|
-

@ CONTROL DATA
CORPORATION

60497800

-~
-

FORTRAN EXTENDED
VERSION 4
REFERENCE MANUAL

CDC® OPERATING SYSTEMS:

NOS 1
NOS 2
NOS/BE 1
SCOPE 2

REVISION RECORD

e,

Revision
A (11/01/75)
B (03/05/76)

C (04/15/77)

D (03/31/78)

E (07/20/79)

F (08/22/80)

G (01/15/81)

H (08/13/82)
J (06/10/83)

REVISION LETTERS I, 0, Q, AND X ARE NOT USED

Description

Original release.

This revision documents Version 4.6 of FORTRAN Extended. Features documented include
CP155, Compiler Enhancements, and CP079, Math Library Upgrade.

Revised to include feature F7540, CYBER 170 Model 176 Support, as well as miscellaneous
technical corrections, at PSR level 446.

This revision documents Version 4.7 of FORTRAN Extended. Features documented include
CP091 and CP162, CRM products BAM and AAM, 191, Math Library Upgrade, CP184, Fast Overlay
Loading, and 66, CYBER Interactive Debug interface. Also documented is the implementa-
tion of STATIC mode memory management, as well as miscellaneous technical changes and
corrections.

This revision documents Version 4.8 of FORTRAN Extended. The Post Mortem Dump facility
is documented with this release, as well as numerous technical changes.

This revision documents changes to Post Mortem Dump, adds the FORTRAN Interface to Common
Memory Manager, and adds the STATIC option to FOGRTRAN Extended. Numerous technical
changes are included. PSR Tevel 524,

This revision documents release of Post Mortem Dump and STATIC option under SCOPE 2.
Numerous technical changes are included. PSR level 533.

This revision documents numerous technical changes and corrections. PSR level 552.

This revision documents numerous technical and editorial corrections. PSR level 577.

Address comments concerning this manual to:

CONTROL DATA CORPCRATION
Publications and Graphics Division

©COPYRIGHT CONTROL DATA CORPORATION P. 0. BOX 3492
1975, 1976, 1977, 1978, 1979, 1980, 1981, 1982, 1983 SUNNYVALE, CALIFORNIA 94088-3492

A1l Rights Reserved

Printed in the United States of America

ii

or use Comment Sheet in the back of this manual

60497800 J

J I D D I I

)

ST T T R T TS T T SRS I T

iii @

w
58
aE S
3 o
& “
2 < CWOWM N CTOCOOWODO I TN T IO WOO L WL LWLW EP UL TUOO I T T LLUOLCTOCCOCTOOW
=]
R &
- a
o
O o
-2
h=]
I
T >
oL © ~N W ~ = — o
= — o o~ ™ < W0 ~N O Y
. d . 1 "
© 1 o [| < 1
3 @ © W0 0 ™ o €0 0 ww o
— — 1Y [ra) =)
© o =30 ' © = =] -]]
S < - [y] ® N fagy oL = o
=3 LN ~ = L o ~ = 5- =
m 3 .Iu .I..t - 4D — ..m 3
- g L
O ORI ANMNTINOWNDAOD—IANMWONOD O~ AM OO NM DO N O Mm<
"D 789111111222222222223333333334444%445555555125578911. !
-3 L L L S e L I N T I e e N I I N e | 10000
=0 b oh b o O b ch b cb 6 60 e 6D ab D e 0D b 6D cb 0D KO DD D 0 B CH D ch)) D D D b e D D h A d N hh ch O hGh h I 2 = 2
B o
&
=
(72] -
cwn
(77 gw
O b
< s g S
E o w—
a 55 2
[t W ORPLUWOWLIO LW I OITL WU COOLCIL OLL LT LLONOPLULCOLOLICULWOTOLCOD L O
e
— 5= o4
VE - -3
+
Q
=
- o
| @ g
|9 o5
W pri
o [=5] [-2] ~ —t ~ ™~ 73]
L e n g b 5 7 g
. . ' o ' '
. Mr.% | v w0 A © @© © © o ~ ~ o~
1T "
em. [S =] > 1S = =1 =1 > ©o
TeE: ~ & £ : E SE Ok £ gk £ &
73 8 55 =] i S BoAB] s =]] <
I B —
o - O = N OB NM LD OO M D HANMON OO AN
me“ 1..9..9_:7..2221234569111112229_.2233333312345m111uﬁ1BINZQZMIZQ.V.#SG&
1 [N
[S o< 55555555666656666666566656666667777777777777777778888888
Q4o
(2] =
-— -_ v
wld e..hL..m
©v* s
..NC
v
2w 5
£°5 .m
© o
m..n..vr. W I 1O I I IR IITCOCAUW L WILNOOLILIOLODN T TICC WU CLCC LI T Tl OO OO Ll Lyl
Co Q
= -3
(%3
© B
© ©
=3
275 5
i St W
w5 8
O h S o = o]
- < o 1
£ w5t A S 3 T 0%
i
£5> & 3ER 5 3 B P M s S
zEg 8a s 2 ¢ E P u s 5
25 a @ - e £ B £ < = <
So® Lo uw 2] =g = + s i
e—-— O - ~—i
fum.w mmﬁ..lﬁv -n1..5..w1_.117._JJ.ﬂﬁwJ.dmlHBMrb%Umww_ﬂ.|_.2345mnw..BM1234789mm10..
. 1 | 00 0)
-] FIT..|1...VVV.1Xxx1111122222223333333333333444444444&.5&5&&&5&&5
Z -

60497800 J

C L C L L e

Page

10-5 thru 10-7
10-8

10-9

10-10

11-1

11-2

11-3

11-4

11-5

11-6

11-7

12-1

12-2

12-3

12-4

12-5

13-1

13-2

13-3

13-4

13-5 thru 13-8
13-9

13-10

13-11

13-12

13-13

13-14

13-15

13-16 thru 13-20
13-21

14-1

14-2

14-3

15-1 thru 15-3
16-1

16-2

16-3

16-4

16-5

16-6

16-7

16-8

16-9

16-10

16-11

16-12

16-13 °

17-1

17-2

17-3

17-4

17-5

17-6

18-1

18-2 thru 18-6
18-7

18-8

18-9 thru 18-11
19-1

19-2

19-3

19-4 thru 19-7

19-8
19-9 thru 19-11
19-12
19-13 thru 19-18
19-19
19-20 thru 19-27

.19-28

iv

19-29 thru 19-32
19-33
19-34

Revision

POIOPMPOPTIPPOPOPIPOOIPO0O PP POGOO I P PrPOOOGOEOUDOOPPORPEPMMIMPOTMT AP PIPOERPEETOOTIOPOMOMNO O

Page

20-1

A-1

A-2

A-3

B-1 thru B-4
B-5

B-6

B-7

B-8

B-9

B-10

B-11 thru B-14
B-15

B-16

B-17

B-18

B-19

8-20

B-21

B-22

B-23 thru B-26
B-27

B-28

B-29

B-30

B-31 thru B-33
B-34

B-35

B-36

B-37

B-38 thru B-41
B-42

B-43

B-44 thru B-49
B-50

B-51 thru B-64
B-65

B-66

B-67

B-68

B-69 thru B-76
B-77

B-78

B-79

B-80

B-81

B-82

B-83

B-84

B-85

B-86

B-87

B-88

B-89

B-90

B-91

B-92

B-93

B-94

B-95

B-96

B-97

C-1 thru C-8
C-9 thru C-11

-1
-2
-3 thru D-5
-6

-7

-8

-1 thru E-6
ndex-1

Moo OoOOoOOoOOoO

Revision

rTOoOPOrOPMOPMMMUOMICUOUTNMIEMNMIOMNMMNMUOMINIOIMUOUOOOTMOTNMOOMOTOOMOMO T MO TMOMUO MO TOTMOOOMO>TI>T

Index-2
Index-3
Index-4
Index-5
Index-6
Comment Sheet
Mailer

Back Cover

Revision

J

LI B < P < e o

60497800 J

J D

J D) 32D D DI) I I

J D I D

J o 2 I

PREFACE

This manual deseribes the FORTRAN Extended 4.8 language. FORTRAN Extended is designed to comply with
American National Standards Institute FORTRAN language, as deseribed in X3.9-1966. It is assumed the reader
has knowledge of an existing FORTRAN language and is familiar with the computer system on which the
language is used.

The FORTRAN Extended compiler operates in conjunction with the COMPASS 3 assembly language processor
under control of the following operating systems:

RN 2 Te e Hin N

NOS 1 for the CONTROL DATA® CYBER 170 Series, CYBER 70 Models 71, 72, 73, 74, and 6000 Series |
Computer Systems

NOS 2 for the CDC® CYBER 170 Series, CYBER 70 Models 71, 72, 73, 74, and 6000 Series Computer l
Systems

NOS/BE 1 for the CDC CYBER 170 Series, CYBER 70 Models 71, 72, 73, 74, and 6000 Series Computer |
Systems

SCOPE 2 for the CONTROL DATA CYBER 170 Model 176, CYBER 70 Model 76, and 7600 Computer

(5’“ Systems

All references in this manual to NOS 1 refer to both NOS 1 and NOS 2.

Due to capsule loading, relocatable binaries compiled by versions of FORTRAN Extended prior to version 4.7
cannot be run with CRM BAM 1.5 or AAM 2; they must be recompiled.

Control Data extensions to the FORTRAN language are indicated by shading. Example programs or parts of
programs are shaded in their entirety if they contain lines using extensions to the ANSI standard (unless the only
such extension is the PROGRAM statement). Shading is used only in sections 1 through 8, which contain the
specification of the FORTRAN Extended language; later sections describe the implementation of these
specifications and shading is not used.

Extended memory for the CYBER 170 Model 176 is large central memory (LCM) or large central memory

extended (LCME). Extended memory for the CYBER 170 800 Series Computer Systems is unified extended l
memory (UEM). Extended memory for all other NOS or NOS/BE computer systems is extended core storage

(ECS) or extended semiconductor memory (ESM). In this manual, the acronym ECS refers to all forms of

extended memory unless otherwise noted. Programming information for the various forms of extended memory
can be found in the COMPASS reference manual and in the appropriate computer system hardware reference
manual.

Related material is contained in the listed publications. These publications are listed alphabetically and
grouped according to their importance to the FORTRAN user. The NOS 1, NOS 2, and NOS/BE 1 manual
abstracts are pocket-sized manuals containing brief deseriptions of the contents and intended audience of all
operating system and product set manuals. The abstracts manuals can be useful in determining which manuals
are of greatest interest to a particular user.

The Software Publications Release History is a guide for determining which revision level of software
documentation corresponds to the Programming System Report (PSR) level of installed site software.

60497800 J v

~
~
~
c
~
~

The following publications are of primary interest:

Publication

FORTRAN Common Library
Mathematical Routines
Reference Manual

FORTRAN Extended Version 4
DEBUG User's Guide

FORTRAN Extended Version 4
User's Guide

NOS Version 1 Reference Manual
Volume 1 of 2

NOS Version 2 Reference Set
Volume 3, System Commands

NOS/BE Version 1
Reference Manual

SCOPE Version 2
Reference Manual

The following publications are of secondary interest:

i

Publication

Common Memory Manager
Version 1 Reference Manual

COMPASS Version 3
Reference Manual

CYBER Interactive Debug
Version 1 Reference Manual

CYBER Interactive Debug
Version 1 Guide for Users
of FORTRAN Extended Version 4

CYBER Loader Version 1
Reference Manual

CYBER Record Manager
Advanced Access Methods
Version 2 Reference Manual

CYBER Record Manager
Advanced Access Methods
Version 2 User's Guide

CYBER Record Manager
Basic Access Methods
Version 1.5 Reference Manual

CYBER Record Manager
Basic Access Methods
Version 1.5 User's Guide

Publication
Number NOS 1 NOS 2 NOS/BE 1 SCOPE 2
60498200 X X X X
60498000 X X X X
60499700 X X
60435400 X
60459680 X
60493800 X
60342600 X
Publication
Number NOS 1 NOS 2 NOS/BE 1 SCOPE 2
60499200 , X X X X
60492600 X X X X
60481400 X X X
60482700 X X X
60429800 X X X
60499300 X X X
60499400 X X X
60495700 X X X
60495800 X X X

60497800 H

J

JJ D D D I I I I I I

DD D D D D D

Publication

(@m Publication Number NOS 1 NOS 2 NOS/BE 1 SCOPE 2
: DMS-170

DDL Version 3 Reference Manual
(«m Volume 1: Schema Definition

for Use With:

COBOL
FORTRAN :

(@"‘ Query Update 60481900 X X X

FORTRAN Data Base Facility
(@@. Version 1 Reference Manual 60482200 X X X

INTERCOM Interactive Guide

for Users of FORTRAN Extended 60495000 X
(W\ INTERCOM Version 5

Reference Manual 60455010 : X
f\ Loader Version 1 User's Guide 60482300 X

Network Products
(sﬁ Interactive Facility Version 1
: Reference Manual 60455250 X
(@ NOS Version 1 Diagnostic Index 60455720 X

NOS Version 1 Manual Abstracts 84000420
NOS Version 2 Diagnostie Index 60459390
NOS Version 2 Manual Abstracts 60485500
NOS Version 2 Reference Set

Volume 1, Introduction to
Interactive Usage 60459660 X

NOS/BE Version 1
Diagnostic Index 60456490 X

NOS/BE Version 1
Manual Abstracts 84000470 X

SCOPE Version 2 Loader
Reference Manual 60454780 X

SCOPE Version 2 Record Manager
Reference Manual 60495700 X

Software Publications
Release History 60481000 X X X X

Sort/Merge Versions 4 and 1
Reference Manual 60497500 X X X X

CDC manuals can be ordered from Control Data Corporation, Literature and Distribution Services,
308 North Dale Street, St. Paul, Minnesota 55103.

"This produet is intended for use only as deseribed in this document. Control
Data cannot be responsible for the proper functioning of undeseribed features

or parameters.

-
-
~
~
-
-
-
~

60497800 H vii/viii

~
-
-
~
-
-
-
-
-

S 70 Je e e Tie Tie e Wi

CONTENTS
1. PORTRAN LANGUAGE ELEMENTS 1-1 IMPLICIT Type Statement 3-3
DIMENSION Statement 3-4
Coding FORTRAN Statements 1-1 COMMON Statement 3-5
PORTRAN Character Set 1-1 EQUIVALENCE Statement 3-8
Column Usage 1-1 EQUIVALENCE and COMMON 3-11
Comments 1-3 LEVEL Statement 3-12
Statement Labels 1-3 EXTERNAL Statement 3-14
Continuation 1-3 DATA Statement 3-15
Columns 73-80 1-3 Implied DO in Data List 3-19
Statement Separator 1-3
Blank Lines 1-4
Data 1-4 ‘
Ordering of Statements 1-4 4. FLOW CONTROL STATEMENTS 4-1
Constants 1-5
Integer Constant 1-5 GO TO Statement 4-1
Real Constant 1-5 Unconditional GO TO Statement 4-1
Double Precision Constant 1-6 Computed GO TO Statement 4-2
Complex Constant 1-7 ASSIGN Statement 4-3
Octal Constant 1-8 Assigned GO TO Statement 4-4
Hollerith Constant 1-9 Arithmetic IF Statement 4-5
nHf and #f# 1-10 Three-Branch Arithmetic IF Statement 4-5
nRf and nLf 1-11 Two-Branch Arithmetic IF Statement 4-5
Logical Constant 1-11 Logical IF Statement 4-6
Variables 1-11 Standard-Form Logical IF Statement 4-6
Integer Variables 1-12 Two-Branch Logical IF Statement 4-7
Real Variables 1-12 DO Statement 4-7
Double Precision Variables 1-13 DO Loops 4-8
Complex Variables 1-13 Nested DO Loops 4-9
Logical Variables 1-13 CONTINUE Statement 4-12
Arrays 1-13 PAUSE Statement 4-13
Subseripts 1-15 STOP Statement 4-14
Array Structure 1-16 END Statement 4-14
RETURN Statement 4-15
2.. EXPRESSIONS AND ASSIGNMENT
STATEMENTS 2-1
Expressions 2-1 5. INPUT/OUTPUT STATEMENTS 5-1
Arithmetic Expressions 2-1
Evaluation of Expressions 2-2 Formatted Input/Output 5-2
Type of Arithmetic Expressions 2-5 Pormatted Output Statements 5-3
Exponentiation 2-6 PRINT 5-3
Relational Expressions 2-7 PUNCH 5-4
Logical Expressions 2-9 WRITE 5-5
Masking Expressions 2-12 Formatted READ 5-5
Assignment Statements 2-14 Unformatted Input/Output 5-7
Arithmetic Assignment Statements 2-15 Unformatted WRITE 5-7
Conversion to Integer 2-16 Unformatted READ 5-7
Conversion to Double Precision 2-16 List Directed Input/Qutput 5-8
Conversicn to Complex 2-17 List Directed Input 5-8
Conversion to Real 2-18 List Directed Output 5-10.2
Logical Assignment 2-18 NAMELIST 5-13
Masking Assignment 2-19 Input 5-14
Multiple Assignment 2-19 Output 5-15
Arrays in NAMELIST 5-17
Buffer Statements 5-20
3. SPECIFICATION STATEMENTS 3-1 BUFFER IN 5-20
BUFFER OUT 5-22
Type Statements 3-1 ENCODE and DECODE 5-22
Explicit Type Declarations 3-1 ENCODE 5-22
INTEGER 3-1 DECODE 5-25
REAL 3-2 File Manipulation Statements 5-27
COMPLEX 3-2 REWIND 5-27
DOUBLE PRECISION 3-2 BACKSPACE 5-27
LOGICAL 3-3 ENDFILE 5-27
60497800 H ix

6. INPUT/OUTPUT LISTS AND FORMAT

STATEMENTS

Input/Qutput Lists
Implied DO in I/O List
FORMAT Statement
Data Conversion
Conversion Specification
Iw and Iw.z Input
Iw and Iw.z Output
Ew.d, Ew.dEe and Ew.dDe Output
Ew.d, Ew.dEe and Ew.dDe Input
Fw.d Output
Fw.d Input
Gw.d Input
Gw.d Output
Dw.d Output
Dw.d Input
Ow Input
Ow Output
Zw Input and Output
Aw Input

Aw Output
Rw Input
Rw Output
Lw Input
Lw Output
Scale Factors
Fw.d Scaling
Ew.d and Dw.d Scaling
Gw.d Scaling
X Specification
nH Output
nH Input
End of Record Slash
Repeated Format Specification
Printer Control Character
Tn Specification
V Specification
Equals Sign
Execution Time Format Specification

7. PROGRAM UNITS, PROCEDURES,
AND OVERLAYS

Main Programs
PROGRAM Statement Format
PROGRAM Statement Usage
Block Data Subprogram
Procedures
Subroutine Subprogram
Function Subprogram
Basic External Function
Intrinsie Funetion
Statement Function
Procedure Communication
Passing Values to a Procedure
Using Arguments
Using Common
Using Arrays
Referencing a Function
Calling a Subroutine Subprogram
Using the ENTRY Statement
Overlays
Overlay Communication
Creating an Overlay
Calling an Overlay

8. FORTRAN EXTENDED SUPPLIED
PROCEDURES

Intrinsie Functions
Basic External Functions

6-1
6-2
6-5
6-6
6-7
6-7
6-8

6-10
6-13
6-13
6-14
6-14
6-16
6-16
6-17
6-17
6-18
6-18.1/
6-18.2
6-19
6-20
6-21
6-21
6-21
6-21
6-22
6-23
6-23
6-24
6-25
6-26
6-28
6-29
6-31
6-32
6-34
6-34
6-36

7-2
7-2
7-3
7-5
7-6
7-6
7-8
7-9
7-10
7-10
7-12
7-12
7-12
7-14
7-14
7-15
7-16
7-18
7-19
7-21
7-21
7-23

8-1

8-1
8-1

Miscellaneous Utility Subprograms
Random Number Generator
Operating System Interface Routines
Debugging Aids
Input/Output Status Checking
Other Input/Output Subprograms
ECS/LCM/UEM Subprograms

Terminal Interface Subprograms
Mass Storage Input/Output
Random File Access
Mass Storage Subroutines
Opening a File
Writing Records
Reading Records
Closing a File
Specifying a Different Index

Index Key Types
Master Index
Sub-Index
Multi-Level File Indexing
Compatibility With Previous Mass
Storage Routines
FORTRAN-CYBER Record Manager Interface
Parameters
Subroutines
Error Checking
Multiple Index Processing
FORTRAN-Sort/Merge Interface
FORTRAN-CYBER Interactive Debug Interface
Control Statement
User-CID Interaction
CID Output
Batch Debugging
Interface to Common Memory Manager
Post Mortem Dump

9. DEBUGGING FACILITY

Debugging Statements
Continuation Line
ARRAYS Statement
CALLS Statement
FUNCS Statement
STORES Statement
Variable Names
Relational Operators
Checking Operators
Hollerith Data
GOTOS Statement
TRACE Statement
NOGO Statement
Debug Deck Structure
DEBUG Statement
AREA Statement
OFPF Statement
Printing Debug Output
STRACE Entry Point

10. FTN CONTROL STATEMENT

Parameters
A Exit Parameter
B Binary Object File
BL Burstable Listing
C COMPASS Assembly
CC Control Statement Continuation
Parameter
D Debugging Mode Parameter
DB CYBER Interactive Debug Parameter
E Editing Parameter
EL Error Level

8-8
8-8
8-9
8-14
8-23
8-25
8-26.1/ |
8-26.2
8-27
8-29
8-29
8-30
8-30
8-31
8-32
8-32
8-32.1/
8-32.2
8-33
8-33
8-33'
8-33

8-39
8-39
8-39
8-42
8-44
8-45
8-46
8-51
8-51
8-52
8-52
8-52
8-52
8-53

9-1

9-3

9-3

9-3

9-5

9-7

9-10
9-11
9-12
9-13
9-13
9-14
9-15
9-17
9-17
9-22
9-23
9-26
9-27
9-28

10-1

10-1
10-2
10-2
10-2
10-2

10-2
10-3
10-3
10-3
10-4

60497800 J

J

2 D I

J D) D D D D D D

J)

2 DD D D D

-
-
-
~

ER Error Recovery

G Get System Text File

GO Automatic Execution (Load and Go)
I Source Input File

L List Qutput File

LCM Level 2 and Level 3 Storage Access

ML Modlevel

OL Objeet List

OPT Optimization Parameter
P Pagination

PD Print Density

PL Print Limit

PMD Post Mortem Dump
PS Page Size

PW Page Width

Q Program Verification

R Symbolic Reference Map

ROUND Rounded Arithmetic Computations

S System Text (Library) File
SE& Sequenced Input
SL Source List
STATIC Static Loading
SYSEDIT System Editing
T Error Traceback
TS Timesharing Mode
UO Unsafe Optimization
X External Text Name
Z Zero Parameter
FTN Control Statement Examples

11, COMPILATION MODES AND
OPTIMIZATION

Optimizing Mode
Object Code Optimization
OPT=0
OPT=1
OPT=2
uo
Source Code Optimization
Time-Sharing Mode
TS Listings
Sequenced Line Format

12. COMPILER LISTINGS

Optimizing Mode Listings
Time-Sharing Mode Listings
Listing Control Directives

13. CROSS REFERENCE MAP

Optimizing Compilation Mode

Source Program

R=1 Maps

R=2/R=3 Maps
Entry Points
Variables
File Names
External References
Inline Functions
Namelists
Statement Labels
DO Loops
Common Blocks
Equivalence Classes
Program Statistics
Error Messages
Debugging (Using the Reference Map)

60497800 H

10-4
10-4
10-4
10-5
10-5
10-5
10-5
10-5
10-6
10-6
10-6
10-6
10-6
10-6
10-7
10-7
10-7
10-7
10-8
10-8
10-8
10-8
10-8
10-9
10-9
10-9
10-9
10-9
10-10

11-1

11-2
11-2
11-2
11-2
11-2
11-3
11-4
11-6
11-7
11-7

12-1

12-1
12-2
12-2

13-1

13-1
13-2
13-3
13-4
13-5
13-6
13-7
13-8
13-9
13-10
13-10
13-11
13-12
13-13
13-14
13-14
13-14

Time-Sharing Mode
R=1 Maps
R=2, R=3 Maps
Common Bloecks
Entry Points
External References
Statement Labels
Variables

14. OBJECT CODE

Optimizing Mode
Subroutine and Funection Structure
Main Program Structure
Renaming Conventions
Register Names
External Procedure Names
Listing Format
Time-Sharing Mode
Listing Format

15. EXECUTION CONTROL STATEMENT

Alternate File Name Specification
Print Limit Specification
Post Mortem Dump Parameters

16. INPUT/OUTPUT IMPLEMENTATION

Execution-Time Input/Output
File and Record Definitions
Strueture of Input/Output Files
Sequential Files
Mass Storage Input/Output
FILE Control Statement
Sequential File Operations
BACKSPACE/REWIND
ENDFILE
Input/Output Restrictions
Record Manager Error Suppression
Compile-Time Input/Output
Source Input File Structure
Coded Output File Structure
Binary Output File Structure

17. COMPASS SUBPROGRAM LINKAGE

Call by Name and Call by Value
Call by Name Sequence
Call by Value Sequence
Intermixed COMPASS Subprograms
Entry Point
Restrictions on Using Library Funetion
Names

18. SAMPLE DECK STRUCTURES

FORTRAN Source Program with Control
Statements
Compilation Only
TS Mode Compilation Only
Compilation and Execution
FORTRAN Compilation With COMPASS
Assembly and Execution
Compile and Execute With FORTRAN Sub-
routine and COMPASS Subprogram

13-15
13-16
13-17
13-18
13-18
13-18
13-19
13-20

14-1

14-1
14-1
14-2
14-2
14-2
14-2

14-3 |

14-3
14-3

15-1

15-1
15-2
15-2

16-1

16-1
16-1
16-2
16-2
16-6
16-6
16-8
16-8
16-10
16-11
16-11
16-11
16-12
16-13
16-13

17-1
17-1
17-1
17-2
17-2
17-4

17-4

18-1

18-1
18-2
18-2
18-3

18-4
18-5

Xi

Compile and Produce Binary Cards

Load and Execute Binary Program

Compile and Execute With Relocatable
Binary Deck

Compile Once and Execute With Different
Data Decks

Preparation of Overlays

Compilation and 2 Executions With Overlays

1. SAMPLE PROGRAMS

Program OUT

Program B

Program MASK

Program EQUIV

Program COME

Program LIBS

Program PIE

Program ADD
DECODE (READ)
ENCODE (WRITE)

Program PASCAL

Program X

Program VARDIM

Program VARDIM2
SUBROUTINE IOTA
SUBROUTINE SET
Funetion AVG
Function PVAL
Funetion MULT
Main Program - VARDIM2

Program CIRCLE

Program OCON

List Directed Input/Output

20. STATIC OPTION

Xii

18-6
18-7

18-8

18-9
18-10
18-11

19-1

19-1

19-3

19-5

19-7

19-9

19-11
19-13
19-15
19-15
19-15
19-18
19-19
19-21
19-23
19-23
19-23
19-23
19-24
19-25
19-25
19-28
19-30
19-33

20-1

APPENDIXES

moQw >

Standard Character Set
FORTRAN Diagnosties
Statement Forms
Arithmetic

Glossary

INDEX

FIGURES

1-1
9-1

9-2
9-3
9-4

Program PASCAL
Example of Interspersed Debugging
Statements
External Debugging Deck
Example of Internal Debugging Deck
F.xgmple of External Deck on Separate
ile

TABLES

2-1
7-1
7-2
8-1

8-2
8-3

Mixed Type Arithmetic Expressions
With + - * / Operators

Differences Between a Funection and
Subroutine Subprogram

Procedure and Subprogram Inter-
relationships

Intrinsie Functions

Basic External Funections

LABINFO Block Content

16-1 Defaults for FIT Fields Under FORTRAN

Extended

A-1
B-1
C-1

E-1

1-2

9-18
9-19,
9-20

9-21

2-5
7-1
7-2
8-2
8-6
8-26

16-3

60497800 H

J J

J D

DD D I

J D D)

J) I D I I

Jd

~
-~
-
-
-
.
e
o
o

D200 DD DD

FORTRAN LANGUAGE ELEMENTS

A FORTRAN program contains executable and non-executable statements. Executable statements specify actions
the program is to take, and non-executable statements describe characteristics of operands, statement functions,

arrangement of data, and format of data.

CODING FORTRAN STATEMENTS

The FORTRAN source program is written on the coding form illustrated in figure 1-1. Each line on the coding
form represents an 80-column source line (terminal line or card image). The FORTKAN character set is used to

code statements.

FORTRAN CHARACTER SET

Alphabetic AtoZ
Numeric Oto9
Special = equal) right parenthesis
+ plus , comma
- minus . decimal point
* asterisk $ dollar sign
/ slash blank

(left parenthesis r! ' quote -

In addition, any character (Appendix A) may be used in Hollerith constants and in comments.

significant except in Hollerith fields.

COLUMN USAGE

Blanks are not

Column 1 C or $ or * indicates comment line

Columns 1-2

Columns 1-2

Columns 1-5 Statement label.

Column 6 Any character other than blank or zero denotes continuation; does not
apply to comment lines or list dlrectwes A debu ’ ntmuatton lme
must contain C$:in columns 1-2. :

Columns 7-72 Statement.

Identification field, not

Columns 73-80 processed by compiler.

60497800 A

1-1

c ¢ ¢ ¢ ¢ ¢ ¢ ¢

. [ostecTacTecTorTseTvalee[zch: c[ocTesleoTes oateaTval coReelio] ooleslealcsloslss oates e lia oslovlas zvIsslavlve TeelewTinJor T eclog celoc Tsel] e JorTeTaT]s

60497800 A

zelie]

Sl B Tie

COMMENTS

In column 1 a C, *, or § indicates a comment line. Comments do not affect the program; they can be
written in column 2 to 80 and can be placed anywhere within the program. If a comment occupies more
than one line, each line must begin with C, *, or $ in column 1. In a comment line a character in column 6
is not recognized as a continuation character. Comments can appear between continuation lines; they do not
interrupt the statement contmuataon s ;

Comment lmes followmg an END hne are hsted at the begmmng of the next program unit unless the END -
line is contmued ‘ »

STATEMENT LABELS

A statement label (any 1- to 5-digit integer) uniquely identifies a statement so it can be referenced by
another statement. Statements that will not be referenced do not need labels. Blanks and leading zeros are
not significant. Labels need not occur in numerical order; however, a given label must not be used more than
once in the same program unit. A label is known only in the program unit containing it; it cannot be refer-
enced from a different program unit. Any statement can be labeled, but only FORMAT and executable state-
ment labels can be referenced by other statements. A label on a continuation line is ignored.

CONTINUATION

Statements are coded in columns 7-72. If a statement is longer than 66 columns, it can be continued on as
many as 19 continuation lines. A character other than blank or zero in column 6 indicates a continuation line.
Column 1 can contain any character other than C, *, or $; columns 2, 3, 4, and 5 can contain any character.
Any statement except a comment or a list directive can be continued, including the END statement.

COLUMNS 73-80

Any information can appear in columns 73-80 because they are not part of the statement. Entries in these
columns are cop1ed to the source program listing. They are generally used to order the lines in a deck but
can contam rmatxon for DEBUG AREA processmg -

SEPARATOR

STATEM E

Several statements can be wrxtten on one line 1f they are separated y.the specml racter $. Eéc:h_staté#-

ment followm 3 s1gn is treated. asa separate. statement. For.ex 'ple

irectives. The state
if it were in column 7 on

60497800 A 1-3

BLANK LINES

Blank lines can be used freely between statements to produce blank lines on the source listing.]
e; a blank line interrupts statement tinuation, and the line following the blank line is the be-
ginning of a new statement. This line can ¢ - have the form of a continuation line.

DATA

No restrictions are 1mposed on the format of data read by the source program Data input on cards is lmuted

ORDERING OF STATEMENTS

The following table shows the general form of a FORTRAN program unit. Statements within a group can.
appear in any order, but groups must be ordered as shown. Comment lines can appear anywhere within the
program.

STATEMENTS

2 FUNCTION*
SUBROUTINE*
BLOCK DATA

3| IMPLICIT

type
COMMON

4 | DIMENSION
EQUIVALENCE
EXTERNAL*
LEVEL

5 Statement function*
definitions

-1 > =200 N*

ENT‘RY*”
6 Executable
statements*

7 END

*Not allowed in BLOCK DATA Subprograms
¥ Narneis grous e must be defined before it

14 60497800 A

J D I I D I

DD DD I I D I I D I

J

))

CONSTANTS

_A constant is a fixed quantity. The seven types of constants are: integer, real, double precision, complex,
-octal, Hollerith, and logical.

INTEGER CONSTANT

|n1n2...nm|

n is a decimal digit (0-9)

1<m<18
Examples:

237 -74 +136772 0 -0024
An integer constant is a string of 1-18 decimal digits written without a decimal point. It may be positive,
negative or zero. If the integer is positive, the plus sign may be omitted; if it is negative, the minus sign

must be present. An integer constant must not contain a comma. The range of an integer constant is
- (2%9-1) to 2%°-1 (2%%-1 = 576 460 752 303 423 487).

-
-
-
-
-
~
-
-

Examples of invalid integer constants:

46. (decimal point not allowed)
23A (letter not allowed)
7,200 (comma not allowed)

When an integer constant is used as a subscript, or as an index in a DO statement or implied DO, the maximum
value is 2'7-1 (2'7-1 = 131 071), and the minimum is 1.

Integers used in multiplication, division,and exponentiation, whether constant or variable, should be in the range
- (248 -1) to 248 -1 (248 -1 = 281 474 976 710 655). The result of such operations also should be in this
range. [If an integer constant exceeding this range is used, a fatal diagnostic is issued. Any other cases are not
diagnosed, and the results are unpredictable. For integer addition and subtraction (where both operands are
integers), the full 60-bit word is used.

When values are converted from real to integer or from integer to real (in an expression or assignment state-

ment), the valid range is also from - (2®-1) to 2*®-1 . For values outside this range, the high order bits
are lost and no diagnostic is provided.

REAL CONSTANT

| A.n n n. n.nEts .nEzs n.Ets nEzs I
n Coefficient < 15 decimal digits
Ets Exponent (base 10)
60497800 B 1-5

A real constant consists of a string of decimal digits written with a decimal point or an exponent, or both.
Commas are not allowed. If the exponet is positive, the plus sign is optional.

The range of a real constant is 107 to 10**?; if this range is exceeded, a diagnostic is printed. Precision is
approximately 14 decimal digits, and the constant is stored internally in one computer word.

Examples:

7.5 -3.22 +4000. 23798.14 .5 - .72 42.E1 700.E-2
Examples of invalid real constants:

3,50, (comma not allowed)

2.5A (letter not allowed)
Optionaliy, a real constant can be followed by a decimal exponent, written as the letter E and an integer con-
stant indicating the power of ten by which the number is to be multiplied. If the E is present, the integer

constant following the letter E must not be omitted. The sign may be omitted if the exponent is positive, but
it must be present if the exponent is negative.

Examples:
42.E1 (42. x 10' = 420.)
.00028E+5 (.00028 x 10° = 28.)

6.205E12 (6.205 x 10" = 6205000000000.)

8.0E+6 (8. x 10° = 8000000.)
700.E-2 (700. x 107 = 17)
7E20 (7. X 10® = 70 000 000 000 000 000 0000.)

Example of invalid real constants:

7.2E3.4 exponent not an integer

DOUBLE PRECISION CONSTANT

In.nDis .nDxs n.Dis nDz#s|

n Coefficient

Dxts ‘Exponent (base 10)

1-6 60497800 A

D2 D D D D D 2 DI DD DI I I I

J D D D

g i Tis Wi Tie Nie TS 1S NEe NS XN

-
-
~
-
-

Double precision constants are written in the same way as real constants except the exponent is specified by
the letter D instead of E. Double precision values are represented internally by two computer words, giving
extra precision. A double precision constant is accurate to approximately 29 decimal digits. If the exponent
is positive, the plus sign is optional.

Examples:
5.834D2 (5.834 x 102 = 583.4)
14.D-5 (14. x 10 = .00014)
9.2D03 (9.2 x 10° = 9200.)
-7.D2 (-7. X 10? = -700.)
3120D4 (3120. x 10" = 31200000.)

Examples of invalid double precision constants:

7.2D exponent missing
D5 exponent alone not allowed
2,1.3D2 comma illegal
3.141592653589793238462643383279 D and exponent missing

COMPLEX CONSTANT

|

rl Real part
r2 Imaginary part

Complex constants are written as a pair of real constants separated by a comma and enclosed in
parentheses.

FORTRAN Coding Complex Number
(1., 7.54) 1. + 7.54i i= T
(-2.1E1, 3.24) 21, + 3.24i
(4.0, 5.0) 40 + 5.0i
(0., -1.) 00 - 1.0i
60497800 A 1-7

The first constant represents the real part of the complex number, and the second constant represents the
imaginary part. The parentheses are part of the constant and must always appear. Either constant may be
preceded by a plus or minus sign. Complex values are represented internally by two consecutive computer
words.

Both parts of complex constants must be real; they may not be integer.

Examples of invalid complex constants:

(275, 3.24) 275 is an integer

(12.7D-4 16.1) comma missing and double precision not allowed
4,7E+2,1.942 parentheses missing

(0,0) 0 is an integer

Real constants which form the complex constant can range from 10 to 10", Division of complex
numbers might result in underflow or overflow (see Appendix D) even when this range is not exceeded.

1-8 60497800 A

DRSS N NS N N T T I S T

J D D

J

)

maskmg expressmn

' octal constant used as parameter in f _ctton

‘mas mgvexpressmn_,; i

arithmetic expression:

-
-
-
~
-

n Unsigned decimal integer representing number of characters in string including blanks;
must be greater than zero.

f String of characters; must contain at least one character

11 se: On 3) If a Hollenth constant is used as an operand of an arithmetic operatlon,
an informative 1agnostlc is glven If a Hollerith constant is used as an argument in a subprogram call, it is
followed by a zero word.

7DD

60497800 A 1-9

The Hollerith specification in a FORMAT statement (see section 6) is not the same as a Hollerith constant.

These two forms produce left-justified display code constants with 10 characters per word. If the string length
is not a multiple of 10, the final word is blank filled.

nHf Examples:

18HTHIS IS A CONSTANT

7HTHE END

19HRESULT NUMBER THREE

e : :] : »‘%,)
o
et

1-10 60497800 E

~
~
-
-
~

Gﬁh

S N Jie Bie Tie W'

;:lnyach‘a/ractgxg er ord If
stified; nRf mdibatés' nght;ustxf

LOGICAL CONSTANT

A logical constant takes the forms:

. representing the value true

representing the value false

The decimal points are part of the constant and must appear.

Examples:

LOGICAL X1, X2

.

X1 = .TRUE.
X2 = .FALSE.
VARIABLES

A variable represents a quantity whose value can be varied; this value can be changed repeatedly during
program execution. Variables are identified by a symbolic name of one to'seven letters or digits, beginning
with a letter. A variable is associated with a storage location; whenever a variable is used, it references the
value currently in that location.

A variable can have its type specified in a type statement (see section 3) as integer, real, double precision,
complex, or logical. In the absence of an explicit declaration, the type is implied by the first character of
the name: [, J, K, L, M, and N imply type integer and any other letter implies type real, unless

statement (see section 3) is used to change this normal implicit type.

60497800 A 1-11

>0 D D)

Default typing of variables:

A-H,0-Z Real

I-N ' Integer

INTEGER VARIABLES

An integer variable is a variable that is typed explicitly or implicitly as described under Variables.

The value range is - (25°-1) to 25°-1. When an integer variable is used as a subscript, the maximum value is
2'7-1. The resulting absolute value of conversion from integer to real, or real to integer must be less than
2% . The operands, as well as the result, of an integer multiplication or division must be less than 2% in
absolute value. If any of these restrictions are violated, the results are unpredictable. For integer addition
and subtraction, the full 60-bit word is used; the resulting absolute value must be less than 25°.

See section 4 for restrictions or integers used in DO statements.

An integer variable occupies one word of memory.

Examples:

ITEM1 NSUM JsSUM N72 J K2804

REAL VARIABLES

A real variable is a variable that is typed explicitly or implicitly as described under Variables.

The value range is 107293 to 10%322 with approximately 14 significant digits of precision. A real variable
occupies one word of storage.

-
-
-

Examples:

AVAR SUM3 RESULT TOTAL2 BETA XXXX

1-12 60497800 A

~
-
~

DOUBLE PRECISION VARIABLES

Double precision variables must be typed by a type declaration. The value of a double precision variable can
range from 10 to 10"% with approximately 29 significant digits of precision.

Double precision variables occupy two consecutive words of memory. The first word contains the more
significant part of the number and the second contains the less significant part.

ECISION OMEGA,X,IOTA

MEGA, X, IOTA and all vaﬁabll‘éé"xj/hose first letterls A are doub eci

COMPLEX VARIABLES

Complex variables must be typed by a type declaration. A complex variable occupies two words of memory;
each word contains a real number. The first word represents the real part of the number and the second
represents the imaginary part.

Example:

COMPLEX ZERA,MU,LAMBDA

LOGICAL VARIABLES

Logical variables must be typed by a type declaration. A logical variable has the value true or false and
occupies one word of memory.

Example:

LOGICAL L33,PRAVDA,VALUE

ARRAYS

A FORTRAN array is a set of elements identified by a single name composed of one to seven letters and
digits beginning with a letter. Each array element is referenced by the array name and a subscript. The type
of the array elements is determined by the array name in the same manner as the type of a variable is deter-
mined by the variable name (see Variables in this section). The array name and its dimensions must be de-
clared in a DIMENSION or COMMON statement or a type declaration. Arrays can have one, two, or three
dimensions.

The number of dimensions in the array is indicated by the number of subscripts in the declaration.

DIMENSION STOR(6) declares a one-dimensional array of six elements

60497800 A 1-13

REAL STOR({(3,7) declares a two-dimensional array of three rows and seven columns
LOGICAL STOR{6,6,3) declares a three-dimensional array of six rows, six columns and three planes
The entire array may be referenced by the unsubscripted array name wh

output list, as an actual parameter, or in a DATA statement.
T e ay. nam

Example 1:

The array N consists of six values in the order: 10, 55, 11, 72, 91, 7

N(1) value 10

N(2) value 55

N@3) value 11

N(4) value 72

N(S) value 91

N(6) value 7
Example 2:

The two-dimensional array TABLE (4,3) has four rows and three columns.

Column 1 Column 2 Column 3
Row 1 44 10 105
Row 2 72 20 200
Row 3 3 11 30
Row 4 91 76 714

To refer to the number in row two, column three write TABLE(2,3).

TABLE(3,3) = 30 TABLE(1,1) = 44 TABLE(4,1) = 91

TABLE(4,4) would be outside the bounds of the array and results are unpredictable.

1-14 60497800 A

HENED RS N

SR NS N T N S T S I

-
~
~

jexpressnon is

exceed the ni

SUBSCRIPTS

A subscript indicates the position of a particular element in an array. A subscript consists of a pair of

parentheses enclosing from one to three subscnpt expressxons which are separated by commas. The subscnpt

follows the array name. A subscnpt expression can be any vahd anthmeuc ex n. If the
mteger, it 1s' uncated to mteger : el

ns, the com
j a reference

Nassumes

\scnpts have a value of one. The number of subscnpt expressxo
ber of declared dlmenswns

The value of a subscript must never be zero or negative. It should be less than or equal to the product
of the declared dimensions, or the reference will be outside the array. If the reference is outside the bounds

of the array, results are unpredictable.

The amount of storage allocated to arrays is discussed under DIMENSION declarations in section 3.

Valid subscript forms:

Al1,K)
B(142,J-3,6"K+2)
LAST(6)
ARAYD(132)

Invalid subscript forms:

ATLAS(0) zero subscript causes a reference outside of the array
D(1 .GE. K) relational or logical expression illegal
A1) or A{l,K) commas can only be used to separate adjacent subscript expressions

Example:

“ Plane 2

Col '1 c°| 2 Co3 = Coll

e sing XT (32N-NEXT (22)
scri _represents represents.
XT(3): NEXT (3,2,1) NEXT (22 1)
replj'ejsg . 1

 NEXT @3
In the th EXT whenonlyone or two subséﬁij{s,aré shoy ‘ remammg
assumed to o e . N
60497800 A 1-15

ARRAY STRUCTURE

Arrays are stored in ascending locations: the value of the first subscript increases most rapidly, and the value of
the last increases least rapidly.

Example:

In an array declared as A(3,3,3), the elements of the array are stored by columns in ascending locations.

Row 1

Row 2

Row 3

Element

A(LLL1)
A(2,1,1)
AG,L,1)
A(1,2,1)
AQ2,2,1)
A(3,2,1)
A(1,3,1)
AQ2,3,1)
AB3,3,1)
A(1,1,2)
AQ2,1,2)
A(3,1.2)
A(1,2,2)
A(2,2,2)

Plane 1
Col 2 Col 3
A121 A131
! |
A221 A231 Plane 2
! |
A321 A331 Col 1 Col 2 Col 3
N
Row 1 Al112 A122 A132
| | |
Row 2 A212 A222 A232 Plane 3
} | {
Row 3 A312 A322 A332 Col 2 Col 3
Row 1 A123 »A133
} |
Row 2 A223 | A233
| {
Row 3 A323- A333
The array is stored in linear sequence as follows:
Location Relative Location Relative
to first Element Element to first Element
0 A(3,2,2) 14
1 A(1,3,2) 15
2 A(2,3,2) 16
3 A(3,3,2) 17
4 A(1,1,3) 18
5 A(2,1,3) 19
6 A(3,1,3) 20
7 A(1,2,3) 21
8 A(2,2,3) 22
9 A(3,2,3) 23
10 A(1,3,3) 24
11 A(2,3,3) 25
12 A(3,3,3) 26
13)
60497800 A

J D D I D

3 D 2 I D I

J 0 2D 2D D D I

>)

Y Y D) D

sHs NS

~
-~

70D

To find the location of an element in the linear sequence of storage locations the following method can be

used:
Number of Array Location of Element
Dimensions Dimension Subscript Relative to Starting Location
1 : ALPHA(K) ALPHA(k) (k-1)XE
2 ALPHA(K M) ALPHA(k,m) (k-1+KX{m-1))XE
3 ALPHA(K,M,N) ALPHA(k,m,n) (k=1+KX(m-1+MX{n-1}))XE

K, M, and N are dimensions of the array.

k,m, and n are the subscript expression values of the array.

1 is subtracted from each subscript value because the subscript starts with 1, not 0.

E is length of the element. For real, logical, and integer arrays, E = 1. For complex and double

precision arrays, E = 2.

[Examples:
Location of Element
Subscript Relative to Starting Location
INTEGER ALPHA (3) ALPHA(2) (2-1)X1=1
REAL ALPHA (3,3) ALPHA(3,1) (3-143X{1-1))X1 =2
COMPLEX ALPHA (3,3,3) ALPHA(3,2,1) (3-1+3X(2-1+3X(1-1)))X2 = 10

60497800 A

Cc cC coc ¢ occocc ¢ ccCcCccCcoccC

EXPRESSIONS AND ASSIGNMENT STATEMENTS 2

EXPRESSIONS

FORTRAN expressions are arithmetic, masking, logical and relational. Arithmetic and masking expressions
yield numeric values, and logical and relational expressions yield truth values.

ARITHMETIC EXPRESSIONS

An arithmetic expression is a sequence of unsigned constants, variables, array elements, and function references
separated by operators and parentheses. For example,

I

(A-B)*F + C/D**E

is a valid arithmetic expression.
The FORTRAN arithmetic operators are:

+ addition

- subtraction

* multiplication
/ division
*% exponentiation

An arithmetic expression may consist of a single constant, variable, array element, or function reference. If X
is an expression, then (X) is an expression. If X and Y are expressions, then the following are expressions:

X+Y
X*Y
-X

+ X
X-Y

X/Y

~
~
-
-
-

X**Y

60497800 A 2-1

All operations must be specified explicitly. For example, to multiply two variables A and B, the expression
A*B must be used. AB, (A)(B), or A.B will not result in multiplication.

Expression ~ Value
3.78542 Real constant 3.78542
A(2*7]) Array element A (2*])
BILL Variable BILL
SQRT(5.0) Vs
A+B Sum of the values A and B
C*D/E Product of C times D divided by E
J**1 Value of J raised to the power of I
(206-50)*2 300

EVALUATION OF EXPRESSIONS

The sequence in which an expression is evaluated is governed by the following rules, listed in descending precedence:

1. References to external functions are evaluated.
2. Arithmetic statement functions and intrinsic functions are expanded.
3. Subexpressions delimited by parentheses are evaluated, beginning with the innermost subexpressions.

4. Subexpressions defined by arithmetic, relational, and logical operators are evaluated according to the
following precedence hierarchy:

* * s
(exponentiation)

/ * (division or multiplication)

+ - (addition or subtraction)

.GT. .GE. .LT. .LE. .EQ. NE. (relationals)

.NOT. (logical)
.AND. (logical)
.OR. (logical)
2-2 60497800 A

b D D D D D D D I

J

NS R R NS RS R N R B

5. Subexpressions containing operators of equal precedence are evaluated from left to right. However,
individual operations that are mathematically associative and/or commutative may be reordered by the
compiler to perform optimizations such as removal of repeated subexpressions or improvement of
functional unit usage. The evaluation of the expression A/B*C is guaranteed to algebraically equal
AC + B, not A + BC, but the specific order of evaluation here is indeterminate. Subexpressions
containing integer divisions are not reordered within the * / precedence level because the truncation
resulting from an integer division renders these operations non-associative.

YYD D D)

Unary addition and subtraction are treated as follows:

+n the same as n
-n negate n

An array element (a subscripted variable) used in an expression requires the evaluation of its subscript. The

; type of the expression in which a function reference or subscript appears does not affect, nor is it affected
{ by, the evaluation of the arguments or subscripts.

@ The evaluation of an expression having any of the following conditions is undefined:

Negative-value quantity raised to a real, double precision, or complex exponent
(,@ Zero-value quantity raised to a zero-value exponent
‘ Infinite or indefinite operand (Appendix D)
Element for which a value is not mathematically defined, such as division by zero
If the error traceback option (T) is selected on the FTN control statement (section 10), the first three

conditions produce informative diagnostics during execution. If the traceback option is not selected, a mode
error message is printed (Appendix D).

In the case of invalid exponentiation, a diagnostic might be issued by one of the library routines ALOG, EXP, or
DEXP when the exponent is real, complex, or double precision, and the base is integer, real or double precision.

Two operators must not be used together. A*-B and Z/ + X are not allowed. However, a unary + or - can
be separated from another operator in an expression by using parentheses. For example,

A*(-B) and Z/(+X) Valid expressions
B*-A and X/-Y*Z Invalid expressions

Each left parenthesis must have a corresponding right parenthesis.

e Example:

(F+ (X*Y) Incorrect, right parenthesis missing
{@"‘“’\ (F+ (X *Y)) Correct

Examples:

In the expression

A-B*C

B is multiplied by C, and the product is subtracted from A.

-
[ﬁ 60497800 E 2-3
-

The expression A/B-C*D**E is evaluated as follows:
D is raised to the power of E.
A is divided by B.

C is multiplied by the result of D**E.

The product of C*D**E is subtracted from the quotient of A divided by B.

The expression -A**C is evaluated as 0-A**C; A is first raised to the power of C and the result is

then subtracted from zero.

The expression A*B*C may be evaluated as ((A*B)*C), ((A*C)*B) or (A*(B*C)), since the operator * is

associative.

The expression A**B**C is evaluated as ((A**B)**C), since the operator ** is not associative.

Dividing an integer by another integer yields a truncated result; 11/3 produces the result 3. Therefore,
when an integer expression is evaluated from left to right, J/K*I may give a different result than I*J/K.

Example:
I=4 J=3 K=2
J/K*I I*J/K

3/2*4 =4 4*3/2=6

An integer divided by an integer of larger magnitude yields the result 0.

Example:
N=24 M=27 K=2
N/M*K
24/27*2 =0
Examples of valid expressions:
A
3.14159
B+ 16.427
(XBAR +(B(I,J+I,K) /3.0))

-(C + DELTA * AERO)

2-4

60497800 A

S I I B R R R R R R

A S R B R R R R A

(-B - SQRT(B**2-(4*A*C)))/(2.0*A)
GROSS - (TAX*0.04)

TEMP + V(M,AMAX1(A,B))*Y**C/ (H-FACT(K+3))

TYPE OF ARITHMETIC EXPRESSIONS

An arithmetic expression may be of type integer, real, double precision, or complex. The order of
dominance from highest to lowest is as follows:

Complex

Double Precision

Real
Integer
Table 2-1. Mixed Type Arithmetic Expressions with + - * / Operators
2nd
operand Double
l ;te » Integer Real Precision Complex
Integer Integer 7 Double

~Precision

Double

Real Real .. Complex
Precision
Double Double Double
Precision Precision Precision
Complex Complex Complex

When an expression contains operands of different types, type conversion takes place during evaluation. Before each
operation is performed, operands are converted to the type of the dominant operand. Thus the type of the value of
the expression is determined by the dominant operand. For example, in the expression A*B-1/J, A is multiplied by
B, I is divided by J as integer, converted to real, and subtracted from the result of A multiplied by B.

Octal and Hollerith constants, as well as references to shifting or masking functions, are typeless operands. When
these operands are used, type is not converted. When these operands are the only operands in an expression, they
are treated as if they were type integer, and the result is type integer.

Variables into which Hollerith constants are stored should be of type INTEGER to ensure proper results when used
in subsequent arithmetic or logical expressions. For example, if the variables are REAL, expressions involving these
variables are evaluated using floating point arithmetic.

60497800 E 2-5

EXPONENTIATION

In exponentiation, the following types of base and exponent are permitted:

Base
Integer

Real

Double Precision
Complex

Exponent

Integer, Real, :DbﬁblewarééiéiGﬂi Jomple
Integer, Real, Double Precision, Cor plex, Typele
Integer, Real, Double Precision, Complex,Typeless
Integer, Typeless

Integer, Real, Double Precision, Complex, Typeless

s evaluated from left to righ

he expression A**B**C is. evaluate

In an expression of the form A**B the type of the result is determined as follows:

Type of Result

Type of A Type of B of A**B
Integer Integer Integer

ypeles tege
Real Integer Real

Real Real

Double Double
Double Integer Double

Real Double
Complex

The expression -2**2 is equivalent to 0-2**2, An exponent may be an expression. The following examples are all

acceptable.
B**2.
B**N
B**(2*N-1)
(A+B)**(-J)

2-6

A negetive exponent must be enclosed in parentheses:

A**(-B)
NSUM**(-J)

60497800 D

J J I D D I I I

) D D

JoJ D D

J J 2 D D

J

When the exponent is of a type other than integer, exponentiation is performed by means of a call to FORTRAN
Common Library routines. The value of the result in these cases is determined according to the formula:

xY = ey(In(x))

where In is the natural logarithm function.

~
~
-
~
-
-
-

Examples:
Expression Type Result
CVAB**(1-3) Real**Integer Real
D**B Real**Real Real
C**I Complex**Integer Complex
BASE(M,K)**2.1 Double Precision Double Precision

**Real

K**5 Integer**Integer Integer
314D-02**3.14D-02 Double Precision Double Precision

**Double Precision

RELATIONAL EXPRESSIONS

a,,a Arithmetic or ,maskin"g‘f expression
op Relational operator

A relational expression is constructed from arithmetic or masking expressions and relational operators.
Arithmetic expressions may be type integer, real, double precision, or complex. The relational operators are:

.GT. Greater than

.GE. Greater than or equal to
.LT. Less than

.LE. Less than or equal to
.EQ. Equal to

.NE. Not equal to

The enclosing decimal points are part of the operator and must be present.

60497800 A 2-7

IIODDDIDDD

Two expressions separated by a relational operator constitute a basic logical element. The value of this
element is either true or false. If the expressions satisfy the relation specified by the operator, the value is
true; if not, it is false. For example:

X+Y .GT. 5.3

If X+Y is greater than 5.3 the value of the expression is true. If X+ is less than or equal to
5.3 the value of the expression is false.

A relational expression can have only two operands combined by one operator. a, op a, op a; is not valid.

but not

Examples:

J.LT.ITEM
580.2 .GT. VAR

E.EQ..5

(I) .EQ. (J(K)) N . .
C.LT. 1.5D4 most significant part of double precision number is used in
evaluation
Relational expressions are evaluated according to the rules governing arithmetic expressions. Each
expression is evaluated and compared with zero to determine the truth value. For example, the expression
p-EQ.q is equivalent to the question, does p - ¢ = 0? q is subtracted from p and the result is tested for zero.
If the difference is zero or minus zero the relation is true. Otherwise, the relation is false.
If pis 0 and q is -0 the relation is true.

Expressions are evaluated from left to right. Parentheses enclosing an operand do not affect evaluation; for
example, the following relational expressions are equivalent:

A.GT.B
A.GT.(B)
(A).GT.B

(A).GT.(B)

2-8 60497800 A

DD D D D I DI I I I

J J D

J I D D D) I

DY Y D

3 D

6@\

SIS)

Examples:
REAL A
A.GT.720
DOUBLE PRECISION BILL, PAY
INTEGER I,J BILL .LT. PAY
I1.EQ.J(K)

A+B.GE.Z**2
(I).EQ.(N*J)

300.+B.EQ.A-Z
B.LE.3.754

.5+2. .GT. .8+AMNT
Z.LT.35.3D+5

Examples of invalid expressions:
A .GT. 720 .LE. 900 2 relational operators must not appear in a relational expression

B .LE. 3.754 .EQ. C

LOGICAL EXPRESSIONS

L1 op L2 op L3 op...Ln

L,..L, logical operand or relational expression

op logical operator
A logical expression is a sequence of logical constants, logical variables, logical array elements, or relational
expressions separated by logical operators and possibly parentheses. After evaluation, a logical expression
has the value true or false.
Logical operators:

.NOT. logical negation

.AND. logical multiplication

inclusive OR

The enclosing decimal points are part of the operator and must be present.

60497800 A 2-9

The logical operators are defined as follows (p and q represent LOGICAL expressions):

NOT.p If p is true, NOT.p has the value false. If p is false, NOT.p has the
value true.
p-AND.q If p and q are both true, p.AND.q has the value true. Otherwise, false.
p-OR.q If either p or q, or both, are true then p.OR.q has the value true. If both
p and q are false, then p.OR.q has the value false.
Truth Table
p q p .AND. q p.OR. g .NOT. p
T T T T F
T F F T F
F T F T T
F F F F T

If precedence is not established explicitly by parentheses, operations are executed in the following order:

.NOT. .AND. .OR.
Example:
‘ PROGRAM LOGIC(OUTPUT»TAPE6=0UTPUT)
C
Cc THIS PROGRAM PRINTS OUT A TRUTH TABLE FOR LOGICAL
C OPERATIONS WITH P AND Q
C
LOGICAL.PonLOGNEGoLOGMLT9LOGSUM9TABLE(4’2)
DATA TABLE/eTRUE o9 e TRUE e 9 e FALSE ¢ 9 o FALSEa9eTRUE 09 e FALSE 9o TRUE e s
l1.FALSE./
WRITE(6510)
10 FORMAT(61H1 ' P Q «NOT. Q P «AND Q@ P <0

1R. @ /710Xy S51(1H=))

DO 20 I = 1.4

LOGNEG = oNOTe. TABLE(I+2)

LOGMLT = TABLE(Isl) +AND. TABLE(Is2)
LOGSUM = TABLE(Isl) «ORe TABLE(Is2)

20 WRITE(6+30) (TABLE(IsJ)eJ=192)9 LOGNEG, LOGMLTs LOGSUM
30 FORMAT(1HOs S(L11))

SToP
END

2-10 60497800 A

2NN R S T R R B

)) I

D S B R RS R R D

ST s s s Ns s B

3 YY))) D)

{

Output:
P W «NOT. @ P «AND W P «OR, Q
T T F T T
T F T F T
F T F F T
F F T F F

The operator .NOT. which indicates logical negation appears in the form:
.NOT. p
-NOT. can appear in combination with .AND. or .OR. only as follows (p and q are logical expressions):
p -AND.NOT. q
p -OR.NOT. q
p -AND.(.NOT. q)

p -OR.(NOT. q)

-NOT. can appear adjacent to itself only when the second operator is enclosed in parentheses, asin .NOT. (.(NOT.p).
Two logical operators can appear in sequence only in the forms .OR..NOT. and .AND..NOT.
Valid logical expressions, where M, L, and Z are logical variables, are:

.NOT.L

NOT.(X .GT. Y)

X .GT. Y .AND..NOT.Z

(L) .AND. M

Invalid logical expressions, where P and R are logical variables, are:

.AND. P .AND. must be preceded by a logical expression

K .EQ. 1 .0R. 2 -OR. must be followed by a logical expression

P .AND. .OR.R .AND. always must be separated from -OR. by a logical expression
60497800 A 2-11

J)

Examples:

A, X, B,C, J, L, and K are type logical.

Expression

A

A .AND. .NOT. X

.NOT.B tﬁ\

A.AND.C -

J.0R.L.OR.K ‘
Examples:

B-C < A < B+C is written asB-C .LE. A .AND. A .LE, B+C _
FICA >176. and PAYNB = 5889. is written FICA .GT. 176. .AND. PAYNB .EQ. 5889.

J

!
)

J

) I)

J

J

J

2-12 60497800 A

93 9 D

9

B

D

B

Extract thé o‘:a\\r'order 6:

I 1100110101

0011001010 Result after masking

'NOT. must not 'yiynylmediately precede .AND. or ,OR.

60497800 A

2-13

ASSIGNMENT STATEMENTS

An assignment statement evaluates an expression and assigns this value to a variable or array element. The
statement is written as follows:

v = expression

v is a variable or an array element

2-14 60497800 A

51 1is Xie Xie e TS

~
-
~

The meaning of the equals sign differs from the conventional mathematical notation. It means replace the
value of the variable on the left with the value of the expression on the right. For example, the assignment
statement A=B+C replaces the current value of the variable A with the value of B+C.

ARITHMETIC ASSIGNMENT STATEMENTS . .
7

| , ' v = arithmetic expression

Replace the current value of v with the value of the arithmetic expression. The variable or array element
can be any type other than logical.

Examples:
A=A+1 replace the value of A with the value of A+ 1
N=J-100*20 replace N with the value of J-100*20
WAGE=PAY-TAX replace WAGE with the value of PAY less TAX
VAR=VALUE+(7/4)*32 replace the value of VAR with the value of VALUE +(7/4)*32
B(4)=B(1)+B(2) replace .lhe value of B(4) with the value of B(1)+ B(2)

If the type of the variable on the left of the equals sign differs from that of the expression on the right, type
conversion takes place. The expression is evaluated, converted to the type of the variable on the left, and
then replaces the current value of the variable. The type of an evaluated arithmetic expression is

determined by the type of the dominant operand. Below, the types are ranked in order of dominance from
highest to lowest:

Complex
Double Precision
Real

Integer

In the following tables, if high order bits are lost by truncation during conversion, no diagnostic is given.

60497800 A ' 2-15

CONVERSION TO INTEGER

precision expres-

sion, truncated to

48-bit integer,
replaces v.

CONVERSION TO DOUBLE PRECISION

Value of IFORM
Value Assigned Example After Evaluation
Integer = Integer Value of integer IFORM = 10/2 5
expression re-
places v.
Integer = Real Value of real 8
expression, trun-
cated to 48-bit
integer, replaces
V.
Iinteger = Double Precision Value of double IFORM = 3141.593D3 3141593

Value Assigned

Example

Value of SUM
After Evaluation

Double Precision = Integer

Value of integer
expression, trun-
cated to 48 bits,
is converted to
real and replaces
most significant
part. Least sig-
nificant part set
to 0.

Double Precision = Real

Value of real
expression re-
places most
significant part;
least significant
part is set to 0.

SUM =775

35.D0

15.D0

2-16

60497800 A

J J)

D D D

) D D D I

3 I J I

J I

J D D

3 YD YD

CONVERSION TO DOUBLE PRECISION (CONTINUED)

Value Assigned

Example

Value of SUM
After Evaluation

Double Precision
= Double Precision

Value of double
precision expres-
sion replaces v.

SUM =7.322D2 - 32.D -1

7.29D2

~ Double Precision = Complex

v;'\vl‘al‘ue‘ of real :
part of complex

| sum=(327.61+ 55,1

CONVERSION TO COMPLEX

Value Assigned

Example

Value of AFORM
After Evaluation

_expression re=

Value of real

| Complex

Complex = Complex

Value of complex

expression replaces

variable.

AFORM = (3.4,1.1) + (7.3,4.6)

(10.7,5.7)

60497800 A

2-17

CONVERSION TO REAL

significant part
of expression re-
places v.

LOGICAL ASSIGNMENT

7

. c‘ .
Logical variable or array element = Logical or relational expression

Value of AFORM
Value Assigned Example After Evaluation
Real = Integer ‘ Value of integer AFORM =200 + 300 500.0
expression, trun-
cated to 48 bits,
is converted to
real and replaces
V.
Real = Real Value of real AFORM=25+7.2 9.7
expression re-
places v.
Real = Double Precision Value of most AFORM = 3421.D - 04 3421

Replace the current value of the logical variable or array element with the value of the expression.

Examples:

2-18

LOGICAL LOG2
I =1
L0G2 = I .EQ.O

LOG?2 is assigned the value .FALSE. because =0

LOGICAL NSUM, VAR

BIG = 200.

VAR = .TRUE.

NSUM = BIG .GT. 200. .AND. VAR

60497800 A

J)

J oD D I I 3 I D I I

) D DD D I

o

I J

et

NSUM is assigned the value .FALSE.

LOGICAL A,B,C,D,E,LGA,LGB,LGC
REAL F,G,H

A = B.AND.C.AND.D

A F.GT.G.OR.F.GT.H

A = ,NOT.(A.AND..NOT.B).AND.(C.OR.D)
LGA = .NOT.LGB
LGC = E.OR.LGC.OR.LGB.OR.LGA.OR.(A.AND.B)

60497800 A

2-19

J D)

J

J

D

J

J

J

J

‘5%\

2-20 60497800 A

SPECIFICATION STATEMENTS 3

Specification statements are non-executable; they define the type of a variable or array, specify the amount
of storage allocated to each variable according to its type, specify the dimensions of arrays, define methods
of sharing storage, and assign initial values to variables and arrays. The specification statements are:

Type

DIMENSION

COMMON If any of these statements appears after the first executable statement or

EQUIVALENCE statement function definition, the specification statement is ignored and a
fatal diagnostic is printed.

EXTERNAL

i1

The DATA statement, which is not a specification statement, is also described in this section. The DATA state-
ment must follow all other specification statements except statement function definitions and FORMAT statements;
it can occur after the first executable statement.

TYPE STATEMENTS

A type statement defines a variable, array, or function to be integer, real, complex, double precision, or logical.
An explicit type statement can be used to supply dimension information. :The ¥ PE-may be sa

ger and any other letter implies type real, u

1plied. type

Basic external and intrinsic functions are implicitly typed, and need not appear in a type statement in the
user’s program. The type of each library function is listed in section 8.

EXPLICIT TYPE DECLARATIONS
There are five explicit type statements: INTEGER, REAL, COMPLEX, DOUBLE PRECISION, and LOGICAL.

INTEGER

7
INTEGER name,, name

2,...,namen

60497800 A 3-1

The symbolic names listed are declared as type integer.
Example:
INTEGER SUM, RESULT, ALIST

The variables SUM, RESULT and ALIST are all declared as type integer.

REAL
7
REAL name, , name

e e .., NAME

T
|
|
I

The symbolic names listed are declared as type real.

Example:

REAL NEXT{(7), ITEM

NEXT is declared as an array with 7 real elements, and ITEM is declared as a real variable.

COMPLEX

7
COMPLEX name

1+ R@me,,, ..., name_

T

|

I

|

I

The symbolic names listed are declared as type complex.
Example:

COMPLEX ALPHA, NAM, MASTER, BETA
The variables ALPHA, NAM, MASTER, BETA are declared as type complex.

DOUBLE PRECISION

7 _
DOUBLE PRECISION name,, name,, ..., name_

The symbolic names listed are declared as type double precision. 'DOUBLE can be used instead of
DOUBLE PRECISION..

3-2 60497800 A

J J I D I

J D D) D D D D D)

B2 RS B R B

J

[UR———

)

Example:

DOUBLE PRECISION ALIST, JUNR, BOX4

The variables ALIST, JUNR, BOX4 are declared as type double precision.

LOGICAL
7
LOGICAL name

1, name,, ..., name_

The symbolic names listed are declared as type logical.
Example:
LOGICAL P,Q,NUMBR4

The variables P, Q and NUMBR4 are declared as type logical.

IMPLICIT TYPE STATEMENT

IMPLICIT type, (ac,,...,ac_),...,type, (ac, ,...,ac)

ngie‘alphabéi haracters, iot,v_tqn;ges ‘of characte
parated by a minus sign. AR

60497800 A

OGICAL, INTEGER, REAL, DOUBLE PRECISION, DOUBLE,

3-3

DIMENSION STATEMENT

7
|
I DIMENSION name, (d1) ,namen(dn)
|

d. Array declarator, 1-3 integer constants separated by commas. If name is a dummy param-
eter, d can be 1-3 integer constants or integer dummy parameters intermixed.

name; Symbolic name of an array.

The DIMENSION statement is a nonexecutable statement which defines symbolic names as array names and
specifies the bounds of the array. More than one array can be declared in a single DIMENSION statement.
Dummy parameter arrays specified within a procedure subprogram can have adjustable dimension specifications.
(A further explanation of adjustable dimension specifications appears under Procedure Communication in section
7). Within the same program unit, only one definition of an array is permitted.

The number of computer words reserved for an array is determined by the type of the array and the product
of the subscripts. For real, integer and logical arrays, the number of words in an array equals the number of
elements in the array. For complex and double precision arrays, the number of words reserved is twice the
product of the subscripts. No array can exceed 131,071 words.

Example:

COMPLEX BETA
DIMENSION BETA (2,3)

BETA is an array containing six elements; however, BETA has been defined as COMPLEX and two words
are used to contain each complex element; therefore, 12 computer words are reserved.

34 60497800 A

-
-
-
-

J)

<

J D

JJ

D)

Example:

REAL NIL
DIMENSION NIL (6,2,2)

These statements could be combined into one statement with 24 words reserved for array NIL:
REAL NIL (6,2,2)

Example:

DIMENSION ASUM(10,2)

.

DIMENSION ASUM (3), VECTOR (7,7)

The second specification of ASUM is ignored, and an informative message is printed. The specification for
VECTOR is valid and is processed.

COMMON STATEMENT
7

COMMON / /v1,...,v

7
COMMON/blkname /vy, . . . ,vn/blkname2/v1, Ce Ve ./blknamen/v1, el N

7
COMMON v, ,...,v

n

blkname Block name or number. A block name is a symbolic name of 1-7 letters
blc ver is 1-7 dif must
not contain any alphabetic ‘characters. eros are ign isa
valid block number. The same block name or number can appear more
than once in a COMMON statement or a unit; the loader links all
variables in blocks having the same name or number into a single labeled
common block.
Vi Variable or array name which can be followed by constant subscripts
that declare the dimensions. The variable or array names are assigned to
blkname. The COMMON statement can contain one or more block
specifications.
60497800 A 3-5

// Denotes a blank common block. If blank common is the first block in the
statement, slashes can be omitted.

Variables or arrays in a main program or subprogram can share the same storage locations with variables or
arrays in other subprograms by means of the COMMON statement. Variables and array names are stored in the
order in which they appear in the block specification.

COMMBON is a non-executable statement. See section 1 for proper location of COMMON statements relative

to other statements in the program unit. The COMMON specification provides up to 125 storage blocks th t“”
can be referenced by more than one subprogram. A block of common storage can be labeled by a name or a
‘number. A COMMON statement without a name or number refers to a blank common block. Variables and
array elements can appear in both COMMON and EQUIVALENCE statements. A common block of storage can
be extended by an EQUIVALENCE statement; however, no common block can exceed 131,071 words..

ank common. must not be increased by a subprogram using

Example:

COMMON/BLACK/A(3)
DATA A/1.,2.,3./

Data may not be entered into blank common blocks by the DATA declaration.
The COMMON statement may contain one or more block specifications:
COMMON/X/RAG,TAG/APPA/Y,Z,B(5)

RAG and TAG are placed in block X. The array B and Y.Z are placed in block APPA.

Any number of blank common specifications can appear in a program. Blank. named :
common blocks are cumulative throughout a program. as illustrated by the following example:

COMMON A,B,C/X/Y,Z2,D//W,R

COMMON M,N/CAT/ALPHA,BINGO//ADD

3-6 60497800 A

J D D D D DD I I DI I I

J) 2

J)

S N T Wi Yo Tin Tie Te iie e e

TIDD DD D

These statements have the same effect as the single statement:
COMMON A,B,C,W,R,M,N,ADD/X/Y,Z,D/CAT/ALPHA,BINGO
Within subprograms. dummy arguments are not allowed in the COMMON statement.

Il dimension information for an array is not given in the COMMON statement, it must be declared in a
type or DIMENSION statement in that program unit.

Examples:
COMMON/DEE/Z(10,4)

Specifies the dimensions of the array Z and enters Z into labeled common block DEE.

COMMON/BLOKE/ANARAY,B,D
DIMENSION ANARAY(10,2)

COMMON/Z/X,Y,A
REAL X(7)

COMMON/HAT/M,N,J(3,4)
DIMENSION J(2,7)

In the last example, J is defined as an array (3.4) in the COMMON statement. (2,7) in the
DIMENSION statement is ignored and an error message is printed.

The length of a common block, in computer words, is determined by the number and type of the variables
and array elements in that block. In the following statements, the length of common block A is 12 computer
words. The origin of the common block is Q(1).

REAL Q,R
COMPLEX S
COMMON/A/Q(4),R(4),S(2)

Block A

origin Q)
Q)
Q)
Q(4)
R(1)
R(2)
R(3)
R(4)
S(n) real part
S(1) imaginary part
S5(2) real part
S(2) imaginary part

If a program unit does not use all locations reserved in a common block. unused variables can be inserted
in the COMMON declaration to ensure proper correspondence of common areas.

60497800 A 3-7

Example:
COMMON/SUM/A,B,C,D main program
COMMON/SUM/E(3),D subprogram

If the subprogram does not use variables A,B, and C, array E is necessary to space over the area
reserved by A,B, and C.

Alternatively, correspondence can be ensured by placing unused variables at the end of the common list.
COMMON/SUM/D,A,B,C main program
COMMON/SUM/D subprogram

If program units share the same common block, they may assign different names and types to the members
of the block; but the block name: rs must remain the same.

Example:

COMPLEX C
COMMON/TEST/C(20)
The block named TEST consists of 40 computer words.

The subprogram may use different names for variables and arrays as in:

SUBROUTINE ONE
COMPLEX A
COMMON/TEST/A(10),G(10),K(10)

The length of TEST is 40 words. The first 10 elements (20 words) of the block represented by A are
complex elements. Array G is the next 10 words, and array K is the last 10 words. Within the
subprogram, elements of G are treated as floating point: elements of K are treated as integer.

EQUIVALENCE STATEMENT

7
EQUIVALENCE (glisty), . . . (glisty)

—_ =

Each glist; consists of two or more variables, array elements, or

;tatement

EQUIVALENCE is a non-executable statement and must appear before all executable statements in a pro-
gram unit. If it appears after the first executable statement, a fatal diagnostic is printed.

3-8 60497800 A

J

SENNED I R R R B A RS B

J o) D

J

D D D D D

-~
-
~
-
~

EQUIVALENCE assigns two or more variables in the same program unit to the same storage location (as
opposed to COMMON which assigns two variables in different program units to the same location). Variables
or array elements not mentioned in an EQUIVALENCE statement are assigned unique locations.

Example:

DIMENSION JAN(6),BILL(10)
EQUIVALENCE (IRON,MAT,ZERO), (JAN(5),BILL(2)),(A,B,C)

The variables IRON. MAT and ZERO share the same location, the fifth element in array JAN and the
second element in array BILL share the same location, and the variables A,B and C share the same location.

When an element of an array is referred to in an EQUIVALENCE statement, the relative locations of the
other array elements are, thereby, defined also.

Example:

DIMENSION Y(4), B(3,2)
EQUIVALENCE (Y(1),B(1,2)), (X,Y(4))

This EQUIVALENCE statement causes storage to be shared by the first element in Y and the fourth
element in B and, similarly, the variable X and the fourth element in Y. Storage will be as follows:

B(1,1)
B(2,1)
B(3,1)
B(1,2) Y1)
B(2.2) Y(2)
B(3.2) Y(3)

Y(4) X

The elements of a glist constitute an equivalence group. When an equivalence group contains an element that
appears in another equivalence group, these groups are merged and their elements constitute an equivalence
class.

Example:

DIMENSION A(100)
EQUIVALENCE (A,B), (C,A(50)}, (D,E), (F,C)

These statements establish the following equivalence groups:
{aB}, {ach {cF} {DE}

and the following equivalence classes:
{a,BCF}, {DE}

The statement EQUIVALENCE (A,B),(B,C) has the same effect as EQUIVALENCE (A,B,C).

60497800 A 3-9

An array with multiple dimensions may be referenced with a single subscript. The location of the element
in the array may be determined by the following method:

DIMENSION A(K,M,N)
The position of element A(k,m,n) is given by:
Ak+K*(m-1+M*(n-1)))*E)
Eis 1if A is real, integer or logical; E is 2 if A is complex or double precision.
Example:

DIMENSION AVERAG(2,3,4),TERM(7)
EQUIVALENCE (AVERAG(8),TERM(2))

Elements AVERAG (2,1,2) and TERM(2) share the same locations.

Two or more arrays can share the same storage locations.

Example:
DIMENSION ITIN(10,10),TAX(100)
EQUIVALENCE(ITIN(1),TAX(1))
500 READ (5,40)ITIN (1) !

600 READ (5,70) TAX (1)

3-10 60497800 D

J D D 2D)

SRS RSN

)

L

The EQUIVALENCE declaration assigns the first elements of arrays ITIN and TAX to the same
location. READ statement 500 stores the array ITIN in consecutive locations. Before READ
statement 600 is executed. all operations involving ITIN should be completed; as the values of array

TAX are read into the storage locations previously occupied by ITIN.

Lengths of arrays need not be equal.
Examples:

DIMENSION ZERO1(10,5),2ER02(3,3)
EQUIVALENCE (ZERO1l,ZEROZ2)

EQUIVALENCE (ITEM,TEMP)

is a legal EQUIVALENCE statement

The integer variable ITEM and the real variable TEMP share the same location; therefore, the same
location may be referred to as either integer or real. However. the integer and real internal formats

differ; therefore the values will not be the same.

EQUIVALENCE AND COMMON

Variables, array elements, and arrays may appear in both COMMON and EQUIVALENCE statements. A

common block of storage may be extended by an EQUIVALENCE statement.

Example:

COMMON/HAT/A(4),C
DIMENSION B(5)
EQUIVALENCE (A(2),B(1))

Common block HAT will extend from A(1) to B(5):

/HAT/

EQUIVALENCE statements which extend the origin of a common block are not allowed, however.

Example:
COMMON/DESK/E,F,G

DIMENSION H(4)
EQUIVALENCE (E,H(3))

60497800 A

Origin

A(l)
A(2)
A(3)
A4

B(I)
B(2)
B(3)
B(4)
B(5)

The above EQUIVALENCE statement is illegal because H(1) and H(2) extend the start of the common
block DESK:

/DESK/ H(1)
H(2)
HQ3)

Origin E
F H(4)
G

An element or array is brought into COMMON if it is equivalenced to an element in COMMON. Two elements
in COMMON must not be equivalenced to each other.

Examples:

COMMON A,B,C
EQUIVALENCE (A,B) illegal

COMMON /HAT/ A(4),C /X/ Y,2Z
EQUIVALENCE (C,Y) illegal

As stated in section 1, the result of indexing outside of array bounds is unpredictable. Since the compiler attempts
to minimize the size of equivalence classes in common blocks to the smallest subset of the block that includes all
members named in associated EQUIVALENCE statements, all members of a common block will not necessarily be
considered as one array. The programming practice of intentionally referencing locations outside a known array
can produce unintentional results as shown in the following example.

COMMON/ /A(4), B, D, E
DIMENSION AA(4)
EQUIVALENCE (AA, A(2))
D=2.
E=2.
DO 10 1=1,6

10 AA{1)=D*E
PRINT *,E

When these statements are compiled under OPT=0, E will have a value of 8.on exit. Under OPT=1 or 2,
the evaluation of D*E will be moved out of the loop since AA and D (or E) are not recognized as being
in the same equivalence class. If the program is to produce the same results under all OPT levels, AA
must be dimensioned to include the entire common block in the equivalence class.

3-12 60497800 C

2 Jd D D

)) D

B I

2 I 2 D o D

)

J

)

5

PR T B

ey

)

'res1dent accessed by block transfer_to or fr
ubroutine call (sectlon 8) '

: For'all levels, no ,smgle array or common block can exceed 131,071 words If the tot
i.,length accessed byf.the ‘entire progr

ntrol Data 'CYBER 70 Mode]s 7l 72 73 and 74 CYBER 17 Models 171, 17
6000 Series computers. , :

60497800 J 3-13

EXTERNAL STATEMENT

7
EXTERNAL name, ,...,name_

name,.,..,name, Subprogram names

Before a subprogram name is used as an argument to another subprogram, it must be declared in an
EXTERNAL statement in the calling program. The subprogram can be user-supplied or can reside in the
FORTRAN library. If an actual argument is the name of an intrinsic function, and the user supplies a sub-
program with the same name as the intrinsic function, the user-supplied function will be used. Otherwise,
the subprogram is supplied by the library. If the subprogram does not exist on the FORTRAN library and
is not supplied by the user, a loader error occurs.

Any name used as an actual argument in a call is assumed to be a variable or array unless it appears in an
EXTERNAL statement. An EXTERNAL statement must be used even if the subprogram concerned is a
basic external function, such as SQRT.

3-14 60497800 H

J

)

J)

)

20) D

DD

e N N e N S B S

200D D

Example:

Calling Program Subprogram
EXTERNAL SIN, SQRT SUBROUTINE SUBRT (A,B,C)
CALL SUBRT(2.0,SIN,RESULT) X=A+3.14159/2.
WRITE (6,100) RESULT C=B(X)

100 FORMAT (F7.3) RETURN
CALL SUBRT(2.0,SQRT,RESULT) END
WRITE (6,100)RESULT
STOP
END

First the sine, then the square root are computed; and in each case, the value is returned in RESULT.

The EXTERNAL statement must precede the first executable statement, and always appears in the calling
program. (It cannot be used with statement functions.)

A function call that provides values for an actual argument does not need an EXTERNAL statement.

Example:
Calling Program Subprogram
CALL SUBRT(SIN(X),RESULT) SUBROUTINE SUBRT(A,B)
B=A
END

An EXTERNAL statement is not required because the function SIN is not the argument of the
subprogram; the evaluated result of SIN(X) becomes the argument.

DATA STATEMENT

7
DATA vlist1/dlist1/,vlist2/dlist2/, cee vlistn/dlistn/

DATA (viist =dlist), . . ., (vlist = dlist)

vlist List of array names, array elements, variable names, and implied DO loops, separated by commas.
Unless they appear in an implied DO loop, array elements must have integer constant subscripts.

60497800 H

3-15

dlist One or more of the following forms separated by commas:

constant

R

rf*constant

constant list List of constants separated by commas.

rf Positive integer constant. The constant or
constant list is repeated the number of times
indicated by rf.

The data statement is non-executable and must follow all specification statements except statement function
definitions, NAMELIST statements, and FORMAT statements. It can occur after the first executable statement.
It assigns initial values to variables or array elements. Only variables assigned values by the DATA statement have
specified values when program execution begins. The DATA statement cannot be used to assign values in blank
common or to dummy arguments.

3-16 60497800 A

) D

) D I

J

J))

the entire array in the order it i

- DATA B/O ‘B, 00/ 7” 3*0000053 5#oodé003/ :

are. stored in ARRAY B

‘ Paos M DATA c (OUTPUI,TAPse OUTPUT)
- COMPLEX 2(3).21;, i
- REAL A4).
" LOGICAL L S , :
- NAMELIST/OUT/I,L x,21.A,z i ‘ , 5
"DATA I,L,x,21,A,ZIs..TRUE.,3.1u15926536 0ed1y=3e)y2
: 3*1(1.,-1.5))/ L

‘60497800 A 3-17

LI e T T T B B

Jo)

J o) D)

)

)

D

)

)

)

3-18 60497800 E

<
\

3 D

))

D) D)

111 234567 890 ‘BCDEF(’HT TRLM

nto constants 0 510 characters each

1 OI-IKI..D'INOPQRST

1OHABCDEFGHIJ

"‘EIf variables cont

1ng- Hollenth ata are to be. compared with Hollenth constants

‘type IN'I‘EGER SC

;IMPLIED DO

ZiThe implied D
fstatement Th

an be used as a" hortened notatlon for speclfymg items in the‘

e variables should be of

that the actual blt value is used -and no conversion is performed

DATA LlST -~

le list of a DATA

nplied DO in.

DATA statement has the followmg form

: (varhst,l—

my,my,my

60497800 E

'where M and N are uns1gned non-zero mteger constants i :’EN can be omitted.

a sunple mteger vanable called the mdex vanable

unsxgned mteger constmts speclfymg the 1mt1a1 value,?t rminal value,
increment, respectively, for the index varlable if m3 and the precedmg omrna
are’ om1tted the value of m3 is assumed to be 1. : '

3-20

60497800 A

Jo)

™

B

J D

)

3)

T

)

D) D)

These stateme“ts dlmensmn arrays AMASS, A and B and preset elements as follows

ARRAY AMASS: r ARRAY A
AMASS(s,l;s) = =200 A(s)f= 4.1
AMASS(6,2,3) = 5.139 A(8) = 4.1
AMASS(6,3,3) = -2. A(7) = 5.0
AMASS(86,4,3) = 5.139
AMASS(6,5,3) = -2. ARRAY B:
AMASS(6,6,3) = 5,139 :
_‘ AMASS(6,7,3) = -2. B(1) = 0.0
fﬁ“ AMASS(6,8,3) = 5.139 B(2) = 0.0
AMASS(6,9,3) = 6.9 B(3) = 0.0
N AMASS(6,10,3) = 10, B(4) = 0.0
€ﬁN B(5) = 0.0
("m ;Example 5
’ hwdm;'TbATA(Am,mnﬁsusvn,z,&;4uswej
(m\ Bxample 6

' The statements

v DIMENSION D3(4), POQ(5 5) : :
‘ DATA (D3 = 5.,6.,7.,8.), (((POQ(I 3),1-1,6),3-1,5)=25"0.)

60497800 A 3-21

T e N N e e TS

-
-
-
-
-
-

FLOW CONTROL STATEMENTS 4

FORTRAN flow control statements provide a means of altering, interrupting, terminating, or otherwise modifying
the normal sequential flow of execution:

ASSIGN PAUSE
GO TO STOP

IF END

DO RETURN
CONTINUE

Control can be transferred only to an executable statement.

A statement can be identified by an integer, 1-99999, with leading zeros and embedded blanks ignored. Each
statement label must be unique in the program unit (main program or subprogram) in which it appears.

GO TO STATEMENT

The three types of GO TO statements are unconditional, computed, and assigned. The ASSIGN statement is
used in conjunction with the assigned GO TO and is therefore described in the GO TO statement group.

UNCONDITIONAL GO TO STATEMENT

GO TO sn

sn is a label of an executable statement.

This statement transfers control to the statement labeled sn which must be an executable statement in the
current program unit.)

Example:

10 A=B+Z
100 B=X+Y
IF(A-B)20,20,30
20 Z=A
GO TO 10 «.«———— Transfers control to statement 10
30 Z=B
STOP
END

60497800 A 4-1

COMPUTED GO TO STATEMENT

7
GO TO (sn1',sn2 tees snm),iv

The computed GO TO statement transfers control to one of the statements referenced in the parentheses. If
the variable iv has a value of one, control transfers to the statement labeled sny; if the value is i, control
transfers to the statement labeled sn;.

The variable must not be specified by an ASSIGN statement. If it is specified by an ASSIGN statement, the
object code is incorrect, but no compilation error message is issued.

If the value of the variable or expression is less than one or larger than the number of statement numbers in
parentheses, the transfer of control is undefined and a fatal error results at execution time.

Example 1:

G0 T0(10,20,30,20),L

4-2 60497800 A

D

DI N N

)

))

3 3) D)

)

3

The next statement executed is:

10if L=1
20if L=2
30if L=3
20ifL=4
Example 2:
K-2
GO T0(100,150,300)K Statement 150 is executed next.

integer vélue;

Example 4:

M=4
GO TO (100,200,300),M

Execution of the last example causes a fatal error during execution because fewer than four numbers are
specified in the list of statement labels.

ASSIGN STATEMENT

7
ASSIGN sn TO iv

sn is a label of an executable statement.

iv is an integer variable.
The ASSIGN statement assigns a statement label to a variable used in an assigned GO TO. The integer
constant assigned to iv represents the label of an executable statement to which control may be transferred

by an assigned GO TO statement. Once iv is used in an ASSIGN statement, it must not be referenced in
any statement, other than an assigned GO TO or another ASSIGN, until it has been redefined.

60497800 E 4-3

The assignment must be made prior to the execution of the assigned GO TO statement and sn (the label of
an executable statement) must be in the same program unit as both the ASSIGN and assigned GO TO
statements.

Example:

ASSIGN 10 TO LSWIT
GO TO LSWIT,(5,10,15,20) Control transfers to statement 10
ASSIGNED GO TO STATEMENT

7
GO TO v, (sn1 ,...,snm)

iv is an integer variable.

(snl, v, snm) is a list of all the statement labels to which control can be passed by this assigned
GO TO. Upon execution of the assigned GO TO, iv must be assigned to one of the
labels in the list.

The assigned GO TO statement transfers control to the statement label last assigned to iv by the execution of
a prior ASSIGN statement. All the statement labels in the list must be in the same program unit with both
the ASSIGN and the assigned GO TO statements. Omitting the list of statement labels causes a fatal error.
If a statement label is omitted from the list or the value of iv is defined by a statement other than an
ASSIGN statement, the results are unpredictable. (Control is transferred to the absolute memory address
represented by the low order 18 bits of iv.) t

Example:

ASSIGN 50 TO JUMP
10 GO TO JUMP,(20,30,40,50) Statement 50 is executed immediately after statement 10.

20 CONTINUE

-~
.

30 CAT=ZERO+HAT
40 CAT=10.1-3.

50 CAT=25.2+7.3

44 60497800 F

J 2 I I

J 2 D D

J)

J))

J D D D D

DD D

RS N i N

fqa ff%

ARITHMETIC IF STATEMENT

The arithmetic IF statement has a three-branch and a two-branch form. In both cases, zero is defined as a
word containing all bits set to zero or all bits set to one (+0 or -0). If the type of the evaluated expression
is complex, only the real part is tested.

THREE-BRANCH ARITHMETIC IF STATEMENT

7
IF (eam) sny. a1.9.5n3

eam is an arithmetic ormas g expression.
sy, snp, sngy are labels on executable statements.

The three-branch IF statement transfers control to the statement labeled snj if the value of the expression is
less than zero, to the statement labeled sny if it is equal to zero, or to the statement labeled sn3 if it is
greater than zero.

Example:

PROGRAM IF (INPUT,OUTPUT,TAPES=INPUT,TAPE6=0UTPUT)
READ (5,100) I,J,X,N
100 FORMAT (10X,4I4)

IF(I-N) 3,4,6

3 ISUM=J+K

6 CALL ERROR1
WRITE (6,2) ISUM

2 FORMAT (I10)

4 STOP
END

60497800 A 4-5

ALy

temient;

LOGICAL IF STATEMENT

The logical IF statement has a standard form |

STANDARD-FORM LOGICAL IF STATEMENT

7
IF (elr) stat

elr is a logical or relational expression.

stat is any unlabeled executable statement other than DO, END, or another standard-form
logical IF.

The standard-form logical IF allows for conditional execution of a statement. If the logical or relational
expression is true, stat is executed. If the expression is false, stat is skipped.

Examples:

IF (P.AND.Q) RES=7.2
50 TEMP=ANS*Z

If P and Q are both true, the value of the variable RES is replaced by 7.2; otherwise, the value of RES
is unchanged. In either case, statement 50 is executed.

IF (A.LE. 2.5) CASH=150.
70 B=A+C-TEMP

If A is less than or equal to 2.5, the value of CASH is replaced by 150. If A is greater than 2.5, CASH
remains unchanged.

IF (A.LT.B) CALL SUB1
20 ZETA=TEMP+RES4

If A is less than B, the subroutine SUBI1 is called. Upon return from this subroutine, statement 20 is
executed. If A is greater than or equal to B, statement 20 is executed and SUBI is not called.

4-6 60497800 A

J D I

J D

2 0 D

D D D

JoJ D I D)

J)))

)

B

DO STATEMENT

7

DO sn iv=m, ,m,,m,

iv
my
my

m3

60497800 A

DO sn iv=m, ,m,

Terminal statement label; an executable statement that must physically follow and reside in
the same program unit as its associated DO statement. The terminal statement must not be
any arithmetic or two-branch logical IF, a GO TO, RETURN, END, STOP, PAUSE, or

another DO statement.

Control variable; an integer variable.

Initial parameter. Indexing parameters: unsigned integer or octal constants or
integer variables with positive non-zero values at execution such
Terminal parameter. that neither m|+m3 nor my+mg is larger than 2171, If the
indexing parameters exceed these constraints, the results are
Incrementation parameter. unpredictable. If mj is not specified, its value is assumed to be 1.
4-7

The DO statement makes it possible to repeat groups of statements and to change the value of an integer
variable during the repetition.

DO LOOPS
The range of a DO loop consists of all executable statements, from and including the first executable state-
ment after the DO statement to and including the terminal statement. Execution of a DO statement causes
the following sequence of operations:
1. v is assigned the value of m;.
2. The range of the DO loop is executed.
3. ivis incremented by the value of mj.
4. iv is compared with m,. If the value of iv is less than or equal to the value of m,, the sequence
of operations starting at step 2 is repeated. If the value of iv is greater than the value of my,
the DO is said to have been satisfied, the cor ariable becomes undefined, and control passes

to the statement following sn. If m i equal to m,, the range of the DO loop
is executed once.

A transfer out of the range of a DO loop is permissible at any time. When such a transfer occurs, the control
variable remains defined at its most recent value in the loop. If control eventually is returned to the same range,
the statements executed while control is out of the range are said to define the extended range of the DO. The
extended range should not contain a DO statement. Subroutines or functions invoked within the range of a DO
can contain DO statements, however.

The control variable must not be redefined in the range of a DO; such redefinition causes a fatal-to-execution
diagnostic to be issued. The control variable should likewise not be redefined in the extended range; such
redefinition causes the results of execution to be unpredictable.

The indexing parameters should not be redefined in either the range or the extended range of a DO. In
either case, the results of execution are unpredictable. Redefinition in the range of the DO causes an
informative diagnostic to be issued.

Example 1:

DO 10 I=1,11,3
IF(ALIST(I)-ALIST(I+1))15,10,10
15 ITEMP=ALIST(I)
10 ALIST(I)=ALIST(I+1)
300 WRITE(6,200)ALIST

The statements following DO up to and including statement 10 are executed four times. The DO
loop is executed with I equal to 1, 4, 7, 10. Statement 300 is then executed.

4-8 60497800 A

J I

ES RS B R S D B R A R R R R S

J

-
-
-
-

€@>
ﬁﬁh

Example 2:
DO 10 I=1,5
CAT=BOX+D

10 IF (X.GT.B.AND.X.LT.H)Z=EQUATE
6 A=ZERO+EXTRA

Statement 10 is executed five times, whether or not Z = EQUATE is executed. Statement 6 is
executed only after the DO loop is satisfied.

Example 3:

IVAR = 9

DO 20 I = 1,200

IF (I-IVAR) 20,10,10
20 CONTINUE
10 IN = I

An exit from the range of the DO is made to statement 10 when the value of the control variable I
is equal to IVAR. The value of the integer variable IN becomes 9.

NESTED DO LOOPS

When a DO loop entirely contains another DO loop, the grouping is called a DO nest. DO loops can be
nested to 50 levels. The range of a DO statement can include other DO statements providing the range of
each inner DO is entirely within the range of the containing DO statement.

The last statement of an inner DO loop must be either the same as the last statement of the outer DO loop
or must occur before it. If more than one DO loop has the same terminal statement, a transfer to that
statement can be made only from within the range (or extended range) of the innermost DO, and the label
cannot be referenced in any GO TO or IF statement in the nest except in the range of the innermost DO.

A DO loop can be entered only through the DO statement. Once the DO statement has been executed, and

before the loop is satisfied, control can be transferred out of the range and then transferred back into the
range of the DO.

60497800 A 4-9

A transfer from the range of an outer DO into the range of an inner DO loop is not allowed; however, a
transfer out of the range of an inner DO into the range of an outer DO is allowed because such a transfer

is within the range of the outer DO loop.

"

The use of and return from a subprogram within a DO loop are permitted. A transfer back into the range
of an innermost DO loop is allowed if a transfer has been made from the same loop.

Legal

I

~¢— |llegal

The extended range of an inner DO loop must be outside the outermost DO loop.

Example 1:
DIMENSION A(5,4,4), B(4,4)
P0O21I=1,4
DO 27 =1,4
DO 1K -=1,5
1 A(K,J,I) = 0.0

2 B(J,I) = 0.0

This example sets

Example 2:

FD1

4-10

— n1

— D2
l: D3
n3

— n2

— D4

— n4

arrays A and B to zero.

— n1

— D2

— n2

— D3

— n3

— D2

D3

— n1=n2=n3

60497800 E

2 22 D D D I I I D I I

S RS R N S R S I

DO loops can be nested completely within an outermost loop or can share a terminal statement. The diagrams
in example 2 might be represented by the following code:

Y DN

DO 1- I=1,10,2 DO 100 L=2,LIMIT —— DO 5 I=1,5
(. . j—— D0 5 J=I,10
. . |—— DO 5 K=J,15
(M\ ——DO0 2 J=1,5 DO 10 J=1,10 .
. . —— 5 A = B*C
ff DO 3 K=2,8 10 CONTINUE
3 CONTINUE DO 20 K=K1,K2
L— 2 CONTINUE 20 CONTINUE
EDO 4 L=1,3 b 100 CONTINUE
4 CONTINUE
1 CONTINUE

Example 3:

DO 10 J=1,50
DO 10 I=1,50
DO 10 M=1,100

(@ﬁ\

GO TO 10

10 CONTINUE

Since statement 10 is the terminal statement for more than one DO loop, it can be referenced in
a GO TO or IF statement in the range of the innermost DO. If 10 is referenced in one of the outer
loops, control is transferred out of the range with undefined results.

60497800 A 4-11

Example 4:

20

40

101

103

50
30
10

102

109

104

When an IF statement is used to bypass several inner loops, different terminal statements are required for each

loop.

DO 10 K=1,100
IF(DATA(K)-10.)20,10,20
DO 30 L=1,20

IF(DATA(L)-FACT*K-10.)40,30,40

Do 50 J=1,5

G0 TO (101,102,50),INDEX
TEST=TEST+1

GO TO 104

TEST=TEST-1
DATA(K)=DATA(K)*2.0

CONTINUE
CONTINUE
CONTINUE

GO TO 104
DO 109 M=1,3

CONTINUE
GO TO 103

CONTINUE

CONTINUE STATEMENT

5 7

sn

4-12

sn| |CONTINUE

is a statement label.

60497800 A

J

J)

J)

J

J oI J D D I D I

J o I D)

J)

The CONTINUE statement performs no operation. It is an executable statement that can be placed anywhere
in the executable statement portion of a source program without affecting the sequence of execution. The
CONTINUE statement is most frequently used as the last statement of a DO loop. It can provide loop termina-
tion when a GO TO or IF would normally be the last statement of the loop. If the CONTINUE statement does
not have a label, an informative diagnostic is provided.

Example 1: Example 2:
DO 10 I = 1,11 DO 20 I=1,20
IF (A(I)-A(I+1))20,10,10 1 IF (X(I) - Y(I))2,20,20
20 ITEMPP = A(I) 2 X(I)=X(I)+1.0
A (I) = A (I+1) Y(I)=Y(I)-2.0
10 CONTINUE GO TO 1

20 CONTINUE

PAUSE STATEMENT

PAUSE |

Z

PAUSE n |

appears as a dayfile message on the operator console, and at the user terminal T Tif the job is executmg mteractwely
For batch originated programs, the console operator can continue or terminate the program with an entry from
the console.

For programs executing interactively through INTERCOM, the user types GO to continue execution or DROP to
terminate. For any other type-in, a diagnostic message is issued and INTERCOM waits for a correct type-in.

For programs executing interactively through the NOS 1 Time-Sharing System, the user types STOP tt
to terminate execution. Any other type-in causes execution to continue.

TOnly 40 characters for SCOPE 2.
1""Does not apply to SCOPE 2.

TTTApplies to TELEX only. For IAF, a terminating character must be used; for most terminals the terminating
character is CTRL/T or the *“)” character.

60497800 F 4-13

STOP STATEMENT

STOP

STOP n

J D 0 I D)

)

n is a string of 1-5 octal digits.

)

The STOP statement terminates program execution. When a STOP statement is encountered during execution,
STOP n (o) ‘cis displayed in the dayfile, the program terminates, and control returns to the
operating system. If n is omitted, blanks are implied. A program unit can contain more than one STOP
statement.

|

END STATEMENT

END

Every program unit must

))

)

4-14 60497800 A

)3 3))

RETURN STATEMENT

|RETURN i

: dummy argdmlenzt which appearS" in,‘vth‘e RETURNShst in the SUBROUTINE statemanf.

The RETURN statement terminates the execution sequence within a program unit and normally retums
control to the current calling program unit. Injaimam program, executxon of th ogram termmates and
' “_e operatmg system when ‘a RETURN is encountered ' ~ .

When a RETURN statement is encountered in a function subprogram, control returns to the referencing
program unit and the evaluation of the expression is completed using the value returned from the function.
Since control must retum to the referencing expresslon a RETURN 1 statement function subprogram
causes a fatal error at compllatlon time. : :

In a subroutine subprogram, a RETURN statement transfers control to the next executable statement
following the CALL statement in the calling program unit.

i A RETURN i in a subroutine transfers control to the calling program statement label corresponding to i
) .in’ the RETURNS list. It allows control to return to an executable statement other than the one unmedxately
'followmg the CALL statement and can only be used in a subroutine subprogram L

's’ descnbed in more detall under Subroutme Subprogram and Callxnga Subroutm Sub-

Example 1:

10Db0 200 I = 1,5 SUBFUN = X/Y
. RETURN
. END

-
(@
éﬁ\ A = SUBFUN (D,E) FUNCTION SUBFUN(X,Y)
-
-

When the RETURN statement is encountered in the function subprogram, control is returned to
the statement referencing the subprogram, and the value calculated by SUBFUN is stored in A.

60497800 A 4-15

)

i

et

a %
e

A
ST

i
i

e i
G

i
o

e

;

o
i
%

i

5
gt
2

e
i

gk

4-16

s

T

S s 5
iE Sl
SRl
; e
ard

iy
ke
Clmiiens

LR
ke

S
L :
e
AR

02 - iRy A
R ot s (s
R e
e o
‘:}f 4 &l

e
e

il
o

Ll
st

R
$Hh

i
fiiniine
et

i

i

a2 AV K,
D AN
SEanan éﬂ“ffﬁ':

Gy

i

G
Lpsen

S

£

ey
o

Al
R sl
S T
ORI O

.

LALRAR
AR

. Paf
g e £

RN S A

Ver e

T

XY

(Y

Med

S

R
3

e

AR

Sl

Bl
s

siath

S

R et

g

) o

Hnde

5 s
H

»

L

R
S

iR
i8S

O
i

i

irlert

D

i

S
i
oo

b
A

*efxif‘:

i

Sy
i

5

i w,',;ricz

SRR

el

ek

2l of
b Rt i
SR
Ay

A
e

et
Geinae
BETR A

bl

PG Rt
SR
RS S
S e S Sl S
L re
SR e
RS S
SR e
e

Hio o
L

o

L
He o]
L

e
5

e ested) v

e

HEe3

60497800 A

St
N

g

VR
LR

INPUT/OUTPUT STATEMENTS S

Processing resulting from input/output statements depends on the type of statement used. For each category,
there are one or more input statements and corresponding output statements. The categories are:

replacing the format

Mass storage input/output (Subroutines READMS, WRITMS, OPENMS, CLOSMS, and STINDX; see
section 8)

CYBER Record Manager interface routines (see section 8)

In addition, there are the ¢ | the file motion

statements REWIND, BACKS CE and ENDFIL

all dlSCUSSCd in thlS sectloh

Subprograms used in connection with input/output, besides the mass storage routines and the CYBER Record
Manager routines, include EOF, IOCHEC, UNIT, LENGTH, and LENGTHX. These subprograms are discussed
in section 8. Format specifications and input/output lists are discussed in section 6.

Input and output involve reading records from files and writing records to files. Every file must have a logical
file name of one to seven letters and digits, the first a letter. The logical file name is defined only for the
current job, and is the name by which the file is referred to in control statements.

For batch jobs (jobs not executed interactively at a terminal), certain file names have a predefined origin or
destination. These file names are:

INPUT Data from user’s source deck PUNCH Punched in Hollerith format at job termination
OUTPUT Printed at job termination PUNCHB Punched in binary format at job termination

The files INPUT, OUTPUT, and PUNCH should be processed only by formatted, list-directed, or namelist input/
output statements.

The predefined meaning of any file name except INPUT can be overridden by control statements.

All files used by mput/output statements or the mass ‘storage subroutines must be declared on the PROGRAM
statement (dnscus id‘ in section 7). Files processed by CYBER Record Manager ro', tines, however, - ‘must ‘not
be declared on t ‘{PROGRAM, statement. The PROGRAM statement also allows the user to spec1fy maximum
‘record length ‘and buffer size for a file. In the absence of user specification, default values are provided.

60497800 B 5-1

Mixing types of operations on the same file can sometimes lead to destruction of file integrity. In particular,
files processed by mass storage or CYBER Record Manager subroutines should be processed only by these
routines. Files processed by buffer statements should be processed only by these statements in a given pro-
gram (REWIND, ENDFILE, and BACKSPACE are permitted for these files).

A file should not be processed both by unformatted operations on the one hand and by formatted, namelist,
or list directed operations on the other. However, if a file is rewound, it can then be rewritten in a different
mode. '

If formatted, list directed, or namelist input/output is performed on a 7-track S or L tape, a FILE control
statement that specifies CM=NO (see section 16) must be included in the job.

After every formatted, list directed, namelist, or unformatted READ, end-of-file status should be checked by
a call to the EOF function (section 8). If end-of-file is encountered, and EOF is not called, the contents of
the input/output list are undefined.

Record length on card files should not exceed 80 characters. Record length on print files should not exceed

137 characters; the first. character i$ always used as carriage control and is not printed. (Under the NOS 1 Time=
Sharing System, the first character. is printed.) The second character appears in the first print position. Carriage

control characters are listed in section 6.

The following mnemonics are used throughout this manual in descriptions of input/output statements and
subprograms:

u Input/output unit designator, used to determine the logical file name of the file to be used
for input and output. The file name is derived from u depending on its value. The value
can be one of the following:

Integer constant of one or two digits (leading zeros are discarded). The compiler associates
these numbers with file names of the type TAPEu, where u is the file designator (refer to
PROGRAM statement, section 7).

Simple integer variable name with a value of:
0-99 or

fn t designator; a FORMAT statement number or the name of an array,
i ment containing the format specification. The statement number must identify a
FORMAT statement in the program unit containing the input/output statement.

iolist Inputfoutput list specifying items to be transmitted (section 6).

FORMATTED INPUT/OUTPUT

For formatted input/output, a format designator must be present in the input/output statement. The input/
output list is optional. Each formatted input/output statement transfers one or more records.

5-2 60497800 C

b

J o I) I

RN R B S B

2) D

AT

BN S R

)

FORMATTED OUTPUT STATEMENTS

"PRINT fn,jiolist

This statement. nsfers mformatlon from the st rage locatlons named in the mput/output list to the ﬁle
named OUTPUT (if u is omltted) or the file spec1ﬁed by u, accordmg to the specnﬁcatlon in th f,format
designator fn. t the end of a]ob if the user has not spemﬁed an alternate ass1gnment the file OUTPUT
is sent to-the prin : :

= PROGRAM PRINT (OUTP

60497800 F 5-3

5-4

60497800 C

SN0 TN RS TS

)

)

)

))

Joo))

-

-

WRITE

7
WRITE (u,fn} iolist

7
WRITE (u,fn)

The formatted WRITE statement transfers information from the storage locations named in the input/output
list to the file ,ed" OUTPUT (if u is omxtted) or the file specified by u, according to the FORMAT
specification, fn. At the end of a job, if the user has not specified an alternate assignment, the file QOUTPUT
is sent to the printer.

7
ROGRAM RITE (OUTPUT,TAPE6-OUTPUT)
=2.1
=3.
=7
RITE (6,100) X,Y,M
100| [FORMAT (2F6.2,14)
STOP
END

The iolist can be omitted. For example.

WRITE (4,27)
27 FORMAT (32H THIS COLUMN REPRESENTS X VALUES)

FORMATTED READ
7
READ (u,fn) iolist

60497800 C 5-5

7

READ (u,fn)

These statements transmit data from unit u, SGF a0 i , to storage locations
named in iolist according to FORMAT specification fn. e number of words in the list and the FORMAT
specifications must conform to the record structure on the input unit. If the list is omitted, one or more
FORTRAN records will be bypassed. The number of records bypassed is one plus the number of slashes
interpreted in the FORMAT statement. Except for information read into H specifications in the FORMAT
statement, the data in the records skipped is ignored.

The user should test for an end-of-file after each READ statement to avoid input/output errors. If an
attempt is made to read on unit u and an EOF was encountered on the previous read operation on this
unit, execution terminates and an error message is printed. (Refer to section 8, EOF Function.)

Example 1:

P’ROGRAM IN (INPUT,OUTPUT,TAPE4=INPUT,TAPE7=0UTPUT)

READ (4,200) A,B,C
200 [FORMAT (3F7.3)

A = B*C+A

RITE (7,50) A

50| [FORMAT (50X,F7.4)
TOP

The READ statement transfers data from logical unit 4 (externally, the file INPUT) to the variables A,
B, and C, according to the specifications in the FORMAT statement labeled 200.

Example 2:

ROGRAM RLIST (INPUT,OUTPUT)
EAD 5,X,Y,Z

5| [FORMAT (3G20.2)

ESULT = X-Y+Z

RINT 100, RESULT

100| [FORMAT (10X,G10.2)

STOP

END

The READ statement transfers data from the file INPUT to the variables X, Y, and Z, according to
the specifications in the FORMAT statement labeled 5.

5-6 60497800 C

J D 0 D I

D B B R B A

JoJo D D D D D I b D)

UNFORMATTED INPUT/OUTPUT

Unformatted READ and WRITE statements do not use format specifications and do not convert data in any
way on input or output. Instead, data is transferred as is between memory and the external device. Each
unformatted input/output statement transfers exactly one record. If data is written by an unformatted
WRITE and subsequently read by an unformatted READ, exactly what was written is read; no precision is
lost. Unformatted input/output cannot take place with coded tapes.

D B

UNFORMATTED WRITE

3

7
I
(m\ I WRITE (u) iolist
fr I
) |
7
{ﬁm WRITE (u)

Example:

PROGRAM OUT(OUTPUT, TAPE10)
DIMENSION A(260),B(4000)

WRITE (10) A,B
END

This statement is used to output binary records. Information is transferred from the list variables, iolist, to
the specified output unit, u, with no format conversion. One record is created by an unformatted WRITE
statement. If the list is omitted, the statement writes a null record on the output device. A null record has
no data but contains all other properties of a legitimate record.

UNFORMATTED READ
7

a READ (u) iolist

,

3

READ (u)

————

5

60497800 A 5-7

)

One record is transmitted from the specified unit, u, to the storage locations named in iolist. Records are
not converted; no FORMAT statement is used. The information is transmitted from the designated file in e
the form in which it exists on the file. If the number of words in the list exceeds the number of words in m}
the record, an execution diagnostic results. If the number of locations specified in iolist is less than the

number of words in the record, the excess data is ignored. If iolist is omitted, READ (u) spaces over one -
record.

PROGRAM AREAD (INPUT,OUTPUT,TAPE2)
READ (2) X,Y,Z
SUM = X+Y+Z/2.

J))

))

)

)

J

5-8 60497800 D

)

)

)

D)

IR

)

| anks Nulls may be repeated
y ‘an asterlsk and any value sep arator. The next"value begms diate | :
; used for exther the real or nna,mary part of complex const: however, a Ml_l, an repre.‘_ ‘

acter for the.

assuming t t at and J are in(egéf and X and Y"’af"é feal.

R'epeated: ns, nts or repeated null values should be used entlrely by one read.

The only Hollenth ‘constants permltted are those enclosed in the symbol *. Hollenth constants can contam
embedded blanks The palred symbols ## can be used to represent a single # within a character constant.
A character cannot have a repeat count associated with it, and it must be read into an integer variable or
array. A character constant of less than 10 characters is padded on the right' w1th blanks to ﬁll the word.
Only the fi rst IO characters are used if the constant exceeds 10: characters. e

60497800 E 5-9

YR

g

N

sy

SRS

Examy

I RePIE
gt

LA
i

i TEREE

e

i

LR
i
i

1

Bu e
SIS
=

2}
ol

S

T

o

o

,.

2

f

:{;"_«:z;zaﬁ

SENGE
5L e

el

ol
bt b

o

PUSHER

5-10

e

i

i
il

4 ey

RN

hler
SRR

L

it
et
i

ft e

e
2]

¥ o

Zila
o

T

(ot Rsesy

Pl e 3
ERGT T R

i
e e
Sy

3

e

s
SRR
G

-
I

e

o

3

T

i
G

e

ER e o
S g
i . y e
AR P e SR
e Sl G
St S AR

i

pee
e

g",wgl v
ek

b

H
i

e
it

60497800 E

INPUT:

imiter, onenull

™

[F“’\ . £ input value
| | ‘

|

60497800 E 5-10.1

60497800 E

~

J

/

~

D) D)

60497800 C

7

WRITE* iolist

7

PRINT (u,*) iolist

7

PR!NT":',io'Iist

7

PUNCH(u,”) iofist

5-11

5-12

60497800 C

J

2)

)

))

Sl

>0 0

EIES NS I

B

ement pemuts 1nput and output of groups of vanables and arrays Wlth an 1dent1fymg name.
ion is used : .

NAMELlST/gm“p name, /a, ,...,a,/ ---/groub'hamen/m..::"k:‘:

j.LIST name in tl
;p_u_mbet 'I‘,hq

m‘place of the_vf tmat
) e format |
t.

Data read by‘:a $ ed
'NAMELIST group, A ‘ ST ‘The
,va]ue of vanabl j i in’ ain unc . Va :" bl t i_‘ch they

; Example

PROWRAM NMLIST (INPUT.OUTPUTcTAPES=INPUTsTAPEétOUTPU
“LIST/SHIP/A’B’C'IloIZ

60497800 C 5-13

5-14

60497800 C

J))

J

con)

J

J)

)

J)

J

)

)

; (sarray ?'ame(n) constant

..,constant, .

nstant, ..., constant,

|WRITE(u,group name)

60497800 C 5-15

5-16

60497800 C

3

J

)

>)

J D

J

3y

)

J

ey

)))

60497800 C

mber of constants, includin
in the array. o

5-17

G

T

S

L

s

5-18

PRI

PO Er e

L A

sl

ST

g

umber

t

S

s

S o8

r

nstant

i

i

Gl

P
it

e

i

il
g

o
i

e

e

e

s

St

B
AN

A

60497800 C

b
S

0) D

)

J

P

J o)

J

)

¥(1,2)=14.0
, e 'Y(2,2)=1400
3= e Y(3,2)=1450
¥(3,5)=26.0 L. Y(1,3)=14.0
¥(1,1)=11.0 = k=16
¥(2,1)-120.0 M=17 L 1 SiEo
Y(3,1)=13.0 Z=(1.,2.) The rest of Y is unchanged.

H L=.TRUE. o

60497800 C

5-20

60497800 J

-~

DS N RS N N

J

2 D D)) D)

- Coded mfo'_j ttonls tren;xé red from loglcal un
3 CAIC(I). {

Exémple 2

r

10¢

60497800 J

\n.)pm

Unit des1gnator

Integer constant or. sxmple integer vanable spec1fymg the magnetxc tape data conversion mode. The param-
eter is applicable only when tape is assigned to the unit. Zero designates conversion (coded mode) and one
designates no conversion (binary mode). For the tape file characteristic, such as ‘parity, refer to the NOS/BE
Reference Manual. Use of coded SI tapes under NOS results in a job abort by the system. Under NOS/BE
coded SI 9-track tapes are written in bmary mode

First vanable or array element of block of memory to which data is to be transmltted

~ Last varlable or array element of block of memory to which data isto be transmitted Ifuis a‘,‘, mt

demgnator for a tape or mass storage device, the block of memory to which: data is to be transmitted should
be one word larger than logically requxred The additional word is needed to receive an error status from the
operatmg system if an input/output error occurs. Under SCOPE 2, the additional word is not need’ed because
no error status word is wntten : o

*Ij:CALC(SO)V

rough CALC(SO)

‘Lcncrull\ L T s .
gm PETUPNS NUMRER oF NDRBQ ‘WI‘NQFF“’F“ B
POINT]oc,oauMn (QFclt).I-l,Kt .
FORMaAT !7HCPECUPDoT5I‘1¥010610“

sTne
ENTDY

5-21

acters p

i name or an *,

5-22

arget vanable area v is blan ﬁlled for c chara vters pnor to transfer e

ms ,sxgnator statement label or "mteoef vanable, w}nch must not be a NAMELIST group

k:klohst List of vanables to be transmltted to the locatlon spec1ﬁed by V.

i trins1c hmxt' ,‘
o-—byte terrm— ,

60497800 F

) D)

))

J

-
-
-
~
-

If the list an ‘ specified per 1

[to 8 to accomm date two 40-character records

0GRAM ENCDE (OUTPUT)
”ER A(2) yALPHA(4) : : 2

" AsBeC/1 OHABCDEFGHIJ, 1 OHKLMNOPQRST) 5HU,, XYe 7H2123456/
ENCODE (40919ALPHA)A989C :

1 FORMAT (2A49A54+A6) R

PRTNT 29ALPHA

AT (ZOHICGNTENTS OF ALPHA -.4A101

NCODE ; Statjé}r‘ﬁé‘nvt has vbéefn icl}geéuted:

 laBCDKLMNUV| wxvz12345 ¢

ALPHA(1) ALPHA(Z) ALPHA(3) ~ ALPH

ecord an
lhan the lengtl‘ specxﬁed :

_ammg poruon of the 40
h the spec1ﬁcauon A5 and

|PrOGRAM Two (ouTPUT) -
INTEGER A(2)9ALPHA(8) | » |
TA AyBoC/lOHABCDEFbHIJo1OHKLMNOPQRSTySHUwaY97H2123456/
| [ENCODE (40+15ALPHA)ASBsC

1/ [FORMAT (2A4/ASsA6)

[|PRINT 25ALPHA -

(ORMAT (20H1CONTENTS OF ALPHA.-;BAIO)

60497800 E 5-23

5-24

60497800 D

J))

D J) 3

S I I

>)

) 0)) D

)

A and B w1ll be prmted under spec1ﬁcat10n AlO and the quantxty J under eci‘ﬁcation 12, through

19 accordmg to the value of m,

The followmg program is another example of f ormmg FORMAT statements mternally

PROGRAM IGEN (OUTPUT TAPEG= OUTPUT)
D0 9 J=1,50 :
'ENCODE (10,7,FMT)J

7 FORMAT (2H(I,I2,1H))

9 wa' E (6, FMT)J o

v MT is-first’ (l l) then 12), then (I 3), etc.
A vanable hould not be encoded or decoded upon itself, as thJs gtves unpred vable results.

DECODE

DECODE (c,fny) iolist

<, t‘n ‘a d:v are the same as for ENCODE

1ohst ylS the list to receive variables from the location spec1ﬁed by v 1ohst conforms to the
syntax f an mput/output list. 5 v ;

DECODE is a core-to-core transfer .of data similar to formatted READ Display code characters in a vanable or

an array, v, are converted under format spemﬁcatlons and. stored in the list variables, iolist. DECODE reads from
a-string of dtsplay code characters in an array or variable in memory; whereas the: READ statement reads from
an input device. Both statements convert data according to the format spemﬁcatlon fn. Using DECODE how-
ever, the same 'formatton can be read several times with dxfferent DECODE and FORMAT statements

Starting at the named Iocatton, :v data is transrmtted according to ‘the specrﬂed format and stored m the list
variables. If the number of characters per record is not a multiple of 10 (a display code word: contains 10 dis-
play code characters) the balance of the word is ignored. However, if the number. of characters spec1£“ ed by
the list and the format specification exceeds the number of characters per record, an execution error message
is printed.’ DECODE processing an illegal character for a given conversion specification produces a fatal error.

If DECODE is processing an A or R format specification and encounters a zero character (6 bits of bmary
zero), the character is treated as a colon under 64-character set or as a blank under. 63—character set L

(Note: [ntemal records are not processed as zero-byte termmated records)

- 60497800 E 5-25

) D)

)

))

J

ENCODE"lo‘ 1. NAME)LOC(I) LOC(G)
Ty FORMAT(AS RS)

5-26 60497800 E

SIS NS NS TS T T T N B

FILE MANIPULATION STATEMENTS

Three statements can be used to manipulate files: REWIND, BACKSPACE, and ENDFILE.

REWIND u

The REWIND operation positions a file at beginning of information so that the next input/output operation
references the first record in the file, even though several ENDFILE statements may have been issued to that

unit since the last REWIND. If the file is already at beginning of information, the statement acts as a do-nothing
statement. (Refer to BACKSPACE/REWIND, section 16 for further information.)

Example:
REWIND 3

BACKSPACE

7
BACKSPACE u

Unit u is backspaced one record. When the file is positioned at beginning of information, this statement acts
as a do-nothing statement. If BACKSPACE is the first operation on a file positioned at beginning—of-information
a non-fatal Record Manager error results. A backspace operation should not follow a list directed read on a file.

’

Example:

DO 1 LUN = 1,10,3
1 BACKSPACE LUN

Files TAPEI, TAPE4, TAPE7, and TAPEIO are backspaced one record. .
ENDFILE

7
ENDFILE u

r
|
I
I

An end of partition is written on the designated unit. :

Note: When ENDFILE is used on a file defined with W type records, an end-of-partition is not physically
written but is marked in the control word. For all other record types a level 17 zero-length PRU is written.

60497800 E 5-27

To ensure file integrity, ENDFILE should not be the first operation on a file.

Meaningful results are not guaranteed if ENDFILE is used on a file processed by mass storage subroutines.

End of partition is the file boundary recognized by the EOF function (section 8).

For records written by an unformatted WRITE statement, an end-of-partition boundary is detected as an
end of section (end-of-record) by the operating system.

5-28 60497800 E

J D D)

J 0 D D)

EIN T B T B

INPUT/OUTPUT LISTS AND FORMAT STATEMENTS 6

This chapter covers input/output lists and FORMAT statements. Input/output statements are covered in
section 5.

INPUT/OUTPUT LISTS

The list portion of an input/output statement specifies the items to be read or written and the order of
transmission. The input/output list can contain any number of items. List items are read or written sequentially
from left to right.

If no list appears on input, a record is skipped. Only Hollerith information from the FORMAT statement can
be output with a null (empty) output list.

A list item consists of a variable name, an array name, an array element name, or an 1mp11ed DO list. On output
the data. hst'fcan include arbltranly long Hollerith constants and arithmetic expressions. No expression in’an

ist can reference a function if such reference would cause any input/output operations (including
\t) to be executed or would cause the value of any element of the mput/output statement to be

Multiple lists can appear, separated by commas, each enclosed in parentheses.

An array name without subscripts in an input/output list specifies the entire array in the order in which it is
stored. The entire array (not just the first word of the array) is read or written.

Subscripts in an input/output list may be any valid subscript (section 1).
Examples:

READ (2,100}A,B,C,D

READ (3,200)A,B,C(1).D(3,4) E(1,4,7) H

READ (4,101)4,A(J).1,B(1,}

READ (2,202)DELTA

READ (4,102)DELTA(5*J+2,5%1-3,56%K),C,D(I+7)
READ (3,2)A,(8,C,D),(X,Y)

An implied DO list is a list followed by a comma and an implied DO specification, all enclosed in parentheses.
An implied DO specification takes one of the following forms:
i=m 1-My.ms i= m,.m,

The clements i, m;, m,, and m3 have the same meaning as in the DO statement. The range of an implied DO
specification is that of the implied DO list. The values of i, m, m,, and m3 must not be changed within the
range of the implied DO list by a READ statement.

60497800 A 6-1

On input or output, the list is scanned and each variable in the list is paired with the field specification
provided by the FORMAT statement. After one item has been input or output, the next format specification
is taken together with the next element of the list, and so on until the end of the list.

Example:

READ (5,20)L ,M,N
20 FORMAT (13,12,17)

Input record

410 pof3456712
| .

100 is read into the variable L under the specification 13, 22 is read into M under the specification
12, and 3456712 is read into N under specification 17.

IMPLIED DO IN 1/0 LIST

Input/output of array elements may be accomplished by using an implied DO loop. The list of variables.
followed by the DO loop index, is enclosed in parentheses to form a single element of the input/output list

Example:
READ (5,100) {Ali},1=1,3)
has the same effect as the statement
READ (5,100) A{1),A(2),A(3}
The general form for an implied DO loop is:
(... (liistig=my mymalin=iq, igsighe - - o v i =kqkokg)
m,j,k are unsigned integer constants or predefined positive integer variables. If m,, j, or k; is omitted,

a one is used for incrementing.

11--1n are integer control variables. A control variable should not be used twice in the same implied DO
nest, but array names, array elements, and variables may appear more than once. The value of a control
variable within an implied DO specification is defined only within that specification; it should not be
referenced outside the specification.

The first control variable (i;) defined in the list is incremented first. i is set equal to m; and the
associated list is transmitted; then il is incremented by ms, until m, is exceeded. When the first
control variable reaches m,, it is reset to my; the next control variable at the right (i) is incremented;
and the process is repeated until the last control variable (i,)) has been incremented, until k; is exceeded.

6-2 60497800 D

J

J

J

2D J) D D

> D D D>) I

J) D D)

)

~
~
-

The general form for an array is:

_(((A(l,J,K),I=m1 ,m2,m3),J=n1 ,nz,ns),K==k 1 'k2'k3)

Example:

READ (2,100) ({A{JV JX},Jv=2,20,2) JX=1,30)
READ (2,200} (BETA(3*JON+7),JON=JONA,JONB,JONC)
READ (2,300} ({(ITMLIST(1,J+1,K-2),1=1,25),J=2,N},K=IVAR,IVMAX 4)

An implied DO loop can be used to transmit a simple variable more than one time. For example, the list
item (A(K),B,K=1,5) causes the variable B to be transmitted five times. An input list of the form
K,(A(I),I=1,K) is permitted, and the input value of K is used in the implied DO loop. The index variable
in an implied DO list must be an integer variable.

Examples of simple implied DO loop list items:

READ (1,400) (A(1),1=1,10)
400 FORMAT (E20.10)

The following DO loop would have the same effect:

DO 5 I1=1,10
5 READ (1,400) All}

Example:

CAT,DOG, and RAT will be transmitted 10 times each with the following iolist
(CAT, DOG, RAT, 1=1,10)

Implied DO loops may be nested.

Example:

DIMENSION MATRIX(3,4,7)
READ (3,100) MATRIX
100 FORMAT (16)

Equivalent to the following:

DIMENSION MATRIX(3,4,7)
READ (3,100) (({MATRIX(1J,K),1=1,3).4=1,4),K=1,7}

The list is similar to the nest of DO loops:

DO 5 K=1,7
DO 5 J=14
DO51=13
5 .READ (3,100) MATRIX(1,J,K)

60497800 A 6-3

Example:

The following statement transmits nine elements into the array E in the order: E(1,1), E(1,2), E(1,3),
E(2,1), E(2.2), E(2,3), E(3,1), E(3,2), E(3,3)

READ (1,100) ((E(1,J),J=1,3),1=1,3)
Example:
READ (2,100) ({{{{A{1,J,K)B{1,L},C(J,N),1=1,10) =15},
X K=1,8),L=1,15),N=2,7)

Data is transmitted in the following sequence:

A(1,1,1), B(1,1), ©(1,2), A(2,1,1), B(2,1), C(1,2)...
...A(10,1,1), B(10,1), C(1,2), A(1,2,1), B(1,1), C(2,2)...
...A(10,2,1), B(10,1), €(2,2),...A(10,5,1), B(10,1), C(5,2)...
...A(10,5,8), B(10,1), C(5,2),...A(10,5,8), B(10,15), C(5,2)...

Data can be read into or written from part of an-array by using the implied DO loop.
Examples:

READ (5,100) (MATRIX(1),1=1,10)
160 FORMAT (F7.2)

Data (consisting of one constant per record) is read into the first 10 elements of the array MATRIX.

The following statements would have the same effect:

DO 401 =1,10
40 READ (5,100} MATRIX(1}
100 FORMAT (F7.2)

In this example, numbers are read from unit 5, one from each record,into the elements MATRIX(1)

ihrough MATRIX(10) of the array MATRIX. The READ statement is encountered each time the DO

'loop is executed; and a new record is read for each element of the array. Each execution of a READ
statement reads at least one record regardless of the FORMAT statement.

READ (5,100) (MATRIX(1},1=1,10)
100 FORMAT (F7.2)

In the above statements, the implied DO loop is part of the READ statement; therefore, the FORMAT
statement specifies the format of the data input and determines when a new record will be read.

If statement 100 FORMAT (F7.2) had been 100 FORMAT (4F20.10), only three records would be read.

To read data into an entire array, it is necessary only to name the array in a list without any subscripts.

Example:

DIMENSION B (10,15)
READ (12,13) B

is equivalent to

READ (12,13) ((B(1,J},1=1,10),J=1,15)

The entire array B will be transmitted in both cases.

6-4 60497800 A

J b 3

2 D)

D D D)

DD) 3 D))

J)

~
~
-~
-
-~
~

LIRS 2NS TS NS T T S

FORMAT STATEMENT

Input and output can be formatted or unformatted. Formatted information consists of strings of display code
characters. Unformatted information consists of strings of binary word values in the form in which they
normally appear in storage. A FORMAT statement or variable format specification is required to transmit
formatted information.

5 7

| o[[FORMAT (s, ... fs)
I
]
sn Statement label which must appear
fs),...f5, Set of one or more field specifications separated by commas and slashes and

optionally grouped by parentheses

Note that the syntax sn FORMAT (, that is, a statement label followed by the word FORMAT followed by
a left parenthesis, is understood by the FORTRAN compiler to be a FORMAT statement, regardless of
previous conditions or uses of the word FORMAT in the user program.

Example:

READ (5,100) INK,NAME,AREA
100 FORMAT (10X,14,12,F7.2)

FORMAT is a non-executable statement which specifies the format of data to be moved between input/output
device and main memory. It is used in conjunction with formatted input and output statements, and it may
appear anywhere in the program.

The FORMAT specification is enclosed in parentheses. Blanks are not significant except in Hollerith field
specifications.

Generally, each item in an input/output list is associated with a corresponding field specification in a FORMAT
statement. The FORMAT statement specifies the external format of the data and the type of conversion to
be used. Complex variables always correspond to two field specifications. Double variables correspond to one
floating point field specification (D, E, F, G) or two of any other kind. The D field specification corresponds

to exactly one list item or half of a complex item.

The type of conversion should correspond to the type of the variable in the input/output list. The
FORMAT statement specifies the type of conversion for the input data, with no regard to the type of the
variable which receives the value when reading is complete.

For example:

INTEGER N
READ (5,100) N
100 FORMAT (F10.2)

A floating point number is assigned to the variable N which could cause unpredictable results if N is
referenced later as an integer.

60497800 E 6-5 .

'DATA CONVERSION

The following types of data conversions are available:

stEw.d Single precision floating point with exponent

srFw.d Single precision floating point without exponent

stGw.d Single precision floating point with or without exponent
stDw.d Double precision floating point with exponent
rlw Decimal integer conversion

Lw Logical conversion

rAw Character conversion

E,F,G,D,L L, A

. are the codes which indicate the type of conversion.

w Non-zero, unsigned integer constant specifying the field width in number of character pos-
itions in the external record. This width includes any leading blanks, + or - signs, decimal
point, and exponent.

d Unsigned integer constant specifying the number of digits to the right of the decimal point
within the field. On output all numbers are rounded.

r Non-zero, unsigned integer constant less than 217, specifying the number of times the con-
version code is to be repeated.

s Optional scale factor.

The field width w must be specified for all conversion codes. If d is not specified for w.d, it is
assumed to be zero. w must be = d.

6-6 60497800 A

RS I RS B B B S N R R B

N R S RS B

2)0 D D)

Field separators are used to separate specifications and groups of specifications. The format field separators
are the slash (/) and the comma. The slash is also used to specify demarcation of formatted records.

CONVERSION SPECIFICATION

Leading blanks are not significant in numeric input conversions; other blanks are treated as zeros. Plus
signs can be omitted. An all-blank field is considered to be minus zero, except for logical input, where an
all-blank field is considered to be FALSE. When an all-blank field is read with a Hollerith input specification,
each blank character is translated into a display code 55 octal.

For the E, F, G, and D input conversions, a decimal point in the input field overrides the decimal point
specification of the field descriptor.

The output field is right-justified for all output conversions. If the number of characters produced by the
conversion is less than the field width, leading blanks are inserted in the output field. The number of
characters produced by an output conversion must not be greater than the field width. If the field width is
exceeded, asterisks are inserted throughout the field.

Complex data items are converted on input/output as two independent floating point quantities. The
format specification uses two conversion elements.

Example:
COMPLEX A,B,C,D
WRITE (6,10)A
10 FORMAT (F7.2,E8.2}

READ (5,11) B,C,D
11 FORMAT (2E10.3(F8.3,F4.1))

Data of differing types may be read by the same FORMAT statement. For example:
10 FORMAT (15,F15.2)
specifies two numbers, the first of type integer, the second of type real.

READ (5,15) NO,NONE,INK,A,B,R
15 FORMAT (315,2F7.2,A4)

reads three integer values, two real values, and one character string.

Iw and Iw.z INPUT
The I conversion is used to input decimal integer constants.
Iw Iwz

w is a decimal integer constant designating the total number of characters in the field including signs and
blanks. z is ignored on input.

60497800 A . 6.7

The plus sign may be omitted for positive integers. When a sign appears, it must precede the first digit in
the field. Blanks are interpreted as zeros. An all blank field is considered to be minus zero. Decimal points
are not permitted. The value is stored in the specified variable. Any character other than a decimal digit,
blank, or the leading plus or minus sign in an integer field on input will terminate execution.

Example:

READ (2,10} 1,J,K,LM,N
10 FORMAT (13,17,12,13,12,14}

Input Record: In storage:
T3doD-150 Y e I contai'ns 139 L contalps 7
3 > %5 2 4 J contains -1500 M contains -0
K contains 18 N contains 104

Iw and iw.z OUTPUT
The I specification is used to output decimal integer values.

w o W

w is a decimal integer constant designating the total number of characters in the field including signs and

blanks. If the integer is positive the plus sign is suppressed. Numbers in the range of-(2%-1) to 259-1
(2%°-1=576 460 752 303 423 487) are output correctly.

ba...a
b Minus sign if the number is negative, or blank if the number is positive
a..a May be a maximum of 18 digits

The output quantity is right justified with blanks on the left.

6-8 60497800 A

J 2 D I

J

J

JoJd D D D > 3 DD D)

J J)

J

~
-
~
~
~
~
~
.

“ Ist blank taken as
- printer control character -

Example:

i;v\jélTE (6,100)N',M,il. i N:coniains +20
§ M contains -731450
I contains +205

S ibj(_)l*ﬂ***lbbbbbb205|
4 6 -9
~specification too

_ small;* indicates field
. is too short

~ - as printer control
- character ‘

Ew.d, Ew.dEe and Ew.dDe OUTPUT
E specifies conversion between an internal real value and an external number written with exponent.

Ewd EwdEe Ew.dDe

w is an unsigned integer designating the total number of characters in the field, w must be wide enough to
contain digits, plus or minus signs, decimal point, E, the exponent, and blanks. Generally, w > d + 6

or w = d +:¢ +.4 for negative numbers and w > d + 5 or w2 'd + e + 3 for positive numbers. Positive
numbers need not reserve a space for the sign of the number. If the field is not wide enough to contain the
output value, asterisks are inserted throughout the field. If the field is longer than the output value, the quan-
tity is right justified with blanks on the left. If the value being converted is indefinite, an I is printed in the
field; if it is out of range, an R is printed.

d specifies the number of digits to the right of the decimal within the field.

ifies the number of digits in the exponent and is limited to 6 or |

The Ew.d specification produces output in the following formats:
b.a...aE * ee For values where the magnitude of the exponent is less than one hundred
b.a...a £ eee For values where the magnitude of the exponent exceeds one hundred
b is a minus sign if the number is negative, and a blank if the number is positive

a...a are the most significant digits of the value correctly rounded

60497800 E 6-9

Examples:

WRITE (2,10)A A contains -67.32 or +67.32
10 FORMAT (E10.3)

Result: -.673E+02 or b.673E+02

WRITE (2,10)A
10 FORMAT (E13.3)

Result: bbb-.673E+02 or bbbb.673E+02

If an integer variable is output under the Ew.d specification, results are unpredictable since the internal format
of real and integer values differ. An integer value does not have an exponent and will be printed, therefore, as
a very small value or 0.0.

Ew.d, NPUT

E specifies conversion between an external number written with an exponent and an internal real value.

Ew.d

w is an unsigned integer designating the total number of characters in the field, including plus or minus
signs, digits, decimal point, E and exponent. If an external decimal point is not provided, d acts as a
negative power-of-10 scaling factor. The internal representation of the input quantity is:

(integer subfield)x 10™ x 10 {exponent subfieid)

For example, if the specification is E10.8, the input quantity 3267E+05 is converted and stored as:
3267x107%x10°=3.267.

If an external decimal point is provided, it overrides d. If d does not appear it is assumed to be zero. !

In the input data, leading blanks are not significant; other blanks are interpreted as zeros.
An input field consisting entirely of blanks is interpreted as minus zero.

The following diagram illustrates the structure of the input field:

6-10 60497800 C

J I

JoJ 0 D 2))

>0 D D D I D __J)

JJ)

f‘“"“

-

v

input field
+ +
digit EorD
integer . fraction exponent
subfieid subfield

The integer subfield begins with a + or - sigﬁ, a digit, or a blank; and it may contain a string of digits. The

integer field is terminated by a decimal point, E, +, - or the end of the input field.

The fraction subfield begins with a decimal point and terminates with an E, +, - or the end of the input
field. It may contain a string of digits.

The exponent subfield may begin with E, + or -. When it begins with E, the + is optional between E and
the string of digits in the subfield.

For example, the following are valid equivalent forms for the exponent 3:

E+ 03

E 03

EO3

E+ 3

E3

+ 3

+3

D3

D+3|D+ 3

The range, in absolute value, of permissible values is 102%® to 10%?? approximately. Smaller numbers are treated
as zero; larger numbers cause a fatal error message.

Valid subfield combinations:

+1.6327E-04

-32.7216

+328+5

.629E-1

+136

136

07628431

E-06 (interpreted as zero)

Integer-fraction-exponent

integer-fraction

integer-exponent

fraction-exponent

integer only

integer only

fraction only

exponent onlv

If the field length specified by w in Ew.d is not the same as the length of the field containing the input
number, incorrect numbers may be read, converted, and stored. The following example illustrates a
situation where numbers are read incorrectly, converted and stored; yet there is no immediate indication

that an error has occurred:

READ (3,20) A,B,C
20 FORMAT (E9.3,E7.2,E10.3)

604978CG0 A

6-11

On the input record, quanities are in three adjacent fields, columns 1-24:

< +6.47E-0

2.36

5.321E+02]

9

9

+6.47E-01

+6.47E-01

+6.47E-01-2.36+5} 321E+02bb

|

2.36+5

10

10

First, +647E-01 is read, converted and placed in location A. The second specification E7.2 exceeds
the width of the second field by two characters. The number -2.36+5 is read instead of -2.36. The
specification error (E7.2 instead of E5.2) caused the two extra characters to be read. The number
read (-2.36+5) is a legitimate input number. Since the second specification incorrectly took two
digits from the third number, the specification for the third number is now incorrect. The number
.321E +02bb is read. Trailing blanks are treated as zeros; therefore the number .321E +0200 is read

converted and placed in location C. Here again, this is a legitimate input number which is converted
and stored, even though it is not the number desired.

Examples of Ew.d input specifications: .

input Field Specification Converted Value Remarks
+143.26E-03 E11.2 .14326 All subfields present
327.625 E7.3 327.625 No exponent subfield
4.376 E5 4,376 . No d in specification
-.0003627+5 E11.7 -36.27 Integer subfield only a minus
sign and a plus sign appears
instead of E
-.0003627E5 E11.7 -36.27 Integer subfield left of decimal
contains minus sign only
blanks Ew.d -0. All subfields empty
E+06 E10.6 0. No integer or fraction subfield;
zero stored regardless of expo-
nent field contents
1.bEb1 E6.3 10. Blanks are interpreted as zeros

6-12

60497800 A

J)

J

J 0 D 2D) D

)

JoJ D D D 0 D D))

3 D)

{

Fw.d OUTPUT

The F specification outputs a real number without a decimal exponent.

Fw.d

w is an unsigned integer which designates the total number of characters in the field including the

sign (if negative) and decimal point. w must be > d + 2.

d specifies the number of places to the right of the decimal point. When d is zero, only the digits to the
left of the decimal and the decimal point are printed.

The plus sign is suppressed for positive numbers. If the field is too short, all asterisks appear in the'voutpixt field.
If the field is longer than required, the number is right justified with blanks on the left. If the value being
converted is indefinite, an I is printed in the field; if it is out of range, an R is printed.

The specification Fw.d outputs a number in the following format:

b...al.a...a

decimal point

b Minus sign if the number is negative, or blank if the number is positive.
Examples:

Valm}e,\fbf‘A FORMAT Statement : PRINT Statement . Printed Résul”:t:‘ 1
+32’;694' : 10 FORMAT (1H ,F6.3) PRINT 10,A 32.694 "5, ,
+32.694 11 FORMAT (1H ,F10.3) PRINT 11,A bbbb32.604

‘ . 12FORMAT {(1H ,F53) 5 PRINT 12,A il T
| 13 FORMAT (1H F43F63)| PRINT 13.A.A

The specification 1H

Fw.d INPUT

is the carriage control character.

On input F specification is treated identically to the E specification.

60497800 A

6-13

Examples of the F format specification:

Input Field Specification Converted Value Remarks

367.2593 F8.4 367.2593 Integer and fraction field

62543 F6.5 .62543 No integer subfield

62543 F6.2 62543 Decimal point overrides d of speci-
fication

+144,15E-03 F11.2 14415 Exponents are allowed in F input,

and may have P scaling

5bbbb F5.2 500.00 No fraction subfield; input number
converted as 50000x102

bbbbb F5.2 -0.00 Blanks in input field interpreted as
-0

Gw.d INPUT

Input under control of G specification is the same as for the E specification. The rules which apply to the E
specification apply to the G specification.

Gw.d
w Unsigned integer which designates the total number of characters in the field including
E, digits, sign, and decimal point
d Number of places to the right of the decimal point
Example:

READ (5,11) A,B,C
11 FORMAT (G13.6,2G12.4)

Gw.d OUTPUT
Output under control of the G specification is dependent on the size of the floating point number being

converted. The number is output under the F conversion unless the magnitude of the data exceeds the range
which permits effective use of the F. In this case, it is output under E conversion with an exponent.

6-14 60497800 A

2 J

J D 0 D 2) D

N

J b D)

J

J

S

J D)

B

B B

Gw.d

w Unsigned integer which designates the total number of characters in the field including
digits, signs and decimal point, the exponent E, and any leading blanks.

d Number of significant digits output.

If a number is output under the G specification without an exponent, four spaces are inserted to the right of
the field (these spaces are reserved for the exponent field E £00). Therefore, for output under G conversion
w must be greater than or equal to d + 6. The six extra spaces are required for sign and decimal point plus

four spaces for the exponent field.

Example:

WRITE (7,200) YES
200 FORMAT (G10.3)

Output: b77.1bbbb

YES contains 77.132

b denotes a blank

If the decimal point is not within the first d significant digits of the number, the exponential form is used

(G is treated as if it were E).
Example:

WRITE (4,100) EXIT
1060 FORMAT (G10.3)

Output: .121E+07
Example:

READ (5,50} SAMPLE

WRITE (6,20} SAMPLE
20 FORMAT (1X,G17.8}

EXIT contains 1214635.1

Data read by
READ statement

Data Output

Format Option

.1415926535bE-10

.8979323846

2643383279.

-693.9937510

.14159265E-10

89793238

.26433833E+10

-693.99375

E conversion

F conversion

E conversion

F conversion

60497800 A

6-15

Dw.d OUTPUT

Type D conversion is used to output double precision variables. D conversion corresponds to E conversion
except that D replaces E at the beginning of the exponent subfield. If the value being converted is
indefinite, an I is printed in the field; if it is out of range, an R is printed.

Examples of type D output:
DOUBLE PRECISION A,B,C
A=111111.01111
B = 222222.22222
C=A+B

WRITE (2,10) A,B,C
10 FORMAT (3D23.11)

A11111111111D+06 .22222222222D+06 .33333333333D+06

The specification Dw.d produces output in the following format:

— ‘decimal point
b

-a..ateee -308 < eee < 337
b.a..aD+ee 0<ee< 99
b Minus sign if the number is negative, or blank if the number is positive
a..a Most significant digits
ee Digits in the exponent

Dw.d INPUT

D conversion corresponds to E conversion except that D replaces E at the beginning of the exponent
subfield.

.

The following diagram illustrates the structure of the input field:

input field
+ +
digit DorE .
integer fraction exponent
subfield subfield
6-16 60497800 A

Jo2 D D

2 0)

J

N

J D D)

> 0 D

2))

i IR IR I I

Ow INPUT

not allowed.

’E'x,ampl‘e:l

: nghtmost
'sta_temeng

Octal values are converted under the O specification.

w is an unsxgned mteger de51gnat1ng the total number of characters in the ﬁeld The input field may contain
a maximum of 20 octal digits (0 through 7). Blanks are allowed and a plus or minus. sxgn may precede the first

octal digit. Blanks are mterpreted as Zeros and an all blank field is interpreted as mlnus zero. A decj

If ' wis less

60497800 A

mal point is

an 20 the
£ ollowmg

SR T N NS

J)

J))

)

) DD

6-18 , 60497800 E

D J)

I B B B

0 2 % Y Y Y))

Aw INPUT

~00000000000003D

The A specification is used to input character data
Aw

w is an unsigned integer designating the total number of characters in the field.

Character information is stored as 6-bit display code characters, 10 characters per 60-bit word. For example, the
digit 4 when read under A specification is stored as a display code 37. If w is less than 10, the input quantity is
stored left justified in the word; the remainder of the word is filled with blanks.

Example:

READ (5,100} J
100 FORMAT (A7)

60497800 E 6-18.1/6-18.2

CCCCOCCeCCEC¢

DD DD DD YD

Input record:

rEXAMPLE
When EXAMPLE is read it is stored left justified in the 10 character word

1234567890
EKAMAUE] |] |

If w is greater than 10, the rightmost 10 characters are stored and remaining characters are ignored.

Example:

READ (5,200)K
200 FORMAT (A13)

Input record:

1 13
(SPEC IFICATION

In storage:

12345678910

GIFTIcAIT ol

READ (5,10) LM,N
10 FORMAT (A10,A10,A5)

Input record:

THIS IS AN| EXAMPLE q KNOWl
~ - =’ | o | e |
10 10 5

In storage:
12345678910
L
M | [eMELE 1]

[Jciviof | [}] |

Aw OUTPUT
The A specification is used to output alphanumeric characters.

Aw

60497800 E

w is an unsigned integer designating the total number of characters in the field. If w is less than 10,
the leftmost characters in the word are printed. For example, if the contents of location M in the Aw
input example are output with the following statements:

WRITE (6,300)M
300 FORMAT (1X,A4)

In storage:

M [T]

Characters EXAM are output

If w is greater than 10, the characters are output rightjustified in the field, with blanks on the left. For
example, if M in the previous example is output with the following statements:

WRITE (6,400)M
400 FORMAT (1X,A12}

Output is as follows:

bbEX AMPLEbbb b = blank

6-20 60497800 E

J J o D

S R R B

))

2)

2)

J D)

J

)) Y Y)

Rw OUTPU

w is an unsigned integer designating the total number of characters in the field.

This Speciﬁ¢a§;c}ni is ‘the sarriql :is_' the A speciﬁcation unless w is less than 10. If w is less than~ I'O,ii.the right-

‘most characters are output. For example, if JAY from the previous example is output with the following
statements: B e : i

» Chaf}ictérs EST are output.
Lw INPUT
The L specification is used to input logical variables.

Lw

w is an unsigned integer designating the total number of characters in the field.

If the first non-blank character in the field is T, the logical value .TRUE. is stored in the corresponding list
item, which should be of type logical. If the first non-blank character is F, the value .FALSE. is stored. If the
first non-blank character is not T or F, a diagnostic is printed. An all blank field has the value .FALSE.

Lw OUTPUT

Lw

w is an unsigned integer designating the total number of characters in the field.

Variables output under the L specification should be of type logical. A value of .TRUE. or .FALSE. in
storage is output as a right justified T or F with blanks on the left.

Example:

LOGICAL IJK
I = . TRUE.
J = .FALSE.
K = TRUE.

WRITE (45) 14K
5 FORMAT (3L3)

Output:

bTbbFbbT

SCALE FACTORS

The scale factor P is used to change the position of a decimal point of a real number when it is input or
output. Scale factors may precede D. E. F and G format specifications.

60497800 E 6-21

J D

nPDw.d

nPEw.d

nPFw.d

nPGw.d.

)

n is the scale factor which can be any integer constant. w is an unsigned integer constant designating the
total width of the field. d determines the number of digits to the right of the decimal point.

A scale factor of zero is established when each FORMAT statement is first referenced; it holds for all F,E,G,
and D field descriptors until another scale factor is encountered.

Once a scale factor is specified, it holds for all D, E, F, and G specifications in that FORMAT statement
until another scale factor is encountered. To nullify this effect for subsequent D, E, F, and G specifications,
a zero scale factor (OP) must precede a specification.

))

Example:

\

15 FORMAT(2PE14.3,F10.2,G16.2,0P4F13.2)

The 2P scale factor applies to the E14.3 format specification and also to the F10.2 and G16.2 format
specification. The OP scale factor restores normal scaling (10° = 1) for the subsequent specification
4F13.2.

i
!
!

B T I

Fw.d SCALING

)

INPUT

The number in the input field is divided by 10" and stored. For example, if the input quantity 314.1592 is
read under the specification 2PF8.4, the internal number is 314.1592 X 102 = 3.141592. However, if an
exponent is read the scale factor is ignored.

J

6-22 60497800 A

)

OUTPUT

The number in the output ﬁeld is the internal number multiplied by 10°. In the output representation, the

decimal point. is fixed; the number is adjusted to the left or right, depending on whether the scale factor is plus or
minus. For ex mple, the 1nterna1 ‘number-3, 1415926536 may be represented on output under scaled F specifications

™
f@\ as follows
ﬁh

...........‘..0..OO.....Q‘.C..

(-1PF13. 6) =.314159

(Fi3. 6) =3.141593
- (1PF13. B) =31.415927
e . (3PF13. 6) =3141.592654

sesee S090nces00c 000000

Ew.d and Dw.d SCALING

INPUT

Ew.d scaling on input is the same as Fw.d scaling on input.

D) D)

OUTPUT

The effect of the scale factor nP is to shift the output coefficient left n places and reduce the exponent by n.
In addition, the scale factor controls the decimal normalization between the coefficient and the exponent such
that: if n < 0, there will be exactly -n leading zeros and d + n significant digits after the decimal point; if

n > 0, there will be exactly n significant digits to the left of the decimal point and d - n + 1 significant digits
to the right of the decimal point. For example, the number -3.1415926536 is represented on output under the
indicated Ew.d scaling as follows:

(-3PE20. 4) -«0003E+04
(-1PE20. &) -+0314E+02
(E20. 4&) -+ 3142E+(1
(1PE20. &) -3.1416E+00
(3PE20. &) =314.16E-(2

20 2 000 OB IS H GOSN BLSOLSIDLIE LSS

Gw.d SCALING

D) D

INPUT

Gw.d scaling on input is the same as Fw.d scaling on input.

OUTPUT

The effect of the scale factor is nullified unless the magnitude of the number to be output is outside the range
that permits effective use of F conversion (namely, unless the number N < 107 or N> 10) In these cases,
the scale factor has the same effect as described above for Ew.d and Dw.d scaling. For example, the numbers
-3.1415926536 and -.00031415926536 are represented on output under the indicated Gw.d scaling as follows:

D0)) D

60497800 C 6-23

3

(-3PG20. o) -3.14159
(=1PG20. 6) ~3.14159
(620 6) -3.14159
(3PG20. b) -3.14159
(5PG20. 6) =3.14159
(7PG20.) -3.14159

OO 0 90O VDRV N SO IDIHISO SRS NEIOLL MBS

(-3PG20. 6) ~«000314E+00
(-1PG20. 6) -« 031416E~-02
(620. 3) -«314153E-03
(1PG20. 6) -3.141593E-0%
(3PG20. 6) -314.1593E-06
(5PG20. 6) -31415.93€-08

OO S0 0O VSO DLOOIDEL BOBSSIBIRNINBDTOOOS

S0 O 0 08B BN ST ROIRSBILIONY BSOS

X SPECIFICATION

The X specification is used to skip characters in an input line or output line. On output, any character
positions not previously filled during this record generation will be set to blank. It is not associated with a

variable in the input/output list.

nX Number of characters, n, to be skipped

Example:
WRITE (6,100) A,B,C
1060 FORMAT (F9.4,4X,F7.5,4X,13)
Output record:
-342.743bbbb1.53190bbbbb22
on input n columns are skipped.
Example:

READ (3,11) RS, T
11 FORMAT (F5.2, 3X, F5.2, 6X, F5.2)

Input record:

(14. 62bb$13.78bCOSTH15.97

6-24

A = -342.743
B = 1.53190
C

= 22

b is a blank

60497800 D

D R B R S T S S S

J

J 0 D D D I I I

J

D

— 9 O

D)

In storage:
R 14.62
S 13.78
T 15.97
Example:
INTEGER A A contains 7
WRITE (1,10) A,B,C B contains 13.6
10 FORMAT (12,6X,F6.2,6X,E12.5) C contains 1462.37
Result: 7bbbbbbb13.60bbbbbbb.146237E+04
nH OUTPUT

The H specification is used to output strings of alphanumeric characters and, like X, H is not associated with
a variable in the input/output list.

nH
n Number of characters in the string including blanks.
H Denotes a Hollerith field. The comma following the H specification is optional.

For example, the statement:

WRITE (6,1)
1 FORMAT (16HbENDbOFbPROGRAM)

can be used to output the following on the output listing.
END OF PROGRAM
Examples:
Source program:

WRITE (3,20)
20 FORMAT (28HbBLANKSbCOUNTbINbANbHbFIELD.)

produces output record:
BLANKSbCOUNTbINbANbHbBFIELD.
Source program:

WRITE (2,30)A A contains 1.5
30 FORMAT (6HbLMAX=,F5.2)

60497800 A 6-25

J)

)

produces output record:

LMAX=b1.50

nH INPUT

The H specification can be used to read Hollerith characters into an existing H field within the FORMAT
statement.

Example:

Source program:

READ (2,10)
10 FORMAT (27Hbbbbbbbbbbbbbbbbbbbbbbbbbbb}

J

Input record:

)

rbTHIS IS A VARIABLE HEADING

)

After a READ statement, the FORMAT statement labeled 10 contains the alphanumeric information read from the
input record; a subsequent reference to statement 10 in an output statement acts as follows:

WRITE (6,10)

produces the output line:

THIS IS A VARIABLE HEADING

J)

JoJ)) D

6-26 60497800 A

D

-~
-
-
-

)

Output: ppears as follows ABC*DE -

Outﬁut ppears asvfollov\is: ABC*DE

Output exa

HMAT (* SUBTOTALS')

produc c::folvlowing-vou;put:

BTOTALS

ITE (6.20)

: 20 RMAT (?EbRESULT OF CALCULATIONS IS AS FOLLOWS =r‘=)

prodﬁoes' e f‘ollowmg output

ESULT OF CALCULATIONS IS AS FOLLOWS

NT 1, aﬁson'raé,
RMAT (A10,E1

SORT(4.)

variable-or: array When the READ statement contams a constant specxfymg a FORMAT statement alphanu-
meric characters are read into the *..* or #..% specification. When a name occurs in the READ statement
to specify . format information (vanable format) characters in the mput stream are sklppéd _dno change"'
is made in the ’ *..* or #..# specification. e \ .

60497800 A 6-27

END OF RECORD SLASH

The slash indicates the end of a record anywhere in the FORMAT specification. When a slash is used to separate
field specification elements, a comma is allowed but not required. Consecutive slashes can be used and need not
be separated from other elements by commas. When a slash is the last format specification to be processed, it
causes a blank record to be written on output or an input record to be skipped. Normally, the slash indicates the
end of a record during output and specifies that further data comes from the next record during input.

Example:

WRITE (2,10)
10 FORMAT (6X, 7HHEADING / / / 1X, BHINPUT, 7H OUTPUT)

Output:

HEADING line 1
(blank) line 2

(blank) line 3

INPUT OUTPUT line 4

Each line corresponds to a formatted record. The second and third records are blank and produce the line
spacing illustrated.

Example:

1=5
J=6
K=7
WRITE (2,1)1,4,K
1 FORMAT (315/)
WRITE (2,2)
2 FORMAT(* A BLANK LINE SHOULD PRECEDE THIS LINE*)

Output:

A BLANK LINE SHOULD PRECEDE THIS LINE

The variable list (I, J, K) is exhausted and processing continues until a variable conversion is encountered.
Since the slash has been processed, it causes a blank line to be printed.

6-28 60497800 F

Jo))

J

J

J)

R S S R

0 D D > D I

JoJ)

B

SRR

Example:

DIMENSION B(3)
READ (5,100)1A,B
100 FORMAT (15/3€7.2)

These statements read two records; the first contains an integer number, and the second contains three real
numbers.

WRITE (3,11} ABC,D
11 FORMAT (2E10.2/2F7.3)

In storage:
A -11.6
B .325
C 46.327
D -14.261
Output:

b-.12E+02bbb.33E+C0
46.327-14.261

WRITE (1,11) AB,C,D
11 FORMAT (2E10.2 / / 2F7.3)

Output:
b-.12E+02bbb.33E+00 line |
(blank) ——line 2
46.327-14.261 line 3

The second slash causes the blank line.

REPEATED FORMAT SPECIFICATION

Format specifications can be repeated by prefixing the control characters D, E, F, G, I, A, L, R,
with a non-zero, unsigned integer constant specifying the number of repetitions required.

100 FORMAT (314,2E7.3) is equivalent to: 100 FORMAT (14,14,14,E7.3,E7.3)
50 FORMAT (4G12.6) is equivalent to: 50 FORMAT (G12.6,G12.6,G12.6,G12.6)

A group of specifications can be repeated by enclosing the group in parentheses and prefixing it with the repeti-
tion factor. If no integer precedes the left parenthesis, the repetition factor is assumed to be one.

1 FORMAT (13,2(E15.3,F6.1,214))

60497800 B 6-29

is equivalent to the following specification if the number of items in the input/output list does not
exceed the format conversion codes:

1 FORMAT (13,E15.3,F6.1,14,14,E15.3,F6.1,14,14)

A maximum of nine levels of pérentheses is allowed in addition to the parentheses required by the FORMAT
statement.

If the number of items in the input/output list is fewer than the number of format codes in the FORMAT
statement, excess format codes are ignored.:

If the number of items in the inputfoutput list exceeds the number of format conversion codes when the final
right parenthesis in the FORMAT statement is reached, the line formed internally is output. The format control
then scans to the left looking for a right parenthesis within the FORMAT statement. If none is found, the scan ,
stops when it reaches the beginning of the format specification. If a right parenthesis is found, however, the

scan continues to the left until it reaches the field separator which precedes the left parenthesis pairing the

right parenthesis. Output resumes with the format control moving right until either the output list is exhausted
or the final right parenthesis of the FORMAT statement is encountered.

A repetition factor can be used to indicate multiple slashes, n(/), where n is an unsigned integer constant
indicating the number of slashes required and n-1 is the number of lines skipped on output.

Example:

WRITE (3,15)(A(1),1=1,9)
15 FORMAT (8HbRESULTS4(/),(3F8.2))

Format statement 15 is equivalent to: 15 FORMAT (8HbRESULTS / /// (3F8.2))

Output:

RESULTS line 1

(blank) — line 2

(blank) — line 3

(blank) — line 4

3,62 -4.03 -9.78 line 5

-6.33 7.12 3.49 line 6

6.21 -6.74 -1.18 line 7

Example:

READ (5,300)1,J,E K,F,L,M,G,N,R
300 FORMAT (13,2(14,F7.3),17)

is equivalent to storing data in I with format 13, J with 14, E with F7.3, K with I4, F with F7.3, and L
with 17. A new record is then read; data is stored in M with the format 14, G with F7.3, N with 14,
and R with F7.3.

READ (5,100) NEXT, DAY, KAT, WAY, NAT, RAY, MAT
100 FORMAT (17,(F12.7,13) }

6-30 60497800 A

JoJ D D

J 0)

D D) D D

J I D D> D D D D D I

NEXT is input with format I7, DAY is input with F12.7, KAT is input with I3. The FORMAT state-
ment is exhausted (the right parenthesis has been reached), a new record is read, and the statement is
rescanned from the group (F12.7,13). WAY is input with the format F12.7, NAT with I3, and from a third
record, RAY with F12.7, and MAT with I3.

PRINTER CONTROL CHARACTER

The first character of a printer output record is used for carriage control and is not printed. It appears in other
forms of output as data. Carriage control also applies to records listed at a terminal under INTERCOM; the
meaning of carriage control characters depends on the type of terminal (see the INTERCOM reference manual).
Carriage control does not apply to records listed at a terminal under the NOS 1 Time-Sharing System; the
first character is listed as data.

The printer control characters are as follows :

Character Action
Blank Space vertically one line then print
0 Space vertically two lines then print

Eject to the first line of the next

1 ..
page before printing
+ No advance before printing; allows
overprinting
Any other o Refer to ;th‘e‘ operéting system :

’;‘chara‘cter reference manual e

For output directed to the card punch or any device other than the line printer or terminal, control characters
are not required. If carriage control characters are transmitted to the card punch, they are punched in column one.

Carriage control characters are required at the beginning of every record to be printed, including new
records introduced by means of a slash. Carriage control characters can be generated by any means.

Examples:

FORMAT (1H0,F7.3,12,G12.6)

FORMAT (1X,14,G16.8}

TThis chart applies only to NOS/BE 1 and SCOPE 2. For corresponding information under NOS I, refer to
the reference manual for the subsystem under which the program is executed.

60497800 F 6-31

6-32

60497800 A

J

J

J o0 D)

Joo o D)

J

AR

9

Input:

READ 40, A, B, C -

WRITE (31, ‘1011‘ -
FORMAT (1'20 *LABELS')

'characters of the output record are skipped and the next six ¢l
mt number 31 begmmng in character posmon 20

lon, the order of a list need not be the same. as the mput or

FROCRAM resr OUTFUT)
FORMAT (12(10H0123h56789))
IPRINT 1 : - | _
FRINT 60 ‘ o
FORMAT (T80,%COMMENTS®,T60,*HEADINGA®,T4Dy
o *HEADING3‘,T20,'HEADINGZ',TZ,'HEADINGi*) .
FRINT 10 -
FORMAT C20X*THIS IS TPE - END OF THIS RUN*TSZ‘...HOBEST*)
FRINT 1

TOF

print positio

- The folloWirr
: destroys part.

1234567098 c:ctza~setsioae ’umx:gmmmawauoau;uumslum uzums: zjunumuu 23086709

EADING : :
;TS 1S YPI iﬂﬂ OF THIS RUN c--NONES'

0901236567090123&567!1ﬂi33&56769512365670961236561090ll!k§¢7l9018!b§&700 !!QSG?OGII!SQ’G?O 23486709

Since the first character in a line output to the printer is used for printer control, T2 is output in the first

ample shows that it is possrble to destroy a prevrously formed ﬁel
e Hollenth specrﬁcatlon 10H DISASTERS ‘

“ (wH.Di'sA' ERS, T5, 3H12

60497800 A 6-33

next vanable in thé’ t/output hst V can be used asa dummy spec:ﬁcanon for the followmg conversxons A, D,
E,F, G I L Q, P R T ’,X and Z It cannot be used as the E or D exphmtly specxfymg eXponent length, Ew.dVe is
ﬂlegal » o . , A iy v

Example o

VJPROGRAM v utpu
INTEGER FORMAT» RFORMAT=,

a’ﬁpears ina format spec1ﬁcat10n field contaming a repetmon factor whlch does not modxfy a parenthesxzed
specxﬁcatlon list, the Voor = assumes the value supphed by the ﬁrst repetmon and retams that value unul the current
repetmon count is completed : » :

6-34 60497800 H

SIS I

D

))

)

)

y)

)

~
~
-
-
~

utput list or first value

INTEGER FORMAT (2) » mm : | A
 DATA“F0RMAT/lRA9 lRR/g:w/l920396,596’7v899{10/

60497800 A 6-35

) DD

-
i

EXECUTION TIME FORMAT SPECIFICATION

Vanable format spec1ﬁcatlons can be read in as part of the data at execution time and used by READ, WRITE,
ECODE statements later in the program. The format is read in as alphanumeric
text under the A specification and stored in an array, si : int,ior it may be included in
a DATA statement. The format must consist of a list of format spec1 ications enclosed in parentheses, but
without the word FORMAT or the statement label.

For example, an input record could consist of the characters:

((E7.2,G20.5,F7.4,13)

The name of the array containing the specifications is used in place of the FORMAT statement number in the
associated input/output statement. The array name specifies the location of the first word of the format
information.

For example, assume the following format specifications:

J D D D D

(E12.2,F8.2,17,2E20.3,F9.3,14)

This information on an input record can be read by the statements of the program such as:

DIMENSION IVAR(3)
READ (2,1) IVAR
1 FORMAT (3A10)

J

6-36 60497800 A

) D

The elements of the input record are placed in storage as follows:

IVAR(1) (E12.2,F8.
IVAR(2) 2,17,2E20.
IVAR(3) 3,F9.3,14)

A subsequent output statement in the same program can refer to these format specifications as:
WRITE (2,IVAR) AB,I,C,D.EJ
Which produces exactly the same result as the statements:

WRITE (2,10) AB,I,C,D.E,J
10 FORMAT (E12.2,F8.2,17,2E20.3,F9.3,14)

TN D D

60497800 A 6-37

e

S

PROGRAM UNITS, PROCEDURES, AND OVERLAYS 7

A program unit consists of FORTRAN statements, with optional comments, terminated by an END statement.
A main program is a program unit that does not begin with a SUBROUTINE, FUNCTION, or BLOCK DATA
statement. Normally, a main program begins with a PROGRAM statement, but’ thls statement can be omitted.
A subprogram is a program unit that begins with a SUBROUTINE, FUNCTION, or BLOCK DATA statement.
An executable program contains one main program with or without subprograms. A program unit containing
no FORTRAN statements other than an END statement is considered a null program; it is diagnosed and
ignored.

A subprogram is defined separately and can be compiled independently of a main program. If the subprogram
begins with a SUBROUTINE or FUNCTION statement, it is a procedure subprogram and can accept and use
zero, one, or more values through a list of arguments, through common, or both. If the subprogram begins
with a BLOCK DATA statement, it is a specification subprogram.

A procedure is a procedure subprogram, statement function, intrinsic function, or basic external function.
Intrinsic functions and basic external functions are FORTRAN supplied procedures and are available to any

programmer (see section 8). Statement functions and procedure subprograms are supplied by the programmer.

The differences between function and subroutine specification and use are summarized in table 7-1.

TABLE 7-1. DIFFERENCES BETWEEN A FUNCTION AND SUBROUTINE SUBPROGRAM

Function Subroutine
How Used The name appearing in an expression is A CALL statement is used as
used as the reference. the reference.
Arguments One or more arguments must be included. Arguments need not be present.
How Typed Name is typed implicitly by first letter No type is associated with the
or explicitly by the type designation name.
appearing before the word FUNCTION.

Functions return a single value through the function name. Function subprograms defined by the programmer
also can return values through a list of arguments, through common, or both.

Table 7-2 summarizes the terminology of the overlapping categories of procedures and subprograms.

60497800 A 7-1

TABLE 7-2. PROCEDURE AND SUBPROGRAM INTERRELATIONSHIPS

Statement Intrinsic Basic Function Subroutine Block Data
Function Function External Subprogram Subprogram Subprogram
Function prog
Procedure yes yes yes yes yes no
External procedure | no no yes yes yes N/A
Subprogram no no no yes yes yes
Function yes yes yes yes no no
External function no no yes yes N/A N/A
Who defines " user compiler | compiler | user user user
Where defined within compiler | library ex;tlgmal to exltlt?rnal tc:) exl'clc?mal to
program unit calling pro- calling p.r calling p.ro
gram unit gram unit gram unit
N/A = not applicable

Programmer written procedures (statement functions, function subprograms, and subroutine subprograms) are
discussed below as a group. FORTRAN supplied procedures (intrinsic functions and basic external functions)
are discussed in detail in section 8. The only subprogram that is not a procedure is the block data subpro-
gram. Since it is not executable, it is discussed separately.

MAIN PROGRAMS

A main program can contain any FORTRAN statements except FUNCTION, SUBROUTINE, ENTRY or BLOCK
DATA, it should have a PROGRAM statement and an END statement; it must have at least one executable state-
ment. One main program is reqmred m any executable FORTRAN program No pro ram can have more than one

' in each overlay.

main program,. except :

7-2 ' 60497800 D

J oD 2 D D I

3 D D D)

J D D D D I D D

J D

D)) D)

D)

‘the file 1s use at exetutron trme s

number 5.

“n is ignored if specified in

file

; .Zdefault Irmrt rs 150 characters

_ vn/r deﬁnes both buffer and record lengths

_'Frle is made equrvalent to prevrously deﬁned ﬁleb

’ ctured for overlays, the fpar; parameter list is used only m' th PROGRAM statement for the
is not used m pnmary and secondary overlay PROGRAM statements

TATEME'NTJ :fi:JSAGE'

, ader Optronally, the PROGRAM statement can declare files th:
;ams that are called. If this sta nt is omitted from the main
e\name START and ‘two flle‘ named INPUT and OUTPUT

e used in the program and
gram, the program is as-

All file names 'sed in standard FORTRAN mput/output statements (mcludmg mass storage subroutmes) must
be listed in t PROGRAM statement File names referenced by CYBER Record%zManager mterface subroutines
must not be: lrsted in the PROGRAM statement. If a file name is referenced in a standard FORTRAN ‘input/
output statement in a main program but is not specified in the PROGRAM statement, a warning dragnostlc is

issued at comptle time. If a file name is referenced in a standard FORTRAN input/output statement in a sub-

program, but;rs'not specified - in the PROGRAM statement of the mam program liagnostic is rssu‘ed when

File names: o' the PROGRAM ‘ tatement must satrsfy the followmg condmons -

e name INP T‘- must be declared tf a READ. statement without a unit designator s['.kinclu,ded

name. TAPE

15 and TAPEOS do not spet.rfy the same ﬁle name '

t ranr un under SCOPE 2

60497800 B 7-3

) 0

2 0 D)

i

7-4 60497800 J

S 200 T e T Bie o Tihe e

B,

. PROGRAM SAMPLE (INPUT,OUTPUT,TAPE5=INPUT,TAPE6=OUTPUT)

' f;,»Th:s statement reads from loglcal : 1t S;itis declared in the

READ(5 lOO)A B, C P
., .PROGRAM statement as TAPE: whlch is equxvalent to INPUT.

100’F0 AT (31"7 3)

WRITE(6,200)A, B C - _{;,Logwal unit 6 is.declared- as TAPE6 in the PROGRAM state-
200 FORMAT (1H1, 3F’7 3) -~ ment and equwalent to OUTPU! M L

BLOCK DATA SUBPROGRAM

7
BLOCK DATA

The block data subprogram is a nonexecutable specification subprogram that can be used to enter data into
labeled or numbered common (but not blank common) prior to program execution. The name' "KDAT. is

‘assigned ,tq,_,th_‘_ lock data subprogram if it is not named by the ‘user.

The block data subprogram contains only IMPLICIT, LEVEL, type, DIMENSION, COMMON, EQUIVALENCE,
DATA, and END statements. A valid BLOCK DATA subprogram must contain at least one COMMON state-
ment and one DATA statement. Any executable statements are ignored and a warning is issued. All DATA
statements must follow the specification statements. Data can be entered into more than one block of
common in a block data program. The specifications in a BLOCK DATA subprogram take effect when the
binary output file (specified by the control statement B option) is loaded.

Example:

BLOCK DATA ANAME
COMMON/CAT/X,Y,Z/DEF/R,S,T
COMPLEX X,Y

DATA X,Y/2°((1.0,2.7))/,R/7.6543/
END

Z is in block CAT and S and T are in DEF, although no initial data values are defined for them.

60497800 A 7-5

PROCEDURES

The category of procedure to be used is determined by its particular capabilities and the needs of the program
being written. If the program requires the evaluation of a standard mathematical function, a FORTRAN
supplied intrinsic function or a basic external function can be used. If a single computation is needed
repeatedly, a user-written statement function can be included in the program. If a number of statements are
required to obtain a single result, a function subprogram is written. If a number of calculations are required
to obtain several values, a subroutine is written.

Procedure Communication (later in this section) contains details on how to use procedures and how procedures
use arguments or common to communicate.

SUBROUTINE SUBPROGRAM

7
SUBROUTINE name (;:,1 ,p2,...,pn)

SUBROUTINE name

name Symbolic name of the subroutine.

P>+ Pp Dummy arguments that must agree in order, number, type, with the actual argu-

ments passed to the subprogram at execution time.

A subroutine subprogram is executed when a CALL statement is encountered in a program unit. A sub-
routine subprogram must not directly or indirectly call itself. The subroutine subprogram communicates with

the calling program unit through a list of arguments passed with the CALL statement or through common.
Calling a Subroutine Subprogram later in this section contains more CALL statement details.

7-6 60497800 A

J o0 2 D J D o I

f*'%)

J))

J D I

)

J J I

700 0 3D

fma
éﬁh

The SUBRO TINE statement contains the symbolic name that is used as the main entry point of the sub-

: ,,,nt specifies an alternate entry’ pomt in’ the subprogram) The subprogram name
is not used to return results to the calling program, does not determine the type, and must not appear in any
other statement in the same subprogram.

Subroutine subprograms can contain any statements except PROGRAM, BLOCK DATA, FUNCTION, or
another SUBROUTINE statement. They begin with a SUBROUTINE statement, should have at least one
RETURN statement, and end with an END statement. If control flows into the END statement, then a

"RETURN is xmphed Control is retumed to the calling program when a RETURN, RETURN i or END is

encountered.

Dummy arguments which represent array names must be dimensioned within the subprogram bya DIMENSION
or type statement. If an array name thhout subscnpts is used | as an actual argument in a CALL statement

| the subprogram Adjustable dlmensmns are permltted in subroutme subprograms (details are
given later in this section under Using Arrays).

Example 1:
Calling Program Subprogram
. SUBROUTINE ERROR1
. WRITE (6,1)
. 1 FORMAT (5X,22H NUMBER IS OUT OF RANGE)
IF (A-B) 10,20,20 RETURN
10 CALL ERROR1 END

20 RESULT=(A*CAT) +375.2-ZERO

The subroutine ERRORI is called and executed if A-B is less than zero. Control returns to
statement 20. This example also illustrates that arguments need not be used.

60497800 A 7-1

FUNCTION SUBPROGRAM

7
FUNCTION name (p1 veeneP,)

type FUNCTION name (p,,..., pn)

name Symbolic name of the subprogram.

Py>---»Py Dummy arguments that should agree in order, number, type
arguments in the calling program. At least one argument is
63 is allowed.

type The type may be REAL, INTEGER,
LOGICAL.

DOUBLE PRECISION, COMPLEX, or

A function subprogram performs a set of calculations when its name appears in an expression in a referencing
program unit. Execution of the function subprogram must result in a value being defined for the function
name. A function subprogram can modify the value of one or more of its arguments or store data in common.

78 60497800 A

-
-
-
-
-
-
-

DU

type appears in

Dummy arguments which represent array names must be dimensioned within the subprogram by a DIMENSION
or type statement If an array name without subscnpts is used- as an actual argument in the functlon reference
S0rTes| ondmg dummy argument has not been declared an ‘array-in the: subprogram the first element
-used in the subprogram Ad]ustable dimensions are permitted in function subprograms (details
are given in Usmg Arrays later in this section).

The FUNCTION statement contains the subprogram symbolic name that is used as the entry point when the
function is referenced. The ENTRY statement specifies an alternate entry point in the function. The func-
tion name must not appear in any nonexecutable statements other than the FUNCTION statement in the sub-
program. The type of the function name must be the same in the referencing program and the referenced
function subprogram. When type is omitted, the type of the function result is determined by the first char-
acter of the function name. Imphclt typmg by the IMPLICIT statement takes .effect only when no. exphclt

in the FUN(,TION statement.

The function subprogram can contain any statements except PROGRAM, BLOCK DATA, SUBROUTINE,
another FUNCTION statement, or any statement that directly or indirectly references the function being
defined. The function subprogram begins with a FUNCTION statement, should have at least one RETURN
statement, and has an END statement that is treated as a RETURN if executed.. Control is returned to the
referencing program when either a RETURN o) is encountered. A RETURN i in a function subprogram
! al error at compilation time.

A function subprogram can have the same name as that of an intrinsic or basic external function supplied by
FORTRAN. Section 8 defines the conditions under which programmer supplied routines override the
FORTRAN supplied routines.

Example:
Calling Program Subprogram

DIMENSION ARY (5,5) FUNCTION DIAG (A,N)
. DIMENSION A(N,N)
. DIAG=A(1,1)
. DO 70 I=2,N

10 RES=DIAG(ARY,5)**2 70 DIAG=DIAG*A(I,I)
. RETURN
. END

The statement labeled 10 contains the reference to function DIAG. The statement labeled 70 sets the
function name to a value. At the end of the function subprogram execution, RES will have the value of
DIAG squared.

BASIC EXTERNAL FUNCTION

A basic external function is a predefined procedure included with the system. Section 8 contains further
details.

60497800 A 79

INTRINSIC FUNCTION

An intrinsic function is a compiler-defined procedure that is inserted in the referencing program at compile
time. Section 8 contains further details.

STATEMENT FUNCTION

7
name (p,.,p,.P5,..., P,) = expression

name Type of the function is determined by the type of the function name.

P{s--+»Pp Dummy arguments must be simple variable names. At least one argument is required; a
imum of 63 is allowed. These arguments should agree in order, number, type,
with the actual arguments used in the function reference.

expression Any expression may be used. It may contain references to intrinsic or basic external func-
tions, statement functions, or function subprograms. Names in the expression that do not
represent arguments are normal variables having the same value as they have outside the
function

A statement function is a user-defined, single-statement computation and applies only to the program unit containing
the definition. Since the statement function only defines the function, the value is computed when the function is
referenced and the actual arguments are substituted for the dummy arguments in the definition.

During compilation, the statement function definition is retained by the compiler. Whenever the function is referenced,
instructions are generated in-line to evaluate the function (as opposed to FUNCTION subprograms for which an external
procedure is used at each reference). The expansion of a statement function is the same as writing the expression in
place of the reference. Thus the statement function does not reduce execution speed or efficiency.

Statement function names must not appear in DIMENSION, EQUIVALENCE, COMMON or EXTERNAL statements;
they can appear in a type declaration but cannot be dimensioned. Statement function names must not appear as actual
or dummy arguments. If the function name is type logical, the expression must be logical. If the function name is not
type logical, the expression must not be a relational or logical expression. For other types, if the function names and
expression differ, conversion is performed as part of the evaluation of the function. For example, in the program
segment:

LSUM(LJ) = OR(L,J)
A = OR(15,50)
B = LSUM(15,50)

OR is typeless and LSUM is a statement function of type INTEGER. In the first function evaluation, no
conversion takes place; the binary value is assigned to A. In the second function evaluation, the value is
converted to floating point before being assigned to B.

A statement function must precede the first executable statement and it must follow all specification state-
ments. A statement function must not reference itself either directly or indirectly.

7-10 60497800 E

J)

)

2 I3 D D

J

BN R B

J J D)

JoJ D I D D

D) D)

B

-
-
-
-

Examples:
Statement Function Definitions Statement Function References
ADD(X,Y,C,D)=X+Y+C+D RES1=GROSS-ADD(TAX,FICA,INS,RES3)
AVERGE(O,P,Q,R)=(0+P+Q+R)/4 GRADE=AVERGE(TEST1,TEST2,TEST3,

TEST4)+MID
LOGICAL A,B,EQV

EQV(A,B)=(A.AND.B).OR. TEST-EQV(MAX,MIN).AND.ZED
(.NOT.A.AND..NOT.B)

COMPLEX Z RESULT=(Z(BETZ,GAMMA(I+K))**2-1.)
Z(X,Y)=(1.,0.)*EXP(X)*COS(Y) /SQRT (TWOPIE)
+(0.,1.)*EXP(X)*SIN(Y)
Example 1:

The statement function can be used to substitute a FORTRAN supplied function name in a program con-
taining an alternate name for this function.

SINF(X)=SIN(X) Statement function definition.

A=SINF(3.0+B)+7. Statement function reference.
The above sequence generates exactly the same object code as:
A=SIN(3.0+B)+7. .
Example 2:

To compute one root of the quadratic equation ax2+bx+c=0, given values of a, b and c, an arithmetic
statement function can be defined as follows:

ROOT (A,B,C)=(-B+SQRT(B*B-4.*A*C))/(2.0%A)

When the function is used in an expression, actual arguments are substituted for the dummy arguments
A B,C.

RESA = ROOT (6.5,7.,1.)
is equivalent to writing:

RESA = (-7.+SQRT(7.*7.-4.0*6.5*1.0))/(2.0%6.5)

Wherever the statement function ROOT (A, B, C) is reterenced, the defimition of that function — in this
case (-B+SQRT(B*B-4.*A*C))/(2.*A) — is evaluated using the current values of the arguments A, B, C.

60497800 A 7-11

PROCEDURE COMMUNICATION

The procedures defined by a statement function or a procedure subprogram are executed when they are
referenced in a program unit.

PASSING VALUES TO A PROCEDURE

Values can be passed between a calling program unit and a procedure as actual arguments in an argument
list or through common. Arrays with adjustable dimensions can be used to pass values of arguments.
Arguments passed to a procedure must agree with the procedure definition in order, number, type, length,

USING ARGUMENTS

Arguments used for communication between procedures are either actual or dummy (formal). The arguments
appearing in a subroutine CALL statement or a function reference are the actual arguments. The corre-
onding i

e ek

The actual arguments allowed for a particular procedure are given in the discussion of the procedure
reference.

Dummy arguments are used as variable, array or external procedure subprogram names within the subprogram
and can be used to return values to the calling program. The dummy arguments are replaced by the actual
arguments when the procedure is executed. Since all names are local to the program unit containing them,
the same dummy argument name can be used in more than one program unit. A dummy argument must
not appear in COMMON, EQUIVALENCE, or DATA statements within a program unit.

Dummy arguments representing array names must appear within the subprogram in a DIMENSION or type
statement giving dimension information. If dummy arguments are not dimensioned, they cannot be referenced
as arrays in a subprogram.

In a subprogram, the definition of a dummy argument that is associated with a constant actual argument or with
any expression except a variable or array element is prohibited.

If a subprogram reference causes a dummy argument to be associated with an entity in common in the refer-
enced subprogram, definition of the dummy argument or of the entity in common is prohibited. If a subpro-

gram reference causes two dummy arguments to be associated, the definition of either in the referenced subpro-
gram is prohibited.

7-12 60497800 C

JoJ

2 2 D 2D 2D D D D

J D)

2 20 D D D D I

7009000 TTYDYDIDNIDDYY YYD

Example 1:

Calling Program Subprogram
. FUNCTION GRATER(A,B)
. IF (A.GT.B)1l,2
W(I,J)=FA+FB-GRATER(C-D,3*AX/BX) 1 GRATER=A-B

RETURN

. 2 GRATER=A+B
. RETURN
. END

This example shows the normal use of arguments in a function subprogram. The actual argument C-D is
used in place of the dummy argument A and 3*AX/BX is substituted for dummy argument B when the

function subprogram is executed.

Example 2:

CALL SUBA(1.5) . SUBROUTINE SUBA(R)
IF {R.NE.O) R 0

L[}

This example contains a prohibitéd definition of a dummy argument, R, which is associated with a con-
stant actual argument.

Example 3:

CALL suUBB (X, X) SUBROUTINE SUBB (A, B)

A =Y
Z =8B

This example contains a prohibited definition of a dummy argument, A, which has been previously
associated with another dummy argument, B, in the referencing program unit.

Example 4:
COMMON X SUBROUTINE SUBC (B)
CALL sSUBC (X) COMMON A

This example contains a prohibited definition of an entity in common, A, which is associated with a
dummy argument, B, in the same subprogram.

60497800 A 7-13

USING COMMON

Common can be used to transfer values between a calling program unit and a subprogram. Passing values
through common is more efficient than passing values through arguments in a CALL statement or function reference.

If a dummy argument in a subprogram is associated with an entity in a common block in the same subpro-
gram, the definition of either is prohibited.

USING ARRAYS

The array dimensions in a subprogram must be the same as those in the calling routine if the subscripts are
to agree between the called and calling program units. If a dummy argument is not dimensioned, it cannot
be referenced as an array in the subprogram.

If any of the entries in a subscript of a type or DIMENSION statement is an integer variable name, the
array is called an adjustable array. The variable names are called adjustable dimensions. Such an array
can only appear in a procedure subprogram. The dummy argument list of the subprogram must contain
the array name and the integer variable names that represent the adjustable dimensions. The values of the
actual arguments that represent array dimensions in the argument list of the reference must be defined
prior to calling the subprogram and cannot be redefined during execution of the subprogram. The absolute

7-14 60497800 A

2 2 J I I D

J)

> D

))

o

M
7

-
-
-

-
-
-
-
-
-
-

size of the actual array may not be exceeded. For every array appearing in an executable program, there
must be at least one constant array dimension associated through subprogram references.

In a subprogram, an array name that appears in a COMMON statement must have fixed dimension
specifications.

REFERENCING A FUNCTION

A function is referenced when the name appears in an expression. A function must not directly or indirectly
reference itself. The reference can appear anywhere in an expression that an operand of the same type can
be used.

When a statement function or intrinsic function is referenced, instructions are generated in-line to evaluate the
function. The value is computed with the actual arguments substituted for the dummy arguments in the
definition.

When a function subprogram or a basic external function is referenced, control is transferred to the function
subprogram and the values of the actual arguments are substituted for the dummy arguments. Control is
returned to the referencing program unit when a RETURN is encountered.

Actual arguments in a function subprogram reference may be an expression, constant (including Hollerith),
variable, array name, array element name, subroutine subprogram name, extemal function name (not intrinsic
function or statement function), or function reference (the function reference is a special case of an arith-
metic expression).

Example:: L

Functi‘o‘iiv Subprogram e

FUNCTION JOE(X
10 JOE=X+Y :
- 'RETURN

“ENTRY JAM .
IF(X.GT.Y)10,20

20 JOE=X-Y :

© - RETURN °
“END

)

AM(Q,2.5*

60497800 A 7-15

CALLING A SUBROUTINE SUBPROGRAM

CALL name

CALL name (p1 yeees pn)

name Name of subroutine called.

| TV Actual arguments which must correspond in order, number, type,
specified in the SUBROUTINE statement.

A subroutine subprogram is executed when a CALL statement is encountered in a program unit. A subroutine
must not dlrectly or mdlrectly call itself. The CALL statement transfers control to the subroutine and either
TURN i in the subroutine returns control to the callmg program unit. If a RETURN is

The CALL statement can contain actual arguments and statement labels. They must correspond in order,
number, type, to those in the subroutine subprogram definition.

The subroutine name must not appear in any specification state-
EXTERNAL statement.

cept

Actual arguments in a subroutine subprogram call can be any of the following: expression, constant, variable,
array name, array element name, subroutine subprogram name, basic external function name (not an intrinsic

7-16 60497800 C

J D D I > I I I I) D D I D I D I D I I

IR

-~
-
~
-

or statement function name), function reference (the function reference is a special case of an arithmetic
expression).

Example 1:

Calling Program Subprogram
Do 51 =1,20 SUBROUTINE GRATER (A,B)
. IF (A.LE.B) GO TO 2
. 1 B=A-B

5 CALL GRATER (STACK(I),TEMP(I)) RETURN
. 2 B=A+B
. RETURN

END

The subroutine subprogram GRATER is called 20 times since the CALL statement as the last statement in
a DO loop causes looping to continue until the DO loop terminal parameter, 20, is satisfied.

60497800 A 7-17

7-18

60497800 A

J

D))

SRS

)

=

J

)

DR IR

= “to the subr
- further valu

Example, 2

Calhng Program ;

ed 1o _the callmg program through the functton nam HUN.

le a 1 oads it startmg atits pre—established origin in the user’s field]ength

60497800 E

tme CLEAR bﬁt this time it is entered at the entry point FILI.;. When FILL i is called
re; read mto the array SET1 »w1thout first settmg the array to zero

:=FSHUN(XAY Z)
RES2=FRED(R, S T)_l

"‘gram, a call 1s made to the subroutme

Su bprogram

i FUNCTION FSHUN(A B ,C)
3 FSHUNwA*B/C**z s

RETURN
ENTRY FRED -
IF(A .LE. 702.) GO“O 3
FSHUN=(C+A)/B i
RETURN

END

,'}begmnmg of the funcnon, or rough the ENTRY FRED

not valid because it has been usved”fa;sfa'vaﬁable

7-19

J)

J

Zero overlay (0,0)

Fixed starting
address for
primary overlays

Primary overlay (1,0)

\

Do I

Fixed starting
address for (1,n)
secondary overlays

Secondary overlay (1,1)

J

J

J

"“\

Zero
overt Zero (0,0)
:6 ;‘; Fixed starting address {
for primary overlay Primary

overiay (4,0}

prrmee: X%

l:::la"/ Starting address for :
ay secondary overla
(3,00 Y)

(4,2)
Fixed starting address
for secondary overlay

Secondary
overlay
{31

J D

J D D I

J)

7-20 60497800 E

J)

-
~
-
-~
-
-

N B R B B

A secondary ove y ‘can be called into core only by its primary overlay Overlay (l 0) ‘can call (l 2) but overlay
' 2,0) should not ¢ all 1, 2) nor should overlay (0, 0) call overlay (1 l)

'Overlay numbers (O,n) are not vahd (n > 0). For example (0, 3) is an illegal overlay number.

] Executron is faster if the more commonly used subprograms are placed in the zero overlay, which remams in-main
,Jmemory at all tnmes, and the less: commonly used subprograms are placed in prrmary ‘d secondary overlays which
f,are called into memory as requrred .

An overlay can conslst of one or more FORTRAN or COMPASS program units: Each overlay must contam

one FORTRAN main program,; it need not be the first program unit in’the overlay - The program name in
:the PROGRAM “statement becomes the pnmary entry point for the overlay when 'the overlay is called

| The PROGRAM statement for the 'Zero or main overlay (0,0) must speclfy all ﬁle ames such as INPUT
:»;T,OUTPUT TAPEI, etc., reqtured for all overlay levels. File names should not appear in PROGRAM statements
for other than thez(O 0) overlay. . The compile-time warning or mformatrve messa' ?I/O FILE NOT DEFINED
“should be ignored for programs outsrde the (0,0) overlay. : - :

60497800 G 7-21

level overlay 1s loaded the drrectory is'used to locate the overlay, and the overlay is loaded wrtha smgle drsk access L
This is the fastest method avaxlable for overlay loadrng and is: recommended for apphcatrons where speed is essentral
The FOL facility requires that all overlays in the overlay structure reside on the same file in the same _order in whrch
they were generated FOL mode is specrﬁed by the presence of the OV parameter on the OVERLA drrectrve

If the FOL facrlrty is not used and speed is essentral each overlay should be wrrtten on a separate file, or the overlays
should be called in the same order in whrch they were generated

The group of relocatable decks to be processed by the loader to create an overlay-structured program must be
presented to the loader in the’ followrng order. The main overlay must be loaded first. Any primary group followed
by its associated secondary group can follow then any other pnmary group followed by 1ts associated secondary
'group, and 5o forth : , i

The OVERLAY drrectrve format rs

'The rst overlay {

: o:be‘vvntten on the same fi]e All overlays need not resrde 0 the s
loadmg mode The second overlay drrectrve must be of a prrmary verlay such as 3

If the orrgm parameter is omrtted the overlay is loaded in the normal way drrectl ifter the zero overlay' The orrgm
:parameter cannot be included on the zero overlay | drrectrve It is used on primary and secondary overlay dlrectrves to
allow the | programmer to change the size of blank common at overlay generatron trme g

7-22 60497800 H

)

)

D0)))

>)

>)

) D

LN
L

Y D

~

3

Example:

~(mmar: 0,0,0ve4)
M CAT(INPUT OUTPUT, TAPEB -INPUT)

AII the -abov <ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>