XVM/RSX PART X
GRAPHICS

CHAPTER 1

INTRODUCTION

XVM/RSX GRAPHICS is comprised of a set of FORTRAN callable routines, a
multiscope VT-15 handler (2 VT-15 processors, each with 2 scopes), and
a handler for as many as four VW0l writing tablets. The FORTRAN
routines provide both compatibility with the XVM/DOS graphics package
and significant additional capability. Therefore, a DOS FORTRAN
graphics program, with only a few minor modifications can be compiled,
task-built, and run under XVM/RSX.

It is assumed that the reader is thoroughly familiar with the XVM/RSX
system. While a familiarity with XVM/DOS graphics would be helpful
because the systems are similar, it is not essential. And, although
the RSX graphics package provides access to the graphics hardware, it
is not necessary to have a thorough knowledge of the hardware. For
instance, if the user is concerned about picture wraparound, he should
consult the hardware manual.

1.1 GENERAL DESCRIPTION

The user prepares a FORTRAN source program. This program includes
subroutine calls to the graphics system, as described in later
chapters of this manual. The user FORTRAN program is then task-built
(if this term is unfamiliar, see the On Line Task Development,
Section) with the binary of the FORTRAN-callable routines and
subsequently installed.

A MACRO user need merely simulate the FORTRAN subroutine calling
sequences to access the graphics routines. Chapter 7 describes MACRO
usage of the graphics system. If the MACRO user wishes to generate
his own graphics code, and access the handler, that too is possible.

There is a considerable difference in the emphasis in the design of
RSX graphics, as compared to DOS graphics. Basically, it is the
intent of RSX graphics to remove the distinction between main and
subpicture files, as much as possible, without destroying
compatibility with DOS. Thus, the calls described in Chapter 3 do not
have to be used at all in constructing new RSX graphics programs.

Although considerable effort has been made so that the conversion from
DOS to RSX shall be of minimum difficulty, significant differences
between the systems and the graphics packages remain. A knowledge of
these differences should help the user to stay out of trouble.

X-1-1

It is expected that the user will run under the protection/relocation
hardware in user mode rather than exec mode. This means that the user
program runs in a maximum relative address space of 128K, with the
relative zero address at any 400-word (octal) boundary. The VT15
processor is not affected by the protection/relocation hardware. It
continues to run in an absolute address space. ‘

There are two practical results of running under
protection/relocation. First, a wuser-mode program cannot destroy
other programs in the system; the protection hardware prevents this.
At the same time, the VT15 processor can destroy other programs in the
system, because it is not affected by the protection hardware. This
means that the programmer should be careful when debugging graphics
programs that are background to important tasks. It also means that
it is dangerous for the user to modify arrays containing display code.

Second, a display file may not span an absolute 8K boundary. This
creates a potential problem in laying out system partitions and
FORTRAN arrays. The user must be careful and plan ahead when doing
core layouts. The simplest method is to have the partition that
contains the program start on an 8K boundary. The graphics system
detects an error of this type before it occurs and stops the program
before the VT15 processor is lost. When this type of error occurs,
the user must rearrange his core layout, recompile and re-task build.

The RSX graphics system provides limited error detection for the user
(see Appendix A).

1.2 REFERENCE MANUALS

The following manuals contain information useful in understanding the
contents of this manual:

VT15 XVM Graphics Software Manual
GRAPHICS-15 Reference Manual

MACRO XVM Assembly Language Manual
FORTRAN IV XVM Language Manual

VW01l Writing Table Maintenance Manual

1.3 MINIMUM HARDWARE

Besides the minimum RSX hardware, RSX GRAPHICS requires a VTI15
pProcessor with arbitrary vector, and a VT04 scope.

In the maximum configquration, the system <can handle two VT15
processors, four ' VT04 scopes and four VWOl writing tablets. 1In this
maximum configuration, each of the four scopes can show completely
different pictures. Alternately, the pair of scopes on each VT15
processor can display pictures in which part or all of the image is
generated from one display file. LK35 keyboards are treated as
input-only terminals by the RSX Monitor.

XVM/RSX V1B X-1-2 September 1976

CHAPTER 2

SUBPICTURE ROUTINES

The FORTRAN user defines integer arrays into which are built his
display files (subpictures). The display files are merely subroutines
to be executed by the VT-15 display processor. A call ¢to the
subpicture routines places graphics code at the end of the existing
graphics code in the specified display file. A brief description of
each of the subpicture routines follows:

LINE - generates the display code to draw a line (intensified) or to
reposition the beam (unintensified). The arbitrary vector hardware
option is required for RSX GRAPHICS.

TEXT - generates code to display strings of 5/7 ASCII previously
defined by the user in dimensioned arrays.

COPY - generates code to call another display file as a subroutine.
May optionally include the use of the hardware SAVE-RESTORE feature.

PRAMTR - the PRAMTR (parameter) routine generates the display code to
control such hardware options as scale, intensity, blink, light pen
sensitivity, etc., for this display file, or some portion thereof.
GRAPH - generates the code to display data arrays in graphical form.

BLANK - genérates the code to 'blank out' all appearances of a given
display file.

UNBLNK - reverses the action of the BLANK subroutine.

POINT - generates code to absolutely position the beam. The point
corresponding to the final position may optionally be intensified.

ANY - places a user-provided array of display code into the display
file.

Example programs (Figures 2-1 through 2-8) using come of these
commands are found in paragraph 2.14 at the end of this chapter.

2.1 GENERAL RESTRICTIONS

The following general restrictions apply to the use of the GRAPHICS
system.

X-2-1

All arguments in the graphics system calls must be in integer
format unless specifically noted otherwise. This requirement
must be adhered to even if the argument name shown in
examples and prototype calls is not in the normal FORTRAN
integer variable character convention (I through N).

All display file storage must be declared by the FORTRAN user
in the form of dimensioned integer arrays (may optionally be
in COMMON) .

The first location of each display file array is used by the
graphics system as an end-of-file pointer. This location
must be zeroed by the user prior to the first reference to
that display file.

All references to display files in argument lists to the
graphics routines must be of the form IFILE(1l) rather than
IFILE, unless otherwise specified.

Each provided array must be 1long enough to contain the
display code to be built into it. No error messages are
returned to the user upon array overflow. See paragraph 2.2
for further discussion.

No display file can span an absolute 8K core boundary. The
graphics system will return an error code (see Appendix A) if
this happens. The user can then either reposition his
storage, or re-task-build.

Note, as of RSX PLUS III, and continuing through XVM/RSX, the
FORTRAN subroutine calling conventions have been changed. A
reference to IFILE is now entirely equivalent to a reference
to IFILE(1l). This change was implemented with FORTRAN
version 044, and graphics primitives version VPR.33.
Supercedes restriction 4.

A FORTRAN program being brought through this version change
must be recompiled with the new compiler, and re-task-built
with the new graphics primitives. A MACRO program calling
the primitives package with calls of the form IFILE must be
modified. One level of indirection must be removed from
these calls. Finally, reassemble and re-task-build.

Note, as of XVM/RSX, the format of the CNAME editing pointer
has been changed. Since 17 bit addressing is supported,
there is no longer room in CNAME for a 3-bit count field.
The external symptoms of this change are fairly minor.
Display files will occasionally become a few 1locations
longer. Finally, REPLOTs which place PRAMTR instructions
over other instructions may require an extra location. See
Chapters 2 and 3 for further discussion.

2.2 GENERAL FORMAT OF DISPLAY FILES

2.2.1 Storage Overhead

A display file containing four vector commands, for example, has the
following format:

LOCATION CONTENTS

PNAME 6

+1 return address from DJMS*

+2 vector command

+3 vector command

+4 v vector command

+5 vector command

+6 DJMP* PNAME+1
Three words are used for storage overhead in each display file. The
first location (PNAME) contains the current length of the display
file. This value must be initially set to zero bv the user. After

each reference to the display file by a subpicture routine, this wvalue
is automatically updated to reflect the current length of the file.
The second location stores the return address and the last location
contains the exit instruction.

The corresponding sequence of FORTRAN calls to generate this display
file might typically be:

DIMENSION IFILE(10)
IFILE(1)=0
C SET INITIAL VALUE OF FILE LENGTH TC ZERO

CALL LINE (100,0,1,IFILE(1))
CALL LINE (0,100,1)

CALL LINE (-100,0)

CALL LINE (0,-100,1)

This display file would simply draw a square. Note that it is
possible to provide variable numbers of arguments to the same graphics
call. For example, with the LINE call, if only ¢two arguments -are
provided, an intensified 1line is generated in the same display file
that was last used. Subsequent paragraphs will provide a detailed
description of the argument lists of the graphics calls.

2.2.2 Space Allocation

In the FORTRAN example above the dimension statement allocated ten
locations for the display file. 1In this particular case only seven of
the ten locations are used. Each of the four line commands requires a
single location, and there are three locations used for the display
file overhead. For a larger display file, the user does not wish to
carry out a detailed count. What is recommended -is to make a
debugging version of the program with a much-too-large display file.
When the program is done, the first location of the display file
contains one less than the number of locations actually used. It is

X=-2-3

then possible to move to a final version of the program with precise
knowledge of your core requirements.

It has been stated that the subpicture routines add display commands
to the end of display files. This can be done while the particular
subpicture is displayed on the screen. There are two other methods of
removing or modifying previously created graphics code. Whole display
files can be reused by calling BLANK and then zeroing the first
location. The graphics system then starts refilling the display file
from the top. This can be done with the display processor running
through the display file.

An additional method of modifying graphics code is thoroughly
discribed in Chapter 4. This method writes a single group of commands
(corresponding to a single call to the araphics system) over existing
graphics code. This over-write requires an editing pointer to the
beginning of the 0ld group of commands. Under RSX GRAPHICS (not under
DOS), the pointer can be obtained from the subpicture routines.
Throughout this manual, the pointer is referred to as CNAME.

A description of each of the subpicture routine calls follows. The
code-generating capability of a number of these calls can be accessed
by the routines PLOT and REPLOT. The LINE routine, for example, is
accessed by a call to PLOT or REPLOT with a selection argument of 1.
The description in this chapter 1is directed toward the subpicture
call, but applies equally to the corresponding PLOT and REPLOT calls.

2.3 LINE SUBROUTINE

The LINE subroutine adds to the specified display file the display
commands necessary to draw a line (beam intensified) or move the beam
(not intensified) through a specified displacement from the current
beam position. RSX GRAPHICS requires that the random-vector hardware
option be present.

The calling sequence is:
CaLLl. LINE (TIXs IDYL s INTL s PNAME (1Y Ly CNAMET11)

where: The enclosing brackets, "[" and "]", indicate an optional
argument.

IDX is the integer X-axis displacement in raster units.
IDY is the integer Y-axis displacement is raster units.

INT indicates whether the line is to be intensified. (For
nonzero INT, the 1line is visible. For INT=0, the line is
not visible. If the INT argument is omitted, a nonzero INT
is assumed by default.)

PNAME (1) is the address of the display file. When the
PNAME (1) arqument is not provided, the generated display
code is added to the display file to which code was last
added.

XVM/RSX V1B X-2-4 September 1976

CNAME, when present, is the output argument used for the
return of an edit address.

Note that foresight is required to edit over a group of commands.
CNAME is included in the argument list. The graphics system places
the address of the command group in CNAME. This CNAME is then used as
an argument in the call to REPLOT to write in the new command group.
See Chapter 4 for more detail.

The square hrackets are used to indicate which arguments can be
omitted.. (The square brackets themselves do not appear in any of the
final calling sequences). Those arguments, (and commas) appearing
between any matched [and] can be omitted. Thus, for this call, the
user may provide from 2 to 5 arguments. The two arguments would be
IDX and 1IDY. Three arguments would be IDX, IDY, and INT. Four
arguments would be IDX, IDY, INT, and PNAME(l). Five arguments would
be IDX, IDY, INT, PNAME(l), and CNAME.

NOTE

The discussion of the wuse of square
brackets is applicable to the
description of all argument lists
contained in this manual.

The LINE call to the graphics system adds one or two locations to the
display file. If either 1IDX or 1IDY is zero, or their absolute
magnitudes are equal, the basic vector hardware command (requiring one
location) 1is used. Note that IDX and IDY are truncated to ten bits
{(with retention of sign) without any warning to the user. If both IDX
and IDY are =zero, no code is generated. If IDX and IDY define any
other 1line, the random vector hardware command (requiring two
locations) will be used.

2.4 TEXT SUBROUTINE

The TEXT subroutine adds to the specified subpicture the VT-15
hardware commands necessary to display a string of 5/7 ASCII. Such a
string will usually be generated by Hollerith data statements. The
string is displayed starting at the current beam position. The
standard text font is displayed on a 10 by 14 raster unit matrix
(assuming hardware scale to be 0). With the exception of certain
control characters, each character causes the beam to move 14 raster
units to the right (positive X-axis). The calling seguence is:

Call, TEXT CSTROL) o ND v FMAME CL I CNAMETT D

where: STR(1l) is the address of the text string andvis normally a
real array.

N is the integer number of characters of the string to be
displayed. When N is nonzero, the graphics system inserts
an ALT MODE after the Nth character in the string as a
stop-code for the VT-15 hardware character generator. When
N is zero, no ALT MODE is placed. This last feature would
be used, for instance, when one wished the same text string
to appear in two different places on the screen, or the user
had placed the ALT MODE himself in some way. '

PNAME (1) is the display file address; when this argument is
omittéd, the code 1is placed in the display file to which
code was last added.

CNAME is the output argument for the return of the edit
address.

Three locations are added to the display file:

CHARS* .+2
DSKP
address of string

where CHARS* is an 1indirect reference to a text string for the
hardware character generator, and DSKP is a display skip.

Three warnings are in order here. First, space must be provided at
the end of the text string to be displayed to contain the ALT MODE
placed by the graphics system. One technique is to place (but not
count for N) some extra character (e.g., g or z) at the end of the
string. Second, the placement of the ALT MODE will destroy from 1 to
5 characters following the string requested for display. Therefore,
if the first part of a longer string is displayed, that longer string
will no 1longer be intact. Third, 1if the ASCII data is from some
input/output device, it may contain non-printing characters such as
carriage return and line feed. These characters must be counted for
N.

The following FORTRAN statements show the use of the TEXT routine to
reference the text '153 ASSABET RD.' from display file IFILE.

DIMENSION ADDR(4)

DATA ADDR(1)/5H153 A/,ADDR(2)/5HSSABE/
DATA ADDR(3)/5HT RD./,ADDR(4)/1HZ/
IFILE(1)=0

CALL TEXT (ADDR(1l),15,IFILE(1))

2.5 COPY SUBROUTINE

The COPY subroutine generates graphics code so that one display file
can call another as a subroutine. This allows the construction of
complex display images from simple building blocks. The display files
may hot be recursively linked. The calling sequence is:

Caldl COPY CRETPMAMEL CL YDy FRAMECL D CHAMETT

where: RST, when nonzero, requests that the hardware SAVE-RESTORE
instructions be used to save display parameters through the
subroutine call. When RST is zero, the SAVE-RESTORE option
is not used.

PNAME1l(l) is the address of the display file to be called.

PNAME (1) is the address of the calling file; when PNAME(1)
is not provided by the user, the last display file to which
code has been added is used.

CNAME, when present, will be filled with an edit address.

When the SAVE-RESTORE option is not used, three locations are added to
the display file:

DIJMS* .+2
DSKP
address of PNAME+1

When the SAVE-RESTORE option is used, six locations are added:

SAVE .+4
DIMS* .+2
DJMP .+3

address of PNAMEl+1
status word stored here
RSTR .-1

In the above code, DJMS* is the display subroutine Jjump indirect
instruction, DSKP is the display skip instruction, SAVE is the display
save status to memory instruction, DJMP is the display jump, and RSTR
is the restore status from memory instruction.

The PRAMTR call is used to establish the settings of such hardware
features as SCALE, INTENSITY, BLINK, etc. If SAVE-RESTORE is
specified in, a COPY call, then the settings of the hardware features
are saved prior to the subroutine call and restored afterwards. This
allows the settings to be unaffected by any action of the called
subroutine. If SAVE-RESTORE is not specified, any settings changed by
the subroutine will remain changed.

At the time of the COPY call, PNAME1(l) need not yet be a defined
subpicture. At the time that the display processor executes the code,
however, it must be. A typical call to the COPY routine could be:

Gl COPY OO TWMDOWCL Y » THOUSE CLD 2

This «call does not use the hardware SAVE~-RESTORE option; the
subpicture IHOUSE calls the subpicture IWNDOW.

2.6 PRAMTR SUBROUTINE

The PRAMTR subroutine places code in a display file to control the
following hardware options: (see GRAPHIC-15 Reference Manual for a
more complete description).

SCALE (0-15) - Controls the displayed size of a picture element. For
a line (characters are similar) of 10 raster units; a scale of 0 will
produce a ten unit line; a scale of 1, 20; a scale of 2, 30; etc.
For the GRAPH routine, a scale of 0 will produce a zero distance
between data points; a scale of 1 will produce a 1 raster separation;
a scale of 2 will produce a 2 raster separation; etg.

INTENSITY (0-7) - Controls the intensity of the picture at eight
different levels. The user may wish to accentuate certain portions of
the picture; points require a somewhat higher intensity than lines;
a picture executing at 30 times per second (see SYNC) takes a higher
intensity than one executing at 60 times per second. ' The display of
many items at high intensity at the same point on the screen may
damage the phosphor.

LIGHT PEN ENABLE (0-1) - Controls the light pen enable (on or off) of
those portions of the picture until the next such instruction is
executed. A user may wish to obtain light pen hits only on certain
portions of his displayed picture.

WARNING

The internal structure of this feature
is far different than under DOS,
requiring one or two more locations in
the display file (see Chapter 7 for
details) when the light pen is turned
on. Those who have adjusted their
display file arrays under DOS to exactly
the right size must readjust the display
file size for use in RSX Graphics.

BLINK (0-1) - Controls whether that portion of the displayed image up
to the next BLINK command will blink at 4 times per second.

DASH (0-3) - Controls whether lines (and the lines in characters) are
dashed or solid.

SETTING RASTERS

ALL ON

3 ON 1 OFF
4 ON 2 OFF
4 ON 4 OFF

WO

OFFSET (0-1) - The offset area is a thin vertical rectangle of screen
to the right of the normal 1024x1024 working area. When OFFSET is set
to one, all coordinates are based from the 1lower 1left of the thin
vertical rectangle rather than the 1lower 1left corner of the 1024
square. The offset area is normally used for control information such
as light pen buttons. A 1light pen button is some graphic element
(text string, square, etc.) that is used to notify the program that
the scope user desires some particular action when a light pen hit
occurs on that particular element.

ROTATE (0-1) - When on, causes the X and Y axes to be swapped, causing
a rotation of 90 degrees counter-clockwise. This is mostly used for
rotating text strings for labeling graphs, etc. Note, do not rotate
arbitrary vectors.

NAME REGISTER (0-127) - This feature is used to identify portions of
the picture upon detection of a light pen hit. The NAME REGISTER is
set to different values for different portions of the picture by the
user. When a 1light pen hit occurs, the NAME REGISTER setting is
returned, allowing easy identification of the element receiving the
light pen hit.

X-2-8

WARNING

The NAME REGISTER settings 120-127 are
used by the TRACKING routine; it is
recommended that the user not use these
values.

SYNC (0-1) - This feature is no longer under user control under the
RSX system; SYNC 1is always on. The SYNC parameter code (see Table
2-1) and its corresponding argument are accepted by PRAMTR and ignored
so that existing DOS programs using SYNC can be run without causing
argument errors. SYNC locks the execution of the display processor to
power line frequency.

NOTE

The following discussion assumes 60
cycle power. For those users with 50
cycle power, the numbers should be
changed accordingly.

This means that the user's display is executed 60 or 30 times per
second. This synchronization prevents a continuous change of picture
intensity with picture size, prevents phosphor damage from very small
display files, and prevents noise in the power lines from making the
picture 'swim'. A disadvantage is that 30 times-per-second execution
causes the picture to ‘'flicker' because the phosphor of the tube
becomes appreciably dimmer in the 1/30 of a second as it waits to be
illuminated again. Another interesting problem occurs if the picture
is right on the border between execution at 60 times and 30 times.
Here ' the execution rate may well depend on the loading of the RSX
system. This type of picture instability is very uncomfortable for
the viewer. It is recommended that if this condition should arise,
the user put some sort of non-visible display code in his picture to
force execution entirely into the 30 times per second domain. The
calling sequences for one hardware feature, or for some number of
hardware features is shown in the calls below.

Call, PRAMTR (SELECT UALUED o PHNAME CLY Dy CHAMET T
CaLl PRAMTR (SELECTVOLUEL s VALUER ry o Do PNAME L 2 0 CNAMETT

where: SELECT argument, described below, tells the graphics system
which of the hardware features are desired.

VALUE is the value for each hardware feature selected.

PNAME (1) is the address of the display file into which the
display code 1is placed. If PNAME(1l) is not provided, the
code is placed in the display file into which code was last
placed.

In Table 2-~1 each hardware feature is given a code. The SELECT
argument is the sum of the codes of the features desired. Allowable
ranges for the values for each feature are discussed earlier in this
paragraph and are summarized in Table 2-1. There must be one and

X-2-9

exactly one VALUE argument for each feature requested in the SELECT
argument. The values must furthermore be in the order given in Table
2-1.

Table 2-1

Display Parameter Settings

Parameter Code Settings
/SCALE 1 0 (SMALL) TO 15(LARGE)
\INTENSITY 2 0(LOW) TO 7 (HIGH)
LIGHT PEN 4 0 (OFF) AND 1 (ON)
LINK 8 0 (OFF) AND 1 (ON)
{ DASH 16 0 (SOLID) TO 3(FINEST DASH)
OFFSET 32 0 (OFF) AND 1 (ON)
, ROTATE 64 0 (NORMAL) AND 1(X AND Y AXES SWAPPED)
_¢N<NAME REG. 128 0 (LOW) TO 127 (HIGH)
M SYNC 256 0 (OFF) AND 1 (ON)
i

The PRAMTR subroutine adds one to six commands to the display file,
depending on the features requested. Only one to four locations were
required under DOS. CDifferences in the length of the generated code
may occur with the SYNC feature, which will generate no code under
RSX. Differences will definitely occur (more code under RSX) when a
request is made to enable the light pen. Rather than simply enabling
the light pen, it is necessary under RSX to make a subroutine call to
the VT-15 handler. This subroutine call requires more code in the
display file. Therefore, it may be necessary to increase array
lengths in moving programs from DOS to RSX.

Each of the features requested from PRAMTR remains in effect until
specifically changed, even if the display processor moves into other
display files. Note that PLOT and REPLOT with a select argument of 2
are entirely equivalent to PRAMTR. Under DOS the feature requested
would remain in effect even when the display processor started in
executing the beginning of the ‘'main' file again. Under RSX the
display processor always enters the 'main' file with the features set
to specific default values. The default values are 4 for intensity,
and zero for all other features (except for SYNC which is always on).

The user should be very careful in the use of the PRAMTR subroutine.
A miscount of the number of VALUE arguments can have disastrous
effects.

The following sample code shows the use of the PRAMTR subroutine for
the specification of a single feature:

Call FRAMTR (272 THOUSE (L TEDIT)

This call sets the intensity of the display to its highest value, 7,
at the current end of the code in the display file IHOUSE. An edit
address is returned into the variable IEDIT. The following is a
multiple-feature statement:

C CODE SETTINGS FOR ASSIGNMENT BITS
ISCALB=1
INTB=2
LPENB=4

X-2-10

CALL PRAMTR (ISCALB+INTB+LPENB,0,4,1)
C OR, THE SAME THING WITH A NUMBER INSTEAD
CALL PRAMTR (7,0,4,1)

In this case the scale is set to 0, the intensity is set to 4, and the
light pen is enabled. The code is placed in the display file to which
code was last added. In general, code will be placed in a single
display file rather than a piece here and a piece there, so that PNAME
will often be defaulted, i.e., not provided.

In XVM systems, a special marker no-op will be placed in the display
file if CNAME was specified to the PRAMTR CALL. At this point the
display file is one location longer than in previous systems. If a
display element other than a PRAMTR or a PLOT (2,,,{CNAME]) is added
to the display file, this special marker is written over, reclaiming
the space. (This other group will serve to terminate the PRAMTR group
for purposes of REPLOT'ing and DELETE'ing).

2.7 GRAPH SUBROUTINE

The GRAPH subroutine adds to the specified display file the code
necessary to display an array of positive integer data in graphical
form. One coordinate of the display (usually Y) is set equal to each
data point in turn. The other coordinate is automatically incremented
by the hardware after each data point. From the discussion of the
SCALE feature, this increment is equal to the SCALE setting, so that
for a scale of 0 the whole graph is collapsed onto a single X wvalue.
For a scale of 1 the increment is one raster unit; for a scale of 2
the increment is two raster units, etc. The beam is left positioned
one increment past the last data point. Note that the axes and
labeling for the graph must be provided separately; this routine
deals only with data. The calling sequence is:

Cald. GRAFH (DATACLY e ND AT FNAME LY« CREAMED T

where: DATA(l) is the address of the positive integer data to be
plotted. This data will be truncated to ten bits without
any warning to the user.

N is the number of data points to be plotted.
A is the axis. For a normal Y vs. X plot, A is zero; for
an X vs. Y plot, A is nonzero. When A is not provided as
an argument, the plot is the normal Y vs. X.

PNAME (1) is the display file into which the graphical data
is to be placed. If a PNAME(l) argument is not provided,
the data is placed into the display file into which code was
last written.

CNAME is the output argument for the return of an edit
address.

The code generation is handled differently than under DOS to allow
editing (REPLOT). Under RSX a two location bookkeeping header is
placed prior to the graphical code. Under both DOS and RSX, each data
point requires one core location to display it, using the hardware
graph~point instruction. The bookkeeping header under RSX is a
display skip followed by a count of the total number of locations

X-2-11

placed into the display file. Note, prior to XVM systems, the
bookkeeping header was placed only if there were 7 or more data
points. This means that XVM/RSX display files will grow by two
locations, compared to previously, if GRAPH calls with less than 7
points are used. The following sample code plots 20 points from array
IX into the present display file. The points are spaced along the X
axis in increments of 2 raster units.

Catil. FRAMTR (132

ot AT f TN A
[T GRAPM (1KLY 23202

X-2-12

2.8 BLANK SUBROUTINE

The BLANK subroutine changes code in a display file to prevent the
displaying of any copy of the specified display file. The length of
the display file is not changed by this operation. The calling
sequence is:

Gl BLANK (PHAMECLY

where: PNAME (1) is the display file to be BLANK'ed.

NOTE

The PNAME(l) argument must be provided
for this call, and cannot be defaulted.
The PNAME(l) provided here does not
count as 'subpicture into which code was
last placed'. That remains what it was
prior to this call.

The operation of the BLANK subroutine is to swap the contents of the
first location (after the DJMS entry point) and last location of the
referenced display file. Thus, the first instruction executed by the
VT-15 processor upon entering the display file is the DJMP* to exit
from the display file.

Some restrictions should be noted. As under DOS, PNAME should be a
defined display file at the time that BLANK is called. As under DOS,
the DYSET-DYLINK routines described in Chapter 6 should not operate on
BLANK'ed files. As under DOS, BLANK'ing a file that has already been
BLANK'ed is a no-op. In contrast to DOS, code can be added to a
BLANK'ed subpicture., REPLOT'ing on the BLANK'ed subpicture, not
possible under DOS, should be done with care. Clearly, the first
group of commands in the display file, which now is holding the return
jump, cannot be changed.

WARNING

BLANK requires an I/O operation to the
handler to prevent the VT-15 from
executing beyond the end of the BLANK'ed
file. This I/O operation cannot be
immediately honored if there is an
outstanding LTORPB (see Chapter 5).
Upon the completion of the LTORPB, the
BLANK subroutine will be completed.

The use of the BLANK routine:

ALl Blank CIPTSOL

X-2-13

2.9 UNBLNK SUBROUTINE

The UNBLNK subroutine reverses the action of the BLANK subroutine,
allowing the subpicture to again be displayed. The calling seguence
is:

Call UMBLNE (PMNAME (LY

PNAME(1l), as in the BLANK subroutine, must be provided as an argument,
and 1is not remembered as the default subpicture. The effect of this
call is to swap back the locations swapped by BLANK, restoring the
display file to its original configuration. 1If the file has not been
BLANK'ed the call to UNBLNK is a no-op. Unlike the BLANK subroutine,
UNBLNK is not affected by outstanding calls to LTORPB.

The following sample code will reverse the action of the example given
for BLANK:

CaLL, UNBLMK (IPICCLND

2.10 POINT SUBROUTINE

The POINT routine places in the specified display file the necessary
code to absolutely position the beam. The final point may optionally
be intensified. The calling sequence is:

Call, POINT CLXe IV INTE FRAME 1D« ORAMETTN

where: IX is the positive integer absolute X-position to which the
beam is to be moved.

IY is the positive integer absolute Y-position to which the
beam is to be moved. 1IX and IY are truncated to ten bits
without any warning to the user.

INT=nonzero, point is intensified; INT=0, point 1is not
intensified. If INT is not provided the point is not
intensified.

PNAME (1) is the display file address for that display file
to contain the code. When PNAME (1) is not provided, the
code is placed in that subpicture into which code was last
placed.

CNAME, if present, is wused for the return of an edit
address. :

The code generated by a call to this routine requires two display file
locations. The first 1is the hardware command to position the beam
along the Y-axis, and the second to position the beam along the
X-axis. Intensification is controlled by a bit in the second
instruction. The following sample code:

Call, POINT (513,51

G LFYLECL Y TEDTT
positions the beam to the center of the screen (512,512). The point

is not intensified. The code is added to the display file beginning
at IFILE. An edit address is returned into IEDIT.

X-2-14

2.11 ANY SUBROUTINE

The ANY subroutine places a user-provided array of display code into
the specified subpicture file. The calling sequence is:

CALL ANY (ARRAY (1) yNLsFNAMEC(L)LyCNAMEID)

where: ARRAY (1) is the starting address of an integer array of VT15
display command code provided by the user and is represented
as a subscripted variable.

N is the number of elements of that array that are to be
moved into the display file.

PNAME (1) is the starting address of the display file into
which the display commands are to be placed. PNAME (1) and
ARRAY (1) may not refer to the same array. When PNAME(1l) is
not provided by the user, the display code is placed into
the display file into which code was last placed.

CNAME, when present, is the output argument used for the
return of an edit address.

The user code is placed unchanged into the display file. The user
code 1is preceded by a two-word bookkeeping header identical to that
described in section 2.7 for the GRAPH subroutine.

The graphics system does not allow the wuser to access all of the
hardware features of the VT15. The intent of the ANY subroutine is to
allow users to write specialized code using "unused" features, while
still providing the overall convenience of the FORTRAN environment.
(The user should be careful when using ANY, as the possibility of the
VT15 processor "escaping" because of undebugged code is increased
considerably.) Examples of ANY subroutines are single-character
handling programs, such as editors, that can have one character right
justified per word. This word, when executed by the VT15 processor,
displays the single character. Applications of this type can include
display of user terminal input, where the characters are relatively
few in number and can easily be changed.

XVM/RSX V1B X-2-15 September 1976

2.12 CIRCLE SUBROUTINE

The CIRCLE subroutine is used by Graphics programs to generate code to
appr9x1mate arcs and circles. In RSX PLUS 1III, and XVM/RSX the
calling arguments remain the same. However, at the conclusion of the
arc or circle, the beam is returned to the center of the circle, not
left at the edge as in RSX PLUS. The calling sequence is:

Form: CALL CIRCLE (R,THETA,GAMME,ANG,ISUB)

Where: r is the radius of the circle in floating-point
raster units
theta is the starting angle in floating-point
degrees
gamma is the ending angle in floating-point

degrees
ang is the angle subtended by each side of the

polygon in floating-point degrees
isub is the name of the integer subpicture in
which the circle or arc is placed

See example in Figure 2-2.

The call to the CIRCLE subroutine has no effect if ANG 1is less than
0.001 degrees (absolute) or if R is less than one raster unit. The
difference between GAMMA and THETA is reduced modulo 360, and both are
measured counter-clockwise from the positive X axis. If ANG is
positive, circles are drawn counter-clockwise from THETA to GAMMA. A
full circle is drawn if THETA and GAMMA are within 0.001 degrees
(modulo 360 degrees). The maximum number of polygon sides allowed is
360, even at the expense of not completing the requested circle or
arc. It is possible for GAMMA to be less than THETA. If the user
wishes, for example, he <can draw an arc counter-clockwise from 20
degrees around to 10 degrees. Note that the previous contents of the
display file ISUB are destroyed by this call.

2.13 ROTATE SUBROUTINE
The ROTATE subroutine is a FORTRAN subroutine which performs rotations
of arrays of X-Y-Z data about the X,Y, or Z axes, Or combinations of
these axes. The user can control the angle of rotation. The user's
array is modified by the ROTATE subroutine which uses the same
left-handed system that is used throughout the graphic software:
X, horizontal movement, positive to the right
Y, vertical movement, positive is up
%z, perpendicular to the screen, positive into screen
The calling sequence is:

Cabl, ROTATE (MeTas IRy I0 XY 2y BTN DOBA
where: N is the number of data points to be rotated.

IA nonzero, rotate about Z axis.

IB nonzero, rotate about Y-axis.

X-2-16

IC nonzero, rotate about X-axis.

X is the address of the array of X-positions.
Y is the address of the Y-position array.

Z is the address of the Z-position array.

SINA is the sine of the angle through which the arrays are
to be rotated, in single precision real format.

COSA is the cosine of the same angle.

When two axes of rotation are specified, the rotation occurs about the
45 degree line of the plane defined by those two axes. When all three
axes are specified, the rotation occurs about a line 45 degrees to all
axes.

WARNING

The values in the X, ¥, Z arrays must be
in floating-point format. The
specification of these three arrays in
the argument sktring must be in the form
XARRAY rather than XARRAY(l). In a
multi-axis rotation, this routine
rotates about one axis by the angle
specified, and then by the same angle
about the other axis. The resulting
overall angle of rotation is not that
angle originally specified.

The operation of the ROTATE routine replaces the X, ¥, and Z values in
the arrays, which are taken to be the values before rotation, with the
values corresponding to the positions after rotation. (Since the
initial values are replaced, beware of accumulated rounding errors.)
The user has the responsibility of converting this data back to
integer format and making those calls to the graphics system which are
necessary to display this data. The coordinate point 0,0,0 1is taken
to be the center of the rotation. The user can control the displayed
center point by making an initial set point, and then displaying the
figure 1in relative form. Care should be taken in rotating large, or
off-center figures. It is a hardware feature of the VT-15 that
displayed items that are in part off-screen are not intensified.
Thus, the edge of the screen will not serve to ‘'clip' figures that
rotate partially off-screen.

2.14 EXAMPLES

The first example (Figure 2-1) is a simple program utilizing some of
the calls described in this chapter to display four squares and a text
string. The DINIT and LTORPB calls used in the examples are described
in Chapter 5. Figure 2-2 is an example that highlights the CIRCLE
subroutine.

X-2-17

o
i

=3

-

D

ﬁ

W

Fa]

"
v

[

G

STMPLE DEMD TO DISPLAY FOUR SQUARES

LUOGTOAL IR

DEMEN

DTMEN
OiTé
1i5Hak

SI0M MAIN40?

METON IHR{10

TON TXTOE)
THEYCL e TETCRY e TXT (B3 o THT 04 AHHHERE
E 4»5H SQUAr SHRES s

SEUARE SUBROUTINE

ol
Gl
[T
AalL
THE MalN
FIRBT THE
At

» ANT TURN ON

Call

MAKE SCALE
CALL

THE TEXT
Cali.

GOALE BACK
CALL

NOW FOUR T
Cald.

MOW WATLT F
Cald.
SToF
N

ST PRIERN R 1ERS B

» 1000

LT (10002

LINE {0p-1003

ALLING ROUTINE

TEXTy POSITION BEAM
FOINT (100100 0rMAINCLY Y

THE FROCESSOR
DINITOMATNCL)

EQUAL TO 1 FOR TEXT
FRAMTR (1s1)

TO ZERO FOR SQUARES
FRAMTR (103

IMES, & SET BEAM. AND Call SQUARE
FOINT (2005007
CORY (O L8001

O POINT (2008007

COPY (O ITBGILY)
FOINT (F00»500)

- CORY (0. T8RN

FOINT (Z00»300)
COFY (G 1500117

Df AN INTERRURT TO LEAVE PICTURE
LTORPRELFXy LPY o MAME » TR Ty 13

Figure 2-1
Four Square Display Example

X-2-18

Figure 2-2
CIRCLE Subroutine Example

X-2-19

The next four examples deal with the technical and conceptual
differences between the DOS and RSX graphics packages. The example in
Figure 2-3 is copied from the DOS graphics manual and will not present
a picture under RSX. The example in Figure 2-4 shows the minimum
modification that has to be made to the example in Figure 2-3 to run
under RSX. The example in Figure 2-5 shows how an RSX graphics
programmer might generate the same picture without the calls of
Chapter 3. The example in Figure 2-6 shows how the program might be
coded so that all the graphics code is in one display file. The
example in Figure 2-7 demonstrates the manipulation of PRAMTR
settings. The example in Figure 2-8 illustrates the use of the ROTATE
subroutine. Figure 2-8A 1is the FORTRAN 1listing of the example.
Figure 2-8B is the MACRO 1listing of the random number generator
designed for the example.

C
CooaRRAY ITNITIALLZATION
INT L BINWV(E00 s Y (2007
DIMENSTON TITLOLO) y MATNFL (202
DATA TITL L e TITLE o TITLOR Y o TITL CAF/SHTHIS »
1 GHISE & »SHEINE v 4HWAVES

C
L BET UP INTEGER aRRaY OF VALUES TD BE FLOTTED

10 Ke=()
20 I=1y200
YOI y=TF IR CBINOORESS, I HEL2
Kad 4, 0628

20 CONTEINUE

LOBET U GURPICTURE TO FLOT THOSE ValuEs
(M

SINWVCL r=0

Call PRAMTR(E Qe 7y BINWVIL 2

Call, LINECLOOO0v1

DAl LIMEC-L000e000)

Call LINECQ 250,00

Codd, LINMECO W1

Catl, LINEC(D 25000

Call PRAMTR (142

Call GBRAPH (YL 100.070

Call GRAFH (Y L0l » 1000 SINWVCL D 3

G8ET UPF MAIN FILE TO DISFLAY THE GRAFH
CMAIN FILE CALLS BELOW. DESCRIBED IN CHPT. 33

MATMFL L =0
Call. DEHIT (MATNFL LY
Call SETFT (10,5127

Caldl, FLOT (Ge0:BINWYL))
CaLL BETHFT (1001007
Call PLOT (21010

Call PLOT (3yTITLL) 1%
Call DELOSE

STOR

ENT

Figure 2-3
DOS Sine Wave Program Example

X-2-20

—

> ARRAY INITIALIZATION
LOGICAL IR(6&)
INTEGER SINWV(3001)»Y(200)
DIMENSION TITLC(10)»MAINFL.(20)
DATA TITLCI) s TITLC2) o TITLA(Z) s TITL{4) /SHTHIS »
1 SHIS A »SHSINE »4HWAVE/

SET UP INTEGER ARRAY OF VALUES TO RBE FPLOTTEDR

= 0

0 X=0
no 20 I=1,200
Y(ID)=IFIX(SIN(X)X256.)+512
X=X+.0628

20 CONTINUE

c

€ SET UF SUEBFICTURE T0O PLOT THOSE VALUES

c

SINWV(1)=0

CALL FRAMTR(3s0,7SINWV(1))

CALL LINEC(10Q0-0s1)

CalLL LINE(-10005050)

CALL LINE(O»25050)

CALL LINE(Qy-500s1)

CALL LINE(Oy250,0)

CALL FRAMTR (1+4)

CALL GRAFH (Y(1)+100+0)

CALL GRAFH (Y(101)+100,0,SINWV(1))

SET UF MAIN FILE TO DISFLAY THE GRAFH
(MAIN FILE CALLS BELOW, DESCRIEBED IN CHFT. 3

OO0

MAINFL (1)=0

CALL DINIT (MAINFL(1))
CALL SETFT (10,512)

CALL PLOT (0»O0sSINWV(1))
caLl SETFT (100,100)
CALL FPLOT (2+151)

CALL FLOT (3»TITL(1)s19)

THE ONLY CHANGE NECESSARY IS A WAIT
OF SOME SORT TO RETAIN THE FICTURE
THE “END* KILLS THE FICTURE UNDER RSX
USE LTORFE FOR THE WAIT

CALL LTORFB (LFXsLFPYsNAMEyIR»IWs1)

ANY FUSH BUTTON OR LIGHT PEN HIT WILL
CAUSE THE PROGRAM TO EXIT

aoooOn coOoOOoO0n

IF YOU FORGET DCLOSEs THE HANDLER WILL TURN OFF TURE
CaL.L DCLOSE
STOP
END

Figure 2-4
DOS Sine Wave Program Converted To RSX

XVM/RSX V1B X-2-21 September 1976

™

oaOOon aoaoOOoon

XVM/RSX V1B X-2-22 September 1976

ARRAY INITIALIZATION
LOGICAL IR(A)
INTEGER SINWVIZ00) Y2000
DIMENSTON TITLCLO) +MATINFL(20)
DATA TITLOL »TITL(2) » TITLAZ) yTITL(A) /BHTHIS
1 SHIS A »SHSINE y4HWAVE/

SET UF INTEGER ARRAY OF VALUES TO BE PLOTTED

Ky

ng 20 I=1,200
Y(I)=IFIX(SIN(X)%256.)4+512
X=X+,0628

CONTINUE

SET UF SUBPICTURE TO FLOT THOSE VALUES
SINWV(1)=0
FLACE ABSOLUTE REAM FOSITION WITH REST OF GRAFH

CALL FOINT (10-512,0,8TNWV(1))
CALL FRAMTR (3+0+7)

Cal.L LINE(1000-0)

CALL LINE(-1000:050)

Call LINE(O,25050)

CALL LINECO»-S00)

CalL LINE(O»250-0)

CALL FRAMTR (1s4)

CALL GRAFH (Y(1)s100)

CaLL GRAFH (Y(101)+100)

SET UF ‘MAIN’ FILE TO CALL THE GRAFH

MAINFL(1)=0
CALL DINIT (MAINFL (1))
Cal.l COPY (O0sSINWV(L) yMATINFL (1))
CALL FOINT(100,100)
CALL FPRAMTR (151)
CALL TEXT (TITL(1)s19)
THE ONLY CHANGE NECESSARY IS A WAIT
OF SOME SORT TO RETAIN THE FICTURE
THE ®END" KILLS THE FICTURE UNIER RSX
USE LTORFR FOR THE WAIT

CALL LTORFR (LPXsLPYsNAMEs IByIWs1)

ANY FUSH BUTTON OR LIGHT FEN HIT WILL
CAUSE THE FROGRAM TO EXIT

IF YOU FORGET DCLOSE, THE HANDLER WILL TURN OFF TURE
CALL DCLOSE '
STOF
END

Figure 2-5
RSX Sine Wave Program Eliminating Chapter 3 Calls

Ak LIZATION

INCRE-Y

. b

AT I
1OSBHIE A s SHEINE o AHWAVES

(E2pTITLOAYABHTHIE »

SET OO IMTEGER aRRaY OF VaLUES TO BE FLOYTTED

OME FILE FOR BEVERYTHING

5 FOINTER

dy
DAkl PRAMTR (30073

MOVE BEAM
Ol

M E

1] iZZ'

LIME Gy 20000

TURN ON U715 aNy OLD TIME
Call. DINIT CBINWVOLY?

VERTICAL axXIs
Call, LINECGy~5007

MOVE BEAM BACK
Call, LINECQ 250000

SET SCALE TO FOUR FOR GRAPH POINTS
Call. FRAFHTR (L4

Figure 2-6
Sine Wave Program Written For Single Display File
(Sheet 1 of 2)

X-2-23

P& OF 100 POINTS EACH
L A I A A ?
R Y L0 100

Lol GR
bl R

ARSOLLUTE

Gl

POSITION FOR TITLE
FOTNT(LO0: 1003

THOL FOR TS
FRAMTR (110

KT OTETL (L b »0%

R ANY TNTERRUPT BEFURE EXITTING
JEH BUTTON WL 00

Call, LTORPE CLFEeLPFY o MaME TRy Ty i)

LOSEy HAMDOLER WILL TURM OFF

Figure 2-6 (Cont.)

Sine Wave Program Written For Single Display File (Sheet 2 of 2)

X-2-24

TLIRE

T GHOW SOME OF PRAMTR SETTINGS

LOGTCAL TROG
DIFEMSTON ITFILECLOO)

TFILECL y=0

FOSTTION BEAM
Call FOINT (3003000 IFILECLY)

MO A& LINE, PRAMTR SETTINGS OFF
ON ENTERING MAIN FILE. S0 LINE NORMAL

Call, LINE (200,07

TURN ON TaSH AMD BLINK
bt PRAMTR (Z24e]

MDA LENE TO DEMONS
Dbl LINE (0e2003

MOW TURK OFF DASH AMD BLINK, AND
TURN ON T &M ROTATE
Call, FRAMTE (12000005173

MOFOSTITION. MOTE THAT ROTATE
CTE DMLY RELATIVE FOSITIONING

Cald. POINT (10,3000

ANl ROTATED LINE TN OFFSET AREA
CAbkl, LEINE (20000

FEMEMBER TO TURN ON SCOFE
Caldl, DINDY CIFILECLY?

WALT BEFORE EXITTING TO LEAVE PICTURE
Call LTORFE (LPXeLPYyNAME» TRe LW 12

T EXIT

Figure 2-7

Demonstration of PRAMTR Settings

X=2-25

L ROTATING LINE EXaMPLE

L I LTORP R T
O X010y eyl
TON FTO3Y 17202

NG LON TR JX L0 e Y10

L EQUATES FOR TIME DELAYS

EOHTHN AND CDS OF 4.5 DEC
SINE= . 07848
L PREDD

O aDDITIONAL CORRECTION FOR 3 AXIS
SRR . Q0032

SLTLION aikay
N

G MUsT
G OWHILE

L Ny STHNCE WE CAN'T START
A LTORPE IS DUTSTANDT MG
Call DINIT (MATHOL?

CGET IMITIAL BUTTONM
Cald, £

G BELECT & POINTS FOR ROTASTION
1 Ghbe i,
L HOLL FOINT FURTHEST FROM ORIGIM
0o L0 i

2lov &
Celd, RAMNDM
ST TSI
CROTY LT,
Ll RANTDM

AL =N () ~140.

AN
A0 REE
TFOZCE YL LT .0

LM

C

L EEERP

TF S, 6T, 8HY SH=5

[

Figure 2-~8A
ROTATE Subroutine Example (FORTRAN Listing) (Sheet 1 of 3)

X-2-26

C

e

C

C

e
e

C
[
i
C
o

i

L,

\

[
5

C

G
C

o
C

100 CONTINUE

EACH AXIS IS +-(70. TO 270.)

NOW RATIO UP IF GOT SMall FATTERN

HAVE TO KEEF ALL LINES ON SCREEN.
R=SART (250000, /5H?

NOW RATIO UP EVERYONE
no 161 I=1l:4
X{Lo=X (I AR
YOIy=Y(I)Y%R
FAGDEVANDE 1N

101 CONTINUE

ROTATE AROUT EACH A 7 AXIS COMBINATIONG
nn 20 Il=1.7

ROTATE ARBOUT Z7
Ta=TRCIL) AN 4

ROTATE AROUT Y%
TB=TRCIT)Y ANDL.2

ROTATE AROUT X7
TC=TRACILY AOND. 1

CORRECT ROTATE ROUTINE FOR MULTI-AXIS
ET=3,
IF{IACER.O)
IF(IR.EQ. D2
IF{IC.EQ.00
FZRA=SART (2L
SINCL=8INQsZZQ
TFCZZ2,06GTe2.5) SINCL=8INCLACORR
CO8CL=1,-{1.~CO8Q) 22

REIMIT MAIN FILE
MAINCL =0

SET UF INTENSITY AND SCALE
call FLOT {(2:32:09687

no 10 Il=1,80
CAlL ROTATE (4y1AsIRsIC Xy Y ZySINCL,COSTLY

MAKE ALL INTEGER AT ONCE TO HELF ROUNDOFF
0o o121 10=1:6
JKAATO =X C1O)
JYLT0=Y CI0)

121 CONTINLE

SET FOINT FOR INITIAL FOINT
TX= X010 +512
ITY=Jy (14512
Call. SETFT(IXsIY?

Figure 2-8A (Cont.)
ROTATE Subroutine Example (FORTRAN Listing) (Sheet 2 of 3)

X=-2-27

o
C

£
G
G

o
L

[
"
-

C

L

C

o
£

G
C
C

C
L

C
.

[

R

FIVE LINES CONNECTING & POINTS

120

ool

TIME

Do o122 10=1e%5
X=X T04HL Y~ JX (0D
IYe Y CTO+L)~ 07 (10D
Call., FLOT (LeIXe 1Y)
CONTINLIE

DELAY BETWEEN EACH ROTATION

EXCERT IF BUTTON 1 ON

10

TFOIFROLYY GO TO 10
CALL MARKCIT TEW)
Call WalTFROIEY)
COMTINUE

AND A BIGGER ONE BETWEEN EACH FICTURE

X
FIR

IF

27

IF

EFT IF PUSH BUTTON 2
T FIND O

T AROUT RUTTON STATES
Call GETFSH (IFR)

ITFCIPRIZYY GO TO 27

Call MARK{LIT2, TEV)

Call WaITFROTEWV)

FUSH BUTTON 3y HOLD THIS PICTURE

Call. GETFSH (IR
LFCIPROEIY GO TQ 777

FUSH BUTTON &y EXIT

TFCIFRA Y GO TO 999

OTHERWISE CONTINUE AS NORMAL

20

IF

CONTINUE

THRU WITH 7 AXIS TRIES, GET NEW POINTS

GOOTO

NOW IF BUTTON 3 ONy WALT FOR NEW HAPFENING WHILE

UBER

777

IF

ENJOYS THE PICTURE
TO=LTORPELFX LY s NAME » TFRy Ty L3

COBUTTON & ON EXIT

TFCIFREGSY) GO TO 999

BUTTON 3 STILL ONy GO WAIT AGAIN

TFCIPROEY GO TO 7277

DTHERWISE REJOIN LOOF

599

GO To 20
STOR
W

Figure 2-8A (Cont.)

ROTATE Subroutine Example (FORTRAN Listing)

X-2-28

(Sheet 3 of 3)

RANDOM NUMBER GENERATOR
CALLING SEQUENCE
Call RANDM (ZLINITI

7 18 RETURNED WITH & FLOATING FOINT NUMBER
NOFEMAL IZED BETWEEN O AND 1

INIT I8 AN INTEGER QUANTITY USED TO
CHANGE THE INTIALTZATION OF THE
GENERATOR. THIS ARGUMENT I8 OFTIONAL

THE MULTIFLIER IS5 3713
THE DIVISOR I8 2735
THE STARTING NMUMBER IS {(2719+INIT).OR.1

T

o GLORL. RANDM
RAMI G

£

/0 BET UP POINTERS TO HANDLE ARG. S

LAt RaMDmM

Iac

nAac T

LAtk T

SMh ZBKIP IF AaNOTHER INDIRECTY
HE ++3

LA FOINT

ALK FOINT

{f
A FIRST OF TWO WORDS OF FLOATING FOINT

BAc FOINT
Iag

AN SECOND
nac FOINTL

NOW FIRST OF THREE MULTIPLIES
LAC NH JHIGH 172 OF NUMBER
MUL.
ML 244615 ZLOW 172 OF MULTIPLIER
LACH LOW 172 OF ANSWER
nac NH JERUILD NEW ANSWER

\a.

/ NOW CHECK FOR INIT ARGUMENT
162 T
LAt T JN0ES FOINTER=JMP
KOk RANDM ZLAST 13 RITS
AN (L7777 /REEP LOW 13
GA FERIF LF ARGUMENT
JHE NOARE ANOT ONE

/ THERE 18 INIT ARGUMENT: IS THIS FIRST TIME

L.ACk T /
SMn ASKIF IF EXTRA INDIRECT

Figure 2-8B
ROTATE Subroutine Example (Random Number Generator Coding) (Sheet 1 of 2)

X-2-29

JHF
nac
LACk
nAac ZNOW FOINTS TO INIT
LAk FIRET JMASK 80 WE CaN OR NL
AMNIK)

NOARG LA FIRST ZSET NO LONGER FIRST TIME
XOR NL. SXCPT FIRST: AC=0
LA Nl BTORE RESULT

i e

7
S MOW LOW 172 NUMBER, HIGH 1/2 MULTIFLIER
MU
MH 343277 AHIGH 172 OF 5715
LAt JLOW 172 OF MULT.
Tan NH JASSEMLY OF HIGH 1/2 NEW NUME.
nag NH JHOLDY FOR NOW
/
A NOW LOW L/72 TIMES LOW 1/2
£
LA M.
MUL.
L. 1 JINITYS AT 1 AS DEFAULT
TaAl MH AHIGH 172 MULT TO HIGH 1/2 NUM
NI (377777 7 MAKE IT FOSITIVE
0ac NH ATHIS I8 THE NEW HIGH HALF
LACH JGET NEW LOW HALF
DA NL. APLACE IT
L.ac NH /NOW NORMAL IZE
MNORM ZTO FLOATING FOINT FORMAT
DAk FOINTL /HIGH ORDER MANTISSA IN SECOND WORD
L.aCa SNOW MAKE 9 BITS LOW ORDER MANTISSA
AN (777000 ZWHICH WILL BE IN TOF OF FIRST WORD
A2 FOINTL JUSE THIS A8 TEMPORARY TO HOLD IT
L.ATS AGET STEP COUNT TO COMPUTE EXPONENT
AALC 34 T THO TO NORMALIZE TO 1s AND MAKE
CHMaTIAC JRTRAN EXFECTED TWO-COMPLEMENT EXFONENT
AN (P27 SETRIFP TO LOW NINE BITS
Tl FOINTL AFUT TOGETHER TWD HALVES OF FIRST WORD
[ACx FOIMT SAND RETURN IT TO CALLER
SMP AN
FOINT O
FOINTL 0
NH 2
FIRST FIPVVS
T O

Figure 2-8B (Cont.)
ROTATE Subroutine Example (Random Number Generator Coding) (Sheet 2 of

X-2-30

2)

CHAPTER 3

MAIN DISPLAY FILE ROUTINES

The calls presented in this chapter are supported by RSX graphics to
maintain DOS graphics compatibility. The calls need not be used at
all for graphics programs being created under RSX. The PLOT calls do,
however, serve as a model for the REPLOT calls of Chapter 4.

Under DOS there are two distinctly different types of display files,
main files and subpicture files. It is the intent of the RSX graphics
package to remove this distinction as much as possible without making
DOS programs incompatible with the RSX graphics system.

Under DOS the calls that operated on subpicture files had distinctly
different capabilities than the calls that operated on main files.
The main file was that file incorporating the VT-15 processor loop;
subpictures were called as subroutines from it.

Under RSX all the code generating capability of the package is
included in the subpicture calls, and they may indeed operate on the
‘main' file. The main file is linked as a display subroutine from the
VT-15 handler. The subpicture files are, in turn, linked as display
subroutines from the main file.

Of the original DOS calls described in the 'MAIN DISPLAY FILE
ROUTINES' chapter of the DOS graphics manual, the calls DINIT and
DCLOSE are found in Chapter 5, Input-Output. The calls DELETE,
REPLOT, and RSETPT are discussed in Chapter 4, Code Modification. The
two remaining calls described in this chapter are: SETPT and PLOT.

SETPT - places in the main file the code to absolutely position the
beam. The resulting point is not intensified.

PLOT - accesses the code generating capability (by a selection
argument) of the subpicture calls LINE, TEXT, COPY, PRAMTR, GRAPH,
POINT, and ANY. The GRAPH, POINT and ANY subroutine accessed by PLOT
were not originally provided in the DOS graphics package. They have
been added to the RSX graphics package to provide an internal
compatibility between PLOT and REPLOT in the RSX system. The last
file given as an argument to the routine DINIT is generally referred
to as the main file. The code generated by PLOT is placed in the main
file.

X=-3~-1

3.1 SETPT SUBROUTINE

The SETPT subroutine generates the code to absolutely position the
beam. The resulting point is not intensified. The calling sequence
is:

CALL SETPT (IXeIYLCNAMET)

where: IX is a positive integer absolute X-position to which the
beam is to be located.

IY is a positive integer absolute Y-position to which the
beam is to be located.

CNAME is the argument for the return of an edit address.

Both IX and IY are truncated to ten bits without any warning to the
user. The code 1is placed in the display file last given as an
argument to the DINIT routine. This file is referred to throughout
this document as the 'main' file.

The operation of this subroutine is to place two locations of display
code in the main file. The first 1location contains the VT-15
instruction to place the display beam at the correct absolute
Y-position. The second contains the corresponding instruction for
X-positioning.

3.2 PLOT SUBROUTINE

The PLOT subroutine accesses the display code generation capability of
the subroutines COPY, LINE, PRAMTR, TEXT, POINT, GRAPH, and ANY. The
first argument to all PLOT calls is a selection argument to describe
which subroutine is to be accessed, as follows:

CODE SUBROUTINE

COoPY
LINE
PRAMTR
TEXT
POINT
GRAPH
ANY

AU WNHO

Note that the subpicture routines can also be used to access the main
file by supplying the mainfile as the file address.

3.2.1 Access Subroutine COPY
The calling sequence to access the COPY subroutine is:
Call PLOT (OeRSTyPNAME (LI CNAMET)

where: the code 0 is the select argument indicating that this call
to PLOT generates COPY code.

RST is the argument indicating whether the hardware
SAVE-RESTORE option is to be used in the generated code.

PNAMEL (1) is the address of the display file to be called as
a subroutine.

CNAME is the output argument for the return of an edit
address.

The code generated by the PLOT call is placed into the main file. See
paragraph 2.5 for a more complete description of the code generated
for the COPY subroutine. 1In the following call:

Call FLOT (0»0y THOUSE(L) yTEDIT)

The first zero indicates COPY, the second that the hardware
SAVE-RESTORE is not to be used, IHOUSE(l) is the subroutine called,
and an edit address is returned to IEDIT.

3.2.2 Access Subroutine LINE
The calling sequence to access the LINE subroutine is:
CALL FLOT ¢(LeIXeIYLDyINTL»ONAMETD

where: the code 1 indicates the LINE code generating routine is to
be accessed.

IX is the X~-displacement in raster units.
IY is the Y-displacement in raster units.

INT indicates whether the 1line is to be intensified.
(INT=nonzero, the line will be visible; INT=0, the line
will not be visible. If INT 1is omitted, INT=nonzero is
assumed by default.)

CNAME is the output argument for the return of an edit
address.

The code generated by this call is placed in the main file. The
square brackets indicate that the user may provide all five arguments,
he may omit CNAME, or he may omit both INT and CNAME. See paragraph
2.3 for a more complete description of the code generated by the LINE
subroutine. 1In the following call:

ALl FLOT (1s100y-200)
the 1 indicates that LINE code is to be generated. The delta X is 100
raster units and the delta Y is =200 raster units. The line is

intensified because the INT argument is omitted. The code goes into
the main file. No edit address is returned.

X-3-3

3.2.3 Access Subroutine PRAMTR

The calling sequences for a single feature specification, and multiple
feature specification are shown, respectively, in the two calls that
follow:

Call FLOT (2y8ELEQT »VALUEL y CNAME S
Call PLOT (2 SELECT s VALUEL s VALUEZ v v v s s ONAME TS
where: The code 2 indicates the PRAMTR code is to be generated.

SELECT indicates which hardware features are to be
activated.

VALUE indicates what setting is to be placed in the hardware
instruction.

CNAME is the output argument for the return of an edit
address.

See paragraph 2.6 for a more complete discussion of PRAMTR code
generation, 1limits for VALUE arguments, etc. The following call
illustrates the setting of the BLINK feature:

Call PLOT (2:8:1)

The following call illustrates the simultaneous setting of the name
register to a value of 47, and the intensity to 6:

CALL PLOT (2y130s8s 470 JEDTT)

On completion of execution of the call, the argument JEDIT contains
the address of the first of the two locations of code generated by
this call.

Under XVM, if a CNAME argument is provided to this type 2 PLOT call, a
special marker no-op is placed in the display file to terminate the
display group. When additional information is placed in this display
file by a Chapter 2 or Chapter 3 call, the marker no-op is reclaimed
as display space unless the call is a PRAMTR call, or a type 2 PLOT
call. In these two 1latter cases, the display file will remain one
location longer because of the imbedded no-op. The display file is
also a location longer if it is terminated by a type 2 PLOT call.

This marker no-op is necessary because the new CNAME format cannot
distinguish one two-location parameter graphics element from two

one-location parameter graphics elements for the purposes of
REPLOTing.

3.2.4 Access Subroutine TEXT
The calling seqguence to access the TEXT subroutine is:
CALL PLOT (398TROL) »NL e CNAMET)
where: The code 3 indicates that TEXT code is to be generated.

STR(1) is the address of the string of 5/7 ASCII to be
displayed.

X-3-4

N is the number of characters to be displayed.

CNAME, when present, contains an edit address upon
completion of the call.

See paragraph 2.4 for a more complete description of the assumptions
and limitations of this type of code generation. The following call
displays 15 characters of a string located in the array ZOT:

Cilol PLOT (3

The 3 indicates the TEXT code will be generated. The character string

is in the array Z0T. The pointer (edit address) to the location of
this group of commands is in the variable ISAVIT.

3.2.5 Access Subroutine POINT
The calling sequence to access the POINT subroutine is:
ol FLOT (A DX IV D e INTE » ONEME T

where: The code 4 is the select argument to access the POINT code
generating routine.

IX and IY are the integer X and Y values to which the beam
is to be positioned.

INT is the intensity control argument. The point is

intensified only if the INT argument 1is provided, and

nonzero.

CNAME, when present, is for the return of an edit address.
This routine is somewhat redundant with SETPT. The intent is to
supply intensified point capability without destroying compatibility
with existing code wusing SETPT. See paragraph 2.10 for a more
complete description of POINT code generation. The following sample
call generates the code to position the beam to 200,300, and to
intensify the resulting point:

Call FLOT 4200300003

3.2.6 Access Subroutine GRAPH
The calling sequence to access the GRAPH subroutine is:
Call. PLOT (SDATACL) o NE AL » CHAMEDT)
where: The code 5 indicates that GRAPH code is to be generated.

DATA(l) is the address of the array of positive integer data
provided by the user. '

N is the number of data points to be displayed.

A specifies the axis of the plot. It is a normal Y versus X
plot unless the argument A is present and nonzero.

CNAME is the output argument for the return of an edit
address.

See section 2.7 for a more complete description of GRAPH code
generation.

3.2.7 Access Subroutine ANY
The calling sequence to access the ANY subroutine is:
CALL FLOT (&62ARRAY (1) »NLsCNAMED)

where: The code 6 indicates that the ANY subroutine is to be
accessed.

ARRAY (1) is the user provided array of VT15 code.

N is the number of elements of the array to be transferred
to the main file.

CNAME, when present, is the output arqument used for the
return of an edit address.

See section 2.11 for a more complete description of the ANY routine.

XVM/RSX V1B X-3-6 September 1976

CHAPTER 4

CODE MODIFICATION ROUTINES

The code modification routines provide a limited means of modifying
existing VT15 code, rather than completely recreating the whole
display file. 1Instead of working on a specific display file, these
routines use an edit address, CNAME, which is the output arqument
returned at the time of graphics code generation. CNAME provides the
starting address of a group of VT1l5 commands.

The general mode of operation of the code modification routines is to
replace an old group of commands with a new group. 1In deciding
whether there is room for the new command group, the modification
routines insert display no-ops immediately following the old command
group. A brief description of the routines follows:

DELETE - replaces a group of commands with display no-ops.

RSETPT - accesses the SETPT code generating routine. The code is
generated, if it fits, at the address provided in the CNAME argument.

REPLOT - accesses the code generating routines LINE, TEXT, COPY,
PRAMTR, GRAPH, POINT and ANY. The code 1is placed at the CNAME
address, if it fits.

A comprehensive programming example using the code modification
routines is located at the end of Chapter 5.

4.1 GENERAL

Under XVM/RSX, the CNAME pointer has a new format. It used to be a
15-bit address pointer with a three-bit count field. It is now a
17-bit address pointer. The graphics system derives the count of
in-core display items by examining the display code.

When REPLOT is used to place parameter instruction code (type 2) over
nonparameter code, a problem arises. Marker no-ops are used to
terminate parameter code, because the parameter groups have variable
length. When a REPLOT occurs, marker no-ops must be inserted if
parameter instructions precede or follow the new group. One marker
no-op 1is required for each parameter-to-parameter interface. The
REPLOT can fail if insufficient space 1is available for the marker

no-ops.

XVM/RSX V1B X-4-1 September 1976

When a group of commands is replaced by a group having the same number
of commands, the new group is written over the old. If the new group
is smaller than the o0ld, the new group is placed so that it starts at
the same 1location as the 0ld. The extra locations at the end of the
new group are filled with display no-ops. If the new group is larger
than the old and there is a sufficient number of display no-ops
following the old group, the new group is placed so that it starts at
the same location as the o0ld. If the new group is larger and there is
not a sufficient number of display no-ops, the display file 1is not
modified.

If the user has made REPLOT or RSETPT a FORTRAN function, he receives
a logical FALSE indication if the edit has failed or a logical TRUE
indication if it has succeeded. Otherwise, there is no indication.
(MACRO programs receive an AC value of -1 if the edit has succeeded;
zero if not.)

If the user wishes to replace two small command groups with a larger
one, he should first DELETE the second command group. On editing the
first group, the graphics system uses the display no-ops already in
place for the second command group. :

WARNING

The code modification routines require
an I/O CAL to be issued to the VT15
handler. If there is an outstanding
LTORPB, the CAL cannot be immediately
honored. When the LTORPB is completed,
the modification call is completed.

ABLErE CNAME CUALGED T AvoiD CONFLICT Lo TH FILE DELETE. CALC
4.2 -PELEEE

DELETE replaces the group of commands pointed to by CNAME with display
no-ops. The calling seguence for the subroutine and function calls
is:
POLETE
CALL BEEETFE (CNAME)D
I=RELEFE (CNAME)
DOLETE.

CNAME is the edit address obtained when the group to be deleted was
created. In the function call form, both I and DELETE must be
declared as logical variables.

4.3 REPLOT

The REPLOT routine allows the code-generating capability of subpicture
calls COPY, LINE, PRAMTR, TEXT, POINT, GRAPH and ANY to be used to
edit graphics code over existing graphics code. The form of the
REPLOT call is the same as that for the PLOT call described in Chapter
3. The first argument of REPLOT calls 1is a selection argument to
describe which routine is to be selected:

Code Routine
0 COPY
1 LINE

XVM/RSX V1B X-4-2 September 1976

PRAMTR
TEXT
POINT
GRAPH
ANY

AU B WN

The selection argument is followed by those arquments required by the
code—-generating routines, as indicated in Chapter 3. The difference
between PLOT and REPLOT is that there are no optional arguments for
REPLOT calls, because the final argument, CNAME, must be provided in
the REPLOT call.

A list of the calling sequences for both subroutine and function calls
is given below for each of the code-generating subroutines. A logical
FALSE indication is returned to the function if the group does not fit
or if CNAME is zero.

CALL REFLOT (GsRST»FNAMEL (1) CNAME)
I=REFLOT(OsRET s FNAME (1) » CNAME)

CALL REFPLOT (1+IX»IYsINT»CONAMED
I=REFLOT (1 IXsIY s INT»CNAME)

CaLl REPLOT(2ySELECT yVALUEL»VALUEZy » UNAME)
I=REFLOT(2ySELECT » VAL UE Ly VALUERZ » y CNAME)

CALL REFLOT (3»STHR(1) sNyCNAME)
I=REFLOT(3ySTR (1) yNyCNAME)

CALL REFLOT(4yIXsIYyINTyCNAME)
I=REFLOT(4yIX»IYs INTyCNAME)

CALL REFLOT(SsDATACL) »Ny &y CNAME)
I=REFLOT(SsDATACL) s Ny Ay CNAMED)

CALL REFLOT(&sARRAY (1) v Ny CNAME)
I=REPLOT (6, ARRAY (1) s Ny CNAME)

4.4 RSETPT

The RSETPT routine uses the code-generating capability of the SETPT
routine to edit over previously existing code. The operation is
similar to the REPLOT call:

CALL RSETFT (IXyIYyUNAMED
I=RSETFT(IXsIYyCNAME)

XVM/RSX V1B X-4-3 September 1976

CHAPTER 5

INPUT-OUTPUT

5.1 GENERAL

The RSX graphics system allows the FORTRAN user limited access to the
RSX VT15 handler. The available calls and a brief description of each
are listed below:

VTUNIT - provides a logical unit number (LUN) to the VT15 handler for
the scope.

DINIT - requests that the provided display file be called by the VT15
as a subroutine from the handler 1loop. The file provided is
established as the main file.

DCLOSE - requests that the present main file be detached from the VTI15
execution loop (i.e., turned off).

CINIT - requests that the provided file be called as a subroutine from
the VT15 execution 1loop. This file is not established as the main
file. This file and all related calls are displayed on both scopes
for the VT15 processor.

CCLOSE - requests that the last CINITed file be detached from the VTI15
execution 1loop.

LTORPB - provides the user with the capability of obtaining status and
interrupts from the light pen and push buttons on the scope.

GETPSH - reads the present push-button settings.

TRACK - allows the user to input X-Y coordinate data in a limited
manner with the light pen.

The RSX VT15 handler provides for a maximum configuration of two VTI15
processors, each with two scopes. Each of the four scopes can have
independent operation of light pen and push buttons. Each of the four
scopes can display a different picture, or image. With two scopes on
one processor, the amount of material that can be displayed on the
screen before "flicker" occurs is the sum of the displayed elements on
both scopes. (The CINIT display of identical pictures on both scopes
is considered a single execution.)

XVM/RSX V1B X-5-1 September 1976

WARNING

If there is an outstanding LTORPB, the
calls of this chapter (except for VTUNIT
and LTORPB) cannot be immediately
honored.

5.2 VTUNIT CALL

VTUNIT is used to notify the handler which logical scope number is to
be used. Logical numbers 0 and 1 are on the first VT-15 processor,
and 2 and 3 are on the second. TIf VTUNIT is never called (DOS does
not have this call), logical unit number 0 is used. If used, VTUNIT
calls should be made the first «call to the graphics systen. The
calling sequence is:

Ciiad, VT TT 08
The unit number N must be provided as an argument.

The 'normal' LUN slots for the scopes are 24-27. The graphics system
adds 24 to the provided number, and passes the result to the handler.

There is no 'assignment' implicit in this call. TIf, for example, one
user requests unit 0 and starts up a picture on the scope, and another
user now reguests unit 0 and starts a picture, the second user's
picture will be shown. No one will get an error message or any other
indication. If protection against this type of situation is desired,
the RSX ATTACH command can be used to lock out other jobs.

5.3 DINIT CALL

This is the traditional DOS call to start up the picture. It serves
basically the same function under RSX. The calling seguence is:

Codai DINIT (MalpcLs

Here MAIN is the array containing the file to be the 'main' file.
Under RSX this file is called as a subroutine by the VT-15 processor
from a loop in the VT-15 handler. This change 1is made necessary
because the VT-15 processor is essentially a shared device. Calls to
the PLOT routine will now place code in this file, that is, it is now
the ‘'main' file. When the VT-15 processor enters the 'main' display
file, the intensity setting is 4, SYNC is on, and all other parameter
settings are 0. The beam position is undefined unless TRACKing is in
force; in this case only, the beam position 1is the center of the
light-pen TRACKing symbol (see Section 5.9).

X=5-2

5.4 DCLOSE CALL

The call to DCLOSE is used to stop the execution of the present main
file by the VT15 processor. The handler removes the call to this
routine from its loop. The resulting file can be used as a subpicture
file or restarted as a main file. The assignment of the main file for
PLOT calls is not changed by DCLOSE. - The calling seguence is:

CalLl DCLOSE

5.5 CINIT CALL

The CINIT routine is similar to the DINIT routine in that it starts up
a display image by reguesting that the handler call the provided file
~as a subroutine. (There is no effect on the main file assignment for
the purposes of PLOT calls.) Here, however, the resultinag imrmage is
shown on both scopes (if present). This call can be used, for
example, for some feature common to both displays, such as light pen
buttons, grids, etc. The execution time (VT15) of a CINIT file is
half that reguired for each scope to separately display the same
image. The VT15 processor enters the CINIT file with the same default
parameter settings as for the main file. The position of the beam on
- entry to the file can be anything. A recommended procedure is to
issue an absolute beam positioning call early in the file. The
calling seguence is:

CALL CINIT (IFILEC(1))

5.6 CCLOSE CALL

The CCLOSE routine is similar to the DCLOSE routine, except that it
acts on files that have been CINITed. The calling sedquence is:

CALL CCLOSE

5.7 LTORPB CALL

This routine allows the user to obtain information and interrupts from
the 1light pen and push buttons. While the argument structure and
information passed are similar to that under DOS, the use of this
routine is different under the multiprogrammed RSX system. Under DOS,
for example, it is possible to establish a tight loop with an LTORPB
waiting for a push-button "hit" to occur. This is a poor procedure
for a multiprogrammed system, but is quite satisfactory for a
stand-alone system.

Another condition to avoid is a tight loop consisting of a 1light-pen
hit, a program reenable of the hit element, another light pen hit,
etc. See the example program in Figure 5-1 for a more complete
explanation.

A call to LTORPB is necessary to activate the light pen. At all other

times, the 1light pen is left inactive to reduce system loading. The
calling sequence is:

XVM/RSX V1B X-5-3 September 1976

Tl TORPROD s I o MOMBEy TRTy THEICHD cWATT 3

where: IX is the absolute X (horizontal) coordinate of the end of
the vector that caused the 1light pen interrupt. It is
meaningless when there has not been a light pen interrupt.

IY is the absolute Y (vertical) coordinate of the end of the
vector that caused the 1light pen interrupt. It 1is
meaningless if there has not been a light pen interrupt.

NAMR is the setting of the name register at the time of the
light pen interrupt. It 1is meaningless if there has not
been a light pen interrupt.

"IBT is the name of a logical six member array into which the
on-off state of each push button is placed. The values are
meaningless if there has not been an interrupt. Upon a
light pen interrupt, the push buttons are read correctly.

IWICH will be 1 if a light pen hit has occurred, 2 if a push
button hit has occurred, and 3 if both (just barely likely).

WAIT, when present and nonzero, indicates that the handler
is to wait until an interrupt occurs before returning to the
user.

LTORPB, IBT and I must be declared as 1logical variables in a TYPE
statement when used in function calls. When I is true, an interrupt
has occurred; when false, one has not.

If the WAIT argument is used, another calling sequence is possible:
CaL.l. LTORPE (IXeIYynaMRe TBT» TWRCH 12

For this subroutine call, only IBT 1is required to be declared a
logical wvariable 1in a type statement. 1In this case it is known that
an interrupt has occurred when control returns to the user. The
following example shows the use of LTORPB in an IF statement:

ITFCLTORFROLPY LEPY s NAME» TET» TLE«O GO TO 100

If an interrupt occurred, go to statement 100. Note that the form of
the WAIT argument gives an immediate return.

The LTORPB call issues an I/0O CAL to the handler to enable 1light pen
and push button hits. If WAIT was requested, control returns to the
user at the time of the interrupt. The status, of course, is that at
interrupt time. Interrupts that occurred prior to the initial LTORPB
will have been ignored. Interrupts are not enabled when control
returns to the user.

The situation is somewhat different when the LTORPE is specified with
an immediate return. Initially, interrupts will not be enabled. The
first LTORPB enables the interrupts, and returns to the user. This
first LTORPB cannot have detected an interrupt. LTORPB's will be
issued at some interval, each asking if an interrupt has occurred.
After one of these, the interrupt will finally occur, status will be
recorded at this time, and the interrupts will be disabled. The next
LTORPB will notify the user that the interrupt has occurred, return
the stored status, and leave the interrupts disabled.

X-5-4

It is possible for the user to issue an immediate return LTORPB, do
some work, and then issue an LTORPB with a WAIT. The situation is
then identical with that if the LTORPB with the WAIT had been
initially issued.

5.8 GETPSH CALL

The GETPSH call immediately returns the present state of the push
buttons. The calling sequence is:

Call. GETFSH (IBT

where: IBT is a logical array of size six into which the push
button settings are returned.

5.9 TRACK CALL

The TRACK routine has been reduced from a many optioned routine under
DOS to a much simpler function under RSX. This is primarily due to a
necessity to keep interrupt level time to a minimum. (Consider four
scope users TRACK'ing at once). The program provides an initial
position of a tracking symbol. The scope user moves the symbol to the
desired position with the light pen. The scope user then hits a push
button to signal the end of tracking. The program then receives the
final X-Y position of the tracking symbol. The user program does not
receive control for the duration of this procedure. The calling
sequence is:

Call, TRACK (IX LY TOFTy TARRAY D)

where: IX and IY are both the original X-Y co-ordinates for the
tracking symbol, and the variables to receive the final
co~ordinates.

IOPT and IARRAY are arguments under DOS; they have no
function here, but can be supplied without causing errors.

In contrast to DOS, no modification is made to the user 'main' file in
tracking. The whole mechanism exists in the handler. The size of the
tracking symbol is an assembly variable in the handler. It might
prove convenient to re-assemble for a 21" scope, as the symbol was
designed on a 17" scope. The following sample code shows the use of
TRACK:

C START IN CENTER OF SCREEN
Call TRACK (IX.IY}
CaLl POINT (IXeIYeyOeIFFCL))
L UBE RETURNED UALUES FOR ABSOLUTE POSITION IN
C THE DISFLAY FILE IFF

During TRACKing, the beam position upon entry to the user 'main' file
is the «center of the TRACKing symbol. TIf it is desired to have some
graphics element automatically follow the TRACKing symbol, the first
code in the 'main' file can be a COPY call to a subroutine containing
the graphics element. Upon termination of TRACKing, the COPY call can

X~5-5

be DELETEAd. The graphics element, along with position information
returned from TRACK, can be permanently linked into the picture. At
some future time, the top of the 'main' file can be REPLOTTed to link
another following item during TRACKing.

5.10 COMPREHENSIVE EXAMPLE

The following example program (Figure 5-1) uses a considerable portion
of the RSX capabilities of the graphics system. It shows some of the
techniques to establish an interface between the system and the
external user of the scope which minimizes system loading.

g
i Ld

FRR B I o

THIS IS A MORE GENERALIZED FROGRAM FOR THE
MANIFULATION OF ITEMS ON THE SCREEN. IN STATE 1 OF THE
PROGRAM: THE WORDS 7ADDS “MOVES “KILLS WILL
AFFEAR ON THE TOF OF THE SCREEN. THE PROGRAM WILL ACT ON A
LIGHT FEN HIT ON ONE OF THESE WORDS. & FUSH BUTTON HIT ON
BUTTON MUMBER &y THE RIGHTMOST. WILL CAUSE THE PROGRAM TO
EXTT FROM STATE 1. WHEN THE PROGRAM GOES FROM STaATE 1 TO
ONE OF THE ADD-MOVE-RILL ACTION ROUTINES. THESE WORDS
ARE REMOVED FROM THE 35C ZENv TO HELF THE USER 8TaY
SYNCHRONIZED WITH THE PROGRAM: AND TO LIMIT UNWANTED
LIGHT FEN HITS.

THE “aDD’ INTERRUFT WILL CAUSE THE TRAUKING ..
AFFEAR. THE USER MOVES THE TRAUKING SYMBOL TO THE ﬂﬁmua
FOSITIONy AND TERMINATES TRACKING BY HITTING A PUSH
PU[TUN fNUMI SIS RECOMMEMDED SINCE IT IS NOT USED FOR

- THE USER THEMN HITS a4 BUTTON FROM 1-4 TO
D ITEM TO RE FLhU"U AT THE CO-ORDINATES
TTU BY Thﬁu ING. THE ITEMS ARE. IN ORDERs SQUARE s
ANGLIE » AND CIRCLE. & HIT ON BUTTON &6 AT THIS FOINT
URN THE PROGRAM TO STATE 1 WITH ND ACTION TAKEN.
N OHITS WILL BE IGNORED. AFTER PLACEMENT OF THE
4 THE FROGRAM RETURNS TO STATE 1 TO WALT FURTHER
IUMN&NDS, f MAXTHMUM OF CaN BE PLACED. THIS
SOMEWHAT ARBITRARY MUMBER I8 FOR L1 078 anD
11 x5,

S N

THE “MOVE" INTERRUPT WILL ENABLE THE LIGHT FEN TO
RECEIVE a HIT ON THE ITEM THE USER WISHES TO MOVE. & HIT
ON FUSH BUTTON & RETURNS THE FROGRAM TO STATE L. OTHER
FUSH RUTTONS ARE ITGNOR WHEN THE TITEM IS5 SELECTEX. THE
TRACKING SYMROL WILL APPEAR. MOVE THE TRACKING SYMEOL TO
THE DESIRED POSITION. A& FUSH BUTTON HIT WILL TERMINATE
TRACKINGy AND THE ITEM WILL BE MOVED TO THAT FINAL
POSITEON, THE PROGRA&M WILL THEN RETURN TO STATE 1.

THE “KILLS INTERRUFT WILL ENARBLE THE LIGHT FEN TO
RECETVE & HIT ONM THE ITEM THE USER WISHES TO REMOVE. A HIT
ON FUSH BUTTON & RETURNS THE FROGRAM TO STATE 1. WHEN
A LTGHT FEN HIT OQCCURS: THE ITEM IS REMOVEDs AND
THE PROGRAM RETURNS TO STATE 1.

REMEMEE
HIT I8 NE

THEOUGHOUT THAT & SEFSRATE FUSH BUTTON
ARY TO TERMIMNATE TRACKING!

LOGTCAL TBO&S

IHTEGER CIRCCS0 o BRI s TRICLOD

TNTEGER XC(LO) »DUMCLO) »CLEARCZ

DIMENSTOM I85C22) LOCRD) s LINK 222 e TACZ I v THMIR2Y » TK(2)
DIMENSTON MAINC200X s LB(30)

SET UF TEXT STRINGS FOR ADD MOVE » KT
naTa Tadll)/GHanh »
nDaTa THMOL) ASHMOVE /

Figure 5-1
Comprehensive Example (Sheet 1 of 7)

X-5-7

DaTa TR ASHRILL /
C
CVT=-15 INSTRUCTION SO BUTTONS ALWAYS OFF
i THE & DESIGNATES 0CTAL —~ VERY CONUVENIENT!
CLEARCL)=4#231374
e
o NOW ZERD all FILE TOFS
CIRCCL =0
GR1y=0
TRI(L) =0
Kl)=0
ML b=
MAEINCL =0
LE(1)y=0

G ONOW ESTARBLISH ELEMENT SUBROUTINES

L THE CIRCLE
Call. CIRCLE (25.90.9380.920.yCIRED)

G THE SRUARE
CALL LINE (25-2050.,8001))
CaALL LINE (0,500
Call LINE (30,00
Call, LINE (0»-50)
Call LINE (50,00
¥
£ THE TRIANGLE
Call. LINE (~27y-160sTRI{L)Y)
Coall LINE (27:47)
Call, LINE (27.-47)
Call, LINE (-354.07)
G
o THE X '
Call, LINE (25,-25,0.X{1))
LAl LINE (~50,50)0
Cabl LINE 50y0¢0)
Call LINE (~50s-50)
G
G AND THE FILE FOR LIGHT PEN BUTTONS
o
L MAKE SCALE Ly AND TURN ON LIGHT FEN
G IT WOULD PROBARLY RE BETTER TOQ FUT THIS
COINTOD THE OFFSET AREA.
Call PRAMTR (SelyloLBCL)D

C
G FIX THE REAM MEAR SCREEN TOF
Call. FOINT (100y9350)

C BEY NAME REGISTER TO 41 50 WE KNOW IT 85 ADD
Call, FRAMTR (128410

G

T AND NOW THE “abD’

G912 Call, TEXT (TACLY»3)

b

Lo SAaME FOR MOVE aND KILL...
Cat.l FOINT (300,950)
CalL PRAMTR (128,420

Figure 5-1 (Cont.)
Comprehensive Example (Sheet 2 of

X-5-8

c
[
e

[

C

G

C

[

caLl. TEXT (TH{L) 43
CALL. FOINT (500,930)
CaLl. FRAMTR (128,430
Call TEXT (TE{l)s47

TURN OFF LIGHT FEN: AND REFLACE SCALE ©
ALTERNATELY WOULD COULD USE SAVE-RESTORE
IN THE COPY Call To LB4OL)

Call FRAMTR (G20.0)

NOW THE DUMMY FILE WHICH IS CALLED WHEN THAT
SLOT HAS ND ELEMENT ‘
Call, LINE (10050 0LML1Y)

HOW SET UF MAINS FILE
CalLL aNY (CLEARCL) »1 »MATINCL)

HORIZONTAL AXIS
CALL PFOINT (05127
Call LINE (1023,0)

VERTICAL AXIS
CALL POINT (351200
Cotl. LINE (010230

MAKE TTEME BRIGHTER THAN aAXES
Call. PRAMTR (2s6)

Call. TO THE BUTTONS FILE
Call. COPY (0LBOL))

NOW LIGHT PEN ENARLE FOR ITEMS: RETURN aDUR SINCE
THIS WELL BE EDITTED ON AND OFF. ON IS BIGGER THAN OFF!
80 WE MARKE ON FIRST TO GET ENDUGH SPACE. TURNED OFF AGAIN
AT LINE TAGGED 3G.

Call. FRAMTR (4 Lo MATNCL) ¢ TTEME?

REMEMEER TO TURN ON SCOPE
Catl. DINITOMAINCLY)

NOW WE aRE GOING TO ESTARLISH LINKAGES FOR 22 ITEMS

A PRAMTR TO SET NAME REG. FOR LIGHT FEN HITSs A SET FOINT

TO FOSITION THE ITEMy aAND A COPY TO LINK IT TO FILE.

AT THIS TIME THERE ARE NO ITEMS, AND THE COPY WILL BE TO

ﬁ ﬂUMMY ROUTINE. THE REAL THINGS WILL BE ERITTED IN LATER.
’ DORESSES FOR PFOINT AND COPY WILL RBE PLACED IN

]S OUCUFTED BYA REAL ITEMS IT WILL BE ZEROED NOW.
my 13 I=1,22

S5ET WP NAME REG=5L0OT NUMBER
LAkl FRAMTR (128,10

ZERD OCCUPTER INDICATOR
IS =0

ARSOLUTE BEAM POSITION COMMAND
Figure 5-1 (Cont.)

Comprehensive Example (Sheet 3 of 7)

X-5-9

SOAND LINK. IS.(N) IS aN ARRAY TO TELL WHEN THE

C

-

[

C
N
o

C

-

o

G

S
13
ENTE

BUT
THE

Call PO

CORY COM
Cald. €O
CONTINU

R STATE
FIRST PR

NamME REG

INT (1sls0QsMAINCLYLOCCTY)

T
FY CO»DUMOL Y o MAINCLY 2 LINK (LD
E

1y WALT FOR HIT
EVENT LIGHT FEN HIT OM ITEMS!!H!
ISTER WOULY PREVENT US FROM THINKING

THAT AN ITEM HIT WAS AN ALD-MOVE-KILL HIT. BUT

SOME
L.OOF

MOW

AMOUNT
IOHIT DN

Call. RE

SINCE WE

OF SYSTEM COULD RBE USED WP BY THE
ITEMy WE THROW IT AWAYe HIT DN ITEM....

FLOT (2490 ITEME?

ARE ENTERING STATE 1. FUT THE

AL0-MOVE-KILL BACK ON THE SCREEN.

Call UM

BLMR(LEBOL)

N WALT UNTIL & HIT HAPPENS. THEN WE GET CONTROL

IF .

Call LT

AST FUSH
TF(IRCGS

ORFE (LFXesLPY s NAME» TRy TWe L)

BUTTON EXIT
Y 6O OTO 99

IF NOT & LIGHT FEN HITy GO WALT AGBATHN

TEIW.G

T.13 GO TO 30

IF WRONG NAME REGISTER. ALSD WaAIT AGATIN

Ay

O

Al

TF {NAME
TR ONAME

GOT A L
Gl B
G0 TO 20
TF OMAME
TF ONAME

10

LTe41) GO TO 30
LET.A433 GO TO 30

EGal ONE». S0 TURN OFF ADG-MOVE-KILL
AN CLROLY

REECT ACTION ROUTINE
LEQL.43) GO TD A3
LERLAZY GO OTO 42

DEFAULT T=0 IF MO MORE EMPTY SLOTS

FIND
s

41

10

L4t X
ouT IF
NUMBER T
TFCIsY
COMTINU

Sy 32

SL.OT EMPTY» AND SAVE
FOIT IS

S EQLQ) Is=I

E

IF MO EMPTIES. BACK TD STATE 1

G913
HAVE

SET

TFOTL.EQ

AN EMPT
I8{T =]

SWITCH»

0 GO TO 30
Ye DONTINUE

SAYING WERE TAKING THE $1L.0T

Figure 5-1 (Cont.)
Comprehensive Example (Sheet 4 of 7)

X-5-10

G

C

C
™

i
C
41
™
[

C

C

C
C

C
C
41

C
C

(¥
¢
41

(W

o

C

[
AR

C

C

-

A2

SET U

IN

ITIAL

SaY WHERE’

IY
IN SCREEN CENTER

CaLl. TRACK (IX.1Y?

NOW HAVE THE CO-0ORDINATESs EDIIT INTO PLACE

Call, REFLOT (491X IY20LOQCCT0 S

NOW WAIT FOR USER PUSH BUTTON TO SaY ‘WHICH?

3

IF

IF

IF

DALl LTORFE (LPXLPY s NAMEy IRy TWy 12

BUTTON &y BACK TO STATE 1y CLEARING I8CIH!!
IF(IRCGSYY (GO TO 419

NOT FUSH BUTTON HITy GO WALT AGALN
TFOTW.LT.2) GO TO 413

14 Akl OFFe GO WALT AGAIN ALSD
TFCTRCLYY GO TO 418
TF(CIRe2Y) GO TO 418
FFOEBOEYY GO TD 418
TFCLRCAY Y G0 TO 418
GO TO 413

NOW EDRIT THE COPY TO CORRECT ITEM

2

TFCIRCLYY Call REPLOT (OrO0r8QRC1LY yLINK{LI
IF(IBC2Yy CALL REFLOT (GO XOLY s LINK{I)?
IF{IROEY) CalLl REFLOT (QyOp TRICLY »LINKCOLY)

TFOIRCAY) Call REPLOT (Qy0rCIRCCLY »LINKCL)?

DONEy GO BACK TO STATE 1

G T 30

REMEMEER RETURN TO STATE 1 ON BUTTON ...

I8T)=0
GO TO 3¢

SHMOVE’

TURN ON LIGHT FEN FOR TTEMS

ALl REPLOT {(2:451, ITEME)

WALT FOR USER TO SELCT ITEM.

3

Catl LTORFE (LFXsLFYsNAMEy IRy TWs 13

CHECK FOR BUTTON & FUSH TO STATE 1

IF

IF (IBCSYY GO TO 30

BUTTON HIT: WROMG: GO WAIT AGAIN
IF(IWGT. 1) GO TO 423

WROMG NAME REG. GO WAIT AGAIN
IF(NaME.EQ.0) GO TO 423
IFONAME GT .22 G0 TD 423

Figure 5-1 (Cont.)
Comprehensive Example (Sheet 5 of

X-5~-11

7)

€ GOT ONE» NOW SET UF TRACKING S0 USER CAN SAY ‘WHERE'
EX=512
IY=3512
Call TRACK(IX.IY)

G

£ WHEN RETURN, HAVE THE X AND Y, S0 EDIT IN
Call REFLOT (4 IXy LYy OO0 NAME))

C

CODONE, GO TO STATE 1 TO WALT FOR MORE COMMANDS
GO TO 30

G

(™

o TRILLS

C

€ TURN OF LIGHT FEN FOR ITEMS

43 Call. REFLOT (27451 ITEME)

e

CWALT FOR USER TO SELECT ITEM

433 Call LTORFER (LFXsLFYsNAMEs IRy TWs 1)

G CHECK FOR PUSH BUTTON & RETURN TO STATE 1
IF CIRGSY Y (0O TOD 30

L IF BUTTON HIT, WRONGs GO WAIT AGAIN
IFCTW. 6T 1) GO TO 433

Y3

IF WRONG NAME REG. G0 WAILT aGAIN
TFONAMEEQ.0) GO TO 433
IF O (NAME.GT.22) GO TO 433

T35

GOT THE ONE» ZERO ITS FLAG
TS ONAME) =0

303

AN REMOVE LINKAGE TO ITEM
Call. DELETE (LINKONAME))

C
L AND HOP RACK TO STATE 1

S14 GO TO 30

G

C
L HERE I8 EXIT FROM STATE 1 VIA FUSH NUMBER &,

99 STOF

™

¢ NOTE THAT THIS PROGRAM HAS & BUG IN IT! WHEN 22
C ITEMS HAVE REEN PLACED ON THE SCREENs AND THE USER
C ATTEMPTS TO PLACE THE IMPOSSIBLE 23RIs & LIGHT FEN
£ SELECT LOOF OCCURS. I.E. ‘AD0Y GIVES A LIGHT
£ PEN INTERRUPTy AND THE PROGRAM IMMEDIATELY RETURNS
CTO STATE L - - TO GET THE SAME INTERRUFT AGAIN.
COTRY IT aND NOTE THE SYSTEM LOADING.
G

[ONE OF THE MANY WAYS TO FIX THIS
COWOULD BE TO TURN OFF “ADDY WHEN FULL UP.
G THE INITIAL CALL AT 512 WOULD RETURN CNAME
G

£H12 CaLl TEXT (TACL)»32LEB(1Y s ITFLL)
G

G AND AT 513y RATHER THAN GOING TO 30 ON FULL»s

Figure 5-1 (Cont.)
Comprehensive Example (Sheet 6 of 7)

X-5-12

c
C
G
G
£

G0 VIa A
gall. DELETE (ITFLL?
AND FINALLY: A LINE OF CORE WOULD RBE

INSERTED FRIOR TO 514 TO RESTORE THE ADD
UFON A SUCCESSFUL. “RILL" .

Ol REFLOT (3 TACL) 3 ITFLLD

BN

Figure 5-1 (Cont.)
Comprehensive Example (Sheet 7 of

X=-5«13

7)

CHAPTER 6

RELOCATING ROUTINES

The routine DYSET is used to convert display files from their absolute
executable form to a relocated form. The display files in relocated
form are then stored on a mass storage medium. 1In the general case,
these relocated display files generated by one user can then be placed
in different arrays for other graphics programs generated by a second
user. The routine DYLINK is then called to convert the display files
back to the absolute executable form.

The DYSET-DYLINK routines under RSX are completely different than
those under DOS. Files stored (DYSET) under one system cannot be
brought back (DYLINK) under the other.

The basic intent of these routines is to allow storage of scope
images. A scope image, or picture, may arise as a result of
considerable work on the part of the scope user interacting with a
program. Simply rerunning the program will not give the same picture,
so it is necessary to store the actual display files. With careful
programming it 1is also possible to bring together portions of stored
images into a composite image.

The mass storage files may not be modified between the action of DYSET
and DYLINK. Display code normally generated by the graphics system
will survive the DYSET-DYLINK procedure. This includes BLANK'ed
files.

6.1 DYSET ROUTINE

The DYSET routine converts all direct memory references to a relative
form, where the address 1is relative to the first location of the
display file. Indirect memory references must refer to display files
provided as arguments to DYSET. These references are replaced by a
logical number pointing to the requisite file name. Executable files
have a positive number corresponding to their position in the argument
list, text files a similar negative number. Each executable file |is
"labelled' by placing its logical number in the second location of the
file. The text files cannot be so conveniently labeled; the call to
DYLINK must preserve the logical numbers by providing the text file
arguments in the same order. The logical file number approach means
that, in contrast to DOS, no additional display file space is required
to DYSET files.

X-6-1

The possible calling sequences are;
Call DYSET (PNAMELCLY v PRNAMER (L)Y v s PHAMENC L)
Call, DYSET (FNAMELCL) v v o FNAMENCL) vl o STRLCI Y r v 0 v STRNC LD)

where: PNAME1 (1) to ©PNAMEN(l) are display files containing
executable code.

STR1(1) to STRN(1l) are arrays containing text skrings.

=1 is a delimiter separating the executable files from the
text strings. ’

All file arguments are of the usual form FILE(l). It is the user's
responsibility to insure that all files, executable and text,
referenced from the provided executable files, are included in the
argument 1list. The VT-15 processor must not be allowed to execute a
file in relocated form. The integrity of the entire system is at
stake. DCLOSE and CCLOSE should be called before any call to DYSET.

6.2 DYLINK ROUTINE

The DYLINK routine reverses the action of the DYSET routine. The
calling sequences are:

Call, DYLINK (FNAMEL (LY s PRAMER (L) » v PNAMEN L))
CAbl OYLINK (FHAMEL (L) s ey o FNAMEN(L o~ 1o STRL (L s v » o STRN L3

where: PNAME1 (1) to PNAMEN(l) are the files containing executable
code that are to be linked.

STR1(1l) to STRN(1l) are the names of the files containing
text information that are to be linked.

-1 is a delimiter separating the executable and text files.

All files specified as arguments to a call to DYLINK must have been
provided as arguments to a single call to DYSET. Otherwise there
might be conflicts in the assignment of logical file numbers. The
list of text files must appear exactly in the order that it appeared
in the corresponding call to DYSET, even if some files are not
referenced by the executable files. This is necessary to maintain the
logical numbers of the text files; note that the text files will
likely have different array names under DYLINK than they had under
DYSET.

It is not necessary that all the PNAME's (executable files) provided
in the call to DYSET be provided in the DYLINK call, or that they
appear in the same order. That is, the user can 'link' a subset of
what he 'set'. It is still necessary that all files which are
referenced by the executable code appear in the argument list to
DYLINK. Again the VT-15 processor cannot execute relocated files. It
is recommended that the files be brought from mass storage, DYLINK'ed,
and only then should the VT-15 be turned on.

If the programmer wishes, for example, to display portions of three
separate stored pictures, he must first bring all the relevant files

X-6~2

into core. (Text files that are not referenced do not have to be
core-resident, but they must appear in the argument string.) Then
DYLINK is called three separate times, once for each group of files
that was DYSET together. At this point the files are equivalent to
ordinary display files. The COPY routine can be called so that all
files are displayed. Note, however, that no mechanism exists for
passing edit addresses (CNAME's) from one program to the next. In
general the DYLINK'ed files cannot be edited (REPLOT'ed).

6.3 NON-STANDARD DISPLAY FILES

Certain restrictions should be noted if code not generated by the
graphics system is to be passed through the DYSET-DYLINK procedure.
It is not guaranteed that following these restrictions will ensure
success. Try examples of the expected type of non-standard code when
the system is not running important tasks.

The DYSET-DYLINK routines simulate the path of the VT-15 processor
through the display file. This means that non-executable information,
suitably protected with a display jump around it, can be placed in the
display file. Similarly, a character string direct instruction could
refer to a text string contained in the same display file. Again the
text string would require a display jump around it.

Two separate indicators are used to decide what 1is the end of the
display file. Whichever comes first will be honored. One indicator
is the pointer in the first location of the display file. It is
assumed to hold the difference in location between the last executable
location of the display file, and itself. The second indicator is the
occurrence of a display jump indirect. (Note, however, that the
display jump indirect will not end the file if it is in the third
location of the file, where it is placed in a BLANK'ed file).

As a consequence of the end of file assumption, it is not possible to
have embedded subroutines in display files. The DYSET-DYLINK routines
would stop at the end of the first embedded subroutine, and not
complete the file. It is possible, however, to place non-executable
information at the end of the display file, making sure, of course,
that this information 1is stored on the mass storage device. The
DYSET-DYLINK routines would stop upon finding the jump indirect at the
end of the file, before acting on the non-executable information.

6.4 PROGRAM EXAMPLE

The program in Figure 6-1 illustrates the use of the DYSET-DYLINK
routines.

C
c o EXAMPLE PROGRAM FOR DYSET-DYLINK

I w]

LOGTICAL TERO&)

DIMENSION LATO40) s LATL (20 s LAT2(20)
UIMENSTON NEWOC40) yNEWL {20 o NEW2(20)
DIMENSTON TXTOLC2) s TXTOR2C3) » TXTNLO2)Y »y TXTNR2(2)

DATA TYXTOL (L) » TXTOL(ZY/5HT aM » AHRDXAS
DATA TXTORCL) » TXTORI2IZ5HT AM v 4HBOXE/
G
CINIT THE DISFLAY FILES
o
LATOCL =0
LATL (L =0
LAT2C) y=0
[
C BOXE

Call, TEXT (TXTO2CL) e 22 LATZOLY)
Call LINE (100507

CAaLL LINE (0y1002

Call LINE (~10040}

Call LINE (Q«-100)

ROXA

[l o i v

Call LINE (300001 sLATLCL))
CalL LINE (0s3007

Call LINE (-300:0)

CALL LINE (0¢-300)

CALL CORY (0.aT201)

Coa MAINT FILE

Call DINITOLATGOL)

Cal.l PRAMTR (7r0sdy Ly LATOLL))
Call POINT (20,20

Call, TEXT (THYOL(1Xe?)

Call COFY (1lsLAaTicl))

Call POINT (534200

Call. TEXT {TXTOL{L) 9}

CaALL COPFY (02LATL(L))

CONOW LEAVE PICTURE ON UNTIL LIGHT PEN HIT

20 Call LTORPE (LFXy LFYsNAMEs TRy TWs 1)
TF (TW.GT. L) GO TO 20

L CLOSE OUT AND
Call Do
CaLl DYSET (LATOCLY o LATLOLY s LAT2(L) o~ 1o TXTOL LY » TXTOR2¢1)

DYSET

™

CoONOW OQUTPUT THE 9 FILES TO LUN 5
Call ENT Gy IMF e LHL» TEV)
Call WATTFR (IEWV)
JELATRL 41

Figure 6-1
DYSET-DYLINK Example (Sheet 1 of 3)

WRITE (9 (LATO(L)s I=ls.)
CAaLL CLOSE (S LHF»1HL1TEV)
Call. WAITFR (IEV)

CALL ENTER (S 1HF» LH2y TEWD
cal.l. WALTFR (IEV)
dELAaTiolr+l

WRITE 5 (LAaTL{I)y I=1l,.0)
Call, CLOSE (5 LHFy 1H2» TEV)
Call. WATTFR (TEV:

Cal.l. ENTER (S LHF» 1H3 TEV:
cALL WAITFR (IEV)

JEL T2+

WRITE <52 (LAT2(I)y I=ls0)
call. CLOSE (SyiHFy 1H3» IEV)
Call WAITFR (LEV)

Call, ENTER (S5 LHF» LHA« TEV)
Cak.l. WAITFR (TEV)
WRITE (5 (TXTOL(I)y I=1927
Cal.l. CLOSBE (Sy1lHF» 1HAsTEV?
CaLL WAITFR (IEVD

CalL ENTER {(SyLHF e 1HS TEV?
Call. WaITFR

WRITE <83 K
Cakl. CLOSE
CalL, WATTFR

—~

C
C OMOW GET THEM AlL INTO NEW FILES
[
Lol SE CSp LHF » LHL » TEV
i WalTFR (TEV)
(50 Jy ONEWOCT4HL)y TI=ledd
1l
CLOSBE (S lHFe LML TEV)
C WALTFR (TEVS

(S LHF v LHEZ» TEV)
ITFR CTEYV)

I (%) Je ONEWLCIHL Yy I=dseldd
(L=

Call CLOSE {5y LlHFe LH2yIEV)
CALL WATTFR (TEV)

Cal.l (e LHF LHE » TEV
Call WATTFR (LEV)

FEAD (5) Jy (NEWR(T+HL)y I=1sJ0
NEW2(1)=

Cabl CLOSE (S 1lHF»IH3»IEV?
Call. WATTFR (IEV)

CALL SEEK (S IHF s 1H4» TEV)
Call. WalTFR (IEW)
RE&L (5) (TXTNL{I)» I=1s27
Call, CLOSE (52 1HFs1H4» IEV)
Call WALTFR (IEY)

Figure 6-1 (Cont.)
DYSET-DYLINK Example (Sheet 2 of

X-6-5

b

Call. SEEK (5 LHF» LHS TEV)
Call. WATTFR (TEW)
REAL (5 (TXTNZ(L)Yy I=1:2)
CalL CLOSE (Sy1HF» LHSTEV?
Call WATTFR (TEV)

[

CWE GOT THEM BACKy S0 DYLINK
CALL DYLINK (NEWLCL) yNEWOCL) o MEW2 (L) s~ Lo TETNLCL Y 2 TETNR2CL)

(>

S AND TURN OW THE TUBE
Call DINIT (NEWGIL)

™y

)

C WAIT FOR LIGHT PEN HIT TO EXIT

30 Calle LTORPE (LPXsLFYsNAMEy IRy IWy 1)
IFCIW.GT. L G0 TO 30

G

¢ EXIT
ST
END

Figure 6-1 (Cont.)
DYSET-DYLINK Example (Sheet 3 of 3)

CHAPTER 7

VT-15 HANDLER

This chapter provides a brief description of the external interface of
the RSX VT-15 handler. The handler is designed for the VT-15 scope
and will not handle I/O for other devices. The user calls to the
handler are made via GET's and PUT's. In general, PUT's are used to
issue VT-15 1IOT's, and GET's are used to obtain status and
'interrupts' from the light pen, push buttons, etc.

The handler occupies 2000 octal locations for a one scope
configuration, and 2400 octal locations for two scopes Or more. In
addition to the GET and PUT previously mentioned, the 1I/0 handler
honors DETACH, ATTACH, HINF, ABORT, and DISCONNECT & EXIT. The HINF
function returns a value of 13 octal.

Paragraph 7.3 of this chapter also deals with the use of both the

handler and the FORTRAN package from a MACRO program and includes an
example program.

7.1 DESCRIPTION OF PUT

The format of the PUT CAL:

Cal. FUTCAL ZTHE CAL I8 ISSUED TO THE CAl. PARAMETER
s ZBLOCK AT ADDRESS FUTCAL
7
/ SOMEWHERE IN THE CODE I8 THE CONTROL BLOCK
FUTCAL. 3100 JCODE FOR THE PUT FUNCTION
EV JADDRESS OF THE EVENT VARTABLE
UNIT Z06I0AL UNIT NUMBER: USUALLY 2437
FUTTAR JADDRESS OF CONTROL TARLE
7
/ AND SOMEWHERE ELSE IN THE CODE. THE CONTROL TARLE
FUTTAR TYPE JCONE FOR TYFE OF PUT
ARG JAUDITIONAL ARGUMENTe OFTIONALy
7 / DEFENDING ON WHAT KIND
/ /0 OF PUT I8 REING ISSUED

The following is a list of the legal types of PUT functions and their
action:

TYPE 0 ~ requests that the VI-15 handler stop the VT-15 processor
associated with the scope specified by the provided LUN. The stop is

X-7-1

accomplished by the handler issuing a 703044 or 703444, Use this
function with care if ‘there are two scopes on the VT-15 processor,
since it will turn off both scopes.

TYPE 1 - requests that the VT-15 handler resume operation of the VvT-15
processor associated with the scope specified by the provided LUN.
When the VT-15 processor is stopped, it remembers its PC, and can be
continued (resumed) from that 1location. The handler issues a
703024 (703424) to set the initial conditions, and then a
703064 (703464) to resume execution.

TYPE 2 - requests that the handler place a subroutine call to the
address provided in the optional argument of the argument table in the
handler VT-15 display loop. The VT-15 processor is then started in
that display loop, and will call the provided address as a subroutine.
(This CAL is issued by the DINIT routine.) The image shown by the
called code will be displayed on the scope specified by the provided
logical unit number (LUN). Note that while the user provided IFILE(1)
to the graphics system, it then passes the address of IFILE(2) to the
handler.

TYPE 3 - requests that the handler place a subroutine call to the
provided address in the display processor loop. Again the VT-15 is
started at the top of the display loop (even if already running). The
image will be shown on the scope specified by the provided LUN, and
the other scope (if present) on the same VT-15 processor. (This CAL
is issued by CINIT.)

TYPE 4 - requests that the subroutine linkage established by the 1last
TYPE 2 PUT be removed. This request is honored only if that PUT was
issued from the partition of the present CAL. If this is the last
subroutine in the display loop, the VT-15 processor is stopped. (This
call is issued by DCLOSE.)

TYPE 5 - requests that the subroutine linkage established by the 1last
TYPE 3 PUT be removed. This request is honored only if the linkage to
be removed is to the partition of the present CAL. If this 1is the
last subroutine in the display loop, the VT-15 processor is stopped.
(This PUT is issued by CCLOSE.)

TYPE 6 - requests that the argument provided as the optional argument
be used as the SIC (set initial conditions) word the next time this
VT-15 processor is started or resumed. Prior to starting the display,
the IOT 703024 or 703424 1is issued to establish various initial
conditions. See the GRAPHIC-15 Reference Manual for a description of
the IOT instruction bits.

TYPE 7 - requests that the VT-15 processor be started at the address
supplied as the optional argument. This allows the user to circumvent
the display loop in the VT-15 handler.
WARNING
Very short display files at high

intensities executed without S¥YNC can
damage the scope phosphor.

Now that the handler is no longer in the display execution loop, the
user now has the responsibility of either running in SYNC (place a

X-7-2

236000 (octal) in the display loop) or maintaining the display file at
an appropriate size and intensity. (This CAL nullifies the effect of
all type 2 and type 3 PUTs previously issued to this VT15 processor.)
The user also has the responsibility of shutting down the scope
software when he is done.

7.2 DESCRIPTION OF GET
The format of the GET CAL to the RSX system is as follows:

Cal. GETOAL

A SOMEWHERE ELSE IMN THE COOE. Oal PaAR
GETCAL 3000 AFUMCTION COTE
E SADDRESS OF

g
=
N
T~
e
P
—

I

UNTT
GETTAR

=
£

EOFOR THE TY
E5S OF A BUFFER FOR ARGUMENTS
ARG 1AL ARGUNMENT
V4

/ BOMEWHERE ELSE
GEUF o

/

s
/

S 210 LODCATIONS FOR
JMENTS ANMD DATH
OAMI FORTH. DEFENDS ON TYPE

The following is a list of the legal types of GET functions and a
brief description of their action:

Type 7 - This type is discribed first, because types 0 to 6 are
subsets of type 7. The third word of the control table (GETTAB+2)
describes which interrupts are to be acted on and what status is to be
returned in the argument buffer on an interrupt. The first word of
the argument buffer is returned with this descriptor word with only
those bits set for which an interrupt actually occurred. This means
that an information receiving routine, separate from the requesting
routine, can determine which interrupt occurred and which status words
are being returned. The returned status words are then placed in
order of increasing bit number in the arqgument buffer after the
leading descriptor word. If-a staus word is omitted in the bit
specifications, no open word is 1left in the argument buffer. The
arguments are packed from the top down.

Bits 0 to 4 of the word describe which interrupts are to be acted on:
Bit 0 is the internal stop interrupt.
Bit 1 is the push-button interrupt.
Bit 2 is the light-pen interrupt.
Bit 3 is the edge-flag interrupt.

Bit 4 is the external stop interrupt.

XVM/RSX V1B X-7-3 September 1976

WARNING

The code modification routines request
external stops from the VT-15 handler.
See the GRAPHIC-15 Reference Manual for
a more complete description of these
interrupts.

Bits 5-11 (decimal) describe what status words are to be returned in
the argument buffer:

Bit 5 returns a word containing (left-justified) a bit for the
state of each push button.
Bit 6 returns the X-position of the beam.
Bit 7 returns the Y-position of the beam.
Bit 8 returns the display program counter.
" Bit 9 returns READ-STATUS 1.
Bit 10 returns READ-STATUS 2.
Bit 11 returns the NAME-REGISTER.

See GRAPHIC-15 Reference Manual for a description of READ-STATUS 1 and 2.

TYPE 0 - reads all of the status registers immediately without waiting
for an interrupt.

TYPE 1 - waits for an internal stop interrupt, and returns all status
registers when one happens.

TYPE 2 - waits for a push button interrupt, and returns all registers
when that happens.

TYPE 3 -~ waits for a 1light pen interrupt and returns all status
registers.

TYPE 4 - waits for an edge interrupt and returns all registers.

TYPE 5 - waits for an external stop interrupt and returns all
registers.

TYPE 6 - waits for 1light pen or ©push buttons. It returns push
buttons, X-position, Y-position, and NAME-REGISTER. (This is used by
the LTORPB routine.)

TYPE 10 - (octal) performs TRACK'ing. The initial positive integer X
and Y positions are placed in the first two words of the argument
buffer. When the scope user signals an end of TRACK'ing by generating
a push button interrupt, the final X and Y positions are returned into
the first two words of the argument buffer.

TYPE 11 - is not implemented at present.

TYPE 12 -~ returns into the first word of the buffer the address of the
subroutine in the handler (for the provided scope unit) to enable the
light pen. Normally, the light pen is activated by this routine when
the user has issued a GET that regquests a light pen interrupt. 1In the
user display code, instead of the hardware instruction to enable the
light pen, is a DIJMS* to this subroutine. In this way, the light pen
is enabled only in those portions of the display file that the user
wishes, and only when a GET on the light pen (usually an LTORPB in the
FORTRAN environment) has been issued.

X-7-4

7.3 MACRO PROGRAMMING
If the MACRO user wishes to issue calls to the FORTRAN callable
routines, he must simulate the calling sequence. If, for instance,
the FORTRAN call is: -

Call, LINE (IXsIYrINTMAINCLY)
Then the corresponding MACRO call is:

+GLORBL LINE

JME% LINE
JME + 435
L1S5A IX

+ 184 4
L8 INT
MAIN

If a variable is to be floating point instead of integer, the calling
sequence is the same, but the variable is two core locations in
floating point format. 1If MAIN is to be provided instead of MAIN(1),
the argument would remain MAIN. With the original VPR.32 MAIN would
require .DSA MAIN as an argument.

A user may also write his own graphics code, run under
protect-relocate, and call the handler for I/O functions. 1In this
case, he assumes the responsibility of relocating those addresses in
graphics code that reference memory. This is best explained by the
example in Figure 7-1. If the user runs in executive mode, ignoring
both the graphics package and the handler, the coding techniques are
exactly those described in the GRAPHIC-15 Reference Manual. This last
technique 1is not recommended, since I/O rundown cannot be done in a
reasonable manner.

The following program shows the use of the handler and code relocation
under protect-relocate:

X-7-5

MACRO EXAMPLE CORRESFONDING ROUGHLY
TO THE FOUR SQUARE FORTRAN EXAMFLE

NN W N

GRAFHICS EQUALITIES
DIMS=4640000
DIMPT=420000
CHARS=40000

/
/ SQUARE SURROUTINE
7
aa 0
420144 ZHX=100 DECIMAL
424144 /+Y=100 DECIMAL
430144 /=X
434144 D §
Csar s SMUST RELOCATE VT-195 MEMORY
/ /REFERENCES BECAUSE WE'RE RELOCATED
7 JAND IT/8 NOT
/
7/ MAIN FILE
/
MATIN O
140144 BET Y=100
144144 ABET X=100
200021 SBET SCALE=]
CTXT STR ARELOCATE TEXT STRING REFERENCE
200020 A50ALE=0 FOR SQUARES
140764 /BET Y=3500
144310 SBET X=2Q0
cesa 50 JCALL TO SQUARE MUST RE RELOCIED
141440 /BET Y=B00O
144316 , ABET X=200
creal 80 ZAGAIN RELOC IT
140764 A =000
145274 AE=T00
cesa2 S0 /A% BEFORE
141440 AY =800
145274 A R=700
CCSR3 &0 JFINAL CALL TO S0 SUBROUTINE
CHE MATIN ZRETURN JUMP FROM MAIN
y
S CAL’S

7

/o FIRST THE ONE TD SYSTEM TO FIND
/0 DUT WHAT DUR FARTITION BEGINNING
/o ANDR 1S
/
W

HRCAlL 246
WHREWY
4]
O
WHREEG

WHREBEG 1
-1

/

7

Figure 7-1
MACRO Programming Example (Sheet 1 of 3)

4 PUT CAL

/
FUTCAL 3100
FEV
30
FUTTAE
FUTTAR 2
MATIN
/
¢/ GET CaL
/
GETCAL 3000
GEY
30
GETTAE
GETTAR 2
GRUF
GRUF 0
0
0
0
0
0
0
0
/
/ WALTS FOR ABOVE CAL’S
/
WATWHR 20
WHREY
/
/
WATEUT 20
FEV
/
/
WATBET 20
GEV
/
/ EVENT VARIABLES
/
WHREV O
FEV o
GEV 0
/
/ TEXT STRING
STR LASCIT /HERE ARE 4 SQUARES/
/
/ FIRST WE HAVE TO RELOCATE ALL VT-15
7/ MEMORY REFERENCES
/
/ FIND OUT WHERE WE ARE
/
START CAL WHRCAL /RETURNS FARTITION ADDR.
CAL WATWHR /WAIT FOR COMPLETION
LAC WHREV /IF FOSITIVE OK
SEA
HLT /HALT ON ERROR

Figure 7-1 (Cont.)
MACRO Programming Example (Sheet 2 of

RSN

N NN

RELOCATE RETURN JUMF

LAC
TAD
AND
Tal
nAac

WHREEG
CsaR
(L7777
(DJMP T
CEAR
Gl SAaME FOR
Ll

Tal

AN

Tah

nac

WHREED
CTXT
CL7TTT
(CHARS
CTXT
ANDN FOR FOUR CALLS
WHREE G
cese
(L7777
(DILJMS
cesa
COsa
cesaz
CCBR3

L.yl

Tan

AN

TAh

e

nAac

JEr=1

nac

AND RETURN FROM MAIN
L.AC
Tan
AND
Tan
Hac

WHREEG
CMR
(1777
(OIMPT
CHF
PUT ALT-MODE IN TEXT
STH+7
372
STR+7

L.Aad

Anc

DAac
AND THE FUT TO CAll
FUTCAL
WaTruT
FEWV

Cal.
T
LAac
S A
HL.T

NOW LEAVE FICTURE
WATTING FOR
GETCAL

WATGET
GEVY

Al
Cal.
L.Aag
SFA
HI.T
Cal (10

TURE
START

TO TURN OFF

.END

OuR

RUNNING»
A FUSH BUTTON

FROM SQUARE SUBROUTINE

/8TART OF FARTITION
AADD IN RELATIVE ADDR.
ATRUNCATE TO 13 BITS
0P CONE JUMP INDIRECY
AN INTO FLACE

TEXT STRING REFERENCE

Zapif, OF PARTITION START
ZARD RELATIVE TO 8TART

AUT=-13 HAS 13 BIT ADDR

A0F COLE FOR CHARACTER STRING
SRLACE IT

T SQUARE

ZEUBROUTINE Call. OF CODE
74 TIMES FOR 4 COFIES

T HANDLER

STRING

JEND OF 4 TWO-WORD PATRS
ZALT-MOOE SHIFTED UF ONE

IMAINY FILE

7

AWALT FOR COMPLETION
JEVENT VARIARLE

WHIILE

ZWHALT FOR

COMPLETION

ZEXITy WHICH WILL CAUSE HANDLER

IN QUR FARTITION

Figure 7-1 (Cont.)

MACRO Programming Example (Sheet 3 of 3)

X-7-8

CHAPTER 8

WRITING TABLET HANDLER

The writing tablet returns X-Y coordinate pairs to the wuser program.
The pen emits a spark; the time that it takes the sound of the spark
to reach microphones at the side of the tablet gives the X-Y
coordinates of the pen. When the pen is pressed firmly on the tablet
surface, it will emit a spark (assuming that it has been enabled). It
is also possible to initialize the pen to issue a continuous series of
sparks.

The modes of operation of the writing tablet are most easily described
_ when there is only one tablet. 1In mode zero, the continuous series of
sparks is not initialized, only single point data from pressing the
pen upon the tablet (pen data) is returned to the program. In mode
one (any nonzero mode setting), the pen is initialized to spark
continuously to provide continuous tracking. Both the single point
data and the continuous tracking data are returned (appropriately
labelled) to the user program.

When two users must be simultaneously serviced (a maximum of four is
possible), operation 1is more complicated. A mode zero user may find
that his pen starts to emit a continuous spark (necessary to service
some mode one user); only the pen data will be returned to the mode
zero program. A mode one user may find that his data rate is halved
when another user of any type is being serviced.

8.1 GETBLT ROUTINE

The GETBLT routine is called by the FORTRAN user to obtain an X-Y pair
from the writing tablet. The calling sequence is:

Call. GETBLT (LUNyMODE ARRAYL » IEVI)

where: LUN is an integer expression describing which 1logical wunit
is to be referenced.

MODE 1is an 1integer expression, defining the mode of
operation, as described above.

ARRAY is a three member integer array into which are
returned the data and a type indicator.

IEV is an integer event variable.

Pen data is indicated by a zero word in the first location of ARRAY,
A value greater than zero indicates continuous data obtained at full
speed; a value less than =zero, half speed. The second location
contains the X coordinate, and the third location contains the Y
coordinate. The coordinate data range in value from 0 to 1023
decimal.

IEV is handled in a manner identical to RSX calls such as ENTER, SEEK
etc. In the general case IEV must be provided, and the calling
program must issue a WAITFR to insure that the read has occurred
before the data is used. If the program has controlled the timing in
some other way, the IEV does not have to be provided as an argument to
GETBLT.

8.2 HANDLER INTERFACE

The writing tablet handler honors a GET CAL to obtain the writing
tablet data. The handler is designed for the writing tablet, and will
not handle I/O intended for other devices. In addition to the GET
CAL, the handler honors DETACH, ATTACH, HINF, ABORT, DISCONNECT & EXIT
and CLOSE. The HINF function returns a value of 23 octal. The
handler requires a partition of 1000 octal locations in the first 32K
of core. The format of the GET CAL:

TARGET 3000 JBYSTEM CODE FOR GET
EV JEVENT VARTARLE ANDRESS
L.UN ZLOGICAL UNIT NUMBER
CNTL. ZCONTROL TARLE ADDRESS
7/
/ AND SOMEWHERE IN CORE THE COMTROL TABLE
/
CNTL MODE ZMOREy ZEROy OR NON-ZERO
ARRAY AARRAY INTO WHICH TO GIVE DATA
/
4 AND THE ARRAY» FOR FORTRAN IT I8 THE PROVIDED ARRAY
/ IN THE FORTRAN FROGRAM. FOR MACRO IN CORE
/o SOMEWHERE
/
ARRAY o] ZDaTe TYPE
RETX O JRETURN X VALUE
RETY Q JRETURN Y VALUE

Figures 8~1 and 8-2 illustrate the use of the writing tablet GETBLT
routine.

X-8-2

COOoOOOnNNoOOoOoOnGoGon

C

OO

OO OO o

OO0

C
c

C

TEST FROGRAM TO SHOW TRACKING WITH THE WRITING TARBLEY

NOTE THAT A FAINT ‘D7 WILL aPFEAR TO THE RIGHT OF THE “F7
WHEN THE PROGRAM I8 RUNNING IN CONTINUOUS DATA MODE.
WHILE THE REFLOT I8 TAKING PLACE. THE GRAFHICS SYSTEM FLACES
A JUME QUER THE CODE TO RE MODIFIED, IF THE VT-15 PROCESSOR
HAFFENS TO EXECUTE THAT JUMPy THE ‘DY WILL NOT HAVE A SET-FOINT.
THE BEAM REMAINS FOSITIONED AFTER THE “F7y 80 THAT IS WHERE
THE ‘I’ WILL BE FLACEID.

THE FROGRAM CaN DEAL WITH THIS 8Y MOVING THE BEAM
OFF~-SCREEN FRIOR TO THE EDITED SET FOINT. THE ‘EXTRAT 71V
WILL THEN NOT RE SEEN. & CONSIDERARLE IMPROVEMENT CAN BE OBTAINED
BY ASSEMELING VFR.XX WITH THE QEDIT ASSEMBLY FARAMETER.
WHEN THE SCOFE 185 NOT RESTARTED FOR EACH EDIT. THE JUMF IS5
EXECUTED FaR LESS FREQUENTLY.

LOGICAL TRS)
LDIMENSTON MAINCLOO) y ITARCE)

ARBITRARY LUN SLOT FOR TARLET
LLIN=28

START UF MATN FILE
MATMCL) =0
Call DINIT (MAINCLY)

SET UF A ‘P’ ON THE SCREEN TO FOLLOW FEN DATA
HITS FROM THE WRITING TARLET

FIRST THE BEAM FOSITIONS ALLOW FOR EDITING
CAll POINT(250s250 0o MAINCL) » TEFD

HARDWARE SCALE OF 1 FOR BOTH CHARACTERS
Call. FRAMTR (1s1)

SINGLE CHARACTER COMMAND FOR A /F7
Cal.L ANY (#1205 1)

NOW SET UF A ‘D7 ON THE SCREEN TO FOLLOW CONTINUOUS
DATA HMITS FROM THE TARLET

THE REAM FOSITIONy AGAIN SETTING UF FOR LATER EDIT
Cal.l. FOINT (750,750 0yMAINCL) v TEXD

SINGLE CHARACTER COMMAND FOR & TV
Call ANY (#1041

HERE I8 THE MAIN LOOF

FIND QUT FRESENT STATE OF FUSH BUTTONS

44 ALL GETPSH (IR

IF LAST BUTTON IS ON» EXIT
IF (IBCSY) GO TO 99

Figure 8-1
Tracking With Writing Tablet (Sheet 1 of 2)

C SET UF DATA MODE O A% & DEFAULT
MODE=Q

C

C IF FIRST BUTTON ONy THE DATA MODE SHOULD BE NONO
IF (IBCLY Y MODE=]

C

C GET DATA FROM TarRLET
CALL GETBLT C(LUNsMODEs ITARy TEW)

C

L WALIT FOR COMPLETION OF REQUEST
Call. WaITFR (TEV)

C

L CHECK WHETHER RETURNED DATA IS5 FEN DATA
IF (ITARILILEQR.Q) GO TO 55

CIT WAS CONTINUOUS Dﬁfﬁv 80 MOVE THE ‘o7
CALL REPLOT (4-ITAB(2)yITAR(I) v 00 IED
C
L BACK TO TOF OF LOOF
GO TO 44
C
C WAS PEN DATA» 80 MOVE THE ‘R
55 Call REFPLOT (4, ITARC2I»ITARCIE) » Oy TEF)
G
CORETURMN TO LOOF TOR
GO TO 44
C o EXIT HERE
tAd STOF
ENT

Figure 8-1 (Cont.)
Tracking With Writing Tablet (Sheet 2 of

X-8~4

2)

¥
" FROGRAM TO INFUT AN ARBITRARY CURVE
C

LOGICAL TR(S)

DIMENSTON MAIN (31000 s ITARCE)

¢ 8START UPF MATN FILE
MATMNCL Y =0
Coll, DINIT (MAINOLY)D

G FIRST TIME THROUGH, DON'T WALT ON BUTTONS
GO TO 2

£ MALN LOOFy DO WE GET ANDTHER CURVET

C WAIT FOR USER TD DECIDE

£ UNLESS PUSH BUTTON 81X SETe CONTINUE

1 Call, LTORFE (LPXeLPYsMNAME IBsIWs 13
IF CIRGSY GO TO 99
[
¢ RE-INIT THE MalN FILE
2 MATMCL =0
(N
£ MAKES POINTS BRIGHTER S0 THEY WILL SHOW
Catl. PRAMTR (2y6»MATN(LY)
[
D GEYT 13500 POINTS» OR BTOF WHEN FEN PUSHED DOWN
N 33 TC=1,10500
CGET THE NEXT FOINT
22 Call GETRLT (28,1 ITARTEWV)
[
C WalT
Call. WAITFR (TEWV)

jr R

IF FEN DATA, STOF GETTING FOINTS
IF (ITARCLYLEQ.O GO YO 77

C REGULAR DATA: CHECK TO SEE IF FAR ENOUGH FROM
G LAST. OTHERWISE WE COULD OVER-INTENSIFY.

IT=IX-ITARCD)
£ CHECK FOR DIFFERENCE OF THREE RASTER UNITS

IFLITGT.2) 60O TD 44
TFCLTLLT. -2 GO TO 4é

[

X DIONST MOVE ENOUGH, CHECK Y
IT=IY-ITAR(E)
TFCITGT.2) GO TO &4
IFOIT.6T.~-3) GO TO 22

C GOT A FOINT FAR ENOUGH AWAY. SAVE ITE CO-ORDINATES
C FOR THE CHECK THE NEXT TIME THROUGH
bé ITXmTTARC)
IY=1TAR(IE)
™
£ ALD THE DaTa FOINT TO THE FILE

Figure 8-2
Inputting With Writing Tablet (Sheet 1 of

X-8-5

2)

Call. POINT (IXsIYe1)

I

CoLOOF CONTROL

33 CONTINUE

"

C TURN OFF FEN WHILE WAITING
77 Call. CLOSE (282

GO WALIT FOR USER TO DECIDE
GO TO 1

G0 [o]

EXIT HERE
99 STOF
N

Figure 8-2 (Cont.)
Inputting With Writing Tablet (Sheet 2 of 2)

CHAPTER 9

GETTING ON THE AIR WITH XVM/RSX GRAPHICS SOFTWARE

The RSX distribution tapes contain seven graphics source files. These
are:

File Description
VT.nn SRC VT15 Display Processor I/O handler
VW.nn SRC VW15 Writing Tablet I/O handler
VPR.nn SRC FORTRAN-callable graphics primitive toutines
CIRCLE SRC Circle approximation routine
ROTATE SRC Axis rotation routine
DYS.nn SRC DYSET/DYLINK routine
TBL.nn SRC Routine allowing FORTRAN code to access the

writing tablet

To use either the VT15 or VW15 handler under RSX, the appropriate
source file must be assembled, task built and installed in the system.
General directions for these operations are in the System Installation
Guide. Assembly parameters for both handlers are in Appendix B of
Part III of this manual. For additional information, refer to section
9.1 and Appendix D of this part.

9.1 CONSOLE DIALOGUE

The console listing in Figure 9-1 shows an example procedure for
installing graphics into an RSX system. The slashes (/) and text
following are comments for the purposes of the manual and will not
appear at the console. It 1is assumed that the user does not have
floating-point hardware. Installation of the writina tablet handler
is not shown. An expanded version of the typed FORTRAN program is
provided in Figure 9-2.

In the dialogue presented, the exact version numbers of the modules

and the exact program sizes may not match those obtained by every
user; however, the overall flow remains accurate.

XVM/RSX V1B X-9-1 September 1976

MCR=DTC TTO LA3O 300 JTELL SYSTEM WHAT KIND OF TERMINAL
MCR=ADV UTO

MCR>-ADNR VWO

MCR=RCF

TYFE UNITS “"NAME(RASE»SIZE)"

FARTITION
L0.6(7540092400)

TYFE N TO EXIT

RCF OK!

MCR:

P

! L0G INTO TV TYFICALLY AT
/ /B0ME OTHER TERMINALS, RY
/ /TYPING CONTROL T.

/

XUM/RGX VIRBOOO MULTIACCESS

67471976 15130

4] USERS ALREADY LOGGED IN

SFECIFY DISK TYFE(RKeRF OR RFJ» UNIT AND UFDEVUTXE
SUTX: UFD CREATET

TIWE=ASG 19 NTO JBRING IN FILES

TOVEFIN JLIBRX RIN ZBRING IN THE NON-FLOATING FOINT LIBRARY

TOV>FIN CIRCLE HIN ARINARY OF CIRCLE ROUTINE

TOVEFIN ROTATE RIN /AND ROTATE .,

/

/! ZIF RUNNING WITH FLOATING FOINTs BRING IN

7/ JINSTEAD LIBFX RINyCIRCLE SRCYyROTATE SRC.

7/ JCOMPILE CIRCLE AND ROTATE (USE F4F) .

/

TOVHFIN VT.21 RBRIN ARRING IN THE VT HANDLER RINARY

TOVEFIN VFR.32 RIN /BRING IN THE FRIMITIVES RINARY

TOVFIN DYS5.03 RIN /ANDN RELOCATION ROUTINES

TOV:FIN VW.03 RIN ZAND OF VW TARLET HANDLER

TOVEFIN TRLL.02 RIN /0F GETRBLT FORTRAN CALL FOR TABLET

TOV:=TKE /TASK RUILYI HANDLER

TASK BUILIDER VSA /TERMINATE WITH ALT-MODE TO TKR!

LIST OFTIONS

+*EXM»SZ /MUST BE EXEC MODEFSZ OFTIONAL

NAME TASK

FUTeene ZHANDLERS HAVE .78 AT END OF NAME

SFPECIFY DREFAULT PRIORITY

*1 /170 HANDLERS MUST HAVE 1

BESCRIRE FARTITION ZIN FIRST 32K3 MUST RE AT LEAST 2400

#10.6

/ /CAN REASSMELE HANDLER 1 SCORPE (2000)
Figure 9-1

Simulated Console Listinag (Sheet 1 of 3)

XVM/RSX V1B X-9-2 September 1976

THEN

DESCRIBE SYSTEM COMMON RLLOCKS
b /NONE» SO JUST HIT ALT-MODE
DEFINE RESIDENT CODE
*VT.21 /HANDLER RINARY JUST READ IN
DNESCRIRBE LINKS & STRUCTURE
> /N0 QUERLAYSy JUST HIT ALT-MQDE
VT.21 51000-53320 02321

CORE REQ'D

9100053320 02321
TOVEING VT, /INSTALL TASK IMAGE IN SYSTEM
TOV=EDT ZCALL EDITOR TO TYFE IN PROGRAM
EDITRSX V19A
> ' ZEXTRA CARRIAGE RETURN TO INFUT

INFUT

TO DISFLAY ‘HI’

OO0

LOGICAL IR(&)
DIMENSION IFILECIOO) s TXTC(2)»ICL (2D
DATA TXT(1)/5HHI /
ICL(1)=¥231374
INT=4
LARGE=0
IFTLE(1)=0
CALL ANY(ICL(1)»1-IFILEC(1))
CALL FRAMTR (35LARGE.INT»IFILEC(1)yIEDIT)
CALL FPOINT (250,250)
CALL DINIT (IFILEC(1))
CALL TEXT (TXT(1)+2)
33 CALL LTORFR (LFXsLFYsNAMEsIR+IWs1)
IF (IW.LT.2) GO TO 33
IF (IB(6)) GO TO 99
IF (IB(1)) INT=INT+1
IF (IEB(2)) INT=INT-1
IF (IB(3)) LARGE=LARGE+1
IF (IE(4)) LARGE=LARGE~-1
IF (INT.LT.0) INT=0
IF (INT.GT.7) INT=7
IF (LARGE.LT.0) LARGE=(
IF (LARGE.GT.135) LARGE=15
CALL REFLOT (2y3sLARGE» INTyIEDRIT)

GOT TO 33
99 STOF
END /EXTRA CARRIAGE RETURN
EDRIT /FOR ERIT MODRE
*CLOSE TESTF SRC /CLOSE OUT WITH NAME FOR FILE
EDITRSX V1%9aA
*E /IMPORTANT, MUST EXIT FROM EDITOR

Figure 9-1 (Cont.)
Simulated Console Listing (Sheet 2 of 3)

XVM/RSX V1B X-9-3 September 1976

TIOV>FOR BL_.TESTF
/

7/

7/

TOV:TKE

TASK RUILDER USA
LIST OFPTIONS
*BRKRyNFFySZ

/

NAME TASK

FHELLO

SFECIFY DEFAULT PRIORITY

*300
DESCRIRE FARTITION
=ThV

DEFINE RESIDENT CODE

*TESF s VPR, 32
/
/

DESCRIBE LINKS & STRUCTURE

TESTF 00020-00531
UFR.32 00532-02564

sSTOR 02365024600
SFMSG 0260102724
+FF 02725-02726
CORE REQ'D

00000-02726
TOV:ASGE 24 VT
TOV:CON HELLO
TOVEXQT HELLO
TOVEOFF

00512
02033
00014
00124
00002

Q2727

/N0 NOT SPECIFY EXTENSION

/IF FLOATING FOINT USE ‘F4F‘ NOT ‘FOR‘

/NOW TASK RUILD THE EXAMPLE FROGRAM

/BANK MODE NECESSARY FOR FORTRANy NO FLOATING
ZFOINT, SIZE OFTIONAL

/CAN BE ANY UNUSED NAME

JEXACT VALUE UNIMFORTANT

/GENERALLY THE ONLY ONE RIG ENQUGH

ZMUST TASK BUILD WITH FRIMITIVESs AND
AWHATEVER ADDITIONAL (CIRCLEs ROTATEs)
/ROUTINES ARE CALLED BY THE FORTRAN FROGRAM

/JUST AN ALT-MODE

/STANDARD VT ASSIGNMENT

/8TEF 1 FOR EXECUTION

/8STEF 2

ZBUTTON #6 EXITS FROGRAM: LOG OFF

LOGGING OFF MUIL.TIACCESS AT 16:07

Figure 9-1 (Cont.)

Simulated Console Listing (Sheet 3 of 3)

XVM/RSX V1B

X-9-4 September 1976

This page intentionally left blank

XVM/RSX V1B X-9-5 September 1976

9.

2 FULL FORTRAN EXAMPLE

Figure 9-2 is the commented version of the FORTRAN program
in the console example above:

C
G
™
C
C
C

C
C
M

C

C

[R el

SO0

a0

o0

c
c

THE TEXT ‘HI’ IS DISFLAYED ON THE SCREEN

FUSH BUTTON #1 (LEFTMO
FUSH BUTTON #2 TO DEC
FUSH BUTTOMN #32 TO INCREAS
FUSH RUTTON 44 7 :
FUSH BUTTON #5] :
FUSH BUTTON #4 (RIGHTMOST) TO EXIT

TY TO INCREASE THTENSITY
INTEMSITY

SCALE (SIZE)

. SCalE

LOGECAL TR{H)
DIMENSTION IFILECLOO) yTXT(2) » TCL (LD

SET UF THE ‘HIY FOR THE TEXT CaLlL
DATA TXTOL) /5HHT /

FUSH BUTTON CLEAR FOR THE ANY Call.
ICL (1) =8231374
SCOFES O AND 2 ONLY

DEFAULT SIZE AND INTENSITY
INT=4
L.ARGE=(Q

ZERO TOP-OF-FILE FOINTER
IFTLECL =0

START RUILDING THE DISFLAY FILE
Cal.l ANY(ICL (L) » Lo TFILECLY)
THIS S0 BUTTONS NEVER LIGHT

SET UF SIZE AND INT. GET RACK EDIT ADIRESS
CAal.l. PRAMTR(3yLARGE s INT» IFILEC(LY s ZEDIT)

ABSOLUTE BEAM FOSITION» 250 ARBITRARY.
CALL FOINT(250:250)

START UF THE VT-15
CaALL DINITCIFILECLY)

NOTE WE CAN HAVE SaME FILE MAIN AND SURFICTURE

ALS0Oy VT-15 CAN EXECUTE DURING FILE-BUILD

NOW FLACE THE TEXT STRING
Cal.l. TEXT (TXT(1)y2)

NOW WAIT FOR INTERRUFT, THEN GET CONTROL

33 CAlLL LTORFE (LPXsLFPYsNAMEsIBsIWs 1)

CHECK IF FUSH BUTTON INTERRUFT
IFCIW.LT.2) GO TO 33

Figure 9-2
FORTRAN Example To Display 'HI' (Sheet 1 of 2)

X-9-6

referenced

G
¢

™

™

I}

-

o

(}\ '.;_)

IS TIME

TO OEXIT

IFCIRGSEY) GO TD 99

ALJLST

INTENSITY AND SCALE

TFOIBROLY Y INT=INT+HI

TFOIR2Y) IN

NT -1

IFCIBOEY Y LARGE=LARGE+L
TFOIRGA)) LARGE=LARGE-L

FREVENT

OUT-0F ~RBOUNDE ValllES

TFLINT LY .00 INT=0

I
I
I

BT NE

FOIRTGT.73 INT=7
FOLARGE LT 0) LARG
FOLARGE .GT. 152 LARGE:

W OONES OUVER OLD

CALL REPLOT (2s39LARGE » INT TEDET)

> GO WATT FOR NEXT

30 TO 33

CEXIT ON LAST BUTTON
aroE
£

NI

Figure 9-2 (Cont.)

FORTRAN Example To Display 'HI'

X-9-7

(Sheet 2 of 2)

APPENDIX A

ERROR MESSAGES

A.1 ERROR MESSAGES FORMAT

Error handling under the RSX graphics system is minimal. If an error
is detected, the user task is aborted and a message is printed on the

user terminal. Other tasks in the system are unaffected. The message
format is:

XXX "TAGKN" VPR ADDR MMMMMM CODE NNNNNN
where: TASKN is the task name.

MMMMMM is the address of the user call to the graphics
system.

NNNNNN is an error code (refer to section A.2).

The 100000 bit of the address is set if the user is running in user
mode. The address in this case is relative to the start of the task
partition. A task build gives a memory map of the modules in the user
partition (including FORTRAN COMMON blocks). A FORTRAN compilation
with the BLO option provides a complete 1listing (BLS provides
locations of variables and numbered statements). This information
allows the user to associate the returned address with an individual
call to the graphics system. If the error is in a DYSET or DYLINK
call, DYS replaces VPR in the error message.

A.2 ERROR CODES

A negative error code is an RSX negative event variable for an 1I/O
error. This error presumably occurred when the handler was doing 1I/0.

An error code of 0 indicates that the user provided an incorrect
number of arguments in his call.

An error code of 1 indicates that the user provided an illegal
selection code (first argument) to a PLOT or REPLOT call,

An error code of 2 indicates that the user provided an illegal bit in
the PRAMTR (or corresponding PLOT or REPLOT) hardware feature
selection argument.

XVM/RSX V1B) X-A-1 September 1976

An error code of 3 indicates that the user provided a CNAME with a
value of zero. (It is probable that the CNAME was used to attempt an
edit without first filling it with an address.)

An error code of 4 indicates that the 1last user <call would have
extended a display file across an absolute 8K boundary. The display
file is left as it was prior to the erroneous call. Locations beyond
the end of the display file may, however, have been modified.

An error code of 5 indicates that a wuser-provided count of display
elements (TEXT, GRAPH or ANY) was impossible (usually occurs with a
negative count).

An error code of 6 indicates the detection of any DYSET/DYLINK error,
except those 1involving 8K boundaries. (8K boundary errors are
indicated by error code 4.):

An error code of 7 indicates that a text string extended across an
absolute 8K boundary.

X-A-2

APPENDIX B

SUMMARY OF CALLS

ALl aNY (ARRAY CL) oNE o PNAME (L YDy CNAMET D)
Call BLANK (FNAME (13
Call. CCLOSE
Call, CINIT CIFTLECLY)
Call, CIRCLE Ry THETA GEMMaA» DEG» TEURD
Call, COPY (RSET«FHNAMELCLID o FNAME CL I D ONAMETT)
Call, DCLOSE
DDLETE
ALl BEEETE (CNAMED
Iﬂ%&tﬁfgﬁﬁNﬁME)
obL EY
Cabi. DINIT (MAINILY)
CALL DYLINE ¢FNAOMELCL) «PNAME2 (LY v s PNAMEN (133
Call DYLINK (PNAMELCLY sy s FNAMEN{ L) =1 o BTRLICLY vy v s GTRNCL DD
CALL DYSET (PNAMELCL) yPNAMEZCL Y » o PNAMENCL YD
Call DYSET (FNAMEL(L e e v FNAMEN(L) s~ 19 BTRLIC(L vy v » STRN(L)
Coll GETRLT (LUNMODEsaRRAYDy TEVID
DAkl GETFSH (IRT?
Call, GRAFH (DATACLY yNE s ALy FNAME CL 30y CNAME T

DLIE
Calh, LINE CRDxe DOV INTDy PMAME (LY D TN

CalL LTORFE (IXeIYNAMRy IBT IWRCH 1)
Tl TORPFROINy TY o NAMR e TET s TWITHE +WATTI
0LoT §

Call. PLOT (pyRQTVPNﬁNE(l)ErCNﬁMEJ)

Call PLOT gleXvIYEvINTEvCNANEJHB
/

CﬁLLJPLDB/(QV$ELECTvUﬁLUEEyCNﬁHEJ)

Call FLOT (2:SELECT VELUEL yVALUEZy v v » Lo ONAME T
Catl PLOT (3y8TROLY o NI CNAME T

Call PLOT (A» X« DD INTL y CNAMED D)

Call PLOT (SyDATACLY » Ny &Ly UNAMETD)

ALl PLOT (4 ARRAY (L) o ND» SNAME D)

CALL POINT (IXyIYE» INTL PNAME (L Do DNAMETIT)

Call PRAMTR (BE

LT e VLU o FPRIGME ©L 30 » DNAME T D)

Call FRAMTR (SELEQCTVALUEL »VALUERy » o [y PNAME (13 [y CNAME 1)

Call REFLOT (0:RETyFPNAME (L) » TNAME)
T=REFLOT O o RET » FNAME (L) » CHAME)

DAL REFLOT (LeIXyIY e INT CNAME
[L IX e T INT v ONAMED

Catl. REPLOT (2

I=REFLOTIZ» SELEL

Al REPLOT (328TROL) v N ONAME)
REFLOT I STROLY o My CRAME)

REFLOT (4 T IY e THT » DHAME

EFLOTCA» LXw DY 0 ENT » CNAME)

Call REPLOT (Sy0ATACLY s My Ay TNAME)
T=REPLOT (S » DAETACLY s N A s TNAME)

Call, REPLOT (A aRERAY CL Y My ONAMED
LOT Che ARRAEY (LY » Ny DNAME D

S LR DTS

DALl SETFT (IR IVEONAMED

Colbl, TEXT (STROL) »ND s FNAME (LI UNAMET D)

Cald, TRACK (I IYLyI0FT IaRRAY I
CALL UNBLNK (PNAME (L)

Lol VTUNITON)

X-B-2

MNEMONIC

A

ARRAY

CNAME

COSA
DATA
DEG

GAMMA

IA
IB

IBT

Ic

APPENDIX C

MNEMONICS COMMONLY USED IN GRAPHICS CALLS

DEFINITION

An integer variable or constant which indicates which axis

to increment for GRAPH subroutine:
0 =

increment X, set Y to data values.

nonzero = increment Y, set X to data values.
In the GETBLT call, a three member integer array into which
are returned the X-Y coordinate data and a type indicator.

In the ANY call, the starting address of an integer array of

VT-15 display command code provided by the user and
represented as a subscripted variable.
An integer variable that identifies the edit address (first

location) which <contains the display command(s) placed by
the call in which CNAME is ah output argument.
Floating-point cosine of angle of rotation. Used in ROTATE
call.

Address which contains the array of integer data
be plotted by the GRAPH subroutine.
an integer subscripted array.

points to
DATA is represented as

Chord length of circle, expressed in Floating-point degrees

of arc. Used in CIRCLE call.

Used in CIRCLE call to define end point of <circle or arc.
Expressed in floating-point degrees counter-clockwise from
the positive X axis.

If nonzero indicates rotation about Z axis. Used in ROTATE
call.

If nonzero indicates rotation about Y axis. Used in ROTATE
call.

A six-element integer array which will contain a 1logical
TRUE or FALSE for each of the six pushbuttons. An output
argument of the LTORPB and GETPSH calls.

If nonzero indicates rotation about X axis. Used in ROTATE

call.

X-C-1

IDX

IDY

IEV

INT

IWICH

IX

1Y

LUN

MODE

NAMR

PNAME

An integer number or variable which represents in raster
units the amount the CRT beam is to be displaced from its

current position in a horizontal direction. This quantity
is signed to indicate the direction of displacement (i.e., +
= move beam right and - = move beam left). Used 1in LINE
call.

Same as IDX except that the indicated displacement is made
in a vertical direction and the directions indicated by the
sign are: + = move beam up and - = move beam down. Used in
LINE call.

In the GETBLT call, an integer event variable.

This integer variable indicates if the CRT beam movement is
to be visible, (INT = nonzero) to draw a line, or invisible
(INT = 0). Used in LINE, POINT, and PLOT calls.

Output argument in LTORPB call. Set to 1 for light pen hit;
set to 2 for push button hit; set to 3 for simultaneous
light pen and push button hit.

Used in POINT and SETPT calls to indicate the absolute X
position to which the beam is to be moved. Absolute X
coordinate of light pen hit in a LTORPB call.

Used in POINT and SETPT calls to indicate the absolute X
position to which the beam is to be moved. Absolute Y
coordinate of light pen hit in a LTORPB call.

In the GETBLT call, an integer expression describing which
logical unit is to be referenced.

In the GETBLT call, an integer expression defining the mode
of operation. MODE=0, single point data; MODE=nonzero,
continuous tracking.

Used by GRAPH subroutine to indicate the number of points to
be plotted. Used by TEXT subroutine to indicate the number
of characters to be displayed. Used by ROTATE subroutine to
indicate number of data points to be rotated. Also used in
ANY call to indicate the number of elements of the array
specified that are to be moved into the display file.

An integer which represents the contents of the name
register at the time of a light pen hit (restricted to
values ranging from 0 to 127). An output argument of the
LTORPB call.

The display files generated by the graphic subpicture
routines are stored in dimensioned integer arrays specified
by the user. The integer variable PNAME specifies the first
element of the array into which commands generated by a
particular call are to be stored. PNAME is always
represented as a subscripted variable (e.g., PNAME(1l))
except in the CIRCLE call. It will contain the length of
the file and is the variable by which the file is referenced
in later manipulations.

X-C-2

PNAME1

RST

SELECT

SINA

STR

THETA

VALUE

WAIT

NOTE

The variable PNAME may be dropped from the statement
argument lists; if dropped, the last given value
for PNAME will be assumed.

In a COPY call, the address of a subpicture display file
called PNAME and 1is represented as a subscripted variable
(e.g., PNAME(1)).

Used in CIRCLE call to specify radius of a circle in raster
units.

In the COPY call, this variable indicates whether the
hardware SAVE/RESTORE option is to be used to save display
parameters through the subroutine call. The value 0
indicates that the SAVE/RESTORE option is not to be used; a
nonzero value indicates that it is to be used.

An integer number which identifies a hardware feature(s) to
be specified in the call (e.g., 1 = scale, 2 = intensity, 4
= light pen, and 8 = blink). Used in the PRAMTR call.

In the ROTATE call, represents the floating-point sine of the
angle of rotation.

In the TEXT call, identifies the dimensioned real array
which contains the string of characters to be displayed in
IOPS ASCII (Hollerith) form (five 7-bit characters per
word) . Represented as a subscripted variable (e.g.,
STR(1l)) .

Beginning point of circle or arc, expressed in floating-point
degrees counter-clockwise from the positive X axis. Used in
CIRCLE call.

A single integer variable or constant that indicates the
value or setting specified for a selected display feature in
the PRAMTR call.

An integer constant or variable, which, if nonzero, handler
waits for an LTORPB interrupt before returning to user.

In the ROTATE call, the address of the array of floating-point
X positions to be rotated.

In the ROTATE call, the address of the array of floating-point
Y positions to be rotated.

In the ROTATE call, the address of the array of floating-point
7 positions to be rotated.

X-C-3

APPENDIX D

ASSEMBLY PARAMETERS

The VT15 handler recognizes the assembly parameters SCOPEO, SCOPE],
SCOPE2 and SCOPE3. If no assembly parameters are specified, the
handler is assembled to handle all four scopes. If any assembly
parameter is specified, the resulting binary handles only those scopes
specified. SCOPEl cannot be specified if SCOPEO is not specified and
SCOPE3 cannot be specified if SCOPE2 is absent. The VT15 handler
reqguires 2400 (octal) core locations, except for a one-scope
configuration, which requires 2000 (octal) locations.

WARNING

When assembling the source file of the
VT15 handler, the user must specify at
least as many VT15 units as there are
listed in the Physical Device List.

The FORTRAN-callable routine VPR.nn recognizes the assembly parameter
QEDIT. If no parameters are provided, the FORTRAN package restarts
the VT15 each time a code modification call is issued. If QEDIT is
specified, this restart 1is not issued. The restart is present as a
safety feature primarily to guard against editing different length
groups over COPY calls. If speed is essential and complex editing
operations are not being done, this safety feature can be removed by
assembling VPR.nn with the QEDIT feature.

VPR.nn recognizes the assembly parameter SHRTAV. If this parameter is
defined, the output display code consists of one location of short
arbitrary vector when the absolute magnitude of both IDX and 1IDY is
less than 32.

The other graphics programs do not have assembly parameters. Writing
tablet handler VW.nn requires 1000 (octal) locations.

The following is an example of an assembly of the VT15 handler for one
scope:

TOV:MACRO FBLX.VT.23 /PARAMETERS,BINARY,LIST,CREF

MAC-INFUT FARAMETER DEFINITIONS

SCOFEQ=1

TRV /AFTER CARRIAGE RETURN,CONTROL D,ALTMODE

XVM/RSX V1B X-D-1 September 1976

Allocation of space, 2-3
Altmode character, 2-6
ANY subroutine, 2-15,
Arguments, 2-2
Arrays, 2-1, 2-15

size of, 2-2
ASCII string, 2-5
Assembly parameters, D-1

3-6

Beam position, 3-2
BLANK subroutine,
BLINK, 2-8
Boundaries of core,

2-13

2-2

CCLOSE routine, 5-3
Characters, nonprinting,
CINIT routine, 5-3
CIRCLE subroutine,
example, 2-19

CNAME, 2-2, 2-4, 2-5, 3-4
Code modification routines,
Console dialogue, 9-1
Console listing, example, 9-2

2-6

2-16

4-2

INDEX

Examples (cont.)
PRAMTR settings, 2-25
ROTATE subroutine, 2-26
sine wave, 2-20, 2-21,
writing tablet, 8-3

2-22,

Filename format, 2-2

Flicker, 2-9

FORTRAN example, 9-6

Four-square display example,
2-18

GETBLT routine,
GET functions, 7-3
GETPSH routine, 5-5
Getting on the air, 9-1
GRAPH subroutine, 2-11,

8-1

3-5

Hardware, 1-2

Hollerith data statements, 2-5

2-23

COPY subroutine, 2-6, 3-2
Core boundaries, 2-2
Input-output routines, 5-1
Integer event variable
(IEV), 8-1
DASH (dashed lines), 2-8 INTENSITY, 2-7
DCLOSE routine, 5-3
DELETE routine, 4-2
DINIT routine, 5-2
Display file, 2-2, 2-3 Light pen, 5-3
Display parameter settings, 2-10 LIGHT PEN ENABLE, 2-8
DYLINK routine, 6-2 LINE subroutine, 2-4, 3-3
DYSET~DYLINK, example, 6-4 LTORPB routine, 5-3
DYSET routine, 6-1
MACRO programming, 7-5
Embedded subroutines, 6-3 example, 7-6
End-of-file pointer, 2-2 Main display file routines, 3-1
Error messages, A-l Mnemonics, C-1
Examples Modifying VT15 code, 4-1
CIRCLE subroutine, 2-19
console listing, 9-2
DYSET-DYLINK, 6-4
FORTRAN, 9-6 NAME REGISTER, 2-8
four-square display, 2-18 Nonprinting characters, 2-6
MACRO programming, 7-6 Nonstandard display files, 6-3
XVM/RSX V1B X~Index-1 September 1976

INDEX (CONT.)

OFFSET, 2-8

Phosphor damage, 2-9

Picture flickering, 2-9

PLOT routine, 3-1, 3-2

PNAME, 2-3

POINT subroutine, 2-14, 3-5
PRAMTR settings example, 2-25
PRAMTR subroutine, 2-7, 3-4
PUT functions, 7-1

Relocation routines, 6-1

REPLOT routine, 4-2

Restrictions, 2-1

ROTATE, 2-8

ROTATE subroutine, 2-16
example, 2-26

RSETPT routine, 4-3

SAVE-RESTORE option, 2-7

SCALE (picture size), 2-7

Scope images, storage of, 6-1

SETPT routine, 3-1, 3-2

Sine wave program example, 2-20,
2-21, 2-22

Sine wave program written for
single display file, 2-23

XVM/RSX V1B

X-Index-2

Source files, 9-1

Space, allocation, 2-3

Square brackets ([]) usage, 2-5

Storage of display file, 2-2

Storage of scope images, 6-1

Storage overhead, 2-3

Subpicture routines, 2-1

Subroutine calling conventions,
2-2

Summary of routines, B-1

SYNC (synchronization), 2-9

Text string rotation, 2-8
TEXT subroutine, 2-5, 3-4
Tracking, 5-2

TRACK routine, 5-2
Truncation, 2-5, 2-11, 3-2

UNBLNK subroutine, 2-14

VT1l5 handler, D-1
VTUNIT routine, 5-2

Writing tablet example, 8-3
Writing tablet handler, 8-1

September 1976

	10_00
	10_01-01
	10_01-02
	10_02-01
	10_02-02
	10_02-03
	10_02-04
	10_02-05
	10_02-06
	10_02-07
	10_02-08
	10_02-09
	10_02-10
	10_02-11
	10_02-12
	10_02-13
	10_02-14
	10_02-15
	10_02-16
	10_02-17
	10_02-18
	10_02-19
	10_02-20
	10_02-21
	10_02-22
	10_02-23
	10_02-24
	10_02-25
	10_02-26
	10_02-27
	10_02-28
	10_02-29
	10_02-30
	10_03-01
	10_03-02
	10_03-03
	10_03-04
	10_03-05
	10_03-06
	10_04-01
	10_04-02
	10_04-03
	10_05-01
	10_05-02
	10_05-03
	10_05-04
	10_05-05
	10_05-06
	10_05-07
	10_05-08
	10_05-09
	10_05-10
	10_05-11
	10_05-12
	10_05-13
	10_06-01
	10_06-02
	10_06-03
	10_06-04
	10_06-05
	10_06-06
	10_07-01
	10_07-02
	10_07-03
	10_07-04
	10_07-05
	10_07-06
	10_07-07
	10_07-08
	10_08-01
	10_08-02
	10_08-03
	10_08-04
	10_08-05
	10_08-06
	10_09-01
	10_09-02
	10_09-03
	10_09-04
	10_09-05
	10_09-06
	10_09-07
	10_A-01
	10_A-02
	10_B-01
	10_B-02
	10_C-01
	10_C-02
	10_C-03
	10_D-01
	10_Index-01
	10_Index-02

