60485200

(G2 CONTROL DATA

DMS-170

CYBER DATABASE
CONTROL SYSTEM
VERSION 2

DATA ADMINISTRATION
REFERENCE MANUAL

CDC®OPERATING SYSTEMS:
NOS 2

NOS/BE 1



REVISION RECORD

Revision

A (05/14/82)

B (08/26/83)

C (09/22/83)

D (02/20/84)

E (05/13/86)

REVISION LETTERS I, O, Q, AND X ARE NOT USED

Description

Initial release under NOS 2 and NOS/BE 1; PSR level 564. This manual represents a
complete reorganization according to audience of documentation for CDCS, DDL, and FDBF
(with FDBF separated into components of DDL and DML). This manual contains documentation
intended for a data administrator, and supersedes the following manuals for users of the
NOS 2 and NOS/BE operating systems: the CDCS 2 reference manual (Pub. No. 60491800); the
DDL Version 3 reference manuals, volumes 1l and 2 (Pub. No. 60481900 and 60482000); and
the FDBF 1 reference manual (Pub. No. 60482200). New features of CDCS 2.3 are also
documented in thic revision; the features include automatic recovery, data base
transaction processing, data base versions, the basic recovery utility (DBREC), and
extensions to the master directory and to the operator interface.

Released at PSR level 587. This revision documents improved duration loading
capabilities of CDCS and miscellaneous technical corrections.

Released at PSR level 596. This revision documents a change to the procedure that
initializes CDCS under NOS 2.2.

Released at PSR level 599. This revision documents support of concatenated keys for the
FORTRAN 1interface and includes miscellaneous technical corrections.

Released at PSR level 647. This revision removes references to FORTRAN 4 and
incorporates miscellaneous technical and editorial changes.

Address comments concerning this manual to:

CONTROL DATA CORPORATION
Publications and Graphics Division

©COPYRIGHT CONTROL DATA CORPORATION P.0. Box 3492

1982, 1983, 1984, 1986
All Rights Reserved
Printed in the United States of America

ii

SUNNYVALE, CALIFORNIA 94088-3492

or use Comment Sheet in the back of this wmanual

60485200 E

WD

)



6@5\

LIST OF EFFECTIVE PAGES

New features, as well as changes, deletions, and additions to information in this manual are indicated by bars

in the wmargins or by a dot near the page number if the entire page is affected.

indicates pagination rather than content has changed.

Page

Front Cover
Title Page

ii

i11/iv

v

vi

vii

viii thru xii
xiii

1-1 thru 1-3
1-4

1-5 thru 1-12
2-1 thru 2-21
2-22

2-23

2-24 thru 2-30
2-31

2-32

2-33

2-34

2=35

2-36

2-37

3~1 thru 3-8
3-9 thru 3-11
3-12 thru 3-33
3-34

3-35 thru 3-37
3-38

3-39

4=~1 thru 4-20
5-1

5-2 thru 5-4
6-1

6-2

6=3

6~4
6=4.1/6=4.,2
6=5 thru 6-18
7-1 thru 7-9
8~-1

8-2

8-3

8-4
8=4.1/8-4.2
8-5

8-6

8-7 thru 8-21
9-1 thru 9-3
9-4
9-4,1/9-4.2
9-6

9-7

9-8
9-8.1/9-8.2
9-9

9~-10

9-11

60485200 E

Revision

m:»:»:nm:»:»wm:»:»cmmmwc>>>cuc:»:»m:»m:»w»m>wb>wu>>wu»uw>>m>>ww>umn| !

Page

9-12

9-13

9=-14

9-15

9-16

9-17

9-18

9-19 thru 9-27
10-1 thru 10-3
10-4 thru 10-8
10-8.1

10-8.2

10-9

10-10 thru 10-17
11-1

11-2 thru 11-5
11-6 thru 11-11
A=1 thru A-4
B-1

B=-2

B-3

B~4
B-4,1/B-4.2
B-5

B~6

B~7

B-8

B-9

B=10 thru B~16
3‘1601

B~16.2

B-17 thru B-22
B-23

B=-24
B-24,1/B-24,2
B-25 thru B-54
B=-55

B~56 thru B~60
B-61

B-62 thru B-97
B-98

B-99

B-100

c-1

Cc-2

C-3 thru C-5
C-6 thru C-9
D-1 thru D-3
E-1

E-2

E-3

E~4

E-5

E-6

E-7 thru E-9
E-10 thru E-13
F-1

F-2

Revision

PrPEPPEEIPPPPEPPPPUOPOPOPOAOEIPINRNWERPEPEAEAEPPPEHPEPOOHDDPEEP>ED >

G-1

G-2

G-3

H-1 thru H-4

H=5

H~6

I-1

I-2

J=-1

J=2

J=-3

Index-1 thru Index-10
Comment Sheet/Mailer
Back Cover

A bar by the page number

Revision

|l mmEEm>>>rMm>mm>

iii/iv






Cﬂﬂﬁ\
6@*\

PREFACE

This manual describes both the definition phase of
a DMS-170 data base and the execution phase of
CONTROL DATA® CYBER Database Control System (CDCS)
Version 2. A data base is defined by the use of
the Data Description Language (DDL) and is control-
led by CDCS, which monitors all access by applica-
tion programs. Several products are involved in
the definition and execution phases; these products
are CDCS Version 2.3, DDL Version 3.2, and the DDL
portion of the FORTRAN Data Base Fac:lity (FDBF)
Version 1.3. As described in this publication,
these products operate under control of the follow-
ing operating systems:

NOS/2 for the CONTROL DATA CYBER 180 Computer
Systems; CYBER 170 Computer Systems; CYBER 70
Computer System Models 71, 72, 73, and 74; and
6000 Computer Systems

NOS/BE 1 for the CDC® CYBER 180 Computer Sys-
tems; CYBER 170 Computer Systems; CYBER 70
Computer System Models 71, 72, 73, and 74; and
6000 Computer Systems

This manual is designed for the data administrator.
The data administrator is the programming or man-
agerial person or group responsible for defining,
creating, controlling, and monitoring data bases.
It is assumed that the data administrator is knowl-

The following manuals are of primary interest:

edgeable in both systems and application program-
ming, has some familiarity with data management
concepts and terminology, and has used previously
Control Data computers and software.

Detailed information for application programmers
using CDCS is contained in the CDCS 2 Application
Programming reference manual. Related material is
contained in the publications listed below.

The NOS Manual Abstracts and the NOS/BE Manual
Abstracts are instant-sized manuals containing
brief descriptions of the contents and intended
audience of all NOS and NOS product set manuals,
and NOS/BE and NOS/BE product set manuals, respec-
tively. The abstracts manuals can be useful in
determining which manuals are of greatest interest
to a particular user. The Software Publications
Release History serves as a guide in determining
which revision 1level of software documentation
corresponds to the Programming System Report (PSR)
level of installed site software. The abstracts
manuals are included in the list of publications of
secondary interest.

Manuals are listed alphabetically within groupings
that indicate relative importance to readers of
this manual.

Publication
Publication Number
CYBER Record Manager
Advanced Access Methods Version 2
Reference Manual 60499300
DMS-170
CYBER Database Control System Version 2
Application Programming Reference Manual 60485300

The following manuals are of secondary interest:

Publication
Publication Number
CYBER Loader Version 1
Reference Manual 60429800
CYBER Record Manager
Basic Access Methods Version 1.5
Reference Manual 60495700
FORM Version 1 Reference Manual 60496200
Networks Products
Transaction Facility Version 1
Reference Manual 60459500
NOS Version 2 Manual Abstracts 60485500

( 60485200 D v



NOS Version 2 Reference Set; Volume 3

System Commands 60459680
NOS/BE Vérsion 1 Manual Abstracts 84000470
NOS/BE Version 1 Reference Manual 60493800
Software Publications Release History 60481000

CDC manuals can be ordered from Control Dita Corporadtion, Litera—
ture and Distribution Services; 308 North Dale Street, St. Paul,
Minnesota 55103,

This product is intended for use only as
described in this document. Control Data can-
not be responsible for the proper functioning
of undescribed features or pardmetéers. '

vi 60485200 A



CONTENTS

NOTATIONS

l. INTRODUCTION TO DATA BASE PROCESSING WITH
DMS-170

Data Base Definition

Schema Definition

Subschema Definitions
COBOL Subschemas
FORTRAN Subschemas
Query Update Subschemas

Master Directory Definition

Data Base Processing

Application Languages
COBOL Processing
FORTRAN Processing
Query Update Processing

Concutrency

Data Validation

Record Mapping

File Privacy

Relations

Constraints

Data Base Versions

Data Base Procedures

Input/Output Processing
File Organization
Multiple-Index Processing

Data Base Recovery
Automatic Recovery
Data Base Transaction
Manual Recovery Utilities
Logging

Other Data Base Utilities

Processing Through TAF

CDCS Processing Flow

CDCS Loading and Execution

CDCS Batch Testing

2, SCHEMA DEFINITION

Schema Structuring Conventions
Data Description
Data Organization
Areas
Records
Repeating Data Items
Data Size and Class
Schema/Subschema Compatibility
Data Conversion
Coded Arithmetic to Numeric Picture
Numeric Picture to Coded Arithmetic
Coded Arithmetic to Coded Arithmetic
Numeric Picture to Numeric Picture
Record Mapping
Schema Programming Conventions
Language Elements
Reserved Words
User-Defined Names
Literals
Data Reference
Identifier
DDL Character Set
Punctuation

60485200 B

x1ii

—
|
—

L U
S SWWWN -

]
NN S S

et et bt b bt b b b e e b bt e e s b b b b b e
1

2-1
2-1
2-1
2-1
2-2
2-3
2-3
2=-4
2-4

2-5
2-5

2-5
2-5
2-5
2=5
2-6
2-6
2-6
2-7
2-7
2-7

DDL Coding
DDL Statements
Sequence Numbers
Comment Lines
Schema Syntax
Schema Identification Entry
SCHEMA NAME Clause
Other Clauses
Area Description Entry
AREA NAME Clause
CALL Clause (Area Description Entry)
ACCESS—CONTROL Clause
Record Description Entry
RECORD NAME Clause
WITHIN Clause
CALL Clause (Record Description Entry)
Data Description Entry (Record Description
Entry)
PICTURE Clause
TYPE Clause
OCCURS Clause
RESULT Clause
CHECK Clause
ENCODING/DECODING Clause
CALL Clause (Data Description Eatry)
Data Control Entry
Area Control Entry (Data Control Entry)
AREA NAME Clause
COMPRESS ION/DECOMPRESSION Clause
KEY Clause
SEQUENCE Clause
RECORD CODE Clause
Constraint Entry
CONSTRAINT NAME Clause
DEPENDS ON Clause
Relation Entry
RELATION NAME Clause
JOIN Clause
Schema Compilation and Maintenance Facilities
DDL3 Coutrol Statement
Schema Compilation
DDL3 Control Statement for Compilation
FILE Control Statement
Schema Compilation Example
Schema Compilation Output
Recompilation Guidelines
Exhibit Facility
Control Statement Format
EXHIBIT Directive Format

3. COBOL AND QUERY UPDATE SUBSCHEMA
DEFINITION

Subschema Structuring Coaventions
Data Description
Data Organization
Group Items
Elementary Ltems
Schema/Subschema Compatibility
Omission of Data Items
Ordering of Data Items
Definition of Data Items
Data Size and Class
Repeating Data Items
Subschema Programming Conventions

2-8
2-8
2-8

2=9

2-9

2=Y

2=10
2-10
2=-11
2=11
2-11

2=12
2=12
2-14
2~-16
2-16
2-18
2=19
2-19
2=-21
2-21
=21
2-22
2=-22
2-23
2-24
2-24
2-26
2-27
2-27
2-28
2-28
2=-29
2-29
2-30
2-31
2-3]
2=-32
2-32
2-35
2-36
2-36
2-36

3-1

3-1
3-1
3-2
3=2
32
3=2
3-2
3-2
3-2
3-3
3-4
3-8

vii



Language Elements
Reserved Words
User-Defined Names
Literals
Data Reference
DDL Character Set
Punctuation
DDL Coding
Coding DDL Statements
Sequence Numbers
Continuation Lines
Comment Lines
COBOL and Query Update Subschema Syntax
Title Division
S8 Clause
Other Clauses
Alias Division
AD Clause
Other Clauses
Realm Division
RD Clause
Other Clauses
Record Division, COBOL Subschema
JUSTIFIED Clause
OCCURS Clause
PICTURE Clause
REDEFINES Clause
SYNCHRONIZED Clause
USAGE Clause
RENAMES Clause
VALUE Clause
Record Division, Query Update Subschema
JUSTIFIED Clause
OCCURS Clause
PICTURE Clause
REDEFINES Clause
SYNCHRONIZED Clause
USAGE Clause
RENAMES Clause
Relation Division
RN Clause
RESTRICT Clause
Subschema Compilation and Subschema Library
Maintenance
Subschema Library
DDL3 Control Statement
Subschema Compilation and Library
Maintenance Operations
Compiling a Subschema
Creating a Subschema Library
Compiling Multiple Subschemas
Compiling a Subschema and Adding to
a Subschema Library
Replacing a Subschema
Deleting a Subschema
Auditing a Subschema Library
Compacting a Subschema Library
Compilation Output
Recompilation Guidelines

4., FORTRAN SUBSCHEMA DEFINITION

Subschema Structuring Requirements
Data Description
Variables
Arrays
Schema/Subschema Correspondence
Omission of Data Items
Ordering of Data Items
Definition of Data Items
Data Size and Type
Array Declaration

viii

3-9

3-9

3-9

3-9

3-9

3-10
3-10
3-10
3-10
3-11
3-11
3-11
3-11
3-11
3-11
3-11
3-11
3-12
3-12
3-12
3-12
3-13
3-13
3-13
3~14
3-15
3-17
3-18
3-18
3-19
3-20
3-22
3-23
3-23
3-24
3-28
3-28
3-28
3-30
3-30
3-30
3-30

3-32
3-32
3-32

3-34
3-34
3-34
3-35

3-35
3-35
3-36
3-36
3-37
3-38
3-38

4=1
4=1
4-2
4-2
4-2
4=2
4-2
4=2
4-3
4=5

Concatenated Key
Subschema Programming Conventions
Language Elements
Keywords
User-Defined Names
Constants
FORTRAN DDL Statement Format
Character Set
Blanks
Continuation
Statement Labels
Comment Lines
Blank Lines
FORTRAN Subschema Syntax
SUBSCHEMA Statement
ALIAS Statement
REALM Statement
Record Definition
RECORD Statement
Type Statements
Relation Definition
RELATION Statement
RESTRICT Statement
END Statement
Subschema Compilation and Subschema Library
Maintenance
Subschema Library
DDLF Control Statement
Subschema Compilation and Library
Maintenance Operations
Compiling a Subschema
Creating a Subschema Library
Compiling Multiple Subschemas
Compiling a Subschema and Adding to
a Subschema Library
Replacing a Subschema
Deleting a Subschema
Auditing a Subschema Library
Compacting a Subschema Library
Compilation Output
Recompilation Guidelines

5. SCHEMA AND SUBSCHEMA MAPPING

Structuring Restrictions
Data Conversion

Data Class

Omission of Data ILtems

6. DATA STRUCTURES

Data Base Files
CDCS and CRM Communication
Data Base File Definition
CRM Record Types
File Control
Multiple-Index Files
Multiple Record Descriptions
Key Definitions
Data Base Versions
Defining Data Base Versions
Access Control Locks
Examples of Environments for Data Base
Versions
Testing Situation
Branch Situation
Relations
Joining Files
Hierarchical Tree Structure
Ranks of a Relation
Parent/Child Relatiomship
Record Qualification

4-b
46
4-6
4-6
4=7
4-7
4=7
4-8
4=-8
48
4-8
4-8
4-8
4-8
4-9
4-9
4-10
4=1u
4-10
4-11
4=12
4-12
4-12
4-13

4-13
4~14
4-14
4-15
4-16
4=16
4-16

4-17
4=17
4—-17
4-18
4-18
4-19
419

5-1
5-1
-1

6=4.1

6-4.1
b-4.1
-5
6-5
0-6
b=6
-7
6-8
-8

60485200 E

J

J )



éﬂF\
6@“‘

CDCS Relation Processing
Source and Target Identifiers
Relation Positioning
Relation Read
Order of Record Retrieval
Informative Conditions
Effect of Versions on Relation

Retrieval
Collating Sequences
Constraints

Defining Constraints
Two-File Constraints
Single-File Constraints

CDCS Two-File Constraint Processing
Guidelines for File Creation
Controlling Insertion Operations
Controlling Deletion Operations
Controlling Modification Operations

CDCS Single-File Constraint Processing
Guidelines for File Creation
Controlling Insertion Operations
Controlling Deletion Operations
Controlling Modification Operations

Restrictions for Data Base Versions

7. DATA BASE PROCEDURES

Describing Data Base Procedure Use
Loading of Data Base Procedures
Writing Data Base Procedures
Linkage and Communication
Parameter List
Entry Codes and Return Codes
Interpretation of Parameters
Data Base Procedures for Input/Output
Functions
READ Statement
WRITE and REWRITE Statements
DELETE and START Statements
Relation READ Statement
Error Processing
Nonfatal Errors
Fatal Errors
Return Codes
Procedure Library Preparation
Sample Data Base Procedures
COBOL Data Base Procedures
FORTRAN Data Base Procedures
COMPASS Data Base Procedures

8. MASTER DIRECTORY

Master Directory Syntax

Permanent File Information Subentry
PFN Clause
UN/ID Clause
PW Clause
FAMILY NAME Clause
PACK NAME Clause
SET NAME Clause
VSN Clause
DEVICE TYPE Clause

Syntax for the Creation Run

Schema Subentry
SCHEMA NAME Clause
FILE NAME Clause (Schema Subentry)
PROCEDURE LIBRARY Clause
TRANSACTION RECOVERY FILE Clause
RESTART IDENTIFIER FILE Clause
JOURNAL LOG FILE Clause
QUICK RECOVERY FILE Clause
JOB CONTROL INFORMATION Clause

60485200 E

6-9
6-9

6-9
6-10
6-10

6-12
6-13
6-13
6-13
6-13
6-15
6-15
6-16
6-16
6-16
6-16
6-17
6~17
6-17
6-17
6-17
6-18

7-8
7-8
7-8

@
[
Y

1 !
SERPEESTPOVWWLONRDNONNNONNNN -~

mmmmmmmmmm?mmmmmmmmm

——

Master Version Subentry
Area Subentry (Master Version Subentry)
AREA NAME Clause (Area Subentry)
Permanent File Information Subentry
(Area Subentry)
LOG Clause (Area Subentry)
INDEX FILE Clause (Area Subentry)
Alternate Version Subentry
VERSION NAME Clause (Alternate
Version Subentry)
AREA NAME SAME AS MASTER Clause
(Alternate Version Subentry)
Area Subentry (Alternate Version
Subentry)
Subschema Subentry
SUBSCHEMA NAME Clause (Subschema
Subentry)
FILE NAME Clause (Subschema Subentry)
Syntax For Modification Run
Add Schema Entry
Delete Schema Entry
Modify Schema Entry
MODIFY SCHEMA NAME Clause
FILE NAME Clause (Modify Schema
Subentry)
END Clause
Change Procedure Library Subentry
Change Transaction Recovery File
Subentry
Change Restart Identifier File
Subentry
Change Journal Log File Subentry
Change Quick Recovery File Subentry
Change Job Control Information
Subentry
Change Area Subentry
Delete Version Subentry
Add Version Subentry
Delete Subschema Subentry
Add Subschema Subentry
Master Directory Generation
DBMSTRD Control Statement
Creation Run
Modification Run
DBMSTRD Out put

9. DATA BASE RECOVERY

Automatic Recovery
Data Base Transaction
Data Base Recovery From Application
Program Failure
Recovery From System Failure
Recovery of a Single Data Base File
Automatic Journal Log Maintenance
Data Administrator”s Role in Automatic
Recovery
Data Base Utilities
DBREC Utility
Schema Entry
SCHEMA NAME Clause
DUMP Clause
ALLOCATE Clause
DBREC Control Statement
Execution of DBREC for Allocation
DBREC Execution to Dump the Journal
Log File
DBQRFA Utility
DBQRFI Utility
DBRCN Utility
Format of Input for DBRCN Utility
DBRCN Control Statement
Execution of the DBRCN Utility

g-8
8-8

-8
8-8
8-8
8-9
89
8-9
8=9

8-9
8-10
8-10

4-10

8-11
8-12
8-12

8-12
8-13
8-15
8-15
8-15
8-15
8-16
8-16
8-17
4-17
8-17

9-10
9-11
9-11
9-12
9-13

ix



DBRST Utility
Format of Input for DBRST Utility
DBRST Control Statement
Execution of the DBRST Utility
Recovery Example Using DBRST Utility

Logging

Journal Log File
Journal Log File Logging Options
Maintenance of the Journal Log File
Journal Log File Structure
Journal Log Record Structure

Quick Recovery File

Restart Identifier File

Transaction Recovery File

Journal Log File Report Generation

Recovery Considerations

Recovery Points
Quick Recovery File Recovery Points
Journal Log File Recovery Point
Recovery Point Processing With No Log
Files
Logging Options
Logging to the Transaction Recovery
File
Logging to the Restart Identifier File
Logging to the Quick Recovery File

Logging After~Image Records to a
Journal Log File
Logging Before—Image Records to a
Journal Log File
Manual Data Base Recovery
Recovery Conditions

Physical Storage or Software Failure

Cascade Effect
Program Logic Error
System Failure
Recovery From Recovery Failures

10, DATA ADMINISTRATOR AND OPERATING SYSTEM

PROCEDURES

Data Administrator”s Responsibilities
System Limitations
Data Privacy
Privacy (Access Control) Checking
Operating System File Security
Application Programming Interface
CDCS Control Statement
Directive File
Parameters
Accounting Statistics
Duration Loading
CDCS Loading of Overlay Capsules
CDCS Loading of CRM Capsules
Classification and Effect of CRM Errors
CRM Error File Use
CDCS Listing
System Operator Guidelines
CDCS Initialization
NOS System Procedure File
NOS/BE System Procedure File
Operator Interface
Programmable Display Usage
Operatoy Commands
Sample Operator Interface
CDCS Termination

11. EXAMPLES
Sample Schema

Sample Subschemas
COBOL Subschema

11-1

11-1
11-1
11-1

FORTRAN 5 Subschema 11-6
Query Update Subschema 11-8
Sample Master Directory Creation Run 11-9
Sample Master Directory Modification Run 11-10
Sample DBREC Utility Run 11-10
APPENDIXES
A  Standard Character Sets A-1
B  Diagnostics B-1
C Glossary C=-1
D Reserved Words and FORTRAN DDL Keywords D-1
E  Summary Syntax for the Schema, Subschemas,
Master Directory, and Data Base
Utilitles E-1
F  Future System Migration Guidelines F-1
G Field Length Requirements G-1
H Data Conversion Rules H-1
I Collating Sequences for Datu Base Files 1-1
J  Summary of Data Definition in DMS-170 J-1
INDEX
FIGURES
1-1 Data Base Definition 1-2
1-2 Subschema Describing a Portion of the
Data Base 1-3
1-3  Data Base Processing With CDCS 1-5
1-4 Processing Using Data Base Versions -8
1-5 CDCS/TAF Interface 1-10
1-6 Data Base Environment Under Operating
System 1-12
2-1 Identifier Format 2-7
2-2  General Format, Schema 2-8
2-3  SCHEMA NAME Clause Format 2=9
2-4  Area Description Entry Format 2=9
2-5  AREA NAME Clause Format 2-9
2-6  CALL Clause Format (Area Description
Entry) 2-10
2-7 ACCESS—CONTROL Clause Format 2-10
2-8  Record Description Entry Format 2-11
2-9 RECORD NAME Clause Format 2-11
2-10 WITHIN Clause Format 2-11
2-11 CALL Clause Format (Record Description
Entry) 2-11
2-12 Data Description Entry Format 2-12
2-13 PICTURE Clause Format 2-12
2-14 PICTURE Clause Character Data Ltems 2-13
2-15 Sign Representation in Rightmost Digit 2-14
2-16 PICTURE Clause Numeric Data Items 2-14
2-17 TYPE Clause Format 2-14
2-18 TYPE Clause Numeric Data Items 2~-15
2-19 TYPE Clause Character Data Items 2-15
2-20 OCCURS Clause Format 2-16
2-21 OCCURS Clause Examples 2=17
2-22 RESULT Clause Format 2=17
2-23 Virtual Data Item Processing 2-18
2-24 CHECK Clause Format 2=-18
2-25 Examples of Valid Literals in the CHECK
VALUE Clause 2-20
2-26 ENCODING/DECODLNG Clause Format 2-20
2-27 CALL Clause Format (Data Description
Entry) 2-20
2~-28 Data Control Entry Format 2-21
2-29 Area Control Entry Format 2=-2)
2-30 AREA NAME Clause Format 2-21
2-31 COMPRESSION/DECOMPRESSION Clause Format 2-22
2-32 Examples of the COMPRESSION/
DECOMPRESSION Clause 2=22
2~-33 KEY Clause Format 2-23
60485200 E

J

J )



2-34
2-35
2-36
2-37

2-38
2-39
2-40
2-41
2-42
2-43
2~44

2-45
2-46
2-47
2-48
2-49
2-50
2-51
2-52
2-53
2-54
3-1
3-2
3-3
3-4
3-5
3-6
3-7
3-8

3-10
3-11
3-12
3-13
3-14

3-15
3-16
3-17
3-18
3-19
3-20
3-21
3-22
3-23
3-24
3-25

3-26
3-27
3-28
3-29
3-30
3-31

3-32
3-33
3-34
3-35
3-36
3-37
3-38
3-39
3-40

SEQUENCE Clause Format

RECORD CODE Clause Format

Examples of the RECORD CODE Clause

Dependency Conditions Established by
Constraints

Constraint Entry Format

Constraint Entry Within a Schema

Relation Direction Example

Relation Entry Format

Alignment Example

Data Name Example

DDL Control Statement Format for Schema
Compilation and Maintenance

FILE Control Statement Format

Schema Compilation Example

Sample Schema Compilation Output Listing

Recompilation List Example

EXHIBIT Directive Format

EXHIBIT Examples

Executing the EXHIBIT Utility, Example !

Sample EXHIBIT Utility Output, Example 1

Executing the EXHIBIT Utility, Example 2

Sample EXHIBIT Utility Output, Example 2

Omitting Schema Items From the Subschema

Reordering Data Items

Size Discrepancies of Data Items

Examples of Repeating Data Items

Insertion of Nonrepeating Group Items

Concatenated Key Declaration

Identifier Format

COBOL Subschema Qualification and
Subscripting Example

General Format, COBOL and Query Update
Subschema

SS Clause Format

AD Clause Format

Assigning Aliases

RD Clause Format

Formats of Data Description Entries,
COBOL Subschema

JUSTIFIED Clause Format, COBOL Subschema

Character Positioning

OCCURS Clause Format, COBOL Subschema

PICTURE Clause Format, COBOL Subschema

Alphabetic Data Items

Minus Sign Representation

Numeric Data Items

Alphanumeric Data Items

REDEFINES Clause Format, COBOL Subschema

Redefining Data Items

SYNCHRONIZED Clause Format, COBOL
Subschema

USAGE Clause Format, COBOL Subschema

RENAMES Clause Format, COBOL Subschema

Renaming Data Items

VALUE Clause Format, COBOL Subschema

Examples of Valid Level 88 Literals

Examples of Valid Level 88 Figurative
Constants

Formats of Data Description Entries,
Query Update Subschema

JUSTIFIED Clause Format, Query Update
Subschema

OCCURS Clause Format, Query Update
Subschema

PICTURE Clause Format, Query Update
Subschema

Examples of Insertion Characters

Examples of Replacement Characters

Examples of Picture Editing

REDEFINES Clause Format, Query Update
Subschema

SYNCHRONIZED Clause Format, Query
Update Subschema

60485200 E

3-11
3-11
3-12
3-12
3-13

3-13
3-13
3-14
3-14
3-15
3-16
3-16
3-17
3-17
3-17
3-18

3-18
3-19
3-19
3-20
3-20
3-21
3-22
3-23
3-23
3-23
3-24
3-26
3-27
3-27
3-28

3-28

3-41
3-42

3-43
3-44
3-45

3-46
3-47
3-48

3-49
3-50
3-51
3-52
3-53
3-54

41

4-3
44
4=5
46
4=7
4-8
4-9
4-10
4-11
4=12
4-13
414
4-15
4-16
4-17

4-18
4-19
4-20

4=-21
4-22
4=-23
4-24
4-25
4-26

6-8
6-9

6-10
6-11

6-12

6-13
6-14
6-15
6-16

USAGE Clause Format, Query Update
Subschema

RENAMES Clause Format, Query Update
Subschema

RN Clause Format

RESTRICT Clause Format

DDL3 Control Statement Format for
COBOL and Query Update Subschemas

Compiling a Subschema

Creating a Subschema Library

Compiling a Subschema and Adding to a
Subschema Library

Replacing a Subschema Library

Deleting Subschemas From the Library

Auditing a Subschema Library

Audit Listing of the Subschema Library

Compacting a Subschema Library

Sample COBOL Subschema Compilation
Output Listing

Fixed Occurrence Elementary Items

Schema/Subschema Differences in Array
Size and Dimension

Variable Arrays in Schema and Subschema

Declaring a Concatenated Key

General Format, FORTRAN Subschema

SUBSCHEMA Statement Format

ALIAS Statement Format

Assigning Aliases

REALM Statement Format

RECORD Statement Format

Type Statement Formats

Defining Records

RELATION Statement Format

RESTRICT Statement Format

Examples of Logical Expressions

END Statement Format

DDLF Control Statement Format for
FORTRAN Subschemas

Compiling a Subschema

Creating a Subschema Library

Compiling a Subschema and Adding to a
Subschema Library

Replacing a Subschema Library

Deleting Subschemas From the Library

Auditing a Subschema Library

Audit Listing of the Subschema Library

Compacting a Subschema Library

Sample FORTRAN Subschema Compilation
Output Listing

Concatenated Key Definition

Key Definitions for Areas With Multiple
Record Types

Example of Version Definitions in
Master Directory Input

Two—File Relationship Example

Three~-File Relationship Example

Tree Structure of CONTRACTS-PRODUCTS-
EMPLOYEES Relationship

Complex Tree Structure for CONTRACTS-
PRODUCTS-EMPLOYEES Relationship

Record Occurrences for Three Related
Files

Record Occurrences in User”s Work Areas
After Reading

Null Record Occurrence Examples

Example of Null Occurrence and Control
Break Conditions

Example of Files Joined by a Relation
and Grouped by Version

Two—File Constraint Example

Three-File Constraint Example

Single~File Constraint Example

Example of Constraint Restrictions on
Data Base Versions

3-29

3-30
3-30
3-31

3-32
3-34
3-35

3-35
3-36
3-36
3-37
3=37
3-37

3-38
4=5

4=5
4=5
4-6
4=9
4=9
4-9
4-10
4-10
4-10
4-11
4=12
4=12
4-13
4-13
4=-13

4-14
4=16
4=16

4=-17
4=17
4-18
4-18
4-19
4-19

4-20
b4

6-4
6-5

6-6
6-7

6-8
6-10

6-10
b=11

o-12
6-13
6-14
6~15

xi



8-2
8-3
8-4
85
8-6

9-9

9-10
9-11
9-12
9-13
9-14
9-15
9-16
9-17
9-18
9-19
9-20
9-21
10-1

10~2
10-3
10-4
10-5

xii

Procedure Library Generation

ENCODING/DECODING Description for COBOL
Data Base Procedure

Sample COBOL Data Base Procedure

Permanent File Information Subentry
Format

General Format, Creation Run

General Format, Creation Entry

Schema Subentry Format

Master Version Subentry Format

Area Subentry Format

Alternate Version Subentry Format

Subschema Subentry Format

General Format, Modification Run

Add Schema Entry Format

Delete Schema Entry Format

Modify Schema Entry Format

Change Procedure Library Subentry Format

Change Transaction Recovery File
Subentry Format

Change Restart Identifier File Subentry
Format

Change Journal Log File Subentry Format

Change Quick Recovery File Subentry
Format

Change Job Control Information Subentry
Format

Change Area Subentry Format

Delete Version Subentry Format

Add Version Subentry Format

Delete Subschema Subentry Format

Add Subschema Subentry Format

DBMSTRD Utility Control Statement

Sample First Section of DBMSTRD Output

Sample Second Section of DBMSTRD Output
(Master Directory Contents)

Automatic Recovery Environment

Manual Recovery Environment

Schema Entry Format (DBREC Utility)

DBREC Control Statement

Sample Off-line Execution of DBREC
Utility to Dump the Journal Log File

DBQRFA Utility Control Statement

DBQRFI Utility Control Statement

Format of Input for DBRCN and DBRST
Utilities

DBRCN Utility Control Statement

DBRST Utility Control Statement

DBRST Example

Log Record Header

Transaction Log Record

Invoke and Version Change Log Record

Open Log Record

Privacy Breach Log Record

Before Image and After Image Log Records

Close Log Record

Terminate Log Record

Recovery Point Log Record

Restart Identifier File Record Format

Sequence of Operations to Establish
an Active Data Base Environment

CDCS Control Statement

Sample NOS System Procedure File

Sample NOS/BE System Procedure File

DOWN Command

8-1
8-3
8-3
8-3
8-6
8-6
8-7
8-8
8-8

8-9

8-10

10-6 IDLE Command 10-12
10-7 RETAIN Command 10-13
10-8 RETURN Command 10-13
10-9 STATUS Command 10-14
10-10 UP Command 10-15
10-11 Sample Series of Operator Commands 10-16
11-1 Sample Schema Named MANUFACTURING-DB 11-2
11-2 Sample COBOL Subschema Named C3S5-~

PRODUCT-PERSONNEL and Subschema

Library Creation 11-5
11-3 Sample FORTRAN 5 Subschema Named

F55S-PRODUCT-EVALUATION and

Subschema Library Creation 11-7
11-4 Adding Sample Query Update Subschema

Named QUPRODMGT to the Subschema

Library 11-8
11-5 Sample Master Directory Creation Run 11-9
11-6 Sample Master Directory Modification

Run 11-10
11-7 Sample DBREC Utility Run L1i-11
TABLES
2-1  Valid Clause Combinations 2=2
2-2  Valid Schema/Subschema Class

Conversions 2-4
2-3 File Control Statement Parameters 2=32
3-1 Valid Schema to Subschema Class

Conversions 3-4
3-2 Data Class Representation in the Schema 3-5
3-3 Data Class Representation in the COBOL

Subschema 3-5
3-4 Data Class Representation in the Query

Update Subschema 3-6
3-5 Valid Ildeutifier and Literal

Combinations 3-31
4-]1  Ordering of Subschema Statements 4-1
4-2  Schema/Subschema Mapping 4=4
4=3 Data Types for Concatenated Keys 4-5
4-4  Names of Variables and Common Blocks

Generated by the DML Preprocessor 4-7
4=5 Column Usage in FORTRAN DDL Statements  4—8
5-1 Data Classes 5-2
5-2  Valid Data Conversions 5-2
5-3 Data Class Representation in the Schema 5-3
5-4 Data Class Representation in the

Subschema 5-3
5-5 Null Values for Data Classes 54
7-1  Parameter List Formats 7-3
7-2  Applicable Parameters for Type of Call 7-3
7-3  Entry Codes and Valid Return Codes 7-4
7-4  Data Base Procedure Time of Execution 7-6
9-1 Summary of Requirements of Data Base

Definition for Features of Automatic

Recovery 9-5
9-2  Summary of Permanent File Name

Specifications for Allocation of

Files by DBREC Utility 9-9
10-1 Options Used With Parameters of the

Operator Commands 10-12
10-2 1Information Returned by the STATUS

Command 10-15
10-3 Paging and Recycling Commands 10-16

60485200 E

J )

J )



-

NOTATIONS

___

Reference formats are presented throughout the
manual to illustrate essential elements of syntax.
The notations used in the reference formats follow
two conventions: the COBOL convention and the
FORTRAN convention. The COBOL convention is used
in formats that describe syntax for the schema,
COBOL and Query Update subschemas, master directory,
and data base recovery utilities. The FORTRAN
convention is used in formats that describe syntax
for the FORTRAN subschema and for all control
statements. The differences in the conventions are
in the interpretation of uppercase words, the
omission of underlined uppercase words from the
FORTRAN convention, and the use of punctuation.

NOTATION USED IN
REFERENCE FORMATS

UPPERCASE  COBOL convention. Uppercase words
are reserved words and must appear
exactly as shown. Reserved words
can be used only as specified in
the reference formats, If not
underlined, they are optional.

FORTRAN convention. Uppercase
words are keywords and must appear
exactly as shown. Keywords can be
used only as specified in the
reference formats.

UNDERLINED COBOL convention. Underlined upper-
UPPERCASE case words are required when the
format in which they appear is used.

FORTRAN convention. Underlined
uppercase words are not used.

Lowercase Lowercase words are generic terms
that represent the words or symbols
supplied by the user. When generic
terms are repeated in a format, a
number is appended to the term for
identification.

[1] Brackets enclose optional portions
of a reference format. All of the
format within the brackets can be
omitted or included at the user’s
option. If items are stacked
vertically within brackets, only
one of the stacked items can be
used.

60485200 A

{1} Braces enclose one item or several
vertically stacked items in a
reference format. When one item is
enclosed in braces and followed by
ellipsis, the item can be repeated
at the user’s option. When several
items are enclosed in braces, one
of the enclosed items must be used.

I Vertical bars enclose two or more
vertically stacked items in a
reference format when at least one
of the enclosed items must be
used. Each of the vertically
stacked items can be used once.

e Ellipses immediately follow a pair
of brackets or braces to indicate
that the enclosed material can be
repeated at the user’s option.

Punctuation use differs for the conventions as
follows:

COBOL convention

Punctuation symbols shown within the for-
mats are required unless enclosed in brac-
kets and specifically noted as optional.
In general, commas and semicolons are
optional. One or more spaces separate the
elements in a reference format.

FORTRAN convention
Punctuation symbols shown within formats
are required unless enclosed in brackets

and specifically noted as optiomal.

Numbers shown within formats are decimal unless
otherwise specified.

NOTATION USED IN EXAMPLES

t indicates the position of an assumed decimal
point in an item.

A plus or minus sign above a numeric character (ﬁ)
indicates an operational sign is stored in combina-
tion with the numeric character.

Character positions in storage are shown by boxes.

[alefc]o]

A indicates a space (blank).

xiii






INTRODUCTION TO DATA BASE PROCESSING WITH DMS-170 1

%

The DMS-170 software package functions as a data
management system for Control Data computer systems.
Through this data management system, a data base
can be defined, maintained, and controlled in an
environment independent of the applications that
are accessing it. Conventional files otherwise
owned and processed by a number of distinct appli-
cations can be described through the data descrip-
tion language facilities of DMS-170. Consequently,
the responsibility for tasks such as data descrip-
tion, data conversion, and validity checking is
transferred from the application programmer to the
data administrator.

The DMS-170 data management system is composed of
the following elements:

Data Description Language (DDL), which creates
the schema definition, as well as the COBOL,
FORTRAN and Query Update subschema definitions.

CDC CYBER Database Control System (CDCS), which
controls, monitors, and interprets data base
requests from COBOL, FORTRAN, and Query Update
application programs.

CDC CYBER Record Manager (CRM), which handles
all input/output processing requests on a data
base from an application program.

Data Manipulation Languages (DML), which pro-~
vide for data base access through the COBOL and
FORTRAN programming languages. The COBOL DML
consists of features within the COBOL language.
The FORTRAN DML consists of DML statements that
are used within a FORTRAN-coded program and
processed by a DML preprocessor before FORTRAN
compilation.

Query Update language, which provides for data
base access in both interactive and batch
modes. Query Update is a language that enables
individuals with varying levels of technical
expertise to access and manipulate the data
base and to produce special-purpose reports.

Each element of the DMS-170 system is used either
in the definition or in the processing of a data
base. The definition of the data base is accom-
plished through the capabilities of DDL and the
master directory utility. Processing of the data
base involves retrieval and updating of the data by
application programs through the facilities of CDCS.

The DMS-170 environment defines two roles: the
data administrator and the application programmer.
The data administrator 1is responsible for the
definition of a data base. The data administrator
is a person or group of persons who develop and
define the data base as well as monitor and control
the day-to-day processing of that data base. The
application programmer uses interface capabilities
of COBOL, FORTRAN, and Query Update in developing
applications for data base processing.

60485200 A

CDC offers guidelines for the use of the software
described in this manual. These guidelines appear
in appendix F. Before using the software described
in this manual, the reader is strongly urged to
review this appendix. The guidelines recommend use
of this software in a manner that reduces the
effort required to migrate application programs to
future hardware or software systems.

DATA BASE DEFINITION

To define a data base, the data administrator uses
the Data Description Language (DDL). Through this
language, four types of data descriptions can be
created: the schema, the COBOL subschema, the
FORTRAN subschema, and the Query Update subschema.
Each of these data descriptions follows specific
structuring conventions, 1includes unique clauses
and statements, and conforms to an individual set
of rules. Once the schema and COBOL, FORTRAN, and
Query Update subschema descriptions have been
created and compiled, the data administrator
creates the master directory through one of the
data base utility routines provided as a part of
CDCS.

The relationship of the elements involved in defin-
ing a data base is shown in figure 1-1, The figure
indicates that the schema directory must be avail-
able to the DDL compiler to generate subschema
directories. Both the schema directory and sub-
schema directories must be available to generate
the master directory.

The data descriptions in the schema and subschema
are organized into file-like structures. By con-
vention, the following terms are used when refer-
ring to these structures:

Area in the schema
Realm in the subschema

The schema description of an area applies to all
data within the 'structure. The subschema definition
of a realm usually applies to a portion of data
within the structure but can apply to all the data.
The area provides the actual description of the
data. The realm provides the description of data
from the viewpoint of the application programmer.

The term file is used in this manual to refer to an
area or realm.

SCHEMA DEFINITION

The schema is a detailed English-like description
of the data in a data base. A user site can have
many data bases, but only one schema is allowed for
each data base.

1-1



DDL
Schema ‘
. Input DDL Subschema
Master Directory Input
Input {COBOL, FORTRAN,
Query Update)
|
DDL )
Compiler
DDL
Compiler
Y
Schema \
Directory
Subschema
Directories
{COBOL, FORTRAN,
Query Update)
\
Master
o Directory
Utility
Y
Master
Directory

Figure 1-1. Data Base Definition

The schema provides the logical description of the
data base. A schema can be associated and used
with several physical data bases. A physical data
base is a set of files associated with the areas of
the schema. This association is described later in
the Master Directory Definition subsection and in
the Data Base Versions subsection.

The schema description is created by DDL statements
that name the schema, organize the schema into
areas, describe each record type with characteris-
tics of the data, and describe relationships and
constraints among areas. The schema also includes
access control locks that provide area privacy.
The DDL source statements describing the data are
used as input to the DDL compiler and are compiled
into an object schema, or schema directory. The
data administrator then uses the schema to define
any number of subschemas.

SUBSCHEMA DEFINITIONS

A subschema is a detailed description of selected
portions of data described by a schema. The sub-
schema defines the portion of the data base avail-
able to the application program; the application
program uses the subschema descriptions to access
the data base. The subschema is based on the
schema.

The data descriptions in the subschema are orga-
nized into realms that correspond to areas in the
schema. The realms included in a subschema can be
a subset of the areas in the schema. The data
items within the realm in a subschema can be a
subset of the data items described for the corre-
sponding area in the schema. Figure 1-2 illustrates
the situation in which a subschema describes a
portion of a data base.

60485200 A

J )

J )



Physical Data Base
(Data Base Files)

gz
.

Logical Data Base
(Description)

A schema describes all

Shows schema Schema Areas

description. A,B,C, D data base files with
area descriptions.
Shows schema and Subschema A subschema describes
subschema descriptions. Realms portions of data base
A, C, D files with realm

descriptions.

Figure 1-2. Subschema Describing a Portion of the Data Base

Although only one schema is allowed for each data
base, any number of subschemas can be defined to
meet the needs of different types of applications.
Subschemas are defined by the data administrator
for use by application programs written in the
COBOL, FORTRAN, and Query Update languages.

COBOL Subschemas

A COBOL subschema 1is defined through the capabili-
ties of the DDL language. COBOL subschemas describe
in COBOL-like syntax the parts of a data base that
can be accessed by a COBOL program. Data descrip-
tions in COBOL subschema source statements are
written to correspond to data descriptions in the
schema. Certain differences are allowed to exist;
these differences are resolved by DDL and CDCS.
The COBOL subschema 1is generated by DDL source
statements that identify the schema and subschema,
specify realms and the content and structure of
records, identify relations among realms to be
used, specify record qualification for relation
processing, and indicate any changes in data format
required by the application program.

The DDL source statements describing the subschema
are compiled by the DDL compiler into an object
subschema, or COBOL subschema directory. The
schema must be compiled, however, before any sub-
schemas using it can be compiled. A COBOL program-
mer then uses a listing of the subschema to learn
the names and descriptions of the data to be refer-
enced in the COBOL program. Data descriptions from
the subschema are automatically included in the
COBOL program when it is compiled.

FORTRAN Subschemas

A FORTRAN subschema is defined through the facili-
ties of the DDL language. FORTRAN subschemas use
statements similar to FORTRAN specification state-~
ments to describe the parts of a data base that can

60485200 A

be accessed by a FORTRAN program. Data descrip-
tions in FORTRAN subschema source statements are
written to correspond to data descriptions in the
schema. Certain differences are allowed to exist;
these differences are resolved by DDL and CDCS.
The FORTRAN subschema 1is generated by DDL source
statements that identify the schema and subschema,
specify realms and the conteat aad structure of
records, indicate changes in data format required
by the application program, identify relations
among realms to be used, and specify record quali-
fication for relation processing.

FORTRAN subschemas, like COBOL subschemas, cannot
be compiled until the schema being used has been
compiled. Once the schema has been compiled, the
DDL source statements describing each subschema are
compiled by the DDL compiler into an object sub-
schema, or FORTRAN subschema directory. A listing
of the subschema is used by the FORTRAN programmer
to obtain the names and descriptions of the data to
be referenced in the FORTRAN program.

Query Update Subschemas

Query Update subschemas are defined through the
capabilities of the DDL language. Query Update
subschemas describe in COBOL-like syntax the parts
of a data base that can be accessed through Query
Update directives. The data descriptions in Query
Update subschemas are written to correspond to data
descriptions in the schema. Certain differences
between the subschema and schema data descriptions
are allowed to exist; these differences are
resolved by DDL and CDCS. For each subschema, the
DDL source statements used as input to the DDL
compiler name the schema and subschema, specify
needed realms and the content and structure of
records, identify relations among vealms to be
used, sgpecify record qualification for relation
processing, and indicate any changes in data format
required by the Query Update program.

1-3



After the schema has been compiled, the DDL source
statements describing the subschema are compiled by
the DDL compiler into an object subschema, or
subschema directory., The names and descriptions of
data to be referenced in a Query Update program are
obtained from a listing of the subschema.

Through facilities of DMS-170, a CDCS-controlled
data base can be accessed through Query Update
directly by CRM. Refer to appendix J for informa-
tion about this interface, This manual discusses
only Query Update data base access through CDCS.

MASTER DIRECTORY DEFINITION

The master directory must be created by the data
administrator before any application programs
accessing data base files can be executed. The
master directory contains all information about the
data base known to CDCS. This includes information
about schemas and subschemas as  previously
described 1in this section. This also includes
information about the following elements, which are
described later in this section: data base proce-
dure libraries, logging specifications for data
base files, log files, and data base versions. 1In
addition, the master directory functions as the
source of all data base and media descriptions for
CDCS.

If a data base has versions, these data base ver-
sions are defined in the master directory. A data
base version is a set of permanent files for areas
described by a schema. Through definition of
versions in the master directory a single schema
can be associated with more than one set of perma-
nent files,

To create or update the master directory, the data
administrator uses the DBMSTRD utility. Input for
the utility contains information that associates
subschemas, a data base procedure library, log and
recovery files, and data base versions with a
schema. Input can also associate areas of particu-
lar data base versions with permanent files and
logging specifications. The information about
permanent files that is specified in the master
directory provides CDCS the information required to
attach the permanent files, including the actual
permanent file associated with a particular area
and version, index files, log and recovery files,
and procedure library files. After the master
directory has been generated, it must be stored as
a permanent file.

In the process of maintaining a data base environ-
ment, the data administrator might want to add
information for one or more new schema definitions,
delete or modify existing schema informatiom, or
modify permanent £ile information for data base
files and procedure library files. Under any of
these circumstances, appropriate changes must be
made to the master directory through a modification
run. A new data base cannot be accessed by appli-
cation programs until the appropriate information
from the corresponding schema and subschema is

1-4

added to the master directory., Similarly, when
information pertaining to a schema is deleted from
the master directory, subschemas associated with
the schema can no longer be used by application
programs. One other form of modification allows
the addition or deletion of information pertaining
to subschemas. No subschema can be referenced by a
user during execution unless information about that
subschema exists in the master directory.

DATA BASE PROCESSING

Once a data base has been defined by the data
administrator, it can be accessed and modified by
users of the COBOL, FORTRAN, and Query Update
application programming languages. The relation-
ship of the elements involved in processing a data
base is shown in figure 1-3.

The following subsections introduce the processing
facilities of CDCS.

APPLICATION LANGUAGES

The data in a data base can be accessed by the
following application languages: COBOL 5, FORTRAN
5, and Query Update. Processing of the data base
by COBOL, FORTRAN, and Query Update programs is
controlled and monitored by CDCS. These
application languages can be used in either batch
or interactive mode.

COBOL Processing

A COBOL program accesses data base files through
conventional input/output statements. The files
are opened and closed and records are read, writ-
ten, deleted, and updated using the same means as
for files that are not part of a data base. Rela-
tion processing is also accomplished by conventional
COBOL statements. Data retrieved by the program is
accessed in accordance with the way it is described
in the COBOL subschema.

When a COBOL program using CDCS is to be compiled,
the file containing the subschema directory must
first be attached. Once the program is compiled
using the subschema, it can be executed later
without reattaching the subschema directory.

Execution of an input/output statement for a data
base file in a COBOL program causes the COBOL
object-time routines to route input/output calls to
CDCS. CDCS controls all processing of data base
files.

FORTRAN Processing

A FORTRAN program accesses data base files through
DML statements coded within the FORTRAN program.
The DML consists of FORTRAN-like statements. These
statements allow the FORTRAN user to access and
modify data base files,

60485200 E

JJ

J )



A

|

Data Bases

I
; |
f Recovery COBOL FORTRAN/
. Utilities Input I Program DML Query Update
| Program Directives
-
]
E
- ——————— — data administrator user ——T1—"—————" - —— — — g — — =
K]
£
3
FORTRAN s
Subschema } - DML
Directory | reprocessor
|
I
l
- | r
I Q Updat I
uery Update
Subschema I - Query
Directory | Update
|
| |
|
I
I
oo X coBOL FORTRAN
Directory i Compiler Compiler
: Y | |
Master | | cosoL obiject FORTAAN
\ Directory I Pragram Pro;ram
| ]
| !
Y I |
R }
N ecovery Lo -
( Utilities cocs }
) t
I
I
I
]
1
I
|
|
I
|
I
|
1

Figure 1-3. Data Base Processing With CDCS

60485200 A 1-5



Before a program containing FORTRAN DML statements
is compiled, the DML preprocessor is called via a
control statement to translate the DML statements
into FORTRAN specification statements and CALL
statements. Data descriptions are obtained from
the FORTRAN subschema directory, which must be
attached during the preprocessing phase. Following
the preprocessing, compilation of the FORTRAN
program proceeds as for a conventional FORTRAN
program; the translated DML statements are compiled
like other FORTRAN statements. Once the program is
preprocessed using the subschema, it can be com-
piled and executed later without reattaching the
subschema directory.

When a FORTRAN program using the FORTRAN DML is
executed, CDCS controls all processing of data base
files.

Query Update Processing

Query Update functions within the data base envi-
ronment whenever a Query Update subschema is speci-
fied by a Query Update user. The Query Update
language, which is a special nonprocedural, inter-
active language, can be used by both programmers
and nonprogramming personnel to perform several
functions. Through simple directives, search,
retrieval, update, and display operations can be
performed on data base files as well as on conven-—
tional files. In addition, a single Query Update
directive can be wused in rvrelation processing to
display to the user data from more than one file.
A comprehensive report writing capability is an
integral part of Query Update.

When a Query Update program accesses data base
files, CDCS controls all processing of data base
files. The concurrency, access control, logging,
and recovery features of CDCS are used by Query
Update.

CONCURRENCY

An important feature provided by CDCS is the con-
currency feature. Concurrency means that two or
more application programs can access the same data
base files at the same time. Programs can access a
file concurrently for retrieval or update purposes.
During concurrent update operations, CDCS provides
a locking mechanism by which resources (files or
records) can be locked and unlocked at appropriate
times. Automatic locking and unlocking are per-
formed by CDCS when certain input/output operations
are specified. In addition, explicit lock and
unlock requests can be issued from an application
program.

The CDCS locking mechanism provides twe kinds of
locks: protected and exclusive. A protected lock
allows the user holding the lock to wupdate the
resource and other users to read it. An exclusive
lock allows the user holding the lock to update the
resource and allows no other user to access it.

A deadlock situation can occur when two programs
attempt to access resources that have been locked
by CDCS or by other programs. When this situation
occurs, CDCS selects one of the contending programs
and releases all locked resources held by that
program. Appropriate code to handle recovery from
a deadlock should be included 1in application
programs.

1-6

The immediate return feature of CDCS provides COBOL
and FORTRAN application programs with the ability
to receive an immediate response from CDCS when
either a resource conflict or a fatal error
occurs. When this feature 1is used, CDCS returns
control to the application. Normally, the applica-
tion program waits for CDCS to gain access to these
resources. However, when the immediate return
feature is enabled, the application program can
contain logic to determine the action taken in this
situation.

For further information about CDCS locking, dead-
lock, and immediate return, refer to the CDCS 2
Application Programming reference manual.

DATA VALIDATION

Data validation based on criteria specified in the
schema is performed by CDCS. Through value range
checking, CDCS verifies that the value of a par-
ticular data item falls within a specified range.
CDCS can also call data base procedures to perform
data validation.

RECORD MAPPING

Record mapping between the schema and subschema is
performed by CDCS. CDCS performs data conversions
and structural reformatting so that requested data
in the data base is delivered to the application
program according to the format specified in the
subschema.

FILE PRIVACY

Another valuable function provided by CDCS is the
access control (privacy checking) mechanism.
Through this mechanism, access to data base files
can be controlled on the basis of criteria speci-
fied in a data base procedure or on the basis of
access control locks declared in the schema.

When a data base procedure is used for privacy
checking, the procedure decides whether to allow
the use of a data base area. The decision is based
on the access control key supplied by the applica-
tion program and on the job name of the program.

When access control locks are used for privacy
checking, a clause in a schema specifies the locks
that apply to the use of an area. The application
programs must specify the appropriate access con—
trol key (privacy key) to gain access at execution
time to the data base file controlled by the lock.

RELATIONS

The relation facility of CDCS allows an application
program to access data from files related by the
relation definition with a single read request (a
display request for Query Update). 1In the schema,
the data administrator links areas together into a
logical, meaningful relationship, called a rela-
tion, by specifying a relation entry. The relation
entry assigns a name to the relation and specifies
the data items to be used to link the files.

60485200 A

D J

J )



The COBOL, FORTRAN, and Query Update users access
relations based upon the particular relations
included in the respective subschemas. The rela-
tions in the COBOL and FORTRAN subschemas are based
on the relations defined in the schema. In the
subschema, relations can be qualified (called a
restriction). If a restriction is defined for a
relation, CDCS retrieves only records from the
files joined in the relation that meet the qualifi-
cation criteria.

During relation processing, data can be retrieved
from each file joined in the relation. A COBOL or
FORTRAN application program accesses a relation by
specifying a single read request with the name of
the relation that is to be read. CDCS processes
the requests and returns a record occurrence from
each file in the relation to the user’s work area
for the file. Query Update programs access rela-
tions by specifying in a DISPLAY or EXTRACT direc-—
tive the data names of data defined within the
areas that are joined in a relation.

CONSTRAINTS

The constraint facility of CDCS is an independent
feature that provides a means of protecting the
integrity of data in a data base. Use of the
facility prevents the possible introduction of
inconsistent data into a data base as a result of
update operations by application programs on
records in logically related files, or on items
within a single file.

In the schema, the data administrator establishes a
dependency condition between two areas or between
items within an area by specifying a constraint
entry. The constraint entry assigns a name to the
constraint and specifies the data items involved in
the dependent relationship. The areas involved in
a two-area constraint must each contain a descrip-
tion of a common data item, which is used to define
the constraint. During data base processing, a
dominant record occurrence corresponds to a depen-
dent record occurrence if both records contain the
same value for the common item.

When a COBOL, FORTRAN, or Query Update application
program updating a data base 1is executed, CDCS
enforces the constraints established 1in the
schema. A write (store), delete (remove), or
rewrite (modify) request is permitted or rejected
by CDCS on the basis of the effect of the proposed
operation on the dependency condition in the
applicable constraint.

DATA BASE VERSIONS

The data base version facility of CDCS allows an
application program to use the same schema and
subschema to access a specific group of files when
a number of groups are defined as data base
versions. Data base versions are defined by the
data administrator in the master directory. If no
data base versions are defined, a version named
MASTER is assumed by default. If alternate data
base versions are defined, one version named MASTER
exists along with the other data base versions.

Data base versions are referenced in application
programs by specifying the version name. By speci-

60485200 A

fying different version names, an application
program can perform operations on different sets of
files.

Figure 1-4 illustrates the use of data base ver-—
sions. When the application program specifies a
version name, CDCS makes available to the program
all the permanent files of that data base version
that are associated with the realms included in the
subschema being used. The illustration shows file
Ml being shared by the versions MASTER and TEST.

Permanent files can be shared by versions in only
one way: any particular permanent file defined for
version MASTER can also be defined for the same
area in any alternate version.

DATA BASE PROCEDURES

Data base procedures are special subprograms writ-
ten by the data administrator to perform a variety
of supplemental operations not otherwise performed
by CDCS. The procedures are called at execution
time when specific situations occur during CDCS
processing. The conditions under which data base
procedures are to be executed are specified in the
schema. The order of execution of the procedures
and the names of the data base procedures are also
indicated in the schema. When the schema 1is
compiled, an alphabetic 1list of the data base
procedures is printed at the end of the source
program listing.

Some of the functions that can be performed by data
base procedures are: data validation; data con-
version not supported by CDCS; calculation of
values for actual or virtual data items; hashing to
determine the primary key value for direct access
files; compression and decompression of data;
additional processing on creation, retrieval, or
update of data base records; privacy checking; and
special handling of error conditions detected
within CDCS. The use of data base procedures to
perform these functions provides a well-defined
method of tailoring the CDCS system to meet the
needs of a particular installation.

INPUT/OQUTPUT PROCESSING

The dinput/output capabilities of CRM handle all
operations concerning the physical storage and
access of data in a data base. When an application
program requests execution—-time processing of
input/output statements for data base files, CDCS
directs the request to CYBER Record Manager Advanced
Access Methods (AAM). AAM processes the requests
according to the requirements and restrictions for
conventional files.

All data base files supported by CDCS are conven-
tional extended AAM files.

File Organization

File organization of data base files is specified
in the operating system FILE control statement when
the schema 1is compiled. The file organization
information is stored in the schema directory. The
only file organizations allowed for data base files
that are to be accessed through CDCS are indexed
sequential, direct access, and actual key.



Example 1. Application Program AP1
Using Version MASTER

r Data Base Files _l

Definitions

Example 2. Application Program AP1
Using Version TEST

Version - - coCs -t

|

! |

Master '
Directory

with Versio? |

cpcs

Master
Directory
with Version
befinitions

TVersion Definitions:

Version Area A Area B Area C
MASTER File M1 File M2 File M3
TEST File M1 File T2 File T3

r o Data Base Files _l

|
|
AP1 T2

Figure 1-4. Processing Using Data Base Versions

In files of these organizations, records are stored
by value of a data item within the record that is
defined in the schema as the primary key. During
input/output operations on files, AAM enforces the
following rule: the value of the primary key
cannot be duplicated within a file.

Records in indexed sequential files are stored in
ascending order by value of the primary key. The
records can be accessed either randomly by key or
sequentially by position. This file organization

should be used for files that are to be accessed
both randomly and sequentially.

60485200 A

J )

J )



Cgﬁmx
6@5@\

Records for direct access files are stored randomly
in fixed length blocks. The number of the block to
receive a record is determined by a calculation
performed by the system on the record key. Records
can be accessed randomly by key or serially.
Direct access file organization is used most effec-—
tively when rapid random access is required.

Actual key files contain records whose primary key
values are assigned by the system. The primary key
value (also called the actual key) is a number that
identifies the block and the position within the
block in which the record is stored. Records can
be accessed randomly by actual key; records also
can be accessed serially. Actual key file organi-
zation is used most effectively when alternate keys
are needed and when performance and file growth
characteristics are of primary concern. It is also
used when no unique key exists so that a system-
defined key must be designated.

NOTE

Refer to appendix F for recommendations on
access methods,

Multiple-Index Processing

Multiple-index processing is performed when alter-
nate keys are defined for indexed sequential,
direct access, and actual key files. An index is
created for each alternate key in a data file when
the file is created. The indexes are updated
automatically whenever the data file is updated.
Records can then be retrieved by the primary key or
by an alternate key. For detailed information
refer to the CYBER Record Manager Advanced Access
Methods refereace manual.

DATA BASE RECOVERY

The recovery facilities of CDCS provide ways to
deal with the following situations:

Recovery of a data base from a system fallure
Recovery of a data base from a program failure
Restarting a program after a system failure

Recovery of a lost, partially destroyed, or
invalid data base

The facilities of automatic recovery, transaction
processing, manual recovery, and logging deal with
recovery situations.

Automatic Recovery

Automatic recovery provides for data base recovery
from a system or program failure. After a system
failure occurs, CDCS automatically performs recovery
operations at CDCS-initialization time before CDCS
becomes available to application programs. After a
program failure, CDCS automatically performs the
recovery operations with no effect on other appli-
cations.

60485200 A

The use of automatic recovery features for data
base files 1is optional. The data administrator
selects the features by specifying clauses in the
master directory.

Data Base Transaction

The data base transaction feature is the applica-
tion programming interface to automatic recovery.
A data base transaction (called, simply, a trans-
action) is a sequence of one or more updates that
usually involve related files. An application
program must use data base transactions for CDCS to
perform automatic recovery.

The application program specifies the beginning of
the transaction, performs the update operations,
and specifies the end of the transaction, which can
be either a commit or a drop. When a commit trans-
action is specified, CDCS makes the updates perma-
nent. When a drop transaction is specified, all
the updates performed within the transaction are
reversed by CDCS; therefore the data base is
restored to its state before the beginning of the
transaction. If the application program fails to
commit a transaction because of a system or program
failure, automatic recovery is performed and the
data base is restored to its state before the
beginning of the transaction,

The data base transaction feature is available to
COBOL and FORTRAN application programs. It is not
available to Query Update users.

The data base transaction feature also provides a
restart capability for application programs after a
system failure. Using this feature, the applica-
tion program can determine the last transaction
that was committed by the program before a failure
occurred.

Manual Recovery Utilities

Manual recovery utilities supplement the capabili-
ties of automatic recovery. The manual recovery
utilities allow the data administrator to vtecon-
struct a destroyed data base or to restore an
invalid data base.

Logging

CDCS performs logging at execution time. Log files
provide information necessary for automatic
recovery, for manual recovery, and for restarting
an application program.

Four types of log files can be used in data base
recovery operations. The first, the journal Llog
file, contains a record of each occurrence of an
update or write operation on a data base. In
addition, a record is maintained on the journal log
file of certain user requests and privacy breach
attempts. The second, the quick recovery log file,
is used internally by CDCS to write blocks of
records before the data base is modified by AAM.
The third, the transaction recovery file, contains
records used by CDCS to support automatic recovery.
The fourth, the restart identifier file, contains
information used by CDCS to provide for application
program restart if program or system failure occurs.

1-9



All logging 1s optional and is selected by the data
administrator In clauses of the master directory.
All log files are assigned on a per-schema basis
and selected for use for particular areas and
versions.

The log files can provide information about data
base usage. The journal log file, in addition to
being input to a recovery rum, can be processed by
a program for statistical analysis at a later
date. The restart identifier file can be processed
by a program to determine which application pro-
grans failed and were never restarted.

A journal log file support feature provided by CDCS
is journal log file maintenance. CDCS automati-
cally detects a full journal log file, switches
logging to an alternate Jjournal log file, and
initiates the transfer of the contents of the full
file to a tape file. This feature provides for
continuous logging during execution of CDCS.

OTHER DATA BASE UTILITIES

Other utilities applicable for use with a CDCS-
controlled data base include FORM, a file management
utility used to manipulate records and reorganize
files, and two AAM utilities used with extended
indexed sequential files: FLSTAT for obtaining
statistical information, and FLBLOK for estimating
the optimal block and buffer sizes for files. Two
additional AAM utilities can be used with any of
the extended AAM file organizations: MIPGEN for
adding alternate key access to an existing extended
AAM file, and MIPDIS for disassociating and reasso-
ciating data and alternate key index files. The
FORM reference manual and the CYBER Record Manager
Advanced Access Methods reference manual should be
consulted for further details on these utilities.

PROCESSING THROUGH TAF

CDCS supports the Transaction Facility (TAF), which
allows processing through TAF under NOS. Process-
ing through TAF provides for high speed handling of
repetitive executions of a relatively small number
of jobs called tasks. The tasks can be executed by
many different people from many locations. A task
usually performs one of the following manipulations
on a data base:

Stores a new record
Alters or deletes an existing record
Produces formatted output

An online banking system 1s an example of process-
ing frequently performed through TAF: tellers in
many locations use terminals connected online to a
central processor to make deposits or withdrawals
for an account and to print confirmations. A task
(a deposit or withdrawal) is initiated by a teller
through the terminal; once initiated, the task is
executed through TAF and CDCS. The task can
communicate with the terminal through TAF and the
Network Access Method (NAM) and can initiate sub-
sequent tasks.

Figure 1-5 shows the CDCS/TAF interface. Access to
the data base through TAF is concurrent with access
in both batch and interactive modes. All access to
the data base is monitored by CDCS.

TAF tasks must be coded with special TAF requests.
Refer to the TAF reference manual for information
about the requests.

Since both TAF and CDCS provide for transaction
processing, the term transaction processing used in
this manual refers to data base (or CDCS) transac-
tion processing. The term TAF transaction process-
ing refers to processing through the TAF interface.

TRANSACTION, \\

TASK

LIBRARY JDIRECTORY)

MASTER

N1

NAM S

TRANSACTION,

DATA

TAF -t CDCS BASE

A

-

M—

LOG
FILES

N—

Figure 1-5. CDCS/TAF Interface

60485200 A

)

‘=®3
™



CDCS PROCESSING FLOW

Execution of an application program in the CDCS
data base enviromment requires that CDCS be at a
system control point and that the master directory
be available. The COBOL compiler and the FORTRAN
DML preprocessor generate calls in COBOL and
FORTRAN programs, respectively, to object-time
routines that format input/output requests to CDCS
during execution. Query Update interprets direc-
tives and generates the appropriate calls to CDCS
for execution of the directives involved in data
base access., The first executable call 1is an
invoke call to CDCS. During invocation, CDCS
registers the user program, reads the master direc-
tory, builds intermal tables and structures, and
activates log files for the schema being used.
CDCS also attaches all data and index files that
are associated with realms referenced in the sub-
schema used by the program. In additionm, any file
that is associated with a realm that is involved in
a constraint with a realm that is referenced in the
subschema 1is also attached by CDCS. The system
flow for basic retrieval and basic update requests
is as follows:

CDCS receives an input/output request from the
application program via a call from the appro-~
priate object-time routine.

CDCS analyzes the call and supplements infor-
mation provided in the call with schema and
subschema information from the master directory.

Depending on the call, CDCS can perform the
following operations:

Reads additional parameters from the user
control point.

Performs any required record mapping.
Performs logging operations.
Checks for violations of constraints.

Determines whether update operations are
being performed within a data base trans-
action.

Performs automatic recovery if the applica-
tion program issues a request to drop a
transaction,

Issues AAM requests as required to execute
the call. AAM transfers data between the
data base files and the input/output buf-
fers in the CDCS field length.

Loads and executes data base procedures.
CDCS transfers the status of the input/output
request and any data to the user control point

and allows control to be returned to the user
program.

60485200 A

CBCS LOADING AND EXECUTION

CDCS resides on the system library as an absolute
program and normally operates through the system
control point facility of the NOS and NOS/BE oper-
ating systems. An application program using CDCS
resides at a user control point. CDCS and one or
more application programs can reside at the same
control point when the CDCS Batch Test Facility is
used. Refer to the following subsection for more
information on this facility.

Figure 1-6 illustrates the data base environment at
the system and user control points. This diagram
also includes mass storage requirements for data
base files, log files, the data base procedure
library, and the master directory.

After CDCS is initiated by the operator at a system
control point, the remainder of the field length
represents managed memory under the control of the
Common Memory Manager (CMM). Managed memory con-
tains CDCS dinternal tables, CYBER Record Manager
access methods, CYBER Record Manager buffers,
mapping capsules, and data base procedure code
capsules loaded via Fast Dynamic Loader (FDL).
Establishment of CDCS as an active subsystem at a
system control point is described in section 10.
For further details on basic field length require-
ments for CDCS refer to appendix G.

The user control point includes the user program,
compiled object-time routines, error status regis-
ters, and the user work area. User programs can be
relocatable, absolute, or overlay programs. Refer
to the CDCS 2 Application Programming reference
manual for information on application programming.

CDCS BATCH TESTING

The CDCS Batch Test Facility can be used for pro-
gram development when data and file definitions are
changing frequently. The CDCS Batch Test Facility
can be used with COBOL and FORTRAN application
programs. In batch test mode, CDCS and one or more
user programs run at one control point as a normal
batch job. When the CDCS Batch Test Facility is
used, new versions of the master directory file can
be attached each time the job is run. In normal
CDCS mode, the system control point must be dropped
and reinitiated to attach a new master directory
file.

The CDCS Batch ‘Test Facility resides on the system
library as an absolute program and is called into
execution by the CDCSBTF control statement. Multi-
ple copies of the program can be run concurrently
with each other and with a system control point
version of CDCS. As many as 16 user jobs can be
run with one copy of the CDCSBTF program. User
programs must be in relocatable binary format.
Programs in absolute binary format, as well as
segmented programs and overlays, cannot be run in
batch test mode. For further details on the use of
the CDCS Batch Test Facility refer to the CDCS 2
Application Programming reference manual.

1-11



CENTRAL MEMORY

SYSTEM CONTROL POINT

MASS STORAGE

cocs CRM __ﬂ_,_,—f—’_——"—’— Master Directory
Internal (AAM) cDCS
Tables (BAM)
Data Base
Procedure Library
1/0 bData Base Mapping Log Files
Buffers Procedure Capsules
Capsules \\\‘----~\~\~\.
Data Base and
. Index Files
USER CONTROL POINT
User Program
Error :2:; and
Status Area Object-Time
Routines
Figure 1-6. Data Base Environment Under Operating System

60485200 A

J D

J )



SCHEMA DEFINITION

..

The schema is a directory that describes the
characteristics of data items within the data base
and specifies the organization and storage of the
data. The internal storage format is specified for
individual data items. The data items are orga-
nized into records within addressable storage units
called areas.

The schema directory, or object schema, is gener-
ated when the schema source program is compiled by
the DDL3 compiler. The schema directory is often
called simply the schema.

SCHEMA STRUCTURING
CONVENTIONS

The schema source program consists of six major
types of entries: four required, two optional.

Schema Identification Entry

Assigns a name to the schema; this entry is
required.

Area Description Entry

Assigns a name to a schema area and can
specify a data base procedure to be per-—
formed when the area is opened or closed;
at least one area description entry is
required.

Record Description Entry

Describes the structure and characteristics
of a DDL record type and can specify data
base procedures to be executed whenever
specific user functions manipulate a
record; at least one record description
entry is required.

Data Control Entry

Supplies special information related to the
schema areas; this entry is required.

Constraint Entry

Assigns a name to a constraint and speci-
fies data items used to associate areas in
a constraint; this entry is optional.

Relation Entry

Assigns a name to the relation and speci-
fies the data items to be used as join
terms to link areas in a relation; this
entry is optional.

DATA DESCRIPTION

Each DDL record type in the data base 1is described
in a record description entry. The first statement
in the entry assigns a name to the record type,

60485200 A

specifies the area in which it resides, and option-
ally designates a data base procedure to be executed
when the record is involved in a specific user
function. The remainder of the record description
entry consists of a series of data description
entries that describe the individual data items
within the record.

A data description entry contains a data name, one
or more clauses describing the data item, and a
terminating period. The entry can also have a
level number that designates the position of the
data item in the hierarchical structure of the
record. If the level number is omitted, level
number 01, the highest level in the hierarchy, is
assumed by default.

The data name in a data description entry is a
user-defined name that 1identifies the data item.
It must conform to the rules governing user-defined
names as described in the User-Defined Names sub-
section, which appears later in this section. The
data name cannot be qualified; it must be unique
within the record description entry.

At least one clause must be included in a data
description entry; additional clauses can be
specified as needed. The required clause must be
the PICTURE clause, the TYPE clause, or the OCCURS
clause., Certain rvestrictions are placed on the
combination of clauses that can be included in a
data description entry. Table 2-1 lists the
clauses that can be specified and indicates the
valid combinations.

The only punctuation required in a data description
entry 1is the terminating period. Semicolons or
commas can be used to separate clauses. Commas can
also be used to separate repeated optiouns.

DATA ORGANIZATION

Data items in the data base are organized first
into areas and then into records. Within a record,
two types of data items can be specified: elemen-
tary items and group items. Repeating data items,
which can be elementary or group items, are fixed
or variable in length.

Areas

The data items defined in the schema must be orga-
nized into addressable storage units called areas.
At least one area must be described in the schema;
if only one area is described, it encompasses the
entire data base. The maximum number of areas
allowed is 4095.

An area is a portion of mass storage that can be
accessed in the same manner as a file. An area is
opened and closed by the wuser OPEN and CLOSE
functions.



TABLE 2-1. VALID

CLAUSE COMBINATIONS

PICTURE TYPE | OCCURS KES‘E?‘;‘L gggﬁ CHECK | ENCODING DECODING | CALL
PICTURE X X X X X X X
TYPE X X X X X X X
OCCURS X X X X X xt
VIRTUAL X X X
RESULT
ACTUAL X X X X X
RESULT
CHECK X X X X X X X X
ENCODING X X X X X X
DECODING X X X X X X X
CALL X X xt X X X X
TThis combination of clauses can only be used in the data description entry for an elementary item (vector).

An area can contain more than one DDL record type.
When multiple record types exist within an area,
the schema must designate the means for determining
the specific record type to be used for the occur-
rence of an actual record. A record code identifies
each record type in the area. The record code is
determined in one of two ways:

A data item in the actual record contains a
unique value for each record type.

Execution of a data base procedure returns a
unique value for each record type.

If the record code is contained in a data item, the
data item must be in the same position in each
record type within the area. The data items must
also be the same size and data class. The data
names, however, need not be the same.

NOTE

Refer to appendix F for recommendations on
the use of multiple record descriptioms.

Records

Within each area in the schema, data items are
organized into records. Each DDL record type is
defined in a record description entry that assigns
a name to the record, designates the area in which
the record resides, optionally specifies data base
procedures to be executed when the record is
manipulated, and describes the data items included
in the record. The maximum number of record types
allowed 1is 4095. A maximum record size of 81870
characters is allowed.

The hierarchical structure of the record is indi-
cated by level numbers. Only repeating group items

2-2

can designate subordinate data items and therefore
must specify level numbers. A nonrepeating data
item that 1is not subordinate to a repeating group
item is the highest level (lowest number) data item
in the record.

Elementary Items

An elementary item is the smallest unit of named
data; it camnot be subdivided into other data
items. If it 1is part of a repeating group item,
the elementary item has the highest level number of
the group to which it belongs. Elementary items
that do not belong to a repeating group have the
lowest level number in the record; if a level
number 1is not specified, level 0l is assumed by
default. The maximum number of items allowed is
81870; the maximum item size is 32767 characters.
The maximum number of items per record is 4095.

Group Items

The only group items that can be specified in the
schema are repeating groups. Nonrepeating group
items are not supported in the schema. A repeating
group is a collection of related data items orga-—
nized in a hierarchical structure; the entire
collection 1is repeated a number of times. The
collection can include elementary items and other
repeating group items. Group items can be nested
to three levels.

The group name data description entry has the
lowest level number; it must also include the
OCCURS clause. A data description entry is written
for each item within the group item; these entries
must have level numbers that are higher than the
group name level number.

60485200 A

J

J )



Repeating Data ltems

Two types of repeating data items can be designated
in the schema: vectors and repeating groups. A
vector is an elementary data item that is repeated
a number of times in each record. A repeating
group 1is a collection of data 1items that is
repeated; the entire collection, not individual
data items, is repeated a number of times in each
record.

Repeating data items are specified by including the
OCCURS clause in the data description entry. A
repeating data item can occur a fixed number of
times in each record or a variable number of times

depending on the value of another data item in the
record.

Vectors

A vector is an elementary data item that contains a
series of values. It 1s described with the OCCURS
clause and either the PICTURE or TYPE clause. No
data item can be subordinate to a vector; it must
be an elementary data item. A vector can be a data
item within a repeating group; however, it must be
a fixed occurrence vector.

Repeating Groups

A repeating group is described with two or more
data description entries. The first entry consists
of the group data name and the OCCURS clause. Each
additional entry 1s subordinate to the first entry
and describes a repeating group, a vector, or an
elementary data item. The vector or elementary
item contains the PICTURE or TYPE clause. Up to
three levels of nested groups can be specified. A
repeating group that is subordinate to another
repeating group must be a fixed occurrence repeat-
ing group.

Level numbers must be specified in a repeating
group. The lower the position of the data item in
the hierarchy of the repeating group, the higher
the level number must be. Data items in the same
hierarchical position must have the same 1level
number.

Fixed Occurrence Data Items

A data item that 1s repeated a fixed number of
times is described with the OCCURS integer TIMES
clause. The integer specifies the exact number of
occurrences of the data item for each record occur-
rence; it must be a positive number greater than
zero. A fixed occurrence data item can be a sub-
ordinate entry in a repeating group.

NOTE

Refer to appendix F for recommendations on
the use of repeating groups.

Variable Occurrence Data Items

A data item that is repeated a variable number of
times is described with the OCCURS data name TIMES
clause.

60485200 A

The exact number of times the data item is repeated
in a record occurrence depends on the value of the
data item referenced by data name in the OCCURS
clause.

The data item that controls the size of the vari-
able occurrence data item must be described as an
integer; the CHECK IS VALUE clause must be included
to designate the minimuwm and maximum number of
occurrences that are allowed. The controlling data
item cannot be within a variable occurrence data
item. If it is within a fixed occurrence data
item, the first occurrence of the controlling data
item determines the size of the variable occurrence
data item.

The following rules apply to variable occurrence
data items:

A variable occurrence data item must be the
last item in the record. Only subordinate data
description entries can follow the entry con-
taining the OCCURS data name TIMES clause.

A variable occurrence data item cannot be a
subordinate entry in a repeating group item.

Only omne variable occurrence data item can be
specified for a record.

DATA SIZE AND CLASS

The size and class of a data item are designated by
either the PICTURE clause or the TYPE clause. The
data description entry for an elementary data item
must include one of these two clauses.

Data size is specified in the PICTURE clause by the
number of character position designators (A, X, 9,
« (decimal point), and T) in the picture specifica-
tion. In the TYPE clause, the number of positions
for the data item is designated by specifying an
integer. For a numeric data item, the integer is
the maximum number of significant digits; for an
alphanumeric data item, the integer is the number
of character positiomns.

Each data item falls into a data class category.
The data class is determined by the description of
the data item. Refer to the descriptions of the
PICTURE clause and the TYPE clause for information
on the notations wused in describing the data
classes.
Display Alphanumeric (Data Class 0)
TYPE CHARACTER clause with integer-3

PICTURE clause with alphanumeric picture
specification (A, X, and 9 characters)

Display Alphabetic (Data Class 1)

PICTURE clause with alphabetic picture
specification (character A only)

Display Integer (Data Class 3)

PICTURE clause with numeric picture speci-
fication (9 and T characters)

2-3



Display Fixed Point (Data Class 4)

PICTURE clause with fixed point numeric
picture specification (9, V, T, P, and .
characters)

Coded Binary Integer (Data Class 10)

TYPE FIXED clause with integer-1 in the
range 1 through 18

Coded Floating Point Normalized (Data Class 13)

TYPE FLOAT clause with integer-1 in the
range 1 through 14

Coded Double Precision (Data Class 14)

TYPE FLOAT clause with integer-1 in the
range 15 through 29

Coded Complex (Data Class 15)
TYPE COMPLEX clause

Refer to section 5 for a summary of data definition
for a CDCS controlled data base; refer to appendix
J for a summary of data definition in DMS-170.

SCHEMA /SUBSCHEMA
COMPATIBILITY

The schema describes the characteristics of all
data items in the data base. The subschema
describes only those data items to be accessed by
one or more application programs. Within certain
limitations, the characteristics of the data items
can be changed in the subschema to meet the
requirements of the application programs. The
process of changing data characteristics between
the schema and the subschema is called conversion.

Conversion occurs during record mapping, which is
the CDCS operation for generating a record image.
Record mapping produces a record image conforming
to the subschema description when a user GET
function (READ statement) requests the record. A
record image conforming to the schema description
is produced as a result of a user STORE or MODIFY
function (WRITE or REWRITE statement).

Refer to sections 3 and 4 for detailed descriptions
of the conversion limitations imposed on the sub-
schema by the schema description. Conversion and
record mapping are discussed in detail in section 5
and appendix H.

DATA CONVERSION

The description of a data item determines the data
class of the item. Conversion from a schema data
class to a different data class in the subschema is
restricted to specific data class conversious.
Table 2-2 dindicates the valid subschema data
classes for each schema data class. When the
schema is created, the general usage of data items
and the valid data class conversions should be
considered. Conversion is inhibited when a data
item is described with the CHECK IS PICTURE clause.

2-4

TABLE 2-2. VALID SCHEMA/SUBSCHEMA
CLASS CONVERSIONS

Subschema Data ClassT
Schema

Data ClassT | 0 |1 |3 {4 |10 13 ]14 |15
0 X |X|X
1 X|X
3 X X |X|X X X
4 X |X [ X X X
10 X X X X X X
13 X |X |X X X X
14 X |X |X X X X
15 X X X X

tThe schema and subschema data classes are
identified by the following codes:

0 Display Alphanumeric

1 Display Alphabetic

3 Display Integer

4 Display Fixed Point
10 Coded Binary Integer

13 Coded Floating Point Normalized
14 Coded Double Precision
15 Coded Complex

Data conversion operates in a source-to-target
mode. The source and target data items are defined
as follows:

GET Function (READ Statement)

Source=schema data item
Target=subschema data item

STORE or MODIFY Function (WRITE or REWRITE
Statement)

Source=subschema data item
Target=schema data item

When conversion is required and the source data
item and target data item are unequal in length,
the following rules apply to a character data item:

If the source data item is larger than the
target data item, the source data item is
truncated on the right to the size of the
target data item. Truncation of nonblank
characters results in an error.

If the source data item is shorter than the
target data item, the source data item is blank
filled on the right to the size of the target
data item.

60485200 A

J )

J )



If an error occurs during data conversion, an error
code is returned to the user program, and the
conversion operation is terminated. If the schema
specifies a data base procedure in a CALL ON ERROR
clause, the procedure is executed. The following
paragraphs discuss conversion of numeric data items.

Coded Arithmetic tc; Numeric Picture

If the target data item has a numeric pilcture
specification, conversion occurs only if the source
data item is coded arithmetic or can be converted
to coded arithmetic. The value of the source data
item 1is converted to character representation.
Insignificant zeros are added to or vemoved from
either end of the target data item to conform to
the precision and scaling factor specified for the
target data item. If the scaling factor of the
target data item 1s less than that of the source
data item, rounding takes place in the least signi-
ficant digit. If the precision of the target data
item is not sufficient to contain all significant
digits of the whole part of the source data item,
an error occurs and conversion does not take place.

Numeric Picture to Coded Arithmetic

When the source data item has a numeric picture
specification and the target data item is a coded
arithmetic data item, the value of the source data
item is converted to the internal representation.
Insignificant zero digits are added or removed and
rounding occurs as needed in the least significant
digit. If the precision of the target data item is
not sufficient to contain all significant digits in
the whole part of the source data item, am error
results and conversion does not occur.

Coded Arithmetic to Coded Arithmetic

The value of the source data item is converted, if
necessary, to the base, scale, mode, and precision
of the target item. Insignificant zeros are added
or removed and rounding occurs as needed in the
least significant digit. If the precision of the
target data item 1is not sufficient to contain all
significant digits of the whole part of the source
data item, an error results and conversion does not
occur.

Numeric Picture to Numeric Picture

When both the target and source data items are
fixed point and differ only in the number of digits
or the decimal point position, insignificant zeros
are added or removed to conform to the target data
item picture specification and rounding occurs as
needed. If the target data item precision is not
sufficient to contain all significant digits, an
error condition results and conversion does not
occur.

60485200 A

RECORD MAPPING

Record mapping is performed by CDCS whenever a user
function reads or writes a data base record. The
schema and subschema record descriptions are used
to generate a record image. Each data item is
transferred from the source record to the target
record. Conversion is performed before the data
item is transferred. When no source data item
corresponds to a target data item, the target data
item is given a null value (blanks or zeros depend-
ing on the data class of the data item).

In addition to resolving differences between the
schema and subschema descriptions, any of the
following clauses included in the schema descrip-
tion of a data item are handled during record
mapping:

RESULT Clause

The data base procedure 1is executed to
determine the value of the data item.

ENCODING or DECODING Clause

The data base procedure is executed to
perform a nonstandard conversion for the
data item.

CHECK Clause

The data item is checked for the restric-
tions imposed by this clause.

CALL Clause

The data base procedure is executed when
the specified function is performed on the
data item.

SCHEMA PROGRAMMING
CONVENTIONS

The DDL schema source program consists of a series
of statements that describe the data base. The
rules, conventions, and hierarchical structures of
DDL are similar to those of the COBOL programming
language.

LANGUAGE ELEMENTS

DDL source statements are composed of clauses that
contain reserved words, user-defined names, and
literals. The use of these elements 1is described
in the following paragraphs. The specific formats
of the clauses are defined in the Schema Syntax
subsection, which appears later in this section.

Reserved Words

Reserved words are English words and abbreviations
that have special meanings to the DDL compiler.
These words can be used only as shown in the format
specifications. A reserved word must be spelled
correctly; it cannot be replaced by another word.
Appendix D contains a complete list of DDL reserved
words.

2-5



Two types of reserved words are recognized by the
DDL compiler: keywords and optional words. A
keyword is a reserved word that must be used in a
specific clause. Keywords are essential to convey
the meaning of a clause to the compiler. An op-
tional word is a reserved word that can be included
in a clause to improve readability. Optional words
are recognized by the compiler but are not needed
to compile the object coding. In the format
specifications, keywords are shown as upper case
words that are underlined; optional words are shown
as upper case words that are not underlined.

User-Defined Names

Many of the format specifications include names
that are supplied by the user. User-defined names
identify the schema, areas, relations, constraints,
records, data items, and data base procedures. The
type of name to be supplied is indicated in the
format specification by a lower case word.
User-defined names have two formats: normal and
escape. The formation of normal names 1is governed
by the following rules:
The name can contain up to 30 characters.

Letters (A-2), digits (0-9), and the hyphen (-)
can be used in a name.

The first character must be a letter.

The hyphen cannot be used to begin or end a
name.

Adjacent hyphens are not allowed.
Spaces (blanks) cannot be used in a name.

A name cannot be spelled exactly the same as a
reserved word.

Two types of user-defined names mnust conform to
additional rules:

Area Names

Only letters (A-Z) and digits (0-9) can be
used.

The first character must be a letter.
The first seven characters must be unique.
Data Base Procedure Names

Only letters (A-Z) and digits (0-9) can be
used in the name.

The first character must be a letter.

A maximum of seven characters can be
specified.

The escape format is used when the name does not
conform to the rules for normal names. An escape
name is most commonly used when the data base
procedure already exists and the name cannot be
used as a normal name. The formation of escape
names is governed by the following rules:

The name can contain up to 30 characters.

Any character in the DDL character set can be
used in the name.

The name is delimited by the national currency
character ($).

The delimiter ($) can be included in the name
by specifying it two consecutive times for each
occurrence.

Literals

In some formats, the user must supply a literal as
part of the clause. A literal is a string of
characters that represents a specific value.
Literals are either numeric or nonnumeric.

Numeric Literals

A numeric literal can contain the numbers 0 through
9, the decimal point, and the plus or minus sign.
Numeric literals are expressed as either fixed
point or integer. The rules for formation of
numeric literals are as follows:

Fixed Point

One sign character can be specified as the
leftmost character; if a sign is not speci-
fied, the literal is positive.

One decimal point can be specified in any
position except the rightmost position; if
a decimal point is not specified, the
literal is an integer.

Integer
A decimal point cannot be specified.
One sign character can be specified as the
leftmost character; if a sign is not speci-
fied, the literal is positive.
The maximum size for a numeric literal is 30 digits;
however, only 18 significant digits can be speci-

fied. Up to 12 leading or trailing zeros cam be
specified for decimal point alignment.

Nonnumeric Literals

A nonnumeric literal is a string of wup to 255
characters. The string must be enclosed in quota-
tion marks. Any character in the DDL character
set, including the space, can be used in a non-
numeric literal. If a quotation mark is to be
included in the literal, the quotation mark, must
be specified twice for each occurrence. For
example, "A""B" would yield the literal A"B.

Data Reference

Each user-defined name in the schema must be
capable of being uniquely referenced. Unless the
name itself is unique because no other name has the
identical spelling, a method for obtaining unique
identification is necessary. Unique reference is
recognized through the qualification, subscripting,
and identifier concepts.

60485200 A

)

J D



Qualification

Qualification 1is permitted im any clause that
references a data name. When a name exists within
a hierarchy of one or more names, the higher level
names can be used to make the name unique. The
data name is written followed by the word OF or IN
and the qualifier. The choice of OF or IN is based
on readability; the two words are logically equiva-
lent. Qualification must be made to the level
necessary to make the name unique; however, quali-
fication can be used even when the name does not
need to be qualified.

Subscrigtigg

Subscripting within the DDL syntax <s permitted
only in the JOIN clause. Subscripts are used to
indicate which occurrence of a repeating group or
elementary item is to be referenced. The data name
is written, followed by a positive integer constant
enclosed within parentheses. The following para-
graphs describe specific rules for subscript use.

Identifier

The term identifier is used in the schema JOIN
clause to reflect a unique reference to a data
name. The data name is referenced uniquely through
a combination of subscripts and qualifiers. Quali-
fication and subscripting for a data name follow
the formats shown in figure 2-1.

Format 1 is used for subscripting and qualification
in either a source identifier or a target identi-
fier. Format 2 is used to describe a target
identifier that is composed of all the occurrences
of a repeating item and is an alternate key or the
major part of an alternate key. Refer to the ANY
option discussed in the JOIN clause subsection.

Subscripting in the schema is permitted only in the
JOIN clause. The only qualifier allowed for an
identifier is record name, as specified in the
RECORD NAME clause in the schema.

DDL Character Set

The set of characters recognized by the DDL com-
pller can be combined according to the specified
rules for forming names and values in the source
program. The DDL character set consists of the
letters A through Z, the numbers 0 through 9, and
the following special characters:

Blank or Space
+ Plus Sign
- Minus Sign or Hyphen
’ Comma
H Semicolon
*  Asterisk
.« Period or Decimal Point
"  Quotation Mark
( Left Parenthesis
) Right Pareanthesis

$ Dollar Sign (national currency character)

~

Slash

The following reserved symbols are also included in
the DDL character set:

Equals
> Greater than

< Less than

Punctuation

Most punctuation marks in a DDL source program are
optional. When punctuation marks are used, the
following rules apply:

A period must terminate each complete statement
as indicated by statement formats.

A period must be followed by at least one space.

A left parenthesis must not be followed by a
space, and a right paretheansis must not be
preceded by a space.

At least one delimiter (a space, comma, or
semicolon) must separate successive words in a
statement.

Commas and semicolons can separate clauses in a
statement.

Format 1

Format 2

OF

data-name [__(_ subscript-1 [ subscript-2 [, subscript-G]]l] l:{%:—:-} record-name]

data-name [(ANY)] [{lN } record-name]

Figure 2-1.

60485200 A

Identifier Format

2-7



DDL CODING

DDL source programs can be written on standard
coding sheets. Coding a schema is similar to
coding the Data Division of a COBOL applications
program. Columns 1 through 72 are used to write
DDL statements; columns 73 through 80 are reserved
for sequence numbers. A DDL statement is written
in free-format within the chosen columns. A DDL
statement terminates with a period.

DDL Statements

The DDL source program consists of a series of
entries. Each entry contains at least one state-
ment; each statement contains at least one clause.
The entries must appear in the sourctc program as
described in the Schema Syntax section.

Sequence Numbers

A sequence number consisting of digits only can be
entered in columns 73 through 80. The sequence
number is optional and has no effect on the source
program.

Comment Lines

Comments can be included in the source listing for
documentation purposes. A comment must be preceded
and followed by a delimiter, which consists of two
special characters. The preceding delimiter is a
slash and an asterisk (/%*); the following delimiter
is an asterisk and a slash (*/).

A comment can begin wherever a space is entered.
All characters between the delimiters are consid-
ered a comment and are not processed by the DDL
compiler.

SCHEMA SYNTAX

The source program for a DDL schema consists of six
major types of entries. Each entry contains at
least one statement terminated by a period. The
statement contains one or more clauses. The
general format of the DDL schema definition is
shown in figure 2-2.

schema identification entry
{area description entry} ...
{record description entry} ...
{data control entry}
Cconstraint entryl ...

LCrelation entryl ...

Figure 2-2. General Format, Schema

The schema identification entry must be the first
entry in the source program. An area description
entry must precede the record description entries
for all records 1inm the area; all area description
entries can precede the first record description
entry. The data control entry must follow the
record description entry. The constraint entry, if
included, must follow the data control eatry and
precede any relation entry. The relation entry, if
included, must be the 1last entry in the source
program.

The function and placement of the major entries in
a schema source program are as follows:

Schema Identification Entry
Assigns a name to the schema.
Area Description Entry

Assigns a name to an area and can also
specify data base procedures to be executed
whenever the area is opened or closed. One
entry must be included for each area in the
data base.

Record Description Entry

Describes the attributes of a record. The
first statement assigns a name to the
record and specifies the area that contains
the record; it can also specify data base
procedures to be executed whenever specific
user functions manipulate the record.
Additional statements (data description
entries) define the characteristics of data
items within the record.

Data Control Entry

Provides information related to the data
base areas described in the schema. The
area control entries supply compression and
decompression procedures, record keys,
record codes, and the collating sequence;
each statement pertains to a specific area.

Constraint Entry

Assigns a name to the constraint and speci-
fies data items used to associate areas in
a constraint.

Relation Entry

Assigns a name to the relation and speci-
fies the data items to be used as join
terms.

These entries and the clauses that can be included
in each entry are described in detail in this
gection of the manual. Refer to the Schema Struc-
turing Conventions subsection, which appears
earlier in this section, for the rules governing
the structure of the schema. Appendix E contains
the the complete summary of all DDL clauses used to
create a schema source program.

60485200 A

J )

J )



6@*\
(@HA

SCHEMA IDENTIFICATION
ENTRY

The first entry in a schema source program is the
schema identification entry. This entry and
following entries up to the end-of-information
indicator constitute the schema description. The
format of the schema identification entry 1is as
follows:

SCHEMA NAME clause.

The schema identification entry 1s required and
consists of one statement that identifies the
schema.

SCHEMA NAME Clause

The SCHEMA NAME clause assigns a name to the
schema. The format of the SCHEMA NAME clause is
shown in figure 2-3.

SCHEMA NAME IS schema-name.

Figure 2-3. SCHEMA NAME Clause Format

The schema name must be unique among all schema
names known to CDCS. The name assigned in this
clause is the name specified in all subschemas that
reference the data base described in the entries
following the SCHEMA NAME clause.

Other Clauses

Only one clause is acceptable in the schema identi-
fication entry. Future software releases will
provide additional clauses that can be included in
this entry.

AREA DESCRIPTION ENTRY

An area description entry is included in the schema
source program for each area (file) 1in the data
base. This entry assigns a name to the area and
can specify a data base procedure to be executed
when the area is opened or closed by an applica-
tions program. The format of the area description
entry is shown in figure 2-4.

AREA NAME clause
CCALL clausel

CACCESS-CONTROL clausel ... .«

Figure 2-4. Area Description Entry Format

At least one area description entry must be included
in the schema. 1If only one entry is specified, it
encompasses the entire data base. Each entry
consists of one statement.

60485200 A

The area description entry must precede the record
description entries for all records in the area
described by the entry. All area description
entries for the schema can be specified before the
record description entries.

AREA NAME Clause

The AREA NAME clause assigns a name to an area in
the schema. This clause is required and must be
the first clause in an area description entry. The
format of the AREA NAME clause is shown in figure
2-5.

AREA NAME IS area-name

Figure 2-5. AREA NAME Clause Format

The area name must be unique among all area names
in the schema. It can contain up to 30 characters;
however, operating system limitations impose the
following restrictions on the area name:

The first seven characters of the name must be
unique.

Only letters (A-Z) and digits (0~9) can be used.

The first character of the name must be an
alphabetic character.

For the area name to be valid in the master direc-
tory, it must not duplicate a reserved word for the
DBMSTRD utility (refer to appendix D).

The area 1s associated with a particular file
organization through a FILE control statement
included in the set of control statements preceding
the schema source program. The information from
the FILE control statement is placed in the schema
directory along with the information in the area
description entry of the source program. Refer to
the FILE Control Statement subsection, which
appears later in this section, for more informatiom.

CALL Clause (Area Description Entry)

The CALL clause in an area description entry causes
a data base procedure to be executed when the area
is opened or closed. The procedure can be invoked
before or after the function is performed or when
an error 1is detected while opening or closing the
area. The FOR phrase gives the option of specify-
ing either the UPDATE or RETRIEVAL usage mode. The
format of the CALL clause is shown in figure 2-6.

The procedure named by data—-base-procedure 1is
executed when any specified functiom is executed on
the area specified in the AREA clause. The data
base procedure name must not exceed seven
characters.

The BEFORE, ERROR, and AFTER options determine when
the data base procedure is invoked.

BEFORE

The procedure is executed immediately
before the area is opened or closed.



CALL data-base-procedure

l BEFORE

AFTER

ON ERROR DURING

UPDATE
OPEN [F°R ||RETRIEVAL 'I
CLOSE

Figure 2-6. CALL Clause

ERROR

The procedure is executed each time CDCS
detects and reports an error during the
opening or closing of the area.

AFTER

The procedure is executed immediately after
the area is opened or closed.

At least one of these options must be specified;
each option can be specified once in the CALL
clause. If two or three options are included in
the clause, the data base procedure is executed at
each designated time.

In the following example, the data base procedure
OPENSLS is executed both before and after the area
is opened for updating purposes.

CALL OPENSLS BEFORE AFTER OPEN FOR UPDATE

The OPEN or CLOSE option specifies the user func-
tion that invokes the data base procedure at the
designated time. Each option can be specified once
in a CALL clause. Separate CALL clauses for each
type of the OPEN function and the CLOSE function
can invoke the same or different data base proce-
dures. If no user function is specified in the
CALL clause, the data base procedure is executed
when any OPEN or CLOSE function is executed for the
area. If OPEN is specified and the FOR option is
not stated, the procedure is invoked when any type
of OPEN function is executed for the area.

If the FOR option is stated, the data base proce-
dure is invoked whenever the specified type of OPEN
function is executed. 1In the FOR phrase, UPDATE
and RETRIEVAL can appear only once.

Multiple data base procedures can be executed at a
designated time. When more than one CALL clause
for either OPEN or CLOSE specifies the same time to
invoke a procedure (before, during, or after the
user function 1s performed), the procedures are
executed in the order the CALL clauses are stated
in the area description entry. In the following
example, the data base procedure EMPOPEN is exe-
cuted, and then the procedure EMPCHK is executed
before the area is opened.

Format (Area Description Entry)

CALL EMPOPEN BEFORE OPEN
CALL EMPCHK BEFORE OPEN

ACCESS-CONTROL Clause

The ACCESS-CONTROL clause in any area description
entry specifies the privacy locks that apply to the
use of an area. The format of the ACCESS-CONTROL
clause is shown in Eigure 2-7.

The optional FOR phrase allows the access control
locks to apply specifically to UPDATE or RETRIEVAL.
If the FOR phrase is omitted, all literals or
procedures apply to any use of the area.

The literals are privacy locks to be matched with
the pertinent privacy key. All literals must be
alphanumeric, and cannot exceed a maximum of 30
characters. The procedures named are privacy lock
procedures, which, when given access to a privacy
key, either return a yes or no result, or do not
return at all.

Multiple privacy locks connected by OR phrases are
considered satisfied if any one is satisfied. The
privacy locks are processed in the order listed
until the outcome of the ACCESS-CONTROL clause is
known. The same literal or data base procedure can
be specified for one or more options included in
this clause.

A separate ACCESS-CONTROL clause can be stated for
each usage mode. However, the same usage mode
cannot be specified in more than one ACCESS-CONTROL
clause. If the ACCESS-CONTROL clause is omitted,
the use of the area being described is unrestricted.

RECORD DESCRIPTION ENTRY

Each DDL record type in the data base must be
described in a record description entry. This
entry assigns a name to the record, designates the
area in which it resides, specifies data base
procedures to be used in conjunction with record
manipulation, and describes the data items within
the record. The format of the record description
entry is shown in figure 2-8.

ACCESS-CONTROL LOCK [FOR ” UPDATE

15 Literal-1
PROCEDURE data-base-procedure=-1

..

RETRIEVAL

OR Literal-2
-—) PROCEDURE data-base-procedure-2

Figure 2-7. ACCESS-CONTROL Clause Format

60485200 A

J )

)

pﬂ‘q\



RECORD NAME clause
WITHIN clause
{CALL clause] . .. .

[data description entry.] . . .

Figure 2-8. Record Description Entry Format

At least omne record description entry must be
included in the schema. The clauses in the record
description entry must be specified in the order
shown in the format. Multiple DDL recosd types can
be specified for an area.

Each record description entry begins with a record
name statement. This can be followed by a series
of statements (data description entries) describing
the individual data items within the record. 1If
the record description entry defines a record type
that contains only control information, no data
description entries follow the record name state-
ment.

The record described in the schema can be consid-
ered a contiguous collection of data in the data
base; however, it is not necessarily equivalent to
a physical record. The record description is
machine independent and its actual placement in the
data base is not defined in the record description
entry.

RECORD NAME Clause

The RECORD NAME clause assigns a name to the
record. It must be the first clause specified in
the record description entry. The format of the
RECORD NAME clause is shown in figure 2-9,

RECORD NAME IS record-name

Figure 2-9. RECORD NAME Clause Format

The record name must be unique among all record
names in the schema. It can be up to 30 characters
in length. The name specified in this clause is
associated with all the data items described in the
same record description entry.

WITHIN Clause

The WITHIN clause specifies the area that contains
the DDL record type. This clause is required in
each record description entry. The format of the
WITHIN clause is shown in figure 2-10.

WITHIN area-name

Figure 2-10. WITHIN Clause Format

60485200 A

The area name must be defined in an area descrip-
tion entry that precedes the record description
entry. The same area name can be specified in more
than one record description eatry.

CALL Clause (Record Description Entry)

The CALL clause in a record description entry
causes a data base procedure to be executed when a
specified user function is performed on the record.
A user function {s a request from an applicatious
program to perform an operation involving the
record. The procedure can be invoked before or
after the function is performed, or when an error
is detected during performance of the function.
The same data base procedure can be specified in
separate CALL clauses. The format of the CALL
clause is shown in figure 2-11.

CALL data-base-procedure

STORE
BEFORE DELETE
ON ERROR DURING MODIFY
AFTER FIND

GET

Figure 2-11. CALL Clause Format
(Record Description Entry)

The BEFORE, ERROR, and AFTER options determine when
the data base procedure is invoked.

BEFORE

For a STORE, MODIFY, or GET function, the
procedure 1is executed 1immediately before
record mapping occurs. For a DELETE or
FIND function, the procedure is executed
immediately before CYBER Record Mamager is
called to process the record.

ERROR

The procedure 1is executed each time CDCS
detects and reports an error during the
performance of the specified function.

AFTER

For a STORE, MODIFY, or GET function, the
procedure 1is executed immediately after
record mapping occurs. For a DELETE or
FIND function, the procedure 1is executed
immediately after CYBER Record Manager is
called to process the record.

At least one of these options must be specified;
each option can be specified once in the CALL
clause. If two or three options are included in
the clause, the data base procedure is executed at
each designated time. The only exception occurs
when the ERROR and AFTER options are specified and
an error causes execution of the data base proce-



dure. In this situation, the data base procedure
specified in the AFTER option is not executed. In
the following example, the data base procedure
VERIFY is executed both before and after the MODIFY
function is performed.

CALL VERIFY BEFORE AFTER MODIFY

The user function specified in the CALL clause
determines the type of record manipulation that
causes the data base procedure to be executed at
the designated time. Five functions can be
specified:

STORE

The procedure is executed when a user
function (WRITE statement) sto-es a record
in the data base.

DELETE

The procedure 1Is executed when a user
function (DELETE statement) deletes a
record from the data base.

MODIFY

The procedure is executed when a user
function (REWRITE statement) modifies a
record in the data base.

FIND

The procedure is executed when a user
function ( START statement) locates a
specific record for subsequent processing
of data base records.

GET

The procedure is executed when a user
function (READ statement) reads a record in
the data base.

Each option can be specified once in a CALL
clause. Separate CALL clauses for individual user
functions can invoke the same or different data
base procedures. If no user function is specified
in the CALL clause, the data base procedure is
executed at the designated time for all five user
functions.

Multiple data base procedures can be executed at a
designated time. When more than one CALL clause
for the same user function specifies the same time
to invoke a procedure (before, during, or after the
vser function is performed), the procedures are
executed in the order the CALL clauses are stated
in the record description entry. In the following
example, the data base procedure DELCHK is exe-
cuted, and then the procedure DELVER is executed
before the DELETE function is performed.

CALL DELCHK BEFORE DELETE
CALL DELVER BEFORE DELETE

DATA DESCRIPTION ENTRY
(RECORD DESCRIPTION ENTRY)
A data description entry defines the characteris-

tics of a data item within the record. An entry is
required for each data item in the record. One or

more clauses are included in each data description
entry. The record description entry includes zero,
one, or more data description entries; unless the
record type countains only control information, at
least one data description entry must be included.
The format of the data description entry is shown
in figure 2-12.

[level-number]  data-name

[PICTURE clause]
[TYPE clause]
[OCCURS clause]
{RESULT clause]
[CHECK clause]

(ENCODING/DECODING clause]

[CALL clause] . . . .

Figure 2-12. Data Description Entry Format

Each data description eatry must begin with a data
name that identifies the data item. The data name
must be unique within the record. The level number
is optional; it is used to indicate the structural
level of the entry within the record description
entry. A level number must always be the following:

An unsigned decimal integer
In the range Ol through 99

Greater than or equal to the level number of
the first data description entry in the record
description entry

1f the level number is omitted, level 01 is assumed
by default.

One or more clauses follow the data name. At least
one of the clauses must be the PICTURE, TYPE, or
OCCURS clause.

PICTURE Clause

The PICTURE clause describes the display coded
storage characteristics of a data item. An elemen-—
tary data item must be described with either the
PICTURE clause or the TYPE clause. If both PICTURE
and TYPE clauses are specified for a data item, the
PICTURE clause is ignored, and a warning diagnostic
is 1issued. The format of the PICTURE clause is
shown in figure 2-13.

PICTURE } " e .o
{_r ‘ IS “picture-specification

Figure 2-13. PICTURE Clause Format

60485200 A

J )

J



The picture specification determines the size and
class of a data item. The class can be described
as either character or numeric. A character data
item is described with the characters A, X, and 9
in the picture specification. The characters 9, V,
« (decimal point), P, and T are used to describe a
numeric data item. The picture specification can
contain up to 30 characters. The characters com-
prising the picture specification must be enclosed
in quotation marks. PIC is the legal abbreviation
for PICTURE.

The size of the data item is indicated by the num-
ber of A, X, 9, . (decimal point), and T characters
in the picture specification. The characters V and
P are not counted in determining the size of the
data item. Consecutive identical characters in the
plcture specification can be specified by following
the character with an unsigned integer enclosed in
parentheses. Each of the following picture speci-
fications describes a data item with eight char-
acter positions:

99999999 or 9(8)
XXXXXXXX or X(8)
9999AAAA or 9(4)A(4)

A picture specification can contain a maximum of 30
characters including parentheses, but the actual
data item can be larger than 30 characters. For
example, a picture specification containing the
character A repeated 75 times is too long, but A(75)
is a valid description for a data item with 75
alphabetic characters. Parentheses can be used to
indicate a repetition factor only with the char-
acters A, X, P, and 9. Numeric data items can
contain a maximm of 18 significant digits;
additional leading or trailing zeros indicated by
the character P can be specified for up to 30
characters.

Character Data ltem

The picture specification to describe a character
data item can contain the characters A, X, and 9.
The size of the data item cannot exceed 32767
characters.

The function of each character in the picture
gpecification for a character data item is as
follows:

A Each A in the picture specification repre-
sents a character position that can contain
either a letter of the alphabet or a space
(blank).

X Each X in the picture specification repre-
sents a character position that can contain
any character in the DDL display code
character set. (Refer to appendix A.)

9 Each 9 in the picture specification repre-
sents a character position that can contain
any decimal digit.

Each A, X, or 9 in the picture specification is
counted in determining the size of the data item.
Figure 2-14 illustrates some character data item
picture specifications and the representation of
actual data values.

60485200 A

Picture- Display Code
Specification Data Value Stored
“AAAAA”

COSTS clo]s]T]s]

or uA(S)n

uAAAAn

or “A(4)” WXyz

XXXXXXXX"  \non vu (ATE[CILTR

or ux(s)n

“XXXXXXXX"

or “X(8)" 1234567 [1]2[3] J4]s]e[7]
“AAAA999"

or “A(ayoz)>  ABCD123  [AIB[CID[I2[3]

Figure 2-14. PICTURE Clause Character
Data Items

Numeric Data Item

The picture specification for a numeric data item
describes an arithmetic data item in display code
format. A combination of the characters 9, V, .
(decimal point), P, and T describes a numeric data
item. The picture specification consists of one or
two parts: a whole part and or a fractional part.
Digit positions in each part must be represented by
the characters 9 and T. A numeric picture specifi-
cation is in fixed-point decimal format. A maximum
of 18 significant digits can be described.

The function of each character in the picture
specification for a numeric data item is as follows:

9 Each 9 in the picture specification repre-
sents a digit position that can contain a
number. The 9 1is counted in determining
the size of the data item.

V  The character V is used in the picture
specification to indicate the position of
an assumed decimal point. A V as the
rightmost character in the picture specifi-
cation 1is redundant. The character V
cannot appear more than once in the picture
specification. Since the assumed decimal
point does not occupy a character position,
the V is not counted in the size of the
data item.

« A decimal point (.) in the picture specifi-
cation indicates the position of am actual
decimal point. The decimal point is
counted in the size of the data item.

P The character P in the picture specifica-
tion indicates an assumed decimal point
that is outside the number in the data
item. One P is specified for each implied
position between the rightmost character
and the assumed decimal point or between
the leftmost character and the assumed
decimal point. Since P indicates an
assumed decimal point, a V in the picture
specification is redundant. The character

2-13



P is not counted in the number of signifi-
cant digits (maximum of 18); however, it is
counted in determining the total number of
characters in the data item (maximum of 30).

T The character T in the picture specifica-
tion indicates a digit position that
contains a plus sign or minus sign combined
with the digit. The T can be only the
rightmost character in the picture specifi-
cation. The plus sign (12-row punch) or
minus sign (ll-row punch) is combined with
the digit punch. The representation of the
sign in the rightmost digit is shown in
figure 2-15.

Digit 01 2 3 &5 6 7 8 9
Plus
Representat1onT <ABCDETFGHI
Minus
RepresentationT vJ KL MNOP QR

TThe NOS system card reader does not support
the character translation shown for +0 or -0.

Figure 2-15. Sign Representation in
Rightmost Digit

If the picture specification does not contain a V,
a decimal point, or a P, the decimal point is
assumed at the immediate right and the data item is
an integer. The data item is assumed to be a
positive number when the picture specification does
not contain the character T. Figure 2-16 illus-
trates some numeric picture specifications and the
representation of actual data values.

Picture- Display Code
Specification  Data Vulue Stored
“999” 123 [ 1]2]3]
“99V999” 12345 [112[3[4]5]

“99V99T”  +12345 B[4]E]

; 0 0 o[

“PPPO(4)T"  -00012345 , 0 0 0 [1]2]3]4IN]

B

“PPP99999”  .00012345

Figure 2-16. PICTURE Clause Numeric
Data Items

TYPE Clause

The TYPE clause describes the characteristics of a
data item that is stored in the computer’s internal
binary format. An elementary item must be described
with either the TYPE clause or the PICTURE clause.
If both TYPE and PICTURE clauses are specified for
a data item, the TYPE clause takes precedence and a
warning diagnostic 1is issued. The format of the
TYPE clause is shown in figure 2-17.

DEC
EIXED

FLOAT

REAL >

{CHARACTER} . 3]
_—CH AR [integer-

DECIMAL
DEC

COMPLEX )

ECIMAL] )

[integer-1 [integer-2]]

TYPE IS

Figure 2-17. TYPE Clause Format

A data item described with the TYPE clause and a
data item described with the PICTURE clause differ
in internal representation of numeric data items.
A data item described with the TYPE clause is
stored in binary format; a data item described with
the PICTURE format is stored in dlsplay code
format. The TYPE clause should be used for data
items that are primarily used for computation; the
PICTURE clause should be used for data items that
are primarily used for display. Character data
items can also be described with the TYPE clause.

The DECIMAL, FIXED or FLOAT, REAL, and COMPLEX
options can be used to describe a numeric data
item. A character data item is described with the
CHARACTER option. DEC is the legal abbreviation
for DECIMAL; CHAR is the legal abbreviation for
CHARACTER.

At least one of the reserved words DECIMAL (or
DEC), FIXED, FLOAT, REAL, CHARACTER (or CHAR), or
COMPLEX must be specified as a type option.

Numeric Data Item

The TYPE clause describes a numeric data item in
terms of base, scale, mode, and precision

Base

The base of a data item is decimal; if the
DECIMAL option is not specified, it is
assumed by default.

Scale

Scale is described by either the FIXED or
FLOAT option; if neither is specified,
FIXED is assumed by default.

Mode

The mode of a data item is real; if the
REAL option iIs not specified, it is assumed
by default.

Precision

Precision is described by specifying one or
two numbers; the first number (integer-1)
indicates the number of significant digits
and the second number (integer-2) indicates
the position of an assumed decimal point.

60485200 A

J D

)



A floating point data item has a mantissa and an
exponent. The precision of the data item in the
mantissa 1s specified by integer-1 (the number of
decimal digits). Integer-l must be in the range 1
through 29. 1Integer-2 must not be included when
the FLOAT option is specified.

A fixed point data item is always a binary integer;
integer-1 is in the range 1 through 18. A single
precision data item is stored in one computer word;
double precision data items require two words.
Integer-1 specifies the maximum number of signifi-
cant digits for the data item; it must be in the
range 1 through 18.

A complex data item has a real part and an imagi-
nary part. It always occupies two computer words.
Precision cannot be specified for a complex data
item.

The position of an assumed decimal point in a fixed
point data item 18 specified by integer-2. The
position is specified as follows:

A negative integer-2 locates the assumed deci-
mal point the specified number of positions to
the right of the rightmost actual digit.

A positive integer-2 that is less than or equal
to integer-1 locates the assumed decimal point
the specified number of positions to the left
of the rightmost actual digit.

A positive integer-2 that 1is greater than
integer-1 indicates that the data item is a
fraction, and the assumed decimal point {is
located outside the actual number. The decimal
point is located the specified number of posi-
tions to the left of the rightmost actual digit.

If integer-2 is not specified, it is assumed to
be zero and the fixed point data item is an
integer.

Integer-l1 and integer-2 are optional. If no
integer is specified, integer-l1 is assumed to be l4
and integer-2 (for a fixed point data item only) is
agssumed to be zero.

A schema description that includes the TYPE clause
with the FIXED option specified and with integer-l
designating the desired precision is equivalent to
a subschema description that specifies COMPUTA-
TIONAL-1. The TYPE clause with the FLOAT option
specified and with integer-1 in the ramge 1 through
14 is equivalent to a subschema COMPUTATIONAL-2
description.

Figure 2-18 illustrates some TYPE clauses for
numeric data items and the representation of actual
data values.

Character Data Item

The TYPE clause can be used to describe a character
data item. The CHARACTER option is specified with
integer-3 designating the number of characters in
the data item. If integer-3 is not specified, it
is assumed to be 1. A maximwm of 32767 characters
can be specified for a character data item.

Figure 2-19 illustrates some TYPE clauses for
character data items and the representation of
actual data values.

TYPE External

Clause Representation
DECIMAL 3 123
FLOAT 14
FLOAT REAL 4.096E3
FIXED 5,2 1234
FLOAT 15 1
COMPLEX (1.1,3.2)

Decimal Internal

Value Representation
123 {0000 [ 0000000000000173 |
4096 [ 1734 ] 4006000000000000 |
123.4 {2000 | 6000000000030064 |

1720 | 4000000000000000
1654 | 0000000000000000

1720 | 4314631463146315
1721 | 6314631463146315

(1.1,3.2)

Figure 2-18. TYPE Clause Numeric Data Items

_CT& ‘ Regﬁ':;::;g{ion Internal Representation
CHARACTER 2 AA |A]A] |
CHARACTER 10 ABCDEFGHIJ REEREBEEENIN
CHARACTER & COSTS [clo]s[T]s] ]

Figure 2-19. TYPE Clause Character Data Items

60485200 A

2-15



OCCURS Clause

The OCCURS clause is used to describe a data item
that is repeated a number of times within a
record. A repeating elementary item is a vector;
all occurrences of the elementary item are iden-
tical in every respect except actual value. A
collection of data items can be specified as a
repeating group; the entire collection is repeated
a number of times. The format of the OCCURS clause
is shown in figure 2-20.

OCCURS {integer } TIMES
data-name

Figure 2-20. OCCURS Clause Format

The data item described with the OCCURS clause is
elther a fixed occurrence data item or a variable
occurrence data item. The integer option specifies
the exact number of times the data item is repeated
in each record occurrence (a fixed occurrence data
item). The specified integer must be greater than
zero. The data name option references a data item
whose current value represents the number of occur-
rences (a variable occurrence data item). The data
item referenced by the data name must conform to
the following rules:

It must be an elementary item within the same
record as the variable occurrence data item.

It must be described as an integer.

The CHECK IS VALUE clause must be specified to
denote the range of occurrences; the lower
limit of the range must be greater than or
equal to zero.

It cannot be within a variable occurrence data
item.

It cannot be described with a VIRTUAL RESULT
clause.

The data name specified in the OCCURS clause cannot
be subscripted. A varilable occurrence data item
should be the last item in the record. If it is a
repeating group item, only subordinate entries can
follow the entry containing the OCCURS data name
TIMES clause.

If a record description entry contains a variable
occurrence data item, certain restrictions are
placed on the area under the following conditions:

The area has more than one record description
entry.

The FILE control statement for the area speci-

fies RT=T (CYBER Record Manager record type is
trailer count).

2-16

When these two conditions exist, all record
description entries for the area must contain a
variable occurrence data item at the same location
in the record and must specify the same waximum
size. The data item that specifies the number of
occurrences must be in the same location in each
record description entry; the data description
entry for these data items must also specify the
same size and descriptioun.

The OCCURS clause cannot be included in a data
description entry that also includes the RESULT
clause. Figure 2-21 illustrates some examples of
the OCCURS clause.

Two types of repeating data items can be specified:
vectors and tepeating groups. A repeating data
item can be subordinate to another repeating data
item with the following restrictions:

Repeating data items can be nested up to three
levels.

A variable occurrence data item cannot be
subordinate to another repeating data item.

Vectors

A vector is an elementary data item that is ve-
peated a number of times. It can be a fixed or
variable occurrence data item. A data item that is
a vector must be described with the OCCURS clause
and either the PICTURE or TYPE clause. A vector
can be subordinate to a repeating group.

Repeating Groups

A repeating group is a collection of data items
that is repeated a number of times. The collection
can comsist of elementary items, vectors, and other
repeating groups. Subordinate entries describe the
data items in the repeating group. These entries
must have a level number that 1is greater than the
repeating group entry level number. When a repeat-
ing group contains other repeating groups, entries
at the same level must have the same level number.

NOTE

Refer to appendix F for recommendations on
the use of repeating groups.

RESULT Clause

The RESULT clause specifies that the value of the
data item is established by the execution of a data
base procedure. The value of the data item can be
changed only by execution of the data base proce-
dure. The time the procedure is invoked depends
upon whether the ACTUAL or VIRTUAL option is speci-
fied. The format of the RESULT clause is shown in
figure 2-22.

60485200 A

J )

,‘sa\
‘EMS



Example 1

01 PAYMENTS TYPE DECIMAL FIXED 6,2

OCCURS 12 TIMES.

Example 2

01 MONTHLY-ORDERS
03 NUM-ORDERS
03 TOTAL-AMT

items that represent one occurrence of the repeating group.
Example 3
01 NUM-ITEMS

03 UNIT-PRICE
03 EXT-PRICE

The data item PAYMENTS is a vector; it is an elementary data item that is repeated 12 times in each record.

OCCURS 12 TIMES.
TYPE DECIMAL FIXED 2.
TYPE DECIMAL FIXED 6,2.

The data item MONTHLY-ORDERS is a repeating group that occurs 12 times in each record. It consists of two subordinate data

PICTURE "99°
CHECK VALUE 1 THRU 15.
OCCURS NUM-ITEMS TIMES.

01 ITEM
03 QUANTITY PICTURE "9(4)".
03 DESC-A

PICTURE “X(16)".
TYPE DECIMAL FIXED 5,2.
TYPE DECIMAL FIXED 6,2.

The data item ITEM is a repeating group that occurs a variable number of times in each record. The data item NUM-ITEMS contains
the number of occurrences for the record; the number must be in the range | through 15.

Example 4
01 QUARTER-TOTS OCCURS 4 TIMES.
03 MNTH TYPE DECIMAL FIXED 5,2
OCCURS 3 TIMES.
03 CuM-TOT

TYPE DECIMAL FIXED 6,2.

The repeating group QUARTER-TOTS contains a vector (MNTH) and a nonrepeating elementary data item (CUM-TOT). Both
subordinate data items arc at the same level and must have the same level number.

Figure 2-21. OCCURS Clause Examples

IS {ACTUAL

VIRTUAL} RESULT OF data-base-procedure

Figure 2-22. RESULT Clause Format

A data item can be described with either the ACTUAL
RESULT or the VIRTUAL RESULT clause. The data item
described with the RESULT clause cannot be a
repeating data item (vector or repeating group).
It cannot be subordinate to a repeating group data
item.

The ACTUAL option specifies that the data item is
physically included in the record, and that a value
is always stored in the record. When a new record
is stored in the data base, the data base procedure
is executed to establish a value for the data
item. Subsequently, the specified data base proce-
dure is executed to update the data item each time
the record is modified. If the ACTUAL option is
specified in the RESULT clause, the ENCODING clause
cannot be included in the same data description
entry.

60485200 A

The VIRTUAL option specifies that the value of the
data item 1is established when the data item is
requested by an applications program. The data
item is not physically stored in the record; there-
fore, the size of the data item should not be
included when the maximum record length (MRL) is
calculated for the area. The data item is stored
in the CDCS buffer when a user requests the record,
and the buffer size must be large enough to include
the data item. The specified data base procedure
is invoked when a wuser GET function (READ state-
ment) includes the data item. When the VIRTUAL
option is used to describe a data item, the follow-
ing restrictions apply:

Neither the ENCODING clause nor the DECODING
clause can be used to describe the data item.

A CALL clause cannot be included in the data
description entry.

The data item cannot be referenced in an OCCURS
data name TIMES clause.

Figure 2-23 {llustrates the processing of a data
item described with the VIRTUAL RESULT clause.



Virtual
FIELDB
FIELDA FIELDC
ABC HIJK « . . Data Base
GET Function
Y \
Data
Base CDCS
Procedure
FIELDA FIELDB FIELDC
ABC | DEFG | HUUK User Work
Area

Figure 2-23. Virtual Data Item Processing

CHECK Clause

The CHECK clause imposes certain restrictions on
the value of the data item. One or more of the
following functions can be specified for the data
item:

Inhibiting data conversion

Checking validity of the data item whenever a
value is changed or added

Restricting the value of the data item

If the value of the data item does not satisfy the
condition of the CHECK clause, an error is reported
to the user. The format of the CHECK clause is
shown in figure 2-24.

Each of the three options in the CHECK clause can
be specified once. Multiple options can appear imn

any order. PIC is the 1legal abbreviation for
PICTURE., The data 1item described with the CHECK
clause must also be described with either the
PICTURE clause or the TYPE clause; however, the
data item cannot be described as TYPE COMPLEX.

The PICTURE option specifies that data conversion
between the schema and the subschema is not allowed
for the data item. The characteristics of the data
item in the subschema must match the characteris-
tics of the data item in the schema.

The data base procedure option causes the specified
procedure to be executed when a value for the data
item is added or changed. The specified procedure
performs validity checking on the value. T1f both
the data base procedure and VALUE options are
specified, the VALUE check is performed first; the
procedure is executed only if the value of the data
item is valid.

PICTURE
PIC

CHECK IS || jata-base-procedure

VALUE [NOT] literal-1 LTHRU Literal-2]1 Cliteral-3 L[THRU literal-4]] ...

Figure 2-24. CHECK Clause Format

2-18

60485200 A

J) )

)



The VALUE option places a restriction on the actual
value of the data item. The actual value is
compared with the values specified in the VALUE
option. 1If the actual value satisfies the compari-
son and the NOT option is omitted, the value is
valid. When VALUE NOT is specified, an actual
value that satisfies the comparison is not valid.
Values for the comparison are specified as individ-
ual values or as ranges of values. An individual
value is specified by literal-l; a range of values
is specified by literal-1 THRU literal-2. Literals
must be specified in ascending order according to
the collating sequence specified for the area.
(Refer to the SEQUENCE clause in the data control
entry.)

Validity checking is performed when a user function
includes the data item. The specific function that
causes the checking to be performed is determined
as follows:

If the RESULT clause is not used to describe
the data item, validity checking occurs when a
STORE or MODIFY function (WRITE or REWRITE
statement) adds or changes the value of the
data item.

If the VIRTUAL RESULT clause is used to
describe the data item, validity checking
occurs when a GET function (READ statement)
includes the data item.

If the ACTUAL RESULT clause 1s used to describe
the data item, validity checking occurs when a
new record is added, or when the data item is
updated.

When the data item requires other procedures (such
as a CDCS conversion routine or a data base proce-
dure specified in a RESULT clause) the procedures
are executed before validity checking occurs.

Literals specified in the VALUE option must corre-
spond to the type or picture specification for the
data item. Nonnumeric literals (enclosed in quota-
tion marks) must be specified when the data item is
described with the TYPE CHARACTER clause or with a
PICTURE clause containing the character A or X. If
the data item is described with a TYPE FIXED or
TYPE FLOAT clause or with a PICTURE clause that
does not contain any A or X characters, a numeric
literal must be specified. Additional rules that
apply to 1literals in the VALUE option are as
follows:

The last character in a numeric literal must
not be a decimal point.

The actual sign, not a sign overpunch, must be
specified in the literal.

If the data item is not signed (the character T
is not specified in the picture specification)
and the literal is signed, the sign is ignored
and the literal is assumed to be positive.

If the fractional part of a literal is greater
than the data item specification, the 1literal
is rounded off to the fractiomal length of the
data item. For a data ijtem described as
PICTURE "99.999" or TYPE FIXED 5,3, the literal
20.5555 is rounded off to 20.556.

60485200 A

If the literal contains a fractional part and
the data item is an integer, the literal is
rounded off to an integer (1234.55 becomes
1235).

It is recommended that the literal conform to the
data item specification so that the last three
rules need not be invoked. Figure 2-25 illustrates
valid literals for some typical data item specifi-
cations. The values shown for the CHECK VALUE
clause are literals that could be specified for the
PICTURE and TYPE specifications given.

ENCODING/DECODING Clause

The ENCODING/DECODING clause is used when the data
item requires nonstandard conversion. The conver-
sion is performed by a data base procedure when the
data item is stored, retrieved, or updated. The
format of the ENCODING/DECODING clause is shown in
figure 2-26.

Both the ENCODING clause and the DECODING clause
can be specified for the same data item. The data
item described with the ENCODING/DECODING clause
must be an elementary data item that is also de-
scribed with either the TYPE clause or the PICTURE
clause.

The ENCODING clause invokes the conversion proce-
dure when a STORE function (WRITE statement) adds a
new value for the data item to the data base, or
when a MODIFY function (REWRITE statement) alters
an existing value. The value is converted from the
subschema representation to the schema representa-
tion. A data item described with the ENCODING
clause cannot be described with either the ACTUAL
RESULT or the VIRTUAL RESULT clause.

The DECODING clause invokes the conversion proce-
dure when a GET function (READ statement) requests
the data item from the data base. The value is
converted from the schema representation to the
subschema representation. A data item described
with the DECODING clause cannot be described with
the VIRTUAL RESULT clause.

The ALWAYS option can be included to specify that
the data base procedure is to be executed even if
the characteristics of the data item do not diffec
between the schema and the subschema. T1f ALWAYS is
omitted from the clause, coanversion occurs only
when record mapping is required for the data item.

The specified data base procedure is executed
instead of a standard conversion procedure. The
representation of the value is changed, not the
value itself.

CALL Clause (Data Description Entry)

The CALL clause in a data description entry causes
a data base procedure to be executed when a speci-
fied user function is performed on the data item.
A user function is a request from an application
program to perform an operation that involves the
data item. This clause can be specified only for
an elementary data item. The procedure can be
invoked before or after the function is performed
or when an error is detected during the performance
of the function. The same procedure can be speci-
fied in separate CALL clauses. The format of the
CALL clause is shown in figure 2-27.

2-19



PICTURE or TYPE Clause

Numeric_picture-specifications
PICTURE "9999v988"

PICTURE "999.90T"

PICTURE "PPP9999"

PICTURE "998PPP"

Nonnumeric picture-specifications
PICTURE "X(59(5)"

PICTURE "A{10)"

Floating point numeric type
TYPE FLOAT

Fixed point numeric types
TYPE FIXED 5,7

TYPE FIXED 5,-2
TYPE FIXED 14
TYPE FIXED 14,2

TYPE FIXED 18
TYPE FIXED 184

Nonnumeric type
TYPE CHARACTER &

Examples of Literals for
CHECK VALUE Clause

1234
+1234.12
12.1235 (rounded off to 12.124)

123.34
-123
+123.555 (actua! sign must be used)

.0001234} {decima! point and leading zeros must

.0001 be specified)
:(z:)guo {trailing zeros must be specified with
0010000 no decimal point)

"ABCDE12345"} {nonnumeric literals must be
"A*X-$11111" { enclosed in quotation marks)
“MAA”

"ABCD EFGH"

281

{decimal point and leading zeros

y ! must be specified)

0010
1234500} {trailing zeros must be specified with

.0012345}

500 no decimal point)

55555.55 (rounded off to 65556)
-50000
eny integer not greater than 14 digits in fength

any numeric litera! not greater than 14 digits in length
sny integer not greater than 18 digits in fength
sny numeric literal not greater than 18 digits in length

“AAAAA"  (ronnumeric literals must bz enclosed
“A-123" in quotation marks)

Figure 2-25. Examples of Valid Literals in the CHECK VALUE Clause

ENCODING

FOR { DECODING

} [ALWAYS] CALL data-base-procedure

Figure 2-26. ENCODING/DECODING
Clause Format

CALL data-base-procedure

BEFORE STORE
ON ERROR DURING GET
AFTER MODIFY

The BEFORE, ERROR, and AFTER optious determine when

the data base procedure is invoked.

BEFORE

The progedure is invoked immediately before

record mapping occurs.

ERROR

fFigure 2-27. CALL Clause Format
(Data Description Entry)

2-20

The procedure 1is executed each time CDCS
detects and reports an error during the
performance of the specified function.

AFTER

The procedure is executed immediately after
record mapping occurs.

60485200 A

J )

J )



At least ome of these options must be specified;
each option can be specified once in the CALL
clause. If two or three options are included in
the clause, the data base procedure is executed at
each designated time. The only exception occurs
when the ERROR and AFTER options are specified and
an error causes execution of the data base proce-
dure. In this situation, the data base procedure
specified in the AFTER option is not executed. In
the following example, the data base procedure
SLEDIT is executed before the STORE function is
performed, and whenever CDCS detects an error
during the performance of the STORE function.

CALL SLEDIT BEFORE ERROR STORE

The wuser function specified in the CALL clause
determines the type of data manipulation that
causes the data base procedure to be executed at
the designated time. Three functions can be
specified:

STORE

The procedure 1is executed when a user
function (WRITE statement) stores a new
value for the data item.

GET

The procedure is executed when a user
function (READ statement) places the data
item in the user work area.

MODIFY

The procedure 1is executed when a user
function (REWRITE statement) causes the
value of the data item to be changed.

Each option can be specified once in a CALL clause.
Separate CALL clauses for individual user functions
can invoke the same or different data base proce-
dures. If no user function is specified in the
CALL clause, the data base procedure is executed at
the designated time for each of the three user
functions.

Multiple data base procedures can be executed at a
designated time. When more than one CALL clause
for the same user function specifies the same time
to invoke a procedure (before, during, or after the
user function is performed), the procedures are
executed in the order the CALL clauses are stated
in the data description entry. 1In the following
example, the data base procedure GETCHK is exe-
cuted, and then the procedure GETVER is executed
before the GET function is performed.

CALL GETCHK BEFORE GET
CALL GETVER BEFORE GET

DATA CONTROL ENTRY

Certain attributes of the schema areas are speci-
fied in the data control entry. The data control
entry follows the last record description entry in
the schema. The format of the data control entry
is shown in figure 2-28.

60485200 A

DATA CONTROL.

{area control entry.} ...

Figure 2-28. Data Control Entry Format

The data control entry supplements information in
FILE control statements for the areas in the
schema. Information provided in a FILE control
statement does not require corresponding informa-
tion in the area control entry in the data control
entry. For more information, refer to the FILE
Control Statement subsection, which appears later
in this section.

AREA CONTROL ENTRY (DATA CONTROL ENTRY)

The area control entry supplies special information
related to an area of the schema. The following
information can be specified in the entrcy:

The wuse of compression and decompression
procedures

The data items representing the primary and
alternate keys

The collating sequence

The means for distinguishing among multiple DDL
record types within the area

An area control entry with a KEY clause is required
for each area. The format of the area control
entry is shown in figure 2-29.

AREA NAME clause

CCOMPRESSION/DECOMPRESSON clause]

{KEY clausel} ...
CSEQUENCE clausel

CRECORD CODE clausel .

Figure 2-29. Area Control Entry Format

AREA NAME Clause

The AREA NAME clause specifies the area for which
the special information is being supplied. This
clause must be the first clause in an area control
entry. The format of the AREA NAME clause is shown
in figure 2-30.

AREA NAME IS area-name

Figure 2-30. AREA NAME Clause Format

2-21



The area name specified in this clause must refer-
ence an area previously established in the schema
by an area description entry. Subsequent clauses
in the area control entry apply to the area name
specified in the AREA NAME clause.

COMPRESSION/DECOMPRESSION Clause

The COMPRESSION/DECOMPRESSION clause provides for
the reduction of record length and for the restora-
tion of records to the original state. When the
clause is omitted, no compression or decompression
of records 1s performed. However, if either
COMPRESSION or DECOMPRESSION is specified, the
other must be specified in the same clause or in
the clause immediately following. COMPRESSION and
DECOMPRESSION can be specified only once in an area
control entry. The format of the clause is shown
in figure 2-31,

When COMPRESSION or DECOMPRESSION is specified,
either SYSTEM or PROCEDURE must be specified. The
SYSTEM option refers to a procedure supplied by
CYBER RECORD Manager. The PROCEDURE option des-
ignates a data base procedure to perform the
compression or decompression of records. When the
SYSTEM option is used, it must be designated for
both compression and decompression operations for
the particular area, Similarly, if the PROCEDURE
option is used, it must be designated for both
compression and decompression operations for the
area. However, either the same or different data
base procedures can be designated. The procedure
name can have a maximum of seven characters and
must conform to all the rules governing procedure
names as defined in this manual. When different
procedures are specified, two clauses must be
entered. The use of this option is shown in figure
2-32.

KEY Clause

Format 1 of the KEY clause, in figure 2-33, speci-
fies the data items that are the primary and alter-
nate keys for a record. A key clause specifying
the primary key is required for each area. Key
clauses specifying alternate keys are optional.
Format 2, also shown in figure 2-33, can be used to
specify the data items that are to be concatenated
to produce the primary or alternate record key.

The data name specified in the KEY clause (format
1) designates a data item that is a record key.
The data name must be qualified if it appears in
more than one record type in the schema. The data
item cannot be described as TYPE COMPLEX. Sub-
scripting the data name is not allowed; if data
name is a member of a repeating data item, differ-
ent rules apply depending on whether a primary or
alternate key 1s being defined. Refer to the
following subsections about primary and alternate
keys. The specified data name can be nested only
one level in a repeating data {item. If an area

Example 1

FOR COMPRESSION USE PROCEDURE CIOl
FOR DECOMPRESSION USE PROCEDURE DCIO1

Example 2
FOR COMPRESSION DECOMPRESSION USE SYSTEM

Figure 2-32. Examples of the
COMPRESSION/DECOMPRESSION Clause

contains multiple record ‘types, only data items
from the first record type can be specified as keys
for the area.

The data name refers to a data item that contains
the record key. The data item must be a data item
described in the area named in the preceding AREA
NAME clause {primary or alternate key).

The maximum length allowed for a data item desig-
nated as a primary key depends on the file organi-
zation. For indexed sequential and direct access
files, a primary key cannot exceed 240 characters.
For actual key files, a primary key cannot exceed 8
characters. The maximum length allowed for a data
item designated as an alternate key is the same for
all the previously mentioned file organizations; an
alternate key cannot exceed 240 characters.

FILE control statement parameters related to the
key must be accurate descriptions of the data item;
any parameter that does not agree with the data
item description is overwritten with the data item
description value, and a diagnostic is 1issued.
Refer to the FILE Control Statement subsection
which appears later in this section.

Primary Key

The KEY IS data name clause designates the primary
key for a record; the primary key must be specified
before any alternate keys are specified. The
specified data name must refer to a data item in a
record within the area named in the preceding AREA
NAME clause. If the data name is a member of a
repeating data item, the first occurrence of the
data item is referenced as the key. A primary key
for an area with actual key file organization must
be described as TYPE FIXED with a range of |
through 8. For example, a key with a length of
five digits is described as TYPE FIXED 5.

The USING option can be used only in the primary
key specification for an area with direct access
file organization. This option specifies a data
base procedure which performs a hashing operationm,
using the primary key, to derive the storage
address of a record. The data base procedure name
cannot exceed seven characters in length and must
conform to all the rules governing procedure names
as defined in this manual.

FOR l DECOMPRESSTON

COMPRESS ION “ use {

SYSTEM
PROCEDURE data-base-procedure

Figure 2-31. COMPRESSION/DECOMPRESSION Clause Format

2-22

60485200 B

J )

J )



Format 1

Format 2

INDEXED
DUPLICATES ARE | FIRST ALLOWED
- RoT—

KEY IS [ALTERNATE] data-name LUSING data-base-procedurel | DUPLICATES ARE

KEY IDENTIFIER IS [ALTERNATE] key-name < data-name-1 [data-name-2] eesd ]

(INDEXED
FIRST | ALLOWED
NOT

Figure 2-33,

Alternate Key

The KEY IS ALTERNATE data name clause designates an
alternate key for a record; designation of any
alternate keys must follow designation of the pri-
mary key. Multiple alternate keys can be specified
by including a KEY clause for each alternate key.
The data name must refer to a data item in a record
within the area specified in the preceding AREA
NAME clause. If the data name is a member of a
repeating data item, all occurrences of the data
item are referenced as a key.

NOTE

Refer to appendix F for recommendations on
the use of alternate keys on repeating
groups.

The DUPLICATES option can be specified for an
alternate key. This option can be specified as
follows:

DUPLICATES ARE INDEXED or
DUPLICATES ARE ALLOWED

Duplicate alternate keys are allowed and
are stored in the index file in order
according to the primary key to which the
alternate key corresponds.
DUPLICATES ARE FIRST
Duplicate alternate keys are allowed and
are stored in the index file in the order
of occurrence (first in, first out).
DUPLICATES ARE NOT ALLOWED
Duplicate alternate keys are not allowed.

If the DUPLICATES option is not specified for an
alternate key, duplicate keys are not allowed.

Concatenated Key

The KEY IDENTIFIER clause shown in format 2 (figure
2-33) designates a concatenated key for a record.
The concatenated key can be a primary or an
alternate key. A concatenated key cannot be used
for actual key files.

The key name is a user-defined name used to iden—
tify the concatenated key. It represents a key in

60485200 D

KEY Clause Format

the specified area, whose size is equal to the sum
of the sizes of the data items specified in the
list of data names and whose beginning position is
the beginning position of the first data item
specified. Key name must conform to the rules
governing data names defined in the User-Defined
Names subsection which appears earlier in this
section. Subscripting and qualification of the key
name are not allowed. The specified key name must
be unique among all key names and data names de-
fined in the schema.

The data names specified in the KEY clause desig-
nate up to 64 contiguous elementary data items; the
items cannot be repeating data items. All data
names must be in the same record type in the area
and must be specified in the same order in which
they are defined in the record. A data name can be
qualified by including the record name in which it
appears. The data names specified in the list
cannot be data items that are separated by padding
caused by word-aligned values. A less than symbol
(<) and a greater than symbol (>) must enclose the
list of data names.

For file creation, the concatenated key is treated
as a symbolic key for collating purposes. A sym—
bolic key consists of 1 to 240 6-bit alphanumeric
characters.

The ALTERNATE option designates an alternate
concatenated key. Multiple alternate keys can be
specified by including a KEY clause for each
alternate key.

All keys in an area must be unique with respect to
both size and position. For example, if two keys
have the same starting position, they cannot have
equal sizes.

SEQUENCE Clause

The SEQUENCE clause specifies the collating se-
quence for the data in the area. The format of the
SEQUENCE clause is shown in figure 2-34.

ASCII
SEQUENCE IS ¢ COBOL
DISPLAY

Figure 2-34. SEQUENCE Clause Format

2-23



The collating sequence for the area is specified as
ASCII, COBOL, or DISPLAY. (Refer to appendix I for
a listing of these collating sequences.) The
DISPLAY option must be specified when the area is a
Query Update catalog file. 1If the SEQUENCE clause
is not specified, the COBOL collating sequence is
assumed by default.

NOTE

Refer to appendix F for recommendations on
the use of collating sequence.

RECORD CODE Clause

The RECORD CODE clause provides tha means to
distinguish between DDL record types when the area
contains more than one record type. The record
type can be determined by the value of a data item
in the record, or by the execution of a data base
procedure. This clause must be specified if the
area has more than one record type. The format of
the RECORD CODE clause is shown in the figure 2-35.

The BY data name option specifies the data item
that contains the record code. The specified data
name mnust refer to an elementary data item; data
name cannot be subscripted, and it must appear in
at least one record type in the area. 1If the data
name appears in more than one record type, it must
be qualified to provide a unique identifier. The
data item containing the record code must be in the
same location in each record type and must be of
the same length and type (display fixed point,
display numeric, etc.). The data name 1in each
record type need not be the same.

The value that determines the record type must be
specified for each record type in the area. The
VALUE phrase is specified for each record type in
the area (record-name-l, record-name-2, etc.); the
actual value that identifies the record type is
specified as literal-l, 1literal-2, and so forth.
Each literal must have a unique value within the
area and must be able to be converted to the type
or picture specification of the data item. If the
data item is described with the CHECK VALUE clause,
the RECORD CODE literal must be the same as the
CHECK VALUE literal; only ome literal can be speci-
fied in the CHECK VALUE clause in each record. The
literal in the RECORD CODE clause cannot exceed 240
characters.

The PROCEDURE option specifies a data base proce-
dure that is performed to determine the record
type. The data base procedure name can be a maxi-
mum of seven characters.

The specified data base procedure examines the
record and returns to CDCS an integer value that
designates the record type. The integer returned
by the procedure is tested against the integers
specified in the VALUE phrases. The VALUE phrase
containing the matching integer designates the
record name of the record type to be used. One
VALUE phrase must be specified for each record type
in the area. The integers must be in the range 1
through 1023. Each integer specified must be
unique.

Figure 2-36 illustrates three methods of using the
RECORD CODE clause.

NOTE

Refer to appendix F for recommendations on
the use of multiple record descriptions.

CONSTRAINT ENTRY

A counstraint defines a dependency condition between
two areas or between data items within the same
area. Update operations must satisfy the condition
before updating an area is allowed. Thus, con-
straints protect the integrity of the data base. A
constraint entry must be included in the schema
source program for each constraint defined for the
data base.

A constraint entry 1s an optional entry. If used,
it must be included in the schema source program
following the data control eantry and preceding any
relation entry.

A constraint entry begins with a constraint name
statement. This is followed by a statement speci-
fying the data items that associate the areas in a
dependent condition. One data item establishes a
record as being a parent vecord; the other data
item establishes the other record as being a child
record.

A constraint can involve only one area or can
associate two areas. An area can be involved in
more than one constraint. The maximum number of
constraints allowed is 4095.

Figure 2-37 diagrams the dependency coundition
established between areas in constraints. The
arrows between the areas indicate the dependency
condition; the arrow points to the parent. Example
1 illustrates four constraints associating four
areas. Example 2 illustrates two areas associated
in two constraints. In this example, the depen-
dency condition must be in the same direction in
both constraints.

BY data-name VALUE FOR record-name-1 IS Literal-1
LVALUE FOR record-name-2 IS literal-2]1 ...
RECORD CODE IS { PROCEDURE data-base-procedure
VALUE FOR record-name-3 IS integer-3
CVALUE FOR record-name-4 IS integer-41 ...

Figure 2-35. RECORD CODE CLAUSE Format

60485200 A

J

J )



-

Example 1

SCHEMA NAME IS MANUFACTURING-DB.
AREA NAME IS EMPLOYEE.

l.lECORD NAME IS EMPLOYEE-REC WITHIN EMPLOYEE.
01 REC-TYPE PICTURE “"A".

I.IECORD NAME IS PAYROLL-REC WITHIN EMPLOYEE.
01 REC-TYPE PICTURE “"A".

DATA CONTROL.

AREA NAME IS EMPLOYEE
RECORD CODE IS BY REC-TYPE OF EMPLOYEE-REC
VALUE FOR EMPLOYEE-REC IS "A"
VALUE FOR PAYROLL-REC IS "B".

Example 2

SCHEMA NAME IS SCHLIST.
AREA NAME IS PRICELIST.

F.QECORD NAME IS PRICES WITHIN PRICELIST.
01 DATE-1 PICTURE “X(10)".
01 PRTAG TYPE FIXED.

l‘!ECORD NAME IS INVENTORY-NUMBERS WITHIN PRICELIST.
01 DATE-1 PICTURE "X(10)".
01 INTAG TYPE FIXED.

DATA CONTROL.
AREA NAME IS PRICELIST
RECORD CODE IS BY PRTAG
VALUE FOR PRICES IS 1
VALUE FOR INVENTORY-NUMBERS IS 77.

Example 3

SCHEMA NAME IS NURSERY-DB.

AREA NAME IS HISTORY.

l.!ECORD NAME IS REGIONAL WITHIN HISTORY.

I-QECORD NAME IS NATIONAL WITHIN HISTORY.

I.IECORD NAME 1S STATE WITHIN HISTORY.

DATA CONTROL.
AREA NAME IS HISTORY
RECORD CODE IS PROCEDURE HSTCODE
VALUE FOR REGIONAL IS 2
VALUE FOR NATIONAL IS 1
VALUE FOR STATE IS 3.

The record code is contained in the
data item REC-TYPE, which is in the
first character position in both records.
An A in REC-TYPE identifies
EMPLOYEE-REC; a B in REC-TYPE
identifies PAYROLL-REC.

The record code is contained in the
second field, which begins in character
position 11 in both records. A 1 in
PRTAG identifies PRICES; a 77 in
INTAG identifies INVENTORY-
NUMBERS.

The record code is determined by the
data base procedure HSTCODE. The
procedure is executed and returns an
integer that identifies the record type:
a | designates NATIONAL, a 2 desig-
nates REGIONAL, or a 3 designates
STATE.

Figure 2-36. Examples of the RECORD CODE Clause

60485200 A

2-25




Example 1

Employee p
Area

Constraint A

P

Department
Area

Example 2

Constraint E

Constraint F

Constraint B

Payroll
Area

Constraint C

Constraint D

P Production
Area
p

p Represents the record established as the parent

¢ Represents the record established as the child

Figure 2-37. Dependency Conditions Established by Constraints

A series of constraints cannot result in a cycle.
A cycle is a directed path starting from a record
designated as a child and terminating at that
starting record with it being a parent, also. If,
in example 1 in figure 2-37, the dependency condi-
tion were reversed in constraint C, the series of
constraints would result in a cycle, which is not
allowed. Similarly in example 2, 1if one of the
dependency conditions were reversed, the con-
straints would result in a cycle.

The format of the constraint entry is shown in
figure 2-38. The constraint entry assigns a name
to the constraint and specifies the data items
involved in the constraint.

CONSTRAINT NAME Clause

A constraint entry begins with the CONSTRAINT NAME
clause. The name must be unique among all con-
straint names and area names in the schema. It can

2-26

CONSTRAINT NAME IS constraint-name
data-name-1 DEPENDS ON data-name-2.

Figure 2-38. Constraint Entry Format

be up to 30 characters in length. The name can
contain alphabetic and numeric characters and
hyphens as long as the first character is alpha-
betic; consecutive hyphens are not allowed. The
format of the CONSTRAINT NAME clause 1s shown in
the constraint entry.

The name specified in this clause is associated
with the dependency condition established by the
items in the DEPENDS ON clause. An area that is
involved in a constraint can contain only one DDL
record type.

60485200 A

J

J D)



DEPENDS ON Clause

The DEPENDS ON clause is required when a CONSTRAINT
name clause is specified. The DEPENDS ON clause
designates the data items that are involved in the
constraint. The format of the DEPENDS ON clause is
shown in the constraint entry.

The order of the data items determines the direc-
tion of the dependency condition. The constraint
condition established is that the record containing
data-name-2 1s the parent record and the record
containing data-name-1 is the child record. How-
ever, data-name-l and data-name-2 can be contained
within the same record description.

The data items in the DEPENDS ON clause must meet a
number of requirements.

They must be keys.

They must have identical characteristics: that
is, they must be defined with identical TYPE or
PICTURE clauses.

Data-name-1 must reference a data item desig-
nated as a primary key or an alternate key with
duplicate values permitted.

Data-name-2 must reference a data item desig-
nated as a primary key or an alternate key with
no duplicates permitted.

If one is a concatenated key, the other must be
a concatenated key or a non-repeating group
defined as a key.

If a data-name-1 or data-name-2 requires
qualification, the name of the record to which
it belongs must be used.

Figure 2-39 shows a constraint clause in a schema.
Included are the entries necessary for supporting
the constraint entry.

RELATION ENTRY

A relation defines a directed path joining areas
described in the schema to allow retrieval of data
from two or more areas at a time. An area can be
joined only once in any one relation. Figure 2-40
illustrates five areas in a data base and several
relations that could be defined for them; the
arrows and relation sequences denote the directioans
of the relations.

A relation entry is included in the schema source
program for each relationship defined in the data
base. This entry assigns a name to the relation
and specifies the data items to be used as join
terms. The format of the relation entry is shown
in figure 2-41.

SCHEMA NAME IS PERSONNEL.

AREA IS DEPARTMENT.
AREA IS EMPLOYEE.

01 DEPT-NO

.

01 EMP-NO
01 DEPT-NO

DATA CONTROL.
AREA NAME IS DEPARTMENT
AREA NAME IS EMPLOYEE
KEY IS EMP-NO
ARE INDEXED.

RECORD IS DEPT-REC WITHIN DEPARTMENT.
PICTURE IS "X(5)".

RECORD IS EMP-REC WITHIN EMPLOYEE.

PICTURE IS "X{(5)".
PICTURE IS “X(5)".

KEY IS DEPT-NO OF DEPT-REC.

KEY IS ALTERNATE DEPT-NO OF EMP-REC DUPLICATES

CONSTRAINT NAME IS DEPARTMENT-EMPLOYEE
DEPT-NO OF EMP-REC DEPENDS ON DEPT-NO OF DEPT-REC.

Figure 2-39. Constraint Entry Within a Schema

60485200 A



Relation 1: Area 1 — Area 2 — Area 4
Relation 2: Area 2 — Area 4 — Area 5 — Area 3
Relation 3: Area 3 — Area 2 — Area 1

Figure 2-40. Relation Direction Example

RELATION NAME IS relation-name
JOIN WHERE identifier-1 EQ identifier-2
(identifier-3 EQ identifier-4] ... .

Figure 2-41. Relation Entry Format

The relation entry follows all other entries in the
schema source program. A relation entry must be
included for each relationship defined for the data
base. The maximum number of relations allowed is
4095.

Each relation entry begins with a relation name
statement. This 1s followed by a series of state-
ments pairing the data item join term of one area
with a corresponding data item in the area joined
to it.

RELATION NAME Clause

The RELATION NAME clause assigns a name to the
relation. It must be the first clause specified im
the relation entry. The format of the RELATION
NAME clause is shown in the relation entry.

The relation name must be unique among all relation
names and area names in the schema. It can be up
to 30 characters in length. The name can contain
alphabetic and numeric characters and hyphens as
long as the first character is alphabetic; consecu-
tive hyphens are not allowed. The name specified
in this clause is associated with all the areas
joined in this relationship. An area can be
included in more than one relation. An area that
is joined in a relation cannot contain more than
one DDL record type.

JOIN Clause

The JOIN clause specifies the data items that CDCS
must inspect to join the areas in which the data
items reside. The order in which the data items

2-28

are specified determines the direction of the
relationship, called a parent/child relationship.
The JOIN clause is required if a RELATION NAME
clause is present. The format of the JOIN clause
is shown in the relation entry.

Within the JOIN clause a specified data item in one
area is equated with an identical data item in
another area; the two areas are thus related
through specification of a common data item. The
relational operator EQ must appear between each
pair of identifiers included in the JOIN clause;
the source identifier appears to the left of the EQ
and the target identifier appears to the right.

In the relationship defined by the JOIN clause, the

source identifier defines the parent; the target
identifier defines the child. This relationship is
valid for every source-target pair in the rela-
tion. Refer to section 6 for more information
about relations.

The term identifier reflects a unique reference to
a data name; it implies that the data name is
referenced uniquely through a combination of
subscripts and qualifiers. Refer to the Identifier
subsection, which appears earlier in this section,
for the identifier format.

Each source identifier (except the first) must be
in the same area as the previous target identifier,
so that a continuous path from ome area to the next
area 1s defined. Cycling is muot allowed; an area
cannot be joined to itself directly or indirectly.

The identifiers to the left and to the right of a
relational operator must have identical character-
istics in the picture specification or in the TYPE
specification and must have identical synchron-
ization and justificatiom (if applicable). The
position of the data items within the records need
not be identical. The identifier must not specify
a data item that is more than 255 characters long.
Subscripting and qualification can be specified for
any identifier.

Joining of areas in a relation is not guaranteed if
a specified identifier is a group item with padding
in it. Padding is used for word alignment of
constituent items in a group item, and the content
is unknown. Refer to figure 2-42 for an example.
Padding must occur in group item H because item K
must be on a word boundary. Since the padding
content in H is unknown, data item G (1) in all
probability will never equal data item H (l1). An
unusable relationship results.

The data item referenced by identifier can be any
of the following types of data items:

A nonrepeating elementary item (no subscript).

A specific occurrence of a repeating elementary
item or an occurrence of a repeating group item
(up to three subscripts).

All occurrences of a repeating data item if it
is an alternate key or the major part of an
alternate key, and is specified to the right of
the EQ in the JOIN clause (subscript ANY).

A concatenated key. (See KEY clause descrip-
tion.)

60485200 A

J )

J )



ﬁﬁ“ﬂ

(@ﬂ\
F@EN

AREA NAME IS AREAl,
RECORD NAME IS R] WITHIN AREAl.

02 6 OCCURS 2 TIMES.
03 ITEM A PIC wx(5)w,
03 ITEM B8 PIC ™"9(10)%,
03 ITEM C PIC %9(3)ve(2)%n,

AREA NAME IS AREA2.
RECORD NAME IS R2 WITHIN AREA2.

02 H OCCURS 1 TIMES.
03 ITEM J PIC wX(2)%,
03 ITEM K TYPE FIXED 992

RELATION NAME IS REL-1.
JOIN WHERE 6 (1) EO H (1),

Figure 2-42. Alignment Example

If a repeating elementary item or group item is
specified without a subscript, the first occurrence
is used to join the relationship.

For efficient processing, the target identifier
should be an item defined as a key field; retrieval
of record occurrences from the file containing the
target identifier is by that key. This rule holds
for repeating or nonrepeating elementary items.
Target identifiers defined as primary keys are most
efficient; alternate keys are next most efficient.
Only the first occurrence of a repeating item can
be defined as a primary key. If a repeating group
item or a repeating elementary item is defined as
an alternate key, all occurrences of the item or
group item are used as the key, rather than just
the first occurrence. The ANY option used as a
subscript identifies this type of alternate key
field as a join term. If any one of the item
occurrences satisfies the equality, the record
occurrence is included in the relation occurrence.
If an integer subscript is used instead of ANY on
an alternate key, retrieval of record occurrences
is by sequential access. If the target identifier
is not a key, retrieval of record occurrences is by
sequential access.

Figure 2-43 illustrates a record type in a schema.
Based on the rules specified previously, the fol-
lowing data names from this record type could be
used in a JOIN clause:

PART-NBR

STATE-ADDR (1,1) or PSOURCE (2)

SOURCE-NAME (ANY)

RECORD IS PARTS=LIST WITHIN INVENTORY,
01 PART=NAME PIC "X (20)%,
01 PART=NBR PIC 4X(25)%,
01 PSOURCE OCCURS 10 TIMES.
03 SOURCE~NAME PIC “X(40)%,
03 SOURCE=-ADDR OCCURS 1 TIMES.
05 STREET-ADDR PIC ®x(20)%,
05 CITY=-ADDR PIC %X(15)%,
0S5 STATE=-ADDR PIC wx(S)%,

Figure 2-43. Data Name Example

The identifier SOURCE-NAME must be to the right of
the EQ operator in the JOIN clause and must be
defined as an alternate key.

SCHEMA COMPILATION AND
MAINTENANCE FACILITIES

The DDL compiler is a multifunctional compiler that
generates the schema directory and uses that direc-
tory to verify compatibility of a recompiled schema
with existing subschemas and to decode portions of
the directory through the Exhibit facility. The
particular operation performed by the compiler is
selected by a parameter in the DDL3 control state-
ment. Only one schema directory is allowed to
reside on a file.

For field length requirements for schema compila-
tion, refer to appendix G.

DDL3 CONTROL STATEMENT

The DDL3 control statement calls the DDL compiler.
It specifies the function to be performed, the file
that identifies the schema directory, the file that
identifies the. subschema 1library, the file that
contains the source input for the DDL compiler, the
file that is to receive output listings and diag-
nostics, and the memory allocation for the schema
record buffer.

The format of the DDL3 control statement for schema
compilation and maintenance facilities is shown in
figure 2-44. The comma immediately following DDL3
can be replaced by a left parenthesis; the termina-
ting period can be replaced by a right parenthesis.

All parameters of the DDL3 control statement are
optional.

DOL3 [[E:sj] [,SC=LfnlL,SB=LfnIC, I=LfnlL,L=LfnlL,NI=nbr].
’

Figure 2~44. DDL Control Statement Format for Schema Compilation and Maintenance

60485200 A

2-29



The EX and DS parameters select the function that
is to be performed: The DS parameter selects
schema compilation; the EX parameter selects exe-
cution of the Exhibit facility. These parameters
are interpreted as follows:

omitted

The DS parameter is assumed; a DDL schema
is compiled.

A DDL schema is compiled.
EX

The Exhibit facility is executed. This

parameter must be specified to execute the
Exhibit facility.

The SC parameter identifies the local file that
contains the schema directory. The parameter is
interpreted as follows:

omitted

The first seven characters of the schema-
name in the schema description eantry of the
source program identify the local file that
contains the schema directory (the object
schema).

SC=1fn

The specified local file name identifies
the file that contains the schema directory
(the object schema).

The SB parameter identifies the local file name of
the subschema library file to be searched for
checksum mismatches when a schema is recompiled.
This parameter is interpreted as follows:

omitted

No subschema library search is performed.
SB=1fn

The local file name specified identifies
the subschema library file to be searched.

The 1 parameter identifies the 1local file that
contains source input for the DDL compiler. This
parameter is interpreted as follows:

omitted

The local file INPUT is assumed to contain
the source input for the DDL compiler.

I=1fn

The specified local file name identifies
the file that contains source input for the
DDL compiler.

The L parameter identifies the 1local file that
receives listings and diagnostics generated by the
DDL compiler. This parameter 1s interpreted as
follows:

2-30

omitted

The local file OUTPUT receives the listings
and diagnostics generated by the DDL

compiler.

=0
The local file OUTPUT receives only the
diagnostics generated by the DDL compiler.
This designation is not valid for execution
of the Exhibit utility.

L=1fn

The specified local file name identifies
the file that receives the listings and
diagnostics generated by the DDL compller.

The NI parameter specifies the number of 10-word
blocks allocated for the schema record buffer.
This parameter is interpreted as follows:

omitted

One-fourth of available memory is allocated
for the schema record buffer.

NI=nbr

The number nbr specifies the number of
10-word blocks of memory that are allocated
for the schema record buffer.

The default value for the NI parameter is one-fourth
of the available memory. Available memory is
defined as the memory available from the highest
address for the DDL compiler (approximately 44000
octal) to the memory limit specified by an RFL
control statement (NOS or NOS/BE operating system)
or an EFL command (INTERCOM). For example, if the
memory limit is specified as 54000 octal and avail-
able memory is 10000 octal words; the schema record
buffer is 2000 octal words.

The schema record buffer must be large enough to
contain all data description entries for the
largest record type in the schema. One 10-word
block can store a data description entry with a
10-character data name, a PICTURE clause, and a
clause specifying a data base procedure. If an
entry contains other clauses or a longer data name,
it requires more than 10 words to store the entry.

SCHEMA COMPILATION

The schema must be coded according to the specifi-
cations in this manual. Schema source code can be
entered through a terminal, processed by a text
editor, and stored in a file.

The DDL compiler can be executed from a terminal
and through a batch job in the following ways.
When executed from a terminal, the schema program
must reside on a file whose name is indicated by
the I parameter of the DDL3 control statement. In
a batch job in which the input file for the DDL
compiler is assumed to be local file INPUT, the job
stream must be structured so that the control
statements precede the subschema source program.
An end-of-record indicator must immediately precede
the first line of schema source code to separate
the schema program from the control statements.

60485200 A

J )

J )



Control statements In the job stream and the
resulting source program are used by the DDL
compiler to complle the schema directory and to
store it as a permanent flle. Only one schema
directory should be stored on a file. The control
statements provide Information for the operating
system and for the DDL compiler.

DDL3 Control Statement for Compilation

The DDL3 control statement must be included in the
set of control statements preceding the DDL source
program. It provides the DDL compiler with
information related to the schema. The DDL3
control statement is used to request compilation
and to provide the local flle name of the schema
directory. The DDL3 control statement for schema
compilation is as follows:

DDL3,DS, SC=1fn.

The DS parameter and SC parameter are optlional and
have default values. The I, L, and NI parameters
must be specified if default values are not
applicable for input and output files and for
memory allocatlon for the schema record buffer
(refer to the DDL3 Control Statement subsection).

FILE Control Statement

The FILE control statement provides CYBER Record
Manager with information that is required for file
processing. A FILE control statement for each area
In the schema wmust precede the DDL3 control
statement. The information In the FILE control
statements along with file information from the
data control entry 1is placed in the schema
directory.

The FILE control statement equates the area name
with an operating system file name and associates
the area with a partlcular file organization.
Figure 2-45 illustrates the FILE control statement
and indlcates parameters required for schema
compllation. Optionally, the comma Immediately
following FILE can be replaced by a Lleft
parenthesis; the terminating period can be replaced
by a right parenthesls.

FO=AK
FILE,Lfn, { FO=DA ¢ [,p] ... .
FO=IS

Figure 2-45. FILE Control Statement Format

The local file name specified In the FILE control
statement must be the name of an area defined In
the schema or, iIf the area name exceeds seven
characters, the first seven characters of the area
name,

The FO parameter assoclates the area with the
specified file organization. This parameter must
be specified in one of the following forms:
FO=AK
The extended actual key flle organizatlon

is assoclated with the area.

60485200 B

FO=DA

The extended direct access file
organization is assocliated with the area.

FO=IS

The extended indexed sequential file
organization is associated with the area.

The p indicates additional parameters. Depending
on particular conditions, three additional
parameters are required.

The XN parameter can be specified if alternate keys
are specified for an area. The XN parameter
associates the area with the file that contalns the
alternate key index. If not specified and
alternate keys have been specified for the area,
the DDL compiler automatically assigns a flle name
to reference an index file for the area and issues
a trivial diagnostlc. If specified, the XN
parameter must be specified in the following form:

XN=1fn

The specified local file name identifies
the alternate key index. The 1fn must be
one to seven characters in length, must
contain only characters or digits, must
begin with a letter, and must not duplicate
another 1fn Indicated in the job stream.

The HMB parameter must be specified If the file
organlzation associated with an area Is extended
direct access. The HMB parameter indicates the
number of home blocks associated with the area.
The HMB parameter must be specified in the
following form:

HMB=nn

The number nn home blocks are associated
with the area. The number nn must be an
integer 1 through 224-1, See the CYBER
Record Manager Advanced Access Methods
reference manual more information about
home blocks.

The key length (KL) parameter must be specified if
the flle organization associated with an area Is
extended actual key. For the other file
organizations, if KL is not specified then DDL
determines the value of the KL parameter from the
data descriptions. If a KL parameter speclfication
does not agree with the data descriptions, DDL uses
the value from the data descriptions and issues a
trivial diagnostic. The KL parameter must be
specified In the following form:

KL=nnn

For an extended actual key file, the number
nnn must be an Integer within the range of
1 through 8. For all other file
organizations, the number cannot exceed 240
characters.

Additional parameters can provide other Information
(such as CYBER Record Manager record type and block
type). Table 2-3 lists the FILE control statement
parameters that can be specified. Refer to the
CYBER Record Manager Advanced Access Methods
reference manual for detailed descriptions of the
parameters,

2-31



TABLE 2-3. FILE CONTROL STATEMENT

PARAMETERS
File Organization
Parameter Extended Extended Extended

Indexed Direct Actual

Sequential Access Key
BFS X X X
CL X X X
CP X X X
DP X X
EFC X X X
FL X X X
FLM X X
FO X X X
HL X X X
HMB X
IP X
KL X X X
LL X X X
LP X X X
MBL X X X
MNR X X X
MRL X X X
NL X
ORG X X X
RB X X X
RMK X X X
RT X X X
TL X X X
XN X X X

NOTE

Refer to appendix F for recommendations on
access methods.

The FILE control statement for an area that has
record keys specified can include additional
parameters related to the key. Parameters related
to the data item that Is the record key should
agree with the data item description. If the
record key and data item descriptlons do not agree,
the DDL compiler uses the record key descrlption
and issues a trivial diagnostic.

I1f a FILE control statement is not Included for an
area, a dlagnostic message Is Lssued. The
following defaults apply to FILE control statements
that do not specify the applicable parameter.

1P no index padding

DP no data block padding (release default)

NL one level of index blocks (release
default)

RT=U CYBER Record Manager undefined record
type

MRL=size of maximum record length in the area
MNR=size of minimum record length in the area

If the MRL parameter (maximum record length) Iis
specified in the FILE control statement and the
value ls less than the length of the longest record
in the area, the DDL compiler overrides the FILE
control statement MRL parameter, substituting a
value equal to the size of the longest record. The
DDL compller then issues a diagnostic. If the
specified value for the MNR parameter (minimum
record length) is inadequate, the DDL compller
overrldes the FILE control statement MNR parameter,
substituting a value large enough to contain all
keys defined for the area.

If the FILE control statement specifies RT=T (CYBER
Record Manager traller count record type), and the
area containg a record with a variable length
repeating data item, the DDL compiler computes the
values for the HL, TL, CP, and CL parameters. A
warning dlagnostic message 1Is Issued Lf the FILE
control statement contalns these parameters with
values different from the values computed by the
DDL compller.

Schema Compilation Example

The source program for a schema must be preceded by
a set of control statements and followed by an
end-of-information indicator. Figure 2-46
illustrates a job that compliles a schema and stores
it as a permanent file. The FILE control
statements must specify one of the allowed
organizations: extended indexed sequentlal,
extended direct access, or extended actual key.
The DEFINE and REQUEST/CATALOG control statements
specify the local flle name of the file that
contains the schema directory and assign it to a
permanent file device. The DDL3 control statement
specifies schema compilation and the local file
name MANUFAC to identify the schema directory.

Schema Compilation Output

A listing of the DDL source program is provided
whenever a schema Is complled and L=0 is not
specified in the DDL3 control statement. Each line
of the listing corresponds to one statement in the
source program. The format and order of each line
on the listing are Identical to the format and
order of the statements In the source program.
Figure 2-47 is a sample source llsting for a schema
compilation.

60485200 B

J )

)



NOS Operating System

Job statement
USER control statement
CHARGE control statement
DEFINE,MANUFAC=MANUFAC/CT=PU,M=R.
FILE (EMPLOYE,FO=IS,XN=IXEMP)
FILE(JOBDETA,FO=IS)
FILE(DEPARTM,FO=IS,XN=IXDEPT,RT=T)
FILE(PROJECT,F0=DA,XN=IXPROJ,HMB=7)
FILE (DEVELOP,FO=DA,XN=IXDEV,HMB=11)
FILE(TESTS,FO=IS, XN=IXTEST)
FILE(CDCSCAT,FO=1S)
DDL3,DS,SC=MANUFAC.
End-of-record

Schema source input
End-of-information

NOS/BE Operating System

Job statement
ACCOUNT control statement
REQUEST ,MANUFAC,PF.
FILE (EMPLOYE,FO=1S,XN=IXEMP)
FILE(JOBDETA,F0=1S)
FILE(DEPARTM,FO=IS,XN=IXDEPT,RT=T)
FILE(PROJECT,F0=DA,XN=IXPROJ,HMB=7)
FILE(DEVELOP,FO=DA, XN=IXDEV, HMB=11)
FILE(TESTS,FO=IS XN=IXTEST)
FILE(CDCSCAT,FO=IS)
DOL3,DS,SC=MANUFAC.
CATALOG,MANUFAC,MANUFACTURINGDB,ID=owner.
End-of-record

Schema source input
End-of-information

Figure 2-46. Schema Compilation Example

MANUFACTUR * SOURCE LISTING *  (82061) DDL 3.2+564.
00001 SCHEMA NAME IS MANUFACTURING-DB.
00002
060003 AREA IS EMPLOYEE
00004 ACCESS-CONTROL LOCK FOR RETRIEVAL IS "EMP-READ"
00005 ACCESS-CONTROL LOCK FOR UPDATE IS "EMP-WRITE"
00006 CALL OPENEMP BEFORE OPEN.
00007
0coo8 RECORD IS EMPREC WITHIN EMPLOYEE.
00009 01 EMP-ID PICTURE "X(8)".
00010 01 SALARY TYPE FIXED DECIMAL 8,2
00011 CALL EMPCHK BEFORE.
00012 01 EMP-LAST-NAME PICTURE "AC20)".
00013 01 EMP-INITIALS PICTURE "AC4)".
00014 01 DEPT PICTURE "X(4)".
00015 01 ADDRESS-NUMBERS PICTURE "X(6)".
00016 01 ADDRESS-STREET PICTURE "X(20)".
00017 01 ADDRESS-CITY PICTURE "A(15)".
00018 01 ADDRESS-STATE-PROV PICTURE "A(15)".
00019 01 POSTAL-CODE PICTURE "X(10)".
00020 01 ADDRESS-COUNTRY PICTURE "A(15)".
00021 01 PHONE-NO PICTURE "9C10)".
00022 01 HIRE-DATE PICTURE "9(6)".
00023 01 INSURANCE-NO PICTURE "9C10)".
00024 01 NUM-DEPENDENTS TYPE DECIMAL FIXED 2.
00025 01 JOB-CLASS PICTURE A"
00026 FOR ENCODING CALL DBPJC1
00027 FOR DECODING CALL DBPJC2.
00028 01 GRADE-LEVEL PICTURE '"9"
00029 CHECK VALUE O THRU 8.
00030
00031 /% THE FOLLOWING ARE YEAR-TO-DATE TOTALS
00032 */
00033 01 GROSS TYPE DECIMAL FIXED 7,2.
00034 01 FED-TAX TYPE DECIMAL FIXED 7,2.
00035 01 STATE-TAX TYPE DECIMAL FIXED 6,2.
00036 01 DISABILITY TYPE DECIMAL FIXED 5,2.
00037 01 SS-INSURANCE TYPE DECIMAL FIXED 4,4.
00038
00039
00040 AREA IS JOBDETAIL
00041 ACCESS-CONTROL LOCK IS "ABCDEFZ".
00042 RECORD IS JOBREC WITHIN JOBDETAIL
00043 CALL DELCHK BEFORE DELETE.

Figure 2-47.

60485200 A

Sample Schema Compilation Output Listing (Sheet 1 of 3)

2-33



00125 AREA NAME IS CDCSCAT

00126 ACCESS-CONTROL LOCK IS "PERMISSION*GRANTED".
00127 RECORD IS QUCATREC WITHIN CDCSCAT.

00128 QUCAT-KEY PICTURE "X(10)".
00129 QUCAT-ITEM PICTURE "X(1030)".
00130

00131 DATA CONTROL.

00132

00133 AREA NAME IS EMPLOYEE

00134 KEY IS EMP-ID OF EMPREC

00135 DUPLICATES ARE NOT ALLOWED

00136 KEY IS ALTERNATE DEPT

00137 DUPLICATES ARE INDEXED.

00138

00139 AREA NAME IS JOBDETAIL

00140 KEY ID IS CONCATKEY < EMP-ID OF JOBREC
00141 SEQ-NO >

00142 DUPLICATES ARE NOT ALLOWED.

00143

00144 AREA NAME IS DEPARTMENTS

00145 KEY IS DEPT-NO

00146 DUPLICATES ARE NOT ALLOWED

00147 KEY IS ALTERNATE MGR-ID

00148 DUPLICATES ARE FIRST.

00149

00150 AREA NAME IS PROJECT

00151 KEY IS PROJECT-ID OF PROJREC

00152 DUPLICATES ARE NOT ALLOWED

00153 KEY IS ALTERNATE RESPONSIBILITY

00154 DUPLICATES ARE ALLOWED.

00155

00156 AREA NAME IS DEVELOPMENT-PRODUCTS

00157 KEY IS PRODUCT-ID OF DEVREC

00158 DUPLICATES ARE NOT ALLOWED

00159 KEY IS ALTERNATE PROJECT-ID OF DEVREC
00160 DUPLICATES ARE ALLOWED

00161 KEY IS ALTERNATE EVAL-ID

00162 DUPLICATES ARE INDEXED.

00163

00164 AREA NAME IS TESTS

00165 KEY IS TESTNO

00166 DUPLICATES ARE NOT ALLOWED

00167 KEY IS ALTERNATE TNAME

00168 BUPLICATES ARE INDEXED

00169 KEY IS ALTERNATE TESTER

00170 DUPLICATES ARE FIRST

00171 SEQUENCE IS ASCII.

00172

00173 AREA NAME IS CDCSCAT

00174 KEY IS QUCAT-KEY OF QUCATREC

00175 DUPLICATES ARE NOT ALLOWED

00176 SEQUENCE IS DISPLAY.

00177

00178

00179 CONSTRAINT NAME IS MGR-CONST

00180 MGR-ID OF DEPTREC DEPENDS ON EMP-ID OF EMPREC.
00181

00182 CONSTRAINT NAME IS PROJ-CONST

00183 PROJECT-ID OF DEVREC DEPENDS ON PROJECT-ID OF PROJREC.
00184

00185

00186 RELATION NAME IS EMP-REL

00187 JOIN WHERE EMP-ID OF JOBREC EQ EMP-ID OF EMPREC.
00188 ‘

00189 RELATION NAME IS TEST-REL

00190 JOIN WHERE PRDCTNO OF TESTREC EQ PRODUCT-ID OF DEVREC.
00191

00192 RELATION NAME IS DPD-REL

00193 JOIN WHERE MGR-ID OF DEPTREC EQ RESPONSIBILITY OF PROJREC
00194 PROJECT-ID OF PROJREC EQ PROJECT-ID OF DEVREC.

Figure 2-47. Sample Schema Compilation Output Listing (Sheet 2 of 3)

60485200 A

J )

J )



k% AREA CHECKSUMS *xx
AREA NAME
EMPLOYEE
JOBDETAIL
DEPARTMENTS
PROJECT
DEVELOPMENT-PRODUCTS
TESTS
CDCSCAT

*¥x RELATION CHECKSUMS &%
RELATION NAME
EMP-REL
TEST-REL
DPD-REL

CALCCP
CALCHR
DATESP
DBPJCT
DBPJC2
DELCHK
EMPCHK
OPENEMP
DDL COMPLETE. 0 DIAGNOSTICS.
473008 (M USED. 0.419 CP SECS.

*** DATA-BASE PROCEDURE LIST FOR SCHEMA MANUFACTURING-DB

CHECKSUM

56430552040035230620
13626262424331006604
16574462455232633415
35175246562100113225
61470111011661762112
40015236474170366115
57033604647410770643

CHECKSUM

33541156402300070013
10246503456523070027
16223300077042601641

Figure 2-47. Sample Schema Compilation Output Listing (Sheet 3 of 3)

The DDL compiler assigns a line number to each
input statement, beginning with 0000l. The line
numbers are printed on the source llsting, starting
in column 16, Diagnostic messages begin in column
3 of the listing. After the last Input statement
is listed, a checksum for each area and relation,
together with the area or relation name, Is
printed. Following the checksums, an alphabetic
list of all data base procedures specified In the
schema Is written to the output flle. Lastly, a
compllation summary is printed.

The source listing can be suppressed by specifying
L=0 fin the DDL3 control statement. In this
situation, diagnostic messages and the compilation
summary are the only llsting that is produced.

RECOMPILATION GUIDELINES

The checksums generated by the DDL compiler for
each area and relation in the schema determine when
a subschema must be recompiled. If a checksum in a
recomplled schema Is different from the correspond-
ing checksum in the previous schema, any subschema
referencing that changed area or relation must be

recomplled; a list of these subschemas Ls printed
at the end of a schema compllation when the DDL3
control statement Includes the SB parameter. The
DDL3 control statement for compiling a schema and
generating a list of subschemas that require
recompllation is as follows:

DDL3,DS,SC=1fn,SB=1£fn.

The DS parameter and SC parameters are optional and
have default values. The SB parameter is required;
it specifies the local flile name of the file that
containg the subschema library to be searched for
checksum mismatches. The I, L, aad NI parameters
must be specified if default values are not appli-
cable for the input and output files and for memory
allocatlon for the schema record buffer (refer to
the DDL3 Control Statement subsection).

In a job that recompiles a schema and checks for
subschema checksum mlsmatches, the subschema library
must be attached. The DDL compiler searches all
the subschemas iIn the specified library and com-
pares checksums. If checksum mismatches are found,
the names of any subschemas that must be recompiled
are printed. An example of this facility Ls shown
in figure 2-48.

MARKETING
INVOICING
PAYROLL

----- REPORT ON SUB-SCHEMA RECOMPILATIONS FOR SCHEMA MANUFACTURING-DB
FOLLOWING SUB-SCHEMAS REQUIRE RECOMPILATION

Figure 2-48. Recompilation List Example

60485200 B

2-35




EXHIBIT FACILITY

The Exhibit facility of DDL provides the capability
of decoding a specific entry or group of eantries
contained In the schema directory. The output Is
simllar in appearance to the Initial DDL input.
Certain output entries generated by the Exhlbit
facility are not associated with any specific
source statement. They appear at the beglnning of
the output as comments and are enclosed by a pre-
ceding delimiter (/*) and a following delimiter
(/*). Output is In the format of 50 characters per
line.

Control Statement Format

The DDL3 control statement must be specified to
execute the Exhlbit facility. After the schema
directory file 1s attached, Exhibit can be called.
The control statement for executing the Exhibit
facility is as follows:

DDL3,EX, SC=1£n.

The EX parameter Is required; It specifies execu-
tion of the Exhibit facility. The SC parameter is
required; it 1dentifles the local file name of the
schema directory. The I and L parameters must be
specified if default values are not appllcable for
input and output flles (refer to the DDL3 Control
Statement subsection).

EXHIBIT Directive Format

Input specification directives for EXHIBIT must
follow a specific directive format as shown In
figure 2-49. 1Input for each directive 1s free-
format and characters can appear in any columns
from column 1 through column 72. Each directive
must be contained within the 72 columns.

One of the keywords AREA, RECORD, ITEM, ALL-ENTRIES,
CONSTRAINT, or RELATION must be specified to indi-
cate the type of entry to be decoded and written to
the output file. ALL-ENTRIES specifies that the
names or clauses for all entries In the schema are
to be exhibited. The option ONLY applies to record

RECORD LONLY] ALL [;AMES :]

LAUSES
ALL-ENTRIES -
TONSTRAINT entry-name
RELATION

EXHIBIT SCHEMA

Figure 2-49. EXHIBIT Directive Format

entries and specifles that ounly the record name or
‘clauses assoclated with the record entry are to be
exhlbited.

If ONLY is not speclified, all data subentry names
or clauses associated with the record entry are
also decoded and wrltten to the output file.

When ALL or ALL NAMES is specified, all entry names
for the specified entry type are exhlbited.
Speclfication of ALL CLAUSES causes all entry names
and clauses for the specified entry type to be
displayed.

If an entry name is deslignated in the directive, it
indicates the name of the area, record, litem,
constralnt, or relation for which all the associ-
ated clauses are to be decoded and written to the
output file., If entry name specifies the data name
of an item, it can be qualifled as specified In
paragraphs describing Data Reference and Qualifica-
tion in this section. 1If the data name of an item
Is not qualified In the specification and multiple
entries for that data name exist, the first entry
having the designated data name is exhibited.

To exhibit all schema clauses, the ALL-ENTRIES ALL
CLAUSES specificatlon is used. Control informatilon
malntained by the DDL compiler is also included in
the output when thls option is selected. Refer to
figure 2-50 for several examples of the EXHIBIT
directive.

Sample control statemeants and directlve formats for
the exhibit facllity are shown with their respec-
tive generated output samples in figures 2-51
through 2-54.

Example 1

EXHIBIT SCHEMA RECORD ONLY ALL NAMES

schema.

Example 2
EXHIBIT SCHEMA AREA ALL CLAUSES

This directive exhibits all areas and their
respective clauses.

This directive exhibits all record names in the This directive exhibits a record called

Example 3

EXHIBIT SCHEMA RECORD EMPREC

EMPREC with all its data items and asso-
ciated clauses.

Example 4
EXHIBIT SCHEMA ALL-ENTRIES ALL CLAUSES

This directive exhibits the whole schema.

Figure 2-50.

2-36

EXHIBIT Examples

60485200 B

)

,ﬂﬁm\

J )



NOS Operating System NOS/BE Operating System
Job statement Job statement
USER control statement ACCOUNT control statement
CHARGE control statement ATTACH,MANUFAC,MANUFACTURINGDB, ID=0owner.
ATTACH,MANUFAC/UN=usernumber. DDL3,EX,SC=MANUFAC.
DDL3,EX,SC=MANUFAC. End-of-record
End-of-record EXHIBIT SCHEMA RECORD ONLY ALL NAMES
EXHIBIT SCHEMA RECORD ONLY ALL NAMES End-of-information
End-of-information

Figure 2-51. Executing the EXHIBIT Utility, Example 1

I*

EXHIBIT SCHEMA MANUFACTURING-DB
TIME,DATE OF CREATION 14.14 82087
Kk dkde Kk dedededode kR de ok ko dedkdede ok dek ok d ek kdokok
*/

00001 EXHIBIT SCHEMA RECORD ONLY ALL NAMES

RECORD EMPREC

RECORD JOBREC

RECORD DEPTREC

RECORD PROJREC

RECORD DEVREC
RECORD TESTREC
RECORD QUCATREC

Figure 2-52. Sample EXHIBIT Utility Output, Example 1

NOS Operating System NOS/BE Operating System
Job statement Job statement
USER control statement ACCOUNT control statement
CHARGE control statement ATTACH,MANUFAC,MANUFACTURINGDB, ID=owner.
ATTACH,MANUFAC/UN=usernumber. DDL3,EX,SC=MANUFAC.
bDL3,EX,SC=MANUFAC. End-of-record
End-of-record EXHIBIT SCHEMA AREA ALL CLAUSES
EXHIBIT SCHEMA AREA ALL CLAUSES End-of-information

End-of-information

Figure 2-53. Executing the EXHIBIT Utility, Example 2

/%
EXHIBIT SCHEMA MANUFACTURING-DB
TIME,DATE OF CREATION 14.14 82087
dekkdkkkhhkkdhddiddidik ik kkkkirkikk
*/
00001 EXHIBIT SCHEMA AREA ALL CLAUSES

AREA EMPLOYEE

CALL OPENEMP BEFORE OPEN RETRIEVAL UPDATE

ACCESS-CONTROL FOR RETRIEVAL IS "EMP-READ"

ACCESS~CONTROL FOR UPDATE IS "EMP-WRITE".

AREA CDCSCAT
ACCESS-CONTROL FOR RETRIEVAL UPDATE IS
"PERMISSION*GRANTED" .

Figure 2-54. Sample EXHIBIT Utility Output, Example 2

60485200 A

2-37






COBOL AND QUERY UPDATE SUBSCHEMA DEFINITION 3

%__

A COBOL subschema describes the portion of the data
base that is needed by one or more COBOL applica-
tion programs written in the COBOL 5 language.
Similarly, a Query Update subschema in CYBER Data-
base Control System (CDCS) data base access mode
(hereafter referred to simply as a Query Update
subschema) describes the portion of the data base
that is needed by one or more Query Update applica-
tions. In the subschema, record structures and
individual data items are defined -:n a manner
acceptable to the COBOL compiler or to Query
Update. The subschema data descriptions replace
the COBOL or Query Update data descriptions that
the COBOL application programmer or Query Update
user would otherwise supply.

A subschema is written based on the schema descrip-
tion. Generally, the schema description of data
can be changed in the subschema to meet the needs
of the COBOL program or Query Update application;
however, some limitations have been imposed on the
variations between the schema and the subschema.

SUBSCHEMA STRUCTURING
CONVENTIONS

COBOL and Query Update subschemas consist of three
required divisions and two optional divisions:

Title Division

Names the subschema and identifies the
schema.

Alias Division (optional)

Assigns alternate names to be used in place
of names assigned in the schema.

Realm Division

Identifies the schema areas to be made
available through the subschema.

Record Division

Describes the structure and content of each
record type in the subschema.

Relation Division (optiomnal)

Identifies the specific realm relationships
that are to be used in the subschema and in
the COBOL programs or Query Update applica-
tions referencing the subschema; also,
specifies the qualification criteria that
must be satisfied by records that are to be
returned to the application programs from
the data base.

All data from the data base that is to be access—
ible through COBOL or Query Update is described and
organized in the Record Division. The structure of
this division 1is similar to that of a record
description entry in the Data Division of a COBOL
program.

60485200 A

DATA DESCRIPTION

The basic wunit of data description is the data
description entry. The record descriptiom entry is
the entire description of a data base record type.
The record description entry consists of a record
name entry followed by a series of data description
entries that describe the specific data items
within the record. Each data description entry has
a level number, a data name, and a terminating
period. In addition, the entry can have one or
more clauses describing the data item. Data items
are described in terms of size, class, and usage.

The level number designates the level of the entry
relative to other entries in the record descrip-
tion. The highest level entry, the record name
entry, is always level number Ol. Other entries,
which can be either group or elementary data items,
are assigned level numbers 02 through 49 based on
the position of the specific data item within the
hierarchical structure of the record. Level
numbers need not be consecutive but must be ordered
so that the higher the number, the lower the entry
in the hierarchy. Level numbers 66 and 88 are
special level numbers that are used to specify two
particular types of data description entries; they
do not define the hierarchy of the item. A level
66 entry renames a group or elementary item. A
level 88 entry provides a value or range of values
to be associated with a condition name; level 88
entries cannot be used in a Query Update subschema.

With the exception of a data name being redefined
or renamed, the data name in the entry must be one

of the following:

A data name from the schema description
An alias assigned in the Alias Division

A user-defined name assigned to a nonrepeating
group item

A user-defined name assigned to an entry in a
repeating group that corresponds to a vector in
the schema

Data names from the schema must appear exactly as
they are specified in the schema description. If
an alias is assigned to the schema data item, the
alias must be used to reference that data item in
the data description entry. Nonrepeating group
items are defined under Schema/Subschema Compat-
ibility.

At least one clause must be included in the data
description entry for an elementary item. A group
item entry can also have one or more clauses. The
order of clauses is not important except where
explicitly stated in the clause description.

The only punctuation required in a data description
entry is the terminating period. Semicolons or
commas can be used to separate clauses.



DATA ORGANIZATION

Data items in the Record Division are organized
first into records and then into group and elemen-
tary items. Each record type corresponds to a
record type in the schema and must be within the
realms (schema areas) specified in the Realm Divi-
sion. A record description entry begins with level
number 01 and includes a series of subordinate data
description entries with higher level numbers.

Group Items

A group item is a collection of related items
organized in a hierarchical structure. The group
name data description entry has the lowest level
number within the group itself. Other items within
the group item have successively higher level
numbers ending with the most elementary item, the
highest numbered item in the group. All data items
in a group item can be referenced collectively by
the data name of the group item. A description
must be written for each data {tem in the group,
and the group name data description entry must have
at least a level number and a data name. A group
item can be part of a larger group (nested group
items).

Elementary ltems

An elementary item is an item that cannot be fur-
ther subdivided. I1f it is part of a group item,
the elementary item has the highest level number of
the group item (03-49) to which it belongs. An
elementary item in the subschema must correspond to
an elementary item in the schema. A schema elemen-
tary item cannot be described in the subschema as a
group item even 1f the total number of characters
represented in the schema and in the subschema are
equal.

SCHEMA/SUBSCHEMA
COMPATIBILITY

The subschema 1s created to accommodate the needs
of a COBOL or Query Update application program.
Some characteristics of the data in the data base
are fixed by the schema and cannot be changed by
the subschema; other characteristics specified in
the schema can be different in the subschema. The
limitations placed on the variations between the
schema and the subschema are precise and must be
carefully considered when the subschema is
described.

OMISSION OF DATA ITEMS

The subschema normally describes only a portion of
the data base. Data items that are not required by
a COBOL or Query Update program are not included in
the subschema description. Elementary items, group
items, complete records, and entire areas in the
schema can be omitted from the subschema. When a
group item, a record, or an area is not included in
the subschema description, all subordinate entries
are automatically omitted and cannot be referenced
in the subschema.

Each schema area that is to be included in the
subschema is identified in the Realm Division. If

a schema area is omitted from the subschema, no
records or data items within that area can be
included in the subschema. Omission of an area
implies omission of all subordinate items.

Once a schema area is specified as a realm in the
subschema, any or all of the records in that area
can be included in the subschema. If a record is
omitted, all data items within that record are also
omitted from the subschema. Only those records
within the realms (schema areas) identified in the
Realm Division can be described in the subschema.

When a record is included in the subschema, data
items within the schema record can be omitted from
the subschema record description. Elementary data
items that are not subordinate to a group data item
can be included or omitted as needed in the sub-
schema. If a group data item 1s omitted, all
subordinate data items must also be omitted. For
nested group items, the highest level group item
must be included when a lower level group item is
to be included in the record description. Primary
key items cannot be omitted from the subschema
record description.

Figure 3-1 illustrates a subschema record that
omits several of the data items in the correspond-
ing schema record. In this example, only two
schema areas have been included in the subschema.
The schema records in the CUSTOMER and SALES areas
are the only records that can be specified in the
subschema; the records in the PRODUCTS area are
automatically omitted. The subschema record
CUSTOMER-REC includes the data items CUSTOMER-ID,
MONTHLY-ORDERS, and TOTAL-AMT; all the other data
items have been omitted from the subschema and
cannot be accessed by an application program. If
the group item MONTHLY-ORDERS had been omitted, the
subordinate item TOTAL-AMT could not have been
included in the subschema.

ORDERING OF DATA ITEMS

Data items in a record selected for the subschema
need not be organized in exactly the same sequence
as specified in the schema. The relative hierarchy
of the schema must be maintained when the order of
data items is changed.

Only one restriction is placed on changing the
order of data items in the subschema record
description. Data items that are subordinate to a
group item in the schema must be subordinate to the
same group item in the subschema.

Figure 3-2 illustrates the reordering of data items
from the schema to the subschema.

DEFINITION OF DATA ITEMS

Each data base data item that is to be made avail-
able to a COBOL or Query Update application program
is described in a subschema record description
entry. Data items not included in the subschema
cannot be accessed by a program. The size and
class of the data item can be exactly the same as
described in the schema or, under certain circum-
stances, they can be different. Nonrepeating group
items, which do not exist in the schema, can be
specified in the subschema.

60485200 A

J )

)



hema

AREA NAME 1S SALES.
AREA NAME IS CUSTOMER,
AREA NAME IS PRODUCTS,

RECORD NAME IS CUSTUMER=REC
WITHIN CUSTOMER,

01l CUSTOMER~ID ..
0l CUSTOMER=NAME ...

0l ADDR
0l cClTy
01 STATE

01 Z1P~CODE
01 - PHONE=NUM

03 NUM=ORDERS. ..
03 TOTAL=AMT ..

01 MONTHLY=ORDERS OCCURS 12 TIMES.

Subschema

REALM DIVISION,.
RO CUSTOMERs SALES.
RECORD DIVISION.
0! CUSTOMER~REC.
03 CUSTOMER-ID ..
03 MONTHLY-ORDERS OCCURS 12
TIMES.
05 TOTAL-AMT
01 SALES-REC.

Figure 3-1. Omitting Schema Items From the Subschema

Schema

01 CUSTUMER=~ID
01 INVOICE=-NUM

01 YEAR

01 MONTH

01 0A

0l CHARGE=NUM
01 REMARKS

01l  AMUUNT=DUE

01l  AMOUNT=REC

01 SALES-TaX

01 NUM=]TEMS

01 ITEM OCCURS
03 QUANTITY
03 DESC=aA R
03 UNIT-PRICE ...
03 EXT~PRICE

Subschema

03 CUSTOMER-1ID
03 INVOICE-NUM
03 AMOUNT-REC
03 AMOUNT=-DUE
03 SALES-TAX

03 MONTH
03 DA

03 YEAR

03 REMARKS

03 CHARGE-NUM
03 NUM-ITEMS
03 ITEM OCCURS
0S DESC-A
0S AQUANTITY
0S5 UNIT-PRICE ...
05 ExXT-PRICE

Figure 3-2. Reordering Data Items

Data Size and Class

The size and class of data items in the subschema
are specified by the PICTURE and USAGE clauses.
The schema description designates the size and
class through either the PICTURE or TYPE clause.
When the PICTURE and USAGE clauses are written for
the subschema, the schema description must be
checked to determine that the subschema description
does not conflict with the schema description.

The size of the data item is specified in the sub-
schema by the number of character position designa-
tors (A, X, and 9) in the picture-specification of
the PICTURE clause. Usually, when a data item 1is
described in a picture-specification, the number of

60485200 A

character positions specified in the subschema
should not exceed the number of character positions
specified for the item in the schema. For any
subschema data item that is larger than the corre-
sponding schema item, the DDL compiler issues an
informative diagnostic message. The wuser must
decide when the schema or subschema picture-
specification should be corrected. Figure 3-3 has
examples of size discrepancies that cause the DDL
compiler to issue diagnostics. In example 3, the
subschema picture size 1s five, but the intermal
storage size is one word, which is greater than the
schema size of five. When a conversion error such
as nonblank truncation occurs, the operation is
aborted, CDCS writes a nonfatal error message to
the dayfile, and processing continues.

3-3



Schema

Example 1

CALL DEPROC.

Example 2

01 BBBB  PIC "999".

Example 3
01 cccc  PIC "9(5)".

01 AAAA PIC "X" FOR ENCODING

Subschema

02 AAAA PIC X({5).

02 BBBB  PIC 9(4).

02 CCCC PIC 9(5) USAGE IS
COMP-1.

Figure 3-3. Size Discrepancies of Data Items

Each data item falls into one of eight data class
categories. The data class is determined by the
description of the data item. The data classes and
codes are as follows:

Code Data Class

0 Display alphanumeric

1 Display alphabetic

3 Display integer

4 Display fixed-point

10 Coded binary integer

13 Coded floating-point normalized
14 Coded double-precision (Query

Update subschema only)

15 Coded complex (Query Update
subschema only)

The data class that can be specified in the sub-
schema depends upon the class of the data item in
the schema. Valid subschema data classes for each
schema data class are indicated in table 3-1.

If the schema specifies a CHECK IS PICTURE clause,
the data description in the subschema nust match
the data description in the schema. The CHECK IS
PICTURE clause in the schema definition inhibits
data conversion between the schema and the sub-
schema. Identical schema and subschema data
descriptions are also required for a primary key
item embedded in a record of an area having actual
key file organization.

The data class of an item described in the schema
is determined by either a PICTURE clause or a TYPE
clause. Table 3-2 lists each data class as it is
represented in the schema. The PICTURE and USAGE
clauses in the subschema description of a data item
determine the subschema data class. The COBOL

TABLE 3-1. VALID SCHEMA TO SUBSCHEMA
CLASS CONVERSIONS

Schema Subschema Data Class

Data

Class [0 | 1 | 3| & | 10 | 13 | 14f ] 15¥
0 X X X
1 X X
3 X X X X X X
4 X X X X X

10 X X X X X X
13 X X X X X X
14 X X X X X X
15 X X X X

TQuery Update subschema only

subschema representation of each valid data class
is listed in table 3-3; table 3-4 lists the Query
Update subschema representation of each valid data
class. Refer to appendix G for a summary of data
definition in DMS-170.

Repeating Data Items

Two types of repeating data items can be designated
in the subschema: vectors and repeating groups. A
vector is an elementary data item that is repeated
a number of times in each record. A repeating
group 1s a collection of data items that is
repeated; the entire collection, not individual
data items, is repeated a number of times in each
record.

60485200 A

J )

J D



TABLE 3-2. DATA CLASS REPRESENTATION IN THE SCHEMA
Data Class Schema PICTURE Clause Schema TYPE Clause Internal Representation
0 Nomne CHARACTER Display code, alphanumeric
Character-string (A X 9, None
not all 9s)
1 Character-string (all As) None Display code, alphabetic
3 Numeric-picture integer None Display code numeric can have sign
(9 7T) overpunch in last character position
4 Numeric-picture fixed- None Display code numeric plus implicit
point (9 VT P) or explicit decimal or scaling position
10 None FIXED integer-1, Binary integer
integer-2 (where
integer-1 < 18)
13 None FLOAT integer-1 (where Signed, normalized floating-point
integer-1 < 14) (60-bit)
14 None FLOAT integer-1 (where Two words of normalized floating-point
15 > integer-1 < 29)
15 None TYPE COMPLEX Two words of a complex number
TABLE 3-3. DATA CLASS REPRESENTATION IN THE COBOL SUBSCHEMA
. COBOL Subschema COBOL Subschema
Data Class PICTURE Clause USAGE Clause Internal Representation
0 Alphanumeric (A X 9) DISPLAY (or none) Display code, alphanumeric
(A specification of mixed
As and 9s is treated as
all Xs)
1 Alphabetic (A) DISPLAY (or none) Display code, alphabetic
3 Numeric (9 S) DISPLAY or COMP (or none) Display code numeric, < 18
characters; trailing sign overpunch
if S is specified
4 Numeric (9 S V P) DISPLAY or COMP Display code numeric, { 18 char-
acters; tralling sign overpunch if S
is specified; implicit decimal or
scaling position
10 Numeric (9 S V P) COMP-1 or INDEXT Size < 15; binary integer
13 Numeric (9 S V P) COMP-2 Normalized floating-point

tA prcTURE clause cannot be used to describe an item that specifies USAGE IS INDEX.

60485200 A

3-5




TABLE 3-4. DATA CLASS REPRESENTATION IN THE QUERY UPDATE SUBSCHEMA

Query Update Subschema Query Update Subschema R tati
Data Class PICTURE Clause USAGE Clause Internal Representation
0 Alphanumeric (A X 9) DISPLAY (or none) Display code, alphanumeric
(A specification of mixed
As and 9s is treated as
all Xs)
1 Alphabetic (A) DISPLAY (or none) Display code, alphabetic
3 Numeric (9 S and DISPLAY or COMP Display code numeric, < 18 characters;
insertion and replacement (or none) trailing sign overpunch if S is speci-
characters) fied
4 Numeric (9 S V P and DISPLAY or COMP Display code numeric, < 18 characters;
insertion and replacement (or none) trailing sign overpunch if S is speci-
characters) fied; implicit decimal or scaling
position
10 Numeric (9 S V P and COMP-1, INDEXT, or Size < 15; binary integer
ingertion and replacement LOGICAL
characters)
13 Numeric (9 S V P and COMP-2 Normalized floating-point
insertion and replacement
characters)
14 Numeric (9 S V P and DOUBLE Normalized floating-point (2 words)
insertion and replacement
characters)
15 Numeric (9 S V P and COMPLEX Normalized floating-point
insertion and replacement (2 consecutive words)
characters)
Ta PICTURE clause cannot be used to describe an item that specifies USAGE IS INDEX.

Repeating data items are specified by including the
OCCURS clause in the data description entry. When
a repeating data item in the schema is to be
included in the subschema description, it must be
described as a repeating data item and must conform
to the following rules:

A subschema data item that is repeated a fixed
number of times must correspond to a fixed
occurrence data item in the schema.

The number of occurrences specified in the
subschema OCCURS clause cannot be greater than
the number of occurrences allowed by the schema
description of the data item.

A subschema data item that is repeated a vari-
able number of times must correspond to a
variable occurrence data item in the schema.

If a subschema data item corresponds to a
schema data item that controls a variable
occurrence data 1item, the subschema mnust
include the variable occurrence data item.

A subschema variable occurrence data item must
be the last item in the record.

When the OCCURS ... DEPENDING ON clause is
used, the data name in the clause must refer to
an elementary data item that precedes the entry
containing the clause. The data item cannot be
within a variable occurrence data item.

Vectors

A subschema vector is described with the OCCCURS
clause and the PICTURE or USAGE clause; in the
schema, the OCCURS clause and either the TYPE or
PICTURE clause are used to describe a vector. No
data item can be subordinate to a vector. A schema
vector that is included in the subschema can be
described as a vector or as nested repeating
groups. If the schema vector is described in the
subschema as nested repeating groups, the elemen-
tary data item at the bottom of the hierarchy
corresponds to the vector in the schema. Up to
three levels of nested groups can be specified; the
schema vector must be a fixed occurrence data
item. Example 1 in figure 3-4 illustrates a schema
vector described in the subschema as nested repeat-
ing groups.

60485200 A

J )

J )



Schema

Example 1

01 MONTH=-TOT
OCCURS 12 TIMES.

Example 2

01 MONTHLY-ORDERS OCCURS 12 TIMES.
03 NUM-ORDERS PICTURE #99%,

Example 3

01 MONTHLY-ORDERS OCCURS 12 TIMES.
03 NUM-ORDERS PICTURE #99#.

Example 4

01 NUM-ITEMS PICTURE #99#
CHECK VALUE 1 THRU 1S.
01 ITEM OCCURS NUM-ITEMS TIMES.
03 QUANTITY PICTURE #9(4)#,
03 DESC-A PICTURE #X(16)#.

Example 5

01 NUM-ITEMS PICTURE #2992
CHECK VALUE 1 THRU 1S.
01 ITEMS OCCURS NuM-ITEMS TIMES.
03 QUANTITY PICTURE #9(a)#.
03 AMOUNT

PICTURE #9(a)V9yz

03 TOTAL-AMT PICTURE #29(6)V99#,

03 TOTAL-AMT PICTURE #9(6)V99#,

03 EXT-PRICE PICTURE #9(6)V99%#,.

PICTURE #9(6)Vv99%#,

Subschema

03 HALF-YEAR OCCURS 2 TIMES.
05 GQUARTER OCCURS 2 TIMES.

07 MONTH-TOT PIC 9(4)V99

OCCURS 3 TIMES.

03 MONTHLY-ORDERS OCCURS 12 TIMES.
05 NUM-0ORDERS PICTURE 99.
0S TOTAL-AMT PICTURE 9(6)V99.

03 MONTHLY-ORDERS OCCURS 6 TIMES.
05 NUM=-0ORDERS PICTURE 99,
05 TOTAL-AMT PICTURE 9(6)V99,

03 NUM-ITEMS PICTURE 99.

03 ITEM OCCURS 1 TO 1S5 TIMES
DEPENDING ON NUM-ITEMS.
05 OQUANTITY PICTURE 9(4).
05 DESC-A PICTURE X(16).
0S5 EXT-PRICE PICTURE 9(6)V9Y,

03 NyM=-ITEMS PICTURE 99.

03 ITEMS OCCURS 1 TO o TIMES
DEPENDING ON NUM=-ITEMS.
05 QUANTITY PICTURE 9(4).
05  AMOUNT PICTURE 9(6)V99.

figure 3-4. Examples of Repeating Data Items

Repeating Groups

A repeating group is described with two or more
data description entries. The first entry consists
of the group data name and the OCCURS clause. Each
additional entry is subordinate to the first entry
and describes a repeating group, a vector, or an
elementary data item. The vector or elementary
data item contains the PICTURE clause. Up to three
levels of nested groups can be specified. When
repeating groups and vectors are nested, the vector
is considered to be a repeating group and is in-
cluded in the level count. Example 2 in figure 3-4
illustrates a repeating group data item.

NOTE

Refer to appendix F for recommendations on
the use of repeating groups.

Fixed Occurrence Data Items

A subschema data item that occurs a fixed number of
times must correspond to a fixed occurrence data
item in the schema. Format 1 of the OCCURS clause

60485200 A

specification is used to describe a fixed occur-
rence data item. (Refer to the OCCURS Clause
subsection.)

The integer specified in the clause cannot be
greater than the number of occurrences specified
for the data item in the schema; it can be less
than or equal to the schema number. Examples 2 and
3 in figure 3-4 illustrate fixed occurrence data
items.

Variable Occurrence Data Items

A subschema data item that occurs a variable number
of times must correspond to a variable occurrence
data item in the schema. Format 2 of the OCCURS
clause specification is used to describe a variable
occurrence data item. (Refer to the OCCURS Clause
subsection.)

The maximum number of times the data item can occur
in the subschema must not be greater than the maxi-

mun allowed in the schema description. The OCCURS
clause in the subschema specifies the minimum and
maximum number of occurrences of the repeating data

3-7



item and also specifies the elementary data item
that contains the actual number of occurrences for
the record. The OCCURS clause in the schema speci-
fies the elementary data item that contains the
number of occurrences for the record; the data
description entry for the controlling data item
includes the CHECK clause, which indicates the
ninimum and maximum number of occurrences of the
repeating data item.

The data item that designates the actual number of
occurrences must be an elementary data item and it
must precede the data description entry for the
variable occurrence data item. TIf the schema data
item that controls the variable occurrence data
item is included in the subschema, the variable
occurrence data item must also be included in the
subschema. The controlling data item in the schema
cannot be an independent data item in the subschema.
In example 4 of figure 3-4, the data item NUM-ITEMS
controls the variable occurrence data item ITEM.
If NUM-ITEMS is included in the subschema, ITEMS
must also be included.

The variable occurrence data item must be the last
item in the record. Only subordinate data descrip-
tion entries can follow the entry containing the
OCCURS clause. Variable occurrence data items are
shown in examples 4 and 5 of figure 3-4.

Nonrepeating Group Items

The only group items in the schema are repeating
groups. Nonrepeating group items can be specified
in the subschema by designating a series of related
data items as subordinate entries to a group data
item that is inserted in the subschema descriptionm,
which allows the application program to access
several data items with one request.

A nonrepeating group item consists of three or more
data description entries. The first entry does not
correspond to an entry in the schema; it specifies
the data name for the entire group data item. Each
additional entry 1s subordinate to the first entry
and describes a data item that corresponds to an
entry in the schema. The only restriction placed
on nonrepeating group items is that the relative
hierarchy of the schema be preserved. Figure 3-5
illustrates the insertion of nonrepeating group
items in the subschema.

A concatenated key is a primary or alternate record
key that is declared in the schema and is composed
of a series of contiguous elementary data items.
To make use of this record key, a nonrepeating
group item must be defined in the subschema with
the same name as the key-name specified in the
schema. The subordinate items for this group must
be all of the concatenated data items (or the
subschema aliases for these data-names) specified
in the same order as in the schema KEY clause.
Definition of other subordinate items for the group
item is not allowed. An example of a concatenated
key specification is shown in figure 3-6.

SUBSCHEMA PROGRAMMING
CONVENTIONS

The COBOL or Query Update subschema source program
consists of a series of statements that describe a
portion of the data base. The rules, conventions,
and hierarchical structures of DDL are similar to
those of COBOL.

Schema

01 EMPLOYEE-ID

01 EMPLOYEE-NAME
01 SOC-SEC-NUM

01 ADDR
01 cCITY
01 STATE

01 ZIP-COOE

Subschema

03 EMPLOYEE-~IDENT.
05 EMPLOYEE~ID ..
05 EMPLOYEE-NAME ...
05 SOC-SEC-NUM

03 EMP~-ADDRESS.

05 AODR
0s CITy
05 STATE

05 2ZI1P-CODE

Figure 3-5. 1Insertion of Nonrepeating Group Items

Schema

KEY ID IS CONCAT-KEY < ITEMA,ITEMB,ITEMC >

Subschema

03 CONCAT-KEY.

05 ITEMA . ..
05 ITEMB . ..
05 iITEMC . ..

Figure 3-6. Concatenated Key Declaration

3-8

60485200 A

J D

J

J



LANGUAGE ELEMENTS

DDL source statements are composed of clauses that
contaln reserved words, user-defined names, and
literals. The use of these elements is described
in the following paragraphs. The specilfic formats
of the clauses are defined in the COBOL and Query
Update Subschema Syntax subsection.

Reserved Words

Reserved words are English words, abbreviations,
and acronyms that have special meaning to the DDL
compiler. These: words can be used only as shown In
the format specificatlons. A reserved word must be
spelled correctly; it cannot be replaced by another
word. Over 350 words have been defined as reserved
words. Appendix D contains a complete list of DDL
reserved words used in COBOL and Query Update
subschema definition.

Two types of reserved words are recognized by the
DDL compiler: keywords and optlonal words. A
keyword is a reserved word that must be used in a
specific clause. Keywords are essential to convey
the meaning of a clause to the compiler. An op-
tional word is a reserved word that can be Lncluded
in a clause to iImprove readability. Optional words
are recognized by the compiler but are not needed
to compile the object coding. In the format speci-
ficatlons, keywords are shown as uppercase words
that are underllined; optional words are shown as
uppercase words that are not underlined.

User-Defined Names

Many of the format specifications include names
that the user supplies. User-defined names iden-
tify the schema, subschema, realms, records, data
ltems, index names, and condition names. The type
of name to be supplied is iIndicated in the format
specification by a lowercase word.

The following rules apply to user~-defined names
except for some names used with Query Update (see
the exceptions following the rules):

A name can contain up to 30 characters.

Letters (A-Z), digits (0-9), and hyphens (-)
can be used.

The first character must be a letter.

A hyphen cannot be used to begin or end a name.
Adjacent hyphens cannot: be used.

Spaces (blanks) cannot be used.

A name cannot be spelled exactly the same as a
reserved word.

In a Query Update subschema, realm and subschema
names must conform to the above rules with the
following exceptlions:

Realm and subschema names cannot contain any
hyphens.

If an alias is specified for a realm, then that
name cannot contain hyphens.

60485200 B

Literals

In some formats, the user must supply a literal as
part of the clause. A literal is a string of char-
acters that represents a specific value. Literals
are either numeric or nonnumeric.

Numeric Literals

A numerlc literal can contain the numbers O through
9, the decimal point, and the plus or minus sign.
A decimal point can be included in any character
position except the rightmost position. A plus
sign or a minus sign can precede the number. 1If a
slgn is not included, the literal is treated as a
positive number.

The maximum size for a numeric Lliteral 1is 30
digits; however, only 18 digits can be significant.
Up to 12 leading or trailing zeros can be specified
for input alignment.

Nonnumeric Literals

A nonnumeric literal is a string of up to 255 char-
acters. The string must be enclosed in quotation
marks. Any characters in the DDL character set,
Including the space, can be used in a nonnumeric
literal. 1If a quotation mark is to be included in
the literal, the quotation mark must be specified
twice for each occurrence. For example, "A" "B"
would yield the literal A"B.

Data Reference

Each user-defined name in the subschema must be
capable of being uniquely referenced. Unless the
name itself {s unique because no other name has the
identical spelling, a method for obtaining unique
identificatlon is necessary. . Unique reference is
recognized through the qualification, subscripting,
and identlifier concepts.

Qualification

Qualification is permitted in any clause, other
than a RESTRICT clause, that references a data
name. When a name exists within a hierarchy of one
or more names, the hligher level names can be used
to make the name unique. The data name Is written
followed by the word OF or IN and the qualifier.
The choice between OF or IN is based on readability;
the two words are logically equivalent. Qualifica-
tion mut be made to the level necessary to make the
name unlque; however, qualification can be used
even when the name does not need to be qualified.

Subscripting

Subscripting within the DDL syntax Is permitted
only in the RESTRICT clause. Subscripts are used
to Indicate which occurrence of a repeating group
or elementary item is to be referenced. The data
name is written followed by a positive integer
constant enclosed In parentheses. Specific rules
for uslng subscripts are detailed In the following
paragraphs.



ldentifier

The term identifier is used to indicate a data name
that is referenced uniquely through a combination
of subscripts and qualifiers. When the term iden-
tifier appears in a RESTRICT clause, it assumes the
format shown in flgure 3-7.

OF
data-name-1 {IN data-name-2 | . . .

[_(_ subscript-1 [, subscript-2 [ , subscript—3]] _)_]

Figure 3-7. Identifier Format

Subscripting within the DDL syntax is permltted
only In the RESTRICT clause. Quallifiers and sub-
scripting are independent of each other. A maximum
of five data-name-2 qualifiers can be specified.
They must be listed in the order of innermost to
outermost level of nesting of the group or record;
hence the leftmost qualifier (data-name-2) is the
term with the highest level number.

In the example in figure 3-8, valid references to

item C are given for a COBOL subschema repeatling
group containing A, B, and C,.

DDL Character Set

The set of characters recognlzed by the DDL com-
pller can be combined according to the specified
rules to form names and values In the source
program. The DDL character set consists of the
letters A through Z, the numbers O through 9, and
the following special characters:
Blank or Space

+ Plus Sign

- Minus Sign or Hyphen

, Comma

H Semlcolon

*  Asterisk

. Period or Decimal Point

" Quotation Mark

( Left Parenthesis
) Right Parenthesls
$ Dollar Sign

/ Slash

Punctuation

Most punctuation marks in a DDL source program are
optional., When punctuation marks are used, the
rules are precise and must be followed exactly.
The rules for using punctuation marks are as
follows:

A period is required to terminate a division
heading and each complete statement.

A perlod must be followed by at least one
space. If the punctuation mark is in the last
column of the statement area {(column 72), a
blank 1is assumed to exist Iimmediately after
column 72 and before column 73 of the program
identification area.

A left parenthesis must not be followed by a
space; a right parenthesis must not be preceded
by a space.

At least one dellmiter (a space, comma, oOr
semicolon) must separate successlve words In a
statement.

Commas and semlcolons can be used to separate
clauses in a statement.

A perlod terminates the SS clause (Title Divi-
slon), each AD clause (Allas Division), the RD
clause (Realm Division), each entry introduced
by a level number (Record Division), and the
relation description entry (Relatlon Division).

DDL CODING

DDL source programs can be written on standard
COBOL coding sheets. Coding a COBOL or Query
Update subschema Ls similar to coding the Data
Division of a COBOL application program. Columns 8
through 72 are used to write DDL statements.

Coding DDL Statements

The DDL source program defining a COBOL or Query
Update subschema consists of up to five divisionms;
the Alias and Relation Divisions are optlonal. The

COBOL Subschema Repeating Group

02 A OCCURS 3 TIMES.
04 B OCCURS 6 TIMES.
06 C PICTURE 999.

Valid Identifiers for C

CIN A (3, 5)

C OF B OF A (3}

The default subscript for B is the value 1.

COF BOFA

The default subscripts for both A and B have the value 1.

Figure 3-8. COBOL Subschema Qualification and Subscripting Example

3-10

60485200 B

J

™



divislon name begins in columns 8 through 11 and is
followed by a space, the word DIVISION, and a
period. The remainder of the line must be left
blank,

A division heading is followed by one or more
statements pertalning to that division. In the
Title, Alias, Realm, and Relation Divislons, the
statement begins in columns 8 through 72. 1In the
Record Division, level number 01 begins in columns
8 through 72; all other level numbers begin In
columns 12 through 72.

Sequence Numbers

A sequence number consisting of digits only can be
entered in columns 1 through 6. The sequence num-
ber Is optlional and has no effect on the source
program.

Continuation Lines

Words or literals can be continued from one line to
the next. When a continuation line Is written on
the coding sheet, a hyphen must be entered [n
column 7. The continuation must begin in column 12.

Comment lines

Comments can be printed on the source listing. A
comment line is written on the coding sheet by
entering an asterisk iIn column 7. The comment
begins in column 8 through 72.

COBOL AND QUERY UPDATE
SUBSCHEMA SYNTAX

The source program for a COBOL or Query Update
subschema contains five divislons: Title Divislon,
Alias Division, Realm Divislon, Record Division,
and Relation Division. The following paragraphs
define the format specifications for each clause
that can be used In the source program.

The general format of a COBOL or Query Update
subschema is shown In figure 3-9. For the rules
governing the structure of the subschema, see the
Subschema Structuring Conventlons subsection.

TITLE DIVISION.
{title description entry}.

[ALIAS DIVISION.
Calias description entry.l ...

REALM DIVISION.
{realm description entry}.

RECORD DIVISION.
{record description entry.} ...

RELATION DIVISION.
{relation description entry.} ...

Figure 3-9. General Format, COBOL and
Query Update Subschema

60485200 B

TITLE DIVISION

The Title Division must be the first division in
the DDL source program. It identifies the sub-
schema being described and the schema to which the
subschema applies. The format of the Title Divi-
sion is as follows:

TITLE DIVISION.
{title description entry}.

The title description entry ls a statement contain-
Ing one clause that names the subschema and identi-
fies the schema. One tltle description entry must
be Included In the Title Division. The DDL compilec
accepts only one statement in this divislon.

SS Clause

The SS clause names the subschema being created and
speclfles the schema that describes the data base.
COBOL or Query Update appllication programs refer-
ence the subschema by the name established in this
clause. The format of the SS clause is shown in
figure 3-10.

SS subschema-name WITHIN schema-name.

Figure 3-10. $S Clause Format

The subschema-name entered In this clause is the
name used whenever the subschema is referenced
after Lt has been compliled and stored in the sub-
schema llbrary. The name must be unlique among
subschemas assocliated with the designated schema.

The schema-name identifies the schema to which the
subschema applies. The schema wmust exist within
the system and be recognized by the CYBER Database
Control System (CDCS). The schema describes the
entire data base of which the subschema describes
only a portion.

Other Clauses

Future software releases will provide other clauses
that can be Included in the title description
entry. Only one clause Is currently acceptable in
the Title Division.

ALIAS DIVISION

The Allas Divislon is optlional and, if Included,
must immediately follow the Title Division. This
divislon provides the means to assign names that
are to be used In the subschema in place of names
defined In the schema. The format of the Allas
Division is as follows:

ALIAS DIVISION.

{alias description entry.}...



The alias description entry is a statement that
specifies a name to be used in the subschema and in
the application programs instead of a name used in
the schema. Each alias description entry assigns
one alias. A separate entry 1is included for each
name in the schema to be assigned an alias. One
clause is used in an alias statement.

Assigning an alias in the subschema does not change
the name in the schema; the alias is a substitute
name that is used only in the subschema and in the
application programs referencing that particular
subschema. When an alias has been assigned, the
name in the schema cannot be used in the subschema
or in the application programs.

AD Clause

The AD clause assigns an alias to a name defined in
the schema. The alias becomes the name recognized
by the subschema and by the COBOL or Query Update
application programs that reference the subschema.
The AD clause eliminates the need to rewrite exist-
ing application programs that use names different
from the names defined in the schema. The format
of the AD clause is shown in figure 3-l11.

REALM realm-name-1 realm-name-2
AD{ RECORD record-name-1 » BECOMES < record-name-2
DATA data-name-1 data-name-2

Figure 3-11. AD Clause Format

An alias can be assigned to a realm, a record, or a
data item. A specific name in the schema can have
only one alias in the subschema. Each realm-,
record-, or data-name-l1 must be a unique realm,
record, or data name; however, data-name-l can be
qualified to make it unique. The same alias cannot
be used for more than one realm-, record-, or
data-name-2 entry. Data-name-~2 can be qualified to
make the name unique.

When a realm is assigned an alias, the REALM option
is entered in the AD clause. The name entered as
realm-name-1 must be defined in the schema as an
area. The name entered as realm—name-2 1is then the
name used in the subschema and in the application
programs to reference that area in the schema.

A record in the schema is assigned an alias by
entering the RECORD option in the AD clause. The
name entered as record-name—1 must be the name of a
record defined in the schema. The name entered as
record-name-2 then becomes the record name that is
used in both the subschema and the application
programs referencing the subschema.

A data item in the schema is assigned an alias by
entering the DATA option in the AD clause. The
name entered as data-name-l must be the name of a
data item in the schema. The name entered as
data-name-2 then becomes the data name that is used
in both the subschema and the application programs
referencing the subschema.

The use of the AD clause in the Alias Division is
illustrated in figure 3-12.

Other Clauses

Only the AD clause can be included in an alias
description entry. No additional clauses are
planned for the Alias Division.

REALM DIVISION

The Realm Division must be included in the DDL
source program. Lf the Alias Division is included,
the Realm Division immediately follows it; other-
wise, the Realm Division follows the Title Divisionm.
The schema areas that are to be made available to
the subschema as realms are specified in the Realm
Division. The format of the Realm Division is as
follows:

REAIM DIVISION.
{realm description entry}.

The realm description entry is a statement consist—
ing of one clause that identifies the schema areas
to be used as realms in the subschema. One state-
ment can specify as many realms as needed for the
subschema.

RD Clause

The RD clause identifies the specific schema areas
that are to be used in the subschema and in the
COBOL or Query Update application programs refer-
encing the subschema. An area in the schema is
equivalent to a realm in the subschema. A realm is
equivalent to a file in the application program.
The format of the RD clause is shown in figure 3-13.

Schema

AREA NAME IS SALES.
RECORD NAME 1S SALES-REC
01 CUSTOMER-ID

01 INVOICE-NuM

01 AMOUNT-DUE

) Subschema

ALIAS DIVISION.

AD REALM SALES BECOMES SALES-FILE.
AD RECORD SALES-REC BECOMES SALES.
AD DATA CUSTOMER-ID BECOMES CUST-NO.
AD DATA INVOICE-NUM BECOMES INV-NO.
AD DATA AMOUNT-DUE BECOMES AMT~DUE.

Figure 3-12.

3-12

Assigning Aliases

60485200 A

J )

J )



{ALL

realm-name-1  [realm-name-2] .. }

Figure 3-13. RD Clause Format

Realms for the subschema are selected from the
areas in the schema. One or more realms are speci~
fied by entering the realm names in the RD clause.
If an alias was assigned to a realm in the Alias
Division, the alias is used in the RD clause. When
all areas in the schema are to be made available to
the subschema, the word ALL can be used in the RD
clause. Unless ALL 1s specified, only those realms
named in the RD clause are available to the
subschema and to the programs referencing the
subschema.

Other Clauses

Future software releases will provide other clauses
that can be included in the realm description
entry. Only one clause is currently acceptable in
the Realm Division.

RECORD DIVISION, COBOL SUBSCHEMA

The Record Division immediately follows the Realm
Division. It specifies the record type to be made
available to a COBOL application program and
describes the format of the data in each record
type. The format of the Record Division is as
follows:

RECORD DIVISION.
{record description entry.}...

The Record Division is similar to the File Section
in the Data Division of a COBOL program. When a
COBOL program specifies a subschema, the record
description entries in the subschema Record Divi-
sion replace the file description entries normally
written in the COBOL program.

The records within the realms specified in the
Realm Division are described in the Record Divi-
sion. Only those records that are to be used by
the COBOL programs are included. The record
description entry consists of a series of state-
ments (data description entries) that describe the
data as it is used by the COBOL programs.

The first data description entry must be level
number O0l, the record name entry. Subsequent
entries begin with level numbers 02 through 49 for
group and elementary data items, level number 66
for renaming a data item, and level number 88 for
defining values to be associated with a conditiom.
The formats for data description entries are shown
in figure 3-14.

JUSTIFIED Clause

The JUSTIFIED clause specifies nonstandard posi-
tioning of data within a receiving field. The
format of the JUSTIFIED clause is shown in figure
3-15.

60485200 A

01 record-name

Format 1
level-number  data-name
[JUSTIFIED clause]
[OCCURS clause}
[PICTURE clause]
[REDEFINES clause}
[SYNCHRONIZED clause]
[USAGE clause] .

Eormat 2
66 data-name

RENAMES clause.

ormat 3

88 condition-name
VALUE clause.

Figure 3-14. Formats of Data Description
Entries, COBOL Subschema

JUSTIFIED
{JUST }RIGHT

Figure 3-15. JUSTIFIED Clause Format,
COBOL Subschema

This clause can be specified only for nonnumeric
elementary data items. JUST is the legal abbrevi-
ation for JUSTIFIED.

The JUSTIFIED clause overrides the normal position-
ing of data when the size of the receiving field
does not equal the number of characters in the data
item. When the receiving field contains fewer
character positions than the data item, positioning
occurs as follows:

In normal positioning, the data item is aligned
at the leftmost character position and trun-
cated at the right.

If the JUSTIFIED clause is specified, the data
item 1is aligned at the rightmost character
position and truncated at the left.

When the receiving field contains more character
positions than the data item, positioning occurs as
follows:

In normal positioning, the data item is aligned
at the leftmost character position and blank
filled at the right.

3-13



If the JUSTIFIED clause is specified, the data
item is aligned at the rightmost character
position and blank filled at the left.

Figure 3-16 illustrates character positioning.

OCCURS Clause

The OCCURS clause is used to indicate a repeated
data item where all occurrences of the data item
are identical in every respect except value. The
data item can be an elementary item or a group

item. The format of the OCCURS clause is shown in
figure 3-17.

NOTE

Refer to appendix F for recommendations on
the use of repeating groups.

The KEY and INDEXED options are not used by CDCS;
the options can be included in an OCCURS clause for
use by the COBOL application program. The OCCURS
clause must not be specified in a data description
entry that has level number 66 or 88.

Data Receiving
Picture Justified Atem Field
9(5) Right EB lllegal; item is numeric.
X{5) B Euu Left-justified normally.
X(5) Right nu EHE Right-justified; blanks filled in.
X(2) E E Left-justified normally; right character truncated.
X(2) Right H E Right-justified; left character truncated.
Figure 3-16. Character Positioning
Format 1
OCCURS integer-2 TIMES
[{ SISECE:ENII)I\IISG} KEY IS data-name-2 [data-name-3] . . ] .
DESCENDING
[INDEXED BY index-name-1 [index-name-2} . . . ]
Format 2
OCCURS integer-1 TO integer-2 TIMES DEPENDING ON data-name-1
[{ ASCENDING } KEY IS data-name-2 [data-name-3] . . ] .
DESCENDING
[INDEXED BY index-name-1 [index-name-2] . . ]

Figure 3-17.

OCCURS Clause Format, COBOL Subschema

60485200 A

J )

J )



A data description entry with format 1 of the
OCCURS clause can be subordinate to another entry
with either format of the OCCURS clause. An entry
with format 2 cannot be subordinate to an entry
with the OCCURS clause. Up to three levels of
nested data items can be specified with the OCCURS
clause. When repeating groups and vectors are
nested, the vector is considered to be a repeating
group and is included in the level count.

Integer-1 and integer-2 must be positive numbers.
In format 2, integer-2 must be greater than
integer-1. The value of integer-l1 can be zero;
integer-2 must never be zero.

An elementary data item described with the OCCURS
clause must also be described with the PICTURE or
USAGE clause. A group data item cannot be described
with both the OCCURS clause and the PICTURE clause.

When an item occurs a fixed number of times, format
1 is used and integer-2 specifies the exact number
of occurrences. When an item occurs a variable
nunber of times, format 2 is used and the number of
occurrences for each record 1is determined as
follows:

Integer-1 represents the minimum number of
occurrences.

Integer-2 represents the maximum number of
occurrences.

Data-name-1 references a data item whose
current value represents the number of occurr-
ences. The value of data—-name-l must be a
positive value within the range of integer-1
through integer-2.

In format 2, data-name-l1 names an elementary item
that is unique or can be made unique by qualifica-
tion. It cannot be subscripted and 1t should not
be described as COMPUTATIONAL-2. The size of the
data item cannot exceed six characters. The ele-
mentary data item must precede the group data item
that references it.

A data item that occurs a variable number of times
must be the last item in a record description
entry. The data description entry that contains
the OCCURS clause can only be followed by subordi-
nate entries.

If the OCCURS clause is used with a group data
item, any data-name belonging to the group must be
referenced by subscripting or indexing whenever it
is used as an operand, unless the data-name is the
object of a REDEFINES clause. Other clauses
specified with the OCCURS clause apply to each
occurrence of the data item.

ASCENDING/DESCENDING KEY Option

When repeated data items are sequenced, the
ASCENDING KEY or DESCENDING KEY option specifies
the order according to the values of data-name-2,
data-name-3, etc. This option can be included in
the OCCURS clause for use by the COBOL program; it
is not used by CDCS.

60485200 A

The data-names in the KEY option can be qualified.
Data-name-2 references either the entry containing
the OCCURS clause or a subordinate entry in a
repeating group item. Data-name-3 and any addi-
tional data-names specify entries subordinate to
the group item that contains the OCCURS clause.

If data-name-2 does not reference the entry con-
taining the OCCURS clause, the following conditionms
apply to the key data-names:

All items identified by the data-names must be
subordinate to the group item containing the
OCCURS clause.

None of the key data~names can reference an
item that contains an OCCURS clause.

No item between the entry containing the KEY
option and the entries identified by the key
data~names can be described with an OCCURS
clause.

INDEXED BY Option

The INDEXED BY option is used when the entry con-
taining the OCCURS clause or an item subordinate to
it is referenced by indexing. This option 1is
included only for use by the COBOL program; it is
not used by CDCS.

The index—name specified in this option is not
described anywhere else in the Record Division. It
is not data and cannot be associated with any data
hierarchy. The format and allocation of the index-
name are hardware dependent. The index-name must
be unique; it cannot be qualified.

PICTURE Clause

The PICTURE clause describes the general character-
istics of an elementary data item in terms of its
size and class. The location of an operational
sign or an assumed decimal point can also be indi-
cated in the clause. The format of the PICTURE
clause is shown in figure 3-18.

PICTURE
pIC

} IS picture-specification

Figure 3-18. PICTURE Clause Format,
COBOL Subschema

This clause can be specified only for elementary
data items. It cannot be used with a level 66,
level 88, or index data item. PIC is the legal
abbreviation for PICTURE.

The class of a data item is determined by the type
of characters in the picture-specification. The
characters 9, S, V, and P are used to describe
numeric data items. An alphabetic data item is
described by the character A. The picture-
specification for amn alphanumeric data item
contains the character X or any combination of the
characters X, 9, and A.



The size of a data item is determined by the number
of 9, X, or A characters in the plcture-
specification. The characters S, V, and P are not
counted in determining the size. Consecutive
identical characters in the string can be specified
by a number in parentheses following the character.
For example: 99999999 is equivalent to 9(8),
XXXXXXXX 1is equivalent to X(8), and 9999AAAA is
equivalent to 9(4)A(4); each indicates a data item
with eight character positions.

The picture-specification can contain a maximum of
30 characters, including parentheses; however, a
pictured item can be larger. A  picture-
specification containing the character A repeated
75 times is too long, but A(75) is a valid descrip-
tion for a data item with 75 alphabetic characters.
Numeric data items can contain only 18 significant
digits; additional leading or trailing zeros for
decimal point alignment can be specified up to a
total of 30 characters.

When a PICTURE clause is specified with a USAGE
clause, the specifications must be compatible. For
example, COMP usage must have a numeric picture
specification.

Alphabetic Data Items

The picture-specification to describe an alphabetic
data item can contain only the character A. The A
can be specified as many times as necessary as long
as the size of the item does not exceed 32767
characters.

The function of the characters in a PICTURE clause
picture-specification for an alphabetic data item
is as follows:

A Each A in the picture-specification repre-
sents a character position that can contain
either a letter of the alphabet or a space
(blank).

Some typical alphabetic data items are shown in
figure 3-19.

Picture- Display Code
Specification Data Value Stored
AAAAA or A(B} ~ COSTS EE TIS |
AAAA or A(4) WXYZ ma

Figure 3-19, Alphabetic Data Items

Numeric Data Items

The picture-specification to describe a numeric
data item can contain a combination of the char-
acters 9, S, V, and P. Each 9 represents a
significant digit; a maximum of 18 significant
digits can be specified. The character P is used
to indicate leading or trailing zeros for decimal
point alignment. The combined number of positions
indicated by the characters 9 and P cannot exceed
30 characters.

Unsigned numeric data items consist of a combina-
tion of the digits O through 9. 1In a signed
numeric data item, the minus sign is combined with
the rightmost digit in the item; the plus sign is
not carried in the number unless it already exists
in the data. The representation of the minus sign
in the rightmost digit is shown in figure 3-20.

Digit o|1]2|3|4]|5]|6]7|8]9

Minus
Representation | V| J | K[ L|[M|NJO P [Q[R

Figure 3-20. Minus Sign Representation

The function of the characters in a PICTURE clause
picture-specification for a numeric data item is as
follows:

9 Each 9 in the picture-specification repre-
sents a digit position that can contain a
number. The 9 1is counted in determining
the size of the data item.

S The character S is wused in the picture-
specification to indicate that the data
item has an operational sign. The S nust
be the leftmost character in the picture-
specification; it cannot appear more than
once. The operational sign does not occupy
a character position in the data item and
is not counted in its size.

V The character V is used in the picture-
specification to indicate the position of
an assumed decimal point. A V as the
rightmost character in the picture-
specification is redundant. The V cannot
appear more than once in the picture-
specification. Since the assumed decimal
point does not occupy a character position,
the V is not counted in the size of the
data item. An explicit decimal point {is
valid in the schema but not in the sub-
schema.

P The character P in the picture~specification
indicates an assumed decimal scaling posi-
tion. It is used to specify an assumed
decimal point when 1its position is not
within the number that appears in the data
item. If the assumed decimal point extends
beyond the rightmost digit, one P is speci-
fied for each implied position between the
rightmost digit and the assumed decimal
point. Similarly, if the assumed decimal
point extends beyond the leftmost digit,
one P is specified for each implied posit-
ion between the leftmost digit and the
assumed decimal point. Since the P indi-
cates an assumed decimal point, a V in the
picturespecification would be redundant.
The character P is not counted in determin-
ing the size of the data item; however, it
is counted in determining the maximum
number of digit positions (30) in numeric
data items.

Some typical numeric data items are shown in figure
3-21.

60485200 A

R



Picture-Specification Data Value Display Code Stored
999 123 11213
99v999 12345 1121314156
+
S99va9 +1234 112 )3 1}|4
PPP9999 .0001234 10 0 0J1]2)3|4
SPPP9999 -.0001234 t0 0 01 [2]3 4
S998PPP -123000. 1{2]3]o 0 o
Figure 3-21. Numeric Data Items
f - Alphanumeric Data Items
) level-number data-name-1 REDEFINES data-name-2
The picture-specification to describe an alpha- -

numeric data item contains either a combination of
the characters 9, A, and X or only the character

X. The size of the data item cannot exceed 32767 Figure 3-23. REDEFINES Clause Format,

COBOL Subschema

characters.

The function of the characters 9 and A is the same NOTE

as for numeric and alphabetic data items; the

function of the character X is as follows: Refer to appendix F for recommendations on

the use of the REDEFINES clause.
X Each X in the picture-specification repre-
sents a character position that can contain

any character in the DDL character set. This clause can be specified for both elementary

. and nonrepeating group data items. The level

Some typical alphanumeric data items are shown in number and size of data-name-l1 and data-name-2 must
figure 3-22. be identical. The REDEFINES clause cannot be used

with a level 01, level 66, or level 88 data item.

REDEFINES Clause

The data description entry for data-name-2 cannot

The REDEFINES clause allows data to be described in contain an OCCURS clause. Data-name-2 can be
an alternate format. The redefined data item is subordinate to an entry containing an OCCURS
given a new name; since it is still the same data clause, but data-name-2 cannot be subscripted or
value, it occupies the same physical area in memory. indexed to reference a specific occurrence of the
t The REDEFINES clause is not used by CDCS; it can be data 1item. Data-name-1 can be described as a
) included in the subschema for wuse by the COBOL repeating data item as long as the total number of
application program. The format of the REDEFINES character positions is equal to the number of
clause is shown in figure 3-23. characters in data-name-2.
Picture-Specification Data Value Display Code Stored
XXXXXXXX or X(8) ABCD-*** [ale{c|o|-[-]"]"]
XXXXXXXX or X(8) 123.4567 [1]2]3] |a]s]6]7]
AAAA999 ABCD123 [als]c|p]1]2]3]
A(4)9(3) ABCD123 {als]c|pf1]2]3]

Figure 3-22. Alphanumeric Data Items

60485200 A 3-17



Data-name-2 must not be qualified even if it is not
unique; data~name-2 can only refer to the previous
entry with the same level number. If the REDEFINES
clause is used for an elementary data item, no
entries can be specified between the entry refer-
enced by data-name-2 and the entry containing the
REDEFINES clause. If a group data item is being
redefined, only subordinate entries can be speci-
fied between the entry referenced by data-name-2
and the entry containing the REDEFINES clause.

Multiple redefinitions of the same data item are
allowed; data-name-2 in each entry must reference
the entry that originally defined the data item.
Within the Procedure Division of the COBOL applica-
tion program, the original data-name and the
redefined data-names can be used to reference the
data item.

The use of the REDEFINES clause is illustrated in
figure 3-24.

SYNCHRONIZED Clause

The SYNCHRONIZED clause causes an elementary data
item to start or end on a word boundary within the
computer memory. The format of the SYNCHRONIZED
clause is shown in figure 3-25.

This clause can only be used in a data description
entry for an elementary data item. SYNC is the
legal abbreviation for SYNCHRONIZED. If neither
LEFT nor RIGHT is specified, LEFT is assumed and a
warning diagnostic is issued.

Data items are normally packed without regard for
machine words. The SYNCHRONIZED clause causes the
data item to be allocated as many whole computer
words as needed to contain the item. No other data
item can occupy any of the character positions
between the leftmost and rightmost word boundaries
of the words allocated to the data item. If the
data item does not use all the character positions
between the btoundaries, the unused character posi-
tions are included in:

The size of any group item to which the elemen-
tary item belongs

The character positions redefined when the data
item is referenced in a REDEFINES clause

5 SYNCHRONIZED I LEFT
l SYNC ‘ RIGHT

Figure 3-25. SYNCHRONIZED Clause Format,
COBOL Subschema

SYNCHRONIZED LEFT places the leftmost character of
the data item in the leftmost position of the first
word allocated to the data item. Subsequent char-
acters are placed in successive positions to the
right. TIf more than one word is needed, consecu-
tive words are allocated from left to right. The
unused portion of the last word is not available.

SYNCHRONIZED RIGHT places the rightmost character
of the data item in the rightmost position of the
last word allocated to the data item. Preceding
characters are placed in successive positions to
the left. If more than one word is needed, conse-
cutive words are allocated to the left. The unused
portion of the first word is not available.

When a COBOL application program references a data
item that has been described with the SYNCHRONIZED
clause, the original size of the data item is used
in determining any action that depends on size.
The original size of the data item is the size
indicated in the PICTURE clause.

The operational sign in a data item that is synch-
ronized appears in its normal position. The LEFT
or RIGHT option has no effect on the positioning of
the operational sign.

Vhen an entry is described with both the
SYNCHRONIZED clause and the OCCURS clause, each
occurrence of the data item is synchronized. This
also applies to a synchronized item that is sub-
ordinate to an entry containing the OCCURS clause.

USAGE Clause

The USAGE clause specifies the internal representa-
tion of a data item in terms of the primary use of
the data item. The format of the USAGE clause 1s
shown in figure 3-26.

hema

Example 1

01 STOCK=-NUM PICTURE #X(6)#.

Example 2

02 CHARGE=-NUM PICTURE #x(10)#.

Subschema

03 STOCK=NUM PICTURE X(6).
03 STOCK-ID REDEFINES STOCK-NUM.
0S5 TYPE-ID PICTURE XX.
0S5 COLOR PICTURE X(4).

02 CHARGE=-1D.REDEFINES CHARGE=-NUM
PIC XX OCCURS S TIMES.

Figure 3-24. Redefining Data Items

3-18

60485200 A

J D

J



( COMPUTATIONAL \

COMP

COMPUTATIONAL-1
COMP-1

USAGE IS {' cOMPUTATI - }
COMP-2
DISPLAY
INDEX

\ /

Figure 3-26. USAGE Clause Format,
COBOL Subschema

This clause can describe a data item at any level.
When the USAGE clause is specified for a group
item, it applies to each subordinate item in the
group. The USAGE clause of an elementary item in a
group cannot contradict the USAGE clause of the
group item. If the USAGE clause 1is not specified
for an elementary item or for any group to which
the elementary item belongs, DISPLAY is assumed.
COMP, COMP-1, and COMP-2 are legal abbreviations
for COMPUTATIONAL, COMPUTATIONAL-1, and
COMPUTATIONAL-2.

A data item described as COMPUTATIONAL,
COMPUTATIONAL-1, or COMPUTATIONAL-2 must be numeric
with a size not exceeding 18 significant digits.
If a group item is described as computational, the
elementary items within the group are all computa-
tional; however, the group item itself is not
computational and cannot be used in computations.

When a PICTURE clause is specified with a USAGE
clause, the specifications must be compatible.

COMPUTATIONAL Option

A COMPUTATIONAL data item has a decimal numeric
value. The PICTURE picture-specification can only
contain the characters 9 (digit position), S
(operational sign), V (implied decimal point), and
P (assumed decimal scaling position).

COMPUTATIONAL-1 Option

The COMPUTATIONAL-1 format describes a fixed-point
integer, which 1s represented 1internally as a
48-bit binary integer, right-aligned in the word.

A corresponding PICTURE clause must be numeric. If

a PICTURE clause is not specified, the default is
PIC 9.

COMPUTATIONAL-2 Option

A COMPUTATIONAL-2 data item is stored as a normal-
ized floating-point binary representation of a
decimal number. The decimal point 1location 1is
carried in the data item itself as a binary expo-
nent. The data item 1is single-precision and is
stored in one computer word.

60485200 A

A corresponding PICTURE clause must be numeric. If
a PICTURE clause is not specified, the default is
PIC 9.

DISPLAY Option

A DISPLAY data item 1s stored in display code
format. The data item can be alphabetic, numeric,
or alphanumeric. When no USAGE clause is associ-
ated with a data item, DISPLAY is the default
format.

INDEX Option

The USAGE IS INDEX clause specifies a data item
that is used with indexed tables. The index data
item contains a value that must correspond to an
occurrence number of a table element. It cannot be
a conditional variable (level 88 data item). The
INDEX option is not used by CDCS; it can be in-
cluded in the subschema description for use by the
COBOL application program.

An index data item 1is an elementary item, one
computer word in length, and binary in format. Its
mode corresponds to an item described as
COMPUTATIONAL~1; the item must be numeric and must
not exceed 18 digits.

The SYNCHRONIZED, JUSTIFIED, and PICTURE clauses
cannot be used to describe a group or elementary
item that specifies USAGE IS INDEX.

RENAMES Clause

A level 66 data description entry uses the RENAMES
clause. This clause permits alternate grouping and
renaming of data items. The RENAMES clause is not
used by CDCS; it can be included in the subschema
description for use by the COBOL application pro-
gram. The format of the RENAMES clause is shown in
figure 3-27.

66 data-name-1 RENAMES data-name-2

THRU
THROUGH

} data-name-3

Figure 3-27. RENAMES Clause Format,
C0BOL Subschema

This clause is always used in a level 66 entry. No
other clause can be included in a level 66 entry.
The RENAMES clause cannot be used to rename another
level 66 entry or a level 88 entry. THRU is the
legal abbreviation for THROUGH.

More than one level 66 entry can rename the same
data item. Level 66 entries must be the last
entries defined in a record. No entry can be sub-
ordinate to a level 66 entry.

3-19



Data-name-1 cannot be used as a qualifier; data-
name-2 and data-name-3 can be qualified. The
entries referred to by data~name-2 and data-name-3
cannot be described with the OCCURS clause or be
subordinate to an entry described with the OCCURS
clause. When the THRU option is included, none of
the data items within the specified range can be
variable-occurrence data items. Data-name-2 and
data-name-3 must be names of elementary items or
groups of elementary items. Data-name-3 cannot be
the same name as data-name-2 or subordinate to
data-name-2.

The THRU option is wused to rename a series of
consecutive elementary or group items. Data-name-1
is a group item that includes all elementary items
beginning with data-name~2 (or the first elementary
item if it is a group item) and ending with data-
name-3 (or the last elementary item if it is a
group item).

If the THRU option is not used, data-name-1 can be
either an elementary item or a group item. Data-
name—-1 1is an elementary item if data-name-2 is an
elementary item or a group item if data-name-2 is a
group item.

The use of the RENAMES clause is 1illustrated in
figure 3-28.

VALUE Clause

The VALUE clause specifies the values associated
with a condition name. It is used in a level 88
data description entry. The VALUE clause is not
used by CDCS; it can be included in the subschema
description for use by the COBOL application pro-
gram. The format of the VALUE clause is shown in
figure 3-29.

This clause defines one or more values or ranges of
values for a condition-name. It is always used in
a level 88 entry and is the only clause that can be
used in a level 88 entry. THRU is the legal abbre-
viation for THROUGH. The THRU option is used to
specify a range of values. Literals that specify a
range must appear in ascending order.

The condition-name is the name assigned to the
values an item can assume. The following rules
apply to a condition-name and {ts associated VALUE
clause:

The condition-name can describe only an elemen-
tary data item; the name cannot be used to
describe a repeating group or renamed item.

The condition-name nust immediately follow the
data item to which it refers.

Schema

01 JANUARY PICTURE #X(31)#.
01 FEBRUARY PICTURE #X(29)2.
01 MARCH PICTURE #X(31)#.

01 DECEMBER PICTURE #X(31)#.

Subschema

33 CURRENT-YEAR.
0S JANUARY PICTURE X(31).
05 FEBRUARY PICTURE x(29).

0% DECEMBER PICTURE X(31).

66 FIRST-HALF RENAMES JANUARY
THRU JUNE.

66 SECOND-HALF RENAMES JULY
THRU DECEMBER.

66 FIRST-QUARTER RENAMES
JANUARY THRU) MARCH.

66 LAST=QUARTER RENAMES
OCTOBER THRU DECEMBER.

Figure 3-28.

Renaming Data Items

88 condition-name {

THRU

VALUE IS

literal-1 IHRU
VALUES ARE{ o

GH } literal-2

literal- RN literal-4
iteral-3 { ROU H} itera

figure 3-29. VALUE Clause Format, COBOL Subschema

60485200 A

J

)



( The condition-name must be unique oanly when quotation marks. Example 1 in figure 3-30

: describing the same data item; the name can be illustrates valid literals for alphanumeric
duplicated for different data items. For display target items.

example:

‘ Alphabetic display target items (data class 1)

02 ITEMI PIC X(20).

88 NAMEl VALUE "ABCDE". Literals specified for alphabetic display
02 ITEM2 PIC 999. target items must be nonnumeric and can
88 NAME1 VALUE 123. contain a maximum of 255 characters. The

literal length must not exceed the target
item picture length. USAGE DISPLAY cannot

Level 88 Literals be used because data class defaults to 0
rather than to 1. Literals must be en-
Specific rules apply to the use of literals in the closed in quotation marks. Example 2 in
VALUE clause. The rules are defined in the fol- figure 3-30 illustrates valid 1literals for
lowing text. The term target item is used to alphabetic display target items.
identify the elementary data item described by the
condition-name. Integer display target items (data class 3)
Alphanumeric display target items (data class 0) Literals specified for integer display
target items must be numeric and can con-
Literals specified for alphanumeric display tain a maximum of 18 digits. The literal
target items must be nonnumeric and can length must not exceed the target item
contain a wmaximum of 255 characters and picture length. If USAGE COMP is specified
digits. The literal length must not exceed with no PICTURE clause, literal length must
(GW the target item picture length. If USAGE not exceed one digit and a separate opera-
DISPLAY is specified with no PICTURE tional sign is not allowed. Example 3 in
clause, literal length must not exceed one figure 3-30 illustrates valid literals for
character. Literals must be enclosed in integer display target items.
Example 1

02 ITEMALPNUM.
88 L88 VALUE #ABCD#, #1234# THRU #56789%#.

(W\ Example 2

02 ITEMALPHA PIC A(S).
88 L88 VALUE #ABCD#., #ABCODEZ,.

Example 3

02 ITEMNUM PIC 9999,
88 188 VALUE 1y 100y S5555.

02 ITEMNUM PIC S$9999.
88 L88 VALUE =100y -20s 0+ +100+ 555S.

02 ITEMNUM USAGE COMP.
88 L88 VALUE 0+ 1s S» 9.

Example 4
02 ITEMFXPT PIC 999Vv99.
88 LB88 VALUE 0s 100s 100.5s 100.55.

02 ITEMFXPT PIC S999v99.
88 LB8 VALUE =~100.55+ ~100s Oy +100s 100.55.

02 ITEMFXPT PIC PPP999,
88 L88 VALUE .0001» .00012s .000123.

02 ITEMFXPT PIC 999PPP.
88 L88 VALUE 1000+ 123.000.

Figure 3-30. Examples of valid Level 88 Literals

{ 60485200 A 3-21



Fixed-point, binary integer, and coded floating-
point display target items (data class 4, 10,
13)

Literals specified for fixed-point, binary
integer, and coded floating-point must be
numeric. The 1literal 1length mnust not
exceed the target item picture length. If
scaling zeros (P) are not specified, pic-
ture length cannot exceed 18 characters
excluding the decimal point. If scaling
zeros are specified, picture length cannot
exceed 30 characters and significant digit
count cannot exceed 18 characters. If
USAGE COMP-1 (data class 10) or USAGE
COMP-2 (data class 13) is specified with no
PICTURE clause, literal 1length must not
exceed one character. Example 4 in figure
3-30 illustrates valid literals for these
target items.

Level 88 Figurative Constants

A figurative constant is a fixed value with a
predefined name. When the name is referenced in a
source program, the constant associated with the
name 1s automatically generated in the object
program. A figurative constant can be substituted
for a literal in the VALUE clause.

Specific rules apply to the use of figurative
constants in the VALUE clause. The rules are
defined in the following text. The term target
item is used to identify the elementary data 1item
described by the condition-name.

HIGH-VALUES

When the HIGH-VALUES figurative constant is
specified, the target item must be alphanu-
meric. A PICTURE clause with the character
X or USAGE DISPLAY must be specified.
Example 1 in figure 3-31 illustrates valid
use of HIGH-VALUES.

LOW-VALUES, SPACES

When the LOW-VALUES or SPACES figurative
constant is specified, the target item must
be either alphabetic or alphanumeric, or
USAGE DISPLAY must be specified. Example 2
in figure 3-31 illustrates valid use of
LOW-VALUES and SPACES.

ZERO, ZEROS, ZEROES

When the ZERO, ZEROS, or ZEROES figurative
constant is specified, the target item must
not be alphabetic (data class 1); all other
data classes are allowed. Example 3 in
figure 3-31 illustrates valid use of ZERO,
ZEROS, and ZEROES.

ALL "literal"

When ALL "literal" or ALL figurative-
constant is specified, the target item must
be alphanumeric or USAGE DISPLAY must be
specified. The 1length of the 1literal
specified in the ALL clause must not exceed
the target item picture length. If USAGE
DISPLAY is specified with no PICTURE
clause, literal length must not exceed one
character.

3-22

Example 1

02 ITEMA PIC X(25).
88 L8A VALUE HIGH-VALUES.

02 ITEMA USAGE DISPLAY.
88 LB& VALUE HIGH-VALUES.

Example 2

02 ITEMA PIC Xx(25).
88 L8B VALUE LOW-VALUES.

02 ITEMA USAGE DISPLAY.
88 188 VALUE SPACES.

Example 3

02 ITEMA PIC 999,
88 L88 VALUE ZEROES.

02 ITEMA USAGE COMP,
88 L88 VALUE ZERO.
88 (881 VALUE ZEROS.

Example 4

02 ITEMA PIC Xx(S).
88 L8B VALUE ALL #ABC#.
88 L88) VALUE ALL SPACES.
88 L8882 VALUE ALL HIGH-VALUES.
88 L8B3 VALUE ALL LOW-VALUES.

figure 3-31. Examples of Valid Level 88
Figurative Constants

RECORD DIVISION,
QUERY UPDATE SUBSCHEMA

The Record Division immediately follows the Realm
Division. It specifies the record type to be made
available to a Query Update application program and
describes the format of the data in each record
type. The format of the Record Division 1is as
follows:

RECORD DIVISION.

{record description entry.}...

The records within the realms specified in the
Realm Division are described in the Record Divi-
sion. Only those records that are to be used by
the Query Update programs are included. The record
description entry consists of a series of state-
ments (data description entries) that describe the
data as it is used by the Query Update programs.

The first data description entry must be level
number 01, the record name entry. Subsequent
entries begin with level numbers 02 through 49 for
group and elementary data items, level number 66
for renaming a data item, and level number 88 for
defining values to be associated with a condition.
The formats for data description entries are shown
in figure 3-32.

60485200 A

J

ISy

J )



01 record-name
Format 1
level-number data-name
[JUSTIFIED clause]
{OCCURS clause]

[PICTURE clausel]

{REDEFINES clause)

(SYNCHRONIZED clause]

[USAGE clause] .

Format 2
66 data-name

RENAMES clause.

Figure 3-32. Formats of Data Description
Entries, Query Update Subschema

JUSTIFIED Clause

The JUSTIFIED clause specifies nonstandard posi-
tioning of data within a receiving field. The
format of the JUSTIFIED clause is shown in figure
3-33.

JUSTIFIED
JUST

} RIGHT

Figure 3-33. JUSTIFIED Clause Format,
Query Update Subschema

This clause can be specified only for nonnumeric
elementary data items. JUST is the legal abbrevi-
atiorn for JUSTIFIED.

The JUSTIFIED clause overrides the normal position-
ing of data when the size of the receiving field
does not equal the number of characters in the data
item. When the receiving field contains fewer
character positions than the data item, positioning
occurs as follows:

In normal positioning, the data item is aligned
at the leftmost character position and trun-
cated at the right.

If the JUSTIFIED clause is specified, the data
item is aligned at the rightmost character
position and truncated at the left.

When the receiving field contains more character
positions than the data item, positioning is as
follows:

In normal positioning, the data item is aligned
at the leftmost character position and blank
filled at the right.

If the JUSTIFIED clause is specified, the data
item 1s aligned at the rightmost character
position and blank filled at the left.

Refer to figure 3-16 for examples of character
positioning.

OCCURS Clause

The OCCURS clause is used to indicate a repeated
data item where all occurrences of the data item
are identical in every respect except value. The
data item can be an elementary item or a group
item. The format of the OCCURS clause is shown in
figure 3-34.

NOTE

Refer to appendix F for recommendations on
the use of repeating groups.

A data description entry with format 1 of the
OCCURS clause can be subordinate to another entry
with either format of the OCCURS clause. An entry
with format 2 cannot be subordinate to an entry
with the OCCURS clause. Up to three levels of
nested data items can be specified with the OCCURS
clause. When repeating groups and vectors are
nested, the vector 1s considered to be a repeating
group and is included in the level count. The
OCCURS clause must not be specified in a data
description that has level number 66.

Integer—-1 and integer-2 must be positive numbers.
In format 2, dinteger-2 must be greater than
integer-1l. The value of integer-1 can be zero;
integer-2 must never be zero.

An elementary data item described with the OCCURS
clause must also be described with the PICTURE or
USAGE clause. A group data item cannot be described
with both the OCCURS clause and the PICTURE clause.

Format 1

OCCURS integer-2 TIMES

Format 2

OCCURS integer-1 TO integer-2 TIMES DEPENDING ON data-name-1

Figure 3-34. OCCURS Clause Format, Query Update Subschema

60485200 A

3-23



When an item occurs a fixed number of times, format
1 is used and integer-2 specifies the exact number
of occurrences. When an item occurs a variable
number of times, format 2 is used and the number of
occurrences for each record is determined as
follows:

Integer-1 represents the minimum number of
occurrences.

Integer-2 represents the maximum number of
occurrences.

Data-name~l references a data item whose cur-
rent value represents the number of occurrences.
The value of data-name-1 must be a positive
value within the range of integer-1 through
integer-2.

In format 2, data-name-l names an elementary item
that is unique or can be made unique by qualifica-
tion. It cannot be subscripted and it should not
be described as COMPUTATIONAL-2. The size of the
data item cannot exceed six characters. The
elementary data item must precede the group data
item that references it.

A data item that occurs a variable number of times
must be the last item in a record description
entry. The data description entry that contains
the OCCURS clause can only be followed by subordi-
nate entries.

If the OCCURS clause is used with a group data
item, any data-name belonging to the group must be
referenced by subscripting or indexing whenever it
is used as an operand, unless the data-name is the
object of a REDEFINES clause. Other clauses speci-
fied with the OCCURS clause apply to each occur-
rence of the data item.

PICTURE Clause

The PICTURE clause describes the general character-
istics of an elementary data item in terms of its
gsize and class. The location of an operational
sign or an assumed decimal point can also be indi-
cated in the clause. The format of the PICTURE
clause is shown in figure 3-35.

PICTURE
Bic

} IS picture-specification

Figure 3-35. PICTURE Clause Format,
Query Update Subschema

This clause can be specified only for elementary
data items. It cannot be used with a level 66 or
index data item. PIC is the legal abbreviation for
PICTURE.

The class of a data item is determined by the type
of characters in the picture-specification. The
characters 9, S, V, and P are used to describe
numeric data items. An alphabetic data item is
described by the character A. The picture-
specification for an alphanumeric data item con-
tains the character X or any combination of the
characters X, 9, and A.

3-24

The size of a data item is determined by the number
of 9, X, or A characters in the picture-
specification. The characters S, V, and P are not
counted in determining the size. Consecutive
identical characters in the string can be specified
by a number in parentheses following the char-
acter. For example: 99999999 is equivalent to
9(8), XXXXXXXX is equivalent to X(8), and 9999AAAA
is equivalent to 9(4)A(4); each indicates a data
item with eight character positions.

The picture-specification can contain a maximum of
30 characters, including parentheses; however, a
pictured item <can be larger. A picture-
specification containing the character A repeated
75 times is too long, but A(75) is a valid descrip-
tion for a data item with 75 alphabetic characters.
Numeric data items can contain 18 digits, 14 of
which are significant; additional 1leading or
trailing zeros for decimal point alignment can be
specified up to a total of 30 characters.

When a PICTURE clause is specified with a USAGE
clause, the specifications must be compatible. For
example, COMPUTATIONAL usage must have a numeric
picture specification.

The application of format and punctuation to a
numeric source data item at the time it is dis-
played is called editing. Editing characters are
insertion characters or replacement characters.

The displayed format 1is referred to as a report
item rather than as a source data item. Insertion
and replacement characters are not included in the
size of a numeric source item. Insertion and
replacement characters must be included in the size
of a report item.

Alphabetic Data Items

The picture-specification to describe an alphabetic
data item can contain only the character A. The A
can be specified as many times as necessary as long
as the size of the item does not exceed 32767
characters.

The function of the characters in a PICTURE clause
picture-specification for an alphabetic data item
is as follows:

A Each A in the picture-specification repre-
sents a character position that can contain
either a letter of the alphabet or a space
(blank).

Refer to figure 3-19 for examples of alphabetic
data items.

Numeric Data Items

The picture-specification to describe a numeric
data item can contain a combination of the char-
acters 9, S, V, and P. Each 9 represents a
significant digit; a maximum of 18 digits can be
specified (only 14 digits are significant). The
character P 1s used to indicate leading or trailing
zeros for decimal point alignment. The combined
number of positions indicated by the characters 9
and P cannot exceed 30 characters.

60485200 A

J

) )



Unsigned numeric data items consist of a combina-
tion of the digits O through 9. In a signed
numeric data item, the minus sign is combined with
the rightmost digit in the item; the plus sign is
not carried in the number unless it already exists
in the data. The representation of the minus sign
in the rightmost digit is shown in figure 3-20.

The function of the characters in a PICTURE clause
picture-specification for a numeric data item is as
follows:

9 Each 9 in the picture~specification repre-
sents a digit position that can contain a
number. The 9 is counted in determining
the size of the data item.

S The character S is used in the picture-
specification to indicate that the data
item has an operational sign. The S must
be the leftmost character in the picture-
specification; it cannot appear more than
once. The operational sign does not occupy
a character position in the data item and
is not counted in its size.

V The character V is wused 1in the picture-
specification to indicate the position of
an assumed decimal point. A V as the
rightmost character in the picture-
specification is redundant. The character
V cannot appear more than once in the
picture-specification. Since the assumed
decimal point does not occupy a character
position, the V is not counted in the size
of the data item. An explicit decimal
point is valid in the schema, but it is not
valid in the subschema.

P The character P in the picture-specification
indicates an assumed decimal scaling posi-
tion. It is wused to specify an assumed
decimal point when its position 1is not
within the number that appears in the data
item. If the assumed decimal point extends
beyond the rightmost digit, onme P is speci-
fied for each implied position between the
rightmost digit and the assumed decimal
point. Similarly, if the assumed decimal
point extends beyond the leftmost digit,
one P is specified for each implied posi-
tion between the leftmost digit and the
assumed decimal point. Since the character
P indicates an assumed decimal point, the
character V in the picture-specification
would be redundant. The character P is not
counted in determining the size of the data
item; however, it is counted in determining
the maximum number of digit positions (30)
in numeric data items.

Refer to figure 3-21 for examples of numeric data
items.

Al phanumeric Data Items

The picture-specification to describe an alpha-
numeric data item contains either a combination of
the characters 9, A, and X or only the character
X. The size of the data item cannot exceed 32767
characters.

60485200 A

The function of the characters 9 and A is the same
as for numeric and alphabetic data items; the func-
tion of the character X is as follows:

X Each X in the picture-specification repre-
sents a character position that can contain
any character in the DDL character set.

Refer to figure 3-22 for examples of alphanumeric
data items.

Insertion Characters

Insertion characters in the picture of an item
appear in the edited data item and are counted in
the size of the report item. A maximum of 63 char-
acters is allowed. Insertion characters for the
PICTURE clause are as follows:

$ A single dollar sign specified as the left-
most symbol in an item picture appears as
the leftmost character in a report item.

+ A plus sign specified as the first or last
symbol in an item picture Is inserted in
the indicated character position of the
report item if the data contalns a positive
operational sign or is unsigned. If the
data is negative, a minus sign is inserted
in the indicated character position.

- A minus sign specified as the first or last
symbol in an item picture is inserted in
the indicated character position of the
report item if the data contains a negative
operational sign. 1If the data is positive,
a blank is inserted in the indicated char-
acter position.

. A period is used in a report item picture
to represent a decimal point. When it is
used, a decimal point appears in the report
item as a character in the indicated char-
acter position.

, A comma used in the picture of an item is
inserted in the corresponding character
position of the report item.

/ A slash used in the picture of an item is
inserted in the corresponding character
position of the report item.

0 A zero used in the picture of an item is
inserted in the corresponding character
position of the report item.

B The character B used in the picture of an
item causes a blank to be imnserted in the
corresponding character position of the
report item.

CR The CR symbol represents credit and can be
specified only at the rightmost positiom of
the picture of an item. The symbol is
inserted in the last two character posi-
tions of the report 1item if the data
contains a negative operational sign. If
the data is positive or unsigned, the last
two character positions are set to blanks.
Since the credit symbol always results in
two characters - CR or blanks - it is
included as two characters in the size of
the report item.

3-25



DB The DB symbol represents debit and can be
specified only at the rightmost position of
the picture of an item. The debit symbol
has the same result as the credit symbol.

Examples of insertion characters are shown in
figure 3-36.

Replacement Characters

A replacement character in the picture of an item
suppresses leading zeros in the source data and
replaces them with the specified character or a
blank in the report item. Only one type of
replacement character can be used in a picture.
Replacement characters for the PICTURE clause are
as follows:

Z One character Z is specified as the left-
most symbol in an item picture for each
leading zero to be suppressed and replaced
by blanks. The character Z can be preceded
by one of the insertion characters and
interspersed with any of the insertion
characters decimal point, comma, zero, or B.

No zeros are suppressed to the right of the
first nonzero digit whether a Z 1s present
or not, nor are any zeros to the right of

an assumed or actual decimal point sup-
pressed unless the value of the data 1is
zero and all character positions in the
item are described by a Z. In this special
case, even the actual decimal point 1is
suppressed and the edited item 1s all
blanks.

If a § + or - precedes the Z characters, it
is 1inserted in the far 1left character
position of the item even if succeeding
zeros in the item are suppressed. In the
special case where the value of the data is
zero and all the character positions fol-
lowing the § + or - are Zs, the § + or - is
replaced by blanks.

If a comma, zero, or B 1is encountered
before zero suppression terminates, the
character 1is not inserted in the edited
data item. Rather, the character is sup-
pressed and a blank is inserted in its
place.

The asterisk causes leading zeros to be
replaced by an asterisk instead of a
blank. It is specified in the same way as
the editing character Z and follows the
same rules, except an actual decimal point
is not replaced by an asterisk when the
value of the data is zero.

Picture-Specification

$99
$99.99
9,999
+999
+999

+999

999-

-999

999-
$B8B8999.99
$00999.99
99.99CR
99.99CR
99.99D8

99.99D8

Data Value

48
4834
4834
292
+
292
292
292
+
292
292
24321
24321
1134
1134
2376

2376

[ +]2]9]

[+
[}
o]
[}

[$]e2]21a]3f-[2[1]

[~
]
)
(o] [~ [ ]

[sTofoT2]4]3]-T 2]
1] [3]4]c]
[1].[3]4]4]

2[3].[7][o]

[3].]7]6]ef4)

[~ =] =
(2]
(@] [o] [=]

Figure 3-36. Examples of Insertion Characters

3-26

60485200 A

J )

J )



cgﬁhx
C@“\

$ When the dollar sign is used as a replace-
ment character to suppress leading zeros,
it acts as a floating sign and is inserted
directly preceding the first nonsuppressed
character. One more dollar sign than the
number of zeros to be suppressed must be
specified. This dollar sign is always
present in the edited data whether or not
any zero suppression occurs. The remaining
dollar signs act in the same way as the Z
characters to suppress leading zeros.

+ When a plus sign is used as a replacement
character, it is a floating sign. The plus
sign is specified one more time than the
number of leading zeros to be suppressed.
It functions in the same way as the float-
ing dollar sign. A plus sign is placed
directly preceding the first nonsuppressed
character if the edited data is positive or
ungigned; a minus sign is placed in this
position if the edited data is negative.

~ When a minus sign i1s used as a replacement
character, it 1is a floating sign. The
minus sign is specified one more time than
the number of 1leading =zeros to be sup-
pressed. It functions in the same way as
the floating plus sign. A minus sign is
placed directly preceding the first non-
suppressed character if the edited data is

negative; a blank is placed in this posi-
tion if the edited data 1is positive or
unsigned.

Examples of replacement characters are shown in
figure 3-37. Examples of picture editing are shown
in figure 3-38.

Picture-

Specification Data Value Displayed Item
22999 00923 [a]a]9]2]3]
22299 00923 [a]a]9 [2]3]
2222.22 000000
s°**.99 00923 [s[°]* Ie]-T2]3]
$559.99 0001824
---999 005216 laJa] -1s].]2]6]
$55.99 321615

Figure 3-37. Examples of Replacement
Characters

Picture-Specification Data Value
222,999.99 12345
299,999.99 1234
$222.229.99 1;3
$222,222.99 :2
$°**.,**9.99 t1'23::
$°*°,00r99 123456
§** " gg 123

t
+999,999 12
27z, 12
$222,2Z9.99CR 123456
$222,229.99D8 123
$(4),859.99 1T234
$(4),55.99 00010
- - 99 12

t

8BBB.BBB.99 12
$555,522.99 t12
$99.99 12

Displayed Item
l1]2],]3]4]s].[ofo]
@lojof,[o] 1]2].]3[4]

(s]a]alafalalafq].]2] 3]
lslajaafa]afa]a] .]1]2]
(sI*]°1v].[2[3]4].]o]0]
[s]1[2]3].]4]s[e].[0]0]
(sl-f=T=f-]-T[o].]2]3]

(+]o]ofo], [of1]2]

[-1a]2]a]a]a] 1]2]

(s]ri2]3].[4]sfe[.[o[o]c|r]
(slala]a]alalaf1].[2]3]a]a]
[2[a]afa]s]1]2]3].]4]o]

[a]a]afa]a]ala]s] .o o]

[alalafa]a]ala]-].[1]2]

lafala]afafalafa].]1]2]

illegal picture

illegal picture

Figure 3-38. Examples of Picture Editing

60485200 A



REDEFINES Clause

The REDEFINES clause allows data to be described in
an alternate format. The redefined data item 1is
given a new name; since it is still the same data
value, 1t occupies the same physical area in
memory. The REDEFINES clause is not used by CDCS;
it can be included in the subschema for use by the
Query Update application program. The format of
the REDEFINES clause 1s shown in figure 3-39.

level-number data-name-1 REDEFINES data-name-2

SYNCHRONIZED { | LEFT
SYNC RIGHT

Figure 3-39. REDEFINES Clause Format,
Query Update Subschema

NOTE

Refer to appendix F for recommendations on
the use of the REDEFINES clause.

This clause can be specified for both elementary
and nonrepeating group data items. The level
number and size of data-name-l and data-name-2 must
be identical. The REDEFINES clause cannot be used
with a level 0l or level 66 data item.

The data description entry for data-name-2 cannot
contain an OCCURS clause. Data-name-2 can be sub-
ordinate to an entry containing an OCCURS clause,
but data-name-2 cannot be subscripted or indexed to
reference a specific occurrence of the data item.
Data-name—1 can be described as a repeating data
item as long as the total number of character
positions is equal to the number of characters in
data-name-2.

Data-name-2 must not be qualified even if it is not
unique; data-name-2 can only refer to the previous
entry with the same level number. TIf the REDEFINES
clause is used for an elementary data item, no
entries can be specified between the entry refer-
enced by data-name-2 and the entry containing the
REDEFINES clause. If a group data item is being
redefined, only subordinate entries can be speci-
fied between the entry referenced by data—name-2
and the entry containing the REDEFINES clause.

Multiple redefinitions of the same data item are
allowed; data-name-2 in each entry must reference
the entry that originally defined the data item.
Within the Query Update application program, the
original data-name and the redefined data-names can
be used to reference the data item.

Refer to figure 3-24 for examples of the use of the
REDEFINES clause.

SYNCHRONIZED Clause

The SYNCHRONIZED clause causes an elementary data
item to start or end on a word boundary within the
computer memory. The format of the SYNCHRONIZED
clause is shown in figure 3-40.

3-28

Figure 3-40. SYNCHRONIZED Clause Format,
Query Update Subschema

This clause can only be used in a data description
entry for an elementary data item. SYNC is the
legal abbreviation for SYNCHRONIZED. 1If neither
LEFT nor RIGHT is specified, LEFT is assumed and a
warning diagnostic is issued.

Data items are normally packed without regard for
machine words. The SYNCHRONIZED clause causes the
data item to be allocated as many whole computer
words as needed to contain the item. No other data
item can occupy any of the character positions
between the leftmost and rightmost word boundaries
of the words allocated to the data item. If the
data item does not use all the character positions
between the boundaries, the unused character posi-~
tions are included in:

The size of any group item to which the elemen-
tary item belongs

The character positions redefined when the data
item is referenced in a REDEFINES clause

SYNCHRONIZED LEFT places the leftmost character of
the data item in the leftmost position of the first
word allocated to the data item. Subsequent char-
acters are placed in successive positions to the
right. If more than one word is needed, consecu-
tive words are allocated from left to right. The
unused portion of the last word is not available.

SYNCHRONIZED RIGHT places the rightmost character
of the data item in the rightmost position of the
last word allocated to the data item. Preceding
characters are placed in successive positions to
the left. If more than one word is needed, conse-
cutive words are allocated to the left. The unused
portion of the first word is not available.

When a Query Update application program references
a data item that has been described with the
SYNCHRONIZED clause, the original size of the data
item is used in determining any action that depends
on size. The original size of the data item is the
size indicated in the PICTURE clause.

The operational sign in a data item that is synch-
ronized appears in its normal position. The LEFT
or RIGHT option has no effect on the positioning of
the operational sign.

When an entry is described with both the SYNCHRO-
NIZED clause and the OCCURS clause, each occurrence
of the data item is synchronized. This also
applies to a synchronized item that is subordinate
to an entry containing the OCCURS clause.

USAGE Clause

The USAGE clause specifies the internal represen-—
tation of a data item in terms of the primary use
of the data item. The format of the USAGE clause
is shown in figure 3-41.

60485200 A

)

‘m\



COMPUTATIONAL
ComMP
COMPUTATIONAL-1
COMP-1
COMPUTATIONAL-2
COMP-2

DISPLAY

INDEX

DOUBLE

LOGICAL

COMPLEX

USAGE IS

Figure 3-41. USAGE Clause Format,
Query Update Subschema

This clause can describe a data item at any level.
When the USAGE clause is specified for a group
item, it applies to each subordinate item in the
group. The USAGE clause of an elementary item in a
group cannot contradict the USAGE clause of the
group item. If the USAGE clause is not specified
for an elementary item or for any group to which
the elementary item belongs, DISPLAY is assumed.
COMP, COMP-1, and COMP-2 are legal abbreviations
for COMPUTATIONAL, COMPUTATIONAL-1, and
COMPUTATIONAL-2.

A data item described as COMPUTATIONAL,
COMPUTATIONAL-1, or COMPUTATIONAL-2 must be numeric
with a size not exceeding 18 digits. If a group
item is described as computational, the elementary
items within the group are all computational; how-
ever, the group item itself is not computational
and cannot be used in computatioms.

When a PICTURE clause is specified with a USAGE
clause, the specifications must be compatible.

COMPUTATIONAL Option

A COMPUTATIONAL data item has a decimal numeric
value. The PICTURE picture-specification can
contain the characters 9 (digit position), S
(operational sign), V (implied decimal point), and
P (assumed decimal scaling position); editing
characters can also be included.

COMPUTATIONAL-1 Option

The COMPUTATIONAL-1 format describes a fixed-point
integer, which 1is represented internally as a
48-bit binary integer, right-aligned in the word.

A corresponding PICTURE clause must be numeric and

can include editing characters. If a PICTURE
clause is not specified, the default is PIC 9.

COMPUTATIONAL-2 Option

A COMPUTATIONAL-2 data item is stored as a normal-
ized floating-point binary representation of a

60485200 A

decimal number. The decimal point location is
carried in the data item itself as a binary expo-
nent. The data item is single precision and is
stored in one computer word.

A corresponding PICTURE clause must be numeric and
can include editing characters. If a PICTURE
clause is not specified, the default is PIC 9.

DISPLAY Option

A DISPLAY data item is stored in display code
format. The data item can be alphabetic, numeric,
or alphanumeric. When no USAGE clause is associ-
ated with a data item, DISPLAY is the default
format.

INDEX Option

The USAGE IS INDEX clause specifies a data item
that is used with indexed tables. The index data
item contains a value that nust correspond to an
occurrence number of a table element. The INDEX
option 1s not used by CDCS; it can be included in
the subschema description for use by the Query
Update application program.

An index data item is an elementary item, one
computer word in length, and binary in format. Its
mode corresponds to an item described as
COMPUTATIONAL-1; the item must be numeric and must
not exceed 18 digits.

The SYNCHRONIZED, JUSTIFIED, and PICTURE clauses
cannot be used to describe a group or elementary
item that specifies USAGE IS INDEX.

DOUBLE Option

A DOUBLE data item is stored as a normalized
floating-point number that occupies two computer
words. The data item can be 29 digits.

A corresponding PICTURE clause must be numeric and
can include editing characters. If a PICTURE
clause is not specified, the default is PIC 9.

LOGICAL Option

A LOGICAL data item assumes only the values true or
false. When this option is selected, Query Update
displays the true/false condition rather than the
value of the described data. A corresponding
PICTURE clause must be numeric.

COMPLEX Option

A COMPLEX data item is an ordered pair of signed or
unsigned real constants; the first represents the
real part of the complex number and the second
represents the imaginary part of the complex number.

A corresponding picture clause must be numeric and

can include editing characters. If a PICTURE
clause is not specified, the default is PIC 9.

3-29



RENAMES Clause

A level 66 data description entry uses the RENAMES
clause. This clause permits alternate grouping and
renaming of data items. The RENAMES clause is not
used by CDCS; it can be included in the subschema
description for use by the Query Update application
program. The format of the RENAMES clause is shown
in figure 3-42.

66 data-name-1 RENAMES data-name-2

THRU data-name-3
THROUGH

Figure 3-42. RENAMES Clause Format,
Query Update Subschema

This clause is always used in a level 66 entry. No
other clause can be included in a level 66 entry.
The RENAMES clause cannot be used to rename another
level 66 entry. THRU is the legal abbreviation for
THROUGH.

More than one level 66 entry can rename the same
data item. Level 66 entries must be the last
entries defined in a record. No entry can be
subordinate to a level 66 entry.

Data-name-l cannot be used as a qualifier; data-
name-2 and data-name-3 can be qualified. The
entries referred to by data-name-2 and data-name-3
cannot be described with the OCCURS clause or be
subordinate to an entry described with the OCCURS
clause. When the THRU option is included, none of
the data items within the specified range can be
variable-occurrence data items. Data-name-2 and
data-name-3 must be names of elementary items or
groups of elementary items. Data-name-3 cannot be
the same name as data—-name-2 or subordinate to
data-name-2.

The THRU option is used to rename a series of
consecutive elementary or group items. Data-name-1
is a group item that includes all elementary items
beginning with data-name-2 (or the first elementary
item if it 1s a group item) and ending with data-
name-3 (or the last elementary item if it is a
group item).

If the THRU option is not used, data-name-1 can be
either an elementary item or a group item. Data-
name-1 is an elementary item if data-name-2 is an
elementary item or a group item if data-name-2 is a
group item.

Refer to figure 3-28 for examples of renaming data
items.

RELATION DIVISION

The Relation Division is the last division in the
DDL source program. It is optional and, Iif
included, must immediately follow the Record Divi-
sion. The Relation Division identifies the speci-
fic realm (area or file) relationships that are to
be used in the subschema and in the COBOL or Query
Update application programs referencing the sub-
schema. The Relation Division also specifies the

3-30

qualification criteria that nust be satisfied by
records that are to be returned to the application
programs from the data base. The format of the
Relation Division is as follows:

RELATION DIVISION.

[relation description entry.] ...

The relation description entry is a statement
consisting of the RN and RESTRICT clauses that
specify the relation name and the record qualifica-
tion restrictions. Each relation description entry
identifies one relation.

RN Clause

The RN clause specifies the name of the relation.
It must be the first clause in the relation
description entry. The format of the RN clause is
shown in figure 3-43.

RN IS relation-name

Figure 3-43. RN Clause Format

The relation-name must be unique among all relationm
and realm names in the subschema. It must be the
same name specified in the RELATION NAME clause in
the schema. The RN clause can be the only clause
specified in the relation description entry if
record qualification is not desired.

The subschema Record Division must contain record
descriptions for all record types that are refer-
enced within a relationship named in the subschema.
All realms in which the record types are defined
must be declared in the subschema Realm Division.

RESTRICT Clause

The RESTRICT clause specifies the record qualifica=~
tion criteria that must be satisfied by a record
occurrence that is to be returned to the applica-
tion program work area. Record qualification using
the RESTRICT clause is optiomal; if a relationship
is to be referenced by a program, the RN clause is
required whether or not qualification 1is speci-
fied. The format of the RESTRICT clause is shown
in figure 3-44. -

Only one RESTRICT clause can be included for a
given record. A maximum of 1024 entities (identi-
fiers, operators, literals, or data-names) can
appear in RESTRICT clauses for any one relation.

Record-name designates the record type to which the
qualification restrictions pertain. The record
type must be described in the Record Division of
the subschema. The record name must be contained
in a realm that has been joined by the relation
named in the preceding RN clause.

The identifiers represent data items whose values
are examined by CDCS to determine whether a record
occurrence qualifies to be returned to the user’s
work area. They are termed qualifier identifiers.
Refer to the Identifier subsection {under Data
Reference).

60485200 A

J )

™



RESTRICT record-name

>
2
]

(®]
0

[NOT] [{] identifier-3

X
sl

WHERE [NOT) [(] identifier-1 <

(

EQ
NQ\

identifier-2 l

> literal-1
data-name-1

j

P
J

‘ identifier-4
literal-2 [
l data-name-2

IFERBISHSIREE IFERBEHSI2R

Figure 3-44. RESTRICT Clause Format

An identifier in one realm cannot be used as a
qualifier identifier for records in another realm.
All qualifier identifiers must be defined in the
record type named in the RESTRICT clause. An
identifier can be used as both a join term in the
schema and a qualifier identifier in the subschema.

A qualifier identifier must be described in the
subschema. It cannot be any of the following
subschema data descriptions:

A data item that redescribes another item in a
REDEFINES clause

A condition-name assigned to the values an item
can assume in a level 88 data description entry
(COBOL subschema only)

A data item that renames another data item in a
RENAMES clause

In addition, the qualifier identifier must not have
been defined in a VIRTUAL RESULT or a DECODING
clause in the schema.

Identifiers to the left and to the right of the
operator must be similar in type: both must be
display coded data or both must be the same type of
binary data. If two identifiers are different
display coded data classes, they are compared as
alphanumeric data. If two identifiers are binary
data, both must be of the same data class. Refer
to the Data Size and Class subsection for details
regarding data class representation.

60485200 A

Qualifier identifiers must be elementary items.
Only constant integers are allowed as item sub-
scripts.

Literals specified in the RESTRICT clause must be
compatible with the schema representation of the
identifier corresponding to the literal. Table 3-5
lists valid identifier and literal combinations.
Literals provide static qualification and cannot be
changed from within a COBOL or Query Update pro-
gram. In a COBOL subschema, literals cannot be
figurative constants such as ZERO, SPACES, and so
on.

TABLE 3-5. VALID IDENTIFIER AND
LITERAL COMBINATIONS

Identifier Literal Data Type

gat: Inte- | Fixed- | Floating- | Com- | Non—

P ger | Point Point plex | Numeric
Integer X X X
Fixed- X X X
Point
Floating- X X X
Point
Complex X X X X
Non— X
Numeric
3-31



Data-name-1 in a COBOL subschema references a data
item contained in the Data Division of the COBOL
application program; such an item is initialized
within the COBOL program. Data-name-l in a Query
Update subschema references a data item defined by
the user within the Query Update session prior to
the INVOKE (or USE) directive that specifies the
subschema. In either subschema, data-name-1 must
be unique among all names in the subschema. Use of
a data-name in the RESTRICT clause allows for
dynamic qualification of the relationship. The
data-name specified to the right of the operator
must have a data representation that 1is identical
to the subschema representation of the identifier
specified to the left of the operator.

SUBSCHEMA COMPILATION AND
SUBSCHEMA LIBRARY MAINTENANCE

A COBOL or Query Update subschema source program is
compiled by the DDL compiler. The compiler
generates a subschema directory or object subschema
from the subschema source program. A subschema
directory is often simply called a subschema.

The DDL compiler is a multifunctional compiler. In
addition to generating a subschema directory, the
compiler stores the directory in a subschema
library and performs maintenance operations on the
subschema library. More than one subschema can be
compiled with one control statement call to the DDL
compiler. The particular operation to be performed
by the DDL compiler is selected by a parameter in
the DDL3 control statement.

The field length requirements for subschema compil-
ation are indicated in appendix G.

SUBSCHEMA LIBRARY

One or more compiled subschemas are stored in a
permanent file called the subschema library. The
library is created when the first subschema 1is
stored in it. Subsequent subschemas can be added
to the library or can replace existing subschemas
in the library. A subschema can be deleted from
the library through use of the purge parameter in
the DDL3 control statement. A subschema library
that has had subschemas replaced or purged can be
transferred to a new, compacted subschema library.

Data security can be maintained by creating more
than one subschema library to countrol the avail-
ability of the subschemas to the application
programs. Subschemas providing access to data that
is restricted to specific applications can be
stored in one subschema 1library; subschemas for

general use can be stored in a different library.
Each library is identified by a unique permanent
file name. When a COBOL application program is
compiled, a subschema library must be attached by
specifying the permanent file name of the library.
Subschemas stored in other libraries are not avail-
able to the COBOL program. When a Query Update
INVOKE (or VUSE) directive names a subschema
library, Query Update automatically attaches the
subschema library file. Subschemas stored in other
libraries are not available to the Query Update
program. COBOL and Query Update subschemas can
reside in the same library.

DDL3 CONTROL STATEMENT

The DDL3 control statement executes the DDL com-
piler. It provides the DDL compiler with infor-
mation about a specific subschema, specifies the
listings to be generated, and specifies the
subschema library maintenance operations to be
performed. The format of the DDL3 control statement
is shown in figure 3-45. The comma immediately
following DDL3 can be replaced by a left paren-
thesis; the terminating period can be replaced by a
right parenthesis.

Either the C5 or QC parameter must be specified.
All other parameters of the DDL3 control statement
are optional.

The C5 and QC parameters select compilation for
either a COBOL or Query Update subschema, respec-
tively. The C5 and QC parameters are interpreted
as follows:

C5

Specifies a COBOL subschema for use with a
COBOL 5 application program.

Specifies a Query Update subschema for use
with a Query Update application program.

The SB parameter identifies the local file name of
the subschema library file. This parameter is
interpreted as follows:

omitted

Local file SBLFN is assumed to contain the
subschema library.

SB=1fn
The local file name specified identifies

the file that contains the subschema
library.

A
N
’
DOL3 {:gg} C,s8=tfnd | .
P
R

NL=Ufn | C,sC=LfnlC,I=LfnlL,L=LfnlL,LO0=0p].

Figure 3-45. DDL3 Control Statement Format for COBOL and Query Update Subschemas

3-32

60485200 A

J )



The A, N, NL=1fn, P and R parameters along with a
default operation select subschema library mainte-
nance operations. Only one of the operations can
be performed in a single execution of the DDL
compiler. If two or more of these parameters are
specified, a control statement error is issued. If
a library manipulation function 1is attempted on a
nonempty file that does not contain a library, a
diagnostic is issued and the job is aborted. The
parameters are interpreted as follows:

omitted

Each subschema source program in the job
stream 1s compiled and added to the
subschema 1library identified by the SB
parameter.

Audit parameter. A list of the subschemas
and their corresponding schemas, together
with their creation dates, is produced from
the subschema library identified by the SB
parameter.

Compile parameter. Each subschema source
program in the job stream is compiled but
not added to the subschema library identi-
fied by the SB parameter.

NL=1fn

New library parameter. The specified local
file name identifies a new subschema
library to which the active subschemas in
the subschema library (identified by the SB
parameter) are transfered. If the NL
parameter is specified with no file name
indicated, local file name NEWLIB is
assumed .

Purge parameter. A subschema specified in
the job stream is purged from the subschema
library identified by the SB parameter. No
compilation takes place.

Replace parameter. Each subschema source
program in the job stream is compiled and
replaces the existing subschema (identified
by the Title Division) in the subschema
library. The subschema 1library file 1is
identified by the SB parameter. Replace-
ment takes place only if no compilation
errors other than informative diagnostics
are encountered.

The SC parameter identifies the local file that
contains the schema directory. A specified 1fn
overrides the default file name determined from the
Title Division. This parameter is interpreted as
follows:

60485200 A

omitted

The first seven characters of the schema
name specified in Title Division of the
subschema source program is assumed to
identify the local file that contains the
schema directory.

SC=1fn

The specified local file name identifies
the file that contains the schema directory.

The 1 parameter identifies the local file that
contains source input for the DDL compiler. This
parameter is interpreted as follows:

omitted

The local file INPUT is assumed to coatain
the source input for the DDL compiler.

I=1fn

The specified local file name identifies
the file that contains source input for the
DDL compiler.

The L parameter identifies the local file that
receives listings and diagnostics generated by the
DDL compiler. This parameter is interpreted as
follows:

omitted

The local file OUTPUT receives the listings
and diagnostics generated by the DDL
compiler.

L=0

The 1local file OUTPUT receives only the
diagnostics generated by the DDL compiler.

L=1fn

The specified local file name identifies
the file that receives the listings and
diagnostics generated by the DDL compiler.

The LO parameter selects the listing produced by
the DDL compiler. Two listing optious (op) can be
specified: a source listing (S option) and an
object listing (O option). Source and object list-
ings are written to the file specified by the L
parameter. If L=0 is specified, no 1listing is
produced except for error messages, regardless of
10 specification. This parameter is interpreted as
follows:

omitted

Same as LO=S; a source listing is produced.

Same as LO=S; only a source listing is
produced.

3-33



LO=o0p
LO=opj/opy

The specified 1listing option selects the
listing produced. The listing options are
as follows:

S Source listing

0 Object 1listing; a listing of the
code generated for a mapping
capsule, If no mapping capsule is
required for the subschema, there
is no object listing.

SUBSCHEMA COMPILATION AND
LIBRARY MAINTENANCE OPERATIONS

A COBOL or Query Update subschema must be coded
according to the specifications in this manual,
Subschema source code can be entered through a
terminal, processed by a text editor, and stored in
a file.

The DDL compiler can be executed from a terminal
and through a batch job in the following ways.
When executed from a terminal, the subschema pro-
gram must reside on a file whose name is indicated
by the I parameter of the DDL3 control statement.
In a batch job, in which the input file for the DDL
compiler is assumed to be local file INPUT, the job
stream must be structured so that the control
statements precede the subschema source program.
An end-of-record indicator must immediately precede
the first line of subschema source code to separate
the subschema program from the control statements.

Control statements in the job stream and the
resulting subschema source program are used by the
DDL compiler either to compile the subschema and to
store it in the subschema library or to perform a
subschema library maintenance operation such as
replacing or deleting subschemas, generating a new,
compacted subschema library, or producing an audit
listing. The parameters in the DDL3 control state-
ment select the operation to be performed. Other
control statements provide information for the
operating system to make necessary information
available for the DDL compiler.

The following paragraphs indicate the parameters
required in the DDL3 control statement to accomplish
compilation of COBOL and Query Update subschemas
and to perform subschema library maintenance opera-~
tions. Examples of batch jobs that accomplish the
operations are shown., The DDL3 control statements
used in the examples alternately indicate Query
Update and COBOL subschemas. Control statements
are shown for both the NOS and NOS/BE operating
systems,

Compiling a Subschema

The source program for a subschema can be compiled
without being stored in the subschema library. The
form of the DDL3 control statement (shown with the
QC parameter) needed to compile a Query Update
subschema is as follows:

pDL3,QC, SB=1fn,N,SC=1fn.

Either the C5 or QC parameter must be specified: C5
for compilation of a COBOL subschema; QC for com-
pilation of a Query Update subschema. The compile
parameter (N) must also be specified. The SB, SC,
I, and L parameters are optional and have default
values (refer to the DDL3 Control Statement sub-
section).

Figure 3-46 illustrates a job that accomplishes
subschema compilation only. The schema file must
be attached.

Creating a Subschema Library

The subschema library is created when the first
subschema is stored in it. The form of the DDL3
control statement (shown with the C5 parameter)
needed to create a subschema library and store a
compiled subschema in it is as follows:

DDL3,C5,SB=1£fn,SC=1£n.

Either the C5 or QC parameter must be specified: C5
for compilation of a COBOL subschema; QC for
compilation of a Query Update subschema. The SB,
sC, I, L, and LO parameters are optional and have
default values (refer to the DDL3 Control Statement
subsection).

Figure 3-47 1illustrates a job that compiles a
subschema and creates a subschema library. In this
example, the schema file SCHPAY is attached. The
subschema library is identified by the local file
name SUBSCH. The DEFINE and REQUEST/CATALOG
control statements specify the local file name of
the subschema library and assign it to a permanent
file device. A password specified in the DEFINE or
CATALOG statement controls subsequent access and
use of the subschema library.

If only one subschema is to be stored in the
library, the subschema name can be used for the
subschema library file name.

Query Update-CDCS subschemas (QC option) and COBOL
subschemas (C5 option) are not compatible with
Query Update-CRM subschemas (QD option) and there-
fore cannot exist on the same library file.

NOS Operating System

Job statement
USER control statement
CHARGE control statement
ATTACH, SCHPAY.
ppL3,C5,5B=SBTST,N,SC=SCHPAY.
End-of-record

DDL Subschema Source Input
End-of-information

NOS/BE Operating System

Job statement
ACCOUNT control statement
ATTACH, SCHPAY, ID=DDL.
DDL3,QC,SB=SBTST,N,SC=SCHPAY.
End-of-record

pDL Subschema Source Input
End-of-information :

Figure 3-46.

3-34

Compiling a Subschema

60485200 E

J )



C@@*\
6@“\

NOS Operating System

Job statement
USER control statement
CHARGE control statement
ATTACH, SCHPAY.
DEFINE,SUBSCH/PW=DDL ,CT=PU,M=W.
bbL3,QC,SB=SUBSCH,SC=SCHPAY.
End-of-record

DDL Subschema Source Input
End-of-information

NOS/BE Operating System

Job statement
ACCOUNT control statement
ATTACH,SCHPAY,ID=DDL.
REQUEST,SUBSCH, PF.
DDL3,C5,SB=SUBSCH,SC=SCHPAY.
CATALOG,SUBSCH,1D=DDL ,MD=DDL ,EX=DDL ,CN=DDLX.
End-of-record

DbL Subschema Source Input
End-of-information

Figure 3-47. Creating a Subschema Library

Compiling Multiple Subschemas

A number of subschemas can be compiled with one
control statement call to the DDL compiler. The
parameters specified in the control statement apply
to all the subschemas. The subschema library
maintenance operations of creating a subschema
library, adding (default operation) subschemas to
the subschema 1library, replacing (R parameter)
subschemas in the library, or just compiling (N
parameter) subschemas can be used with this
facility.

For the compilation of several subschemas with one
control statement call to the DDL compiler, the
subschema source statements must be contiguous,
with no intervening end-of-record indicator or end-
of-information indicator. The program source for
each subschema must begin with the TITLE DIVISION
statement. Each subsequent TITLE DIVISION state-~
ment immediately follows the last source statement
of the preceding subschema. Each subschema is
compiled in turn until end-of-information or end-
of-record is encountered.

Compiling a Subschema and
Adding to a Subschema Library

Once the subschema library has been created and
saved on a permanent file (as described in the
Creating a Subschema Library subsection), new
subschemas can be added to the library. The form
of the DDL3 control statement (shown with the QC
parameter) needed to add a subschema to an existing
subschema library is as follows:

DDL3,QC, SB=1fn,SC=1fn.

Either the C5 or QC parameter must be specified: C5
for compilation of a COBOL subschema; QC for
compilation of a Query Update subschema. The SB,
sC, I, L, and LO parameters are optional and have
default values (refer to the DDL3 Control Statement

subsection).

Figure 3-48 illustrates a job that adds a subschema
to the subschema library created by the example in
figure 3-47. The schema directory is attached.
The subschema library is also attached with the
applicable password and (for NOS only) access mode
M=W specified.

Each subschema stored in the library must have a
unique name. If the subschema being added to the
library has the same name as a subschema already
stored in the library, a diagnostic is issued and
the job is aborted.

Replacing a Subschema

A new subschema can replace one that is stored in
the subschema 1library. The form of the DDL3
control statement (shown with the C5 parameter)
needed to replace a subschema in the subschema
library is as follows:

DDL3,C5,SB=1£fn,R,SC=1£fn.

Either the C5 or QC parameter must be specified: C5
for compilation of a COBOL subschema; QC for
compilation of a Query Update subschenma. The
replacement parameter (R) must be specified. The
SB, SC, I, L, and LO parameters are optionmal and
have default values (refer to the DDL3 Control
Statement subsection).

NOS Operating System

Job statement
USER control statement
CHARGE control statement
ATTACH,SCHPAY.
ATTACH,SUBSCH/PW=DDL ,M=W.
0bL3,C5,SB=SUBSCH.
End-of-record

DOL Subschema Source Input
End-of-information

NOS/BE Operating System

Job statement
ACCOUNT control statement
ATTACH,SCHPAY ,1D=DDL.
ATTACH,SUBSCH,1D=DDL ,PW=DDL.
pbL3,aC,SB=SUBSCH.
End-of-record

DDL Subschema Source Input
End-of-information

Figure 3-48. Compiling a Subschema and Adding to a Subschema Library

60485200 A



Figure 3-49 illustrates a job that replaces a
subschema in the subschema library. The schema
directory is attached. The subschema library file
is also attached with the applicable password and
(for NOS only) access mode M=W is specified. If
the subschema to be replaced cannot be found in the
subschema library, an informative diagnostic 1is
issued and the new subschema is added to the
library.

Deleting a Subschema

A subschema stored in the subschema library can be
deleted from the library. The form of the DDL3
control statement (shown with the QC parameter)
needed to purge a subschema from the subschema
library is as follows:

DDL3,QC, SB=1£n,P.

Either the C5 or QC parameter must be specified.
The purge parameter (P) must be specified. The SB,
I, and L parameters are optional and have default
values (refer to the DDL3 Control Statement sub-
section).

Figure 3-50 illustrates a job that purges a sub-
schema from the subschema library. The subschema
library file 1is attached with the applicable
password and (for NOS only) access mode M=W is
specified. The end-of-record indicator designates
the end of the control statements.

The control statements are followed by statements
that specify the subschemas to be deleted. The
subschema name is entered anywhere from column 8
through column 72. If more than one subschema name
is entered, a space or a comma must follow each
subschema name.

No compilation occurs when a subschema is deleted
from the subschema library.

Auditing a Subschema Library

After a subschema library is created, it can be
searched and a 1list generated that includes the
name of each subschema and the name of the schema
it references, together with their creation dates.
The form of the DDL3 control statement (shown with
the C5 parameter) needed to generate the audit
listing is as follows:

DDL3,C5,SB=1£n,A.

Either the C5 or QC parameter must be specified.
The audit parameter (A) must be specified. The SB
and L paramaters are optional and have default
values (refer to the DDL3 Control Statement sub-
section).

Figure 3-51 illustrates a job that produces an
audit listing of the subschema library. The
subschema library is attached with the appropriate
password specified. The 1listing produced by the
DDL compiler when the audit is performed is shown
in figure 3-52.

NOS Operating System

Job statement
USER control statement
CHARGE control statement
ATTACH,SCHPAY.
ATTACH,SUBSCH/PW=DDL ,M=W.
DDL3,QC,SB=SUBSCH,R.
End-of-record

DDL Subschema Source Input
End-of-information

NOS/BE Operating System

Job statement
ACCOUNT control statement
ATTACH,SCHPAY,ID=DDL.
ATTACH,SUBSCH,Ib=DDL ,PW=DDL.
pDL3,C5,SB=SUBSCH,R.
End-of-record

DDL Subschema Source Input
End-of-information

figure 3-49. Replacing a Subschema Library

NOS Operating System

Job statement
USER control statement
CHARGE control statement
ATTACH,SUBSCH/PW=DDL ,M=W.
pbL3,C5,SB=SUBSCH,P.
End-of-record

PAYROLL

NEWHIRES
End-of-information

NOS/BE Operating System

Job statement
ACCOUNT control statement
ATTACH,SUBSCH, 1D=DDL ,PW=DDL.
pDL3,QC,SB=SUBSCH,P.
End-of-record

PAYROLL

NEWHIRES
End-of-information

Figure 3-50. Deleting Subschemas From the Library

3-36

60485200 A

J )

J



NOS Operating System

Job statement

USER control statement
CHARGE control statement
ATTACH,SUBSCH/PW=DDL.

NOS/BE Operating System

Job statement

ACCOUNT control statement
ATTACH,SUBSCH,ID=DDL ,PW=DDL.
DDL3,QC,SB=SUBSCH,A.
End-of-information

DbL3,C5,5SB=SUBSCH,A.
End-of-information

Figure 3-51. Auditing a Subschema Library

* SOURCE LISTING *»  (82061) 0ODL 3.2+564.

----- BEGIN SUB-SCHEMA FILE MAINTENANCE

LIST OF SUB-SCHEMAS IN FILE

SUB-SCHEMA CREATION ? SCHEMA CREATION
DATE TIME DATE TIME

—————— o s B e L T S — 7?7  emmmememe ] maaaesee——cceea-
C5SS~PRODUCT-PERSONNEL 82087 14.19 MANUFACTURING-DB 82087 14.14
PAYROLL 82087 14.19 MANUFACTURING-DB 82087 14.14
PRODUCTS 82087 14.19 MANUFACTURING-DB 82087 14.14
PROJECTS 82087 14.19 MANUFACTURING-DB 82087 14.14
C55S~-PRODUCT~-MANAGEMENT 82087 14.19 MANUFACTURING-DB 82087 14.14

82/04/05. 09.56.11.

----- END OF FILE MAINTENANCE
0 DIAGNOSTICS.
0.022 cP SECS.

bOL COMPLETE.
453008 (M USED.

Figure 3-52, Audit Listing of the Subschema Library

Compacting a Subschema Library

Subschema library compaction is an optional facil-
ity that generates a new subschema library by
copying only the active subschemas from the speci-
fied subschema 1library. When this facility is
executed, the DDL compiler generates a listing that
includes the name of each transferred subschema and
the schema 1t references, together with their
creation dates. The form of the DDL3 control
statement (shown with the C5 parameter) needed to
create a new, compacted subschema library 1is as
follows:

DDL3,C5,SB=1£fn,NL=1fn.

Either the C5 or QC parameter must be specified.
The new library parameter (NL) must be specified.

The SB and L parameters are optional and have
default values (refer to the DDL3 Control Statement
subsection).

Figure 3-53 illustrates a job that creates a new,
compacted subschema library. The subschema library
is attached with the appropriate password. The
DEFINE and REQUEST/CATALOG control statements
specify the local file name of the new subschema
library and assign it to a permanent file device.
A password specified in the DEFINE or CATALOG
statement controls subsequent access and use of the
subschema library. The DDL3 control statement
specifies the SB parameter with the local file name
of the current subschema library to be compacted,
and the NL parameter with the local file name of
the new subschema library. The PURGE control
statement destroys the old library file.

NOS Operating System

Job statement

USER control statement

CHARGE control statement
ATTACH,SUBSCH/PW=bDL, M=W.

DEF INE ,NEWSUB/PW=DDL ,CT=PU,M=W.
DDL3,QC,SB=SUBSCH, NL=NEWSUB.
PURGE,SUBSCH.
End-of-information

NOS/BE Operating System

Job statement
ACCOUNT control statement

ATTACH,SUBSCH, 10=DDL ,PW=DDL.

REGUEST,NEWSUB, PF.

DOL3,CS,SB=SUBSCH,NL=NEWSUB.
CATALOG,NEWSUB,ID=DDL,MD=DDL ,EX=DDL,CN=DDLX.

PURGE, SUBSCH, RB=1.
End-of-information

Figure 3-53.

60485200 A

Compacting a Subschema Library

3-37



This facility is intended to be used on a subschema
library that has had a number of subschemas purged
or replaced and, therefore, contains wasted space.
The DDL compiler eliminates the wasted space In the
new subschema library. After the new subschema
library is stored as a permanent file, the user
should purge the old subschema 1llbrary. This
facility does not allow for compllation of sub-
schemas.

COMPILATION OUTPUT

A listing of the DDL source program 1is provided
whenever a COBOL or Query Update subschema is
compiled. Each line of the listing corresponds to
one source line in the source program. The format
and order of each line of the listing are identlical
to the format and order of the statements in the
source program. Figure 3-54 1is a sample source
listing for a subschema compilation.

The DDL compiler assigns a line number to each
input statement, beginning with 0000l1. The 1line
numbers are printed on the source listlng, starting
in column 16. Diagnostic messages begin in column
3 of the listing. After the last jinput statement
is llsted, a compilation summary is printed. When
relation statistics are applicable, relation names
and their traversed areas are included.

The source llsting can be suppressed by specifying
L=0 in the DDL3 control statement. Only diagnostic
messages and the compilation summary are printed on
the listing.

When a subschema Is compliled, a cross-reference
list and a data map are not printed. When a COBOL
application program specifies the subschema, the
COBOL compiler produces a cross-reference list and
a data map containing the realm, record, and data
item entries defined in the subschema.

RECOMPILATION GUIDELINES

The DDL compiler generates a checksum for each area
and relation in the schema. These checksums are
the means for determining the need to recompile a
subschema. If a checksum in a recompiled schema is
different from the corresponding checksum in the
previous schema, any subschema referencing the
changed area or relation must be recompiled. A
list of subschemas that must be recompiled because
of a schema change involving an area or relation
can be obtained from a schema compilation. Refer
to the Recompllation Guidelines subsection iIn
section 2 for more information. Subschemas not
referencing changed areas or relations need not be
recompliled.

The DDL compller generates a checksum for each
subschema., This checksum is the means for deter-
mining the need to recompile application programs.
When an appllication program Is compiled, the
checksum of the subschema it references is copied
into the program blnary output. When the applica-
tlon program is rum, that checksum must be the same
as a checksum of a subschema in the master direc-
tory. If the application program references an
invalid checksum, CDCS aborts the program and
issues a diagnostic.

* SOURCE LISTING *  (82061) DDL 3.2+564.
00001 TITLE DIVISION.
00002 §S C5SS-PRODUCT-PERSONNEL WITHIN MANUFACTURING-DB.
00003
00004 ALIAS DIVISION.
00005 AD REALM JOBDETAIL BECOMES WORK-FILE.
aoc0o6 AD RECORD JOBREC BECOMES WORK-REC.
00007 AD RECORD EMPREC BECOMES EMP-REC.
00008 AD DATA LOC-CODE BECOMES LOCATION.
00009
00010 REALM DIVISION.
00011 RD EMPLOYEE, WORK-FILE.
00012
00013 RECORD DIVISION.
00014 01 EMP-REC. ** WITHIN EMPLOYE
00015 03 EMP-ID PICTURE X(8). ** ORDINAL 1
00016 03 SALARY PICTURE 9(6)V99 *% ORDINAL 2
00017 USAGE IS COMP-1.
00018 03 EMP-LAST-NAME PICTURE A(20). ** ORDINAL 3
00019 03 EMP-INITIALS PICTURE A(4). *% ORDINAL 4
00020 03 DEPT PICTURE X(4). *%* ORDINAL 5
00021 03 MAILING-ADDRESS. *%* ORDINAL é
00022 05 ADDRESS-NUMBERS PICTURE X(67. ** QRDINAL 7

Figure 3-54. Sample COBOL Subschema Compilation Output Listing (Sheet 1 of 2)

3-38

60485200 B

J D

J) )



00035 01  WORK-REC. *% WITHIN WORK-FI
00036 03 CONCATKEY. ** ORDINAL 1
f@ﬂ\ 00037 05 EMP-ID PICTURE X(8). *% ORDINAL 2
' 00038 05 SEQ-NO PICTURE X(4). ** ORDINAL 3
’ 00039 03 PRODUCT-ID PICTURE X(10). **x ORDINAL 4
00040 03 SECURITY-CODE PICTURE X(2). ** ORDINAL 5
00041 03 MONTHLY-COMPENSATION USAGE IS COMP-1 *x ORDINAL 6
00042 OCCURS 12 TIMES.
00043 05 REG-HOURS PICTURE 9(3)V99. ** ORDINAL 7
00044 05 REG-COMPENSATION PICTURE 9(4)V99. ** ORDINAL 8
00045 05 OT-HOURS PICTURE 9(3)Vv99. ** ORDINAL 9
00046 05 OT-COMPENSATION PICTURE 9(4)V99. ** ORDINAL 10
00047 03 HOURS-YTD PICTURE 9(4)V99 *x ORDINAL 11
00048 USAGE IS COMP-1.
00049 03 COMPENSATION-YTD PICTURE 9(8)Vv99 *#% ORDINAL 12
00050 USAGE IS COMP-1.
00051 03 LOCATION PICTURE X(4). *% ORDINAL 13
00052
*xx314% 00041 WARNING: SS SIZE GR SCHEMA SIZE - MAY CAUSE TRUNCATION ERRORS AT EXECUTION TIME
PRIMARY KEY 00015 EMP-ID FOR AREA EMPLOYEE
ALTERNATE KEY 00020 DEPT FOR AREA EMPLOYEE
PRIMARY KEY 00036 CONCATKEY FOR AREA WORK-FILE
ek dek RECORD MAPPING IS NEEDED FOR REALM -  EMPLOYEE
dekkdk RECORD MAPPING IS NEEDED FOR REALM -  WORK-FILE
00053 RELATION DIVISION.
00054 RN IS EMP-REL
00055 RESTRICT WORK-REC WHERE SECURITY-CODE GE "B1i1".
00056
00057
Kkkkk END OF SUB-SCHEMA SOURCE INPUT
*kkik RELATION  STATISTICS *kkkk
RELATION OO1 EMP-REL JOINS AREA - WORK-FILE
AREA - EMPLOYEE
————— BEGIN SUB-SCHEMA FILE MAINTENANCE = ===-—
SUBSCHEMA CHECKSUM
C5SS~PRODUCT-PERSONNEL 07267725304252560742
----- END OF FILE MAINTENANCE ———
DDL COMPLETE. 1 DIAGNOSTICS.
502008 CM USED. 0.330 cP SECS.

Figure 3-54. Sample COBOL Subschema Compilation Output Listing (Sheet 2 of 2)

60485200 A , 3-39






FORTRAN SUBSCHEMA DEFINITION

#

A FORTRAN subschema describes the portion of a data
base to be used by one or more FORTRAN applications
programs., Its descriptions link the descriptions
found in the schema with the variables and arrays
in the FORTRAN program. The subschema uses state-
ments similar to FORTRAN specification statements
to indicate the data type and dimensions of vari-
ables and arrays used in the applications program.

A FORTRAN subschema 1is coded and compiled for use
by an application program of the FORTRAN 5 language
version. The output from compilation of the
subschema source program is a subschema directory
or object subschema.

When a FORTRAN program containing Data Manipulation
Language (DML) statements is processed, the file
containing the subschema directory must be made
available to the DML preprocessor. The DML pre-
processor inserts FORTRAN statements derived from
subschema definitions into the FORTRAN program.

The subschema is based on the schema; the schema
must be compiled before the subschema. The sub-
schema can include all or part of the entities
defined in the schema. Any number of subschemas
can use a given schema. In general, the schema
description of data can be changed in the subschema
to meet the needs of the applications program;
however, some limitiations have been imposed.
These are outlined in the following paragraphs.

SUBSCHEMA STRUCTURING
REQUIREMENTS

FORTRAN subschemas consist of required and optional
statements, The statements and their functions are
as follows:

SUBSCHEMA statement specifies the name of the
subschema and identifies the schema.

ALIAS statement assigns alternate names to be
used in place of names assigned in the schema.

REALM statement identifies the schema areas to
be made available to an application program
through the subschema.

RECORD statement and subsequent type statements
describe the structure and content of each
record type in the subschema.

RELATION statement identifies a relation de-

fined in the schema that is included in the
subschema.

60485200 E

RESTRICT statement specities the qualification
criteria that must be satisfied by records that
are returned through relation processing.

END statement indicates the end of the sub-
schema source program.

The subschema source program must conform to struc—
ture requirements. Table 4-1 shows the order in
which groups of FORTRAN Data Description Language
(DDLF) statements must be included in a subschema.
In group 4, the type statements that apply to the
variables and arrays belonging to a record defined
by a RECORD statement appear immediately after the
RECORD statement. In group 5, the RESTRICT state-
ments that apply to a relation defined by the
RELATION statement appear immediately after the
RELATION statement. A FORTRAN subschema wmust
contain at least one realm, one record, and one
type statement.

TABLE 4-1. ORDERING OF SUBSCHEMA STATEMENTS

Group Statement

1 SUBSCHEMA

2 ALIAS (optional)

3 REALM

4 RECORD and type

5 RELATION (optional)
RESTRICT (optiomal)

6 END

DATA DESCRIPTION

A record description entry is composed of a RECORD
statement and the type statements immediately
following it. The type statements following each
RECORD statement specify the data items that are to
be made available from the corresponding schema
record., The ordering of type statements is inde-
pendent of the ordering of items within the schema
record.

Correspondence between schema and subschema items
is based on the item name. Therefore, a data name
in a type statement must be one of the tollowing:

A data name from the schema description

An alias assigned in an ALIAS statement



Any data name in the schema longer than seven char-
acters, or containing a hyphen, must be renamed in
an ALIAS statement, because these data names are
not allowed in FORTRAN. Once an alias is assigned
to a schema name, the alias must be used in all
FORTRAN DDL statements. Only elementary item names
from the schema can be defined in a FORTRAN sub-
schema. Each record type corresponds to a record
type in the schema and must be within one of the
realms specified in REALM statements. Each RECORD
statement must be followed by at least one type
statement.

All the data items defined in the subschema are
included in the FORTRAN program by the DML preproc—
essor. Therefore, all data items named in the
subschema are either variables or arrays 1in the
FORTRAN applications program.

Character variables and arrays should be grouped
together within a record in the subschema to mini-
mize the number of common blocks that the DML
preprocessor generates for a FORTRAN program. The
variables and arrays are declared in common blocks
in the same order as they are included in the
subschema. One common block 1is generated for each
realm. The name for that common block is in the
form DBnnnn, where nnan 1is the realm ordinal
assigned by the DDLF compiler. Realm ordinals are
assigned incrementally starting with 1 for each
realm named in the subschema, Character data items
cannot share the same common block with nonchar-~
acter items; therefore, a new common block is
generated each time a type statement is encountered
that is not compatible with the previous type
statement, The name for each additional common
block required for a realm is in the form Dnnnnxx,
where nnnn 1is the realm ordinal and xx 1s a
2-letter identifier assigned incrementally from the
series AA, AB, ..., ZZ.

VARIABLES

A variable declaration in a type statement associ-
ates a symbolic name of the specified type with a
single data item. Because every data base data
item that is to be referenced in the FORTRAN pro-
gram must be declared in the subschema, implicit
typing of variables is overridden. A variable
defined in the subschema must correspond to a non-
repeating elementary item in the schema.

ARRAYS

The size, dimensions, and type of an array are
defined in a type statement. Array declarations
are identical in form and content to those in a
FORTRAN program.

An array in a subschema corresponds to a repeating
elementary item in the schema; that is, to an item
containing an OCCURS clause. A repeating elemen-
tary item is called a vector. An array can

4=2

correspond to either a fixed occurrence repeating
item or a variable occurrence repeating item.

SCHEMA/SUBSCHEMA
CORRESPONDENCE

The subschema is created to accommodate the needs
of a FORTRAN applications program. Some character-
istics of the data in the data base are fixed by
the schema and cannot be changed by the subschema;
other characteristics specified in the schema can
be different ian the subschema. The following
paragraphs outline the cases in which differences
are allowed between the schema and the subschema,
and the actions taken by the DDLF compiler to
resolve the differences in each case.

OMISSION OF DATA ITEMS

The subschema normally describes only a portion of
the data base. Data items that are not required by
the FORTRAN program are not included in the sub-
schema description. Elementary items, complete
records, and entire areas in the schema can be
omitted from the subschema. When a record or an
area is not included in the subschema description,
all subordinate entries are automatically omitted
and cannot be referenced in the subschema.

Unlike the COBOL subschema, the FORTRAN subschema
has no mechanism for the description of group
items. Therefore, these items must be omitted from
the subschema. The elementary items making up the
schema group item must also be omitted from the
subschema.

Unlike the COBOL subschema, only one record type
per realm is permitted in the FORTRAN subschema.

The primary key for a realm must be declared in the
subschema; alternate keys are required only if they
are actually used.

ORDERING OF DATA ITEMS

The order in which data items are specified in a
record description need not match the order in the
schema, unless the data items are constituent items
of a concatenated key., The names of the items,
however, must match those in the schema or in the
ALIAS statement.

Data items of a concatenated key (primary or

alternate) must be in the same order as in the
schema and must also be contiguous items.

DEFINITION OF DATA ITEMS

Data items can differ in size, type, and number of
array elements from those in the schema.

60485200 E

J



Data Size and Type

The size and type of data items in the subschema
are specified in the type statements. In the
schema they are specified in either the TYPE or
PICTURE clause. Since the schema and subschema
statements differ in format, rules have been estab-
lished for conversion between subschema and schema
specifications. In some cases, the types specified
in the schema and subschema match exactly; no
conversion is required. In other cases, the types
differ, but a meaningful conversion is established
by DDLF and carried out through mapping at execu-
tion time by CDCS. In still other cases, no
conversion is possible and an error message is
issued by the DDLF compiler.

Variables and Arrays

Complex and double precision variables occupy two
words of storage each; all other variables occupy
one word of storage. Complex and double precision
arrays occupy two words of storage for each array
element; all other arrays occupy one word of stor—
age for each array element,

Conversion

Table 4-2 shows the allowed correspondence between
types of items in the subschema and data class
specifications in the schema. (Refer to section 2
for complete descriptions of these data
classes.) For those cases where conversion is
necessary, the table describes the method used.

If the schema specifies a CHECK IS PICTURE clause,
the data description in the subschema must match
the data description in the schema for both size
and class. The CHECK IS PICTURE clause in the
schema definition inhibits data conversion between

60485200 E

the schema and the subschema. Table 4~2 indicates
the data type required for a subschema item to
correspond to a schema item defined with the CHECK
IS PICTURE clause.

Concatenated Keys

Items in a concatenated key must conform to the
schema description of the items in size and type.
The size of concatenated key items in the subschema
must be identical to the size of concatenated key
items in the schema. The type of the concatenated
key items must match the type of concatenated key
items in the schema; key mapping is not allowed.
All members of a concatenated key must be
elementary items; they cannot be an element of a
vector or an array. A maximum of 64 contiguous
items is allowed for a concatenated key.

Because no key mapping is allowed, only the data
types requiring no conversion or type checking from
schema to subschema are accepted for concatenated
key items. Table 4-3 shows the allowable schema
item types and corresponding subschema item types
for which no conversion or type checking is
performed. The table entries correspond to the
footnoted items in table 4-2 designating required
subschema data types when CHECK IS PICTURE is used
in the schema. Refer to the discussion of data
size and class in section 2 for a description of
these schema classes.

The effect of the CHECK IS PICTURE clause is to
disallow conversion and type checking for the
item, Therefore, it might be helpful for the data
base administrator to have CHECK IS PICTURE
specified in the schema description for all data
items used in concatenated Kkeys. The specifi-
cation, however, inhibits conversion for COBOL and
Query Update subschemas and might not be practical.

4-3



¢ €

c

c

ﬂ,

ﬁﬁ%\
i

*wa37 emwoyos Surpuodsaiiod ay3 a0J PIIIIvads ST 9sne(o FYALDId SI NOFHD 9Y3 USYm WOIT PWIYDISQNS B 103 palinbai s uwnTod STYI Burpeay ad43 e1RqQ)
‘019z 03 *3aed
piom juedrItTulys 1eal 3O anfea
* paagnbal 3sea2[ 198 f3xed *3aed *3ued ajeounay pue 3jied xo7dwod
UOTSI9AUCD ON Laeur8swy doag AxeuyBeunt doiq *pa33yuxad joN AxeurBeur doag *pajiTmaad 30N AxeutSeuy doag PapoD 61
*0192 03 ¢ piom
3aed LaeupSeuwr Jued(3ITu8TSs 3soum
398 {paom *piom JO anTeA @3BOUNJY uorsyoaxd
Juedf3TudEs huvmhﬂsvmu *paom 3JuEO} Jued13jTuldIs pue piom Juedy a1qnop
3sea1 doag UOTSIAUO0D ON -3Tu8ys 3sear doaq *pa3atmiad 0N 3sear doag *pojatwaad joN | -3yTuBTSs 3seay doag papo) 41
pezITewiou
*0132 jurod
*o19z 03 3aed 03 paom JuedTITu %.vmuw:awu epoanbax *anTea Sur3ieols
Azeur8emy 398 —81s 3seaf 39§ UOTSIDAUOD ON *po33zTmaad JoN UOFSIDAUOCD ON *pajatuxed 0N Tea1 a3EdUNI] PapPoy €1
*0a2z 03 *019z 03 jutod
jaed Kaeuplemt paom JuedTITudES spaagnbai epoainbaa +.ku«=vmu PaxXTIJ
39s f3eold 38e9T 198 {3BOTJ *Je0Td UOTS13AUOD ON UOTSISAUOCD ON | °pe3ldrwaad JON UOTSIBAUOD ON pPepo) 01
*f1eufq
03 312AU0D
*0192Z 03 *3B0TJ pue aa8ajut *£1eufq 03 3I3AUOD
piom 3IUBDTITuBIS pue anyea Sur Butjuasaadaa pue z28a3ur Sur jutod
1seaT 398 §{ea1 -juasaidax Suraas Sutays asjoe ~juesaadax Butais POXTJ
*pa33tmaad 10N 103 se aweg | z9jo®aERYD 9jENTRAY *pajjtumaad 3J0N -xeyd ajenfeAy | °pe3irwiad 30N | I930BaBYD BIENTRAY Lerdstq ¢
*L1eutq
03 313AUCD
*013z 03 *3e0TJ pue x9893uf *opI9mWnu | *A1BUTq 03 3IIDAUOD
piom JuedfFTuldrs pue anfea Bur Buyjuasoadsa jou JT 101i1y pue 198ajur Suy
3IseoT 398 {Tear ~juasaxdaa Burals Suta3s a93oe *paaynbax ~juasaadax Buraas I98a3jut
*pajgTmiad 0N 103J se auweg 1930e1eyd ajenyeay | *pe3armaad 3oN -Ieyo ajenyeAqy UOTSIS2AUOD ON | a930BIBYD 33ENTBAY LerdsIq ¢
*o139qeydre
jou JT I0axg
epaatnbax o139qeydTe
»po3jTmiad 30N *pajayuwaad 3JoN *pazatmiad joN | °pa3itmaad JoN *pajaytmiad JON UOTSISAUOD ON *pe3ifwaad 3JON Lerdsiq 1
oFI9WnNuU
k.vuuﬂswou : —eydTe
+pajatmiad 3JON *paj3Tmaad 30N *paj3Tmiad JoN spa33Tmaad 30N epajatmaad JoN UOFSIVAUOD ON spojatmaad 0N Le1dsiq 0
S NVILY04 ¢ NVILIOd S NVILY0d S NViL30d S NVIIN0d S NVILd0d S NVII¥04 (2d43)
XITdHOD NOISIOHdd T14N0d Vad TVOID01 NVET00H YILOVIVHD YAOALNL ssery ewsyog
adL] eusyosqng
ONTddVW VWIHDSENS/VWEHOS °*T-y TTAVL

60485200 E

@ 4-4



(@ﬁh\
F@a\

TABLE 4-3. DATA TYPES FOR CONCATENATED KEYS

Subschema Type

Schema Class (Type)

FORTRAN 5
Display Alphanumeric Character
(Type Character;
Picture X)
Coded Fixed Point Integer
(Type Fixed)
Coded Floating Point Real
Normalized (Type Float)
Coded Double Precision Double
(Type Float) Precision

counterparts in the schema, even though they are
defined as 2-dimensional arrays in the subschena.
The array TOPl0 has fewer elements than its coun-
terpart in the schema,

Schema
BAYNAME PICTURE "AC10)" OCCURS 16 TIMES.
QUANT PICTURE "999" OCCURS 2000 TIMES.
TOP10 TYPE FIXED OCCURS 100 TIMES.

FORTRAN 5 Subschema

CHARACTER*10 BAYNAME(2,8)
INTEGER QUANT(200,10), TOP10¢10)

Array Declaration

Arrays are declared in the subschema by type state~
ments in the same format as those in a FPFORTRAN
program. The number of elements in an array is the
product of all its dimensions.

An array is defined in the schema as a vector, or a
repeating elementary item. Elementary data items
can be repeated either a fixed or varying number of
times. Arrays in the subschema correspond with
these repeating data items.

A vector in the schema can correspond to a sub-
schema array with up to seven dimensions for a
FORTRAN 5 subschema. The number of elements in an
array must be less than or equal to the number of
occurrences of the schema vector. A repeating
elementary item 1s called a fixed occurrence
repeating item if the OCCURS clause which describes
it in the schema specifies the precise number of
occurrences of the item.

Figure 4-1 shows the schema and subschema declara—
tions for two arrays. Both are fixed occurrence
elementary items in the schema.

Schema

RESULTS
TESTNUM

TYPE FLOAT OCCURS 40 TIMES.
PICTURE "9(10)" OCCURS 20 TIMES.
Subschema

REAL RESULTS (40)
INTEGER TESTNUM(20)

Figure 4-2. Schema/Subschema Differences
in Array Size and Dimension

A repeating elementary item in the schema is called
a variable occurrence repeating item if a data name
is used in the OCCURS clause. In the schema, the
occurrences of a variable occurrence repeating item
(which correspond to the elements of the array in
the subschema) are indexed by the elementary item
referenced in the OCCURS clause, In a FORTRAN
subschema, this item must be declared whenever the
repeating item is declared. In the DML statements
in the applications program, the variable is used
to specify the number of occurrences of a repeating
item when a record is written. When a record is
read, CDCS sets the variable to the number of
occurrences actually in the record.

If the subschema defines an item that is used in
the schema to index the occurrences of a repeating
item, the subschema must also define the elementary
repeating item.

A subschema array that corresponds to a variable
occurrence repeating item must be defined in the
subschema to have the waximum number of elements
possible (the upper 1limit of the CHECK IS VALUE
clause).

In figure 4-3, the number of occurrences of SYMBOL
can vary from 1 to 12, depending upon the value of
ECOUNT. SYMBOL is a variable occurrence repeating
elementary item in the schema. SYMBOL is declared
as an array in the subschema with dimensions equal
to the maximum value specified in the OCCURS

Figure 4-1. Fixed Occurrence
Elementary Items

The number of elements of the array declared in the
subschema can fall short of (but cannot exceed) the
number of occurrences of the item declared in the
schema. When the number falls short, the initial
elements of the array are matched to the initial
occurrences of the item.

l For example, in figure 4-2, the arrays BAYNAME and

QUANT have the same number of elements as their

60485200 E

clause. ECOUNT must also be declared in the sub-
schema.
Schema
ECOUNT TYPE FIXED
CHECK VALUE 1 THRU 12.
SYMBOL PICTURE "A(10)

OCCURS ECOUNT TIMES.

FORTRAN 5 Subschema

INTEGER ECOUNT
CHARACTER*10 SYMBOL (12)

Figure 4-3. Variable Arrays in
Schema and Subschema

4-5



Concatenated Key

A concatenated key is a primary or alternate record
key that is defined in the schema and is composed
of a series of contiguous elementary data items.
For a FORTRAN program to use this record key, all
the items in the concatenated key must be defined
in the subschema. For a primary concatenated key,
all the constituent items must be defined in the
subschema. If an alternate concatenated key 1is
used, all the constituent items must also be
defined in the subschema.

Figure 4-4 gives an example of how a concatenated
key 1is declared. By including the items in the
concatenated key in the subschema, the key is
automatically available for a program using the
subschema. Because FORTRAN does not accept data
names which have more than seven characters or
which have hyphenation, the ALIAS statement is used
in the subschema to assign alternate names in place
of the names assigned in the schema. The
concatenated key name 1s not used in FORTRAN
statements and does not need to conform to FORTRAN
syntax. In a FORTRAN program, the concatenated key
name can only be specified in the FORTRAN DML READ
and START statements.

SUBSCHEMA PROGRAMMING
CONVENTIONS

The FORTRAN DDL subschema source program is com—
posed of a series of statements that describe a
portion of a data base. The rules for coding DDLF
statements are similar to those for the version of
FORTRAN specified in the DDLF control statement.
The statements are described in the FORTRAN Sub-
schema Syntax subsection that appears later in this
section. The following paragraphs describe the
format of the statements.

LANGUAGE ELEMENTS

FORTRAN DDL statements consist of keywords, user—
defined names, constants, and operators, The
operators are fully explained with the statements
in the FORTRAN Subschema Syntax subsection; the
remainder of the elements are described here.

Keywords

FORTRAN DDL keywords identify statements aund
options within statements. Each statement begins
with a specific keyword, and other keywords are
used within statements. When a keyword is used, it
must be specified exactly as shown in the reference
format statement that defines the syntax for the
particular DDLF statement. Keywords are shown in
uppercase in this manual. For a complete list of
keywords see appendix D.

User-Defined Names

User~defined names identify the schema, subschenma,
realm, records, data items, and relations. They
are indicated in the formats by lowercase words.

Schema

SCHEMA NAME IS CONCATBASE

AREA NAME IS CONCTKY.
RECORD NAME IS KEYLIST-REC WITHIN CONCTKY.

01 ITEM-A PICTURE "XU1D)".
01 ITEM-B PICTURE "X(U1O)".
01 ITEM-C PICTURE  "X(20)".

DATA CONTROL.

AREA NAME IS CONCTKY
KEY ID IS CONCAT <ITEM-A, ITEM-B, ITEM-C>

Subschema Input

SUBSCHEMA FTCONCAT, SCHEMA=CONCATBASE
ALIAS (RECORD) KEYLREC=KEYLIST-REC
ALIAS (ITEM) ITEMA=ITEM-A

ALIAS (ITEM) ITEMB=ITEM-B

ALIAS (ITEM) ITEMC=ITEM-C

REALM CONCTKY
RECORD, KEYLREC
CHARACTER *10 ITEMA

CHARACTER *10 ITEMB
CHARACTER *20 ITEMC

Subschema Output

PRIMARY KEY CONCAT (ITEMA,ITEMB,ITEMC) FOR
AREA CONCTKY

Figure 4-4. Declaring a Concatenated Key

All names are taken from the schema except for
schema entities that are renamed in the subschema
by the ALIAS statement. The rules for forming
names differ between data item names and all other
names as follows:

Data item names

Since these are used in the FORTRAN program
as variable and array names, they mnust
correspond to the FORTRAN rules. They must
be from one to seven characters long,
contain only letters and digits, and begin
with a letter.

Other names

These are used only by DMS-170 and conse-
quently follow the more lenient rules of
the schema. They must contain from 1 to 30
letters, digits, or hyphens. The first
character must be a letter, and hyphens
cannot be used at the beginning or end or
adjacent to each other.

60485200 E

J )

J )



Since each data item appears in a type statement,
default types based on the first letter of the item
name are not applicable in the subschema., Non-data
base items (used in the RESTRICT statement) are not
given types by DDLF, and consequently nust appear
in type statements in the FORTRAN program if other
than default types are desired for them.

A number of variables are generated in the FORTRAN
program by the DML preprocessor; definition or
declaration of these variables in a FORTRAN program
can lead to invalid results. A complete list of
these variables can be found in table 4-4. The
variable names indicated in this table must be
specified as user-defined names in a subschema
source progran.

TABLE 4-4. NAMES OF VARIABLES AND COMMON BLOCKS
GENERATED BY THE DML PREPROCESSOR
Name Explanation

DBFnnnn nnnn is 0001 through 9999
DBInnnn nnnn is 0001 through 9999
DBNnnnn nnnn is 0001 through 9999
DBREALM

DBRELST

DBRUID

DBRnnan nann is 0001 through 9999
DBSCNAM

DBSTAT

DBSnnnn nnnn is 0001 through 9999
DBTEMP

DBTnnnn nnnn is 0001 through 9999
DBnnnn nonn is 0001 through 9999
Dnnnnxx nnnn is 0001 through 9999

and xx is AA through ZZ

Constants

With a few restrictions, constants appearing in
DDLF statements follow the rules for FORTRAN
constants. These rules are defined in the FORTRAN
reference manual corresponding to the version of
FORTRAN specified on the control statement used to
compile the subschema. The constants allowed are
restricted to integer or real constants without
exponents, and to strings delimited by quotation
marks or to strings delimited by apostrophes. The
following forms are not allowed: double precision,
complex, logical, octal, and hexadecimal constants;
Hollerith constants in H, L, or R format; and real
constants with exponents, The following items
indicate constants that can be used:

60485200 E

Integer constants consist of an optional sign
(+ or =) followed by 1 to 18 digits. For
example:

0

-12345

+2000
000000000000600004

Real constants consist of an optional sign (+
or —-) followed by a string of digits containing
exactly one decimal point, The maximum number
of digits is 15, The decimal point can be
anywhere within the string; that is, the number
can consist of a fractional part, a whole
number part, or both. For example:

0.
=3.22
+4000.
=3

Rules for nonnumeric constants depend on the
version of FORTRAN. In a subschema for a
FORTRAN 5 program, the constant can be a
character constant (a string of from ! to 255
characters delimited by apostrophes) or a
Hollerith constant (a string of from 1 to 10
characters delimited by quotation marks). 1Llf a
delimiting character is to be used in the
string, the character must be specitied twice
for each occurrence. For example, "A""B" would
yield the constant A"B; “C”“"D” would yield the
constant C”D. For example:

FORTRAN 5 Hollerith constant
"MAX10CHARS"

FORTRAN 5 character constant
“CATS & DOGS”

FORTRAN DDL STATEMENT FORMAT

FORTRAN DDL statements occupy from 1 to 100 char-
acter positions (columns) in a source line. Table
4-5 shows the usage of the character positions
within the source line.

TABLE 4-5. COLUMN USAGE IN FORTRAN DDL
STATEMENTS
Column Usage
1 C or * indicates a comment line.
1-5 Optional statement label containing

one through five digits.

6 Character other than blank or zero
indicates a continuation line; does

not apply to comment lines.

7-72 Text of FORTRAN DDL statements.

73-100 Identification field, listed but not

otherwise processed by DDL.

4-7



No statement can begin on a line that includes any
part of the previous statement; the § statement
separator is not used.

The following paragraphs describe other aspects of
coding FORTRAN DDL statements.

Character Set

The FORTRAN DDL character set is a subset of the
FORTRAN character set. It consists of the letters
A through Z, the digits 0 through 9, and the fol-
lowing special characters:

Blank
= Equal sign
» Comma
( Left parenthesis
) Right parenthesis
. Decimal point

Quotation mark
Apostrophe
+ Plus sign

- Minus sign

In addition, any character (appendix A) can be used
in character constants and in comments.

Blanks
Unlike FORTRAN statements, in which blanks are
ignored (except in character constants), DDLF
statements forbid or require blanks in specific
cases. The rules are as follows:
Blanks are significant in character constants.
Keywords, user—defined names, relational oper-
ators, and constants cannot be interrupted by
blanks.
Permitted:
RESTRICT RECA(ITEM1.EQ.5.0)
Not permitted:
REST RICT REC A(ITEM 1. EQ.5 .0)
Keywords must be separated from adjacent names
by at least one blank. Blanks are not required
when a keyword is set off by other special
characters.
Permitted:
DOUBLE PRECISION D1, D2(10,20),D3
Not permitted:

DOUBLEPRECISIOND1,D2(10,20),D3

4-8

This example clarifies that DOUBLE and
PRECISION are considered separate keywords,
even though they are used together.

Continuation

Statements can be continued for more than one
line. A character other than a blank or zero in
column 6 indicates that the line is a continuation
line. Columns 1 through 5 of a continuation line
must contain blanks. A line with a € or * in
column 1 and any character in column 6 is a comment
line, not a continuation line. The maximum number
of continuation lines in one statement is 19.

The END statement cannot be continued.

Statement Labels

As in FORTRAN, any statement can contain a label in
columns 1 through 5. A label is a one to five
digit integer. Labels do not affect DDLF process-
ing, but can be included for documentary reasons.
No diagnostic is issued if the same label is used
more than once.

Labels on type statements become FORTRAN statement
labels when the type statements are copied into the
FORTRAN source program., 1n the FORTKAN program,
type statements are specification statements and
are not executable. if any label on the type
statements duplicates a label on another FORTRAN
statement, a diagnostic is issued by the FORTRAN
compiler,

Comment Lines

A line with a C or * in columm 1 is a comment
line. Comment lines are copied to the DDLF output
listing but are not otherwise processed, Comments
can contain any character 1in the character set.
Comments do not interrupt statement continuation.

Blank Lines

Blank lines can be used freely between statements
to produce blank lines on the source listing. With
FORTRAN 5, a blank line is considered a comment
line and does not break the continuation sequence.

FORTRAN SUBSCHEMA SYNTAX

The source program for a FORTRAN subschema contains
various statements. The following paragraphs
define the format specifications for each statement
that can be used in the FORTRAN subschema source
program. The keywords used in each statement are
indicated by capital letters. Keywords and punctu-
ation must appear exactly as shown in the reference
format statements.

The general format of a FORTRAN subschema is shown
in figure 4-5.

For the rules governing the structure and coding of
FORTRAN subschemas, refer to the Subschema Struc-
turing Requirements subsection and to the Subschema
Programming Conventions subsection. (Both sub~
sections appear earlier in this section.)

60485200 E

J )

J )



SUBSCHEMA statement
[ALIAS statement] ...
{REALM statement} ...

{ RECORD statement }
{Type statement} ... J°"°

[RELATION statement ]
CRESTRICT statement] ... J""°

END statement

Figure 4-5. General Format,
FORTRAN Subschema

SUBSCHEMA STATEMENT

The SUBSCHEMA statement must be the first statement
in every FORTRAN DDL program. It names the schema
and the subschema, Only one SUBSCHEMA statement
can appear. The format of the SUBSCHEMA statement
is shown in figure 4-6.

SUBSCHEMA subschema-name, SCHEMA = schema-name

Figure 4-6. SUBSCHEMA Statement Format

The subschema named 1in the SUBSCHEMA statement 1s
used whenever the subschema is referenced after it
has been compiled and stored in the subschema
library. The name must be unique among subschemas
associated with the designated schema.

The schema-name identifies the schema to which the
subschema belongs. The file containing the schema
directory must be available to the compiler when
the subschema is compiled.

ALIAS STATEMENT

The ALIAS statement is used to change the name of
an entity from the name used in the schema to the
name used in the subschema. The name to be changed
can be a realm, a record, or a data item., The for-
mat of the ALIAS s