GENERAL @D ELECTRIC PROCESS COMPUTERS

GE/PAC 4000 SOFTWARE NOTEBOOK

TABLE OF CONTENTS

Section I. Computer Software
Standard On-Line Functions
Language Processors
Debugging Aids
Software For The GE/PAC 4000
GE/PAC 4000 Library Programs

Section II, GE/PAC 4000 Programming Manual
Section III. Programming Techniques Manual
Section IV. Process Assembler Language

Section V. Single-Word Fortran Reference Manual
Section VI. Monitor User's Manual

Section VII, Free-Time System User's Manual

GENERAL @D ELECTRIC PROCESS COMPUTERS

COMPUTER SOFTWARE

The successful operation of any process system depends on two functions -
hardware and software. Hardware is the group of electronic components that acts
physically upon information and signals from the process. That portion of soft-
ware called the system program is the intelligence that instructs the computer
hardware to step through the various cycles of the process. Other software
packages aid in preparing the system program. General Electric process computer

sof tware:

. Facilitates a systematic approach in writing computer programs

. Sufficiently flexible to allow for future changes in user process

Complete software packages for GE/PAC 4000 have been developed and are classi-
fied into 3 categories: Language Processors, Standard On-Line Functions, and

Program Debugging Aids:

Language Processors

. Translates functions into computer instructions
Increases speed and accuracy in preparing programs
. Aids in documentation and debugging of a program

. Operate on GE/PAC 4000, GE 412 or GE 225 computer systems

Process Assembler Language

. Enables programmer to code program in systematic and well
documented fashion.

. Generates single and double precision constants to a specified
scale factor.

. Provides built-in check features which detect and notify programmer

of coding errors.

Fortran II Compiler

. Enables powerful algebraic and verbal statements to be written with
minimum time and effort.

. Permits experieunced Fortran programmers to make easy transition to
GE/PAC programming.

. Allows previously written Fortran programs to be adapted to the

GE/PAC 4000.

GENERAL @ ELECTRIC PROCESS COMPUTERS

Computer Software (Continued)

Standard On-Line Functions

Common routines suitable for numerous applications
Require little or no re-work by user programmer

Use of pre-checked routines eliminates programming and debugging time

Monitor
. Schedules and gives priority assignment to system functions
. Enables user to have system running on-line in minimum of time

. Provides communication between functions and peripheral equipment

Math Routines

. Includes fixed, floating, single and double precision math routines
. Available from General Electric library to all GE/PAC 4000 users
. GE/PAC 4000 users receive up-to-date abstracts of new routines as

they are developed.

Debugging Aids

Debugging aids proven by field experience provide powerful means of

keeping program documentation up to date.

Debugging aids provide user with loader, dump, memory change, and

trace routines.

On-line debugging aids are plug-in package to Monitor.

GENEBAL@ELEGTRIB PROCESS COMPUTERS

STANDARD ON-LINE FUNCTIONS

Standard on-line functions are portions of a total system program that are common
from one computer application to another. Because they are used so frequently,
6ptimum execution time and utilization of memory have been stressed in their develop-
ment. For most applications the use of these functions require little or no re-work

by user programmers. Use of these pre-checked routines eliminates programming and

debugging time.

MONITOR

MONITOR provides the skeleton of a real-time program by scheduling and giving
priority assignment to system functions. By using MONITOR the user is capable of
having an on-line program running with minimum of time spent on the program. Ad-
ditional functions can be added to MONITOR requiring no re-working of the running

system.

The routines that make up MONITOR are clear and well defined which makes for easy
understanding of the system. The layout of the MONITOR package facilitates the
addition of system functions by user programmers. The routines that comprise
MONITOR are:
Time and diagnostic count
Executive control program
Save registers routine
Restore register routine
Turn off program routine
Set program delay
Input-output drive
Output program consisting of:
Output subroutine
Decimal floating point routine
Decimal fixed point routine
Octalﬁponversion routine
BCD conversion routine
Build driver table routine

Binary to decimal conversion subroutine

GENEBAL@ ELECTRIC PROCESS COMPUTERS

Standard On-Line Functions

In addition to the above, MONITOR also includes the following two routines for
core/drum GE/PAC 4000 computers:
Drum transfer subroutine

Drum transfer drive

The Time and Diagnostic Count routine essentially performs two functions. The

routine maintains the value of current time (in seconds) which is used by the Executive
Program in determining execution time of the functional programs. The second function
of this routine is to detect if certain peripheral devices such as typewriters,
punches, etc. fail. This routine will usually turn on a corrective action function

which initiates remedial action.

The Executive Control Program (E.C.P.) is the real heart of the MONITOR system as it

initiates functional programs according to their scheduled interval and priority. The
ECP provides for easy writing and addition of function programs as it performs real-
time housekeeping chores such as saving and reloading arithmetic and index registers.
The number of functional programs that the ECP can manage is limited only by the com-
puter core or drum size and the length of the individual functions. Most MONITOR

systems allow 25 to 50 functional programs.

To accomplish on-line requirements as they occur, the GE/PAC 4000 uses automatic
priority interrupt which may interrupt a program at any time. Since the wvarious
registers (arithmetic, location counter, index) must be saved for the interrupted

program, MONITOR provices the Save Register and Restore Register routines that user

interrupt programs can use.

To further reduce housekeeping chores of functional programs using MONITOR, Set

Program Delay and Turn Program Off routines are supplied. These routines enable a

user function to be initiated at a specified interval or be completely turned off

until some exterior influence (such as a demand) re-initiates the function.

The Input/Qutput program permits user functional programs to communicate with peri-

pberal devices such as typewriters, readers, punches, ctc. in an orderly, step-by-step
fashion. The Input/Output program determines if the peripheral is available for use
by the functional program, reserves the peripheral for the functional program, reads
in or puts out data, and makes the peripheral free for other functions upon

conclusion of the present function. The Input/Output program eliminates a large

GENEBAL@ ELECTRIC PROCESS COMPUTERS

Standard On-Line Functionsrn

amount of editing and bookkeeping that would be required if it were not available.
The output portion of the program converts binary floating point to decimal fixed
point output, binary fixed point to decimal fixed point output, binary to octal
output, binary data to numeric and alphabetic character output. The Input/Output
program operates the peripherals through automatic priority interrupt which insures

the peripherals to operate at their maximum speed.

For GE/PAC 4000 computers equipped with a magnetic drum memory, MONITOR also provides
the transfer linkage for information flowing between core and drum. The user

functional program simply uses the Drum Transfer Subroutine to initiate a transfer of

information between core and drum. While the transfer is in progress, MONITOR initiates
other functions that require action thereby permitting full utilization of the central
processor. When the transfer is complete, the ECP will re-initiate the fundamental
program that requested the transfer. ‘Completion of a drum/core transfer is detected

by automatic priority interrupt which insures that the date involved in the transfer

is acted upon expeditiously by the function.

MONITOR Compatible Functions

MONITOR Compatible Functions are those functions that are developed for
specific applications which may be used by other computer users. These
routines are written in a general form so that they require a minimum of
re-working to be suitable for similar other applications. Examples are

scanning, alarming, conversion equations, demand print, etc.

Math Routines

Math Routines which are usually used in subroutine form include fixed point, single
and double precision math functions. These routines arc available from the General
Electric Company library to all GE/PAC 4000 computer users. They may be obtained in
punched card form, symbolic listing or paper tape where the General Electric Company
will assemble the routines to fit the user parameters., Examples of those routines are

square root, trigometric, exponential functions, etc.

GENERAL @D ELECTRIC PROCESS COMPUTERS

LANGUAGE PROCESSORS

Language processors are those preparation aids that enable a programmer to
translate a function into actual computer instructions. Use of a symbolic
language greatly increases the speed and accuracy of preparing a program and

also aids in the documentation and debugging of the program. To provide the
programmer with the most effectual means of coding a program, the General Electric
Company has developed two powerful language processors - Process Assembler
Language and GE/PAC Fortran. These language processors are extremely flexible -
providing for magnetic tape, paper tape, or punched card input. Additional
service to the user has been provided as these processors operate on Eﬁzgég 4000,
GE 412 or GE 225 computer systems. The GE 225 language processor version enables
routines to be assembled or compiled at the various General Electric Information

Processing Centers throughout the country and overseas.

PROCESS ASSEMBLER LANGUAGE

The Process Assembler Language accepts coded symbolic instructions and trans-
lates them into computer instructions. These symbolic instructions are coded
by the programmer on a coding sheet from which cards are punched when the
coding is completed. The cards then may be read into the computer on which

the Assembler Program is operating.

The output from the Assembly Program is a listing from a printer or type-
writer of the object program and a paper tape which is used to load the new
program into the computer. In addition to this translation, the Assembler
Program has built-in check features which detect and notify the programmer
of coding errors. The listing provides documentation of the program and is

invaluable as a debugging aid.

An On-Line Process Assembler Language program accepts the same symbolic
language as above and has the ability to asscmble programs while the EEZgég
4000 is handling process data. Its advantage is that it can be used to
assemble or re-assemble programs at the user site, and integrates them into

the system with no interruption to process computing.

The listing provides the symbolic instructions as coded and also the octal

core locations, instructions and constants of the assembled program. For

GENERAL @D ELECTRIC PROCESS COMPUTERS

Language Processors (Continued)

further aid in debugging, the listing reproduces all comments from the coding
sheet. Three columns of numbers represent:

Core location

Relative address

Absolute address
The Assembly Program makes maximum use of the relative addressing feature of
the Eﬁzgég 4000. The Assembly Program assembles the operand value relative
to the location of the instruction itself rather than the absolute value.
With this feature, it is possible to move the program within memory, thereby

adding a new dimension of flexibility to system program organization.

In addition to the computer hardware instructions, the Assembly Program makes
maximum use of pseudo instructions for storage assignments, symbol definition,
and generation of constants to provide better programmer efficiency. These

instructions include block storage reservation, single-and double-word float-

ing constants, etc.

GE/PAC FORTRAN Compiler

To make the writing of new programs easy and efficient as possible, G.E. has
created a Fortran Compiler for Eﬁzgég 4000. This compiler goes a step beyond
the Process Assembler Language program in that it enables the programmer to
write his program in terms of "statements" which employ familiar language and
symbols rather than the symbolic code required by the Process Assembler
Language. An example of such a statement might be:

Y =A/B+ C - SIN(D + E)
where A; B, C, D and E are symbols which have been defined by the programmer
in previous statements. A statement such as this, when presented to the
Fortran Compiler, will cause the compiler to automatically generate all the
step~by-step machine instructions necessary to perform the calculations
called for in the statement. Thus, the programmer is freed from the time-
consuming details of step-by-step programming and allowed to concentrate more

fully on the problem at hand.

In preparing the Fortran Compiler for the GE/PAC 4000, G.E. has incorporated
several special features which facilitate the writing and running of programs

in a real-time process control environment.
2=

GENERAL @B ELECTRIC PROCESS COMPUTERS

Language Processors (Continued)

Compatibility With Monitor

The Compiler has been designed so that the programs it produces will have
numerous special provisions for operation within the G.E. Monitor system. Thus,

new programs may be easily incorporated into existing Monitor systems.

Compatibility With Process Assembler Language

The programmer is free to intermix Eﬁzgég Fortran statements with Process As-
sembler Language statements within a single program. This allows the programmer
to switch back and forth between the two languages arbitrarily, always free to
choose the language in which he can proceed more efficiently. Output from the

compiler is in the form of Process Assembler Language Symbolic coding.

Bit Manipulation Capability

Special Fortran statements are available to the programmer through which he may
exploit the ability of the GE/PAC 4000 to manipulate individual bits within a
word. In this manner, individual bits may be treated as separate variables and

may be set, reset, tested, and operated upon with Boolean algebraic expressions.

Drum~Core Transfers

Transfers of information between drum storage and core storage may be imple-
mented through the Fortran Compiler by means of special statements provided for

this purpose.

Memory Economy

The Compiler has been designed so that the programs which it produces will
require a minimum of memory space. This conservation of memory can mean
increased flexibility during future additions of modifications of programs in

cases where it is not desired to increase the memory size of the machine.

Floating Point Operation

The Fortran Compiler will accept data in either integer or floating point form,

and programs produced by the Compiler may be made to output data in either form.

Statement Repertory

A large repertory of allowed statements, plus a full complement of “library"
subroutines, makes for ease and flexibility in programming with the Fortran

Compiler.

-3

GENERAL@ELECTBIC PROCESS COMPUTERS

DEBUGGING AIDS

Field experience has shown that debugging aids provide a powerful means of
updating program documentation which leads to a successful program. To this
end, General Electric has developed extremely useful debugging aids, both

on- and off-line.

Debugging aids are used by the programmer to check the operation of progress
for their correctness. Program loaders provide the means of load programs or
data into computer storage through card or paper-tape readers. Conversely,
the dump program is used to record the contents of computer memory, either

through the typewriter or paper-tape punch.

The Memory Change program provides the means for changing the contents of a core

or drum location through the computer console switches. Documentation showing
the location, contents before the change, and contents after the change are typed
out on the console typewriter, The memory change program has the added facility

of displaying the location and its contents before the change is executed.

The on-line debugging routines enable unchecked routines to be debugged on the
computer without interrupting normal process monitoring and control. Safeguards
are built into these on-line debugging aids to guard against unchecked programs

destroying operating programs.

SECTION IV

FUNCTIONAL DESCRIPTION - GE/PAC SOFTWARE

SECTION IV

FUNCTTIONAL DESCRIPTION - GE/PAC SOFTWARE

A, GENERAL

The successful operation of any process system depends on two functions -
hardware and software, Hardware is the group of electronic components that
acts physically upon informestion and signals from the processes. That por-
tion of software called the system program is the intelligence that instructs
the computer hardware to step through the various cycles of the processes.
Other software packages ald in preparing the system program. General Electric

process computer software:

o Facilitates a systematic approach in writing computer programs,
o} Sufficiently flexible to allow for future changes in user
processes,

Complete software packages for GE/PAC 4000 have been developed and are
classified into 3 categories: Language Processors, Standard On-Iine
Functions, and Program Debugging Aids:

1. Language Processors

0 Translates functions into computer instructions,

o) Increases speed and accuracy in preparing program,
o) Aids in documentation and debugging of a program,
0 Operate on all GE/PAC L4000 Central Processors.

(a) Process Assemble lLanguage

o Enables programmer to cede program in systematic and
well documented fashion,

0 Generates single and double precision constants to a
specified scale factor.

o Provides bullt-in check features which detect and

notify programmer of coding errors,

IV - 1

(b) Fortran Compiler

O

Enables powerful algebraic and verbal statements to
be written with minimum time and effort.

Permits éxperienced Fortran programmers to make easy
transition to GE/PAC programming.

Allows previously written Fortran programs to be

adapted to the GE/PAC LOOO series process computers.

2. Standard On-Iine Functions

O

o}

O

Common routines suitable for numerous applications.

Require little or no re-work by user programmer.

Use of pre-checked routines eliminates programming and debugging

time.

(a) Monitor

(o]

Schedules and gives priority assignment to system
functions.

Enables user to have system running on-line in minimum
time.

Provides communication between functions and peripheral

equipment.

(b) Math Routines

e}

Includes fixed, floating, single and double precision
math routines.

Available from General Electric library to all GE/PAC
LOOO users.

Assembled by General Electric to fit user roubtine
parameters.

GE/PAC L4000 users receive up-~to-date abstracts of new

routines as they are developed.

IV - 2

{(¢) Free Time System

0 Real time language processing.

0 Real time debugging.

o Use of functional programs in a real time environ-
ment «

o Allows 100 percent usage of computer arithmetic and

logic capabilities.

3« Debugging Aids

o Debugging alds proven by field experience provide
powerful means of keeping program documentation up
to date.

o Debugging aids provide user with loader, dump, memory
change, and trace routines,

0 On=line debugging alds are a plug-in package to Monitor.

LANGUAGE PROCESSORS

Ianguage processors are those preparation aids that enable a programmer

to translate a function into actual computer instructions. Use of a sym-
bolic language greatly increases the speed and accuracy of preparing a
program and also aids in the documentation and debugging of the program.

To provide the programmer with the most effectual means of coding a program,
the General Electric Company has developed two powerful language processors =
Process Assembler language and Fortran II. These language pProcessors are
extremely flexible - providing for magnetic tape, paper tape, or punched

card input, Additional service to the user has been provided as these pro-
cessors operate on GE/PAC lLOOO‘y GE 412 or GE 225 computer systems. The

GE 225 language Processor version enables routines to be assembled or com=
piled at the various General Electric Information Processing Centers through-

out the country and overseas.

le

Process Assembler Language

The Process Assembler Ianguage accepts coded symbolic instructions and
translates them into computer instructions. These symbolic instruc-
tions are coded by the programmer on a coding sheet from which cards
are punched when the coding is completed,. The cards then may be read

into the computer on which the Assembler Program is operating.

The output from the Assembly Program is a listing from a printer or
typewriter of the object program and a paper tape which is used to load
the new program into the computer, In addition to this translation,
the Assembler Program has bullt-in check features which detect and
notify the programmer of coding errors. The listing provides documen-

tation of the program and is invaluable as a debugging aid.

An On~Iline Process Assembler language program accepts the same symbolic
language as above and has the ability to assemble programs while the
GE/PAC L4000 is handling process data. Its advantage is that it can be
used to assemble or re-assemble programs at the user site, and inte=

grates them into the system with no interruption to process computing.

The listing provides the symbolic instruections as coded and also the
octal core locations, instructions and constants of the assembler
program. For further aid in debugging, the listing reproduces all
comments from the coding sheet. Three columns of numbers represent:

Core location

Relative address

Absolute address

The Assembly Program makes maximum use of the relative addressing fea-
ture of the GE/PAC 4000, The Assembly Program assembles the operand
value relative to the location of the instruction itself rather than
the absolute value. With this feature, it is possible to move the
program within memory, thereby adding a new dimension of flexibility

IV - L

2.

to system program organization. In addition to the computer hardware
instructions, the Assembly Program makes maximum use of pseudo in-
structions for storage assignments, symbol definition, and generation
of constants to provide better programmer efficiency. These instruc-
tions include Dblock storage reservation, single and double word

constants, single and double word floating constants, etc,

FORTRAN Compiler

To make the writing of new programs as easy and efficient as possible,
G.E. has created a Fortran Compiler for GE/PAC 4000, This compiler
goes a step beyond the Process Assembler Language program in that it
enables the programmer to write his program in terms of "statements”
which employ familiar language and symbols rather than the symbolic
code required by the Process Assembler language. An example of such is:
Y =A/B +C - SIN (D + E) |
where A, B, C, D, and E are symbols which have been defined by the pro-
grammer in previous statements. A statement such as this, when presented
to the Fortran Compller, will cause the compiler to automatically
generate all the step~by-step machine instructions necessary to perform
the calculations called for in the statement. Thus, the programmer is
freed from the time-consuming details of step-by-step programming and

allowed to concentrate more fully on the problem at hand.
Tn preparing the Fortran Compiler for the GE/PAC L4000, G.E. has incor-

porated several special features which facilitate the writing and

running of programs in a real~time process control enviromment.

{a) Compatibility with Monitor

The compiler has been designed so that the programs it pro-
duces will have numerous special provisions for operation
within the G.,E. Monitor system. Thus, new programs may be

easily incorporated into existing Monitor systems.

IV-5

(p)

(e)

(a)

(e)

(£)

Compatibility with Process Assembler language

The programmer is free to intermix Fortran statements with Process
Assembler language statements within a single program. This
allows the programmer to switch back and forth between the two
languages arbitrarily, always free to choose the language in which
he can proceed more efficiently. Output from the compiler is in

the form of Process Assembler Language Symbolic coding.

Bit Manipulation Capability

Special Fortran statements are available to the programmer through
which he may exploit the ability of the GE/PAC LOOO to manipulate
individual bits within a word. In this manner, individual bits
may be treated as separate variables and may be set, reset, tested

and operated upon with Boolean algebraic expressions,

Drum-Core Transfers

Transfers of information between drum storage and core storage
may be implemented through the Fortran Compiler by means of special

statements provided for this purpose.

Memory Economy

The Compiler has been designed so that the programs which it pro-
duces will require a minimum of memory space. This conservation
of memory can mean increased flexibility during future additions
of modifications of programs in cases where it is not desired to

increase the memory size of the machine.

Floating Point Operation

The Fortran Compiler will accept data in elther integer or float-
ing point form, and programs produced by the Compiler may be made

to output data in either form.

IV - 6

(g) Statement Repertoire

A large repertoire of allowed statements, plus a full complement
of "library" subroutines, makes for ease and flexibility in pro-
gramming with the Fortran Compiler.

STANDARD ON-LINE FUNCTIONS

Standard on-line fumctions are portions of a total system program that are
common from one computer application to another. Because they are used so
frequently, optimum execution time and utilization of memory have been
stressed in their development. For most applications, the use of these
functions require little or no re-work by user programmers. Use of these

pre-~checked routines eliminates programming and debugging time.

1. MONITOR
MONITOR provides the skeleton of a real time program by scheduling and
giving priority assigmment to system functions. By using MONITOR the
user is capable of having an on-line program running with minimum of
time spent on the program. Additional functions can be added to
MONITOR requiring no re-~working of the running system.

The routines that make up MONITOR are clear and well defined, which
makes for easy understanding of the system, The layout of the MONITOR
package facilitates the addition of system functions by user pro-
grammers, The routines that comprise MONITOR are:
(a) Time and diagnostic count.
(b) Executive control program.
(¢) Save register routine.
(d) Restore register routine.
(e) Turn off program routine.
(f) Set program delay
(g) TInput/Output drive.

(n) Output program consisting of:
Output subroutine
Decimal floating point routine
Decimal fixed point routine
Octal conversion routine
BCD conversion routine
Build driver table routine

Binary to decimal conversion subroutine

In addition to the above, MONITOR also includes the following two
routines for core/drum GE/PAC 4000 computers:
Drum transfer subroutine

Drum transfer drive

The Time and Diagnostic Count routine essentially performs two

functions. The routine maintains the value of current time (in
seconds) which is used by the Executive Program in determining execu-
tion time of the functional programs. The second function of this
routine is to detect if certain peripheral devices such as typewriters,
punches, ete. fail, This routine will usually turn on a corrective

action function which initiates remedial action.

The Executive Control Program (E.C,P,) is the real heart of the
MONTTOR system as it initiates functional programs according to theilr

scheduled interval and priority. The ECP provides for easy writing

and addition of functional programs as it performs real-time house-
keeping chores such as saving and reloading arithmetic and index
registers. The number of functional programs that the ECP can manage

is limited only by the Computer core or drum size and the length of

the individual functions., Most MONITOR systems allow 25 to 50 function=

al programs.

IV - 8

To accomplish on-line requirements as they occur, the GE/PAC 4000
uses automatic priority interrupt which may interrupt a program at
any time. Since the various registers (arithmetic, location coumter,
index) must be saved for the interrupted program, MONITOR provides

the Save Register and Restore Register routines that user interrupt

programs can use.

To further reduce housekeeping chores of functional programs using

MONITORy Set Program Delay and Turn Program Off routines are supplied.

These routines enable a user function to be initiated at a specified
interval or be completely turned off until some exterior influence

(svch as a demand} re~initiates the function.

The Input/Ovtput program permits user functional programs to communi-
cate with peripheral devices such as typewriters, readers, punches,
etc. in an orderly, step-by~step fashion. The Input/Output program
determines 1f the peripheral is available for use by the functional
program, reserves the peripheral for the functional program, turns
power on the peripheral, reads in or puts out data, and makes the
peripheral free for other functions upon conclusion of the present
functions The Input/Output program eliminates a large amount of edit-
ing and bookkeeping that would be required if it were not available.
The output portion of the program converts binary floating point to
decimal fixed point output, binary fixed point to decimal fixed point
output, binary to octal output, binary data to numeric and alphabetic
character output. The Input/Output program operates the peripherals
through automatic priority interrupt which insures the peripherals to

operate at their maximum speeds

For GE/PAC 4000 computers equipped with a magnetic drum memory,
MONITOR also provides the transfer linkage for information flowing
between core and drum. The user functional program simply uses the
Drum Transfer Subroutine to initiate a transfer of information between

core and drum. While the transfer is complete, the ECP will re~initiate

IV = 9

2,

3.

the functional program that requested the transfer. Completion of a
drum/core transfer is detected by automatic priority interrupt which
insures that the data involved in the transfer is acted upon expe-~

ditiously by the function.

MONITOR Compatible Functions

MONITOR Compatible Functions are those functions that are de-
veloped for specific applications which may be used by other
computer users, These routines are written in a general form
so that they require a minimum of re-working to be sultable for
similar other applications. Examples are scanning, alarming,

conversion equations,; demand print, etc.

MATH ROUTINES

Math Routines which are usually used in subroutine form include fixed
point, single and double precision math functions. These routines are
available from the General Electric Company library to all GE/PAC 4000
computer users. They may be obtained in punched card form, symbolic

listing or paper tape where the General Electric Company will assemble
the routines to it the user parameters. Examples of those routines

are square root, trigometric, exponential functions, etc. GE/PAC Tolelo)

users receive up~to-date abstracts of each roubtine as it is developed.

FREE TIME SYSTEM

The combined purpose of the Free-Time and lLanguage Processing and De-
bugging Systems is to provide the user with the ability to compile,

test, and execute functional programs in a real-time envirormment,

Existing service programs may be initiated by a control card. New
programs may be tested and entered into the overall system in easy
stages starting with an untested program and arriving at an operating

real~time program.

IV - 10

The system provides "load and go" or "compile and go" with
debugging at the symbolic level using the names of FORTRAN
variables. The dynamic relocation of programs and allocation
of storage frees the programmer from any concern other than the

successful compilation and testing of his program.

GE/PAC 4000 LIBRARY PROGRAMS JANUARY 1966

LIB. PROGRAM TITLES
CTL. * k Kk Kk k k *
NO.

* k kK % %k k k k k k k k& k & k k k X k k k k k k k *k kK k¥ k k * k * * *

PROGRAM CLASSIFICATION -(A)~ SERVICE ROUTINES, LOADERS, DUMPS, OPERATOR
PROGRAMS , MAGNETIC TAPE HANDLING SYSTEMS, ETC.

k k k k k k k k k k k k k k Kk k * k k k k k *k k k *k k k¥ * *k * *k * k %

YPAOT LDR41-GE/PAC LOADER PACKAGE.

YPAO3 BTS41-GE/PAC PROG. LOAD RTN. PERIPH BUFF NO. 4200/4201
YPAO4 BTS42-GE/PAC PROG. LOAD RTN., PERIPH BUFF NO. 4201
YPAO5 DUP41-PAPER TAPE DUPLICATOR - OFF LINE

YPAO6 DUP42-PAPER TAPE DUPLICATOR - ON LINE, MONITOR I
YPAO8 CLK41-ON LINE CLOCK, MONITOR I

YPAO9 POS41-PERIPHERAL IN/OUT OF SERVICE, MONITOR I

YPAT0 PST41-PROGRAM STATUS, MONITOR I

YPA13 MCG42-MEMORY CHANGE W/PCH OPTION, MONITOR I

YPA17 P0S42-PERIPHERAL IN/OUT OF SERVICE, MONITOR II

YPA18 PST42-PROGRAM STATUS, MONITOR II

YPA19 CLK42-ON CLOCK, MONITOR II

YPA20 OPR41-ON LINE OPERATOR PROGRAM, MONITOR I - REF YPG28
YPA21 OPR42-ON LINE OPERATOR PROGRAM, MONITOR II - REF YPG29
YPA22 MCG43-MEMORY CHANGE - ON LINE - I/O TYPER, MONITOR II
YPA24 MCG44-MEMORY CHANGE WITH PCH OPTION, MONITOR II

YPA25 DUP44-PAPER TAPE DUPLICATOR - ON LINE - MONITOR II
YPA26 OPR43-ON LINE OPERATOR PROGRAM - I/0 TYPER

YPA27 DUP43-PAPER TAPE DUPLICATOR - L/0 TYPER

YPA28 OLD41-ON LINE DUMP, MONITOR I

YPA29 0LD42-ON LINE DUMP, MONITOR II

YPA30 DMP41-OFF LINE DUMP, ALL CORE

YPA31 DMP42-0FF LINE DUMP, DRUM-CORE

YPA32 LDR43-ON LINE PAPER TAPE LOADER - I/0 TYPER

YPA33 OLD43-ON LINE PAPER TAPE DUMP - I/0 TYPER

YPA34 CMC41-CONSOLE SWITCH DRUM/CORE MEMORY CHANGE - OFF LINE
YPA42 PRT41-PRINTER HEADING SUBROUTINE MONITOR IV

YPA46 CLK43-ON-LINE CLOCK - I/O TYPER

YPA47 CDP41-0FF-LINE COMPARE DUMP

YPA50 DSN41-DEMAND SCAN (PRELIMINARY)

YPA51 CCGA1-CONTROLLER CHANGE (PRELIMINARY)

* Kk k Kk k k Kk Kk k k k k k hk ok hk ok k ok k ok ok ok ok ok k ok ok k k % k %k %k *

PROGRAM CLASSIFICATION -(C)- MATH ROUTINES FLOATING POINT TRANSCENDENTALS,
CURVE FITTING, SPECIAL FORMULAS, ETC.

k k k k *k k k k k k k k k k k kK k *k k ok k k k k k Kk Kk % * Kk % % Kk % %

YPCO1 GMR41-GE/PAC MATH ROUTINES - FLOATING POINT

YPCO2 GMR42-GE/PAC MATH ROUTINES-FIXED POINT (ONLY SQRT AVAIL)
YPCO3 GCC41-GE/PAC CODE CONVERSION ROUTINES

YPCO4 FLR41-FORTRAN LIBRARY ROUTINES (FLOW CHARTS YPCOT)

YPCO5 FLR42-DBL.WD.FL.PT. FORTRAN LIBRARY (FLOW CHARTS YPCO7)
YPCO7 GMR43-GE/PAC MATH ROUTINES - DBL WD - FL.PT.

YPCO8 TPS41-THERMODYNAMIC PROPERTIES OF STM(SUPERHEATED)-PKG 1
YPCO9 TPS42-THERMODYNAMIC PROPERTIES OF STM(SATURATED)-PKG 2
YPC10 TPS43-THERMODYNAMIC PROPERTIES OF STM(COMPRESSED)-PKG 3

* k kK k * *k k k kK k k k k k k k *k k k k k k k k k¥ *k k k *k k * k * % Kk %

PROGRAM CLASSIFICATION -(E)- GENERALIZED SYSTEMS MONITORS, PERIPHERAL I/0
+ OTHER HARDWARE COMMUNICATION REGISTER DRIVER
PROGRAMS, SIMULATORS, ETC.

k % k k Kk Kk k k kA k k k k k *k k k k k k kK k kK k k k k k *k % % k % k % %

YPEO2 SIMO2-GE/PAC SIMULATOR ON GE412

YPEO3 SBM41-FORTRAN SUB-MONITOR, PERMANENT CORE

YPEO4 SIMO3-GE/PAC SIMULATOR ON THE GE225

YPEO5 SBM42-FORTRAN SUB-MONITOR, DRUM-CORE (FLOW CHART YPE03)
YPEO7 CAL41-CALENPAR PROGRAM

YPEQO8 -MONITOR I COMPATIBLE PROGRAMS - REF YPE10,YPG13
YPET0 MTR41-GE/PAC 4000 MONITOR I - ALL CORE - REF YPGI13
YPE11 ECP41-EXECUTIVE CONTROL PROGRAM, MONITOR I

YPE12 ITC41-TIME AND DIAGNOSTIC COUNT, MONITOR I

YPE13 I0D41-INPUT/OUTPUT DRIVER, MONITOR I AND II

YPET4 IOP41-QUTPUT PROGRAM, MONITOR I

YPE15 INP41-INPUT SUBROUTINE AND PROGRAM, MONITOR I

YPE16 SRG41-SAVE REGISTERS SUBROUTINE, MONITOR I

YPE17 RRG4T-RESTORE REGISTERS SUBROUTINE, MONITOR I

YPE18 OFF41-TURN PROGRAM OFF SUBROUTINE, MONITOR II

YPE19 DEL41-SET PROGRAM DELAY SUBROUTINE, MONITOR I

YPE20 OUT41-OUTPUT SUBROUTINES, MONITOR I

YPE21 TPN41-TURN PROGRAM ON SUBROUTINE, MONITORS I,IT,III,IV
YPE22 PR141-PRIORITY CHANGE STORAGE SUBRTN., MONITOR I,II
YPE23 CAD41-CORRECTIVE ACTION DIAGNOSTIC, MONITOR I

YPE24 MOR41-MULTIPLE OUTPUT REQUEST SUBRTN., MTRS I,II,IIT,IV
YPE25 MDR41-MULTIPLE OUTPUT DIST. DRIVER, MTRS I,II,III,IV
YPE27 SND41-SCAN DRIVER, MONITOR I

YPE29 PAV41-PERIPHERAL AVAILABILITY SUBRTN., MTR. I,II,III,IV
YPE30 IO0P43-0UTPUT PROGRAM - 1/0Q TYPER

YPE32 INZ4T-INITIALIZE ROUTINE, MONITOR I

YPE33 IOD 43-INPUT/OUTPUT DRIVER - 1/0 TYPER, MONITOR II
YPE34 OPR43-ON-LINE OPERATOR PROGRAM I/0 TYPER DRUM/CORE
YPE35 TCO041-TIMED CONTACT OUTPUT REQUEST SR, MTR. I,II,III,IV
YPE36 TCD41-TIMED CONTACT OUTPUT DRIVER MONITOR I,II,III,IV
YPE37 INS42-INPUT REQUEST SUBRTN., BUFFERED INPUT, MTR II
YPE38 INP43-INPUT PROGRAM ~ I/0 TYPER, MONITOR II

YPE39 ITC42-TIME AND DIAGNOSTIC COUNT, MONITOR II

YPE40 MAP41-CORE MAP MAINTENANCE SUBROUTINE, MONITOR II
YPE41 MTR42-GE/PAC 4000 MONITOR II, DRUM-CORE, REF YPG15
YPE42 ECP42-EXECUTIVE CONTROL PROGRAM, MONITOR II

YPE43 DTR41-DRUM TRANSFER REQUEST SUBRTN, MONITOR II,IV
YPE44 DTD41-DRUM TRANSFER DRIVER, MONITGR II

YPE45 I10P42-0UTPUT PROGRAM, MONITOR Il

YPE46 CAD42-CORRECTIVE ACTION, MONITOR II

YPE47 INP42-INPUT SUBROUTINE, MONITOR II

YPE48 OUT42-OUTPUT REQUEST SUBRTN., MONITOR II,IV

YPE49 SND42-SCAN DRIVER SUBRTN , MONITOR II

YPE50 DEL42-SET PROGRAM DELAY SUBROUTINE, MONITOR II,IV
YPE53 QFF42-TURN PROGRAM OFF, MONITOR II,IV

YPE54 SRG42-SAVE REGISTERS SUBRTN., MONITOR II

YPE55 RRG42-RESTORE REGISTERS SUBRTN., MONITOR II

YPE56 INZ42-INITIALIZE ROUTINE, MONITOR II,IV

YPES7 -MONITOR II COMPATIBLE PROGRAMS - REF YPE41,YPGI5
YPE58 CAD43-CORRECTIVE ACTION DIAGNOSTIC - I/O TYPER

YPE59 0UD43-0UTPUT DRIVER - 1/0 TYPER

YPE63 INS41-INPUT SUBROUTINE, MONITOR II

YPE64 FMR41-FIND/RESTORE WORKING CORE AREA SUBRTN. MTR II,IV
YPE75 MTR44-GE/PAC AUZ MONITOR IV

YPE76 ECP44-EXECUTIVE CONTROL PROGRAM, MONITOR IV

YPE77 ITC44-TIME AND DIAGNOSTIC COUNT, MONITOR IV

YPE78 SRG44-SAVE REGISTERS SUBRTN., MONITOR IV

YPE79 RRG44-RESTORE REGISTERS SUBRTN., MONITOR IV

YPESQ MAP44-CORE MAP MAINTENANCE PROGRAM, MONITOR IV

YPE81 DTD44-DRUM TRANSFER DRIVER, MONITOR IV

YPE82 FRP44-FIND REGISTER POINTER, MONITOR IV

YPE83 I0P44-0UTPUT PROGRAM, MONITOR IV

YPE84 IND44-INPUT DRIVER, MONITOR IV

YPE85 QUD44-OUTPUT DRIVER, MONITOR IV

YPE86 SND44-SCAN DRIVER, MONITOR IV

YPE87 CAD44-CORRECTIVE ACTION DIAGNOSTIC, MONITOR IV

YPE8S8 OFF44-TURN PROGRAM OFF SUBROUTINE, MONITOR IV

YPE89 -MONITOR IV COMPATIBLE PROGRAMS - REF YPE75,YPGIS8

* %k Kk Kk Kk Kk k Kk * k kK Kk X kK Kk k k Kk k Kk *k kK k Kk k k¥ k¥ k¥ * k % & % % *

PROGRAM CLASSIFICATION ~(F)- LANGUAGE PROCESSORS TRANSLATORS, ASSEMBLERS,
COMPILERS, INTERPRETERS, SPECIAL SERVICE
ROUTINES FOR LANGUAGE PROCESSORS - ETC.

* K Kk Kk Kk Kk Kk K Kk Kk Kk K Kk k Kk Kk *k k k Kk kK k Kk k ¥ k kK k x k* k kx % *x &

YPFOT PAL41-PAL/412 ASSEMBLER
YPF02 PAL42-PAL 2K GE/PAC ;3 s7 . _. - OFF LINE
YPFO3 PAL43-PAL 4K GE/PAC ASSEMBLER - OFF LINE

-3 -

YPF04 PAL44-PAL GE/PAC ASSEMBLER DRUM/CORE ON LINE
YPFO5 PAL45-PAL/225 ASSEMBLER

YPFO7 CPT42-BINARY CARD TO PAPER TAPE TRANSLATOR-225
YPFO8 COR41-PAL CORRECTION PROGRAM - OFF LINE

YPF09 COR42-PAL CORRECTION PROGRAM - ON LINE

YPF10 XLT41-EXTRACT LOAD TAPE - OFF LINE

YPF11 XLT42-EXTRACT LOAD TAPE - ON-LINE

YPF12 FTN41-GE/PAC FORTRAN " MPILER-412

YPF13 FTN42-GE/PAC FORTRAN-PAL COMPILER/ASSEMBLER-225
YPF14 FTN43-GE/PAC FORTRAN COMPILER - OFF-LINE

YPF15 FTN44-GE/PAC FORTRAN COMPILER - ON LINE

YPF16 FTN45-DBL WD. FL. PT. GE/PAC FORTRAN COMPILER-412
YPF17 PTPO1-PAP TO PAL TRANSLATOR-412

YPF18 TASO3-GE/PAC TASC (OPERATES ON 412 ONLY)

YPF19 CCP41-CARD CO0..V.-12 BIT BINARY TO GE/PAC INTERNAL CODE

k k khk k k k k k kK k ok k kX kK Kk k k Kk k k k¥ k¥ k k k& * *k %k k k* %k * *k k k *

PROGRAM CLASSIFICATION -(G)- SPECIAL PROJECTS REPORTIMNA
SYSTEMS, MANUALS

* k k kK k kK kX * k¥ kK k k kX &k kK k¥ k¥ kK kX k& k¥ k¥ k¥ k& ¥ x¥ k¥ x ¥ k % % k %k *x %

YPG10 GE/PAC 4000 INSTRUCTION REFERENCE MANUAL

YPG11 GE/PAC 4000 PROGRAMMING TECHNIQUES MANUEL

YPG12 GE/PAC 4000 PROCESS ASSEMBLER LANGUAGE (PAL)

YPGI13 GE/PAC 4000 MONITOR I USERS MANUAL - ALL CORE -AUl
YPG14 GE/PAC 4000 FORTRAN REFERENCE MANUAL

YPG15 GE/PAC 4000 MONITOR IT USERS MANUAL-DRUM/CORE AUl
YPG16 GE/PAC 4000 MTR I ALL CORE AUT COLLECTION W-U, FC
YPG17 GE/PAC 4000 MONITOR IT D/C AUl COLLECTION W-U, FC
YPG18 GE/PAC 4000 MONITOR IV USERS MANUAL (SUPERSEDED BY YPG31)
YPG19 GE/PAC 4000 FREE TIME SYSTEM USERS MANUAL

YPG28 GE/PAC 4000 OPERATOR CONSOLE MANUAL OPR41,YPA20
YPG29 GE/PAC 4000 OPERATOR CONSOLE MANUAL OPR42,YPA21
YPG30 GE/PAC 4000 DOUBLE-WORD FORTRAN REF MANUAL, YPF16
YPG31 GE/PAC 4000 MONITOR TRAINING MANUAL

YPG35 GE/PAC OCT.FL.PT.SIN.REG.-DEC.FT.PT.CONV.TABLES

k k% k Kk Kk Kk kK k k k kK k k ok * k % *k * k kK k *¥ *k k¥ *¥ k¥ k¥ * *k & * * k% * %

PROGRAM CLASSIFICATION -(Q)- QUASI PACKAGES EACH DIFFERENT COMBINATION OF
QUAST S WILL BE SEPARATELY + UNIQUELY NUMBERED

k % Kk Kk k k k k Kk k k * Kk Kk k k k k kK k k k k*k k k *k k¥ k ¥k k k% k *k *x *k *

YPQO1 QUA41-GE/PAC 4040 QUASI INST. S.R. PKG / W/ MPY STEP
YPQO2 QUA42-GE/PAC 4040 QUAST INST. S.R. PKG 2 NON-MPY STEP
YPQO3 QUA43-GE/PAC 4040 QUAST PKG. DBL. WD. FL. PT.-MPX STEP
YPQO4 PLA41-PARTIAL WORD FIXED POINT ARITH. PKG. 1

YPQO5 QUA44-SINGLE WORD FL. PT. QUASI FOR AU2 - REF YPGIO
YPQO6 QUA45-DOUBLE WORD FL. PT. QUASI FOR AUZ

k k k k k %k k k kK *k k k k k k k k k k k k k Kk Kk *k %k k k %k k% k k % Kk %

PROGRAM CLASSIFICATION =-R- MANUAL INPUTS - OPERATOR PANEL AND OTHER DECADE
SWITCH PROGRAMS, DFS INPUTS, CARD INPUTS (CUSTOM
ORIENTED, NOT STANDARD FORMATTED SERVICE USF).

k k Kk k k Kk k k kA k k k k k k k k k k k k k k k k¥ k k k * ¥ %k k * k *

YPR33 ADS41-ANALYZE DECADE SWITCH SETTING SUBROUTINE

k k k k k k k k k k k k k¥ k¥ kK k¥ k % k¥ k k k k k¥ k¥ k¥ % *k k kx k% k *k % %

PROGRAM CLASSIFICATION -T- TRACKING ANALOG SCANNING PLANT MONITORING,
(T) PROCESS OR UNIT TRACKING, ETC.

k k k k kX k k k k k kA k k k k k k k k k k k k ok kK *¥ *k k¥ k * % *k k* %

YPTO6 SCR41-SCAN REQUEST SUBROUTINE, MONITOR I
YPT11 SCR42-SCAN REQUEST SUBROUTINE, MONITOR II
YPT15 SCR44-SCAN REQUEST SUBRTN., MONITOR IV
YPT37 SCF41-SCAN OFFSET PROGRAM, MONITOR I
YPT59 SCF42-SCAN OFFSET PROGRAM, MONITOR II,IV

GENERAL @B ELECTRIC ___ PROCESS COMPUTERS

STANDARD ON-LINE FUNCTIONS

Standard on-line functions are portions of a total system program that are common
from one computer application to another. Because they are used so frequently,
optimum execution time and utilization of memory have been stressed in4their develop-
ment. For most applications the use of these functions require little or no re-work

by user programmers. Use of these pre-checked routines eliminates programming and

debugging time.

MONITOR

MONITOR provides the skeleton of a real-time program by scheduling and giving
priority assignment to system functions. By using MONITOR the user is capable of
having an on-line program running with minimum of time spent on the program. Ad-
ditional functions can be added to MONITOR requiring no re-working of the running

system.

The routines that make up MONITOR are clear and well defined which makes for easy
understanding of the system. The layout of the MONITOR package facilitates the
addition of system functions by user programmers, The routines that comprise
MONITOR are:
Time and diagnostic count
Executive control program
Save registers routine
Restore register routine
Turn off program routine
Set program delay
Input-output drive
Output program consisting of:
Output subroutine
Decimal floating point routine
Decimal fixed point routine
Octal conversion routine
BCD conversion routine
Build driver table routine

Binary to -decimal conversion subroutine

PROCESS COMPUTERS

GENERAL @D ELECTRIC

SOFTWARE SPECIFICATIONS

Object Computer: GE/PAC 4000

PROCESS ASSEMBLER LANGUAGE

Compiling Computer:

Input:
Memory Requirement:
Peripheral Equipment:

Compiling Computer:

Input:
Memory Requirement:

Peripheral Equipment:

Output:
FORTRAN II COMPILER

Compiling Computer:

Input:
Memory Requirement:
Peripheral Equipment:

Output:

Compiling Machine:

Input:
Memory Requirement:

Peripheral Equipment:

Output:

GE 215, GE 225, GE 235, GE 412

Punched Card or Magnetic Tape

8K Core

Console Typewriter

High-Speed Printer

Card Reader or Magnetic Tape Units
Paper Tape Punch!

GE/PAC 4000

Punched Cards or Paper Tape

2 - 4K Core (Off-line)

2K Core plus 6K Drum (On-line) (in
addition to process memory re-
quirements)

Card and Paper Tape Reader

Console Typewriter or Printer

Paper Tape Punch

Paper Tape and Program Listing

GE 215, GE 225, GE 235, GE 412

Punched Cards or Magnetic Tape
8K Core

Card Reader

Console Typewriter

Card Punch

High-Speed Printer

Magnetic Tape

Punched Cards and Program Listing
(Output is in Process Assembler Language
format)

GE/PAC 4000

Paper Tape

8K Core (Off-line)

4K Core plus 8K Drum (On-line)
Paper Tape or Card Reader
Paper Tape or Card Punch
Console Typewriter

High~Speed Printer (Option)

Paper Tape or Cards and Program Listing
(Output is in Process Assembler Language
format)

Mnemonics

MAQ
ooM
STA
STQ

GROUP

ADD
ADK
ADM
ADO
DAD
DLA
DRA
DSU
DVD
MPY
NEG
SLA
SRA
SUB

GROUP

FAD
FSU
FMP
FDV
FIX
FLO

GROUP

ANA
ANM
CPL
DLL
DRC
DRL
ERA
ERM
ORA
ORM
SLL
SRC
SRL

GROUP

CBK
IBK
LBM
RBK
SBK

Description

Move A Into Q
Operate On Memory
Store Contents of A
Store Contents of Q

V Fixed Point Arithmetic

Add

Add K to A

Add A to Memory

Add One to Bit K
Double Add

Double Left Arithmetic
Double Right Arithmetic
Double Subtract

Divide

Multiply

Negate

Shift Left Arithmetic
Shift Right Arithmetic
Subtract

VI Floating Point Arithmetic

VII Word Logic

VIII Bit Logic

Flaoting Point Add
Floating Point Subtract
Floating Point Multiply
Floating Point Divide
Fix Floating Number
Float Fixed Number

Add to A

Add to Memory
Complement A

Double Left Logical
Double Right Circular
Double Right Logical
Exclusive Or to A
Exclusive Or to Memory
Or to A

Or to Memory

Shift Left Logical
Shift Right Circular
Shift Right Logical

Change Bit K
Isolate Bit K
Load Bit Mask
Reset Bit K
Set Bit K

-De

Mnemonics

GROUP

RNZ
SNZ
INZ
TZE

GROUP

CLO
CLZ
CMO
CMZ
COM
LXC
TSC

GROUP

REV
ROD
SEV
SOD
TEV
TOD

GROUP

JNO
JNP

GROUP

ABL
AEL
RBL
REL

GROUP

ADF
LDF
SBF
STF
TFE
TFL

GROUP

LRM
SRM

IX Word Tests

X Partial Word Tests

XTI Bit Test

XII Validity Tests

Description

Reset TSTF If A is Non Zero
Set TSTF If A is Non Zero
Test A Non Zero

Test A Zero

Count Least Significant Ones
Count Least Significant Zeros
Count Most Significant Ones
Count Most Significant Zeros
Compare On Mask

Load X With Count

Test and Shift Circular

Reset TSTF If Bit K is Even
Reset TSTF If Bit K is 0dd
Set TSTF If Bit K is Even
Set TSTF If Bit K is 0dd
Test Bit K Even

Test Bit K 0dd

Jump If No Overflow
Jump If No Parity Error

XIII List Instructions

Append To Beginning of List
Append To End of List

Remove From Beginning of List
Remove From End of List

XIV Variable Field Arithmetic

XV Program Linkage

Add Field

Load Field
Subtract Field
Store Field
Test Field Equal
Test Field Less

Load Registers From Memory
Store Registers Into Memory

-3

PROGRAMMING
~ TECHNIQUES
 MANUAL

PROCESS COMPUTER
'BUSINESS SECTION
PHOENIX, ARIZONA

Library Control No. YPCllM.A

Revised December, 1966

Copyright 1966 by General Electric Company

This manual published by:

PROGRAMMING SUPPORT
GENERAL ELECTRIC COMPANY
PROCESS COMPUTER BUSINESS SECTION
P. 0. BOX 2918 - -
PHOENIX, ARIZONA 85002

For further information concerning the contents of this manual,
contact the Programming Library at the above address.

GENERAL) ELECTRIC
' PROCESS COMPUTERS |

GE/PAC 4000 PROGRAMMING TECHNIQUES MANUAL

Library Coutrol No. YPG1IM

> REVISION CONTROL SHEET
APPROVED BY: @ G S\M/ZZMY\

DATE : _December 30, 1966

RECORD OF CHANGE

DATE

REV.

DATE

Revised in entirity and republis

hed

RECORD OF CHANGE

to include all model number chan

ses.

PAGE

-

X

REISSUED

1.1
1.1.1
1,1.2
1.2
10,201
1.2,2
1.2.3
1.2.3.1
1.2.3.2
1.2.3.3
1.2.4
1.2.5
1.2.6
1.2.7
1.2.8
1.2.9
-1.2.10
1.3
1.3.1
1.3.1.1
1.3.1,2
1.3.2
1.3.2.1
1.3.2.2
1.3.2.3
1.3.3
1.3.4
1.3.4.1
1.3.4.2
1.3.4.3
1.3.5
1.3.6
1.3.7
1.4
1.4.1
1.4.2
1.4.3
1.5
1.5.1
1.5.1.1
1.5.1.2

CONTENTS

INTRODUCTION
ARTITHMETIC AND CONTROL UNIT

Elements Comprising The Arithmetic Unit
Instruction Format and Sequencing

REAL-TIME PROGRAM CONTROL

Program Control

Memory Addressablllty

Address Modification

Relative Address Modification
Indexing Address Modification

The Purpose and Nature of Indexing
Subroutine Linkage

Program Switches

Tests and The conditional Bramch BTS
Index and Loop Control

Quasi Instructions

XEC and Its Usage

Program Interrupt

DATA MANIPULATION

Data Representatlon

Numeric Variables

Logic Variables

Arithmetic Operations

Arithmetic Overflow

Fixed Point Arithmetic Scaling Operations

Floating-Point Arithmetic Scaling‘Operations'

Logic and Bit Logic Operations -
Lists and Their Usage .
Definitions -
The Queuing List and Its Usage

The Stacking List and Its Usage

GEN 1 Instructions . -

GEN 3 Instructions

Count Instructions. = . s

INPUT AND OUTPUT CONTROL
GEN 2 Instructions
Input/Output Communication
1/0 Controller Imstructions
DATA COMMUNICATION

Drum Memory

Instructions
Timing

-iii-

‘_23j

23
23
27
28
28
30
30
31
33
33

- 35

36
36
37
37

41
41
42
A
47
47

47
49

[y
.
()

o

[y

P e O\ R e e e

b
.
~

[

-

[]
e N e N
* . L[] - Y

[y

[
.

T e B I T I e e R e e o

*

= = Oy O

.

OOV N

AN WO

L] . L
.

L]] [] L] L[] L] . []

¢ o o o o o

L]

e o o o o
NN

.

. *
NN
[

e o e o o o e o a o
PN AR S I R S wwww

NN

w W w

L]
N

L]

* e
w N -

e o o o o .
SNovv PN e

NP Ww

W N -

wv B

W N

CONTENTS

PROCESS COMMUNICATION .

Digital Input Scanner

Analog Input Scanner

Analog to Digital Converters

Spec1f1catlon of the Scan Command Word and C~
Register Formats ~

Instructions

Interrupt Operation

Analog Input Point Addressing Schemes

Accuracy in Measurement of Analog Quantltles

Multiple Output Dlstrlbutor

Instructions -

Output Functions

On~Line Programming Usage

PERIPHERAL COMMUNICATION

Peripheral Buffer

Instructions

Interrupt Operation

Error Detection

Card Reader (GE/PAC 4242B)

Physical Description

Operation

Card Movement Timing (from Wait Station to
Stacker)

Input Hopper Empty

Stacker Full

Line Printer (GE/PAC 4262)

Physical Description-

Output Formattlng Informatlon

Operation L

Special Programming Con51derations ’

Input/Output Typer - GE/PAC 42708

Physical Descrlptlon ,

Operation

Operation as off-line Typer : -~

Operation as an On-Line Device

Operation as an On-Line Output . Typer

Operation as an On-Line Input Keyboard

Special Programming Considerations

GE/PAC CONSOLE
Console Descfiption‘(4040)
Register Displays

Console Description (4050 and 4060)
Register Displays

={v~

51

51
53
56

56
61
62
63
63
66
67
68
69

72

72
74
76
78
82
82
85

85

- 87

87
89
89
92
93
9%

- 95

95
96
96
98
98
99
101

1103

103
105
106
108

1.1

1.1.1

ARITHMETIC AND CONTROL UNIT

The computation center of the computer, the arithmetic and control
unit performs a wide variety of arithmetical and logical operations
at high speed.

‘It is subdivided into two parts: elements comprising the arithme-

tic unit, and instruction format and sequencing.

ELEMENTS COMPRISING THE ARITHMETIC UNIT

The arithmetic and control unit (AU) is comprised of data registers,
full address, and control Flip-Flops as shown in Figure 1. The
registers used are as follows: A, B, I, P, and J. Control Flip-
Flops, along with the full address, work in conjunction with the
registers to perform arithmetic and bit manipulation operations,

and for checking and remembering conditions occuring in the AU.
Names of the Flip-Flops employed are: Test (ISTF), Overflow (OVRF),
Permit Automatic Interrupt (PAIF), Priority Interrupt First (PILF),
Execution (XECF), Demand (DEMF). Adders are: Carry - Full Adders;
A, B, and P, The function and description of each of these elements
is discussed in the succeeding paragraphs.

A-Register -~ the A-Register is the primary working register for
the arithmetic unit. It is comprised of 24 high speed Flip-Flops
in a bit configuration numbered 0-23; bit 23 is the most signifi-
cant. Functionally, it acts as temporary storage for data coming
from or going to the input/output equipment of the computer. It
is the accumulator register during arithmetic and bit manipulation
operations. Transfer of data from A to internal registers of the
AU is accomplished serially. Data transferred from A to registers
and devices external to the AU is accomplished in parallel.

B-Register ~-- the B-Register is a 24-bit parallel entry buffer
register used between core memory and the AU. It is comprised of
24 high speed Flip~Flops arranged in the same bit configuration
as the A-Register. B is the communication link for information
transfer between memory and the AU registers A, I, and P.

I-Register =-- the I-Register is a 24-bit register comprised of
24 high speed Flip-Flops arranged in the same bit configuration
as the A- and B-Registers. It is the holding register for the
bits that control the operation of the AU.

Full Adder A -~ the FAA is used in any AU operation involving the

 A-Register.

To/From Memories

Parallel to Memories
AL

r ™ N\ ' N
MEMORY DATA alb MEMORY ADDRESS
, \
MEMORY ’

B-Register .

F N L 2|bl I-Register

”IH FA

lﬁ~ A A
FOI ADDER \% b P-Register

i\

-

A-Register |<

N Q-Register

GEN1
FA

é?/12~—8 Channels

1/0 SELECTOR HUB

Optional

6 Chapnels
a N

- — =

CONSOLE I/0 EXTERNAL
-) \BUFFERS DEVICES

ARITHMETIC .

UNIT

—

Figure 1 - CENTRAL PROCESSOR SIMPLIFIED BLOCK DIAGRAM

-2=

1.1.2

Full Adder B -~ the FAB is used in any AU operation involving the
I and B-Registers.

Full Adder P =-- the FAP is used in any AU operation involving the
modification of the contents of the P-Register.

INSTRUCTION FORMAT AND SEQUENCING

There are five types of instructions employed by the arithmetic and
control unit: Full Operand, Quasi, GEN 1, GEN 2, and GEN 3. Each
distinct instruction involves either memory addressing, Input/Output
device selection, bit manipulation of the A-Register, or extended
function commands. The bit configuration of each type of instruction
determines the operation to be performed and the control necessary

to perform it. Figure 2 summarizes these types.

The Full Operand type of instruction is used to perform arithmetic
operations, logical operations, index control operations, and data
transfers to and from memory. Data transferred to memory may be
internal with the AU or may originate from input/output equipment.
Data transferred from memory may go to the AU internal or be trans-
ferred through the AU to the input/output equipment.

Quasi instruction types are extended function commands that provide
operations not wired into the AU hardware. They are implemented by
packaged subroutines. The defined operation is analogous to a Save
I Branch instruction. - -

Save I may be understood by analyzing what occurs when a quasi in-
struction is implemented. The quasi instruction is transferred

from memory to the B-Register, then to the I-Register to be decoded.
The operand, Bits 12-0, is stored in core cell 002 or, if desired,
are modified, then stored (Save I). The next instruction is addres-
sed from Bits 23-18 which selects one core cell location 040-077.
The instruction contained in one of these cells 'branches" the
sequential program into a subroutine. Quasi instructions have the
same instruction format as the Full Operand instructions but are
distinguished by a "1" placed into Bit 23. Since Bits 23-18 are
used to address the next instruction, the 1 bit in position 23
insures that the core cell addressed is located between 040 and 077.
Examples of quasi instructions employed by this system are: Mulitply,
Divide, Floating Point Arithmetic, and those instructions involving
the use of double-length registers.)

GEN 1 instructions are used for bit manipulations of the A-Register.
By controlling the operation of Full Adder A, individual bits of
the A-Register may be shifted in position, masked by ones or zeros,
tested for polarity, or counted for numbers of ones or zeros con-
tained therein. Microcoding of the instruction may be manipulated
to perform any desired function on the A-Register.

GEN 2 instructions are employed by the GE/PAC system to select
modules and devices in the input/output equipment. The format is
microcoded, using unique address bits to select devices and modules.
GEN 2 instructions are only partially decoded in the AU and the
selection portion of its bit configuration (Bits 14-0) are never
decoded in the AU, They are transferred to the input/output equip-
ment for device and module selection.

GEN 3 instructions are used to manipulate the contents of the A-
and Q-Registers, affect the J-Counter and optionally affect the
Overflow Flip-Flop.

All five instruction types may be modified. Modification is
accomplished by indexing and relative addressing. Indexing may
be performed on all the instruction types; relative addressing is
limited to Full Operand and Quasi imstructions.

One of the core cells 001 through 007 is specified by Bits 17
through 15 of the instruction. The contents of the selected core
cell is added to Bits 13-0 of the instruction.

Relative addressing, as well as indexing, augments Bits 13-0 of
the instruction (the operand in the case of the Full Operand and
Quasi instructions). Modification takes place by adding the core
cell address of the instruction to the instruction operand. The
core cell address for most instructions is the bit information
contained in the P-Register.

Instruction sequencing for the AU is as follows:

1.. The P-Register transfers information to the memory address
register (MAR) and a core cell is addressed.

2. The instruction contained therein is transferred, in parallel,
via the memory data register (MDR) to AU buffer register B.

3. B (23-14)is transferred, in parallel, to the I-Register for
instruction decodings.

4. B (13-0) is transferred, in serial, through Full Adder B to I
(13-0). If desired, the contents of I are modified at this
point.

- Depending on the instruction decoded, the contents of the I-Reglster,
modified or unmodified, will cause:

1. Address memory and retrieve data for arithmetic and logical
operations. \ \

2. Transfer data to or from memory. :

3. Transfer data to or from the input/output equipment.

A

FULL OPERAND
Hardware

FULL OPERAND
Quasi
GEN 1

GEN 2

GEN 3

2322212019 1817 16 151413 121110987 6543210

0 oP X * Y
0 ¢P X * Y
000101 X 2 K
010101 X s D
100101 X ‘ c K

Figure 2 - INSTRUCTION FORMATS

o

Instruction Octal

Index Word Indicator)

Relative Addressing Indicator

Micro-coded Subcommand

Bit Position of A-Reglster or Length of Shift
GEN2 Subcommand

I/0 Device Address

)

DnxRO RS

Bit position 23 of the Full Operand formats above is used to
designate either a hardware of quasi implemented instruction.

These formats will assist in clarifying the following
discussions on programming features. =

S

g

1.2

1.2.1

REAL~TIME PROGRAM CONTROL

A real-time process is characterized by the occurrence of many
events; some continuous, others random in nature. Events may
occur simultaneously. Consequently, real-time programs are dis-
tinctively different from their non-real-time counterparts.

The most distinctive characteristic feature of a real-time
program is the seemingly disorganized method of execution.

1. Programs need not be completed without the occurrence of
several interruptions to execute entirely unrelated programs.

2. Internal data tramnsfer is rarely accomplished in one operation.

3. Intercommunication between programs becomes significant and
time consuming. Information is constantly stored and retrieved
from small tables. Table storage and retrieval rates are
asynchronous.

4, 1If a program is likely to be interrupted prior to completion,
care must be taken to insure that its working storage is not
destroyed. -

5. Subroutines common to several programs must receive special
attention. Temporary constants used by a subroutine with
respect to a given program must be preserved until execution
of the subroutine is completed. .

The second distinctive feature is that the program is an active
element in the process system. It must maintain real-time, and
initiate actions at specified real-times, and specified time delays.

The third distinctive feature is the requirement that it should
never wait upon I/O equipment; there is always some time-critical
function to be implemented. 1In an off-line computer system, lost
time increases costs. Lost time in an on-line operation will

.cause a failure; endangering system security.

The preceding characteristic features indicate that the "house-
keeping functions", necessary in every computer program, become
extremely important in the real-time program. The program cap-
abilities of a process control computer must first provide
efficient houskeeping (program control) capabilities, then
provide arithmetic capabilities.

PROGRAM CONTROL

A digital computer is a serial device; it performs its program
operations one-by-one.

_—

A computer program consists of an ordered sequence of instructions
to the computer. These instructions are placed in memory cells
which have sequential addresses; ordering addresses will order the
instructions. 4

The term '"program control' describes the instruction sequencing
process and is associated with a location in memory. Program
control is specified by the contents of the program counter.
Program control is normally transferred from one location to the
next sequential location as instructions are executed. Program
control can be transferred to an arbitrary location by '"branch"
instructions. It can conditionally skip a location by '"jump"
instructions. :

Nominally, the program counter contains the address within the
program of the instruction which is to be executed next. However,
there are many exceptions. Most modern process computers have
Yexecute" and "program interrupt" functions which complicate the
instruction sequencing process., It is paradoxical that this
complication is one of programming description and not one of
hardware. : o)

The effect upon program control by the following GE/PAC functions
is similar: N . . Ny

1. Execute (XEC) instruction
2, Quasi subroutine linkage instruction
3. Program interrupt]

All three are "execute" actions which command the computer to
obtain its next instruction from some location ether than that
specified by the program counter. One instruction, out of normal
sequence, is executed. If this (inserted) instruction is not a
branch (jump, XEC, Quasi), program control is transferred to the
next sequential location (with respect to the program counter) in
the normal sequence.

The location of the object instruction is determined by the specific
action; XEC uses its operand address, Quasi's use their OP codes.
Program interrupt requires an address source external to the computer.

An XEC or Quasi action inhibits normal incrementing of the program
counter during.the execution of the initiating instruction. The
execution of the inserted instruction is normal, A program interrupt
action inhibits normal incrementing of the program counter during

the execution of the inserted instruction; a branch in the interrupt
location may transfer program control. ’

1.2,2 MEMORY ADDRESSABILITY

GE/PAC memory addressability satisifes two prime addressing
requirements for process computers. The first of these is the
ability to transfer a program from bulk storage (drum memory) to
.core memory and instantly relocate all of its memory addressing
instructions. The term “dynamic relocatability" describes this
requirement. The solution. is GE/PAC relative addressing, which
modifies the Y operand address of the instruction by is location
in memory as the instruction is executed. It allows the on=~line
Executive Control Program to instantly relocate a program from
drum to any available place in core. More efficient use of both
core and drum is possible, Difficulties of incorrect problem
definition, system analysis, or programming analysis ate minimized,

The second addressing requirement is efficient program address=-
ability to at least 64,000 words of random access core memory.
This requirement is medium range, but has extremely long range
implications. GE/PAC relative addressing and drum/core transfer
provide a maximum of one million core words.

T~

1.2.3 ADDRESS MODIFICATION ' -

1.2.3.1 Relative Address Modification . o

The GE/PAC instruction format allocates a one-bit field, I*
to specify relative address modification. This bit is called
the relative addressing indicator and is designated by an
asterisk. Relative address modification may occur in any
Full Operand and Quasi instruction. It may not occur in any
GEN1 or GEN2 instruction; this bit position, 114, is used for
other purposes in these instructions. .

When * is zero in a Full Operand or Quasi instruction, no
relative modification occurs. When % is 1, a modified operand
addressl is computed by adding an addend address to the signed
13-bit operand address. The normal addend address is that of
the location that the instruction occupied in memory. An

- exception exists when the instruction being executed is the
"object instruction'" of a Quasi instruction or of a program
interrupt; in these cases, the addend address is obtained from
the program counter., Since this address is meaningless,
branch vectors for Quasi's and program interrupts must not use
relative addressing, '

1‘."The address is 14 bits long in the GE/PAC 4040; it is 16 bits long in the

4050/4060.

1.2.3.2

2«

Indexing Address Modification

The GE/PAC instruction format allocates a three-bit field, I

to indicate indexing address modification. The field spec1f1es
seven consecutive core memory locations for use as index words.
The content of the field is call the "X-word address."

When indexing address modification is specified (the field is
non-zero), the l4-bit address? in the specified index word is’

- added to the 14-bit operand address3 of the instruction in the

I-Register to form the effective operand address.

X~Word Address Effect Uﬁon Address Modification

000 No Modification
001 Indexing Modification Using X-Word 1
010 Indexing Modification Using X-Word 2
011 Indexing Modification Using X-Word 3
100 Indexing Modification Using X-Word 4
101 Indexing Modification Using X-Word 5
110 ~ Indexing Modification Using X-Word 6

S 111 "~ Indexing Modification Using X-Word 7

Indexing address modification occurs as defined above when the’
X-word indicator is non-zero for all instructions except the
six indexing control instructions. The indexing control
instructions provide the means to load, store, increment, and
test individual index words without using the A-Register.
Details are presented in the GE/PAC 4000 Instruction Reference
Manual. The usage of X-word 1 and X-word 2 is restricted.
X-word 1 is used automatically by the arithmetic unit for
subroutine linkage, Quasi instruction linkage, and program
interrupt linkage. X-word 2 is automatically used for Quasi
instruction linkage. Generally, these two X-words should not
be used W1th1n a program.

When the X-word address in an indexing control instruction is
zero, the instruction changes its meaning:

STX (06X8) becomes DMT 060
INX (24X8) IDX (16X8), LXK (07X8) and store zeros
1LXC (17X8) into location zero.

STX, LXC, IDX, LXK, INX and TXH are illegal for X~=0, by
programming convention in the assembly program.

The address is 14 bits long in the GE/PAC 4040; it is 16 bits long in

the 4050/60; 15 bits in the 4020,
“Relative address modlflcatlon, if requxred, occurs prior to indexing
address modification.

.10~

1.2.3.3 The Purpose and Nature of Indexing

1.2.4 SUBROUTINE LINKAGE

The fundamental purpose of indexing is to accomplish address
modification of memory addressing instructions. A memory
address is always positive. Indexing address modification
is implemented within the arithmetic unit by addition of the
index and positive operand address Y% of the instruction.

Memory addressing.instructions must have positive operand
addresses. For example, the instruction LDA -1, X which is
correctly executed on many computers, is an illegal GE/PAC
statement.? The GE/PAC assembly program will tag all negative
absolute addresses as possible errors.

An index is, in essence, an address, Therefore it is con~
sidered as positive. The TXH instruction presumes both the
index X and the test value K to be positive, it is dangerous
to interpret an index as negative.

Indexing also permits the modification of GEN1 and GEN2
instructions. A portion of the operation code extends into
the operand address field; indexing permits modification of

. the instruction within its lower 14 bits (113_0). Modification
is MODULO 16K. :

SPB saves the status® (interrupt, test, overflow, and program
counter) of a main program, inhibits interrupt, and transfers
program control as directed by the operand address, Return from
a subroutine to the main program is implemented by the LDP instruc=-_-
tion which restores part and by LPR which restores all of the saved
status. -

Subroutine linkage to a subroutine located absolutely within the
COMMON are or within (assembled with) the same subprogram is ac=
complished directly by the SPB instruction., Subroutine linkage

‘to a subroutine located without (separately assembled disjoint
subprogram) is accomplished indirectly via a request to the

system ECP, Figure 3 illustrates these techniques.

4»-If relative addressing is specified, this is the position address (*+Y)

6

MODULO memory size.

“The following example is cited: -
Assume the indicated index word contains 310ljg. The arithmetic unit
will interpret the address "-1" as being 1638313. The effective operand
address is then (19484;,) MODULO memory size. If the memory size is
less than or equal to 16K the effective operand address is 310019. If
the memory size exceeds 16K, the effective operand address will be
_1948444. :

SPB also saves the Trapping Mode Status if the memory protection option
is present. This option available only in GE/PAC 4060.

-11-

- COMMON REGION

Subroutine K
PgRG 2000
SBRK # STX SAVEX, 1
LPR SAVEX

SAVEX BSS 1

Subprogram N
ZRG 0

SBRK EQL 2000

SPRN

 SPB SBRK

SPB SBRJ.

Subroutine J
SBRJ STX SX, L

PAIL (Optional)

LPR SX

.

SX BSS 1

Figure 3 - SUBROUTINE LINKAGE (MONITOR SPECIFICATIONS)

-12-

In a real~-time process system program X-word 1 must always be
saved at the beginning of a subroutine used, that is, the first
instruction executed after an SPB must be an STX. If program
interrupts are not used, and the subroutine does not contain a
Quasi instruction, this rule is not applicable.

Subroutines in the COMMON region must operate in the progfém inter=
rupt inhibited mode. Subroutines within a subprogram may
optionally operate in the program interrupt permitted mode.

If a subroutine calling sequence contains parameters, X-word 2 may
be used by the subroutine to access these parameters providing the
access is made prior to the execution of any Quasi or PAI instruc-
tion.

Calling Sequence Subroutine
SPB SBR STX 02, 1
IbX Y1,3 STA SA
IDA T1,3 STX SX3,3
- (Exror Return) ~ XEC: 0,2 1st Parameter
(Normal Return) XEC 1,2 2nd Parameter
INX 3,2 Set Normal Return
STX SX,2 '

1.2.5 PROGRAM SWITCHES

13

1. THE COMPUTED GO-TO SWITCH

This section describes the GE/PAC coding necessary to implement
the FORTRAN Computed GO-~TO Sw1tch

G0 TO (N;, N,, N e e NI

3 . o o

The N, are program labels (locations). The value I
is a fixed point integral variable and may be assigned
or computed by the object program.

Typical coding: -

LDA 11 I=11/12

DVD 12

STQ I

IDX 1,3 Go To (N1, N2, N3,...NN),I
BRU %3

BRU N1

BRU N2

BRU N3

BRU NN

-13-

2. THE ASSIGNED GO-TO SWITCH

The ASSIGNED GO-TO requires careful study; it is a ready
source of program error in a relative addressing computer.

GO ?o I, @, N2,>N3 ceen M)

In the previous section, I was an index value; here it is

one of the n labels Nk'

5

The natural way of coding this switch on a non-relative
machine is as follows:

A IDA N4K
STA I

N BRU I (or XEC I)
BRU NL <
BRU N2
BRU NN

The preceding coding will not work on a relative
addressing computer, The instruction BRU NK is
assembled relative to N+K; its operand address is NK =~
(M4K). If executed in location I, it transfers pro-
gram control to location NK - (N+K) + I instead of
location NK, .

The ASSIGNED GO TO Program switch should be implemented
by the computed switch technique. Thus:

A IXX K, 2 \or/JIDK K
STX I, 2 STA I

N IDX I, 2 « -
2

BRU =%, or XEC%,2
BRU N1 :
BRU N2

_BRU NN

“1lbm

i

1.2.6 TESTS AND THE CONDITIONAL BRANCH BTS

GE/PAC has two conditional branch instructions, BTR and BTS,

which copditionally branch on the status (set/reset) of a Test’
Flip-Flop (TSTF). With the exception of the test for arithmetic
overflow, BTR and BTS are used for all conditional branches based’
‘upon internal effect tests. The TSTF serves as a memory element
to remember the result of a previous test and will retain this
status until changed by program. Since its status is not destroy-
ed by BTR or BTS, many branches may be made upon the result of a
single test. The status of the TSTF is saved by SPB and can be
restored by LPR. .

Two types of testing instructions are available to the programmer:

1. The first type uses the letter T as the first character
of its mnemonic. It places the result of the test
(true/false) into the TSTF. -

2. The second type uses the letter S or R as the first
character of its mnemonic. It affects (sets/resets)
the TSTF only when the test is true.
Type T tests are ordinarily used for conventional decision making.
Type S or R tests are most useful in the evaluation of logic
~ equation (refer to paragraph 1.3.3 for an example).

Three program control instructions (STF, RTF, LPR) are available
to set the TSTF to a predetermined status.

1.2.7 INDEX AND L.OOP CONTROL ‘ - .

Two GE/PAC instructions, INX and DMT are used for index control

TXH and DMT are used for end of loop testing. Figure 4 illustrates
three common loop control examples. The first two examples describe
backwards loop control; the third example describes forward loop
control. WNote- that the Loop Counter Word I in example 1 may be
either an index word or an arbitrary memory location. u

1.2.8 QUAST INSTRUCTIONS \ : -

A Quasi instruction is (from the hardware viewpoint) a special
two-address instruction. Its octal specifies a fixed address in

a branch (SPB) vector leading to a subroutine. Its Y address is

a normal operand address. The computer computes the effective
operand address from the Y, %, and X fields of the instruction
and saves this address in index word two. It then executes the
SPB instruction in the location specified by the instruction octal.

~15~

—9'[-

~ FORTRAN . ’ S FLOW - CHART ’ ‘ . SYMBOLIC PROGRAM

- Example 1 ‘ - o (;)
00 I = 49 o S . - LDA D49
01 . | 1=40 | STA I
. POl .
. [IT=T1-1] [WORK | : .
i ' ’ DMT I
I=1I-1 : * ‘ y BTS POl
IF (I) 02, 01, Ol ’
02 - '
03
Example 2
IXK 50,K
10 K = 50 P11l
1. : :
X INX -1,K
. TXH 1,K
K=K-=-1 BTS P11
12 IF (X) 12, 12, 11 . :
[
13 '
\ - , , . IXK 3,N
Example 3 o , : P21
20 DO 22 N = 3, 51, 2
. “TXH 51,N
22 CONTINUE BTS *+3
INX +2,N
BRU P21

Figure 4 - LOOP CONTROL EXAMPLES

¢

1.2.9

A Quasi instruction is ome which resembles, or is used as an
instruction executed by a group of commands. For éxample, the
Floating Add (FAD), which is implemented by a subroutine, is used

by the programmer the same as a hardware implemented FAD instruction.
Therefore, a Quasi executes programs in memory allowing the programmer

to demand an instruction not in the hardware. Several benefits are

as follows:

.1, A more effective instruction repertoire permits easier
coding.
2., Upward program compatibility is possible.
3. This technique reduces memory requirements of programs when
compared to the use of conventional subroutine techniques.

Not all functions are best implemented as Quasi's. Square root,
which normally uses the A-Register as its operand, does not require
a two-address subroutine link. Therefore, to implemént it by a
Quasi wastes the Y operand address. ~

XEC AND ITS USAGE

The address portion of an Execute instruction (XEC) specifies an
object instruction to be executed. It does not set the location
counter to the location of the object instruction as would a

branch instruction. Thus, XEC calls a one-instruction subroutine

" and specifies immediate return to the main routine.

The use of XEC operation arises directly from the fact that the
object instruction does not imply its own successor unless it is
a branch. The XEC simplifies modification of non-indexable
instructions (such as index control instructions) as well as
providing the ability to effectively modify programs (remotely)
which may not be directly modified. Effective use may also be
made of the XEC in the case of a subroutine calling sequences
where the calling sequence to the subroutine may include several
parameters specified in actual machine instructions which the -
subroutine treats as second-order one-word subroutines.

XE€ completes a set of four program control operations:

1. Program control is retained by the main program (normal

instruction sequencing).

Program control is given to another program (branching).

Program control is usurped by another program (program

interrupt). -

. Program control is lent to another (one instruction)
program (execute).

.

£~ (VRN M)

~17-

Several examples of XEC usage are:

1.

Indexing non-indexable instructions

XEC KL, J XEC KI, J XEC

IXK 3,K KI INX 2,K KT TXH 25,K

IXK 7,K INX 3,K TXH 28,K
Program switches -- (Described in paragraﬁh 1.3.5)
Double indexing arrays

A = TABLE (I,J) XEC 1T, I
STA A

LT IDA TABLE, J
IDA TABLE+JM, J
LDA TABLE +2JM, J
LDA TABLE +3JM, J

Executing "manufactured" instructions. When it becomes
necessary to modify an instruction (other than by indexing),

it must be placed in COMMON and be executed via XEC. Extreme - -

care must be exercised when manufacturing memory addressing
instructions.

When several programs are identical, except for one instruc-

‘tion, XEC can reduce overall storage requirements by combin-

ing the programs.

“a

IXK I,J PROG STX SX, 1

SPB PROG .
. XEC, INS, J
- LPR SX
INS ADD NUM
SUB NUM
DVD NUM

°

~18- .

1.2.10

- Two classes of program interrupt (relatlve to program control)

PROGRAM INTERRUPT

.

Program interrupt is the only satisfactory hardwaré method to
synchronize a computer program with externmal conditiomns.

An external event may be sensed and a signal (indicating event
true/event false) is connected to the GE/PAC Automatic Program
Interrupt module. Two types of event detection are provided
by the GE/PAC API module: '

1. The event has occurred (was and/or is true) and a program
© interrupt, to acknowledge the occurrence, has not yet
occurred.
2. The event is presently occurring (was and is true) and a
program interrupt, to acknowledge the occurrence, has not
yet occurred. :

In either case, the GE/PAC API module remembers the event until
a program interrupt acknowledges its occurrence. The GE/PAC
APT will then "forget" the event. ‘

Type 1 event detection is normally used to provide event re=-
cording, plus accumulation, and process~to-program synchroniza-
tion. Type 2 event detection controls interrupt driven I/0
equipment.

~

_/

are provided in GE/PAC systems:

1. 1Inhibitable Interrupts

The program controls the occurrence of such interrupts,
Execution of an IAI or SPB instruction places the computer

~in the program interrupt inhibited mode. Inhibitable in-
terrupts are delayed until a PAI instruction is executed
to place the computer in the program interrupt permitted
mode. The instructions LDP and LPR will either inhibit or
permit interrupt depending upon Bit 21 of the referenced
memory location,

~

2. Noninhibitable Interrupts } . -

The program does mot normally control the occurrence of
such interrupts, A program interrupt which acknowledges
the occurrence of the event is made within 1 to 500 micro-
seconds of the occurrence of the event.

 -19-

To assure program integrity during program-to-subroutine
communication, a hardware restriction must be placed upon the
SPB instruction to guarantee program execution of one addition~
al instruction (an STX) prior to a possible noninhibitable
program interrupt. A similar restriction upon the BRU in-
struction is necessary to simplify FORTRAN program-to-subprogram
communication., These restrictions may "hang up'" the program

by locking out all interrupts if an SPB #* or BRU * is executed.
BIS * and XEC * are other non-interruptable program stops.

None of these stops, however, are normally acceptable in a real-
time program,

Program interrupt may not occur more frequently than every
other instruction; the imstruction succeeding the interrupt-
inserted instruction is determined by the program counter,

_If an IDP or LPR (to permit interrupt) is executed, one addition=-
al instruction will be executed before an inhibitable interrupt
occurs. A non-inhibitable interrupt may occur immediately
following the LDP or LPR, '

The program sequence PAT, TAI will not permit any requested
program interrupts to occur. The sequence PAI, NYP, IAI allows
the highest priority requested interrupt to occur, etc.

The program sequence PAI, NYP, BRU * -1 will not necessarily
guarantee the servicing of all requested program interrupts.
This sequence should be written as PAI, N¢P, NPP, BRU * -2,

A program interrupt is accomplished by executing one instruction
out-of-normal program sequence. Sequential memory locations in
an Interrupt Control Table are reserved for this purpose, cor-
responding to Interrupts #0, #1, The Interrupt Control Table
starts at location 100g in 4040 and 4050/4060 systems; starting
location 200g in 4020 systems. Although the only theoretical
limitation to the number of interrupts is memory size, avail-
able "off the shelf' hardware is limited to a maximum of 64
interrupts.

Only six GE/PAC instructions should be used within the
Interrupt Control Table. Other instructions will cause
Yprogram bugs' which are extremely elusive to find. Relative
addressing must not be used in these interrupt control
instructions. Permissable GE/PAC instructions are DMT, SPB,
N§P, BRU, $LD, and IDL. ’

=20~

INTERRUPT
CONTROL
TABLE

echo

. . .
%'—'m—-—--u———-—.—--——-—_ — —-—%

4

Pulse accumulation

Pulse accumulation

Elapsed time counter

Automatic shut down

Elapsed time count overflow

1/0 Device

Buffer Driver
Subroutine

count
DMT DDAL |~ i
DMT DDA2 __ __,.gPpﬁ?__
count
DMT TIMR ~ R
SPB SH
BRU SU
NOP STX SX,1
STA SA
SPB *
Automatic restart and initialize
STX TX,1
____—_.-_%%9
SPB TIMRO Reset
Time -
Count
Update
Clock -
- BRU ECP
SPB BFD %‘ STX BX,1
SPB ACT RBL LIST
. OUT Device
Special .
NOP .
Action .
Routine LPR BX

Figure 5 - TYPICAL PROGRAM INTERRUPT USAGE

-21-

S | I/0 Device

Queing
List

1.3

DATA MANTPULATION

The "bit" is the fundamental unit of data. A larger and more
convenient unit is the '"word" which, in GE/PAC, consists of an
ordered set of 24 '"bits". GE/PAC is word-organized with respect
to addressing and arithmetic; it is both word-organized and bit-
organized with respect to logic.

Data Manipulation is accompllshed in one or more of the following
registers:

1. A-Register
2. Q-Register
3. Addressed memory location Z
. I
The group of General instructions provide the means to load or
store each register. Arithmetic, Logic, and Test instructions
implement data manipulation operations.

The A-Register, being the primary working register, is affected
by a majority of the data manipulation operations. The Q-Register
is used as an extension of the A-Register or as an auxiliary
register., Few operations affect it. The Operate on Memory
instruction (#PM) provides a means of applying all of the A-
Register operations to an addressed memory location.

~

‘1.3.1 DATA REPRESENTATION
Data representation is provided for two types of data, numeric
varlables and logic varlables.

1.3.1.1 Numeric variables

Numeric variables are represented by sequences of digits. The
GE/PAC word, with bits interpreted as digits, provides binary
representation of any real number with a precision of 23 binary
digits. e

T

Three common binary representations for negative numbers are:
1. Sign plus absolute value ' _é

2, One's complement

3. Two's complement

In each case the left-most bit is interpreted as the sign of
the number, O meaning plus and 1 meaning minus.

=23

Two's complement representation is used in GE/PAC for fixed-
point arithmetic,

Sign plus absolute value representation is used in GE/PAC for
floating-point arithmetic.

The integral and fractional portions of the number are separat-
ed by a binary point. The binary point has no analogy in hard-
‘ware, In fixed~point arithmetic, the binary point is supplied
mentally by the programmer and is referred to as the scale of

the number. In floating~point arithmetic, the binary point is
defined by an exponent within the floating~point number repre=-
"sentation; the mantissa is always a normalized fraction. Arith-
metic data formats are illustrated in Figure 6. Figure 7 presents
the number range of fixed- and floating-point variables.

Note on Numeric Data Representation

Any real number may be represented in binary notation as:

n n-1 -1
T kX 2 X 2T LK 2Ky X 2+

x 2°

- + ... where the Xi are the coefficients of the

powers of 2 and may assume the values O and 1. If a one-to-
one correspondence between these X, and bits in computer words
is made, numbers may be representeé by sequences of bits. The
24-bit word provides sequence lengths of 24 and 48 bits and
can approximate any real number with a precision of 23 (46)
bits.

The two's complement of a number S + 23 ... X 41 X is
numerically equal to the number n ne n

(94004237 = (Oupgy Sigs Foygp- - %)
Thus -7, = 10000, = 00111, = 1001,
~(-1),, = 10000, - 01111, = 000L,,

and -0 = 100002 - 000002 = 00002

w2ym

Single Word Fixed Point

23[22 0 |

(NOTE: Sign bit 0 =+; 1 = =)

Characteristic (=Exponent +4008)

Figure 6 - ARITHMETIC DATA FORMATS

-25=

Bit Position .
Scale 0 23
_ -
AV
T two's complement number
Sign bit i
.)] ’ ‘Not Used
Double Word Fixed Point | (always zero)
Bit Position 2322 o] Y2322 0l
Scale 0 23 23 46
\— Lo/ _/
1 ! 4 7/
k\(J two's complement number
Sign bit ' ~
Single Word Floéting Point
Bit Position 23122 17]16 0
) Sign Bit Magnitude (absolute value)
Characteristic (=Exponent +408)
Double Word Floating Point * Not Used
) - (always zero)
Bit Position 23122 14113 0 23122 0
— =)
Sign Bit Magnitude (absolute value)

~

FIXED POINT NUMBER RANGE

Notes a.
b.
c.
a.

Minimum Maximum
Format Number Number Increment
Single Word :

. As found in Memory 40000000g 37777777 00000001g
Decimal equivalent T =28 28-1 2823
Double Word '

As found in Memory 40000000 37777777 00000000
, 000000004 37777777g 00000001 g
Decimal equivalent -25 28-1 28-47
Notes a. s = scale_of fixed point number.)
b. 25 = 109:308, approximately. -
c. Although the negative endpoint, =25, can be represented, its negative
28, can not. Therefore -2% is not normally considered to be part of
the range of a numeric variable.
FLOATING POINT NUMBER RANGE
Minimum Maximum :
Format Number Number Increment
Single Word :
As found in Memory 77777777 37777777 0C000001g
Approximate decimal equivalent. -0.00000“-'309 +0.99999%107 2C-49
Double Word : _— :
As found in Memory 77777777 37777777 0cCc00000
‘ 37777777g 37771777g 00000001g
Approximate decimal equivalent. =0.999,999 ~ +0.999,999 2€C-69
‘ 999,99%1077 999,99%1077

The number "zero" is arbitrarily defined to be the number 00000000g
(00000000,00000000g for double word format) as it would occur in
memory, and has the approximate decimal equivalent +0.0%10-9
(+0.0%10-77, double word). :

The number "minus zero'", which is representable in "sign plus

absolute value'" notation can never result from a GE/PAC floating
point operation and should be considered illegal.

C = characteristic of floating number. Single-word range of C is

0 < C <£.63; double-word range of CC is 0 < CC < 511.

The increment is not a representable floating number. The minimum
positive representable number is 00200000 and has the approximate
decimal equivalent +0.5 * 10-9. The minimum double-word representable
number is 02000000,00000000g having the decimal equivalent +0.5%10-77,

Figure 7-FIXED AND FLOATING POINT NUMBER RANGE

. =26-

1.3.1.2

An alternate method to negate anumber is to form the one's
complement and add one,

Thus —710 = 01112 + 00012 = 10002 + 00012 = 10012,
-(-1) = 11112 + 00012 = 0002 + 00012 = 00012,
and -010»= OOOO2 = 00012 = 11112 + 00012 = 00002.

This latter method is used in GE/PAC since:

1. The former method requires an additonal bit in the A=~
Register.

2. The latter method treats subtraction as a special case of
addition.

Another way to interpret a two's complement number is to think
of the sign bit as being the coefficient of a negative multi-
plier. All other multipliers are positive.

Thus -7 = 10012 = -810 + 010 + 010 + 010 + 110’

1

1o = 0001, =+ 010+ 0,0+ 0,5+ 10

830 * %410 ¥ 210 * 990,

~

L]

and =2 11102

10

Logic Variables

Yes/no, true/false, on/off, and set/reset conditions are repre-
sented by logic variables and obey the laws of Boolean algebra.
If a one~to-one correspondence between logic variables and bits
are made, a set of twenty-four such variables may be represented
by a GE/PAC computer word. In such a representation, 1 means
true and O means false. Ty o
GE/PAC provides word logical instructions to operate on sets of
bits, and bit logical instructions to operate on individual bits.

27~

1.3.2 ARITHMETIC OPERATIONS

1.3.2.1

SUB

Arithmetic Overflow

The result of an arithmetic operation (addition, subtraction,
multiplication, or division) upon two 24~bit numbers may exceed
24 bits., Any further computation involving the result is mean-
ingless, Arithmetic overflow occurs when the magnitude of the
resulting number is too large. GE/PAC provides arithmetic over-
flow detection for all of its arithmetic instructions except

AD$ and NEG.

‘Arithmetic underflow occurs whem a result is .too small in magni-

tude to affect the least significant bit of_the register in which
the operation is performed. When underflow occurs, the result is
replaced by a zero but no underflow detection is provided.

" If overflow occurred during)the execution of an ADD, SUB, AKA,

SKA, MPY, DVD, SLA, DLA, FIX, FL@, FAD, FSU, FMP, or FDV, the
Overflow Flip~-Flop (OVRF) is set, Otherwise, the OVRF remains
unchanged. Testing overflow with the JNP instruction after each
arithmetic instruction is inefficient. This test need be given
only once (at the end of the computation) to provide valid
arithmetic overflow detection. .
A carry out of the A~Register and arithmetic overflow are un-
related in two's complement fixed point arithmetic. Such a
carry is neither a necessary nor sufficient condition for
arithmetic overflow. Each arithmetic operation has a different
criterium for determining whether or not overflow occurred.
These criteria are:

ADD

If the contents of A and Z have like signs, and the sign of the
sum differs from that of its arguments, the OVRF is set; other-
wise the OVRF is unaffected.

y
- ?

If the contents of A and the one's complement of the contents of
Z have like signs and the sign of the difference differs from
that of its arguments, the OVRF is set; otherwise the OVRF is
unaffected.

=28-

MPY REGISTER ARITHMETIC
OVERFLOW
Z Q A

v M M .0 yes

A

L M M 0. no

U :

E | (® (@ (&) no

M in the above table is the octal number 40000000. It is an
illegal number in that this maximum negative number is its own
negative. That is, its negative is not positive in the accept=~
ed sense because the so-called sign bit is a zero. Overflow
occurs during MPY only if the multiplier and multiplicand are
400000008 and the contents of the A-Register are not negative.

If arithmetic overflow occurs as a result of MPY, the OVRF is
set; otherwise the OVRF is unchanged.

VD

If the magnitude of the contents of Z exceeds’ that of the con=
tents of A, the OVRF is unaffected, If the magnitude of A
exceeds that of Z, the OVRF is set. If the magnitude of A
equals that of Z and the sign of the resulting remainder is
‘the same as the sign of the divisor, the OVRF is unaffected;
if these signs differ, the OVRF is set.

. SLA and DLA

If the contents of A are positive: If any "1" bit is shifted
into A,_, the OVRF is set; otherwise the OVRF is unchanged.
If the“ctontents of A are negative: If any '"O" bit is shifted
into A23, the OVRF is set; otherwise the OVRF is unchanged.

Floating-Point Instructions .

Arithmetic overflow occurs when the magnitude of the exponent
of the result is too large for the exponent field of the .
floating-point format. /

Single Word Mode

If the magnitude of the result of a floating operation is less
than 1 X 2-33, it is replaced by zero; if the magnitude is
greater than 1 X 2 1, it is replaced by the signed maximum
floating number and the OVRF is set.

-29-

1.3.2.2

1.3.2.3

Double Word Mode

.

If the magnitude of the result of a floating operation is less
than 1 X 2-513, it is replaced by zero; if the magnitude is
greater than 1 X 2511, it is replaced by the signed maximum
floating number and the OVRF is set.

Fixed Point Arithmetic Scaling Operations

The term scaling describes the analysis process associated
with the programming of numerical problems using fixed~point
arithmetic operations are subject to the following rules:

Addition and Subtraction

Variables must be scaled alike when added or subtracted. If
scales differ, each variable is scaled by multiplying it by an
appropriate power of two so the resulting scales are the same.
The scale of the result is that of its addends.

E

Multiplication . =

Variables may have different scales when multiplied. The scale
of the result is equal to the sum of the scales of its factors.

Division

Variables may have different scales when divided. The scale
of the quotient is equal that of the dividend, diminished by
the scale of the divisor. The scale of the remainder is equal
to the scale of the dividend, diminished by 23.

Scaling may be accomplished in one or both of two ways :

1. Mental multiplication by a pbwer of 2,

2, Actual multiplication by a power of 2 as 1mp1emented by a
shift (SRA, SLA).

Most precise results are obtained when scaling is planned so

the number of significant bits in the working registers A and

Q is maximized at all times.

Floating-Point Arithmetic Scaling Operations

Floating-point arithmetic minimizes or eliminates the need

for scaling. Floating=-point Scaling consists of analyzing all
equations comprising a problem, and reformulating if necessary,
to insure all variables (including results and partial results)
are representable by the floating-point format.

-30-

1.3.3 LOGIC AND BIT LOGIC OPERATIONS

GE/PAC has conventional logical instructions (CPL, @$PRA, ANA, ERA)
which address memory and operate on the addressed 24-bit words., 1In
addition, a GENl class of instruction allows the programmer to add-
ress individual bits of a word in the A-Register and perform the
CPL, PRA, ANA and ERA operations on the addressed bits. Thus:

SBK K Sets the Kth bit of A to a one
CBK K Changes the Kth bit of A
T¢D K Tests the Kth bit of A

(Also, others are available)

Much of a control program consists of decision making based upon
the status of true/false bit-logic variables. These conditions
are normally read into the computer via a Digital Input Scanner.

Assume that one step in a start-ﬁp process consists of determining
that one of two pumps is on with its valve open and that a main
valve is open. ' ‘)

S

Motor on, pump #1
Valve open, pump #1
on, pump #2
Valve open, pump #2
Main valve open

HOOowW®
oo
=
Q
ct
Q
H

The programming technique does not depend upon the arrangement of
variables; all may be assumed in the same word without loss of
generality. The step may be expressed in the form of a logic
equation: :) i 2

If(A*B*C*D+A%*B*C%*D)*E=1, G TP ¢K

GE/PAC coding for this equation is given in Figure 9.

A shorter program can be produced by using GE/PAC conventional
logic instructions (CPL, $RA, ANA, ERA) if rigid assumptions, with
respect to the location and arrangement of bit variables, are made.
When using the logic instructions, all five variables must be
assumed to be in sequence in the same digital word. GE/PAC coding

for this equation is presented in Figure 10.

A comparison of the two methods emphasizes the value of bit logic.,

-31-

LDA GR@UP 00

T¢D BIT A T=A
BIR *+5 IF (T-1) 02,01
REV BIT B 01 T = A%B%-C%-D
RgD BIT C .
RgD BIT D
BRU *+5 Gg T¢ 03
SET 02 T=1
R@D BIT B T=A%B%~C¥%-1
REV BIT C
REV BIT D
REV BIT E 03 T=T*E
BTS @K IF (T-1) 04,¢K
BRU ALARM 04 GP T¢ ALARM

* USE OF GEPAC BIT LOGIC INSTRUCTIONS

TO EVALUATE LOGIC EQUATION
IF (A*B*-C*-D + -A%*-B*C*D) * E = 1, GJ T@ OK

Figure 8 - BIT LOGIC USAGE

LDA GRPUP EABCD=-==m=mmm=
SRL 1 @EABCD == == mm=n
ERA GRUP 1-010~===mwnun IF ¢gK
ERA MASK1 ' S
ANA MASK2
TZE
‘BTS @K
BRU ALARM

BITA MUST BE BIT 22

'BITB MUST BE BIT 21

BITC MUST BE BIT 20

BITD MUST BE BIT 19

BITE MUST BE BIT 23
MASKL C@N /44000000 100100000. ...
MASK2 C@N /56000000 101110000. ...

LI

USE OF GEPAC CONVENTIONAL LOGIC INSTRUCTIONS
TO EVALUATE LOGIC EQUATION
IF (A%B%-C*-D + -A%*-B*C*D) * E = 1, G@ TP OK

& % *

* .+ Figure 9 - CONVENTIONAL LOGIC USAGE

1.3.4 LISTS AND THEIR USAGE

1.3.4.1

Bit logic method advantages:

a,

Permits a natural and straight-forward algorithmic evaluation
of logic equations:

1. Suited for use by junior programmers without loss in
quality of coding

2. Suited for use in a compiler

3. To reduce programming time

Permits symbolic representation of bit variables. Minimizes
the need for programming dictation of the specific arrangement
of inputs to the Digital Input Scammer.

Disadvantages:

a.

Requires more memory and execution time

Conventional logic method advantages:

a,

Requires less memory and execution time if optimumally coded

Disadvantages:

a.

~

Requires ingenuity in choice of specific technlque and bit
arrangement, therefore:

1. Quality of coding is dependent upon the caliber of the
programmer. Non-optimum coding can require more memory
and execution time than produced by the bit logic method.

2. Not suited for use in a compiler '

3. Increased programming time required

Symbolic representation of contact closures is very awkward
and requires restrictions on hardware grouping of variables.

A bit arrangement that is optimum for one test is probably not
optimum for another test in the same program 1nvolv1ng the
same set of variables. “

Definitions
A List consists of an ordered set of items contained within a

fixed length block of memory (2L + 1 words where L is an integer,
1<L<9).

P 3 15 14 6] 5/ 4|3 0
Address : . '
of List 2 F N fle L LIST CONTROL WORD
Z+1 (K + 1)St Item L Spe01f1es maximum size of list
4 (2L items where 1 <L < 9).

: ‘ : F Specifies locatiﬁn of beginning

: item (0 <F <27 - 1).

T : . N Specifies number of items

* currently in list (0 < N < 2Ly

® - %Y Ttem
Ending Item
Unused
Area
Prior to Execution:
Beginning Item Address of beginning ltem
Z+ 1+ (F+1) MoD2L
!an ITtem Address of ending item

. Z+ 1+ (F + N) Mop2l

: The list is empty if N=0 and e=1

: The list is full if N=0 and f=1
z + 2¢ k™ Item .

Figure 10 - GE/PAC LIST ADDRESSING DETAILS

*

-34-

1.3.4.2

The first word of the block is a list control word which is the
address or label of the list. The maximum size of any given
list is 2l items. The physical ordering of a list is circular
in nature; the address 2L Relative to the list control word is
followed sequentially by the relative address 1. The terms be-
ginning item and ending item are arbitrarily attached to the
first and last members of the set of items currently forming the
list. Figure 10 illustrates list addressing details. Instruec~
tions are provided for appending additional items to the be-~
ginning or end of the list and for removing the beginning or
ending items.

These instructions are:

ABL Z Append item to beginning of list Z
AEL Z Append item to end of list Z

RBL z Remove beginning item from list Z
REL Z Remove ending item from list Z

An item, when appended, becomes the new beginning/ending item.
The removal of an item forces the adjacent item to become the
new beginning/ending item. The current beginning and ending

items are the only items addressable by program; normal table

‘indexing techniques allow addressing of any entry in a table.

The Queuing List and Its Usage

A queuing list channels information to and through Input/Output
devices. Assume a request for the on demand print out of the
current value of an analog input is made. The scan command
word and appropriate control information would be appended to
a queue controlling the scanner operation. When available,

the raw count value of this input will be appended to a queue
awaiting conversion from binary to engineering units.

Another queue is awaiting line to the binary to BCD conversion
routine. The resulting ordered set of BCD characters is
appended to the output driver queue which controls a typewriter.

ABL places high priority items at the beginning of the list,
RBL removes them ahead of all other items. Consequently, high
priority items are appended at the beginning of the list to
become the next item removed. Thus AEL and RBL provide

normal queuing. ‘

.

«35~ . C

1.3.4.3

The Stacking List and Its Usage

.

The stack or push down list is so named because the most re-
cently appended item is always removed prior to the removal of
less recently appended items. The phrase last in - first out
is sometimes used to describe the operation of a stack.

Typical stack ﬁsage is a common temporary storage block for
programs subject to program interrupt. Each program, by append-
ing all of its intermediate results in the stack, could be

‘destroyed by a higher priority program. When all higher prior-

ity programs are completed, the destroyed program is restored
and continues from its point of interruption.

The stack requires that the relative priorities of all programs
having data within the stack do not change. Use of the stack
on GE/PAC 4040 is relatively slow. When stacking of data is
not satisfactory for a given program, one of the following
alternates must be used:)

1. The program is assigned unique locations in COMMON for its
intermediate results.

2, The program is executed in the interrupt inhibited mode.

3. - The program is restarted from its initial conditions.

AFL and REL are stacking instructionms.

1.3.5 GEN 1 INSTRUCTIONS

The GEN 1 instruction is executed as follows. Instruction retrieval

and indexing occur during timing states 1 and 2. Since indexing
address modification affects bits 13 through O of the instructionms,
indexing can change the meaning of the GEN 1 instruction. Implemen-
tation of timing state 3 is as follows:

1. The complemented value of k, (I, 0), is placed 1n the J-
Counter.

2. The control flelds determine inputs to the ser1a1 adder, to
the Test Flip-Flop, and to the shifting control.

3. The contents of the A-Register are ringshifted bit by bit
through the adder, the output of the adder being shlfted
into A23 of the A-Register.

4. The J-Counter is incremented one for each one-bit shift.
The final contents of this counter is:

a. 378 if Ac
b. 27g-k ifA,
c. 37g if A,

1
0, k <2319
0, k

"

1024 unique GEN 1 instruction octals are possible. The most useful

N

-36-

13.6

1.3 7

octals are utilized and are listed in the GE/PAC 4000 Instruction
Re erence Manual

GEN 3 INSTRUCTIONS

GEN 3 commands are differentiated from other commands by the op code
45g They are also subdivided into commands by the m’cro-coding of
the operand portion of the command word These commands are used to
manipulate the contents of the A- and Q-Registers, affect the J-
Counter, and optionally affect the Overflow Flip-Flop GEN 3 commands
are also used within the Quasi subroutines for floating-point arith-
metic operations

COUNT INSTRUCTIONS

CMP and CMZ instructions count the number of most significant ones/
r~ros of the data word in the A-Register. CLP and CLZ count the
number of least significant ones/zeros in the A-Register.

These instructions leave the determined "count" value in the J-Counter;
an LXC instruction must be executed to transfer it to an index word.
Quasi instructions must ncot occur between a count instruction and the
ILXC Therefore, each count instruction must be immediately followed
by its associated LXC No other conventions apply when using count
instructions with GE/PAC 4050 or 4060 computer-

Two conventions apply on the GE/PAC 4040 computer:

1 Count instructions are not protected from program interrupt. Certain
Quasi instructions use the J-Counter without restoring it. Each count
instruction must be immediately followed by its ass: ciated LXC; these
instructions must be between an IAI and PAT in a permitted program.

IAT
CLZ
LXC X
PAT
2. Non-inhibitable pr jram interrupt action routines must -z2ve and
restore the J=-{ounter if the action rcutine contains any GEN 1
instruction.

The J-Counter is saved with the coding:

LXC X COUNT —»X.

The J=Counter is restored with this coding:
LDp O,X
CLZ

The A-Register is destroyed by this operation.

Figures 11 and 12 present the flow chart and coding for a typical
application which uses a count instruction A simple executive
routine examines bits in a computer word, transferring program
control to a subroutine as a control bit is set

-37

mggw

Given 1 Group of
22 Logic Variables

Compare group against groups of 22 Logic constants,
to determine which bits differ from a predetermined
normal status and are of current interest.

Reset

Off-normal
bit K

Are any of these '"off-normal” \ N
bits .currently of interestil//

Y

which one?

subroutine

Action
Subroutine
N < 22

Action
Subroutine
2

Action
Subroutine
1

2 » * a o a » & & 8 & w e « s & 0 & a2

Figure 11 - COUNT INSTRUCTION APPLICATION

This technique can be used for any or all the following purposes:

1. As the ECP in Monitor

2., As a demand routine ECP

3. As a change of state ECP .
Associated with program interrupt and/or contact status groups
read in via the Digital Input Scanner (DIS).

ACTA LDA GRgUP ~ 000 GRPUP @F 22 LPGIC VARIABLES
ERA NPRMAL DETERMINE @FF-N@RMAL VARIABLES
, ‘ ANA INTRST DETERMINE GFF-NPRM @F INTERST
. ACTB TZE 001 B IF (ANY @FFNPRMAL OF
BTS ACTC X _ INTEREST) --, 003, 002
IAI 002 DETERMINE WHICH ONE K
CLZ '
IXC 3
PAI
"SPB ACTION,3 CALL ACTIONF(K)
RBK 0,3 RESET OFFNORMAL BIT K
BRU ACTB Gg TP 002
ACTC LPR SX 003 RETURN
NORMAL BSS 1)
INTRST BSS 1)
ACTION BRU ACT1
BRU ACT2
BRU ACTN i
SX BSS 1

-~

Figure 12 - COUNT INSTRUCTION CODING

~39-

1.4

1.4.1

INPUT AND OUTPUT CONTROL

GEN 2 INSTRUCTIONS

GEN 2 instructions are microcoded instructions used for control of
input/output equipment and for certain computer actions. Instruction

format follows:

23——18 17 — 15 14 — 12 1] ——0
25 X S D
25 - Instruction octal
X =« X word indicator
S - Instruction secondary-octal
D - Device address

Device address D = 00008 is a ficticious address referring to the

computer itself.

The following instructions are provided:

Program Control

25010000 SSA
25020000 PAT
25030000 IAT
25040000 JND
25050000 RCS

Validity Tests

25060000 JNG
25070000 JNP

Device addresses D =

Set Stall Alarm c

Permit Automatic Program Interrupt
Inhibit Automatic Program Interrupt
Jump if no Demand

Read Console Switches

Jump if No Overflow
Jump if No Core Parity

11DDg refer to peripheral devices. Device

address D = 24008 refers to the GE/PAC drum. Other devi;e

addresses may be defined as required.

~

The follbwing generic instructions are recognized by the assembly

program:
2500 SEL
2501 ACT
2502 ¢PR

Select device D
Activate device D .
Operate device D

41-

1.4.2

2504 f#UT ~ Output from A-Register and Initiate
' operation of device D

2505 IN Input to A-Register and initiate operation
’ of device D

2506 JNR Jump if not ready

2507 JNE Jump if no error

Specific meanings for each action are determined by the specific
requirements of each given device D. Refer to specific descrip-
tions of the various devices for detailed information.

Since indexing address modification affects Bits 13 through O

of the instruction, indexing can change the meaning of the GEN2

instruction.

The device address is a function, not of the device, of the
physical location of the device within the GE/PAC cabinetry.
Therefore, it is extremely important for each system program to
permit device addresses to be changed without costly reprogramming
or major reassemblies. A recommended GE/PAC technique is to list
all device addresses in a table and assign a common symbol to each
table entry. This device address table must be located absolutely.
Each program using input/output devices will refer symbolically to
the appropriate device address as illustrated in Figure 13. A
recommended alternate technique is to use the EQL pseudo-op .as
illustrated in Figure 14,

INPUT/OUTPUT COMMUNICATION

GE/PAC 4040 provides up to twenty-four independent communication
paths between the A-Register and Input/Output devices external to
the computer. Each path is specified by the most significant 6
bits of the device address and links the arithmetic unit with a
module, Module refers to the circuitry which controls a device
directed by the S portion of the GEN2 instructions. Associated
cabinetry is also described as a module. Examples of modules

are peripheral buffers, analog input scamners, and digital input
scanners. ‘

The term device designates an electronic or mechanical unit con-
trolled indirectly by the computer via the GEN2 instruction. The
device is the interface between the computer and an operator or
between the computer and the process. Examples of devices are
paper tape readers and punches, analog-input sensors, digital-
input sensors, and operator console controls. "

&

42

Fr.

ORG

RDR *CON 0,1100

TYPL *CON 0,1103
RDR2 *CON 0,1105

DIS *CON 0,4400
AIS *CON 0,2100
MCO *CON 0,4300
TCO *CON 0,4600
DRUM *CON 0,4500

feledelekk
TYPE IDX TYP1,X

LDA CHARACTER

OUT 0,X

CONSOLE PAPER TAPE READER

TYPEWRITER NO. 1
PAPER TAPE READER NO, 2

DIGITAL INPUT SCANNER

ANALOG INPUT SCANNER

MULTIPLE CONTACT OUTPUT CONTROL
TIMED CONTACT OUTPUT CONTROL
DRUOM

RECOMMENDED DEVICE ADDRESS ADbRESSING TECHNIQUE

FIGURE 13

RDR EQL /1100

TYPL EQL /1107
RDR2 EQL /1101

DIS EQL /2100
AIS EQL /4400
' MCO EQL /4600
TCO EQL /4500

DRUM EQL /4600
Lhfllk

TYPE LDA CHARACTER

OJT TYP1

CONSOLE PAPER TAPE READER

TYPEWRITER NO. 1 °
PAPER TAPE READER NO. 2

DIGITAL INPUT SCANNER
ANALOG INPUT SCANNER
MULTIPLE CONTACT OUTPUT CONTROL
TIMED CONTACT OUTPUT CONTROL
- DRUM

RECOMMENDED DEVICE ADDRESS ADDRESSING TECHNIQUE

FIGURE 14 e

~43-

1.4.3

The select instruction, SEL, is never required in a normal system
program. If the necessary switching and data tramsmission between
the arithmetic unit and device cammot be accomplished within 24
microseconds, a SEL must be given prior to the operation of the
device,

TI/0 CONTROLLER INSTRUCTIONS

The GE/PAC 4050/60 I/0 Controller instruction @DL combines the
functions performed by RBL and $UT to transfer data directly from

a list in memory to an output device without using the A-Register.
If the B-Register is substituted for the A-Register in the descrip~

tion of RBL and ¢UT, the composite function is identical to that

performed by $DL. Similiarly, IDL combines the IN and AEL functions
without affecting the A-Register. These instructions, when used

in a device's non-inhibitable location(s), perform hardware block
buffering of data between the list and the device. Figure 15
illustrates format details. :

Output block buffering is accomplished in the following manner.
The output program assembles output data into a list by AEL'ing
each output item into a separate word of the list. The data
format is the same as the PUT instruction. The device's non-
inhibitable interrupt is then ACT'ivated. Whenever the output
device is ready to receive data, it requests a non-inhibitable
data interrupt.

The @DL instruction in the device's interrupt location is executed
when the interrupt request is serviced. The program counter is
unaffected. If the list is not empty, data is removed from the
list, transferred to the device's buffer register, and a device
operation initiated. If the list is empty, a list~empty echo
signal is transmitted to the program interrupt module. This signal
requests an inhibitable program interrupt. An SPB instruction in
this echo interrupt location transfers program control back to the
output program; additional data can be assembled into the output
list, if required. When a hardware malfunction occurs, the data
interrupt does not occur. This condition can be sensed by peri~
odically executing the appropriate JNE instruction.

Input block buffering is accomplished in an analogous manner using
the IDL imstruction. Input parity errors are interpreted as
hardware malfunctions.

The I/O list must be preceded by an I/0 control word as shown in
Figure 15. h

bylym

Ready signal
23 19 0

ODL

L X |* Y

P

V%

Devices non-inhibitable
Device ready interrupt

location
23 14 13 0
1/0
Z-1 (not used) Device Addresses {iControl
- Woxd
WA F N f le L List
Control
Word

Devices inhibitable list-~

empty echo interrupt location o
23 19 0

SPB X | * Y

FR\\- Echo signal

Figure 15 - I/0 CONTROLLER INSTRUCTIONS

P

45

1.5

1.5.1

DATA COMMUNICATION

DRUM MEMORY

The GE/PAC drum is available for bulk storage in various sizes from
16K to 256K words. Transfer is accomplished by full words, between -
any core address and any drum address. Transfer may be specified
in blocks of N words (0 < N < 16K).

Write protect pinboard, located on the drum cabinet, provides
selective drum memory protection in blocks of 4K words Figure 16
illustrates details.

A program load option is available to provide pushbutton transfer
of 18 drum words (drum addresses 00g through 21g) to core locations
00g through 21g.

1.5.1.1 Instructions

. 3 16115 0 23- . " {22-—18|L.7: 0
bocation O0byml Y O=Read Drum {f/4i617] Starting
. 1=Write used” Drum Address
Must be zero Il
2 0

Four instructions provide prog;am control. (DRUM EQL 2400g
is the device address of the drum).

guT DRUM

PUT sets the drum's JNR signal not-ready and causes the drum
controller to fetch the contehts Y of location zero. Y is the
address of a block of three consecutive drum control words.
The drum controller performs a drum operation as specified by
these control words.

FR

AZ%%%M%%%V number of
not used words to
/ transfer

115 0
///W/////,/ Starting

.//' not,qsed Core Address

47~

A parity check is made on each word as the transfer is accom-
plished; the Drum Error Flip-Flop is set when a parity error is
detected. The Drum Error Flip-Flop is reset by each new @UT
instruction. If a parity error occurs during a drum operation
the block transfer will halt uncompleted. The faulty word is
written on drum for a core to drum transfer; it is now written
on core for a drum to core transfer. The drum address of the
faulty word may be computed by performing a field subtraction
(see SFA instructions) of 1 from the least significant 9-bit
field of the address displayed in the drum address register
loaded on the front of the drum cabinet.

If a drum transfer operation is in progress when PUT is executed,
the new PUT is ignored.

JNR DRUM

JNR transfers program control to the second sequential location
if a drum transfer is in prograss; program is transferred to the
first sequential location if the drum is not in operation.

The JNR signal (test line 1) may optionally be connected to the
Automatic Program Interrupt module to initiate a program interrupt
when the signal changes from not ready to ready.

JNE DRUM

JNE transfers program control to the second sequential location

if the Drum Error Flip-Flop is reset; it transfers program control
to the first sequential location if the Flip-Flop is set (a
parity error causing a drum operation abort has occurred). The
Drum Error Flip-Flop is reset by:

1. Pushing the DC POWER switch on the cgmputer console to the
initialize position. ‘

2. Pushing the CLEAR ERROR switch on the system console located
on the front of the drum cabinet.

3. Each new §UT instruction

b1

ABT DRUM - o

ABT aborts any current drum operation following the completion
of the current word transfer. The JNR signal will indicate
"ready" (within 100 microseconds) .when the drum operation is
terminated. ABT is ignored if the drum is not in operationm.

-48-

ACT DRUM

ACT resets the drum ready signal for 8 microseconds. If the
drum is not in operation and if the drum ready signal is con-
nected to a program interrupt input, a program interrupt is
requested., If the drum is in operation the interrupt is not
requested.

INTERRUPT OPERATION

One interrupt operation is recommended. Program control is
accomplished by an SPB instruction in an inhibitable interrupt
location. The JNR (test line 1) signal is used as both the
change and level inputs to a two-input program interrupt.

. ACT is used to conditionmally request this program interrupt.

1.5.1.2 Timing

The time required to effect the transfer includes drum
access time plus actual transfer time:

access time: variable - 0 to 16.66 MS
" transfer time: 0.0650MS per word

When a drum transfer operation is in progress, the

arithmetic units are slowed down by small percentages
as shown in the following tables.

A’///’L__/ 0 ms access time

LLT &% 1
3%27T : 3%T
29T § 2%T vi
1%27 16.66ms access time 1%7T ~16.66ms access time
AUl , , AU2 . .
0 1024 2048 ' 0 1024 2048
—
N

number of words transferred

Figure 16 - ARITHMETIC UNIT SLOWDOWN
(during drum operation)

49 -

Q
(=4
(]
ooy
o
(=]
N
o
o
w
(@]
o
£
o
o
(]
[=))
Q
[

O 0O 0O O OO0 0O
S0 0 0 O 0O 0 0 O
OO O OO0 O 0 O
O 0O 0O 0 0 0 0O
O 0O 0O O OO0 0O
O 0O OO0 O 0%
©O 0 O 0 0O O 0%

o
~
o

@)

N
~J
o
W
~

(]
i~
~
o
(@]
o))
~

o

O
O
O
O
O
O

770

PIN STORAGE

O0O00O
0000
0000
0000
0000
Q000
QOO0
0000
- Q000
0000
0000
QOO0
ojolele;
O 000

700

O-

O
7

/ Pin inserted protects;\\L_

Pin removed unprotects.

Octal address of first word of
protected block of 4096 words

~ is 560000,

Figure 17 - DRUM WRITE PROTECT PINBOARD

«50-

1.6

1.6.1

PROCESS COMMUNICATION

DIGITAL INPUT SCANNER

The Digital Input Scanner (DIS) is a solid state device which reads
groups of 21 logic variables into the A-Register. The logic vari-
ables normally indicate the status (true/false, yes/no, set/reset,
open/closed, on/off) of various process system control devices such
as relays, valves, and motors. Indication of the status of various
components within the GE/PAC computer system is another typical
application of logic variables.

23 22 21 20 19 2 1 0

0j0]0 L20 TL19 ---------- L2 L1 L0

Digital Input (A-Register) Format

Certain inputs may be subject to short circuit conditions. In this
event, the project engineer may provide fused protection of the input
circuits. One fuse protects 20 logic inputs in a group; the 21st

input (L,,) indicates the status (good/blown) of the fuse. Indica-

~tion of & good fuse (L,, = 1) does not necessarily imply that the

corresponding data is valid. LZO = 0 implies bad data.

The DIS is packaged in standard configurations of 168, 504, and
1344 inputs: \

Number of Inputs Group Number K

1 to 8 groups, 21 inputs each 008 thru 078

1 to 24 groups, 21 inputs each 008 thru 278

1 to 64 groups, 21 inputs each 008 thru 778

An option provides change detection on a group and provides a true
signal when any of the 21 variables of the group changes state.

The isgnal may be connected to a program interrupt input or may be
connected as a DIS input to be treated as a logic variable itself,

Figure 19 presents two coding examples of DIS usage. Figure 19a
asks a digital question. Further information on the evaluation of
a Logic equations is presented in paragraph 1.3.3. Figure 19b is
a scan for digital alarm routine. Seven consecutive groups are
scanned. Selected points are alarmed (printed in red) when they
change from normal to off-normal and alarmed again (prlnted in
black) when the return to normal.

&

-51-

-es-. .

READ DIS,
GROUP K.

WAS READ
VALID?

yves

COMPUTE ONE
DIGITAL POINT

INDEX

"REMEMBER
GROUP STATUS

DETERMINE
TYPE OF CHANGE

K=K ~1

DETECT POINTS WITH
CHANGED STATUS,
DETERMINE WHICH IS

IN ALARM CLASS,

ANY POINT TO
BE ALARMED?

DIGITAL ALM,
. SUBROUTINE

Figure 18-- SCAN FOR DIGITAL ALARM

1.6.2

Operation of the DIS requires one instruction:

IN DIS +K

IN replaces (A 0__0) by the kR group of 21 logic variables., Bits
A23, A 9 and £21 are set to zero. DIS is the device address of the
Dlgita% Input Scanner and must be defined by an EQL Pseudo-Op. The
range of the group number K is 0 < K < 778.

Values of K greater than 77, modify the device address, becoming an
indeterminate program bug. -

ANALOG INPUT SCANNER

_Quantities (temperatures, rates of flow, weights, pressures, etc.)

are transduced into voltages by analog input devices. The Analog
Input Scanner (AIS) is a module which controls the selection and
conversion of these voltages into numeric count values.

The functional relation between the numeric count value and its
corresponding physical quantity is one of several forms depending
upon the specific Input Sensor Device utilized. One AIS operation
nominally requires 25 milliseconds. The AIS is not directly used
by a functional program. Analog values are read by queueing request
to a scan control program.

The Analog to Digital Converter (A/D Converter), which measures the
input voltage and generates an equivalent numeric count value, is
the heart of the AIS., Two different types of A/D Converters are
available in GE/PAC scanners:
N
Successive Approximation A/D Converter
Integrating A/D Converter

Each AIS module must have one of the above types; it may not have
both. If both types are required in a given application, two
GE/PAC scanner modules must be supplied. Refer to paragraph 1.6.3.1
for description of each type. '

The scanner is operated by outputting a scan command word (Figure
20) from the Arithmetic Unit ($UT, ¢DL instructions). Detailed
operating instructions are presented in paragraph 1.5.3.3.

There are two modes of operation as seen from the program control
viewpoint: , '

1. Addressing of inputs individually.
2. Addressing of inputs in sets of N (N=2,4,8)

-53-

CON /DDDD

ALARM

X

DIS DEVICE ADDRESS
1DX DIS,4
IN 3,4 . READ DIS, GROUP 3
TEV 20 B IF (VALID READING) --,INVALID,010
BTS INVALD "
TOD 5 010 B IF (BIT5 * BIT 20) --,020
REV 20
BTS (TRUE)
(FALSE) 020
, Figure 19a - EXAMPLE OF DIGITAL QUESTION
K EQL
L EQL
I EQL -
DIS EQL(DEVICE ADDRESS)
DSA LXK 6,K 000 K=6
IXK 120,L L=6%20)
DSAA IN DIS,K 005 READ DIS, GROUP K
TEV 20 B IF (VALID READING) --,INVALID,010
BTS INVALD 010
STA TEMP SAVE GROUP.
ERA DISVAL,K DETECT POINTS WITH CHANGED STATUS.
ANA ALARM,K DETERMINE WHICH ARE IN ALARM CLASS.
DSAB TZE 015 B IF (ANY POINTS TO BE ALARMED) -,30,2
BTS DSAD ‘ .
1AL - 020 DETERMINE WHICH ONE
CLZ
IXC I -~ BIT I
PAL -
RBK 0,1 RESET BIT I AND SAVE
STA TEMP1 -
IDA L COMPUTE DIGITAL POINT INDEX J = I+T -
ADD I
STA J
DISC LDA TEMP DETERMINE TYPE OF CHANGE
ERA NORMAL,K 1 = NORMAL TO OFF-NORMAL (RED)
IBK I 0 = RETURN TO NORMAL (BLACK)
STA COLOR
SPB CALL DIGITAL ALARM ROUTINE
IDX J,3 CALLING SEQUENCE (POINT NUMBER)
IDA COLOR CALLING SEQUENCE (COLOR CODE)
LDA TEMP1 GO TO 015 :
BRU DSAB
DSAD LDA ‘TEMP . 030 REMEMBER GROUP STATUS
STA DISVAL,K -
INX -20,L L=1 - 20
DMT K K=K-1
BTS DSAA IF (K) 040, 005, 005
) (EXIT) 040]
TEMP BSS 1
TEMPL BSS 1 :
DISVAL BSS 7 CURRENT STATUS OF DIGITAL INPUTS,
" NORMAL BSS 7 NORMAL STATUS OF DIGITAL INPUTS.
BSS 7 ATARM CLASS OF DIGITAL INPUTS.

1 = ALARM, O = DO NOT ALARM

Figure 19b - SCAN FOR DIGITAL ALARM ROUTINE

54—

Any AIS can be used in the first mode. The second mode is limited
to use with scanners having the automatic group advance option.

Each Scan Command Word (SCW) uniquely defines a single analog input
when the AIS is used in the single input mode. A zero in Bit 18

of the Scan Command Word indicates this mode. Each group may con-
sist of a maximum of 256 inputs. ‘

Each Scan Command Word specifies a set of N-W analog inputs when

the Scan Command Word indicates this mode. The initial HUT instruc-
tion results in the conversion of the addressed input (group W).
Succeeding IN instructions increment the group address and produces
conversion of the inputs in groups W+l, W+2,.. and N-1,

The group input mode of operation allows a higher scanning rate than
the single input mode. Scanning rates are summarized in the follow-
ing table:

NOMINAL SCANNING RATES (points per second) for All-Core Monitor

Successive Approximation A/D Converter (Hg Relays)

Single Input Mode Group Input Mode
= 2 pts/group & pts group 8/g
Free-Running Scanner 50 /u 920 140 200
4040 Programmed Control - 45 82 127
4060 Programmed Control 49 : 87) 140

Integrating‘A/D Converter (He Relays)

Single\Input Mode Group Input Model

- - 2 pts/group & pts/group 8/g
Free-Running Scanner , 28 N/A N/A N/A
4040 Programmed Control - - N/A N/A N/A
4060 Programmed Control 24) N/A N/A N/A

Figure 20 - SCANNING RATES

To permit successful operation of the AIS in the group input mode,
all points to be so used must be grouped (arranged so inputs with
like matrix and point addresses (SCW14_7) have the same voltage
scale). Since this process involves the participation of custom-
ers, Engineering, Marketing and Programming personnel, the group
input mode should not be needlessly used; this avoids an unnecessary
expense to the customer. Points to be used in the single input mode
can be arbitrarily grouped.

«55~

1.6.2.1

1.6.2.2

Analog to Digital>Convertefs

The successive approximation A/D converter successively
generates the sign and each of 12 bits of the count value
by comparing the input voltage to known signed voltages.
The conversion operation is accomplished in approximately
700 microseconds. The resulting numeric count value
represents a voltage value which occurred sometime during
the 700 microsecond period. The count value is placed
right justified into C23-6'

. The integrating converter gemerates a sequence of pulses

whose instantaneous signed pulse rate is directly
proportional to the instantaneous signed input voltage,

A counter circuit accumulates the number of pulses occur-
ring during a known period of time (integrating time) and
places it right justified into C,, .. It is an integrated
average over the specified time period.

The successive approximation converter is considerably
faster than the integrating converter. It measures
instantaneous voltage and is sensitive to noise errors,
Therefore, every input signal is usually filtered
through an individual resistance~capacitance filter
circuit, Unfortunately these circuits frequently
introduce another type of error called common mode,

The advantage of the integrating converter is that it
tends to filter the input signal; filter circuits are
not always necessary.

Specification of the Scan Commdnd Word and C-Register Formats

The various fields which compose these formats are described
in this subsection.

Sensor Address (SCW 16-7) -~ / -

Bits 16 thru 7 uniquely define a single analog inpﬁt.
Bits 16 thru 15 specify the inputs group address.

Operation Mode(SCW 18-19)

Bit 18 specifies the mode of operation.

Voltage Scale Control (SCW2-0)

Bits 2-0 specify the voltage range (-FSV volts to +

FSV volts) within which the input voltage-is presumed to
lie. The scanner generates (in the C-Register) a signed
numeric count value proportional to the input voltage when
the voltage lies within this range. If the voltage is

not within the specified range, a signed maximum count
value is generated and the converter overflow Rit(s) is
set. To obtain maximum precision, the voltage scale should
be chosen so that the magnitude of the input voltage falls
between % FSV and FSV.

=56~

The measured numeric voltage is equal to:

Successive Approximation Converter:
numeric voltage = FSV * numeric count value
8¢ 74000
Integrating Converter:

FSV *numeric count value
Full scale counts

numeric voltage =

Oéeration Control (SCW 6-5)

Scanners with the successive approximation converter only
measure DC voltages. Scanners with the integrating

converter measure either AC or DC voltages and can be used to
measure the pulse rate of non-continuous voltages. AC
measurements are restricted to multiples and submultiples

of 60 cycles (50 cycles when using a 50 cycle converter).

Integrating Time Control (SCW 4-3)

This field is applicable only to écannefs with integrating
converters, Refer to paragraph 1.6.2.1 for a discussion
of its usage.

Unused Fields (SCW 23-20, SCW 17)

These fields are reserved for future use with automatic
scanning functions. In specific applications, program
information may be placed in the fields.

Converted Count Value (023-6)

The two's complement representation of the converted
numeric count value is placed in C,, .. The AIS is
fully compatible with GE/PAC two's Complement fixed-
point arithmetic,

,

Error Indicator Bits (C2-0)

Bits C are error indicators associated with the
preceding scan operation. ~-

-57-

010

011

100

101

110

111

Last Scan Operation

No error. Count valué is valid,
Scanner overload error. Count value is meaningless.

This is a rare hardware failure within the point
selection circuitry of the Common scanner control.
A scanner overload alarm message should be printed
with the point address. The AIS may or may not

be usable for reading other analog inputs.

Undefined (hardware error)

Integrating A/D Converter:

An open or high resistance thermocouple was
detected during the last scan operation. Count
value is meaningless. An alarm message should
be printed.

Undefined (hardware error)
Converter Overflow: “count value is maximum,
but meaningless.

~

Undefined (hardware error)

Successive approximation A/D Converter:
converter overflow error. If the input device
was a thermocouple, this may be indicative of
an open or high resistance thermocouple, Count
value is maximum value, but meaningless.

Integrating A/D Converter: -
Both converter overflow and open thermocouple
errors. Count value is meaningless,

SCAN COMMAND WORD (Successive Approximation Converter)

123 20,19-18] 17 15 14 13 12°11 .10 9 8 7,6 — 3|2 0
reserved group matrix point must [voltage
for address address address | be Scale
upward W M/N P/Q zero |Control
compati-
bility %g i

00 = single Input mode :]
01 = group Input mode (2 or 4 points per group)
10 = single Input mode

11 = group Input mode (8 points per group)

SCAN COMMAND WORD (Integrating Converter)

23 —___20y19-18;17Z 15114 13 12 11;10 9 8 7 {6 514 2 0
reserved group matrix point oper- | inte- voltage
for address address address jation | grating | scale
upward W M/N P/Q con- time control
compati=- trol control
bility

C-REGISTER
2322 654321
S Converted integral count value zZero
(2's complement representation,
scaled B17)
/ B &

- .
Scaled offset corrected count

- If integrating comverter:

converter overflow indicated

. If successive approximation:
converter overflow or open

thermocouple indicated

"If integrating converter:

open thermocouple indicated

If successive approximation:

xeros indicated

Scanner overload or converter

overflow or open thermocouple
indicated

"

~59-

(

Vbltage Scale Control i
FULL SCALE VOLTAGE (FSV)
' Successive Approximation Converter, Model 4130
Model 4121 Model 4122 Model 4127 VIDAR
SCW (PRESTON) Low-Level |(PRESTON) Low-Level |(PRESTON) High~Level | Model 4135
02-00 Amplifier high-common~-mode Amplifier Integrating
Amplifier Converter
0 10 mv 10 mv 80 mv 10 mv
1 20 mv’ 40 mv 160 mv 20 mv
2 40 wmv 160 mv 320 mv 40 mv
3 80 mv 10 v 640 mv 80 mv
4 160 nmv 10 mv 2.5 v 160 mv
5 10 v 40 v 10 v 320 mv
6 -- 160 mv ‘ - 640 mv
7 - 10 v - : 1lv

“Opération Control for Integrating Converter

SCW]
06-05 Mode of Operation
0 Voltage, DC
1 Voltage, AC
2 Voltage, DC with open thermocouple detection.
3 Count pulses petr unit integrating time.
_Integrating Time Control for Integrating Converter
SCW - Integration Time Full scale counts Operation time (MS)
04-03 (MS) at 1000 KC count rate] Single input mode
60 cycle | 50 cycle | 60 cycle | 50 cycle 60 cycle 50 cycle
0 13.67 ' 20 1:16,667 | 1:20,000 35.2 38.5
1 33.33 40 1:33,333 | 1:40,000 51.9 58.5
2 - 100.0 100 1:65,535 | 1:65,535 118.5 118.5
3 1000.0 1000 1:65,535 | 1:65,535 1018.5 1018.5

Figure 21 - AIS CONTROL AND DATA FORMATS

-60-

1.6‘2.3

Instructions

¢PR AIS

Program control over the AIS is accomplished with the
following instructions:

¢guT AIS

JUT transfers a scan command word from the A-Register
to the AIS scanner command register T, resets the scanner

-ready and data ready signals, and initiates one complete

scan operation (connection of a specified input point to
the scanners voltage measuring circuitry, signal amplifi-
cation if required, and conversion to an integral count
value). The time required to effect the operation depends
upon the A/D converter. The successive approximation
converter requires approximately 20 milliseconds; the
time for the integrating converter depends on the inte-
grating time specified. When the operation is completed,
the data ready signal is set. This signal may be used to
request a program interrupt. @UT may be executed at any
time; if the AIS is in operation, this previous operation
will be aborted. The contents of A are preserved by this
instruction.

y)

¢PR causes the AIS to go through one partial scan opera-
tion. In the single input mode, a reconversion is made
on the previously specified input point. The data ready
signal will be set in approximately 750 ms with the
successive approximation converter, and the integrating
time with the integrating converter,

In the group input mode, the group address is reset to

zero and reconversion occurs, -The successive approxima-

tion converter sets the data ready signal for the input
of group 0 in 3 MS, The integrating converter sets the
signal in the specified integrating time plus 2 MS. ¢PR
may be executed at any time; any previous operation is

-aborted., : o

IN ATS

IN transfers the count value and error indicator bits

from the scanner converter C-Register into the A-Register.

The contents of the C-Register are not destroyed. In

the group input mode, the data ready signal is reset,

and conversion of the input in the next group is initiated.
The data ready signal for this next input occurs in 1.7 MS

with the successive approximation converter.

-61-

1.6'2.4

IN may be executed at any time. However, if the data
ready signal were reset, the transferred data is
meaningless,

The execution of IN, to transfer the count from the
last group, (the addressed group if the single input
mode) sets the scanner ready signal. This signal may
be used to effect a program interrupt., Any additional
IN will reread the count from the last group and
initiate a reconversiom of the input in the last group.

JNR AIS

JNR transfers program control to the second sequential
location when the data ready signal is reset. If the
signal is set, program control is transferred to the
first sequential location.

JNE AIS

JNE transfers program control to the second sequential
location if an error has not occurred during some pre-
ceding scan operation; otherwise program control is
transferred to the first sequential location., The
error Flip-Flop is reset by JNE.

ACT AIS

~

ACT forces the scanner ready and JNR signals to be reset
for 16 ns. If the scanner is ready and if the scanner
ready (JNR) signal is a program interrupt input, this
program interrupt is requested; otherwise the interrupt
is not requested.

Interrupt Operation

a. Single interrupt operation
Hardware required: o
One 2-input program interrupt
Change input: JNR signal
Level input: JNR signal

Program required:

8PB instruction im interrupt location
1 I/0 buffer driver program
1 Scan command buffer list
1 Data buffer list

b. Three interrupt operation (GE/PAC 4050/4060 only)
Hardware required:
, GE/PAC 4050/4060 Arithmetic Unit
One 2-input program interrupt
Change input: Scanner ready signal (RDY2)
Level input: Scanner ready signal (RDY2)

=62~

1.6.2.5

1.6.266

One 2-input program interrupt
Change input: Data ready signal (RDY1)
Level input: Data ready signal (RDY1)

~One l-input program interrupt
Change input: ¢DL list-empty echo signal

Program required:
¢DL instruction in scanner ready interrupt location.
IDL instruction in data ready interrupt location.
1 Scan command buffer list
1 Data buffer list
SPB instruction in echo interrupt locatlon.

Analog Input Point Addressing Schemes

Each input is subject to three different identification
schemes :

1. System address (e.g. BFL101l)
This address is assigned by the customer and/or the
system analyst.

2. Termination (scan command) address (WMNPQ)
This address is assigned by the system engineer and
refers to the location of the termination point in
the AIS termination rack.

3. Point index -
This address is assigned by the programming analyst.
It should render a functional relationship to the
System Address.

Accuracy in Measurement of Analog Quantities

Measurement of .an analog quantity involves four separate
steps; each step contributed to measurement inaccuracies.,

1. Conversion of the analog quantity to an analog
voltage by a transducer. Equations defining
this relationship for standard transducers are
usually accurate to no more than %%. Additional
accuracy can be obtained by individual calibra-
tion of each sensor,’

2, Transmission of the analog voltage from the sensor
to the AIS. Errors are introduced by voltage drops
and electromagnetic inductive effects (noise).

-3~

3. Conversion of the analog voltage to a numeric voltage
by the AIS and read-in of this numeric value into
the computer memory. The conversion process is
subject to several errors which can be corrected by
program, Details are given below.

4, Conversion of the corrected numeric voltage to a
numeric quantity corresponding to the original
analog quantity. The computer program uses the
inverse to the equation referred to in 1 above,

The GE/PAC scanner can be programmed to convert an input
voltage into a numeric count value that differs from the
true voltage value by no more than 0.001%(full scale voltage).

Inaccuracies in measuring input voltages by a GE/PAC scanner
are determined by the algebraic sum of three types of errors.
These errors are gain errors (errors in the slope of the
input-output relationship), offset errors (the degree by
which the intercept does not go through zero) and repeat-
ability errors (noise), This total error, which is
approximately 0.005%(full scale voltage), is subject

to reduction by programming techniques.

Offset errors can be reduced by making weighted average
- . measurement / on a short circuit (zero input) and reducing
"all other readings by this measured offset value. The
equation for this is: -

True reading = actual reading - offset reading
(signed offset and actual readings are made on
-the same voltage scale). 3
Gain errors can be reduced by making weighted average
measurements/ on a known reference voltage and all read-
ings corrected by multiplying by a gain correction
factor calculated from this reading.

)
Reference voltage actual count - offset count
Theoretical count for reference voltage

Gain correction factor =

Where reference voltage actual count and offset count are
made on the same scale and theoretical count for reference
voltage is calculated by:

Theoretical count for reference #oltage =
(Reference voltage) * Full scale count
Full scale volts

s

7 - A suggested weighted average.is 7/32 * (sum of last four readings)+
1/8 * (new reading) when a reading is made once every 20 seconds.

 Bh=

Once the gain correction factor is determined, all other
readings should be corrected by multiplying by this
factor:

True reading = (actual reading « offset) * (gain correc-
tion factor) (all measurements are made on the same
voltage scale)

Repeatability errors can be reduced by digital filtering.
This is the process of averaging a number of _readings to
minimize the effects of noise in the system.

The gain correction factor and the offset correction term
both vary as a function of time and temperature. There-
fore, measurements must be made often to determine these
quantities to maintain small changes between measurements,
Experience indicates an interval of approximately five
minutes is reasonable under normal environmental condi-
tions., If the machine is located in an_environment where
temperature changes are very rapid (0.5°F /min.) shorter
intervals are desirable,

The degree of improvement in each of these error terms is
dependent upon several external effects but generally
speaking improvements in the gain errors can be 5 to 1;

- , improvements in repeatability errors can be 2 or 3 to 1.

The offset error improvement is more dependent upon the
scale used. On more sensitive scales the improvement
may be as high as 5 to 1 also.

y

A special type of scanner measurement error occurs when-
ever the scan operation results in a converter overflow
(the input voltage magnitude exceeds the specified full
scale voltage). The resulting numeric count value is
meaningless. Furthermore, the voltage value measured
in the next scan operation may be in error because of
residual effects from the preceding voltage overload.

. The magnitude of this error is a function of this voltage
overload, but should never exceed 0.0l * (full scale
voltage). ,

N If this error is unacceptable, then a dummy scan
) (preferably of an offset value) may be inserted
- following the converter overflow to absorb the
residual voltage effects.

8-A suggested weighted average is 7/32% (sum of last 4 readings) + 1/8%

(new reading) where a reading is made once every 20 seconds.,

5=

1.6.3

MULTIPLE OUTPUT DISTRIBUTOR

The Multiple Output Distributor (MOD) consists of a Multiple
Output Controller and output functions. The Multiple Output
Controller (MOC) module outputs data from the arithmetic

unit to output functions within the MOD, The output functions
remember the data, and control the following output devices:

1. Display output devices
2, Binary output devices
3. Analog output devices

The MOD operates through a command word from the computer to
the MOC command register.

23 8,7,6,5 0

Data - Output function
group address

Y/

Reserved for software

’ use. Refer to para.
- 1.6.3.3

, [V Operation delay time
MOD Command Word Format
= us

The MOC transfers the data to the memory of the output function
specified by the command word group address, The MOD is then
ready to accept another output. If the output function's
memory is electromechanical, the transfer operation requires

4 milliseconds; if solid state, the transfer requlres 40
microseconds,

Overload detection circuitry will abort the output operation and
set a MOD overload indicator if the MOC attempts to select

more than one output function address.

The MOD is usable with O or 1 program interrupts., One interrupt
is required for efficient on-line operatiom.

-66~ -

1.6.3.1

The MOD is available in the following sizes:

-

Number of Outputs

Output Function
Group Addresses

1

to 8 groups, 16 outputs each 00, thru 07

8 8

1 to 16 groups, 16 outputs each 008 thru 178

1l.to 32 groups, 16 outputs each 008 thru 378

1 to 64 groups, 16 outputs each 008 thru.778
Instructions

MOD program control is accomplished through the follow-
ing instructions:) ‘ . -

guT/MOD

- QUT transfers a command word from the A=Register to-

the MOC command register. It then initiates transfer
of the data portion of the command word to the output
function specified by the address portion of the com-
mand word. The contents of the A-Register are un-
changed. Bit 7 of the command word specifies one of
MOC delay times., The delay time must be long enough
to allow the transfers to occur, If a MOD overload
occurs, the output operation is aborted and the

ready signal is set after the specified delay time,
GUT may be executed at any time; if the MOC is in
operation, the new operation is ignored.

JNR MOD

~ JNR transfers program control to the second sequential

location if the normal ready signal is reset., If it is
set, program control is transferred to the first sequen-
tial location.

-67-

SRS S E— U

1.6.3.2

~ ACT MOD

ACT resets the ready signal for 8 pus. If this signal is
a program interrupt input and the MOC is not in operation,
a program interrupt is requested.

JNE MOD

JNE transfers program control to the second sequential
location if a MOD overload did not occur during a
preceding output operation. Otherwise, program control
is transferred to the first sequential location and the

-MOD overload indicator is reset, -

INTERRUPT OPERATION

Single interrupt operation is recommended. The ready
signal (test line 1) is used as the input to an in-
hibitable one-input program interrupt. Interrupt is
conditionally requested by the ACT instruction.

Qutput Functions

Three standard output functions are described below.
The memory elements in each are bistable latching
relays. The relay requires less than 4 MS to switch
positions. -)

The function group address does not un{quely specify
an output function. Consequently, several output
functions could have the same output function group
address. : B

1., Display Output Function

This function provides the control for omne BCD
display digit (including 4 bit BCD to decimal
conversion if required). It requires 4 data bits _
of an MOD command word. -

2, Binary Output Function .
This function provides control for 8 logic
(binary) outputs corresponding to 8 data
bits of the MOD command word.

3. Analog Output Function ' , -

. e

This function provides control for conversion
from a3 10-bit positive binary integer in a MOD
command word to an analog voltage output,

-68-

106.3.3

Normally, one or more levels of electromechanical or’
pneumatic control exist between the output function and
the actuating device. Consequently, the output function
is not the final output actuating device. The MOD ready
signal cannot be used to indicate the actual time of
output action, nor as proof that the output will actually
occur, If reliability considerations require, a set of
contacts may be attached to the actuating device. Its
status may then be read by the digital input scanner.

On-Line Programming Usage

A1l outputs (program control viewpoint) are initiated
by an MOD driver subroutine, never by the originating
subprogram. Each output has one of two relationships
to the originating program: '

1. Program continuation is independent of the output;
therefore, the originating program is not notified
when initiation of the output operation is completed.

2, Program continuation is dependent upon the output;
therefore, the originating program must be notified
when initiation of the output operation is completed.

The originating program uses.Bit 6 of the MOD command
word to specify which relationship applies to that out-
put. Figure 22 presents the flow chart and coding
applicable to MOD usage.

-69 -

rin [l x

&

7

Ob

0

0

1

PROGRAM NUMBER

ol

MODLST

ENTER WHEN
READY OCCURS

ERROR DETECTED\ yes
IN LAST OUTPUT?

DIAGNOSTIC [
ACTION |

!
|
b

no

TURN ON
ORIGINATING
PROGRAM

WAS BIT 6
OF REMEMBERED
OUTPUT = 02
yes

RBL NEXT
OUTPUT FROM
LIST

REMEMBER OUTPUT.
SET NORMAL READY
| RETURN.

INITIATE OUTPUT.

WAS LIST
EMPTY?

~Figure 22 - MULTIPLE OUTPUT DISTRIBUTOR DRIVE

ROUTINE g

-70-

-

% INTERRUPT BRANCH VECTOR LOCATION

SPB MODDRV

% MOD DRIVER ROUTINE--

MODDRV STX MODX,1
MOD EQL
STA SAVEA
JNE MOD
BRU DIAGNOSTIC
LDA MODGOM
TEV 6
BTS MOD20
RBL MODLST
NOP
STA %+3
LDZ
SPB TPNCO1
BSS 1
MOD20 RBL MODLST
BRU MOD40
STA MODCOM
RBK 6
OUT MOD
MOD40 LDA SAVEA
~ LPR MODX
MODLST CON 0,0000000L
BSS L
MODX BSS 1
SAVEA BSS 1
MODCOM BSS 1

00

20

30

40

50

Nk

INHIBITABLE- IF NORMAL READY SIGNAL

DEVICE ADDRESS.

IF (ERROR DETECTED IN LAST OUTPUT)--,
10, DIAGNOSTIC ROUTINE,

IF (LAST OUTPUT A NORMAL OUTPUT)--,
20, 30.

REQUEST TURNON OF ORIGINATING PROGRAM

CALL MONITOR-TURN~PROGRAM~ON-SPR(

0, PROGRAM-NUMBER).

FETCH NEXT OUTPUT COMMAND WORD,

IF (LIST EMPTY) --, 40, 50,

REMEMBER OUTPUT COMMAND WORD,

FORCE NORMAL READY SIGNAL.

INITIATE OUTPUT OPERATION, .

RETURN TO INTERRUPTED PROGRAM,

-71-

1.7

1.7.1

PERIPHERAL COMMUNICATION

The ability for plant operating personnel to communicate with
the digital computer is called peripheral communication. This
chaper describes the 4201 Peripheral Buffer, the instructioms,
and interrupt operation.

Peripheral Buffer

The peripheral buffer controls peripheral device operation.
Control information flows from the I-Register to the peripheral
buffer module. Data information flows by character between the
arithmetic unit and the module.

Peripherals available for use in the buffer are:

Paper tape reader, input
7-bit binary
Photoelectric

Paper tape punch, output
7-bit binary

Fixed carriage typer, output
6-bit BCD

Long carriage typer, output
6-bit BCD

Fixed carriage typer, Input/Output
6-bit BCD - \ N

Card reader, input
12-bit binary

A maximum of eight peripherals can be attached to the peripheral
buffer. One of these must be a paper tape reader.

The peripheral buffer can be connected to any channel; several
buffers can share the same channel, However, to use the
standard load program, the buffer for console peripherals will

use device addresses 11DD8.

Each peripheral buffer provides eight device addresses: octals
DDOO through DDO7. Console peripherals have standard addresses.
Other peripherals are assigned addresses by the requisition engineer.

“72-

Console Devices Standard Addresses

Paper tape reader o 11008
Paper tape punch 11018
Fixed carriage typer 11028

The normal operation of a peripheral device is described in
the following:

1. Operation Initiation
The operation cycle is initiated by an IN (¢UT, IDL, ¢DL)
instruction, The following actions occur:

1. One character of data is transferred (see IN (QUT)

’ below)

2. Peripheral buffer becomes unavailable (the PBA
Signal is reset) ’

3. Device becomes not ready (the device's ready
signal is reset)

4, Device's deadman timer begins timing

5. Mechanical operation of the device begins

2., Peripheral Buffer Availability
The device requires the peripheral buffer only during the
first portion of its operation cycle (see Figure 24).
The device will then release the peripheral buffer and
allow it to become available (the PBA Signal is 'set). At
this time the buffer can be used to initiate the operation
of any peripheral that may be ready.

3. Operation Completion :
Upon completion of the device's operation cycle, the
following actions occur:

1. The device becomes ready (the device'svready signal is
set).
2. The device's deadman timer is turned off.

Each peripheral has an independent deadman timer which detects
and indicates device failure to complete its operating cycle.
When a device fails to turn off its deadman timer within 4 to
8 seconds after an operation initiation, the device's deadman
error indicator is set. If the failure occurs prior to
peripheral buffer availability, the peripheral buffer remains
unavailable until released by the.execution of a JNE instructiom.
If the failure occurs after the PBA signal is set, the buffer
can be used to operate other peripheral devices. In either case
the device's ready signal remains reset until the proper JNE
instruction is executed.

. -73 -

More than ninety percent of all peripheral failures occur prior
to peripheral buffer availability. These errors may be due to:

1. The attempted operation of a non-operable device. A device
is non-operable if it has a mechanical defect, lacks AC power,
lacks DC power, is non-existant, or has been switched off-line.
A non-operable device normally appears ready (device ready ’
signal is set) until an attempt is made to operate it,

2. The attempted outputting of an illegal character to a type~
writer (an illegal character will not necessarily cause’a
failure on certain types of typewriters.)

1.7.1.1 Instructions

JNR 25X6DD00

JNR transfers program control to the second sequential location
when a peripheral device attached to the addressed peripheral
buffer is in operation. If all of these devices are ready,
program control is transferred to the first sequential location.
The test implicity indicates whether or not the last initiated
operation (IN, $UT, IDL, ¢DL) is completed.

The JNR signal is the logical AND of the individual device
ready signals for all eight devices. A non-operable device
- will test ready.

The JNR signal my optionally be connected to the Automatic
Program Interrupt module to initiate an interrupt whenmever the
signal changes from not ready to ready. The PERIPHERAL READY
lamp, on the computer console illuminates when any device is
not ready. ‘

gur _2504DDOD o

The @UI instruction may bg executed at any time to transfer

the right-most seven bits” of the A-Register to the N-

Register within the peripheral buffer, and initiate one operation
of the addressed device. The previous contents of the N-Register
is lost. The contents of the A~Register is not changed. Although
$UT may be executed at any time, no action occurs if the peripheral
buffer or the addressed device is in operation. If the output
device is a paper tape punch, odd parity is generated on seven bits
and is punched as a bit in an eighth channel. -

9-If the addressed device is a card punch or card reader, 12 bits of data

are transferred.

7

Figure 26 lists ‘the standard typewriter character set, and
typewriter codes.

Figure 23 lists the standard punched paper tape format.

IN 2505DDOD)

The IN instruction transfers the current contents of the
addregsed device's read mechanism to the rightmost seven
bitsl0 of the A-Register and initiates one operation of

the addressed device. The remaining bits of the A-Register
are set to zeros by this instruction.

Although IN may be executed at any time, the information
transferred is meaningless if the addressed .peripheral
buffer or device is not ready. The operation of the
addressed buffer and device is unaffected, the peripheral
buffer error indicator is set and the PB ALARM lamp is
turned on.

If the input device is a paper tape reader, these seven
data bits are checked for odd parity. Even parity sets
the peripheral buffer error indicator and illuminates the
PB ALARM lamp. The lamp can be turned off by depressing
the CLEAR switch. 1IN should be immediately followed by
a JNE instruction to check for correct parity.

JNE PERIPHERAL 2507DDED .)

JNE transfers program control to the second sequential
location if the error indicator(s) specified by E is
reset, If the specified error indicator(s) is set, pro-
gram control is transferred to the first sequential
location and an action specified by E is taken. -

10~If the addressed device is a card punch or card reader, 12

bits of data are transferred.

~75-

E Error Indicator(s) Action -
0 None None
1 Addressed Device's
Input Demand Flip-Flop Reset Input Demand Flip~Flop
2 Addressed device's
. deadman error indicator None
3 Addressed device's
deadman error indicator Reset Deadman Error Indicator
4 Parity Error Flip-Flop None
5 Parity Error Flip-Flop "Reset Parity Error
6 Any deadman error '
indicator in the addressed
peripheral buffer or the
Parity Error Flip-Flop None
7 Addressed device's Deadman Reset deadman error indicator;
error indicator or the Reset parity Error Flip-Flop

Parity Error Flip-Flop

ACT PERTIPHERAL 2501DDOD

ACT forces the addressed device's ready signal to be reset for
8 ms. If the device is ready and if this ready signal is a
program interrupt input, the device's program interrupt is
requested; otherwise the interrupt is not requested.

If all peripheral devices are ready and the JNR signal is a
program interrupt input, the JNR program interrupt is requested;
-otherwise the interrupt is not requested.

1.7.1.2 Interrupt Operation

Single Interrupt Operation (one peripheral at a time)

The peripheral buffer, with the JNR signal connected to the

APTI module and one buffer driver program IDL or @DL instructions),
operates one device at a time. Interrupt is conditionally
requested by the ACT instruction..

GE/PAC 4040

Hardware Required:

One 2~input program interrupt
Change input: JNR signal (Test Line 1)
Level input: PBA signal -

Program Required:

SPB instruction in interrupt location.

One I/0 Buffer driver program

One I/0 Buffer list.

76~ , i

GE/PAC 4060

Hardware Required:
One 2-input program interrupt
Change input: JNR signal (test 11ne 1)
Level input : PBA PBE signal
Program Required:
IDL (#DL) instruction in non-inhibitable interrupt location
One I/0 buffer list

Multi-interrupt Operation (time shared operation)

The GE/PAC peripheral buffer, with individual device ready
signals connected to the API module and individual buffer
driver programs (individual IDL or $DL instructions in the

" AU2), for each device provides the functional equivalent

of an individual hardware controller for each peripheral.
Each controller buffers characters between a list in

memory and its associated device. Each controller operates
it semi-independently of all other devices. Each peripheral
requires the use of the peripheral buffer for only the first
part of its complete cycle; the buffer can then initiate
some other peripheral. This mode allows a greater data
transfer rate (e.g., 15 characters can be typed by each

of two 15 cps-typewriters in approximately 1 1/30 second).
Hardware requirements are on type-2 API input per

peripheral device and additional core memory to accommodate
individual buffer drivers and character tables., ACT con-
ditionally requests the addressed device's program interrupt.

GE/PAC 4040
Hardware required (per peripheral)
One 2-input program 1nterrupt
Change input: Device's ready signal (RDYZ)
Level input: PBA signal
Program required (per peripheral)
SPB instruction in interrupt location.
One I/0 Buffer driver program.
One I/0 Buffer list.

GE/PAC 4050/60
Hardware required (per peripheral)
One 2-input program 1nterrupt ‘
Change input: device's ready signal (RDYz)
Level input: PBA signal for output devices
PBA-PBE signal for input devices

-77-

GE/PAC 4050/60

Program required (per peripheral)

IDL (@¥DL) instruction in device's non-inhibitable interrupt
location .

One 1I/0 buffer list

1.7.1.3 Error Detection
A device failure or a parity error can be detected by
periodically executing a JNE instruction (2507DD60) placed
within a frequently entered program. However, a peripheral
buffer error (PBE) signal is available for optional use as
a program interrupt input (the PBE signal is equivalent to
the JNE signal with E=6),
‘Hardware required:
One l-input program interrupt:
Change input: PBE signal
7
21c§) 7
30 /
s o -
Direction of 4 O \
tape movement 50) :
. 6 0=
7 O 7
8 O /£
/ /
23 716(514(3]2(1]0
A-Register

enlarged segment of paper tape‘is illustrated., Format details are:
The paper tape has nine chamnels, Cj thru 08 and C, running
lengthwise along the tape.

Channel CS is the sprocket hole channel, A hole in this channel
defines a data frame, Taht is, the hole indicates the presence

of data in corresponding punch positions of the other eight channels.
Data frames need not be equally spaced. Nominal spacing is 10
frames per inch,

A hole in a punch position defines a "1" data bit; no hole defines
a zero data bit., Data holes are twice the size of sprocket holes.
The IN (@UT) instruction transmits data between a data frame

- and bits A of the A-Register as indicated

Channel C. is the parity channel. A hole is punched as requlred
to quarangee an odd number of holes in each data frame.

Figure 23 - GE/PAC PAPER TAPE FORMAT

=78~

Peripheral device

Time lapse between @UT (IN)
instruction and ready signals,
Peripheral Buffer Available
signal, ms

Device ready
signal, ms

Typer, fixed carriage

fiormal character, LC 30 65

normal character, UC 95 130

carriage return up to ___
Typer, long carriage

normal character 40 100

carriage return up to ___
Paper tape reader 4ms 10ms
Paper tape punch 4ms 9ms

Card reader
normal character
card feed

Input typer, Selectric

Dependent upon Operator

NOTE: All times are approximate.

Figure 24- Peripheral Operation Timing

-79-

Type size

Number of characters in print line

Characters IBM Selectric IBM MODEL B
per 11" 155" 12" 20" 30"
inch Carriage Carriage Carriage | Carriage Carriage
10 85 130 88 167 - 265
12 102 156 106 201 318
14 - - 124 234 371
NOTE: The vertical line spacing on all typewriters is 6 lines

per inch.

- =80~

>

[y

\ -

Figure 25 - Typewriter Formatting Data

" OCTAL OCTAL
CHARACTER CODE CHARACTER CODE NOTE

0 00 R 73
1 01 + 60
-2 02 - 52
3 03 * 54
& 04 / 61
5 05 = 75
6 06 (35
7 07) 55
3] 10 S 53
9 11 n 76
A 21 > 16 F
B 22 < 36 F
c 23 [12 F
D 24] 34 F
E 25 : 15 F
F 26 ; 56 F
G 27 ' 57 F
H 30 # 13 F
I 31 @ 14 F
J 41 & 32 F
K 42 \ 37 F

- L 43 t 40 F
M 44 « 72 F
N 45 % 74 F
[} 46 T 17 F
P 47 : 77 F
Q 50 TAB 140
R 51 CR 100 .
S 62 TAB 141 to 157 oT
T 63 CR 101 to 137 _oT
U 64 Black 160 - 0T
v 65 Red 161 oT
W 66 No action 177 R
X 67 Punch on 162 R
Y 70 Punch off 164 R
z 71 Control Mod§>' 1XX IT

Space 20 Shift
. 33 Delete 177 P
Stop 170 P,R

. NOTE: Characters are applicable on all standard GE/PAC Input/Output
dd devices, unless otherwise specified,

F - Not available on long-carriage typewriter
OT~ Output typewriter only

R - Tape reproduction devices only
IT- Input typewriter only (hold this key down while typing a

character generates the octal 1XX; this is interpreted
as one of 64 control actions).
in this mode generates 113

P -~ Tape preparation device only.

Figure 26 - GE/PAC Characters & Codes

-81-

For example, typing a #
in the input typer's register.,

1.7.2. CARD READER (GE/PAC 4242B)

The continuous feed card reader is used with the GE/PAC 4201B
peripheral buffer and can be programmed to read data from
punched card bulk storage. Data is read one column at a

time from standard 80-column punched cards. Card feed is
continuous at a maximum rate of 400 cards per minute. Data-
transmitted to the computer is the 12~bit binary image of

a card column. Card row 12 corresponds to bit 11 of a
GE/PAC word; Card row 9 corresponds to bit O,

1.7.2,1 Physical Description

The 4242B Card Reader is a desk mounted Elliott electro-
mechanical device which senses data by photo-cell diodes.
It is restricted to use the 4201B peripheral buffer and
has the following characteristiecs:

Card feed rate: 350 to 400 cards/min.
Card feed mode: Serial by column
Column feed period: ‘
within card Approx., 1.3 milliseconds
card feed Approx. 17. milliseconds
Card specifications: Standard 80-column card;

either square or round corners,
Refer to Figure 23,

Card hopper capacity: 600 cards max.,
Card stacker capacity: 600 cards max,
Limited to 400 cards for
convenient card removal,
Code: 12-bit column image,
Code conversion: None

Data validity checking: None

Read mechanism checking: TImplicit checking via program
check of pseudo columns 81 and

82~

Figure 27 illustrates the operator's panel located at
the top front of the reader chassis. The functions of
these switches are as follows: .

AC/DC ON/OFF (rocker-typer switch.)

Setting this switch to the ON position supplies AC/DC

power to the reader, 1In the OFF position, power is removed
from the motor and read photocells°

AUTO/MAN (rocker-type switch)
When this switch is in the MAN position the card reader is in
an off-line state and can not be controlled from the computer.
Attempted program operation will result in the device's dead-
man error indicator being set.

- When this switch is in the AUTO position the reader is com=-
puter controlled. : ‘

If the switch is set to MAN during active card reading, data
reading will cease immediately.

This switch has precedence over the STOP switch.

AUTO DMND (momentary action pushbutton)
This switch is enabled when the AUTO/MAN switch is in the
AUTO position and the reader's clutch Flip-Flop is set,

By depressing and releasing this button, the reader's input
demand indicator is set; its Ready signal is cycled from
ready to not ready and back to ready. The reader's clutch
Flip~Flop is interlocked with AUTO DMD so that the push~-
button is disabled when the clutch is on. However, since
the clutch is turned off (by program) at column 1 of the
last card to be read, this button should never be used while
the reader is in operation. ‘ -

LOAD/FEED (momentary action pushbutton)
This switch is enabled only when the AUTO/MAN sw1tch is in
the MAN position. :

Depressing LOAD causes one card to be moved from the Card
Hopper to the Wait Station (Figure 27).

Depressing FEED causes cards to feed from the Card Hopper

through the read mechanism to the card stacker at the rate
of 400 cards per minute.

0-83-

STOP/CONT (rocker-type switch) o

When STOP is depressed, feeding is inhibited; data input
(from IN, IDL instructions) is not inhibited, If STOP is
depressed during card feeding, before column 60 passes the
read station, card feed terminates after that card is fed,

If STOP is depressed after column 60 passes the read

station, one additional card is fed through the read station.

_ When CONT is depressed, card reading continues., However,

STOP must be depressed prior to depressing CONT to release
the stop inhibit., Otherwise, no action occurs,

J X
READ STATION

-
2N :
STACKER”” "\ | ¢ ||| WAIT STATION
ALY >
//,/ ’ IG\)' /// T
A S
Cards are transported from A é$(€§:47
hopper to wait station, then NN : HOPPER
through read station to NN : N\
stacker, The swing-out tray N
permits removal of cards from
the bottom of the stacker.
L - Temes em I\
- K\“lf EE EC |\
) /»/—/ \
— /// \
- _ \
- - - ' \
I i §
Ac/pC | Ac/DC ; S i
OPERATOR'S K. AUTO i MAN CONT § STOP
CONSOLE' ON W OFF i : 3
wan [A | Auto }‘g |
LOAD | FEED : oo |
E B z

Figure 27 - CARD READER (GE/PAC 4242B)

84

1.7.2.2

1.7.2.3

Operation

The following procedure is the normal method of initializing
the reader for programmed operation:

Turn power on.,

Set AUTO/MAN switch to the MAN p031t10n,

Insert cards in hopper, 9 edge first, face down,
Depress LOAD switch., (First card is transported to
wait station.)

. Set AUTO/MAN switch to AUTO p031t10n°

o Depress AUTO/DMND switch.

W -
o o o

o\

The card reader is now on=-line, and ready to accept commands
from the computer,

Programmed operation of the GE/PAC 4242B card reader is via
the 4201B peripheral buffer (see para. 1.7.1l) using either the
GEN 2 instructions ACT, JNR, JNE, fUT, and IN or IDL in an
interrupt location. (See para. 1 4, 3)

Card feeding is initiated by an PUT command (PHUT READER) which
sets the reader's clutch Flip-Flop, Actual card movement lags
the PUT command by approximately 12 milliseconds.

Card feed termination is initiated by an @UT command. (fHUT
READERY/10) which resets the reader's clutch Flip-Flop. Actual
card movement will continue for approximately 25 to 130
milliseconds following the $UT command.

When a card column passes under the photocell read heads, that
12-bit data column is ready to be read., The IN (IDL) command

to transfer the data must be given within 0.7 milliseconds or
the data is lost. The IN and IDL commands transfer data to

the AU and affect the device ready signal; these commands do not
affect card movement. Card movement timing with reference to
the photocells is shown in figure 27.

Card Movement Timing (from Wait Station to Stacker)

Card Position Time (Milliseconds)
#UT (set clutch Flip-Flop) 0

Card movement begins ‘ 12 ms,

Col. 1 ready to read ‘ 16 ms.,

Cols, 2, 3, 4 and 5 1.3 ms, apart

Col. 5 ready to read . 21.2 ms,

Col. 7, 8, <... 85 ready to read 1.5 ms. apart

Col. 80 ready to read 133.7 ms.

Col., 81 ready to read 135.2 ms.

Col. 84 ready to read 139.9 ms.

-85~

Col. 1 of second card ready to read ~ 166 ms,
Timing between successive cards
(col. 1) 150 ms, apart

The program must synchronize itself to card movement for
proper reading of data and must maintain its own column
count. The reader's device ready signal provides this
capability. This signal normally indicates ready, but

is set not ready:

1. 700 us prior to advent of column 1 under read
heads, and - -
2. by each IN (IDL) instruction,

The signal is reset to ready,by signals originating from
the card reader's electro-mechanical transport mechanism
which indicate that a card column is in reading ‘position.

If no IN instructions are executed during card feed, the
device ready signal cycles once for each card transported
through the reader, the pulse occurring at column one of
each card. If k IN's are executed per card, the signal
will cycle k + 1 times (consequently, if k is less than 84,
the remaining columns of the card are not read)., If an
IN is not given within 0.7 milliseconds of the signal's
changing from not-ready to ready, that data column moves
past the read station and is lost,

If the program gives 84 properly synchronized IN's, the
eighty-first data column is 0000g and the eighty-fourth

is 7777g. 1f these IN's input other than 0000g and 7777g
respectively, the program must presume either hardware
failure or improper program-to-hardware synchronization,
If more than 84 IN's are given, the ready signal continues
to cycle with 1.5 millisecond period as long as IN's are
given, until 700 us prior to the advent of column 1 of the
following card. Since the total number of these cycles is
variable, there would be no means (other than unique data
in column 1) to uniquely signal column 1 of this next card.

Termination of programmed card feeding is initiated by the
GEN 2 instruction PUT READER+/10, This command does not
inhibit data input; data may be inputted (IN) as long as
card columns continue to pass by the card reader's read .
station. ' :

If this PUT command is given between columns 1 and 50 of
a card, card feeding will cease at the end (column 85) of
the same card, If this command is given following column
60, card feed will cease at the end of the following card.
If this command is given between columms 50 and 60, the
cessation of card feed will be uncertain.

~86~-

1.7'2.4

1.7.2.5

Cards may be fed one-by-one by the repeated program execution
of the instructions PUT READER and PUT READER+/10. The PUT

to stop-card~feed must be given before column 50 (but not be-
fore the device ready signal is set hot ready for column 1).
If the QUT to feed the next card can be given prior to column
60 of the current card, the card feed rate is 400 cpm. If a
program cannot give this start-card-feed PUT prior to colummn
60, it should delay giving it until after column 85 has passed
the read-station to maximize reader life., In this event,

the card feed rate is 350 cpm.

The reader may become non-operational for various reasons:

. Input hopper empty

. Output stacker full

. AUTO/MAN switch in MAN position

. AC/DC power switch in OFF position
. CONT/STOP switch in STOP position

K PHWN

Error detection and control must be by program. Examples of
error control via program are:

1. Reader status tests
2. Sum checks
3. End of card checks (pseudo col., 81-84).

Input Hopper Empty

When the input hopper becomes empty as signaled by the hopper
empty contact, the last card cycle is completed normally, a
deadman error occurs, and card feeding is inhibited. To
continue operation of the reader, the operator must set the
AUTO/MAN line switch to the MAN position, reload the input
hopper and return the AUTO/MAN switch to the AUTO position.

Stacker Full

N

When the output stacker becomes full as signaled by the stacker
full contact, a deadman error occurs and further card feeding

is inhibited. To continue operation of the reader, the operator
must set the AUTO/MAN line switch to the MAN position, remove
cards from the stacker and return the AUTO/MAN switch to the

AUTO position.

Programming Examples

Figure 28 is an example of program for reading one card using
the JNR instruction. . . -

Figure 29 is an example program for reading one card using
program interrupt and the GE/PAC 4050/4060 instruction IDL.

-87=

H2i3jaysis ;'WK"V u‘uau!ugwlwu 1920!212213241524172!1930 3, 3233:“3536’3738!)9;(9]41 42Azudsu47u-kuusnscsssaszsu'sv!oouczn!ul*‘uuasowonnn7‘75 7077757965
={INE: READERH/20 S 'DER |AHPEAR [T PERAT T@NAT]
Chp JHH
@lﬁ"r FADER! INTTIATH ISTART |@F [GARD [FEED
{INR' READE WATT [F@R [CARD T@ S FEEDING
BRU pea1l |] !
T;—@m RE /110 TINITTATE |STGE |@F |[CARD |[EEED. |
4 JXK = W N =3 T
s% EQR |CARD |GGLUMN K |Ti¢ M@VE
" RRU B2 NTI¢ R f
BRU -2
AN B D) DATA [FROM G COIUMN (K
SITA ICARD-1L,I3
JINK 1113 = K41
HIXH 85,3 TI¢¢D [BAGK |T¢ F K ([IESS [THAN (83
RTR B z
AIDA I0ARD B 1G@ AN ENTICALI
FISRC 11 /0000 |AND | /777 PECTTVELY
APRA 5
AFRA RS
TZE
: 4 ﬁk/j NO o
8183 | iGN X ERAMEARY
ARD: | ¥ 318
11 ﬁ%ﬁiﬂ L |

Figure 28 - CARD READ PROGRAM

I“ 2i3{4sie Pode ,—IW’! |le) Nilsfﬂ 17 {18|19] 20{ 2} [25; 2627 28] 29{30| Jl[’ﬂ 33{ 34 35| 361_3-7’—‘“! W!‘J“l 4243 44 ‘SI“ 4T] 48] 49{50551 52[5]!54 55 S;l;?La' 1462 67 |68 |49 7; 172|723 74]75{ 76|77 78] 79BQ
] NERFM)%R 20 DES| REA P T ;B’fE ﬂBlE TTONA
“BRU
R%Lgl& SHd ; PT| BRANCH VECTPR| SWIITC
ISITIAT ISWO T } -
AGUT TITTATE START @F CARD [FEED., |
;BRil{ B GO T FCP ;
ST ST T OM REA : INTERR ﬂl AFTERCARD
SISITA TARTED M@ FEED| AND CAI/ 1] HAS
a sHENZN M %ED i i %ITI .
T | i T TATE ST F| CARD| [FEED,
AT A IS T_READER AP A VECTOR T ‘
SA S |
XEG READ| |0@L {1l DATA INT@ TTST LOC! CARDHI
fiids !
TEEE: 1
S %si S R CIg & TN,
f“«t}" DERS| [TDI] T TST=FOTL @L‘mCHN
WOTA FISPB |B-4% 4SW0Q SWITCH. | SPH [B. '
1B {4IDT; {GARDH%4SW0T TroH T/ [CAR
AR "CON 1253 T
NG "‘S
g.{{
CAI%D* d Eioan: 305407 TTST [GONTROIL [WORD [CONSTANT .
L R -SNERE If EF%D It

*" Figure 29 - CARD READ PROGRAM

=88~

1.7.3 LINE PRINTER (GE/PAC 4262)

The GE/PAC 4262 line printer produces printout in accordance
with specified data from an éxternal source., It is used
with the peripheral buffer and can be programmed to print
hardcopy documentation in multiple copy form., Each print
action cén record a maximum of 120 character per line at

a nominal rate of 300 lines per minute.

Each print operation is a three phase action:

1. Transfers, under arithmetic unit control, the desired
line image from computer memory to the printer's in-
ternal buffer memory. The line image is variable
length, It consists of a line space control code,
followed by the desired ordered sequence of character
codes and terminated by a print command code.

2, Printing action followed by resettlng the prlnter s
buffer memory to spaces.

3. Paper feed of a number of lines (or to page position)
specified by the line space code, :

< e
" 1.7.3.1 Physical Description

The 4262 line printer is an Anelex, Series 5, asynchrous buffered
console printer with the following characteristics:

Printing rate: 300 lines per minute~-nominal
Text Specifications:

Columns per line; 120

Horizontal character spacing: 10/inch
Vertical line spacing: 6/inch
Average character height: 0.10 inch

_ Paper Form Specifications:
Form width: 4 to 20 inches
Form length: 1 line to 22 inches
Multiple Copy Capability: .

The number of acceptable copies varles with the type of
paper.’

Any number of copies up to original plus five carbons
can be provided with proper choice of paper.

. =89~

Paper Feed and Liné Spacing:

Paper advances after printing°

Slewing is under control of a vertical format unit tape.
Printer option: paper loading and receiving baskets

Figure 30 illustrates the operators control panel mounted on the
printer chassis, The functions of these indicators and back-
lighted pushbuttons follow:

ON Backlighted green round pushbutton,
Depressing this button provides AC power to the printer.
Indicator glows when power is on and the printer buffer
is ready to receive data.

OFF Backlighted red round pﬁshbutton

YOKE OPEN Backlighted red square indicator.
This indicator illuminates when the printer yoke is not
fully seated in the closed position. The printer yoke
is located in front of the print drum.

ATARM _

STATUS Backlighted red square indicator.
This indicator illuminates when the printer fails to
become ready after depressing the ON pushbutton It
provides an indication of some error.

NO PAPER ' Backlighted red square indicator.
This indicator illuminates when less than 30 llnes of
paper supply remain. On-line printing, ohe line at a
time for each depression of the START pushbutton, is ~
permitted while the low paper condition ex13ts, until
the paper supply is exhausted.

-

TOP OF '
FORM Backlighted yellow square pushbutton.

" Depress this pushbutton to slew the paper form to the
top-form (ie. the first print line position of the
next form).

TRACTOR .
INDEX Backlighted yellow square pushbutton.

Depress this pushbutton to align the paper feed trac-
tors with the vertical format unit. Once this is
complete, the vertical format tape loop may be installed.

-90-

TEST PRINT Backlighted red square pushbutton.

START

STOP

Depress this pushbutton to initiate repeated print-
out of a test character. Operation is halted by
depressing the STOP pushbutton. This is a maintenance
operation. The TEST PRINT button is inoperative in
the on~line mode. The START and TOP OF FORM buttons
are inoperative in the TEST PRINT mode of operation.

Backlighted green square pushbutton.

Depress this pushbutton to switch the printer‘on
line.and cause the printer's buffer memory to be
cleared to SPACEes. o , ’

Backlighted red square pushbutton.

Depress this pushbutton to stop printer operation.

a) If the printer is on-line, it is switched off-
line. If the printer is in operation or has
received at least one code in its buffer, the
switching is automatically delayed until com-
pletion of the printing and slewing actiong
however, if the print command code is not
received within 300 MS, a print command is
forced.

b) If the printer is off-line and operating in
the TEST PRINT mode, depress STOP to terminate
the TEST PRINT operation,

\PAPER LOW
ALERT

ALARM
STATUS

Figure 30 - OPERATORS CONTROL. PANEL

~91~

1.7.3.2 Output Formatting Information

The printer buffer memory consists of 122 6-bit character code
positions. The nominal print line length is 120 character
graphics, ‘

Each code position in the buffer initialized to a SPACE
(20,) code following a print action or by depressing the START
pusﬁbutton on the printer's operators panel,

The central processor tramsmits 7-bit GE/PAC codes to the printer
controller via the peripheral buffer at a rate synchronized by
the printer's device ready signal. The controller assembles the
lower 6-bits of these codes (00, through 77g) in order of receipt
into the buffer from left to right., The leftmost code position
(the line space code) is loaded first, The receipt of any code
between 100, and 177, terminates the transmission of further
characters, The lower six bits of this print command code is
OR'ed with 20, and the result loaded into the next code position
of the buffer, The code should normally be a carriage return
(100g) to cause a SPACE code to be loaded into the buffer. The
remaining code positions are already SPACEes; the print action
follows:

The print line image in programmable memory may vary in length
from 2 to 122 code positions. If the desired line of output
consists of less than 120 characters, it is not necessary to
pad the line image with SPACEes,

The first code position of the line image must contain a non-
printing line space code. Paper advances after printing and

the number of lines skipped after printing is specified by the
line space code and the 8-channel tape loop-in the vertical format
unit (VFU) on the printer chassis. The line space code specifies
which channel of the VFU tape loop will control the paper slewing.
Single line spacing requires 12ms to complete, Slewing of paper
occurs at the rate of 18 inches per second., The maximum slewing
distance is from top-form to top-form.,

The line space codes and the corresponding slewing actions follow:

Line Space Code . Slew Action Following Printing
00 Slew to top form
01 Single space)
02
03 Slew to form position
04 specified by channel k
05 of VFU tape (k = line space
06 code +1). ‘
07
77 No paper advance

92 -

1.7.3.3

The vertical format tape is an endless loop of one inch wide
tape and is used for format control. The tape may be paper or
mylar, etc. Eight channels on the tape provide a Top-of-form
position and seven other form-positions.

The length of the VFU tape must be an integral multiple of the
length of the form, and must be between 11 and 22 inches long.
The VFU tape has punch positions spaced six per inch to match
the line spacing on the form. A hole in a punch position of a
given channel defines a form position for that channel. For
example, channel 2 has holes corresponding to every line of
the form.

The line space code is followed in the line image by 0 to 120
character codes. The legal printing characters are the graphics
corresponding to the codes between 008 and 77g listed in Figure 26.

The line image is terminated by the print command code described
above.

Character seqeunces are printed left justified unless preceded by
SPACE characters in the line image. It is possible to print
different fields of the same line with separate print commands if
the line space code is a 77g for each field except the final field,

Operation

Programmed operation of the GE/PAC 4262 line printer is via the
peripheral buffer (see para. 1.8.1) using either the GEN 2
instructions ACT, JNR, JNE, and @UT or the (DL instruction (see
para. 1.4.3).

The printer's device ready signal is set when the printer's con-

troller is not busy and is able to accept another character code,

The signal is reset by each @UT (@DL) and remains reset during the

30 to 60 us while the controller is loading a code into the printer's
buffer and during the 194 ms of the mechanical print action.

Receipt of the print command code will inhibit further loadlng of the
buffer until the.print action is complete.

For the printer to operatre at its nominal rated speed,‘the entire
line image must be transferred to the printer's buffer within_
12 ms following the completion of the previous mechanical print

~action, If the buffer loading time exceeds 12 ms, the printer

speed is calculated as follows:

60000 = 1lines per minute
182 T

T is the loading time in milliseconds.

<03

I1f the printer's device ready signal remains reset for more
than 4 to 8 seconds, its deadman error indicator is set. The
indicator can be tested by a JNE instructién with E = 28 or
E = 3g (see para. 1.7.1.1).

A deadman error may be due to one or more of the following
faults:

Noon S wN e
*

Printer off line

Paper supply is low

Broken paper

Open yoke

Printer or Computer Power failure

Blown fuses '

. Printer-to-Computer cable not plugged in

3

1.7.3.4 Special Programming Considerations

1.

During the loading of the printer buffer, the printer's
device ready signal cycles at an extremely rapid rate., It
is reset by the @$UT (@DL) instruction and set within the next >
50 microseconds. This means that the central processor can
give an @UT (PDL) to the printer at 76-microsecond intervals.

Momentary loading on the GE/PAC 4060 central processor, during
the 9 ms period that the buffer is being loaded from an ¢DL
list,is as high as 32%. Average loading over a complete print
cycle is 1.5%.

If a program erroneously outputs more than 122 codes to the
printer, the 123rd and subsequent codes are lost. The printer
continues to accept and discard these codes until a print
command is received. The 120 codes in the print positions o
the buffer are printed. :

94

1.7.4. . INPUT/OUTPUT TYPER - GE/PAC 4270B

The I/0 typer, used with the peripheral buffer, can be programmed
to provide an intercommunication interface between an operator
and the computer. The I/0 typer has three mutually exclusive
modes of usage:) ,

1. Standard Typer

The typer, when manually switched off-line, is electrically

disconnected from the computer. It can be used manually as

a standard fixed carriage typer. When the typer is in this
. MANUAL mode, it is unavailable to the computer.

2. On-Line Output Typer

The typer, when manually switched on-line to the AUTO
mode, can be program operated as a fixed carriage output
typer. Operation is identical to the GE/PAC 4221B output
typer. A pushbutton allows the operator to signal the
program when he wishes to use the typer as an input device,
The remainder of the keyboard is inoperative in thismode,

3. On-Line Input Keyboard

-The typer, when manually switched on-line to the AUTO
mode, can be program operated as an input keyboard to
allow an operator to type data into the computer's
arithmetic unit, one character at a time. Suitable hard-
ware and program interlocks are provided to make it im-
possible to lose input data., A typed record of the data
input is generated,

1.7.4.1 Physical Description

The 1/0 typer consists of a standard fixed-carriage IBM Selectric
typer equipped with the following manual controls:

1. A two position power-on/power-off switch marked ON and OFF.
This switch controls AC power to the typer's motor; it does
not control DC logic power to the typer's controls.

2. A backlighted double acting (push-push) pushbutton marked
" AUTO. It is illuminated when in the on-line mode. When
the switch is not illuminated, the I/O typer is in the
- manual mode (off-line), the DC power from the computer is
turned off, or the lamp within the switch is burned out.

2952

1.7.4.2

1.7 .4.3

3. A backlighted single acting INPUT pushbutton. It
can be illuminated in the om-line mode by the
program control to indicate to an operator that the
keyboard is unlocked and that the-program is waiting
for the operator to type on the input keyboard.

4, A single acting pushbutton marked CNTRL., If de-
pressed during the time an input character is typed,
a binary "1" is generated in the most significant
data position of the typer's 8-bit data register,
The character's code is generated in the lower 6 data
bits of the data register., Odd parity is normally,
generated in the 8th bit of the data register.

Figure 31 illustrates the I/0 typer keyboard which dis-
plays the layout of the foregoing controls with the
character keys.

Operation \ . .
Operation of the I/0 typer requires two power'sources.

An AC source powers the typer's mechanical operation

~(i.e., its motor). This source is manually switchable

by the ON/OFF toggle switch on the typer. The AC power
should remain on at all times. If the AC power is off,
an attempt by the computer to output a character {@UT)
locks the typer's keyboard (if unlocked) and starts the
typer's deadman timer timing; it performs no other action.
The: typer is unable to perform its type action and an
eventual deadman error results, If the AC power is off
and an input action is attempted (IN), the keyboard un-
locks and meaningless data transfers into the arithmetic
unit; no error indication is given.

The second power source is DC from the computer central

.

processor, =

Operation as off-line Typer:

Operation of the typer in the off-line mode requires the
following switch positions: :

1. The OFF/ON toggle switch must be in the ON position.

2. The backlighted AUTO pushbutton should not be
~illuminated., If it is illuminated, depress the
button to set the manual mode, turn the light off
and unlock the keyboard. If the pushbutton is not
. lighted, the operator should press the switch twice
to cycle it to Auto and back to Manual; the pushbutton
is illuminated and then extinguished.

~96- -

_LG-

INPUT

CNTRL !

— =

%}{3{ ‘;] 3 4| 15 6 8
LI |rag) [#) 7 (
Q|| W Rl |T|ly| |ullz
CIR .
LOCK ~—1 I & |®
. Al ls p| | F el 1H||J] |X
= il
ool | sETET ZCV

.o

»

ST 17 EBACK
0| [4]| | #] seAcE
- 1] ER

+ T

U

< ! R

L B8 N
\ o
L7 || surFT

SPACE

AUTO

v ,?

Figure 31 - MODEL 4270 INPUT KEYBOARD

A false Manual indication, resulting from
a burned-out lamp, is detected by pressing
the switch twice,

In the Manual mode, the typer is a standard Selectric
typer; all switches and keys except the INPUT and CNTRL
pushbuttons are operative,

Any attempt by the program to output (fUT) or input (IN)
to this typer in the Manual mode is ignored; the typer's
Deadman Error Flip~Flop is set.

1.7.4.4 Operation as an on-line Device:

Operation of the typer in the on-line mode requires
the following switch positions:

1. The ON/OFF toggle switch must be in the ON
position, -

2. The backlighted AUTO pushbutton should be
illuminated. If the pushbutton is not illuminated
depress the button to set the AUTO mode, turn the-
light on, automatically lock the keyboard, and
clear the typer's data register. If pushing the
button does not turn the lamp on, the lamp should
be replaced.

In the on-line mode, only the ON/OFF switch, the
AUTO pushbutton, and the INPUT pushbutton are

normally operative,

1.7.4.5 Operation as an on-line Qutput Tyﬁer:

Program operation is identical to that of the GE/PAC
4221B output typer, Hardware operation differs in
two ways: :

1. Each $UT instruction locks the keyboard (if
unlocked). '

C 2. ‘The code corresponding to the character graphic
actually printed is recorded in the typer's
data register. Therefore, if an IN instruction
follows an @UT instruction, the program can
perform a program echo check. An echo check
determines if the character actually printed is
the same as the character that was transmitted to
the output buffer for printing. The check is
accomplished by reading this code (IN) and compar-
ing it to the code transmitted (PUT) to the N-Register.

" llThe control characters PRINT-RED and PRINT-BLACK are the only
exceptions. The data register is unchanged when these characters

are typed,

~98 -

1.7.4.6

The last character typed must be a lower case
character to allow normal operation of the typer in
the off-line mode,

‘Since the INPUT pushbutton is operative in the on-line out-

put mode, the operator may signal the program desired to use
the I/0 typer as an input device, Pushing the INPUT push-
button simulates the ACT instruction (see paragraph 1.7.1.1),
cycling the Typer's Device Ready signal,:and sets the I/0O
typer's Input Demand Flip-Flop. Pushing the INPUT button
does not change the I/0 typer's mode of operation. It
remains in the output-only mode until the program gives an
IN instruction. : :

Operation as an on-line Input Keybdard:

The program controlling the on-line operation of the I/0

typer is responsible for detecting any cycling of the typer's
device ready signal (via JNR instruction or program interrupt),
interrogating its Input Demand Flip-flop, and deducing the
cause for the cycling (See Table 1). The Input Demand Flip-
Flop is interrogated by a JNE DEVICE /10 instruction (see
paragraph 1.8.1.1). The instfuction reset the Flip-Flop
following interrogation.

 When the I/0 typer is used as an input keyboard the following

operating procedures apply
1. Depréss the INPUT pushbutton.

2., The program senses the resulting cycling of the typer's
device ready signal, The program interrogates the typer's
Input Demand Flip-Flop at its discretion, and gives an
IN command to permit the operator to use the input key-
board. The IN instruction transfers the previous mean=-
ingless contents of the typer's data register into the
arithmetic unit and unlocks the typer's keyboard; it

disables the INPUT pushbutton, enables the CNTRL pushbutton, . -

and turns on the INPUT lamp. The typer's deadman timer does
not begin timing (see paragraph 1.7.1).

3. The operator may then use the input keyboard to type a
character's code (plus odd parity) into the typer's eight-"
bit data register. There are 128 input characters, 64
correspond to the GE/PAC character set and 64 correspond
to the joint usage of the CNTRL pushbutton and the typer's
keyboard (see Figure 31).

< I

90 .

Table 1 - ON-LINE STATUS

OF I/0 TYPER

I/0 typer's Control Switch Status Possible causes for a
program status Before/After Input Input Input cycling of I/0 Typer's
. Cycling Keyboard Button Lamp Demand Device Ready Signal
Flip-Flop
Idle Before locked enabled off reset or set ACT instruction
) After locked enabled off unchanged
Before locked enabled off reset 1) INPUT pushbutton pressed;
After locked enabled off set 2) Also possibly an ACT instr.¥*
In use as an output Before locked enabled off reset or set 1) Typing of the last charac-
device) : ter is completed,

After locked enabled unchanged 2) Also possibly an ACT instr.*
va Before locked enabled off reset 1) Typing of last character is
32 : completed and INPUT push~-

" After locked enabled off set button pressed;
: 2) Also possibly an ACT instr.¥*
In use és an input Before locked enabled off reset or set ACT instruction
device After locked enabled(off unchanged

Before locked enabled off reset 1) INPUT pushbutton pressed,

After locked enabled off set 2) Also possibly an ACT instr.*

Before unlocked disabled on reset or set | ACT instruction

After unlocked disabled on, unchanged

Before tinlocked disabled, | on reset 1) Operator typed a character

After locked enabled off set into the typers-;data register

)

2)

Also possibly an ACT instr.¥

% The ACT instruction possibly occurred in action to'the first action.

1.7.4.7

Initiation of the type action (depressing any key on the
typer) resets the typer's device ready signal and starts
its deadman timer timing. Successful completion of the
type action (the printing of the character's graphic)
generates the character's code in the typer's data

. . . (
register and performs the following actions:

Sets Input Demand Flip-Flop
Locks keyboard

Enables INPUT Button
Disable CNTRL Button
Extinguishes INPUT lamp

. Sets device ready signal

. Disables. deadman timer

°

NN DLW N
o

The program must sense the cycling of the typer's device
ready signal, Action is the same as 2 above, except that
the data input is meaningful. '

The program must alternately effect steps 3 and 4 above,
to input a sequence of characters. It then interprets
the sequence as prescribed by the specific program's
console operation specifications and performs the pre-
scribed action. :

Special Programming Considerations

1.

The program has direct access to the typer's device ready
signal if each peripheral has its own device ready inter:-
rupt. If a system uses one of the other peripheral buffer
options (JNR signal, one interrupt, two interrupts, three
interrupts) the program must deduce which of several
device ready signals actually cycled. For every input
demand or an input keyboard action, however, the appropri-

‘ate device's Input Demand Flip-Flop is set.

In paragraph 1.7.5.1, the I/O typer is described as cap-
able of three mutually exclusive modes of operation. Al-
though this is true in the strict sense, a properly de-
signed program can alternately operate the typer in the

" on-line mode as an input keyboard and an output typer.

This gives (in the human frame of reference) the impression
of the instantaneous man-to-program intercommunication.

The space character typed in the output mode has the unique
graphic blank corresponding to the code 20g. The space
character generated from the input keyboard is not unique.
Depressing the space bar prints the graphic blank and
generates the code 20,.- Depressing the key prints the gra-
;phic & and generates the code 20g.

-101~

Pushing the ¥ key when the CNTRL pushbutton is depressed
generates 120, with correct odd parity., Pushing the Space
Bar when CNTR% is depressed generates 1208 with incorrect
even parity,

The INPUT pushbutton should always be depressed momentarily.
Continuing to depress the pushbutton longer than 4 to 8
seconds forces a deadman error; however, the error is
automatically cleared when the pushbutton is released.

-102-

1.8

1.8.1

GE/PAC CONSOLE

The GE/PAC programmer's console is an integral part of the central
processor., This console is one means for the programmer and main-

" tenance man to communicate with the computer in actual machine

language. Plant operating personnel are not required to, nor
expected to, know how to use the programmer's console in process
control applications. Once the programming has been completed,
little use will be made of the programmer's console except for
the displaying various registers for maintenance personnel.

The underlying philosophy toward the use 0f consoles in the GE/PAC
system is that each module of the system may have its associated
console., More specifically, the arithmetic unit has a program-
ming console which contains displays and functions only related

to the arithmetic unit. System displays and functions are in-
cluded on a separate gystem console.

CONSOLE DESCRIPTION (4040)

Twenty-four lights and console switches are used to display and
enter data or commands into the computer., These lights and
switches are divided into groups of three to represent eight octal
digits for programming convenience, Two modes of operation are
possible: automatic and manual. The MAN/AUTO/OFF CONSOLE switch
controls the mode. It is located in the lower center portion of
the console. During automatic operation, the console switches

can be read into the A-Register only by the programmed instruction
Read Console Switches (RCS) 25050000g. 1If a console switch is
down, a "1" is set in that bit position in the A-Register; if up,
the contents of A are not changed. The conscle switches are
sometimes referred to as break-point switches during automatic
operation, The break-point refers to a decision that can be

made as the result of a switch or switches being set (down). On-
line routines which use the console switches are normally called
by the DEMAND Button. This sets the Demand Flip-Flop (DEMF).

The programmed instruction Jump If No Demand (JND) 25040000g.is
interrogated periodically to determine if the switches should be
read and deciphered, :

~103-

Sl cone, DR SR8 crane
NP 2086 BUF B CoNOUTE], WITIALIZE
on

2 (0000 U e

1001008 000 080 o0t 01 030

AUTO
STEP CONSOLE~B

SVET savEP Lobemw W” PROGRAM DEMAND
© °° " 50 6 O

Figure 32 ~ GE/PAC CONSOLE AUl (Model 4040)

In the automatic mode, all console switches and buttons except the
following are disabled:

Clear Alarm

Power Qff

Demand

. Save P

Save I

Program Switches

. Register Select Switch

(=2 U]

g O D

The CONSOLE OFF poeition allows the console to be disabled when in
the automatic (running) mode of operation. A- removable key is
provided to lockout the console in the automatic mode.

Manual operation of the console enables all console switches and
buttons., Manual operation normally involves changes to the
instruction register and memory locations, Paragraph 1.8.2 explains
this step-by~step procedure,

[aYs
ol

1.8.2 REGISTER DISPLAYS

The selector switch in the lower left corner of the console allows

the following registers to be displayed:

Selector Switch

Bit Position

Registers

Position Within Display (Information Displayed)

A - Accumulator 23 -0 Accumulator Register (Data)

B - Buffer 23 -0 B - Register (Next sequential
instruction as it appears in
memory)

I - Instruction 23 -0 Instruction Register (Instruc-
tion last executed)

23 -~ 18 Operation Code
17 - 15 X Word Indicator
14 Relative Addressing Indicator
13 -0 Effective Operand Address
Flip-Flops 23 -~ 18 Status Flip-Flops
. 23 Demand Flip-Flop
< 22 Overflow Flip-Flop
21 Permit Automatic Interrupt
Flip-Flop
20 Test Flip-Flop
18 Peripheral Ready Flip-Flop
13 -0 Program Counter)
P - REGISTER (Program Control Address)
J - J Counter 23 5. Control Sequence State
22 S, Control Sequence State
21 S, Control Sequence State
20 C; Control Sequence State
19 C, Control Sequence State
18 C3 Control Sequence State
4 -0 J Counter
| AUX - Auxiliary Switch Optional Displays
ALARM LIGHTS
The following alarm lights are displayed on the console:

a, -Core Parity
b. Peripheral Error (PB ALARM)
c.. Core Temperature
d. Cabinet Temperature
e. Stall Alarm
Computer Ready

f.

-105~

1.8.3 CONSOLE DESCRIPTION (4050 and 4060)

Data is displayed and entered into the computer via twenty-four lights
and switches located on the front of the computer cabinet. These
lights and switches are divided into groups of three to represent eight
octal digits for programming convenience., Two modes of operation are
possible: automatic and manual. The MAN/AUTO/CONSOLE OFF switch
controls the mode, During automatic operation, the console switches
can be read into the A-Register only by the programmed instruction Read
Console Switches (RCS). On-line routines which use the console switches
are normally called by the DEMAND button. This sets the Demand Flip-
Flop (DEMF). The programmed instruction Jump If No Demand (JND) is
periodically interrogated to determine when the console switches should
be read and deciphered,

=L0T~

OFF COMTUTAR Tomp SORE STALL FENCE P& PC 2RUM maw Bewep CLEAR PROGRAM
O @ 0 000000007 O O
p——— ATARM —— ——PARITY— LOAD

INT TI.ALIZEREADY

|
1

PROGRAM LOCATTION REGISTER

1900 o000 0000000000y

15 4 13 12 11 10 9

INSTRUCTION REGISTER

ﬂﬂnlgopggslg?mlﬂslpﬂ
) 000 000 000000 003

B 131z 11 10 9 8

T T SELECTED REGISTER - -
onlinz2nN3nNkn snén7 10011 nl2n13n 1kn1sn6nl7 N18n1oNn 20N 21Nz
FET U e T T T
ONONOINONONCRRORCRONIONORONIONONORIONONCIIONONCIIONONS

AUTOC,

SAVE I SAVE P APT FENCE, MAN i STEP CONSOLE-B CONSOLE-A
®© © © © O O O

LOCKOUT LOCK:) I

IS

GE/PAGC CONSOLE (AU2 Model 4050/4060)

o el

Figure 23 =

1.8.4 REGISTER DISPLAYS

The selector switch in the lower left corner of the console allows

the following registers to be displayed:

Selector Switch Bit Position Register
Position Within Display (Information Displayed)
A 23 -0 Accumulator Register (Data)
Q 23 -0 Auxiliary Accumulator Registe
(Combine data with A-Register
to for double-length precisio
B 23 -0 Buffer Register between the A
and memory., (Next sequential
instruction as it appears in
memory)
H 14 -0 Special purpose register for
maintenance use only,
J 4 -0 'J Counter
23 S, Control Sequence State
22 " 8, Control Sequence State
21 S. Control Sequence State
20 S, Control Sequence State
19 .S5 Control Sequence State
20 Demand Flip-Flop
19 Overflow Flip~Flop _
18 Permit Automatic Interrupt
Flip-Flop
17 Test Flip-Flop
15 -0 P - Register (permanently
displayed)
AUX1 Optional Diéplay
AUX2 Optional Display
ATARM LIGHTS

The following alarm lights are displayed on the console:

a.
b.

Cabinet temperature
Core temperature
Stall alarm
Memory Fence Alarm
Peripheral Buffer Alarm
Peripheral Controller Parity
Drum Parity
Main Core Parity
Extended Memory Parity
Computer Read

P Y ~108~

RS AR

& AUTOMATION COMPUTER

GENERAL ELECTRIC PROCE

C) General Electric Company, 1965

November 1965 revised

Library-Control No. YPG12M
This manual published by:

PROGRAMMING SUPPORT

GENERAL ELECTRIC COMPANY

PROCESS COMPUTER BUSINESS SECTION
P. O. BOX 2918

PHOENIX, ARIZONA - 85002

For further information concerning the contents of this manual, -
contact the Programming Library at the above address.,

@

GERERAL @D

ELECTRIC

PROCESS COMPUTERS

[21

GE/PAC 4000 PROCESS ASSEMBLER LANGUAGE

Library Control No., YPGL2M

N

'i/ J,-’: AN f j//’) ,;ﬁ (}’“
} Y E /f})f‘”:/{:, 2 g

L e

APPROVED BY:

REVISION CONTROL SHEET

DATE : June 25, 1965

RECORD OF CHANGE DATE REV .,

RECORD OF CHANGE

DATE

Page 1; para 1.1 6/25/65

Page 13; para 2.6 4

Page 16: para 2.8.1, step 3

Page 17; para 2.8.1, example

Page 26; Flag @ and T

Appendices E and F new

Page 7; CON D and CON F 11/18/65

Page 12; para 2.5.1

Page 13; para 2.5.3

Page 20; para 2.12.1

Page 21; para 2.12,2

Page 27: added codes 9, 18, 19

; M42ﬁ4f7¥/r¢¥/§?;uﬁ§7»

Page 27; Audit Code 9 3/14/66

Lo/ f Fon”

PAGI
1

cﬁéﬁsz;gigié%ZZﬁ%égjsf c /Eéi:/iijzgéiééi 3/66
) LA s

S S S
.
H

REISSUED

TABLE OF CONTENTS

17\7[7?()1)1?{;]@1(1PV
A E?Tl4flﬁ5@41@ﬁﬂ]’ FORMAT 1
1.1 LOCATION FIELD 1
1.2 OP CODE FIELD 1
1.3 OPERAND FIELD 1
1.4 IDENTIFICATION FIELD 5
1‘2{ PSEUDO €?17§§5§A£]Rf()]VT§J 7
2.1 ORG - ORIGIN 8
2.2 BSS - BLOCK STORAGE RESERVATION 8
2.3 DCW - DRUM CONTROL WORD 8
2.4 CON - CONSTANT 9
2.5 DCN - DOUBLE WORD CONSTANT 11
2.6 GEN - GENERATE DUPLICATES 13
2.7 EQL - ASSIGN A SYMBOLIC EQUIVALENCE 14
2.8 DEF - DEFINE A NEW OPERATION 14
2.9 SLW - SLEW PRINTER PAGE 20
2.10 END - END OF PROGRAM 20
2.11 MONITOR PSEUDO-OPS 20
2.12 LOADER PSEUDO-OPS 20
3., PROCESSING & OUTPUT 23
3.1 ABSOLUTE & RELATIVE VALUES 23
3.2 COMMON SYMBOLS 24,
3.3 ASSEMBLER VARTIATTONS 24
3.4 OUTPUT 24,
fﬁi)i?§§FVi)le' ,i - CHARACTER CODE TRANSLATION 25
zﬁi”f?EKFJEEIJK .l? - ERROR FLAGS 26
fﬂE?fﬂETVl)IJK €' - ASSEMBLER VARIATIONS 27
fﬁi?}?ﬁﬂVﬁ)i}? "D - MACHINE OPERATIONS 28
,ﬁﬁ?&?ﬁle}l}K }3;- BINARY CARD FORMAT 31
'APPENDIX F ' - OCTAL LOAD TAPE FORMAT 33

5%’ 4000

v DL A S i %
GENERAL ELECTRIO PROCESS AUTOMATION GOMPUIER é;

INTRODUCTION

This manual defines the standard Process Assembler
Language for the GE/PAC 4000 Process Computer Sys--
tem., This manual is intended for the experienced
programmer,

Translator programs are avallable for a variety of
hardware configurations. The language may be re-
stricted for some translators. The Library Write~-
Ups for each translator state if the complete
language can be translated. The language definition
includes:

coding form description and usage

pseudo operation definitions

hardware operations

processing method and output

The hardware operations are listed in Appendix D.

Detailed definitions of their characteristics are

presented in the GE/PAC 4000 Instruction Reference
Manual,

INTRODUCTION

This manual defines the standard Process Assembler
Language for the GE/PAC 4000 Process Computer Sys--
tem. This manual is intended for the experienced
programmer,

Translator programs are available for a variety of
hardware configurations. The language may be re-
stricted for some translators. The Library Write~
Ups for each translator state if the complete
language can be translated. The language definition
includes:

coding form description and usage

- pseudo operation definitions

hardware operations

processing method and output

The hardware operations are listed in Appendix D.

Detailed definitions of their characteristics are

presented in the GE/PAC 4000 Instruction Reference
Manual.,

1. STATEMENT FORMAT

Assembly program input information is written on the "Process Lan-~
guage Statement Coding Form'' (Figure 1). Each line on the coding
form represents one instruction to the assembler. The coding form
is comprised of four Fields defined in the ensuing paragraphs.

1.1 LOCATION FIELD - Columns 1 thru 6

The Location Field is used to identify the location of an instruc-
tion. A name written in this field becomes associated with the in-
struction written on the same line. Any reference to the instruc-
tion may be made by that name. WNames used in the Location Field
must consist of six or fewer alphanumeric characters; the first of

%* which must be alphabetic and start in column one. A decimal point
is considered as an alphabetic character in this context.

1.2 OP CODE FIELD - Columns 8 thru 10

The Op Code Field contains a two or three character operation code
which identifies the operation to be executed. The legal operations
include the pseudo operations described in Section Two and the
Assembler Instructions outlined in Appendix D.

1.3 OPERAND FIELD - Columns 12 thtru 68

The Operand Field may contain a combination of parameters. When
merged, the parameters define the operand or operands required by

the operation code. Each operand is formed by parameter groups.

The following four basic parameter types are permitted in this field.

Symbolic -~ A name or label composed of six or fewer
alphanumeric characters; the first of which
must be alphabetic. Any such symbolic para-
meter corresponds to a name written in the
Location Field of some instruction.

Decimal - A decimal integer value.
Octal - An octal integer value, preceded by a slash (/).
Relative' - An asterisk (*) which acquires the value as-

sociated with the memory location of its own
instruction.

i1-Refers to Present Location. :

* - Revised 6/65 -1-

0123455701234567°1234567

2-PAP
4-CO0L

PROCESSOR KEYS

GEN'L. | 0-Delete

6 - Assembler
GEZPAC! 7 Fortran

GE 312 | 3-NOAP

GE 412

S T 3
@ 3
WO . . . JUUUR PO ROPUON SR J
@» o
[~ M
2 PO IS AU S PO J D S
s e :
& BN RN N R - R
@« ~ s
> ~
o PR SO e B o]
~
wny €
o ~ N
oh N o (08 [UUS WU AUV OIS SRR UG SR DRSS EPPIS U P
~
S # ~1.
& LS PR N - - - B P ke
5 ... e § o P
2
'y |
k4

cs'67’

%

aEw

68 6970 71.72{73

‘ Date
T

H

5

-

" [N SR RN PSS MO S

P R T o

of
3 3

i

Project Name

55'56 57 5B.59/60.61 6263 64|65

Program Name

Programmer
BRANCH CONTROL FIELD

Page

T 1 1 3§ . %

T

i

CODING FORM

N

B

1

26'27 23 29'30'31.32'33

PROCESS LANGUAGE STATEMERNTY

(OPERAND)

H
H

(SR SO
25

S TATEMENT

i

IR

H

t

131415 16 17 1819

¥

3 : { "
o |“m - ek el .- e xs;gmlizwzsai P
L e e i im - - el

- ¥ L ¥

& ’ DRI SO I U :m; .

2 o : .

@ N ¢ LR : : :

% i 1 b L ;

. PR SO SORHIN S (ORI ; ke o PR

© 3 s r H .

< i N i : : § ¢ ¢ :

PSS SRS SV SURPVION OIS SUPI NGRS s st s LR WU
~ T H g ey 1 v §

~ > ‘ i M : {

- PR N A ﬁw;si_vf::w I o e e

~ B0 SRR DS SV S UOOS QUM VIR R e e o N -

H 3
2 . T T
3

- i B

~ £ i i H i .

)

-

~

=
<

137.38 39 40

3435 3%

2
2
=
2
-3
g
2
E
2
<
. i } . Q.
JREVAR WR U WU S ; o - - ..e,mg o
B SO e O SO T
H i v i ~w
o it o+ s e bt o | B
[N =
R [(DR §
1)R
- PG ISP SR VORI S N e T
- SOVS SR S 4 m
3 - - s o w &
v PR ISR PO S e b e @
SUSUIS0 OV JUUNDS SDUAN DU NP WIS GURRDI IOUS SRR SRR SURPN SUIPIVE AP RN s PO SR AU PR S M.

H

ok o gy

»
prhgnes
e Ty

PR NN S SR b
H { H

LA
e

{

‘20 211222324

i e ol A AR

St

TYPE

@ (0P CODE)

* Restricted to five characters for COOL

i

PHOENIX, ARIZONA

GENERAL () ELESTRIC
PROCESS COMPUTER SECTION

LOCATION”

v o - B S SRR WO [S - . RS S WA RO SR U S

4:5 617|8 910/1112

3!

2

b | i L

rc12 (2/64)

0123‘5670}23‘5670123‘567

FIGURE 1

A single operand value may be composed of one or a combination
of the four parameter types listed on page one. These parameters
are combined by using the following operators: = T

+ add

- subtract
* multiply
/ divide

Examples of the four parameter types follow:

STATEMENT

111213 1415 16'17 18‘19 20 21 22 23 24 25 26 27 28 29 30° 31 32:33
LABEL]
TEMPY w ‘
SYMBOLIC PTO?2 2 : ' . ‘ o P, e
symBgL .
42 oo T
DECIMAL 599 o _
l - 1 . .'»M’ i i
O.y_t ; L H i ;x fou E - to 7ﬁ
/22, BN RN RN
OCTAL L O T
/77777771Jg5;j%ﬂi_ L
RELATIVE ¢ s R A AL B

Examples of parameter comblnatlons Wthh form a single operand are illus-
“‘trated below: ™ T

S TAT E M
1112113 14 1516 17 IB 19'20 21 22'23'24 2526 /27" 28

CLABEL+42 | .

éingle operand as a combination L_ABEI_ 42 1 .
of a symbolic and a decimal or LABEL+/22)
octal. LABEL—/ZZ i

GLABELFTEMP, ||

STATEME

1112 |3 14 1516 17" 18 19 20 21 22§23 24, 25 26’27 28 29"
*+42;JugJ .
Combinations with * ,* 4 2 i TR U S
*+/2wuﬁgwg
k=/22 | L
S| TEMPUw2 L
VTEMPI*LABEL(_i; 4
Multiplication & division TEMP] */42 ‘ : >
TEMPV/4
TEMPI/LABEL !

All four types combined < i -,'e-!:’JLABE/L"PZ—-/'Z?

The parameters in the preceding examples are combined strictly from left
to right. The meaning of asterisk or slash depends upon its relationship
to the remaining parameters.

For example, asterisk represents relative addressing if it is the \
first character of a parameter. In all other cases, it is a
multiplication sign. The slash indicates an octal parameter when

it is the first character of a parameter; otherwise it is the e
division sign.

Most assembly language statements in any program involve only simple oper-

and combinations. Rarely will the multiplication or division capabilities

be utilized. It is important to understand that the combinations of para-

meters in the statement field, 'simple or complex, involve the values of the
symbols; not the contents of the locations referenced.

The rules for combining parameters to form a single operand value are _
presented on page three. However, many computer instructions‘require
more than one operand value. Most memory addressing instructions, |
for example, may have two operands; one to specify the memory ad- |
dress and a second to specify an index modification word. Multiple
operands are desirable in many other occasions. When several operands.__ _
are required, the comma (,) is used to separate operand values.

1.4

Examples of two-operand instructions are presented in the follow-
ing:

TYPE ' S TATEMENT
718 ;9 E10 n 12'13l14‘15 16;17Y18V19:20'21 22;23‘24'25(26;27 28 29 30731 32

G| LABEL#2s X0
Sl HHVALUES2 L
L TEMP X I+2 Lo

The first blank character in the Statement Field terminates the
construction of the operand. Characters appearing after the first

blank column are treated as comments.,

IDENTIFICATION FIELD - Columns 70 thru 80

The last eleven columns are reserved for the complete and unique
identification of each line of coding. Column seventy is used to
indicate the language used., The remainder of this field is al-
located for identification of the project and program number, and
the sequence within each program.

This field is essential for proper maintenance of the symbolic in-
formation., It is used by other programs which process symbolic
records to produce additions, deletions, and corrections.

2. PSEUDO OPERA TIONS

The pseudo operations are written on the coding form in the

Op Code Field. They direct the assembler in storage assignments,
symbol definitions, and generation of constants. All labels
appearing in the Operand Field of pseudo operations must be pre~
defined (i.e., they must be common symbols or they must have
appeared in the Location Field of a statement preceding this
statement). A summary follows:

~

8 9 10{11 1213

ZRG

* CON

BSS -
oCcw -

\bif Single Word Fixed Decimal Constant

Core Starting Address

Block Storage Reservation
Drum Loader Control Word

C@N
CON
C@N
C@N

‘G y ————— Single Word General Constant

Fiye Single Word Floating Decimal Constant
A, Variable Length Alpha-Numeric Constant
@»ﬁ Single Word Octal Constant

DCN
DCN
DCN
GEN

D s —— Double Word Decimal Constant
F,=—— Double Word Floating Constant
z ,- Double Word Octal Constant

Generate Duplicates

EQL

END

DEF| : ;.
sLw -

Symbolic Equivalence
L Define A New Operation

Slew Printer Page
End Of Program

In addition, the following conventions and special pseudo
operations are available:

ae.

% - Revised 11/65

An asterisk in column one identifies the entire line
as a comment which will appear on the output assembly
listing.

An asterisk in column seven of a statement indentifies
the Location Field name as a common absolute symbol.
(refer to page 23)

e

A dash in column seven of the statement identifies the
Location Field name as absolute (but not Common).
(refer to page24)

Special pseudo operations for use with MONITOR (refer
to Monitor manual). - -
Special pseudo operations for use with FORTRAN (refer

to para. 2,12).

2.2

2.3

ORG - ORIGIN/CORE STARTING ADDRESS

ORG specifies the core starting address of the program. The
address must be written in the Operand Field with the following
restriction. Any symbolic that is used must be defined previously
from a common symbol tape or by appearing in the Location Field

of an earlier instruction. Note the following:

1. The ORG command produces control information for
the loader.

2. The origin value initializes the location counter
that appears on the output listing.

3. An asterisk in column seven informs the loader not
to relocate instructions following ORG, even when
instructed to relocate at load time. This inhibition
is maintained until the next ORG or DCW statement is
attained.

The Location Field is not used with the ORG pseudo-op.

Because of the relative addressing characteristics of the GE/PAC
computer, instructions are assembled in the relative rather than .
the absolute form. They may be relocated at will during loading.
Therefore, the ORG command is often unnecessary and is infrequently
used.

BSS - BLOCK STORAGE RESERVATION

BSS is used to reserve or skip a block of memory. The size

of the block is designated in the Operand Field. Any symbolic

that is used must be defined previously from a common symbol

type or by appearing in the Location Field of an earlier instruction.

A symbol written in the Location Field is entered into the
assembler's table of symbolic equivalences. It is entered with the
location value corresponding to the first location of the reserved
block. This pseudo operation also generates control information
for use by the loader.

DCW - DRUM CONTROL WORD

DCW is primarily used to specify the starting drum location for
direct loading onto drum. Any symbolic that is used must be defined
previously from a common symbol tape or by appearing in the Location
Field of an earlier instruction. Two operand values may be used; the
first designates the drum starting address. The second specifies a

core starting address, equivalent to that required in ORG. The Leeation -———-

Field is not used with the DCW pseudo-op. Note the following:

-8-

1. DCW produces control information to be used by
the loader. This information denotes a drum load.

2, The optional second operand is used to initialize
the assembler location counter as with ORG. If &
drum load is required, a separate ORG cannot be
used because it generates core load control
information.

3. An asterisk in column seven informs the loader
not to relocate instructions following DCW, even
when instructed to relocate at load time. This
inhibition is maintained until the next ORG or
DCW is attained.

2.4 CON - CONSTANT

CON generates program constants. The five types are _
specified by an alphabetic character in column 12 as
illustrated on page seven.

2,4,1 Single Word Fixed Decimal Constant

The first operand, D, identifies the constant as a fixed
point decimal. The second operand presents the value of
the constant. A binary scale factor and a power of ten
exponent may be expressed in the constant. The binary
scale factor indicates the bit position of the blnary
point relative to the sign b1t in the word.

In the preceding examples two and three, the binary point
is assumed as indicated by the arrow:

. |
N N N N N N [A

HEEEE
345678091011 1213 14 15 16 17 18 19 20 21 22 23

ls

012
Two bit-numbering methods are presented on the GE/PAC Console.
Bits are numbered from left to right for scaling purposes. -
The binary point,in fixed point arithmetic, is spec1f1ed
relative to the sign (left most) bit. - _

Bits are numbered from right to left for instruction purposes.
There is a class of instructions which permit bit manipulation

-9

2.4.2

2.4.3

in the GE/PAC Computer. For this class of instructions,

.the bits are numbered from right to left i.e., bit zero

is the right-most bit of the A Register and bit twenty-
three is the sign bit.

The assembler will generate the binary equivalent for a
CON constant. A symbol appearing in the Location Field
of any constant will be entered in the assembler table

of symbolic equivalences. All references to the constant
may be made by that name.

Single Word Floating Point Decimal Constant
The first operand, F, in the following example, identifies

the constant as a floating decimal. The second operand
presents the value of the constant. The number following

~ the E indicates the power of ten exponent.

A single word floating point constant is formed with the
characteristic in the six bits following the sign bit and
the normalized mantissa in the rightmost seventeen bits
of a word.

2322212019181716151413121110 9 8 7 6 5 4 3 2 1 0

LUttt bbbl

A J/

\{f ﬁ\i\Magnltude of Mantissa

Characteristic (= binary expoment + 408)

Sign of Floating Point Number (0 = +)
Variable Length Alphanumeric Constant

The first operand, A, identifies the constant as an alpha-

numeric. The second operand presents the number of characters

of the constant (between 1 and 52). The third presents the
characters of the constant. The constants are translated to the
GE/PAC 6 bit code and packed four per word from left to right. N
The last word is completed with blanks if there are not four char-

.acters to fill it.

EXAMPLES'

GENERATE ONE W@RD--4TH CHAR. BLANK ;
»4,ABC (SAME AS ABQVE) ‘
,10,ABCDEFGHIJ GENERATES THREE WORDS

* - Revised 1/65 -10~-

2.4.,4 Single Word Octal Constant
The first operand, ¢, identifies the constant as an octal
constant. The second operand presents the value of the

cons tant.

Examples:

y ,77777777

The value of the second operand is converted to binary,
right justified, and entered in the program as a single
word constant.

2.4.5 Single Word General Constant

The first operand, G, identifies it as a general constant.
The second operand specifies the value of the constant.
The second operand may be any combination of parameters
defined as legal for the Operand Field. A decimal, a
symbolic, and an octal constant are illustrated here:

Examples:

1234 s efrs s 1ol

B
1213 14 1516 17 18 19 20 21 22 23 24 25 26 27 2 29 30 31 32 33 34 35 36 37 38 39 40 4) 42 43 44} 45 46 47 48 49150 51 52 53 S4
- e e —A—L———l————l

c./77777111

Decimal constants of this type must be integers. B and E
as used in the C@PN,D pseudo op are not allowed.

2.5 DCN - DOUBLE WORD CONSTANT
DCN is used to generate double word program constants. The

type of constant and its value is specified in the Operand
Field.

-11-

2.5.1

l2.5'2

s

Double Word Fixed Decimal

The first operand, D, identifies the constant as a fixed point decimal.
Bit zero of the Q-Register does not enter into the calculation of the
double register. The second operand presents the value of the constant.
A binary scale factor and a power of ten exponent may be expressed in
the constant. The binary point is relative to the sign bit in the first
word,

Examples:

DC]‘: 04‘B30

5

HipcNip, . 224B30E2

In the preceding examples two and three, the binary point
is assumed as indicated by the arrow:

0 23 24 3031 46
__ — Ny —
N N
word 1 word 2

Always zero
Double Word Floating Point Decimal Constant
The first operand, F, identifies the constant as a floating
decimal. The second operand presents the value of the

constant.

Examples:

oy % - - " >
Qa2 4 s sfils Hou!suguwulnonnznnszan‘ann:\:2:::uz_s:unanwauuﬂﬂtsau«u]sounszul

4 s 23205
LF.2,325E2
LIF.2325.E-1

The format of the double word floating constant is illustrated
below:

23 22 14 13 0 23 22 : 0
5| l o | e

ﬁ\\\ ‘k\~— (~Magnitude of Ma;;;;;;

binary
Characteristic (= exponent + 4008)

Sign of Floating Point Number (0 = +)

% - Revised 11/65 f4i;; ; -12-

2.5.3

Double Word Octal Constant

The first operand, §, identifies the constant as an octal con-/
stant. The value of the constant is presented in the second
operand, It is converted to binary, right justified, and
entered as a double word logical constant (48 bits). Bit zero
of the Q-Register-is considered as part of the comstruction
of the constant. !

2,6 GEN - GENERATE DUPLICATES .

A GEN instruction operand specifies the total number of

times the following instruction will appear. The operand

may be a combination of parameters defined as legal for

the Operand Field. Symbols used must be predefined.

.23 4 5 65718 9 10051213 14 .

% % %

* - Revised 11/65

IS EQUIVALENT TO

e AR T L G L B Gy T A By I A

-

L
NNBRE

CON
CON
CON:
caﬂ‘

poy
>

-

T e E
TN

£
Ve

I
el
v -

S M

The GEN instruction cannot be used to duplicate the fol=-
lowing pseudo-ops:

ORG EQL
BSS DEF
DCW : SLW
CON,A END
GEN LIB : e
IDN
~13-

2,7

2.8

2.8.1

EQL - ASSIGN A SYMBOLIC EQUIVALENCE

EQL is used to assign a value to a symbol during assembly.
This function is useful in sharing storage areas, establish-
ing communication between programs, and assigning parameter
values in a form adaptable for changes.

Enter the symbol into the Location Field and its equivalent
value into the Operand Field. The operand value may be any
combination of parameters described in Section One. There
is one restriction; symbols written in the Operand Field
must be previously defined.

DEF - DEFINE A NEW OPERATION)

DEF permits the programmer to define new operation codes
(i.e., codes that are not defined in the PAL language).

DEF is used for the following reasons:

1. An op-code may not exist for all GE/PAC Computers;
therefore it is not included in the basic PAL language.
The programmer may define the op-code when frequently
used in his systen’

2, Tables of parameters may consist of more than one value
packed within a word. In this case, it is more con-
venient to write the wvalues separtately and allow the
assembler to combine them into single words. Otherwise,
the values would have to be hand-assembled to one-word
constants and entered by using the CON pseudo-op. DEF
permits the programmer to define new operation codes
that will accept multiple values as separate operands,

A detailed procedure for using the DEF pseudo-op follows.

Op-Code Definition .

Machine operations (Op-Codes) are written with optional
operands separated by commas. The assembled instruction
results from combining the values of the operands with a
"base octal" associated with the op-code. The base octal
is twenty-four bits long.

-14=

2-For infrequently used operations, it may be easier to insert
the undefined instruction as an octal constant.

Each operand has two format characteristics:
- Operand width (specified as the largest octal
value that may be generated)
- Position (Where the value is placed in the
finished word)
Example: The machine op-code ADD is comprised of the
following:
- Base octal of 11000000
- Two operands

First operand value is placed into bits 14-0
(width 777778, position 0)

Second operand value (index register) is placed
into bits 17-15 (width 7, position 15)

When defining a new op-code, specify the base octal,
widths, and operand positions. Up to four operands are
normally alloweda(coded in columns 12-68). The assembler
then follows the instructions each time the new op-code is
encountered. The assembler itself uses this technique to
process op-codes which are permanently defined.

Defining a new op requires defining "audit codes." An
audit code specifies an operand width and position to

the assembler. Each audit code has a number associated
with it. Sixty-four audit codes are available for the
assembler. Audit code numbers 0-20 are pre-defined
(Refer to APPENDIX C). Codes 21-40 should be avoided by
the programmer; they are reserved for PAL and Monitor for
future op-code additions. Audit code 63 has special use
(Refer to para. 2.8.2). Therefore, only audit code ~
numbers 41-62 may be assigned freely by the programmer,
It is recommended that the programmer start with 62,
numbering in reverse.

Three steps in defining a new operation follow:
1. Determine width and position of all operands
2., Define audit codes for those widths and positions
3. Define the op-code by assigning to it the audit
codes from step 2 above.

The steps in detail:

1. For each operand of a new op-code, determine its width
and the position of its right-most bit (anchor bit).

-15-

3-Refer to para. 2.8.2 when more than four operands. are
required.

* - Revised 6/65

Example: Assume a new op-code, called AAA, were needed

a.

b.

with the following characteristics:
A base octal of 12034560

Two operands, whose values are placed in bits 17-~15
and bits 3-0. These operands are described as fol-
lows: Operand one has a width of three bits and an
anchor bit of 15. This width is expressed as the
largest number it can contain in octal (in this case,:
7 is the largest number 3 bits can contain). The
second operand has a width of four bits (/17) and an
anchor bit of zero.

Define audit codes for each operand as follows:

a. Write the audit code in columns one and two of
the Location Field

b. Write DEF in the Op Code Field

c. In the Operand Field, write two operands separated
by a comma. ‘The first is the width, expressed in
octal; the second is the anchor bit position.,

Example:

The coding for AAA above follows:

Location Op-Code Operand
62 DEF . /7,15
61 DEF /17,0
Audit Code Width Anchor Bit

3.

When all necessary audit codes-are-defined;—the op=code—"
itself may be defined. .

-Write the new operation mnemonic in columns one -
through three of the Location Field. ‘
-Write DEF in the Op Code Field.

-Write the base octal and audit codes, separated -
by commas, in the Statement Field.

-16=

ot

2.8.2

Mot nnd £ 1R

Example:

Location Op-Code Operand
AAA DEF /12034560,62,61
Mnemonic Base Octal First - Second

operand audit codes,
in the order the
operands will appear.

The new op-code may now be used (note that a symbolic‘
operand may be used):

Result 12 1413 4 5 6 (2
‘ 12 1313 4 5 6|0

2nd Operand

" lst “Operand

Different op-codes may share audit eodes if they have operands
which coincide exactly in width and position (i.e., the

programmer need define only one audit—code-—for-a-particular —
operand width and position, then that audit code may be used

freely for as many op-codes as desired).

Extra Operands Option -

When generating special tables of data, four operands may be
inadequate.

Example: A table of constants is desired where each word is
divided as follows; each section is able to take
on an independent value.

23122 21 2019|1817 16 1514 13|12|1110 9 8|7 6|5 4 3 2 1 0

RN || |

The normal technique for op-codes permits only four operands,
which is insufficient (the example requires 7 operands). The
use of DEF in the Extra Operands Option permits up to 12
operands. The steps for defining an op-code when using the
Extra Operands Option are nearly identical to those for a
normal op-code.

~17-

1, For each operand, determine its width and the position of
its right most bit.

Example:
width (no. of bits) largest number anchor bit
it can contain
1 1 23
4 178 19
6 17g 13
1 1 12
4 17 8
8 -
2 3 6
6 17g 0

2. Define audit codes for those positions and bit lengths

Example:
3 ",,3“.51“1xan?ﬂﬂfnznlzszﬂ‘nxnu:lszzsu;su:ﬂuakurg_ﬂujts“auulsos‘szssulsssssﬂisr

60 FDEF/1,23 o
59 . |J4DEE}/17,19
58 LDEF /77,13
57 . [MDEF#/1,12
56 'ﬁDEE§/17,8 -
55 | :"DEFﬁ' /3,6 .
54 51/77,0

- 3

Note: If an audit code, with identical width and anchor bit
for an earlier op-code is defined, it need not be
defined again, but may be used for this op-code.

3. When all necessary audit codes are defined, the op-code
itself is defined. To signal the Extra Operands Option,

place audit code 63 as the first audit code.

Example: (BBB is used as the mnemonic for this op-code).

1 234 56&"3! 9M@I)I)\AU!&W“IONZI22232‘252427329”3!32533!353617n}?l@lll?liu‘ls“ﬂ

| DEF|}/00000000,63,60,59,58,57 ,56 ,55, 54

f £ A !

NN

o Base Oct;f/ S) o \“)/

Audit codes, in the
Extra Operands Option same order the
operands will appear

-18-

4, TUsing the new mnemonic:

_%1,/17,/50,0,5,3,H

B0, 8. 1,0, 2. 1,4

o, 0o, 1, 0, 0, 0, O [
are assembled as:

23 22 21 20 19,18 17 16 15 14 13.12,11 10 9 8.7 6.5 43 2 1 0 o
1l]1 1 1 1J]1 o 1 0 0 o0]ojo 1To1f11lt11111} 77202777
0/]1 0 0 0/]0 0O 0 0 O 1|0/ 0 010/01j00O01 00 20021104
0]0 0 0 ofo 0 0o 0o o 1]o0f o 0o0ofoofo00000 00020000

2.8.3 General Rules -

1. DEF is available only for additions to the language,
not for substituting new definitions for permanently
defined PAL op-codes. -

2. Operands of the DEF instruction itself may be written
in decimal, octal, or symbolic. However, all symbols
must be previously defined. The usual rules for -
determining if operands are relative or absolute do
not apply. All operands are considered absolute.

3. Operands for newly defined op-codes follow the usual
rules for translation as absolute or relative symbolics
(Refer to page 23)

4, Audit codes must be numeric.

5. Audit codes 41-62 only may be used. (it is recommended
that the programmer start with 62 and number in reverse).

6. New op-codes and their audit codes and their audit code
definitions are a part of the "Common Symbol Tape,"
which may be preserved for subsequent assemblies.

7. The Extra Operands Option may be used for defining all
op-codes. However, normal use of DEF for op-codes re=-
requiring four or fewer operands will save space that
the assembler can use to store more symbols.

2.8.4 Error Conditions

1. When a mnemonic is used to define an operation that
has been permanently defined, the first definition
applies and the new definition will be flagged as a
location error (L). Permanently defined op-codes are
those that make up the PAL language codes.

2. When defining an op-code, if audit code 63 (Extra
Operands Option) is written anywhere except directly
after the base octal, an illegal operand error (I)
will occur. Definition of the op-code is terminated
at this point.

3. When defining an audit code, the numbers O through 20
will be flagged as a location error (L). They are
reserved for the assembler.

-19-

2.9 SLW - SLEW PRINTER PAGE

Upon encountering the SLW pseudo-op, the assembler positions
the paper to the top of the next page. Assemblers operating
on computers without output page control ignore the SLW
instruction.

2.10 END - END OF PROGRAM

END is used to terminate the assembly and must be the last
statement in a program. Upon encountering END, the assembler
generates control information for the loader.

An operand value may be specified to indicate the starting
point of the program. When this is done, the starting
address is also communicated to the loader.

2.11 MONITOR Pseudo-Ops

Pseudo-Ops exist to generate constants for MONITOR. They are
used to generate parameters for calling sequences-and format
words for input/output. These Pseudo-Ops are described in
the GE/PAC MONITOR Manual and are available only through the
MONITOR Common Symbol Tape. Refer to paragraph 2.8.3, item
#6, of page 19.

2.12 LOADER Pseudo-ops

Two pseudo-ops are required for the GE/PAC Loader to call
pre-assembled library routines and functions as continuous
parts of a program. One identifies the pre-assembled program,
routine, or function; another requests that such programs

be read from a library tape.

These pseudo-ops are used by FORTRAN. They may also be used
in any PAL language program to call standard pre-assembled
subroutines without including the subroutine as a symbolic
part of the program.

2.12.1 TIDENTIFY - IDN

IDN when used must be the first instruction of a program.

It identifies the program as a library subroutine which may
* be called by some other program. No ORG or DCW may appear

in a library subroutine. The identification is limited

to six alphanumerics, the first of which must be alphabetic.

Example: IDN SQRTF

The example states that the following program is SQRTIF

and may be called by another program.

The assembler generates two lines on the listing. The octals
are preceded by an "8" control frame and contain the six-bit
BCD representation of the identification requested. No
memory Ls-reserved by the assembler.

* Revised 11/65

-20-)

T

2,12,2 LIBRARY - LIB

LIB pseudo-ops are interpreted by the loader as a command
to call preassembled functions (identified by IDN) from a
library tape of standard pre-assembled routines. Any LIB
pseudo~op must immediately precede the END card for the
program,

Example: SQRTF LIB

This example states that the programmer requests the SQRTF
function to be included as an adjoining part of his program.
The assembler generates two lines on the listing. The octals
are preceded by a "9" control frame and contain the six-bit
BCD representation of the program identification requested.

% The loader, after encountering an LIB call, searches for the
specified library subroutine (SQRTF in above example). The
routine will have been identified with the IDN pseudo-op.
One memory location is reserved by the assembler for each
LIB pseudo-op. The loader fills in the relative branch to
the actual locations of the requested subroutines when they
are loaded into drum or core.

% - Revised 11/65 -21-

i

3.

]

3.1

PROCESSING & OUTPUT

GE/PAC uses a two-pass assembler. During the first pass,
the assembler examines the storage allocation and forms a
table of symbolic equivalences. FEach symbol appearing in
the Location Field is entered into the symbol table. Dur-
ing the second pass, the assembler completely forms each
instruction code. For each symbolic operation, the assem-~
bler searches a table of permanent operation codes to ac-
quire its corresponding base octal and audit codes for op~
erand treatment. The Operand Field is scanned, and equiv-
alent values are computed using the symbol table formed
during the first pass. The base octal and the operands are
then combined using the audit codes. The final step in

the assembly of each statement is the preparation of a line
of output for listing and direct loading.

ABSOLUTE AND RELATIVE VALUES

An operand address of an instruction which references memory
may be specified to be assembled absolute or relative. An
absolute address is the true location of the referenced
memory cell. A relative address is the difference between
the address of the referenced memory cell and the address of
the instruction. The result is negative when the referenced
address issmaller than the instruction's address.

An operand as written by the programmer can consist of omne
or a combination of the following terms:

An ébsolute label :> Absolute terms
An integer '

A relative label) ,

The * (present location):> Relative terms

Combinations are formed using add (+), subtract (-), multiply
(*), and divide (/) operators (Refer to para. 1.3).

An operand is assembled relative if any relative term (a
relative label or the asterisk) appears in the combination of
terms. An operand is assembled absolute when no relative
term appears.

A label usually represents an address in memory. To reference

an address absolute, the label associated with that address

must be specified as absolute. Otherwise, it is assumed to

be relative by the assembler. A label specified as Common to
more than one program (Refer to para. 3.2) is assembled as an
absolute label in all programs in which it is referenced.

Two additional methods to specify a label absolute are as follows:

~

-23- . -

3.2

3.3

3.4

1. Place a dash in column seven of the line of coding where
the label appears in the Location Field.

absolute

Example: ALPHA -LDA BETA ALPHA will be referenced

2. Use the EQL pseudo-op to equate the label to an absolute—
operand.

Example: GAMMA EQL ALPHA+2 Both ALPHA and 2 are ab-
solute. Therefore, the
operand is absolute and
GAMMA will be considered
absolute.

COMMON SYMBOLS

A label is specified to be Common by placing an asterisk (¥*) in
column seven of the line of coding where the label appears in the
Location Field. Each Common label and its value is available
through a common symbol tape to all other programs in a system.

ASSEMBLER VARIATIONS

Variations in the capabilities of language translators originate
from the different operating environment of each. For example,
the memory available affects the size of the symbol table. It is
important that the characteristics of each translator be examined
prior to its use.

OUTPUT

Each translator of the assembly language possesses its own output
characteristics. However, all tramslators can produce the two
basic output requirements:

- an assembly listing, which includes the original symbolic
information plus the assembled instructions in the relative
and absolute forms. The output listing will also contain
error flags. They are defined in Appendix B.

- a punched paper tape for direct loading in the GE/PAC system.

2l

CHARACTER CODE TRANSLATION

The list of characters in Table I comprises
the total character set associated with the
assembler language. The six bit octal asso-
ciated with each character represents the
equivalent code produced by the paper tape
preparation device for input. The six bit
octal also represents the code produced
when using the alphanumeric constant.

The additional characters listed in Table II
are legal in the Comment Field. Table III
presents functions that have meaning in paper
tape versions of the assembler, but are not
part of the Assembler Language.

TABLE II
CHARACTER TYPER
(= 35)
) = 55
ﬁ = 75
= 76
$ =) 53 1
TABLE 111 CHARACTER TYPER
carriage return = 100
tab = 140 °
punch on = 162
punch off = lo4
print red = 161
print black = 160
delete = 177
stop = 170

APPENDIX A

TABLE I

CHARACTER

TYPER

<CHVOPFOHYZRrFRUHIOTONEOOW® >

M K=

wo~NoOTULPWNDEFO

1+

" "8pace

dog o w R nouou wun o nn oo n Illllll%llllllllllllllllllllIIIIIIII!.IIIII!IIIIIIIIII

21
22
23
24
25
26
27
30
31
41
42
43
44
45
46
47
50
51
62
63
64
65 .
66—
67
70
71

00
01
02
03
04
05
06
07
10
11

\

1 60
52
61
54
33
E
120

APPENDIX B

The assembler performs validity tests on each instruction.
When errors or suspected errors are detected, one of the following indicators
will appear on the output listing.

ERROR FLAGS

FLAG DEFINITION CAUSE
L Location Field Error 1. First. character of the label is not alphabetic,
(See Appendix A, Table I).
2., Using the DEF pseudo-op when:

- the mnemonic assigned is a GE/PAC machine
operation. '

- requesting '"Extra Operands" definition when
mnemonic has been previously defined as machine-
typed operation.

- there is an illegal audit code number.

3. Location Field is blank when a symbol is required.
4. Location Field contains a symbol when not allowed.
Q Operation Field Error 1. The Op-code not part of the language or was not
added to the table through the DEF pseudo~op. Thi:
often occurs when definition was attempted but was
illegal. Consequently, it was not added to the
operation table. 2. This op-code cannot be GENerat
I Illegal Operand 1. Blank operand when an operand is required.
2. Operand not blank when it should have been.
3. One or more required operands missing+ S
4. Too many operands.
5. Operand value too large.
6. Negative operand value in an instruction that will
not accept one... 7. Illegal constant
X Index Word Error 1. 1Index word 1 or 2 specified.
2. Required index missing.- -~
3. Specified index word is greater than seven.
U Undefined Symbol Occurs only when a symbol appears in the Operand Field
and: 1
1. It never appeared in the Location Field or on the
Common Symbol Tape.
2., It appeared in the Location Field, but the symbol
table was full at that time.
C Illegal Character A character, not associated with the assembler languag
was found in one of the following fields:
1. ZLocation
2. Op-Code
3. Operand
(Refer to Appendix A, Table II)
M Multiply~defined Symbol 1. Symbol in Location Field was flagged because:

- it has appeared in the same field on a previous
record

- it appeared on the requested EQL tape with a
value unequal to the one being assigned.

- it was saved from a previous assembly with a
value unequal to the one being assigned.

2. Any record which references a multiply~-defined
symbol in the Operand Field will also be flagged.
2 Second Pass definition
of symbol different
from First Pass
R Relative Operand Error Operand value was relative and should be absolute.
F Tables full

1 Hr -

APPENDIX C

Each machine instruction may have operand values. The assembler has a
list of operand-associated numbers called audit codes. These numbers
uniquely identify individual operand requirements. Two basic character-
istics of audit codes are: the operand width expressed as a mask and an
anchor position.

AUDIT CODES

A maximum of sixty-four audit codes are available. Audit codes 0O through
40 are reserved for the assembler and Monitor; 41 through 62 are avail-
able for programmer definition. The first twenty audit codes are de-
fined and listed below.

OPERAND ERROR~FLAG CONDITIONS

AUDIT |[OPERAND | ANCHOR Not
x*
NUMBER | WIDTH | POSITION | STECIAL REMARKS Zero | Blani|niane] 2 |1 |
0 0’ 0 No operand ac- I
cepted
1 14 0 Full operand. I

May be absolute
or relative,

2 3 15 For instructions |R X X lx
with optional
Tag Field, Must
be absolute if

not blank

3 14 0 Full operand. R I
Must be absolute,

4 12 0 Must be absolute., |[R T

5 24 0 Pass without I
audit (any value
accepted) .

6 3 15 For instructions |R I. 1 XX
requiring a tag.
Must be absolute.

7 5 0 K bits. Must be |R I
absolute.)

8 14 0 Value will be R : I
negated (TXH). :
Must be absolute.

9 23 0 Ogerand may be I
absolute or
relative (DEL)

10 3 15 For STX instruc- R X I X

tion, .
11 14 0 | Operand may be I

relative or ab-
solute and may be
negative (INX)

12 5 15 Absolute only R I
13 1 22 Absolute only R I
14 1 21 Absolute only R I
15 1 20 Absolute only R 1
16 1 23 Absolute only R I
17 23 0 Absolute only R I

For STR-type in- R . T
18 3 15 struction

“Absolute only; R I
19 12 0 may be negative

* - Revised 3/66 - - 27

APPENDIX D

MACHINE OPERATIONS

MNEMONIC N AME
ABL APPEND ITEM TO BEGINNING OF LIST
ABT ABORT DEVICE D's OPERATION :
ACT ACTIVATEDEVICE D's INTERRUPT
ADD ADD
ADO ADD ONE TO BIT K
AEL APPEND ITEM TO END OF LIST
AFA * ADD FIELD TO A
"AKA ADD K TO A
ANA AND TO A
BRU BRANCH UNCONDITIONALLY
BTR BRANCH IF TSTF RESET
BTS BRANCH IF TSTF SET
CBK CHANGE BIT K
CLO COUNT LEAST SIGNIFICANT ONES
cLz COUNT LEAST SIGNIFICANT ZEROS
cMO COUNT MOST SIGNIFICANT ONES
CMZ COUNT MOST SIGNIFICANT ZEROS
CPL COMPLEMENT A
DAD DOUBLE ADD
DLA (SHIFT) DOUBLE LEFT ARITHMETIC
DLD DOUBLE LENGTH LOAD
DLL (SHIFT) DOUBLE LEFT LOGICAL
DMT DECREMENT MEMORY AND TEST
DRA (SHIFT) DOUBLE RIGHT ARITHMETIC
DRC (SHIFT) DOUBLE RIGHT CIRCULAR
DRL (SHIFT) DOUBLE RIGHT LOGICAL
DST DOUBLE LENGTH STORE
DSU DOUBLE SUBTRACT
DVD DIVIDE
ERA EXCLUSIVE OR TO A
FAD FLOATING ADD
FDV FLOATING DIVIDE
FIX FIX FLOATING NUMBER
FLO FLOAT FIXED NUMBER
FMP FLOATING MULTIPLY
FsuU FLOATING SUBTRACT
TAI INHIBIT AUTOMATIC INTERRUPT
I1BK ISOLATE BIT K .
IDL % INPUT FROM DEVICE TO LIST
IN INPUT FROM DEVICE D
INX INCREMENT X
JND JUMP IF NO DEMAND

-28~

MNEMONIC

N AME
INE JUMP IF DEVICE D NOT IN ERROR"
INO JUMP 1IF NO OVERFLOW
JNP JUMP IF NO PARITY ERROR
JNR JUMP IF DEVICE D NOT READY
LBM LOAD BIT MASK
LDA LOAD THE A REGISTER
LDB * LOAD HIGHSPEED 1/0 BUFFER
LDF * LOAD FIELD
LDI LOAD INDIRECT
LDK LOAD A WITH K
LDO LOAD ONE INTO
LDP LOAD PLACE
LDQ LOAD THE Q REGISTER -
LDR * LOAD REGISTERS
LDX LOAD X WORD
LDZ LOAD ZEROS INTO A
LMO LOAD MINUS ONE
LPR LOAD PLACE AND RESTORE
LXC LOAD X WITH COUNT
LXK LOAD X WITH K
MAQ MOVE A TO Q
MPY MULTIPLY
NEG NEGATE
NOP NO OPERATION
oDL ¥ OUTPUT FROM DEVICE TO LIST
0OM OPERATE ON MEMORY
OPR OPERATE DEVICE D
ORA OR TO A
ouT OUTPUT TO DEVICE D
PAI PERMIT AUTOMATIC INTERRUPT
RBK RESET BIT K
RBL REMOVE BEGINNING ITEM FROM LIST
RCS READ CONSOLE SWITCHES
REL REMOVE ENDING ITEM FROM LIST
REV RESET TSTF IF BIT K IS EVEN
RNZ RESET TSTF IF A IS NONZERO
ROD RESET TSTF IF BIT K IS ODD
RPT % REPEAT INSTRUCTION IN LOCATION Y
RST RESET TSTF
SBK SET BIT K
SEL SELECT DEVICE D
SET SET TSTF
SEV SET TSTF IF BIT K IS EVEN
. SFA * SUBTRACT FIELD FROM A
SKA SUBTRACT K FROM A
SLA SHIFT LEFT ARITHMETIC
SLL

SHIFT LEFT LOGICAL

-29-

MNEMONIC N AME
SNZ SET TSTF IF A IS NONZERO
50D SET TSTF IF BIT K IS ODD
SPB SAVE PLACE AND BRANCH
SRA SHIFT RIGHT ARITHMETIC
SRC SHIFT RIGHT CIRCULAR S
SRL SHIFT RIGHT LOGICAL
SSA SET STALL ALARM
STA STORE CONTENTS OF A
STB # STORE HIGHSPEED 1/0 BUFFER
STF % STORE FIELD
STI STORE INDIRECT
STQ STORE CONTENTS OF Q
STR # STORE REGISTERS
STX STORE X
SUB SUBTRACT
TER TEST EVEN AND RESET BIT K
“TES TEST EVEN AND SET BIT K
TEV TEST BIT K EVEN

TFE # TEST FIELD EQUAL

TFL % TEST FIELD LESS

TNM TEST NOT MINUS ONE

TNZ TEST A NONZERO

TOD TEST BIT K ODD

TOR TEST ODD AND RESET BIT K
TOS TEST ODD AND SET BIT K
TSC TEST AND SHIFT CIRCULAR
TXH _ TEST X HIGH OR EQUAL

TZC TEST ZERO AND COMPLEMENT
TZE TEST A ZERO

XEC EXECUTE

% - GE/PAC 4050 and 4060 only

-30-

APPENDIX

BINARY CARD FORMAT

Data Card

Column 1, row 12 -0 if Core, 1 if Drum or Disc

Column 1, row 11 - 0 if Absolute, 1 if Relocatable

Columm 1, rows 0=5 - Number of words (n) n<32

Column 1, rows 6-9 - Checksum, 4 most significant bits

Column 2 - Checksum, 12 least significant bits

Column 3, row 12 -0

Column 3, rows 11-9 - Starting address, 11 most significant bits
Column 4 - Starting address, 12 least significant bits

Starting at column 5 are 2n columns containing n words of data, 12 bits .
in each column, the most significant half first.

Additional groups of starting addresses (same format as columns 1-4) and
data may follow the first group if there is sufficient room before column
69.

' The checksum is formed by separating each data word and the starting
address into 2 parts, each 12 bits long. Each half if added to the 16
bit checksum. Overflow out of the 16th bit is ignored. -

Transfer (END) Card

Column 1, rows 12-5 -0

Column 1, rows 6-9 - Checksum, 4 most significant bits
Column 2 - Checksum, 12 most significant bits
Column 3 - Transfer address, first half

Column 4 - Transfer address, second half

A blank card is considered a TRA card, no transfer.

Identification Card (IDN)

Columns 1, 2 -0

Column 3 - 4031, (reading top to bottom =- I)

Column 4 - 2445 (reading top to bottom DN)

Columns 5, 6 - 24 bits representing the first IDN word
Columns 7, 8 - 24 bits representing the second IDN word

There is no checksum

LIB Card

Columns 1, 2 -0

Column 3 - 40438(reading top to bottom -L)

Column &4 - 3122_ (reading top to bottom IB)

Columns 5, 6 - 24 bits representing the first LIB word
Columns 7, 8 - 24 bits representing the second LIB word

There is no checksum

~31-

E

-Zg-

1 = Core

0 = Drum
1= Relocatablé/
0 = Absolute

Number of
Words
(n) n<32

APPENDIX E Ficure |

&(/l = IDN or LIB

3
//;1 GLOBE NO. 1 STANDARD FORM 5081

55 56 57 £3 58 €0 61 62 63 64 65 65 67 6883

2n COLUMNS CONTAINING n WORDS OF DATA K
N~ i SEQ. #

Y|
00000000000000006000000000000000000000000000000060000000060000600000D00 .UUUDB.
34156 78 9 10 111213141516 1718 192021 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 45 47 48 49 50 51 52 53 54 55 56 57 58 5 60 61 62 63 64 65 66 67 68i53(70 7577787980|
B R ! f1111
2/?'22 22222
3 1};/,333 33333

B

g‘A444444444444444444445,4444444444444444‘4444444444444444444444444444 44444
,5;/5(55 55535
§;65S6868888668586666666885886888666666,658666656686663858666655865688 56666
‘1’2?777?777 171111
.?/,38838 88888
$81999988999999999699989999599999859999599999906259599599995995599999303'9 99889
415 67 8 S 1011 121314151617181920212223242526272823302313233 3435 3 3733334041 4243 444545 47 434350 51 5257 B4 7071 1213 T4 IS TT B IS B

«\Starting address (Core, Drum or Disc) /———'I*——~\

Checksum (16 bits) of the next 2n+2 columns

OCTAL LOAD TAPE FORMAT (Example)

APPENDIX F
ONE WORD OF INFORMATION
- N N
CHANNEL CONTROL, DATA FRAMES SPACE OR
NUMBERS FRAME 1 2 3 4 5 6 7 8 CAR, RET. OCTAL CODE
§———f © o ‘Hundreds Position
7 o) Tens Position 4
6 o} Tens Position 2
5 o o o o Parity
4 o Tens Position 1
AR AR PR AT SRR AR SR Sprocket Feed
3 ;g o & o o ———7Units Position &
g—""1o o 0 o o " Units Position 2
1 Octal 3 4 5 6 7 1 2 4 CR Units Position 1
Data
BI-OCTAL TAPE FORMAT (Example)
CHANNEL
NUMBERS ONE WORD Og\?NFORMATION BI-OCTAL CODE
8 /"CONTROL DATA FRAMES Not Used
7\\\\\\ FRAME ”\% 1 2 3 4 Tens Position 4
6 NS o o o Tens Position 2
0
5 o o) o o Parity Indicator
4 8 © 8 © o . Tens Position 1
e e e st At et s e ot e e e Sprocket Feed
3 jg 8 o o Units Position 4
2 1o o L0 Units Position 2
1= Bi-Octal 77 42 76 25 T Units Position 1
Data .
Note: All characters have odd parity
PAL BI-OCTAL
INFORMATION TYPE PRINTOUT CONTROL FRAME
Data Blank 00
Starting Address (ORG) 1 01
Checksum .02
Skip (BSS) 3 03
IDN 8 10
LIB 9 11
END * 12
Drum Starting Add. (DCW) @ (See Note)
Note: All load tape information is in bi-octal format except a drum starting

address.
same format as an octal tape:

The .drum starting address appears on the bi-octal tape in the

a (14), Control Code is followed by

eight octal frames, followed by a carfiage return (100)8.

«33 -

GE/PAC 4000,

L-22
ﬁ04mproLt’an6L2 +j __,L,_i..a —_—

— @2

PAL45 = PAL=-225 Assembler

Library Control No. YPFO5XRZ

February 1966

Proprietary Information of the
General Electric Company

In the development of the software described, the

General Electric Company reserves the right to modify
the design for reasons of improved performance and

operational flexibility.

Prograwmm’ug Library
General Electric Cowpany
Process Computer Section
P. 0. Box 2918

Phoenix, Arizona - 85002

Library Control No., YPFO5XR1

IDENTIFICATION

PAL4S5 - PAL-225 Assembler

PURPOSE

To provide complete PAL assembly capability on the GE-225.

OBJECTIVES
1. To assemble symbolic programi{s) punched on cards in the PAL format.
2. To print an assembly listing.
3. To produce a binary card load deck in a format acceptable to:
a. The 225 GE/PAC Simulator
b. Card equipped GE/PAC computers
c. The 225 Card to Paper Tape Translator for paper tape generation,
4, To save the common symbols for subsequent assemblies when selected as a

console switch option.

SYSTEM COMMUNICATION

Console Operation - GE 225

1. Place a blank tape on Tape Unit 4.

If a Common Symbol Tape is required, place it on Tape Unit 5.
Place a blank tape on Tape Unit 6 to write a Symbol Tape.

2, Place the PAL45 binary card deck and the symbolic program(s) deck(s)
to be assembled in the following order in the card reader,

Program decks follow the PAL45 deck with the "END" card of one program
followed by the first card of the next program. Place three (400 CPM

Reader) or two (High Speed Card Reader) blank cards at the end of the

last deck,

3 Blank Cards for 400 CPM Reader
or 2 Blank Cards for High Speed Card Reader

AN

3 Blank Cardé

<. '
o §~ /Eka 2 — Decks to be assembled

3 Deck 1 &

" PAL4S Deck
| NRL Loader

v Zero Memory
- Card

Library Control No., YPFO5XR1

Console Operation - contd

Set the Card Punch ready.
Clear Console Switches.

Select options with the following switch settings:

Switch 17 - UP = Do not use Common Symbol Tape.

DOWN = Use Common Symbol Tape.

18 - UP = Clear Common Symbol Table between assemblies.,
DOWN = Save Common Symbols between assemblies,

19 - UP = Do not write a Common Symbol Tape.
DOWN =

Write a Common Symbol Tape,
Press the following console buttons in the order listed:

a, Reset Error

b. Reset P

c. Read Card

d. Manual to Automatic
e, Start

Contents of the console switches 17-19 are typed for operator
verification., (0 = UP, 1 = DOWN).

Example: 100 = Switch 17 only

If incorrect, reset switches to the correct setting and
change the status of switch 0. Return to Step 7.

Change the status of Switch O to start the assembly of the
first program.,

To process another series of programs after "END JOB" is typed:
a. Position the deck to be assembled in the card reader,
b. Set switches 17-19 to select options.,

c. Change status of Switch O.
d. Return to Step 7.

(2)

Library Control No. YPFO5XR1l

PROGRAM COMMUNICATION

Operating Delays

Under certain conditions PAL45 must communicate with the operator.
A message is typed and the program delays for operator action. To
continue, change the status of switch O.

MESSAGE CONDITION OPERATOR ACTION/RECOVERY PROCEDURE

PUT BLANK ON 6 The program is Verify that a blank reel of tape
ready to write is on tape 6 of controller 1,
a Common Symbol Change status of switch O to con-
Tape tinue,

PUT SYM TAPE ON 5 The program is Place symbol tape on Tape 5 of
ready to read a controller 1. Change status of
Common Symbol switch O to continue.
Tape.

END JOB All assemblies See Step 9, Console Operation,
are completed to process another series of

programs.

HLT PR Printer not ready Restore the indicated

HLT TP Tape Controller peripheral to ready status.
not ready Change status of switch O

HLT CR Reader not ready to contine,

HLT CP Punch not ready

ERR PR Print Error Line is printed again.

ERR TP Tape Error The tape is repositioned by the

program and the tape operation
is repeated.

ERR CR Error detected Position card in error ahead of

while reading a remaining cards. Restore the
card or a card reader to ready status. Change
jam occurred. switch O to continue.

ALM CR Last Card in This typeout followed by HLT CR
hopper has been signifies that the feed hopper
read is empty. Place remainder of

deck in the reader. Restore the
reader to ready status. Change
switch 0 to continue,

Language Restrictions

PAL45 accepts without restrictions the PAL language described in
the Process Assembler Language Manual.

Addition

(3)

Library Control No. YPFO5XRI1

GENERAL INFORMATION

Any number of programs may be assembled at one time by PAL45. Symbolic
program card deck(s), punched in the PAL format, as well as an optional
system Common Symbol tape are acceptable input. Each program to be
assembled requires two passes to complete assembling, listing, and
punching a binary load deck.

Pass 1 forms a table of all symbols appearing in the location field
together with their values. A symbolic magnetic tape is produced
for the second pass input.

Pass 2 lists the assembled data and the contents of the symbolic cards.
Appendix A illustrates the Program Listing Format. A binary card deck
is punched to be used for loading into the 225 GE/PAC Sinulator or
card-equipped GE/PAC computers. CPT42, a separate program available
for GE-225 computers which have paper tape punches, translates cards

to paper tape for GE/PAC computers lacking card readers. (YPFO7 - CPu42
Binary Card to Paper Tape Translator/225.)

PAL45 saves the common symbols after completion of the second pass for
optional use by the next program. Processing continues automatically
with the assembly of the next program in the reader. A blank card
following an "END" card signals that the last program of the deck has
been assembied. The Comrion Sywbol tape is written at this time if
that option has been selected.

Any combination of the following options may be specified by console
switch settings:

1, Switch 17 - a Common Symbol tape is read in for use by the
first program and the common symbols are saved for all
programs which follow in the deck.

2., Switch 18 - all Common Symbols are saved for all the programs
following in the deck. (Differs from switch 17 only in that
no Common Symbol tape is read in.)

3. Switch 19 - a Common Symbol tape is written after the last
assembly.

Note: when Common Symbols from other than the last
program in the deck are to be saved, use options 2

and 3 together,

The Binary Card format and examples of punched cards for PAL45 are
contained in Appendix B,

The table storage in PAL45 is set to hold up to 800 symbols and
defined op-codes.

(4)

Library Control No. YPFO5XR1

Input

Symbolic program card deck(s) punched in the PAL format.
System Common Symbol (Magnetic) Tape (optional).

Output

Assembly listing on the high speed printer.
Binary card load deck.

Hardware

8K Core

Card Reader and Punch
Maguetic Tape on ConlLroller 1
High Speed Printer

REFERENCES

YPAUL LDR41 GE/PAC V.mader Package

YPEO4 SIMO3 GE/PiC Simsdscov om the GE-225

YPFOl PAL4l PAL/412 Assembler

YPFO7 CPT42 DBinar; Card to Paper Tape Translator/225
YPGl2 GE/PAC 4000 ¥rocess Assenmbler Language (PAL) Manual

(5)

m‘[—v—

APPENDIX A

PROGRAM LISTING FORMAT

Library Contrel Ne. YPFOS5X

Loca- Derelativized True Symbolic Card Contents I.D. Field
tion Equivalent Contents Columns 1 - 68 Cols. 70 - 80

160001000 100001000 *PRG 1000 60002900010
001000 00004000 00004000 ALPHA LDA /4000 COMMENTS MAY 60002000020
001001 32401006 32401006 STA BETA,4 APPEAR AFTER 600062900030
001002 26300001 26300001 INX 1,3 THE FIRST 60002900040
001003 243373373 243377173 DiE 5,3 BLANK 60002900050
001004 34001000 34077774 BTS ALPHA 60002900060
001005 14001005 14040000 O BRU GAMMA 60002900070
001006 500000005 500000005 BETA *BSS 5 60002900080

140004000 140004000 PRC /4000 60002900090

Note that BETA is an absolute label - reterence to it in location 1001 is absolute
in both the Teue and Derelativized Fg dfvalent colums.

ALPHA is relacive; cherelore its veference in
True Contents coluam, absolite in tte Derelar:

TAMMA 1s wadefined.

Noi«
gmiJted feoom
WD L rj "o ﬁLn_' ol
valoe e

TagUruLet U

The seC ot

¢l 50 Teme o
A

1sadiag,
i3 letrt blank ¢ 30
ader 1) accept. as = 1ol oo
LCons3ie 8. Jies

[V S N S

whe ervor flag J apresrs.

locgrion 1004 {is relative in the
vezed Equivalents columm.

. (RAC AD ASTer Sk AupRATSs In oL, o6 seves o7 e fiose ORL vecstd while iv s

An @R. w - 20 s

= Sh .0 colinn 7 oproduces a loadey-comivol
© 1ader Jrom accep. .ag a relocav.on

Lene produced [sign b i 18 ser) w.ll
a0 val. e whaleyer was catered thro.ogi (ho

Library Control No. YPFO5XR1

APPENDIX B - BINARY CARD FORMAT

Data Card

Column 1, row 12
Column 1, row 11
Column 1, rows 0-5
Column 1, rows 6-9
Column 2

Column 3, row 12
Column 3, rows 11-9
Column 4

0 if Core, 1 if Drum or Disc

0 if Absolute, 1 if Relocatable

Number of words (n) n.32

Checksum, 4 most significant bits

Checksum, 12 least significant bits

0

Starting address, 11 most significant bits
Starting address, 12 least significant bits

Starting at column 5 arr 2n columns containing n words of data, 12 bits in
each column, the most significant half first.

Additional groups of starting addresses (same format as columns 1-4) and
data may follow the first group if there is sufficient room before column

69.

The checksum is formed by separating each data word and the starting address
Each half i. added to the 16 bit checksum.
Overflow out of the 16th bit is ignored.

into 2 parts, each 12 bits long.

Transfer (END) Card

Column 1, rows 12-5

Column 1, rows 6~9 and’}
Column 2

Column 3

Column 4

0

Checksum
Transfer address, first half
Transfer address, second half

A blank card is considered a dummy transfer card; no transfer to the routine,

Identification Card (IDN)

Columns 1,2
Column 3
Column 4
Columns 5, 6
Columns 7, 8

There is no checksum on the card.

LIB Card

Columns 1, 2
Column 3
Column 4
Columns 5, 6
Columns 7, 8
Columns 9, 10

There is no checksum on the card,

ev, 10-65

0
4031, reading top to bottom (-I)
2445 reading top to bottom (DN)

- 24 bits representing the first IDN word
- 24 bits representing the second IDN word

0
4043, reading top to bottom (-L)
- 3122_ reading top to bottom(IB)

24 bitsszlocation of the LIB call
24 bits representing the first LIB word
24 bits representing the second LIB word

long.

1
0

=

1= Relocatable
0 = Absolute

Number o
Word

(n)rlé_%;

Core _
Drum

A

g
TQ&

Library Control No. YPFO5X

APPENDIX B - BINARY CARD FORMAT -

= IDN or LIB

‘()1

LS Sy
.&' N vereowrod
\

o oarr od

2n COLUMNS CONTAINING n WORDS OF DATA

l

lJW!l!ll!liiiill}llllilllilllllll!ltl!%l!!%li!l!lill!i%l%!!I!I?)lli!
2;l§2'¢;2 2222222222222222222 ? 222222222222222222251222222222222222222222
3&339333
ﬁﬂ4ﬁ4144444444444444444‘44‘4(4444!(!&4444444d!‘lit&(l#ll44§44444444%
ﬂﬁﬁ%ﬁﬁﬁ55555555555555555555555355555535
;b

i
]

o
Y

5875533993333 33638553¢8583¢8¢233%

Wi

iﬁkBSSSSGSESSBSSSSSSSSGGSGSSSSES&QESSGESiSSiSGEESGSEEESS%S%SSS%EE&

TITI1111 0000000173000 30 0300031302130 8000201111111 1

’

11

8ER8386808686R23888B8838283858834
95]3689
A

o™~

DeEEddetaLidEacesagbandpeigtesd

9 §59
¢ s 8L
tibf N v

8999939959999995596§5
MUUBRIBRANDOINERZANL
. STANDARD FORW 13

FQ&QO0ﬁ@ﬂﬂﬂﬂﬁﬁO@OOOﬂRﬂﬂﬂﬂOﬂﬁﬁﬁ8&695S33QBi“”53§ﬁ030050§§0§§ﬁ9§00BQQSC'6

)'I 3 e S 8§ 18 IRNRIKBBIRBANVBUBINAAAYIIKEXE L BF QI CCRELKTCHENL T TLUHNEISHEREREHE QRS ﬁqﬂ

1

0
3
!
s

]
8

'ﬁ

12

414
.ﬁ

!

|

?ROJESEQ,#

PROG
?

ﬁeﬂﬁ%ﬂﬂﬂﬂﬂ
nunnse s

i!lliﬁili!

g
1
222222222¢

b
313333333333
1
1444884444
5555555555

EGEﬁ%SkSSSS

AARRRRRERE:

ﬁaassssss;s

5939 9

TN

3399
} ~

Larns

:

Starting address (Core, Drum or Disc)

& is used

Checksum (16 bits) of the next 2n-2 columans

Overflow out of the 16th bit is ignored.

B-2

for PAL
Additional groups of starting addresses (same format as columns 1-4) and data may follow the first group
if there is sufficient room before column 69.

The checksum is formed by separating each data word and the starting address into two parts, each 12 bits
Each half is added to the 16 bit checksum.

Library Control No., YPFO05X

APPENDIX B - Binary Card Format, contd.
Data Caxd
Column 1, row 12 - 6 if Cere, 1 if Drum or Disc
Column 1, row 11 - 0 if Absolute, 1 if Relocatable
Column 1, rows 0=5 - Number of words (n) ng32
Column 1, rows 6-9 - Checksum, 4 most significant bits
Colum 2) -~ Checksum, 12 least significant bits
Column 3, row 12 -0
Column 3, rows l1-9 - Starting address, 11l most significant bits
Column 4 ~ Starting address, 12 least significant bits

Starting at column 5 are 2n columns containing n words of data, 12 bits
in each column, the most significant half first.

Additional groups of starting addresses (same format as columns l-4) and
data may follow the fixrst group if there is sufficient room before column
69.

The checksum is formed by separating each data word and the starting
address into two parts, each L2 bits long. Each half is added to the
16 bit checksum. Overflow out of the 1l6th bit is ignored.

WHNROWDRIBRANNNUNIRNIRANNNNVAART BRBRQOHORTBAWNIIBMUNRI NI RITA N IR

i

080§0000000000060000000600000000000000080000000000000000000060000000000000000FFKE
12243804000 (RN BRI
RS RN R R R R R R R RN E N R R R RN R RN R R RN R RN R R RN R RN R R R R RN RN RR RN R RN R RN R R

0
®
1
222122222222222222222
33333333333333333333333333333331333{333’
G4 ddddedddaadiataaqaiadiddtadiaitdaaqnsiaqinaqtnastdaitaqqqnsqarudadstadsataq
355‘555555555555555555555555555555555&55
3686866668566835688658685658685565GSG68856885686856565566868656566885%8858666855
75177!771777177777?777717717777771717717i777777717777777777777777777777777771777
SFojgescccsssgctonssnayaasssusenssesgesnseaasessssaggssogeonscyscsasssesassosaes
86000098080008988969090999996999999999999998999999999950999999999898999999698989683

L2 AN HIUNUR I NRR RN NS RN ARBNRDN RNV UNGHQUHGNIUANHNNUINNURNIROUOBIRRINNINNINTIREN
0RO BOB e, A

- Figure 3 - EXAMPLE OF DATA CARD

Core, relocatable starting address
Card contdains 1 data woxrd

Checksum is 001006g

Starting address is 1002g

Data woxrd is 00000004

- B-3 -

Library Control No, YPFOSX\.
APPENDIX B - Binary Card Format, contd.

Transfer (END) Card

Column 1, rows 12-5 -0

Column L, rows 6-9 and Column 2 - Checksum

Column 3 Transfer address, first half —
Column & Transfer address, second half

3

A blank card is considered a TRA card ~ no transfer.

i 8
0000000000000000000000006008BHERORLBREO
13263 ¢ 48NN RIFBUBBATIHNDAT AN IV NN W BOAODANWD QI WNRUMEINDRIUBNBINNNBRINGINNIINDINNNRTIIEIN
RRRERERRRR R R R R R R R RN R R R R R R RN R R R R R R RN R R RN RN R R R R R R 2 R R R R AR R R R R R AR R RERERRE R

2222222222222222272222222222212222127272222zzz2?2zrizzzgg}gg}uggglgzzzzzr221;12@;“A
333333233333333333332332333333333333
A h A b i Ahdhad i adad i adah A d i aa At e taedanaaiddiadiibaatiadndd
55555sssssssssssssssssssssss55sssssss&ss5555555sssnsssssssssssssssssss5555555551,,
6 66666666666666606666666606668665§66065
7717771777777117177111:71171117711111771171777171771177177777f711777717773177171‘
szylasaaaatssaaaa3aasssesaaasssaaasssaaanasssasssasasassaaaaaasaazsnasc;aasnaaaa,
999985909999899809990959999999899999999999909899999999839999899999990998989538098

12340078 INNUNUBUIUNNIDBNABATBRBENVD BB URNNTOUEETEIUIEVNUBRIURIRNRUURBVRUNI DU NT RS
_BR0 808 ' .

Figure 4 - EXAMPLE OF TRANSFER CARD

Checksum is 002000g
Transfer starting address is 00002000 (absolute starting address of 2000g)

-.3-4?.

Library Control No. YPFO05X

APPENDIX B - Binary Card Format, contd.

' Identification Card (IDN)

Columns 1, 2 ' -0 _
Column 3 ' 4031g reading top to bottom (-I)
Column 4 24455 reading top to bottom (DN)
Columns 5, 6 24 bits representing the first IDN word
Columns 7, 8 24 hits representing the second IDN woxd

There is no checksum.on the card.

1e
I |

000%@90
» Ny
1

BRE RN L R L L R R R R N A L LR R N X AR TR TR RS YRR Y FIRY IO NI IR UM R EIR R RIE R X]
]

000¢
::;iﬁallIIIIXIllll!lltllltlllll!llllllltl‘llllllllllllllll‘lllllll“ll!)llllt |
2222008222
3333!.13333333333333333333133333333333333]]33333333333333333333333133333333;3333
6445!44444“4444444444;44444444444444(4464444444446444}‘4446444(444444444444444;
55!5558.5555555555}5555555555Sﬁ555555155558555555555555555555555555555555555355@’
'65'BI56G85358385GBS56B655&‘66555668566656568666658666655866586686556568658588683
IR RN AR R AR R R AR R R R R R R R AR AR R R R R R R R R R R R R R R R RRRRRRRARRRRRRRDE
8888II88838888588808388‘!!88888838888liBllBB&&BES3883888838830888833888j¢838858‘

???Ege93299999999099998999999993999993999399999999999989999999999999999399999§39~

HURBUBUBDIUHBRIBDBMNBBDABRNBIMNIRNERANQANGENRININNVUBNTIHNONROUANNBENNIIDNBRNIINN
s8R0 Ao . : . o,

Figure 5 - EXAMPLE OF IDN CARD

Columas 5, 6 (47512700)

Colums 7, 8 (02202020) | Coded in GE/PAC code; identifies the program
/

as PRGO2

- B-5 - .

No. YPFOSXRL

APPENDIX B

Binary Card Format,\¢qpfd,

Library Card (LIB)

Columns 1, 2 -0 Ched ‘ .

Column 3 4043g reading top to bottom (-L)

Column & 31225 reading top .to bottom (IB)

Columns 5, 6 24 bits - location of the LIB call
Columns 7, 8 24 bits representing the first LIB word
Columns 9, 10 24 bits representing the second LIB word

]

There is ne checksum on the card.

[§ |
I S
Oﬂ0ﬂOﬂﬂﬁﬂGﬂDﬂO000@908000000300000000000090900000000000090000000000000059500”'500
12345670 915101213141516 11819202020 2024252 2128 79 30 31 3239 30 35 3 37 38 39 40.41 42 43 44 45 45 4740 49 50 51 52 53'54135,55 57 56 50 60 61 62 63 64 65 66 67 686370 71 1270 74 15 16 17 78 79 80
(RRERE ARRR R R R R R A R R R R R R AR R R R R RRRRERRERRRR R SRR R R R R R RRERRRRRE!

222222@223222222
3353
44344§§344{444444444444444444444444444
555&55555555555555555555555555
6BG665556665B6BG6666666566566568666666GBSG66666688833?6GBSSBSBGGBGSGSBGGSGGB6886
7777777777777777777777177777777777777777777777777777i171777777171777777777777777
88K§888EH88888388388888%8838838888388888888888888883@&38888888888888888888888888
9969945899999999939999999999959999999 999“999999999999999999999999999999999599993

123456788101112014 l 161718192021222324 25252728 29 30 31 32 33 34 35 36 31 1303940“42‘3“4546414843505‘5253569556575859005!6263806565615863701!127314757577701980
GLOBE _ NO R STANPARD FORM 508} L

Figure 6 - EXAMPLE OF LIB CARD -

Colums 5, 6 00001751 location - |
Colums 7, 8 62505163 Coded in GE/PAC code: Call Program SQRT

Columns 9, 10 20202020

GEIRAC 4000,

FORTRAN
REFERENCE
MANLIAL

C) General Electric Company, 1965

May 1965 revised

Library Control No. YPG14M

This manual published by:

PROGRAMMING SUPPORT
GENERAL ELECTRIC COMPANY
PROCESS COMPUTER SECTION
P. 0. BOX 2918"

PHOENIX, ARIZONA 85002

For further information concerning the contents of Lhis manual,
contact the Programming Library at the above address.

BENERAL ¢
PROCESS COMPUTERS — —

) ELECTRIC

GE/PAC 4000 FORTRAN REFERENCE MANUAL

Library Countrol No,YPGl4M

REVISION CONTROL SHEET

P | “
AU e
APPROVED By: 71 L W"&“f}/z’/
[

DATE :

-

May 25, 1965

I RECORD OF CHANGE

DATE

REV,

RECORD OF CHANGE DATE

Page 2; para. 6

3/9/65

" 9; additional functions

" 22; para. 3

"o30; " 2,4

"o33; 0" 2,3, 4

L1 34; L1 2

"o42, M 3, 5

49; page numbers

@ff(/w

o o o

myéf

PAGE
1

REISSUED

CONTENTS

Foreword

Introduction to GE/PAC FORTRAN
Computation

Expressions

Computation Statements

Control Statements
Input-Output

Communication with MONITOR
Declarations

Diagnostics

Appendix A - Summary of Statements

10
14
15
23
33
35
46

49

FOREWORD

This is a reference manual for the GE/PAC FORTRAN language.
A previous familiarity, on the part of the reader, with
basic FORTRAN concepts is assumed., No attempt is made to
present the essentials of FORTRAN in a form usable for a
fundamentals course in FORTRAN language usage. The primary
purpose of this manual is to describe the specific state-:
ments and capabilities of the GE/PAC FORTRAN language.

Additions have been made to the FORTRAN II language to
increase programming flexibility. In addition, they
provide the programmer with special statements which enable
him to produce a total real-time system.

Existing FORTRAN II programs can be compiled in GE/PAC
FORTRAN, provided that the specific restrictions noted
herein are not violated.

INTRODUCTION.TO GE/PAC FORTRAN

?

* A GE/PAC FORTRAN program is a sequence of statements,
each of whose characteristics is described in this manual. These
statements may be classified according to the following general
categories.

1. COMPUTATION statements which cémprise the working body
of the program; e.g., numerical calculation and bit
manipulation. : .

2. CONTROL statements which specify the flow of control during
execution.

3. DECLARATION statements which supply information about the
program.

4. INPUT-OUTPUT statements which provide communication with
the system peripherals.

5. P A L LANGUAGE statements which may be included in
the program in order to "“tailor"™ certain critical areas.

Program Preparation

The statements representing a FORTRAN program are first

entered on a coding form similar to that of Figure 1. The lines
of the coding form are divided into sixty-nine columns, each of
which may contain one character. Each statement is written on
a separate line; if more than one line is required, as many as
four additional lines may be used as a ™continuation"™ of the
statement.

Columns 1 through 5 may be used for a statement number. Such
numbers may be used as labels to which other statements in the
program refer.

A non-zero, non-blank character in column 6 indicates that the
line is a continuation line.

The body of the statement itself is entered in columns 7 through
69 of the initial and any necessary continuation lines.

* - Revised 1/65 -1-

Column 70 must contain a "7" in all lines of all statements of
categories 1 through 4 above. Lines which contains a '"6" in
column 70 are of category five. All category five state-
ments are transmitted unchanged into the object program.

A "C" in column 1 indicates that the statement is a comment. Like
category 5 statements, comment statements are passed directly into

the object program at the point of encounter. The text of the comment
may be entered in colummns 2 through 69 of the initial line and in
columns 7 through 69 of continuation lines.

A "B" in column 1 indicates the statement is of type ''Boolean' and
that certain numerical calculations contained in the statement are
to be performed with logical rather than arithmetic operations.

Except for columns 1 and 6 and certain alphanumeric fields, blanks
are ignored and may be used freely to increase legibility.

The first line of any program, irrespective of content, is assumed
to be the title line and contains the text (columns 1 through 39)
which will head pages of the output listing and the program identi-
fication number (columns 71 through 75) which will be transmitted
to all generated object lines.

The last line of a program must be an END statement. An END
statement may contain no other characters in columns 7 through 69
except "END".

Sample Program

It is desired to fit the best straight line approximation to a
population of data by the method of least squares. The following
program indicates how this would be done using FORTRAN. The general
formula for the approximation is of the form y = atbx. To solve

for a and b by the method of least squares we evaluate the formulas:

2y Cx®) - Sx (2 xy)
a= (n) (2x%) - (%2
p o= 0 (Zxy) - (%) (=y)
(n) (55 - (Zn?

Line 1 is the TITLE CARD. It is also a FORTRAN comment card. The
Sample Program is illustrated in Figure 1 on the followiung page.

* - Revised 5/65 -2~

#

6 - Assembler
Sequence

0 -Delete
2-PAP
4.C00L
7-Fortran

H

PROCESSOR KEYS

GEN'L,

H

GE 312 | 3-NOAP

GE 412
GE/PAC
Prog.

#

IR R)

ot cyiodiod

K | Proj.

Pt TN

H

H

GLE-WORD_EQRTRAN

H

of 49 l Date

g

H

3

Programmer

H

Project Name
Program Name

Page

H

3

0

#

H

BRANCH CONTROL FIELD

B

H

:

F

¥

3

i

H

MSax|-sut

§

5

H

i

T

CODING FORM

IR

¢

a

FIGURE 1

% Shaded areas indicate PAP format restrictions

H

132133:34.35°36,37 .38-39 40 41 42 43| 44|45 46747 48 49|50 515253 54|55 '56 57 58 59|60 6162 63 64]6566 67 68 69]70|71 72|73 7475|7677 78 79,80

¥ 3

H

‘27 28 29 30.31

PROCESS LANGUAGE STATEMENT

(OPERAND)

S TATEMENT

H

B

{

s
IR
e

o
i
¥

EOF |

[
H
5

|
i

) ELECTRIC

©

TYPE

slUMX|=0.
SUM&Yaq,

o (0P CODE)

READ

617{8 9 10111213014 15,16117(18219:20:21‘22f23:24f25226

E XAN P L;
DIIMENS:

3

PHOENIX, ARIZONA

LOCATION®
Falaas!

H
H

i

<

:

v

H

i

X

S UMS,

i

H

e SU

$

* Restricted to five characters for COOL

GEMNERAL
PROCESS COMPUTER SECTION

1

PC 506 (2—64)

The dimension statement of line 2 declares X and Y to be one

dimensional arrays each containing 20 numbers. This declaration

sets aside two groups of 20 consecutive storage spaces for X and Y

and allows them to appear as subscripted variables within the

program. - e e

Line 3 is an input statement that reads a record of previously
prepared data from tape under control of FORMAT statement 10
and places it in the consecutive locations of the X and Y arrays.

Calculation actually begins with line 4 in which a variable called _ .
SUM is set equal to zero. Similar operations are performed on
lines 5, 6, and 7.

Line 8 sets up a series of repetitive calculations in what is known
as a DO loop. It causes the calculations up to and including state=~
ment 5 on line 12 to be performed 20 times. The subscripting

" variable I is set to 1 for the first execution of the following four
instructions and is dincreased by 1 for each subsequent executiom.

In this manner it is possible to refer to successive values of X and
Y for calculation purposes.

In line 9 a value of X is added to SUM and the result is assigned to
SUM. A similar operation is done for Y omn line 10.

In line 11 a value of X is squared, added to SUMSQX, and assigned
to SUMSQX. ‘

In line 12 a value of X is multiplied by a value of Y, added to
SUMXY, and assigned to SUMXY.

After the previous four calculations have performed 20 times, control
passes from the DO loop to the statement on line 13 in which A is
calculated. Then B is calculated on line 14,

Line 15 is an output statement which causes the values of A and B
to be printed on-line according to FORMAT statement number 10
‘(line 16). This FORMAT statement indicates two answers are to be
printed on the same line, each answer occupies 14 spaces (including
blanks) and there are 6 digits after the decimal point.

Line 17 is a control card indicating the END of the example.

COMPUTATION

Basic Elements

% The basic elements used as operands in FORTRAN computations are
constants, variables, and functional references, all of which
represent numerical quantities. In the FORTRAN language, these
elements are represented by symbols composed of character strings.

Quantities

Two types of numerical quantities are recognized by FORTRAN,
arithmetic and logical. Within the designation arithmetic, two

modes are recognized, real and integer. Integer quantities represent
integers within the range -8,388,608 (- 22 3 through 8,388,607 (22 1)
inclusive. Real quantities represent real numbers and are represented
in the computer by floating-point configurations comprised of a 6 bit
exponent and a 17+sign bit mantissa. The approximate range of float-
ing quantities is -109 through -10-9, 0 and 10-9 through 109.

‘Within the designation logical, only octal digits (O through 7 inclusive)
are recognized. A maximum value of 77777777 is allowed.
Constants

Constants are numbers of arithmetic or logical type which appear in
the source program in explicit form.

Arithmetic integef constants are written as a string of decimal digits.
Examples:
0
1
1964
Logical integer constants are written as a string of octal digits.
Examples:
0

252525
77777777

In either type, the integer repfesented must lie within the range
specified above for integer quantities.

* - Revised 1/65 , -5-

Real constants are written as a string of decimal digits which
includes a decimal point.

Examples:

.0
1. '
2.71828 '

Real constants may be given a scale factor by appending an “E™
followed by an integer constant, which indicates the power of ten
by which the number is to be multiplied. This scale factor may
be preceded by a “+"™ or "-* sign to indicate positive or negative
powers of ten. If no sign is given,it is assumed to be positive.

Examples:
-12
1.E-12 means 10
.00314159E+3 means 3.14159
19.64E+2 means 1964.

As another alternative, a real constant may be expressed as an |
integer constant followed by a scale factor.

Examples:
55E-3 means .055 45
132E45 means 132 x 10
69E4 means 690000

In any representation the number must lie within the range described
above for floating quantities.

Identifiers

Identifiers are used to name the variables, subprograms, and

dummy arguments which appear in a FORTRAN program. An iden-

tifier is a string of letters and digits, the first of which

must be a letter. The string may be any desired length, but only

the first six characters will be used. Identifiers may be declared
% as integer or real, either explicitly or implicity. Implicit

definition depends upon the first letter of the identifier. If the

first letter is from the group (I,J,K,L,M,and N) then the iden-

tifier is of the class integer. If the first letter is not from

this grou{ then it is of class real. Explicit definition of identifiers

is accomplished by the declarative statements REAL and INTEGER.

Examples:

Real RATE
DECREMENT

Integer L307
M@NTH

* - Revised 1/65 -6-

Variables

Variables represent quantities which may assume many different
values and are referred to by name, They may be either scalar’
or array variables, depending on the nature of the quantity they
represent. : '

Scalar Variables

Scalar variables represent a single real or integer quantity and
are written as simple identifiers,

Examples:
DISTANCE
Z
N3

Array Variables

An array variable represents a single element within an array of
quantities. The array variable is denoted by the array name

followed by a subscript list enclosed in parentheses, The subscript
list contains one or more arithmetic expressions separated by commas.
Each expression corresponds to a subscript and the values of the
expressions determine which array element is to be referenced. The
number of subscripts in the list must equal the number of dimensions
specified for the array.

Examples:

A (&)
BETA (M+3)
JOHN (2%ITEM-13)

Subscripts

A subscript may be any expression of the type, arithmetic; however,
its significance is of integer mode and limited in range by the size
of the array dimension involved. Therefore, when necessary, the

value of any expressign used as a subscript is truncated to an integer
and reduced modulo 2" before being employed in reference.

-7=

% - Revised 1/65

Single-Bit Arrays

As the operands of certain GE/PAC 4000 FORTRAN 'statements

(SET BIT, RESET BIT, IF BIT), the individual bits in the binary
representations of scalar variables (not array variables) may be
referred to by appending a single subscript (in parentheses) to
the scalar identifier. The subscript is calculated as any other
subscript but refers to the bit position in the memory word and
consequently has meaning only in the range O through 23. The
appearance of a scalar identifier with a subscript is legal only
in SET BIT, RESET BIT and IF BIT statements.

Examples:
FLAGS (J)
TRIGRS (13)
INHIB (XMINOF(J,K+2))

Function References

A function is a subprogram which acts upon one or more quantities
called arguments to produce a single quantity called the function
value. Functional references are denoted by the identifier which
names the function, followed by an argument list enclosed in
parentheses,

identifier (argument, argument, ..., argument)

An argument may be an expression or an array identifier.

The function value may in turn act as an element whose mode is
determined by the mode of the identifiers naming it, or by use of
the appropriate form of the FUNCTION statements, and may, therefore,
be independent of the types and modes of its arguments.

Examples:
ATANF (ALPHA)
DATE (MONTH, DAY, YEAR)
GAMMA (N, Z*SQRTF(ZETA))

Reserved Functions

Certain commonly and frequently used arithmetic functions are
provided as part of the system library and will be incorporated in
the compiled program by the compiler through the use of a "LIB"

operation. The names of these functions must, therefore, be
"reserved" and limited to use as subprogram identifiers for the
library subprograms to which they refer.

The following table lists these names together with information
about the functions themselves.

Modes
Number I=integer R=real
Subprogram of Function
Identifier Function ’ Args Value Arg(s)
ATANF Trigonometric Arctangent 1 R R
SINF Trigonometric Sine 1 R R
COSF Trigonometric Cosine 1 R R
SQRTF Square Root 1 R R
. LOGF___ | Log base e 1 R 1 R
EXPF exponential (e to a power) 1 R "R
ABSF absolute value 1 R R
XABSF absolute value 1 I I
SINHF Hyperbolic sine 1 R 'R
| __COSHF___ | Hyperbolic cosine 1 R R
TANHF Hyperbolic tangent) A | R "R
MODF argy - [argl/argzl arg, (See Note) 2 R R.
XMODF argy modulo arg 2 I I
SIGNF Signum (argz) *arg 2 R R
XSIGNF Signum (arg,) *arg 2 I I
| DIMF | (argj-argy) if arg) >argy; else 0 | 2 | R TR
XDIMF (argl-argz) if arg) >arg,; else 0 2 L I
MAXOF Maximum value of args. | Var, R I
MAX1F Maximum value of args. Var. R R
__XMAXOF | Maximum value of args. Var, I I
XMAX1F Maximum value of args. | Var., | I 'R
MINOF Minimum value of args. “Var. R I
MINI1F Minimum value of args. Var. R - R
XMINOF Minimum value of args. Var. I I
XMIN1F Minimum value of args. Var, I R
INTF T 11 R 'R
XINTF Integer part (truncation) 1 . I R
XFIXF 1 I R ~
FLOATF Float an integer 1 R I

NOTE ~ [7] indicate "greatest integer in"

* - Revised 5/65 9w

EXPRESSIONS

An expression is a sequence of elements separated by operational
symbols and/or parentheses in accordance with conventional
mathematical notation and certain FORTRAN restrictions. Two
types of expressions are recognized, arithmetic and logical.

Formation of Expressions

An expression has a single numeric value equal to the result of

the calculation specified by the numeric quantities and arithmetic
or logical operations comprising it. The arithmetic operational
symbols are '"4", "-f' M /N gnd "%" denoting respectively
addition, subtraction, multiplication, division, and exponentiation.
A logical or "Boolean' expression is formed in the same—fashion as —
an arithmetic expression except that the operational symbols

recognized are "+, "/'" ' and Y- denoting logical sum ("or'),

logical difference ("exclusive or'"), logical product ("and") and

logical complement (‘'mot'™) respectively. An expression is declared
Boolean by the placement of a '"B" in column 1 of the first line of the
FORTRAN statement in which it occurs. In any statement declared -
Boolean, all operational symbols in expressions are interpreted in

the logical sense except in rhose expressions used as subscripts to

arrays (subscript expressions are universally of type arithmetic~

integer). In Boolean expressions, all constants are interpreted as

type logical-integer and appear as octal integers. All other
representations are illegal.

An expression may be as simple as a single element, i.e., a
constant, variable, or function reference,

Examples:

3.142
OMEGA (T)
CO8F (DELTA)

Compound expressions may be formed by using operation symbols
to combine basic elements. ;

Examples:
Z+2

SUMX /N
SQRIF (B**2~4%A%C)

An expression may be enclosed in parentheses and considered
as a basic element. ’

Examples:

(Z-3) /LAMBDA
(ALEPH)
COSF (SINF(2*PI*R*T)) h

~

Any expression may be preceded by a '"+'" or "-" sign.
Examples:

+TEN
- (A*B)
-SINF (+ALPHA)

With the exception of logical complement, no two operational
symbols may appear in sequence. The expression:

X*=-Y
is illegal in arithmetic expressions, but is allowed in Boolean

expressions. The use of parentheses, yields the correct arithmetic
form:

X*(-Y)

Adherence to the above rules will allow the formation of all
permissible expressions.

If the precedence of arithmetic operations is not stated explicitly
by parentheses, it is implicitly interpreted to be as follows, in
order of decreasing precedence:

Symbol Operation

%% exponentiation
* and / multiplication and division
+ and - addition and subtraction

In Boolean expressions, the implied precedence in decreasing order
is:

Symbol . Operation
~ logical complement
% logical product
/ logical difference
-+ logical sum

“11-

For examp}e, the expression
UV [X**Y+2Z

is taken to be
(U*V)+(W/ (X**Y))+2

Since sequences of operations of equal precedence can result in
ambiguities, they are resolved by grouping from the left., Thus

A*%B**C and
X/Yl/z

are interpreted as

(A**B)**C and . :
S (X/Y)/z ' . -

respectively.

Evaluation of Expressions

Except for Boolean expressions, which are modeless, the numerical
value of any expression may be of integer or real mode, as

determined by the modes of its elements. There are three possible
combinations: all elements are integer (integer expression); all
elements are real (real expression); or both real and integer elements
occur (mixed expression). All combinations are permissible in

GE/PAC 4000 FORTRAN , :

Integer Expressions

An integer expression is evaluated using integer arithmetic through-
'out to yield an integer result. Fractional parts arising in division
are truncated, not rounded. For example, 5/3 gives 1, 4/7 gives 0.

Examples:
L

1%2+4m
(J-3)*MAN+INDEX

Real Expressions

A real expression is evaluated using floating- point arithmetic
throughout to yield a real result,

Examples:

(Y I+L)+Y (N=1))/2.%DX)
COSF (ALPHA+BETA)

Mixed Expressions

Mixed expressions are evaluated by converting all integer variables

to real variables and then treating the expression as if it were real.

The result is given as a real quantity.
Examples:

Z#2% (T4L)
AXk T JHC
R(K+2) *ATANF (X1)

Boolean Expressions

Boolean expressions are evaluated using full memory word logical
operations upon the elements without regard to mode, All

constants encountered are interpreted in octal. Array elements

may occur, the subscripts of which will be interpreted as arithmetic-
integer expressions., All other elements (e.g., function values,
expression values) are treated as modeless full-word binary con~
figurations.

Examples:
WORD*MASKI+FIELD

1*77/COMUTR
A(2%I-5)*(-B(2*1)/~-C(I))

CCMPUTATION STATEMENTS

Assignment Statement

The assignment statement specifies an expression which is to be
evaluated, and & variable called the statement variable to which
the expression value is to be assigned. —

Form: variable = expression

Note that the "=" sign means replacement, not equality. The first
example below is not a mathematical equation but a valid assignment
statement meaning 'take the value of Z, cube it and assign the result
to X."

Examples:
X = Z#%3

J = K*(L-5)
A(X) = LOGF (L+2*X)

The value of the expression in an assignment statement is made to
agree with the mode of the statement variable before the replacement
is performed. If the statement variable is real, an integer
expression value will be converted prior to replacement, and
conversely. For example, in the statement

A = 3*JHK B . -

the integef value of the expression is converted to floating-point
before assignment to A.

Bit Assignment Statements

.The bit assignment statements, SET BIT and RESET BIT, provide
for the assignment of values (1 or 0) to the individual bits of
scalar variables.,

Form: SET BIT scalar variable (subscript),...,scalar
variable (subscript)

. RESET BIT scalar variable (subscript),..., scalar
variable (subscript)

The individual bits referred to in the list following the SET BIT or
RESET BIT preamble are ''set" (set = 1) or 'reset" (set = 0) as
indicated.

Examples:
SET BIT JOE (2%1-1), ©AM(23) ,FLAG(PERIF(J))
RESET BIT X(3),FLAG(PERIF(J--1)),LOC(0)

1l

CONTROL STATEMENTS

In a FORTRAN program, control normally passes sequentially from
one statement to the next in the order in which they are presented
to the compiler, Control statements allow the programmer to alter
. this normal program flow, To implement this, FORTRAN source
statements may be labeled with numbers which are referred to by
control statements.,

Statement Numbers

A statement number consists of an unsigned integer constant of up
to five digits. Leading zeros are ignored. The value of the integer
must be greater than zero,

Although statement numbers appear in the source program as

integers they must not be confused with numerical quantities.

They represent a distinct type of quantity in a FORTRAN program
known as a statement number, and are used for..the identification

of addresses within the object program.

Since statement numbers are used for identification they must be
uniquely defined; i.e., no two statements may have the same number.
No order or sequence is implied by statement number magnitudes,
Non-referenced statements need not be numbered, in fact it is waste-
ful of compiler storage to do so unnecessarily.

‘Unconditional GO TO Statement

Form: GO TO n

when n is a statement number.

This statement transfers control to the statement numbered un..
Example:

GO TO 13

Cpmputed GO TO Statement

-

The computed GO TO statement transfers control to one of a group
of statements; the particular statement chosen is determined by the
computed value of an expression.

-15-

Form: GO TO (n1 2,n3,.,.,nk), expression

where n,,n,,n,,..+,0, are statement numbers. Control w111 be
transferred to statement number n YL YRR depending on
whether the expression has the va{ue 1, 2 3,..., or k, respectively,

Example:

GO T0 (37,24,36), SIZE
will transfer control to statement number 24 if SIZE has the vaiﬁe ,,»
2. The value of the expression will be truncated if required,.
Expression values outside the range 1,2,3,...,k will cause a run-
time error indication.

Example:
GO TO (1,2,3,27), Y+2

will transfer control to statement number 27 if Y has the value
2.6183, but a value of 3.142 for Y will cause an error indicatiom.

Assigned GO TO Statement

Form: GO TO variable or

GO TO variable, (nl,nz,ns,...,nk)
This statement transfers control to the statement whose number was
last assigned to the variable by an ASSIGN statement, The variable
must appear in a previously executed ASSIGN statement, or a runtime
error indication will result, :

Examples :

GO TO JAIL
GO TO ERROR

The variable of an assigned GO TO statement is a control variable
and has a statement number rather than a numeric quantity as its
value. A control variable may be shared between a program and its
subprograms as may any other variable,

The (n%,n sDgs0s0,yll) is a parenthetical statement number list of

footnote value only and may be included or omitted at the option of
the user,

=16~

ASSIGN Statement

Form: ASSIGN integer TO variable

This statement sets the value of the variable to be used by a
subsequent assigned GO TO statement. The integer is the number

of the statement to which control will be transferred by the assigned
GO TO statement.

Examples;

ASSIGN 37 TO JAIL
ASSIGN 3 TO ERROR

This FORTRAN capability is very useful in transferring to a sequence
of statements that is used as a subroutine by other parts of the
program, For example, the statement
ASSIGN 13 TO EXIT
GO TO 44
13

will transfer control to the sequence beginning at 44, If the
sequence ends with

GO TO EXIT
contrxol will be transferred bsck to statement 13,

IF Statement

Form: IF (expression) LSPLIPL

where nl,nz,n are statement numbers. This statement transfers
control to statement n.,n,, or n, depending on whether the value of
the expression is less than, equal to, or greater than zero
respectively. e

Examples:

IF(Y(I)-LIMIT) 6, 12, 18
IF(SUM) 3, &, 5

In the first example above control is transferred to statement number

6 if Y(I) LLIMIT, to statement 12 if Y(I)=LIMIT, and to statement 18
if Y(I) >LIMIT.

0170

IF BIT Statement

Form: IF BIT (scalar variable(subscript))nl,n2

where n. and n, are statement numbers. This statement transfers
control*to the“statement numbered n, if the bit of the variable
referred to is a '"1'" and to statement n, if it is a "0O",

Examples:
IF BIT (FLAG(NOFAIL)) 14, 13
IF BIT (X(23)) 6, 7
IF BIT (J(0)) 9, 10

The second and third examples accomplish negative-positive and
odd-even tests respectively.

IF SENSE SWITCH Statement

Form: IF(SENSE SWITCH expression) n >0,
where n, and n, are statement numbers.

This statement provides a test for the individual status of each of
the 24 switches on the GE/PAC 4000 console, These switches are
numbered from 23 through 0, going from left to right. The expression
may be of either mode but will be converted to arithmetic-integer

in use and has meaning only in the range O through 23, If the console
switch specified by the value of the expression is in the down (=1)
position at the time of execution, control is transferred to state=-
ment. n, ; if it is in the up (=0) position, control transfers to state-
ment n,.

Examples:

IF (SENSE SWITCH 7) 102, 103
IF (SENSE SWITCH IOREDY) 6, 7

'IF ACCUMULATOR OVERFLOW Statement

Form: IF ACCUMULATOR OVERFLOW ny, Dy

where n1 and n2 are statement numbers.

This statement provides a test of the GE/PAC 4000 overflow trigger.
Control passes to statement n, if the overflow trigger is 'on'" and

to n, if the overflow trigger is "off" at the time of execution. In
either case, execution of the test resets the overflow trigger to
the "off" state.

Example:
IF ACCUMULATOR OVERFLOW 23, 31

IF I/0 Statements

A series of IF statements has been provided for testing the status
of individual I/0 devices. These statements are described fully
in the INPUT-OUTPUT section of this manual.

DO Statement

The DO statement allows a series of statements to be executed
repeatedly under the control of a variable whose value changes
between repetitions.

Forms: DO n integer scalar variable = expressionl, expression2
DO n integer scalar variable expression;, expression,,
expression3

where n is a statement number and expression < expression, at object
time. If, as in the first form, expression 3 is not stated, it is assumed
to have the value, 1.

The DO statement causes the following statements up to and including
statement n to be executed repeatedly. This group of statements is
called the range of the DO statement. The scalar variable of the DO
statement is called the index or induction variable and must be of
integer mode. The values of expression;, expression,, and expression
are called respectively the initial, limit and increment values of the
index. Each may be of either mode but will be converted to arithmetic=-
integer mode before use.

The initial execution of all statements within the range is always
performed with the initial value assigned to the index, regardless

of the value of the limit and increment. After each execution of the
range the increment is added to the value of the index and the result
compared with the limit. If the result has not passed the limit,

the statements within the range are again executed using the new value
of the index.

* - Revised 1/65 -19~

KB
£

After the last execution program control passes to the statement
immediately following statement n. Exit from the range may also
be accomplished by a transfer from within the range of the DO
statement. The value of the index is retained for computation
purposes on both normal and abnormal exits from the DO loop.

The range of a DO statement may include other DO statements
provided that the range of an "inside'" DO loop is completely
contained within the range of any "outside' DO loop., 1In other
words, the range of two DO statements may not partially intersect
each other, Only total intersection or no intersection-is—allowed;~ '~

The index of a DO statement is treated as any other scalar variable.
Its value may be used for calculation outside the range of the DO
statement as well as within the ranges. In addition, the values of
the limit, increment, and index may be altered within the range of
the DO statement. ’

It is also permissible to transfer into the range of a DO statement
from outside the range,

Examples:

DO 37 1= 3, 12
DO 15 INDEX = FIRST, LAST, INCREMENT

As an example of the use of the DO statement consider the following
sequence which will sum all the numbers within a suitably specified
array.

SUM = 0.
DO 3 I=1,N
3 SUM = SUM+X(I)

CONTINUE Statement

Form: CONTINUE

The rules of FORTRAN state that the range of a DO statement

cannot end with a control transfer statement. In order to gain this
capability without violation of the rule, a dummy statement,
CONTINUE, is provided that may be used to end the range of a DO,

or as the target point for transfer statements within the range of a
DO where repetition of all or part of the range is conditional,
Consider the following statement sequence:

- Revised 1/65 -20-

DO 3 I=START, STOP

.

IF (ALPHA) 3, 17, 51 . -)
3 CONTINUE : -

A negative value of ALPHA will initiate another execution of the
range. The CONTINUE statement provides a target address for

the IF statement and ends the range of the DO statement. The
following sequence is illegal and must not be used since the DO
. loop ends with a conditional transfer.

2 DO 3 I=START, STOP

-

3 - IF (ALPHA) 2, 17, 51

- CALL Statement

Forms: CALL identifier
CALL identifier (argument, argumeant, ..., argument)

.This statement is used to call (transfer control to) a subroutine
subprogram. The identifer is the name of the subroutine.

The arguments, as in the case of functions, may be expressions

or array identifiers. Unlike a function, however, a subroutine may
have more than one result and may use one or more of its arguments

to return these results to the calling program. The first form of the
CALL statement is used where a subroutine requires no arguments.

Examples:
CALL DUMP
CALL MATMPY (X(I,J),Y(J,K))
CALL SEARCH (MTABLE,RALPH)

The mode of the subroutine name has bearing on the mode(s) of its
results. ‘

RETURN Statement

Form: RETURN

This statement returns control from an external subprogram to the
calling program. Therefore, the last statement executed in a

-21~

subprogram will be a RETURN statement, though it need not be
physically the last statement within the program. ‘Any number

of RETURN statements may be used and they may occur at any point
within the subprogram at which execution is to be terminated. A
RETURN statement is necessary to return control whether a subpro-
gram is explicitly referred to in a CALL statement, or implicitly
referred to by a functional reference.

STOP statement

Form: STOP

Since, in a process control application, it is not permissible to
stop the computer by program, this statement..is interpreted as

an instruction to MONITOR to stop operating this program. It
therefore generates the calling sequence which would be associated
with the statement:

* TURN PROGRAM OFF,0,1,0,0,0

This means that the next time the program is turned on, it will
be entered at the beginning with all flip-flops reset except the
PAIF, which is set,

STOP must appear by itself on a card.
END Statement

.-

Form: END

The END statement is used to communicate to the compiler the

- logical end of a program or sub-program. It causes the compiler
to finish the compilation by reserving memory locations for all
variables named, etc.

END must appear by itself on a card.

* - Revised 5/65 \ -22-

-

INPUT-OUTPUT

’

Input-Output Statements

" Input-output statements call for the transmission of information
records between computer memory and various input or output units
which are attached to the computer. In generalyan input-output
statement provides: _— .

1. Specification of the operation required; whether input or output
and the particular unit involved.

2, Reference to a data format specifying the conversions required
between internal and external data forms. This reference is to
the number of a FORMAT statement.)

3. A list of the variables whose values are to be transmitted. The
list order of the variables corresponds exactly to the order in
which the information exits in the input medium or will exist in
the output medium. For example, the statement

PRINT 20, ALEPH, BETH, GIMEL
specifies that the wvalues of ALEPH, BETH and GIMEL are to be
printed on line according to the format specified in the FORMAT

statement numbered 20.

Input-Output Records

All information appearing in external media is grouped into records.
The amount of information contained in one record and the manner in
which records are separated depends upon the medium. For punched
cards, each card constitutes one record; for punched paper tape, a
record consists of 80 or less frames, followed by a carriage return;
in printing, a record is one line of 120 or less characters, etc.

The actual amount of information contained in each record is specified
by the FORMAT statement.

Each execution of an input or output statement initiates the trans-
mission of a new data record. Therefore, the statement

READ 12, UN, DEUX, TROIS
is not necessarily equivalent to the statements,
READ 12, UN

READ 12, DEUX
READ 12, TROIS

% - Revised 1/65 ' -23-

since in the latter example at least three records are required,
whereas in the former example one, two, three or even more
records may be required depending on the FORMAT statement
numbered 12.

If an input-output statement requests less than a full record of
information, the unrequested portion of the record is lost and .
cannot be recovered by another input-output statement.

If an input~output statement requests more than one record of
information, successive records are transmitted until the data
request is satisfied.

Input-Output Lists

The list of variables in an input~output statement specifies the order
of transmission of the variable values, During input, new values of
listed variables may be used as subscripts or in control expressions
for variables appearing later in the list, TFor example,

READ 4, J, A(J), B(J+1)
reads in a new value of J and uses it in the subscripts for A and B,
The transmission of array variables may be controlled by indexing
similar to that used in a DO statement. A series of subscripted
array variables and/or scalar variables followed by an index control .
may be enclosed in parentheses and will act as a single element of
the input-output list, TFor example,

READ 7, (X(I),I = 1,4)
is equivalent to

READ 7, X.(1), X(2), X(3), X(4);
and

PRINT 8, (X(I), Y(I), Q, I = 1,2)
is équivalent to

’ PRINT 8, X(1), Y(l),.Q, X(2), ¥(2), Q.

As in the DO statement, the initial, limit, and increment values of
the index may be given as expressions; e.g.,

PRINT 2, K, (ARRAY(M), M = 1,J,K).

~2bm

The indexing may also be compounded as in the following example,
PUNCH 3, ((TIME(K,L), K = 1,4), L = 1,8).
This statement outputs elements of the array TIME in the order - .

TIME (1, 1), TIME (2, 1)...TIME (4, 1), TIME (1, 2)...
TIME (4, 3), etc.

If an entire array is to be transmitted, the indexing values may be
omitted and only the array identifier written. The array is trans-
mitted as in the previous example, in order of increasing subscripts
with the first subscript varying most rapidly. Therefore, the
previous example could be replaced by

PUNCH 3, TIME

READ Statement

Forms: READ n, list
READ (expression} n, list

where n is a FORMAT statement number.

This statement causes information to be read from the input device

identified by the value of the expression, converted to intermal binary
representation according to FORMAT statement n, and stored as

values of the variables specified by the input~output list. If no

expression is entered (first form), the device specxfied will be the -
one corresponding to the value 0. : S e

PRINT Statement

Forms: PRINT n, list -)
PRINT (expression) n, list . }

where n is a FORMAT statement number,

This statement causes information contained in memory as values of

the variable specified by the input-output list to be converted to BCD
representations according to FORMAT statement n and printed on the
output device specified by the value of the expression.

As with READ, absence of the expression and its enclosing parentheses
will produce a reference to device number 0.

-25~

PUNCH Statement

Forms: PUNCH n, list ' . : .
PUNCH (expression) n, list

where n is a FORMAT statement number.
This statement accomplishes exactly the same function as the PRINT
statement and in an identical manner, except that the information to

be output will be punched rather than printed,

Input-Output Tests

Prior to actual execution of I/0 operations, it may be desirdble to
test the status of the "about to be employed" 1/0 device. 'For this
purpose a series of IF statements of the form: —

IF 1/0 type n,,n,,0

3
IF 1/0 type (expTression) n,,n,,0,
where n 1> B are statement numbers, has been provided to HN

accompllsh % gesired testing.

The six specific forms recognized are:

IF ‘READ n;,0,,0, _

IF READ (expression) n,,n,,0, BN
IF PRINT n,n,,0, ’ .
IF PRINT (expression) nl;nz,n3 :
IF PUNCH n,,n,,n ’ :

1IF PUNCH (expression) ni}ﬁ}?ﬁ;‘“‘““——"’*ﬁa —

As with the corresponding I/0 statement, the device number is
indicated by the value of the expression with absence of the expression-

signifying device number 0. , o

n, is the statement number of the first statement in a.routine to which
coantrol is to pass when the tested device is "busy", or whose "table"
is full.

n, is the statement number of the beginning of a "faulty" or "bad" or
"error condition" routine for the tested device.

n, is the statement number of the starting statement in an "out-of-
%rvice routine, '

If no such impediments are found to exist at the time of execution by

the testing routines in the execution system, control passes to the
next sequential statement following the IF I/0 statement.

-26~

FORMAT Statement

All input or output of BCD information requires the use of a FORMAT
statement specifying the external format of the data and the types of
conversions to be performed. Any FORMAT statement may be used

with any input-output medium, and since they are not executed they
may appear anyplace in the program.

- Form: FORMAT (SI’SZ""’Sk)
where S is a data field specification.

Numerical Fields

Four different types of numerical data conversion are available:
1., Type E

Internal Form - Binary floating-point
External Form - Decimal floating-voint

2. Type F

Internal Form - Binary floating-point
External Form - Decimal fixed-point

3. Typel

Internal Form - Binary integer
External Form - Decimal integer

4, Type O

Internal Form - Binary integer
External Form - Octal integer

The four types of conversions are specified by the following general '

forms:

1. Ew.d
2. Fw.d
3. Iw
4. Ow

The letter E, F, I, or O designates the conversion type; w is an
* . integer specifying the data field width with a waximum of 63. And
d is an integer specifying the number of decimal places to the right
of the decimal point. The value of d must be £15. For E type output
conversion, w should exceed d by at least seven. ’ ' :
For example, the statement:
FORMAT (I3, F10.4, E15.5, 08)

% - Revised 1/65 -27-

could be used to print the line

37 -14.2639 0.46972E 3 37777
on the output listing.
Note that plus signs are not printed.

Note also that in type F conversion there is a decimal point but no
exponent, whereas type E conversion has an exponent. On output, the
exponent always has the form shown, i.e., an "E" followed by a signed
two digit integer. On input, however, the "E" or the sign or the entire
exponent may be omitted., The following are all valid E15.6 data fields
for input:

«327409+2

.964718E4

.003276-4
305976.

The field width w includes all of the characters (decimal point, signs,
blanks, etc.) which comprise the number. If a number is too long for
its specified data field, the excess characters are lost. Since numbers
are right justified within their fields the digits lost are those with
the most significance. The spacing of output data for legibility must
be considered when specifying a data field width.

During input, the appearance of a decimal point ".'" in an "E" or "F"

"data field specification overrides the 'd" specification of the field.

In the absence of an explicit decimal point, the point is positioned d
places from the right of the field not counting the exponent, if one is
present, For example, a number appearing externally as 314159E-1 with

a data field specification of E12.5 will be interpreted as 3.14159E-1.

In addition, a scale factor, indicated by a signed or unsigned decimal
integer followed by the letter, "P'", may be imployed with E and F fields.
If used with an "F" field, it will achieve multiplication of floating
quantities by powers. of 10 before conversion on output or after conversion
on input., If used with a "E" field, it will be ignored on input and will
cause P whole-number digits to precede the decimal point and the exponent
to be decreased by P. The P-factor must not be negative for use with E-
fields. The maximum absolute value must be < 9. A P-factor holds for all
succeeding E and F fields in the FORMAT statement. To end its influence,
a P-factor of zero must be stated.

Examples:
6PE9 .3
2P4F7 .2

Suppose that the above examples are employed as follows:

PRINT 7, X, (PRONT(I), I = 1,4)
7 FORMAT (PE10.3, 2P4F7.2)

-28-

Assume further that the values of the variables concerned are:

X 6,494,650
'PRCNT (1) .012345
PRCNT - (2) .596938
PRCNT (3) . 856062
PRCNT (4) 1.56032

The resulting printed line would appear as:
0.649E 7 1.23 59.69 85.61 156.03

Alphanumeric Fields

Alphanumeric data can be transmitted in much the same manner as
numeric data through use of the form Aw where A is a control charac~
ter and w is the number of characters in the field and has a maximum
of 63. The alphanumeric chavracters are transmitted as the value of a
variable in an input~output list., The variable may be of either mode.
For '‘example,

READ 17, V
17 FORMAT (A3)

will cause three characters to be read and placed in memory as the
value of the variable V.

If the format 'specification had indicated a field width greater than
4, the additional characters will be grouped in fours and placed in
V+1,V+2, --- etc,, until the entire field width is satisfied.
If the last such group contains less than 4 characters, they will be
left~-justified.

Alphanumeric Format Fields

An alphanumeric format field may be specified by preceding the alpha=

numeric string with the specification nH, where n is the number of

characters in the string including blanks and has a maxitwum value

"of 120. For instance, the following sequence: .
PRINT: 3

3 FORMAT (9H NOT DONE)

will print the words NOT DONE on line. The n characters of the data
field are mot transmitted as the value of a variable, but are stored in
the memory space allotted for the FORMAT statement -itself. The n
characters may be replaced by n other characters by means of an

input statement which references the FORMAT statement. The value of n
must be< 120.

An input-output list is not required for the transmission of ‘this type
of field. During input, n characters are extracted from the input
record and used to replace the n characters within the specification.
During output the n characters specified or the n characters which
have replaced them become part -of the output record.. For-example;—
the sequence - '

« Revised 1/65) - ,29;

READ 3
3 FORMAT (9H NOT DONE)

PRINT 3
will print the words ALL DONE on line provided ALL DONE appears in
positions 1-9 of the input record being processed by the-READ-3 e
statement, .

Alphanumeric Notes

Alphanumeric information can also be placed in an output line by -

use of a special feature, called a '"mote". For instance, the words
"NOT DONE" as shown in the previous example could be inserted by:
% PRINT 3

3 TFORMAT ($ NOT DONES$)

The number of characters between the two "$'" symbols would be counted
and the same information would be generated as in the previous example.
Note that the "$" symbol cannot be a member of a note, since it signals
termination of the note. ’

Blank or Skip Fields

Blanks may be introduced into an output record, or characters
skipped on an input record by use of the specification nX. The
control character is X and n is the number of blanks or characters
skipped with a maximum value of 31. For example, the statement:

* FORMAT (5H JOB I3, 10X, 4HDONE)
may be used to output the line-
JOB 397 DONE

with 10 blanks separating the two quantities.
Mixed Fields

An alphanumeric format field may be placed among the other fields of
the FORMAT statement to enhance the readability of output listings.
For example:

FORMAT (8H FORCE = F9.4, 5H LBS.)
may be used to print-

FORCE - 297.6374 LBS

Note that the separating comma may be omitted after an alphanumeric
format field,

Repetition of Field Specifications

Repetition of a field specification may be specified by preceding the

* control character E, F, I, A, or O by an unsigned integer less than or
equal to seven giving the number of repetitions desired. The specified
number of repetitions must not be zero. For example:

* - Revised 5/65 =30«

FORMAT (312, 2F12.6, 204)
is equivalent to

FORMAT (12, 12, 12, F12.6, F12.6, 04, 04)

Repetition of Groups

A group of field specifications may be repeated by enclosing the
group within parentheses and preceding the whole group with the
number of desired repetitions. For example,

FORMAT (312, 2(F12.4, 3E8.2))
is equivalent to
FORMAT (312, F12.4, 3ES8.2, F12.4, 3E8.2),

~

Alphanumeric fields may also be repeated in this manner,

PRINT 7 o PRINT §
7 FORMAT (3(5H BANG)) ©F) FORMAT (3($ BANGS))

will cause the following on line output,
BANG BANG BANG
Five levels of repeated groups are allowed,

Multiple Record Formats

In the case where a group of successive input-output records have
different field specifications, a slash, '"/", is used to separate those
field specifications. For example, the statement

FORMAT (408/13, 3F12.8/12A3)
is eAuivalent to |

FORMAT (408)
fg; the fitgt record,

FORMAT- (13, 3F12.8)
for the second record, and

FORMAT (12A3)

for the third record,

- Revised 1/65 =31~

The comma separating data field specifications may be omitted
when a slash is used. Blank records may be written on output or
records skipped on input by using consecutive slashes. On printed o
output a slasH always caused a skip to a new linc after completing ' :
the record. Both the slash and the closing pareunthesis at the end

of format indicate the termination of a record, If an input-output

statement list indicates that data transmission is to continue after

the closing parenthesis of & format statement is reached, the format

is repeated from the last left parenthesis,

&
i
Mo

The statement .

FORMAT (2E12.6, 2(3F7.4, 208, 17))
is equivalent to

FORMAT (2E12.6, 3F7.4, 208, 17, 3F7.4, 208, 17)
for the‘first record, gnd

FORMAT (3F7.4, 208, 17)

for all succeeding records.

The total of all field widths specified for a .record is the length of

that record, 1If the record length specified is greater-than-the—— B
maximum allowable on a particular input-output device, the excess :
characters are lost.

()

Drum Transfer Statements .

Two statements, READ DRUM (drum to core) and WRITE DRUM

(core to drum), provide a method for transferring blocks of
“information (programs and data) between core memory, where
execution takes place, and drum memory, where large amounts of
bulk storage are available. Each statement calls for the transfer
_ of a single continguous block and, therefore, no input-output
list is employed.

Forms: READ DRUM (symbolicl), (symbolicz), (symbolic,)
WRITE DRUM (symbolicl), (symbolicz), (symbolic3)

where

Symbolic, is the initial drum address in PAL symbolics.
Symbolic, is the number of words to be transferred in
PAL symbolics,

Symbolic3 is the initial core address in PAL symbolics.

-32-

S

COMMUNICATION WITH REAL-TIME MONITOR

In order that programs may undergo dynamic scheduling and relocation
as components of a real-time complex, certain statements which com-~
municate initiation, termination, delay and segmentation of the
components to the overall control or MONITOR routine become neces=-
sary. Description of a series of such statements provided within
GE/PAC FORTRAN follows.

TURN PROGRAM ON Statement

* Form: TURN PRUGRAM n (N, expression

where n is an integer constant indicating the "program number"
by which the program to be "turned on'" is known to the MONITOR.
The value of the expression specifies the time of next execution
of the "turn on" program with a O value indicating immediate
execution.

Example:

* TURN PROGRAM 21 ON, NOW + 1000

TURN PROGRAM OFF Statement
Form: TURN PROGRAM OFF, m;, m2, w3, Return, my,

This statement turns the current program off, i.e., places it in
the inactive state

Example:
* TURN PROGRAM OFF, 0, 1, 0, NXENTY, O
* mp, Wy, My, W, and Return are PAL symbolic fields interpreted as
follows:
m, : 1 = set @VRF
m, : 1 = set PAIF
My 2 1 = set TSTF
my, : 1 = set TMFF to TRAP
Return: Symbolic location for ECP entry

at time of next "turn on"
(TMFF-Memory Fence Flip-Flop)

DELAY PROGRAM Statement

Form: DELAY PROGRAM, m;, W

* - Revised 5/65 -33-

This statement places the current program in an inactive state for
a specified length of time.

m; and my are PAL symbolic fields indicating the following:

m; 1 = program's area of occupancy
is now available.
0 = area remains unavailable
m, : indicates length of delay

SEGMENT Statement

* Form: SEGMENT n, my, Wy, Mg, NXENTY, m,

where n is the program number of the following ''segment' to be
assigned and recognized by MONITOR (as in TURN PROGRAM ON).

Aside from its declarative properties (see section of this manual
titled DECLARATION), SEGMENT n is equivalent to the following
statement sequence.

TURN PROGRAM n ON, .0
TURN PROGRAM OFF, W, Wy, Wy, NXENTY, m

END z° 3 4
ml, m2, m3, ma, and NXENTY are as defined in TURN PROGRAM OFF .

%* - Revised 5/65 -34~

DECLARATIONS

A declaration describes certain properties of a FORTRAN program,
as opposed to the imperative assignment, control or input-output
statéments. ‘Several FORTRAN statements are reserved for the
purpose of supplying the system with declarative information.
These statements are primarily concerned with the interpretation
of identifiers occurring in the source program and with memory
allocation in the object program,

Classification of Identifiers

Each identifier in a source program is classified in accordance with
the FORTRAN element it identifies, Five main classifications are

recognized,
- 1., Scalar identifiers
2, Array identifiers
3. Subprogram identifiers
4, Dummy identifiers o
* 5. Single bit arrays ideuntifiers

The classification is made according to the context in which the
identifier makes its first physical appearance in the source program,
This first appearance amounts to a declaration, explicit or implicit,
of the proper interpretation of the identifier throughout the program.

Mode Declarations

In addition to being classified, each identifier appearing in a FORTRAN
program is of mode integer or real. The statements INTEGER and

REAL are used to specify identifer modes explicitly. An identifier

may appear in only one of these statements and this appearance must
precede the use of the identifier in any non-declarative statement..

Identifiers whose mode is not explicitly declared are assigned modes
implicitly according to the following convention. '

1. Identifiers beginning with I, J, K, L, M or N are assigned
integer mode. . . :

2, Identifiers not included in the above classification are assigned
real mode, :

% - Revised 1/65 - ~35-

INTEGER Statement - ‘ N

Form: INTEGER identifier, identifier,..., identifier
This statement declares the listed identifiers to be integer.

Example:
INTEGER PHI, KAPPA, SIGMA
Notice that KAPPA need not appear in this statement since it would

be declared integer mode implicitly.

REAL Statement

Form: REAL identifier, identifier,..., identifier
This statement declares the listed identifiers to be real mode.
Example:
REAL FORCE, MASS, LOG

Notice that FORCE need not appear in this statement since it would

be declared real mode implicitly.
P

DIMENSION Statement

The DIMENSION statement declares an identifier to be an array
identifier, and also specifies the number and limits of the array
subscripts. Any number of arrays may be declared in a single
DIMENSION statement.

Information provided by a DIMENSION statement is required for the
allocation of storage for arrays. Each array variable appearing in
a program must be previously declared as an element of an array in
a DIMENSION statement. Each array variable must have the same
number of subscripts as were declared for the array, and the value
of each subscript must lie within the 11m1ts specified by the
DIMENSION statement.

S - .

220K

when S is an array specification.

Form: DIMENSION S, §

=36~

Each array specification gives the array name and the minimum

and maximum values that each of its subscripts may assume. The
minimum and maximum values for each subscript must be given as
signed or unsigned integer constants with the maximum value
greater than the minimum value, An array identifier may have any
number of subscripts,

Two forms for specification of the maximum and minimum subscript
vdlues are recognized:

identifier (min. /max.,...)
identifier(maxi,maxz,...).

In the latter form, a minimum value of one is implied, i,e,, the
latter specification is equivalent to

identifier (1/max1, l/maxz,.,,);
The two forms are syntactically independent and may, therefore,
both occur as different subscript limit specifications in the array
specification. .

Example:

DIMENSION X(10), Y(-1/5,20), z(-3/-1,2,0/3,5,2)

Subprogram Definition Statements

The two types of subprograms which may be called, or referred to
by a FORTRAN program are classified as external or internal sub-
programs.

Internal subprograms are defined within the program that calls them,
and are defined within a single statment known as an arithmetic
function definition statement., Internal subprograms may be used
only within the program containing their definition. External sub-
programs are defined separately from;, i.e., externally to the
program calling them. They are complete autonomous FORTRAN
programs within themselves, and as such are compiled independently.
There are two types of external FORTRAN subprograms which may

be declared: FUNCTION subprograms and SUBROUTINE subprograms,

both of which are described below., Any subprogram, whether internal
or external may call other subprograms; however, recursion is not
allowed. All subprograms constitute closed subroutines; i.e., they
appear only once in the object. program regardless of the number of
times they are called.

~37-

Dummy Identifiers ~~N

A subprogram definition statement declares those identifiers
appearing as arguments of the subprogram to be dummies, They

are used as ordinary identifiers within the subprogram definition
and indicate the mode and use of the arguments. Dummy
identifiers are replaced by actual arguments when the subprogram
is executed,

Arithemetic Function Definition Statement

Form: identifier (identifier, identifier,..., identifier) = expression

This statement completely defines an internal subprogram. The
first identifier is the name of the subprogram being defined.

Arithmetic function subprograms are functions; i.e , they are
single valued and must have at least one argument. The mode of the
function is determined by the mode of the function identifier.

The identifiers enclosed in parentheses represent the arguments of
the function, These so-zalled dummy identifiers have meaning and
must be unique only within the defining statement. They may in fact
be identical to identifiers appearing elsewhere in the program. They
must agree in order, number, and mode with the actual arguments

given at execution time.

The use of an argument within the definition statement is specified by

the use of its dummy identifier. Expressions are the only permissible
arguments for internally defined functions, therefore, dummy

identifiers may appear only as scalar variables in the defining .
expression. The use of an array identifier or a subprogram identifier

is not allowed.

Identitiers appearing in the definition statements which do not
represent arguments are treated as ordinary variables. 1In addition,
external functions or other previously defined internal functions may
appear in the definition statement.

Examples:

F(X,Y) = (X+Y)*(X-Y) ‘ .
SINH(ZETA) = (EXP(ZETA/B)-EXP(-ZETA/B))/2
Q(X,Y,Z) = F(X.Y)/SINH(Z)

In the second example above, ZETA is a dummy identifier and B is
an ordinary identifier. At execution time the function will be

«38~

M

evaluated using the current value of B. The third exaﬁﬁle is allow~-
able if the first and second definitions precede it in the program.

1f the accompanying source prograh contained the statement

.Y = A*SINH(ALPHA),
the arithmetic function defining SINH would be evaluated using the
current value of ALPHA as its argument. The result would be -
multiplied by A-and the product assigned as the value of the variable
Y.

All internal subprogram definitions of any FORTRAN II program must
precede the first non-declarative statement of the program.

FUNCTION Subprograms

Like the Arithmetic Function Definition Statement, the FUNCTION
subprogram is also a function, is single valued, and is referenced
as a basic element in an expression. FUNCTION subprograms may

be used when more than one FORTRAN statement is needed to define
the functional relationship. In order to logically separate a
FUNCTION subprogram from the calling programs, the subprogram
always begins with a FUNCTION declaration and returns control to
the main program via the RETURN stateément.

FUNCTION Statement

‘Forms :

FUNCTION identifier (identifier, identifier, ..., identifier)

REAL FUNCTION identifier (identifier, identifier,..., identifier)
INTEGER FUNCTION identifier (identifier, identifier,..., identifier)

This statement declares the following program to be a function sub-
program, The first identifier is the name of the subprogram being
defined. This identifier must appear as a scalar ‘'variable and is
assigned the value of the function resulting from execution of the
subprogram. The function mode is declared implicitly by the initial
letter of the function name, or may be declared explicitly by using
the second or third forms of the FUNCTION statement.

Those identifiers.appearing in the list enclosed by parentheses are

dummy identifiers which represent the function arguments, and must .
agree in number, order, and mode with the actual-arguments given— _,/37-;-

- 39 - ‘ .

at execution time. These arguments may be array names as well

as expressions. Therefore, the dummy identifiers may appear as
arrvay identifiers or scalar identifiexrs. A FUNCTION statement
must have at least one argument. Dummy identifiers representing
array names must appear in a DIMENSION statement in the FUNCTION
subprogram as well as the calling program, and must agree with the
specification of the arrays in the calling program.

Examples:
FUNCTYON SEARCH (LIST,ALPHA)

REAL FUNCTION INDEX (Al,B2,C3)
INTEGER FUNCTION DELTA (ARG1l,ARG2)

SUBROUTINE Subprograms

The SUBROUTINE subprogram is not a function in that it may be
multi-valued and is referred to only by the CALL statement. The
SUBROUTINE subprogram begins with the SUBROUTINE declaration -
and returns control to the calling program via the RETURN statement.

SUBROQUTINE Statement

e

o~
Form: SUBROUTINE identifier (identifier,identifier,...,identifier) L;}

This statement declares the following program to be a SUBROUTINE
subprogram. The first identifier is the name of the subroutine.
Those identifiers appearing in the list enclosed in parentheses are
dummy identifiers which represent the subprogram arguments. As
in the FUNCTION statement, these arguments may be scalar or array
identifiexs.

~

Dummy identifiers representing array names must be declared in a— R

DIMENSION statement within the subprogram and must agree with
the specifications of corresponding arrays specified in the program
containing the CALL statement. ‘

Contrary to the FUNCTION and Arithmetic Function Definition State-
ments, the result of a SUBROUTINE subprogram is not necessarily -
a single value and the value of the name of the s.bprogram may or

may not (depending on the subprogram) be meaningful. instead specific
results are normally returned as values of variables in the argument
list,

& SUBROUTINE subprogram does not necessarily require arguments;

in the absence of an argument list no results can be returned via the
arguments.,

- 40 -

Examples:

SUBROUTINE BURST _
SUBROUTINE FACTOR (COEF1,COEFZ,RO0T)

Implicit Declaration of Identifiers

Identifiers appearing in declaration statements such as DIMENSION,

FUNCTION, SUBROUTINE, etc., are explicitly classified by their

appearance in that statement. If the first appearance of an identifier
- is8 in an imperative statement rather than a declarative statement,

the identifier is classified implicitly according to its context.

For example, in
DIMENSION ALPHA (5,10)

~the identifier ALPHA is explicitly declared to be a two-dimensional
array. Similarly

FUNCTION ALPHA (X,Y)

explicitly declares ALPHA to be a single-valued function with-
arguments X and Y, Conversely,

ALPHA (X,Y) = 2%X+Y

implicitly declares the identifier ALFHA to be an internal subprogram
because it appears in an arithmetic function definition statement. <Note
also in the three previous examples that in the absence of declarative
statements to the contrary, ALPHA is implicitly declared to be the
identifier of a real quantity. As a further example note that in the
statement . :

SUBROUTINE ALPHA (X,Y)

ALPHA 1s explicitly declared to be the name of a subprogram with
arguments represented by dummy identifiers X and Y.

* However, if the eupression
ALGFNC + ALPHA (A,B)+Z/3
has not been preceded in a program by any of the four previously
mentioned declaration statements ALPHA will be implicitly declated

to be an external subprogram whose presence will be mandatory at
runtime for execution of the object program.

% - Revised 1/65 - 41 -

P e

Memory Allocation

Memory allocation statements are used to supply the system with
supplemental information regarding the storage of vatiables and
arrays; and when the program is to be subordinate to a real-time
system, to supply memory assignment of the program in bulk memory
and specify coincident cross-references as may be necessary.

DEFINE Statement

Form: DEFINE identifierl(Symbolic), identifierz(symbolic),...

The DEFINE statement provides a method of incorporating uniform
reference to variables which are to be part of a "permanent memory
space" in an overall system. ‘

The identifiers occurring in the list may be array or scalar identi-

* fiers, or subprogram names. The symbolics enclosed within the
parenthesis may be PAL symbolic expressions to which the preceding
identifier will be equated by the compiler.

Identifiers appearing in DEFINE statements are assumed to have
space allocated by the overall system and are not, therefore,
assigned space by the memory allocation section of the compiler.

* The temporary storage area created by the compiler is named $TEMP.
It can be assigned to permanent memory by naming it in the DEFINE
Statement. ‘
EXAMPLE:
S R

DEFINE X(VO1T25), SQRTF(/3000), $TEMP(/4020), COMMON(/3127)
COMMON Statement

Form: COMMON identifier, identifier!...,identifier -

Within the space allocated by the overall system as ''permanent
memory'', a section is set aside with the symbolic label of the
first locations as "Common'. For this purpose, the symbol, COMMON,
is reserved in both the FORTRAN and PAL languages and is used)
solely for reference to this specially named section of memory.

-

The identifiers in the COMMON statement may be either array or
scalar names provided that the array names also appear in a
DIMENSION statement in the same program.

During allocation, each variable to be allocated in COMMON is
assigned the next block (one word for scalars, array size for
arrays) relative to the previous allocation with the first such
allocation being a simple equation to the symbol, '"COMMON".
EXAMPLE :

COMMON SCALAR,J, ARRAY, A

%* - Revised 5/65 —l42 -

In the above example, suppose that SCALAR and J are scalars and
that ARRAY and A are dimensioned elsewhere as ARRAY (-1/3,5) -
and A(100). The resultant equations to COMMON would be: Co

W% SCALAR EQL CCOMMON

J EQL COMMON + 1
ARRAY EQL COMMON + 2
A EQL COMMON + 27

In view of the implicit property of the symbol, COMMON, as a
member of the same space as that referred to by the DEFINE state-
ment, the above equations to COMMON can be seen as equivalent to"
those which would be produced by

DEFINE SCALAR (COMMON). J(COMMON + 1),
ARRAY (COMMON + 2), A(COMMON + 27)

EQUIVALENCE Statement

The EQUIVALENCE statement allows more than one identifier to
represent the same quantity.

Form: EQUIVALENCE (Rl’R2°°°’”Rn)’(Rk’Rk+l”°°’Rm)
where R denotes a location reference.

The location references of an EQUIVALENCE statement may be

simple scalar or array identifiers, or may be identifiers appended
by an integer constant enclosed in parentheses, All location
references enclosed within the same parenthetical expression share
the same storage location. Such a group is known as an equivalence
set., For example,

EQUIVALENCE (BLACK,WHITE)

states that the identifiers BLACK and WHITE refer to the same storage
location. :

To refer to a specific location in an array, that location must be
appended to an array identifier as an integer constant. For example,
if A is a scalar variable and B is an array the statement

EQUIVALENCE (A,B(5))

specifies that A and the fifth location of the array B share the same
storage location.

* - Revised 1/65 =43

.
.

,_
H
™

To refer to a specific quantity in a multiply dimensioned array the
location of that quantity must first be calculated. As an example,
consider the three dimensional array specified by

DIMENSION CUBE (Ll/Ul, L2/U2, L3/U3)

where L, and U, denote the lower and upper limits of the i th sub~
script.” To calculate the location of

CUBE (K;,K,,Kq)
use the formula

LOCATION = (U

<L +1) (U, ~L,+1) (K, ~L,)+(U, -L,+1)
2 171 373 11
(K2-~L2)+K1 Ll

2

Therefore the statements

DIMENSION SPACE (12), VOLUME (2, 2, 2)
EQUIVALENCE (SPACE(3), VOLUME (7))

specifies that the quantities SPACE (3) and VOLUME (1,2,2) will
‘share the same storage location. Notice that only the relative
location of the quantities within the array matters, since the entire
array is adjusted to satisfy the EQUIVALENCE statement. In the
example above, the statement

EQUIVALENCE (SPACE(1), VOLUME (5))

would have had the same effect as

EQUIVALENCE (SPACE(3), VOLUME (7))

Where the location of a variable is known relative to a second
variable, this location may be specified by appending an.integer
constant to the identifier of the second variable. The integer to be
used is determined by considering the sequence of quantities as an
unidimensional array. For example, if we have in storage at

LOCATION
L1: ALEPH
L2: BETH
L3: GIMEL
L4: DALETH

the statement

EQUIVALENCE (GAMMA,ALEPH(3))

bly=

will specify that GAMMA and GIMEL refer to the same storage
location.

‘Note that the property of equivalence is transitive; the statement

EQUIVALENCE (X,Y),(Y,Z)

-~has the same effect as

EQUIVALENCE (X,Y,Z)

Joint DEFINE, COMMON and EQUIVALENCE Rules

In the event that identifiers appear mutually in DEFINE, COMMON
sd/or EQUIVALENCE statements, the DEFINE statement takes
precedence followed by the COMMON statement.

All equivalences to DEFINE and COMMON variables are equated
off, i.e., removed from the remaining equivalence sets and
entered in the object code as equations to symbols occurring in

" DEFINE statements or to the symbol, CCMMON.

BEGIN PROGRAM AT Statement

Foxrm: BEGIN PROGRAM AT n

where n is a PAL symbolic specifying the location in bulk memory
into which the ensuing program is to be loaded.

SEGMENT Statement

Form: SEGMENT n, my, m,, M3, NXENTY, my,

where n is the MONITOR recognized program number of the following
segment. This statement is used to break a large program into a
number of smaller segments.,

In addition to segmentation by turning "off" and turning the next
part (segment) '"on", the SEGMENT statement causes the execution (at
compile time) of a FORTRAN "END". This execution allocates

storage, published errors and removes all known names and labels
from the tables beforxe proceeding to the next job. Therefore, the
only information carried forward to the next 'segment' will be the
relative location in bulk memory. Care must be taken to assure that
variables which are common to segments are declared in each segment

by ""COMMON" or "DEFINE" .statements, S

% - Revised ./65 : . =b5=

DIAGNOSTICS

Statement Diagnostics

Statements which vielate the syntax or semantic rules of the
FORTRAN language are detected during compilation and are
discardeda. An error message is printed on the line printer and
compilation proceeds as if the erroneous statement had never
been encountered. The error message consists of the statement
in the form in which it entered the computer; then one character
of the statement is indicated by a dollar signh, "$", printed
beneath it. For example, in

13 FUNC = 2%X+Y¥+
$

The character "+'" is marked as an error. In the case of syntax
erroys, the marked character itself is unacceptable as in the above
example. In the case of a semantic error, an identifier or other
construct is being improperly used. and the dollar sign indicates
the last character of the construction. For instance, in the state~
ment

ASUM = PART**3+4
$

the dollar sign would indicate that the identifier PART is being used
incorrectly; e.g., PART may be the name of a subprogram. '

The compiler will try all possible legal interpretations of a state-
ment before finally discarding it. The dollar sign position indicates
the greatest amount of correct information, starting from the left,
that was found under any assumption about the statement.

A comment indicating the reason for the error is then printed at the
left margin after the marked line. These comments are as follows:

SYNTAX

This comment usually occurs because of erroneous punctuation or
illegally constructed arithmetic expressions. '

NUMBER

A constant, label, or input~-output symbolic unit number is too large
or is incorrectly constructed.

b6

ID DECLARATION

The identifier indicated is being used in a manner contradictory to
a previous declaration,

SUBSCRIPTS
There are too many subscripts, an expression describing a subscript
is incorrectly constructed, or the number of subscripts used in an
array variable does not agree with the number declared in the
DIMENSION statement.

ALLOCATION

1. A negative or zero array size was specified in a DIMENSION
statement,

2. The rules of COMMON or EQUIVALENCE have been violated.
~ In either statement the identifier causing the violation is
marked,

PROGRAM OVERFLOW

The working core storage available to the compiler has been
exceeded,

ARGUMENTS

A FORTRAN reserved function has been employed with the wrong
form and/or number of arguments.

Program Diagnostics

Comments concerning labeling and allocation errors are listed at
the end of compilation. The label errors comment is followed by
a list of statement labels, and the allocation errors comment by a

"~ list of the offending identifiers. :

LABEL ERRORS
1. The following statement numbers were used in control
" instructions within the program but referred to an unnumbered
statement.

2, - Two or more statements have the same label.

3. The statement closing a DO loop was never reached.

47

A“m j
4. The final statement in the range of a DO loop was a transfer
statement.
5. The DO loop was illegally nested.
ALLOCATION ERRORS

The identifiers that follow this error message violated DEFINE,

COMMON and/or EQUIVALENCE rules, such as the use of a

function or subroutine name as the name of a variable in either

a COMMON or EQUIVALENCE statement.
N
.’
B
s

b8 =

APPEDNIX A

SUMMARY OF GE/PAC FORTRAN STATEMENTS

COMPUTATION

Arithmetic Assignment Statement

SET BIT
RESET BIT

CONTROL
Unconditional GO TO
Computed GO TO
Assigned GO TO
ASSIGN
IF
IF BIT
IF SENSE SWITCH
IF ACCUMULATOR OVERFLOW
DO
CONTINUE
CALL
RETURN
STOP
END

INPUT-OUTPUT

READ
PRINT
PUNCH

* IF READ
IF PRINT
IF PUNCH
FORMAT

% READ DRUM
WRITE DRUM

COMMUNICATION WITH REAL-TIME MONITOR

% TURN PROGRAM ON
TURN PROGRAM OFF
DELAY PROGRAM

DECLARATIONS
REAL
INTEGER
DIMENSION

Arithmetic Function Definition Statement

FUNCTION

SUBROUTINE

REAL FUNCTION
INTEGER FUNCTION
DEFINE

COMMON
EQUIVALENCE
BEGIN PROGRAM AT
SEGMENT

% - Revised 5/65

14
14
14
14

15
15
15
16
17
17
18
18

.18

19
20,
21
21
22
22

23
25
25
26
26
26
26
27
32
32

33
33
33

35
36—

36
36
38
39
. 40
41
41
42
42
43
45
45

GEIRAC 4000,

© General Electric Company,

Library-Control No. YPG30M

This manual published by:
PROGRAMMING SUPPORT
GENERAL ELECTRIC COMPANY
PROCESS COMPUTER SECTION
P, 0. BOX 2918

PHOENIX, ARIZONA - 85002

DOUBLE-WORD
fORTRAN

REFERENCE
MANUAL

1965

For further information concerning the contents of this manual,
contact the Programming Library at the above address.

SECTION

CONTENTS

FOREWORD

INTRODUCTION TO GE/PAC DOUBLE-WORD FORTRAN
COMPUTATION

EXPRESSIONS

COMPUTATION STATEMENTS

CONTROL STATEMENTS

INPUT-OUTPUT

COMMUNICATION WITH MONITOR

DECLARATIONS

DIAGNOSTICS

APPENDIX A - SUMMARY OF STATEMENTS

PAGE

10
14
15
23
34
36

47

FOREWORD

This is a reference manual for the GE/PAC Double-Word FORTRAN language.
A previous familiarity, on the part of the reader, with basic FORTRAN
concepts is assumed. No attempt is made to present the essentials of
FORTRAN in a form usable for a fundamentals course in FORTRAN language
usage. The primary purpose of this manual is to describe the specific
statements and capabilities of the GE/PAC Double-Word FORTRAN language.

Additions have been made to the FORTRAN il language to increase pro-
gramming flexibility. 1In addition, they provide the programmer with
special statements which enable him to produce a total real-time system,

Existing FORTRAN II programs can be compiled in GE/PAC FORTRAN, provided
that the specific restrictions noted herein are not violated. Programs
written for GE/PAC Single-Word FORTRAN can be compiled in Double-Word
FORTRAN provided that the restrictions noted in BIT statements and
BOOLEAN statements are followed.

INTRODUCTION TO DOURLE-WORD FORTRAN

A GE/PAC FORTRAN program is a sequence of statements, each of whose
characteristics is described in this manual. These statements may
be classified according to the following general categories.

1. COMPUTATION statements which comprise the working body
of the program; e.g., numerical calculation and bit
manipulation.

2. CONTROL statements which specify the flow of control
during execution.

3. DECLARATION statements which supply information about the
program,

4, INPUT-OUTPUT statements which provide communication with
the system peripherals.

5, PAL LANGUAGE statements which may be included in the
program in order to 'tailor" certain critical areas.

PROGRAM PREPARATION

The statements representing a Double-Word FORTRAN program are first
entered on a coding form similar to that of Figure 1. The lines of

the coding form are divided into sixty-nine columms;, each of which

may contain one character. Each statement is written on a separate line;
if more than one line is required, as many as four additional lines

may be used as a "continuation® of the statement,

Columns 1 through 5 may be used for a statement number., Such numbers
may be used as labels to which other statements in the program refer.

A non-zero, non-blank character in column 6 indicates that the line is
a continuvation line.

The body of the statement itself is entered in columns 7 through 69 of
the initial and any necessary continuation lines.

Column 70 must contain a "7'" in all lines of all statements of categories
1 through 4 above. Lines which contain a "6" in column 70 are of category
5. All category 5 statements are franswitted unchanged into the object
program,

A "C" in column 1 indicares that the sgtatement i3 a cownent. Like
category 5 statements, corment stacerents are passed directly into
the object program at the poinc of encounter., The rexr of the comment
may be entered in columns 2 through 6% of trhe wnitizl line and in
columns 7 through 6% of continvation lines,

A "B" in column 1 indicates the statement {s o7 type ‘Boolean" and that
certain numerical calculations contained im che ste*emenc arz to be
performed with logical rather tran arithwmetic opsrations,

Except for columns 1 and 6 and certain alphan.meric fields, blanks are
ignored and may be used freely to increase legibility.

The first line of any program, irrespective of content, is assuxed to
be the title line and contains ~he text (columns 1 thro.gh %) which
will head pages of the outp.t listing and ‘he prograw identification
number (columns 71 througk 75) which will bz rransm.tred ro all gener-
ated object lines.

The last line of the prograr must be an END sratemenr, An END state-
ment may contain no other characters in columns 7 rhro.gh 6% except
"END".

SAMPLE PROGRAM

It is desired to fit the best straight line approxinst.on ro a pop-=
ulation of data by the method of least asg.ares. The tollowing program
indicates how this would be done using FORTRAN, Tte general formula
for the approximation is of the forwy y = atbx. The solve For a and b
by the method of leasi sq.ares we eval.ate thre fZorm.las:

(3y) (Ex5 . (5y 03 ay)
a= (n) (Sx) = (5x)%
(n) (&xy) - (2%) CZy)
b = (a) (TR TTTUERY

Line 1 is the TITLE CARD. It is also a FORTFAN comment <ard. The
Sample Program is illustrated in Figure 1 on the folloning page.

The dimension statement of lime 2 declares ¥ and % 1o b one dfmen-

sional arrays each containing 20 noubers Th.us declaration sets aside
two groups of 20 conseci.tive storage spaces for X and ¥ and allows them
to appear as subscripred variables witxain the prograr.

Line 3 is an input stacement thalt reads a receord of previoosly prepared
dats from tape under control of FORMAT scatement 10 zad nlaces 1. in
the consecutive locarions of the X and Y arrays

.

GENER

< "fl/)

LECTRIC

P:\OCES«:‘ COLIPUTER SECTION
- PHOENIX, ARIZONA

PROCESS

n—

ANGUAGE SYATEME

2

M

@@@%N@ FORM

ENT

Project Name

Program Name

| Page of Date

Programmer

Type Code: O-deletion, 2-PAP, 3-NOAP, 4-COOL

LOCATION®

STATEMENT

BRAN

CH CONTROL FIELD T}Pewj.| Prog.
#

20

yi #

+ P

-

Any Lase e

Sequence
#

ziz‘.s 4iss

1 1213 14 1516 RV 18 19 20 2 222324 25 2% 2728 2930 31 32 333435 36373839 40 41 42 43

44[45 46 47 48 49

50 51 52 53 54

55 56 57 58 59| 0 6162 63 64|65 66 67 68 £9170/71 7273 74 75

Ao 00 N

(4]
7
Cilti ! EIXAMPLE @F LEAST SQUARES 'l tiitiip) NEEREE RN Pl qrlesl
T ThlivensTgN x(20),y(20) — Lol Tiei il R NERN BRI =X I
; LRIEAD| 105X,y i i b iy T s T
ST M slumxl=0. 11 T T ey 7 e] R R 2
L1 IsluMYl=0.: L B N R R e T T R T e 1
T Tlslums|ax= 0. My L e AT I N S N IR done i resl
T slumxly =0l T T TR b T T T , e rjeel p
DI 5 1~n,zo‘ ‘ * ‘ . ‘ b 7126
i SluMX[=SUMX X (1)t MEIREEENINN N RN IRURTE PRI AUNTEIN O /2 S
T T slumyl= suMy Y (1) I IR O LA B
| ISluMslax=SUMSQX= X(I) *2 ! . B R R R R v 1
5 Clslumxly = SUMXY+X(I)*Y(1 b : LT 72 ‘

4 T IAl= (SlUMY ®xSUMS QX - sumstumxv)/(zo.asumsax~sumx**z) IR o
. B=(20.*sumMXy= sumx*sumv)/&agh%§umsgx SjuMx xx2l) | bbb b mesl
. _PPRINT 10, A,B"W>_WHM;¢Qé;¢i;£*Aw%f‘A4~; IR EREY Pid el

10 FIgRMIAT (25;4 s) AR B AP B I T T e ‘
L TP e e R e e e P o
{ J 4! j IR | b }’ S _g_f__\ I e ‘_l_.-_’v- _"-.g.-i_..}- __'_.“,.,_‘.J . - e
i £ REERRR RS §>j-%_i RERERERE AN AT RANER R EE N O N R
. ! li!aiizfril.;‘g;,‘ﬁf : bl L .
, BN RIS VRIS I SO N Sy i 16 0 O S S NN O 0 08 SN N NS o
(i Een R R RN NN AR NSNS NUNERRY | ENEEN EREa Suyun REnny nuni] o 0
RARRERUNNRRERRES NCRRARRENNN RN N REEN SN RN SRR AN I L
N ERAREEEEN g,léilégi*ili‘i‘i;§iii BB A DERENERREE RS -
©penizosen *Restricted to five characters for COOL -+, i Shaded areas indicate PAP format restriclions !
‘ . ‘ ‘ S

B NI L

76 77 78 79 80

GO

‘FIGURE |

Calculation actually begins with linme 4 in which a variable called
SUM is set equal to zero. Similar operations are performed on lines
5, 6, and 7.

Line 8 sets up a series of repetitive calculations in what is known

as a DO loop. It causes the calenlations up to and including state-
ment 5 on line 12 to be performed 20 times. The subscripting variable

I is set to 1 for the first execucion of the following four instructions
and is increased by 1 for each subsequent execution. Tn this manner it
is possible to refer to successive values of X and ¥ for calculation
purposes.

In line 9 a value of X is added to SUM and the result is assigned to
SUM. A similar operation is donme for ¥ on line 10,

In line 11 a value of X is sqguared, added to 3UMSCk, and assigned to
SUMSQX.,

In line 12 a value of X is maltiplied by a value of Y, added to SUMXY,
and assigned to SUMXY.

After the previous four calculations have performed 20 times, control
passes from the DO loop to the statement of line 13 in which A is cal-
culated. Then B is calculated on line 14.

Line 15 is an output staterent which causes the values of A and B to be
printed on-line according to FORMAT statement number 10 (line 16). This
FORMAT statement indicates two answers are to be printed on the same
line, each answer occupies 14 spaces (including blanks) and there are

6 digits after the decimal point,

Line 17 is a control card indicating the END of the example,

COMPUTATION

BASIC ELEMENTS

The basic elements used as operands in Double-Word FORTRAN compurations
are constants, variables, and functional references, all of which repre-
sent numerical quantities. 1In the FORTRAN language, these =lements are
represented by symbols composed of character strings.

QUANTITIES

Two types of numerical guancities are recognized by FORTRAN, arithmetic
and logical. Within the designation arithmetic, two modes are recognized,
real and integer. Integer quantities represent integers within the range
-8,388,608 (-223) through 8,388,607 (223.1y inclusive, and occupy one
machine word. Real quantities represent real numbers and are represented
in the computer by floating-point configurations comprised of a 9 bit
exponent and a 37+sign bit mantissa and occupy two machine words. The
approximate range of floating quantities is -1070 through -10-77, 0 and
10-77 through 1076,

Within the designation logical. only octal digits (0 through 7 inclusive)
are recognized. An octal quantity occupies one machine word and has a
maximum value of 77777777.

CONSTANTS

Constants are numbers of arithmetic or logical type which appear in the
source program in explicit form.

Arithmetic integer constants are written as a string of decimal digits.
Examples:

0
1
1964

Logical integer constants are written as a string of octal digits,
Examples:

0
252525
77777777

-5 -

In either type, the integer represented must lie w1th1n the range
specified above for integer quantities.

Real constants are written as a string of decimal digits which includes
a decimal point.

Examples:

.0
1.
2.71828

Real cons tants may be given a scale factor by appending an "E'" followed
by an integer constant, which indicates the power of ten by which the
number is to be multiplied. This scale factor wmay be preceded by a "+"
or "-" sign to indicate positive or negative powers of ten. If no sign
is given, it is assumed to be positive.

Examples:
1.E-12 means 10”2
,00314159E+3 means 3.14159
19, 64E+2 means 1964,

As another alternative, a real constant may be expressed as an integer
constant followed by a scale factor.

Examples:
55E-3 means .055 45
132E45 means 132 x 10
69E4 means 620000

In any representation the number must lie within the range described
above for floating quantities.

IDENTIFIERS

Identifiers are used to name the variables, subprograms. and dummy
arguments which appear in a FORTRAN program. An identifier is a string

of letters and digits, the first of which must be a letter, The string
may be any desired length, but only the first six characters will be used,
Identifiers may be declared as integer or real, either explicitly or
implicity. Implicit definition depends upon the first letter of the
identifier. 1If the first letter is from the group (i,J,K,L,M, and N), then
the identifier is of the class integer. If the first letter is not from
this group then it is of class real. Explicit definition of identifiers
is accomplished by the declarative statements REAL and INTEGER.

-6 -

Examples:

Real RATE
DECREMENT

Integer L307
MPNTH

VARIABLES

Variables represent quantities which may assume many different values
and are referred to by name, They may be either scalar or array vari-
ables, depending on the nature of the quantity they represent.

SCALAR VARIABLES

Scalar variables represent a single real or integer quantity and are
written as simple identiflers.

Examples:

DISTANCE
Z
N3

ARRAY VARIABLES

An array variable represents a single element within an array of quan-
tities, The array variable is denoted by the array name followed by

a subscript list enclosed in parentheses. The subscript list contains
one or more arithmetic expressions separated by commas. Each expression
corresponds to a subscript and the values of the expressions determine
which array element is to be referenced. The number of subscripts in the
list must equal the number of dimensions specified for the array.

Examples :

A (4)
BETA (M+3)
JOHN (2*1TEM-13)

SUBSCRIPTS

A subscript may be any expression of the type, arithmetic; however. its
significance is of integer mode and limited in range by the size of the

array dimension involved. Therefore, when necessary, the value of
any expression used as a subscript is truncated to an integer and reduced
modulo 214 before being employed in reference.

SINGLE-BIT ARRAYS

As the operands of certain CE/PAC 4000 FORTRAN statements (SET BIT,

RESET BIT, IF BIT), the individual bits in the binary representations

of integer scalar variables (nof array variables or real veriables)

may be referred