3

60480000

(S5 CONTROL DATA

NETWORK PRODUCTS

NETWORK ACCESS METHOD
VERSION 1

NETWORK DEFINITION LANGUAGE
REFERENCE MANUAL

CcDC® OPERATING SYSTEM:
NOS 2

Re

vision

A

B

REVISION LETTERS I, O, Q, AND X ARE NOT USED

(12/01/76)
(04/01/77)

(04/28/78)

(08/15/78)

(12/18/78)

(08/10/79)

(05/23/80)

(10/31/80)

(05/29/81)

(12/22/82)

(09/30/83)

(09/19/84)

(09/30/85)

(12/16/85)

(07/31/86)

(04/23/87)

(12/08/88)

REVISION RECORD

Description
Original release. Programming System Report (PSR) level 439,

Revised at PSR level 446 for technical corrections.

Completely revised for NAM Version 1.1 release at PSR level 472 to include support of
remote and foreign NPUs, asynchronous and HASP TIPs, virtual terminals, IAF, and TVF.

Revised at PSR level 477 for technical corrections.

Revised at PSR level 485 to include autorecognition up to 1200 baud and for technical
corrections.

Revised to reflect release of NAM Version 1.2. Included are descriptions of special
editing support, extended APL support, and various technical corrections.

Revised at PSR level 517 to reflect support of the 714-30 terminal class, and of
714-10/20 and 714=30 line printers. Various technical corrections are also included.

Revised at PSR level 528 to document support of the X.25 protocol.

Revised to reflect release of NAM Version 1.3 at PSR level 541 to document support of the
PRU interface and the BSC protocol (2780/3780 terminal support). Also includes various
technical corrections.

Revised to reflect release of NAM Version 1.5 (Version l.4 does not exist) at PSR level
580, which supports the Network Access Method and Communication Control Program Version
3.5 under NOS Version 2; this manual no longer applies to NOS Version 1 systems. This is
a complete reprint.

Revised to reflect release of NAM Version 1.6 at PSR level 599, which supports the
Network Access Method and Communications Control Program Version 3.6 under NOS Version
2, This is a complete reprint.

Revised to reflect release of NAM Version 1.7 at PSR level 617, which supports the
Network Access Method and Communications Control Program Version 3.7 under NOS Version
2.3. Support of the CYBER 170 800 Series models and the CYBER 180 Computer Systems is
documented.

Revised to reflect release of NAM Version 1.8 at PSR level 642, which supports the
Network Access Method and Communications Control Program Version 3.8 under NOS Version
2.4.2. Miscellaneous technical changes are included. This is a complete reprint.

Revised to reflect release of NAM Version 1.8 at PSR level 647, which supports the
Network Access Method and Communications Control Program Version 3.8 under NOS 2.4.3 and
the release of CDCNET Version 1.0. Miscellaneous technical changes are included.

Revised to reflect release of NAM Version 1.8 at PSR level 664, which supports the
Network Access Method and Communications Control Program Version 3.8 under NOS 2.5.1 and
the release of CDCNET l.l. Miscellaneous technical changes are included.

Revised to reflect release of NAM Version 1.8 at PSR level 678, which supports the
Network Access Method and Communicatioms Control Program Version 3.8 under NOS 2.5.2 and
the release of CDCNET 1.2. Three new parameters have been added to the OUTCALL statement
and changes have been made to default values for other parameters to simplify connections
to NOS/VE. Miscellaneous technical changes are included.

Revised to reflect release of NAM Version 1.8 at PSR level 716, which supports the

Network Access Method and Communications Control Program Version 3.8 under NOS 2,7.1 and
the release of CDCNET l.4. Miscellaneous technical changes are included.

Address comments concerning this manual to:

CONTROL DATA CORPORATION

©COPYRIGHT CONTROL DATA CORPORATION Technical Publications
1976, 1977, 1978, 1979, 1980, 1981, P.0. Box 3492

1982, 1983, 1984, 1985, 1986, 1987, 1988
All Rights Reserved
Printed in the United States of America

ii

SUNNYVALE, CALIFORNIA 94088-3492

60480000 T

or use Comment Sheet in the back of this manual

J

J)

LIST OF EFFECTIVE PAGES

S S

New features, as well as changes, deletions, and additions to information in this manual are indicated by bars
in the margins or by a dot near the page number 1f the entire page is affected. A bar by the page number
indicates pagination rather than content has changed.

Page Revision Page Revision Page Revision
Front Cover - 4-18 T 8-4 thru 8-5 S
Title Page - 4-19 thru 4-23 N 8-6 thru 8-12 T
ii T 4=24 R 9-1 N
iii/iv S 4=25 thru 4-27 N 9-2 M
v/vi R 5-1 M 10-1 K
vii P 5-2 thru 5-6 N 10-2 S
viii N 5-7 P 10-3 P
ix S 5-8 thru 5-20 N 10-4 P
@ﬁ‘=‘ x P 5-21 P 11-1 thru 11-28 N
) xi/xii [5=22 N A-l thru A-3 L
xiii M 5-23 N A-4 R
1-1 P 6-1 M A-5 L
-2 P 6-2 thru 6-5 N A~6 L
1-3 L 6-6 P A-7 thru A-19 K
1-4 L 6-7 thru 6-17 N A-20 thru A-23 M
1-5 N 6-18 M A-24 thru A-32 N
1-6 M 6-19 S A-33 thru A-48 L
1-7 L 6-20 thru 6-40 N B-1 N
1-8 M 6-41 P B-2 M
1-9 M 6-42 thru 6-49 N B-3 K
1-10 L 7-1 N B-4 thru B-8 L
(‘ 1-11 thru 1-18 P 7-2 S B-9 T
. 2~1 L 7-3 N B-10 N
2-2 N 7-4 K B-11 L
2-3 M 7-5 N C-1 thru C-3 P
2-4 N 7-6 N c-4 N
2-5 M 7-7 s c-5 M
2-6 L 7-8 N c-6 M
2~-7 M 7-9 P D-1 S
2-8 M 7-10 N D=2 S
3-1 P 7-11 N D-3 M
3-2 thru 3-9 N 7-12 M E-1 K
4-1 L 7-13 M E-2 thru E-6 S
e 4=2 N 7-14 thru 7-22 N F-1 L
{ 4=3 thru 4-5 S 7-23 M Index~1 thru -15 S
N 4~6 P 7-24 N Comment Sheet/Mailer T
4-7 T 7-25 R Back Cover -
4-8 N 7-26 thru 7-28 N
4-9 N 8-1 P
4-10 T 8-2 L
4~11 thru 4-17 N 8-3 T

60480000 T iii/iv

PREFACE

L e

This manual describes the Network Definition
Language (NDL) for the CONTROL DATA® Network
Access Method (NAM), Version 1.8, It assumes that
the reader is a network site administrator familiar
with the Network Operating System (NOS) and other
software in the networks product set.

The Network Access Method Version 1.8 operates
under control of the NOS 2 operating system for the
CDC® CYBER 180 Series; CYBER 170 Series; CDC CYBER
70 Models 71, 72, 73, and 74; and 6000 Series
Computer Systems.

The Network Definition Language processor 1s a
compiler used by a network administrator to create
and maintain the files that define the physical and
logical structure of the network for other network

software, which in turn establishes, initializes,
and operates the network.

RELATED PUBLICATIONS

Related material is contained in the Control Data
Corporation publications 1listed below. The pub-
lications are listed within groupings that indicate
relative importance to readers of this manual.

The NOS System Information Manual 1is an online
manual that includes brief descriptions of all NOS
and NOS product manuals. To access this manual,
log in to NOS and enter the command EXPLAIN.

The following publications are of primary interest:

60480000 R

Publication

CDCNET Conceptual Overview
CDCNET Configuration and Site Administration Manual

CDCNET Systems Programmer”s Reference Manual
Volume 1, Base System Software

CDCNET Systems Programmer”s Reference Manual
Volume 2, Network Management Entities and
Layer Interfaces

CDCNET Systems Programmer”s Reference Manual
Volume 3, Network Products

CDCNET Systems Programmer”s Reference Manual
Volume 4, Terminal Interface Programs

CDCNET Terminal Interface Usage Manual

CYBER Cross System Version 1 Build Utilities
Reference Manual

Network Products Network Access Method Version 1
Host Application Programming Reference Manual

Network Access Method Version 1/

Communications Control Program Version 3

Terminal Interfaces Reference Manual

NOS Version 2 Reference Set, Volume 3, System Commands

NOS Version 2 Analysis Handbook

Publication

Number

60461 540

60461550

60462410

60462420

60462430

60462440

60461530

60471200

60499500

00480600

60459680

60459300

vi

The following publication is of secondary inte.rest:

Publication
Pubtication Number
NOS Version 2 Installation Handbook 60459320

Sites within the. United States can order CDC manuals from Control
Data Corporation, Literature and Distribution Services, 308 North
Dale Street, St. Paul, Minnesota 55103.

Other sites can order CDC manuals by contacting the local sales
office.

This product 1is intended for wuse only as
described in this document. Control Data can-
not be responsible for the proper functioning
of undescribed features or parameters.

Also, if you have access to SOLVER, the CDC online facility for
reporting problems, you can use it to submit comments about this
manual. When it prompts you for a product identifier for your
report, please specify NAS.

60480000 R

J)

J)

CONTENTS

S —

NOTATIONS

1. TINTRODUCTION

Network Definition Language Processor
Basic Network Concepts
Supervisory Programs
Network Access Method Interfaces
Simple Network
Administrative Operators
Variants of NPU Software
Packet—-Switching Network
Multiple-Host Network
Defining a CDC Network
Hardware Elements
Host Processors
Network Processing Units
Couplers
Trunks
Communication Lines
Terminals
Devices
Software Elements
Data Structures and Flow
Host-Resident Software
NPU-Resident Software
CDCNET Network
CDCNET Device Interfaces
CDCNET Device Interface Software
Logical Elements
Nodes and Logical Links
Logical Configuration of Hosts
Logical Configuration of Terminals
Application—to—-Application Connections
Multilevel Security

2, THE NETWORK DEFINITION LANGUAGE

Functional Syntax and Formats
Value Declaration Formats
Value-Required Keywords
Stand-Alone Keywords
Parameter Values
Statement Length and Continuations
Definition Structure
Division Hierarchy
Statement Hierarchy
Special-Purpose Statements
TITLE Statement
COMMENT Statement
DEFINE Statement
END Statement

3., NETWORK DIVISION STATEMENTS

NFILE Statement
Network Node and Link Definition Statements
NPU Statement
SUPLINK Statement
COUPLER Statement
LOGLINK Statement
TRUNK Statement

60480000 P

1-9

1-9

1-12
1-12
1-13
1-13
1-14
1-15
1-15
1-16
1-16
1-16
1-17

3-3

Protocol-Dependent Definition Stétements

4,

LINE Statement
GROUP Statement
TERMINAL Statement
DEVICE Statement
TERMDEV Statement

ASYNCHRONOUS LINES, TERMINALS, AND DEVICES

Line Definition

LINE Statement Parameters
GROUP Statement Parameters

Terminal Definitions

STIP Parameter
TC Parameter
CSET Parameter
RIC Parameter
TSPEED Parameter

Device Definitions

DT Parameter
AB Parameter
ABL Parameter
AUTOCON Parameter
BR Parameter
BS Parameter
Bl Parameter
B2 Parameter
CI Parameter
CN Parameter
CP Parameter
CT Parameter
DBL Parameter
DBZ Parameter
DI Parameter
DLC Parameter
DLTO Parameter
DLX Parameter
EBR Parameter
EBX Parameter
ELR Parameter
ELX Parameter
EP Parameter
HD Parameter
HN Parameter
IC Parameter
IN Parameter
LI Parameter
LK Parameter
MCI Parameter
MLI Parameter
OC Parameter
OP Parameter
PA Parameter
PG Parameter
PL Parameter
PRI Parameter
PW Parameter
P90 Through P99 Parameters
RTS Parameter
UBL Parameter
UBZ Parameter
XBZ Parameter
XLC Parameter

3-b
3-8
3-8
3-8
3-8
3-8

4=1

4-1

4=4

4—6

4=7

4-8

4-8

4=9

4-9

4-9

4-10
4-10
4-11
4-11
4-11
4-11
4-12
4-12
4-13
4-13
4-13
4-14
4=14
4-14
4-15
4-15
4-15
4-16
4-16
4-16
4=-17
4-17
4-17
4-18
4-~18
4-18
4~19
4-19
4-19
4-20
4-20
4=-20
4-20
4-21
4=22
4=23
4-23
4~23
4=24
4=24
4=24
4~24
4-25
4-25

vii

XLTO Parameter
XLX Parameter
XLY Parameter

Buffering of Data

5.

X.25 PROTOCOL LINES, TERMINALS, AND

DEVICES

Line Definition

PAD

PAD

Application-to-Application Connection

LINE Statement Parameters
and User Terminal Definitions
STIP Parameter
TC Parameter
COLLECT Parameter
CSET Parameter
NCIR Parameter
NEN Parameter
PAD Parameter

RIC Parameter

W Parameter

and User Device Definitions
DT Parameter

ABL Parameter
AUTOCON Parameter
BR Parameter

BS Parameter

Bl Parameter

B2 Parameter

CI Parameter

CN Parameter

CP Parameter

CT Parameter

DBL Parameter

DBZ Parameter

DLC Parameter
DLTO Parameter
DLX Parameter

EBR Parameter

EBX Parameter

ELR Parameter

ELX Parameter

EP Parameter

HD Parameter

HN Parameter

IC Parameter

IN Parameter

LI Parameter

LK Parameter

MCI Parameter

MLI Parameter

0C Parameter

OP Parameter

PA Parameter

PG Parameter

PL Parameter

PRI Parameter

PW Parameter

P90 Through P99 Parameters
UBL Parameter

UBZ Parameter

XLC Parameter
XLTO Parameter
XLX Parameter

XLY Parameter

Definitions

Terminal Definitions
STIP Parameter
CSET Parameter
NCIR Parameter
NEN Parameter

Device Definitions

viti

4-25
4~26
4-26
4-27

5-12
5-13
5-13
5-13
5-13
5-14
5-14
5-15
5-15
5-15
5-15
5-15
5-16
5-16
5-17
5-17
5-18
5-18
5-18
5-18
5-19

‘5-19

5-20
520
5-20

5-21
5-21
5-21
5-21
5~21
5~-21
5-22

DT Parameter
Buffering of Data

6. MODE 4, HASP, 2780/3780 AND 3270
BISYNCHRONOUS LINES, TERMINALS,
AND DEVICES

Line Definition
LINE Statement Parameters
GROUP Statement Parameters
Mode 4 Terminal Definitions
STIP Parameter
TC Parameter
CA Parameter
CSET Parameter
EOF Parameter
RIC Parameter
Mode 4 Device Definitions
DT Parameter
ABL Parameter
AUTOCON Parameter
Bl Parameter
B2 Parameter
CN Parameter
CT Parameter
DBL Parameter
DBZ Parameter
DI Parameter
DO Parameter
ELO Parameter
HD Parameter
HN Parameter
LK Parameter
PG Parameter
PL Parameter
PRI Parameter
PW Parameter
P90 Through P99 Parameters
SDT Parameter
TA Parameter
UBL Parameter
UBZ Parameter
XBZ Parameter
HASP Terminal Definitiouns
STIP Parameter
TC Parameter
CO Parameter
CSET Parameter
RIC Parameter
HASP Device Definitions
DT Parameter
ABL Parameter
AUTQCCN Parameter
Bl Parameter
B2 Parameter
CN Parameter
CT Parameter
DBL Parameter
DBZ Parameter
DI Parameter
DO Parameter
HD Parameter
HN Parameter
LK Parameter
PRI Parameter
PW Parameter
P90 Through P99 Parameters
SDT Parameter
STREAM Parameter
UBL Parameter
UBZ Parameter
XBZ Parameter

5-22
522

6-1
6-1
6-4
6-6
6-7
6-8
6-8
6-9
6-9
6-9
6-9
6-11
6-11
6-11
6-11
6-12
6-12
6-13
6-13
6-14
6-14
6-14
6-14
6-15
6-15
6-15
6-15
6-16
6-16
6-16
6-17
6-17
6-18
6-18
6-18
6-19
6-19
6-20
6-20
6-21
6-21
6-21
6-22
6-73
6-23
6-23
6-23
6-24
6-24
6-25
6-25
6-25
6-26
6-26
6-26
6-26
6-27
6-27
6-27
6-28
6-28
6-29
6-29
6-30
6-30

60480000 N

J)

J)

ﬁﬁ?\

Bisynchronous Terminal Definitions
STIP Parameter
TC Parameter
BCF Parameter
CO Parameter
CSET Parameter
MREC Parameter
RIC Parameter

Bisynchronous Device Definitions
DT Parameter
ABL Parameter
AUTOCON Parameter
CT Parameter
DBL Parameter
DBZ Parameter
DI Parameter
HD Parameter
HN Parameter
PRI Parameter
PW Parameter
P90 Through P99 Parameters
SDT Parameter
TA Parameter
UBL Parameter
UBZ Parameter
XBZ Parameter

3270 Terminal Definitions
TC Parameter
CA Parameter
CSET Parameter
RIC Parameter

3270 Device Definitions
DT Parameter
ABL Parameter
AUTOCON Parameter
Bl Parameter
B2 Parameter
CN Parameter
CT Parameter
DBL Parameter
DBZ Parameter
DI Parameter
HD Parameter
HN Parameter
LK Parameter
PG Parameter
PL Parameter
PRI Parameter
PW Parameter
SDT Parameter
TA Parameter
UBL Parameter
UBZ Parameter

Buffering of Data

7. SITE-DEFINED PROTOCOL LINES, TERMINALS,
AND DEVICES

Rules for Definitions
Line Definition
LINE Statement Parameters
GROUP Statement Parameters
Terminal Definitions
STIP Parameter
TC Parameter
BCF Parameter
CA Parameter
CO Parameter
COLLECT Parameter
CSET Parameter

60480000 S

7-1
7-1
7-1
7-5
7-9
7-9
7-10
7-11
7-11
7-12
7-12
7-12

EOF Parameter
MREC Parameter
NCIR Parameter
NEN Parameter
PAD Parameter
RIC Parameter
TSPEED PARAMETER
W Parameter
Device Definitions
DT Parameter
AB Parameter
ABL Parameter
AUTOCON Parameter
BR Parameter
BS Parameter
Bl Parameter
B2 Parameter
Cl Parameter
CN Parameter
CP Parameter
CT Parameter
DBL Parameter
DBZ Parameter
DI Parameter
DLC Parameter
DLTO Parameter
DLX Parameter
DO Parameter
EBO Parameter
EBR Parameter
EBX Parameter
ELO Parameter
ELR Parameter
ELX Parameter
EP Parameter
HD Parameter
HN Parameter
IC Parameter
IN Parameter
LI Parameter
LK Parameter
MCI Parameter
MLI Parameter
OC Parameter
OP Parametert
PA Parameter
PG Parameter
PL Parameter
PRI Parameter
PW Parameter
P90 Through P99 Parameters
RTS Parameter
SDT Parameter
STREAM Parameter
TA Parameter
UBL Parameter
UBZ Parameter
XBZ Parameter
XLC Parameter
XLTO Parameter
XLX Parameter
XLY Parameter
Buffering of Data

8. LOCAL DIVISION STATEMENTS

LFILE Statement
USER Statement
APPL Statement
OUTCALL Statement
INCALL Statement

7-12
7-12
7-13
7-13
7-13
7-13
7-13
7-13
7-14
7-14
7-14
7-15
7-15
7-15
7-15
7-16
7-16
7-16
7-16
7-16
7-17
7-17
7-17
7-17
7-18
7-18
1-18
7-18
7-19
7-19
7-19
7-19
7-20
7-20
7-20
7-20
7-21
7-21
7-21
7-21
7-22
7-22
7-22
7-22
7-22
7-23
71-24
7-24
7-25
7-25
7-25
7-25
7-25
7-26
7-26
7-26
7-26
7-27
7-27
7-27
7-27
7-28
7-28

8-1
8-1
8-3
8-5
8-y

ix

9. FILE STRUCTURE AND CONTENT

Input File

Network Configuration File
Local Configuration File
Job Listing File

10. JOB STRUCTURE

Command Portion

File Creation

File Inspection
Program and Data Portions

11. SAMPLE PROGRAM
Program Input

Program Output
Network Configured

APPENDIXES

A Character Data Input, Output, and Central
Memory Representation

B Error Processing

C Glossary

D Reserved Words

E Language Summary

F Limitations on Configurations

INDEX

FIGURES

1-1 Creation of Network Definition Files

1-2 Element Levels Within a Network

1-3 Supervisory Programs and File Use

1-4 The Network Access Method

1-5 Simnet ~ A Simple Configuration

1-6 CCP Interface Programs

1-7 Packet—switching Network Interface

1-8 Dualnet

1-9 Multinet

1-10 Configurable Hardware Elements

1-11 Data Flow Directions

1-12 Physical and Logical Information
Structures

1-13 Block Reassembly Points

1-14 CCP Interface Program Configuration

1-15 CDCNET Networks

1-16 Nodes and Logical Links

1-17 Intrahost Application—to—Application
Connection

1-18 Interhost Application-to-Application
Connections

1-19 Interhost X.25 Application—to-

WWLWNNNNNDNNN
1
N = QNS WM -~

Application Connections
SVlnet - Configuration Example
Functional Syntax of NDL Statements
Statement Continuation Examples
NDL Program Statement Hierarchy
TITLE Statement Format
COMMENT Statement Format
DEFINE Statement Format
END Statement Format
NFILE Statement Format
NPU Statement Format

10-1

10-1
10-1
10-2
10-3

11-1
11-1
11-1

A-1
B-1
c-1
D-1
E-1
F-1

1-3

1-5
1-5

2-7
2-8
3-1
3-2

3-3
3-4
3-5
3-6
3-7
3-8
3-9
3-10
3-11
3-12
4-1
4=2
4-3
4-4

4-5

4-6

6-10
6-11
6-12
6-13
6-14

6-15

SUPLINK Statement Format 3-3
COUPLER Statement Format 3-3
Logical Links 3-5
LOGLINK Statement Format 3-6
TRUNK Statement Format 3-7
General LINE Statement Format . 3-8
General GROUP Statement Format 3-9
General TERMINAL Statement Format 3-9
General DEVICE Statement Format 3-9
General TERMDEV Statement Format 3-9
Asynchronous LINE Statement Format 4-2
Asynchronous GROUP Statement Format 4=4
Asynchronous GROUP Statement Expansion 4-6
TERMINAL Statement Format for

Communication Lines of TIPTYPE=ASYNC 4-7
TERMDEV Statement Format for

Communication Lines of TIPTYPE=ASYNC 4=7
DEVICE Statement Format for

Communication Lines of TIPLYPE=ASYNC 4-10
X.25 LINE Statement Format 5-
TERMINAL Statement Format for

Communication Lines of TIPTYPE=X25 5-4
TERMDEV Statement Format for

Communication Lines of TIPTYPE=X25 5-4
DEVICE Statement Format for

Communication Lines of TIPTYPE=X25 5-7
TERMINAL Statement Format for

Communication Lines of TIPTYPE=X25 5-21
TERMDEV Statement Format for Application

Programs Using Communication Lines

of TIPTYPE=X25 5-22
DEVICE Statement Format for Application

Programs Using Communication Lines

of TIPTYPE=X25 5-22
Synchronous LINE Statement Format -2
Synchronous GROUP Statement Format 6-4
Synchronous GROUP Statement Expansion 6-6
TERMINAL Statement Format for

Communication Lines of TIPTYPE=MODE4 6~7
TERMDEV Statement Format for

Communication Lines of TIPTYPE=MODE4 6-7
DEVICE Statement Format for

Communication Lines of TIPTYPE=MODE4 6-10
TERMINAL Statement Format for

Communication Lines of TIPTYPE=HASP 6-20
TERMDEV Statement Format for

Communication Lines of TIPTYPE=HASP 6-20
DEVICE Statement Format for

Communication Lines of TIPTYPE=HASP 6-22
TERMINAL Statement Format for

Communication Lines of TIPTYPE=BSC 6-31
TERMDEV Statement Format for

Communication Lines of TIPTYPE=BSC 6=-31
DEVICE Statement Format for

Communication Lines of TIPTYPE=BSC 6-34
TERMINAL Statement Format for

Coumunication Lines of TIPTYPE=3270 6-41
TERMDEV Statement Format for

Communication Lines of TIPTYPE=3270 6-41
DEVICE Statement Format for

Communication Lines of TIPTYPE=3270 6-42
Site-Defined Protocol LINE Statement

Format 7-1
Site-Defined Protocol GROUP Statement

Format 7-6
Site-Defined Protocol GROUP Statement

Expansion 7-9
TERMINAL Statement Format for Site-

Defined Communication Line Protocols 7-9
TERMDEV Statement Format for Site-

Defined Communication Line Protocols 7-10
DEVICE Statement Format for Site-

Defined Communication Line Protocols 7-14

60480000 P

)

J)

{“ 8-1 LFILE Statement Format 8-1 11-8 Expanded Source Listing, Local Division 11-25
8-2 USER Statement Format 8-2 11-9 File Summary Listing, Local Division
8-3 APPL Statement Format 8-4 for File PUBSLCF 11-26
(= 8-4 OUTCALL Statement Format 8-6 11-10 Physical Configuration of Network
{ J 8-5 INCALL Statement Format 8-10 PUBSNET 11-27
10-1 NDLP File Creation Command Format 10-1 11-11 Logical Configuration of Network
10-2 DEFINE Command Format 10-2 PUBSNET 11-28
10-3 NDLP File Inspection Command Format 10-3
10-4 Example of Job for Both File Creation
and File Inspection 10-3
11~1 Sample Program Commands . 11-1
11-2 Normal Source Listing, Network Division 11-2 TABLES
11-3 DEFINE Statement Summary Listing,
Network Division 11-7 3-1 Recommended Frame Sizes for Trunk Lines 3-6
11-4 Expanded Source Listing, Network 4-1 Asynchronous Line Type Definitions 4-1
Division 11-7 4-2 ABL, DBL, and DBZ Defaults 4=27
11-5 File Summary Listing, Network Division 5-1 X.25 Line Type Definitions 5-1
for File PUBSNCF 11-14 5-2 ABL, DBL, and DBZ Defaults 523
11-6 Normal Source Listing, Local Division 11-23 6-1 Synchronous Line Type Definitions 6-1
11-7 DEFINE Statement Summary Listing, Local 6-2 ABL, DBL, and DBZ Defaults 6-49
Division 11-24 7-1 Site-Defined Line Type Definitions 7-4

(ﬁ 60480000 S xi/xi1

6@““
C@F&\

NOTATIONS

Throughout this manual, the following conventions
are used to present statement formats and diag-

nostic messages:

[1]

{1}

ves

UPPERCASE

60480000 M

Square brackets indicate that the
enclosed parameters or values are
optional. When two or more items
are gtacked vertically within brack-
ets, one of them can be used or all
may be omitted. An entire param-
eter or part of a parameter can be
optional. For example, the brackets
in [CP=cp] indicate that the whole
parameter is optional and can be
omitted, but the brackets in AUTO
[=ynl] show that you can specify
the parameter as either AUTO=ynl or
AUTO only.

Underlines indicate defaults. If
the omission of any entity causes a
single default to be used, the de-
fault value is underlined.

Braces enclosing vertically stacked
items indicate that one of the
enclosed items 1is required and that
only one can be chosen. When hori-
zontally arranged parameters are
enclosed in braces, one or more of
the parameters can be used, but at
least one is mandatory.

Ellipses indicate that omitted
entities repeat the form and func-
tion of the last entity given. An
ellipsis immediately following a
parameter indicates it can be re-
peated at your option.

Uppercase- letters indicate words,
acronyms, or mnemonics either re-
quired by the NDL processor or
produced as output. All words

Unless

lowercase

printed entirely in uppercase let-
ters have a preassigned meaning to
the NDL processor. These words
include statement identifiers, key-
words, and reserved word values.

Lowercase words identify variables
for which values are supplied by
you or by the system as output.
These words generally indicate the
nature of the information they
represent (numerical value, file or
job name, and so forth).

The delta symbol represents a blank
used as a separator. Anywhere a
delta symbol is shown, a comma can
be used. Multiple blanks or a blank
following a comma is ignored. Mul-
tiple commas are illegal, except
when they separate unused optional
parameters in the login procedure.

The boxed cr symbol represents the
terminal key that ends a message;
usually, this is the same key that
causes a carriage return operation.

The LF symbol represents a one-line
vertical repositioning of the cursor
or output mechanism. LF also des-
ignates a character or character
code associated with such a line
feed operation.

A circle around a character rep-
resents a character key that is
pressed in conjunction with a
control key (CTL, CNTRL, CONTRL,
CONTROL, or equivalent).

otherwise specified, all references to
numbers are to decimal values; all references to
characters are to 6-bit display coded characters.

xiii

INTRODUCTION 1

M

As a site administrator, you must code and run a
job that uses the CDC Network Definitjon Language
to describe the hardware and software elements that
comprise the computer and communication network for
your site. A Network Definition Language (NDL) job
creates two types of network definition files:
network configuration files and local configuration
files.

The network configuration file contains information
about the physical and logical configuration of the
network. The 1local configuration file contains
information about the network applicatioan programs
that run in a host computer and provide services to
the network, defines login options for the devices
that access a host computer, and defines connections
that applications can have to other hosts.

Only the 1local configuration file applies to
Control Data Distributed Communications Networks
(CDCNET). For information on configuring CDCNET
networks, refer to the CDCNET Configuration and
Site Administration Manual.

NETWORK DEFINITION
LANGUAGE PROCESSOR

Your job processes source statements through the
Network Definition Language processor. The NDL
processor creates the network definition files, as
shown in figure 1-l.

NDL
Processor

Network
Configuration
File

Figure 1-1. Creation of Network Definition Files

60480000 P

In addition to the two types of network definitiom
files, the NDL processor produces a job listing
file. You can make the processor provide the
following information in the listing file:

An annotated copy of the NDL program source
statements input to the processor

Descriptions of errors noted on a source state-
ment listing

Descriptions of the network configuration file
and local configuration file contents

A 1list of all legal DEFINE statements (state—
ments used like macros to equate a character
string with an identifier for later imnsertion
in one of the definitions)

An annotated copy of the NDL program source
statements input to the processor, with all
DEFINE statement character strings inserted in
place of identifiers

The listing file contents are described further in
section 10, Job Structure.

The NDL processor executes as a batch preprocessing
compiler; it does not interact with the network
during network operation.

BASIC NETWORK CONCEPTS

The following concepts will help you understand the
relationships among the hardware and software
elements in your network. A more detailed descrip-
tion of the elements of a CDC network is presented
at the end of this sectionm.

CDC network software supports the seven layers of
protocols defined in the International Standards
Organization Model for Open System Interconnection
(1S0/0S1), as described in document TC97/SC16/N227
or N309. References in this manual to layer numbers
are references to the layer definitions in that
document. The ISO/0SI layers are:

Layer 1 - Protocols defining the physical and
electrical characteristics of connections
between two components of the network

Layer 2 - Protocols for physical linkages that
connect elements within the network

Layer 3 - Protocols for logical linkages that
connect elements through the network

Layer 4 - Protocols for physical data traasport
within the network

Layer 5 — Protocols for managing data transport
through the network

Layer 6 - Protocols for data formats between
elements connected to the network

Lhyer. 7 - Protocols for element supervision
within the network

You do not need to kmow the protocols in these seven
layers. However, some of the things you mnust
include in your network definition are determined
by the needs each protocol imposes on the network
software.

You can think of a CDC network as a hierarchy of
hardware and software elements with three functional
levels, Each functional level implements one or
more of the ISO/0SI protocol layers.

The separated portions of these three levels are
shown in figure 1-2, The outermost level is the
service network. The service network comprises the
site”s local service elements. The local service
elements include the network application programs
in a host computer and the people at terminals using
those programs.

Local Service Elements
(Appl ication Programs)

Computer Elements
(Host Computer and
Supervisory Programs)

Communication Elements
(Connected Concentrator
Hardware and Software)

Computer Elements
(Terminal Hardware)

Local Service Elements
(Terminal Users)

Figure 1-2. Element Levels Within a Network

The middle level 1is the computer network. The
computer network comprises the site—administered
local and remote computer elements. The computer
elements include the terminals, a host computer,
and network software supervisory programs in a host
computer.

The innermost level is the communications network.
The communications network comprises the local and
remote communications elements. The communications
elements include the communications concentrator
hardware (called network processing units, or NPUs),
the concentrator software, and the linkages (ISO/
0SI layers 2 and 3) among these elements needed to
connect the isolated ends of the other levels.

To ensure proper functioning of a CDC network, you
must configure the functional levels correctly.

]2

Using NDL source statements, you provide the infor-
mation necessary to identify the hardware and soft-
ware elements in each level of the network to the
other levels of the network. You must also estab-
1ish logical relationships among the hardware and
software elements.

SUPERVISORY PROGRAMS

Each functional level of the network hierarchy has
corresponding supervisory software. CDC provides
three supervisory programs:

The Network Validation Facility
The Communications Supervisor
The Network Supervisor

These supervisory programs run in a host computer
and use the network definition files to initialize,
monitor, and control network operatiomns (1s0/0Ss1
layer 7). Figure 1-3 shows the administrative files
used by these supervisory programs.

The Network Validation Facility (NVF) uses the local
configuration file in conjunction with the NOS sys-
tem validation file (VALIDUz) to determine which
host resources terminal users are allowed to access
and which applications can run in the network. NVF
runs in each host in the network.

The Communications Supervisor (CS) uses information
from the network configuration file to monitor and
control NPU and device operatioms (ISO/0SI layer
5). CS oversees the continuing operations of the
communication elements and the computer elements
outside of the site host. CS can run in one or
more hosts in the network.

The Network Supervisor (NS) uses information from
the network configuration file in conjunction with
the NPU load file to 1load network processing
units. The information NS loads determines the
initial operation of the communication elewments.
NS can run in one or more hosts in the network.

NETWORK ACCESS METHOD INTERFACES

All data messages pass through the Network Access
Method (NAM) to ensure their integrity as they are
routed among terminals, the host computer, and
applications. NAM consists primarily of three
interface programs (ISO/0SI layers 4 and 5) in the
host computer:

The Peripheral Interface Program
The Network Interface Program
The Application Interface Program

The Peripheral Interface Program runs in a host
computer peripheral processor. The Network Inter—
face Program runs in the host computer”s central
processor and uses a system control point; it is
thus able to communicate with other programs using
other control points. A copy of the Application
Interface Program runs in the field length of every
network application program, including the super—
visory programs. Figure 1-4 shows the relationships
among this software.

60480000 P

J D

J D

NPU NETWORK LOCAL VALIDUz
LOAD CONFIGU- CONFIGU- SYSTEM
FILE RATION RATION VALIDA-
FILE FILE TION
FILE
*—/
|
NETWORK COMMUNI- NETWORK
SUPER- CATIONS VALIDA-
VISOR SUPER- TION
VISOR FACILITY
Figure 1-3. Supervisory Programs and File Use
HOST COMPUTER HOST
CENTRAL PROCESSOR COMPUTER
PERIPHERAL c
SUPERVISORY SITE-WRITTEN CDC-WRITTEN PROCESSOR 9
SERVICE SERVICE M
APPLICATION APPLICATION APPLICATION ¥
rl- PROGRAM | | _PROGRAM — =t o RQGRAM _ e — o — - N
AlP* AIP* AlP* 1 A
|] I |a
A
| 1|
o}
| i I|N
' NETWORK PERIPHER | E
ERAL
N,EES'SSRSK INTERFACE | INTERFACE L1k
PROGRAM - W
| METHOD 0G PROGRAM I g
K
L L] —_—— —— ——] — — —-—— -—— — - A —— —— —— —— —_—_— a— — -— -— ' —-— L} J
*APPLICATION INTERFACE PROGRAM

60480000 L

Figure 1-4.

The Network Access Method

The supervisory application program in figure 1-4
could be one of the three CDC-written programs shown
in figure 1-3, or it could be a site-writtem program
tailored to your needs. You can provide your own
network service application programs, or you can
use CDC-written service programs such as the Inter-
active Facility or the Remote Batch Facility. The
CDC-written network service programs are described
later in this section.

SIMPLE NETWORK

Figure 1-5 shows a possible network, Simmet. In
this simple network, a single host computer, a CDC
CYBER 170 Model 176, 1is connected to a network
processing unit; the NPU is a small, independent
processor., This connection consists of a CYBER 170
host computer data channel cabled to a hardware
module (called a coupler) in the NPU. An NPU con-
nected to the host in this manner is known as a
front-end NPU. The front-end NPU in Simnet {is
NPUl, a CDC 255x Communications Processor.

HOST OPERATOR

CYBER 170

HOST MODEL 176
COMPUTER r— ES— -

L_-"—-—-3

DATA /
CHANNEL

NPU
QPERATOR
| COUPLER |
FRONT-END et
NPU | ccp | m
[|
(NPUT) CDC _255x
REMOTE r————n /@
NPU 1 CCP J
A .

Figure 1-5. Simnet - A Simple Configuration

The front-end NPU can support terminals and other
NPUs, known as remote NPUs. Remote NPUs can also
support terminals. The only remote NPU in this net-
work is NPU2, a CDC 255x Communications Processor.

The front—end network processing unit NPUl supports
terminal Tl, and the remote processing unit NPU2
supports terminals T2 and T3. CDC provides support
for many different types of terminals and terminal
devices, as described in sections 4 through 7.

In the figure, Cl 1is the host computer’s system
console. The system console is not considered a
network terminal and therefore is not defined in an
NDL program. The person at the system console,
however, is an administrative operator for the
network.

Administrative Operators

A CDC network supports three types of administrative
operators:

The host operator (HOP)
The NPU operator (NOP)
The diagnostic operator (DOP)

The host operator is located at the system console
for the site’s host computer. The HOP can monitor
and control application status, monitor NPU dump
and load status, plus perform all of the functions
of an NPU operator. The HOP always has control
over all of the network.

The NPU operator is located at a terminal or host
computer console. The NOP can obtain and change
the status of network elements, communicate with
terminal users, and run diagnostic tests. Each NPU
can have one controlling NOP.

The diagnostic operator is located at a terminal
serviced by the network., The DOP can monitor the
status of network elements and can run diagnostic
tests on an NPU. Any terminal user with permission
to log in to the Communications Supervisor can
become a DOP. There can be several DOPs active at
the same time.

In Simnet, the host operator is located at the
system console (Cl), and an NPU operator is located
at terminal Tl. Both administrative operators com—
municate with the Communications Supervisor in the
host computer.

Variants of NPU Software

Each NPU, because it is an independent processor,
has its own software. The software an NPU requires
to access the network is called its variant. You
must describe each NPU’s software to the supervisory
programs. You do so by identifying which program
initiation control block (PICB) within the NPU load
file properly describes the software in each NPU.

CDC 255x NPUs require loading, configuring, and
operational control from the supervisory programs
in the host. NPUs that can load themselves but
require host configuration and supervision to oper-
ate or that are self-loading and self-configuring
can also belong to the network.

The software variant used in a particular NPU
depends on various aspects of the network to be
configured, including:

The type of NPU and host hardware in your net-
work (CDC or non-CDC equipment, front-end or
remote NPU, and so forth)

The network topology (connections between front-
end and remote NPUs)

60480000 L

J

The types of terminals and devices the NPU must
support

The software in a CDC 255x series Communications
Processor network processing unit 1is collectively
called the Communication Control Program (CCP).
CCP can contain three types of interface programs:

A Host Interface Program (HIP)
A Link Interface Program (LIP)

One or more Terminal Interface Programs (TIPs)

A HIP is needed only if the CCP variant links a
front-end NPU to a host computer (ISO/0SI layer
2). A LIP is needed only if the CCP variant links
a remote NPU and a front-end NPU (ISO/0SI layer
2). A TIP is needed only if the CCP variant links
terminals to the network or an X.25 application-to-
application connection (ISO/O0SI layers 2, 4, and 6).

Figure 1-6 presents another view of Simnet, illus-
trating the relationships among these interface
programs. Note that terminals T2 and T3 each con-
nect to a different Terminal Interface Program. T2
is a CDC 752, which is an asynchronous terminal; T3
i{s a CDC 200 User Terminal, which is a synchronous
terminal. Each has different support requirements;
therefore, a different interface program is required
for each.

HOST
COMPUTER
)
FRONT-EnD | HIP !
NPU CZCZD r-
Lip 1+ ITIP
1 1
\
Y
T
REMOTE | - TP
NPU k-

Figure 1-6. CCP Interface Programs

60480000 N

The network software currently supports TIPs for
five general terminal protocols. Your site can
provide its own Terminal Interface Program software
to support up to three additional protocols; your
site can also modify CDC-written Terminal Interface
Programs to support local variants of the five
general protocols.

PACKET-SWITCHING NETWORK

CcDC network software provides support for
asynchronous terminals connected to public packet-—
switching networks (PSNs). This support complies
with recommendation X.25 of the Intermational
Telegraph and Telephone Consultative Committee
(CCITT) for standardizing the interface between
data terminal equipment and packet-switching net-—
works. (Packet—-switching networks are sometimes
called public data networks, or PDNs.)

Figure 1-7 shows the packet assembly/disassembly
(PAD) service, which is one part of the interface
between the network and the data terminal equip-
ment. This part of the interface is provided by
the packet-switching network.

HOST
COMPUTER

FRONT-END
NPU

LINE USING
X.25 PROTOCOL

HOST PACKET-SWITCHING
COMPUTER NETWORK
] r——=+—=-n1
t PACKET | FOREIGN
NPU | ASSEMBLY/ HOST
| DISASSEMBLY |
AD) SERVICE
LINE USING
ASYNCHRONOUS
PROTOCOL
ASYNCHRONOUS
TERMINAL

Figure 1-7. Packet-switching Network Interface

1-5

Since the X.25 protocol is not symmetric, the roles
played by each end of an X.25 link must be identi-
fied for each X.25 line. The ends of a X.25 link
are the data terminal equipment (DTE) and the data
circuit equipment (DCE).

A calling terminal is linked with the Communication
Control Program in the NPU via a logical path called
a virtual circuit. The site must subscribe to the
packet-switching network for the desired number of
virtual circuits as well as other parameters (de-
gscribed in section 5) affecting the operation of
the NPU-PSN interface. CDC support of this type of
configuration is described in detail in section 5.

MULTIPLE-HOST NETWORK

Network software supports networks with multiple
host computers. A simple multiple-host configura-
tion is illustrated by Dualnet in figure 1-8. A
second host has been added to the network, connect-
ing to a coupler in NPU2. Both NPUl and NPU2 are
channel-connected as front—-end NPUs to a local host
and are connected to a remote host via a trunk
communication line.

A more complicated multiple-host network concept is
illustrated by Multinet in figure 1-9. Note that
each side of the figure resembles Simnet in figure
1-5. In effect, two entire networks have been
merged. This has been accomplished by connecting
each front—end processor to both hosts. Figure 1-7
shows a multiple-host network where the hosts are
interconnected by an X.25 packet-switching network.

Multiple-host networks offer three features that
are not available in single-networks. These are:

The ability of a terminal user to connect to
one of many hosts.

The ability of an application 1in one host to
communicate with an application in one or more
other hosts.

The ability of the NPUs in the network to be
loaded, configured, and supervised by one of
several hosts in the network.

The installation can either preassign terminal
users to hosts, or can allow them to select a host
when they comnect to the network. In both cases,
terminal users can either be required to log in to
the selected host or can be automatically logged in
to the host.

Applications wanting to establish connections with
applications in other hosts do not need to be aware
of the topography of the network. Instead, the
installation must specify the addressing and flow
control parameters that the network software can

" use to establish the connection. This must be done

for each path that can be used for am application-
to—application connection.

As part of the definition of the network configura-
tion, the installation also defines the supervision
paths to hosts that an NPU can use to obtain its
configuration and its operator interface.

DEFINING A CDC NETWORK

When defining your network, you must specify both
its physical and its logical characteristics. The
Network Definition Language helps you create your
definition in a simple and logical manner. This
section presents three aspects of the network that
must be described in your NDL program: its hard-
ware elements, 1its software elements, and the
logical relationships you must define among them.

HARDWARE ELEMENTS

To ensure proper operation of the network, you must
carefully define all of its hardware elements and
establish the relationships among them. The con-
figurable hardware elements of the network are shown
in figure 1-10, Each type of element is described
in detail below.

HOST1

CHANNELS

TRUNK

HOST2

NPU1

NPU2

Figure 1-8,

1-6

dualnet

60480000 M

J)

™
=

VT

HOST1

DATA
CHANNELS

HOST11

NPU1

NPU11

-<————— TRUNKS ——»

00 O ¢

NPU2 NPU12
Figure 1-9. Multinet
HOST
COUPLER
FRONT-END TERMINAL
NPU DEVICE
COMMUNICATION
LINES
TRUNK
DEVICE
REMOTE DEVICE
NPU

TERMINAL
DEVICE

60480000 L

Figure 1-10.

Configurable Hardware Elements

Host Processors

A host processor is any computer mainframe that is
linked to the network to run network application
programs. Host computers contain the portions of
the network software necessary for applications to
access the network.

A host can be connected through its data channels
to one or more network processing unit data channel
couplers, as was illustrated by the network proc-
essing units NPUl and NPU2 of Simnet (figure 1-5),
which in turn can be connected to other hosts.

No separate NDL statements exist to define a host.
Hosts are assumed to be attached to couplers, so you
can specify all needed host access information when
you configure the couplers. Computers that access
the network without couplers are treated by the
network as terminals or as foreign hosts and access
the network via X.25 connections. These computers
must communicate through one of the terminal
protocols described in sections 4 through 7.

Network Processing Units

Network processing units can be either CDC 255x
series Communications Processors or non-CDC
processors with compatible communication procedure
software. Unless otherwise qualified, subsequent
references to network processing units in this
manual apply to both types of equipment.

Networks can contain two types of 255x network
processing units: the 2550 (sometimes called a
2550 Host Communications Processor) and the 2551.
A 2550 NPU has at least one coupler and always
operates as a front-end NPU., A 2551 can have a
coupler, but need not have one, and can be con-
figured as either a front-end or remote NPU.

The 2551 series Communications Processor has both a
programmable micromemory and a macromemory; each
model of the 2551 series has varying amounts of
macromemory, with several sizes of random access
micromemory (RAM) logic. To run the current release
of CCP requires 6144 words (6K) of micromemory.
Because models can be modified on site, a model
designation does not necessarily correspond to a
specific macromemory or micromemory configuration.

Some NPUs have a magnetic tape cassette drive and
an operator”s console that is not part of the
network. The magnetic tape cassette drive and
accompanying deadman timer hardware are required if
the 2551 has two couplers or 1s used as a remote
NPU. When an NPU has a cassette drive, the drive
is used to begin the loading of CCP from a host
computer.

The cassette drive loads a copy of the system auto-
start module program (SAM-P) from a CDC-supplied
cassette. SAM-P is essentially a bootstrap loader
that obtains the copy of CCP appropriate for its NPU
from a copy of the Network Supervisor program in a
host computer.

The cassette drive can also be used to load optional
off-line hardware diagnostic software for use with
the offnet NPU console.

If the NPU has an operator”s console, that console
is not part of the network; it comnects to a special
port of the NPU and is not serviced through a com-—
munications line adapter. This offnet comsole is
aggsociated with the NPU operator.

The offnet NPU console 1s used to run optional
online or offline diagnostic software. If the site
modifies its copy of CCP, the offnet console can be
used with the internal Test Utility Package for
online debugging of the code.

Both front-end and remote NPUs can be connected to
terminals through the NPU”s input/output ports.
Terminals can be 1linked directly to these ports
with communication 1lines, or indirectly via an
X.25 packet-switching network.

If a network processing unit in your network is not
CDC equipment, you can define it as an NPU if it
runs software compatible with the internal network
protocols of CDC NPUs.

Couplers

The input/output channel from the host is connected
to the front-end NPU via a hardware module known as
a coupler. The coupler is physically housed within
an NPU but must be configured separately because
some NPUs do not have couplers.

The coupler makes data signals to the host computer
compatible with the hardware of the host and data
signals to the NPU compatible with the NPU. An NPU
can have one or two couplers, each connected to a
host computer. To support a coupler, a CDC NPU
must be loaded with a CCP variant that includes the
Host Interface Program.

Trunks

A front-end NPU can be connected to another NPU by
a communication line called a trunk. You can con-
figure only one trunk between any pair of NPUs, but
you can configure multiple trunks connecting dif-
ferent NPUs to any single NPU.

To support trunks, a CDC NPU must be loaded with a
CCP variant that includes the Link Interface
Program.

Communication Lines

The network software supports lines for synchronous
terminals and for asynchronous terminals. These
lines can be switched (also called dialup) or
dedicated (also called hardwired). You can con-
figure lines with speeds of up to 56000 bits per
second (b/s) as one of nine general line types.

Each line type corresponds to a set of characteris-
tics used by a CDC or non-CDC communications line
adapter (CLA). There are three types of CBC com-—
munications line adapters:

Model 2560 series synchronous CLAs, used to
support lines comecting mode 4 terminals, IBM
2780 or IBM 3780 bisynchronous terminals, HASP
protocol terminals, or 3270 bisynchronous
terminals to the NPU. .

60480000 M

J)

J)

Model 2561 series asynchronous CLAs, used to
support lines connecting teletypewriter-
compatible or IBM 274l-compatible terminals to
the NPU.

Model 2563 series high-level data link control
(HDLC) CLAs, used to support trunks connecting
other NPUs or 1lines connecting asynchronous
terminals, NPUs with hosts, or foreign hosts to
the NPU through X.25 packet-switching networks.

Terminals

A terminal is a single point of access between one
or more devices and a communication line. The cur-
rent network software provides support for five
basic types of terminals:

Asynchronous terminals, such as the CDC 751,
using either asynchronous protocol or X.25
protocol

Mode 4 protocol synchronous terminals, such as
the CDC 200 User Terminal

Multileaving bisynchronous terminals, such as
IBM Corporation”s HASP workstatioms

Binary synchronous terminals, such as IBM
Corporation”s 2780 or 3780 terminals

Binary synchronous terminals such as IBM
Corporation”s 3270 terminal

You can configure up to three more types of
terminals with a site-provided TIP for each type.

Terminals are grouped into classes by their specific
hardware characteristics. A terminal class param-
eter is used to define some physical characteristics
of the terminal and to determine the default values
of operational characteristics. The network soft-
ware supports 18 CDC-defined terminal classes.
These terminal classes are described in greater
detail in sections 4 through 6.

If you provide your own support software, you can
use features of the Network Definition Language to
define up to four additional terminal classes. CDC
cannot anticipate the support required for such
terminals, and thus cannot document such support.
You can find information pertinent to defining your
own terminals in sections 4 through 7.

Devices

Each terminal 1includes one or mwmore separately
configured devices that perform both input and out-
put, 1input only, or output only. For X.25 and
asynchronous protocols, a device such as a console
is a terminal. For synchronous protocols, a device
such as a console is only a portion of a terminal.

An interactive device such as a console can perform
both input and output, and its user can participate
easily in dialog with host software. A passive or
batch device such as a card reader or 1line printer
can perform only one-half of such dialog. Interac-
tive and passive devices use different types of
data structures and paths through the network.

60480000 M

SOFTWARE ELEMENTS

Network software runs in two environments: the
host and the NPU, Standard CDC software runs in
both to support many network configurations. Your
site can also provide its own software to support
other types of equipment and other uses. The
characteristics of software not provided by CDC are
unknown, and therefore are not addressed by this
manual.

Data Structures and Flow

Data flow in the network is defined from the view-
point of the host computer. Data coming to the
host is said to be traveling upline; data moving
away from the host is said to be traveling down-
line. This concept is shown in figure 1-l11.

HOST

UPLINE DOWNLINE

TERMINAL
DEVICE

Figure 1-11. Data Flow Directions

Upline and downline information within the host and
NPUs is always grouped into physical network blocks.
Network data blocks are grouped into logical mes-
sages. Messages exchanged between an NPU and a
device can also be grouped into physical trans-—
mission blocks of one or more logical lines. Figure
1-12 shows these concepts.

A single network data block is a collection of
character bytes, analogous to a clause in English.
It is a partially independent unit of information
and might need to be used with other blocks to form
a message.

1-9

Physical Network Blocks

Network) Network
Block ’ Block

Network Network
Block Block

«— 100 characters —

Logical Messages

<« 68 characters —»

<+—100 characters —» -« 9 characters —»

- Message 1 > - Message 2 ——p «——Message 33—
Network Network Network Network
Block Block Block Block

«-100 characters —» <68 characters—»

«—100 characters—» <—9 characters—»

Terminal Transmission Block (Block Mode Operation Input)

< Transmission Block >

- Message 1 >

- Message 2 —» -«——Message 3 —

Network Network
Block Block

Network Network
Block Block

<«—100 characters—» <68 characters —»

<«—100 characters—» <—9 characters —»

Figure 1-12. Physical and Logical Information Structures

A network data block can contain all or part of a
message; you control which occurs by establishing
the size a network data block can have. The size
of an upline network block 1is fixed at the number
of characters you specify when you configure the
device that produces it. The size of a downline
block is chosen by the application program sending
it, but you can recommend a value to that program
when you configure the device that receives it.
You use the UBZ and DBZ parameters to control these
sizes; these parameters are described in sections 4
through 7. ~

In upline data, a logical line of information is a
single message, analogous to an English sentence.
It is a complete unit.

Upline logical lines end when a device transmits
certain characters or causes certain events. An
upline message is normally transmitted to the host
as soon as a logical 1line ends. A logical 1line
ends when CCP receives an end-of-line indicator
(the end of a logical line).

Terminals can transmit one line at a time to the
NPU and wait for output or they can transmit several
lines at a time (block mode). With .line-by~line
transmission, CCP detects the end of each 1logical

line by an end-of-line character or indicator. Each
logical 1line becomes a separate network message
when the NPU receives 1it. Block mode terminals
group logical 1lines in the terminal until the
transmission key is pressed; these groups reach the
network software as a single transmission block.
The network software forwards each message to the
application as a separate transmission. With block
mode transmission, CCP detects the end of a trans-—
mission block by an end-of-block character or
indicator.

For upline data, you can configure a device so that
CCP ignores the character or event that normally
causes it to detect the end of a logical line and
transmit a message to the host. Instead, you make
CCP use a different character or event to trigger
transmission to the host. This option allows the
terminal user to pack many logical lines into one
set of upline network blocks; each line includes
the character that terminates it. The host receives
only one message. From the application and the
terminal user’s viewpoint, one message is many
logical lines. This mode of operation is suitable
mainly for block mode terminals where the user can
compose an entire screen of data and then transmit
the entire screen to the NPU at one time.

60480000 L

J

J)

If a single wmessage fits into an upline network
data block (you should try to make this happen as
often as possible), the network data block becomes
a single-message block. If one upline message cam
not be fit into a network data block, CCP splits it
into as many blocks as necessary. The text of sec-
tions 4 through 7 assumes that each network data
block contains a complete message.

A downline message ends when an application program
indicates that condition. A downline message can
contain many logical lines of output.

Network data blocks are restructured into other
types of blocks at points of entrance and exit from
the network processing units. Figure 1-13 shows
these points as circles. Transmission blocks
exchanged with X.25 devices are called packets and
have different size and protocol content require-
ments than transmission blocks exchanged directly
with a terminal. You can control some of the
characteristics of packets.

HOST
NETWORK BLOCKS
FRONT-END
NPU
NETWORK BLOCKS
o
Y.
TRUNK i FRAMES
REMOTE \;>
NPU
NETWORK BLOCKS
. N
”
COMMUNICATION TERMINAL
LINE —» TRANSMISSION
BLOCKS
OR:
X.25 PROTOCOL
PACKETS
TERMINAL
DEVICE

Figure 1-13, Block Reassembly Points

60480000 P

Data blocking and temporary storage (queuing) occur
for upline and downline traffic at several points
in the network. You control the storage required
by controlling the network block size and the number
of blocks queued in each direction. You do this by
declaring values for the upline and downline block
limit, for application block 1limit, and for upline
and downline block size (UBL, DBL, ABL, UBZ, and
DBZ) parameters of each device.

Network Data Blocking for Interactive Device Input

A network data block is created every time the num-
ber of characters transmitted from a device exceeds
the upline block size. A message block is created
each time the terminal user enters an eand-of-line
character, You define the character that must be
entered from a device in the network to end a
logical line.

A block transmission exists each time a group of
logical lines is transmitted as a unit by a device.
If the terminal user enters an end-of-block charac-
ter, any incomplete logical line is terminated and
a message block 1s generated. You define the
character that must be entered from a device in the
network to end a multiple-message block.

Network Data Blocking for Batch Device Input or
Output

Batch devices require large amounts of data to be
moved to or from a host computer”s mass storage
devices. Batch upline data is therefore assembled
into messages of mnultiple network data blocks.
Each network data block contains one or more mass
storage physical record units (PRUs). Batch down-
line data is disassembled from such sets of blocks.

Terminal Output Data Blocking

Terminals sometimes require data to be received in
blocks of a maximum length, independent of the
data”s structure within the network. Such blocks
are called transmission blocks; you can definme the
transmission block size for each device in the
network using its XBZ parameter.

Link Data Blocking

Transmission blocks exchanged between NPUs have
different structure and content requirements than
those exchanged directly with terminals. Such
physical link transmission blocks are called frames.
Regardless of data type, network data blocks are
reassembled into frames of a maximum number of bytes
before transmitting them across a trunk. Data
received from a trunk is reassembled into network
data blocks. Frames are constructed and disassem—
bled at points also shown with circles in figure
1-13. You must define the number of character
bytes that comprise a frame on each trunk in the
network.,

CDCNET data structures are discussed in the CDCNET
Terminal Interface Usage Manual.

1-11

Host-Resident Software

Two types of programs are assoclated with the host
computer: CDC-written application programs and
site-written application programs.

.

CDC-Written Application Programs

CDC host software includes programs that support a
number of network device applications. The follow-
ing CDC-written programs are currently supported:

The Interactive Facility (IAF)

The Remote Batch Facility (RBF)

The Transaction Facility (TAF)

The Terminal Verification Facility (TVF)

The Message Control System (MCS)

The PLATO/NAM Interface-PNI (PLATO)

The Printer Support Utility (PSU)

The Permanent File Transfer Initiator (PTFI)

The Permanent File Transfer Server (PTFS)

The Queue File Transfer Initiator (QTFI)

The Queue File Transfer Server (QTFS)

The NOS/VE Interactive Facility (VEIAF)

The Interactive Transfer Facility (ITF)

The Network Log Server (NETLS)

The Network Operator Facility (NOF)

The Network File Server (NETFS)

The Initialize MDI Server (INITMDI)

The Network Log Termination Utility (NLTERM)
IAF provides the terminal user with the ability to
create files and programs from an interactive device
and to execute jobs from that device.
RBF transfers job input files between remotely
located batch terminals and a host computer. It
also allows monitoring of a job”s progress through
the network and provides file output at the remote
batch terminal.
TAF provides on—-line transaction processing, allow-
ing the terminal user to manipulate information in
a data base directly from the terminal. TAF
requires very little dialog to update a data base.
TVF provides the terminal user with the ability to
test an interactive device”s data transmitting and
receiving functions.
MCS provides the terminal user with a mechanism for

transferring data between an interactive device and
2 COBOL program or between two COBOL programs.

PNI provides the CDC 721 Viking Extended terminal
user with the ability to log into the PLATO lesson
delivery and authoring software in normal
asynchronous mode. The PLATO software then loads
its special software into the 721 so that the
operator can execute lessons or use the other
facilities of PLATO software.

PSU provides the ability to print NOS queue files

on a C533/C536 printer using asynchronous connec-
tions to the NPU,

PIFx provides a mechanism for using NAM and NPUs to
transfer permanent files between hosts.

QIFx provides a mechanism for using NAM and NPUs to
transfer queue files between hosts.

VEIAF provides the terminal user with the ability
to create files and execute jobs on NOS/VE.

ITF provides the terminal user with the ability‘to
connect to the CYBER 200 family of computers.

NETLS provides logging functions for the CDCNET
network.

NOF provides operator interface functions for the
CDCNET network.

NETFS provides file access functions for the CDCNET
network.

INITMDI provides dump and load MDI functions for
the CDCNET network.

NLTERM provides network log termination functions
for the CDCNET network.

Site-Written Application Programs

If your installation runs its own application pro-
grams, characteristics of each application program
might need to be relayed to the network software.

For more information on writing network application
programs, see the Network Access Method Version 1
Host Application Programming Reference Manual
listed in the preface.

NPU-Resident Software

Each CDC NPU in the network contains a copy of the
Communications Control Program (CCP) tailored to
the specific functions to be provided by that NPU.
Each NPU might require its own variant of CCP,
depending on the macromemory size of the unit and
the software modules that need to reside in the
unit., Variants are generated as described in the
NOS Version 2 Installation Handbook. These
variants reside in the host NPU load file (NLF).
The appropriate variant for loading into each NPU
is determined by the host Network Supervisor
program from information contained in the network
configuration file.

If the network processing units in your” network are
CDC 255x Communication Processors, you will probably
be concerned with only the interface programs.
These are the HIP, LIP, and TIP modules depicted imn
figure 1-14.

60480000 P

B

D)

HOST

NPU1

1=
l'U

r—-
|

NPU2

L -d Lo

b
A

CDC
713

NPU3

TELETYPE
MODEL
33

Figure 1-14.

Your concern with the HIP and LIP modules is likely
to be limited to ensuring that the CCP load variant
for each NPU contains only the necessary modules.
For example, NPU2 is a remote NPU, so it does not
need a HIP. Since NPU3 does not service a remote
NPU, it does not require a LIP. Since a LIP
requires additional memory, you would want a CCP
variant for NPU3 that does not include a LIP.

The TIPs contained in each CCP load variant mnust
correspond to the TIPs referenced in the LINE,
GROUP, TERMINAL, and TERMDEV statements for the
NPUs into which the variant will be loaded. For
example, in figure 1-14, because NPU2 only supports
CDC 713 terminals, it need only contain the ASYNC
TIP., NPU3, however, must contain both the MODE4
TIP for the CDC 734 and the ASYNC TIP for the M33
Teletype.

For more detalled information about CCP, refer to
the Network Access Method Version 1/Host Appli-
cation Programming Reference Manual listed in the
preface.

CDCNET Network
CDCNET is Control Data”s method for implementinng

distributed communications. Figure 1-15 shows the
basic elements of a CDCNET network discussed below.

60480000 P

CCP Interface Program Configuration

CDCNET Device Interfaces

Small communications processors called device
interfaces (DIs) constitute the hardware portion of
CDCNET.

Because CDCNET distributes major communications
functions throughout a network, Dis perform
different functions depending on their particular
network task:

The Mainframe Device Interface (MDI) lets you
connect a host CYBER computer system to a local
area network.

The Terminal Device Interface (TDI) lets you
connect user terminals and workstations to a
local area network.

The Network Device Interface (NDI) lets you
connect one CDCNET local area network to other
networks.

The Mainframe Terminal Interface (MTI) lets you
connect user terminals/workstations to a CYBER
host without requiring that they be tied into a
local area network.

You can find further information on CDCNET network
device interfaces in the CDCNET Reference Manual.

1-13

HOST 1 MTI
™I | MDI
- T —
i
NDI
LOCAL
AREA
NETWORK
NDI

MDI

HOST 2

I

el

Figure 1-15

CDCNET Device Interface Software

The software which resides in a device interface is
comprised of the following:

Base system software
Layer software
Interface software and gateways

Network management software

Base System Software

The base system software performs two major tasks:

Initializes the operation of the device
interface (DI)

Maintains the operational enviromnment of the DI
by serving as its executive routine, detecting
and reporting DI malfunctions, and managing the
DI“s onboard diagnostics

®1-14

CDCNET Networks

You can find more 1information on the CDCNET base
system software by referring to the CDCNET Systems
Programmer”s Reference Manual, Volume 1, Base

System Software.

Layer Software .

CDCNET layer software enables applications
software, end users, terminals or workstations, and
host computers to exchange information through a
compatible set of protocols and interfaces.

You can find more information on the CDCNET layer
software by referring to the CDCNET Systems
Programmer”s Reference Manual, Volume 2, Network
Management Entities and Layer Interfaces.

Interface Software and Gateways

CDCNET interface software and gateways consist of
various software packages that enable CDCNET DIs
and hosts that accomodate Control Data Network
Architecture (CDNA) to communicate with other

60480000 P

J D

J)

hosts, networks,
do not support CDNA.

You can find more
interface software and gateways by referring

and terminals/workstations which

information on the CDCNET
to

Volume 2, Network Management Entities and Layer
Interfaces and Volume 3, Network Protocols of the
CDCNET Systems Programmer”s Reference Manual.

Network Management Software

CDCNET network management software performs daily
and periodic tasks related to the administration,
maintenance, and operation of the communications

network.

You can find more information on the CDCNET network

management software
Systems Programmer”s Reference Manual,

by referring

Network Management Entities and Layer Interfaces.

LOGICAL ELEMENTS

to the CDCNET
Volume 2,

6” In addition to the hardware and software elements

of your network,
elements, These logical elements

you umust define certain logical
establish the

association between terminals and application pro-
grams, as well as between one application program
and another. Using these logical elements, the
network software performs as though it were
independent of the physical organization of the
network.

Nodes and Logical Links

A logical path concept 1is used to describe the
connections between elements of the network in a
manner that 1s independent of the physical data
paths between them., Each junction of possible
branches in these logical paths must be known to
the network. These junctions are called network
nodes. In your NDL program, you identify each net-
work node by assigning the hardware that contains
it a unique node number from 1 to 255. The network
software uses these numbers to route messages from
a source node to a destination node.

Figure 1-16 shows the nodes (node numbers are
circled) in a multiple-host network. Node number 1
is assigned to the coupler. Because the coupler is
the means of addressing the host, the coupler is
known as the host node.

HOST

courLer (3)

FRONT

END

HOST

HOST

VA Y

—

v]courLer (D)

COUPLER (@)

FRONT
END

-

©

REMOTE

NPU

=y

END

COUPLER

FRONT

HOST

(60480000 P

Figure 1-16.

Nodes and Logical Links

The front-end NPU has a separate node from its
coupler because a front-end NPU must be separately
addressable from its couplers. Node 7 and node 8,
within the front-end and remote NPUs, are known as
terminal nodes.

Figure 1-16 shows the four logical links in the
network, labeled LL1 through LL4, originating in
coupler 1, Logical links are known by the end
points of the path they traverse. Oune end point is
always a host node im a coupler; the second end
point is a terminal node in an NPU or another host
node.

You must defire each logical 1link that originates
in a coupler when you configure the NPU that houses
the coupler. You do so by identifying the NPU that
is the terminal node or other coupler node of the
link.

Table space for node numbers is reserved within the
host software, with space assigned to all numbers
from 1 to the highest number used; unused numbers
have corresponding table space. You can minimize
memory resource requirements by assigning node num-
bers sequentially, giving host nodes lower values
than terminal nodes.

You must specify for each NPU the logical links to
hosts which are allowed to configure and control
the NPU. These are called supervisory links. When
each trunk between NPUs is defined, you specify
whether either NPU can be loaded via the trumk.
Loading, configuration, and control are supervisory
functions which can take place only between hosts
and NPUs that belong to the same site.

Subnetworks or Sites

A site is defined as being all of the hosts and
NPUs under single administrative control. NPUs can
be loaded and supervised only by hosts within their
gite, but terminals connected to an NPU and
applications running in a host can connect to hosts
belonging to different sites.

When you define a network, vou include all of the
NPUs in your site as well as all of the NPUs
belonging to other sites to which your site”s NPUs
have physical and logical connections. Lines and
terminal definitions need to be specified only for
the NPUs belonging to your site, and the
supervisory links specified for each NPU must all
be to hosts that belong to the NPU“s site.

The concept of a site 1is very dimportant when
upgrading release levels of NPU and host software.
Throughout the remainder of this manual, except
where specifically stated, the term network will
refer to a single-site network.

Legical Configuration of Hosts

You can describe a host computer in your program in
terms of the application programs it is to run. A
local division 1is provided in the NDL program
structure for this purpose.

Logical Configuration of Terminals

In addition to the hardware description of your
terminals specified in the network division, you

1-16

can supply, in the local division, information con-
cerning their ability to access network resources.
This information includes:

Mandatory, primary, or default values for login
operating system validation parameters

Mandatory or primary default values for login
application program name

APPLICATION-TO-APPLICATION
CONNECTIONS

Figure 1-17 shows an application-to-application
connection within the same host. Figure 1-18 shows
that interhost application-to-application connec-
tions can either be made via a trunk or a single
NPU. Figure 1-19 shows the possibilities for
application-to-application connections via a X.25
packet—switching network.

APPA APPB

HOST \

NAM

NPU

Figure 1-17. Intrahost Application-to-
Application Connection

The paths taken by application—-to-application con-
nections are described by the INCALL and OUTCALL
statements. These statements are a part of the
local configuration file. They are used by NVF to
indicate - which application programs are allowed to
request connections between applications and to
describe the possible paths for connections between
applications.

You use the OUTCALL statement to indicate an
application program that can initiate a connection
to another application program and a path for
reaching the application from the host that you are
defining. To initiate a connection to another
application, an application references an OUTCALL
statement in its request.

You can also use the OUTCALL statement to indicate
particular paths in the network for which NAM
should perform dynamic updating of the LID/PID
table 1in the operating system. This table is
accessible to both the NOS console operator (refer
to the NOS analysis handbook), as well as end users
of the NOS operating system (refer to the NOS
reference set, Volume 3, System Commands).

You use the INCALL statement to specify the possible
paths in the network to an application program of
the host being defined on which application—-to-
application connections can be recelved. The
application specified in the INCALL statement is

60480000 P

D))

eaﬂa\
é@@\.

6@“*\
(@ﬁ@\

APPA APPB
nost1 | 4 A | rosT
NAM NAM
HIP HIP
L TRUNK L
1 1
P P
NPU1 ~——] NPU2
APPA APPB
HOST1 f A | vosr
NAM NAM
\ _
NPU

Figure 1-18.

requested to connection from another

application.

accept a

MULTILEVEL SECURITY

Access to files by terminal users can be limited by
the access level (AL parameter) assigned to the
communication line by which they access the network.

NOS nultilevel security is based on the use of
hierarchical security access levels. There are

60480000 P

Interhost Application-to-Application Connections

eight security access levels available for the
classification of data, ranging from level O to
level 7. The 1lowest (unsecured or unclassified)
level 1s 0, and the highest (most secured or
classified) level is 7.

The creator (or owner) of a permanent file, a local
file, or a magnetlic tape can assign an access level
to that file, depending upon individual validation
privileges and upon operating system constraints.
Alternatively, the owner can allow the access level
of the file to be assigned automatically by the
operating system.

1-17

HOST1

HOST1

HOST1

APPA

NAM
NPU1 ‘-.....l ‘ll..-—' NPUZ
M
APPA APPB
4 4
\\ NAM NAN //
";;:\\\ X.25 TRUNK ’,,;:;2

APPA
A
\\ NAM
\\\\\
NPU
APPB
T

HOST2

HOST2

FOREIGN
HOST

60480000 P

Figure 1-19.

Interhost X.25 Application-to-Application Connections

THE NETWORK DEFINITION LANGUAGE 2

S S —

This section presents the format and functional
syntax of the Network Definition Language. The NDL
program statements you will use to create the net-
work definition files are described in separate
subsections.

All the examples in this section and sections 3
through 8 refer to the hypothetical network SVLnet,
shown in figure 2-1.

FUNCTIONAL SYNTAX AND
FORMATS

Each NDL statement has the general form given in
figure 2-2. Separators, terminators, and format
representation conventions are explained on the
notation page at the front of this manual. The
formal syntax of the Network Definition Language
(in Backus-Naur form) and a concise summary of each
statement ‘s syntax and format are given in appendix
E.

Unless otherwise indicated in the format descrip-
tions presented later in this section, all values
declared for keywords are either unsigned decimal
integers or character strings of one through seven
letters and digits. Element npames are also
restricted to one initial letter and up to six more
letters and/or digits. All value declarations
identified as hexadecimal integers are also
unsigned. NOS user names declared as values can
contain asterisks.

VALUE DECLARATION FORMATS

Value declarations are position-independent. You
can place declarations within a statement in any
order. You do not use commas to indicate omitted
declarations; such null-value parameter declarations
cause an error diagnostic.

All value declarations can have the form:
keyword=value

All optional keyword=value declarations have an
explicit value that is equivalent to omitting the
declaration.

You can specify any keyword more than once in a
single statement; the latest declaration in the
statement takes precedence. This ability allows
you to override previously established values.

For example, a DEFINE statement can contain a
declaration for the DLX parameter that is used in
the definition of all asynchronous consoles of the
network. That parameter can be reset to a different
value for one terminal by placing a specific DLX
keyword declaration after the DEFINE statement
identifier on the appropriate DEVICE or TERMDEV
statement.

60480000 L

The format you use to declare parameter values
depends upon the parameter being declared and upon
the presence or absence of the value. The value
portion of the declaration can have one of two
forms:

value-required

stand-alone

Value-Required Keywords

A declaration containing a value-required keyword
has the form

keyword=value

For example, the following statement contains a
value-required keyword (NODE) and an explicit value
(1) in its declaration:

CPLR1: COUPLER NODE=1.

You can use either explicit or implicit values for
value-required keyword declarations. The legal
values for explicit declarations are given in
sections 3 through 7. Implicit value declarations
are allowed only for automatic-recognition depend-
ent, CCP-default, or no-default keywords; after
such a declaration, the network software implies
the value to use from the context of the parameter.

Automatic-Recognition-Dependent Keywords

The automatic-recognition-dependent keywords are:

CA STREAM
Cco TA
CSET TSPEED
STIP

If you declare an explicit value for one of these
keywords, the declared value is always used. You
can also declare a value of AUTOREC for such key-
words and use the implicit value for the parameter.

When you use the value AUTOREC, CCP determines the
value needed when it performs automatic recognition
for the communication line or terminal. (AUTOREC
can be used only if the 1line is an automatic
recognition line.)

Using the value of AUTOREC has the same effect as
not specifying the keyword. Specifying AUTOREC
makes your network definition less dependent on
terminal type.

ASYNC
TERMINAL

ASYNC
TERMINAL

ASYNC
TERMINAL

HOST 1
COUPLER COUPLER COUI;LER
NPUA NPUB NPUC
PORT
9
PORT | PORT PORT PORT | PORT
1 2 1 1 3
TRUNK 2 TRUNK 3
TRUNK 7
TRUNK 1
TRUNK 4
PORT
1 PORT { PORT
1 4
PORT | PORT
2 3
NPUG
@ NPUE
COUPLER
PORT
] 10

HOST 4

HASP
WORK
STATION

HOST 2

COUPLER

@]|®

NPUD

PORT
10

PORT | PORT
3 4

TRUNK 5

TRUNK 6

PORT | PORT
3 4

NPUF

PORT
10

COUPLER

|

HOST 3

LN4D

BSC
TERMINAL

MODE 4
TERMINAL

Figure 2-1.

SViLnet - Configuration Example

60480000

J)

J)

[element-name:] [AJ] statement-name A ;

element—-name

of the element name.

statement-name
statement name.

keywordi=valuei

keywordi bDeclaration Formats.)

keyword1=value1} {keyuordn=vatuen
reny

keyword1l

The name given to the entity being defined. When the NDL processor requires an
element name, the name specified must be unique within a division. Element names
comprise one alphabetic character optionally followed by up to six alphabetic or
numeric characters from the 6-bit display code set. The host and NPU operators
use the element name to monitor and alter the status of the named entity.

: The colon separates the element name from the reserved statement name. When an
element name is specified, a colon must follow it. The colon does not become part

A The Greek capital delta character represents a separator. Blanks and commas are
separators and are required where shown in the prototype statement formats; blanks
can be used where commas are shown. One blank is sufficient as a separator, and
multiple blanks are treated as one. One or more blanks preceding or following a
colon or comma are ignored.

A reserved word specifying the statement type. Each statement type has a unique

A value declaration of the statement. This has two possible formats, depending
or upon the keyword and upon inclusion of the value in the declaration. (See Value

, Commas (and blanks) are separators. Separators are required between
declarations. A comma preceded or followed by one or more blanks is treated as a
single separator. A comma indicates that the NDL processor should interpret
whatever follows it as a new keyword.

. A period is required to terminate each statement.
*text Comment text can appear on the same line as a statement, but must be written after

the period, preceded by an asterisk, and cannot be continued on the next Lline
without specifying COMMENT or

} . [*text]
keywordn

again.

Figure 2-2. Functional Syntax of NDL Statements

CCP-Default Keywords

The CCP-default keywords are:

AB CT ELR oC XLC

BR DLC ELX op XLTO
BS DLTO EP PA XLX

Bl DLX IC PG XLY

B2 EBO IN PL

ClL EBR LI PW

CN EBX LK SDT

cP ELO MREC TC

If you declare an explicit value for one of these
keywords, the declared value is always used. You
can also declare a value of CCP for such keywords
and use the implicit value for the parameter.

When you use the value CCP, the Communication
Control Program (CCP) supplies the default value
for the terminal class when it configures the
device. (CCP should be specified only if the line
uses a TIPTYPE value for a CDC-written Terminal
Interface Program.) Using the value CCP has the
same effect as not specifying the keyword except
that it overrides a previously declared explicit
value.

60480000 M

No-Default Keywords

The no-default keywords are:

AL MFAM
DFAM MUSER
DUSER PAPPL
HN PFAM

MAPPL PUSER

If you declare an explicit value for one of these
keywords, the declared value is always used. You
can also declare a value of NONE for such keywords.

When you use the value NONE, the NDL processor
ignores the keyword declaration. Using the value
of NONE has the same effect as not specifying the
keyword.

Specifying NONE allows you to override a previously
declared explicit definition for the parameter
value.

2-3

Stand-Alone Keywords
A declaration containing a stand-alone keyword can

have the same form as a declaration contalning a
value-required keyword, or it can have the form

keyword

For example, the following statement contains a
stand-alone keyword (DI) as its second declaration:

LGLK1: LOGLINK NCNAME=NPUA,DI.

The stand-alone keywords are:

ARSPEED EOF PRI
AUTO HD PRIV
AUTOCON IMDISC PRU
BCF KDSP RIC
COLLECT NETXFR RS
DCE NOLOAD1 UID
DI NOLOAD2 XAUTO
DMP OPGO

You can use elther explicit or implicit values for
these keyword declarations. If you declare an
explicit value for one of these keywords, the
declared value is always used. You can also omit
such keywords and use the implicit value as a
default for the parameter.

The legal values for explicit declarations are YES
and NO. An omitted stand-alone keyword usually has
an implicit value of NO as its default value.
Specifying the keyword alone is the same as
specifying the explicit value of YES. If you want
to change a previously declared explicit value of
YES or document the use of the default value, you
can use the explicit value of NO. If you want to
change a previously declared stand-alone keyword,
you can use the explicit value of NO.

For example, consider the following statement:
LGLK1l: LOGLINK NCNAME=NPUA,DI=NO.

This statement has an effect opposite to the first
example given. The NO value says that the logical
link is not disabled (it is enabled).

PARAMETER VALUES

Parameter values can be specified either as an
unbroken sequence of alphabetic and numeric
characters or in string form enclosed in single
quotes.

String parameter values can span one or more lines
and can contain embedded blanks for readability.
Only alphabetic or numeric characters are taken
from string parameters. Embedded blanks are
ignored, and the parameter 1is terminated by any
nonblank, nonalphabetic or nonnumeric character
(preferably a single quote).

For example, either of the following formats (which
result in identical definitions) can be used:

PAD = 1A2B3CADSE6F2A3B4C5DGETF.
or
PAD = “1A2B 3C4D SE6F
2A3B 4C5D 6ETF~.
2-4

STATEMENT LENGTH AND CONTINUATIONS

NDL statements are assumed to be input from either
card readers or terminal keyboards. Because these
input sources are physically different, there are
no restrictions (such as card column or line
character position usage) on the format of the
statements. You can define your own formatting
conventions, with the following exceptions:

You must divide NDL statements into units of 90
or fewer characters. Characters 73 through 90
of each unit are reserved for your convenience
as an Update or Modify sequence number field
and are not interpreted by the NDL processor.
Characters in the sequence number field, how-
ever, are included in the count of characters
in each statement unit.

If you split a statement of more than 72 mean-
ingful characters into two or more units, the
meaningful portion of each unit must end with a
legal separator.

You cannot divide a value declaration over two
units.

You must terminate all statements except COMMENT
statements with a period. 1If you do not termi-
nate a statement with a period, NDLP assumes
that the next statement is a continuation of
the present one; this assumption can produce
errors, Comment text can follow a period if
the text is preceded by an asterisk.

You cannot declare more than one statement in a
single unit.

You cannot continue comments on the next line
unless COMMENT is specified at the beginning of
each comment line; that 1is, you cannot break
COMMENT statement text 1into separate units
within a single statement.

There is no limit on the number of units into
which you can break a statement. Empty (blank)
units are permitted.

These constraints are i1llustrated by the examples
in figure 2-3.

DEFINITION STRUCTURE

The structure of the NDL program that defines your
network will parallel the physical and logical
structure of the network. An NDL program can
contain two formal types of divisions:

A network division, corresponding to each
network configuration file (NCF) to be produced

A local division, corresponding to each local
configuration file (LCF) to be produced

To configure your network initially, you must
provide a NCF for each host in the network running
the Network Supervisor (NS) or the Communications
Supervisor (CS). The NCFs do not need to be exactly
the same. You must also provide a LCF for each
host 1in the network for the Network Validation
Facility (NVF). All hosts may use the same LCF,.
The NCF and LCF can be created with a single NDL
program containing two or more divisions or with

60480000 N

J)

J

contain a period as part of the represented input.

The following three-unit statement is correct:
GOODTRY: ACOUPLERANODE=1, A... A

A ane A
LOC=PRIMARY.

(a blank):

BADTRY1: ACOUPLER ANODE= A... A
1, ALOC=PRIMARY.

BADTRY2: ACOUPLER ANODE=3, A... A
LOC=PRIMARY A

divided into two units at a separator:

In these examples, the character sequence of A...A represents an ellipsis of blanks and does not

The following two-unit statement is incorrect because it divides a value declaration with a separator

The following two-unit statement is incorrect because it omits the period terminator:

The following one-unit statement is incorrect because it contains more than 72 characters and is not

DEVICE1: ADEVICE ADT=DT12, AABL=7, ADBZ=2043, AUBZ=2000, ADBL=7, AUBL=31, A XBZ=2043, APRI.

Figure 2-3. Statement Continuation Examples

two or more NDL programs that contain omne division
each. Subsequently, you can update the network
configuration by changing either the NCF or LCF or
both.

DIVISION HIERARCHY

An NDL input file can consist of several network
and local divisions; these divisions can appear in
any order within the network definition. NDLP
creates one network configuration file for each
network division it encounters while processing
your program. NDLP also creates one local con-
figuration file for each local division in your
program.

STATEMENT HIERARCHY

The relationship between network elements is defined
by the placement of the statements used to define
them. For example, a COUPLER statement that follows
an NPU statement defines a coupler that is connected
to that NPU. Further, a LOGLINK statement that
follows the COUPLER statement defines a logical
link that originates in that coupler.

Statements must occur within the proper division
and, except for the following statements, must
occur in the order shown in figure 2-4:

APPL OUTCALL

COMMENT TITLE

DEFINE TRUNK

INCALL USER
60480000 M

SPECIAL-PURPOSE STATEMENTS

Four special-purpose statements are supplied to
document, simplify, and separate network defini-
tions:

TITLE statement
COMMENT statement
DEFINE statement
END statement

The DEFINE and COMMENT statements are not shown in
figure 2-4 because they need not appear in a
particular order or within a particular division.

TITLE STATEMENT

A TITLE statement allows you to title each page of
your output listing. The format of the TITLE
statement is shown in figure 2-5.

There can be only one TITLE statement in each
program division. You can place TITLE statements
anywhere within NDL program divisions after the
NFILE or LFILE statements.

Use of the TITLE statement is optiomnal. If you do
not use the TITLE statement, the file name specified
on the NFILE or LFILE statement is used as the
title of the NCF or LCF. A TITLE statement without
a character string produces an untitled listing.
Character strings must not exceed 45 characters.

2-5

Network Division

NFILE statement —e Repeat for each new
) network configuration
file required.

[TITLE statement]

TRUNK statement = - Repeat for each line
Llinking two NPUs.
NPU statement]
SUPLINK statement - Repeat for each super-
visory logical Llink.
—
COUPLER statement l-a-Repeat for each coupler. ltRepeat for each NPU.
LOGLINK statement -«———— Repeat for each Logical
Llink starting in this
| coupler.
LINE statement]
[GROUP statement] - Repeat for each line.
TERMINAL statement Repeat for each terminal
connected to this Lline.
DEVICE statement Repeat for each device
connected to this terminal.
ETERMDEV statement] —s——— Repeat for each terminal
connected to this line.]
NPU statement
Local Division
LFILE statement —s Repeat for each new

Local configuration
file required.

LTITLE statement]
[USER statement] —= Repeat for each terminal

that requires an auto-
matic or default login.

[APPL statement] —= Repeat for each application
program with special access
requirements in the host.

COUTCALL statement] -z Repeat for each path that
can be used for requests
for connection to another
application program.

CINCALL statement] - Repeat for each application
program that can accept
requests for connection from
another application program.

END statement - Only one per NDL
program.

Figure 2-4. NDL Program Statement Hierarchy

60480000 L

J)

)

TITLECstringl.

string Character string up to 45 characters
long; includes any blanks following a
comma separator. The string can
contain any characters in the 6-bit
display code set except for a period;
a period terminates the title defini-
tion. The default string is 45
blanks.

Figure 2-5. TITLE Statement Format

An example of a valid TITLE statement is
TITLE, SUNNYVALE CLOSED SHOP MHR NCF.

In this example, the 1listings and the network
configuration file produced by the NDL program
would contain the title line shown, identifying the
CDC Sunnyvale facility environment NCF used by the
CDC CYBER 170 closed-shop multiple—host network.

COMMENT STATEMENT

A COMMENT statement permits you to insert text
comments into NDL input. The NDL processor copies
these comments, without editing or interpretation,
into the output listing of your NDL source state-
ments. The format of the COMMENT statement is
shown in figure 2-6,

{gomem} C,stringd L[.]

string Character string up to 89 characters
tong (asterisk form) or up to 82
characters long (COMMENT form). The
string can contain any characters in
the 6-bit display code set. A
comment string terminates at the end
of a line, regardless of whether or
not there is a terminating period.
There is no default for string.

Comments that appear after the terminating
period of a statement must be in the form:

*string

Figure 2-6. COMMENT Statement Format

Use of the COMMENT statement is optional. COMMENT
statements can be placed anywhere within NDL pro-
gram divisions.

An example of a valid COMMENT statement is

COMMENT THIS IS A VALID COMMENT STATEMENT

DEFINE STATEMENT

A DEFINE statement allows you to assign a label
(identifier) to a set of keyword and value declara-
tions that is cumbersome to :znter repeatedly. The

60480000 M

set of declarations is then stored as a character
string for insertion in subsequent parts of the NDL
program; the string is inserted by placing the
identifier in statements where the stored declara-
tion set is needed.

Use of the DEFINE statement is optional. The format
of the DEFINE statement is shown in figure 2-7.

defname: DEFINE[Lstring.l

defname The identifier assigned to the
character string. This is a
name of one to seven letters or
digits, the first of which must
be a Letter. The identifier
should not be an NDL reserved
word (see appendix D) and cannot
be an NDL statement name or
keyword. This name is required;
there is no default value.

string The character string for which
the defname identifier is
substituted when writing other
NDL statements. This character
string must contain complete
value declarations and can
contain commas, equals signs,
blanks, and any letters or
digits; it cannot contain a
period, because a period is
interpreted as the end of the
DEFINE statement. The string
can contain NDL reserved words
but cannot contain NDL statement
names or another DEFINE name.

Figure 2-7. DEFINE Statement Format

A DEFINE statement must precede any other statement
that uses the identifier specified in the DEFINE
statement. The defname identifier can only be used
in an NDL statement where the NDL processor expects
to find a keyword.

DEFINE statements can be placed anywhere within NDL
program divisions after the NFILE or LFILE state-
ments, DEFINE statements apply only to the division
in which they occur.

Nested DEFINE statements are not permitted. The
identifier of one DEFINE statement cannot be used
in the character string that defines the declaration
set of the same or another DEFINE statement. The
character string of a DEFINE statement cannot
contain another DEFINE statement.

As an example of this statement”s function, consider
the following portion of an NDL program:

LTYPE3: DEFINE LTYPE=Al,TIPTYPE=ASYNC.
PORTA: DEFINE PORT=l.

.

LINE5: LINE PORTA, LTYPE3,
The first DEFINE statement permits the identifier

LTYPE3 to be substituted in subsequent NDL state-
ments (such as the last statement in this example)

2-7

for the character string LTYPE=Al, TIPTYPE=ASYNC.
Note that the LINE statement is still terminated by
a period because this character string is counsidered
to end with the C, not with the period that termi-
nates the DEFINE statement.

The second DEFINE statement equates the identifier
PORTA to the character string PORT=l, so that the
LINE statement is actually 1nterpreted by the NDL
processor as if it had been written

LINES: LINE PORT=1,LTYPE=Al,TIPTYPE=ASYNC.

DEFINE statements receive separate diagnostic
treatment when the NDL program is processed. How-
ever, if a DEFINE statement contains an NDL coding
error in its character string, the error might not
be diagnosed until an attempt is made to expand the
defname identifier.

The following combination of statements would not
be recognized as expanding into a valid NDL state-
ment, because the reserved statement name LINE can-
not be found in the unexpanded version of LINES:

LINEA: DEFINE LINE,PORTI=l.
LTYPE3: DEFINE LTYPE=A2,

LINE5: LINEA,LTYPE3,TIPTYPE=ASYNC.

END STATEMENT

An END statement must explicitly terminate the last
division in the NDL program. The NDL processor
requires this statement to determine that the input
file is complete.

This statement has the format shown in figure 2-8.

END.

Figure 2-8. END Statement Format

60480000 M

J)

J

NETWORK DIVISION STATEMENTS 3

The network division describes the physical and
logical configuration of the network. This includes
a description of the processors within the network,
the physical and logical links between processors,
the comnunication 1lines and terminals, and the
initial status of each of these elements.

Each host in the network running a copy of the
Network Supervisor (NS) program or the Communica-
tions Supervisor (CS) program must also have a
network configuration file (NCF). All of the NCFs
for hosts belonging to the same site must be
identical with one another except for line and
terminal definitions. This means that the node
information (couplers, logical links, and trunks)
must all be the same for each NCF., The line and
terminal definitions in the NCF used to load and
configure an NPU must agree with the one used to
supervise it.

Within a site, all NPUs must run the same release
level of CCP. For sites running different release
versions of host software and CCP, the level of NCF
must correspond to the level of CCP being used.
The level of NCF is defined as the release level of
the NDLP that was used to create it. The level of
NCF, however, does not need to match the level of
NS or CS using it.

You can omit the network division from an NDL
program if no network configuration file is to be
created; otherwise, one network configuration file
is created for each network division you define.

The network division does not apply to CDCNET
networks.

NFILE STATEMENT

The NFILE statement identifies the network
configuration file to be created. It must be the
first statement, other than a COMMENT statement, in
the network division.

The name of the NOS local file specified in the
NFILE statement should not be the same as that of
another local file assigned to your job. The net-
work configuration file is described in more detail
in sectiomn 9.

The format of the NFILE statement 1is shown in
figure 3-1. An example of a valid NFILE statement
is

NETFILE: NFILE.

This statement creates a network configuration file
with the NOS local file name NETFILE.

60480000 P

nfile: NFILE.

nfile The local file name of the new net-
work configuration file to be
created. This name is required and
must conform to NOS file name con-
ventions; there is no default value.

Figure 3-1. NFILE Statement Format

NETWORK NODE AND LINK
DEFINITION STATEMENTS

Your NDL program”s network division must describe
all communication nodes, physical Linkages, and
logical linkages within the set of network proces-
sing units. You use the following statements to do
this:

NPU statements define the loading, dumping, and
network node requirements of each NPU.

SUPLINK statements define each logical link
available as a path from an NPU to a Communica-
tions Supervisor for initiating, monitoring,
and assisting NPU operations.

COUPLER statements define the physical linkages
between each front-end NPU and a host computer
data channel.

LOGLINK statements define the logical linkages
between host nodes and network nodes within the
set of NPUs or between one host node and an-
other.

TRUNK statements define the physical linkages
between NPUs.

Several of these statements require you to use the
parameter values declared in other statements; that
is, you must use the same value on two different
statements. The NODE parameter also appears in
several statements; however, values you define for
NODE must be unique and should be assigned consec-—
utively from 1.

NPU STATEMENT

The NPU statement names the NPU and defines the
node number by which the NPU is to be referenced by
the network software. There must be one NPU state-
ment for every Network Processing Unit in the
network. The format of the NPU statement 1is shown
in figure 3-2.

The OPGO value used remains in effect. for as long
as the network definition is used. The DMP value
used remains in effect until it is overridden by an
operator DUMP command or LOAD command NDMP option.
An operator LOAD command applies only to one loading
operation on the NPU, so the DMP parameter value is
again used when that operation 1is completed. An
operator DUMP command remains in effect until the
network is shut down, so the DMP parameter value is
not used until the network is again initialized.

For example, consider the following NPU statement:
NPUA: NPU, NODE=2, VARIANT=N3L, OPGO, DMP.

This definition describes NPUA (a front-end NPU
with a node number of 2). NPUA is loaded according
to the Network Supervisor program directives in the
program initiation control block (PICB) called N3L
within the network load file.

Because OPGO 1s used, an operator intervention
requirement exists for NPUA whenever its loading
process 1s completed. Before typing GO, the
operator can enable or disable any of the network
elements associated with the NPU. NPUA always
astablishes a supervisory relationship with a
Communications Supervisor (CS) program and then
requests operator permission (a GO command) before
it begins to service its configured communication
lines.

Because DMP is used, the long-term dump flag of the
Network Supervisor (NS) for NPUA is set. The NS
will dump the memory of NPUA each time NPUA 1is
loaded, unless a NPU, a diagnostic or a host oper-
ator (NOP, DOP, or HOP) unsets the dump flag with a
DMP command, or unless repeated loads occur within
a short time span. (Repeated reloading during a
short time span is presumed to result from repeated
failures with the same cause, so multiple dumps are
redundant.,)

If DMP=NO were specified on the NPU definition
statement, the long-term dump flag for NPUA would
not be set at network initiation (unless the NOP or
HOP set it with a command).

picbname

this parameter; use a dummy name.)
about this parameter.

for the NPU.

requested by a HOP or NOP command.
NPU failure problems.)

npu: NPU,NODE=node,VARIANT=picbnamel,0PG0L=yn1],0MPL[=yn2]1].

npu The element name of the NPU being described. This name is required; there is no default
value,
node The network node number (1 < node < 255) by which the network software references this

NPU. ALL values declared for node must be unique within the current network definition
and should be numbered consecutively. This number is required; there is no default value.
The name assigned to the program initiation control block (PICB) on the network load file
for this NPU. The PICB contains directives to the Network Supervisor for dumping and
loading a given NPU. This name consists of one through six alphabetic and numeric
characters, the first of which must be alphabetic. The name is required; there is no
default value. (Self-loading, self-configuring NPUs also must have a value declared for
See the NOS installation handbook for more information

yn1 An optional reserved word value (YES or NO) for an opt1onal stand-alone keyword; this
parameter indicates whether an operator B0 command is required to start NPU operation
after loading is completed. If OPGO or OPGO=YES is specified, the HOP or controlling NOP
must type 60 each time the NPU is Loaded before the NPU can become active. If OPGO is
omitted or OPGO=NO is specified, operator intervention is not required to start the NPU.
You should define an OPGO=YES value only if frequent configuration changes are anticipated

yn2 An optional reserved word value (YES or NO) for an optional stand-alone keyword; this
parameter jndicates whether a long-term requirement exists for an NPU dump each time the
NPU is loaded. If DMP or DMP=YES is specified, or if DMP is omitted, the NPU is dumped
before it is loaded, unless the operation is overridden by a HOP or KOP command. If
DMP=N0 is specified, no dump occurs before the NPU is Loaded, unless specifically

(Note that an NPU dump is essential for CDC to analyze

Figure 3-2.

3-2

NPU Statement Format

60480000 N

J)

J)

SUPLINK STATEMENT

The SUPLINK statement describes a supervision path
between the NPU and a copy of CS which can supervise
that NPU and defines the priority for use of that
path. A supervision path, or supervisory 1link,
corresponds to a logical link between the NPU and a
host,

Only one supervisory link can be defined im each
SUPLINK statement. If there is more than one logi-
cal link between an NPU and the host computer, each
can appear in a separate SUPLINK statement; these
statements umust appear in descending order of
priority. The first supervisory link defined has
the highest priority, the second defined has the
next highest priority, and so on. The supervisory
links are used in the order of their priority if
the logical link in a higher priority supervision
path fails or the CS becomes available.

The SUPLINK statement must follow an NPU statement
or another SUPLINK statement, The SUPLINK statemen:
is optional if there is only one 1logical link
between the NPU and a host. The format of the
SUPLINK statement is shown in figure 3-3.

SUPLINK,LLNAME=Logl ink.

Element name of the logical Link
that is to be used as a super-
visory Link by the NPU. This
name must appear on a LOGLINK
statement within the same net-
work division.

Loglink

Figure 3-3. SUPLINK Statement Format

An example of the SUPLINK statement in an NDL pro-
gram sequence is

NPUA: NPU, NODE=5, VARIANT=N3L, DMP=YES.
SUPLINK, LLNAME=LGLNKI.
CPLR1l: COUPLER, NODE=].
LGLNK1: LOGLINK, NCNAME=NPUA.

This example defines the logical link called LGLNKI
as the only logical link for NPU supervisory message
traffic with a Communications Supervisor program.
LGLNKl exists between coupler node 1 and network
node 5 within the NPU called NPUA. For an NPU
which has logical links to more than one host, you
can define the logical 1link as a supervisory link
only if the release level of the NCF being used on
the host matches the release level of the CCP being
run on the NPU.

COUPLER STATEMENT

The COUPLER statement identifies a channel coupler
to an NPU. A front-end NPU can be equipped with
one or two channel couplers connecting the NPU to a
host. The format of the COUPLER statement is shown
in figure 3-4.

One COUPLER statement is required for each coupler
in the network. The COUPLER statement must follow
the NPU statement defining the NPU that uses the
coupler to function as a front-end NPU,

Each CDC host computer can support up to eight
couplers on separate data channels. CDC host soft-
ware identification of each coupler is determined
by an entry in the NOS equipment status table (EST).

The value you use for the NODE declaration on each
COUPLER statement must be the value assigned as the
node number in the EST entry for the corresponding
NPU coupler. The coupler”s enabled or disabled
status at network initiation is also controlled by
this EST entry.

coupler

hostnam

cplrloc

value is PRIMARY.

coupler: COUPLER,NODE=nodel, HNAME=hostnam,L0C=cplrioc].

The element name to assign to the front-end coupler being configured. This name is
required; there is no default value.

node The host node number (1 < node < 255) by which the network software references this
coupler. This value must match the node number in the EST entry for the coupler. ALl
values declared for NODE keywords must be unique within the current NDL program division
and should be numbered consecutively. This number is required; there is no default value.
The name assigned to the host to which the coupler connects. The hostnam value is 1 to 7
letters or digits; the first character must be a letter. The hostnam you assign
identifies the corresponding node number on the host availability display seen by the
terminal user. This parameter is optional; if omitted, the default value is ASCII blanks.

The reserved word value (PRIMARY or SECOND) that indicates the coupler's location in the
255x cabinet. PRIMARY specifies the coupler in the primary coupler slots and SECOND
specifies the coupler in the secondary coupler slots. If an NPU has two couplers,
LOC=SECOND is required for the secondary coupler. This parameter is optional; the default

Figure 3-4., COUPLER Statement Format

60480000 N

The NODE value and the HNAME value appear as a set
on the host availability display seem by the termi-
nal user. The user can select connection to a host
by specifying a node number or host name in a com-
mand to CCP; nonblank HNAME values are recommended
to aid users in selecting the appropriate node.

The circuit boards for a coupler are located in
slots marked as either primary or secondary within
the upper card cage of the 255x series NPU cabinet.
These markings are similar to port numbers for the
couplers and are used in that manner for the LOC
parameter.

If the NPU has one coupler, it can be located in
either the primary or secondary slot., If the NPU
has a coupler in the secondary slot, the coupler
must be defined as a secondary coupler.

For example, suppose NPUA in SVLnet (figure 2-1 in
section 2) contained two couplers, only one of which
(the secondary one) belonged to the network shown.
The circuit boards in the secondary slot would be
cabled to host data channel number 4; the EST entry
would associate node number 1 with data channel
number 4. This coupler could be configured cor-
rectly only by the statement:

NPUA: NPU, NODE=5, VARIANT=N3L, DMP.
CPLR1: COUPLER NODE=1, LOC=SECOND.

As used in the sample network configured by section
11, NPUA contains only one coupler. It therefore
is configured correctly by the statement:

NPUA: NPU, NODE=5, VARIANT=N3L, DMP.
CPLR1: COUPLER NODE=1,HNAME=SYS173.

Both examples define coupler CPLRl, which is
physically contained in the cabinet of NPUA; NPUA
uses CPLR1 to function as a front-end NPU. CPLRI
has a NOS EST entry of 1 for its host node number.
Note that NPUA contains both a host node (node 1)
for 1its coupler and a network node (node 5) for
itself.

The COUPLER statement also defines a possible path
the NPU can use for a request to be loaded and/or
dumped by a host.

LOGLINK STATEMENT

The LOGLINK statements define a path over which
terminal-to—application or application-to-
application connections can be established. You
must supply one LOGLINK statement for each logical
link in your network., You need LOGLINK statements
to define the logical 1link between a coupler and
the NPU that contains the coupler and between a
coupler and each NPU connected to the front-end NPU
containing the coupler. You also need a LOGLINK
statement to define each host-to-host logical link
between two couplers if application programs in the
two hosts are to communicate with each other.

3-4

Application programs in two hosts can communicate
with each other without having a LOGLINK statement
for the two couplers involved only if there is an
intervening X.25 network between the two hosts.
(Logical 1links cannot span X.25 public data
networks, but always terminate at the NPU connected
to the public data network.)

Only one logical link can be defined between any
given pair of coupler and NPU or coupler node num—
bers., It is possible, however, to have more than
one logical link between an NPU and a host computer.

Figure 3-5 shows the logical links in SVLnet. Each'

logical link uses a separate trunk between the NPU
and/or a different coupler.

Logical links can only be defined over paths that
do not cross more than one trunk. In the example
shown in figure 3-5, no logical link can exist
between NPUC and coupler ll.

The LOGLINK statement must follow the COUPLER
statement that defines the coupler for the host end
of the logical link being defined. LOGLINK state-
ments define which NPUs can access that coupler.
For a coupler—to—coupler link, the LOGLINK statement
can follow either of the COUPLER statements, but
cannot appear after both. The format of the LOGLINK
statement is shown in figure 3-6.

For example, in SVLnet (figure 2-1 in section 2),
NPUA (node 5) contains coupler CPLRl (node 1) and
is connected to NPUE (node 9). NPUB (node 6) con-
tains coupler CPLR2 (node 2) and is also connected
to NPUE. NPUE has connections to several other
front-end NPUs, giving its network node four
possible logical links to the same host.

The host node in NPUA is node 1l; the host node in
NPUB is 2 (the host node number is always the number
associated with the coupler). The following LOGLINK
statements would properly configure two of the
logical links involving NPUE as network node 9:

NPUA: NPU, NODE=5, VARIANT=N3L, DMP,
CPLR1: COUPLER NODE=},HNAME=SYS173.
LINK]: LOGLINK NCNAME=NPUE.

NPUB: NPU, NODE=6, VARTANT=NSL.
CPLR2: COUPLER NODE=2,HNAME=SYS173.
LINK2: LOGLINK NCNAME=NPUE.

NPUE: NPU, NODE=9,...

60480000 N

J)

J)

HOST 1 HOST 2

P COUPLER "COUPLER COUPLER
LINK LINK /7
1\ Nle;)k 6\ NI%B LINK N% LINK
9 7
A\ Ly
PORT
PORT : PORT [PORT
1 1| 3
LINK 2 LINK 3 e 11

ASYNC
TERMINAL

ASYNC

TERMINAL
LINK 19
PORT NPUF
1 LINK HASP /
ASYNC 21 WORK
TERMINAL NPUG W STATION LINK PORT
@ |un 18 10
20 N\| couPLER
COUPLER
HOST 4
HOST 3

Figure 3-5. Logical Links

60480000 N

loglink: LOGLINK,NCNAME=ncname[,DIC=ynl].

The element name to assign to the
logical Link you are

configuring. This name is
required; there is no default
value.

Loglink

nchame The element name of the NPU or
coupler that is the other end of
this logical link. This name
must be the element name used in
an NPU or coupler statement in
the same network division. This
name is required; there is no
default value.

yn An optional reserved word value
(YES or NO) for an optional
stand-alone keyword; this
parameter specifies the status
assigned to this logical link at
network initiation. When DI or
DI=YES is specified, the logical
Llink is disabled at network
initiation and cannot be used
until the HOP or NOP enables it.
If DI is omitted or DI=NO is
specified, the logical link is
given an initial status of
enabled unless the NOP or HOP
specifies otherwise.

Figure 3-6. LOGLINK Statement Format

TRUNK' STATEMENT

The TRUNK statement describes the trunk communi-
cation line that physically connects two NPUs.
There can be only one trunk defined between any
pair of NPUs in a network. Port numbers for all
trunks/lines should be assigned consecutively,
starting with onme. Since the NPU reserves conti-
guous memory space for ports, this conserves memory
space.

The format of the TRUNK statement is shown in
figure 3-7, The recommended values for the FRAME
parameter are given in table 3-l.

Because the TRUNK statement contains all the
necessary information explicitly, it can be placed
anywhere within the NDL input stream after the NFILE
statement. We recommend, for ease of reading, that
you place all TRUNK statements at either the begin-
.ning or the end of the division.

An example of a TRUNK statement is

TRUNKL: TRUNK, N1=NPUA, N2=NPUE, Pl=1, P2=2.
NPUA: NPU, NODE=5, VARIANT=N3L, DMP.

« o o

NPUE: NPU, NODE=9, VARIANT=NSL.

TABLE 3-1. RECOMMENDED FRAME SIZES
FOR TRUNK LINES

Traffic Trunk Line Speed in Bits Per Second
1s Mostly | 4800 or Less | 9600 | 19200 | 56000
Interactive 1050 1050 1050 1050
Batch and 256 500 1050 1050
Interactive
Batch 1050 1050 1050 1050

The NI and N2 values indicate that the trunk
connects the NPUs NPUA and NPUE. The Pl and P2
parameters indicate that the trumk 1is connected to
the Communications Line Adapter (CLA) port 1 im NPUA
and to port 2 in NPUE,

PROTOCOL-DEPENDENT
DEFINITION STATEMENTS

The Network Definition Language allows you to
configure communication lines, terminals, and
devices using the following communication line
protocols:

Asynchronous (IBM 2741- or teletypewriter-
compatible devices)

X.25 packet-switching network (teletypewriter-
compatible devices)

IBM HASP bisynchronous (HASP-compatible devices,
including batch equipment)

CDC Mode 4 synchronous (200-User-Terminal or
Mode-4C-compatible devices, including batch
equipment)

IBM bisynchronous (IBM 2780-, 3780-, or
3270-compatible devices, including batch

equipment)

Site-defined (any devices, compatible or incom—
patible with any of the above)

Your NDL program”s network division must describe
all communication lines, terminals, and devices
connected to the set of network processing units.
You use the following statements to do this:

LINE or GROUP statements define the physical
and logical service requirements of each com-
munication line on each NPU.

TERMINAL or TERMDEV statements define the
clustering of devices conmnected to each com—
munication line.

DEVICE or TERMDEV statements define the physical

and logical support requirements of each device
within a terminal.

60480000 N

J

J)

trunk: TRUNK,N1=npul,N2=npu2,P1=port1,P2=port2

C,NOLOAD1C=yn1], NOLOADZ[-ynZ],FRAHE=frame,DI[-yn3]].

trunk The element name to be assigned to the trunk communication line being defined. This name is
required; there is no default value.

npul The element name for one of the two NPUs connected by the trunk. This name must appear on
an NPU statement in the same network definition. This name is required; there is no default
value.

npu2 The element name for the other of the two NPUs connected by the trunk. This name must

appear on an NPU statement in the same network definition. This name is required; there is
no default value.

port1 The hexadecimal number (1 < port1 < FE) of the port on npul to which this trunk is
connected. This number cannot appear on another TRUNK or LINE statement (or within a GROUP
statement expansion) for definitions applying to npul in the same network division; all
trunk Lines on an NPU must be assigned consecutively numbered ports starting at 1, and this
number must be the thumbwheel number on the CLA for the trunk lLine. If npul is to be
loaded over this trunk, 1 < portl < 4.

port2 The hexadecimal number (1 < port2 < FE) of the port on npu2 to which this trunk is
connected. This number cannot appear on another TRUNK or LINE statement (or within a GROUP
statement expansion) for definitions applying to npu2 in the same network division; all
trunk lines on an NPU must be assigned consecutively numbered ports starting at 1, and this
number must be the thumbwheel number on the CLA for the trunk Line. If npu2 is to be
loaded over this trunk, 1 < port2 < 4.

yn1 An optional reserved word value (YES or NO) for an optional stand-alone keyword; this
parameter prohibits loading npul over this trunk. If NOLOAD1 or NOLOAD1=YES is specified,
npul cannot be loaded by npu2. If NOLOAD1 is omitted or NOLOAD1=NO is specified, npul
will be loaded by npu2 whenever npul requests that operation. Usually a NO value is
specified for trunks connecting NPUs if administrative responsibility for the two NPUs
rests with a single site. If the two NPUs are administered by different sites, a YES value
is specified.

yné An optional reserved word value (YES or NO) for an optional stand-alone keyuord, this
parameter prohibits Loading npu2 over this trunk. If NOLOAD2 or NOLOAD2=YES is
specified, npu2 cannot be loaded by npul. If NOLOADZ is omitted or NOLOAD2=NO is
specified, npu2 will be Loaded by npul whenever npu2 requests that operation.

frame The approximate decimal number (0 < frame < 1200) of 8-bit character bytes that will be
transmitted as one frame across this trunk. The value you should declare for this parameter
depends on the type of data traffic across the trunk and the speed of data transmission on
the line. Recommended values appear in table 3-1; declared values are rounded as follows:

Declared Frame Value Value Used
0 thru 499 256
500 thru 1049 S00
1050 thru 1200 1050
yn3 An optional reserved word value (YES or NO) for an optional stand-alone keyword; this

parameter specifies the status assigned to this trunk at network initiation. When DI or
DI=YES is specified, the trunk is disabled at network initiation and cannot be used until
the HOP or NOP enables it. If DI is omitted or DI=NO is specified, the trunk is given an
initial status of enabled unless the NOP or HOP specifies otherwise.

Figure 3-7. TRUNK Statement Format

These statements wmust contain value declarations to
support hardware and protocols known to CDC but can
also contain declarations to support site—defined
hardware or protocols. Site-defined value declara-
tions do not have the interdependencies of CDC-
defined value declarations and receive less diag-
nostic inspection during NDL processor execution.
You are responsible for proper agreement among
values on these statements when one statement
contains a site-defined value.

60480000 N

These five statements provide the network software
with information that it transmits to CCP as a set
of paired information bytes called field number/
field value (FN/FV) pairs. Each of these statements
(except the TERMINAL statement) can contain the
keywords P90 through P99, identifying field numbers
not used by the released version of CDC network
software.,

If your site has modified CCP software or has
written its own Terminal Interface Program, these
optional field number parameters allow you to
specify the values to be transmitted for the cor-
responding field number when the terminal or device
is configured. If you place the same field number
parameter in more than one of the statements in a
hierarchical set, each value specified is wus