilities through the
record lock. For these reasons, the DBSLKAR rou-
tine should not be used without careful consider-
ation. Refer to section 5 for more information
about using realm locks.

In the USING phrase, realm-name specifies the realm

to be locked. Realm-name must be included in the
subschema.

60485300 A

Lock-type specifies the type of locking desired.
Lock-type can be specified as either a nonnumeric
literal or as a word-aligned (synchronized 1left)
alphanumeric data item described as PICTURE X(9) in
its Data Description entry. The data item must
have a value of EXCLUSIVE or PROTECTED. This value
can be given to the data item or specified in a
value clause. EXCLUSIVE and PROTECTED have the
meanings described previously.

Err-code receives the appropriate 3-digit integer
CDCS error code if an error occurs during the exe-
cution of the DB$LKAR routine. Err-code must be
described as USAGE IS COMPUTATIONAL-1 in its Data
Description entry.

The user must ensure that all of the parameters of
this routine are specified. Omission of any param-
eter causes indeterminate results.

.DB$RPT Routine

The DB$RPT routine, shown in figure 2-15, defines a
recovery point to CDCS. This is a point to which
the data base is restored so that the program can
be easily restarted should recovery of the data
base become necessary.

ENTER "DB3RPT" USING rpt-num, comment

Figure 2-15. DB3RPT Routine Format

When the DB$RPT routine executes, the COBOL program
is suspended until three events occur in the fol-
lowing order:

1. All 1/0 buffers for data base realms for this
schema are flushed.

2. A recovery point log is force written to the
log file for the data base.

3. The quick recovery file for the data base 1is
emptied.

By using this routine, the user is assured the data
base can be recovered to its current state (barring
such disasters as simultaneous destruction of both
the data base and the journal log file).

The creation of a recovery point does incur over-
head since CDCS activity halts for all users until
the preceding events have occurred. The data
administrator should be consulted to determine 1f
the use of a recovery point is applicable to a
particular file.

In the USING phrase, rpt-num receives a unique
recovery point number upon execution of the DB$RPT
routine. Rpt-num is a numeric integer data item
that must be described as USAGE IS COMPUTATIONAL-1
in its Data Description entry.

Comment specifies a 1- to 30-character user-supplied
explanatory message that is writtem to the CDCS
journal log file along with the recovery point
number. Comment must be specified as a word-aligned
(synchronized left) alphanumeric item of 30 charac-
ters in length described in its Data Description
entry as PICTURE X(30).

2-11



DB SIR Routine

°
The DB$SIR routine, shown in figure 2-16, enables
and disables the immediate return feature., If the
jmmediate return feature is enabled, a COBOL appli-
cation program can receive an immediate response
from CDCS when resource conflicts or fatal errors
that are caused by resource conflicts occur. If
the immediate return feature is disabled, a COBOL
application program cannot provide program logic to
determine the action taken when resource conflicts
or fatal errors that are caused by resource con-
flicts occur,

ENTER "DBSSIR'" USING item—name

Err-code receives the appropriate 3-digit integer
CDCS error code if an error occurs during the exe-
cution of the DB$VERS routine. Err-code must be
described as USAGE IS COMPUTATIONAL-1 in its Data
Description entry.

The user must ensure that all of the parameters of
this routine are specified. Omission of any param—
eter causes indeterminate results.

Figure 2-18 shows an example of a COBOL program
using the DBYVERS routine. The program begins by
using version MASTER. The DBSVERS routine 1is
specified to change the version used to BRANCHI,

Figure 2-16. DB$SIR Routine

In the USING phrase, item—-name determines whether
the immediate return feature is enabled or disabled.
If item-name is not equal to zero, immediate return
is enabled. If item—-name is equal to zero, immedi-
ate return is disabled. Item—name must be described
in its Data Description entry as COMPUTATIONAL-1,
Refer to section 5 for more information about the
immediate return feature.

A data base status block must be defined if a COBOL
program is to be able to detect a fatal error or
resource conflict. Refer to the Data Base Status
Block subsection later in this section for more
information.

DB$VERS Routine

The DB$VERS routine, shown in figure 2-17, can be
uged to change versions associated with a COBOL
application program during execution of the run~
unit; the routine can be executed several times
within the same run—unit, The DBS$VERS routine is
not allowed within a transaction. Before each
execution of DBSVERS, all of the subschema realms
associated with the program must be closed or a
fatal error results.,

ENTER "DBS$VERS" USING version-name, err-code

Figure 2-17. DB$VERS Routine Format

At the beginning of execution of any COBOL run-unit,
the use of version MASTER is assumed. Thus, if
alternate data base versions are not being used
(DBSVERS is not specified), the data base files
included in version MASTER are used. The permanent
files of version MASTER are always attached for the
run-unit by CDCS at the beginning of execution,
even if the DBS$VERS routine is the first executable
statement in the run-unit. Therefore, even though
a run—unit uses only alternate versions, all the
permanent files included in version MASTER must be
available to CDCS at the time of run—unit execution.

In the USING phrase, version-name specifies the 1-
to 7-character version name described in the master
directory for the schema being used. Version-name
can be specified as either a nonnumeric literal
or a word-aligned (synchronized 1left) data name
described in its Data Description entry as PICTURE
X(7). (MASTER is a valid version name.)

2-12

PROCEDURE DIVISION.
OPEN I-0 PRODUCTS.

CLOSE PRODUCTS.
ENTER "DBSVERS™ USING "BRANCH1", ERROR-NO
OPEN I-0 PRODUCTS

CLOSE PRODUCTS.
STOP RWN.

Figure 2-18. COBOL Example Showing Use of
Version Master and an Alternate Version

DBSWAIT Routine

The DBSWAIT routine, shown in figure 2-19, can be
used to force a deadlock situation to occur when
CDCS is running as the CDCS Batch Test Facility
(CDCSBTF). Thus, the code that deals with recovery
from a deadlock can be tested. “The DB$WALT routine
should be called only if more than one run-unit is
being rum with CDCSBTF. When a run-unit issues a
call to DBSWAIT, execution of that run-unit is
suspended until all other user run—units have either
issued calls to DBSWAIT or completed execution.
Once all calls have been issued, the run—units are
released from suspension., The DB$WAIT routine can
be requested trom within a tramsaction.

ENTER "DBSWAIT"

Figure 2-19. DBS$WAIT Routine Format

DELETE Statement

The DELETE statement, shown in figure 2-20, removes
a record from a realm. This format is a subset of
the DELETE statement shown in the COBOL reference
manual.

DELETE realm-name RECORD

C; INVALID KEY imperative-statement]

Figure 2-20. DELETE Statement Format

60485300 b

J )

™
/ﬁﬂ%}



Before an attempt is made to delete a record, the
record must be locked either with a record lock or
with a realm lock. A protected record 1lock is
established when a READ statement is issued for a
realm opened for I-O. A protected record lock can
be established outside of a transaction or within a
transaction. An exclusive record 1lock is estab-
lished when the delete operation is performed
within a transaction. A realm lock is established
by entering either the C.LOK routine or the DB$LKAR
routine. The realm lock overrides the record lock.

The recommended procedure for deleting a record is
to precede the DELETE statement with a READ state-
ment ., When the DELETE statement executes, the
record is deleted. The value of the primary key
should not be changed between the read and the
delete of the record, because a record is identi-
fied by the primary key value. This procedure
ensures that the record deleted is the correct
record.

This procedure must be followed when deleting a
record with a protected record lock outside of a
transaction. When this procedure is followed, CDCS
checks the value of the primary key to ensure that
it has not changed since the read. If the value of
the primary key has changed, CDCS issues a diag-
nostic message and ignores the delete request.

This procedure should be followed when deleting a
record within a transaction or when deleting a
record protected by a realm lock. If the value of
the primary key is changed before the delete oper-—
ation, the wrong record could inadvertently be
deleted.

Refer to section 5 for information about both
exclusive record locks and realm locks.

In the statement, realm-name specifies the realm
from which the record is removed. The realm must
have been included in the subschema.

The imperative statement of the INVALID KEY phrase
is executed when the record to be deleted (as
specified by the primary key) is not found in the
realm.

OPEN Statement

The OPEN statement, shown in figure 2-21, prepares
a realm or a relation for processing. The OPEN
statement must be successfully executed prior to
execution of any other statement (except USE FOR

ACCESS CONTROL) that references a realm or the
realms associated in a relation. The OPEN state-
ment is not allowed within a transaction.

The OPEN realm statement (format 1) prepares a
realm for processing and positions the file at the
beginning of information. This statement is a
subset of the format 1 OPEN statement found in the
COBOL reference manual. Realm-name must be de-
scribed in the subschema. A specific realm can be
opened more than once by a run-unit as long as an
intervening CLOSE statement precedes a subsequent
OPEN statement.

The OPEN relation statement (format 2) opens all
realms that are associated in a specified relation.
The statement is performed as if a separate open
were executed for each realm in the order of the
rank of the realms in the relation. Relation-name
must be included in the subschema. Relations are
normally opened for input only, but can be opened
for I-0 if locking of records read is desired or if
updating of the individual realms 1is desired.
Realms opened by an OPEN relation statement should
not be explicitly opened by an OPEN realm statement.

When the OPEN statement executes successfully, the
key of reference is the primary key of the first
record in the realm (in the root realm for an OPEN
relation statement). The FILE STATUS data item, if
any, is updated. Successful execution of the OPEN
statement makes the record associated with the
value of the primary key available to the run-unit;
it does not obtain or release a data record.

One of the keywords INPUT, OUTPUT, or I-0 must be
specified for the OPEN statement. These keywords
specify the type of processing allowed for a realm
as follows:

When a realm is opened for INPUT, only the READ
and CLOSE statements, and the C.LOK, C.UNLOK,
and DBSLKAR routines can be executed.

When a realm is opened for OUTPUT, only the
WRITE and CLOSE statements, and the C.LOK,
C.UNLOK, and DB$LKAR routines can be executed.

When a realm is opened for I-0, the READ, WRITE,
REWRITE, DELETE, and CLOSE statements, and
the C.LOK, C.UNLOK, DBSLKAR routines can be
executed.

Opening a realm for OUTPUT is valid only for
creation of a new realm; it is not valid for an
existing realm.

Format 1:

Format 2:

OPEN {

INPUT realm-name-1 [, realm-name-2 J...
OPEN { OUTPUT realm-name-3 [, realm-name-4 1...%...
I-0 realm-name-5 [, realm-name-61l...

INPUT relation-name-1 [, relation-name-2]... }
I-0 relation-name-3 [, relation-name-4]... s

Figure 2-21. OPEN Statement Format

60485300 A

2-13




READ Statement

The READ statement, shown in figure 2-22, makes a
record available to the application program from
either a specified realm or from the realms asso-
ciated with a specified relation. The realm or
realms must be opened for INPUT or I-O.

Format 1:
READ realm-name CNEXT] RECORD [INTO identifier]

[; AT END imperative~statement]

Format 2:
READ realm—name RECORD CINTO identifierl
C; KEY IS data-name]_

C; INVALID KEY imperative-statement]

Format 3:
READ relation-name [NEXT] RECORD

C; AT END imperative~statementl]

Format 4:
READ relation-name RECORD
[; KEY IS data-namel

C; INVALID KEY imperative-statement]

Figure 2-22, READ Statement Format

The READ realm statement (formats 1 and 2) can be
used to retrieve a logical record from a realm.
Realm-name must be included in the subschema.

A realm can be read either randomly or sequentially.
A realm can be read sequentially by the format 1
READ realm statement. This format of the READ
statement retrieves the next logical record with
the same key of reference from the realm. A realm
can be read randomly by the format 2 READ realm
statement. This format of the READ statement
retrieves the record indicated by the value of the
key from the specified realm; it can also be used
to establish the key of reference and to position a
realm that is to be subsequently read sequentially.

The READ relation statements (formats 3 and 4) can
be used to retrieve a record from each of the realms
associated with a specified relation. Relation—name
must be included in the subschema.

A relation can be read either sequentially or
randomly. The format 3 READ relation statement
reads a relation sequentially. The format 4 READ
relation statement reads a relation randomly. When
either of the READ relation statements executes
sucessfully, a record from each realm in the speci-
fied relation is available to the COBOL program.
(Refer to section 5 for more information about
reading relations.)

2-14

The NEXT phrase is for a sequential read of elther
a realm or a relation. The presence of this phrase
in the READ realm statement (format 1) or the READ
relation statement (format 3) specifies that the
next record or relation occurrence with the same
key of reference is to be retrieved. The next
record or relation occurrence is determined by the
collating sequence defined in the schema for the
realm or for the root realm of a relation. (The
data administrator can provide this information.)
The collating sequences are shown in appendix I.

The INTO phrase applies to the READ realm state-
ments (formats 1 and 2). This phrase moves the
record being read from the user’s work area asso-
ciated with the specified realm to the storage area
specified by identifier. The record is available
in both places after READ execution. Any sub-
scripting or indexing associated with identifier is
evaluated after the record has been read and imme-
diately before the record is moved to identifier.
Identifier 1is blank-filled if the size of the
record is less than the size of identifier.

The AT END phrase is for a sequential read of either
a realm or a relation. In the READ realm statement
(format 1) or the READ relation statement (format
3), this phrase specifies the imperative statement
to be executed when an at-end condition occurs.
The condition occurs when no next record exists.
The program is responsible for subsequent actions
if realm access is to continue. Realms must be
repositioned according to the subsequent processing
desired.

The INVALID KEY phrase is for a random read of
either a realm or relation. 1In either the READ
realm statement (format 2) or the READ relation
statement (format 4), this phrase specifies the
imperative statement to be executed if an invalid
key condition occurs. For a READ realm statement,
an invalid key condition occurs when an existing
record does not have the value specified by the key
of reference for a realm. For a READ relation
statement, an invalid key condition occurs when no
existing record in the root realm of the specified
relation has the value specified by the key of
reference.

The KEY IS phrase is used for a random read of
either a realm or a relation. In either the READ
realm statement (format 2) or the READ relation
statement (format 4), the key of reference is iden-
tified by the presence or absence of the KEY IS
phrase. Tf the KEY IS phrase is omitted, the key
of reference is the primary key. If the phrase is
specified, data-name must be set to the value of
either the primary or alternate key of the realm
(the root realm in a relation) before execution of
the READ statement. If a key is specified in a
READ relation statement for a realm in the relation
other than the root realm, the COBOL compiler issues
a diagnostic message.

When a random read of a realm or a relation is
requested, the desired record is located when the
comparison specified by the relational operator of
the KEY IS phrase is performed. The record returned
is the first record in the realm (the root realm of
a relation) that satisfies the specified compari-
son. The comparison is performed by numeric value.
The value of either the primary or the alternate
key is compared to the value specified in data-name.
The values are determined by the collating sequence

60485300 A

2 J

JJ



defined for the realm (the root realm of a rela-
tion) in the schema. (The data administrator can
provide this information.) Collating sequences are
shown in appendix I.

When a sequential read of a realm or a relation is
requested, the key of reference is established by a
preceding OPEN statement or by the value of the
data-name specified with a preceding START state-
ment. A preceding random read of the realm or
relation can also be used to establish the key of
reference.

REWRITE Statement

The REWRITE statement, shown in figure 2-23, re-
places an existing record in a realm. The realm
must be opened for I-O.

REWRITE record-name CFROM identifer]

C; INVALID KEY imperative-statement]

Figure 2-23. REWRITE Statement Format

Before a record is rewritten, the record must be
locked either with a record lock or with a realm
lock. A protected record lock is established when
a READ statement is issued for a realm opened for
I-0. A protected record lock can be established
either within a tramsaction or outside of a trans-
action. An exclusive record lock is established
when the rewrite operation is performed within a
transaction. A realm lock is established by enter-
ing either the C.LOK routine or the DBSLKAR routine.
The realm lock overrides the record lock.

The recommended procedure for rewriting a record is
to precede the REWRITE statement with a READ state-
ment. The value of each data item being changed
can then be set to the new value. When the REWRITE
statement executes, the record is rewritten. The
value of the primary key should not be changed
between the read and the rewrite, because a record
is identified by the primary key value.

This procedure must be followed when rewriting a
record that is locked by a protected record lock
outside of a transaction. In this situation when
an attempt is made to rewrite a record with a change
in the value of the primary key, CDCS issues a
diagnostic message. If the primary key value of a
record with a protected record lock must be changed,
the program must delete the record with the old
primary key value and write the record with the new
primary key value.

This procedure should be followed when rewriting a
record with an exclusive record lock within a
transaction or when writing a record with a realm
lock. If this procedure is not followed in these
circumstances, the record being rewritten might

‘inadvertently overwrite another record.

60485300 A

Refer to section 5 for information about both the
exclusive record lock and the realm lock.

In the REWRITE statement, record-name must be a
record name associated with a realm. Record-name
must be included in the subschema.

The FROM phrase of a REWRITE statement causes the
statement to have the same effect as execution of
the following:

MOVE identifier TO record-name
REWRITE record-name

The contents of the record prior to the implicit
move has no effect on REWRITE execution.

The INVALID KEY phrase specifies the imperative
statement that is executed whenever an invalid key
condition exists. When an invalid key condition
occurs, the update operation does not take place
and the data in the existing record is not affected.

START Statement

The START statement, shown in figure 2-24, logically
positions a realm or a relation for subsequent
retrieval of records. This statement cam also be
used to reposition a realm when end-of-information
has been reached. Before the START statement is
executed, the realm or relation must have been
opened for INPUT or I-0.

Successful execution of the START statement estab-
lishes a key of reference for purposes of future
access to the realm. The key of reference can be
either the primary key or the alternate key of the
record. Once the key of reference has been estab-
lished, it can only be changed by execution of
another START, READ, or OPEN statement, or an
INVALID KEY phrase.

The START realm statement (format 1) establishes
the key of reference for a realm by positioning the
realm to the first record whose key value meets the
specified condition. The search begins either from
the current key of reference or from the beginning
of the realm. The key that satisfies the condition
becomes the new key of reference.

The START relation statement (format 2) positions a
relation for subsequent sequential retrieval of
records through relational reads. The START rela-
tion statement positions the root realm as described
in the preceding paragraph. This statement estab-
lishes the key of reference for the root realm of
the relation. A sequential relation read following
a START relation statement retrieves from the root
realm the record with the key that satisfies the
start condition and a record from each realm in the
associated relational hierarchy.



Format 1:

START realm—-name | KEY

Format 2:

START relation—name | KEY

[; INVALID KEY imperative-statement]

[; INVALID KEY imperative-statement]

=

IS EQUAL TO
EQUATS

IS =

EXCEEDS

IS GREATER THAN
1s >

IS NOT LESS THAN
ISMTT

data-name

IS EQUAL TO

EQUALS

1 =

EXCEEDS _

TS GREATER THay [ data—name
155

IS NOT LESS THAN

Is NOT <

Figure 2-24. START Statement Format

The KEY phrase specifies the data item to be com—
pared with the keys of records existing in the
realm (the root realm for a relation). The data-
name in the KEY phrase must be set to the appro-
priate value of the primary, alternate, or major
key of the realm (root realm for a relation) before
execution of the START statement. The key of

reference 1is determined by the KEY phrase as-

follows:

If the KEY phrase is omitted, the key of refer-
ence is the primary key. (However, the phrase
cannot be omitted for realms which are direct
access and actual key files.)

If data-name is a primary key, the key of
reference is that primary key. (However, the
primary key can be specified only for indexed
sequential files.)

If data-name is an alternate record key, the
key of reference is that alternate record key.

I1f data-name is a major key (the leading portion
of a group item that is a primary or alternate
record key), the key of reference is that
record key.

The type of comparison 1is specified by the rela-
tional operator in the KEY phrase. When the key is
alphanumeric and the operands are of unequal size,
comparison proceeds as though the longer operand
were truncated on the right, making its length
equal to that of the shorter operand. All other
COBOL numeric or nonnumeric comparison rules apply.

The values used for comparison are determined by
the collating sequence specified for the realm (the
root realm of a relation) in the schema. (The data
administrator can provide this information.) The
collating sequences are shown in appendix I.

The INVALID KEY phrase specifies the imperative
statement that is executed if the comparison is not
satisfied by any record in the realm or relation.
In this instance, the key of reference is undefined.

USE FOR ACCESS CONTROL Declarative Statement

The USE FOR ACCESS CONTROL statement, shown in
figure 2-25, supplies the access control key re—
quired to gain access to the specified realms.
Access control locks can be defined by the data
administrator to provide privacy at the realm level.
If the realm is defined with an access control lock
in the schema, this statement must supply the access
control key before the realm can be opened. The
USE FOR ACCESS CONTROL statement must be the first
sentence after a section header within the Declara-
tives portion of the Procedure Division. This
statement is not allowed within a transaction.

USE FOR ACCESS CONTROL

L] INPUT 1-0 5

; KEY IS access-key

FOR realm-name-1 C, realm—name-21...
— { REALMS } :

Figure 2-25. USE FOR ACCESS CONTROL
Declarative Statement

60485300 A

J



6““‘
éﬁa“

6@““

€Wﬁ\
(ﬁa‘

Each USE FOR ACCESS CONTROL procedure is executed
once: at the start of program execution and before
any realm is opened. CDCS compares the key sup-
plied by the KEY IS phrase with the lock specified
for the realm in the schema. If a program attempts
to open a realm without supplying the correct key,
the program is terminated. The type of access
allowed when the correct key is supplied depends on
the option chosen for the ON phrase. (The option
chosen must agree with the type of access provided
by the data administrator.)

The program must include as many access control
procedures as required to provide the necessary
access control keys. To access several realms,
each requiring a separate access control key, the
program must contain a USE FOR ACCESS CONTROL pro-
cedure for each realm. If the data administrator
has defined separate access control keys for read-
ing and updating of the records in a realm, the
COBOL program must specify two USE FOR ACCESS
CONTROL procedures to permit the realm to be opened
for input/output. One statement must specify ON
INPUT; the other statement must specify ON I-O.
Table 2-2 shows the ON phrase option that satisfies
the access control locks specified by the data
administrator in the schema. The USE FOR ACCESS
CONTROL statement must be compatible with the mode
option of the OPEN statement.

TABLE 2-2. SCHEMA ACCESS CONTROL LOCK AND
CORRESPONDING ON PHRASE USAGE OPTION

Schema Access Control Lock ON Phrase Option

Update I1-0

Retrievalt INPUT

Update/Retrievall {INPUT 1-0
1-0 INPUT

TRetrieval refers to read only access.

Options for the ON phrase are as follows:
INPUT
Read only access
I-0
Update only access

INPUT I-0 or
I-0 INPUT

Read and update access

INPUT I-O and I-O INPUT are synonymous and inter-
changeable. If the ON phrase is not specified, ON
INPUT I-0 is assumed.

In the KEY phrase, access-key identifies the data
item containing the access control key required to
gain the specified access to the realm. Access-key
must be set to the value of the access control
key. (The access control key required to obtain
the specified access is defined in the schema, can
be 1 to 30 characters in 1length, and should be

60485300 A

provided by the data administrator.) Access-key
must be specified as a 30-character word-aligned
(synchronized left) alphanumeric item described in
its Data Description entry as PICTURE X(30). When
the USE FOR ACCESS CONTROL procedure completes
execution, the value of access-key is passed to
CDCS.

The FOR phrase specifies the realm to which the
access control key applies. Any realm-name speci-
fied must also appear in the subschema. If REALMS
is specified in the FOR phrase, CDCS grants access
to all realms named in the subschema that have lock
values equal to the access control key value. If
the FOR phrase is omitted, FOR REALMS is assumed.

Figure 2-26 shows two USE FOR ACCESS CONTROL proce-
dures. The procedures establish the right of the
program to access PART-REAIM for read only opera-
tions, and to access ORDER-REAIM for both read and
update operations. The access control key is the
same for both realms.

WORKING-STORAGE SECTION.
77 ACCESS-KEY

PICTURE X{(30).

PROCEDURE DIVISION.
DECLARATIVES.
ACCESS-CONTROL-1 SECTION.
USE FOR ACCESS CONTROL ON INPUT
KEY IS ACCESS-KEY FOR PART-REALM.
PAR=-M. MOVE "AX12345" TO ACCESS-KEY.
ACCESS-CONTROL-2 SECTION.
USE FOR ACCESS CONTROL ON INPUT I-0
KEY IS ACCESS-KEY FOR ORDER-REALM,
ACCOUNT REALM.
PAR-N. MOVE "R-W1000" TO ACCESS-KEY.
END DECLARATIVES.

Figure 2-26. USE FOR ACCESS CONTROL
Procedure Example

USE FOR DEADLOCK Declarative Statement

The USE FOR DEADLOCK statement, shown in figure
2-27, identifies the procedure to be executed when
a deadlock situation occurs. A deadlock situation
occurs when two or more run-units, each holding
locks on records or realms, try to access a locked
realm or a locked record in such a way that no
run-unit 1s able to proceed unless another run-
unit’s locks are released. The USE FOR DEADLOCK
statement must be the first sentence after a sec-
tion header within the Declaratives portion of the
Procedure Division.

USE FOR DEADLOCK

ON

realm-name-1 [, realm=-name-2]...
REALMS } .

Figure 2-27. USE FOR DEADLOCK
Declarative Statement

2-17



The USE FOR DEADLOCK procedure should be written so
that the points in the program where deadlock might
occur are recognized. See section 5 for more infor-
mation on locking and deadlock.
procedure should cause the input/output statements
that locked the records or realms to be repeated.

If the USE FOR DEADLOCK statement is omitted for a
given realm and a deadlock situation occurs for
that realm, the run is aborted.

In the statement, realm-name specifies the name of
the realm for which the deadlock situation occurs.
Any realm-name specified must also appear in the
subschema.

If REAIMS is specified, the USE FOR DEADLOCK proce—
dure is executed when a deadlock situation occurs
involving any realm named in the subschema.

Figure 2-28 illustrates a possible coding sequence
for the USE FOR DEADLOCK procedure. The C.LOK,
DBSLKAR, and C.UNLOK routines cannot be called from
the USE procedure directly because using these
routines could result in another deadlock situation.

WRITE Statement

The WRITE statement, shown in figure 2-29, uses the
current value of all the data items defined for the
record in the subschema to construct a record, and
then writes the record to the data base file asso-
ciated with the realm. The realm must be opened in
OUTPUT or I-0 mode. All primary and alternate key
values must be set appropriately before the record
is written. Any data items in the schema record
that are not defined in the subschema are given
null values before the record is written to the
data base. Format 1 of the WRITE statement, which
appears in the COBOL reference manual, does not
apply to data base processing.

In the statement, record—-name specifies the record
to be written. The record must be specified in the
subschema.

The FROM phrase of the WRITE statement is equiva-
lent to execution of the following two statements:

MOVE identifier TO record-name
WRITE record-name

Information in identifier remains available to the
program.

The INVALID key phrase specifies the imperative
statement that executes when an invalid key condi-
tion occurs.

COBOL SUBPROGRAMS

COBOL subprograms can access data base realms.
Both the main program and the subprogram must
include the same SUB-SCHEMA clause in the SPECIAL
NAMES paragraph of the ENVIRONMENT Division. CBCS
automatically attaches all files (realms) named in
the subschema specified in the SUB-SCHEMA clause.

2-18

Normally, this

IDENTIFICATION DIVISION.

DATA DIVISION.
FILE SECTION.

01 DEAD-FLAG

PIC 9.

PROCEDURE DIVISION.
DECLARATIVES.
ADEADLOCK SECTION.

USE FOR DEADLOCK ON REALMS.
BEGIN-DEADLOCK.

MOVE 1 TO DEAD-FLAG.

MAIN-LOGIC-SECTION.
START-UP.
. PERFORM START-UP.
PERFORM READ-PROJ WITH TEST AFTER
UNTIL DEAD-FLAG IS EQUAL TO ZERO.
PERFORM READ-PROD WITH TEST AFTER
UNTIL DEADFLAG IS EQUAL TO ZERO.

READ-PROJ SECTION.
READ-PROJECT.
MOVE ZERO TO DEAD-FLAG.
MOVE "M130001560" TO PROJECT-ID IN
PROJECT.
READ PROJECT KEY IS EQUAL TO PROJECT-ID,
INVALID KEY PERFORM ERRPROC-1.

READ~PROD .
READ-PRODUCTS .
KOVE ZERO TO DEAD-FLAG.
MOVE “'826NAMWO19" TO PRODUCT-ID.
READ PRODUCTS KEY IS EQUAL TO PRODUCT-1D,
INVALID KEY PERFORM ERRPROC-1.

Figure 2-28. USE FOR DEADLOCK
Procedure Example

Format 2:
WRITE record-name [FROM identifierl

[; INVALID KEY imperative-statement]

Figure 2-29. WRITE Statement Format

Neither the main program nor the subprogram need
specify File—Conttrol entries for realms referenced
in the run-unit unless the FILE STATUS clause 1is
ugsed to obtain non-CDCS error information asso-
ciated with the realms. If the FILE STATUS clause
is used, it must be declared in the Common-Storage
Section of the main program and any subprograms
that use FILE STATUS for detection of errors.

60485300 A

JJ

J J

u



When updated status information 1is desired for
operations performed in a subprogram on a realm or
a relation, the data base status block must be
declared in the Common-Storage Section of both the
main program and the subprogram. The DB$DBST
routine, however, need only be entered once from
the main program. For detailed information about
Data Description entries in the Common-Storage
Section, refer to the COBOL reference manual.

COMPILATION AND EXECUTION

Compilation of a COBOL application program for
processing with CDCS requires that the subschema be
attached. The D parameter on the compiler call
must specify the local file name of the file (usu-
ally the subschema library) on which the subschema
directory resides. Data base information is incor-
porated in the application program during compila-
tion. During compilation, the LO=M parameter of
the COBOLS5 control statement can be used to obtain
a listing of the subschema.

Compilation and execution of a COBOL application
program is initiated by control statements and is
performed in sequential steps. To compile and
execute a COBOL program that utilizes CDCS, the
following steps must be performed:

To compile
Attach the subschema library.

Specify the COBOL5 control statement and
include the D parameter to indicate the
local file name of the file on which the
subschema directory resides.

To execute

Specify the file containing the relocatable
binary program; LGO is the system default
file.

A COBOL program that utilizes CDCS could be com-
piled with the following COBOL5 control statement:

COBOLS ,D=SSLIBRY.

The D parameter of the control statement specifies
SSLIBRY, the file on which the subschema directory
resides.

Refer to section 5 for more information about exe-
cution of a COBOL program that utilizes CDCS. Refer
to appendix G for information about compilation and
execution of an application program using the CDCS
Batch Test Facility (CDCSBTF).

RECOMPILATION GUIDELINES

Recompilation of an application program using a
subschema is governed by the types of changes made
to the schema. The checksum facility is the mecha-
nism used to determine whether the changes made to
the schema require the recompilation of a subschema
or an application program or both. The DDL com-
piler produces a one-word identifying bit string,

60485300 A

called a checksum, for each realm and area in the
schema. A checksum is also generated for each
subschema. The checksums are stored in the schema
and subschema directories and are recorded in the
master directory. The checksums are used to verify
the consistency of the schema and its associated
subschemas, as well as the consistency of the sub-
schema and the application program referencing it.

When the schema is recompiled, the data adminis-
trator compares the checksums generated with the
corresponding checksums in the previously generated
image for the schema. If the checksums do not
match, all subschemas that reference the areas or
relations whose checksums have changed must be
recompiled by the data administrator.

If the subschema has been recompiled and the check~
sum of the recompiled subschema differs from its
previous checksum, a COBOL program referencing that
subschema must be recompiled. If a COBOL program
references an invalid checksum, CDCS aborts the
program and issues a diagnostic message. The COBOL
programmer can prevent the abnormal termination of
a program by ensuring, prior to program executionm,
that the subschema checksum in the master directory
matches the checksum of the subschema used to
compile the program.

STATUS CHECKING

CDCS provides various mechanisms by which extensive
status information can be returned to a COBOL pro-
gram. CDCS can return status information and error
codes in the data base status block if the DB$DBST
routine is entered. In order to provide compati-
bility with earlier versions of CDCS, the COBOL
program can still call C.DMRST and C.IOST to deter-
mine the status of CDCS operations.

DATA BASE STATUS BLOCK

The COBOL application program can provide CDCS with
a group item or a table to which data base status
information can be returned. The data base status
block 1is updated automatically after every CDCS
operation. The following information is veturned
to the data base status block:

CDCS or CYBER Record Manager error codes
Subschema item ordinal for item level error
CRM code indicating the file position of a realm
Function being executed when an error occurred
Rank in a relation of the realm on which either
a CRM or CDCS error occurred, or a special
relation condition (control break, or a null
record) occurred
Name of the realm in which an error occurred
The COBOL application program communicates the
location and length of the data base status block

to CDCS by a call to the CDCS routine DBSDBST,
explained earlier in this section.

2-19



Data base status block error codes and file position
codes are returned to the user as decimal values.
The user must convert to octal those values re-
turned that are CRM codes, 1in order to correlate
the code with those listed in the CRM reference
manual. Error codes 384 through 447 and codes 472
through 511 indicate CDCS errors; these codes and
corresponding message are listed in appendix B.
Refer to the CRM Advanced Access Methods reference
manual for CRM codes and messages.

The length of the data base status block is speci-
fied in words. One word provides space for either
a 10-character DISPLAY item or a COMPUTATIONAL-1
item. The data base status block must be from 1 to
11 words in length. CDCS returns as much informa-
tion as possible in the given length.

The information returned in the data base status
block is shown in table 2-3.

The length of the data base status block 1is vari-
able; the length can range from 1 to 11 words. As
a minimum, one word must be provided for the error
code. The other items are optional.

An example of a COBOL description of the data base
status block is shown in figure 2-30. Each ele-
mentary item of DATA-BASE-STATUS-BLOCK corresponds
to a word of memory in which particular information
is returned, except DB-REALM which corresponds to
three words.

The specification of the data base status block
must adhere to the following list of rules (the
rules reference the description of the data base
status block shown in figure 2-30):

The items must be defined with the length shown
and in the order shown.

For any particular item that is defined, all
items that precede it must also be defined.

COMPUTATIONAL-1 must be used to define the
numeric items as indicated.

For information to be returned to any ele-
mentary item of the group items AUXILIARY-STATUS
or RELATION-RANK-STATUS, length must be pro-
vided for all three items of the particular
group.

The database status block must be declared in
common storage if it is used in a subprogram.

CDCS only updates those words contained within the
given length of the status block. If, for instance,
the COBOL program wants the data base status block
to include only the items DATABASE-STATUS and
DB-ITEM-ORDINAL, the user must specify a length of
four words.

ADDITIONAL STATUS CHECKING ELEMENTS

Additional status checking elements are available
to the COBOL program. CRM error codes can be
obtained by entering the C.I0ST routine described
earlier in this section. The C.DMRST routine, also
described earlier in this section, can be entered
after a relation read to determine the status of
the realms in the relation.

In addition to these routines, the data item speci-
fied in the FILE STATUS clause in a COBOL program
can be used to check for CRM errors and end-of-file
status relating to a realm. The USE AFTER STANDARD
ERROR procedure can be used for checking the status
of input/output operations involving realms. Refer
to the COBOL reference manual for further details
on COBOL error processing.

PROGRAM DEBUGGING

generation by COBOL of SELECT
statements for subschema realms poses special
debugging problems. The local file name from the
subschema FIT is used for implementor-name-~1 and
implementor-name-2 in the generated SELECT state-
ments. Implementor-name-1 is the first 7 charac-
ters of the realm name. Implementor-name-2 is the
file-name specified on the XN parameter of the FILE
control statement wused in describing the realm
during schema compilation. The data administrator
can provide this name. These local file names must
not appear as user—defined words elsewhere in the
COBOL program or subschema description. If they
do, fatal errors are generated.

The automatic

Errors occurring on the code for the generated
SELECT statements have 1line and column numbers
pointing to the subschema name in the SUB-SCHEMA
clause.

01 DATABASE-STATUS-BLOCK.

02 DATABASE-STATUS

02 AUXILIARY-STATUS.
03 DB-ITEM-ORDINAL
03 DB-FILE-POSITION
03 DB-SEV-CODE

02 DB-FUNCTION

02 RELATION-RANK-STATUS.
03 DB-REL-RANK-ERROR
03 DB-REL-RANK-CTLBK
03 DB-REL-RANK-NULL

02 DB-REALM

Word

PICTURE

PICTURE
PICTURE
PICTURE
PICTURE

PICTURE
PICTURE
PICTURE
PICTURE

9(5) USAGE

9(5) USAGE
9(3) USAGE
9(3) USAGE
ACDY.

9(3) USAGE
9(3) USAGE
9(3) USAGE
X(30).

I8

1s
IS
IS

ComMP-1.

COMP-1.
COMP-1.
COMP-1.

COMP-1.
comp-1.
coMP-1.

-

wipun

000~ O

,10,11

Figure 2-30. Example of a COBOL Description of a Data Base Status Block

2-20

60485300 A

J )

J )



TABLE 2-3. CONTENTS OF DATA BASE STATUS BLOCK

Word

Gﬁﬁ“\ Number Contents

1 CRM or CDCS error code in decimal for the last data base operation on a realm or relation; value
is zero if no error has occurred. Values 384 through 447 and values 472 through 511 are CDCS
errors; all others are CRM errors. Word 1 should be specified as a COMPUTATIONAL-1 data item.

—

Note that only error codes are returned. Null occurrence and control break conditions often
arise in the course of normal processing. The status codes for these conditions are not returned.

a 2 Subschema item ordinal for CDCS item—level errors. Item-level errors include data validation
errors, record mapping errors, and item-level data base procedure errors. Value is zero if no
error has occurred. The item ordinal assigned by the DDL compiler is identified on the subschema
compilation listing. Word 2 should be specified as a COMPUTATIONAL-1 data item.

3 CRM code in decimal indicating file position of the realm when the last data base operation was
performed. A file position code is returned when open, close, read, and start operations are
performed. For a relation operation, the file position code indicates the position of the root
realm when the last operation was performed. Word 3 should be specified as a COMPUTATIONAL-1
data item.

(= The following list includes the file position codes that most commonly occur during data base

{ processing:

8 End-of-key-list, which occurs when the last primary key value associated with a given

alternate key (for which duplicate values exist) has been returned during a read
operation using an alternate key value.

16 End-of-record, which occurs when a record has been returned during a read operation.

64 End-of-information, which occurs when a sequential read operation is attempted after
the previous read operation returned the last record in the file.

4 Severity of error that occurred during execution of the last data base operation: the value is
zero if no error or a nonfatal error has occurred; the value is one if a fatal error has
occurred. Word 4 should be specified as a COMPUTATIONAL-1 data item.

5 Function being performed when an error or relation condition occurred; one of the following
character strings:

ASK RAN-READ
BEGIN RECVR~PNT
CLOSE REL-NEXT
COMMIT REL-READ
DELETE REL~START
DROP REWRITE
END SEQ~READ
GET-ID START
LOCK UNDEF INED
LOCK-AREA  UNLOCK
OPEN VERSION
PRIVACY WRITE

Value is undefined if no error has occurred. Word 5 should be specified as PICTURE X(10) or
PICTURE A(10).

6 For a relation operation, the rank of the realm on which a CRM or CDCS error occurred; zero if no
error has occurred. (The root realm of the relation has a rank of one.)

An error on a realm during a relation read terminates the operation. Consequently, there is
never more than one rank in the relation which has a CRM or CDCS error.

» Word 6 should be defined as a COMPUTATIONAL-1 data item.

60485300 A 2-21



TABLE 2-3. CONTENTS OF DATA BASE STATUS BLOCK (Contd)

Word
Number

Contents

9,10,11

For a relation operation, the lowest rank on which a control break occurred; value is zero if no
control break has occurred.

The control break condition signifies that a new record occurrence was read for the realm’s
parent realm in a relation. If the null occurrence condition is set for a realm, the control
break condition can be assumed for that realm even though it is not set. If a control break
occurs, all realms in the relation with a rank greater than the rank recorded in this word also
have control break status (or a null record occurrence, since null record occurrences override
control break status). See section 5 for more information about control break conditions.

Word 7 should be specified as a COMPUTATIONAL-1 data item.

For a relation operation, the lowest rank for which there was a null record; value is zero if no
null record.

A null record occurrence for a specific rank means either that at this rank no child record
occurrences of the parent record passed the record qualification criteria or that no child record
occurrences at this rank exist for the parent record. If a null record occurs, all realms in the
relation with a rank greater than the rank recorded in this word have null record occurrences.
See section 5 for more information about null record occurrences.

Word 8 should be specified as a COMPUTATIONAL-1 data item.

The display code name of the realm in which an error has occurred. Contains blanks if no error
has occurred, or if the error has occurred on a non-1/0 (input/output) operation or an I/O
operation not explicitly requested by the COBOL program. Words 9, 10, and 11 should be defined
as PICTURE X(30).

2-22

60485300 A

JJ

J )

de



FORTRAN INTERFACE 3

'FORTRAN 5 application programs can be used to
access and manipulate a data base controlled by
CYBER Database Control System (CDCS), FORTRAN Data
Manipulation Language (DML) statements that are
coded within a FORTRAN program provide for data
base access. The DML statements are translated by
the DML preprocessor, which generates and inserts
into the program the appropriate calls to CDCS to
request input/output processing at execution time,

The FORTRAN interface with CDCS consists of the
FORTRAN subschema, the DML statements and routines
used to access the data base, and the status check—
ing elements available to a FORTRAN program that
utilizes CDCS to access a data base.

I In this section a basic knowledge of FORTRAN 5 is
assumed., Detailed information regarding the use of
the FORTRAN language is contained in the appro-
priate FORTRAN reference manual.

FORTRAN SUBSCHEMA

The DMS-170 data base files that are to be accessed
by a FORTRAN application program must be described
in a directory called a FORTRAN subschena. The
data administrator, working with application pro-
grammers, is responsible for creating the subschema.

When the subschema is compiled, a listing is pro-
duced. The listing provides information required
by the application programmer to code the FORTRAN
application program. The data administrator should
provide a compilation listing of the subschema for
the application programmer,

Some information required to access data base files
is not included in the subschema listing. The data
administrator should provide any necessary addi-
tional information to the application programmer.

This subsection documents the information provided
by the subschema listing and the additionmal infor-
mation that the data administrator must provide
when the information 1is necessary for data base
processing.

SUBSCHEMA LISTING

The information provided by the subschema is indi-
cated by the following alphabetic 1list of items.
Not all items are included in every subschema;
those items that always appear in the subschema
listing are so indicated. An example of each item
is pointed out in the sample subschema shown in
figure 3-1.

60485300 D

Alias names

The ALIAS statement identifies the name of
a data item, record, or realm used in the
subschema in place of the name used in the
schema. The name on the left of the equal
sign (=) in the ALIAS statement is the name
that must be referenced in a FORTRAN appli-
cation program.

Alternate key

The notation ALTERNATE KEY indicates a data
item that is an alternate record key. The
realm for which the data item is an alter-
nate key is also indicated.

Checksum

Always present. A checksum is a one-word
attribute generated by the DDLF compiler
for the subschema. The checksum of the
subschema referenced by the FORTRAN appli-
cation program is incorporated in the object
program at compilation time and must agree
at execution time with the checksum asso-
ciated with the subschema in the master
directory. Refer to the subsection Recom—
pilation Guidelines for more information.

Concatenated key

Present if one is defined. A concatenated
key is a primary or alternate key made up
of several data items. The listing in the
subschema shows the data items that make up
a concatenated key. The concatenated key
name and the list of data items that make
up the key appear with the notation PRIMARY
KEY or ALTERNATE KEY. The realm for which
the key is defined is also indicated.

When a concatenated key is defined, major
key processsing is possible. A major key
is the leading data item or items of a
coacatenated key.

A concatenated key name can contain up to
30 characters and can include hyphens. The
concatenated key name is referenced in the
FORTRAN applications program by either the
FORTRAN DML READ statement or START state-
ment, The START statement can also refer-
ence leading data items of the concatenated
key for major key processing. Major key
processing is not allowed in a READ state-
ment. Using a concatenated key and major
key  processing are discussed in the
description of the READ and START
statements later in this section.



1 COMPARE * SOURCE LISTING * (83207) DDLF 83/09/14. 15.07.43. PAGE 1
Vs Subschema name
00001 SUBSCHEMA COMPARE,SCHEMA=UNIVERSITY
00002 e Alias name
00003 ALIAS(REALM) PFILE=PROFESSOR
00004 ALIAS (RECORD) PRECORD=PROF-REC
00005 ALIAS(ITEM) STDID=STUDENT~ID.CURR-REC
00006 ALIAS (ITEM) PROFID=PROF-ID.PROF~REC
00007 ALIAS (ITEM) PNAME=PROF-NAME
00008
00009 ALIAS(REALM) CRSFILE=COURSE
00010 ALIAS(RECORD) CRSREC=COURSE-REC
00011 ALIAS (ITEM) CRSID=COURSE-~ID.COURSE-REC
060012 ALIAS(ITEM) CRSNAME=COURSE-NAME
00013 ALIAS (ITEM) PROF=PROF-ID.COURSE~REC
00014 ALIASCITEM)  FIELD=ACADEMIC-FIELD
00015
00016 ALIAS(REALM) CFILE=CURRICULUM
00017 ALIAS(RECORD) CRECORD=CURR-REC
00018 ALIAS(ITEM) COURSE=COURSE=-1ID.CURR-REC
00019 ALIAS(ITEM) CODE=COMPLETE-CODE
00020 ALIASCITEM) DATE=COMPLETE~DATE
00021
00022 REALM PFILE-= Realm name
00023 REALM CRSFILE
00024 REALM CFILE
00025
00026 RECORD PRECORD = Record name
%% WITHIN PFILE = Associated realm
00027 CHARACTER*8 PROFID
*% ORDINAL 1 l
00028 CHARACTER#30 PNAME ,-=— Data items
#*x ORDINAL 2 ’ comprising
00029 CHARACTER#20 FIELD record PRECCRD
00030
%% ORDINAL 3
00031 RECORD CRSREC
% WITHIN CRSFILE
00032 CHARACTER*6 CRSID - Data item
%% ORDINAL 1= Schema item ordinal
00033 CHARACTER*20 CRSNAME for CRSID
*% ORDINAL 2
00034 CHARACTER*8 PROF
00035
% ORDINAL 3
00036 RECORD CRECORD
*% WITHIN CFILE » Major key
CHARACTER#*3 IDENT l
#% ORDINAL 1 - Concatenated key
00038 CHARACTER*11 STDID’ data items
#% ORDINAL 2
00039 CHARACTER*6 COURSE
*% ORDINAL 3
00040 CHARACTER*1 CODE
**x ORDINAL 4
00041 CHARACTER*8 DATE
#*% ORDINAL 5
00042 REAL GRADE
00043
Figure 3-1. Sample FORTRAN Subschema (Sheet 1 of 2)
3-2 60485300 C

J D

JJ



€@Eh\
C§?’\

COMPARE * SOURCE LISTING *

** ORDINAL 6

00044 RELATION REL3 -«

DDLF 83/09/14. 15.07.43. PAGE 2

PRIMARY KEY 00027 PROFID FOR AREA PFILE -

Relation name

ALTERNATE KEY 00029

Primary key

FIELD FOR AREA PFILE-=
CRSID FOR AREA CRSFILE
PROF FOR AREA CRSFILE

PRIMARY KEY 00032
ALTERNATE KEY 00034
PRIMARY KEY  #kikx

CATKEY (IDENT,STDID) FOR AREA CFILE =—

Alternate key

Concatenated key

ALTERNATE KEY 00038
ALTERNATE KEY 00039
ALTERNATE KEY 00042

STDID FOR AREA CFILE -
COURSE FOR AREA CFILE
GRADE FOR AREA CFILE

Alternate key

dkkkik RECORD MAPPING IS NOT NEEDED FOR REALM - PFILE
ddkkk RECORD MAPPING IS NEEDED FOR REALM - CRSFILE
dekedodek RECORD MAPPING IS NEEDED FOR REALM - CFILE
00045 RESTRICT CRECORD (CODE .EQ, 'C')-= Restriction
00046 END (relation)
00047
dededede e END OF SUB-SCHEMA SOURCE INPUT
Relation
dekkk “r’/” RELATION STATISTICS *kkkk
RELATION 001 REL3 JOINS AREA - PFILE = Rank 1
AREA - CRSFILE-= Rank 2
AREA -~ CFILE== Rank 3
———— BEGIN SUB-SCHEMA FILE MAINTENANCE —————
SUBSCHEMA CHECKSUM
COMPARE 66755445516114531730 Checksum
———— END OF FILE MAINTENANCE @ = = =e;-ee

0 DIAGNOSTICS.
0.262 CP SECS.

DDLF COMPLETE.
512008 CM USED.

Figure 3-1. Sample FORTRAN Subschema (Sheet 2 of 2)

Data item (name and description)

Always present. A type statement identifies
the name and description of a data item. A
type statement is included in the subschema
listing for each data item that is avail-
able to the application program.

‘

A data item of type CHARACTER has a default
length of 1 character if no length is
specified in the type statement.

Type statements in the subschema follow the
same rules as type statements for FORTRAN
programs; refer to the FORTRAN reference
manual for more information about type
statements. Data received in the working
storage area of an application program is
mapped according to the subschema descrip-
tion.

Major key

Present if a concatenated key is defined.
Refer to concatenated key.

60485300 C

Primary key

Always present for each realm included in
the subschema. The notation PRIMARY KEY
indicates each data item that is a primary
record key. The realm for which the data
item is a primary record key is also indi-
cated.

Ranks of the relation

The realms joined in a relation are listed
by realm name in order of rank. The first
realm listed has a rank of 1; the second, a
rank of 2; and so forth.

Realm (file) names

Always present. A REAIM statement specifies
the realms available to the application
program. Unless ALL 1is specified, only
those realms included in the realm division
are available to the application program.

The realm name that follows the notation
WITHIN designates the realm associated with
the record description that follows in the
listing.

3-3



Record names, associated realms and data items

Always present. A RECORD statement identi-
fies the record name. A RECORD statement
is included in the subschema 1listing for
each record available to the application
program.

The notation WITHIN realm name identifies
the particular realm associated with a
record.

The type statements for the data items that
make up the record always follow the RECORD
statement in the subschema listing. Another
RECORD statement, a RELATION statement, or
an END statement in the subschema 1listing
terminates the 1list of data 1items within
the record.

Relation names

A RELATION statement ldentifies the name of
a relation. A RELATION statement is in-
cluded in the subschema 1listing for each

relation available ¢to the application
program.

Restriction

A RESTRICT statement in the subschema
listing identifies a restriction. If a
restriction is placed on a relation, only
records that meet all the qualification
criteria specified in the RESTRICT state-
ment 1in the subschema are returned to the
application program when the relation is
read.

If the RESTRICT statement contains a data
item that 1is mnot included in the subschema,
the data item must be defined in the pro-
gram with the same type and length as the
subschema item used for comparision. The
data item must be set to a value before any
read that uses the relation.

Schema name

Always present. The schema 1s identified
in the subschema.

Subschema item ordinal

Always present. The subschema item ordinal
is a unique identifier within a record that
is assigned to each data item in a sub-
schema when the subschema is compiled. A
subschema item ordinal is used in conjunc-
tion with the data base status block.

Subschema name

Always present. A SUBSCHEMA statement
identifies the subschema name. An appli-
cation program must reference the subschema
by using the subschema name.

INFORMATION PROVIDED BY DATA
ADMINISTRATOR

It is the responsibility of the data administrator
to provide the following information when it is
required for data base processing:

Constraints

If  constraints are defined in the schema
and updates are likely to violate them, the
application programmer should be provided
with information about the constraints.

Join items of the relation

Files are joined in a relation by identical
data items that exist in two files. The
information about the join items is con-
tained in the schema. Usually, an applica-
tion programmer does not need to know the
join items to use a relation. Often the
programmer can determine the join items
from the subschema 1listing. (Refer to
section 5 for more information on rela-
tions.) However, in some situations, the
data administrator should provide the
application programmer with the join items.

Permanent file information for the subschema
library

The subschema directory must be available
for preprocessing of DML statements; there-
fore, the application programmer mnust be
provided with the information required to
attach the subschema library file that
contains the subschema directory.

Privacy keys

If an area has been defined with an access
control 1lock in the schema, a PRIVACY
statement must be included in the FORTRAN
application program to access the realm.
The application programmer must be provided
with all privacy keys required for data
base access. (Refer to the PRIVACY state-
ment subsection for further information.)

Requirements imposed by any data base procedure

If data base procedures are defined in the
schema, the application programmer must be
provided with information required by the
data base procedures.

Transaction update limits

If limits have been imposed on the number
of transactions allowed for all users of
the schema, the application programmer
should be provided with this information.

Version name

If alternate data base versions are defined
for the data base, the application pro-

grammer must be provided with information
about the name and use of the alternate
data base versions.

60485300 C

D)

J )



SUBSCHEMA DIRECTORY

When the subschema source input is compiled, the
object subschema, called the subschema directory,
is generated. The subschema directory is usually
included in a subschema library. The subschema
directory must be available to the DML preprocessor
for preprocessing the FORTRAN DML program; there-
fore, the subschema library must be attached for
preprocessing.

During preprocessing of the FORTRAN DML program,
the DML preprocessor inserts into the FORTRAN
program the descriptions of all files, data itenms,
and relations that are included in the subschema.

FORTRAN DML

FORTRAN DML is the execution time facility enabling
data base access from a FORTRAN program. DML
consists of a series of statements similar to
FORTRAN statements that are included in a FORTRAN
program and processed by the DML preprocessor prior
to compilation of the program. DML translates the
statements 1into FORTRAN specification statements
and CALL statements, which can then be compiled
like other FORTRAN statements., Data descriptions
are obtained from the FORTRAN subschema directory.
Once the program 1is preprocessed wusing the
subschema, it can be compiled and executed later
without reattaching the subschema. At execution
time, CDCS is called to access the data base.

LANGUAGE ELEMENTS

FORTRAN DML statements consist of keywords, con-
stants, variables, and operators. The following
subsections explain the elements of DML statements.

Keywords

DML keywords are shown in upper case in the follow-
ing subsections. These words identify statements
and options within statements, Each statement
begins with a specific keyword, and other keywords
are used within statements. When a keyword is
used, it must be specified exactly as shown in the
particular statemeant format 1llustrated later in
this section.

Constants

Data items can be specified as constants in DML
statements. For FORTRAN 5, a character constant is
used.

Variables

With a few exceptions, variables appearing in DML
statements follow the rules for FORTRAN variables.
These rules are defined in the FORTRAN reference
manual corresponding to the version of FORTRAN
specified on the DML control statement.

60485300 D

A number of variables are generated in the FORTRAN
program by the DML preprocessor; these variables
are reserved for use by DML, and should not be

defined or referenced by the FORTRAN program,
Refer to appendix F for a list of these reserved
names.

Specification of Variables in DML Statements

For FORTRAN 5 programs, a data item specified as a
variable in a DML statement must be declared type
CHARACTER * 10, with the following exceptions:

In the PRIVACY statement, the variable used as
the data item for the PRIVACY option must be
declared CHARACTER * 30.

In the LOCK statement, the variable used as the
data item for the TYPE option must be declared
CHARACTER * 9,

If a FORTRAN 5 program uses a variable to specify
version name for the INVOKE or NEWVERSION state-
ment, the variable must be declared type CHARACTER
* 7,

DML STATEMENTS

The realms referenced in DML statements should not
be referenced elsewhere by conventional input/output
statements, including the PROGRAM statement. These
files should be referenced exclusively by DML
statements. DML statements access files defined by
the FORTRAN subschema. The subschema library file
must be available to the DML preprocessor.

DML statements can appear both in the main program
and in subprograms. Certain DML statements cannot
appear within a data base transaction. (Any refer-
ence to a tramsaction in this section refers to a
data base transation.) A tramnsaction consists of a
BEGINTRAN statement that marks the beginning of the
transaction, the DML statements used for update
operations within the transaction, and a COMMITTRAN
or a DROPTRAN statement, either of which marks the
end of the tramsaction.

Table 3-1 summarizes the DML statements and rou-
tines, describes where they are allowed to appear
within the executable or nonexecutable portions of
a program, and indicates whether they can appear
within a transaction,

SYNTAX REQUIREMENTS

The syntax requirements for DML statements aad
routines are basically the same as for FORTRAN
statements. The syntax requirements are outlined
in the FORTRAN 5 reference manual. The exceptions
to standard syntax are:

A DML statement or routine cannot be the object
of a logical IF,

A DML statement or routine cannot appear on the
same line as another statement or routine.

DML statements and routines are described in
the following subsections in alphabetic order.



TABLE 3-1. FORTRAN DML STATEMENTS AND ROUTINES

Statement

Function

Pogition in Program

Establishing and Terminating Data Base Access

SUBSCHEMA

INVOKE

NEWVERSION

TERMINATE

Identifies the subschema to be used by
the program.

Establishes the connection between the
executing program and CDCS.

Change the data base version used by
an application program.

Disconnects the executing program from
CDCS.

Must appear after specification statements
and before DATA or NAMELIST statements,
statement function definitions, or execut-
able statements of every program unit con-
taining DML statements.

Must be executed before any other DML
statement (except SUBSCHEMA which is non-
executable); must appear in every program
unit containing DML statements, but should
not appear within a transaction.

Anywhere after the CLOSE for a realm,
except with a transaction.

Must be the last DML statement to be
executed (until a subsequent INVOKE
statement), must precede an INVOKE
statement used to change version names.
If a TERMINATE statement occurs within a
transaction, the transaction is auto-
matically dropped.

Opening and Closing a Realm or Relation

OPEN realm

OPEN
relation

CLOSE realm

Initiates processing of a realm.

Initiates processing of the realms
joined in a relation.

Ends processing of a realm.

Anywhere between INVOKE and TERMINATE,
except within a transaction; can only be
executed when the specified realm is
closed.

Anywhere between INVOKE and TERMINATE,
except within a transaction; can only be
executed if the realms in the specified
relation are closed.

Anywhere after OPEN and before TERMINATE,
except within a transaction; a realm can
be opened and closed any number of times
within a given program. The CLOSE state-
ment can only be executed if the speci-
fied realm is open.

CLOSE Ends processing of the realms joined Anywhere after OPEN and before TERMINATE,
relation in a relation. except within a transaction; realms in a
relation can be opened and closed any
number of times within a given program.
Manipulating a Data Base
START realm Logically posftiona a realm for sub- Anywhere between OPEN and CLOSE for a
sequent retrieval of records through realm.
a sequential DML READ statement.
START Logically positions the root realm of Anywhere between OPEN and CLOSE for a
relation the specified relation for subsequent relation.
retrieval of records through a DML
READ relation statement.,
READ realm Transfers data from a record in the Anywhere between OPEN and CLOSE for a
gspecified realm to the variables in- realm.
cluded in the subschema description
of the record.
3-6 60485300 A

J )

2 )



TABLE 3-1. FORTRAN DML STATEMENTS AND ROUTINES (Contd)

Statement Function Position in Program
Manipulating a Data Base (Contd)

READ Transfer data from a record in each of Anywhere between OPEN and CLOSE for a

relation the realms joined in the relation to relation.
the variables included in the sub-
schema descriptions of the records.

DELETE Logically removes a record from a Anywhere between OPEN and CLOSE for a
realm. realm; should be preceded by either

READ or LOCK.

LOCK Establishes a lock on a realm that Anywhere between OPEN and CLOSE for a
prevents other jobs from reading and/ realm, except within a tramsaction.
or updating the realm.

PRIVACY Establishes the right of a program to Must be executed before the first
access a realm. execution of OPEN for a realm with

controlled access; must not appear
within a transaction.

REWRITE Logically replaces a record in a Anywhere between OPEN and CLOSE for a
realm. realm; should be preceded by either

READ or LOCK.

UNLOCK Releases a lock on a specified realm; Anywhere between OPEN and CLOSE for a
releases any record locks the program realm, except within a transaction.
holds on records in that realm.

WRITE Causes a record to be stored in a Anywhere between OPEN and CLOSE for a
realm consisting of the current values realm.
of the variables included in the
subschema description of the record.

Processing a Data Base Transaction

ASSIGNID Obtains the restart identifier Normally specified before a transaction
assigned by CDCS. is initiated; must not be specified

within a transaction.

BEGINTRAN Identifies and begins a transaction. Anywhere after OPEN; transaction
processing must be allowed for the
schema.

COMMITTRAN Causes all updates of a successful Anywhere after the associated BEGINTRAN;

transaction to be made permanent. a transaction must have been initiated.

DROPTRAN Cancels an active transaction; the Anywhere after a BEGINTRAN, but before
records within the transaction are a COMMITTRAN.
restored to the states that they '
were before the transaction began.

FINDTRAN Determines the appropriate place to Anywhere within the program, usually in
restart transaction processing when the program logic used to determine the
a program is recovering from a point at which transaction processing
system failure. is to resume after a system failure.

Miscellaneous .

DMLDBST Communicates the location and length Anywhere after the INVOKE statement; need
of the data base status block to CDCS. be specified only once.

DMLRPT Defines a recovery point to CDCS. Anywhere after INVOKE; except within a

transaction.

60485300 A

3-7



ASSIGNID Statement

The ASSIGNID statement, shown in figure 3-2, obtains
the restart identifier assigned by CDCS. This
identifier can subsequently be used by the FINDTRAN
statement to determine the status of a transaction
when a system failure occurs. The restart identi-
fier should not be saved on a data base file because
it is used for data base file recovery. The appli-
cation should contain the logic neccessary to save
the identifier outside of the program.

FORTRAN 5 Format:

ASSIGNID (restart-id [,ERR=s])

Figure 3-2. ASSIGNID Statement Format

Normally, ASSIGNID should be specified before any
updates are attempted within a transaction (although
this is not required.) ASSIGNID must not be speci-
fied within a transaction. If the data base admin-
istrator has not assigned a restart identifier file
to the data base, this statement cannot be used; if
it is used, an error results.

Restart-id receives the 1- to 10-character restart
identifier. Restart—id must be specified as a
variable. (Refer to the Variable subsection for
information about specification of variables in DML
statements.)

Refer to the ERR and END Specifiers subsection
later in this section for information about the
ERR=s parameter.

BEGINTRAN Statement

The BEGINTRAN statement, shown in figure 3-3,
indicates the beginning of a transaction to CDCS,
Records which are subsequently wupdated remain
exclusively locked until the transaction is either
completed or dropped. Updates (write, rewrite, and
delete operations) are considered temporary until
the transaction is successfully completed. I1f an
attempt is made to execute the BEGINTRAN statement
and transaction processing is not allowed for the
schema, a fatal error occurs. Refer to section 5
for a description of transaction processing.

FORTRAN 5 Format:

BEGINTRAN (tran-id [,ERR=s])

Figure 3-3. BEGINTRAN Statement Format

3-8

Tran-id identifies the 1- to 10-character trans-—
action identifier supplied by the wuser. Tran—id
can be specified either as a constant or as a
variable. (Refer to either the Constant or the
Variable subsection for more information.)

Refer to the ERR and END Specifiers subsection
later in this section for information about the
ERR=s parameter.

CLOSE Statement

The CLOSE statement, shown in figure 3-4, ends
processing of the specified realm or of the realms
joined in the specified relation. The only DML
statements that can be executed on a realm when the
realm is closed are either an OPEN or a PRIVACY
statement. The CLOSE statement 1s not allowed
within a transaction.

FORTRAN 5 Format:

realm-name

CLOSE ({ .
relation—-name

}E,ERR=sJ)

Figure 3-4., CLOSE Statement Format

A CLOSE realm statement closes the specified realm.
The realm specified in this statement must have
been included in the subschema.

A CLOSE relation statement i1s executed as if a
separate CLOSE were issued for each realm, in the
order of rank of the realms in the relation. Realms
closed by a CLOSE relation statement should not be
explicitly closed by a CLOSE realm statement. If a
realm closed by a CLOSE relation statement is
already closed, no action is taken for that realm.
The relation specified in the CLOSE statement must
have been included in the subschema.

Refer to the ERR and END Specifiers subsection
later 1in this section for information about the
ERR=s parameter.

COMMITTRAN Statement

The COMMITTRAN statement, shown 1in figure 3-5,
indicates the completion of a tramsaction to CDCS.
Execution of this statement causes all updates of
the present transaction to become permanent; all
record locks are released so that the records
become available for access by other application
programs (unless a realm lock applies). A fatal
error occurs 1f an attempt is made to execute the
COMMITTRAN statement when a transaction has not
been initiated (refer to the BEGINTRAN statement).

Refer to the ERR and END Specifiers subsection

later in this section for information about the
ERR=s parameter.

60485300 D

JJ

ﬂm\
ﬁg@i



FORTRAN 5 Format:

COMMITTRAN C(ERR=s)]

Figure 3-5, COMMITTRAN Statement Format

DELETE Statement

The DELETE statement, shown in figure 3-6, removes
a record from a realm. The realm specified in this
statement must have been included in the subschema.

Before an attempt is made to delete a record, the
record must be locked either with a record lock or
with a realm lock. A protected record lock 1is
established when a DML READ statement is issued for
a realm opened for input/output. A protected
record lock can be established either outside of a
transaction or within a transaction. An exclusive
record lock is established when the delete request
is issued within a transaction. A realm lock is
established by issuing a DML LOCK statement. The
realm lock overrides the record lock.

The recommended procedure for deleting a record is
to issue a DML read request and delete the record.
When the delete request executes, the record is
deleted., The value of the primary key should not
be changed between the read request and the delete,
because a record is identified by its primary key
value. Following this procedure ensures that the
correct record is deleted.

This procedure must be followed when deleting a
record with a protected record lock outside of a
transaction. Before the DELETE statement executes,
CDCS checks the value of the primary key to ensure
that it has not changed since the read. 1If the
value of the primary key has changed, CDCS issues a
diagnostic message and ignores the delete request.

This procedure should be followed when deleting a
record with an exclusive record lock within a
transaction or when deleting a record with a realm
lock, If the value of the primary key is changed,
the wrong record could inadvertently be deleted.

Refer to section 5 for more information about both
the exclusive record lock and the realm lock.

Refer to the ERR and END Specifiers subsection
later in this section for information about the
ERR=s parameter,

Figure 3-7 shows an example of the DELETE state—'

ment, Sample keys on the realm REBLOCHON, both
before and after execution of the DELETE statement,
are also shown. In the example, the item PKEY has
been defined in the schema as the primary key. The
READ statement reads the record with the primary
key that is greater than 300 (in this case the
record with the primary key of 550). Execution of
the DELETE statement removes this record from the
realm,

60485300 D

FORTRAN S Format:

DELETE (realm-name C,ERR=s])

Figure 3-6. DELETE Statement Format

Keys on REBLOCHON before the delete operation:

70

120
190
550
663
664

Statements required to delete the record with
the primary key 550:

PKEY = 300

READ (REBLOCHON, KEY .GT. PKEY)
C  THIS WILL DELETE RECORD WITH

PRIMARY KEY OF 550
DELETE (REBLOCHON)

Keys on REBLOCHON after the delete operation:

70

120
190
663
664

Figure 3-7. Example of Use of the
DELETE Statement

DMLDBST Routine

The DMLDBST routine, shown in figure 3-8, communi-
cates the location and length of the data base
status block to CDCS, The routine DMLDBST can be
called at any point after the INVOKE statement. It
need be called only once. The data base status
block specified in the call is updated for any data
base operation performed after the call. Each time
DMLDBST is called, the data base status block is
initialized to zero or blanks, so it should not be
called after execution of a DML statement if the
status of that statement is desired. Only one data



CALL DMLDBST (status-block, length)

Figure 3-8. DMLDBST Routine Format

base status block can exist at a time for a FORTRAN
program. If DMLDBST is called more than once in a
program, the data base status block defined in the
last call is the one that i1s updated by CDCS.

If DMLDBST is not called, the FORTRAN program still
can reference the variable DBSTAT and the status
words for the realm in the common blocks set up by
DML (described wunder Additional Status Checking
Elements later in this section).

Status~block identifies the data base status block.
Status—-block must be specified as an integer array.

Length defines the length in words of the data base
status block. Length can be specified as either a
variable or a constant.

Refer to the Data Base Status Block subsection
later in this section for more information.

DMLRPT Routine

The DMLRPT routine, shown in figure 3-9, defines a
recovery point to CDCS, This is a point to which
the data base would be restored for easy restarting
of the program should recovery of the data base be
necessary. Recovery point definition is not allowed
within a transaction. For recovery purposes, the
uge of transaction processing is recommended rather
than the use of this routine,

CALL DMLRPT (rpt-num, comment)

Figure 3-9. DMLRPT Routine Format

Execution of the subroutine DMLRPT causes the
following events to occur in the order given. The
user program 1is suspended until these events have
taken place

All I/0 buffers for data base realms are
flushed.

A recovery point log record is force written to
the log file for the data base.

The quick recovery file for the data base is
emptied.

On return from this subroutine, the user is assured
that the data base can be recovered to its current
state (barring such disasters as simultaneous
destruction of both the data base and the journal
log file).

The creation of a recovery point does incur over—
head, since CDCS activity halts for all users until
the preceding three events have been completed. To
reduce this overhead, an application might choose
to create a recovery point every fourth update.

Judicious use of recovery points can aid in re-

covery, but misuse can severely impact processing
time. The data administrator should be consulted

to determine if the use of a recovery point is
applicable to a particular file.

Rpt-num receives the unique recovery point number
from CDCS; the recovery point number can be retained
by the user for reference purposes. Rpt-num must
be specified as an integer variable.

Comment specifies a 1- to 30-character user-supplied
explanatory message for the recovery point; the
explanatory message is written to the CDCS journal
log file along with the recovery point number. For
FORTRAN 5, comment can be specified as a variable
that has been defined as type CHARACTER * 30.

DMILSIR Routine

The DMLSIR routine, shown in figure 3-10, enables
and disables the immediate return feature. ‘the
DMLSIR routine cannot be specified before the INVOKE
statment executes.

CALL DMLSIR (item=—name)

Figure 3-10. DMLSIR Routine

If the immediate return feature is enabled, a
FORTRAN application program can receive an imme-
diate response from CDCS when resource conflicts or
fatal errors occur. If the immediate return fea-
ture 1is disabled, a FORTRAN application program
cannot provide program logic to determine the
action taken when resource conflicts or fatal
errors occur,

The value specified for item~name determines
whether the immediate return feature is enabled or
disabled. 1If item—name 1s not equal to zero, imme-
diate return is enabled. If itemname is equal to
zero, immediate return is disabled. Iltem~name must
be specified as an integer variable or constant.
Refer to section 5 for more information about the
immediate return feature.

A data base status block must be defined if a
FORTRAN program is to be able to detect a fatal
error or resource conflict. Refer to the Data Base
Status Block subsection later in this section for
more information.

DROPTRAN Statement

The DROPTRAN statement, shown in figure 3-11,
cancels the current transaction. Execution of the
DROPTRAN statement causes C(DCS to restore the
records updated within the transaction to their
original states which existed just before the
transaction was initiated, and also causes CDCS to
release all record locks, A fatal error occurs if
an attempt 1is made to execute a DROPTRAN statement
if no transaction has been initiated (refer to the
BEGINTRAN statement).

60485300 D

J )

J )



FORTRAN 5 Format:

DROPTRAN [(ERR=s)1

Figure 3-11. DROPTRAN Statement Format

Refer to the ERR and END Specifiers subsection
later in this section for information about the
ERR=s parameter.

FINDTRAN Statement

The FINDTRAN statement, shown in figure 3-12,
obtains information for a program restart operation
after a system failure. This statement is normally
issued in the restart unit of the program,

FORTRAN 5 Format:

FINDTRAN (restart-id, tran-id ([,ERR=s])

Figure 3-12. FINDTRAN Statement Format

Restart-id identifies the l- to 10-character restart
identifer that was assigned to the program before
the system failure., Restart—id can be specified
either as a constant or as a variable. (Refer to
the Constant or Variable subsection for more infor-
mation,)

Tran-id receives the transaction identifier of the
last completed transaction; this identifier is
returned only if the application program had begun,
but not committed or dropped, a CDCS transaction
prior to a system failure. Tran—-id must be speci-
fied as a variable. (Refer to the variable subsec—
tion earlier in this section for more informationmn).

Tran—-id receives the characters **¥%&kkk%x (10
asterisks) if the restart identifier is unknown to
CDCS. The restart identifier is unknown to CDCS if
the wrong value 1is specified for restart—id or if
the run-unit terminated normally. If the run-unit
terminated normally, a new restart identifer must
be obtained.

Tran—-id receives a value of ten blanks if the
restart identifier is known to CDCS, but no trans-
action had been completed prior to the system fail-
ure. The FINDTRAN statement executes normally and
no new restart identifier need be obtained; the
restart identifier specified as restart-id 1is
reassigned to the program.

If a transaction identifier is returned, no new
restart identifer need be obtained; the restart
identifer specified as restart-id 1is reassigned to
the program.

60485300 D

Refer to the ERR and END Specifiers subsection
later in this section for information about the
ERR=s parameter.

INVOKE Statement

The INVOKE statement, shown in figure 3-13, must be
specified before any executable DML statement
(except SUBSCHEMA, which is nonexecutable). It
establishes communication between the application
program and CDCS. INVOKE must be executed in every
run-unit (the wain program and any subprograms) in
which DML statements are executed.

INVOKE C(VERSION=version=-name)]

Figure 3-13. INVOKE Statement Format

The INVOKE statement is not normally allowed within
a transaction; however, if an INVOKE statement is
specified within a TAF task (or task chain) the
statement is ignored unless it is associated with a
different subschema or version name. Lf INVOKE is
associated with a different subschema or version
name within a transaction, an error results.

The application program can change the version it
is currently using by first executing a TERMINATE
statement and then re—invoking CDCS with an INVOKE
statement that specifies an alternate version name.
Even though the privacy keys are the same for each
version of the subschema, the application must
repeat PRIVACY statements after each INVOKE state-
ment if access control locks are in use.

In an application program counsisting of more than
one program unit, wmultiple INVOKE statements can
occur without an intervening TERMINATE statement.
In this case the version name appearing in any
subsequent INVOKE statement must be the same as the
version name specified for the first INVOKE state-
ment. Lf the version name is omitted in subsequent
INVOKE statements, the version name specified in
the first INVOKE statement is assumed.

Version-name specifies the l- to 7—-character version
name described in the master directory for the
schema being used. Version—-name can be specitied
as either a constant or a variable. (Refer to
either the Constant or Variable subsection for more
information.) If the VERSION option is omitted,
version MASTER is assumed.

LOCK Statement

The LOCK statement, shown in figure 3-14, identifies
a realm and a lock type that either restricts or
prevents access to the realm by other jobs. Al-
though CDCS always assigns a protected lock to a
record read with intent to update (the record can



FORTRAN 5 Format:

LOCK (realm-name [,TYPE= Lock-type [,ERR=s]])

Figure 3-14. LOCK Statement Format

be read but not updated by another concurrently
executing program), the LOCK statement locks the
whole realm. The realm lock is in effect until
cancelled by an UNLOCK or CLOSE statement or unless
a deadlock situation occurs. When using trans-
action processing, use of the LOCK statement is not
recommended. The LOCK statement is not allowed
within a transaction.

When a realm has been locked by the LOCK statement,
the recommended procedure for deleting or rewriting
a record in that realm is to read the record, and
then perform the delete or rewrite operation. This
procedure offers protection for the data base,
because a program can check for an error on the
read before proceeding with the delete or rewrite
operation. Another procedure is also available;
that is, the value of the primary key cam be set to
the value of the key of the record to be deleted or
rewritten, and then the delete or rewrite operation
can be performed. This procedure does not offer as
much protection to the data base. A realm lock
should be used judiciously when deleting or rewrit—
ing a record, because the realm lock overrides the
record lock and the checking capabilities through
the record lock.

Two types of 1locking are permitted: exclusive or
protected. Exclusive locking prohibits concurrent
access to the realm for read or update operations;
protected locking allows concurrent access to the
realm for read operations only.

Realm-name specifies the realm to be locked.
Realm—name must be described in the subschema or a
nonfatal error occurs.,

Lock-type identifies the type of locking desired.
Lock-type can be specified as either a constant or
a variable. The lock-type option must specify one
of the values mentioned previously, either the
value EXCLUSIVE or the value PROTECTED. (Refer to
the Constant or Variable subsection earlier in this
section for more information.)

Refer to the ERR and END Specifiers subsection
later in this section for information about the
ERR=s parameter.

3-12

NEWVERSION Statement

The NEWVERSION statement, shown in figure 3-15,
changes the data base version that is being used by
a program. Use of this statement provides the
application program with the capability to change
version names without having to terminate and
re-invoke CDCS. Therefore, when privacy locks are
in effect, versions can be changed without repeat-
ing PRIVACY statements. The NEWVERSION statement
is not allowed within a transaction.

FORTRAN 5 Format:

NEWVERSION (version—-name [,ERR=sl)

Figure 3-15. NEWVERSION Statement Format

If a NEWVERSION statement is used to change ver-
sions, a subsequent INVOKE statement (ome that is
specified without an intervening TERMINATE or
NEWVERSION statement) must conform to the following
rules:

If a version name appears in the INVOKE state-
ment, it must be the same as the version
specified in the NEWVERSION statement.

If the version name is omitted in the INVOKE
statement, the version specified in the
NEWVERSION statement is assumed.

All the subschema realms for the program must be
closed before the NEWVERSION statement executes or
a fatal error results, A fatal error also occurs
if the version name specified does not exist before
the NEWVERSION statement is executed.

Version-name identifies the I- to 7-character
version name described in the master directory for
the schema being used. Version-name can be speci-
fied as either a constant or a variable. (Refer to
either the Constant or Variable subsection for more
information.)

Refer to the ERR and END Specifiers subsection
later in this section for information about the
ERR=5 parameter.

Figure 3-16 shows an example of the use of the
NEWVERSION statement. The INVOKE statement speci-
fies that version TEST17 is to be used. The
NEWVERSION statement is used to change the version
name. The first iteration of the DO loop causes
version BRANCHA to be used, the second iteration
causes version BRANCHB to be used, and so on.

60485300 D

J )

™
=



fﬁﬁh\
f@a\

INTEGER STATBLK(11)
CHARACTER * 7 VERS (5)
SUBSCHEMA (PARTORD)

INVOKE (VERSION='TEST17')
C VERSION IS TEST17
OPEN (PRODUCTS, MODE=IO)

CLOSE (PRODUCTS)
00 25 1=1,N
NEWVERSION (VERS(I))

C BRANCHB, AND SO FORTH.
OPEN (PRODUCTS, MODE=IO)

CLOSE (PRODUCTS)
25 CONTINUE
TERMINATE

DATA VERS/'BRANCHA','BRANCHB','BRANCHC','BRANCHD','BRANCHE'/

C VERSION FOR FIRST ITERATION OF THE DO LOOP IS BRANCHA, THEN

Figure 3-16. Example of Use of

OPEN Statement

The OPEN statement, shown in figure 3-17, prepares
a realm or a relation for processing. No other
statement (except PRIVACY) related to the realm or
relation can be executed when the realm or the
relation is not open. The OPEN statement is not
allowed in a transaction.

FORTRAN 5 Format:

1
realm=name } _ _
OPEN{( relation-name [,MODE- {30}] C,ERR=s])

Figure 3-17. OPEN Statement Format

Successful execution of an OPEN statement sets the
key of reference to the primary key of the first
record in the realm (or the root realm of a rela-
tion). Execution of this statement makes the
record associated with the primary key value avail-
able to the program; it does not obtain or release
the record.

The OPEN realm statement makes the records in a
realm available to the FORTRAN program and posi~
tions the realm at beginning of information. The
realm specified in the OPEN statement must be among
those included in the subschema.

The OPEN relation statement makes the records in
the realms joined in the specified relation avail-
able to the FORTRAN program and positions each
realm in the relation at beginning of information.
The relation specified in the OPEN statment must be
included in the subschema.

60485300 D

the NEWVERSION Statement

Relations are normally opened for input (MODE=I).
The relation can be opened for input and output
(MODE=10) if the user wishes to have locking of
records read for the relation occurrence, or if
individual realms in the relation are to be updated.
If any of the realms included in the relation are
already open, no action occurs for that realm. Any
previous mode setting remains in effect.

The option chosen for MODE determines the type of
processing allowed on a realm or a relationm, as
follows:

When a realm is opened for input (MODE=I), only
the READ, LOCK, UNLOCK, and CLOSE statements
can be executed.

When a realm is opened for input/output
(MODE=IO), the READ, WRITE, DELETE, REWRITE,
LOCK, UNLOCK, and CLOSE statements can be
executed.

When a realm is opened for output (MODE=0),
only the WRITE, LOCK, UNLOCK, and CLOSE state-
ments can be executed.

MODE=0 must be specified for creation of a new
file; it is not valid for an existing file. If
MODE is omitted, the default is MODE=IO.

Refer to the ERR and END Specifiers subsection
later in this section for information about the
ERR=s parameter.

An example of the OPEN statement is shown in figure
3-18. The realm named CUL~DE-SAC is opened in read
only mode.

OPEN (CUL-DE-SAC, MODE = I)

Figure 3-18. Example of Use of
OPEN Statement

3-13



PRIVACY Statement

The PRIVACY statement, shown in figure 3-19, estab-
lishes the right of a program to access a realm,
It has no effect unless the realm was defined with
controlled access in the schema. If the realm was
defined with controlled access in the schema, the
PRIVACY statement must supply the privacy key
before the realm can be opened. To access several
realms, each requiring a privacy key, the FORTRAN
program must contain a PRIVACY statement for each
realm. Similarly, to open a relation that joins
realms with each realm requiring a privacy key for
access, a PRIVACY statement for each realm must be
specified before the OPEN relation statement. If
an INVOKE statement is wused to change version
names, PRIVACY statements must be repeated for each
realm. The PRIVACY statement is not allowed within
a transaction.

At execution time, the key specified in the PRIVACY
statement is compared with the lock specified in
the schema. 1If a program attempts to open a realm
without supplying the correct privacy key, the
program is terminated.

Realm—-name specifies the realm which requires the
privacy key. The realm specified in the PRIVACY
statement must be included in the subschena.

Privacy-key specifies the 1- to 30-character privacy
key for the PRIVACY option. The language elements
used to specify privacy-key depend on the version
of FORTRAN used. Privacy-key can be specified in
FORTRAN 5 as a character constant, a variable, or
the unsubscripted name of a three-word array. If
either a variable or an array is used, the data
assigned must be character data.

The value of the MODE option determines the type of
access allowed when the character string specified
by privacy-key matches the privacy key defined in
the schema. Specification of the value I restricts
access to read operations only; the value O
restricts access to update operations only. If the
value 10 is specified, access is allowed for both
read and update operations (the default if the MODE
option is omitted). The value specified for the
MODE option of the PRIVACY statement must be com-

patible with the value specified for the MODE
option of the OPEN statement.
If the data administrator has defined separate

privacy keys for update and retrieval (read access)
for a realm, the FORTRAN program must specify two

other must specify MODE=0. Table 3-2 shows the
mode option that is used to satisfy the types of
access control locks specified by the data admin-
istrator in the schema.

TABLE 3-2. SCHEMA ACCESS CONTROL LOCK AND
CORRESPONDING MODE OPTION USAGE

Schema Access
Control Lock

Corresponding FORTRAN
MODE Option

—_—
Update 0
Retrievall 1
Update/retrievalf {ioand 0

TRetrieval refers to read access.

Examples of the PRIVACY statement are shown in

figure 3-20.

statements are specified since separate access
control locks were declared by the data
administrator: one for update access and the other

for retrieval (read) access. If STUDENT-ID is
specified as the privacy key for retrieval (read)
operations, and CLASS-ID 1is specified as the
privacy key for update operations, then the realm
can be opened for input/output.

FORTRAN 5 Example:

CHARACTER*30 READKY,RITEKY * 30
DATA READKY/'STUDENT-ID'/
DATA RITEKY/'CLASS-1ID'/

PRIVACY (AVERAGE,MODE=I, PRIVACY=READKY)
PRIVACY (AVERAGE,MODE=0, PRIVACY=RITEKY)

Figure 3-20. PRIVACY Statement Examples

READ Statement

The READ statement, shown in figure 3-21, causes
CDCS to read a record or relation occurrence from
the specified realm or from the realms in the
specified relation. The record (or records in the

PRIVACY statements to open the realm for input/ relation occurrence) must be described in the
output. One statement must specify MODE=I; the subschema.
I
PRIVACY (realm-name | ,MODE={ 10 [, PRIVACY = privacy-key)
0
Figure 3-19. PRIVACY Statement Format
3-14 60485300 D

In the FORTRAN 5 example, two PRIVACY [

J

=
™)



6@@*\
6@?\

FORTRAN 5 Format:

realm-name .EQ.
READ ({relation-name} /KEY .GT.
.GE.

item-name
concatenated~key-name

} [, ERR=s] C,END=s1)

Figure 3-21. READ Statement Format

Syntax Requirements

Table 3-2.1 shows how the READ syntax corresponds
to read characteristics.,

The KEY option of the READ statement establishes
the key of reference. The key of reference 1is the
primary key or alternate key of the record or
relation read. Once the key of reference has been
established, it can only be changed by another READ
statement (with the KEY option specified), a START
statement, or an OPEN statement.

Refer to the ERR and END Specifiers subsection
later in this section for information about these
parameter,

Realm Read

A realm read causes a record to be read from the
specified realm and disassembled into the variables
and arrays included in the subschema description of
the record. These variables and arrays in the
FORTRAN program are set to their present values
from the record. If any type conversion is implied
by the correspondence between the schema and sub-
schema descriptions of a data item, it is performed
at this time; the program receives data according
to its description in the subschema.

Relation Read

A relation read causes CDCS to read a relation
occurrence; the relation specified in the READ
statement must be included in the subschema. A
relation occurrence consists of one record ftrom
each of the realms comprising the relation. The
FORTRAN variables and arrays included in the sub-
schema description of each record are set to their
current values from the relation occurrence. Refer
to section 5 for detailed information about reading
a relation.

Random Read

If the KEY option of a READ statement is specified,
the read is random; the record or relation occur-
rence read 1is the record or relation occurrence
with the key that satisfies the specified compari-
son, In the KEY option, item-name must be set
before the read to the primary or alternate key
value of the record occurrence or relation occur-
rence desired. For a realm read, item—-name must
have been defined in the subschema, and must refer
to the primary or alternate key for the realm., For
a relation read, item—name must have been defined
in the subschema and must refer to the primary or
alternate key of the root realm of the relation.
(The root realm is the first realm listed for the

TABLE 3-2.1 SYNTAX CORRESPONDENCE TO READ CHARACTERISTICS

Read Characteristics

KEY option used X
KEY option omitted X
item—name

concatenated-key-name

Syntax
Random Sequential Realm Relation Concatenated Key Single-item Key
realm-name r
relation~-name X

60485300 D

3-15



relation in the subschema 1listing as shown in the
Subschema Listing subsection earlier in this sec—
tion.)

Item—name can be of any data type except logical.
If it is complex or double precision, it is treated
as real., If it is complex, the imaginary part is
discarded and it is treated as a real value. If it
is double precision, the least significant part is
discarded and it is treated as real,

When the comparison specified by the relational
operator of the KEY option is performed, the record
returned is the first record in the realm (or in
the root realm of the relation) that satisfies the
specified comparison. If the comparison is .EQ. or
=, the key of the record must exactly match the
value specified in item-name. (No conversion is
performed, except as described for complex and
double precision items.,) If the comparison is
«GE., the key of the record must be greater than or
equal to the value specified in item—name.

The value of the primary or alternate key and the
value specified in item—name are compared by numer-—
ical magnitude. The values are determined by the
collating sequence defined for the realm in the
schema. (The data administrator can provide this
information.) Collating sequences are shown in
appendix I.

Read With a Concatenated Key

If a concatenated key 1is wused for a read,
concatenated-key-name 1is specified in the KEY
option. The constituent items of the concatenated
key must be individually set before the READ state-
ment., These items must also have been defined in
the subschenma.

Sequential Read

If the KEY option is omitted, the read is sequen—
tial; that 1is, the record or relation occurrence
located is the next record or relation occurrence
from the present location of the realm or rela-—
tion. The next record or relation occurrence is
determined by the collating sequence defined for
the realm (the root realm of a relation) in the
subschema. (The data administrator can provide
this information.) The collating sequences are
shown in appendix I.

Examples

Figure 3-22 shows the keys on the realm ADMIN. In
the first set of statements, item-name STDENT is
set to the primary key value 31. Since the com~
parison specified is =, the record read 1is the
record whose primary key is 3l. In the second set
of statements, item—name STDENT is set to the
primary key value 35. Since the comparison speci-
fied is .GE., the record read is the record whose
primary key is greater than or equal to 35; in this
case, the record whose key is 36.

3-16

Keys on ADMIN:

21
3
34

37

Statements that read the record whose key is 31:

INTEGER STDENT

STDENT = 31
READ (ADMIN, KEY = STDENT)
Statements that read the record whose key is 36:

STDENT = 35
READ (ADMIN, KEY .GE. STDENT)

Figure 3-22. Example of Use of
READ Statement

REWRITE Statement

The REWRITE statement, shown in figure 3-23, re-
places an existing record in a realm with a new
record based on the current values of all the
variables defined for the record in the subschema.

- FORTRAN 5 Format:

REWRITE (realm-name [,ERR=s])

Figure 3-23. REWRITE Statement Format
Before rewriting a record, the record must be
locked, with either a record lock or with a realm
lock. A protected record lock is established when
a DML READ statement is issued for a realm opened
for input/output. A protected record lock can be
established either within a transaction or outside
of a transaction. An exclusive record lock is
established when the rewrite request is issued
within a transaction. A realm lock is established
by issuing a DML LOCK statement.

The recommended procedure for rewriting a record is
to precede the REWRITE statement with a DML READ
statement. The value of each data item being~
rewritten can then be changed. When the REWRIIE
statement executes, the record is rewritten. The
value of the primary key should not be changed
between the read and the rewrite of the record,
because a record is identified by its primary key

60485300 D

J D

J )

‘e



F““
(@Ex

value. Following this procedure insures that the
correct record is rewritten.

This procedure nust be followed when rewriting a
record with a protected record lock outside of a
transaction. If the value of the primary key is
changed before the rewrite is attempted, CDCS
issues a diagnostic message. 1If the value of the
primary key of a record with a protected record
lock must be changed outside of a transaction, the
program must delete the record with the old primary
key value and write the record with the new primary
key value.

This procedure should be followed when rewriting a
record with an exclusive record lock within a
transaction or when rewriting a record with a realm
lock. If this procedure is not followed, the wrong
record might be inadvertently rewritten.

Refer to section 5 for information about the exclu-
sive record lock and the realm lock.

Refer to the ERR and END Specifiers subsection
later in this section for information about the
ERR=s parameter.

START Statement

The START statement, shown in figure 3-24, positions
a realm or relation for subsequent retrieval of
records; however, this statement does not cause a
record to be transferred to the program. The START
statement can be specified any number of times.
Before the START statement is executed, the realm
or relation must have been opened with MODE=I or
MODE=I0 specified.

Syntax Requirements

realm-name
Specified for a realm start.
relation—name
Specified for a relation start.
KEY
Specifies the positioning of the realm or
relation. If KEY option is omitted, the

realm (the root realm of a relation) is
positioned at the record whose primary key

value equals the current value of the
primary key (item-name or concatenated-
key-name, whichever applies). If the KEY
option is specified, comparison occurs as
described later.

item—name

Used to specify a single-item key (as
opposed to a concatenated key).

concatenated—key—nanme

Concatenated key name as listed on the
FORTRAN subschema output. Lt can be speci-
fied when retrieval is by concatenated key.

item-name-list

List of item-names separated by commas:
item—name-l, item—-name-2, etc. Lt can be
used when a concatenated key is used and
also when major key processing is done.
Item—-names can be all the constituent iteas
or the leading items of the concatenated
key. Refer to examples later.

ERR=s
Refer to the ERR and END Specifiers

subsection later in this section for
information about this parameter.

Realn START

The realm START statement establishes the key of
reference for a realm by positioning the realm to
the first record occurrence whose key value meets
the specified condition. The key that satisfies
the condition becomes the new key of reference.
The statement is normally followed by a sequential
realm READ statement, which performs the read from
the position established by the execution of the
START statement.,

Relation START

The relation START statement positions a relation
for subsequent sequential retrieval of records
through relational reads. The root realm of the
relation is positiomed as described in the preced-
ing paragraph. This statement establishes the key
of reference for the root realm of the relation. A
relation READ statement following a relation START

FORTRAN 5 Format:

relation-name

START ({'ealm°"a”e } AKEYS &2

{item-name
.GE.

concatenated—key-name} [,ERR=s1)
item-name-Llist

Figure 3-24.

60485300 D

START Statment Format

3-17



statement retrieves from the root realm both the
record with the key that satisfies the start condi-
tion and a record from each realm in the associated
relational hierarchy.

KEY Comparisons

If the KEY option is specified, the comparison
specified by the relational operator is performed.
As a result of this comparison, the realm or rela-
tion is positioned at the first record occurrence
or relation occurrence that satisfies the compari-
son. Comparison is performed by numerical value;
for example, if the comparison is .GT., the value
of the key in the record must be strictly greater
than the value of item-name.

The values used for comparison are determined by
the collating sequence specified for the realm (the
root realm of a relation) in the subschema. The
data administrator can provide this information.
Collating sequences are shown in appendix I.

Using a Single-Item Key

In the KEY option, item-name specifies a single-
item primary or alternate key. Item—name must
match a data item described in the subschema as a
primary or alternate key for the realm (root realm
in the case of a relation). Also, item—name must
be set to the primary or alternate key value of the
record or relation occurrence desired before the
START is executed.

For a FORTRAN 4 program, item-name can be a special
long variable. (Refer to the Special Long Variable
subsection earlier in this section for more infor-
mation.)

Using a Concatenated Key

In the KEY option, concatenated-key-name specifies
a concatenated primary or alternate key. It must
match the concatenated key name as shown in the
subschema output 1listing. Also, each constituent
item of the concatenated key must be individually
set to the primary or alternate key value of the
record or relation occurrence desired. Once the
constituent items are set, the concatenated key
name can be used in the START statement.

For example, if ITEMA, ITEMB, and ITEMC are the
contiguous data items wmaking up the concatenated
key, the START statement might appear as follows:

ITEMA=M130

ITEMB=123

ITEMC=77

START(FILEL, KEY .EQ. CONCKEY)

where CONCKEY is the concatenated key name as listed
in the subschema. The list ITEMA,ITEMB,ITEMC could
have been specified instead of CONCKEY in the START
statement.

Using Major Key Processing

Major key processing can only be specified in the
START statement.

3-18

1f concatenated keys have been defined in the sub-
schema, major key processing can be done. For
major key processing, the item~name-list must match
the leading contiguous elementary items that make
up the concatenated key as listed in the subschema.
Each data item in the list must be individually set
to the primary or alternate key value of the record
or relation occurrence desired. The item—name-list
can include as many of the leading contiguous items
that make up the concatenated key as defined in the
subschema.

Item-name-list consists of a list of item~names
separated by commas. For example, if ITEMA, LTEMB,
and ITEMC are the contiguous data items making up
the concatenated key, the START statement specify-
ing major key processing might appear as follows:

1TEMA=X85
ITEMB=600
START(FILE2, KEY .EQ. ITEMA, ITEMB)

Leading items ITEMA and ITEMB are set to the
respective values before the START.

START or READ

Under most circumstances, either a START statement
or a READ statement that specifies the KEY option
can be used to position a realm or relation. How-~
ever, when a user wants to position a relation tor
subsequent sequential read operations and that
particular relation 1s qualified by a RESTRICT
statement, the START relation statement must be
used. Under this one circumstance, the result of
positioning the relation with the READ statement
(READ relation—-name KEY) would be unpredictable.

SUBSCHEMA Statement

The SUBSCHEMA statement, shown in figure 3-25, is
required in every program or subprogram unit
accessing the data base defined by the subschema.
It need not appear in a program unit that contains
no DML statements. It is nonexecutable, and must
appear after the specification statements and
before the first DATA or NAMELIST statement,
statement function, or executable statement,

SUBSCHEMA (subschema-name)

Figure 3-25. SUBSCHEMA Statement Format

Only one subschema can be used by a FORTRAN program.
The subschema to be referenced must have been
previously compiled with the same language version
(FORTRAN 5) as specified in the DML control state-
ment. The subschema must be available to the DML
preprocessor.

At the point in a program unit where the SUBSCHEMA
statement appears, the DML preprocessor copies the
text of the type declarations and DATA statements
resulting from the subschema compilation into the
program. The variables and arrays appear in common
blocks. In addition, several other variables and
arrays are declared by DML, These variable and
array names are reserved for use by DML and should
not be defined by the user. Refer to the subsection
Additional Status Checking Elements later in this
section for a list of these arrays and variables.

60485300 D

JJ

1

n

)



TERMINATE Statement

The TERMINATE statement, shown in figure 3-26,
disconnects the application program from CDCS,
After TERMINATE has been executed, no other DML
statements can be executed until another INVOKE has
been executed. A TERMINATE statement must precede
an INVOKE statement that is used to change a version
name. The TERMINATE statement must be executed
before the FORTRAN STOP or END statement,

FORTRAN 5 Format:

WRITE (realm-name [,ERR=s])

TERMINATE

Figure 3-26. TERMINATE Statement Format

TERMINATE permits CDCS to close files and return
resources used by the job. If the job terminates
abnormally before TERMINATE is executed, CDCS
automatically performs the same functions.

UNLOCK Statement

The UNLOCK statement, shown in figure 3-27, releases
the lock on the specified realm; any record locks
for the realm that are held by a run-unit are also
released. The realm specified in this statement
must have been included in the subschema. The
UNLOCK statement 1s not allowed within a trans-
action.

FORTRAN 5 Format:

UNLOCK (realm-name [,ERR=s])

Figure 3-27. UNLOCK Statement Format

Refer to the ERR and END Specifiers subsection
later in this section for information about the
ERR=s parameter.

WRITE Statement

The WRITE statement, shown in figure 3-28, uses the
current value of all the variables defined for the
record in the subschema to construct a record, and
then writes the record to the data base file asso~
ciated with the named realm. All primary and
alternate keys must be set appropriately before the
record is written. Any data items in the schema
record that are not defined in the subschema are
given null values before the record is written to
the database.

Refer to the ERR and END Specifiers subsection

later in this section for information about the
ERR=s parameter.

60485300 D

Figure 3-28. WRITE Statement Format

An example of the use of the WRITE statement
is shown in figure 3-29, The keys on the realm
WRBLOCHON are also shown, both before and after
execution of the WRITE statement. In the example,
if the item PKEY was defined in the schema as the
primary key, execution of the WRITE statement
creates a new record with the primary key 662,

Keys on WRBLOCHON before the write operation:

60

120
190
550
663
664

Statements that write a new record for WRBLOCHON:

PKEY = 662
C  CREATE A NEW RECORD
WRITE (WRBLOCHON)

Keys on WRBLOCHON after the write operation:

70
120
190
550
662 (new record)
663
664

Figure 3-29. Example of Use of the
WRITE Statement

3-18.1



LISTING CONTROL DIRECTIVES

The DML preprocessor automatically generates list-
ing control directives as part of the translated
FORTRAN program. These directives have the form:

FORTRAN 5

C$ LIST(ALL=0)
C$ LIST,ALL

The first directive inhibits the 1listing of all
succeeding FORTRAN statements. The second direc~-
tive resumes DMsting of FORTRAN statements. The
DML preprocessor inserts these directives imme-
diately after the SUBSCHEMA and INVOKE statements,
as shown in figure 3-30.

3-18.2

*k
(3
cs

kX

cs
cs

SUBSCHEMA(BIRD)
LIST, (ALL=0)
LIST,ALL

INVOKE
LIST, (ALL=0)
LIST,ALL

Figure 3-30.

Statements in a FORTRAN Program

Example of Listing Control

60485300 D

J )

J )



The effect of the listing control directives is to
inhibit the 1listing of the FORTRAN statements
generated by DML, These directives can be sup-
pressed by the DS parameter on the DML control
statement, in which case all FORTRAN statements
generated by DML appear on the FORTRAN source
listing. Note that the CALL statements generated
as a result of executable DML statements are not
suppressed by the listing control directives.

DML CONTROL STATEMENT
The DML control statement causes the preprocessing

of DML statements. The format of the DML control
statement is shown in figure 3-3l.

DML Control Statement Parameters
The DML control statement parameters are interpreted
in the following paragraphs. All the parameters
are optional and can appear in any order.
The SB parameter specifies the name of the file
containing the subschema library. The SB parameter
is interpreted as follows:

omitted

Same as SB; the local file SBLFN is assumed
to contain the subschema library.

SB

The local file SBLFN is assumed to contain
the subschema library.

SB=0
Not allowed.
SB=1fn

The specified 1local file name identifies
the file containing the subschema library.

The LV parameter specifies the version of FORTRAN
for which the DML preprocessor generates state-
ments. The LV parameter is interpreted as follows:

omitted

Same as LV=F5; this option can be changed
at installation time.

LV
Same as LV=F5,
Lv=0

Not allowed.

LV=F5

The DML preprocessor is to generate state-
ments for processing by the FORTRAN 5
compiler.

The I parameter specifies the file which contains
the FORTRAN source program and the added DML state-
ments that are to be preprocessed by DML. The I
parameter is interpreted as follows:

omitted

The local file INPUT is assumed to comntain
the source input for the DML preprocessor.

I
The local file COMPLLE is assumed to contain
the source input for the DML preprocessor.
1=0
Not allowed.
I=1fn

The specified local file name identifies
the sequential file containiang the source
input for the DML preprocessor.

The O parameter specifies the file to which the
translated version of the FORTRAN source program is
to be written. DML statements appearing in the
FORTRAN program are translated into FORTRAN state-
ments before being written to this file. The 0
parameter is interpreted as follows:

omitted
Same as O; the local file DMLOUT receives

the translated output from the DML pre-
processor.

The local file DMLOUT receives the trans-
lated output from the DML preprocessor.
0=0

No translated output file is produced.

O=1fn

The specified local file name identifies
the file which is to receive the translated
output from the DML preprocessor.

DMLLC,SB=LfnlL,LV=0plL,I=LfnlL,0=LfnlL,E=LfnI1LET=0plLC,DS].

Figure 3-31. DML Control Statement Format

60485300 D

3-19



The E parameter specifies the name of the file to
which error diagnostics are written. The E param-
eter is interpreted as follows:

omitted

The local file OUTPUT receives the diag-
nostics generated by DML.

E
The local file ERR receives the diagnostics
generated by DML.

E=1fn

The specified local file name identifies
the file which is to receive the diagnostics
generated by DML.

The ET parameter specifies the error termination
code. Four levels of errors are definmed: trivial
(T), warning (W), fatal (F), and catastrophic (C).
The error levels are explained with the correspond-
ing option. If an error of the specified level or
higher occurs, the job is aborted to an EXIT con-
trol statement (NOS) or EXIT(S) control statement
(NOS/BE). The abort does not take place until DML
is finished. The ET parameter 1is 1interpreted as
follows:

omitted

Same as ET=0; the job step i1s not to be
aborted even if errors occur (except for
control statement errors).

ET=0

The job step is not to be aborted even if
errors occur (except for control statement
errors).

ET

Same as ET=F; the job is to abort if an
error of level F or C occurs. The trans-
lated output file cannot be successfully
compiled by FORTRAN.

ET=T

The job is to abort if an error of level T,
W, F or C occurs. When a level T error
occurs, the syntax of statement usage is
correct but questionable. The translated
output file can be compiled by FORTRAN, but
the results might not be those expected.

ET=W

The job is to abort if an error of level W,
F, or C occurs. When a level W error
occurs, the syntax of statement usage is
incorrect, but the preprocessor has been
able to recover by making an assumption
about what was intended. The translated
output file can be compiled by FORTRAN, but
the results might not be those expected.

ET=F
The job is to abort if an error of level F

or C occurs. When a level F error occurs,
the DML preprocessor 1is prevented from

3-20

processing the statement in which the error
occurs. Unresolvable semantic errors also
fall into this category. The translated
output file cannot be successfully compiled
by FORTRAN.

ET=C

The job is to abort if an error of level C
occurs. When a level C error occurs, com—
pilation cannot continue. DML advances to
the end of the current program unit and
attempts to process the next program unit.
The translated output file cannot be suc-
cessfully compiled by FORTRAN.

The DS parameter specifies listing control directive
suppression. Refer to the Listing Control Direc-
tive subsection earlier in this section for more
information. If this parameter is specified, all
FORTRAN statements generated by DML preprocessing
appear on the FORTRAN source listing. The DS
parameter is interpreted as follows:

cmitted

Listing control directives are generated.
DS

Listing control directives are not gen-
erated.

DML Control Statement Example

An example of the DML control statement is as
follows:

DML (LV=F5,SB=BRIE,I,E<ERRFILE,ET=W)

This control statement specifies that the DML
preprocessor 1s to generate statements for the
FORTRAN 5 compiler, that the subschema library is
on the file BRIE, that input is on the file COMPILE,
that output is to be written to DMLOUT, that error
messages are to be writtem to ERRFILE, and that the
job step aborts if any errors of warning level or
higher occur.

COMPILATION/EXECUTION

Compilation of a FORTRAN application program for
processing with CDCS requires that the subschema be
attached. Data base information from the subschema
is incorporated in the application program during
compilation. To compile and execute a FORTRAN
program containing DML statements, the user must
perform the following steps:

To compile
Attach the subschema.

Specify the DML control statement to exe-
cute the DML preprocessor.

Execute the FORTRAN compiler, specifying
that the output file produced by the DML
preprocessor 1is the input file to the
FORTRAN compiler.

60485300 A

JJ



6@5*\

6ﬂﬁh

To execute

Specify either the LDSET(LIB=DMSLIB) or the
LIBRARY(DMSLIB) control statement.

Specify the name of the file containing the
relocatable binary program; LGO 1is the
system default file.

When the compiled program is executed, CDCS moni-
tors and iaterprets all requests for action on

relations and on data base files. All data base -

files and index files that are referenced in the
subschema used by the application program are
attached automatically by CDCS. If any one of
these files does not exist when the program is
executed, the program is aborted.

Refer to section 5 for information about execution
of a FORTRAN program using CDCS. Refer to appendix
G for information about compilation and execution
of an application program using the CDCS Batch Test
Facility (CDCSBTF).

SAMPLE JOB STRUCTURES

Figure 3-32 illustrates the control statements
needed to execute the DML preprocessor and to
compile and execute a FORTRAN applications program.
The ATTACH statement references the subschema
library containing the compiled FORTRAN subschema
referenced in the FORTRAN program. The referenced
subschema must be included in the master directory
and CDCS must be at a system control point. The
LDSET(LIB=DMSLIB) control statemeant causes the
DMS~170 library to be made available for execution
of the program. The LGO control statement ini-
tiates execution of the relocatable binary program
contained on that file.

The control statements necessary to compile and
execute a program are indicated in figure 3-32. To
just compile a program, the necessary control
statements include all those indicated except the
LDSET(LIB=DMSLIB) and LGO statements. By removing
these two control statements, the user can check
compilation of a program before specifying exe-
cution.

RECOMPILATION GUIDELINES

Recompilation of an application program using a
subschema is governed by the types of changes made
to the schema. The checksum facility is the mech-
anism used in determining whether the changes made
to the schema require the recompilation of a sub-
schema or an application program or both. The DDL
compiler produces a one-word identifying bit string,
called a checksum, for each realm and area in the
schema. A checksum is also generated for each
subschema. The checksums are stored in the schema
and subschema directories and are recorded in the
master directory. The checksums are used to verify
the consistency of the schema and its associated
subschemas, as well as the consistency of the sub-
schema and the application program referencing it.

When the schema is recompiled due to a modification
to a data base realm or relation, the data admin-
istrator compares the checksums generated with the
corresponding checksums in the previous version of
the schema. If the checksums do not match, all
subschemas that reference the realms or relations
whose checksums have changed must be recompiled by
the data administrator.

If a subschema has been recompiled and the checksum
of the recompiled subschema differs from its pre-
vious checksum, an application program referencing
that subschema must be processed again by the DML
preprocessor and recompiled. If a FORTRAN program
references an invalid checksum, CDCS aborts the
program and issues a diagnostic. The application
programmer can prevent the abnormal termination of
a program by ensuring, prior to executing the
program, that the subschema checksum in the master
directory matches the checksum of the subschema
used to compile the program.

STATUS CHECKING

CDCS provides various mechanisms by which extensive
status information can be returned to an applica-
tion program. CDCS can return status information
and error codes in the data base status block if
DMLDBST is called in a FORTRAN program. FORTRAN 5
programs can use ERR and END specifiers in DML

Job Statement
USER Statement —=

NOS Operating System only

CHARGE Statement -=s -

NOS Operating System only

ACCOUNT Statement =
ATTACH,SSLIB/UN=num, -e=

NOS/BE Operating System only
NOS Operating System only

ATTACH,SSLIB, ID=DDL, —e=

NOS/BE Operating System only

DML,LV=FS5, SB=SSLIB.
FTN5,I=DMLOUT.
LDSET,LIB=DMSLIB.

L

7/8/9 multipunch in column 1

end-of-record —

DML Statements

end-of-information

FORTRAN 5 Source Program Containing

6/7/8/9 multipunch in column 1

Figure 3-32. Program Compilation and Execution With CDCS at a System Control Point

60485300 A

3-21



statements to specify special processing when an
error or end-of-file condition occurs. CDCS pro-
vides additional status checking elements through
variables and arrays that are available for user
access so that informatiom can be obtained when an
error occurs. Some CDCS and CRM diagnostic codes
returned in DBSTAT or in the data base status block
do not necessarily represent error conditions;
rather, they are informative diagnostics. The
following subsections contain more information
about status checking.

DATA BASE STATUS BLOCK

The FORTRAN program can include an array, called a
data base status block, in the FORTRAN program to
which CDCS returns data base status informatiomn.
If a data base status block is provided, CDCS
returns updated status information after every CDCS
operation on a realm. Information returned to the
data base status block includes the following:

CRM or CDCS error code

Subschema item ordinal for item-level errors
CRM code indicating file position of a realm
Function being executed when an error occurred

Rank in a relation of the realm on which either
a CRM or CDCS error occurred or a special rela-
tion condition (null record or control break)
occurred

Name of the realm on which an error occurred

The FORTRAN program communicates the location and
length of the data base status block to CDCS by
calling the DMLDBST routine described earlier in
this section. The length of the data base status
block must be at least 1 word and should not be
greater than 11 words. CDCS returns as much infor-
mation as possible in the given length. The data
base status block should be of type INTEGER.

The information veturned in the data base status
block is shown in table 3-3.

An example of the declarations for the data base
status block 1s shown in figure 3-33, where the
data base status block is used to check for a dead-
lock situation. When CDCS has detected a deadlock
situation and has released the locked resources of
an application program, CDCS issues the deadlock
error status code 663 octal to the first word of
the data base status block. In the example, the
files joined in relation ACCT3 are opened for
input/output. The program presumably is reading a
record prior to updating it, and CDCS has locked
all records in the relation occurrence. A test of
word one of the data base status block is included,
which causes the program to enter a loop in case of
deadlock. In the loop, the program attempts to
reestablish the locks and checks for deadlock.

3-22

PROGRAM STATBLK
INTEGER STATUS (11),FUNCTN,RELSTAT (3)
INTEGER REALM(3),IER,IORD,ISEV
EQUIVALENCE (STATUS(1),IER),
*(STATUS (2) , I0RD) ,
*(STATUS 3) ,IFP),
*(STATUS (4) , ISEV),
*(STATUS (5) ,FUNCTN),

*(STATUS (6) ,RELSTAT (1)),
*(STATUS (9) ,REALM)

SUBSCHEMA (COMPARE)
INVOKE
CALL DMLDBST (STATUS,11)
PRIVACY (CUSTFIL,MODE=I0,PRIVACY="XX999")
OPEN (ACCT3,MODE=I0,ERR=100)
CUSTID="CD000123456"
30 READ (ACCT3,KEY=CUSTID)
IF (IER .EQ, 0"663")THEN
GO0 TO 30
ELSE

900 CLOSE (ACCT3)
TERMINATE
END

Figure 3-33. Example of a Data Base Status
Block Used For Deadlock Processing

Note that the length of the data base status block
is variable; CDCS updates only those words con-
tained within the given length. If, for instance,
a user program is not interested in the realm name,
the last three words of the status block can be
omitted. Only the eight remaining words are updated
by CDCS after every data base operation.

Although the length of the data base status block
is variable, the length provided must be sufficient
to allow complete specification of each unit of
status information, or that information will not be
updated. Thus, three words are required for both
the relation status (words 6, 7, and 8) and the
realm name (words 9, 10, and 11). Additionally,
CDCS updates words 2, 3 and 4 as a single unit that
returns auxiliary status; for information to be
returned in any one of these words, length must be
provided for all three words. 1If, for example, the
block length 1is six words, there 1is not enough
space for CDCS to return all three words of the
relation status, so no relation status is returned.

The data base status block consists of character
and numeric information. Octal codes are returned
in words 1 and 3. Decimal integers are returned in
words 2, 6, 7, and 8. Character strings are re-
turned as follows: a l10-character string in word 5
and a 30-character string in words 9, 10, and 1l.
A FORMAT statement that is used in printing words
of the data base status block should appropriately
specify the contents of each word that is being
printed.

60485300 A

J J

s

JJ



TABLE 3-3. CONTENTS OF THE DATA BASE STATUS BLOCK

Word

Number Contents

1 CRM or CDCS error code in octal for the last data base operation on a realm: value is zero if no
error has occurred. Values 600 through 677 octal and values 730 through 777 octal are CDCS
errors; all others are CRM errors. See appendix B of this manual for CDCS errors and the CYBER
Record Manager Advanced Access Methods Reference Manual for CRM errors.

Note that only error codes are returned. Null occurrence and control break conditions often

arise in the course of normal processing. The gtatus codes for these conditions are not re-
turned.

2 Subschema item ordinal for CDCS item-level errors. Item-level errors include data validation
errors, record mapping errors, and item-level data base procedure errors. Value is zero if no
errors have occurred. The item ordinal assigned by the FORTRAN DDL compiler is identified on
the subschema compilation listing.

3 CRM code in octal indicating file position of the realm when the last data base operation was
performed. A file position code is returned when open, close, read, and start operations are
performed. For a relation operation, the file position code indicates the position of the root
realm when the last operation was performed. The following list includes the file position
(@Eh\ codes that most commonly occur during data base processing.

. 10 octal End-of-key-list, which occurs when the last primary key value associated with a
glven alternate key has been returned during a read operationm using an alternate
key value.

20 octal End-of-record, which occurs when a record has been returned during a read
operation.

100 octal End-of-informatiom, which occurs when a sequential read operation is attempted
after the previous read operation returned the last record in the file. This
file position code can be used in a FORTRAN program to determine end-of-file.

If a FORTRAN program uses information returned in the data base status block to determine
end-of-file, the file position code should be used. The file position codes are CRM codes;
further information on file position (the FP field of the file information table) is in the
CYBER Record Manager Advanced Access Methods reference manual.

4 Severity of error that occurred during the last data base operation: the value is zero if no
error or a nonfatal error has occurred; the value is one if a fatal error has occurred.

S Function being performed when an error or relation condition occurred; one of the following
character strings (left-justified and blank filled):

ASK RAN-READ
BEGIN RECVR-PNT
(A CLOSE REL-NEXT
( COMMIT REL-READ
DELETE REL~-START
DROP REWRITE
END SEQ-READ
GET-ID START
LOCK UNDEF INED
LOCK-AREA UNLOCK
OPEN VERSION
PRIVACY WRITE

Value is undefined if no error has occurred.

6 For a relation operation, the rank of the realm on which a CRM or CDCS error occurred; zero if
no error has occurred. (The root realm of the relation has a rank of one.)

An error on a realm during a relation read terminates the operation. Consequently, there is
b never more than one rank in the relation which has a CRM or CDCS error.

60485300 A 3-23




TABLE 3-3. CONTENTS OF THE DATA BASE STATUS BLOCK (Contd)

Word
Number

Contents

control break has occurred.

null record.

7 For a relation operation, the lowest rank on which a control break occurred; value is zero if no

The control break condition signifies that a new record occurrence was read for the realm’s parent
realm in the relation. If the null occurrence condition is set for a realm, the control break
condition can be assumed for that realm even though it is not set. If a control break occurs, all
realms in the relation with a rank greater than the rank recorded in this word also have control
break status (or a null record occurrence, since null record occurrences override control break
status). See section 5 for more information about control break conditions.

8 For a relation operatiom, the lowest rank for which there was a null record; value is zero if no

A null record occurrence for a specific rank means either that at this ranmk no child record
currences of the parent record passed the record qualification criteria, or that no child record
occurrences at this rank exist for the parent record. If a null record occurs, all realms in the
relation with a rank greater than the rank recorded in this word have null record occurrences.
See section 5 for more information about null record occurrences.

9,10,11 Name of the realm on which an error has occurred; stored as a left-justified, blank-filled
character string. Contains blanks if no error has occurred, or if the error has occurred on a
non-1/0 operation or an I/0 operation not explicitly requested by the user.

ERR AND END SPECIFIERS

The optional error and end-of-file specifiers
in the form ERR=s and END=s are allowed only in
FORTRAN 5 programs. The s refers to the statement
label of an executable FORTRAN or DML statement
where execution is to continue if an error or end-
of-file condition occurs during execution of the
DML statement containing the specifier.

The ERR=s specifier can be added to the following
DML statements: ASSIGNID, BEGINTRAN, COMMITTRAN,
CLOSE, DELETE, DROPTRAN, FINDTRAN, LOCK, NEWVERSION,
OPEN, READ, REWRITE, WRITE, and UNLOCK. If a CRM
or CDCS error condition occurs during the execution
of a DML statement containing this specifier, the
following steps occur:

1. Execution of the DML statement terminates.

2. DML status variables are set to the CDCS or CRM
error code.

3. The appropriate fields in the data base status
block are set if DMLDBST has been called.

4., Execution continues with the statement la-
beled s.

Control is not transferred to the statement la-
beled s in the error specifier when a CDCS relation
condition indicating a null record occurrence or
control break (that is, a status code value of 627
octal and 632 octal, respectively) occurs. Unlike
execution of a FORTRAN 5 statement, execution of
the program is not terminated when an error condi-
tion occurs on the execution of a DML statement
that does not contain the ERR=s specifier; rather,
execution continues at the next executable state-
ment.

3-24

The END=s specifier can be added only to the DML
READ statement and is applicable only for a se-
quential vead. If a DML READ statement contains
this specifier and an end-of-file condition is
encountered, the following steps occur:

1. Execution of the READ statement terminates.
2. DML status variables are set to 100 octal.

3. Execution countinues with the statement la-
beled s.

For an explanation of the sequence in which the
status variables are set, see the Informative
Diagnostic Codes subsection later in this section.

Unlike execution of a FORTRAN 5 statement, exe-
cution of the program 1is not terminated when an
end-of-file condition occurs on the execution of a
DML READ statement that does not contain the END=s
specifier; rather, execution continues at the next
executable statement.

ADDITIONAL STATUS CHECKING ELEMENTS

The common block DB000O is declared by DML in every
FORTRAN program. This common block contains vari-
ables used for error and status processing. The
declarations for the block are as follows:

INTEGER DBREALM(3), DBTSTAT,...,
DBRnnan(3), DBSannn,...

COMMON /DBC000/ DBREAIM, DBSTAT,...,
DBRnnnn(3), DBSnnaon,...

These variables and arrays are avallable for user

access so that information can be obtained when an
error occurs. The variables are defined as follows:

60485300 A

JJ

)
)



D )

DBREALM(3)

Name of the realm on which the most recent
DML operation was performed. The name is a
Hollerith constant, left-justified in the
3-word array, with blank fill.

DBSTAT

Error number in octal of the most recent
error; either a CDCS error number or a CRM
error number. Numbers through 600 and 677
octal and numbers through 730 and 777 octal
are CDCS errors; all others are CRM errors.
See the appropriate reference manual for a
complete list of errors. If the value of
DBSTAT is zero, no error occurred. DBSTAT
should be printed using an O format.

DBRannn(3)

Realm name, in the same format as DBREALM.
One variable in this form is reserved for
each realm; the number nnnn is the realm
ordinal. Realm ordinals are assigned in
the same order as realms are declared in
the subschema; the first ordinal is 1.

DBSnnnn

Error status for realm DBRnnnn. Same format
as DBSTAT., I1f no error occurred on the
last access to realm nnnn, DBSnnnn is zero;
otherwise, it is set to the number of the
error that occurred.

After each DML operation, the value in DBSTAT
reflects the status of the operation. If the
statement has been successfully executed, the value
in DBSTAT is 0. If an error has prevented suc-
cessful execution of the statement, DBSTAT contains
the octal value of the CRM or CDCS error or status
(such as end-of-information). If DBSTAT is used,
the status variable should be checked after each
DML operation.

For relation processing, several status or error
codes might result from execution of a single DML
READ. In this case, DBREALM contains the name of
the last realm read that produced a nonzero status.
DBSTAT contains the value of that status or error
code. The status of each realm involved in the
relation can be found in the DBSnnnn field for that
realm. Refer to the following subsections for a
description of the status codes that can result
from a READ relation.

With this scheme, the user can either determine the
most recent error occurring in any realm (with
DBSTAT) or the current status of a particular realm
(with DBSnonn). The DMLDBST routine provides more
information than this scheme; use of the DMLDBST
routine is recommended for error and status proc-—
essing.

INFORMATIVE DIAGNOSTIC CODES

Some diagnostic codes returned in DBSTAT and in the
data base status block do not represent error con-
ditions; rather, the codes are informative diag-
nostics reporting a condition that has occurred.
These conditions can be handled in the FORTRAN
program. Table 3-4 lists some of the informative
diagnostics that are returned in the following
status elements: the data base status block,
DBSTAT, and DBSnnnn. Not all of the codes indi-
cated are returned in all of the elements. The
table indicates the component of DMS-170 recog-
nizing the condition, the code returned, the
message, and the status element to which the code
is returned. Those informative codes that are
returned in the data base status block are returned
in the first word, with the exception of the code
100 octal; exceptions concerning this code are
indicated later in this subsection. Some condi-
tions are recognized by CRM and others by CDCS; the
user can refer to the CYBER Record Manager Advanced
Access Methods reference manual or to appendix B
for detailed informatiom.

TABLE 3-4. INFORMATIVE DIAGNOSTIC CODES

Returned to .
ool Hessage Peutide | oemrama | Dtegronic
DBSannn
100 CANNOT SEQUENTIALLY POSITION BEYOND FILE X CRM
BOUNDS
445 KEY NOT FOUND ~ FILE POSITION ALTERED - X X CRM
REQUEST IGNORED
506 ALTERNATE KEY NOT FOUND X X CRM
627 No message. Indicates a null record X CcDCs
occurrence was encountered on a file
during relation processing.
632 No message. Indicates a control X CDCS
break was encountered on a file
during relation processing.
652 AREA an ALREADY OPEN X X CDCS
654 AREA an NOT OPEN X X CcDCS
663 DEADLOCK ON AREA an X X CDCS
60485300 A 3-25



The following paragraphs indicate the significance
of informative codes to the user.

The 100 octal diagnostic code indicates an attempt
to read beyond end-of-information. This is an
informative code that can be used by a FORTRAN
program in determining end-of-file only when the
code is returned to DBSTAT or DBSnnmn. When
returned in the first word of the data base status
block, this code indicates a real error. However,
the data base status block provides a field (the
third word) to which file position information is
returned; the 100 octal file position code indi-
cates end-of-information and can be used by a
FORTRAN program in determining end-of-file. The
timing of the writing of the 100 octal code to the
status elements (DBSTAT, DBSnnnn, or the third word
of the data base status block) can be important to
the user who is considering placing count variables
or other routines in association with a sequential
DML READ statement. The status elements are set to
100 octal when the READ sgtatement has been executed
one additional time after the last record was read.
For example, if there are 10 records being read,
DBSTAT is set to 100 octal after the 1llth time
the READ statement is executed. Similarly, if a
FORTRAN 5 application program contains the READ
statement with the END=s specifier, it would be
after the 1llth time the READ statement is executed
that execution 1is transferred to the statement
labeled s.

The 445 octal diagnostic code occurs when no record

is found whose key matches the value of the key
specified in the DML READ statement.

3-26

The 506 octal diagnostic code occurs when an alter-
nate key value is not found. CRM issues this
diagnostic when a read is attempted at the end of
the alternate key file.

The 627 octal diagnostic code indicates a null
record occurrence on a realm. The 632 octal code
indicates a control break on a realm. These condi-
tions can occur on a relation read. These codes
are not returned in the data base status block.
Refer to section 5 for detailed information on
relation processing.

The 652 octal diagnostic code indicates that an
open was attempted on a realm already opened. The
654 octal diagnostic code indicates that a close
was attempted on a realm already closed. These
diagnostics can occur on the statements OPEN or
CLOSE of a relation or a realm.

The 663 octal code indicates a deadlock condition;
that is, a situation arising in concurreat data
base access when two or more application programs
are contending for a resource that is locked by oune
of the other programs. The 663" octal code indi-
cates that CDCS has unlocked all locks held by the
FORTRAN program. The user should provide appro-
priate code to handle rvecovery from a deadlock.
Refer to section 5 for information about recovery
from a deadlock.

60485300 A

J )

J )



QUERY UPDATE INTERFACE 4

Query Update is an interactive processing language
that enables individuals with varying 1levels of
technical expertise to access and manipulate a data
base controlled by CYBER Data Base Control System
(CDCS) and to produce special-purpose reports. In
this section a basic knowledge of the concepts and
usage of Query Update is assumed. Detailed infor-
mation regarding the Query Update language and
its capabilities is contained in the Query Update
reference manual.

The Query Update interface with CDCS consists of a
subschema directory, directives, and particular
diagnostic messages. The subschema directory pro-
vides for access to data base files., The subschema
listing provides information the Query Update user
can use when performing operations on data base
files.

All directives that perform operations on data base
files are monitored by CDCS. Query Update used
with CDCS operates in two modes:

CDCS data base access mode

CDCS catalog mode

When a Query Update-CDCS subschema is used in an
INVOKE or CREATE directive, Query Update operates
in CDCS data base access mode. When a Query Update-
CDCS subschema 1s used in a VERSION directive,
Query Update operates in CDCS catalog mode. Mode
operations can be combined as follows:

CDCS data base access mode
CDCS catalog mode

The same subschema must be used for both
modes .

CDCS data base access mode

CRM catalog mode
For CRM catalog mode, either no subschema

is specified in the VERSION directive in
effect or the default catalog is being used.

non~data-base mode
CDCS catalog mode

No subschema is used for data base access.

60485300 A

QUERY UPDATE SUBSCHEMA

The DMS-170 data base files that are to be accessed
by a Query Update application program must be
described in a directory called a Query Update
subschema. The data administrator, working with
the application programmers, is responsible for
creating the subschemas.

When the subschema is compiled, a listing is pro-
duced. The 1listing provides information required
by the application programmer to query and to
update the data base. The data administrator
should provide the application programmer with a
compilation listing of the subschema.

Some information required to access data base files
is not included in the subschema listing. It is
the responsibility of the data administrator to
provide the application programmer with any nec-
essary additional information.

This subsection documents the information provided
by the subschema listing and the additiomal infor-
mation that the data administrator must provide
when the information is necessary for data base
processing.

If no subschema listing is provided, the Query
Update user can obtain information about areas,
records, and relations with the EXHIBIT directive.
Refer to the EXHIBIT subsection for information
about this directive.

SUBSCHEMA LISTING

The information provided by the subschema is indi-
cated by the following alphabetic list of items.
Not all items are 1included in every subschema;
those items that always appear in the subschema
listing are indicated as always being present. An
example of each item is pointed out in the sample
subschema shown in figure 4-1. -

Alias names

The Alias Division identifies the data
names and the names of records and realms
that are used in the subschema in place of
the name used in the schema. The name on
the right of the keyword BECOMES in the AD
clause is the name that must be referenced
in a Query Update directive.



¢ €

@

40 | 129ys) ewaydsqns aiepdn Auanp ajdwes

*l-9 aJnbiy

»

™
™

60485300 A

2 JYNIQHO »» °(0eo0b)X J1d W3LI-1VIN® €0
a|L4 bojege) l IYNIQHO *» *OLX 1d AD=LYIND €0
IVIVIND NIHLIIM *+ *J3¥-1vIno 1D
8 AYNIGYHO »x “6A6 JId SLINN €0
2 ITUNIQ¥O *x "(8)X JId  3LVa-3L13T4W0d €0
9 IVNIQYO *» Y JId  3003-3137dW0J €0
S TUNIGYO *x *2~dW02 39VSN 6A6 J1Id 3avy9 €0
Y IVNIQHO *x (X JId GI-3S¥N0Y €0
" (€)X d1d IN3AI SO
L3y Jolel = (L)X IId GI-IN3ANLS SO
== *ADN-LYINOD €0
wa3t dnouay V\ YNILSIL NIHLIM »» “034-3¥Nd 10
os|e ‘A8 pejruajeduo)
8 AYNIGYO *» (02X J1d YOrvW €0
A TYNIQYO *¥ (L)X Jdld INOHd €0
9 TYNIGQYHO *» “(S)X I1d 3403~-d1Z €0
sweu ejeq .
uor3diudsep ejeq Y + .
LRULP4AO W3} eWRYISQNS —~—m=2 TYNIQYEO *» *(0e)X J1d JWUN=-LNIANLS €0
wiead L TUNIQYO »x (L)X JId aI-iN3anLs €0
pa3eldosse JO BUWBN —»IN3IANLS NIHLIM xx “J3¥~-IN3ANLS L0
aweu p40d33Y e
9 TYNIQUO »» °(2)6 J1d SLINN £0
S TYNIQUO *»x (X IId JLISINDAUIYd €0
Y TYNIQYO »+ “(8)X J1d 308d €0
£ TYNIQEO x« *(02)X J1d TOOHIS €0
4 TYNIGYO »» *(02)X J1d JWYN-3ISUN0Y €0
l TIYNIQYO *x (X 1d qI-3S¥N0Y €0
3SYNO0I NIHLIM *x °J3y¥-38¥N03 L0

sweu (wiead) eaay

“NOISIAIQ G¥023¥

= °907V.LVIND JIYINILSIL IN3ANLS 3SINOD Q¥

°NOISIAIQ WIV3Y

°40¥8d S3W0338 J3¥-3ISUNOJ 40 QI-J0dd Viva av

swey seLly

== *JIWINILS3L SIW0I38 WNTINITHYNI WIVIY QY

"NOISIAIQ SVITY

aweu ewayossqng

aweu ewayos

*99s+2°e  14¢

(19028

X

== *ALISYIAINN NIHLIM JIW3AVIV SS

*NOISIAIGC 3LIL

# ONILSIT 3JUN0S *

%000
£4000

2%000
L7000
0%000
6£000
8£000
2£000
9£000
S£000
%£000
££000
2£000
1£000
0£000
62000
82000
42000
92000
$2000
%2000
£2000
22000
12000
02000
61000
8L000
41000
91000
S1000
%1000
£1000
21000
L1000
01000
60000
80000
20000
90000
$0000
%0000
£0000
20000
10000

4-2




(2 30 2 3199ys) ewayosqgns aiepdn AJanp ajdwes

*L-4 dunbLy

°833s 40 £62°0

“SJIILSONOVIGQ O
——— JINVYNILNIVW 3T7Id4 40 ON3

wnsyosys) - G696 1622529205 1L20%
WNSMI3HD
—— JONVNAUINIVW 3714 YW3IHIS-BNS NIO38
¢ juey 5 1Y3NILS3L - VI¥Y
T juey = INJQNLS ~ Y3V SNIOP L713¥
uoLye(dy — Py SJILSILYLS  NOILVI3Y A
uo13914353Y ) LNdNI 323n0S YW3IHIS-8NS 40 aN3

e S
*(0 93 3aVy9) JYIHM I3Y=-JUND L1ITYLSIY

aweu uoLieyay

wpeaJd pajeLoosse

= |738 SI NY
“NOISIAIG NOILVTI3Y

907V1YIND® - WIV3Y ¥03 Q3033N° LON SI ONIddVW Qu0d3¥
JTYYNILSIL - WIY3Y ¥04 43033N SI INIddVW Q¥023d
INIANLS  ~ WIV3Y¥ ¥04 03Q33aN LON SI ONIddVW Q¥0I3y
3SYN0I - WIV3Y Y04 Q43Q33N SI ONIddVi Qd0I3Y
90TVLVIND VAV ¥03 AIA-LVIND

JIYUNILSIL VIYV ¥0J 349

pue £3) 2jeUUd|Y

wieas pajelosse

= JTH¥NILSAL V3¥V ¥04 4I-3SUN0I
JIYUNILSIL VYV ¥Od4 A3IN-LVINOD
AIN3ANLS Y3AY ¥04 UOCYM

AN3ONLS V3IV ¥0Jd QI-IN3ANLS
3S¥NOY V3YV ¥04 d40ud

pue A3y AJeuwrad

—3=- 3SAYN0D VYV ¥0d4 QI-3SUNROI

“q3sn W) 800S0S

"3137dW0J T4a

JIW3aVIV
VW3HISBNsS

HRERY
RNRNN

2%000
9%000
S%000

PR ES
REREE
HREXE
PR
2%000
9¢000
S£000
22000
62000
22000
21000
%1000

L00 NOILVI3Y

A3N A¥VWINd
AN 3LVNN3ALTY
A3X 3LYN¥3LTV

AN AYVYWINd
AN ALVNYILTY

AN AUVWIYNd
AN JLVN¥3LTY

A3N AY¥YWIYd

C €

4-3

60485300 A



TABLE 4-~1. CORRESPONDING SUBSCHEMA AND
QUERY UPDATE DATA TYPES

Alternate key

The notation ALTERNATE KEY indicates a data

name that is an alternate record key. The
realm for which the data name is an alter- Subschema Query Update
nate key is also indicated. Data Description Data Type
Queries that use alternate keys are more
efficient than queries that use only data COMPLEX COMPLEX
names that are not keys.
COMPUTATIONAL or COMP NUMERIC
Area (realm) names
COMPUTATIONAL~1 or COMP-1 INTEGER
Always present. The Realm Division identi-
fies the realms available to the application COMPUTATIONAL-2 or COMP-2 FLOATING
program. Query Update syntax uses the word
area instead of the word realm; therefore, DISPLAY CHARACTER
the word area is used in the descriptions
of syntax. In this description of the DOUBLE DOUBLE
subschema, however, a realm is called a
realm. Any area name used in a Query Up- INDEX INTEGER
date directive for processing with CDCS is,
indeed, a realm name. The complete realm LOGICAL LOGICAL
name 1s always identified in the listing
with the primary key. No type specified; NUMERIC
PICTURE clause with 9’s
only
Unless ALL is specified, only those realms
included in the Realm Division are avail- No type specified; CHARACTER
able to the application program. PICTURE clause with mix
of X’s, A’s, and 9’s or
Catalog file all X’s or A’s

A catalog file for use in CDCS catalog mode

J )

1Y

4=4

is a realm. The realm must have a primary
key that is 10 characters in length. The
primary key is a concatenation of session-id
and transmission-id. The length of the
data item must be the transmission length
used (that is, the length specified by the
TL parameter on the QU control statement).
In figure 4-1, QUCATALOG is the name of the
catalog file. The transmission length is
1030 characters (the default transmission
length) and is represented by QUCAT-ITEM.

Checksum

Always present. A checksum is a one-word
sum generated by the DDL compiler for the
subschema. The checksum of the subschema
referenced and used by the Query Update
application program must agree with the
checksum associated with the subschema in
the master directory.

Data description entry (name and description)

Always present. Data description entries
are entries identified by a level number 02
or greater. Data description entries iden-
tify the name and description of data items.
The sample subschema includes only a few of
the data description entries that could be
in a subschema. For detailed information
about data description entries, refer to
the CDCS 2 Data Administration reference
manual.

Data type in the subschema is determined by
a PICTURE clause and an optional USAGE
clause. Table 4-1 lists keywords used in
the USAGE clause to describe data type and
the corresponding Query Update data type.
If no USAGE clause is present, data type is

determined by the PICTURE clause. Refer to
the Query Update reference manual for a
description of Query Update data types.

Only data represented by data description
entries are available to the application
program. Data received in the working
storage area of an application program is
mapped according to the subschema descrip-
tion.

Group item

A group item is made up of other data items.
The lower level number, 03 in the sample
subschema, denotes the group item name.
The group item name can be used in Query
Update directives to qualify the name of a
data item that is in the group item.

Major key

A major key is the leading data name of a
group item that ig defined as a primary or
alternate key. 1In this example, CONCAT-KEY
is the group item that is defined as a
primary key. STUDENT-ID is the major key
and can be used in major key processing.

Primary key

Always present for each realm included in
the subschema. The notation PRIMARY KEY
indicates each data name that is a primary
record key. The realm for which the data
name is a primary record key is also indi-
cated.

Queries that use primary keys are more
efficient than queries that do not use them.

60485300 A

J )



]

Ranks of the relation

The realms joined in a relation are listed
by realm name in order of rank. The first
realm listed has a rank of 1; the second, a
rank of 2; and so forth.

Realm names

See area names and catalog file (described
earlier in this section).

Record names, associated realms and data names

Always present. An 0l level data descrip-
tion identifies the record name. Each
record available to the application program
is included in the subschema listing.

The notation WITHIN realm name identifies
the particular realm associated with a
record by giving the first seven characters
of the realm name.

The data descriptions of 02 level or greater
that follow the record name identify the
data names that comprise the record.

The record name can be used in Query Update
directives to qualify any data name within
the record.

Relation names

The RN clause in the Relation Division
identifies a relation name. An RN clause
is included for each relation available to
the application program.

Restriction

A RESTRICT clause in the Relation Division
identifies a restriction. If a restriction
is placed on a relation, only records that
meet all the qualification criteria speci-
fied in the RESTRICT clause are returned to
the application program when the data base
is queried via a relation.

If the RESTRICT clause contains a data name
that is not defined in the subschema, the
data name must be defined in a DEFINE direc-
tive with the same size and type as the
subschema item used for comparison. The
data name must be set to a value in the
Query Update program before any query I1s
entered that uses the relation.

Schema name

Always present. The SS clause in the Title
Division identifies the schema. The schema
name follows the keyword WITHIN.

Subschema item ordinal

Always present. The subschema item ordinal
is a unique identifier within a record that
is assigned to each data name in a sub-
schema when the subschema is compiled. A
subschema item ordinal can be returned in
an error message.

60485300 A

Subschema name

Always present. The SS clause in the Title
Division 1identifies the subschena. An
application program must reference the
subschema by using the subschema name.

INFORMATION PROVIDED BY DATA
ADMINISTRATOR

It is the responsibility of the data administrator
to provide the following information when it is
required for data base processing:

Access keys

If an area has been defined with an access
control lock 1in the schema, the ACCESS
directive must be used to gain access to a
realm. The application programmer must be
provided with all access control keys re-
quired for data base access. (Refer to the
description of the ACCESS directive for
more information.)

Constraints

If constraints are defined in the schema
and updates are likely to violate them, the
application programmer should be provided
with information about the constraints.

Data base version name

If alternate data base versions are defined
for the data base, the application program-
mer must be provided with information about
the name and use of the alternate data base
versions.

Join items of the relation

Files are joined in a relation by identical
data names that exist in two files. The
Information about the join items is con-
tained in the schema. Usually, an appli-
cation programmer does not need to know the
join items to use a relation. Often the
programmer can determine the join items
from the subschema listing. (Refer to
section 5 for more information on rela-
tions.) In some situations, however, the
data administrator should provide the
application programmer with the join items.

Requirements imposed by any data base procedure

If data base procedures are defined in the
schema, the application programmer must be
provided with information required by the
data base procedures.

SUBSCHEMA DIRECTORY

When the subschema source input is compiled, the
object subschema, called the subschema directory,
is generated. The subschema directory is usually
included in a subschema library.

4=5



The subschema directory must be available to Query
Update for data base access; therefore, the user
must include the file identification for the sub-
schema 1library in CREATE, INVOKE, and VERSION
directives. During processing, Query Update uses
the descriptions of areas, data names, and rela-
tions that are included in the subschema.

DIRECTIVE SYNTAX

Query Update language elements are grouped together
to form directives. The language elements include
the following:

Reserved words
Recognized symbols
Punctuation

User—supplied elements, such as names, lit-
erals, expressions, conditions, and picture
specifications

Refer to the Query Update reference manual for
definitions of the language elements.

The Query Update interface to CDCS consists of 18
directives that operate directly on data base files
(including CDCS-catalog files) or provide access to
data base files. All Query Update directives (but
not all formats of each directive) can be used when
processing with CDCS.

The entire set of Query Update directives that are
available for use with CDCS is shown in table 4-2.
The directives that are used in CDCS data base
access mode and in CDCS catalog mode are marked in
the table.

Only directives that have unique requirements for
processing with CDCS are described in this manual.
The syntax is shown for all directives that provide
for data base access when used in CDCS data base
access mode.

Any data name in a directive can be qualified by a
group name or record name; 1if there is confusion
‘about which elementary item a data name references,
Query Update requires qualification.

Several format statements shown in this section
include an expression. For reference purposes, the
format of an expression is shown in figure 4-2. A
data name in an expression can be a data base item.

To provide for future system software and to main-
tain compatibility with earlier releases of Query
Update, Query Update supports (for some operations)
two directives that perform virtually the same
operation. Table 4-3 contains both directives:
the recommended directive and the old directive.
This manual describes the use of only the recom-
mended directives.

TABLE 4-~2. QUERY UPDATE DIRECTIVES
Directive Directive Directive
accesst FORMAT RETURN
ALTER HEADING REWIND
BREAK HELP SELECT
COMPI IF SEPARATOR
cmmﬁ,ﬁ INvoRE AT T SORT
DATE MODIFY SPECIFY
DEF INE MOVE STORET
DESCRIBE NOTE SUMMARY
DETAIL 0s TABS
DIAGNOS;;C PAGE-NUMBER TIME
DISPLAY PAGE-S1ZE TITLE
DUPLICATE PERFORM UNIVERSAL
END PREFACE UPDATE
ERASE PREPARE VERIFY
EVALUATE PREVIEW verszonl, it
EXECUTE RECAP VETO
EXHIBIT] RECORDIN viat
ExTRACTT RECOVERY
FOOTING REMOVE T

TDocumented in this manual because of
particular use in accessing a CDCS data base.
*TEstablishes or terminates CDCS data base
access mode.
TTfEstablishes or terminates CDCS catalog mode.

TABLE 4-3. RECOMMENDED QUERY UPDATE

DIRECTIVES
Recommended 01d
Directive Directive
INVOKE USE
MODIFY UPDATE
REMOVE DELETE
STORE INSERT
ACCESS

The ACCESS directive, shown in figure 4-3, supplies
CDCS with an access key for areas and catalog files.
If access control locks have been defined in the
schema for the areas and catalog files, the ACCESS
directive must be used to provide the access key.
The literal or data name must not exceed 30 charac-
ters.

{data-name-1
function=-1

Literal-1 } arithmetic operator {literal-?

data-name-z}

function-2

Figure 4-2. Format of an Expression

60485300 A

JJ

J )



6@“*
€®=“

. INPUT
access key | 1s {titeral Aoy || 75
oUTPUT

FOR

CATALOG L[catalog-namel

AREA {area-name} ...}

Figure 4-3. ACCESS Directive Format

The ACCESS directive must be entered after a sub-
schema has been specified in an INVOKE, CREATE, or
VERSION directive and before any area or catalog
file with an access control lock has been accessed.

The ON clause indicates the kind of usage the
access key is to provide. The access key is for
access locks defined in the schema.

The terms used in the schema to define access are
update and retrieval. Access locks in the schema
can be defined so that a single access key provides
for access as follows: only update, only retrieval,
or both update and retrieval. Table 4-4 iundicates
the usage option that provides the key for a par-
ticular schema access lock.

TABLE 4-4. SCHEMA ACCESS CONTROL LOCKS AND
CORRESPONDING ACCESS DIRECTIVE USAGE OPTIONS

Schema Access Control Lock Usage Options

Update OUTPUT
Retrieval INPUT
Update/RetrievalT I-0

TThe same access key provides access for either
input or output or for both.

If access keys are defined in the schema, Query
Update directives require that access keys be
specified to provide access as follows:

Retrieval access

DISPLAY and EXTRACT directives used with
the INVOKE directive

Update access

STORE directive used with the CREATE direc-
tive

Update and retrieval access

MODIFY, REMOVE, and STORE directives used
with the INVOKE directive

DUPLICATE, ERASE, EXHIBIT, FORMAT, PERFORM,
PREPARE, and RECORDING directives when used
with the VERSION directive in CDCS catalog
mode

Any program whose access keys provide access to an
area for both update and retrieval (either by pro-
viding two keys, one ON INPUT and another ON OUTPUT,
or by providing one key ON I-0) has met the access
requirement for only update or for only retrieval.

60485300 A

If the ON clause is omitted, ON I-0 is assumed.

The FOR clause specifies the area names or the
catalog file name whose access is controlled by a
particular access key. If AREA is used, the speci-
fied access key applies only to the specified
area, If AREAS is used, the access key specified
applies to all areas in the subschema that can be
accessed by the specified access key (but not to
the catalog file). If CATALOG is used, the access
key specified applies only to the catalog file. If
the FOR clause 1is omitted, both the AREAS and
CATALOG options are assumed.

The IS clause and subsequent clauses can be omitted.
When Query Update encounters a transmission that
contains only the word ACCESS or the words ACCESS
KEY, terminal input is prompted with the symbols
>>>. The user then enters the access key and
remaining optional clauses. Query Update continues
to prompt after each transmission until the user
enters a transmission consisting of *END. By using
the prompting feature of this directive, the user
protects the security of the access keys; this
feature inhibits the printing of access keys on the
output listing or trace file.

Examples of the ACCESS directive with access keys
being entered after prompts from Query Update are
shown in figure 4-4. In the first example, the
access key SEEOLDINFO provides access for retrieval;
the access key NEWINFO provides access for update.
Both access keys must be specified to remove,
store, or modify records in the area STUDENT. 1In
the second example, the access key XX99 provides
access for both update and retrieval of the area
TESTCURRIC.

Example 1:

— ACCESS

>>> $SEEOLDINFOS ON INPUT FOR AREA STUDENT
>>> $NEWINFO$ ON OUTPUT FOR AREA STUDENT
>>> *END

Example 2:
-~ ACCESS

>>> $XX99% ON I-0 FOR AREA TESTCURRIC
>>> *END

Figure 4-4. ACCESS Directive Examples

One specification of a particular access key im an
ACCESS directive can provide access to a catalog
file and to all areas that can be accessed by that
particular access key. If two access keys are
required for particular areas or catalog file, both
access keys must be specified in access directives
before using the areas or catalog file.



CREATE

The CREATE directive, shown in figure 4-5, ini-
tiates processing in CDCS data base access mode,
identifies the subschema, identifies the data base
version, and creates a data base file. The data
base file created by the CREATE directive must have
been previously cataloged or defined as an empty
permanent file by the data administrator. Upon
execution of this directive, all the files asso-
ciated with the subschema and data base version
are attached by CDCS. Query Update attaches the
subschema file.

CREATE area-name OF subschema-name
CFROM LIBRARY permanent-file-name)
C(permanent-file-parameter [PW1)]

CFOR DATABASE version-namel

Figure 4=5. CREATE Directive Format

Only one CREATE directive can be in effect at a
time. When a CREATE directive is entered, the
effect of any prior CREATE or INVOKE directive is
terminated; that includes terminating the effect of
access keys previously entered and releasing the
subschema file and tables established to use the
subschema specified in the previous INVOKE or CREATE
directive. The CREATE directive can be entered any
number of times within a single execution of the QU
control statement as long as the same area and
version are not duplicated. When used in a trans-
mission with other directives, the CREATE directive
must be the last directive in a transmission.

The area—name identifies the area to be created.
The area—name must be an area included in the
subschema referenced by subschema-name.

The subschema-name identifies the subschema being
used. The subschema-name must be the name of a
Query Update-CDCS subschema. When CDCS catalog
mode is active, the subschema must be the same
subschema used for the VERSION directive.

The FROM LIBRARY option identifies the subschema
library that contains the subschema directory being
used. If the FROM LIBRARY option is omitted, the
permanent file name of the subschema 1library is
assumed as follows: for NOS, the first seven
characters of the subschema name are used; for
NOS/BE, the entire subschema name is used.

When permanent file parameters are required to
access the subschema, they must be specified in the
CREATE directive. The PW option can be specified
to protect the security of passwords. When Query
Update encounters the characters PW alone, terminal
input is prompted with the symbols >>>. The user
then enters the appropriate passwords. Query Update
continues to prompt after each transmission until
the user enters a transmission consisting of *END.
The PW option protects the security of the pass-
words since printing of passwords on the output
listing or trace file is inhibited.

Examples of the CREATE directive using the PW option
are shown in figure 4-6. Area TESTCURRIC of sub-
schema ACADEMIC from subschema library QULIB is
being used. The password PASS must be specified
for access to the subschema library (read access
only is required).

The FOR DATABASE option identifies the data base
version being used. Version MASTER is assumed when
the option is omitted with one exception: if a
preceding VERSION directive that 1is in effect
specified an alternate data base version, that
alternate version is assgumed. If a preceding
VERSION directive is in effect and the FOR DATABASE
option is specified, the same data base must be
specified in both the VERSION and CREATE directives.
The version name must be a 1- through 7-character
name of a data base version included in the master
directory as a version of the schema being used;
MASTER is the name of the default data base ver-
sion. The data administrator must provide the user
with valid alternate version names when data base
versions are being used.

If the files have not been established, they must
be established before beginning the Query Update
session that creates the files. The data adminis-
trator must provide permanent file names and other
permanent file information to be used to create the
files. The permaneant information must be the same
as recorded in the master directory for the par-
ticular area and data base version.

Under the NOS operating system, the DEFINE control
statement must be used to make a data base file
permanent. For example, the following statements
can be used under NOS:

DEFINE, permanent-file-name.
RETURN, permanent-file—name.
Qu.

CREATE,area-name...

Example 1. For Use on NOS

>>> QULIB,PASS
>>> *END

Example 2. For Use on NOS/BE

>>> QULIB,PASS
>>> *END

-— CREATE TESTCURRIC OF ACADEMIC FROM LIBRARY QULIB (UN=QUDCDCS2) PW

—— CREATE TESTCURRIC OF ACADEMIC FROM LIBRARY QULIB (ID=QUCDCS2) PW

Figure 4~6. CREATE Directive Examples

60485300 A

J D

‘Gmw
A‘%}



Under the NOS/BE operating system, the CATALOG
control statement is used to make the data base
files permanent. For example, the following state-
ments can be used:

REQUEST ,permanent—file-name,PF.
REWIND, permanent-file—name.
CATALOG,permanent-file-name.
RETURN, permanent-file—name.

qQu.

CREATE ,area-name...

DISPLAY

The DISPLAY directive, shown in figure 4-7, re-
trieves and displays information from the data base
at a terminal or upon a designated file.

The information displayed depends on the subschema
and data base version in use. Refer to the Query
Update reference manual for detailed information
about the DISPLAY directive.

EXHIBIT

The EXHIBIT directive, shown in figure 4-8, displays
information that Query Update uses in performing
its operations. All options of the EXHIBIT direc-
tive are applicable for use with CDCS. Only op~
tions that provide information about the data base
are described in the following paragraphs.

Information about the data base 1s exhibited for
the subschema specified in the preceding INVOKE or
CREATE directive. If a VERSION directive precedes
the EXHIBIT directive, the information about the
catalog file is exhibited for the catalog specified
in the VERSION directive; otherwise, the informa-
tion about the catalog file 1is exhibited for the
default catalog 2Z22ZZQ2.

The type of information displayed depends upon the
options specified. The options that can cause
information to be displayed about the data base are
as follows: data name, SESSION, RELATION. Figure
4-9 illustrates the EXHIBIT directive with the
following options specified: no option, area name,
record name, relation, and a session.

When no options are included in the directive,
Query Update exhibits the mwmaximum transmission
length; the transmission length of the catalog
file; the universal character; the current literal
delimiter and ITEM-SIZE if it is in effect; the
current subschema, subschema 1library, and area
names; and the current or default maximum number of
lines, columns, sections, and images permitted in a
report.

The data name option causes a display of informa-
tion related to the type of data name specified.
Data name options cause data base information to be
displayed as follows:

Area name

Record names in the area, primary, alter-
nate, and major keys for each record.

Record name

Level numbers, item names, and group, ele-
mentary, primary key, alternate key, or
ma jor key indicators.

Relation name

The record name and associated area name
for each area joined in the relation. The
areas are listed in the order of rank the
area has in the relation: the first area
(root area) has rank 1; the second, rank 2;
and so forth.

Group item name

Number of occurrences and elementary item
names within the group.

Elementary item name

Size, type, and possible qualifiers up to
the record name.

The RELATION options lists the names of the rela-
tions included in the subschema and, therefore,
available to the user. Following the name of each
relation, the record name and corresponding area
names of each area joined in the relation are listed
as described in the preceding data name option,
relation name.

literal
DISPLAY [UPON file-name-1] EEI

data-name-1
IN file-name-2
FROM Tile-name-3

} { [Cexpression [AS data-name-21]l...
SAME

Figure 4~7. DISPLAY Directive Format

data-name

TEMPORARY
RELATION

REPORTS [report-name [layout-directivell
EXHIBIT | SESSIONS [session-id [transmission-id-1 [T0 transmission-id-211]

Figure 4-8. EXHIBIT Directive Format

60485300 A



Example 1. Exhibit (No Option Specified)

MAXIMUM TRANSMISSION LENGTH 1030
TL OF CATALOG FILE 1030
UNIVERSAL OFF
MAX MUNBER OF LINES 060
MAX NUM. OF COLUMNS 130
MAX NO. OF SECTIONS 010
MAX IMAGER PER PAGE 004
AREA NAME(S):
COURSE
STUDENT
TESTCURRIC
QUCATALOG
SUBSCHEMA NAME = ACADEMIC
SUBSCHEMA LIBRARY NAME = QULIB
ID = QUDO461

Example 2. Exhibit an Area

== EXHIBIT TESTCURRIC

RECORD NAME IS CURRIC-REC
KEY IS  CONCAT-KEY

MAJ KEY STUDENT-ID

ALT KEY COURSE-ID

ALT KEY GRADE

AREA NAME = TESTCURRIC

Example 3. Exhibit a Record

=~ EXHIBIT CURR-REC

03 (KEY) CONCAT-KEY

05 (MAJ) STUDENT-ID

05 (ELM) IDENT

03 (ALT) COURSE-ID

03 (ALT) GRADE

03 (ELM) COMPLETE-CODE
03 (ELM) COMPLETE-DATE
03 (ELM) UNITS

Example 4. Exhibit Relation

REL1 RELATES THE RECORDS:
STUDENT-REC IN STUDENT
CURR-REC IN TESTCURRIC

Example 5. Exhibit a Session

—— EXHIBIT SESSION SESS1

1 INVOKE ACADEMIC FROM LIBRARY QULIB (ID=QUCDCS2)

6 DISPLAY SENTER ACCESS KEY FOR AREA TESTCURRICS

" ACCESS

16 DISPLAY $STUDENT-ID COURSE-ID$

21 DISPLAY STUDENT-ID OF CURR-REC COURSE-ID OF CURR-REC

The transmission lengths in use and
the area names, subschema name, and
subschema library of the current
INVOKE directive are shown

The area name TESTCURRIC along with
the record name, all keys defined for
the area (primary, alternate, and
major) are shown.

The record name is shown with each
data name in the record and its level
number. All keys defined for the
area (primary, alternate, and major)
are indicated.

The relation name is shown together
with each record and its associated
area name joined in the relation. The
areas are shown in order of its rank
in the relation. The first area
listed has rank 1; the second, rank
2, and so forth.

The session name is listed along with
each transmission included in the
session.

Figure 4-9.

EXTRACT

The EXTRACT directive, shown in figure 4-10, creates
a subset (a sequential file) of a data base area or
data base relation and a directory to the subset.

4-10

EXHIBIT Directive Examples

The information extracted depends on the data names
specified in the directive and on the subschema and
data base version in use. Refer to the Query Up-
reference manual for detailed information
about the EXTRACT directive.

60485300 A

JJ

JJ



-

EXTRACT UPON file-name {expression [AS data-namel} ...

Figure 4-10. EXTRACT Directive Format

INVOKE

The INVOKE directive, shown in figure 4-11, ini-
tiates processing in CDCS data base access mode,
identifies the subschema, and identifies the data
base version. Upon execution of the INVOKE direc-
tive, all the data base files associated with the
subschema and data base version are attached by
CDCS and all areas and relations included in the
subschema are made available. Query Update attaches
the subschema file.

INVOKE subschema-name
COF schema-namel
CFROM LIBRARY permanent-fi Le-name]
C(permanent-file-parameters [PW1)]

CFOR DATABASE version—namel

Figure 4-11. INVOKE Directive Format

An example of the INVOKE directive is shown in
figure 4~12. Subschema ACADEMIC from subschema
library QULIB 1is being used. Data base version
ALTDB is specified. No passwords are required to
read the subschema library file.

Only one INVOKE directive can be in effect at a
time. When an INVOKE directive is entered, the
effect of any prior CREATE or INVOKE directive is
terminated; that includes terminating the effect of
access keys previously entered and releasing the
subschema file and tables established to use the
subschema specified in the previous INVOKE or CREATE
directive. The INVOKE directive can be entered any
number of times within a single execution of the QU
control statemeunt.

The subschema-name identifies the subschema being
used. The subschema-name must be the name of a
Query Update-CDCS subschema. When CDCS catalog
mode is active, the subschema must be the same
subschema used for the VERSION directive.

The schema—-name identifies the schema. Schema-name
is ignored by Query Update. Schema~name can be

used by the user for documentary purposes and for
compatibility with future versions of Query Update.

The FROM LIBRARY option identifies the subschema
library that contains the subschema directory being
used. If the FROM LIBRARY option is omitted, the
permanent file name of the subschema library is
assumed as follows: for NOS, the first seven char-
acters of the subschema name are used; for NOS/BE,
the entire subschema name is used.

When permanent file parameters are vrequired to
access the subschema, they must be specified in the
INVOKE directive. The PW option can be specified
to protect the security of passwords. When Query
Update encounters the characters PW alone, terminal
input is prompted with the symbols >>>. The user
then enters the appropriate passwords. Query Up-
date continues to prompt after each transmission
until the user enters a transmission consisting of
*END. The PW option protects the security of the
passwords since printing of passwords on the output
listing or trace file is inhibited.

The FOR DATABASE option identifies the data base
version being used. Version MASTER is assumed when
the option is omitted with one exception: if a
preceding VERSION directive that 1is 1in effect
specified an alternate data base version, that
alternate version 1is assumed. If a preceding
VERSION directive is in effect and the FOR DATABASE
option 1is specified, the same data base must be
specified in both the VERSION and INVOKE direc-
tives. The version-name must be a 1- through
7-character name of a data base version included in
the master directory as a version of the schema
being used; MASTER is the name of the default data
base version. The data administrator must provide
the user with valid alternate version names when
data base versions are being used.

MODIFY

The MODIFY directive, shown in figure 4-13, wmodi-
fies the values of data items in existing records.
Only one area can be modified at a time; each area
joined in a relation must be modified separately.
A record is selected for modification either by
referencing the record key in the MODIFY directive
or as a result of an IF directive with an asso-
ciated MODIFY directive.

Example 1. For Use on NOS

Example 2. For Use on NOS/BE

INVOKE ACADEMIC FROM LIBRARY QULIB (UN=QUCDCS2) FOR DATABASE ALTDB

INVOKE ACADEMIC FROM LIBRARY QULIB (ID=QUCDCS2) FOR DATABASE ALTDB

Figure 4-12. INVOKE Directive Examples

60485300 A

4-11



MODIFY [record-namel

|

(7]

LSETTING {data-name-1}...] [USING key-namel [SETTING {data-name-2}...] CFROM file-namel

MOVE expression-1 T0 {data-name-3}... [AND expression-2 T0 {data-name-4}...]...

|

Figure 4-13. MODIFY Directive Format

The use of the MODIFY directive with CDCS is the
same as the use of the directive to modify a data
base area with CRM (as described in the Query Update
reference manual) with one exception: providing
for access requirements to modify the area. If an
area 1s defined in the schema with controlled
access, the user must provide the access keys in an
ACCESS directive. Refer to the discussion of the
ACCESS directive for more information.

The file accessed depends on the subschema and data
base version in use. The primary, alternate, or
major key must be specified in the USING option if
data base items are to be modified. Modifying by
major or alternate key can result in several records
being updated at one time. All records containing
the specified major or alternate key value are
updated in the same way. No record in a CDCS
controlled file can have a primary key value that
duplicates another primary key value within the
file.

The user 1s responsible for maintaining the integ-
rity of the data base. Updating operations must be
consistent with the meaning of the relation defined
for the areas. Refer to section 5 for guidelines
on updating files joined in a relation. Constraints
can affect updating operations. Refer to section 5
for guidelines on updating files associated in a
constraint.

RECOVERY

The RECOVERY directive, shown in figure 4-14,
establishes a recovery point on the journal log
file.

RECOVERY POINT USING data-name-1 { Literal }

data-name-2

Figure 4-14. RECOVERY Directive Format

Upon execution of the RECOVERY directive, data-
name-1 contains a wunique recovery point number
assigned by CDCS. Data-name-l must be a defined
integer item.

Literal or data-name-2 must be a defined 30 char-
acter type CHARACTER field that contains a user-
supplied explanatory message (up to 30 characters
in length) for the recovery point. The message is
written on the journal log file at the same time
the recovery point number is established.

4-12

CDCS responds to a RECOVERY directive by halting
all use of the schema and suspending execution of
the Query Update program until the following events
occur:

All I/0 buffers for data base areas are cleared.

A recovery point log entry is writtem to the
log file for the data base.

The quick recovery file for the data base is
emptied.

The RECOVERY directive should be used judiciously
because considerable overhead is. involved. The
data administrator should be consulted to determine
if the use of recovery points 1is appropriate for a
particular file.

REMOVE

The REMOVE directive, shown in figure 4-15, removes
specific records from a data base area. Remove
operations can be performed on only one area at a
time; a separate remove operation must be performed
on each area joined in a relation. The complete
record is removed from the data base; the REMOVE
directive does not remove part of a record.

REMOVE Crecord-namel
CSETTING {data-name-1}...]
USING key-name
CSETTING {data-name-2}...]
LFROM file-namel

VETO
PASS

Figure 4-15. REMOVE Directive Format

The use of the REMOVE directive with CDCS is the
same as the use of the directive to remove a record
from a data base area with CRM (as described in the
Query Update reference manual) with one exception:
providing for access requirements to modify the
area. If the area is defined in the schema with
controlled access, the user must provide the access
keys in an ACCESS directive. Refer to the discus-
sion of the ACCESS directive for more information.

60485300 A

2 )

JJ



The file accessed depends on the subschema and data
base version in use. Removing records by major or
alternate key can result in several records being
removed at one time. All records containing the
specified major or alternate key value are removed
in the same way.

The user is responsible for maintaining the integ-
rity of the data base. Updating operations must be
consistent with the meaning of the relation defined
for the areas. Refer to sectlon 5 for guidelines
on updating files joined in a relation. Constraints
can affect updating operations. Refer to section 5
for guidelines on wupdating files associated in
constraints.

STORE

The STORE directive, shown in figure 4-16, creates
a new record and places it in an area of the data
base; record values are established. Only one area
can be modified at a time; each area joined in a
relation must be modified separately. Data can be
input from the terminal or from a designated file.

The use of the STORE directive with CDCS 1is the
same as the use of the directive to store records
in a data base area with CRM (as described in the
Query Update reference manual) with one exception:
providing for access requirements to modify the
area. If the area is defined in the schema with
controlled access, the user must provide the access
keys in an ACCESS directive. Refer to the discus-
sion of the ACCESS directive for more informationm.

The file accessed depends on the subschema and data
base version in use. The primary key must be
included in the data-name-l, data-name-2, or data-
name-3 list 1f data base items are referenced. The
primary key does not have to be specified if the
area referenced has actual key file organization.
(The data administrator can provide this informa-
tion.) No record in a CDCS controlled file can
have a primary key value that duplicates another
primary key value within the file.

The user is responsible for maintaining the integ-
rity of the data base. Storing operations must be
consistent with the meaning of the relation defined
for the areas. Refer to section 5 for guidelines
on updating files joined in a relation. Constraints
can affect updating operations. Refer to section 5
for guidelines on creating and updating files
associated in constraints.

UPDATE

The UPDATE directive, shown in figure 4~17, permits
an area to be identified for updating before a
REMOVE, STORE, or MODIFY directive is entered.

UPDATE area—-name

Figure 4-17. UPDATE Directive Format

The area-name must be an area included in the
subschema in use.

Refer to the Query Update reference manual for the
description of this directive.

VERSION

The VERSION directive determines whether Query
Update enters either the CRM catalog mode or the
CDCS catalog mode. Format 3 of the VERSION direc-
tive, shown in figure 4-18, initiates processing
in CDCS catalog mode, identifies the subschema,
and identifies the data base version. (Formats 1
and 2 are documented in the Query Update reference
manual.)

VERSION is catalog-file OF subschema-name
CFROM LIBRARY permanent-file-name]
C(permanent-file-parameters cPwldd

CFOR DATABASE version-namel

Figure 4-18. VERSION Directive Format

Either CRM or CDCS catalog mode can be used together
with processing in CDCS data base access mode.
Refer to the subsection Catalog File for more
information and an example of using a catalog file.

When format 3 of the VERSION directive is used, the
specified subschema file is attached (if not al-
ready attached). Query Update checks that the
catalog file 1is described correctly within the
subschema. To be described correctly, the trans-
mission length specified in the QU control state-
ment must be the same as the length of the data
item in the catalog file (see the sample subschema
in figure 4-1). The specified catalog file is used
for all reports and sessions. In additiom, the
default catalog is available for duplication.

STORE [record-namel

VETO
PASS

SETTING {data-name-1}... CFROM file-namel

MOVE expression=1 TO {data-name-2}... [AND expression-2 Ig_{data-name-3}...l wes

Figure 4=-16. STORE Directive Format

60485300 A



Only one VERSION directive can be 1in effect at a
time. If a format 3 VERSION directive is entered
(called the current VERSION directive) after a
VERSION directive had been entered, the following
situations apply:

Any access keys entered to use the catalog file
specified in the first VERSION directive are no
longer in effect. An ACCESS directive must be
entered if access keys are required to use the
catalog file specified in the current VERSION
directive.

If the first VERSION directive initiated CRM
catalog mode, the CRM catalog file is released
upon execution of the current VERSION directive.

If the first VERSION directive initiated CDCS
data base access mode, and if the current
VERSION directive uses the same subschema and
data base version, Query Update sets internal
descriptions to 1indicate which file 1is the
catalog file. The previous INVOKE remains in
effect.

Any previous subschema file and all tables describ-
ing a previous subschema, areas, and catalog files
are released under the following conditions:

CDCS data base access mode was in effect with
either a different subschema or different data
base version. The previous INVOKE is no longer
in effect.

CDCS catalog mode was in effect with either a
different subschema or data base version.

CRM data base access mode was in effect. (That
is, a Query Update-CRM subschema was being
used.) The previous INVOKE is no longer in
effect.

The catalog-file identifies the catalog being
used. Catalog-file must be an area name included
in the subschema identified by subschema-name.

The subschema-name identifies the subschema being
used. The subschema name must be the name of a
Query Update—-CDCS subschema.

The FROM LIBRARY option identifies the subschena
library that contains the subschema directory being
used. If the FROM LIBRARY option is omitted, the
permanent file name of the subschema library 1is
assumed as follows: for NOS, the first seven
characters of the subschema name are used; for
NOS/BE, the entire subschema name is used.

When permanent file parameters are required to
access the subschema, they must be specified in the
VERSION directive. The PW option can be specified
to protect the security of passwords. When Query
Update encounters the characters PW alone, terminal
input is prompted with the symbols >»>. The user
then enters the appropriate passwords. Query Up-
date continues to prompt after each transmission
until the user enters a transmission consisting of
*END. The PW option protects the security of the
passwords since printing of passwords on the output
listing or trace file is inhibited.

4-14

The FOR DATABASE option identifies the data base
version being used. Version MASTER is assumed when
the option is omitted. The version name must be a
1- through 7-character name of a data base version
included in the master directory as a version of
the schema being used; MASTER is the name of the
default data base version. The data administrator
must provide the user with valid alternate version
names when data base versions are being used.

VIA .

The VIA directive, shown in figure 4-19, is used in
relation processing to ‘specify to Query Update
which relation should be followed when an ambiguity
exists. .

VIA relation-name

Figure 4-19. VIA Directive Format

The relation-name must be included in the subschenma
in use.

Refer to the Query Update reference manual for the
description of this directive.

QUERY UPDATE PROCESSING
WITH CDCS '

Query Update—-CDCS interface operates on NOS and
NOS/BE ian both batch and interactive modes.

CDCS knows the Query Update program by the identi-
fication contained in the USER-ID register. CDCS
provides error diagnostics, a validation facility
for the subschema used, and a record locking mech-
anism.

EXECUTION

Execution of Query Update is called by the QU
control statement. A control statement in the
following form can be used:

Qu

Parameters can be included in the QU control state-
ment. Refer to the Query Update reference manual
for more information.

The Query Update program initiates the interface
with CDCS when a subschema is specified in an
INVOKE, CREATE, or VERSION directive. CDCS must be
active in the system for processing with CDCS to
occur. If CDCS is not active, a message is returned
to an interactive program; a batch job is held by
the system and is executed when CDCS becomes active.

Refer to section 5 for information about execution
time processing with CDCS.

60485300 A

JJ

J )

1y

LY



CATALOG FILE

Accessing a catalog file is necessary whenever a
Query Update user performs a previously prepared
sesslon, generates a report, or changes a report.
When Query Update is using a catalog file, Query
Update is processing in a catalog mode. Processing
a catalog file can be performed in omne of two
modes: CDCS catalog mode or CRM catalog mode.

The field 1length required for Query Update for
processing in CRM catalog mode is greater than that
required for processing in CDCS catalog mode.
Query Update must use CYBER Record Manager Advanced
Access Methods (AAM) in processing a catalog file.
In CRM catalog mode, AAM is loaded and used within
the field length of Query Update. In CDCS catalog
mode, AAM 1is loaded and used within the field
length of CDCS.

The VERSION directive determines whether Query
Update enters CRM catalog mode or CDCS catalog
mode. To establish processing in CDCS catalog

mode, a subschema must be specified in the VERSION
directive.

To make processing in CDCS catalog mode possible, a-
catalog file must be described as an area in the
Query Update subschema and as an area in the corre-
sponding schema. Refer to figure 4-1 for an example
of a catalog file described in the subschema.

Figure 4-20 shows creating and using a CDCS catalog
file. Example 1 shows creating the catalog file.
To create the file, a session (SESS1 in the example)
must be recorded on the default catalog, which is
always local file 2ZZZZ2Q2. For NOS, the permanent
file must be defined and the contents of the de-
fault catalog copied to the permanent file. For
NOS/BE, the local file can be cataloged with the
name of the permanent file. For both operating
systems the permanent file name, identification,
and passwords must be those recorded for the area
(catalog file) and data base version in the master
directory. The data administrator should provide
the appropriate permanent file information.

Example 1. Creating a CDCS Catalog File

COMMAND-~ QU
GUERY UPDATE 3.4 R2C-82061

-- RECORDING SESS1 BY 5
200 TRANSMISSION(S) ALLOWED

011-- ACCESS

026-~ RECORDING OFF

END OF SESSION SESS1
-~ END
*x CAUTION**

NOS
REWIND,22222G2
DEF INE MCATFIL
COPY, 2222202 ,MCATFIL

NOS/BE

Example 2.

001-- INVOKE ACADEMIC FROM LIBRARY QULIB (ID=QUCDCS2)
006-- DISPLAY SENTER ACCESS KEY FOR AREA TESTCURRICS

016—- DISPLAY $STUDENT-ID COURSE-ID$ .
021-- DISPLAY STUDENT-ID OF CURR-REC COURSE-ID OF CURR-REC

DEFAULT CATALOG REMAINS AS LOCAL FILE ZZZZzQ2

CATALOG,Z7272Q2,MCATFIL,ID=QUCDCS2

Executing a CDCS Catalog File

COMMAND~ QU

' QUERY UPDATE 3.4 R2C-82061

-~ PERFORM SESS1

>>> $XX99% FOR AREA TESTCURRIC
>>> *END

*END
STUDENT~ID COURSE-ID
100-22-5860 CHM103
100-22-5860 CHMOOS
100-22-5860 MATH10
122-13-6704 HIS103
122-13-6704 PSY136

- VERSION IS QUCATALOG OF ACADEMIC FROM LIBRARY QULIB (ID=QUCDCS2)
-~ ACCESS $RUNS ON INPUT FOR CATALOG QUCATALOG
— ACCESS $ADDS ON OUTPUT FOR CATALOG QUCATALOG

ENTER ACCESS KEY FOR AREA TESTCURRIC

Figure 4-20.

60485300 A

Examples of Using a Catalog File

4~15



Example 2 shows using the catalog file. The VERSION
directive specifies the catalog file QUCATALOG.
The catalog file has controlled access (defined in
the schema); therefore, the ACCESS directive must
be specified. Two access keys are specified: RUN
for retrieval (INPUT) and ADD for update (OUTPUT).
When SESS1 is performed, the user 18 required to
enter access keys for the area TESTCURRIC. After
the access keys are successfully entered, STUDENT-ID
and COURSE~ID are displayed from the area.

Once a CDCS-catalog file has been created and the
VERSION directive has established processing CDCS
catalog mode, the use of the catalog is as described
in the Query Update reference manual.

RECORD LOCKING MECHANISM

Query Update allows update to occur in only one
area at a time. Within an area, only one record
(the record being updated) is locked at a time.
Query Update automatically makes all the requests
to CDCS for the locking and unlocking of records.
When Query Update requests a vecord lock, CDCS
holds a protected record lock on the record for the
Query Update program; therefore, no other user can
update the record, but other users can read the
record. CDCS releases the record lock as soon as
the record is updated.

A Query Update program cannot be in a deadlock
situation because the program can have only one
record lock at a time.

The Query Update user can be in the situation of
attempting to access an area or record that is
locked by another application program. If GQuery
Update finds a locked area or record during an
interactive session, Query Update issues a message
and gives the user the opportunity to either termi-
nate the access request or to specify that Query
Update is to reattempt the access request. During
batch processing using Query Update, the applica-
tion is queued until the 1locked area or record
becomes available.

ERROR PROCESSING

Query Update provides space for the data base
status block, which is a block of memory to which
CDCS returns status and error messages. When CDCS
returns an error code to the data base status
block, Query Update issues one of the following
messages:

904 CRM/CDCS ERROR o FILE a FUNCTION a
908 CDCS ERROR o FILE a FUNCTION a ITEM d

Through these messages, Query Update informs the
user of the octal value of a CRM or CDCS error
code, the area being processed, the function being
performed when the error occurred, and the decimal
value of the sub-schema item ordinal for item-level
errors. If an error message 1is returned, the
interactive user 1s issued one of the above diag-
nostics and Query Update prompts the user for
subsequent action; the batch job is aborted.

4-16

Query Update does not issue a message when a null
record or control break condition occurs during
relation processing.

Refer to section 5 for additional information about
CDCS error processing.

USER-ID REGISTER

Query Update wmwaintains a USER-ID register that
contains the name by which CDCS knows a Query Up-
date program. To establish a name for a Query
Update program, Query Update initializes the USER-ID
register to the name QU, which is left-justified
and blank-filled in the 10-character register.
Query Update communicates the conteats of the
USER-ID register to CDCS when executing an INVOKE,
CREATE, or VERSION directive.

If a user wants a program known by a name other
than QU, the user can update the contents of the
USER-ID register by issuing a MOVE, EXECUTE USING,
or MODIFY directive. For example, the following
directive establishes the name TITLEl for the Query
Update program:

MOVE $TITLEl$ TO USER-ID

When specifying a program name, the user must modify
the USER-ID register before specifying the first
INVOKE, CREATE, or VERSION directive that estab-
lishes processing with CDCS.

RECOMPILATION GUIDELINES

The checksum facility is the mechanism used in
determining whether the changes made to the schema
require the recompilation of a subschema. The DDL
compiler produces a one-word identifying bit string
(called a checksum) for each realm and area in the
schema. A checksum is also generated for each
subschema. The checksums are stored in the schema
and subschema directories and are recorded in the
master directory. The checksums are used to verify
the consistency of the schema and its associated
subschemas, as well as the consistency of the
subschema and the application referencing it.

When the schema is recompiled due to a modification
of a data base realm or relation, the data adminis-
trator compares the checksums generated with the
corresponding checksums in the previous version of
the schema. If the checksums do not match, all
subschemas that reference the realms or relations
whose checksums have changed are recompiled.

If a subschema has been recompiled and the checksum
of the recompiled subschema differs from its pre-
vious checksum, a Query Update application can no
longer use the previous subschema. If an applica-
tion references an invalid checksum, CDCS aborts
the application and issues a diagnostic. The Query
Update user can prevent the abnormal termination of
an application by ensuring, prior to executing the
program, that the subschema checksum in the master
directory matches the checksum of the subschema
used in the Query Update application.

60485300 A

J D



CDCS FEATURES AND PROCESSING CONSIDERATIONS S

Data base files (realms or areas) can be created
and accessed through an application program written
in COBOL, FORTRAN, or Query Update. The appli-
cation references data base files and relations
with record descriptions that are contained in a
separately compiled schema and subschema defined by
the data administrator.

The data administrator can impose controls on the
update operations allowed on two logically asso-
ciated files or two data items within the same
file. These controls are imposed by the data
administrator in the schema. The controls are
called constraints.

This section documents features of CDCS and the
processing considerations involved in using these
features. These features can affect the way a
COBOL or FORTRAN application program is coded.

Query Update automatically handles the use of many
of these features; therefore, with the exception of
the discussion about constraints, the discussions
in the following subsections do not apply to the
Query Update user. The Query Update user should,
however, cousider contraints when making updates.

EXECUTION TIME PROCESSING

Before an applicatlion program executes, the data
administrator must take the steps necessary to
bring CDCS to a system control point (unless the
CDCS Batch Test Facility described in appendix G is
used). When a compiled COBOL or FORTRAN appli-
cation program is executed, CDCS monitors and
interprets all requests for action on relations and
on data base files. When an application program
invokes CDCS, CDCS attaches all data base files and
index files that are both included in the version
referenced by the program and referenced either
directly or indirectly in the subschema used by the
program. A file is referenced directly in the
subschema when the realm name occurs in the sub-
schema listing (refer to the Subschema subsection
in sections 2, 3, and 4). A file is referenced
indirectly when it is associated in a constraint
with a realm included in the subschema.

An independent (non-data-base) file can be used by
an application program during CDCS processing; how-
ever, CDCS does not process non-data-base files.
Any non-data-base files used by the program must be
attached before CDCS processing begins.

When the data administrator has specified alternate
data base versions, CDCS assumes files of version
MASTER are to be accessed by an application program
if no alternate version is referenced. For a COBOL
program only, the files corresponding to the areas
in version MASTER are always attached when CDCS is
invoked. This occurs even if the program explic-
itly uses only alternate versions. The data admin-
igstrator is responsible for insuring that the files
of version MASTER exist and are available to CDCS
for execution of a COBOL program.

60485300 A

If one or more of the files referenced in the
subschema do not exist when an application program
is executed, a program executing in batch mode is
aborted; but a program executing through TAF is
terminated from CDCS. Control is returned to TAF,

ERROR PROCESSING

CDCS diagnostics indicate errors and informative
conditions for all phases of CDCS processing. CDCS
reports diagnostics to both the user control point
and to the CDCS system control point. When CDCS is
executing as the CDCS Batch Test Facility, the user
control point aad CDCS control point are the same;
therefore, all CDCS diagnostics go to the user
control point in that situatiom.

When CRM errors occur during processing, CDCS
reports the error through a CDCS diagnostic and
takes action, depending on the CDCS classification
of the CRM error. When a CRM fatal error occurs on
a file (area or realm) during execution, CDCS does
not allow the application program to access that
file for the remainder of the time the program
executes.

An application programmer using CDCS can obtain
error and status information from the user error
file, from one of several output files produced
during CDCS processing, or from within the appli-
cation program itself. Refer to the Status Check-
ing subsection of sections 2 and 3 or the Error
Processing subsection of section 4 for information
about obtaining error diagnostics within the appli-
cation program. Appendix B provides a list of CDCS
diagnostics with accompanying explanations. The
listing and explanation of CRM diagnostics is in
the CRM Advanced Access Methods reference manual.

CDCS DIAGNOSTICS

When a CDCS error or particular conditiom occurs
during the execution of an application progranm,
CDCS writes a diagnostic message. CDCS writes the
messages to the user error file ZZZZZEG for appli-
cation programs executing in batch mode and to the
CDCS output file at the system control point.
Fatal and nonfatal errors and informative condi-
tions are reported in this manner; trivial errors
are written only to the file ZZZZZEG. Two inform-
ative CDCS codes (627 octal 632 octal) indicate
file status on a rvrelation read but are not written
to the file ZZZZZEG or to the CDCS output file. (A
COBOL or FORTRAN application program can obtain
information about these condition through the data
base status block described in sections 2 and 3.)
A number of other messages reporting fatal and
nonfatal errors and informative conditions are sent
to the user control point dayfile and to the CDCS
output file. Additionally, fatal, nonfatal, and
informative messages concerning the CDCS system
control point are reported in the system control
point dayfile.



Fatal CDCS errors cause CDCS to abort a program
exécuting in batch mode unless the program has
enabled the immediate return feature (for infor-
mation about this feature, refer to the Immediate
Return Feature subsection later in this section).
Fatal errors that occur when a COBOL or FORTRAN
program is executing through the Transaction Facil-
ity (TAF) cause CDCS to terminate the program from
CDCS; CDCS returns control to TAF.

Refer to appendix B for more information about CDCS
diagnostics.

USER ERROR FILE

The user error file ZZZZZEG contains errors that
pertain to user program processing. The ZZZZZEG
file is not printed as part of the output from a
user’s job. Refer to the CRM Advanced Access
Methods reference manual for details on how to
print this file using the CRMEP utility.

The user error file ZZZZZEG is not available for
COBOL or FORTRAN tasks executing through TAF.

RELATIONS DEFINED

The relation processing component of CDCS allows
users to retrieve data from two or more files
(areas or realms) joined together logically. The
logical structure created by the joining of several
files is termed a relation. CDCS controls the
manipulation of the files joined in a relation and
controls the selection of record occurrences
through the use of information from the schema and
subschema directories.

When the data administrator designs and creates a
data base, it usually contains several files with
common data item fields. These common data item
fields are defined in the schema as join terms or
identifiers. Join terms or identifiers can be data
item fields that contain primary keys, alternate
keys, or data items that are not keys. The join
terms or identifiers are used to join the areas in
a relation. During processing, the join terms and
areas are associated with data items and data base
files respectively.

The application program can obtain information from
several files involved in a relation by referring
to the common data item. For example, the EMPLOYEES
file and the PRODUCTS file of a data base are
related by a common data item, PROJECT-NO. A
PRODUCT record type and an EMPLOYEE record type are
linked by PROJECT-NO, an alternate key in the
EMPLOYEES file.

The relation can be read by a single relation read
request. The PRODUCT record is read wusing the
primary key PRODUCT-NO, and the EMPLOYEE record
is accessed by alternate key using the value of
PROJECT-NO obtained from the PRODUCT record. The
application programmer can then use PROJECT-NO as a
key to retrieve all the employee record occurrences
for that project number, This relationship between
project number in one record and project number in
another record results in the identification of a
number of employees. The diagram of this rela-
tionship in figure 5-1 shows it as a one-to-many
relationship.

Without the CDCS relation processing component, the
application programmer would have to write ‘the
procedures to read the PRODUCT record initially and
then, using the alternate key value obtained from
the PRODUCT record occurrence, read the EMPLOYEE
records.

The programming becomes more difficult when three
records are participating in a relationship such as
the one just described. For example, if a CONTRACT
record were introduced into the above relationship
and many records were retrieved for each alternate
key value, the programming to handle this rela-
tiongship would be more complicated than for the
relationship joining only two files.

A relation joining three files is illustrated in
figure 5-2. The defined structure of the relation
begins with a contract number. The CONTRACTS file
is accessed first. CONTRACT-NO from the CONTRACT
record occurrence is used to access the PRODUCTS
file via its alternate key CONTRACT-NO. A number
of products exist for a given contract; that is,
there are duplicate values in the contract number
field.

PRODUCT-NO PROJECT-NO TOTAL-B COST PRODUCTS File
(Primary Key) ) PRODUCT Record
/— ____________ /—" _—___/'__‘_'—_"
/ 7 / 2 d
7 7 4
/ / N s
7 ' 7
EMPLOYEE-NO PROJECT-NO EMPLOYEES File
ME
(Primary Key) (Alternate Key) SALARY OVERTI 2/ EMPLOYEE Record

Figure 5-1. Two-File Relationship Example

60485300 A

JJ

y

2 )



CONTRACT-NO

(Primary Key) DUE-DATE

DESCRIPTION

CONTRACT Record

) CONTRACTS File

PRODUCT-NO
{Primary Key)

CONTRACT-NO
(Alternate Key)

PROJECT-NO|TOTAL-B| COST ) PRODUCTS File

PRODUCT Record

EMPLOYEE-NO
{Primary Key)

PROJECT-NO
(Alternate Key)

SALARY

OVERTIME EMPLOYEE Record

) EMPLOYEES File

Figure 5-2. Three-File Relationship Example

Each PRODUCT record occurrence retrieved for a
given contract supplies the project number value
that can in turn be used to retrieve a number of
EMPLOYEE record occurrences. PROJECT-NO 1is an
alternate key in the EMPLOYEE record and, again,
duplicate values exist.

HIERARCHICAL TREE STRUCTURE

The dependency of the record occurrences within the
files joined by a directed relationship can be
schematically represented as a hierarchical tree
structure like the one shown in figure 5-3. The
root of the tree contains the record occurrences of
the CONTRACTS file. The CONTRACT record occurrence
branches to record occurrences in the PRODUCTS
file. Likewise, the PRODUCT record occurrences
branch to record occurrences in the EMPLOYEE file.
Extraction of record occurrences from each of the
three files in the relationship is performed auto-
matically for the application program through CDCS
if a relation joining the CONTRACIS, PRODUCTS, and
EMPLOYEES files has been defined in the schema and
included in the subschema used by the application
program.

Ranks of a Relation

A relation entry in the schema links the files
together in the relation in a defined order and
assigns the files a rank in the relation. The
order is determined by the order in which the files
are Included in the relation in the schema. The
first file included in the relation is assigned
rank 1; the second rank 2, and so on with subse-
quent files being assigned a rank equal to the rank
of the previous file incremented by 1.

The ranks of a relation can be determined from the
relation statistics portion of the subschema list-
ing. The relation name together with each realm
joined in the relation are listed according to
rank. For example, the files of relation CONTRACTS-
PRODUCTS-EMPLOYEES are listed as follows:

CONTRACTS~-PRODUCTS-EMPLOYEES JOINS
AREA - CONTRACTS
AREA - PRODUCTS
AREA - EMPLOYEES

The files are assigned ranks in the relation as
follows: CONTRACTS, rank 1; PRODUCTS, rank 2; and
EMPLOYEES, rank 3.

CONTRACT Record Occurrence
CONTRACTS File
(Root File Rank 1)

PRODUCT Record Occurrences
PRODUCTS File
{Rank 2)

EMPLOYEE Record Occurrences
EMPLOYEES File
{Rank 3)

Figure 5-3. Tree Structure for CONTRACTS-PRODUCTS-EMPLOYEES Relationship

60485300 A



The lower rank a file has in a relation, the higher
position the file has in the hierarchical tree
structure. For example, the file of lowest rank
(the root file, which is assigned rank 1) is pic—
tured at the top of the tree structure.

Parent/Child Relationship

The joining of files in a directed relationship
results in a dependency condition between record
occurrences linked in the files. A record occur-
rence in the root file is termed the parent record
occurrence for all related record occurrences (each
termed a child record occurrence) in the file
linked to it. A child record occurrence can also
be a parent record occurrence when a subsequent
file is joined in the relation and related record
occurrences exist in that subsequent file.

In the CONTRACTS-PRODUCTS-EMPLOYEES relation, a
record occurrence in the CONTRACTS file 1is the
parent record occurrence for related record occur-
rences in the PRODUCTS file. Likewise, a record
occurrence in the PRODUCTIS file is a parent of
several record occurrences in the EMPLOYEES file.
The record occurrences in the PRODUCTS files are
the children of a record occurrence in the CONTRACTS
file. Likewise, the record occurrences in the
EMPLOYEES file are children of a record occurrence
in the PRODUCTS file.

A parent record occurrence is ome that has another
record occurrence at the next numerically higher
rank in the relation. A child record occurrence is
one that has another record occurrence at a numer-
ically lower rank in the relation.

RECORD QUALIFICATION

Record qualification is the method used to restrict
which records in a relation are to be returned to
the user. Record qualification is implemented by
specifying criteria that must be satisfied by a
record occurrence. Qualification 1s specified in

the subschema for records in any file for the
relationship. Use of qualification can greatly
limit the number of record occurrences returned to
the user’s work area. For a better understanding
of this statement, the CONTRACTS-PRODUCTS-EMPLOYEES
relationship is reexamined.

A tree structure of record occurrences in the
CONTRACTS-PRODUCTS-EMPLOYEES relation 1is illus-
trated in figure 5-4. A contract Cl is composed of
four products: Pl, P2, P3, and P4. FEach product
is developed by a number of employees, and each
employee works on only one product; for example,
employees El and E2 develop product Pl; employees
E3, E4, ES5, and E6é develop product P2. Proceeding
from left to right following each path up the tree
structure, 12 occurrences of the relationship can
be identified, namely C1P1El, Cl1P1E2, C1P2E3,
C1P2E4, and so on.

Qualification criteria are specified in the RESTRICT
clause in the COBOL and Query Update subschemas and
in the RESTRICT statement in the FORTRAN subschema;
the criteria are used by CDCS to determine whether
a record occurrence qualifies to be returned to the
user’‘s work area as part of the relation occur-
rence. For example, to retrieve the records of
those employees working on product P4, qualifica-
tion can be specified for the PRODUCT record type
to indicate that the record occurrences should be
restricted to those in which the value of the
product number field is P4, CDCS reads and dis-
cards record occurrences Pl, P2, and P3 before
retrieving record occurrence P4 and its child
record occurrences. Since Pl, P2, and P3 do not
qualify, no input/output operations are performed
to retrieve their child record occurrences.

Without the facility to qualify records, each of
the record occurrences to the left of the required
ones (including Pl, P2, and P3 and all their child
record occurrences) would have to be extracted and
returned to the user’s work area (in many cases,
after CDCS record mapping is performed). The user
would then have to determine if the record occur-
rence was the one required or not.

CONTRACT Record Occurrence
CONTRACTS File

PRODUCT Record Occurrences
PRODUCTS File

EMPLOYEE Record Occurrences

EMPLOYEES File ®
E1 E2

E3

E4 ES E6 E7 E8 E9 E10 E1U E12

Figure S5-4.

Complex Tree Structure for CONTRACTS-PRODUCTS~EMPLOYEES Relationship

60485300 A

JJ

"

J )



Record qualification in the COBOL and Query Update
subschemas is defined in the Relation Division.
This division contains the relation name and the
RESTRICT clauses (which specify record qualifi-
cation).

Record qualification in the FORTRAN subschema 1is
defined in a relation definition. A relation
definition contains the RELATION statement which
specifies the relation name) and the RESTRICT
gtatements (which specify record qualification.

CDCS RELATION PROCESSING

A relation defines a directed path joining several
files. Join terms, called identifiers, are data
items that link the files together. The identifi-
ers are established in the schema. The identifiers
must be inspected by CDCS to traverse the relation
and return a record occurrence from each file in
the relation to the user’s work area.

File positions affect CDCS sequential relation
processing. The user should exercise caution in
performing input/output operations that might alter
positions on the files joined in the relation while
executing within a sequential read loop. The user
can perform input/output operations on a file in a
relation if the file is repositioned before con-
tinuing the relation read.

Special formats of the OPEN, CLOSE, READ, and START
statements allow COBOL or FORTRAN application
programs to utilize relation processing while
performing input/output operations on the data
base. The statements described in the following
subsections are those used in COBOL and FORTRAN
application programs.

OPENING A RELATION

Application programs using CDCS can open all files
joined in a relation with a single relation OPEN
statement. The relation OPEN statement is per-
formed as if a separate open was executed for each
file, in the order of the rank of the files in the
relation., When files in a relation are opened by
the relation OPEN statement, they should not be
opened by separate OPEN statements.

A relation is normally opened for input processing
only. A relation is opened for input/output proc-
essing when the user wants to have CDCS lock all
records read for the relation occurrence or when
the application program is to perform update opera-
tions on individual files in the relatiom.

POSITIONING A RELATION

The root file of a relation 1s positioned for
subsequent read processing by the relation START
statement. When a relation START statement eXxe-
cutes, the root file of the relation is positioned
at the first record occurrence that has a key
satisfying the condition specified in the KEY

60485300 A

phrase of the relation START statement. The key
specified is established as the key of reference.
The key of reference is always a key in the root
file. After the root file has been positiomed and
the key of reference has been established, a se-
quential read of the relation retrieves from the
root file the record occurreance with the key that
satisfies the condition specified by the start. A
sequential relation read loop following a relation
start references the root file according to the key
established by the start.

The example in figure 5-5 shows two relatioms, Rl
and R2, which have a common file, FILEB. Relation
Rl joins FILEA and FILEB, and R2 joins FILEB and
FILEC. The application programmer can use the
relation START statement with a key value specified
to position FILEB in relation Rl. FILEB is the
root file for relation R2, Relation R2 can then be
read using that key value. The key value can be
saved to reposition FILEB, if necessary, before
performing another read of relation RIl. This
processing cannot be performed if the key being
saved has duplicate values or if the key does not
appear in the subschema.

Relation R1 Relation R2
FILEA FILEB

FILEB FILEC

Figure 5-5. Ffile Positioning Example

READING A RELATION

The application program can use the relation READ
statement to read a relation. The relation read
can be used either for random access of the root
file of a relation or for sequeantial access of the
files involved in a relationm.

The order in which other files in the relation are
accessed depends on the identifier specified for
the files. 1If the identifier is an alternate key
for a file containing child record occurrences,
that file is read randomly by alternate key.

Reading a Relation Randomly

If a key is specified in the relation READ state-
ment, the root file 1s accessed according to the
primary or alternate key of that file. The record
occurrence in the root file that contains the
specified key is returned to the ugser’s work area
along with a record occurrence from each file at a
higher ramnk in the relation. The root file of a
relation can be positioned by a random relation
read for subsequent sequential relation reading.

If a key is specified for a file in a relation
other than the root file, the COBOL compiler or the
DML FORTRAN preprocessor issues a diagnostic.



Reading a Relation Sequentially

If no key is specified in the relation READ state-
ment, the root file is read sequentially by the
current key of reference. A relation can be posi-
tioned for subsequent sequential reading by either
a relation START statement or a relation READ
statement that specifies the KEY phrase. Once the
relation has been positioned, successive sequential
reads of the relation are specified by .the user
with the READ NEXT AT END statement in COBOL or the
READ statement without the KEY option in FORTRAN;
these are translated to retrievals on the appro-
priate files in the relation. Within the sequential
read loop, the user should not try to reposition
the files involved.

The diagram in figure 5-6 illustrates a group of
record occurrences for a relation having three
files. If the relation is vread sequentially, the
order in which record occurrences are returned to
the user is A, B, and C first, providing this set
of record occurrences meets qualification cri-
teria. Successive sequential reads of this rela-
tion by CDCS would return the remaining record
occurrences that are child record occurrences of B
(namely, record occurrences D and E). FILEA and
FILEB are not read again since CDCS expects the
user’s work area to still contain record occurrences

A and B, To retrieve the next record occurrence,
CDCS returns to FILEB in the relation and retrieves
record occurrence F, if F meets qualification
criteria, and in turn retrieves the children of
record occurrence F (record occurrences G and H).

The diagram in figure 5-7 identifies the record
occurrences that are contained in the user’s work-
ing storage area after each read of the relationm,
assuming the record occurrences shown meet quali-
fication criteria. The user’s work area contains
record occurrences with record descriptions that
are defined in the subschema used by the application
program.

Reading Relations in Parallel

An application program can read more than one
relation in parallel, provided no common files
exist between the relations being read. For exam-
ple, figure 5-8 illustrates three relations, RIl,
R2, and R3, which have files joined as shown.
FILEC is a common file in relations Rl and R2. 1If
Rl and R2 are read in parallel, the results can be
unpredictable. Rl and R3, however, or R2 and
R3 can be read in parallel without causing any
undesirable results.

FILEA Record Occurrence

FILEC Record Occurrences

FILEB Record Occurrences B

E G H

Figure 5-6. Record Occurrences for Three Related Files

User's Work Areas

A 8 c First read

A B D

A e Successive

A E G sequential reads
A F H

Figure 5-7. Record Occurrences in User's Work Areas After Reading

60485300 A

JJ

‘5’%7)
r@k})



Relation R1 Relation R2 Relation R3

FILEA FILED FILEH

FILEB FILEE FILEF

\\\\‘FILEC‘//// FI{EG

Figure 5-8. Three Relation Example

Reading a Relation Defined With Record
Qualifications

Record qualification criteria are specified by the
RESTRICT clause in the COBOL subschema or the
RESTRICT clause in the FORTRAN subschema. If a
data item specified in the RESTRICT clause is not
included in the subschema, the data item must be
defined in the Data Division of the COBOL applica-
tion program or defined as variable in the FORTRAN
application program before any relation read is
performed. The data item must be defined with the
same size and type (usage for COBOL) as the sub-
schema item used in the comparison.

CDCS obtains the value of the specified data item
from the program when the following operations are
performed:

On the first sequential read of the relation
after execution of an OPEN relation statement

On a random read of the relation

On the first read following execution of a START
relation statement

When a sequential read of the relation follows a
random read, CDCS does not change the value of the
data item.

Reading a Relation When Data Base Versions Exist

A relation can join different groups of permanent
files when data base versions exist. The files
joined in a relation depend on the files associated
with the version being used. Some files are used
by several versions while other files are used by
only one version. This means that relational
reads can yield different results depending on the
version used.

For example, figure 5-9 illustrates the CONTRACTS-
PRODUCTS-EMPLOYEES relation being used with two
data base versions, MASTER and UNITl. Contrasted
with previous examples of this three-level rela-
tion, the names CONTRACTS, PRODUCTS, and EMPLOYEES
now refer only to the areas defined in the schema
and not to the permanent files; the areas are
associated with permanent files with different
names.

In the example, versions MASTER and UNIT1 share two
files: CMSTR (associated with the area CONTRACTS)
and EMSTR (associated with the area EMPLOYEES).
Each version uses a separate file associated with
the area PRODUCTS.

A relational read using version MASTER could result
in the following record occurrences being returned:

Record 1 of permanent
Record 1 of permanent
Record 1 of permanent

The same relational read
result in the following
returned:

Record 1 of permanent
Record 1 of permanent
Record 3 of permanent

file CMSTR
file PMSTR
file EMSTR

using version UNIT1 could
record occurrences being

file CMSTR
file PUL
file EMSTR

There are no restrictions on the use of relations
with data base versions; however, the possibility
of retrieving different records in relatiomnal reads
that use different data base versions .should be

recognized.

Area CONTRACTS
Name
Rank 1in 1
Relation
Version
MASTER
rre_———- -
. / Default /
Version File
UNTT L coMsTRY
LR §

PRODUCTS EMPLOYEES
2 3
File File
PMSTR EMSTR
re———— -z
f Default /
. File
\ (EMSTR)
U §

Figure 5~9. Example of Files Joined by a Relation and Grouped by Version

60485300 A

5-7



UPDATING FILES JOINED IN
A RELATION

CDCS relation processing involves only the retrieval
of relation occurrences. No monitoring of delete
or update operations occurs on files involved in a
relation unless a constraint has been indicated in
the schema for the files in the relation. Con-
straint processing by CDCS occurs independent
of relation processing. For details concerning
congtraint processing, refer to the Constraint
subsection later in this section.

The user must take precautions when performing
update operations to protect the integrity of the
data base. Inadvertent modification of join iden-
tifier values can change parent-child relationships.
Deletion of parent record occurrences can make all
child record occurrences of a deleted parent record
occurrence inaccessible when a relation is read.

The integrity of the data base can be maintained in
update operations if the user is aware of the
following points:

Relations should be designed by the data admin-
istrator with the least number of connnections
between the relations. When one file is linked
to a file in one relation and is also joined to
another file in another relation, the update
operations on the common file must be monitored
in order to preserve the meaning of each of the
relations.

The user should delete child record occurrences
before deleting the parent record occurrence
from a file in a relatiom.

A parent record occurrence should be written
before any child record occurrences are written
on a file participating in a relatiom.

A relation read operation positions all files in
the relation hierarchy. Consequently, if an update
operation, such as a delete or a rewrite, 1s per-
formed on a file in the relation after the relation
is read, the record occurrence that was just read
for the relation occurrence is deleted or rewrit-
ten. All child record occurrences of a record
occurrence that has been deleted are no longer
accessible through a read of the relationship.
When a rewrite operation is performed on a record
occurrence, 1t can change the tree structure for
the data in the relation if the values of the
identifiers (join terms) are changed.

CLOSING A RELATION

All files joined in a relation can be closed with a
single relation CLOSE statement. The relation
CLOSE statement is performed as if a separate CLOSE
was executed for each file in the relation. When
files in a relation are closed by the relation
CLOSE statement, they should not be closed by
separate CLOSE statements.

INFORMATIVE CONDITIONS

During relation processing, CDCS detects the occur-
rence of the following conditions:

Null record occurrence on a file
Control break on a file

A FORTRAN or COBOL application program can check
for these conditions and determine the lowest ranked
file on which the condition occurs Lf appropriate
receiving fields are defined and used in the appli-
cation program. Refer to the Status Checking sub-
sections of sections 2 and 3 for more information.

Null Record Occurrence

If a pareat record occurrence does not qualify for
retrieval, any child record occurrences automati-
cally do not qualify. 1In the example shown 1in
figure 5-6, if B does not qualify, record occur-
rences C, D, and E automatically do not qualify;
none of these record occurrences would be returned
to the user’s work area for FILEB and FILEC. If,
however, B does qualify, but C, D, and E do not,
one null record occurrence 1is veturned to the
user’s work area for FILEC to indicate that no
child record occurrences of B qualify. The null
record occurrence consists of a display code right
bracket (]) in each character position; the number
of character positions filled depends on the sub-
schema description of the record type.

In general, a null child record occurrence status
is returned to the user if all the children of a
parent record occurrence that qualified do not
qualify, or if no child record occurrences exist.
Some examples of null record occurrences returned
to the user’s work area are illustrated in figure
5-10.

If null record occurrences are returned for all
files in a relation except the root realm, another
READ statement must be executed to obtain the next
set of record occurrences for the relation.

Control Break

The control break condition on a file signifies
that a new record occurrence was read for the
parent file in the relation. Control break status,
however, 1s returned for the realm of the child.
If a file in a relation has control break status
after a sequential READ statement has been issued
for the relation, the record occurrence read for
this file is a child record occurrence for a new
parent record occurrence.

Control break status is not set for a file if a
null record occurrence status must be set.

Example of Null Record and Control Break
Conditions

Figure 5-11 shows the record occurrences A through
M in files FILEl, FILE2, and FILE3 and the control
break and null occurrence conditions that result
from retrieval of each relation occurrence. No
qualification criteria have been specified on any
of the records for the files.

60485300 A

J )

J )



C

D

A qualifies, B and F do not qualify.

User’s Work Areas

A and F qualify.

User's Work Areas

A and B qualify, C, D, and E

User’s Work Areas

Record Occurrences in the Relation

A
F
E
A 11...1 11...1
A F 11...]
do not qualify.
A B 11...1

Figure 5-10.

Null Record Occurrence Examples

Data Base Status Block

Null Occurrence Rank

Control Break Rank

(Rank 1) FILE1
(Rank 2) FILE2
(Rank 3) FILE3
Relation Occurrences
A c
A D
A F
A null
H J
K null
M null

0

o W o o

W

2

0
3
0
2

[aV]

K ] M
I
|
|
L T]
| |
i |
41 412

Condition - File

{Control break - FILE2
Control break - FILE3

Control break - FILE3
Null occurrence - FILE3

{Control break - FILE3
Control break - FILE2

{Null occurrence - FILE3
Control break - FILE2

Null occurrence - FILEZ2

60485300 A

Figure 5-11.

Example of Null Occurrence and Control Break Conditions

5-9



TRANSACTION PROCESSING

Transaction processing provides for the grouping of
updates by FORTRAN and COBOL application programs.
Updates include the operations of writing, re-
writing, and deleting records. A group of updates
for which the application program specifies the
beginning and the completion 18 referred to as a
transaction. All updates within a transaction are
temporary. The updates within a transaction are
made permanent when the application program speci-
fies the completion of the tramsaction (called
committing a transactiom).

I1f an application program does not commit a trans-—
action, each record that was wupdated within the
transaction is restored to the state it was in just
before the beginning of the tramsaction and CDCS
issues an informative diagnostic. There are sev-
eral typical situations in which transactions are
not committed. Program logic can determine that
the transaction should not be committed and can
cancel (drop) the transaction. System failure,
program failure, or deadlock can occur during the
application program’s processing of the trans-
action. In each of these situations, updates made
within the uncommitted transaction are reversed.

If an application program terminates normally but
the commit statement was not included in the pro-
gram logic, CDCS reverses the updates made within
the transaction and issues a diagnostic message.

When an application program begins a transactiom,
CDCS processes subsequent update operations by that
program in transaction mode. The exclusive record
locking mechanism prevents other users from acces-—
sing records updated within an uncommitted trans-
action.

The restart component of transaction processing
allows an application program to determine the
point at which to begin processing following a
system failure. An application program can deter-
mine whether or not a transaction was committed
before the system failed. With this information
available, the program can determine the point at
which to resume transaction processing.

The application program can perform transaction
processing only 1if transaction processing is 1in
effect for the schema. The application program can
perform a restart operation only if both trans-
action processing and the restart mechanism are in
effect for the schema. The data administrator, by
selecting logging options in the master directory,
establishes the facilities that support tansaction
processing and the restart mechanism.

PROCESSING OPERATIONS

COBOL routines and FORTRAN Data Manipulation Lan-
guage (DML) statements provide for the operations
involved in transaction processing. A total of
five operations can be performed. These operations

5~-10

are described in the following paragraphs. The
first three operations are directly involved in
main-line code dealing with updates. The last two
operations are used for operation restart following
system failure.

The operations that an application program performs
in transaction processing are as follows:

Begin a transaction

Designates the beginning of a transaction
and communicates a transaction identifier
to CDCS. This causes CDCS to begin process-
ing in transaction mode for the application
program.

Commit a transaction

Designates the end of a tramsaction and
indicates that the wupdates within the
transaction are to be committed. This
causes all the updates made within the
transaction to be made permanent.

Drop a transaction

Designates the end of a transaction and
indicates that the updates already made
within the transaction are to be canceled.
This causes each record updated within the
transaction to be restored to the state it
was in just before the beginning of the
transaction.

Obtain a restart identifier

Communicates with CDCS to obtain a restart
identifier for the application program.
The application program must save the
restart identifier for subsequent use in a
restart operation. If program restart
capability is desired, this operation must
be performed before the first transaction
is begun.

Inquire about the status of the last transaction

Communicates to CDCS a restart identifier
and obtains from CDCS the transaction iden-
tifier for the last completed transaction
associated with that restart identifier.
CDCS then assigns the restart identifier
obtained to the program. This operation
provides for restarting an application
program. Application program logic then
uses the transaction identifier to deter-
mine with which transaction to resume
processing.

Table 5-1 1lists the operations together with
the corresponding COBOL routines and FORTRAN DML
statements. Refer to the descriptions of the rou-
tines and statements in sections 2 and 3 for more
information.

60485300 A

JJ

J )



TABLE 5-1. OPERATIONS OF TRANSACTION

PROCESSING
D ipti COBOL FORTRAN DML
escription Routine Statement

Begin DBS$BEG BEGINTRAN
Commit DBSCMT COMMITTRAN
Drop DB$DROP DROPTRAN
Obtain a restart DBSGTID ASSIGNID
identifier
Inquire about DBSASK FINDTRAN
status of last
transaction

PROCESSING CONSIDERATIONS

The following rules and considerations apply to
transaction processing:

Only one transaction unit can be in progress at
a time within a particular application pro=-
gram. In other words, there can be no nesting
of transaction units.

The data administrator defines the maximum
number of concurrent transactions allowed for
all user’s of the schema. If this number
is exceeded, CDCS issues a diagnostic. The
application program can retry the transaction
request later.

The following FORTRAN DML statements and rou-
tines are not allowed within a transaction:
ASSIGNID, CLOSE, DMLRPT, INVOKE (except within
a chain of TAF tasks), LOCK, NEWVERSION, OPEN,
PRIVACY, and UNLOCK.

The following COBOL statements and routines are
not allowed to be used within a transaction:
CLOSE, C.LOK, C.UNLOK, DBSGTID, DB$LKAR, DBSRPT,
DBS$VERS, and OPEN.

File locks are not recommended for use with
transaction processing.

It is the responsibility of the application
programmer to ensure that the restart identi-
fier is saved in a non-data-base environment so
that it can be retrieved if a program restart
operation is desired.

60485300 A

If a program performs the inquire operation
(DB$ASK for COBOL or FINDTRAN for FORTRAN) and
CDCS does not know the restart identifier, CDCS
returns 10 asterisks, #*k*kkkkkkk 6 a3 the re-
start identifier and issues a nonfatal error.
This situation could occur because the appli-
cation program using the restart identifier
terminated normally. If this does occur, pro-
gram logic should provide for obtaining a new
restart identifier before beginning transaction
processing.

EXAMPLES OF TRANSACTION PROCESSING

A transaction processing sequence is illustrated in
figure 5-12. Application program PGRMA performs a
begin transaction operation and read and update
operations within the transaction. CDCS performs
the logging and record locking operations required
to support transaction processing. The 1locking
operations are described in the following sub-
section. When program PRGMA performs the commit
transaction operation, CDCS will make all the
updates permanent and will release all the record
locks.

Portions of a COBOL program that illustrate trans-
action processing are shown in figure 5-13. The
Special Names paragraph specifies the subschema
being used. The DB$GTID routine is used to obtain
a restart identifier. The DB$BEG routine desig-
nates the beginning of a transaction. Two realms,
PROJECT and PRODUCTS, are read and updated within
the transaction. If an error occurs during trans-
action processing, the procedure ERRPROC-1 executes
causing a message to be displayed and the trans-
action to be dropped. If no error occurs during
transaction processing, the transaction is committed
by the DBSCMT routine.

Refer to section 7 for an example of a FORTRAN
program that performs transaction processing.

CDCS PROCESSING IN TRANSACTION MODE

During processing in transaction mode, an applica-
tion program holds an exclusive lock on a record or
multiple records when update operations are per-
formed. During transaction processing, record
locks assigned to a program are not released until
the application program commits the transaction,
drops the transaction, terminates normally or
abnormally, encounters a deadlock situation, or
encounters a resource conflict. Refer to the CDCS
Locking subsection later in this section for more
information. .

Transaction processing also affects how CDCS handles

deadlock situations. Refer to the Deadlock sub-
section later in this section for more informationm.

5-11



BEGIN TRAN?

~ — — — —
READ FILEA
Executing

FILEA

——

——

FILEA

~———

e

——

FILEC

rd

- —

td

——

N—
N—

Log file

4

~ -

—— -

« _TRANT _/

——

"

Figure 5-12. Transaction Processing Situation

CONCURRENT ACCESS TO
A DATA BASE

CDCS allows concurrent access to a data base.
Concurrent access means that two or more programs
can access the same file at the same time. Access
can be for retrieval or update operations, but care
must be taken in concurrent updating. CDCS pro-
vides a locking mechanism during concurrent access

5-12

operations to protect the integrity of the data
base. Deadlock can occur when two programs are
contending for files or records that have been
locked by CDCS or by other programs.

The following paragraphs describe the concepts of
locking and deadlock. The word file instead of
realm is used in these descriptions; however, in
the view of the application program, a file is a
realm.

60485300 A

™
™



IDENTIFICATION DIVISION.

SPECIAL-NAMES.
SUB-SCHEMA IS C5SS~BUDGET-CHECK.

DATA DIVISION.

FILE SECTION.

FD PRINT-FILE
LABEL RECORDS ARE OMITTED
DATA RECORD IS PRINT-LINE.

01 PRINT-LINE PIC X(136).
WORKING—-STORAGE SECTION.

01 RESTART-ID PIC X(10).

01 ACCESS-KEY PIC X(30).

07 PROJ-KEY PIC X(10).

01 PROD-KEY PIC X(10).

01 PRINT-ACCESS PIC X(30).

01 ERRFLAG PIC 9(3) VALUE ZERO.

PROCEDURE DIVISION.

MAIN-LOGIC-SECTION.

START-UP.
PERFORM START-UP.
PERFORM BEGIN-TRANSACTION.
PERFORM READ-PROJ.
PERFORM READ-PROD.
PERFORM UPDATE-PROJ-PROD.
ENTER "DBSCMT" USING ERR-FLAG.

START~UP SECTION.

OPENING.
OPEN OUTPUT PRINT-FILE.
OPEN I-0 PROJECT.
OPEN I-0 PRODUCTS.
PERFORM STATUS~CHECK.
PERFORM RESTART.

BEGIN-TRANSACTION SECTION.
BEGIN~-TRAN.
ENTER "DBSBEG" USING "MYTRANID1'", ERRFLAG.
IF ERRFLAG NOT EQUAL TO ZERO
DISPLAY "ERROR BEGINNING TRANSACTION"
PERFORM FINISHED.

READ-PROJ SECTION.
READ-PROJECT.
MOVE "M130001560" TO PROJECT-ID IN PROJECT.
READ PROJECT KEY IS EQUAL TO PROJECT-ID,
INVALID KEY PERFORM ERRPROC-1.
PERFORM STATUS-CHECK.

READ-PROD.
READ-PRODUCTS.
MOVE ZERO TO DEAD-FLAG.
MOVE "826NAMWO19" TO PRODUCT-ID.
READ PRODUCTS KEY IS EQUAL TO PRODUCT-ID,
INVALID KEY PERFORM ERRPROC-1.
PERFORM STATUS—CHECK.

Figure 5-13. Transaction Processing Using COBOL (Sheet 1 of

2)

5-13



UPDATE~-RECORDS.

STATUS—-CHECK SECTION.
CHECK-STATUS.

RESTART-SECTION.
OBTAIN-RESTART-ID.

ERRPROC~1 SECTION.
ERROR~-PROCEDURE.

PERFORM FINISHED.

UPDATE-PROJ-PROD SECTION.

ADD NEW-BUDG TO BUDGET-TOTAL.
REWRITE PROJREC INVALID KEY PERFORM ERRPROC-1.
ADD NEW-YTD TO DEV-COST-YTD.
REWRITE PRODREC INVALID KEY PERFORM ERRPROC-1.

IF DATABASE-STATUS NOT EQUAL TO ZERO
DISPLAY "ERROR" DATA BASE-STATUS
"ON" DB-REALM "WHILE PERFORMING" DB-FUNCTION.

ENTER "DBSGTID" USING RESTART-1D, ERRFLAG.
IF ERRFLAG NOT EQUAL TO ZERO
DISPLAY "ERROR OBTAINING RESTART IDENTIFIER"
PERFORM FINISHED.

DISPLAY "INVALID KEY".
ENTER "DBSDROP" USING ERRFLAG.

Figure 5-13. Transaction Processing Using COBOL (Sheet 2 of 2)

CDCS LOCKING

To protect the integrity of a data base during
concurrent update operations, CDCS performs locking
of data base files and records. CDCS holds a lock
for an application program. Application programs
can either explicitly request a file lock or per-
form an operation that results in an implicit lock
request. ' Programs can either explicitly request
the lock be released or perform an operation that
results in an implicit unlock request. CDCS locks
have both type and a level of effect.

CDCS maintains two types of locks as follows:
Exclusive lock; prohibits concurrent access.
Protected lock; allows concurrent reading.

When an application program holds an exclusive lock

on a file or record, other users can neither read

nor update the file or record. When an application
program holds a protected lock on a file or record,

other users can read but not update the file or
record.

CDCS locks are in effect at either of the following
levels:

Record

File (realm)
If a file lock is in effect, the record locking
mechanism is no longer applicable for the par-

ticular file.

Both protected and exclusive locks can be in effect
on either the record level or the file level.

5-14

Locking Outside of a Transaction

Outside of a transaction, an application program
can obtain a protected record or file lock or an
exclusive file lock. An application program cannot
obtain an exclusive record lock outside of a trans-
action.

Protected Record Lock

Protected record locks are implicit locks. Pro-
tected record locks are the only possible record
level locks when a program is updating a record
outside of a transaction.

Two requirements must be met for the protected
record locking mechanism to be in effect:

The application program must have opened the
file for input/output.

The application program must have no explicit
file lock in effect for the file.

An application program obtains a protected record
lock as a result of a read operation. Under these
conditions, CDCS considers' a read operation as an
indication of the intent to update the record;
therefore, CDCS puts an implicit protected record
lock on the record for the application program.

OQutside of a transaction, an application program
can hold a protected record lock on only one record
in a particular file (area) at a time. An appli-
cation can have multiple protected record locks at
one time; each locked record must be in a different
file.

60485300 A

J D

J )



-

-
6@‘*\

To release a protected record lock established
outside of a transaction, the application program
must perform one of the following operations:

Read another record in the file (realm).
Delete or rewrite the record.

Write another record.

Close the file (realm).

Unlock any data base file; that is, execute the
C.UNLOK routine (COBOL) or the UNLOCK statement
(FORTRAN) .

In addition to the preceding operations, a pro-
tected record lock 1is released when a deadlock
situation 1is encountered or when the program
terminates, normally or abnormally.

File Lock

An application program obtains an explicit file
lock by issuing an explicit lock request on the
realm associated with the file. Because the file
lock limits other users’ access to the file and
because the file lock overrides the checking capa-
bility of the record lock, the use of a file lock
is not recommended unless the data is so sensitive
that its use is justified. The following state-
ments and routines issue the file lock request:

C.LOK routine (COBOL)

Obtains a protected lock on the file speci-
fied in the routine.

DBSLKAR routine (COBOL)

Obtains the specified lock (exclusive or
protected) on the file specified im the
routine.

LOCK statement (FORTRAN)

Obtains the specified lock (exclusive ot
protected) on the file specified in the
routine.

When an entire file has been locked by an explicit
protected lock, any other program that has opened
the file for input only can read, but not update,
the file. Any other program that has opened the
file for input/output cannot access the file.

When an entire file has been locked by anm explicit
exclusive lock, no other program can access the
file.

To release the explicit file lock, an application
program must perform one of the following oper—
ations:

Close the file.

Unlock the file; that is, execute the C.UNLOK

routine (COBOL) or the UNLOCK statement
(FORTRAN) .

60485300 A

An application program obtains an implicit pro-—
tected file lock by opening a file for output oaly
and not explicitly locking the file. As with an
explicit protected file lock, other programs that
have opened the file for input only can read the
file (assuming that records have been written to
the file). Other programs that have opened the
file for dinput/output must wait for access until
the lock is released. This implicit file lock 1is
released when the file is closed, although it could
be released by an unlock request.

Locking Within a Transaction

Within a transaction, an application program can
obtain both protected and exclusive record locks.
An application program cannot obtain a file lock
within a transaction.

Protected Record Lock

A protected record lock is an implicit record lock
obtained when an application program reads a record
with intent to update. (The application program
must have opened the realm for input/output.)
Within a transaction, an application program can
hold multiple protected record locks on records
that are read but not updated. An application
program can hold multiple protected record locks on
records in each file. The number of protected
record locks held depends on the number of records
read within the transaction.

Protected record locks are not released within a
transaction. Protected record locks are released
when an application program commits the trans-
action, drops the transaction, terminates normally
or abnormally, or encounters a deadlock situation.
The protected record locks are also released if an
application program, utilizing the immediate return
feature, encounters a resource conflict. Refer
to the Immediate Return subsection and the Dead-
lock subsection for more information about these
situations.

Exclusive Record Lock

An exclusive record lock is an implicit lock that
is assigned when an application program updates a
record during transaction processing. Exclusive
record locks are possible only within a transaction.

CDCS establishes an exlusive record lock when an
application program writes a new record. CDCS
converts a protected record lock to an exclusive
record lock when an application program updates
(deletes or rewrites) a record read with intent to
update. CDCS prohibits another application program
from reading a record with an exclusive record
lock., CDCS establishes an exclusive record lock
even for a deleted record.

Within a transaction, an application program can
hold several exclusive record locks on a particular
file (area) or on more than one file (area) at a
time. The number of exclusive record locks held
depends on the number of records written or updated
within the transaction.



Exclusive record locks are not released during a
transaction. Exclusive record locks are released
by CDCS when the application program commits the
transaction, drops the transaction, terminates
normally or abnormally, or encounters a deadlock
situation. Exclusive record locks are also re-
leased when an application program, utilizing the
immediate return feature, encounters a resource
conflict. Refer to both the Deadlock subsection
and the Immediate Return subsection for more infor-
mation about these situations.

Processing Considerations

REWRITE or DELETE statements must be preceded by a
READ statement to lock the record, or the entire
file must be locked by the program. CDCS rejects
the request if the file or record is not locked.
If the program has no record locked in the file,
CDCS issues error diagnostic 436 (664 octal).

Coordinated updates involving a record from each
of several files require that the user lock all
pertinent records before attempting the updates.

For coordinated updates involving records from the
same file, the user should either lock the entire
file or use transaction processing. Usually, a
file should be 1locked immediately after being
opened. CDCS does not allow an explicit file lock
if any record lock exists for that program; there-
fore, if a file is opened for input/output and a
read operation is performed, CDCS does not allow an
explicit lock to follow the read operation. An
explicit file lock must precede a read operation if
the file is open for input/output. CDCS does allow
an explicit lock to follow a delete, rewrite, or
unlock operation, however.

For reading relations, CDCS puts a protected record
lock on all records in a given relatiom occurrence
if the files joined in the relation have been opened
for input/output. CDCS does not perform locking if
files in a relation have been opened for input.

Outside of a transaction, CDCS releases the record
locks placed on the records that are retrieved by a
relation read when another relation read operation
is requested. If a READ relation statement 1is
followed by a DELETE or REWRITE statement, CDCS
releases the specific lock involved after comple-
tion of the delete or rewrite operation.

Within a transaction, CDCS does not release the
record locks placed on the records retrieved by a
relation read operation when another relation read
operation 1is requested. CDCS assigns a protected
record lock to the records retrieved by the second
relation read request. If a READ relation state-
ment is followed by either a DELETE or REWRITE
statement, CDCS converts the specific protected
record lock to an exclusive record lock.

When a program is reading records from files
that are open for input, other jobs can be in the
process of modifying or deleting the same records
in those files at the same time. The records that
are returned can, therefore, contain obsolete or
inconsistent data. To avoid obtaining inconsistent
results, a program that is reading files can lock
the records either by issuing explicit file lock
requests or by opening the files for input/output.

5-16

The locking facilities provided by CDCS allow for
the possibility of a deadlock situation. The next
subsection details this concept.

DEADLOCK

Deadlock can occur when two or more application
programs contend for files and records that are in
a locked state. A deadlock situation can arise as
a result of either the automatic locking of records
by CDCS or an explicit user lock requests.

For example, the simplest deadlock situation
(illustrated in figure 5-14) can occur as follows:

1. Program PGRM1 has a lock on record 100 in FILEA.
2. Program PGRM2 has a lock on record W in FILEB.

3. Both programs are attempting to read with in-
tent to update the record locked by the other
program.

In this situation, neither program can continue
processing because the other program has a lock on
the record required for continued processing.

If deadlock occurs during COBOL or FORTRAN process-—
ing, CDCS selects one of the contending programs,
releases all locked resources (files or records)
held by that program, and issues the deadlock error
status code 435 (663 octal). Figure 5-14 shows
CDCS releasing the 1lock for program PGRM2 and
issuing the deadlock error code. The code, along
with the realm name and version name associated
with the file, can be obtained by the application
program; refer to the Status Checking subsection in
sections 2 and 3.

In the COBOL program, the USE FOR DEADLOCK state-
ment identifies the procedure to be executed when a
deadlock situation occurs. In a FORTRAN program,
program logic can determine whether or not a dead-
lock has occurred by testing for the deadlock error
status code after a DML statement is executed.
When a deadlock situation does occur, the program
should ensure that the input/output statements that
locked the resources are repeated.

When a deadlock situation occurs 1involving a
program engaged in transaction processing, CDCS
releases all record locks held by the program.
CDCS reverses the updates made within the uncom-
pleted transaction. The records are restored to
their respective states before the transaction
began.

In any situation, the programmer is responsible for
handling recovery from a deadlock situation by
means of appropriate code in the application pro-
gram. Refer to sections 2 and 3 for examples of
handling deadlock.

In order to deal effectively with deadlock, the
user must adopt a coding discipline that allows
detection of deadlock and recovery from this situa-
tion prior to opening any file for input/output.
If the user is performing coordinated updates; that
is, updating records as a result of reading related
files, the user should ensure that all the required
records have been locked.

60485300 A

J )

J )



Read
| Record 100 ]
Read

Executing Record W

!

Deadlock

FILEA
'l
_100 __

\,°°* D T

?C’Q"\
CDCS

o v

”ee,,g FILEB

Executing ——— -
Deadlock Resolved
PGRM1 M '
" Read | »
Record 100 R ‘?0‘0" )
------ 1 /‘
Executing Re:::?-g " $& \’o"\;\ —————
_____ PI‘ ?(,Q'
% "/
coes
PGRI2 Loc" v
Error Pce”
______ 663 octal 7
Read _J
| Record W_| ~=--"
Read N
| Record_100 | o
Executing X _ _ _ _ |

Figure 5-14. Deadlock Situation

IMMEDIATE RETURN FEATURE

The immediate return feature of CDCS provides COBOL
and FORTRAN application programs with the ability
to receive an immediate response from CDCS when
certain resource conflicts (explained in the fol-
lowing subsection) occur. The immediate return
feature provides for special error handling so that
control returns to the application program when a

60485300 A

fatal error occurs. Control returns to the appli-
cation program when a nonfatal error occurs whether
or not the immediate return feature 1is enabled.
When control 1is returned, the application program
should contain logic to determine the action taken.

The immediate return feature can be enabled or

disabled by the application program depending on
processing circumstances.

5-17



In the TAF/CDCS environment the immediate return
capability is automatically enabled. The setting
of immediate return during TAF processing, there-
fore, is redundant. Also, the immediate return
capability cannot be disabled in TAF processing
even though the request to disable immediate return
executes without errvor.

RESOURCE CONFLICTS

If a resource conflict occurs and immediate return
is not enabled, an application program must wait
until CDCS gains access to the permanent files held
by other users. Immediate return offers the appli-
cation program the ability to provide program logic
that determines the action taken when such a con-
flict occurs.

A resource conflict occurs during a request for
version change when a permanent file involved
in the version requested cannot be 1immediately
attached. If this situation occurs when, immediate
return 1is enabled, CDCS returns control to the
program after issuing the following nonfatal error
message:

388 (604 octal) - PF WAIT ON AREA an

If immediate return is not enabled, CDCS issues an
informative message and the application program
must wait until CDCS gains access to the permanent
file.

A resource conflict occurs when an application
program requests a record or a file that is held
(locked) by another user. If this situation occurs
when immediate return is enabled, CDCS releases all
the locks currently held by the program. If the
program 1s currently involved in transactiom proc-
essing, CDCS drops the transaction. CDCS returns
control to the program after issuing the following
nonfatal error message:

387 (603 octal) - LOCKED RECORD/AREA -~
REQUEST NOT PROCESSED

If immediate return is not enabled, the program
must wait until CDCS gains access to the locked
record or file.

Infrequently, a resource conflict occurs when CDCS
initiates an internal request to switch the journal
log file (a file that contains historical records
concerning user operations). The conflict occurs
if CDCS canmot immediately attach the new journal
log file. 1If immediate return is enabled, CDCS
disconnects the application program, disables
immediate return, and returns control to the appli-
cation program after 1issuing the following fatal
error message:

418 (642 octal) - LOG FILES NOT AVAILABLE
FOR SCHEMA sn

If immediate return is not enabled before the
internal request to switch the journal log file is
issued by CDCS, the program must wait until CDCS
gains access to the new journal log file.

Immediate return cannot be enabled before CDCS is

invoked; therefore, any resource conflicts during
CDCS invocation result in the user waiting for CDCS

5-18

to gain access to the files. Possible resource
conflicts include the attaching of data base files,
logging files, or files required by CDCS during
automatic recovery.

USING THE IMMEDIATE RETURN FEATURE

The immediate return feature cannot be enabled
before CDCS 1is invoked. Immediate return is
enabled when a FORTRAN program calls the DMLSIR
routine, or when a COBOL program enters the DB$SIR
routine with correct parameter values specified.
If the program has not been disconnected from CDCS
(no fatal errors have occurred), a second call with
correct parameter values specified to either DMLSIR
from a FORTRAN program or DB$SIR from a COBOL
program disables the immediate return feature.

A data base status block should be declared in a
FORTRAN or COBOL program if the program 1is to
utilize the immediate return feature. The data
base status block should be defined to be at least
four words in length. If errors occur during
execution, word 1 of the data base status block
contains the error number; word 4 of the data base
status block contains the severity of the error.
The program should check both words 1 and 4 since
some CDCS errors do not have error numbers. If
both word 1 and word 4 are zero, no error has
occurred. Action taken by the program should
depend on the information obtained from the data
base status block. (Refer to the Data Base Status
Block subsection in section 2 or 3 for more infor-
mation,)

PROCESSING CONSIDERATIONS

If a fatal error occurs when the immediate return
capability is enabled, the program is disconnected
from CDCS and immediate return is automatically
disabled. Program logic can determine the action
to be taken; for example, a FORTRAN or COBOL pro-
gram could complete any processing needed before
program termination.

CONSTRAINTS DEFINED

The constraint facility of CDCS allows controls to
be established and maintained on update operations
involving two logically associated files or two
data items within the same file. A constraint is a
means for imposing an integrity control on asso-
ciated files or items within a single file.

Constraints are established for the purpose of
protecting the integrity of data in a data base
during update operations by application programs.
Information about constraints that affect the
application program should be supplied by the data
administrator.

When a program attempts to update a data base file
involved in a constraint, CDCS evaluates the effect
of the operation on the elements in the constraint
before the update operation 1is performed. If the
update operation does not violate the constraint,
CDCS allows the update to execute normally. If the
update operation would violate the constraint, CDCS
does not allow the update to execute.

60485300 A

JJ

J )



A constraint is defined in the schema, Common data
items within records in two files or within a
single file are used to establish a logically
dependent condition. In a constraint, ome record
is defined as the dominant record, and the other
record is defined as the dependent record. A domi-
nant record corresponds to a dependent 'record if
both records contain the same value for the item
that connects them.

A constraint ensures the following rules are main-
tained in the data base:

A dependent record occurrence cannot exist in
the data base unless a dominant record with the
same value for the common data item also exists.

A dominant record cannot be deleted from the
data base if a dependent record occurrence
exists with the same value for the common data
item.

The common data item of a dominant record cannot
be changed if a dependent record occurrence
exists with the same value for the common data
item.

SINGLE-FILE CONSTRAINT

A constraint can be defined for two 1logically
associated items within a single file. In a
gsingle-file constraint, one data item in a record
participates in the dominant role, and another data
item in the same record participates in the depend-
ent role. A typical example is an employee file imn
which each record contains among other items an
employee number and a manager number, where the
manager number conforms to the structure of the
employee number.

Figure 5-15 illustrates the concept of a single-file
constraint. In an EMPLOYEES file, the EMPLOYEE
record contains the data item EMP-NO to indicate an
employee number and the data item MNGR-NO to indi-
cate the employee number of the manager to whom the
employee reports. A constraint 1is defined for
these items. The item MNGR-NO is dependent on the
item EMP-NO in the constraint EMPLOYEE-MANAGER.

(The arrow in the diagram points from the dependent
item to the dominant item.) When the file is
involved in the constraint, no employee record can
be stored in the file if an employee record for the
manager of the employee does not exist. Also, an
employee record for a manager cannot be deleted
from the file if one or more employee records with
the corresponding manager number exist. Two occur-
rences of the EMPLOYEE record are included in fig-
ure 5-15 because a dominant record must exist in
the file; that is, a record must exist where an
employee has the same wvalue for both EMP-NO and
MNGR-NO. This record should be the first record
entered into the file and the last record removed
from the file.

TWO-FILE CONSTRAINT

When a constraint is defined for two logically
asgociated files, the data administrator estab-
lishes a dependent condition between records in the
files based on data items common to both records.
In a two-file constraint, a record in one file is
defined as the dominant record, and a record in the
other file is defined as the dependent record.

Figure 5-16 illustrates the dominant-dependent
condition in a two-file constraint. A DEPARTMENTS
file and an EMPLOYEES file in a data base both
contain a data item DEPT-NO that indicates a de-
partment number within each file. The DEPARTMENT
record is assigned the dominant role and the
EMPLOYEE record is assigned the dependent role.
The arrow in the figure indicates the dependency of
the EMPLOYEE record on the dominant DEPARTMENT
record. When the files are protected by the con-
straint, no record can be stored in the EMPLOYEES
file if no corresponding dominant record occurrence
exists in the DEPARTMENTS file. Also, a record
cannot be deleted in the DEPARTMENTS file 1if a
dependent record occurrence exists in the EMPLOYEES
file.

Only two files can be associated in a single con-
straint. However, a file can be involved in more
than one constraint.

CONSTRAINT: MNGR-NO DEPENDS ON EMP-NO

MNGR-NO ADDRESS SALARY

(Alternate key)

Manager EMP-NO
EMPLOYEE Record (Primary key)

ADDRESS SALARY >

Figure 5-15. Single-File Constraint Example

MNGR-NO
(Alternate key)

Employee EMP-NO
EMPLOYEE Record (Primary key)

(@ﬁ\

: 60485300 A 5-19



CONSTRAINT: DEPT-NO OF EMP-REC DEPENDS ON DEPT-NO OF DEPT-REC

DEPT-REC DEPT-NO DEPT-NAME see LOCATION
DEPARTMENTS file (Primary key)

EMP-REC EMP-NO EMP-NAME DEPT-NO SALARY
EMPLOYEES file (Primary key) (Alternate key)

Figure 5-16. Two-File Constraint Example

CDCS CONSTRAINT PROCESSING

CDCS enforces constraints specified in the schema
during update processing by application programs.
CDCS does not permit a write, delete, or rewrite
operation to be performed on records in data base
files if the operation would violate the constraint.

When an application program attempts a write,
delete, or rewrite that would violate a constraint,
CDCS diagnoses the violation as a nonfatal error;
the operation is terminated, but the application
program 1s permitted to continue processing. CDCS
returns the code (395 octal 601 octal) to the
application program if the program defines and uses
the status checking fields. The diagnostic message
is written to the user error file and to the CDCS
output file.

The subschema being used by an application program
might specify only one of the two files involved in
a constraint in the schema. 1In order to process
the constraint, CDCS must attach both files.

When a constraint is imposed on a file, the method
of updating the file differs depending on whether a
one-file constraint or a two-file comstraint is
involved. The following subsections contain guide-
lines for updating files involved in either a one-
file or two-file constraint.

Guidelines for File Creation
Data base files involved in a constraint must be

created in a particular order. Dominant records
must be created before the dependent records.

Single-File Constraints

In a single-file constraint, at least one record
exists that has no dominant record; the dominant
record and dependent record must have the same
value. This situation occurs 1in the single-file
constraint example (figure 5-15) for the employee
who has no manager. The record for this employee
must have the same value for both EMP-NO and
MNGR-NO.

For creating a file that is controlled by a single-

file constraint, the following operations must be
followed in the order showm:

5-20

l. Open the file for creation.

2. Write the records that have no dominant record
to the new file.

3. Close the file.
4., Reopen the file for input/output and add de-

pendent records.

Two-File Constraint

For a two-file constraint the file containing the
dominant records must be created first. Files
involved in two-file constraints must be created in
a particular order as follows:

1. Create the file containing the dominant records
(that is, open the file for creation, provide
the file with records, and close the file).

2. Create the file containing the dependent
records.

Guidelines for Insertion Operations

A write operation on a file with a constraint is
permitted by CDCS only if the dominant~dependent
condition is not altered by the operation.

To avoid comstraint violations, perform write oper-
ations as follows:

Write a dominant record occurrence before writ-
ing any dependent record occurrences with the
same value for the common data item.

Write a dependent record occurrence only if a

dominant record occurrence exists with the same
value for the common data item.

Single-File Constraints

In the example of the single-file constraint (figure
5-15), the item EMP-NO in the EMPLOYEE record is
defined as the dominant item of the constraint and
the item MNGR-NO in the EMPLOYEE record is defined
as the dependent item. A new EMPLOYEE record for
an employee can be added to the EMPLOYEES file only
if the value of the MNGR-NO item for the new record

60485300 A

J )

D)



matches the value of the EMP-NO item in a manager’s
EMPLOYEE record in the file. In other words, a new
EMPLOYEE record can be written only if an EMPLOYEE
record for the employee’s manager exists. If there
is no EMPLOYEE record for the manager, CDCS rejects
the write request from the application program and
issues a nonfatal error message.

Two-File Constraints

In the example of the two-file constraint (figure
5-16), the department number DEPT-NO has been used
to assign the DEPARTMENT record the role of domi-
nant record and the EMPLOYEE record the role of
dependent. A new EMPLOYEE record can be written to
the EMPLOYEES file only if a DEPARTMENT record with
the same department number exists in the DEPARTMENTS
file. If there 1is no corresponding DEPARTMENT
record, CDCS rejects the write request from the
application program.

Guidelines for Deletion Operations

Delete operations on a file on which a constraint
has been imposed are permitted by CDCS only if the
dominant-dependent condition is not altered by the
operation,

To avoid constraint violations, perform delete
operations as follows:

Delete dependent record occurrences before
deleting the dominant record with the same
value for the common data item.

Delete a dominant record only if no dependent

record occurrence exists with the same value
for the common data item.

Single-File Constraints

For a single-file constraint, the value of the
dominant item in the record to be deleted and the
value of the dependent item in the remaining rec-
ords in the file are used in determining whether or
not a record can be deleted from a file.

In figure 5-15, an EMPLOYEE record cannot be deleted
from the EMPLOYEES file if any EMPLOYEE record has
a value for the MNGR-NO item (the dependent item)
that matches the EMP-NO item (the dominant item) of
the record to be deleted. In general, an EMPLOYEE
record for a manager can be deleted only if there
are no EMPLOYEE records for the employees of that
manager. If one or more EMPLOYEE records with the
manager’s employee number do exist, the EMPLOYEE
record for the manager cannot be deleted. CDCS
rejects the delete request and issues a nonfatal
diagnostic.

Two-File Constraints

In the example of the two-file constraint (figure
5~16), no DEPARTMENT record (the dominant record)
can be deleted from the DEPARTMENTS file if any
EMPLOYEE record (the dependent record) im the
EMPLOYEES file has a department number matching
that of the record to be deleted. If one or more
corresponding EMPLOYEE records do exist, CDCS does
not permit the DEPARTMENT record to be deleted.

60485300 A

Guidelines for Modification Operations

The guidelines for modification operations on files
involved in either a one-file coanstraint or a two-
file constraint are the same. Modification of a
record occurrence in a file involved in a con-
straint is restricted according to the rules for
insertion and deletion, when the value of the com-
mon data item in the constraint is to be changed.
To modify the common data item in a dominant record
and to 1introduce the new value in the dependent
records, the application programmer must perform a
sequence of update operations. The operations
performed depend on whether the data item is a
primary key or an alternate key.

If the common data item is a primary key, the
following operations must be performed in the order
shown:

1. Write the dominant record with the new value in
the common data item.

2. Read a dependent record; change the value of
the common data item to the new value contained
in the dominant vecord; rewrite the dependent
record. (Perform this step for each dependent
record of the dominant record.)

3. Delete the dominant record with the old value.

If the common data item to be modified in a domi-
nant record is an alternate key, the following
operations must be performed in the order given:

1. Write each dependent record coutaining'the old
value of the common data item to a temporary
file.

2. Delete each dependent record containing the old
value of the common data item from the data
base file.

3. Read the dominant record; change the value of
the common data item to the new value; rewrite
the dominant record.

4. Read a dependent vrecord from the temporary
file; change the value of the common data item
to the new value contained in the dominant
record; write the dependent record to the data
base file. (Perform this step for each depend~
ent record of the dominant record.)

Single-File Constraint

Figure 5-15 can be used to show the concept of
nodifying a file involved in a one-file constraint.
The employee number (EMP-NO) of the EMPLOYEE record
for a manager cannot be changed unless the depend-
ent records of the employees reporting to that
manager are first deleted.

Two-File Constraint

For a two-file constraint, the DEPARTMENTS and
EMPLOYEES files, shown in figure 5-16, can be
used once again to aid in understanding the con-
cept of controlling file wmodifications through
constraints. A rewrite operation cannot be per-
formed on a DEPARTMENT record (the dominant record)
if the operation would change the value of the

5-21



common data item containing the department number
(DEPT-NO), which is the primary key, and if one or
more EMPLOYEE records (the dependent record) within
the EMPLOYEES file have the same department number
as the DEPARTMENT record to be modified.

A rewrite operation is not permitted on an EMPLOYEE
record (the dependent record) if the updated value
of the department number does not already exist in
a DEPARTMENT record (the dominant record).

TAF-CDCS PROCESSING

TAF tasks coded in the COBOL 5 and FORTRAN Extended
4 programming languages can interface with CDCS.
The syntax used to code a task is the same as the
syntax used to code a program for execution in
batch mode through CDCS, with a few exceptions.
The coding for a task must include TAF directives
and must provide for a communication block. Also,
TAF prohibits a task from making some requests that
are allowed to be made by an application program
executing in batch mode.

CDCS treats an executing task as a run-unit. Usu-
ally, a run-unit is comprised of several tasks that
are linked together by TAF as a task chain. For
tasks within a task chain, there are coding re-
quirements for the tasks that use CDCS. Each task
must invoke CDCS and specify the same subschema and
data base version.

If tasks in a run-unit must access realms with
controlled access, the first task of the chain must
specify the required access contrel (privacy)
keys. The access control privileges given that
task remain in effect until the run-unit terminates
its connection with CDCS.

5-22

CDCS handles processing TAF tasks differeantly than
batch programs in situations where record or file
access cannot be provided upon request. When a
locked record or file is in contention, CDCS re-
leases all locks held for the tasks in the task
chain and returns control to TAF., This procedure
ensures that a task is never waiting for record or
for file access. This situation can be caused
either by deadlock or by a record or file lock by
another user program.

These situations must be handled in the tasks by
program logic. Program logic can test for the
situations. The deadlock situation is indicated by
CDCS with the status code 435 (663 octal). The
situation of the record or file lock is indicated
by CDCS with the status code 387 (603 octal).
These codes are returned to the data base status
block or to other status checking elements. (Refer
to sections 2 and 3 for discussions of status
checking.) If these situations occur, program
logic should provide processing to reestablish the
released locks.

When CDCS cannot immediately attach a file needed
for processing, TAF handles the situation differ-
ently depending on what stage of processing is
involved. If files needed during invoke processing
are not Immediately available, CDCS issues a diag-
nostic and returns control to TAF. TAF aborts the
executing task. This procedure ensures that a task
never waits to invoke CDCS. If CDCS cannot imme-
diately attach the files needed for a version
change request, CDCS issues a diagnostic message
and returns control to TAF. TAF passes the message
to the executing task. Program logic can then
determine the processing that is to follow.

Detailed information about using TAF is contained
in the TAF reference manual.

60485300 A

)

D)



COBOL EXAMPLE 6

A COBOL application program that accesses a CDCS
controlled data base is shown in this section. The
application uses a manufacturing data base that is
shown in appendix H. This appendix contains all
the jobs required to set up the data base environ-

.ment. The schema should be referenced for access

control keys required to access the realms included
in the subschemas. The data stored in the data
base is shown in the Query Update job that creates
the data base files.

The COBOL program uses subschema C5SS-PRODUCT-
MANAGEMENT shown in figure 6-1. The listing shows
a three-realm relation, DPD-REL, which joins realms
DEPARTMENTS, PROJECTS, and PRODUCTS. The listing
also shows that a restriction has been placed on
data item STATUS-CODE in record PRODREC (realm
PRODUCTS). With the restriction, only record
occurrences that meet the requirement specified in
the restriction (that is, the value of STATUS-CODE
must equal A or N) can be returned to the appli-
cation program when the relation is read.

The subschema mnmust be avaliable when the COBOL
program is compiled. The control statements that
are used to attach the subschema and compile and
execute the application program are as follows:

ATTACH,subschema-library ...
COBOLS ,D=gsubschema-library.
LGO.

The D parameter of the COBOL5 control statement
must specify the local file name of the file on
which the subschema directory resides. The system
default file LGO is specified as the file contain-
ing the relocatable binary program being executed.

The COBOL application program reads a relation and
produces a report by using control break and null
record information returned in the data base status
block. The program, named RELREAD, is shown in
figure 6-2. The Special-Names clause specifies the
name of the subschema. USE FOR ACCESS CONTROL
statements are specified in the DECLARATIVES sec-
tion to provide the access control keys. Because
the realms are only being read, access keys for
retrieval provide sufficient realm access for the
application program. The program must specify
access control keys as follows:

60485300 B

VERY*PRIVATE required for any access of realm
DEPARTMENTS

VERIFIED-INPUT required for retrieval from
realm PROJECT .

ACCESS(/)OK required for any access of realm
PRODUCTS

To obtain information for the report, the program
positions the relation and then sequentially reads
the relation. First, the value of the primary key
for the root realm (data item DEPT-NO for realm
DEPARTMENTS) is set. Then the START statement is
executed to position the realm. Execution of the
subsequent sequential READ statement causes the
relation DPD-REL to be read.

The data base status block is used to check the
status of data base operationms. Program logic
determines the action taken when a control break or
null record occurs.

The program uses control break information to test
for the management levels. A department has
projects that develop products. The levels appear
as follows:

Department
Projects
Products

A control break value of 2 indicates that the
program is reading information about a new depart-
ment. A control break value of 3 indicates that
the program is reading information about a new
project. The report generated shows all products
assigned to a project and all the projects assigned
to a department.

The program uses null record information to test
for qualifying records; a nonzero value indicates
there is no qualifying record. When this occurs,
the program does not print data but initiates
another read.

After the program reads the relation, it closes the
files.

The report generated by the execution of RELREAD is
shown in figure 6-3.



PRIMARY KEY
ALTERNATE KEY
PRIMARY KEY
ALTERNATE KEY
PRIMARY KEY
ALTERNATE KEY

RELATION 001

DDL COMPLETE.

00001
00002
00003
00004
00005
00006
00007
00008

. 00009

00010
00011
00012
00013
00014
00015
00016
00017
00018
00019
00020
00021
00022
00023
00024
00025
00026
00027
00028
00014
00016
00020
00022
00025

00026
Fkkdok

ek
Kekkdkk
00029
00030
00031
00032
00033

00034
ekkkk

Kkededek

SUBSCHEMA
C5SS-PRODUCT-MANAGEMENT

* SOURCE LISTING *  (82029) DOL 3.2+552.

TITLE DIVISION.
S§S (5SS-PRODUCT-MANAGEMENT WITHIN MANUFACTURING-DB.

ALIAS DIVISION.
AD REALM DEVELOPMENT-PRODUCTS BECOMES PRODUCTS.
AD RECORD DEVREC BECOMES PRODREC.
AD DATA CUM-TEST-AVERAGE BECOMES CUMULATIVE-AVERAGE

REALM DIVISION.
RD DEPARTMENTS, PROJECT, PRODUCTS.

RECORD DIVISION.
01 OEPTREC.

03 DEPT-NO PICTURE X(4).
03 DEPT-NAME PICTURE X(20).
03 MGR-ID PICTURE X(8).
03 MGR-NAME PICTURE X(20).

01 PROJREC.
03 PROJECT-ID
03 PROJ-DESCR
03 RESPONSIBILITY

PICTURE X(10).
PICTURE X(40).
PICTURE X(8).

01 PRODREC.
03 PRODUCT-ID
03 PROJECT-ID
03 STATUS-CODE

PICTURE X(10).
PICTURE X(10).
PICTURE A.

DEPT-NO FOR AREA DEPARTMENTS
MGR-ID FOR AREA DEPARTMENTS
PROJECT-ID FOR AREA PROJECT
RESPONSIBILITY FOR AREA PROJECT
PRODUCT-ID FOR AREA PRODUCTS
PROJECT-ID FOR AREA PRODUCTS
RECORD MAPPING IS NEEDED FOR REALM -
RECORD MAPPING IS NEEDED FOR REALM -
RECORD MAPPING IS NEEDED FOR REALM -
RELATION DIVISION.
RN IS DPD-REL
RESTRICT PRODREC WHERE STATUS-CODE EQ "A"
OR STATUS-CODE EQ "N",

DEPARTMENTS
PROJECT
PRODUCTS

END OF SUB-SCHEMA SOURCE INPUT

RELATION
DPD~REL JOINS

STATISTICS
AREA - DEPARTMENTS
AREA - PROJECT
AREA ~ PRODUCTS

kkkkk

BEGIN SUB-SCHEMA FILE MAINTENANCE

CHECKSUM
34223316060544764172

END OF FILE MAINTENANCE

0 DIAGNOSTICS.

*k
kR
*k
*k
Kk

%k
*k
Kk
%k

Jk
dek
sk
*%k

WITHIN DEPARTM

ORDINAL 1
ORDINAL 2
ORDINAL 3
ORDINAL 4
WITHIN PROJECT
ORDINAL 1
ORDINAL 2
ORDINAL 3
WITHIN PRODUCT
ORDINAL 1
ORDINAL 2
ORDINAL 3

Figure 6-1. COBOL Subschema

60485300 A

J )

J )



IDENTIFICATION DIVISION.
PROGRAM—-ID. RELREAD.
ENVIRONMENT DIVISION.
CONFIGURATION SECTION.
SOURCE-COMPUTER. CYBER-170.
OBJECT-COMPUTER. CYBER-170.
SPECIAL-NAMES.

SUB-SCHEMA IS C5SS~PRODUCT-MANAGEMENT.
INPUT-QUTPUT SECTION.
FILE-CONTROL.

SELECT PRINT-FILE ASSIGN TO OUTPUT.
DATA DIVISION.
FILE SECTION.
FD PRINT-FILE

LABEL RECORDS ARE OMITTED

DATA RECORD IS PRINT-LINE.

PROCEDURE DIVISION.
DECLARATIVES.
ACCESS-CONTROL-1 SECTION.
USE FOR ACCESS CONTROL ON INPUT;
KEY IS ACCESS-KEY FOR DEPARTMENTS.
010-PAR-1.
MOVE "VERY*PRIVATE" TO ACCESS-KEY.
ACCESS-CONTROL-2 SECTION.
USE FOR ACCESS CONTROL ON INPUT;
KEY IS ACCESS-KEY FOR PROJECT.

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18 01 PRINT-LINE PIC X(136).

19 WORKING-STORAGE SECTION.
20 01 ACCESS-KEY PIC X(30).
21 01 DEPART-KEY PIC X(4) VALUE "M130".
22 01 EOF PIC 9 VALUE ZERO.
23 88 END-OF-REALM VALUE 1.
24 01 BLK-LENGTH PIC 99  USAGE IS COMP-1.
25 01 DATABASE-STATUS-BLOCK.
o~ 26 02 DATABASE-STATUS PIC 9(5) USAGE IS COMP-1.

f 27 02 AUXLIARY-STATUS.

v 28 03 DB-ITEM-ORDINAL  PIC 9(5) USAGE IS COMP-1.
29 03 DB-FILE-POSITION PIC 9(3) WUSAGE IS COMP-1.
30 03 DB-SEV-CODE PIC 9(3) USAGE IS COMP-1.
n 02 DB-FUNCTION PIC ACID).

32 02 RELATION-RANK-STATUS.
33 03 DB-REL~RANK-ERROR PIC 9(3) USAGE IS COMP-1.
34 03 DB-REL-RANK-CTLBK PIC 9(3) USAGE IS COMP-1.
35 03 DB-REL-RANK-NULL  PIC 9(3) USAGE IS COMP-1.
36 02 DB-REALM PIC X(30).
37 01 HLINE-1.
38 03 FILLER PIC X(5) VALUE "0  ".
39 03 FILLER PIC X(11) VALUE "DEPARTMENT ".
40 03 DEPT-OUT PIC X(20).
] 03 FILLER PIC X(10) VALUE SPACES.
42 03 FILLER PIC X(8) VALUE "MANAGER ™.
43 03 MGR-OUT PIC X(20).
44 03 FILLER PIC X(60) VALUE SPACES.
45 01 HLINE-2.
46 03 FILLER PIC X(5) VALUE SPACES.
47 03 FILLER PIC X(15) VALUE '"PROJECT NUMBER".
48 03 PROJID PIC X(10).
49 03 FILLER PIC X(16) VALUE SPACES.
50 03 FILLER PIC X(8) VALUE "PROJECT ".
51 03 PROJ-NAME PIC X(40).
o 52 03 FILLER PIC X(48) VALUE SPACES.
(v 53 01 HLINE-3.
54 03 FILLER PIC X(10) VALUE SPACES.
55 03 FILLER PIC X(8) VALUE "PRODUCT ".
56 03 PRODID PIC X(10).
57 03 FILLER PIC X(23) VALUE SPACES.
58 03 FILLER PIC X(15)
59 VALUE "PRODUCT STATUS ".
60 03 STAT PIC A.
61 03 FILLER PIC X(97) VALUE SPACES.
62
63
64
65
66
67
68
69
70
71
72

Figure 6-2. COBOL Program (Sheet 1 of 2)

60485300 A



74
7S
76

78
79

81
82
83

85
87

89
90
9
92
93
94

96

97

98

99

100
101
102
103
104
105
106
107
108
109
110
M
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
14
142
143
144

020-PAR-2.

MOVE "VERIFIED-INPUT™ TO ACCESS-KEY.
ACCESS-CONTROL-3 SECTION.

USE FOR ACCESS CONTROL ON INPUT;

KEY IS ACCESS-KEY FOR PRODUCTS.

030-PAR-3.

MOVE "ACCESS(/)OK" TO ACCESS-KEY.
END DECLARATIVES.

0100-MAIN-LOGIC SECTION.
0110-START~UP.
PERFORM 0200-OPENING.
PERFORM 0300-POSITION-RELATION.
PERFORM 0410-READ-REL UNTIL END-OF-REALM.
PERFORM 0800-CLOSING.

0200-OPENING SECTION.
0210-BEGIN-OPEN.
MOVE 11 TO BLK-LENGTH.

ENTER "DB$DBST" USING DATABASE-STATUS-BLOCK, BLK-LENGTH.

OPEN OUTPUT PRINT-FILE.
OPEN INPUT DPD-REL.
PERFORM 0700-STATUS-CHECK.

0300-POSITION-RELATION SECTION.
0310-POSITION-REL.

MOVE DEPART-KEY TO DEPT-NO.

START DPD-REL KEY IS EQUAL TO DEPT-NO.

0400-READ-WRITE-RELATION SECTION.
0410-READ-REL.

READ DPD-REL NEXT RECORD AT END MOVE 1 TO EOF.

PERFORM 0700-STATUS-CHECK.
IF DB-REL-RANK-NULL EQUAL TO ZERO
PERFORM 0500-WRITE-REPORT.

0500-WRITE-REPORT SECTION.
0510-CHECK-CONTROL-BREAK.
IF DB-REL-RANK-CTLBK EQUALS 2
PERFORM 0610-WRITE-DEPARTMENT
THRU 0630-WRITE-PRODUCT
ELSE IF DB-REL-RANK-CTLBK EQUALS 3
PERFORM 0620-WRITE-PROJECT
THRU 0630-WRITE-PRODUCT
ELSE PERFORM 0630-WRITE-PRODUCT.

0600-WRITE-HEADING SECTION.
0610-WRITE-DEPARTMENT.
MOVE DEPT-NAME TO DEPT-OUT.
MOVE MGR-NAME TO MGR-OUT.
WRITE PRINT-LINE FROM HLINE-1.
0620-WRITE-PROJECT.
MOVE PROJ-DESCR TO PROJ-NAME.
MOVE PROJECT-ID IN PROJECT TO PROJID.
WRITE PRINT-LINE FROM HLINE-2.
0630-WRITE-PRODUCT.
MOVE PRODUCT-ID TO PRODID.
MOVE STATUS-CODE TO STAT.
WRITE PRINT-LINE FROM HLINE-3.

0700-STATUS-CHECK SECTION.
0710-STATUS-CHECK-1.
IF DATABASE-STATUS NOT EQUAL TO ZERO
DISPLAY "RELATION ERROR " DATABASE-STATUS
"ON FILE ' DB-REALM
PERFORM 0800-CLOSING.

0800-CLOSING SECTION.
0810-CLOSE-UP.
CLOSE DPD-REL.
CLOSE PRINT-FILE.
STOP RUN.

2 )

6-4

Figure 6-2. COBOL Program (Sheet 2 of 2)

60485300 A

J )



6@?\
gﬁﬂx

Cﬁm\
(ﬂs’\

DEPARTMENT PACKAGING-DESIGN

PROJECT NUMBER M130001560
PRODUCT 537KLPNO37
PRODUCT 826NAMWO19

PROJECT NUMBER M130001720
PRODUCT 025CBLEO55
PRODUCT 432DRTF043

DEPARTMENT RESEARCH

PROJECT NUMBER M200001570
PRODUCT 537KLPNO77
PRODUCT 537KLPNO78
PRODUCT S37KLPNO79
PRODUCT 567CRTX882
PRODUCT 567LINE094
PRODUCT 826NAMWOGY
PRODUCT 826NAMWO70

PROJECT NUMBER M200001590
PRODUCT 387ARAG322
PRODUCT 387ARAG323

DEPARTMENT DEVELOPMENT
PROJECT NUMBER M210001320
PRODUCT 693GSPK020
PRODUCT 693GSPK022
PROJECT NUMBER M210001322
PRODUCT 280BSPK910
PROJECT NUMBER M210002540
PRODUCT 466EPSD311

BEPARTMENT CHEM LAB

PROJECT NUMBER M890001550
PRODUCT 138CBND926
PRODUCT 138CBND930
PRODUCT 138CBND940

MANAGER B. L. CARPENTER
PROJECT ADVANCED BIG BOX
PRODUCT STATUS N
PRODUCT STATUS N
PROJECT ADVANCED THERMAL PROTECTOR
PRODUCT STATUS A
PRODUCT STATUS A

MANAGER R. H. FINDER

PROJECT ADVANCED NETWORK
PRODUCT STATUS
PRODUCT STATUS
PRODUCT STATUS
PRODUCT STATUS
PRODUCT STATUS
PRODUCT STATUS
PRODUCT STATUS

PROJECT ARTIC AGRICULTURE
PRODUCT STATUS A
PRODUCT STATUS N

ZZ2Z22>> >

MANAGER L. C. HOWE

PROJECT GAMMA SPOOK SUPPORT
PRODUCT STATUS A
PRODUCT STATUS A

PROJECT BETA SUPPORT
PRODUCT STATUS N

PROJECT EPSILON SPOOK DEVICES
PRODUCT STATUS A

MANAGER I. A. BUNSEN

PROJECT ADVANCED BONDING AGENT-99
PRODUCT STATUS A
PRODUCT STATUS A
PRODUCT STATUS A

60485300 A

Figure 6-3.

Report Generated by COBOL Program

6-5



&




FORTRAN EXAMPLES 7

Examples of FORTRAN 5 application programs that
interface with CDCS are included in this section.
The examples show the application program along
with the subschema it references, the control
statements required to compile and execute it, and
program output if applicable.

The examples use a manufacturing data base shown in
appendix H. This appendix contains all the jobs
required to set up the data base environment. The
schema should be referenced for access control keys
required to access the realms included in the sub-
schemas. The data stored in the data base is shown
in the Query Update job that creates the data base
files.

FORTRAN 5 EXAMPLE

The FORTRAN 5 example is a program that reads a
relation, generates a report, changes data base
versions, and performs data base updates through
the use of transactions,

The program uses subschema F5SS-PRODUCT-MANAGEMENT
shown in figure 7-1. The subschema listing shows a
three~-realm relation, DPD-REL, which joins realms
DEPARTMENTS, PROJECTS, and PRODUCTS. The listing
also shows that a restriction has been placed on
data item STATUS in realm PRODUCTS. With the
restriction, only record occurrences that meet the
requirements specified in the restriction (that is,
the value of STATUS equals A or R) can be returned
to the application program when the relation is
read,

The subschema must be available when the FORTRAN 5
program is preprocessed. The control statements
that are used to attach the subschema and pre-
process, compile, and execute the program are as
follows:

ATTACH,subschema library ...
DML,LV=F5, SB=subschema library.
FINS, I=DMLOUT.

LIBRARY (DMSLIB)

LGO.

The ATTACH control statement is specified to iden-
tify the local file name of the file that contains
the subschema, The DML control statement is speci-
fied to execute the DML preprocessor., The FTIN5
control statement 1is specified, indicating that
DMLOUT (the output file of the DML preprocessor) is
the input file to the FORTRAN 5 compiler. The
LIBRARY(DMSLIB) control statement is specified to
load the DMS-170 1library, which is required for
program execution. The system default file LGO is
specified as the file containing the relocatable
binary program being executed.

The FORTRAN 5 program is shown in figure 7-2. A
data base status block is declared. The subschema
F5SS-PRODUCT-MANAGEMENT is specified. Privacy
statements are included to provide the privacy
keys; the keys required for all processing per-

60485300 D

formed by the program on a particular realm must be
specified before the realm is first accessed. The
program must specify privacy keys as follows:

VERY*PRIVATE required for any access of realm
DEPARTMENTS

VERIFIED-INPUT required for retrieval from realm
PROJECT

OKAYED-OUTPUT required for wupdate on realm
PROJECT

ACCESS(/)OK required for any access of realm
PRODUCT-FILE

The three-level relation DPD-REL 1is opened for
input ounly. The root realm of the relation is
positioned by a START statement., The relation is
read sequentially and a .report is printed. To
print the report, the program tests for control
breaks by using array element RELSTAT(2) and for
null records by using array element RELSTAT(3).

The program uses control break information to test
for the management levels. A department has
projects that develop products. The levels appear
as follows:

Department
Projects
Products

A control break value of 2 indicates that the
program is reading information about a new depart-
ment. A control break value of 3 indicates that
the program 1is reading information about a aew
project. The report generated shows all products
assigned to a project and all the projects assigned
to a department.

The program uses null record information to test
for qualifying records; a nonzero value indicates
there is no qualifying record. When this occurs,
the program suppresses printing and initiates
another read.

After the program reads the relation, it closes the
files. The program must close the files before it
can change to another data base version.

After the program generates the report, the program
updates files of version BRANCHI. A NEWVERSION
statement changes the data base version to BRANCHI.
(Version MASTER was assumed for previous process-—
ing.) The ASSIGNID statement obtains a restart
identiflier, The restart identifier 1is printed.
Two realms, PROJECT and PRODUCT-FILE, are opened
for input/output. The BEGINTRAN statement begins a
transaction., Within the transaction, records from
the PROJECT and PRODUCT-FILE realms are updated.
The transaction is terminated by the COMMITTRAN
statement.

A 1listing of the output produced by RELREAD is
shown in figure 7-3.

-1 0



*k

Fk

*k

%k

*%k

%k

Kk

*k

ORDINAL

ORDINAL

WITHIN

ORDINAL

ORDINAL

F5S8S-PROBU

00001
00002
00003
00004
00005
00006
00007
00008
00009
Qaco10
00011
00012
00013
00014
ago15
00016
00017
00018
Qo019
00020

#*x WITHIN DEPARTM

00021
2
00022
00023
4
00024
PROJECT
00025
2
00026
00027
3
00028

WITHIN PRODUCT

ORDINAL

ORDINAL

ORDINAL

ORDINAL

00029
2
00030
3
00031
4
00032
00033
5
00034

PRIMARY KEY 00021
ALTERNATE KEY 00022
PRIMARY KEY 00025
PRIMARY KEY 00029
ALTERNATE KEY 00030

Fkkkk
dekddrk
*kkkk
00035
00036
00037

*kkkk

*kkik

RELATION Q01

* SOURCE LISTING # (82028) DDLF 1.2+552.

SUBSCHEMA F5SS-PRODUCT~MANAGEMENT, SCHEMA=MANUFACTURING-DB

ALIAS
ALIAS
ALIAS
ALIAS
ALIAS
ALIAS
ALIAS
ALIAS
ALIAS
ALIAS
ALIAS
ALIAS
ALIAS
ALIAS

REALM

(ITEM) DEPTNO = DEPT-NO

(ITEM) DEPTNAM = DEPT-NAME

(ITEM) MGRID = MGR-ID

(ITEM) MGRNAM = MGR-NAME

(ITEM) PROJID = PROJECT-ID.PROJREC
(ITEM) PROJDES = PROJ-DESCR

(ITEM) BUDGTOT = BUDGET-TOTAL
(REALM) BOSS = RESPONSIBILITY
(REALM) PRODUCT-FILE = DEVELOPMENT-PRODUCTS
(ITEM) PRODUCT = PRODUCT-ID

(ITEM) PRODES = PRODUCT-DESCR
(ITEM) PROJECT = PROJECT-ID.DEVREC
(ITEM) STATUS = STATUS-CODE

(ITEM) YTDCOST = DEV-COST-YTD

DEPARTMENTS, PROJECT, PRODUCT-FILE

RECORD DEPTREC

CHARACTER DEPTNO *4, DEPTNAM *20

CHARACTER MGRID *8, MGRNAM %20

RECORD PROJREC

CHARACTER PROJID *10, PROJDES *40

REAL BUDGTOT

RECORD DEVREC

CHARACTER PRODUCT *10, PRODES %20

CHARACTER PROJECT *10

CHARACTER STATUS *1

REAL YTDCOST

RELATION DPD-REL
DEPTNO FOR AREA DEPARTMENTS

MGRID FOR AREA

DEPARTMENTS

PROJID FOR AREA PROJECT
PRODUCT FOR AREA PRODUCT-FILE
PROJECT FOR AREA PRODUCT-FILE

RECORD MAPPING

IS NEEDED FOR REALM -~  DEPARTMENTS

RECORD MAPPING IS NEEDED FOR REALM -  PROJECT

RECORD MAPPING

IS NEEDED FOR REALM -  PRODUCT-FILE

RESTRICT DEVREC (STATUS .EQ. "A"™ .OR. STATUS .EQ. "R")

END

END OF SUB~SCHEMA SOURCE INPUT

RELATION  STATISTICS Fhkkk

DPD-REL JOINS

AREA -~ DEPARTMENTS
AREA - PROJECT
AREA - PRODUCT-FILE

Figure 7-1. FORTRAN 5 Subschema (Sheet 1 of 2)

60485300 D

J )



fgna\
6@5“\

—— BEGIN SUB-SCHEMA FILE MAINTENANCE

SUBSCHEMA CHECKSUM
F55S-PRODUCT~MANAGEMENT 10022413456724156470
———— END OF FILE MAINTENANCE ————
DDLF COMPLETE. 0 DIAGNOSTICS.
50700B (M USED. 0.331 CP SECS.

Figure 7-1. FORTRAN 5 Subschema (Sheet 2 of 2)

Input to DML Preprocessor:

PROGRAM RELREAD

CHARACTER RSTID * 10

INTEGER REALM(3),FUNCT, SEVCODE, CRHCODE

INTEGER STATBLK(11), RELSTAT(3)

EQUIVALENCE (STATBLK (1),IER), (STATBLK (2),IORD),
*(STATBLK (3), CRMCODE), (STATBLK (4),SEVCODE), (STATBLK (5),FUNCT),
*(STATBLK (6),RELSTAT (1)), (STATBLK (9),REALM)

SUBSCHEMA (F5SS—-PRODUCT-MANAGEMENT)
INVOKE
CALL DMLDBST(STATBLK,11)

PRIVACY (DEPARTMENTS,MODE=I0, PRIVACY="VERY*PRIVATE")
PRIVACY (PROJECT,MODE=I, PRIVACY="VERIFIED-INPUT')
PRIVACY (PROJECT,MODE=0, PRIVACY="0KAYED-QUTPUT')
PRIVACY (PRODUCT=F ILE,MODE=10, PRIVACY="ACCESS(/)0K")

C RELATION READ OPERATION
OPEN (DPD-REL, MODE=I,, ERR=70)

DEPTNO="M130"
START(DPD-REL,KEY .EQ. DEPTNO, ERR=70)

PRINT 89

po 15,K=1,15
10 READ(DPD-REL, ERR=70, END=16)

IF(RELSTAT(3).NE. 0)THEN

G0 TO 10
ELSE IF(RELSTAT(2) .EQ. 2)THEN

PRINT 90, DEPTNAM,MGRNAM, PROJ ID, PROJDES, PRODUCT, STATUS
ELSE IF(RELSTAT(2) .EQ. 3)THEN

PRINT 95,PROJID,PROJDES, PRODUCT,STATUS
ELSE

PRINT 100, PRODUCT, STATUS
ENDIF

15 CONTINUE
16 CLOSE(DPD=REL)

C VERSION CHANGE OPERATIGN AND
C UPDATE USING DATA BASE TRANSACTIONS
NEWVERSION("BRANCH1'")

OPEN(PROJECT,MODE=10,ERR=70)
OPEN(PRODUCT=F ILE,MODE=IO, ERR=70)

ASSIGNID(RSTID, ERR=70)
PRINT *,'RESTART ID IS',RSTID

Figure 7-2. FORTRAN 5 Program (Sheet 1 of &)

60485300 D




BEGINTRAN('MYTRANID1',ERR=70)
PROJID='M130001560°

READ(PROJECT,KEY .EQ. PROJID,ERR=70)
BUDGTOT=BUDGTOT + 100000.00

REWRITE (PROJECT,ERR=70)
PRODUCT="826NAMWO19"*

READ (PRODUCT-FILE,KEY .EQ. PRODUCT,ERR=70)
YTDCOST=YTDCOST + 20000.00

REWRITE (PRODUCT-FILE, ERR=70)

COMMITTRAN (ERR=70)

GO TO 75

70 PRINT 110, IER, IORD, CRMCODE, FUNCT,REALM
DROPTRAN

75 CLOSE(PROJECT)
CLOSE(PRODUCT-FILE)
TERMINATE

89 FORMAT (2X, 'DEPARTMENT', 12X, "MANAGER", 15X, "PROJECT NUMBER®,4X,
*'PROJECT DESCRIPTION'/ 1X,107(*=*")/)

90 FORMAT (/2X,A20, 2X,A20,2X,A10,8X,A40/

* 73X, 'PRODUCT ID = ',A10,'; STATUS = *,A1)
95 FORMAT (46X,A10,8X,A40/
* 73X, 'PRODUCT ID = ',A10,'; STATUS = *,A1)

100 FORMAT (73X, *PRODUCT ID = ',A10,°'; STATUS = ',AD)

105 FORMAT (2X, 'STATUS BLOCK'/
*2X,04,2X, 15,2X, 03, 2X, A10,2X, A30, 2X, A30)

110 FORMAT(2X, 'ERROR DURING PROCESSING'/
*'STATUS BLOCK VALUES ARE'/
*2X,04, 2%, I5,2X,03,2X,A10, 2X, A30)

END

FORTRAN 5 Compilation Output Listing:

1 PROGRAM RELREAD
2 CHARACTER RSTID * 10
3 INTEGER REALM(3),FUNCT, SEVCODE, CRHCODE
4 INTEGER STATBLK(11), RELSTAT(3)
5 EQUIVALENCE (STATBLK (1),IER), (STATBLK (2),IORD),
6 *(STATBLK (3),CRMCODE), (STATBLK (4),SEVCODE), (STATBLK (5),FUNCT),
7 *(STATBLK (6),RELSTAT (1)), (STATBLK (9),REALM)
8 *%  SUBSCHEMA (F5SS=PRODUCT-MANAGEMENT)
9 €$  LISTCALL=0)
109 €$  LIST(ALL)
110 **  INVOKE
M s LIST(ALL=0)
125 €3 LIST(ALL)
126 CALL DMLINV(0003,DBFO001, 10HFSSS~PRODU, 10HCT-MANAGEM,
127 +10HENT ,0"10022413456724156470"™)
128 CALL DMLDBST(STATBLK,11)
129 *%  PRIVACY (DEPARTMENTS, MODE=10, PRIVACY="VERY+PRIVATE")
130 CALL DMLPRV(1,1,0,0001,
131 +0"60", "VERY*PRIVA®, "TE " ")
132 #%  PRIVACY(PROJECT,MODESI, PRIVACY=1VERIFIED-INPUT*)
133 CALL DMLPRV(1,1,0,0002,
134 +0"40", "VERIFIED=I", "NPUT " n "
135 %% PRIVACY(PROJECT,MODE=0, PRIVACY="0KAYED-OUTPUT" )
136 CALL DMLPRV(1,1,0,0002,
137 +0"20", "OKAYED-0UT", “'PUT “n ")
138 *%  PRIVACY(PRODUCT-FILE,MODE=I10,PRIVACY="ACCESS(/)0K")

7-4

Figure 7-2. FORTRAN 5 Program (Sheet 2 of 4)

60485300 D

JJ

"

JJ



- b o b b D md b

139
140
141
142
143
144
145
146
147
148
149
150
151
152

154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
17
172
173
174
175
176

178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208

c

*k

*k

*ok
¢
c

*k

r

X

b

*x

*%

*k

%k

*k

RELATION READ OPERATION
CALL DMLPRV(1,1,0,0003,
+°"60",“ACCESS(/)°","K u'n "y
OPEN(DPD=REL, MODE=I, ERR=70)
CALL DMLOPNR (DBNGDO1,0BAC001,2HI ,+70 )
DEPTNO="M130"
START (DPD-REL,KEY .EQ. DEPTNO,ERR=70)
CALL DMLRST(DBNOOO1,0001,00801,0001, 1,0004,0,0000,00,DEPTNO ,
+ 0001, %70 )
PRINT 89
00 15,K=1,15
READ (DPD-REL, ERR=70, END=16)
10 CALL DMLRL(DBNOCO1,0001,1,1,*70 ,*16 )
IF (RELSTAT(3). NE. O)THEN
60 TO 10
ELSE IF(RELSTAT(2) .EQ. 2)THEN
PRINT 90,DEPTNAM,MGRNAM, PROJ ID, PROJDES, PRODUCT,STATUS
ELSE IF(RELSTAT(2) .EQ. 3)THEN
PRINT 95,PROJID,PROJDES, PRODUCT,STATUS
ELSE -
PRINT 100, PRODUCT, STATUS
ENDIF
15 CONTINUE
CLOSE (DPD-REL)
VERSION CHANGE OPERATION AND
UPDATE USING DATA BASE TRANSACTIONS
16 CALL DMLCLSR (DBNOCO1,DBAOGO1)
NEWVERS IONC"BRANCH1')
CALL DMLVERS ("BRANCH1")
OPEN(PROJECT, MODE=10, ERR=70)
CALL DMLOPN(DBFG002,0002,2HIO0,*70 )
OPEN(PRODUCT=FILE,MODE=10, ERR=70)
CALL DMLOPN(DBF0003,0003,2HI0,*70 )
ASSIGNID (RSTID, ERR=70)
CALL DMLGTID(RSTID ,*70 )
PRINT *,'RESTART ID IS',RSTID
BEGINTRANC'MYTRANID1®, ERR=70)
CALL DMLBEG("MYTRANID1 ",+70 )
PROJ ID="M130001560"
READ (PROJECT,KEY .EQ. PROJID,ERR=70)
CALL DMLRDK(DBF(0002,0002,00001,0C002,1,0010,0,0000,00,
+PROJID ,*70 )
BUDGTOT=BUDGTOT + 100000.00
REWRITE (PROJECT, ERR=70)
CALL DMLREW (DBFG002,0,0002,00001,%70 )
PRODUCT="826NAMNO19"
READ (PRODUCT-FILE,KEY .EQ. PRODUCT,ERR=70)
CALL DMLRDK (DBF0003,0003,00001,0003,1,0010,0,0000,00,
+PRODUCT, *70 )
YTDCOST=YTDCOST + 20000.00
REWRITE (PRODUCT-FILE, ERR=70)
CALL DMLREW (DBF0003,0,0003,00001,*70 )
COMMITTRAN (ERR=70)
CALL DMLCMT(*70 )
G0 TO 75
70 PRINT 110, IER, IORD, CRHCODE, FUNCT, REALM
DROPTRAN
CALL DMLDRP
CLOSE (PROJECT)
75 CALL DMLCLS (PBFO00Z,0002)
CLOSE (PRODUCT-FILE)
CALL DMLCLS (DBF0003,0003)
TERMINATE
CALL DMLEND
89 FORMAT(2X, 'DEPARTMENT', 12X, "MANAGER®, 15X, 'PROJECT NUMBER',4X,
*'PROJECT DESCRIPTION'/ 1X,107('=*)/)
90 FORMAT(/2X,A20,2X, A20,2X,A10,8X,A40/

* 73X, 'PRODUCT ID = *,A10,°; STATUS = ',A1)
95 FORMAT(46X,A10,8X,A40/
* 73X, 'PRODUCT ID = °,A10,'; STATUS = ', A1)

60485300 D

Figure 7-2. FORTRAN 5 Program (Sheet 3 of 4)



209
210
211
212
213
214
215

100 FORMAT (73X, 'PRODUCT ID = ',A10,'; STATUS = ',A1)

105 FORMAT(2X, 'STATUS BLOCK'/

*2X,04,2X,15,2X,03,2X,A10,2X,A30,2X,A30)
110 FORMAT(2X, 'ERROR DURING PROCESSING'/

*'STATUS BLOCK VALUES ARE‘/

¥2X,04,2X,15,2X,03,2X,A10, 2X, A30)

END

Figure 7-2. FORTRAN 5 Program (Sheet 4 of 4)

RESTART ID ISEQIDV

DEPARTMENT MANAGER PROJECT NUMBER PROJECT DESCRIPTION
PACKAGING~DESIGN B. L. CARPENTER 1130001560 ADVANCED BIG BOX
PRODUCT ID = 7684GRD028; STATUS = R
#130001720 ADVANCED THERMAL PROTECTOR
PRODUCT ID = 025CBLE0S5; STATUS = A
PRODUCT ID = 432DRTF043; STATUS = A
RESEARCH R. H. FINDER M200001570 ADVANCED NETWORK
PRODUCT ID = 537KLPNO77; STATUS = A
PRODUCT ID = 537KLPNO78; STATUS = A
PRODUCT ID = S37KLPNO79; STATUS = A
PRODUCT ID = 567CRTX081; STATUS = R
PRODUCT ID = S567CRTX881; STATUS = R
14200001590 ARCTIC AGRICULTURE
PRODUCT ID = 387ARAG322; STATUS = A
PRODUCT ID = 387ARAGS55; STATUS = R
DEVELOPMENT L. C. HOWE M210001320 GAMMA SPOOK SUPPORT
PRODUCT ID = 693GSPK020; STATUS = A
PRODUCT ID = 693GSPK022; STATUS = A
M210001322 BETA SUPPORT
PRODUCT ID = 280BSPK950; STATUS = R
M210002540 EPSILON SPOOK DEVICES
PRODUCT ID = 466EPSD311; STATUS = A
CHEM LAB I. A. BUNSEN 890001550 ADVANCED BONDING AGENT-99
PRODUCT ID = 138CBND926; STATUS = A

Figure 7-3. Report Generated by FORTRAN 5 Program

60485300 D

JJ



6@5\
6@“\

QUERY UPDATE EXAMPLE 8

A Query Update application that accesses a CDCS
controlled data base is included in this section.
The application uses a manufacturing data base that
is shown in appendix H. This appendix contains all
the jobs required to set up the data base environ-
ment. The schema should be referenced for access
control keys required to access the areas included
in the subschemas. The data stored in the data
base is shown in the Query Update job that creates
the data base files.

The Query Update application wuses subschema
QUPRODMGT shown in figure 8-1. The listing shows a
three~area relation, DPD-REL, which joins areas
DEPTAREA, PROJECT, and PRODAREA. A restriction has
been placed on data item STATUS-CODE in record
PRODREC (area PRODAREA). With the restriction,
only record occurrences that meet the requirement
specified in the restriction (that is, the value of
STATUS-CODE must equal A) can be returned to the
user when the relation is queried.

The Query Update application is shown in figure
8-2. Notations in the figure indicate the direc-
tives used for the application.

Query Update is called by the QU control statement.
The default transmission length (TL parameter) of
1030 characters is used. This length corresponds
to the maximum data length specified for QUCAT-ITEM
described in the subschema for the catalog file.

The INVOKE directive establishes the CDCS data base
access mode and the use of subschema QUPRODMGT.
The figure shows use on NOS with the specification
of UN=CDCS23. For use on NOS/BE, the specification
must be in the form ID=id.

The ACCESS directive provides the access keys. The
access keys required to read and update the areas
are as follows:

VERY*PRIVATE required for any access of area
DEPTAREA

VERIFIED-INPUT required for retrieval from area
PROJECT

60485300 A

OKAYED-OUTPUT required for update on area
PROJECT

ACCESS(/)OK required for any access of area
PRODAREA

The DISPLAY directive causes information to be
displayed from each of the three areas in relation
DPD-REL. Relation processing 1is automatically
performed by Query Update because of the data items
specified in the directive. The restriction on
data item STATUS-CODE is in effect; the only record
occurrences returned from PRODREC are those in
which the value STATUS-CODE equals A.

The MODIFY directive causes three records to be
updated. The records are identified by value of
the primary key, PROJECT-ID OF PROJREC. The total
budget of each record is increased by 10000.

The STORE directive causes two records to be stored
in area PROJECT. Records are identified by value
of the primary key PROJECT-ID of PROJREC. PROJECT-
ID must be qualified because it is not a unique
data name in the subschena.

The UNIVERSAL directive causes the symbol # to be
used as the universal character for the next direc-
tive.

The IF-REMOVE directive combination identifies
records by the first three characters of the pri-
mary key. Three qualifying records are removed.

The VERSION directive establishes CDCS catalog
mode. The ACCESS directive specifies the access
key for the catalog file and must be entered before
any access to the file is attempted.

The EXHIBIT directive causes the indicated session
to be listed. Session DUMMY is an initial session
copied to the file to make the file usable in CDCS
catalog mode.

8-1



* SOURCE LISTING *  (82029) bDDL 3.2+552.

00001 TITLE DIVISION.
00002 SS GQUPRODMGT WITHIN MANUFACTURING-DB.
00003
00004 ALIAS DIVISION.
00005 AD REALM DEVELOPMENT-PRODUCTS BECOMES PRODAREA.
00006 AD RECORD DEVREC BECOMES PRODREC.
00007 AD DATA CUM-TEST-AVERAGE BECOMES CUMULATIVE-AVERAGE.
000038 AD REALM DEPARTMENTS BECOMES DEPTAREA.
00009
00010 REALM DIVISION.
00011 RD DEPTAREA, PROJECT, PRODAREA, CDCSCAT.
00012
00013 RECORD DIVISION.
00014 01 DEPTREC. ** WITHIN DEPTARE
00015 03 DEPT-NO PICTURE X(4). ** ORDINAL 1
00016 03 DEPT-NAME PICTURE X(20). ** ORDINAL 2
00017 03 MGR-1ID PICTURE X(8). *% ORDINAL 3
00018 03 MGR-NAME PICTURE X(20). **% ORDINAL 4
00019
00020 01 PROJREC. ** WITHIN PROJECT
00021 03 PROJECT-ID PICTURE X(10). ** ORDINAL 1
00022 03 PROJ-DESCR PICTURE X(40). ** ORDINAL 2
00023 03 BUDGET~TOTAL PICTURE 2(9).99. *% ORDINAL 3
00024 03 RESPONSIBILITY PICTURE X(8). ** ORDINAL 4
00025
00026 01 PRODREC. ** WITHIN PRODARE
00027 03 PRODUCT-ID PICTURE X(10). *% ORDINAL 1
00028 03 CLASS PICTURE z9. ** ORDINAL 2
00029 03 PRICE PICTURE Z2(5).99 ** ORDINAL 3
00030 USAGE IS COMP-1.
00031 03 PROJECT-ID PICTURE X(10). ** ORDINAL 4
00032 03 STATUS-CODE PICTURE A. ** ORDINAL 5
00033 03 DEV-COST-YTD PICTURE 2(8)9.99 *%* ORDINAL [
00034 USAGE IS COMP-1.
00035
00036 01 QUCATREC. *% WITHIN CDCSCAT
00037 03 QUCAT-KEY PICTURE X(10). *% ORDINAL 1
ggggg 03 QUCAT-ITEM PICTURE X(1030). *% ORDINAL 2
PRIMARY KEY 00015 DEPT-NO FOR AREA DEPTAREA
ALTERNATE KEY 00017 MGR-ID FOR AREA DEPTAREA
PRIMARY KEY 00021 PROJECT~ID FOR AREA PROJECT
ALTERNATE KEY 00024 RESPONSIBILITY FOR AREA PROJECT
PRIMARY KEY 00027 PRODUCT-ID FOR AREA PRODAREA
ALTERNATE KEY 00031 PROJECT~ID FOR AREA PRODAREA
PRIMARY KEY 00037 QUCAT-KEY FOR AREA CDCSCAT
*hedkick RECORD MAPPING IS NEEDED FOR REALM - DEPTAREA
dededekk RECORD MAPPING IS NEEDED FOR REALM - PROJECT
Fkkdk RECORD MAPPING IS NEEDED FOR REALM - PRODAREA
Fkkdek RECORD MAPPING IS NOT NEEDED FOR REALM - CDCSCAT
00040 RELATION DIVISION.
00041 RN IS DPD-REL
00042 RESTRICT PRODREC WHERE STATUS-CODE EQ “A*, -
00043
dekkkk END OF SUB-SCHEMA SOURCE INPUT
Fkddok RELATION  STATISTICS Rtk
RELATION 001 DPD-REL JOINS AREA - DEPTAREA
AREA - PROJECT
AREA - PRODAREA
——— BEGIN SUB-SCHEMA FILE MAINTENANCE ——
SUBSCHEMA CHECKSUM
QUPRODMGT 34703607615106062001
————— END OF FILE MAINTENANCE —————
DDL COMPLETE. 0 DIAGNOSTICS.
502008 CM USED. 0.337 CP SECS.
Figure 8-1. Query Update Subschema
8-2 60485300 A

D

J J



Statements/Directives

QU Control Statement

INVOKE (CDCS Data Base
Access Mode)

ACCESS (Areas)

DISPLAY

Query Update Application

/ey

QUERY UPDATE 3.4 I3A-82064

? INVOKE QUPRODMGT FROM LIBRARY QUSSLIB (UN=CD(S23)

82/03/16 09.59.57

? ACCESS SVERY*PRIVATES FOR AREA DEPTAREA

? ACCESS SACCESS(/)OKS FOR AREA PRODAREA

? ACCESS

>>>

? SVERIFIED-INPUTS ON INPUT FOR AREA PROJECT

>>>

7 SOKAYED-OQUTPUTS ON OUTPUT FOR AREA PROJECT

>>>

? *END

*END

? DISPLAY DEPT-NAME,MGR-NAME,PROJ-DESCR,$ PRODUCT $,PRODUCT-ID, +
? $ BUDGET = $,BUDGET-TOTAL

PURCHASING C. B. BYERS
PRODUCT BUDGET = .00
PACKAGING-DESIGN B. L. CARPENTER ADVANCED BIG BOX
PRODUCT BUDGET = 143000.00
PACKAGING-DESIGN B. L. CARPENTER ADVANCED THERMAL PROTECTOR
PRODUCT (025CBLEQSS BUDGET = 105000.00
PACKAGING~DESIGN B. L. CARPENTER ADVANCED THERMAL PROTECTOR
PRODUCT 432DRTF043 BUDGET = 105000.00
RESEARCH R. H. FINDER ADVANCED NETWORK
PRODUCT 537KLPNO77 BUDGET = 275000.00
RESEARCH R. H. FINDER ADVANCED NETWORK
PRODUCT 537KLPNO78 BUDGET = 275000.00
RESEARCH R. H. FINDER ADVANCED NETWORK
PRODUCT 537KLPNO79 BUDGET = 275000.00

(MORE... ANSWER Y OR N)

?Y
RESEARCH R. H. FINDER ARCTIC AGRICULTURE
PRODUCT 387ARAG322 BUDGET = 192500.00
DEVELOPMENT L. C. HOWE GAMMA SPOOK SUPPORT
PRODUCT 693GSPK020 BUDGET = 55000.00
DEVELOPMENT L. C. HOWE GAMMA SPOOK SUPPORT
PRODUCT 693GSPK022 BUDGET = 55000.00
DEVELOPMENT L. C. HOWE BETA SUPPORT
PRODUCT BUDGET = 85000.00
DEVELOPMENT L. C. HOWE EPSILON SPOOK DEVICES
PRODUCT 466EPSD311 BUDGET = 95000.00
TESTING-EVALUATION X. P. MENTOR
PRODUCT BUDGET = .00
QUALITY CONTROL S. A. GOODE
PRODUCT BUDGET = .00
(MORE... ANSWER Y OR N)
7Y
CHEM LAB I. A. BUNSEN ADVANCED BONDING AGENT-99
PRODUCT 138CBND926 BUDGET = 130000.00
CHEM LAB I. A. BUNSEN ADVANCED BONDING AGENT-99
PRODUCT 138CBND930 BUDGET = 130000.00
CHEM LAB I. A. BUNSEN ADVANCED BONDING AGENT-99
PRODUCT 138CBND940 BUDGET = 130000.00
CHEM LAB I. A. BUNSEN GENETIC ENGINEERING: NITROGE
N FIXING PRODUCT BUDGET = 258000.00

18 ACCESSES, 18 HITS, 18 I0-S

60485300 A

Figure 8-2., Query Update Application (Sheet 1 of 2)



Statements/Directives

MODIFY

STORE

UNIVERSAL

IF ... REMOVE

VERSION (CDCS Catalog
Mode)

ACCESS (CDCS Catalog
File)

EXHIBIT (Session)

Query Update Application

? MODIFY USING PROJECT-ID OF PROJREC MOVE +
? BUDGET-TOTAL + 10000 TO BUDGET-TOTAL
>>
7 $M2100013208
>>
? $M210001322%
>>
? $M2100025408
>> *END _
3 ACCESSES, 3 HITS, 6 I0-S

? STORE SETTING PROJECT-ID OF PROJREC, PROJ-DESCR,RESPONSISILITY

>>
7 $M680008260% $OMEGA VARIENCES $5730600D$
>>
? $M680008290$ STHERMAL TRANSFERS $57306000$
>
2 *END

2 ACCESSES, 2 HITS, 2 I0~S

? UNIVERSAL IS #

? IF PRODUCT-ID EQ $138#$ REMOVE PRODREC
26 ACCESSES, 3 HITS, 29 I0-S

? VERSION IS CDCSCAT OF QUPRODMGT LIBRARY QUSSLIB (UN=CDCS23)

? ACCESS SPERMISSION*GRANTEDS FOR CATALOG CDCSCAT

? EXHIBIT SESSION DUMMY
1 DISPLAY DUMMY

? END

Figure 8-2 AQuery Update Application (Sheet 2 of 2)

60485300 A

J )

fo

J )



STANDARD CHARACTER SETS A

S S T S

Control Data operating systems offer the following
variations of a basic character set:

CDC 64-character set
CDC 63—-character set
ASCII 64—-character set
ASCII 63-character set

The set in use at a particular installation was
specified when the operating system was installed.

Depending on another installation option, the system
assumes an input deck has been punched either in
026 or in 029 mode (regardless of the character set
in use). Under NOS/BE, the alternate mode can be
specified by a 26 or 29 punched in columns 79 and
80 of the job statement or any 7/8/9 card. The
specified mode remains in effect through the end of

60485300 A

the job unless it is reset by specification of the
alternate mode on a subsequent 7/8/9 card.

Under NOS, the alternate mode can be specified also
by a 26 or 29 punched in columns 79 and 80 of any
6/7/9 card, as described above for a 7/8/9 card.
In addition, 026 mode can be specified by a card
with 5/7/9 nmultipunched in column 1, and 029 mode
can be specified by a card with 5/7/9 multipunched
in column 1 and a 9 punched in column 2.
h)

Graphic character representation appearing at a
terminal or printer depends on the installation
character set and the terminal type. Characters
shown in the CDC Graphic column of the standard
character set table (table A-1) are applicable to
BCD terminals; ASCII graphic characters are appli-
cable to ASCII-CRT and ASCII-TTY terminals.

Standard collating sequences for the two printer
character sets are shown in tables A-2 and A-3.



A-2

TABLE A-1. STANDARD CHARACTER SETS
cDC ASCII
Display Hollerith External .
Code Graphic Punch BCD e ';3;;',‘ (C:f;,
{octal) (026) Code o
oo : (colon) Tt 82 00 : (coton) TT 8-2 072
01 A 121 61 A 121 101
02 B 12-2 62 B 12-2 102
03 [ 12-3 63 Cc 12-3 103
04 D 124 64 D 124 104
05 E 125 65 E 125 105
06 F 126 66 F 126 106
07 G 127 67 G 12-7 107
10 H 128 70 H 128 110
1 | 129 7 | 129 m
12 J 111 41 J 1141 112
13 K 11-2 42 K 11-2 113
14 L 11-3 43 L 11-3 114
15 M 114 44 M 114 115
16 N 1156 45 N 116 116
17 0 116 46 (o] 11-6 117
20 P 117 47 P 117 120
21 Q 118 50 Q 18 121
22 R 119 51 R 19 122
23 S 0-2 22 S 02 123
24 T 0-3 23 T 03 124
25 U 0-4 24 u 04 126
26 v 05 25 \ 0-5 126
27 w 06 26 w 06 127
30 X 0-7 27 X 0-7 130
31 Y 08 30 Y 0-8 131
32 z 09 31 ¥4 09 132
33 0 0 12 0 0 060
34 1 1 01 1 1 061
35 2 2 02 2 2 062
36 3 3 03 3 3 063
37 4 4 04 4q 4 064
40 5 5 05 5 5 065
41 6 6 06 6 6 066
42 7 7 07 7 7 067
43 8 8 10 8 8 070
44 9 9 11 9 .9 071
45 + 12 60 + 1286 053
46 ; 1 40 ; 1" 055
47 1184 . b4 1184 052
50 / 0-1 21 / 0-1 057
51 ( 084 34 ( 12.85 050
52 ) 12.8-4 74 ) 11856 051
53 $ 11-8-3 53 $ 11.8-3 044
54 = 8-3 13 = 86 075
55 blank no punch 20 blank no punch 040
56 , {comma) 08-3 33 , (comma) 083 054
57 . {period) 12-8-3 73 . {period) 12-8-3 056
60 = 0-8-6 36 # 83 043
61 [ 8.7 17 C 12.8-2 133
62 ] 08-2 32 b} 1182 135
63 % f1 86 16 % 11 084 045
64 = 84 14 " {quote) 8.7 042
65 r~ 085 35 _ lunderline) 085 137
66 v 11-0 52 ! 12-8-7 041
67 A 087 37 12 046
70 L 1185 55 ' (apostrophe) 85 047
71 | 11-8-6 56 ? 0-8-7 077
72 < 120 72 < 12-.8-4 074
73 > 11-8-7 57 > 08-6 076
74 < 85 15 @ 84 100
75 2 1285 75 \ 08-2 134
76 = 12-8-6 76  {circumflex) 11-8-7 136
77 ; {semicolon) 12-8-7 77 ; {semicolon) 11-8-6 073

T'l'welve zero bits at the end of a 60-bit word in a zero byte record are an end of record mark rather than

two colons.

ttin installations using a 63-graphic set, display code 00 has no associated graphic or card code; display

code 63 is the colon (8-2 punch).

yield a blank {55g).

The % graphic and related card codes do not exist and translations

60485300 A

‘@}.)
/ﬁ



TABLE A-2. CDC CHARACTER SET COLLATING SEQUENCE

Collating Collating
Sequence cDC Display | External Sequence CcDC Display | External
Decimal/Octal Graphic Code ; 8CD Decimal/Octal LGraphic Code BCD %

0 00 blank 55 20 32 40 H 10 1 70

01 01 < 74 15 33 41 | 1 71

02 02 % 63 T 167 34 42 v 66 52

03 03 [ 61 17 35 43 J 12 41

04 04 — 65 35 36 44 K 13 42

05 05 = 60 36 37 45 L 14 43

06 06 A 67 37 38 46 Y 15 44

07 07 t 70 55 39 47 N 16 45

08 10 ) 71 56 40 50 o] 17 46

09 1 > 73 57 41 51 P 20 47

f"‘* 10 12 > 75 75 42 52 Q 21 50

' 1 13 — 76 76 43 53 R 22 51

12 14 . 57 73 44 54 ) 62 32

13 15 ) 52 74 45 55 S 23 22

14 16 ; 77 77 46 56 T 24 23

15 17 + 45 60 47 57 V] 25 24

16 20 $ 53 53 48 60 \Y) 26 25

17 21 ¢ 47 54 49 61 W 27 26

, 18 22 - 46 40 50 62 X 30 27

(@ﬁ 19 23 / 50 21 51 63 Y 31 30

' 20 24 , 56 33 52 64 2 32 31
21 25 ( 51 34 53 65 : oot nonet

22 26 = 54 13 54 66 0 33 12

23 27 #* 64 14 55 67 1 34 01

24 30 < 72 72 56 70 2 35 02

25 31 A 01 61 57 VAl 3 36 03

26 32 B 02 62 58 72 4 37 04

(@x 27 33 Cc 03 63 59 73 5 40 05

y 28 34 D 04 64 60 74 6 41 06

29 35 E 05 65 61 75 7 42 07

30 36 F 06 66 62 76 8 43 10

31 37 G 07 67 63 77 9 44 1

TIn installations using the 63-graphic set, the % graphic does not exist. The : graphic is display code 63,
External BCD code 16.

( 60485300 A A3



TABLE A-3. ASCII CHARACTER SET COLLATING SEQUENCE
Collating ASC I.I Display | ASCII Collating ASCI.I Display | ASCII
Sequence Graphic Code | Code Sequence Graphic Code Code
Decimal/QOctal | Subset Decimal/Octal | Subset
:m
00 00 blank 55 20 32 40 @ 74 40
01 01 ! 66 21 33 41 A 01 41
02 02 ' 64 22 34 42 8 02 42
03 03 # 60 23 35 43 C 03 43
04 04 $ 53 24 36 44 D 04 44
05 05 % 63t 25 37 45 E 05 45
06 06 & 67 26 38 46 F 06 46
07 07 ' 70 27 39 47 G 07 47
08 10 ( 51 28 40 50 H 10 48
09 1 ) 52 29 41 51 | 1 49
10 12 * 47 2A 42 52 J 12 4A
11 13 + 45 2B 43 53 K 13 4B
12 14 , 56 2C 44 54 L 14 4C
13 15 - 46 2D 45 55 M 15 4D
14 16 ) 57 2E 46 - 56 N 16 4E
15 17 / 50 2F 47 57 o] 17 4F
16 20 0 33 30 48 60 P 20 50
17 21 1 34 31 49 61 Q 21 51
18 22 2 35 32 50 62 R 22 52
19 23 3 36 33 51 63 S 23 53
20 24 4 37 34 52 64 T 24 54
21 25 5 40 35 53 65 U 25 55
22 26 6 41 36 54 66 Vv 26 56
23 27 7 42 37 55 67 w 27 57
24 30 8 43 38 56 70 X 30 58
25 31 9 44 39 57 [A! Y 31 59
26 32 : oot 3A 58 72 Y4 32 5A
27 33 : 77 38 59 73 [ 61 58
28 34 < 72 3C 60 74 \ 75 5C
29 35 = 54 3D 61 75 ] 62 5D
30 36 > 73 3E 62 76 ~ 76 5E
337 ? 71 3F 63 77 B 65 5F
Tin installations using a 63-graphic set, the % graphic does not exist. The : graphic
is display code 63.

A-4

60485300 A

J D

]

JJ



DIAGNOSTIC MESSAGES B

.- e

Both the execution time diagnostic messages issued
by CYBER Database Control System (CDCS), and the
diagnostic messages issued by the FORTRAN Data
Manipulation Language (DML) preprocessor are listed
in this appendix.

Messages in this appendix are listed in the follow-
ing order:

Messages beginning with an alphabetic character
are listed first.

Messages beginning with a number are 1listed
next.

Messages beginning with a variable are listed
last.

A variable appearing in. a message signifies that
the field is replaced by applicable text when the
diagnostic is issued.

CDCS DIAGNOSTIC MESSAGES

All diagnostic messages that can be issued by CDCS
are listed in table B-l1. The general significance
of the message and the action to be taken by the
user accompany each message listed in the table. A
destination column designates the dayfile or output
file to which the message is written.

The severity level of the diagnostic messages listed
in table B-1 can be of several types. The types of
messages and their meanings are as follows:

c Critical error. The system control
point is aborted and all user coatrol
point jobs are aborted.

F Fatal error. The run-unit is aborted,
with the execption of a FORTRAN or COBOL
program executing with the immediate
return feature enabled, an application
program executing through the Transac-
tion Facility (TAF), or a Query Update
application executing in interactive
mode. (In these cases the program is
terminated from CDCS processing. Con-
trol is returned to the program if the
immediate return feature 1is enabled.
Control is returned to TAF if the pro-
gram 1s processing through TAF or to
Query Update 1if the application is
executing in interactive mode.)

N Nonfatal error. Processing continues.
I Informative message. Processing con-
tinues.

60485300 A

The CDCS diagnostic messages listed in table B-l
are categorized several ways. The following para-
graphs describe the messages in categories that
describe the destination of the message and the
type of message sent to that destination.

The first category of CDCS diagnostics listed in
table B-1 includes the unnumbered messages that are
sent to the CDCS dayfile. These messages are of
the following types:

Cc Critical error
N Nonfatal error
I Informative message

The second category of diagnostics includes the
unnumbered messages issued by CDCS when it is oper-
ating as the CDCS Batch Test Facility (CDCSBIF).
These messages are sent to the CDCSBTF control
point dayfile, which is the user control point
dayfile since CDCSBTF executes at the user control
point. These messages are of the following types:

F Fatal error
I Informative message

The third category of CDCS messages includes the
unnumbered messages that are sent to the user con-
trol point dayfile and the CDCS output file. These
messages can be of the following types:

F Fatal error
1 Informative message

The fourth category of CDCS messages include the
unnumered messages that are sent to both the CDCS
control point dayfile and the CDCS output file.
These messages are usually issued during system
recovery processing. They can also be issued at
other times (for example, during Invoke processing
or when a transaction is reversed). These messages
can be of the following types:

N Nonfatal error

I Informative message
The fifth category of CDCS messages includes the
unnumbered messages that are sent to the user con-

trol point dayfile only. These messages can be of
the following types:

F Fatal error
N Nonfatal error
I Informative message



The sixth category of messages includes the unnum-
bered messages that are sent to the CDCS output file
only. These error messages are usually accompanied
by a fatal error message sent to the CDCS system
control point dayfile. These messages can be of
the following type:

I Informative message

The seventh category of CDCS message includes the
messages that occur' when the system operator com—-
municates with CDCS through the K (NOS) or the L
(NOS/BE) display. These informative messages that
indicate activities triggered by operator commands
are sent to the CDCS system control point dayfile.
In some cases, the message returned is an echo of
the command entered by the operator. These messages
are of the following type:

I Informative message

The last category of CDCS diagnostic messages in-
cludes the CDCS numbered execution-time messages
for user errors. Each octally numbered message is
accompanied by a conversion from the octal value of
the CDCS error code to the equivalent decimal value.
The decimal conversion of the error code (found in
the column headed Dec. E. C. of table B-1) can be
of assistance to a COBOL programmer using the data
base status block to obtain error and status infor-
mation because codes returned in the status block
of a COBOL program must be referenced by their
decimal values. The error and status codes re-
turned in the status block of a FORTRAN program can
be referenced by either their decimal or octal
values. The octal value of codes are returned by
Query Update in a diagnostic message. The destina-

F Fatal error. The message 1s sent to
the CDCS output file, the data base
status block 1if one exists, and the
user control point dayfile. A message
is sent to the ZZZZZEG file if the

message 1is associated with a realm
(area).
N Nonfatal error. The message is sent to

the CDCS output file and the data base
status block if one exists. The mes-
sage is sent to the ZZZZZEG file if the

message 1is associated with a realm
(area).
T Trivial error. The message 1is sent

to the data base status block if one
exists. The message is also sent to
the ZZZZZEG file if the message 1is
associated with a realm (area).

I Informative message. The message is
sent to the CDCS output file. The
message is sent to the ZZZZZEG file if
the message 1s associated with a realm
(area).

Messages written by CDCS to the user’s ZZZZZEG error
file are known as data manager messages. When the
Z27Z7ZZEG file is processed, each data manager error
message is preceded by the following information:

DM ERROR ec ON LFN fn EXIT ADDRESS ad

The fields ec, fn, and ad are replaced by applicable

tion of each message depends on the type. These text to designate error code, schema file name, and
messages can be of the following types: address, respectively.
TABLE B-1. CDCS DIAGNOSTICS
Type geg' Message Significance Action Destination
N ALL AREAS WERE None of the areas in the Correct the errors caus- CDCS output
DOWN, SCHEMA DOWN schema were in up status ing the areas to be down. file
at the completion of Manually recover the CDCS system
system recovery. The areas in the schema. control point
schema is set to down dayfile
status.
F AREA id VERSION vn The area id of version If this error occurred CDCS output
NOT UP. SCHEMA sn va (version MASTER if during system recovery, file
vn does not appear) was manually recover the CDCS system
not in an up, idling, or area. If transaction control point
downing status during processing was in effect, dayfile
processing for system manually reverse the un-
recovery or CDCS trans- committed updates. , Place
action reversal. Schema the area in up status.
sn is printed out for
nonsystem recovery only.
B-2 60485300 A

J )

J )

fa

"



)

TABLE B-1. CDCS DIAGNOSTICS (Contd)
Type g?éz Message Significance Action Destination
1 AREA RECOVERY IS The database area that The console operator may CDCS system
COMPLETE. THE suffered from an inter- change the area to "UP" control
AREA 1S LEFT IN nal malfunction has status. point day-
DOWN STATUS. TO been recovered. It has file
REGAIN USE OF THE been left in a "DOWN"
AREA USE THE -UP- status to insure that
COMMAND . the occurrence of the
malfunction is noticed.
F ATTACH ERROR nnn The attach error nnn 1f this error occurred CDCS output
ON AREA id VERSION occurred during systenm during system recovery, file
vn - AREA DOWN. recovery processing or manually recover the CDCS system
SCHEMA sn invoke processing on area. Otherwise, check control point
area id of version va that file is not attached dayfile.
(version MASTER if vn elsewhere. For a non-
does not appear). PUBLIC file unavailable
Schema sn is printed out on NOS, ensure that a
for nonsystem recovery PERMIT control statement
only. specifying the user name
for CDCS or CDCSBTIF exe-
cution is in effect or
that the procedure to
initialize CDCS includes
a USER control statement
specifying the user name
for CDCS execution. Refer
to the applicable perma-
nent file error diagnostic
in volume 4 of the NOS
reference set, or in the
description of the FDB
macro in the NOS/BE
reference manual.
F/N ATTACH ERROR nnn The operating system If this error occurred CDCS output
ON CDCs file attach error nnn during system recovery, file
occurred during system manually recover the CDCS system
recovery or invoke proc- areas in the schema be- control point
essing on one of the fore placing the schema dayfile
following CDCS files: in up status. If this
the JOURNAL LOG FILE, error occurred during
the PROCEDURE LIB FILE, invoke processing, re-
* the QUICK RECOVERY FILE, submit the application
the RESTART IDENTIFIER program. Otherwise,
FILE, or the TRANSACTION check that file is not
RECOVERY FILE. The attached elsewhere.™ For
schema is set to error a non-PUBLIC file unavail-
status unless the file able on NOS, ensure that
is busy. a PERMIT control statement
specifying the user name
for CDCS or CDCSBTF exe-
cution is in effect or
that the procedure to
initialize CDCS includes
a USER control statement
specifying the user name
for CDCS execution. Refer
to the applicable perma-
nent file error diagnostic
in volume 4 of the NOS
reference set, or in the
description of the FDB
macro in the NOS/BE
reference manual.
1 BL SET TO bbbbbb In the absence of a BL None CDCS system
parameter a value of control point
bbbbbb has been assigned. dayfile

60485300 D

B-3




TABLE B-1l. CDCS DIAGNOSTICS (Contd)
Type gfg: Message Significance Action Destination

N BOTH VSN AND SET In either the CDCS con- Specify both VSN and set CDCS system

NAME MUST BE trol statement or the name in the CDCS control control point
GIVEN directive file, if VSN statement or the direc- dayfile
is specified set name tive file.
must be specified. If
set name is specified
VSN must be specified.
[ CANNOT GET num The 6-digit number in- If several messages of CDCS system
WORDS CM FOR jn dicates the number of this type appear, the control point
words of memory that data administrator should dayfile
cannot be obtained to adjust the CDCS field
process the run-unit length. 1f only one job
request. Under NOS/BE, is affected, rerun the
jn is the 7-character job.
job name; under NOS,
jn is the 4~character
sequence number of the
system—assigned job name.

C CDCS ABORT Errors occurred while Correct the control CDCS system
processing the CDCS statement or the direc- control point
control statement or the tive file. dayfile
CDCS directive file.

C CDCS ABORT, A master directory Recreate the master di- CDCS system

INVALID MASTER created and maintained rectory by reintroducing control point
DIRECTORY by a previous version of all previous specifica- dayfile
CDCS is not compatible tions and by using re-
with CDCS 2.3. compiled schemas and sub-
schemas. Schemas and
subschemas must be com-
piled with DDL 3.1 or DDL
3.2 for use with CDCS 2.3,
C CDCS ABORT, NO. Information for at least Check that information CDCS system
SCHEMA ENTRIES one schema must be in- for the schema has not control point
IN MASTER DIREC- cluded in master been deleted from the dayfile
TORY directory. master directory. If
deleted, add information
for the schema in a
master directory run.
C CDCS ABORTED=-- All schemas are in error Correct the schema errors CDCS system
RECOVERY FOR ALL status after the CDCS and reinitiate CDCS control point
"SCHEMAS IMPOSSIBLE system recovery phase. execution. dayfile
I CDCS CHARGED CDCS accounting charged None. CDCS system
XXXXXX.XXX CP XXXXXXeXXX seconds of control point
YYYYyyy.yyy 10 central processor time dayfile
and yyyyyy.yyy seconds
of 1/0 time to user jobs.

I CDCS DOWN COMPLETE CDCS has been shut down None. CDCS system
by the system operator. control point
No new invokes to CDCS dayfile
are allowed.

I CDCS ERRORS The CDCS control state- Correct the control CDCS system
ment or the directive statement or the direc- control point
file contains errors. tive file errors. Reini- dayfile
This message is followed tialize CDCS.
by a list of the spec-
ific errors.

F CDCS FUNCTION This is an internal Follow site-defined pro- CDCSBTF

CODE UNKNOWN error. cedures for reporting control point
DB$$SIM 1 software errors or opera- dayfile
tional problems.
I B-4 60485300 D

) J

J



(A3

60485300 C

This is an internal
error.

TABLE B-1, CDCS DIAGNOSTICS (Contd)

Type geg’ Message Significance Action Destination
— = |
I CDCS IDLE COMPLETE CDCS has been shut down None. CDCS system

by the system operator. control point
No new invokes to CDCS dayfile
are allowed.
F CDCS ILLEGAL More than one invoke Follow site-defined pro- User control
REQUEST, DOUBLE was issued by the COBOL cedures for reporting point dayfile
INVOKE program. This is an software errors or opera- CDCS output
internal error. tional problems. file
F CDCS ILLEGAL CDCS cannot process the Follow site-défined pro- User control
REQUEST, ILLEGAL request issued because cedures for reporting point dayfile
FUNCTION CODE it is an unrecognizable software errors or opera-— CDCS output
function code. This is tional problems. file
an internal error.
F CDCS ILLEGAL CDCS cannot process the Follow site-defined pro- User control
REQUEST, NOT user program request cedures for reporting point dayfile
INVOKED because CDCS invocation software errors or opera- CDCS output
has not yet occurred. tional problems. file

B-4.1/B-4.2






W

60485300 A

r“ TABLE B-1. CDCS DIAGNOSTICS (Contd)
F@E“' Type gfé: Message Significance Action Destination
F CDCS ILLEGAL CDCS received another Follow site-defined pro- User control
REQUEST, TWO request from a user pro- cedures for reporting point dayfile
OUTSTANDING gram before the previous software errors or opera- CDCS output
REQUESTS request was satisfied. tional problems. file
This is an internal
error.
I CDCS INITIALIZA- CDCS is available at None. CDCS system
TION COMPLETE a system control point control point
and is ready to start dayfile
accepting requests from
user programs.
I CDCS INTERFACE CDCS termination proc- None. User control
TERMINATED essing has occurred. point dayfile
CDCS output
file
C CDCS INTERNAL A CDCS internal error Follow site-defined pro- CDCS system
ERROR -~ mdn occurred in mdn; the cedures for reporting control point
first seven characters software errors or opera- dayfile
are the module name and tional problems.
the last three charac-
ters designate the loca-
tion in the module where
the error occurred.
I CDCS INVOKED CDCS invocation has None. User control
BY user-id occurred by the job point dayfile
identified by user-id. CDCS output
The user-id was passed file
when CDCS was invoked.
1 CDCS JOB ABORT OR CDCS or the operating Determine cause of abort User control
ENDED BY SYSTEM system aborted the job, from other messages point dayfile
or the job terminated igsued to the dayfiles. CDCS output
without CDCS termination file
processing.
N CDCS JOURNAL 10G No journal log file in Analyze the reason for CBCS output
FILE NOT AVAILABLE new or in use status can the journal log file file
be found during system being unavailable. If CDCS system
recovery or invoke proc- this error occurred dur- control point
(O essing. The schema is ing system recovery, dayfile
': set to error status. manually recover the
) areas in the schema.
F CDCS NOT ACTIVE A job issued a request Check that CDCS is active User control
AT SYSTEM CONTROL to CDCS when CDCS was at a system control point point
POINT not active at a system before resubmitting the dayfile
control point. application program.
I CDCS RECOVERY The CDCS system recovery None. CDCS system
COMPLETED phase is complete. control point
dayfile
N 1 CDCS RECOVERY The CDCS system recovery None. CDCS system
STARTED phase is started. control point
dayfile
>

B-5




TABLE B-1.

CDCS DIAGNOSTICS (Contd)

Type g?g: Message Significance Action Destination
I CDCS REPRIEVE CDCS processing for the None. CDCS systenm
PROCESSING DONE abnormal termination of control point
a job has been com- dayfile
pleted. All files CDCS output
attached by CDCS have file
been returned.
F CDCS REQUEST NOT The job is aborted; the Follow site-defined pro- User control
IN FL request cannot be proc- cedures for reporting point dayfile
essed by CDCS because software errors or opera- CDCS output
of an invalid central tional problems. file
memory address in the
request.
I CDCS SCP STATUS CDCS has been terminated None. CDCS system
TERMINATED and is no longer at a control point
system control point. dayfile
I CDCS USED CDCS actually used None. CDCS system
aaaaaa.aaa CP aaaaaa.aaa central control point
SECONDS processor seconds and dayfile
bbbbbb.bbb I0 bbbbbb.bbb I/0 seconds.
SECONDS
I CDCS xx.yy CBCS CPU utilization is None. CDCS system
PERCENT CPU defined as the ratio of control point
USAGE the total CP time used dayfile
to the real time elapsed
while CDCS was active
(that is, from the time
CDCS was initialized
until the time CDCS was
terminated).
F CDCSBTF ABORTED, The user’s load file fn Change the load file so CDCSBTF
2 TRANSFER has multiple transfer that it has only one main control point
ADDRESSES ON USER addresses because two program. dayfile
LOAD FILE fn main programs are in the
same file.
F CDCSBTF DEADLOCK, CDCSBTF has determined Correct the deadlock and CDCSBTF
JOB ABORTED that the user job and resubmit the job, control point
CDCS are both waiting dayfile
for a particular event
to occur, but that event
is not occurring.
CDCSBTF is aborted.
I CDCSBTF TERMINATED A CDCSBTF user program Review each user program CDCSBTF
BEFORE ALL USERS has placed "END" in RA+1 to be sure that it uses control point
COMPLETED without referencing the the normal termination dayfile
external procedure SYS=. statement provided by
the language. For
COMPASS, use the ENDRUN
macro.
F CDCSBTF A fatal loader error Refer to the error mes- CDCSBTF
TERMINATED, LOADER nnnnn occurred during sage in the CYBER Loader control point
ERROR nnnnn ON the loading of user file reference manual for the dayfile
USER LOAD FILE fn fn. appropriate action to
correct the error.
F CDCSBTF No file name parameter Specify the file name of CDCSBTF
TERMINATED, NO was specified in the the relocatable binary control point
PROGRAMS CDCSBTF control state- program as the parameter dayfile
ment. on the CDCSBTF control
statement and resubmit
the job.
B-6 60485300 B

J )

¢

-

J )



[

TABLE B-1. CDCS DIAGNOSTICS (Contd)
Type gfg: Message Significance Action Destination
N CIO ERRCR nnn CIO encountered error Follow site-defined pro- CDCS system
DURING ROLLOUT nnn while rolling out cedures for reporting control point
part of the CDCS field software errors or opera- dayfile
length. tional problems.
I CIO ERROR nnn ON CIO encountered error To determine the disposi- CDCS output
CDCS JOURNAL LOG number nnn while per- tion of the journal log file
FILE-SCHEMA sn forming an operation on file, refer to the CDCS
the CDCS journal log initiated job that uses
file for the schema DBREC to dump the journal
named sn. Some or all log file. It might be
of the log records necessary to purge the
might have been lost. journal log file and re-
The CIO error causes run DBREC to initialize
the following events a new copy of this file.
to occur: If this occurred during
CDCS system recovery,
A memory dump is taken manual recovery of the
of the FET and of the schema might be needed.
I-0 buffer at the time
of the error.
Requests in progress
at the time of the
error are aborted with
error message 474.
CDCS switches to an
alternate log file if
one is available.
I CIO ERROR nnn ON CIO encountered error Purge the existing quick CDCS output
QUICK RECOVERY number nnn while per- recovery file and rerun file
FILE-SCHEMA sn forming an operation on DBREC to initialize a new
the quick recovery file copy of this file before
for the schema named sn. reinitiating CDCS. If
The CIO error causes this occurred during CDCS
the following events to system recovery, manually
occur: recover the schema.
A wemory dump of the
FET and a memory dump
of the I-0 buffer at
the time of the error.
Requests in progress
at the time of the
error are aborted with
error message 474.
CDCS sets the schema
to error status and
does not allow further
access to it.
60485300 A B-7




TABLE B-1. CDCS DIAGNOSTICS (Contd)
Type geg. Message Significguce Action Destination

I CIO ERROR nnn ON CIO encountered error Purge the existing trans- CDCS output

TRANSACTION RE- nunber nnn while per- action recovery file and file
COVERY FILE- forming an operation on rerun DBREC to initialize
SCHEMA sn the transaction recovery a new copy of this file
file for the schema before reinitiating CDCS.
named sn. The CIO error If a restart identifier
causes the following file exists for schema
events to occur: sn, it should also be
initialized. Manually
A memory dump of the recover the areas affect-
FET and a memory dump ed by any uncommitted
of the I-0 buffer at transactions. If this
the time of the error. occurred during CDCS sys-—
tem recovery, manually
Requests in progress recover the schema.
at the time of the
error are aborted with
error message 474,
CDCS sets the schema
to error status and
does not allow further
access to it.

F CLTC ERROR An internal error has Follow site-defined pro- CDCSBTF
occurred in clearing the cedures for reporting control point
long term connect, software errors or opera-— dayfile

tional problems.

I CONTROL CARD The CDCS control state- Correct the control CDCS system

PARAMETER xxxxx ment parameter xxxxx is statement error. Reini- control point
in error. tialize CDCS. dayfile

I CP SECONDS Central processor time The user job should be User control

CHARGED BY CDCS of xxxxxx.xXxx was used charged for XxXXXXX.xXxx point dayfile
KXXKXX o XXX by CDCS at the system seconds of central proc-
control point for proc- essor time.
essing requests for the
particular user job.
I CRM ERROR nnn ON The indicated CRM error Correct the CRM error. CDCS output
CDCS RESTART non occurred while per—- If necessary, reini- file
IDENTIFIER FILE- forming an operation on tialize the restart
SCHEMA sn the restart identifier identifier file,
file. If error 446
occurred, the trans-—
action recovery file
might have been reiniti-
alized without also re-
initializing the re-
start identifier file,
c CRM ERROR nnn The CRM error nnn Refer to the applicable CDCS system
WHILE ACCESSING occurred while reading CRM error diagnostic and control point
MASTER DIRECTORY the master directory. correct as noted in. the dayfile
CYBER Record Manager
Basic Access Methods
reference manual.
B-8 60485300 D

J )

J )

‘8



[

TABLE B-1., CDCS DIAGNOSTICS (Contd)
Type g?%: Message Significance Action Destination

I DBREC JOB REQUEST A journal log file is None . CDCS system
full. CDCS attempts to control point
create a DBREC job to dayfile
dump the log file to
tape.

1 DBREC JOB SUB- A journal log file is None. CDCS system
MITTED JOBNAME = full., CDCS has sub- control point
jn mitted a DBREC job with dayfile

the job name jn to dump
the full journmal log
file to tape.

I DIR FILE PARAMETER The CDCS directive file Correct the directive CDCS system
XXXXX parameter xxxxx is in file error and reiniti- control point

error. alize CDCS. dayfile

I DOWN,CDCS The system operator has None. CDCS system
entered a DOWN,CDCS control point
command . dayfile

I DOWN COMPLETE The area or schema None. CDCS system
specified in a DOWN control point
command by the system dayfile
operator has been given
a down status.

I DOWN IN PROGRESS The area or schema None. CDCS system
specified in a DOWN control point
command by the system dayfile
operator 1s being shut
down.

I DUMP CDCS JOURMNAL CDCS is in the process None. CDCS system

LOG NAME = pfn of creating a DBREC job control point
to dump the journal log dayfile
file pfn to tape.
N DUPLICATE A parameter was speci- Correct the control CDCS system
PARAMETER fied more than once on statement or the direc- control point
the CDCS control state- tive file so that the dayfile
ment or directive file. parameter is specified
only once. Reinitialize
cDCS.

I END CDCSBTF RUN CDCSBTF processing has None. CDCSBTF
terminated. control point

dayfile

N EQUAL SIGN MUST BE In either the CDCS con— Correct the CDCS control CDCS system
PRESENT trol statement or the statement or the direc- control point

directive file, a param- tive file and reinitial- dayfile
eter requiring an equal ize CDCS.

sign was specified with-

out an equal sign.

N EQUAL SIGN NOT In either the CDCS con-~ Correct the CDCS control CDCS system

ALLOWED trol statement or the statement or the direc- control point
directive file, a param— tive file. Reinitialize dayfile
eter that must not have CDCS.
an equal sign was speci-
fied with an equal sign.

C ERROR DURING An error occurred while Follow site-defined pro- CDCS system
ROLL IN--CDCS rolling in the CDCS cedures for reporting control point
ABORTED field length that was software errors or opera-. dayfile

previously rolled out tional problems.
for system recovery.
60485300 D B-9




TABLE B-1. CDCS DIAGNOSTICS (Contd)
Type g?ﬁ: Message Significance Action Destination

C ERROR DURING An error occurred while Follow site-defined pro- CDCS system

ROLL OUT--CDCS rolling out that part of cedures for reporting control point
ABORTED the CDCS field length software errors or opera- dayfile

that is unnecessary for tional problems.

system recovery.

F ERROR FLAG n The CDCS error flag has Correct the error condi- CDCSBTF
been set for user n. tion and return. control point

dayfile
»

N ERROR OR AREA id During quick recovery Correct the error and CDCS system
VERSION sn file application proc- manually recover the control point

essing for system recov- area, dayfile
ery, an error occurred
on area id.

I ERRCR nn WHILE During an attempt to Immediate action is not CDCS system
REQUESTING A route the CDCS OUTPUT required. control point
QUEUE DEVICE file to the printer, the dayfile

NOS/BE REQUEST call If the problem persists
returned error code nn. notify the data admini-
Consult the NOS/BE strator.,

Reference Manual for a

description of the

error code,

The OUTPUT file is not

routed to a printer, but

no information is lost

from the file. Con-

tinued writing to the

OUTPUT file is not

affected.

I ERROR nn WHILE During an attempt to Immediate action is not CDCS system
ROUTING A PRINT route the CDCS OUTPUT required. control point
FILE file to the printer, the dayfile

ROUTE call returned

error code nn. Consult If the problem per-
the appropriate oper— sists notify the data
ating system reference administrator.
manual for a description

of the error code.

The OUTPUT file is not

routed to a printer, but

no information is lost

from the file. Con~

tinued writing to the

OUTPUT file is not

affected.

F FATAL CDCS A fatal error occurred Correct the error and User control
ERROR -~ RUN-UNIT during CDCS processing. resubmit the application point dayfile
ABORTED program, .

F FC COMPLETE An SCP function was Follow site-defined pro- CDCSBTF
requested with the com- cedures for reporting control point
plete bit set. This is software errors or opera- dayfile
an internal error. tional problems.

N FDL LOAD ERROR nnn The FDL load error nnn Correct the error and CDCS output

ON AREA id occurred on the area id manually recover the file
VERSION vn - AREA during processing for area. CDCS systen
DOWN. SCHEMA sn system recovery or CDCS control point
transaction reversal. dayfile
@ B~-10 60485300 D

J )

J D



6@*\

TABLE B-l.

CDCS DIAGNOSTICS (Contd)

Dec.
Type E.C.

Message

Significance

Action

Destination

60485300 D

FIELD LENGTH
DUMP IS ON THE
OUTPUT FILE

FIRST TWO CHAR-

ACTERS MUST BE
LETTERS

IDLE, CDCS

IDLE COMPLETE

IDLE IN PROGRESS

INITIAL LOAD
FL - 1iiiii

INSUFFICIENT
MEMORY FOR CDCS

type

INTERNAL DOWN
COMPLETE

The area is set to error
status. The schema sn

is printed out for a non—
system recovery error
only.

A dump of the CDCS field
length has been written
to the output file.

If the DT parameter is
specified on the CDCS
control statement or the
directive file, the
first two characters
must be letters of the
alphabet.,

The system operator has
entered an IDLE,CDCS
command .

The number of users of
the area or schema spec-
ified in an IDLE command
by the system operator
has reached zero.

The area or schema is
given a down status.

The area or schema spec-
ified in an IDLE command
by the system operator
is being shut down. All
active jobs using the
area or schema are al-
lowed to complete proc-
essing; all new jobs
issuing invokes using
the area or schema are
aborted.

Following CDCS initial-
jazation the system
control point field
length is iiiiii.

CMM overflow occurred
during the following
type of processing:
QUICK RECOVERY FILE
APPLICATION, ROLL
FORWARD, or ROLL BACK.
This processing (and
all further recovery of
the schema if in system
recovery mode) is ter—
minated. The schema is
set to error status.

As a result of internal
problems, CDCS has shut
down the area or schema
specified in the pre~
ceding THE AREA ID/NAME
IS or THE SCHEMA ID/NAME
IS message. An internal
down of a schema occurs

None

Correct the CDCS control
statement or directive
file and reinitialize
CDCS.

‘None.

None.

None.

None

Manually recover all
areas in the schema.
Increase the CDCS field
length limit.

None.

CDCS system
control point
dayfile

CDCS system
control point
dayfile

CDCS system
control point
dayfile

CDCS systenm
control point
dayfile

CDCS system
control point
dayfile

CDCS system
control point
dayfile

CDCS output
file

CDCS system
control point
dayfile

CDCS system
control point
dayfile

B-11




TABLE B-1., CDCS DIAGNOSTICS (Contd)
Type g?é: Message Significance Action Destination
when the schema log
files are down. An in-
ternal down of an area
occurs as a result of a
CRM error -that is clas-
sified by CDCS as a
class 1 error.
N INTERNAL ERROR - An internal error has Follow site-defined pro- CDCS output
DBSMABT occurred while proc- cedures for reporting file
essing an operator software errors or CDCS system
command . operational problems. control point
dayfile

N INVALID AREA The area identifier id Check that information CDCS output

IDENTIFIER id ON found on the CDCS quick for the area identified file

CDCS QUICK recovery file during by id is present in the CDCS system

RECOVERY FILE system recovery is not master directory. Manu- control point
found in the master di- ally recover the areas dayfile
rectory. The schema is in the schema.
set to error status. '

N INVALID CHARACTER An invalid character Correct the CDCS control CDCS system
appears in one of the statement or the direc- control point
parameters in the CDCS tive and reinitialize dayfile
control statement or CDCS.
directive file.

N INVALID DATA ON Invalid data was found Analyze the invalid data CDCS output

CDCS TRANSACTION on the CDCS transaction on the CDCS transaction file
FILE recovery file during recovery file. Manually CDCS system
processing for system reverse the updates made control point
recovery or transaction within any uncommitted dayfile
reversal. The temporary transactions. If this
updates made within the error occurred during
CDCS transaction remain system recovery, manually
in effect. The schema recover the areas in the
is set to error status, schema.
N INVALID VERSION The version name vn was Check that the version CDCS output
NAME vn not found in the master name vn is a valid ver— file
. directory during proc— sion name in the master CDCS system
egsing for system recow directory. Manually control point
ery or CDCS transaction reverse the updates made dayfile
reversal. Processing is within any uncommitted
terminated for the CDCS transactions. If
schema; the schema is this error occurred
set to error status, during system recovery,
manually recover the
areas in the schema.
I I0 SECONDS CHARGED Channel time of The user job should be User control
BY CDCS yyyyyy.yyy YYYYYY.Yyy was used by charged for yyyyyy.yyy point dayfile
CDCS at the system com~ seconds of channel time.
trol point for proc-—
essing requests for the
particular user job.
F 1/0 (CIO) ERROR The indicated CIO error Correct the CIO error. CDCS output
nnn ON CDCS file nnn occurred during If this error occurred file
processing for system during system recovery, CDCS system
recovery or CDCS trans- manually reverse the control point
action reversal on one updates made within the dayfile
of the following files: uncommitted CDCS trans—
the JOURNAL LOG FILE, action. If this error
the QUICK RECOVERY FILE, occurred during trans-
or the TRANSACTION action reversal proc-
RECOVERY FILE. The essing, manually finish
schema is set to error reversing any uncommitted
status. transactions. i
B-12 60485300 D

2 J

DD



60485300 A

ALREADY ATTACHED

file specified on the
CDCS control statement
is already attached at
the system control
point.

prior to the CDCS call or
gspecify the master direc-
tory attach information
on the CDCS control
statement or directive
file.

TABLE B-1. CDCS DIAGNOSTICS (Contd)
Type g?é: Message Significance Action Destination

F I/0 (CRM) ERROR The CYBER Record Manager Correct the error, and CDCS output

nnn ON AREA id I/0 error nmmn occurred manually recover the file
VERSION vn - AREA on the area during proc- area. CDCS system
DOWN, SCHEMA sn esging for system re- control point
covery or CDCS trans- dayfile
action reversal. The
area is set to error
status. The schema name
is printed out for a
nonsystem recovery error
only.
N I/0 (CRM) ERROR The CYBER Record Manager Correct the CRM error. CDCS output
nnn ON CDCS error nnn occurred on Manually recover the file
RESTART IDENTIFIER the restart identifier areas in the schema. CDCS system
FILE file during system re- control point
covery. The schema is dayfile
get to error status.
F JOB UNKNOWN TO The CDCS request being Follow site-~defined pro- CDCS output
SYSTEM processed is for a job cedures for reporting file
that is no longer in the software errors or opera-
system. tional problems.
N JOURNAL LOG FILE The journal log file If both jourmal log files CDCS system
pfname FULL whose permanent file for the schema are in control point
name is pfname has been this state, determine if dayfile
released to be dumped to the CDCS-initiated DBREC
tape by DBREC. When jobs to dump the log
both journal log files files are executing. If
are in this state, jobs they are executing, give
that use the schema them priority so they can
associated with these complete the dump. If
files are delayed until they are not executing,
a journal log file is manually dump or replace
available. the journal log files.
N LAST RECOVERY During system recovery, Analyze the journal log CDCS output
POINT NOT FOUND a matching recovery file. If this error file
point record cannot be occurred during system CDCS system
found in the journal log recovery, manually re- control point
file to match the recov- cover the areas in the dayfile
ery point in the journal schema.
log file header. The
schema is set to error
status.

N LFN IS REQUIRED No local file name was Add the local file name CDCSBTF
specified on the CDCSBTF to the CDCSBTF control control point
control statement. statement and resubmit dayfile

the job.
N MASTER DIRECTORY The master directory Either attach the master CDCS system

control point
dayfile

B-13




TABLE B-1. CDCS DIAGNOSTICS (Contd)
Type g?g: Message Significance Action Destination
C MASTER DIRECTORY The master directory is The data administrator CDCS system
MUST BE A PERMA- not a permanent file, or must make the master di- control point
NENT FILE there is not a permanent rectory permanent after dayfile
file named MSTRDIR at running the DBMSTRD util-
the CDCS control point. ity, or must attach the
master directory with the
local file name MSTRDIR.
The master directory can
be attached in the con-
trol stream, or the mas-
ter directory attach
parameters can be sup—-
plied via the CDCS con-
trol statement, (The
latter ogt%on is
preferred.
N MASTER DIRECTORY During CDCS initializa—- Check that the master CDCS system
NOT AVAILABLE tion, an error occurred specified is a valid control point
while attempting to permanent file, that the dayfile
attach the master direc- correct permissions have
tory specified in the been specified, and that
CDCS control statement the master directory is
or directive file. not attached elsewhere.
Reinitialize CDCS.
I MESSAGE FOR USER Any normal user control None. CDCSBTF
nn = point dayfile message control point
produced by CDCSBTF dayfile
is preceded by this
message.
N MFL MUST BE In the CDCS control Correct the error and CDCS system
GREATER THAN BL statement or directive reinitialize CDCS. control point
file, the value speci- dayfile
fied for the MFL param—
eter must be greater
than the value specified
for the BL parameter,
N MUST BEGIN WITH An alphanumeric value Correct the error and CDCS system
LETTER was specified that did reinitialize CDCS. control point
not begin with a letter dayfile
in the CDCS control
statement or directive
file.
N NO TERMINATOR ON A terminator was not Specify either a period CDCS system
CONTROL CARD specified in the control or a right parenthesis as control point
CDCS statement. the last character in the
CDCS control statement.
N NOT ALLOWED ON A parameter was speci- Move the incorrectly CDCS system
FILE fied in the CDCS direc~ specified parameter from control point
tive file that can only the directive file to the dayfile
be specified in the CDCS CDCS control statement.
control statement.
I OUTPUT FILE A portion of the CDCS None CDCS system
ROUTED TO A listing has been control point
PRINTER released for printing. dayfile
B-14 60485300 D

JJ

J )



6@5\
Cﬁﬂ\

TABLE B~1. CDCS DIAGNOSTICS (Contd)
Type g?g: Message Significance Action Destination
I PF WAIT ON AREA an Another job has exclu- None. User control
(vn) sive file access for the point dayfile
area an of version vn CDCS output
(version MASTER if vn file
does not appear). The
Job trying to access the
area must wait until
control has been relin-
quished and CDCS can
attach the file.
N PFM ERROR nnn The permanent file error Check that file is not CDCS system
ATTACHING pfn nnn occurred while try- attached elsewhere., For a control point
ing to attach file pfn. non-PUBLIC file unavail- dayfile
able on NOS, ensure that
a PERMIT control statement
specifying the user name
for CDCS or CDCSBTF exe-~
cution is in effect or
that the procedure to
initialize CDCS includes
a USER control statement
specifying the user name
for CDCS execution. Refer
to the applicable perma-
nent file error diagnostic
in volume 4 of the NOS
reference set, or in the
description of the FDB
macro in the NOS/BE
reference manual.
I RECOVERY COMPLETED The system recovery Nomne. CDCS system
FOR SCHEMA sn phase for schema sn has control point
completed successfully. dayfile
N RECOVERY IMPOSSI- The schema sn is in Correct the schema CDCS system
BLE FOR SCHEMA sn error status after the errors. Manually recover control point
system recovery phase. the areas in the schema dayfile
before placing the schema
in up status.
I RECOVERY STARTED The system recovery None., CDCS system
FOR SCHEMA sn phase for schema sn has control point
started. dayfile
F RUN UNIT ABORT, The run-unit is aborted CDCS field length User control
CDCS CMM OVERFLOW because not enough requirements and usage point dayfile
memory is available to should be examined by the CDCS output
load the CDCS modules data administrator and file
required. adjusted if necessary.
I RUN-UNIT TERMI- The run—unit aborted None. User control
NATED BEFORE CDCS within a CDCS begin/ point dayfile
COMMIT OR DROP commit sequence. The CDCS output
REQUEST — DROP drop function is auto- file
ASSUMED matically performed.
N SCHEMA ID MISMATCH During system recovery, Analyze the master direc- CDCS output
ON CDCS file the schema id specified tory and system file to file
in the header of either locate the cause of the CDCS system
the QUICK RECOVERY FILE mismatch. Manually re- control point
or the TRANSACTION cover the areas in the dayfile
RECOVERY FILE does not schema.
match the corresponding
schema id specified in
the master directory.
The schema is set to
error status.
60485300 D

B-15 |




TABLE B-1. CDCS DIAGNOSTICS (Contd)
Type g?g: Message Significance Action Destination

N SCHEMA NOT UP - The schema is not in an Manually reverse the CDCS output

CDCS TRANSACTION up, idling or downing updates made within the file
ROLL BACK NOT status during processing | uncommitted transaction. CDCS system
COMPLETE SCHEMA sn for system recovery or control point
CDCS transaction rever— dayfile
sal. The temporary up-
dates made within the
transaction remain in
effect. Schema sn is
printed out for non-
system recovery only.
1 SCHEMA sn DBREC A journal log file for None. CDCS systenm
JOB REQUEST schema sn is full. CDCS control point
attempts to create a dayfile
DBREC job to dump the
log file to tape.

F SLTC ERROR An internal error has Follow site~defined pro- CDCSBTF
occurred in setting the cedures for reporting control point
long term connect. software errors or opera- dayfile

tional problems.

I SMALL BLOCK During CDCS execution None CDCS output

BOUNDARY ADVANCED the small block boundary file
TO OR BEYOND has been advanced into
58SSSS nnnn the range of the small
TIMES block increment begin—
ning at ssssss on nnnn
different occassions.

I TERM The system operator has None. CDCS system
entered a TERM command. control point

dayfile

I TERMINATE ENCOUN- The application program None. User control

TERED BEFORE CDCS issued a terminate with- point dayfile
COMMIT OR DROP in a CDCS begin/commit CDCS output
REQUEST - DROP sequence. CDCS auto- file
ASSUMED matically performs the
drop function to reverse
uncommitted updates.
1 THE AREA ID/NAME CDCS has changed the None. CDCS systen
1S id/name status of the specified control point
area as a result of an dayfile
operator command or an
internal down. This
message precedes all
messages relating to the
status of the area. The
affected area is speci-
fied by name or identi-
fication where id is a
1- to 4-digit identifi-
cation in the form 2279
and name is a 1- to 30-
character name in the
form X(30).
B-16 60485300 D

JJ

J )



60485300 C

operator command or an
internal down. This
message precedes all
messages relating to the
status of the schema.
The affected schema is
specified by name or
identification where id
is a 1- to 4-digit iden-
tification in the form
2229, and name is a 1-
to 30-character name in
the form X(30).

TABLE B-1. CDCS DIAGNOSTICS (Contd)
Type g?g: Message Significance Action Destination
N THE CDCS file IS One of the following Rerun DBREC to allocate CDCS output
EMPTY - MUST BE files was found to be the indicated file. Man-— file
ALLOCATED empty during system re- ually recover the areas CDCS system
covery: the JOURNAL LOG in the schema. control point
FILE, the QUICK RECOVERY dayfile
FILE, or the TRANSACTION
RECOVERY FILE. The
schema is set to error
status.
1 THE SCHEMA/ID NAME CDCS has changed the None. CDCS system
IS id/name status of the specified control point
schema as a result of an dayfile

B-16.1/B-16.2




. - - . . ' - — - -
,
' N - ' <
; ) i .
. o . . EY
. . TR
. N i ) . g
\
. D
: .
LI
A




F@m\
Fﬁ”\

60485300 A

TABLE B-1. CDCS DIAGNOSTICS (Contd)
Type g?z: Message Significance Action Destination

N THIRD CHARACTER When the DT parameter is Correct the CDCS control CDCS system

MUST BE NUMERIC specified on the CDCS statement or the CDCS control point
control statement or directive file. Reini- dayfile
CDCS directive file, the tialize CDCS.
third character must be
a number between 0
and 9.
N TOO MANY The number of characters Correct the CDCS control CDCS system
CHARACTERS in a parameter value was statement or the CDCS control point
greater than the maximum directive file. Reini- dayfile
number allowed in the tialize CDCS.
CDCS control statement
or the CDCS directive
file.

N TOO MANY PASSWORDS More than five passwords Correct the CDCS control CDCS system
for the master directory statement or the CDCS control point
were specified in the directive file. Reini- dayfile
CDCS control statement tialize CDCS.
or the CDCS directive
file.

N UN OR ID MUST BE The master directory Correct the CDCS control CDCS system

GIVEN WITH MDPFN name was specified with- statement or the CDCS control point
out also specifying the directive file to specify dayfile
UN or ID parameters in the UN or ID parameter.
the CDCS control state- Reinitialize CDCS.
ment or CDCS directive
file.

N UNABLE TO CREATE Either the job control Modify the master direc- CDCS system
DBREC JOB - NO information was not tory to include the job control point
JOB/ATTACH DATA specified in the master control information. Add dayfile

directory, or the attach the master directory

data for the master attach data to the CDCS

directory was not speci- control statement or to

fied in the CDCS control the CDCS directive file.

statement or the CDCS Manually dump and reallo-

directive file. cate the full journal log
file.

N UNABLE TO SUBMIT The 1/0 error nnn Correct the I/0 error. CDCS system
DBREC JOB - I/O occurred on either the Manually dump and reallo- control point
ERROR nnn REQUEST statement (NOS/ cate the full journal log dayfile

BE only) or the ROUTE file.
statement of the DBREC

job that CBCS was tryinmg

to submit.

N UNKNOWN PARAMETER An invalid parameter was Correct the CDCS control CDCS system
specified in the CDCS statement or the CDCS control point
control statement or the directive file. Reini- dayfile
CDCS directive file. tialize CDCS.

I UP,CDCS The system operator has None. CDCS system
entered an UP,CDCS com- control point
mand. Subsequent invoke dayfile
calls to CDCS will be
allowed.

B-17




TABLE B-1. CDCS DIAGNOSTICS (Contd)
Type g?g: Message Significance Action Destination

1 UP COMPLETE The system operator has None. CDCS system
removed the down status control point
of an area or schema or dayfile
terminated the effects
of an IDLE command for
an area or schema. Sub-
sequent invokes using
the area or schema will
be allowed.

I UP IN PROGRESS The area or schema is None. CDCS system
being restarted by the control point
system operator follow- dayfile
ing a previous DOWN or
IDLE command.

N VALUE TOO LARGE The value specified for Specify a smaller value CDCS system
the BL parameter was 1 for the BL parameter. control point
larger than the maximum Reinitialize CDCS. dayfile
allowed (377777 octal)
in the CDCS control
statement or the CDCS
directive file.

I VERSION AFFECTED The status of version vn None. CDCS system

IS vn has changed as a result control point
of an operator command. dayfile
This message precedes
all messages relating
to the status of the
version.

I WAITING FOR CDCS A user is trying to Contact the data adminis- User coatrol
access CDCS when it is trator to initiate CDCS point dayfile
not active. at a system control

point.

F 384 600 - CHECKSUM The checksum of the Recompile and rerun Data base
MISMATCH SUBSCHEMA subschema ssn used to program using correct status block
ssn compile the applications subschema. User control

program does not match point dayfile
the checksum of the CDCS output
subschema used at master file
directory run time.

N 385 601 - VIOLATION OF An attempt was made to Notify the data Data base
CONSTRAINT cn ON perform the operation op administrator. status block
op OF RECORD rn (WRITE, DELETE, or RE- ZZZZZEG error

WRITE) on the record rn; file
the operation would have CDCS output
violated constraint cn. file

N 386 602 ~ CRM ERROR A CRM error ann occurred Correct the CRM error and Data base
nnn ON AREA an while performing an up- resubmit the job. status block
(vn) IN CONSTRAINT date operation on the ZZZ2ZEG error
PROCESSING area an of version vn file

(version MASTER if vn CDCS output
does not appear), which file
is involved in a con-
straint. '
B-18

60485300 A

J )

J D



TABLE B-1., CDCS DIAGNOSTICS (Contd)
Type g?%: Message Significance Action Destination
N 387 603 - LOCKED A TAF or interactive The TAF user should in- Data base
RECORD/AREA—~ Query Update job has clude appropriate code in status block
REQUEST NOT made a request to lock the application program CDCS output
PROCESSED an area or to read a to handle this diagnos-— file
record in an area opened tic. Query Update issues
for input/output proc- the user a diagnostic and
cessing when the partic- gives the user a choice
ular area or record in about continuing proc-
the area is locked by essing.
another user job. CDCS
unlocks all the locks
held by the TAF or
interactive Query Update
job and returns control
to TAF or Query Update.
1f the TAF user is in
CDCS transaction mode,
the CDCS transaction
is dropped.
N 388 604 — PF WAIT ON Another job has exclu- TAF aborts the user job. Data base
AREA an (vn) sive file access to area Query Update issues the status block
an of version vn (ver- user a diagnostic and CBCS output
sion MASTER if vn does gives the user a choice file
not appear) when a TAF about continuing proc-
or interactive Query essing.
Update job requested
access to the area.
CDCS returns control to
TAF or Query Update.
The TAF or Query Update
job must wait for access
until the other job re-
turns the area file so
that CDCS can attach the
file.
N 389 605 - No message CDCS is not active at a Notify the data Data base
system control point. administrator. status block
F 390 606 - VERSION vn An invoke or version Recompile and rerun the Data base
NOT IN SCHEMA sn change operation speci- application program, status block
fied a version name vn using a correct version User control
that cannot be found in name for the schema sn. point dayfile
the master directory for CDCS output
the schema sn. file
N 391 607 - AREA an (vn) The operation op (RE- Ensure that the updating Data base
IS NOT OPEN FOR WRITE, or DELETE) is not program includes a state- status block
I-0, op IS NOT allowed when the area am ment that opens the area 2ZZ2ZEG error
ALLOWED of version vn (version for both update and re- file
MASTER when vn does not trieval operations (that CDCS output
appear) has not been is, input/output process- file
opened for input/output ing) before the statement
processing. specifying the operation
op.

60485300 A

B-19




TABLE B-1. CDCS DIAGNOSTICS (Contd)
Type gfg: Message Significance Action Destination
N 392 610 - FOR AREA an The key of the record Resubmit the job speci- Data base
(vn), KEY OF PRIOR being written does not fying the statements to status block
READ MUST MATCH match the key of the delete the old record and Z2ZZZZEG error
KEY ON op record previously read to write the new record. file
from the area an of ver- CBCS output
sion vn (version MASTER file
if vn does not appear).
The value of a data item
that is a key cannot be
modified; instead, the
record containing the
old key value must be
deleted and a record
containing the new key
value must be written.
F 393 611 - SCHEMA sn The schema name sn used Check that information Data base
NOT IN MASTER at execution time does for the schema has not status block
DIRECTORY not match the name of been deleted from the User control
a schema for which in- master directory. If point dayfile
formation exists in the deleted, add information CDCS output
master directory. for the schema in a mas- file
ter directory run.
F 394 612 - RESTART The restart identifier Verify the value of the Data base
ID xxXxXXXAXXXX specified in a DB$ASK restart identifier and status block
DOES NOT MATCH or FINDTRAN request resubmit the request. User control
ID PREVIOUSLY does not match the re- point dayfile
ASSIGNED BY CDBCS start identifier that CBCS output
CDCS assigned to the file
run-unit earlier in a
DBSGTID/ASSIGNID or
DB$ASK/FINDIRAN request.
F 395 613 - AREA an NOT A version change opera- Recompile and rerun the Data base
CLOSED BEFORE tion was requested, but application program, in- status block
VERSION CHANGE the area an was still cluding the appropriate User control
open and had not been changes to the status of point dayfile
closed by the applica- ’ the open area before CDCS output
tion program. issuing the version file
change request.
F 396 614 - SUBPROG The subschema specified Correct the SUB-SCHEMA Data base
SCHEMA/SUBSCHEMA in the SUB~SCHEMA clause clause in the COBOL sub- status block
NOT IDENTICAL TO in the COBOL subprogram program and recompile, or User control
MAIN PROGRAM or in the SUBSCHEMA correct the SUBSCHEMA point dayfile
statement in the FORTRAN statement in the FORTRAN CDCS output
subprogram is not iden- subprogram and resubmit file
tical to the one speci- the program to the FOR-
fied in the main program. | TRAN DML preprocessor.
N 397 615 - LOCK MUST BE The request for a lock Resubmit the job speci- Data base
SET BEFORE READ ON on area an of version vn fying an area lock before status block
AREA an (vn) (version MASTER if vn specifying a read request ZZZZZEG error
does not appear) was if the area 1is open’ for file
executed after a read input/output processing. CDCS output
was executed in the file
application program.
When an area is open for
input/output processing,
an area lock (if speci-
fied) must be executed
before a read is per-
formed on the area.
B-20 60485300 A

JJ

J )



60485300 A

TABLE B-1. CDCS DIAGNOSTICS (Contd)
Type g?g: Message Significance Action Destination
F 398 616 - OUTSTANDING A fatal error occurred Check the data base Data base
FATAL ERROR ON on area an of version vn status block, the user status block
AREA an (vn) (version MASTER if vn control point dayfile, or ZZZZZEG error
does not appear) prior other status variables file
to the current request for information about the User control
for input/output proc- fatal error. Correct the point dayfile
essing; CDCS denies the error and resubmit the CDCS output
current request because job. file
of the previous error.
F 399 617 - NO VERSION A previous version Correct the version Data base
CURRENTLY ATTACHED change request resulted change request error. status block
in a nonfatal error. Recompile and rerun the User control
The current request is application program. point dayfile
not allowed since no CDCS output
files are attached. file
F 400 620 - CDCS For a FORTRAN program Modify the master di- Data base
TRANSACTION UPDATE an attempt was made to rectory to include the status block
NOT IN EFFECT issue a BEGINTRAN, a transaction recovery file User control
sn COMMITTRAN, a DROPTRAN, clause. point dayfile
or a FINDTRAN request CDCS output
for schema sn, when the file
master directory does
not specify a tramsac-
tion recovery file for
this schema.
For a COBOL program an
attempt was made to
issue a DBSBEG, a
DBSCMT, a DB$DROP, or
a DB$ASK request for
schema sn, Wwhen the mas-
ter directory for schema
sn does not specify a
transaction recovery
file for this schema.
F 401 621 - CDCS A blank CDCS transaction Recompile and rerun the Data base
TRANSACTION identifier was used in a application program, status block
IDENTIFIER NON- BEGINTRAN request for a using a non-blank trans- User control
BLANK FORTRAN program or in a action identifier in the point dayfile
DB$BEG request in a BEGINTRAN or DB$BEG CDCS output
COBOL program. request. file
N 402 622 - MAXTMUM The maximum number of Reissue the BEGINTRAN or Data base
NUMBER CDCS BEGIN/ outstanding CDCS trans- DBS$BEG request periodi- status block
COMMIT SEQUENCES actions for all users of cally. The master di- CDCS output
EXCEEDED the schema has been rectory transaction file
exceeded. unit limit might need
increasing.
F 403 623 - NO OUT- Either a commit request Correct and recompile the Data base
STANDING CDCS or a drop request was application program. status block
BEGIN TRANSACTION attempted without pre- User control
REQUEST viously issuing a begin point dayfile
request. CDCS output
file

B-21




TABLE B-1. CDCS DIAGNOSTICS (Contd)
Type g?g: Message Significance Action Destination

F 405 625 - REQUEST rq The request rq was Correct the program to Data base

NOT ALLOWED IN attempted within a CDCS issue the request outside status block

CDCS BEGIN/COMMIT begin/commit sequence. of the begin/commit User control

SEQUENCE sequence. point dayfile
CDCS output
file

F 406 626 - ILLEGAL AREA The area name used by Change the program to Data base

NAME the application program supply the correct area status block
does not match the name name. User control
of an area for which point dayfile
information exists in CDCS output
the master directory. file

I 407 627 - No message A null record occurrence Check the condition Data base
was encountered on a during processing if the status block
file during relation application program is C.DMRST ob-
processing. interested in recording ject routine

null record occurances. in COBOL or
variable
DBSTAT or
DBSnnnn in
FORTRAN

F 408 630 - ILLEGAL LOCK The lock mode specified Change the program to Data base

MODE in the lock request is supply either the value status block
an invalid lock mode; EXCLUSIVE or PROTECTED. User control
valid lock modes are: point dayfile
exclusive and protected. CDCS output

file

F 409 631 - NO CDCS An attempt was made to Either remove the request Data base

RESTART IDENTIFIER either request a restart from the application pro- status block

FILE DEFINED identifier or find the gram, or define the re- User control
last committed transac- start identifier file point dayfile
tion for a schema which within the master CDCS output
does not have a restart directory. file
identifier specified
within the master
directory.

I 410 632 - No message A control break was Check the conditiom dur- Data base
encountered on a file ing processing if the status block
during relation proc- application program is C.DMRST ob-
essing. interested in recording ject routine

control break informa- in COBOL or

tion. variable
DBSTAT or
DBSnnnn in
FORTRAN

N 411 633 - RESTART An attempt is made to Correct and recompile the Data base

IDENTIFIER ALREADY request a restart iden- application program. status block

ASSIGNED BY CDCS tifier after a restart CDCS output
identifier has already file
been assigned.

F 412 634 - MAXIMUM The maximum number of Change the application Data base

CDCS BEGIN/COMMIT updates allowed within program to issue fewer status block

UPDATE COUNT a CDCS begin/commit updates in a begin/commit User control

EXCEEDED sequence has been sequence or increase the point dayfile
exceeded. update count limit in the CDCS output

master directory. file
B-22 60485300 A

J )

JJ



TABLE B-1, CDCS DIAGNOSTICS (Contd)
Dec.
Type E.C. Message Significance Action Destination
F 413 635 - SYSTEM FILE One of the following Verify that the file Data base
NOT AVAILABLE FOR CDCS system files is not in question has been status block
SCHEMA sn available: the journal initialized by DBREC. User control
log file, the transac- point dayfile
tion recovery file, the .CDCS output
restart identifier file, file
the quick recovery file,
or the procedure library
file.
F 414 636 - AREA an (vn) An area error occurred Correct the problem Data base
UNUSABLE DURING applying a record to the causing the error and status block
ROLL-BACK area an version vn (ver- manually finish reversing ZZZZZEG error
sion MASTER if vn does the updates made within file
not appear) during proc- the CDCS transaction. User control
essing to reverse a CDCS point dayfile
transaction. The tempo- CDCS output
rary updates made within file
the transaction remain
in effect.
F 415 637 - RUN ABORT, The schema sn needed by Resubmit the job when the Data base
SCHEMA sn DOWN the application program schema is brought up. status block
cannot be accessed be- User control
cause the schema sn has point dayfile
been marked down by the CDCS output
system operator. This file
message occurs during
active processing using
this schema.
F 416 640 - RUN ABORT, CDCS is terminated; Resubmit the job when Data base
CDCS DOWN issued to active appli- CDCS is brought up again status block
cation programs. at a system control User control
point. point dayfile
CDCS output
file
F 417 641 — SUBSCHEMA The subschema ssn used Check that information Data base
ssn NOT IN MASTER at execution time does for the subschema is status block
DIRECTORY not match the name of a present in the master User control
subschema for which in- directory. If it is not point dayfile
formation exists in the present, add information CBCS output
master directory. for the subschema in a file
master directory run.
F 418 642 - CDCS JOURNAL The CDCS journal log Check that journal log Data base
LOG FILES files specified for the files are not in error status block
UNAVAILABLE schema sn have not been status or are being User control
SCHEMA sn attached at CDCS ini- dumped to tape by a point dayfile
tialization time, are DBREC job. CDCS output
down, or cannot be file
accessed for some other
reason.
F 419 643 ~ SCHEMA sn The schema sn needed by Resubmit the job when the Data base
NOT AVAILABLE the application program schema is brought up status block
cannot be accessed. The again. User control
message occurs at invo- point dayfile
cation time. CDCS output
file
60485300 B B-23




TABLE B-1.

CDCS DIAGNOSTICS (Contd)

=

Type g?g: Message Significance Action Destination
; — —_—  — —— ———
F 420 644 -~ CDCS The system operator is Resubmit job when CDCS is Data base
UNAVAILABLE—AN terminating, idling, or brought up again at a status block
INVOKE IS NOT downing CDCS. CDCS no system control point. User control
ALLOWED longer accepts requests point dayfile
from new run-units. CDCS output
file
F 421 645 - ILLEGAL AREA An illegal value was Follow site~defined pro- Data base
ORDINAL received from the cedures for reporting status block
application program. software errors or opera- ZZZZZEG error
tional problems. file
User control
point dayfile
CDCS output
file
F 422 646 — RESTART The restart identifier Verify and correct the Data base
IDENTIFIER specified in a DB$ASK or old restart identifier. status block
XXXXXXKKKK FINDTRAN request is in If this does not correct User control
use by another run-unit. the problem, consult the point dayfile
This restart identifier data administrator. CDCS output
can no longer be used in file
the request.
F 423 647 ~ PFM ERROR ec The permanent file For a non-PUBLIC file Data base
ON AREA an (vm) error ec occurred while unavailable on NOS, status block
attaching the area an ensure that a PERMIT con- User control
of version vn (version trol statement specifying point dayfile
MASTER if vn does not the user name for CDCS or CDCS output
appear). CDCSBTF execution is in file
effect or that the pro-
cedure to initialize CDCS
includes a USER coantrol
statement specifying the
user name for CDCS execu-
tion. Refer to the appli-
cable permanent file error
diagnostic in volume 4 of
the NOS reference set, or
the description of the FDB
macro in the NOS/BE refer-
ence manual.
F 424 650 - PFM ERROR ec The permanent file For a non~PUBLIC file Data base
ON AREA an (vn) error ec occurred while unavailable on NOS, status block
INDEX FILE attaching the index file ensure that a PERMIT con- User control
for the area an of ver~ trol statement specifying point dayfile
sion vn (version MASTER the user name for CDCS or CDCS output
if vn does not appear). CDCSBTF execution is in file
effect or that the pro-
cedure to initialize CDCS
includes a USER control
statement specifying the
user name for CDCS execu-
tion. Refer to the appli-
cable permanent file error
diagnostic in volume 4 of
the NOS reference set, or
the description of the FDB
macro in the NOS/BE refer-
ence manual.
B~24 60485300 C

J )

J )



D)

TABLE B-1. CDCS DIAGNOSTICS

(Contd)

Dec.
E.C.

Message

Significance

Action

Destination

-« || g
[t]

425

60485300 C

651 - AREA an (vn)

DOWN

The area an of version
vn (version MASTER if vn
does not appear) cannot
be used because of phys-
ical storage failure, a.
fatal CRM error during
area processing, or be-
cause the operator gives
the area a down status.
The area can be brought
up again by issuing the
operator command UP for
the area or by reini-
tializing CDCS.

Notify the data
administrator.

Data base
status block
ZZ2Z2ZEG error
file

User control
point dayfile
CDCS output
file

B-24.1/B-24.2




BRTPN




60485300 A

TABLE B-1. CDCS DIAGNOSTICS (Contd)
T Dec.

ype E.C. Message Significance Action Destination

N 426 652 - AREA an (vn) An open was attempted on Correct and recompile the Data base
ALREADY OPEN area an of version vn application program. status block

(version MASTER if vn ZZZZZEG error
does not appear). This file

area has already been CDCS output
opened. file

T/N 427 653 - CRM ERROR The indicated CRM error Refer to the ZZZZZEG file Data base
nnn DURING op ON nnn occurred while per- and applicable CRM error status block
AREA an (vn) forming the operation op diagnostic and correct as ZZZZZEG error

on the area an of ver- noted in the CRM Advanced file

sion vn (version MASTER Access Methods reference CDCS output
if vn does not appear). manual. If the file is file

If the file is struc- structurally bad, recon-

turally bad, CDCS marks struct the file and give

the area down and does it an up status in order

not allow further access to allow access to the

to it. area.

N 428 654 -~ AREA an (vn) The indicated area an Correct and recompile the Data base

NOT OPEN of version vn (version application program. status block
MASTER if vn does not 2ZZ2ZZEG error
appear) has not been file
opened. CBCS output

file

F 429 655 — NO PROCEDURE No data base procedure Modify the master di- Data base
LIBRARY SCHEMA sn library has been defined rectory to include the status block

in the master directory procedure library speci- User control
for the indicated schema fication. point dayfile
sn. Data base proce- CDCS output
dures are specified in file

the schema definition.

F 430 656 - INSUFFICIENT A CYBER Memory Manager Manually reverse the Data base
MEMORY FOR (CMM) overflow condition updates made within any status block
ROLLBACK occurred during process- uncommitted transaction. User coatrol
SCHEMA sn ing to reverse a CDCS Increase the memory limit point dayfile

transaction. The tempo- for CDCS. CDCS output
rary updates made within file

the transaction remain

in effect. The schema

sn is set to error

status.

N 431 657 — INCORRECT The DDL record type Check that record code Data base
RECORD TYPE DURING specified on the opera- is correct for record status block
op, AREA an (vn) tion op does not match name given in the I/0 22ZZZEG error

the record type deter- statement. file
mined by the RECORD CODE CBCS output
criteria for the area file
an of version vn (ver-
sion MASTER if vn does
not appear).

N 432 660 - KEY MAPPING An illegal key value Correct the key value. Data base

: ERRCR DURING op, occurs during the oper- status block

AREA an (vn) ation op on the area ZZZ2ZEG error
an of version vn (ver- file
sion MASTER if vn does CDCS output
not appear). This could file
be a conversion error.

B-25




TABLE B-1. CDCS DIAGNOSTICS (Contd)
Type g?g: Message Significance Action Destination
F 433 661 — FDL ERROR ec The indicated FDL error Check that the data base Data base
ON DBPROC pn ec occurred while load- procedure is in capsule status block
ing the indicated data form and has been prop- ZZZZZEG error
base procedure pn. erly put in a procedure file
library. Refer to the User control
applicable FDL error code point dayfile
and correct as noted in CDCS output
the CYBER Loader refer- file
ence manual.
F 434 662 - ILLEGAL An illegal value was - Recompile program. Data base
RECORD ORDINAL received from the appli- Follow site—-defined pro- status block
cation program. cedures for reporting ZZZZZEG error
software errors or opera- file
tional problems. User control
point dayfile
CDCS output
file
N 435 663 - DEADLOCK ON CDCS has unlocked all Provide appropriate code Data base
AREA an (vn) locks held by the to handle recovery from status block
program. a deadlock. 2ZZ22EG error
file
CDCS output
file
N 436 664 - ILLEGAL The CDCS locking mecha- Issue a READ statement Data base
REQUEST ON AREA nism requires that the in the program or lock status block
an (vn), READ indicated operation op the entire area using 2Z2Z7ZEG error
OR FILE 1LOCK (REWRITE or DELETE) be either the C.LOK or the file
REQUIRED BEFORE op preceded by a READ DBSLKAR routine in COBOL CDCS output
statement or a file or the IML LOCK state- file
lock to lock the record ment in FORTRAN.
for area an version vn
(version MASTER if vn
does not appear).
F 437 665 - PRIVACY The correct access con- A USE FOR ACCESS CONTROL Data base
BREACH ATTEMPT trol key to gain access procedure must be coded status block
to a given area was not in the COBOL program, a ZZZZZEG errvor
supplied. DML PRIVACY statement file
nust be coded in the User control
FORTRAN program, or an point dayfile
ACCESS directive must be CDCS output
entered to Query Update file
to supply the correct
privacy key.
F 438 666 - ERROR IN The RESTRICT clause in Correct data name and Data base
RELATION DATA NAME the subschema references recompile the application status block
DEFINITION an improperly defined program. If problem ZZZZZEG error
data name in the appli- persists, follow site- file
cation program. defined procedures for User control
reporting software errors point dayfile
or operational problems. CDCS output
file
N 439 667 - BAD RECTYPE The record type supplied Correct the RECORD CODE Data base
CODE VALUE by the VALUE option does information in the schema status block
not match one of the or the value stored in 2222ZEG error
values expected by CDCS. the record in the appli- file
cation program. CDCS output
file
B-26 60485300 A

J D)

J )



RED

)

TABLE B-1. CDCS DIAGNOSTICS (Contd)
Dec.
Type E.C. Message Significance Action Destination
N 440 670 -~ CANNOT The record type of the Check that the record Data base
CHANGE REC TYPE ON data base record, as code on the operation is status block
op, AREA an (vn) determined by the RECORD the same as the original. 2Z2Z2ZEG error
CODE criteria, cannot be file
modified during the in- CDCS output
dicated operation op for file
the area an of version
vn (version MASTER if vn
does not appear).
F 441 671 - ILLEGAL An illegal value was Recompile program. If Data base
RELATION ORDINAL received from the appli- problem persists, follow status block
cation program. site-defined procedures 2ZZ22EG error
for reporting software file
errors or operational User control
problems. point dayfile
CDCS output
file
N 442 672 - BAD RECTYPE The record type supplied Correct the data base Data base
FROM DBPROC pn by the indicated data procedure or the value status block
base procedure pn does stored in the record. ZZ27ZZEG error
not match one of the file
values expected by CDCS. CDCS output
file
N 443 673 - op ABORT BY Data base procedure pn Check that data base Data base
DBPROC pn specified the indicated procedure is being used status block
operation op should be correctly. ZZZZZEG error
aborted. Error might be file
intentional. CDCS output
file
F 444 674 ~ RUN UNIT Data base procedure pn Check that data base Data base
ABORT (DURING op) specified that the procedure is being used status block
BY DBPROC pn application program correctly. 2Z2ZZEG error
should be aborted during file
the indicated operation User control
op. DURING op does not point dayfile
appear if the data base CDCS output
procedure was called on file
an error.
N 445 675 - RECORD A record mapping error Correct the value of the Data base
MAPPING ERROR occurred on the indi- item to be converted. status block
DURING op ON cated record rn during 2ZZZZZEG error
RECORD rn the specified operation file
op. The value of an CDCS output
item could not be con- file
verted or a data valida-
tion error occurred on
that item (data stored
into the item does not
satisfy requirements in
the CHECK clause). No
data is transferred to
or from the program
working storage area.
The subschema ordinal
of the item in error is
returned in the auxil-
iary status word of the
data base status block.
60485300 A B-27




TABLE B-1. CDCS DIAGNOSTICS (Contd)
Type gfg: Message Significance Action Destination
F 446 676 - BAD RETURN The indicated data base Change the procedure to Data base
CODE FROM DBPROC procedure pn supplied a return a valid return status block
pn return code other than code. ZZZZZEG error
0, 1, or 3. file
User control
point dayfile
CDCS output
file
F 447 677 - DBPROC pn The indicated data base Check that data base pro- Data base
NOT DEFINED FOR procedure pn cannot be cedure is in the correct status block
SCHEMA sn found in the data base library and that the 1li- ZZZZZEG error
procedure library for brary has been specified file
the schema sn. in the master directory User control
entry for the particular point dayfile
schema. CDCS output
file
F 472 730 - CDCS An error occurred read- Correct the problem caus- Data base
TRANSACTION ing the CDCS transaction ing the I/O error. Man- status block
RECOVERY FILE recovery file while uvally reverse the updates User control
I1/0 ERROR processing to reverse a made within the uncom- point dayfile
DURING ROLL CDCS transaction. The mitted transaction. CDCS output
BACK, - SCHEMA temporary updates made file
DOWN within the transaction
. remain in effect. The
schema is set to error
status.
F 474 732 - CDCS SYSTEM The requested function Notify the data adminis- Data base
FILE I-0 ERROR was not performed be- trator who has specific status block
cause of a CIO or CRM information about the User control
error on one of the CDCS error. point dayfile
logging files. CDCS output
file
N 475 733 - INQUIRE An attempt was made to Assume the user job that Data base
TRANSACTION find the CDCS trans- was using the restart status block
RESTART IDENTIFIER action identifier asso- identifier has terminated User control
ridname UNKNOWN clated with the restart normally. point dayfile
TO CDCS identifier of a job that CDCS output
has terminated normally. file
Because the job termi-
nated normally, the re-
gtart identifier cannot
be found.
I num CMM OVERFLOW The 6-digit number num Usually none. If an ex- CDCS system
CALLS MADE indicates the number of cessive number occurred, control point
CMM overflow calls that the data administrator dayfile
occurred during CDCS should consider increas-
processing. A large ing the maximum field
number indicates exces- length for CDCS.
sive overhead.
1 num MAXIMUM SCM The 6-digit number num None. CDCS system
WORDS USED indicates the maximum control point
nunber of central memory dayfile
words used by CDCS.
B-28 60485300 A

JJ

J )



FORTRAN-DML DIAGNOSTIC
MESSAGES

All diagnostic messages that can be issued by the
DML preprocessor are listed in table B-2. Messages
are listed in numeric order according to the error
code associated with the message. The general
significance of the diagnostic message and the
action to be taken by the user accompany each
message listed in the table.

Messages are written to the local file named by the

Fatal error. DML cannot process the
statement or routine in which the error

occurs. Unresolvable semantic errors
also fall into this category. DML
continues processing with the next
statement.

Warning error. The syntax of the DML
statement or routine is incorrect, but
ML has been able to recover by making
an assumption about what was intended.
Processing continues.

E parameter of the DML control statement.

These

messages are of the following types:

T Trivial error.

The syntax or usage of

C Catastrophic error. Compilation cannot the DML statement or routine is correct,
continue. DML advances to the end of but it is questionable. Processing
the current program unit and attempts continues.
to process the next program unit.

TABLE B-2. FORTRAN DML DIAGNOSTICS
g:;:r Message Severity Significance Action
100 EMPTY INPUT FILE C The input file is empty and Create a new file and
processing is terminated. resubmit the program.
101 LEFT PARENTHESIS MISSING F A left parenthesis was ex- Correct the error and
pected but not found. resubmit the program.
102 INVALID SUBSCHEMA NAME F The specified subschema name Correct the error and
does not conform to naming resubmit the program.
conventions.
103 RIGHT PARENTHESIS MISSING F A right parenthesis was ex- Correct the error and
pected but not found. resubmit the program.
104 EXTRANEOUS DATA FOLLOWING F Data was found beyond the end Correct the error and
RIGHT PARENTHESIS of a statement. resubmit the program.
105 NO INVOKE STATEMENT F An INVOKE statement must be Correct the error and
WAS FOUND IN PRECEDING included in each program unit resubmit the program.
PROGRAM UNIT that contains DML statements.
107 MODE=0 INVALID ON OPEN F The mode option must be I or Correct the error and
RELATION I0 for an OPEN relation. resubmit the program.
108 UNKNOWN SOURCE WORD F The DML preprocessor is unable Correct the error and
to interpret the statement. resubmit the program.
109 INVALID MODE F The mode must be I, I0, or O. Correct the error and
resubmit the program.
110 EQUAL SIGN MISSING F An equal sign was expected but Correct the error and
not found. resubmit the program.
111 SUBSCHEMA NOT AVAILABLE F The subschema could not be Sfecify the correct
found in the specified library. library and resubmit.
112 EXTRANEOUS DATA IN F DML does not recognize the item Correct the error and
PARAMETER LIST following the equal sign in a resubmit the program.
keyword specification such as
END=, ERR=, KEY=, or MODE=.
113 KEY PARAMETER MISSING F The keyword KEY was expected Correct the error and
but not found. resubmit the program.

60485300 A

B-29



TABLE B-2. FORTRAN DML DIAGNOSTICS (Contd)

Error
Code

Significance

Action

114

115

116

117

118

119

121

122

123

124

125

126

127

128

B-30

Message Severity
INVALID RELATIONAL F
OPERATOR
INVALID ITEM NAME F
ITEM IS NOT DEFINED AS A F
KEY FOR THIS REALM
PERIOD MISSING F
INTERNAL DML ERROR C
COMMA OR RIGHT PARENTHESIS F
NOT FOUND
PRIVACY TYPE MUST BE F
LITERAL OR ARRAY NAME
INVALID PARAMETER F
DUPLICATE PARAMETER F
PRIVACY PARAMETER LITERAL F
IS GREATER THAN
30 CHARACTERS
PRIVACY PARAMETER NOT F
SPECIFIED
INSUFFICIENT FIELD [
LENGTH - DML ABORTED
DML, LANGUAGE VERSION (LV) F
DIFFERS FROM SUB-SCHEMA
INVALID FORTRAN LABEL F

The relational operator is
missing or is invalid.

The item name does not conform
to FORTRAN naming conventions.

The item is not defined as a
key in the schema.

A period was expected but not
found.

This 1s an internal error.

A comma or right parenthesis
was expected but not found.

The privacy key must be speci-
fied for FORTRAN 5 as a char-
acter constant, variable, or
3-word array.

The specified parameter is not
valid in this statement.

The same parameter cannot be
specified more than once.

The privacy literal must be 30
or fewer characters.

The keyword privacy= followed
by the privacy key is required.

Not enough field length was
specified to complete pre-
processing. The job is
aborted.

A subschema and a FORTRAN DML
applications program must
gspecify the same version of
FORTRAN. For example, when a
subschema  is compiled with F5
specified in the DDLF control
statement, application programs
that use that subschema must
specify LV=F5 in the DML con-
trol statement.

The END=s and ERR=s parameters
must specify a valid statement
label (any 1- through 5~digit
positive nonzero integer).

Correct the error and
resubmit the program.

Correct the error and
resubmit the program.

Specify the correct
key or update the
schema.

Correct the error and
resubmit the program.

Follow site~defined

procedures for report-

ing software errors
and operational
problems.

Correct the error and
resubmit the program.

Correct the error and
resubmit the program.

Correct the error and
resubmit the program.

Correct the error and
resubmit the program.

Correct the error and
resubmit the program.

Correct the error and
resubmit the program.

Use the RFL control
statement to increase
field length.

Correct the error and
resubmit the program.

Correct the error and
resubmit the program.

60485300 D

J )



TABLE B-2. FORTRAN DML DIAGNOSTICS (Contd)
g;ggr Message Severity Significance Action
|—— — —_— ]

129 END= IS NOT VALID IN F The parameter END= is allowed Correct the error and
FORTRAN 4 only in FORTRAN 5. resubmit the program.

130 ERR= IS NOT VALID IN F The parameter ERR= is allowed Correct the error and
FORTRAN 4 only in FORTRAN 5. resubmit the program.

131 TRANSACTION PARAMETER NOT F The variable used in the DML Correct the error and
VALID FORTRAN NAME statement for transaction recompile the program.

processing does not conform
to FORTRAN naming conventions.

132 TRANSACTION IDENTIFIER F The literal used in the DML Correct the error and
EXCEEDS 10 CHARACTERS statement for transaction recompile the program.

processing must be 10 char-
acters or less.

133 VERSION PARAMETER NOT F The variable that specifies Correct the error and
VALID FORTRAN NAME version name does not conform recompile the program.

to FORTRAN naming conventions.

134 VERSION-NAME EXCEEDS 7 F The version name must be 7 Correct the error and
CHARACTERS characters or less. recompile the program.

135 LOCK TYPE PARAMETER NOT F The variable that specifies the Correct the error and
VALID FORTRAN NAME lock type does not conform to recompile the program.

FORTRAN naming conventions.

136 LOCK TYPE LITERAL IS F The lock type literal is in- Correct the error and
INVALID ~ SHOULD BE EITHER valid. Valid values are either recompile the program.
EXCLUSIVE OR PROTECTED exclugive or protected.

137 RESTART IDENTIFIER NOT F The variable that specifies the Correct the error and
VALID FORTRAN NAME restart identifier does not recompile the program.

conform to FORTRAN naming
conditions.

138 ITEM IN MAJOR KEY IS F A data item in the major key is Correct the error and
INVALID not valid. The item is not recompile the program.

contiguous or is not the first
item of the concatenated key.

60485300 C

B~31






)

GLOSSARY C

—m

The glossary contains terms unique to the descrip-
tion of the components of DMS-170 and terms common
within the data processing industry that have
special connotations within the context of DMS-170.

AAM -
See Advanced Access Methods.

Access Control -
Protection of data from unauthorized access or
modification. Also called privacy.

Access Control Rey -
The value an application program must supply to
CDCS in order to gain access to a particular
data base area. Also called a privacy key.

Access Control Lock -
The value associated with a data base area
which must be known by the application program
if the program is to gain access to the area.

Actual Item -
An item for which the value is materialized
when the record is stored or wupdated. The
value is determined by a data base procedure
and is physically stored in the record.

Actual Key -~
A file organization in which records are iden-
tified by system—assigned keys.

Advanced Access Metheds (AAM) -
A file manager that processes indexed se-
quential, direct access, and actual key file
organizations and supports the Multiple-Index
Processor. See CYBER Record Manager.

After-Image -
A copy of a data base record after it has been
updated. Contrast with Before-Image.

Alias -
A data name used in a COBOL or Query Update
subschema in place of a schema data name; a
data item used in a FORTRAN subschema in place
of a schema data name.

Alphanumeric -
Any character in the computer character set
defined in appendix A.

Alternate Key -
A data item for which the value can be used to
randomly access a record in a CRM file.

Application Program -
A COBOL program, a FORTRAN program, or a Query
Update application that interfaces with CDCS.
The FORTRAN source program must have DML state-~
ments that provide for the CDCS interface.

Area -
A uniquely named schema data base subdivision
that contains data records; identified in the
subschema as a realm; associated in the master
directory with at least one permanent file.

60485300 A

Array -
A data item consisting of a set of elements of
the same type that is defined by a single name;
FORTRAN subschema data structure. See Elemen-
tary ltem.

Attach -
The process of making a permanent file accessi-
ble to a job by specifying the proper permanent
file identification and passwords.

Automatic Recovery -
CDCS initiated recovery operations that make a
data base usable and consistent after some type
of software or hardware failure.

Backup Dump -
A copy of all or selected portions of a data
base, which is produced on a regularly scheduled
basis for the explicit purpose of data base
recovery.

BAM -
See Basic Access Methods.

Basic Access Methods (BAM) -
A file manager that processes sequential and
word addressable file organizations. See CYBER
Record Manager.

Batch Test Facility -
An absolute program residing on the CDCS system
library that allows CDCS to run at the same
control point as a user program.

Before~Image -
A copy of a data base record before it has been
updated. Contrast with After-Image.

Beginning~of-Information (BOI) -
As defined by CRM, the start of the first
user record in a file. System-supplied infor-
mation, such as an index block or control word,
does not affect beginning-of-information. Any
label on a tape exists prior to beginning-of-
information.

Block -
On tape, information between interrecord gaps
on a tape. CRM defines several blocks depend-
ing on file organization, as shown in table C-1.

TABLE C-1. BLOCK TYPES

Organization Blocks

Indexed sequential Data block; index block

Direct access Home block; overflow block

Actual key Data block

Sequential Block type I, C, K, E




Cascade Effect -
A phenomenon causing the indirect propagation
of erroneous data in a data base. Erroneous
data is processed by a properly functioning
program and made part of another previously
correct record.

CDCS -
See CYBER Database Control System.

Checksum -

A one-word attribute generated by DDL for each
area and relation in a schema and for each
subschema. Checksums are stored in the schema
and subschema directories, and in the master
directory. CDCS references them to check the
validity of using a previously compiled sub-
schema with the current schema or of using a
previously compiled application program with a
current subschema.

Child Record Occurrence -
A record occurrence that has another record
occurrence (the parent record occurrence) at
the next numerically lower rank in a hier-
archical tree structure of the relation.
Contrast with Parent Record Occurrence.

Compression —
The process of condensing a record to reduce
the amount of storage space required. Com-—
pression can be performed by either a system—
supplied or a user-supplied routine. Contrast
with Decompression.

Concurrency —
Simultaneous access to the same data in a data
base by two or more application programs during
a given span of time.

Condensed Schema/Subschema Table (CST) -
A table comprised of information from the
schema and subschema directories. A CST is
part of the master directory and is generated
for every schema and subschema combination.

Constant -
A fixed value, explicitly written in a source
statement. In a FORTRAN subschema, the term
corresponds to a literal in the schema.

Constraint -

A control imposed on records in interdependent
files or on items in a single file for the
purpose of protecting the integrity of data in
a data base during update operations. A con-
straint is defined in the schema and is based
on common data items in the records or within a
record.

Control Break -
A condition during a relation read which signi-
fies that a new record occurrence was read for
the parent file.

Control Word -

A system—-supplied word that precedes each W
type record in storage.

Conversion -
The process of changing data characteristics
between the schema and the subschema.

CRM -
See CYBER Record Manager.

CYBER Database Control System (CDCS) -
The DMS-170 controlling module that provides
the interface between an application program
and a data base.

CYBER Record Manager (CRM) -

A generic term relating to the common products
BAM and AAM, which run under the NOS and NOS/BE
operating systems and allow a variety of record
types, blocking types, and file organizations
to be created and accessed. The execution time
input/output of COBOL, FORTRAN, Sort/Merge 4,
Sort/Merge 5, ALGOL, and the DMS-170 products
is implemented through CRM. Neither the input/
output of the NOS or NOS/BE operating systems
themselves nor any of the system utilities such
as COPY or SKIPF is implemented through CRM.
All CRM file processing requests ultimately
pass through the operating system input/output
routines.

Data Administrator -~
A person or a group who defines the format and
organization of a data base and is responsible
for maintaining and monitoring a data base.

Data Base -
A systematically organized, central pool of
information; organization is described by a
schema.

Data Base Procedure -
A special-purpose routine that '~ performs a
predefined operation; its use is specified in a
schema and is initiated by CDCS.

Data Base Status Block -
An area of memory defined within an application
program to which CDCS returns information con-

cerning the status of operations on data base
files and relations. The status block is up-
dated after each CDCS operation.

Data Base Transaction -
See Transaction.

Data Base Version -

A set of data files that is described by a
schema. Data base versions are defined in the
master directory. When data base versions are
used, a schema (the description of the data
base) can be used with more than one set of
files (each set of files being a data base
version).

Data Description Language (DDL) -
The language used to structure a schema and a
subschema.

Data Integrity -
Validity of data. Checking the validity of
data items on a data base update can be per-
formed by means of the CHECK clause or data

base procedures.

Data Item -

Smallest unit of data within a record; can be
an elementary or group data item (for FORTRAN,
an elementary item only).

60485300 A

J )

J J



f@*\
€ﬁ¢\

Data Manipulation Language (DML) -

A language, patterned after application language
statements, that provides access to the data
base. In the DMS-170 environment, DML is a
part of COBOL statements; FORTRAN DML state-
ments must be incorporated in a FORTRAN source
program and translated by the DML preprocessor
into statements acceptable to the FORTRAN
compiler.

Data Name -

Used in a schema, in a COBOL or Query Update
subschema, and in a COBOL or Query Update
application program; a name identifying a group
or elementary data item in the data base; can
contain up to 30 letters, digits, or embedded
hyphens, but must contain at least one letter.
Similar to item name.

Deadlock -
A situation that arises in concurrent data base
access when an application programs is contend-
ing for a resource that 1is locked by another
program, and neither program can proceed with-
out that resource.

Decompression -
The process of expanding a compressed record to
restore it to its original size. The user can
supply a decompression routine or use a system-
supplied routine. Contrast with Compression.

Dependent Record Occurrence -
A record occurrence that is the dependent
‘member of a condition defined by a constraint.
Contrast with Dominant Record Occurrence.

Direct Access -
In the context of CRM, one of the five file
organizations, It is characterized by the
system hashing of the unique key within each
file record to distribute records randomly in
blocks called home blocks of the file.

In the context of NOS permanent files, a direct
access file is a file that is accessed and
modified directly, as contrasted with an in-
direct access permanent file.

Directed Relationship -
The logical relatiomal structure that defines
the specific order in which the files in a
relation are traversed and the order in which
the record occurrences are retrieved. The
relational structure is formed by the join
terms declared in the schema.

Directory -
A file that contains area and record attributes
of the data base; created when the schema or
subschema 1is compiled; an object schema or
subschema.

Dominant Record Occurrence -
A record occurrence that is the dominant member
of a condition defined by a constraint. Con-
trast with Dependent Record Occurrence.

Duration Loading -
A procedure that allows certain CDCS overlay
capsules and CRM capsules to be loaded during
CDCS initialization and kept in memory during
the entire execution time of CDCS. Performance

60485300 B

is improved in situations of heavy usage by
avoiding memory fragmentation and the extra
time that occurs when the capsules are each
loaded as they are used.

Elementary Item -

A data item that is not subdivided into other
data items. An elementary item that is part of
a group item has the highest level number in
the group item. A nonrepeating elementary item
in the schema corresponds to a variable in a
FORTRAN subschema; a repeating elementary item
corresponds to an array.

End-of-Information (EOI) -

Defined by CRM in terms of the file organization
and file residence as shown in table C-2.

TABLE C-2. END~OF-INFORMATION BOUNDARIES

File File Physical
Organization Residence Position
Sequential Mass storage After the last

user record.

After the last
user record and
before any file
trailer labels.

Labeled tape
in 8I, I, S,
or L format

Unlabeled
tape in SI
or I format

After the last
user record and
before any file
trailer labels.

Unlabeled Undefined.
tape in S or
L format
Word Mass storage After the last
Addressable word allocated
to the file,
which might be
beyond the last
user record.
Indexed Mass storage After the record
Sequential, with the highest
Actual Key key value.
Direct Mass storage ‘After the last
Access record in the

most recently
created overflow
block or home
block with the
highest relative
address.

Figurative Constant -
A fixed value with a predefined name.

File -
A collection of records treated as a unit; an
area in the schema; a realm in the subschema.

Fixed Occurrence Data Item -
A data item that is repeated the same number of
times in all records. :



Floating Point Literal -
A string of digits with a decimal point and an
optional exponent.

Flushing -
A process of force writing log file and data

buffers.

FORM -
A general-purpose file management utility for
manipulating recorde and creating and convert-
ing files.

FORTRAN DML -
See Data Manipulation Language.

Group Item -
A data item that is subdivided into other data
items; a collection of data items. Group items
cannot be referenced in a FORTRAN subschenma.

Hierarchical Tree Structure -
A representation that commonly illustrates
record occurrences for files joined in a di-
rected relation. The root of the tree is a
record occurrence in the root file and each
successive level represents the record occur-
rences in each joined file.

Home Block -
Mass storage allocated for a file with direct
access organization at the time the file is
created.

Identifier -
A data name that is referenced uniquely through
a combination of subscripts and qualifiers;
used in a schema and COBOL and Query Update
subschemas.

Indexed Sequential -
A file organization in which records are stored
in ascending order by key.

Interrelated Files -
Those data base files that are connected through
a relation defined in the schema using join
terms.

Invocation -

Preparation by CDCS to handle input/output
requests from application programs. The invo-
cation call is generated by the COBOL compiler,
by the FORTRAN DML INVOKE statement, or by Query
Update when executing particular directives.
The invocation call must occur prior to any
other CDCS processing requests.

Item Name -
Used in a FORTRAN subschema or application
program; a name identifying an elementary item
in the data base; can contain up to seven
letters or digits; must begin with a letter.
Similar to data name.

Join Terms -

The identifiers that are used to join two files
in a relation.

C-4

Joining Files -
The logical linkage of one file to another in a
relation through the use of data items called
join terms or identifiers.

Journal Log File -
An independent sequential permanent file (not a
data base area) assigned for the purpose of
collecting designated information to be used to
reconstruct or restore a data base.

Keyword -
A reserved word that is required in a source
program clause of a schema, of a COBOL or Query
Update subschema, or as input to a data base
utility; a word that is required in a source
program statement of a FORTRAN subschema.

Level -
For system-logical-records, an octal number 0
through 17 in the system-supplied 48-bit marker
that terminates a short or zero-length PRU.

Level Number -
Used in a schema and in a COBOL or Query Update
subschema; a number defining the structure of
data within a record; if not specified in data
description entry in a schema, level number 0l
is assumed by default.

Literal -
A constant completely defined by its own iden-
tity; called a constant in a FORTRAN subschema.

Local File Name- .
The 1 to 7 display code alphabetic or numeric
characters by which the operating system recog-
nizes a file. Every local file name in a job
must be unique and begin with a letter.

Logging -
The facility of CDCS through which historical
records are kept of operations performed by
users on data base areas. Logging information
is used in data base recovery and restoration
operations.

Logical Record -
Under NOS, a data grouping that consists of one
or more PRUs terminated by a short PRU or zero-
length PRU. Equivalent to a system~logical-
record under NOS/BE.

Mapping -
The process by which CDCS produces a record or
item image conforming to the schema or sub-
schema description.

Master Directory -
A file containing information used by CDCS in
processing. This ioformation comsists of
schema and subschema tables, media parameters,
and data base procedure library and logging
specifications.

Nested Group Item -
A group item that is subordinate to another
group item. Up to three levels of nested
groups can be gpecified in a schema.

60485300 A

J )

J )



6@5\
ﬁﬁﬁa

D)

Noise Record -
The number of characters the tape drivers
discard as being extraneous noise rather than a
valid record. Value depends on installation
settings.

Nonrepeating Group Item -
A COBOL subschema data item that contains
subordinate data items. This group item occurs
only once in each record occurrence; used to
identify a series of related data items.

Null Record Occurrence -
A record occurrence composed of the display
code right bracket symbol in each character
position. It is used in a relation occurrence
to denote that no record occurrence qualifies
or that a record occurrence does not exist at a
given level in the relatiom.

Operation -
A particular function performed on units of
data; for instance, opening or closing an area,
or storing or deleting a record.

Overflow Block -
Mass storage the system adds to a file with
direct access organization when records cannot
be accommodated in the home block.

Overlay Capsules -
A special type of capsule called OVCAP, designed
for use with overlays, and called into memory
by an overlay (see Duration Loading).

Parent Record Occurrence -
A record occurrence that has another record
occurrence at the next numerically higher rank
in a hierarchical tree structure of the rela-
tion. Contrast with Child Record Occurrence.

Partition -
As defined by CRM, a division within a file
with sequential organization. Generally, a
partition contains several records or sections.
Implementation of a partition boundary is
affected by file structure and residence, as
shown in table C-3.

Notice that in a file with W type records, a
short PRU of level 0 terminates both a section
and a partition.

Permanent File -
A file on a mass storage permanent file device
that 1is protected against accidental destruc-
tion by the system and can be protected against
unauthorized access or destruction.

Physical Record Unit (PRU) -
Under NOS and NOS/BE, the amount of information
transmitted by a single physical operation of a
specified device (see table C~4).

A PRU that is not full of user data is called a
short PRU; a PRU that has a level terminator
but no user data 1is called a zero-length PRU.

Primary Key -
A key that must be defined for an indexed
sequential, direct access, or actual key file
when the file is created. Random access of a
record depends on the use of the primary key.

Privacy -
See Access Control.

60485300 B

TABLE C-3.

PARTITION BOUNDARIES

Device

Record
Type
(RT)

Block
Type Physical Boundary
(BT)

PRU
device

1 A short PRU of
level 0 containing
a one-word deleted
record pointing
back to the last 1
block boundary,
followed by a con-
trol word with a
flag indicating a
partition boundary.

c A short PRU of
level 0 containing
a control word
with a flag indi-
cating a partition
boundary.

c A short PRU of
level O followed by
a zero-length PRU
of level 17 octal.

- A zero-length PRU
of level number 17
octal.

Sorl
format
tape

I A geparate tape
block containing as
many deleted rec-
ords of record
length 0 as re-
quired to exceed
noise record size,
followed by a de-
leted one-word
record pointing
back to the last I
block boundary,
followed by a con-
trol word with a
flag indicating a
partition boundary.

C A separate tape
block containing as
many deleted rec-
ords of record
length 0 as re-
quired to exceed
noise record size,
followed by a con-
trol word with a
flag indicating a
partition boundary.

C,K,E A tapemark.

- A tapemark.

Any
other
tape
format

- Undefined.

Cc-5




TABLE C-4. PRU SIZES

Size in Number

Device of 60-Bit Words
Mass storage (NOS and _ 64
NOS/BE only).
Tape in SI format with 128
coded data (NOS/BE only).
Tape in SI format with 512
binary data.
Tape in I format (NOS 512
only).

Tape in any other format. Undefined.

Privacy Key -
The value an application program must supply to
CDCS 1in order to gain access to a particular
data base area. Also called an access control
key.

Procedure Library -
A permanent file containing the data base
procedure referenced in a schema.

PRU Device -
Under NOS and NOS/BE, a mass storage device or
a tape in SI or I format, so called because
records on these devices are written in PRUs.

Qualification -
The method whereby a nonunique name can be made
unique. If the name exists within a hierarchy
of names, it can be made unique by mentioning
one or more of the higher levels (normally the
record name) of the hierarchy.

Qualifier Identifier -
A data item that restricts which record occur-
rences are to be retrieved when reading a
relation. It is specified in the subschema.
This data item can be the same data item speci-
fied as a join field in the schema.

Quick Recovery File -
A random permanent file used internally by CDCS
to restore the structural integrity of the data
base. It contains a copy of all data blocks
for a data base which have been updated since
the last recovery point.

Random File -

In the context of CRM, a file with word address—
able, indexed sequential, direct access, or
actual key organization in which individual
records can be accessed by the values of their
keys; in the context of the NOS and NOS/BE
operating systems, a file with the random bit
set In the file environment table in which
individual records are accessed by their rela-
tive PRU numbers.

Rank -
The rank of a file in a DMS-170 relation corre-
sponds to the position of the file im the schema
definition of the relation. The ranks of the
files joined in a relation are numbered comsecu-
tively, with the root file having a rank of 1.

Realm -
A uniquely named DMS-170 subschema data base
subdivision that contains data records; identi-
fied in the schema as an area; a file.

Realm Ordinal -
A unique identifier assigned to each realm in a
DMS-170 subschema when the subschema is com~
piled. Realm ordinals for a FORTRAN subschema
are used in conjunction with the FORTRAN status
variables.

Reconstruction -
Re-creation of all or specified portions of a
DMS-170 data base utilizing a backup dump of
the data base and the after-—image record entries
from the journal log file.

Record -
As defined by CRM, a group of related charac-
ters. A record or a portion thereof is the
smallest collection of information passed
between CRM and a user program. Eight differ-
ent record types exist, as defined by the RT
field of the file information table.

For CDCS processing, a record is equivalent to
a record occurrence.

Other parts of the operating systems and their
products can have additional or different
definitions of records.

Record Code -
A unique value that identifies a specific
record type in an area with multiple record
types. The value is either contained in a data
item in the record or derived by execution of a
data base procedure.

Record Mapping -
See Mapping.

Record Occurrence —
The actual data base record, which conforms in
the data base file to a record type described
in the schema and conforms for use in the
application program to the record description
in the subschema.

Record Qualification -
The method used to restrict which records
are to be returned to the user by specifying
criteria that must be satisfied by a record
occurrence. Record qualification 1is allowed
only for relation reads.

Record Type -

A term that can have one of several meanings,
depending on the context. CRM defines eight
record types established by an RT field in the
file information table. A Tables output by the
loader are classified as record types such as
text, relocatable, or absolute, depending on
the first few words of the tables.

In DDL, record type is defined in the record
description entry of the schema. It is a
description of the attributes of a record and
the items included in the record which serves
as a template by which record occurrences are
interpreted; an arbitrary number of record
occurrences can exist for each record type.

60485300 A

JJ

o

J )



Recovery -
A process that makes a data base useful after
some type of software or hardware failure has
occurred.

Recovery Point -

A user-generated or system-generated point to
which CDCS guarantees recovery with no loss of
data. User-generated recovery points are ini-
tiated by COBOL calls to DB$RPT, by FORTRAN
calls to DMLRPT, or by transmission of the Query
Update directive RECOVERY. System-generated
recovery points are initiated by CDCS when
certain conditions occur, such as a full quick
recovery file, a termination of the CDCS inter-
face by a user program, or the committing of a
data base transaction.

Relation -
The logical structure formed by the joining of
files for the purpose of allowing an applica-
tion program to retrieve data from more than
one file at the same time. The structure is
declared in the schema and is based on common
identifiers in the files.

Relation Occurrence -
The logical concatenation of a record occur-—
rence from each record type specified in the
relation. Each read of the relation yields a
relation occurrence. The rvrecord descriptions
of the records that compose the relation occur-
rence are contained in the subschema.

Relational Data Base -
A data base of files joined in relations through
data item identifiers.

Repeating Group -
A collection of data items which occurs a
number of times within a record occurrence; can
consist of elementary items, group items, and
vectors; cannot be referenced in a FORTRAN
subschema.

Restart Identifier
A unique identifier for a run-unit that is
maintained by CDCS for program restart opera-
tions in transaction processing.

Restart Identifier File
A random permanent file used internally by CDCS
to support program restart operations for
programs that request a restart identifier.

Restoration -
Resetting of a data base to a previous state by
applying the before-image record entries from
the journal log file to the data base in its
current state.

Result Item -

An item whose value is determined by a data
base procedure. The time at which the value is
determined depends on whether the item is an
actual or virtual result item. The value of
the item is generated by a data base procedure
operating on the value of other items in the
same record.

60485300 A

Root File -
The file that has the rank 1 in a relation; its
record occurrences are pictured at the root of
a tree in a hierarchical tree structure.

Run-Unit -

In the CDCS Enviromment, the execution of a
user job at a control point. The user job
becomes a run-unit at invocation and ceases to
be a run-unit at termination. The user job can
be an application program (a main program with
associated subprograms), a Query Update appli-
cation, or a sequence of TAF tasks.

Schema -
A detailed description of the internal structure
of a data base.

Schema Identification Entry -
A schema source program statement that assigns
a name to the schema.

Section -
As defined by CRM, a division within a file
with sequential organization. Generally, a
section contains more than one record and is a
division within a partition of a file. A
section terminates with a physical representa-
tion of a section boundary (see table C-5).

The NOS and NOS/BE operating systems equate a
section with a system-logical-record of level 0
through 16 octal.

Sequential -
A file organization in which records are stored
in the order in which they are generated.

Short PRU -
A PRU that does not contain as much user data
as the PRU can hold and is terminated by a
system terminator with a level number.

Under NOS, a short PRU defines EOR; under
NOS/BE, a short PRU defines the end of a system-
logical-record. In the CRM context, a short
PRU can have several interpretations depending
on the record and blocking types.

Source Data Item -
The data item received by CDCS. For a CRM GET
function, the data item is in the schema format;
for a CRM STORE function or REWRITE functionm,
the data 1item is in the subschema format.
Contrast with Target Data Item.

Source Identifier -
An identifier that links a parent record type
in one file to a child record type in another
file in a relation.

Subschema -
A detailed description of the portion of a data
base to be made available to one or more appli-
cation programs.



TABLE C-5.

SECTION BOUNDARIES

Device

Record
Type
(RT)

Block
Type
(BT)

Physical
Representation

PRU
device

A deleted one-word
record pointing
back to the last I
block boundary
followed by a con-
trol word with
flags indicating a
section boundary.
At least the con-
trol word is in

a short PRU of
level O.

A control word with
flags indicating a
gection boundary.
The control word

is in a short PRU
of level O.

A short PRU with a
level less than
17 octal.

Undefined.

SorlL
format
tape

Huo
o
N

wn

C K,E

A separate tape
block containing
as many deleted
records of record
length O as re-
quired to exceed
noise record size,
followed by a de-
leted one-word
record pointing
back to the last I
block boundary,
followed by a con-
trol word with
flags indicating a
section boundary.

A separate tape
block containing
as many deleted
records of record
length 0 as re-
quired to exceed
noise record size,
followed by a con-
trol word with
flags indicating a
section boundary.

Undefined.

Undefined.

Any
other
tape
format

Undefined.

c-8

Subschema Item Ordinal -

A unique identifier within a record assigned to
each item in a subschema when the subschema is
compiled. Subschema item ordinals are used in
conjunction with the data base status block.

Subschema Library -

A permanent file containing one or more sub-
schemas.

System-Logical-Record -

Under NOS/BE, a data grouping that consists
of one or more PRUs terminated by a short PRU
or zero-length PRU. These records can be
transferred between devices without 1loss of
structure.

Equivalent to a logical record under NOS.

Equivalent to a CRM S type record.

Target Data Item -

The data item transferred by CDCS. For a CRM
GET function, the data item is in the subschema
format; for the CRM STORE or MODIFY function,
the data item is in the schema format. Contrast
with Source Data Item.

Target Identifier -

An identifier in a child record type which must
be identical to the source identifier in the
parent record type for two files in a relation
to be joined.

Transaction -

A series of update operations identified by a
user—assigned transaction identifier. A trans-
action 1s bracketed by a begin transaction
operation and either a commit or drop operation.

Transaction Facility (TAF) -

A network product that controls transaction
processing, called TAF-transaction processing
in this manual. See Transaction Processing.

Transaction Processing-

In the context of CDCS, a process that provides
control for interrelated updates to data base
files by means of a transaction; also provides
a program restart capability which can be used
for restarting an application program after a
system failure.

In the context of TAF (called TAF-transaction
processing in this manual), a manipulation of a
data base by high speed handling or repetitive
executions of a relatively small number of jobs
called tasks.

Transaction Recovery File

A random permanent file used internally by CDCS
to perform automatic recovery. It contains
before—image records of records updated within
an incompleted traunsaction.

Traversing Files -

The process by which CDCS goes from one to
another of the files joined in a relation.
Record occurrences are retrieved based on iden-
tifiers. A record occurrence from each file is
returned to the user.

60485300 A

J )

J J



6@3\
-

Type
The storage format of a data item which deter-
nines permitted values, length, and arithmetic
meaning.

User Function -
A request from an application program to open
or close an area or to perform a specific
operation on a record or data item.

User Work Area -
The collection of record areas allocated by the
COBOL compiler, the FORTRAN DML preprocessor,
or Query Update within a run-unit, for record
types defined in the subschema used by a run-
unit.

Variable -
A single named data item in the FORTRAN sub-
schema data structure.

Variable Occurrence Data Item -

A data item that is repeated a specific number
of times in each record occurrence. The number
of occurrences 1s controlled by a preceding
elementary data item; the data name option of
the OCCURS clause in a schema; or format 2 of
the OCCURS clause in a COBOL or Query Update
subschema.

Vector -

An elementary data item that is repeated a
number of times in each record occurrence.

60485300 A

Version -
A data base version (see Data Base Version); a
Query Update directive (VERSION) that specifies
a catalog file.

Virtual Item -
An item that is part of a record when it is
retrieved, but was not part of the record (had
no value) when it was stored. The value of the
item is determined by a data base procedure.

W Type Record -
One of the eight record types supported by CRM.
Such records appear in storage preceded by a
system-supplied control word. The existence of
the control word allows files with sequential
organization to have both partition and section
boundaries.

Zero-Byte Terminator -
12 bits of zero in the low order position of
a word that marks the end of the line to be
displayed at a terminal or printed on a line
printer. The image of cards input through
the card reader or terminal also has such a
terminator.

Zero-Length PRU -
A PRU that contains system information, but no
user data. Under CRM, a =zero-length PRU of
level 17 is a partition boundary. Under NOS, a
zero—length PRU defines EOF.






SYNTAX SUMMARIES D

M

The format specifications of the COBOL, FORTRAN, and Query Update interfaces with CDCS are shown in this
appendix. The format specifications are grouped into the following types:

COBOL statements and routines
DML statements and routines for use with FORTRAN 4
DML statements and routines for use with FORTRAN 5

Query Update directives

Within each type, the directives are shown in alphabetic order. Two forms of notatious appear in this
appendix. One form follows the COBOL convention, and the other form follows the FORTRAN ‘convention. Refer to

the Notation section for information about the COBOL and FORTRAN notation conventions. Detailed information
for each format is referenced by page numbers.

- Page

COBOL STATEMENTS AND ROUTINES

CLOSE realm-name-1 {, realm-name-2]... 2-8
CLOSE relation-name-1 [, relation-name-2]... 2-8
DELETE realm-name RECORD 2-12
¢""“ (; INVALID KEY imperative-statement]
ENTER "C.DMRST" USING relation-name, rlm-name, err-code 2-8
ENTER "C.IOST" USING realm-name, err—code, err-type 2-8
ENTER "C.LOK" USING realm-name 2-9
ENTER "C.UNLOK" USING realm-name 2-9
ENTER "DB$ASK" USING restart-id, tran-id, err-code 2-9
" ENTER "DB$BEG" USING tran-id, err-code 2-10
ENTER “DBSCMT" USING err-code 2-10
ENTER "DB$DBST" USING status-block, len 2-10
ENTER "DBSDROP" USING err-code 2-10
K]
ENTER "DB$GTID" USING restart—id, err-code 2-10

ﬁ@ﬁ\
6&#\

60485300 A D-1



ENTER “DB$LKR” thru START realm-name - COBOL-

ENTER "DBSLKAR" USING realm-name, lock-type, err~code

ENTER "DBSRPT" USING rpt-num, comment

ENTER "DBS$SIR" USING item-name

ENTER "DBSVERS" USING version-name, err-code

ENTER "DBSWAIT"

INPUT realm-name-1 [, realm-name-2 j...
OPEN { OUTPUT realm—name-3 [, realm-name-4 Jeeo ) oos
I-0 realm-name-5 [, realm-name-6]...

INPUT relation-name-1 [, relation—name-zl...}

OPEN {I—O relation-name-3 [, relation—-name-4]...

READ realm-name [NEXT] RECORD [INTO identifier]

[; AT END imperative-statement]

READ realm-name RECORD [INTO identifier]
[; KEY IS data-name]

{; INVALID KEY imperative-statement]

READ relation-name {NEXT] RECORD

[; AT END imperative-statement]

READ relation-name RECORD
[; KEY IS data-name)

[; INVALID KEY imperative-statement]

REWRITE record-name [FROM identifer]

[; INVALID KEY imperative-statement]

. —

IS EQUAL TO

BgUALS ‘

EXCEEDS

START realm-name | KEY IS GREATER THAN [ data-name
I8 >

IS NOT LESS THAN

L 1s NOT <

[; INVALID KEY imperative-statement]

D-2

2-11

2-11

2-12

2-12

2-12

2-13

2-13

2-14

2-14

2-14

2-14

2-15

2-15

60485300 A

J )

J )



START relation-name | KEY

IS EQUAL TO
EgU-E?)_A

IS =

EXCEEDS

TS GREATER THAN
Is >

IS NOT LESS THAN
ST

[; INVALID KEY imperative-statement]

SUB-SCHEMA IS subschema-name

USE FOR ACCESS CONTROL

I=0
INPUT 1-0
T-0 INPUT

[ mweur
2|

3 KEY IS access-key

USE FOR DEADLOCK

°—N{nmus

F.EQE {realm-name-l i, realm-nane-zl...}

realm-name-1 [, realm-name-Z]...}

WRITE record-name [FROM identifier]

[; INVALID KEY imperative-statement]

60485300 A

data-name

] :

START relation-name thru WRITE - COBOL

2-15

2-5

2-16

2-17

2-18

D-3



ASSIGNID thru START - FORTRAN 5 DML
DML STATEMENTS AND ROUTINES FOR USE WITH FORTRAN 5
ASSIGNID (restart-id [,ERR=s])
BEGINTRAN(tran-id [,ERR=s])
CALL DMLDBST (status-block, lemgth)
CALL DMLRPT (rpt-num, comment)

CALL DMLSIR (item-name)

realm-name -
CLOSE ( {relation-name} [,ERR=s])

COMMITTRAN [(ERR=s)]

DELETE (realm-name [,ERR=s])

DROPTRAN [(ERR=s)]

FINDTRAN (restart-id, tran-id [,ERR=s])
INVOKE [(VERSION=version-name)]

LOCK (realm-name [,TYPE=lock-type [,ERR=s]])

NEWVERSION (version-name [,ERR=s])

I
realm-name . )
OPEN ( { relation-name } [’HODE' { 10 } ] [,ERR=38])

(1)
I
PRIVACY (realm-name | ,MODE= § IO ,PRIVACY = privacy-key)
0
READ ({realm'“a‘ne } KEY { o0 {“‘m““’me } ERR=s] [ ,END=5] )
relation-name ’ «GT. concatenated-key-name [’ '
+GE.

REWRITE (realm-name [,ERR=g])

relation-name +GT. item—name-1ist

1m- ; item-name :
START ({ realm-namne } ,KEY {° Q. concatenated-key-name [ ,ERR=8])
«GE.

B

D-4

3-9

3-10

3-10

3-11

3-11

3-13

3-14

3-16

3-16

604853000 D

o)

2 J



SUBSCHEMA ( subschema-name)
TERMINATE
UNLOCK (realm-name [,ERR=s])

WRITE (realm-name [,ERR=s])

60485300 D

SUBSCHEMA thru WRITE - FORTRAN 5 DML
3-17
3-17‘
3-17

3-18

-5



ACCESS thru REMOVE - Query Update

QUERY UPDATE DIRECTIVES

11 1 INPUT AREA {area-name}...

ACCESS KEY | Is { darora } oN ||T=0 FOR { CATALOG [catalog-name] b | ... {... 4-6
ata-name OUTPUT AREAS

CREATE area-name OF subschema-name 4-8

[FROM LIBRARY permanent-file-name]

[(permanent-file-parameter [FW])]

[FOR DATABASE version-name]

literal
- _ KEY < data-name-1 [expression [AS data-name-2]]... -
DISPLAY [UPON file-name-1} —{ e ile-name-Z} {m } 4-9
FROM file-name-3
data-name
REPORTS [report-name [layout-directive]]
EXHIBIT | SESSIONS [session-id [transmission-id-1 [I0 transmission-id-2]]] 4-9
TEMPORARY
RELATION
EXTRACT UPON file-name {expression [AS data-name]}... 4-10
INVOKE subschema-name ' 4-11
[OF schema-name]
[FROM LIBRARY permanent-file-name]
{(permanent-file-parameters [PW])]
[FOR DATABASE version-name]
MODIFY [record-name]) 411
[SETTING {data~name-1}...] [USING key-name] [SETTING {data—name-2}...] [FROM file-name]
MOVE expression-1 TO {data-name-3}... [AND expression-2 T0 {data-name-4}...]...
" VETO
PASS
RECOVERY POINT USING data-name-1 {1“‘*“1 } 4-12
—_— —_— data-name-2
REMOVE [record-name) : 4-12

[SETTING {data-name-1}...]
USING keyname

[SETTING {data-name=2}...]
[FROM file-name]

[%5]

] o-6 60485300 D

n

J



-

STORE thru VIA - Query Update

STORE [record-name] 4-13
SETTING {data-name-1}... [FROM file-name]

MOVE expression-1 TO {data-name-2}... [AND expression-2 T0 {data-name-3}...]...

VETO

PASS
UPDATE area-name 4-13
VERSION is catalog-file OF subschema-name 4~13

[FROM LIBRARY permanent—file-name]
{{permanent-file-parameters [PW])]

[FOR DATABASE version-name]

VIA relation-name 4=14

60485300 D o-7 |






FUTURE SYSTEM MIGRATION GUIDELINES E

This appendix contains programming practices recom-
mended by CDC for users of the software described
in this manual. When possible, application pro-
grams based on this software should be designed and
coded in conformance with these recommendations.

Two forms of guidelines are given. The general
guidelines minimize application program dependence
on the specific characteristics of a hardware
system. The feature use guidelines ensure the
easiest migration of an application program to
future hardware or software systems.

GENERAL GUIDELINES

Good programming techniques always include the
following practices to avoid hardware dependency:

Avoid programming with hardcoded counstants.
Manipulation of data should never depend on the
occurrence of a type of data in a fixed multi-
ple such as 6, 10, or 60.

Do not manipulate data based on the binary
representation of that data. Characters should
be manipulated as characters, rather than as
octal display-coded values or as 6-bit binary
digits. Numbers should be manipulated as
numeric data of a known type, rather than as
binary patterns within a central memory word.

Do not identify or classify information based
on the location of a specific value within a
specific set of central memory word bits.

Avoid using COMPASS in application programs.
COMPASS and other machine-dependent languages
can complicate migration to future hardware or
software systems. Migration 1is restricted
by continued use of COMPASS for stand-alone
programs, by COMPASS subroutines embedded in
programs using higher-level languages, and by
COMPASS owncode routines used with CDC standard
products. COMPASS should only be used to create
part or all of an application program when the
function cannot be performed in a higher-level
language or when execution efficiency is more
important than any other consideration.

FEATURE USE GUIDELINES

The recommendations in the remainder of this appen-
dix ensure the easiest migration of an application
program for use on future hardware or software
systems. These recommendations are based on known
or anticipated changes in the hardware or software
system, or comply with proposed new industry stand-
ards or proposed changes to existing industry
standards.

60485300 A

ADVANCED ACCESS METHODS

The Advanced Access Methods (AAM) offer several
features within which choices must be made. The
following paragraphs indicate preferred usage. ’

Access Methods

The recommended access methods are indexed sequen-
tial (IS), direct access (DA), and multiple index
processor (MIP).

Record Types

The recommended record types are either F for fixed
length records, or W for variable length records.
Record length for W records is indicated in the
control word; the length must be supplied by the
user in the RL FIT field on a put operation and is
returned to the user in RL on a get operation.

FORTRAN Usage

The following machine-independent coding practices
are encouraged for a FORTRAN programmer using AAM:

Initialize the FIT by FILExx calls or by the
FILE control statement.

Modify the FIT with STOREF calls.

Use FORTRAN 5 CHARACTER data types when working
with character fields rather than octal values
of display code characters; specify lengths of
fields, records, and so forth, in characters
rather than words.

COBOL 5

COBOL 5 offers choices among features that perform
the same function. The following paragraphs indi-
cate preferred usage.

Comment Entries

Do not use the comment entries AUTHOR, INSTALLATION,
DATE-WRITTEN, DATE-COMPILED, or SECURITY. This
information can be documented with a normal COBOL
comment, using an * in columm 7. This usage com-
plies with a proposed revision to the ANSI standard.

SUPERVISOR, MEMORY, and
ASSIGN OBJECT-PROGRAM Clauses

Do not use the SUPERVISOR, MEMORY, and ASSIGN
OBJECT-PROGRAM clauses. These clauses are currently
used only for documentation and the informatiom in
them can be specified with a comment. This usage
complies with a proposed revision to the ANSI
standard.



Collating Sequence

Whenever possible, specify the ASCII collating

sequence.

File Organizations

For Advanced Access Methods, use indexed or direct
organization with or without alternate keys; do not
use actual-key organization. For word-addressable
files, use a method that can be easily modified to
byte addresses; the REPLACE statement can be used
to modify the code at a later date. No restric-
tions are imposed on sequential file usage.

Record Types

Do not specify a particular record type with the
USE clause. This decision can be made by the
COBOL compiler based on the characteristics of the
records. If, however, the program would produce a
default record type of D or T (for example, the
record contains an OCCURS DEPENDING ON clause), the
record type should be forced to W by specifying
RT=W.

RECORD Clause

Use the VARYING phrase within the RECORD clause if
records are to be variable length. This usage
complies with a proposed revision to the ANSI
standard.

RECORDING MODE Clause

Do not use the RECORDING MODE clause; usage of this
clause should not be necessary in most application
programs.

Level 77 ltems

Do not use Level 77 items. Use elementary Ol items
instead. This usage complies with a proposed
revision to the ANSI standard.

REDEFINES and RENAMES Clauses

Avoid REDEFINES, RENAMES, or group operations
involving synchronized or COMP-n items, particu—
larly where usage is based on a knowledge of the
internal representation of data, such as floating-
point layout or the number of characters per word.

Group Items

Avoid operations such as reference modification N
string, and unstring on group items containing
noncharacter data or synchronized items. Such

usage 1s dependent on the characteristics of the
hardware system.

ALTER Statement

Do not use the ALTER statement. In general, use
of the ALTER statement does not conform to good
coding practices. If its use is necesary, the GO

E-2

TO DEPENDING ON statement can be used instead.
This usage complies with a proposed revision to the
ANSI standard.

Segment Numbers

Do not use segment numbers 50 through 99; in the
future, segment numbers will be limited to 0 through
49. This range should be adequate for almost all
applications. Programs should no longer need the
initial-state capability of numbers 50 through 99
because this capability is only useful with the
ALTER statement. This usage complies with a pro-
posed revision to the ANSI standard.

OPEN REVERSED Statement

Do not use the REVERSED phrase of the OPEN state-
ment. Usage has always led to inefficient proc-
essing, and the capability generally should not be
required. This recommendation complies with a
proposed revision to the ANSI standard.

SORT Statement

Specify the WITH DUPLICATES IN ORDER phrase for
those sorts that expect it. Do not rely on this
ordering as the default. This usage complies with
a proposed revision to the ANSI standard.

STRING and UNSTRING Statements

One of the operands in a STRING or UNSTRING state-
ment must not be used as a subscript in the same
statement. Operand reuse in subscripts is poor
coding practice and generally can be avoided. This
recommendation complies with a proposed revision to
the ANSI standard.

DMS-170

DMS-170 offers several features among which choices
must be made. The following paragraphs indicate
preferred usage of CDCS, DDL, and of Query Update
in support of CDCS.

Multiple Record Descriptions

Do not include multiple record descriptions on a
single file.

Repeating Groups

Avoid the use of the OCCURS clause, repeating
groups, or arrays within records; as an alterna-
tive, the repeating data can be normalized into
separate records on a different file. If repeating
data must be used, limit usage to fixed length
groups (no OCCURS DEPENDING ON clause) and to
simple (unnested) OCCURS clauses.

Alternate Keys on Repeating Groups

Avoid the specification of alternate keys on
repeating groups. The data can be normalized as
indicated under Repeating Groups.

60485300 A

JJ

J D

3



Collating Sequence

Use the default collating sequence or the ASCII
collating sequence.

REDEFINES Clause

Use the REDEFINES clause only for alphanumeric-to-
alphanumeric redefinitions, where the term alpha-
numeric has the meaning assigned by COBOL to data.
In general, avoid the use of REDEFINES where use is
based on a knowledge of the internal representation
of data (floating-point layout, number of char-
acters per word, and so forth).

Query Update Syntax

Use the new directives INVOKE, STORE, MODIFY, and
REMOVE instead of the directives USE, INSERT,
UPDATE, and DELETE.

FORTRAN 5

FORTRAN S offers several capabilities that are
processor—-dependent. The use of such capabilities
restrict FORTRAN S5 program migration. The follow-
ing paragraphs indicate preferred usages.

Processor-Dependent Values

Coding should not depend on the internal repre-
sentation of data (floating-point layout, number of
characters per word, and so forth). Where coding
must depend on these representations, use PARAMETER
variables for processor-dependent characteristics
such as the number of characters per word.

BOOLEAN Data Types

Do not use boolean data types and operations (SHIFT,
MASK, and so forth) because they can be processor-
dependent. Use type CHARACTER instead, if working
with character data.

60485300 A

LOCF Function

Do not use the intrinsic function LOCF. For most
applications, this function should not be necessary.

ENCODE and DECODE Statements

Do not use ENCODE and DECODE; use the ANSI standard
internal file feature instead. ENCODE and DECODE
operations are generally dependent on the number of
characters per word.

DATE, TIME, and CLOCK Functions

Do not dismantle values returned by the DATE, TIME,
and CLOCK functions; use these functions only for
printing out values as a whole.

BUFFER IN and BUFFER OUT Statements

Do not use BUFFER IN and BUFFER OUT, especially

when use depends on the number of characters per
word.

CYBER Record Manager Interface Routines

Do not use the CYBER Record Manager interface
routines for sequential files. Instead, use FORTRAN
input/output statements such as READ or WRITE.

Overlays

If possible, use segmented loading instead. If
overlays must be used, do not depend on such prop-
erties as reinitialization of variables when an
overlay is reloaded.

LABEL Subroutine
Avoid use of the LABEL subroutine. Changes to the

ANSI standard for tape labels might require changes
to the interface used by this subroutine.

E-3






(& KEYWORD USED IN DML STATEMENTS AND VARIABLES F
AND COMMON BLOCKS GENERATED BY THE DML PREPROCESSOR

This appendix lists the keywords used in FORTRAN PRIVACY
» DML statements. The names of variables and common
blocks generated by the DML preprocessor are also READ
listed. The names of these variables and common REWRITE
blocks should not be used as variable names in a
FORTRAN program that utilizes DML and CDCS to START
access a data base. SUBSCHEMA
TERMINATE
FORTRAN DML KEYWORDS
UNLOCK
The FORTRAN DML keywords are listed below in alpha-
betical order. WRITE
ASSIGNID VARIABLES AND COMMON
BEGINTRAN BLOCKS GENERATED BY
LS THE DML PREPROCESSOR
COMMITRAN The names of variables and common blocks generated
by the DML preprocessor are listed below in alpha-
DELETE betical order.
DROPTRAN
DBFnnnn  where nnnn is 0001 through 9999
END
.EQ. DBInnnn  where nnnn is 0001 through 9999
ERR
DBNnnnn  where nnnn is 0001 through 9999
FINDTRAN
(@\ ' DBREALM
.GE.
«GT. DBRELST
I DBRUID
INVOKE ‘
10 DBRnnnn  where nnnn is 0001 through 9999
KEY DBSCNAM
JLE. DBSTAT
LOCK
.LT. DBSnnnan  where nnnn is 0001 through 9999
( ~ MODE DBTEMP
NEWVERSION DBTnnnn  where nnnn is 0001 through 9999
.NOT. : DBnnnn where nnnn is 0000 through 9999
0 Dnnnnxx where naonn is 0001 through 9999 and
OPEN xx is AA through Z2Z

60485300 A F-1






‘w\ CDCS BATCH TEST FACILITY G

w

The CDCS Batch Test Facility provides the capability
of running CDCS along with one or more user jobs as
a normal batch job at a control point. This facil-
Ity is iIntended primarily for use when a program is
being developed and tested, slince data and file
definitions are changing frequently during this
stage. By running the Batch Test Facllity, the /
user can attach new verslons of the master direc-
tory file each time the job is run. Normally, when
CDCS is rumnning at a system control point, the p
control point must be dropped and reinitiated to

COCSBTF,Lfn-1C,Lfn-2,]... C/plC,p] ... .

Lfn. The Local file name of up to 16 user pro-
grams to be executed

The end of the user program List and the
beginning of the parameter List

A parameter; the parameters are as follows:

attach a new master directory file.

The CDCS Batch Test Facility 1is an absolute pro-
gram, called CDCSBIF, which resides on the system
library. CDCSBTF conslsts of the normal CDCS sys-
tem control point routines and tables plus a set of
speclal routines that communicate with the user
programs at the CDCS control point. These special
routines load the user programs and simulate the
interface between the user control point and a
system control point.

Multiple copies of CDCSBTF can be run comcurrently
with each other and with a system control point
verslon of CDCS. In addition, as many as 16 user
programs can be run with each copy of CDCSBTF.
Because user programs are loaded by a program-

DIR=Lfn
Directive file for CDCSBTF control
statement parameters

BL=nn
Maximum pooled buffer space

CP=t1
Central processor time

10=t2
Input/output time

MFL=fL
Maximum field Length for CDCSBTF

CAP=ovcap-namelLl/ovcap-name2l...
Static Load of CDCS overlay capsules
where possible OVCAP names are as

initiated load from CDCSBTF, the programs must be follows:

In relocatable binary format. Programs in absolute

binary format, as well as segmented programs and CON QRF

overlays, cannot be run with CDCSBTF. D8P REL
INV TRAN
JLOG

CDCSBTF EXECUTION CRM=fs1C/fs2]...

The CDCSBTF program is called into executlon by a
control statement. Before the program is executed,

Static Load CRM capsules where fs is
a file structure as follows:

however, several flle requirements and restrictlons AK

6’ ) should be considered. In addition, load maps from DA
the user call load operations can be obtalned by Is
setting switches prior to the execution of CDCSBTF. MIP or MP
The allocation of field length and other required \
resources 1s handled as for a normal batch job. MDPEN=pfn

CDCSBTF CONTROL STATEMENT

UN=user-name
ID=user-name Permanent file
PW=pwrdiL/pwrd2]... \ information for
FAM=family-name master directory

PN=pack~-name file
The CDCS Batch Test Facility is executed by speci- DT=device-set
fying the CDCSBIF control statement. The format SN=set-name

and parameters of the CDCSBTF control statement are
shown in figure G-l1. The CDCSBIF control statement
cannot exceed 80 characters in lemgth. A slash (/)
indicates the end of the list of user program file
names and the beginning of the parameter 1list.
Optlonally, the comma immediately following CDCSBTF
can be replaced by a left parenthesis; the termina-
ting period can be replaced by a right parenthesls.

60485300 B

Note:

/

The OVCAP names and CRM capsule loading
parameters can themselves be parameters to
the control statement.

figure G-1. CDCSBTF Control Statement Format




Directive File

An optional directive file can be used to contain
the parameters in addition to or instead of the
parameters in the CDCSBTF control statement. Use
of a directive flle allows specification of a
parameter list that is longer than that allowed in
the control statement. With the exception of the
MFL parameter, which cannot be sgpecified in a
directive file, a parameter can be specified in
either the control statement or the directive
file. The same parameter cannot, however, be
gpecified in both the control statement and the
directive file. Parameters can be specified in any
order in the directive file. Any of the parameters,
except MFL or DIR, that are valid in the CDCSBTF
control statement are also valid in the directive
file. Parameters can be specified in the directive
file in columns 1 through 80. The first parameter
specified in a line must begin in column 1. Param-
eters can either be placed in separate lines or
combined in a line with commas acting as separators.
Parameters cannot be split across lines. Blanks,
which are ignored, can be used to improve read-
ability.

Parameters

All the parameters (figure G-1) of the CDCSBTF
control statement are optional and can be specified
in any order. The CDCSBTF parameters provide
information for the following functions:

Allocation of maximum pooled buffer space

Adjustment of accounting charges

Allocation of the waximum field 1length that
CDCSBTF 18 allowed to use

Control of loading certain CDCS overlay cap-
sules for the duration of CDCS execution

Control of retention of certain CYBER Record
Manager (CRM) capsules

Specification of information required to attach
the master directory if online dumping of jour-
nal log files is desired

Specification of a directive file that can
contain any of the CDCSBTF control statement
parameters except MFL and DIR

If the CP and IO parameters are specified either in
the CDCSBTF control statement or in the directive
file, the accounting values returned to the user”s
dayfile are different from the accounting values
returned when the same application executes with
CDCS at the system control point. When CDCSBTF
executes, the accounting values returmed include
the application”s execution time as well as the
central processor and input/output time charged by
cDCs.

The parameters available for the CDCSBTF control
statement are the same as the parameters available
for the CDCS control statement. These parameters
are explained in greater detail in the CDCS Data
Administrator”s reference manual. Refer to this
manual for more information.

G-2

FILE REQUIREMENTS AND RESTRICTIONS

Certain files must be attached or requested before
the CDCSBTF program can be executed. The master
directory file must be attached. It can be attached
in two ways: either by information provided in the
CDCSBTF control statement or directive file or by
an ATTACH control statement that precedes execution
of CDCSBTF. If the ATTACH control statement is
used, the master directory file must be specified
with the local file name MSTRDIR; however, using
this method of attaching the master directory
prevents online dumping of journal log files from
being performed by CDCSBTF.

The user programs that are to be run with CDCSBTF
must be present in relocatable binary format either
as local files or as permanent files.

When CDCS is executing as the Batch Test Facility,
the name of the output file produced by CDCS is
CDCSOUT. The job name recorded on a log file dur-
ing execution of CDCSBTF is Cnnnnnn, where uannnun
is the number associated with the particular user
job.

Care must be taken in assigning file names to
non-CDCS files when the Batch Test Facility is
being used. Because several user programs can be
executed during one run of CDCSBTF, every non-CDCS
file referenced by the user programs must have a
unique name. This restriction is especially criti-
cal for the file names INPUT and OUTPUT; they can
be used by only one of the programs. Since CDCS
cannot enforce this restriction, the user must take
particular care in using these names.

Programs running with CDCSBTF cannot use as file
names the name MSTRDIR, CDCSOUT, or a name begin-
ning with five Zs; moreover, a name consisting of
P, J, P, Q, R, T, or X followed by six digits
cannot be used.

CDCSBTF cannot be used to access files that have
values specified for the FAMILY clause in the
permanent file informatiom subentry of the master
directory. To access files that have FAMILY
clauses specified in the master directory, the job
must be of system origin, but CDCSBTF is not.
Refer to the CDCS Data Administration reference
manual for a description of the FAMILY clause under
the permanent file information subentry, including
a way to work around the restriction.

PROCESSING CONSIDERATIONS

The following paragraphs describe processing limi-
tations that apply to CDCS executing as the Batch
Test Facility.

In a FORTRAN program executing with the CDCS Batch
Test Facility, the Data Manipulation Language (DML)
TERMINATE statement must execute before a FORTRAN
STOP or END statement. If execution of the FORTRAN
program ends without a TERMINATE statement being
executed, processing is discontinued for all pro-
grams specified in the CDCSBTIF control statement
that have not completed execution.

60485300 C

J )

2 )



" The CDCS Batch Test Faclility has a limitation on

the number of jobs for which abnormal end-of-job
processlng can be performed. For all the programs
gpecified in the CDCSBTF control statement, the
Batch Test Faclility allows a total of six con-
current calls to the RECOVR routine. If each of
seven or more programs, executing with the CDCS
Batch Test Facility, requires a call to the RECOVR
routine, the CDCS Batch Test Facility aborts proc-
essing. The RECOVR routine lssues a diagnostic
stating that too many recovery requests were issued.

Both COBOL and FORTRAN 5 provide a mechanism that
can eliminate automatic calls to the RECOVR routine
and can help prevent the problem of too many re-
covery requests. Elther the TDF parameter in the
COBOL5 control statement or the DB parameter in the
FIN5 control statement affect end-of-job processing.
If either parameter 1is specified, the RECOVR routine
is not automatically called for abnormal end-of-job
processing.

LOAD MAPS

Maps of the program loading operations of a program-
initiated load can be obtained by setting the sense
switches 1 through &4 prior to execution of the
CDCSBTF control statement. Each sense switch
getting corresponds to different information on the
load map. The settings and the assoclated types of
information are shown in table G-1.

TABLE G-1. SENSE SWITCH SETTINGS AND
CORRESPONDING LOAD MAP INFORMATION

Setting Load Map Information

SWITCH, 1. Statistics (8)

SWITCH,2. Block maps (B)

SWITCH, 3. Entry point maps (E)

SWITCH,4. Entry point cross reference
maps (X)

COMPILATION AND EXECUTION

When the CDCS Batch Test Facility is used to exe-
cute a program, the master directory file must be
attached at the user control point by one of the
methods described previously in the File Require-
ments and Restrictions subsection. If any inde-
pendent files are needed by an application program,
the necessary control statements must be supplied
to attach the flles at the user control point.

To compile and execute a COBOL program that utlilizes
the CDCS Batch Test Facllity, the user must perform
the following steps:
To compile
Attach the subschema.
Specify the COBOL5 control statement and

include the D parameter to indicate the
local file name of the subschema.

60485300 B

To execute

Attach the master directory file or specify
the information needed to attach the master
directory file on the CDCSBTF control state-
ment.

Execute the program by specifying the
CDCSBTF control statement.

To complle and execute a FORTRAN program containing
DML statements, the user must perform the following
steps:

To compile
Attach the subschema.

Specify the DML control statement to exe-
cute the DML preprocessor.

Execute the FORTRAN compiler, specifying
that the output file produced by the DML
preprocesgsor is the input flle to the
FORTRAN compiler.

To execute

Attach the master directory file or specify
the information needed to attach the master
directory file on the CDCSBTF control state-
wment.,

Make the DMS-170 library avallable by speci-
fying the LIBRARY(DMSLIB) control statement.

Execute the program by specifying the
CDCSBTF control statement.

The control statements in figure G-2 illustrate
sample NOS and NOS/BE jobs In which the CDCS Batch
Test Facllity is executed for a FORTRAN program.
Similar statements, shown in figure G-3, can be
used to execute the CDCS Batch Test Facility for a
COBOL program. Before the CDCSBTF program is
called, the file containing the subschema directory
(needed for program compilation) and the file
containing the master directory are attached.
Additional flles are also attached and the desired
portions of the load map are selected.

DEADLOCK TESTING

A COBOL program running with the CDCS Batch Test
Facility can call the DBS$WAIT subroutlne to force a
deadlock situation and thereby test the program
code that deals with recovery from deadlock. The
subroutine DB$WAIT should be called only if more
than one user program is being rumn with CDCSBTF.
When a program issues a call to DB$WAIT, executlon
of that program is suspended until all other user
programs have also issued calls to DBSWAIT. Once
all calls have been issued, the programs are re-—
leased from suspensfon.

The DBS$WAIT subroutine can be called only from a
COBOL program; it cannot be called directly from a
FORTRAN program. (Refer to section 2 for more
Information about the DB$WAIT routine.)

G-3



NOS Operating System

Jobname,CMfl.
USER control statement
CHARGE control statement

ATTACH,SUBSC/UN=xxX.
DML, SB=SUBSC.

FTNS, 1=DMLOUT.
SWITCH,2.

SWITCH,3.

SWITCH, 4.
LIBRARY,DMSLIB.
CDCSBTF,LGO/MDPFN=MSTRD IR, UN=XXX«
REWIND,CDCSOUT.
COPY, CDCSOUT ,OUTPUT.
CRMEP.

EXIT.

DMD.
DMD,377000.

CRMEP.
REWIND,CDCSOUT.

COPY,CDCSOUT ,OUTPUT.

NOS/BE Operating System

Jobname,CMfL.

ACCOUNT control statement

ATTACH,SUBSC,ID=xxx.
DML, SB=SUBSC.
FTN5,I=DMLOUT.
SWITCH,2.

SWITCH, 3.

SWITCH, 4.
LIBRARY,DMSLIB.
CDCSBTF,LGO/MDPFN=MSTRDIR,ID=xxx.
REWIND,CDCSOUT.

COPY ,CDCSOUT , OUTPUT.
CRMEP.

EXIT.

DMP.
oMP,377000.

CRMEP.
REWIND,CDCSOUT.
COPY,CDCSOUT,OUTPUT.

Names the job and specifies maximum
field length.

Identifies the user.

Specifies the account to which the
job's use of system resources is
Togged.

Attaches the subschema.
Preprocesses the DML statements in
the FORTRAN program and writes to
DMLGOUT.

Compiles the FORTRAN program on
DMLOUT and places it on the LGO file.
Requests block map on
program-initiated load.

Requests entry point map on
program-initiated load.

Requests entry point cross reference
map on program-initiated load.
Specifies that 1ibrary DMSLIB is to
be used to satisfy externals.
Executes CDCSBTF and passes the
master directory permanent file
information as parameters..

Rewinds the CDCSBTF output file.
Prints the CDCSBTF output file.
Prints the CRM error file.
Establishes processing if error
occurs.

Dumps the exchange package.

Dumps the contents of the field
length,

Prints the CRM error file.

Rewinds the CDCSBTF output file.
Prints the CDCSBTF output file.

Figure G-2.

Sample FORTRAN 5 Execution of CDCS Batch Test Facility

NOS Operating System

Jobname ,CMfl.

USER control statement
CHARGE control statement
ATTACH,SUBSC/UN=xxX4
COBOLS,0=SUBSC.
SWITCH,2.

SWITCH,3.

SWITCH, 4.
CDCSBTF,LGO/MDPFN=MSTRDIR,UN=xxX.
REWIND,CDCSOUT.

COPY ,CDCSOUT ,QUTPUT.
CRMEP.

EXIT.

DMD.
bMD,177000.

CRMEP.
REWIND,CDCSOUT.
COPY,CDCSOUT ,OUTPUT.

NOS/BE Operating System

Jobname ,CMfL.

ACCOUNT control statement
ATTACH,SUBSC,ID=xxX.
COBOLS5,D=SUBSC..
SWITCH,2.

SWITCH,3.

SWITCH, 4.
CDCSBTF,LGO/MDPFN=MSTRDIR,ID=XXX.
REWIND,CDCSOUT.

COPY ,CDCSOUT ,0UTPUT.
CRMEP.

EXIT.

DMP.
DMP,177000.

CRMEP.
REWIND,CDCSOUT.
COPY,CDCSOUT,OUTPUT.

Names the job and specifies maximum
field length.

Identifies the user,

Specifies the account to which the
job's use of system resources is
Togged.

Attaches the subschema.

Compiles the COBOL program and
places it on the LGO file.
Requests block map on
program-initiated load.

Requests entry point map on
program-initiated load.

Requests entry point cross reference
map on program-initiated load.
Executes CDCSBTF and passes the
master directory permanent file
information as parameters.

Rewinds the CDCSBTF output file.
Prints the CDCSBTF output file.
Prints the CRM error file.
Establishes processing if error
occurs.

Dumps the exchange package.

Dumps the contents of the field
length.

Prints the CRM error file.

Rewinds the CDCSBTF output file.
Prints the CDCSBTF output file.

Figure G-3. Sample COBOL 5 Execution of CDCS Batch Test Facility

G-4 60485300 A

JJ

J D



-
ﬁﬁm\

DATA BASE ENVIRONMENT FOR EXAMPLES H

S S S T S

This appendix contains the jobs, which include
source programs and control statements, used to
generate the data base enviromment for the manu-
facturing data base used for examples in sections
6, 7, and 8. Although all jobs reflect operation
under the NOS operating system, conversion to the
NOS/BE operating system can be accomplished by
making the following changes:

Substitute a NOS/BE ACCOUNT control statement
for the NOS USER and CHARGE control statements.

Substitute the NOS/BE REQUEST and CATALOG conm-
trol statements for the NOS DEFINE control
statement.

Substitute the NOS/BE file identification
parameter ID for the NOS file identification
parameter UN.

Omit the PERMIT control statements.

Setting up a DMS-170 data base enviromment is a
responsibility of the data administrator; the
process is shown here, however, to allow the reader
to duplicate the data base environment and use it.,

The source input for the jobs shown in this appendix
illustrates the manufacturing data base environment
being created by a series of batch jobs. The
source input for each job is shown exactly as
required for processing on NOS with the exception
of the notation for end-of-record (--EOR—). The
appropriate end-of-record notation must be used in
the actual job submitted for execution.

The steps the data administrator takes to establish
the data base environment are listed in the appro-
priate order as follows:

1. Design, write, and compile a schema and store
the resulting schema directory as a permanent
file. A schema named MANUFACTURING-DB is stored
as a permanent file named MANUFAC. Refer to
figure H-1.

2, Design, write, and compile subschemas and store
resulting subschema directories in permanent
files as subschema libraries. Subschema 1i-
braries contain subschemas as follows:

C5SSLIB contains a COBOL subschema named
C5SS-PRODUCT~MANAGEMENT. Refer to figure
H-2.

60485300 D

30

4,

6.

F5SSLIB contains a FORTRAN 5 subschema named
F5S~PRODUCT-MANAGEMENT. Refer to figure
H-3.

QUSSLIB contains two Query Update sub-
schemas: subschema QUCREA6 and subschema
QUPRODMGT. Refer to figure H-4,

Write, compile, and store the master directory
as a permanent file. The DBMSTRD utility is
used to generate the master directory. Refer
to figure H-5.

Initialize log or recovery files specified
for the schema in the master directory. The
master directory specifies a transaction re-
covery file and a restart identifier file for
schema MANUFACTURING-DB. These files are re—
quired to support application program requests
that are associated with data base transactions
and program restart operatioas. The DBREC
utility is used to initialize these files.
Refer to figure H-6.

The PERMIT control statements shown in the job
apply only to NOS. 1In the example, they make
the recovery files specified available to CDCS
when it executes under user number DBCNTLX,

Create the data base. A Query Update job using
subschema QUCREA6 creates the data base. Refer
to figure H-7. The job establishes all the
permanent files associated with data base areas
and provides data for six areas, including the
area associated with the Query Update catalog
file.

CDCS must be active to rumn this job. For NOS,
the permanent file for each area and index file
is established by the DEFINE and RETURN control
statements; access to the file by CDCS is estab-
lished by the PERMIT control statement as de—
scribed in step 4. For NOS/BE, the following
series of control statements must be used to
establish each area or index file: REQUEST,
REWIND, CATALOG, and RETURN.

Establish CDCS as an active system. This must
be done by the data administrator; the process
is not shown in this manual.



Job statement

USER control statement

CHARGE control statement
DEFINE,MANUFAC.

FILE (EMPLOYE,FO=IS ,XN=IXEMP)
FILE(JOBDETA,FO=1S)

FILE (DEPARTM,FO=IS ,XN=IXDEPT ,RT=T)
FILE (PROJECT ,FO=DA,XN=IXPROJ,HMB=7)
FILE (DEVELOP,FO=DA,XN=IXDEV,HMB=11)
FILE(TESTS ,FO=IS, XN=IXTEST)
FILE(CDCSCAT ,FO=IS)

DOL3,DS, SC=MANUFAC.

-=EOR~--

SCHEMA NAME IS MANUFACTURING-DB.

AREA IS EMPLOYEE

ACCESS—CONTROL LOCK FOR RETRIEVAL IS "EMP-READ"
ACCESS~CONTROL LOCK FOR UPDATE IS "EMP-WRITE".

RECORD IS EMPREC WITHIN EMPLOYEE.

01 EMP-ID PICTURE "X(8)".

01  SALARY TYPE FIXED DECIMAL 8,2.
01 EMP-LAST-NAME PICTURE "AC20)".

01 EMP-INITIALS PICTURE "A(4)",

01 DEPT PICTURE "X(4)".

01 ADDRESS-NUMBERS PICTURE "X(6)".

01 ADDRESS=STREET PICTURE "X(20)".

01 ADDRESS-CITY PICTURE "A(15)".

01 ADDRESS=STATE-PROV PICTURE "A(15)".

01 POSTAL-CODE PICTURE "X(10)".

01 ADDRESS-COUNTRY PICTURE "A(15)".

01 PHONE-NO PICTURE "9(10)".

01 HIRE-DATE PICTURE "9(6)".

01 INSURANCE-NO PICTURE "9(10)".

01 NUM-DEPENDENTS TYPE DECIMAL FIXED 2.

01 JOB-CLASS
01 GRADE-LEVEL

PICTURE A",
PICTURE "9
CHECK VALUE O THRU 8.

/* THE FOLLOWING ARE YEAR-TO-DATE TOTALS

*/

GROSS TYPE
FED-TAX TYPE
STATE-TAX TYPE
DISABILITY TYPE
SS—INSURANCE TYPE

2ee2%

AREA IS JOBDETAIL

ACCESS—-CONTROL LOCK IS "ABCDEFZ",

RECORD IS JOBREC WITHIN JOBDETAIL.

DECIMAL FIXED 7,2.
DECIMAL FIXED 7,2.
DECIMAL FIXED 6,2.
DECIMAL FIXED 5,2.
DECIMAL FIXED 4,4.

01 EMP-ID PICTURE "X(8)".
01 SEQ-NO PICTURE "X(&)".
01 PRODUCT-ID PICTURE "X(10)".
01 SECURITY-CODE PICTURE "X(2)".
01  PROJECT-ID PICTURE "X(10)".

01 MONTHLY-COMPENSATION OCCURS 12 TIMES.

02 REG-HOURS TYPE
02 REG-COMPENSATION TYPE
02 OT-HOURS TYPE
02 OT-COMPENSATION TYPE

DECIMAL FIXED 5,2.
DECIMAL FIXED 6,2.
DECIMAL FIXED 5,2.
DECIMAL FIXED 6,2.

01  HOURS-YTD TYPE DECIMAL FIXED 6,2.
01 COMPENSATION-YTD TYPE DECIMAL FIXED 10,2.
01 START-DATE PICTURE "9(6)".
01 LOC-CODE PICTURE "X(4)".
01 ACTUAL-DATE PICTURE "X(6)".

Figure H-1. Schema Generation (Sheet 1 of 3)

60485300 A

JJ

-

J )



AREA IS DEPARTMENTS
ACCESS—-CONTROL LOCK IS "VERY*PRIVATE".
RECORD IS DEPTREC WITHIN DEPARTMENTS.

01 DEPT-NO PICTURE "X(4)".
01  DEPT-NAME PICTURE "X(200".
01 MGR-ID PICTURE "X(8)".
01 MGR-NAME PICTURE "X(20)".
01 NUM-ITEM PICTURE "9(3)"
CHECK VALUE 5 THRU 25.

01 ITEM OCCURS NUM-ITEM TIMES.

02 LOC-CODE PICTURE "X(4)".

02 HEAD-COUNT
02 EXPENSES-YTD
02 BUDGET

PICTURE "9(4".
PICTURE "9(8)V99T".
PICTURE “9(8)T".

AREA IS PROJECT
ACCESS-CONTROL LOCK FOR RETRIEVAL IS "VERIFIED-INPUT"
ACCESS—-CONTROL LOCK FOR UPDATE IS "OKAYED-OQUTPUT".
RECORD IS PROJREC WITHIN PROJECT.

01 PROJECT-ID PICTURE "X(10)".

01 PROJ-DESCR PICTURE "X(40)".

01 BUDGET-TOTAL PICTURE "9(9)Vv99".

01  MONTHLY-BUDGET PICTURE "9(7)V99" OCCURS 12 TIMES.
01 SCHED-COMPLETE PICTURE "X(10)".

01 RESPONSIBILITY PICTURE "X(8)".

AREA IS DEVELOPMENT-PRODUCTS
ACCESS—-CONTROL LOCK IS "ACCESS(/)O0K".
RECORD IS DEVREC WITHIN DEVELOPMENT-PRODUCTS.

01 PRODUCT-ID
01 PRODUCT-DESCR
01 CLASS

01 PRICE

01  EVAL-ID

01 PROJECT-ID

01 NUM-TESTED

01 CUM-TEST-AVERAGE
01 STATUS-CODE

01 SECURITY-CODE

01 EST-COST

01 DEV-COST-YTD

AREA IS TESTS

PICTURE "X{(10)".
PICTURE "X(20)".
PICTURE "9(2)"

CHECK VALUE O THRU 99.
TYPE DECIMAL FIXED 5,2.
TYPE CHARACTER 20 OCCURS 10 TIMES.
PICTURE “X(10)".

TYPE DECIMAL FIXED 4.
TYPE FLOAT.

PICTURE "A".

PICTURE "X(2)".

PICTURE "9(4)PPP".

TYPE DECIMAL FIXED 9,2.

ACCESS—CONTROL LOCK FOR UPDATE IS "up"
ACCESS-CONTROL LOCK FOR RETRIEVAL IS "DOWN".

RECORD IS TESTREC WITHIN TESTS.

TESTNO TYPE DECIMAL FIXED.
TNAME TYPE CHARACTER 20.
PRDCTNO TYPE CHARACTER 10.
TESTER TYPE DECIMAL FIXED 8.
TOTALCT TYPE DECIMAL FIXED 4.
N TYPE DECIMAL FIXED 3

CHECK VALUE O THRU 100.

PASPROB TYPE FLOAT OCCURS 100 TIMES
CHECK VALUE 0.0 THRU 1.0.

AREA NAME IS CDCSCAT
ACCESS—CONTROL LOCK IS 'PERMISSION*GRANTED".
RECORD IS QUCATREC WITHIN CDCSCAT.
QUCAT-KEY PICTURE "X(10)".
QUCAT-ITEM PICTURE “X(1030)".

60485300 A

Figure H-1. Schema Generation (Sheet 2 of 3)

H-3



DATA CONTROL.

AREA NAME IS EMPLOYEE
KEY IS EMP-ID OF EMPREC
DUPLICATES ARE NOT ALLOWED
KEY IS ALTERNATE DEPT
DUPLICATES ARE INDEXED.

AREA NAME IS JOBDETAIL
KEY ID IS CONCATKEY < EMP-ID OF JOBREC
SEQ-NO >
DUPLICATES ARE NOT ALLOWED.

AREA NAME IS DEPARTMENTS
KEY IS DEPT-NO
DUPLICATES ARE NOT ALLOWED
KEY IS ALTERNATE MGR-ID
DUPLICATES ARE FIRST.

AREA NAME IS PROJECT
KEY IS PROJECT-ID OF PROJREC
DUPLICATES ARE NOT ALLOWED
KEY IS ALTERNATE RESPONSIBILITY
DUPLICATES ARE ALLOWED.

AREA NAME IS DEVELOPMENT-PRODUCTS
KEY IS PRODUCT-ID OF DEVREC
DUPLICATES ARE NOT ALLOWED
KEY IS ALTERNATE PROJECT-ID OF DEVREC
DUPLICATES ARE ALLOWED
KEY IS ALTERNATE EVAL-ID
DUPLICATES ARE INDEXED.

AREA NAME IS TESTS
KEY IS TESTNO
DUPLICATES ARE NOT ALLOWED
KEY IS ALTERNATE TNAME
DUPLICATES ARE INDEXED
KEY IS ALTERNATE TESTER
DUPLICATES ARE FIRST
SEQUENCE IS ASCII.

AREA NAME IS CDCSCAT
KEY IS QUCAT-KEY OF QUCATREC

DUPLICATES ARE NOT ALLOWED
SEQUENCE IS DISPLAY.

CONSTRAINT NAME IS MGR-CONST
MGR-ID OF DEPTREC DEPENDS ON EMP-ID OF EMPREC.

CONSTRAINT NAME IS PROJ-CONST
PROJECT-ID OF DEVREC DEPENDS ON PROJECT-ID OF PROJREC.

RELATION NAME IS EMP-REL
JOIN WHERE EMP-ID OF JOBREC EQ EMP-ID OF EMPREC.

RELATION NAME IS TEST-REL
JOIN WHERE PRDCTNO OF TESTREC EQ PRODUCT-ID OF DEVREC.

RELATION NAME IS OPD-REL
JOIN WHERE MGR-ID OF DEPTREC EQ RESPONSIBILITY OF PROJREC
PROJECT-ID OF PROJREC EQ PROJECT-ID OF DEVREC.

H-4

Figure H-1. Schema Generation (Sheet 3 of 3)

60485300 A

J )

J )



Job statement
USER control statement
CHARGE control statement
DEFINE,C5SSLIB.
ATTACH,MANUFAC.
bbL3,C5,5B=C5SSLIB,SC=MANUFAC.
--EOR—

TITLE DIVISION.

SS C5SS-PRODUCT-MANAGEMENT WITHIN MANUFACTURING-DB.

ALIAS DIVISION.
AD REALM DEVELOPMENT-PRODUCTS BECOMES PRODUCTS.
AD RECORD DEVREC BECOMES PRODREC.
AD DATA CUM-TEST-AVERAGE BECOMES CUMULATIVE-AVERAGE.

REALM DIVISION.
RD DEPARTMENTS, PROJECT, PRODUCTS.

RECORD DIVISION.
01 DEPTREC.

03 DEPT-NO PICTURE X(4).
03 DEPT-NAME PICTURE X(20).
03 MGR-ID PICTURE X(8).
03 MGR-NAME PICTURE X(20).
01 PROJREC.
03 PROJECT-ID PICTURE X(10).
03 PROJ-DESCR PICTURE X(40).
03 RESPONSIBILITY PICTURE X(8).
01 PRODREC.
03 PRODUCT-ID PICTURE X(10).
03 PROJECT-ID PICTURE X(10).
03 STATUS-CODE PICTURE A.

RELATION DIVISION.
RN IS DPD-REL
RESTRICT PRODREC WHERE STATUS-CODE EQ "A"
OR STATUS-CODE EQ "N",

60485300 D

Figure H-2. COBOL Subschema Generation

H-5



Job statement.

USER control statement

CHARGE control statement
DEFINE ,F5SSLIB.

ATTACH ,MANUFAC.
DDLF,F5,SB=F5SSLIB,SC=MANUFAC.
-=-EOR—

SUBSCHEMA F5SS-PRODUCT-MANAGEMENT, SCHEMA=MANUFACTURING-DB

ALIAS (ITEM) DEPTNO = DEPT-NO

ALIAS (ITEM) DEPTNAM = DEPT-NAME

ALIAS (ITEM) MGRID = MGR-ID

ALIAS (ITEM) MGRNAM = MGR-NAME

ALIAS (ITEM) PROJID = PROJECT-ID.PROJREC
ALIAS (ITEM) PROJDES = PROJ-DESCR

ALIAS (ITEM) BUDGTOT = BUDGET-TOTAL
ALIAS (REALM) BOSS = RESPONSIBILITY
ALIAS (REALM) PRODUCT-FILE = DEVELOPMENT-PRODUCTS
ALIAS (ITEM) PRODUCT = PRODUCT-ID

ALIAS (ITEM) PRODES = PRODUCT-DESCR
ALIAS (ITEM) PROJECT = PROJECT-ID.DEVREC
ALIAS (ITEM) STATUS = STATUS-CODE

ALIAS (ITEM) YTDCOST = DEV-COST-YTD

REALM DEPARTMENTS, PROJECT, PRODUCT-FILE

RECORD DEPTREC
CHARACTER DEPTNO *4, DEPTNAM %20
CHARACTER MGRID *8, MGRNAM *20

RECORD PROJREC

CHARACTER PROJID #10, PROJDES *40
REAL BUDGTOT

RECORD DEVREC

CHARACTER PRODUCT *10, PRODES #20
CHARACTER PROJECT #10

CHARACTER STATUS *1
REAL YTDCOST

RELATION DPD-REL
RESTRICT DEVREC (STATUS .EQ. "A" .CR. STATUS .E@. "R"™)

END

H-6

Figure H-3. FORTRAN 5 Subschema Generation

60485300 D

J )

J )



-
5@‘\

Job statement
USER control statement
CHARGE control statement
DEFINE,QUSSLIB.
ATTACH ,MANUFAC.
DbL3,QC,SB=RUSSLIB,SC=MANUFAC.
--EOR——

TITLE DIVISION.

S§S QUCREA6 WITHIN MANUFACTURING-~DB.

ALIAS DIVISION.

AD REALM DEPARTMENTS BECOMES DEPTAREA.
AD REALM DEVELOPMENT-PRODUCTS BECOMES DEVAREA.

REALM DIVISION.

RD EMPLOYEE, DEPTAREA, PROJECT.

RD DEVAREA, TESTS, CDCSCAT.

RECORD DIVISION.

01 EMPREC.
03 EMP-ID
03 EMP-LAST-NAME
03 EMP-INITIALS
03 DEPT

01 DOEPTREC.
03 DEPT-NO
03 DEPT-NAME
03 MGR-ID
03 MGR-NAME
03 NUM-ITEM
03 ITEM

05 LOC-CODE

05 HEAD-COUNT
05 EXPENSES-YTD
05 BUDGET

01 PROJREC.
03 PROJECT-ID
03 PROJ-DESCR
03 BUDGET-TOTAL
03 MONTHLY-BUDGET

03 SCHED-COMPLETE
03 RESPONSIBILITY

01 DEVREC.
03 PRODUCT-ID
03 CLASS
03 PRICE

03 PROJECT-ID
03 NUM-TESTED

03 CUM-TEST-AVERAGE

03 STATUS-CODE
03 DEV-COST-YTD

PICTURE X(8).
PICTURE A(20).
PICTURE A(4).
PICTURE X(4).

PICTURE X(4).
PICTURE X(20).
PICTURE X(8).
PICTURE X(20).
PICTURE 9(3).

OCCURS 2 TO 25 TIMES

DEPENDING ON NUM-ITEM.

PICTURE X(4).
PICTURE Z(4).
PICTURE 2(8).99.
PICTURE Z(9).

PICTURE X(10).
PICTURE X(40).
PICTURE Z(9).99.
PICTURE Z(7).99

OCCURS 12 TIMES.
PICTURE X(10).
PICTURE X(8).

PICTURE X(10).
PICTURE Z9.
PICTURE Z(5).99
USAGE IS COMP-1.
PICTURE X(10).
PICTURE 229
USAGE IS COMP-1.
PICTURE Z(7)9.9(3)
USAGE IS COMP-2.
PICTURE A.
PICTURE Z(8)9.99
USAGE IS COMP-1.

60485300 D

Figure H-4. Query Update Subschema Generation (Sheet 1 of 2)




01 TESTREC.

03 TESTNO PICTURE 9(14)

USAGE IS COMP-1.
03 TNAME PICTURE X(20).
03 PRDCTNO PICTURE X(10).
03 TESTER PICTURE 9(8)

USAGE IS COMP-1.
03 TOTALCT PICTURE 9(4)

USAGE IS COMP-1.
03 N PICTURE 9(3)

USAGE IS COMP-1.
03 PASPROB PICTURE 9.9999

OCCURS 100 TIMES
USAGE IS COMP-2.
01 GQUCATREC.
03 QUCAT-KEY PICTURE X(10).
03 QUCAT-ITEM PICTURE X(1030).

TITLE DIVISION.
§S QUPRODMGT WITHIN MANUFACTURING-DB.

ALIAS DIVISION.
AD REALM DEVELOPMENT-PRODUCTS BECOMES PRODAREA.
AD RECORD DEVREC BECOMES PRODREC.
AD DATA CUM-TEST-AVERAGE BECOMES CUMULATIVE-AVERAGE.
AD REALM DEPARTMENTS BECOMES DEPTAREA.

REALM DIVISION.
RD DEPTAREA, PROJECT, PRODAREA, CDCSCAT.

RECORD DIVISION.
01 DEPTREC.

03 DEPT-NO PICTURE X(4).
03 DEPT-NAME PICTURE X(20).
03 MGR-ID PICTURE X(8).
03 MGR-NAME PICTURE X(20).
01 PROJREC.
03 PROJECT-ID PICTURE X(10).
03 PROJ-DESCR PICTURE X(40).
03 BUDGET-TOTAL PICTURE 2(9).99.
03 RESPONSIBILITY PICTURE X(8).
01 PRODREC.
03 PRODUCT-ID PICTURE X(10).
03 CLASS PICTURE 29.
03 PRICE PICTURE 2(5).99
USAGE IS COMP-1.
03 PROJECT-ID PICTURE X(10).
03 STATUS-CODE PICTURE A.
03 DEV-COST-YTD PICTURE Z(8)9.99

USAGE IS COMP-1,

01 QUCATREC.
03 QUCAT-KEY PICTURE X(10).
03 QUCAT-ITEM PICTURE X(1030).

RELATION DIVISION.
RN IS DPD-REL
RESTRICT PRODREC WHERE STATUS-CODE EQ A",

Figure H-4. Query Update Subschema Generation (Sheet 2 of 2)

H-8 60485300

J

J )



Job statement

USER control statement

CHARGE control statement

DEFINE ,MSTRDIR.

PERMIT ,MSTRDIR,DBCNTLX=W.

ATTACH,MANUFAC.

ATTACH,CS5SSLIB.

ATTACH,F4SSLIB.

ATTACH,F5SSLIB.

ATTACH,QUSSLIB.

DBMSTRD (NMD=MSTRDIR,LD)

--EOR—-

SCHEMA NAME IS MANUFACTURING-DB
FILE NAME IS MANUFAC

TRANSACTION RECOVERY FILE

PFN IS "DB1TRF" UN IS "CDCS23"

UNIT LIMIT IS 50

UPDATE LIMIT IS 15
RESTART IDENTIFIER FILE

PFN IS "DB1RIF" UN IS "CDCS23"
JOB CONTROL INFORMATION

TAPE TYPE IS NT

DENSITY IS PE
UN IS "CDCS23"
CHARGE IS "1982CHG".

VERSION NAME IS MASTER

AREA NAME IS EMPLOYEE
PFN IS "MEMPL" UN IS "CDCS23"
PW IS "OKCDCS2"
INDEX FILE ASSIGNED
PFN "MXEMPL" UN IS "CDCS23".

AREA NAME IS JOBDETAIL
PFN IS "MJOBD" UN IS "CDCS23"
PW IS "OKCDCS2".

AREA NAME IS DEPARTMENTS
PFN IS "MDEPT" UN IS "CDCS23"
INDEX FILE ASSIGNED
PFN "MXDEPT" UN IS "CDCS23".

AREA NAME IS PROJECT
PFN IS "MPROJ" UN IS "CDCS23"
INDEX FILE ASSIGNED
PFN "MXPROJ"™ UN IS "CDCS23".

AREA NAME IS DEVELOPMENT-PRODUCTS
PFN IS "MDEVE"™ UN IS "CDCS23"
INDEX FILE ASSIGNED
PFN IS "MXDEVE"™ UN IS "CDCS23".

AREA IS TESTS
PFN IS "MTEST" UN IS "CDCS23"
INDEX FILE ASSIGNED
PFN "MXTEST" UN IS "CDCS23".

AREA NAME IS CDCSCAT
PFN IS "MQCAT" UN IS "CDCS23".

VERSION NAME IS BRANCH1.
VERSION NAME IS BRANCH2.
VERSION NAME IS BRANCH3.
VERSION NAME IS BRANCH4.

SUBSCHEMA NAME IS PRODUCT-PERSONNEL
FILE NAME IS C5SSLIB.

SUBSCHEMA NAME IS C5SS-PRODUCT-MANAGEMENT
FILE NAME IS C5SSLIB.

SUBSCHEMA NAME 1S F4SS-PRODUCT-EVALUATION
FILE NAME IS F4SSLIB.

SUBSCHEMA NAME IS F5SS-PRODUCT-MANAGEMENT
FILE NAME IS F5SSLIB.

SUBSCHEMA NAME IS QUCREA6
FILE NAME IS QUSSLIB.

SUBSCHEMA NAME IS QUPRODMGT
FILE NAME IS GQUSSLIB.

Figure H=-5.

Master Directory Generation

Job statement
USER control statement
CHARGE control statement
DEFINE,DB1TRF1.
DEFINE,DB1RIF.
PERMIT,DB1TRF1,DBCNTLX=W.
PERMIT,DB1RIF,DBCNTLX=W.
RETURN,DB1TRF1.
RETURN,DB1RIF.
ATTACH,MSTRDIR.
DBREC.
--EOR--
SCHEMA NAME IS MANUFACTURING-DB
ALLOCATE
TRANSACTION RECOVERY FILE IS DB1TRF1
RESTART IDENTIFIER FILE IS DB1RIF

60485300 D

Figure H-6. Recovery File Initialization by DBREC

H-9




Job statement
USER control statement
CHARGE control statement
COMMENT. CREATING DB AREA FILES
DEFINE (MEMPL/PW=0KCDCS2 ,M=W)
DEFINE (MXEMPL/M=W)
RETURN (MEMPL ,MXEMPL)
DEFINE (MDEPT ,MXDEPT/M=W)
RETURN (MDEPT ,MXDEPT)
DEFINE (MPROJ ,MXPROJ /M=W)
RETURN(MPROJ ,MXPROJ) ¥
DEFINE (MDEVE ,MXDEVE/M=W)
RETURN (MDEVE ,MXDEVE)
DEFINE (MTEST ,MXTEST/M=W)
RETURN(MTEST ,MXTEST)
DEFINE (MQCAT/M=W)
RETURN(MQCAT)
PERMIT ,MEMPL ,DBCNTLX=W.
PERMIT , MXEMPL ,DBCNTLX=W.
PERMIT ,MDEPT ,DBCNTLX=W.
PERMIT MXDEPT,DBCNTLX=W.
PERMIT ,MPROJ ,DBCNTLX=W.
PERMIT MXPROJ ,DBCNTLX=W.
PERMIT ,MDEVE ,DBCNTLX=W.
PERMIT MXDEVE,DBCNTLX=W.
PERMIT ,MTEST ,DBCNTLX=W. .fﬁ@“
PERMIT MXTEST,DBCNTLX=W.
PERMIT ,MQCAT ,DBCNTLX=W.
COMMENT. CONTROL STATEMENTS FOR QU JOB
au,
Qu.
ATTACH,MQCAT/M=W.
REWIND,Z22222Q2.
COPY,222272Q2 ,MQCAT.
~=EOR~-
CREATE EMPLOYEE OF QUCREA6 FROM LIBRARY QUSSLIB (UN=CDCS23)
ACCESS KEY IS SEMP-WRITE$ ON OUTPUT FOR AREA EMPLOYEE
ACCESS KEY IS S$EMP-READ$ ON INPUT FOR AREA EMPLOYEE
STORE SETTING EMP-ID, EMP-LAST-NAME, EMP-INITIALS, DEPT ' “}
$1460BUNSS $BUNSENS 3$1.A.$ 3$M890%
$2330FINDS SFINDERS $R.H.$ $M200%
$3650HOWES $HOWES $L.C.$ $M210%
B4540MENTS $MENTORS $X.P.3 $M570%
$5730600D$ $GOODE$ $S.A.$ $M0680S
$6930CARPS $CARPENTERR$ $6.L.3 $M130%
$7210BYERS $BYERSS $C.B.$ $MD10%
*END
CREATE DEPTAREA OF QUCREA6 LIBRARY QUSSLIB (UN=CDCS23)
ACCESS KEY IS SVERY*PRIVATES ON I-O0 FOR AREA DEPTAREA
STORE SETTING DEPT-NO, DEPT-NAME, MGR-ID, MGR-NAME, NUM-ITEM
$M010$ SPURCHASINGS $7210BYER$ $C. B. BYERSS 8 e
$M1303 SPACKAGING-DESIGNS $6930CARPS $B. L. CARPENTERS S ,
$M2008 $RESEARCH$ $2330FINDS $R. H. FINDERS 7
$M210$ $DEVELOPMENT$ $3650HOWES $L. C. HOWES 7
$M570% STESTING-EVALUATIONS $4540MENTS $X. P. MENTORS 13

. $M680% $QUALITY CONTROLS $57306000$ $S. A. GOODES 7
$M890$ $CHEM LABS $1460BUNS$ $I. A. BUNSENS 9
*END
CREATE PROJECT OF QUCREAS FROM LIBRARY QUSSLIB (UN=CDCS23)
ACCESS KEY $OKAYED~OUTPUT$ ON OUTPUT FOR AREA PROJECT
STORE SETTING PROJECT-ID OF PROJREC, PROJ-DESCR, +

RESPONSIBILITY, BUDGET-TOTAL

$M1300015608 3SADVANCED BIG BOX$ $6930CARPS 143000.
$M130001720% $ADVANCED THERMAL PROTECTORS $6930CARPS 105000. -
$M200001570% SADVANCED NETWORKS $2330FINDS 275000.
$M200001590% SARCTIC AGRICULTURES $2330FINDS 192500.
$M210001320% $GAMMA SPOOK SUPPORTS $3650HOWES 55000.
$M210001322% $BETA SUPPORTS $3650HOWES 85000. .
$M210002540% $EPSILON SPOOK DEVICES$ $3650HOWES 95000.
$M890001550% SADVANCED BONDING AGENT-993 $1460BUNS$S 130000.
$M890001720% SGENETIC ENGINEERING: NITROGEN FIXINGS $1460BUNS$ 258000.
*END -

3 )

Figure H-7. Data Base File Creation by Query Update Application (Sheet 1 of 3)

™
Am%ﬁ

B-10 60485300 D



INVOKE QUCREA6 FROM LIBRARY QUSSLIB (UN=CDCS23)

ACCESS KEY $OKAYED-OUTPUT$ ON OUTPUT FOR AREA PROJECT
ACCESS KEY IS SVERIFIED-INPUT$ ON INPUT FOR AREA PROJECT
MODIFY USING PROJECT-ID OF PROJREC SETTING SCHED-COMPLETE
$M1300015608 $84/06/31%

$M130001720% $83/12/20%

$M200001570% $85/07/30%

$M2000015908 $84/09/30%

$M210001320% $84/02/15%

$M210001322% $85/08/25%

$M210002540% $83/10/01%

$M8900015508 $83/03/15%

$M890001720% $84/11/01%

*END

CREATE DEVAREA OF QUCREA6 FROM LIBRARY QUSSLIB (UN=CDCS23)
ACCESS KEY IS $ACCESS(/)OK$ ON I-0 FOR AREA DEVAREA
STORE SETTING PRODUCT-ID, CLASS, PROJECT-ID OF DEVREC, STATUS-CODE, +
DEV-COST-YTD
$826NAMWO19S
$7684GRD028%
$537KLPNO37$
$432DRTF043$
$025CBLEQ55$
$826NAMWO69S
$826NAMWO70S
$537KLPNO773
$537KLPNO78%
$537KLPNO79%
$567CRTX081$
$567CRTX881S
$567CRTX882%
$567LINED94S

$387ARAG322%

$387ARAG323%
$387ARAG555%
$69365PK020$
$69365PK022%
$2808SPK910$
$280BSPK950$
$466EPSD3118
$138CBND926$
$138CBND9303
$138CBND940$
$268GENEO8S$

*END*

CREATE TESTS
ACCESS KEY IS $3UP$ ON OUTPUT FOR AREA TESTS

ACCESS KEY IS $DOWN$ ON INPUT FOR AREA TESTS

STORE SETTING TESTNO,TNAME,PRDCTNO,TOTALCT,N,PASPROB(ALL)
32555 SLINE-TESTS $537KLPNO788 45 100 +

02
03
03
03
04
08
08
01
0|
02
06
06
07
07
08
08
06
14
13
10
08
06
03
05
04
1

OF

$M130001560% $NS 4590.
$M1300015608 $R$ 5555.
$M130001560% $N$ 2030.
$M1300017208 $AS 4580.
$M1300017208 $A$ 30500.
$M2000015708 $N$ 10850.
$M200001570% $N$ 12850.
$M200001570% $AS 950.
$M2000015708 $A$ 12250.
$M200001570% $AS 14400.
$M2000015708 $R$ 3678.
$M2000015708 $R3 3678.
$M2000015708 $N$ 5400.
$M200001570% $N$ 9400.
$M200001590% $A$ 35000.
$M2000015908 $N$ 8580.
$M2000015908 $R$ 7500.
$M210001320$ $AS 2050.
$M210001320% $A$ 8050.
$M210001322¢ $N$ 20500.
$M210001322% $R$ 10220.
$M2100025408 $A$ 54000.
$M890001550% $AS 33330.
$M8900015508 $A$ 13000.
$M890001550% $A% 1050.
$M8900017208 $R$ 164000.

QUCREA6 FROM LIBRARY QUSSLIB (UN=CDCS23)

60485300 D

0.95 0.97 0.99 0.94 0.99 0.98 0.92 0.88 0.92 0.99 +
0.88 0.99 0.94 0.93 0.99 0.88 0.98 0.87 0.99 0.93 +
0.97 0.99 0.87 0.99 0.95 0.89 0.92 0.90 0.92 0.88 +
0.99 0.94 0.92 0.94 0.99 0.91 0.96 0.99 0.91 0.84 +
0.87 0.88 0.86 0.98 0.99 0.93 0.93 0.92 0.98 0.99 +
0.99 0.87 0.90 0.97 0.84 0.89 0.90 0.99 0.99 0.93 +
0.89 0.92 0.85 0.92 0.98 0.99 0.98 0.95 0.88 0.92 +
0.85 0.76 0.94 0.92 0.99 0.97 0.92 0.98 0.92 0.95 +
0.87 0.96 0.99 0.92 0.94 0.90 0.83 0.88 0.92 0.98 +
0.89 0.89 0.99 0.93 0.95 0.92 0.98 0.95 0.99 0.97
18961 $QUALITY-TESTS $537KLPNO79% 20 15 +
0.89 0.85 0.72 0.93 0.84 0.93 0.98 0.95 0.88 0.97 +
0.98 0.65 0.78 0.65 0.93 0.00 0.00 0.00 0.C0 0.C0 +
0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 +
0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 +
0.00 0.c0 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 +
0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 +
0.00 0.00 0.C0 0.00 0.00 0.00 0.00 0.00 0.00 0.00 +
0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 +
0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.G0 0.00 0.00 +
0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
Figure H-7. Data Base File Creation by Query Update Application (Sheet 2 of 3)

H-11




R R R R LR R R R A R R L R S A S R T R LR
au88588888 8558888888 S5RE8E888858 888888888 InNNS888888 2388888888

J J . J . » . L J J . . J . [ [ J L L d U L [ » o i L Ld J [ L . [ J Ll [ J L[] . o & o . [ i .
[=N~NolololololeloN-] OCOCO0O0OO0O0OO0 =N =Nel=JoN-NoNolaN-] o000 oCcOoOOO0OOO OO0 00DDOoCOoOoCOO0OD CO0CO0O00DO0OO O
%528888888 $358888888 3858288838 4385858888 5538383888 $385858883

s 8 8 8 & 8 0 0 v 3 » (] (] [] (] () ¢ o 9
0000000000+0000000000 OO0 0O0ODDO000D 0000 OOOO0OO Qoo0oo00O0OO0COD 0O0OO0OO0CO0O0OOoO0COoOOoO
w0 [=] o Q nmMno [=] (=} o o [=] Q08 wnoN [=] [=] [= Y= =] oONO O (=] + O [=X=]
3 8 9 0 % 9 3 8 3 G- 5 B B 8 0 8 0 W W s & & o 3 8 8 0 0 @ ® v 8 o 8 8 @ 8 & u & 5 0 6 8 0 8 0 3 IO 8 0 8 U U O 8 B oW »
000000000030000000000“0000000000.—.ODOOOODDDD+000000000020000000000
[ [=] [=Y=f-R-R 8- & =] Q (=} [=] M [=] [~] 0O e =] (=] Q (=} N MM OO (=Y} M [~ ==Y} o
--.---1-o-.---1.---.-1-----4---.--1-.---o
000000000500000000001000000000020000000000800000000 0“0000000000
Q0RO VTN ITO (=} Q [=] MN O QDo QN g (=] [=4 [=] [~} 0 [ e ] (=] N0 Do [=]
s 8 9 8 8 3 & & s (0N 5 3T & 8 8 8 8 4 8 g~ 1 8 ¥ S 8 % & % % CGH & B B @& ® 8 3 @ &8 & s & 5 8 &8 & 8 5 & SC) € 8 & & 9 A2 & 5 8 @
Q [l =Yo N [=} QO E N [eJeNeoNojolaNe o el X=Ne) [= =N o wn NOOO
B3N S85888 838888888555 5888888833R838288888%8n®8828884923548838888
s & ® & 8 8 8 ¥ 8 @ -n-n-.-.-N--oo---M-.----L----o..?-coc--o.

0.96 0

0.7

- o
oMo 0O HOoOOONDODOOODOOO VOrPrCOODO00O0OUVUTOVOOOOOO QN O MOoQoOoOoooOoo¥m Moo O
B 8 3 s 8§ 8 5 3 0 s ) 6 ® & 6 2 & & 8 O @ n----oa“--o.--uo.ucnu---s-.--..-..
oONNOOOD QO waN nooo (=] QUMMM MOOONDQHLIVDOODDOCODBNM VNOO QQUWONMNVOOODOOOO O
--A---u_---u--.T-o.----s-.--.n-s-o.-o-.-_o--.--.

A
834000000c 76000000069 2000 Q01 VvAN0O (=] Q00 I N MNODQOQO MO (=== Yo W N ] Q
--.-.--M-n-n--n-K--..-u-OQ--o.n-Cn--o--cEn----.-
VOO0V MNMOODODD D QAONOMNMNODOQODOODOLOINMOD (=YY= W] Nho QO QOO CcMO VOO0 0

[] e 8 . . . . . . . LJ . . . L] . L L . A . 4 . [ L 4 . i . A . . . i L . . - 4 L3 . . L] . L] * . d * @ . . . 4 4 . I .
O00000000DO0CO00000O0O0OO0OONCOCO0O0O0O0DO0000ODO0OO COO000ONMNRODO0O0O0O00OO0ONOCODOO0OOO0DOO

89 0.88 0.72
R

34347 SSMALLPARTS-TESTS $466EPSD311$ 14 35 +
0

2510
9344
2530
1077
8547

™
/ﬁﬁﬁ

60485300 D

Data Base File Creation by Query Update Application (Sheet 3 of 3)

*END
END
--EOR~-
RECORDING DUMMY
DISPLAY DUMMY
RECORDING OFF
*END
END

Figure H-7.

H-12



COLLATING SEQUENCES FOR DATA BASE FILES |

The collating sequence of a data base file 1is
determined by the area control entry im the schema.
The following collating sequences can be specified:
ASCII, COBOL, and DISPLAY (also called the FORTRAN
collating sequence). If no collating sequence is
gpecified in the schema area control entry, the
COBOL collating sequence is the default for the
file. The collating sequence specified for a spe-
cific data base area can be obtained from the data
administrator. Collating sequences are shown in
table I-1.

The collating sequence specified for a file affects:

The order in which items are retrieved when a
file is accessed sequentially.

The order in which items are returned by alter-

nate key retrieval for all file organizations
if duplicate alternate keys are allowed.

60485300 A

The order in which items are returned by pri-
mary key (or the major portion of a primary
key) for files that have indexed sequential
file organization.

The collating sequence specified for a file also
affects the comparison performed by the FORTRAN DML
READ and START statements, and by the COBOL START
statement.

The collating sequence of a Query Update catalog
file must be the DISPLAY collating sequence.

The collating sequences in this appendix apply only
to operations performed on data base files. If
collation is used in any other portion of an appli-
cation program, the collating sequence defined by
the program is used.



TABLE I-1. DATA BASE COLLATING SEQUENCE

Collating Sequence ASCII COBOL DISPLAY
Decimal Octal Graphics Dézgiay Graphics Dé:giay Graphics DZzgiay
00 00 blank 55 blank 55 :1 oot
o1 01 ! 66 < 74 A 01
02 02 = 64 zt 63T B 02
03 03 # 60 [ 61 c 03
04 04 $ 53 - 65 D 04
05 05 el 63t = 60 E 05
06 06 & 67 A~ 67 F 06
07 07 ‘ 70 + 70 G 07
08 10 ( 51 + 71 H 10
09 11 ) 52 > 73 I 11
10 12 * 47 2 75 J 12
11 13 + 45 = 76 K 13
12 14 s 56 . 57 L 14
13 15 - 46 ) 52 M 15
14 16 . 57 ; 77 N 16
15 17 / 50 + 45 0 17
16 20 0 33 $ 53 P 20
17 21 1 34 * 47 Q 21
18 22 2 35 - 46 R 22
19 23 3 36 / 50 S 23
20 24 4 37 , 56 T 24
21 25 5 40 ( 51 u 25
22 26 6 41 = 54 A 26
23 27 7 42 # 64 W 27
24 30 8 43 < 72 X 30
25 31 9 44 A 01 Y 3t
26 32 :F oot B 02 z 32
27 33 H 77 c 03 0 33
28 34 < 72 D 04 1 34
29 35 = 54 E 05 2 35
30 36 > 73 F 06 3 36
31 37 ? 71 G 07 4 37
32 40 e 74 H 10 5 40
33 41 A 01 I 11 6 41
34 42 B 02 v 66 7 42
35 43 Cc 03 J 12 8 43
36 44 D 04 K 13 9 44
37 45 E 05 L 14 + 45
38 46 F 06 M 15 - 46
39 47 G 07 N 16 * 47
40 50 H 10 0 17 / 50
41 51 I 11 P 20 ( 51
42 52 J 12 Q 21 ) 52
43 53 K 13 R 22 $ 53
44 54 L 14 ] 62 = 54
45 55 M 15 S 23 blank 55
46 56 N 16 T 24 s 56
47 57 0 17 U 25 . 57
48 60 P 20 v 26 = 60
49 61 Q 21 W 27 [ 61
50 62 R 22 X 30 1 62
51 63 s 23 Y 31 %1 637
52 64 T 24 z 32 # 64
53 65 U 25 7 oot - 65
54 66 v 26 0 33 v 66
55 67 w 27 1 34 A 67
56 70 X 30 2 35 + 70
57 71 Y 31 3 36 + 71
58 72 Z 32 4 37 < 72
59 73 [ 61 5 40 > 73
60 74 \ 75 6 41 < 74
61 75 | 62 7 42 2 75
62 76 —- 76 8 43 —_ 76
63 77 - 65 9 44 ; 77
TIn installations using a 63-graphic set, the Z graphic does not exist. The : graphic is display cocde 63.

I-2

60485300 A

J )

D J



SUMMARY OF DATA DEFINITIONS IN DMS-170 J

This summary indicates the correspondence of the
clauses or statements that can be used in defining
data items in DMS-170. Table J-1 shows the schema
definition required for data items of each schema
data class and the subschema definitions that
correspond to each schema data class.

For Query Update access to schema-defined data base
files in CYBER Record Manager (CRM) data base access
mode, the data base must be defined in the Query
Update subschema exactly as the data base is de-
fined in the schema. Therefore, every data item
must be defined to correspond in size and class to
the schema definition of the item.

60485300 A

For COBOL, FORTRAN, and Query Update access to
schema-defined areas in CYBER Database Control
System (CDCS) data base access mode, the definition
of data items in the subschema does not have to
correspond exactly to the schema definition of data
items. Through mapping, CDCS can generate a record
image conforming to the subschema format from a
record in schema format, or can perform the con-
version of data from subschema format to schema
format. Detailed information about the conversions
allowed is included in the CDCS 2 Data Administrator
reference manual.



¢ C

C

(81
nayl 1 s¥
(saa3deaeyd (sx930BaRYD anyea 138
juawaderdaa Juswadetdax -23Uuf IY3
pue uoyl pue uol3 aaaya)
IVOI901 -13suf pue TVOIO01 | —aesuf pue NVaT100€ Z-19393ug 198a3urg
YIIAINI dAS6) +wxmazH d AS6) TVOI901 LIXFANI | (4 A S 6) 1-33833uT £asuiq
T-dK0D OFaauny =dr0D JrIaumny AIOAINT 1-droD opaeuny | 19893uT Lavurg qaxia suoN pPapo) 01
(sas3deaeyd (sa93oBIRYD uoy3ysod
juamaceTdaa Juausderdeaa Suryeos xo0 Teuw
pue uorl pue uorl ~Fo0p JIFOFTdxe
(|uou 10) ~19s8ul pue | (auou 10) -19SUf pue (Puou 10) 10 37oFTduy (" A
dHOoD dAsS6) dH0D dAS6) daiod | (d A S 6) snTd dfaswnu Ldes) POXT3
AV1dS1d JT UMy iXV1dSI1d JTasmN +w=oz AV1dSIa JTIdUNN apo> LurdsiqQ SUON JTa2umN Kevrds1qg Y
(sasjoeaeyo (saa3oeawyd uorafsod
juamadetd Juswaderd 1930BARYD ISBT
-21 pue -21 pue uT youndaaao
(a2uou 10) uoTjadsuy | (suou i10) UOF3IISUT (auou 10) udts saey
dW0D pPue s 6) dr0D pPue S 6) drR0d (s 6) ugd ‘oraswnu (1 6) | 193a3ur
AVIdSIa OTIsUNy AV1ds1a dFIawWNYN 4PuoN AvV1dsia OpIamnN apod £eTdsTQ auoN otaaunN | Lerdsiq €
(suou 10) 21399
(suou 10) (V) °139q | (3uou 10) (V) o11389q (suou 10) | (V) °F38q o139qeydie (V) °139q ~-eydTe
Xv1dsia -eyd1y Avidsia ~eydTy | YALOVIVHD Av1dsia -sydTy | “opod Lerdsia auoN -syd1y | Lerdsiq 1
(sx T1® (sX T1® (sX 1T® (sX 1T1®
se pesn se peasn se pasn se pasn
uofIBd UOFIBd UuoF3Ied Uof3IEO
-T3To09ds -I31oads -1J1o°2ds -T37oads
poxTm paxTu paxTu poxXiu
fsg 10 sy $8¢ 10 sY $sg 10 8y fsg 10 8Y
11® 30U 118 30U I1® 30U 1T® 30U
6 XV) ‘6 X V) 6 X V) ‘6 X V) | drasunu
(auou 10) dTIaunu | (suou I0) ST Iaumnu (suou 10) Jfasunu orasunueydTe Jraaunu ~eydre
XV1ds1d -eydy Av1dsId -eyd 1y | YAIOVIVHO AV1dSIa ~eydyy | “@pod LeTdsTd | YAIOVIVHD -eyd1y | Lerdsia 0
aweN *oN
asneT) asnet) asnet) asne) asner) asney) | uoriejussaadey asney) ‘9snEBY) ssery | ssern
qovsn ANLOId JIovsn RnINLIId aovsn INLOId Teuaajul H4XL NNIDId e3eq e1ea
Jusuajels
ad4L
QPO S8900y oseq apoR SS90y aseq BUOYISqNS
eled WO UF BUSYOS Bleq §OQD UT BUIYOS S NV4140d euayasqns 70400 VWEHOS
-qng a3epdp £aand -qng 93epdn £iend
0LT-SKA NI NOILINIJHQ VIvVd °T1-L JTEVL

-
=

60485300 D

® J-2



*pamoTTe 9snerd 2an3dfd oNy |

« [eNUPW 95U913J31 UOTIBIISTUTUPY ®vied ¢ SOQD 943 UF uMOYS ST UOTSIBAUOD PITeA *ad43 ewsydsqns Suypuodsairod oN}

C

(sa@3deaeyd (saajdeaeyod
juswaderdaa jusmaoetdaa
pue uorl pue uof3l (spaon g) 3aed
-19suy pue -138Uy pue Laeuy3euny pue
dASG6) dASE6) 3aed Teax y3ztm xoy1dmod
Xd2TdROD OFa2duny XATdHOD OFaduny XdTdHOD hwcoz hwnoz jurod 3utleoTd XATdR0D QuoN P2po) ST
(62
y3noayy
(sa@3oraeyd (sx@30v1BYd Gl ST
juauaderdax juawaderdax  anTeAa 193
pue uofl pue UOT3 (spaos Z) | —93uT 9yl UOFSTO
-198Ul pue -13Suy pue jutod BurjeoTy 2a9ya) -axd
dAS6) d A S 6)| NOISIOHdd pazIemaou | [-128s3uf sTqnop
a1enoda OF19uny Ti4anod JTadunN a1enod +u=oz bwnoz ¢ pousts Lvold QUON papo) 71
€49
y8noaya
(saajdeaeyd (sa93deaeYd 1 81
juamaderdaa juswaderdax anyea 198 POZE
pue uoll pue uof3l (pxom 1) | -@3utr ay3 ~IBWIOU
-~-I98UT pue -198Uy pue jurod Suyawory} a1oym) Juyod
dASE6) d AS6) Nva100d (d AS6) peziTemIou | [-13833u¥ BuyleoTy
¢~dW0D OFasunN ¢-dH0D OFasunN VR ¢-dW0D JFa3unN ¢ poudts Lvo1a suoN Papod el
[uweN *ON
asne) asneT) 9sney) asneT) 28neY) asney) | uoriejussaaday asner) 28neT) ssery | ssemd
govsn NINLOId qovsn ANIOId qovsn TANIDId Teuxaajul 44l TANIOId BIBq B38Q
JuaWIIBIS
adLy,
9pOR 88900y Iseg 9pOK S8aVOY aseq vUWaYo8qNg
BlBQ WD UT EBWIYDS Bled SOAD UT PWAYIS | G NVIINOL BWAYOSqNS 10400 VRAHDS
-qng 23epdn L1end -qng °3mpdn Kasnd
(P3uo)) 0LT-SHA NI NOILINIZHEA VIVAd °I-f F14VL

J=3e

60485300 D



- oo
'
i
i
'
.. i
. .
oo
B 1
" B ) ’
N B
- (R
z iz

3.
N :
T <
Lo

)

) , :

i

i

- i |

s !
i
] ! . :
) T :
\ . '
i
N 1
v N
: i
|
i
. . Y




C@ﬁ\
éﬁiﬁx

Access control (see also Privacy)
Definition C-1
Key
Definition 5-1
In COBOL program 2-16

In FORTRAN program (see Privacy key)

In Query Update directive 4-5
TAF task 5-22
Lock C-1
ACCESS-CONTROL clause 3-6
ACCESS directive 4-6

Actual
Item C-1
Key C-1

Advanced Access Methods (AAM) 1-7, C-1, E-1

After-image C-1
Alias
Definition C-1
Names 2-1, 3-1, 4-1
Alphanumeric C-1
Alternate key
Definition C-1
Example 2-1, 3-1, 4-4
Application
Languages 1-3
Program C-1
Area (see also Realm)
Definition C-9
EXHIBIT directive 4-9
Arrays 3-5, C-1
ASSIGNID statement 3-8
AT END option 2-14
Attach C-1
Automatic recovery C~l

Backup dump C-1

Basic Access Methods (BAM) C-1

Batch Test Facitity (see CDCS)
Before-image C-1
Beginning-of-information (BOI) 3-13, C-1
BEGINTRAN statement 3-8

Block C-1 (see also Common blocks)

Cascade effect C-2

Catalog file 4~4, 4-15

CDCS
Batch Test Facility 5-1, C-1, G-1
Catalog mode 4-1, 4-13, 4-15
Constraint processing 5-20
Data base access mode 4-1
Definition 1-1, C-2
Diagnostic messages B-1
Diagnostics 5-1, B-l
Error code 2-21, 3-23
Error processing 5-1
Execution-time processing 5-1
Informative dlagnostics 3-25
INVOKE processing 4-11
Locking mechanism 5-15
Transaction processing 5-11

CDCSBTF control statement G-l

Character set A-1

Checksum
Definition C-2

60485300 D

INDEX

Checksum (Contd)
Example 2-1, 3-1, 4=4
Recompilation 2-19, 3-21
Child record occurrence 5-4, C-2
CLOSE statement 2-8, 3-8
COBOL
Example using a relation 6-3
Interface 2-1
Processing 1-3
Routines
C.DMRST 2-8
C.I0ST 2-8
C.LOK 2-9
C.UNLOK 2-9
DB$ASK 2-9
DB$BEG 2-10
DB$CMT 2-10
DB$DBST 2-10
DBSDROP 2-10
DB$GTID 2-10
DB$LKAR 2-11
DBSRPT 2-11
DBSSIR 2-12
DBSVERS 2-12
DBSWAIT 2-12, G-3

Statements
CLOSE 2-8
DELETE 2-12
OPEN 2-13
READ 2-14
REWRITE 2-15
START 2-15

USE FOR ACCESS CONTROL declarative
USE FOR DEADLOCK declarative 2-17
WRITE 2-18
SUB-SCHEMA clause 2-5
Subprograms 2-18
Syntax summary D-l
Collating sequence
Affects processing
For READ 2-14, 3-15
For START 2-16, 3-17
For character sets A-3, A-4
For data base files I-1
COMMITTRAN 3-8
Common blocks F-1
Compilation/execution 2-19, 3-20, G-3
Compression C-2
Concatenated key
COBOL subschema listing 2-2
FORTRAN DML
READ statement 3-16
START statement 3-18
FORTRAN subschema listing 3-1, 3-2
Query Update subschema listing 4-2
Concurrency
Definition C€-2
Description 1-5, 5-15
Immediate return feature 5-17

Condensed Schema/Subschema Table (CST) C=-2

Constant 3-5, C-2
Constraints
Definition C-2
Description 1-5, 5-18
Effects file processing 5-21
Information source 2-4, 3-4, 4-5

2-16

Index—-1



Control break
Definition C-2
Description 5-8
Reported in data base status block 2-22, 3-24
Control statements
CDCSBTF 3-14, G-1
COBOL5 2-19
DML 3-19, K-1
FORTRAN 4 example 7-2
FORTRAN 5 example 7-1
LDSET 3-21
@ 4-14
Control word C-2
Conversion 3-2, C-2
CREATE directive 4-8
CRM
Catalog mode 4-13, 4-15
Definition C-2
Element of IMS-170 1-1
Error code 2-21, 3-23
Informative diagnostics 3-25
CYBER Database Control System (see CDCS)
CYBER Record Manager (see CRM)
C.IMRST routine 2-8
C.IOST routine 2-8
C.LOK routine 2-9
C.UNLOK routine 2-9

Data administrator
Definition 1-1, C-2
Role 2-4, 3-4, 4-5
Steps to establish data base enviromment H-l
Data base
Definition 1-1, C-2
Enviromment used for examples H-1
File (see File)
Procedures 1-5, C-2
Processing 1-3
Recovery 1-6 (see also Recovery)
Data base status block
bDefinition C-2
Example 2-19, 3-22, 4-16
Data base transaction
Begin transaction 2-10, 3-8
Commit transaction 2-10, 3-8
Definition C-2
Drop transaction 2-10, 3-10
Effects locking 5-15
Processing 1-6, 5-10
Update limits 2-5, 3-4
Data base version
Definition C=~2
Description 1-5
Effects execution-time processing 5-1
Effects relation processing 5-7
Name 2-5, 3-4, 4-5
Use
COBOL 2-12
FORTRAN 3-12
Query Update 4-8, 4-11, 4-13
Data definition summary J-1
Data description entry 2-1, 4-4
Data Description Language (see DDL)
Data integrity C-2
Data item C-2
Data Manipulation Language C-1 (see also
FORTRAN IML)
Data name C-3
Data type 3-3, 4-4 .
DATABASE option 4-8, 4-11, 4-13
DBREALM variable 3-25
DBREC utility H-1, H-9

Index=2

DBRunnn(3) variable 3-25

DBSnnnn variable 3-25

DBSTAT variable 3-25

DBSASK routine 2-9, 5-11

DBSBEG routine 2-10

DBSCMT routine 2-10

DB$DBST routine 2-10

DBSDROP routine 2-10

DBSGTID routine 2-10

DBSLKAR routine 2-11

DBSRPT routine 2-11

DB$SIR routine 2-12

DB$VERS routine 2-12

DB$WAIT routine 2-12, G-3

DDL 1-1, C-2 )

Deadlock
Definition C-3
Description 1-5, 5-16
Testing G-l

Decompression C-3

DELETE statement 2-12, 3-9

Dependent record occurrence (-3

Diagnostics
CDCS diagnostics 3-25, B-1
CRM informative diagnostics 3-25
Execution time 5-1, B-1
FORTRAN/DML B-29

Direct access C-3

Directed relationship C-3

Directory 1-2, C-3

DISPLAY directive 4-9

DMLDBST routine 3-9

DMLRPT routine 3-10

DMLSIR routine 3-10

MS-170 1-1, J-1

Dominant record occurrence C-3

DROPTRAN statement 3~10

Duration loading C-3

Elementary item
Definition C-3
EXHIBIT directive 4-9
End-of-file
AT END option 2-14
END specifier 3-15, 3-24, 3-26
File position code 2-21, 3-23
End-of-information -3 (see also End-~of-file)
END specifier 3-24
ERR gpecifier 3-24
Error processing (see also Status checking)
By CDCS 5-1
In FORTRAN program 3-8
Informative conditions 5-8
Query Update 4-16
Exeamples
EXHIBIT directive 4-10
FORTRAN S program 7-1
Query Update 8-1
Using a catalog file 4-15
Using a relation (COBOL) 6-1
Using CDCS Batch Test Facility G-4
Using transactions with COBOL 5-11
Exclusive lock 5-14 (see also locking)
EXHIBIT directive 4-9
EXTRACT directive 4-10

Figurative constant C-3

File (see also Non-data-base file)
Creation 4-8
Definition C-3
Guidelines for updating 5-8

60485300 D

JJ

£

)



D)

File (Contd)
Lock 2-11, 3-11, 5-15
Description 5-15
In COBOL 2-11
In data base transaction 5-11
In FORTRAN 3-11
Organi zation 1-7
Privacy 1-5
Processing 1-7, 5-1
File position

Determining end-of-file (see End-of-file)

File position (FP) code 2-21, 3-23
Positioning at beginning-of-file 3-13
READ statement 2-14, 3-14
START statement 2-15, 3-16
FINDTRAN statement 3-11, 5-11
Fixed occurrence data item C-3
Floating point literal C-4
Flushing C-4
FORM C-4
FORTRAN
Interface 3-1
Processing 1-3
FORTRAN Data Base Facllity 1-1
FORTRAN DML
Common blocks generated F-1
Control statement 3-19
Definition 1-1, 3-5, C-3
Diagnostics B-29
Keywords F-1
Preprocessor 3-1, F-l
Routines
DMLDBST 3-9
IMLRPT 3-10
DMISIR 3-10
Statements
ASSIGNID 3-8
BEGINTRAN 3-8
CLOSE 3-8
COMMITTRAN 3-8
DELETE 3-9
DROPTRAN 3-10
FINDTRAN 3-11
INVOKE 3~-11
LOCK 3-11
NEWVERSION 3-12
OPEN 3-13
PRIVACY 3-14
READ 3-14
REWRITE 3-16
START 3-16
SUBSCHEMA 3-17
TERMINATE 3-17
UNLOCK 3-17
WRITE 3-18
Syntax summary
FORTRAN 5 D-4
Variables generated F-1
FORTRAN 5 example 7-1
Functions 2-21, 3-23

Group item
Definition C-4
Example 2-1, 4-4
EXHIBIT directive 4-9
Guidelines
For data base transactions 5-11
For future system migration E-1
For processing with constraints 5-21
For recompilation 2-19, 3-21
For rewrite and delete operations 5-16
For updating files in relations 5-8

60485300 D

Hierarchical tree structure 5-3, C-4
Home block C-4

Identifier C-4
IF directive 4-11
Immediate return
Description 1-7, 5-17
Use 2-12, 3-10
Indexed sequential C=2
Input/output processing 1-7
Interrelated files C=4
Invocation C-4
INVOKE directive 4-]1
INVOKE statement 3-11
Item name C-4

Join terms

Definition C-4

Description 5-2

Information source 2-4, 3-4, 4-5
Joining files 5-2, C-4
Journal log file C-4

Keywords 3-5, C-4, F-l

Language elements 3-4
Level C-4
Level number C=4
Listing control directives 3-18.2
Literal C-4
Local file name C-4
LOCK statement 3-11
Locking
Definition 1-5
Description 5-14
Effects DELETE statement 2-13, 3-Y, 5-14
Effects REWRITE statement 2-15, 3-16, 5-14
LOCK statement 3-l1
Query Update 4-16
UNLOCK statement 3-17
Log files 1-7, 3-12
Logging 1-3, C-4
Logical record C-4

Major key
COBOL interface 2-4
FORTRAN
Interface 3-1
START statement (DML) 3-18
Query Update interface &4—4
Mapping C-4
Master directory 1-2, C-4, H-9
MODIFY directive 4-11

Nested group item C-4
NEWVERSION statement 3-12
Noise record C-5
Non-data-base file 5-1, G-2
Nonrepeating group item C-5
Null record occurrence
Definition C-5
Description 5-8
Reported in data base status block 3-24

Index-3



OCCURS clause 3-4

OPEN statement 2-13, 3-13

Opening a relation 5-5

Operation C-5 (see also Functions)
Overflow block C-5

Overlay capsules ¢€-3, C-5, G-1, G-3

Parent record occurrence 5-4, C-5
Partition C-5
Permanent file C-5
Physical record unit (PRU) C-5
Positioning (see File or Relation)
Primary key
Definition C-5
Example 2-4, 3-1, 4-4
Privacy 1-5
Privacy key
Definition C-6
Description 1-5
In FORTRAN program 3-14
Information source 2-5, 3-4
PRIVACY statement 3-14
Procedure library C-6
Protected lock 5-14 (see also Locking)
PRU device C-6

QU control statement 4-14
Qualification C-6
Qualifier identifier C-6
Query Update
DATABASE option 4-8, 4-11, 4-13
Directives
ACCESS 4-6
CREATE 4-8
DISPLAY 4-9
EXHIBIT 4-9
EXTRACT 4-10
IF 4-11
INVOKE 4-11
MODIFY 4-11
RECOVERY 4~12
REMOVE 4-12
STORE 4-13
UPDATE 4-13
VERSION 4-13
VIA 4-14
Example 8-1
Interface 4-1
Processing 1-5, 4-14
Syntax summary D-8
Quick recovery file C-6

Random file C-6
Rank

Definition C-6

Description 5-3

Example 2-4, 3-3, 4-5

Returned to program 2-21, 3-23
READ statement 2-14, 3-14
Realm

Definition C-6

Example 2-4, 3-3, 4-4

Ordinal C-6

Position (see File position)

Returned to program 2-22, 3-24
REALM statement &4-1
Recompilation guidelines 2-19, 3-21
Reconstruction C-6

Index—4

Record
Code C-6
Definition C-6
Lock 5-15
Names
EXHIBIT directive 4-9
Subschema listing 2-4, 3-3, 4-5
Occurrence C=6
Qualification
CDCS Processing 5-7
Definition C-6
Description 5-4
Type C-6
Recovery 1-6, C-7 (see also Restart)
RECOVERY directive -4-12
Recovery file H-1, H-9
Recovery point
Definition C-7
Use 2-11, 3-10
RECOVR diagnostic G-2
Relation
Definition 1-5, C-7
Description 5-3
Effects updating files 5-8
Names
EXHIBIT directive 4-9
Subschema listing 2-4, 3-3, 4-5
Occurrence 5-4, C-7
Positioning 5-5
Processing overview 5-5
Relational data base C-7
REMOVE directive 4-12
Repeating group C-7
Restart
Identifier
Definition C-7
File C-7
Use
ASSIGNID 3-8
DB$ASK 2-9
DB$GTID 2-10
FINDTRAN 3-11
Operation
Description 5-10
Restoration C-7
Restriction 2-4, 3-3, 4-5
Result item C-7
Retrieval access 2-17, 3-14, 4~7
REWRITE statement 2-15, 3-16
Root file (see Root realm)
Root realm
Definition C-7
Processing considerations 2-14, 3-15
Run-unit
Definition C-7
TAF task 5-22

Sample job structures 3-21
Schema
Definition 1-1, C-7
Generation H-2
Identification entry C-7
Name 2-4, 3-3, 4-5
Section C-7
Sequential C-7
Severity error code 2-21, 3-23
Short PRU C-7
Source
Data item C-7
Identifier C-7

60485300 B

D)

J D



(F START Statement "2-15, 3-16 Transaction (see also Data base)

Status block (see Data base status block) Definition C-8
Status checking Facitity (TAF)
COBOL Definition C-8
(” C.DMRST 2-8 Processing 1-7, 3-11, 5-22
; C.IOST 2-8 : Processing C-8
DB$DBST 2-~10 Recovery file C-8
Description 2-19 Traversing files C-8
Constraint 5-20 Tree structure (see Hierarchical tree structure)
Deadlock 5-16 Type C-9
FORTRAN
DBREALM(3) 3-25
DBRannn(3) 3-25 UNLOCK statement 3-18.1
DBSnnn 3-25 Unlocking 2-9, 3-17 (see also Locking)
DBSTAT 3-25 Update access 2-17, 3-14, 4-7
Description 3-21 UPDATE directive 4-13
Immediate return feature 5-18 USE FOR ACCESS CONTROL declarative statement 2-16
On a REWRITE or DELETE 5-16 USE FOR DEADLOCK declarative statement 2-17
TAF task 5-22 User
STORE directive 4-13 Function C-9
Subschema Work area 5-4, 5-5, C-9

COBOL 2-1, H-5
Definition 1-2, C-7

| Directory 2-5, 3-5, 4-5 Variable
FORTRAN 3-1, 4-5, H~-5 Definition C-9
6@55\ Item ordinal General 3-5
Definition C-8 Generated by DML F-1
Example 2-4, 3-3, 4-5 Variable arrays in schemas/subschemas 3-5
Returned to program 2-21, 3-23 Variable occurrence data item C-9
Library Vector C-9
Definition C-8 Version C-9 (see also Data base version)
l Permanent file information 2-4, 3-S5 VERSION directive 4~13
Name 2-4, 3-3, 4-5 VIA directive 4-14
Query Update 4-1, H-7 Virtual item C-9

SUBSCHEMA statement 3-18

SUB-SCHEMA clause 2-5

System-logical-record C-8 W type record ¢-9
WRITE statement 3-18.1

Target Zero-byte terminator C-9
Data item C-8 Zero-length PRU C-9
Identifier C-8 2Z22ZEG file 5-2

TERMINATE statement 3-18.1 22722ZQ2 file 4-Y

( 60485300 D Index-5






COMMENT SHEET
MANUAL TITLE: CYBER Database Control System Version 2
Application Programming Reference Manual
PUBLICATION NO.: 60485300
REVISION: D
This form is not intended to be used as an order blank. Control Data Corporation
welcomes your evaluation of this manual. Please indicate any errors, suggested
additions or deletions, or general comments on the back (please include page number
references).
Please reply No reply necessary
FOLD FOLD
NO POSTAGE
NECESSARY
IF MAED
IN THE
UNITED STATES
A
BUSINESS REPLY MAIL S
e FIRST CLASS PERMIT NO. 8241 MINNEAPOLIS, MINN. ]
-
]
2 POSTAGE WILL BE PAID BY o —
& CONTROL DATA CORPORATION  ——
= - |
Z Publications and Graphics Division e —
P.0. BOX 3492 ——
Sunnyvale, California 94088-3492 —
]
S
|
FOLD FOLD
NO POSTAGE STAMP NECESSARY IF MAILED IN U.S.A.
FOLD ON DOTTED LINES AND TAPE
' NAME:
COMPANY :
STREET ADDRESS:
(«m CITY/STATE/ZIP:
TAPE . TAPE




(P




