
GENERAL. ELECTRIC ----------------------------------- PROCESS COMPUTERS

GE/PAC 4000 SOFTWARE NOTEBOOK

TABLE OF CONTENTS

Section I. Computer Software

Standard On - Line Functions

Language Processors

Debugging Aids

Software For The GE/PAC 4000

GE/PAC 4000 Library Programs

Section II. GE/PAC 4000 Programming Manual

Section III. Programming Techniques Manual

Section IV. Process Assembler Language

Section V. Single-Word Fortran Reference Manual

Section VI. Monitor User's Manual

Section VIL Free-Time System User's Manual

GENERAL. ELECTRIC ----------------------------------- PROCESS COMPUTERS

COMPUTER SOFTWARE

The successful operation of any process system depends on two functions =

hardware and software® Hardware is the group of electronic components that acts

physically upon information and signals from the processe That portion of soft=

ware called the system program is the intelligence that instructs the computer

hardware to step through the various cycles of the process0 Other software

packages aid in preparing the system program. General Electric process computer

software:

Facilitates a systematic approach in writing computer programs

Sufficiently flexible to allow for future changes in user process

Complete software packages for GE/PAC 4000 have been developed and are classi=

fied into 3 categories: Language Processors, Standard On=Line Functions, and

Program Debugging Aids:

Language Processors

Translates functions into computer instructions

Increases speed and accuracy in preparing programs

Aids in documentation and debugging of a program

Operate on GE/PAC 4000, GE 412 or GE 225 computer systems

Process Assembler Langua85:_

Enables programmer to code program in systematic and well

documented fashion.

Generates single and double precision constants to a specified

scale factor.

Provides bui 1 t·- t Tl check features which detect and notify programmer

of coding errors.

Fortran II Co~~

Enables powerful algebraic and verbal statements to be written with

minimum time and effort.

Permits experienced Fortran programmers to make easy transition to

GE/PAC programming~

Allows previously written Fortran programs to be adapted to the

GE/PAC 4000.

GENERA~. ELECTRIC

Computer Software (Continued)

Standard On-Line Functions

Common routines suitable for numerous applications

Require little or no re-work by user programmer

PROCESS COMPUTERS

Use of pre-checked routines eliminates programming and debugging time

Monitor

Schedules and gives priority assignment to system functions

Enables user to have system running on-line in minimum of time

Provides communication between functions and peripheral equipment

Math Routines

Includes fixed, floating, single and double precision math routines

Available from General Electric library to all GE/PAC 4000 users

GE/PAC 4000 users receive up-to-date abstracts of new routines as

they are developed.

Debugging Aids

Debugging aids proven by field experience provide powerful means of

keeping program documentation up to date.

Debugging aids provide user with loader, dump, memory change, and

trace routines.

On-line debugging aids are plug-in package to Monitor.

-2-

GENERAL. ELECTRIC ---------------------------------- PROCESS COMPUTERS

STANDARD ON-LINE FUNCTIONS

Standard on-line functions are portions of a total system program that are common

from one computer application to another. Because they are used so frequently,

optimum execution time and utilization of memory have been stressed in their develop=

ment. For most applications the use of these functions require little or no re=work

by user programmerse Use of these pre-checked routines eliminates programming and

debugging time.

MONITOR

MONITOR provides the skeleton of a real-time program by scheduling and giving

priority assignment to system functions. By using MONITOR the user is capable of

having an on=line program running with minimum of time spent on the program. Ad=

ditional functions can be added to MONITOR requiring no re-working of the running

system.

The routines that make up MONITOR are clear and well defined which makes for easy

understanding of the system. The layout of the MONITOR package facilitates the

addition of system functions by user programmers. The routines that comprise

MONITOR are:

Time and diagnostic count

Executive control program

Save registers routine

Restore register routine

Turn off program routine

Set program delay

Input=outp~t drive

Output program consisting of:

Output subroutine

Decimal floating point routine

Decimal fixed point routine

Octal conversion routine

BCD conversion routine

Build driver table routine

Binary to decimal conversion subroutine

GENERAL. ELECTRIC ---------------------------------- PROCESS COMPUTERS

Standard On=Line Functions

In addition to the above, MONITOR also includes the following two routines for

core/drum GE/PAC 4000 computers:

Drum transfer subroutine

Drum transfer drive

The Time and Diagnostic Count routine essentially performs two functionse The

routine maintains the value of current time (in seconds) which is used by the Executive

Program in determining execution time of the functional programs. The second function

of this routine is to detect if certain peripheral devices such as typewriters,

punches, etc@ fail® This routine will usually turn on a corrective action function

which initiates remedial action.

The ~xecutive Control Program (E.C.P.) is the real heart of the MONITOR system as it

initiates functional programs according to their scheduled interval and priority. The

ECP provides for easy writing and addition of function programs as it performs real=

time housekeeping chores such as saving and reloading arithmetic and index registers~

The number of functional programs that the ECP can manage is limited only by the com=

puter core or drum size and the length of the individual functions. Most MONITOR

systems allow 25 to 50 functional programs.

To accomplish on=line requirements as they occur, the GE/PAC 4000 uses automatic

priority interrupt which may interrupt a program' at any time. Since the various

registers (arithmetic, location counter, index) must be saved for the interrupted

program, MONITOR provices the Save Register and Restore Register routines that user

interrupt programs can use.

To further reduce housekeeping chores of functional programs using MONITOR, ~et

Program Delay and Turn Program Off routines are supplied. These routines enable a

user function to be initiated at a specified interval or be completely turned off

until some exterior influence (such as a demand) re'"·initiates the function.

The Input/Output program permits user functional programs to communicate with peri=·

pheral devices such as typewriters, readers, punches, clc. in an orderly, step~by=step

fashion® The Input/Output program determines if the peripheral is available for use

by the functional program, reserves the peripheral for the functional program, reads

in or puts out data, and makes the peripheral free for other functions upon

conclusion of the present function. The Input/Output program eliminates a large

GENERAL. ELECTRIC PROCESS COMPUTERS

Standard On~Line Functions

amount of editing and bookkeeping that would be required if it were not available.

The output portion of the program converts binary floating point to decimal fixed

point output, binary fixed point to decimal fixed point output, binary to octal

output, binary data to numeric and alphabetic character output. The Input/Output

program operates the peripherals through automatic priority interrupt which insures

the peripherals to op-erate at their maximum sp-eed.

For GE/PAC 4000 computers equipped with a magnetic drum memory, MONITOR also provides

the transfer linkage for information flowing between core and drum. The user

functional program simply uses the Drum Transfer Subroutine to initiate a transfer of

information between core and drum. While the transfer is in progress, MONITOR initiates

other functions that require action thereby permitting full utilization of the central

processor. When the transfer is complete, the ECP will re~initiate the fundamental

program that requested the transfer. Completion of a drum/core transfer is detected

by automatic priority interrupt which insures that the date involved in the transfer

is acted upon expeditiously by the function.

MONITOR Compatible Functions

MONITOR Compatible Functions are those functions that are developed for

specific applications which may be used by other computer users. These

routines are written in a general form so that they require a minimum of

re~working to be suitable for similar other applications. Examples are

scanning, alarming, conversion equations, demand print, etc.

Math Routines

Math Routines which are usually used in subroutine form include fixed point, single

and double precision math functions. These routines arc available from the General

Electric Company library to all GE/PAC 4000 computer users. They may be obtained in

punched card form, symbolic listing or paper tape where the General Electric Company

will assemble the routines to fit the user parameters. Examples of those routines are

square root, trigometric, exponential functions, etc.

GENERAL. ELECTRIC PROCESS COMPUTERS

LANGUAGE PROCESSORS

Language processors are those preparation aids that enable a programmer to

translate a function into actual computer instructions. Use of a symbolic

language greatly increases the speed and accuracy of preparing a program and

also aids in the documentation and debugging of the program. To provide the

programmer with the most effectual means of coding a program, the General Electric

Company has developed two powerful language processors - Process Assembler

Language and GE/PAC Fortran. These language processors are extremely flexible =

providing for magnetic tape, paper tape, or punched card input. Additional

service to the user has been provided as these processors operate on GE/PAC 4000,

GE 412 or GE 225 computer systems. The GE 225 language processor version enables

routines to be assembled or compiled at the various General Electric Information

Processing Centers throughout the country and overseas.

PROCESS ASSEMBLER LANGUAGE

The Process Assembler Language accepts coded symbolic instructions and trans=

lates them into computer instructions. These symbolic instructions are coded

by the programmer on a coding sheet from which cards are punched when the

coding is completed. The cards then may be read into the computer on which

the Assembler Program is operating.

The output from the Assembly Program is a listing from a printer or type=

writer of the object program and a paper tape which is used to load the new

program into the computer. In addition to this translation, the Assembler

Program has built-in check features which detect and notify the programmer

of coding errors. The listing provides documentation of the program and is

invaluable as a debugging aid.

An On~Line Process Assembler Language program accepts the same symbolic

language as above and has the ability to assemble programs while the GE/PAC

4000 is handling process data. Its advantage is that it can be used to

assemble or re-.assemble programs at the user site, and integrates them into

the system with no interruption to process computing.

The listing provides the symbolic instructions as coded and also the octal

core locations, instructions and constants of the assembled program. For

GENERAL fl ELECTRIC PROCESS COMPUTERS

Language Processors (Continued)

further aid in debugging, the listing reproduces all comments from the coding

sheet. Three columns of numbers represent:

Core location

Relative address

Absolute address

The Assembly Program makes maximum use of the relative addressing feature of

the GE/PAC 4000. The Assembly Program assembles the operand value relative

to the location of the instruction itself rather than the absolute value.

With this feature, it is possible to move the program within memory, thereby

adding a new dimension of flexibility to system progranr·orgarriz-ation.

In addition to the computer hardware instructions, the Assembly Program makes

maximum use of pseudo instructions for storage assignments, symbol definition,

and generation of constants to provide better programmer efficiency. These

instructions include block storage reservation, single-and double-word float­

ing constants, etc.

GE/PAC FORTRAN Compiler

To make the writing of new programs easy and efficient as possible, G.E. has

created a Fortran Compiler for GE/PAC 4000. This compiler goes a step beyond

the Process Assembler Language program in that it enables the programmer to

write his program in terms of 11 statements 11 which employ familiar language and

symbols rather than the symbolic code required by the Process Assembler

Language. An example of such a statement might be:

Y = A/B + C - SIN(D + E)

where A, B, C, D and E are symbols which have been defined by the programmer

in previous statements. A statement such as this, when presented to the

Fortran Compiler, will cause the compiler to automatically generate all the

step-by=step machine instructions necessary to perform the calculations

called for in the statement. Thus, the programmer is freed from the time·-·

consuming details of step-by-step programming and allowed to concentrate more

fully on the problem at hand.

In preparing the Fortran Compiler for the GE/PAC 4000, G.E. has incorporated

several special features which facilitate the writing and running of programs

in a real-time process control environment.

-2-

GENERAL. ELECTRIC PROCESS COMPUTERS

Language Processors (Continued)

Compatibility With Monitor

The Compiler has been designed so that the programs it produces will have

numerous special provisions for operation within the G.E. Monitor system. Thus,

new programs may be easily incorporated into existing Monitor systems.

Compatibility With Process Assembler Language

The programmer is free to intermix GE/PAC Fortran statements with Process As=

sembler Language statements within a single program. This allows the programmer

to switch back and forth between the two languages arbitrarily, always free to

choose the language in which he can proceed more efficiently. Output from the

compiler is in the form of Process Assembler Language Symbolic coding.

Bit Manipulation Capability

Special Fortran statements are available to the programmer through which he may

exploit the ability of the GE/PAC 4000 to manipulate individual bits within a

word. In this manner, individual bits may be treated as separate variables and

may be set, reset, tested, and operated upon with Boolean algebraic expressions.

Drum=Core Transfers

Transfers of information between drum storage and core storage may be imple=

mented through the Fortran Compiler by means of special statements provided for

this purpose.

Memory Economy

The Compiler has been designed so that the programs which it produces will

require a minimum of memory space. This conservation of memory can mean

increased flexibility during future additions of modifications of programs in

cases where it is not desired to increase the memory size of the machine.

Floating Point Operation

The Fortran Compiler will accept data in either integer or floating point form,

and programs produced by the Compiler may be made to output data in either form.

Statement Repertory

A large repertory of allowed statements, plus a full complement of Hlibrary 11

subroutines, makes for ease and flexibility in programming with the Fortran

Compiler.

-3-

GENERAL. ELECTRIC ------------------------------------ PROCESS COMPUTERS

DEBUGGING AIDS

Field experience has shown that debugging aids provide a powerful means of

updating program documentation which leads to a successful program. To this

end, General Electric has developed extremely useful debugging aids, both

on- and off-line.

Debugging aids are used by the programmer to check the operation of progress

for their correctness. Program loaders provide the means of load programs or

data into computer storage through card or paper-tape readers. Conversely,

the dump program is used to record the contents of computer memory, either

through the typewriter or paper-tape punch.

The Memory Change program provides the means for changing the contents of a core

or drum location through the computer console switches. Documentation showing

the location, contents before the change, and contents after the change are typed

out on the console typewriter. The memory change program has the added facility

of displaying the location and its contents before the change is executed.

The on-line debugging routines enable unchecked routines to be debugged on the

computer without interrupting normal process monitoring and control. Safeguards

are built into these on-line debugging aids to guard against unchecked programs

destroying operating programs.

SECTION IV

FUNCTIONAL DESCRIPI'ION - GE/PAC SOFTWARE

SECTION IV

FUNCTIONAL DESCRIPrION - GE/PAC SOFTWARE

A.. GENERAL

The successful operation of any process system depends on two functions -

hardware and software~ Hardware is the group of electronic components that

acts physically upon information and signals from the processes.. That por­

tion of software called the system program is the intelligence that instructs

the computer hardware to step through the various cycles of the processeso

Other software packages aid in preparing the system programu General Electric

process computer software:

o Facilitates a systematic approach in writing computer programso

o Sufficiently flexible to allow for future changes in user

processes~

Complete software packages for GE/PAC 4000 have been developed and are

classified into 3 categories: Language Processorsj Standard On-Line

Functions, and Program Debugging Aids:

l~ Language Processors

o Translates functions into computer instructionso

o Increases speed and accuracy in preparing program.,.

o Aids :i.n documentation and debugging of a program,.

o Operate on all GE/PAC 4000 Central Processors ..

(a) Process Assemble Language

o Enables prograrmner to c0de program in systematic and

well documented fashion ..

o Generates single and d0uble precision constants to a

specified scale factor ..

o Provides built-in check features which detect and

notify prograrmner of coding errors~

IV - 1

(b) Fortran Compiler

o Enables powerful algebraic and verbal statements to

be written with minimum time and effort ..

o Permits experienced Fortran programmers to make easy

transition to GE/PAC programming ...

o Allows previously written Fortran programs to be

adapted to the GE/PAC 4000 series process computers,.

2,. Standard On=Line Functions

o Common routines suitable for numerous applications~

o Require little or no re-work by user programmer,.

o Use of pre~checked routines eliminates programming and debugging

time,..

(a) Monitor

o Schedules and gives priority assignment to system

functions ..

o Enables user to have system running on~line in minimum

time ..

o Provides communication between functions and peripheral

equipment ..

(b) Math Routines

o Includes fixed, floating, single and double precision

math routines ..

o Available from General Electric library to all GE/PAC

4000 users"

o Assembled by General Electric to fit user routine

parameters,.

o GE/PAC 4000 users receive up.to-date abstracts of new

routines as they are developed"

IV - 2

(c) Free Time System

o Real time language processing*

o Real time debugging*

o Use of functional programs in a real time environ-

ment ..

o Allows 100 percent usage of computer arithmetic and

logic capabilities~

3 <r De.bugging Aids

o Debugging aids proven by field experience provide

powerful means of keeping program documentation up

to dateo

o Debugging aids provide user with loader, dump, memory

change, and trace routines~

o On-line debugging aids are a plug-in package to Monitor4

Bo:- LANGUAGE PROCESSORS

language processors are those preparation aids that enable a programmer

to translate a function into actual computer instructions o: Use of a sym,=

bolic language greatly increases the speed and accuracy of preparing a

program and also aids in the documentation and debugging of the program*

i:ro provide the programmer with the most effectual means of coding a program.?

the General Electric Company has developed two powerful language processors -

Process Assembler Language and Fortran II.. These language processors are

extremely flexible - providing for magnetic tape, paper tape, or punched

card input~ Additional service to the user has been provided as these pro­

cessors operate on GE/PAC 4oooj GE 412 or GE 225 computer systems9 The

GE 225 Ianguage Processor version enables routines to be assembled or com­

piled at the various General Electric Information Processing Centers through=

out the country and overseas.,.

IV - 3

l~ Process Assembler Language

The Process Assembler language accepts coded symbolic instructions and

translates them into computer instructions~ These symbolic instruc­

tions are coded by the programmer on a coding sheet from which cards

are punched when the coding is completed~ The cards then may be read

into the computer on which the Assembler Program is operating4

The output from the Assembly Program is a listing from a printer or

typewriter of the object program and a paper tape which is used to load

the new program into the computer~ In addition to this translation,

the Assembler Program has built~in check features which detect and

notify the programmer of coding errors~ The listing provides documenp

tation of the program and is invaluable as a debugging aidit

.An On~Line Process Assembler language program accepts the same symbolic

language as above and has the ability to assemble programs while the

GE/PAC 4000 is handling process data~ Its advantage is that it can be

used to assemble or re~assemble programs at the user site~ and inte~

grates them into the system with no interruption to process computing~

The listing provides the symbolic instructions as coded and also the

octal core locations, instructions and constants of the assembler

program"' For further aid in debugging, the listing reproduces all

comments from the coding sheet~ Three columns of numbers represent~

Core location

Relative address

Absolute address

The Assembly Program makes maximum use of the relative addressing fea­

ture of the GE/PAC 4000~ The Assembly Program assembles the operand

value relative to the loeation of the instruction itself rather than

the absolute value~ With this feature, it is possible to 'move the

program within memory, thereby adding a new dimension of flexibility

Dr - 4

to system program organizationo In addition to the computer hardware

instructions, the Assembly Program makes maximum use of pseudo in­

structions for storage assignments, symbol definition, and generation

of constants to provide better programmer efficiencyo These instruc~

tions include block storage reservation, single and double word

constants, single and double word floating constants, etco

2., F10RTRAN Compiler

To make the writing of new programs as easy and efficient as possible,

GoEo has created a Fortran Compiler for GE/PAC 40000 This compiler

goes a step beyond the Process Assembler Language program in that it

enables the programmer to write his program in terms of "statementsvr

w~ich employ familiar language and symbols rather than the symbolic

code required by the Process Assembler Ianguageo .An example of such is~

Y = A/B + C - SIN (D + E)

where A, B, c, D, and E are symbols which have been defined by the pro­

~mmer 1.n previous statements.. A statement such as this, when presented

to the Fortran CX;mpiler, will cause the compiler to automatically

generate all the step~by-step machine instructions necessary to perform

the calculations called for in the statemento Thus, the programmer is

freed from the time consuming details of step-by-step programming and

allowed to concentrate more fully on the problem at hando

In preparing the Fortran Compiler for the GE/PAC 4000, GoEo has incor­

porated several special features which facilitate the writing and

running of programs in a real~time process control environmento

(a) Compatibility with Monitor

The compiler has been designed so that the programs it pro~

duces will have numerous special provisions for operation

within the G~E~ Monitor systemo Thus, new programs may be

easily incorporated into existing Monitor systems,,

IV-5

(b) Compatibility with Process Assembler language

The programmer is free to intermix Fortran statements with Process

Assembler language statements within a single programo This

allows the programmer to switch back and forth between the two

languages arbitrarily, always free to choose the language in which

he can proceed more efficiently. Output from the compiler is in

the form of Process Assembler Language Symbolic coding.

(c) Bit Manipulation Capability

Special Fortran statements are available to the programmer through

which he may exploit the ability of the GE/PAC 4000 to manipulate

individual bits within a word~ In this manner, individual bits

may be treated as separate variables and may be set, reset, tested

and operated upon with Boolean algebraic expressions.

(d) Drum-Core Transfers

Transfers of information between drum storage and core storage

may be implemented through the Fortran Compiler by means of special

statements provided for this purposeo

(e) Memory Economy

The Compiler has been designed so that the programs which it pro­

duces will require a minimum of memory space~ This conservation

of memory can mean increased flexibility during future additions

of modifications of programs in cases where it is not desired to

increase the memory size of the machine.

(f) Floating Point Operation

The Fortran Compiler will accept data in either integer or float­

ing point form, and programs produced by the Compiler may be made

to output data in either form&

IV - 6

(g) Statement Repertoire

A large repertoire of allowed statements, plus a full complement

of "libraryn subroutines, makes for ease and flexibility in pro­

gramming with the Fortran Compiler~

C., STANDARD ON-LINE FUNCTIONS

Standard on-line functions are portions of a total system program that are

common from one computer application to another~ Because they are used so

frequently, optimum execution time and utilization of memory have been

stressed :i.n their development I> For most applications; the use of these

functions require little or no re-work by user ~rogrammers~ Use of these

pre~checked routines eliminates programming and debugging time&

1.. MONITOR

MONITOR provides the skeleton of a real time program by scheduling and

giving priority assignment to system functions.. By using MONITOR the

user is capable of having an on-line program running with minimum of

time spent on the programll Additional functions can be added to

MONITOR requiring no re-working of the running system¢

'I1he routines that make up MOl'ifITOR are clear and well defined, which

makes for easy understanding of the system*' The layout of the MON:TIOR

package facilitates the addition of system functions by user pro-

grammers .. The routines that comprise MONITOR are~

(a) Time and diagnostic count.

(b) Executive control programR

(c) Save register routine~

(d) Restore register routine~

(e) Turn off ~rogram routine12

(f) Set program delay ',

(g) Input/Output drive~

IV"" 7

(h) Output program consisting of:

Output subroutine

Decimal floating point routine

Decimal fixed point routine

Octal conversion routine

BCD conversion routine

Build driver table routine

Binary to decimal conversion subroutine

In addition to the above, MONITOR also includes the following two

routines for core/drum GE/PAC 4000 computers:

Drum transfer subroutine

Drum transfer drive

The Time and Diagnostic Count routine essentially performs two

functions I) The routine maintains the value of current time (in

seconds) which is used by the Executive Program in determining execu­

tion t:l.me of the functional programs~ The second function of this

routine is to detect if certain peripheral devices such as typewriters,

punches 7 etc<> fail!> ~rhis routine will usually turn on a corrective

action function which initiates remedial action~

The Executive Control Program (E~C~P~) is the real heart of the

MONrrOR system as it initiates functional programs according to their

scheduled interval and priority~ The ECP provides for easy writing

and addition of functional programs as it perfonns real=time house­

keeping chores such as saving and reloading arithmetic and index

registers~ The number of functional programs that the ECP can manage

is limited only by the Computer core or drum size and the length of

the individual functions~ Most MONITOR systems allow 25 to 50 function~

al programs"

IV - 8

To accomplish on-line requirements as they occur, the GE/PAC 4000

uses automatic priority interrupt which may interrupt a program at

any time~ Since the various registers (arithmetic, location counter,

index) must be saved for the interrupted program, MONITOR provides

the Save Register and Restore Register routines that user interrupt

programs can use~

To further reduce housekeeping chores of functional programs using

MONITORJ Set Program Delay and Turn Program Off routines are suppHed'O'

These routines enable a user function to be initiated at a spe,cified

interval or be completely turned off until some exterior influence

(such as a demand) re-initiates the function~

The Input/Output program permits user functional programs to communi=

cate with peripheral devices such as typewriters, readers, punches,

etcQ' in an orderly, step-by-step fashion~ The Input/Output program

determines if the peripheral is available for use by the f'unctional

program, reserves the peripheral for the functional program, turns

power on the peripheral, reads in or puts out data, and makes the

peripheral free for other functions upon conclusion of the present

function* The Input/Output program eliminates a large amount of edit­

ing and bookkeeping that would be required if it were not available~

The output portion of the program converts binary floating point to

de,cimal fixed point output, binary fixed point to decimal fixed point

output, binary to octal output, binary data to numeric and alphabetic

character output II' The Input /Output program operates the peripherals

through automatic priority interrupt which insures the peripherals to

operate at their maximum speed~

For GE/PAC 4000 computers equipped with a magnetic drum memory,

MONrrOR also provides the transfer linkage for information flowing

between core and drum~ The user functional program simply uses the

Drum Transfer Subroutine to initiate a transfer of information between

core and drum;Q While the transfer is complete, the ECP will re· ... initiate

IV.,.. 9

the functional program that requested the transfero Completion of a

drum/core transfer is detected by automatic priority interrupt which

insures that the data involved in the transfer is acted upon expe­

ditiously by the function,,

MONITOR Compatible Functions

MONITOR Compatible Functions are those functions that are de­

veloped for specific applications which may be used by other

C'Omputer users o. These routines are written in a general form

so that they require a minimum of re-working to be suitable for

similar other applications" Examples are scanning, alarming,

conversion equations, demand print, etc~

2" MAIR ROUTINES

Math Routines which are usually used in subroutine form include fixed

point, single and double precision math functionso These routines are

available from the General Electric Company library to all GE/PAC 4000

computer users~ They may be obtained in punched card form, symbolic

listing or paper tape where the General Electric Company will assemble

the routines to fit the user parameters,, Examples of those routines

are square root, trigometric, exponential functions, etc~ GE/PAC 4000

users receive up-to-date abstracts of each routine as it is developedo

The combined purpose of the Free-Time and Language Processing and De­

bugging Systems is to provide the user with the ability to compile,

test, and execute functional programs in a real-time environment,,

Existing service programs may be initiated by a control cardo New

programs may be tested and entered into the overall system in easy

stages starting with an untested program and arriving at an operating

real-time program,,

IV - 10

The system :provides "load and go" or "compile and got' with

debugging at the symbolic level using the names of FORTRAN

variables~ The dynamic relocation of :programs and allocation

of storage frees the :programmer from any concern other than the

successful compilation and testing of his program~

GE/PAC 4000 LIBRARY PROGRAMS JANUARY 1966

LIB. PROGRAM TITLES
CTL. * * * * * * *
NO.

*
PROGRAM CLASSIFICATION -(A)- SERVICE ROUTINES, LOADERS, DUMPS, OPERATOR

PROGRAMS, MAGNETIC TAPE HANDLING SYSTEMS, ETC.
*

YPAOl LDR41-GE/PAC LOADER PACKAGEo
YPA03 BTS41-GE/PAC PROG. LOAD RTN. PERIPH BUFF NO. 4200/4201
YPA04 BTS42-GE/PAC PROG. LOAD RTNo PERIPH BUFF NO. 4201
YPA05 DUP41-PAPER TAPE DUPLICATOR - OFF LINE
YPA06 DUP42-PAPER TAPE DUPLICATOR - ON LINE, MONITOR I
YPA08 CLK41-0N LINE CLOCK, MONITOR I
YPA09 POS41-PERIPHERAL IN/OUT OF SERVICE, MONITOR I
YPAlO PST41-PROGRAM STATUS, MONITOR I
YPA13 MCG42-MEMORY CHANGE W/PCH OPTION, MONITOR I
YPA17 POS42-PERIPHERAL IN/OUT OF SERVICE, MONITOR II
YPA18 PST42-PROGRAM STATUS, MONITOR II
YPA19 CLK42-0N CLOCK, MONITOR II
YPA20 OPR41-0N LINE OPERATOR PROGRAM, MONITOR I - REF YPG28
YPA21 OPR42-0N LINE OPERATOR PROGRAM, MONITOR II - REF YPG29
YPA22 MCG43-MEMORY CHANGE - ON LINE - I/0 TYPER, MONITOR II
YPA24 MCG44-MEMORY CHANGE WITH PCH OPTION, MONITOR II
YPA25 DUP44-PAPER TAPE DUPLICATOR - ON LINE - MONITOR II
YPA26 OPR43-0N LINE OPERATOR PROGRAM - I/0 TYPER
YPA27 DUP43-PAPER TAPE DUPLICATOR -- 1/0 TYPER
YPA28 OLD41-0N LINE DUMP, MONITOR I
YPA29 OLD42-0N LINE DUMP, MONITOR II
YPA30 DMP41-0FF LINE DUMP, ALL CORE
YPA31 DMP42-0FF LINE DUMP, DRUM-CORE
YPA32 LDR43-0N LINE PAPER TAPE LOADER - I/0 TYPER
YPA33 OLD43-0N LINE PAPER TAPE DUMP - I/0 TYPER
YPA34 CMC41-CONSOLE SWITCH DRUM/CORE MEMORY CHANGE - OFF LINE
YPA42 PRT41-PRINTER HEADING SUBROUTINE MONITOR IV
YPA46 CLK43-0N-LINE CLOCK - I/0 TYPER
YPA47 CDP41-0FF-LINE COMPARE DUMP
YPA50 DSN41-DEMAND SCAN (PRELIMINARY)
YPA51 CCG41-CONTROLLER CHANGE (PRELIMINARY)

*
PROGRAM CLASSIFICATION -(C)- MATH ROUTINES FLOATING POINT TRANSCENDENTALS,

CURVE FITTING, SPECIAL FORMULAS, ETC.

*

YPCOl GMR41-GE/PAC MATH ROUTINES - FLOATING POINT
YPC02 GMR42-GE/PAC MATH ROUTINES-FIXED POINT (ONLY SQRT AVAIL)
YPC03 GCC41-GE/PAC CODE CONVERSION ROUTINES
YPC04 FLR4l-FORTRAN LIBRARY ROUTINES (FLOW CHARTS YPCOl)
YPC05 FLR42-DBL.WD.FL.PT. FORTRAN LIBRARY (FLOW CHARTS YPC07)
YPC07 GMR43-GE/PAC MATH ROUTINES - DBL WO - FL.PT.
YPC08 TPS41-THERMODYNAMIC PROPERTIES OF STM(SUPERHEATED)-PKG 1
YPC09 TPS42-THERMODYNAMIC PROPERTIES OF STM(SATURATED)-PKG 2
YPClO TPS43-THERMODYNAMIC PROPERTIES OF STM(COMPRESSED)-PKG 3

*

PROGRAM CLASSIFICATION -(E)- GENERALIZED SYSTEMS MONITORS, PERIPHERAL I/0
+ OTHER HARDWARE COMMUNICATION REGISTER DRIVER
PROGRAMS, SIMULATORS, ETC.

*

YPE02 SIM02-GE/PAC SIMULATOR ON GE412
YPE03 SBM41-FORTRAN SUB-MONITOR, PERMANENT CORE
YPE04 SIM03-GE/PAC SIMULATOR ON THE GE225
YPE05 SBM42-FORTRAN SUB-MONITOR, DRUM-CORE (FLOW CHART YPE03)
YPE07 CAL41-CALEN9AR PROGRAM
YPE08 -MONITOR I COMPATIBLE PROGRAMS - REF YPE10,YPG13
YPElO MTR41-GE/PAC 4000 MONITOR I - ALL CORE - REF YPG13
YPEll ECP41-EXECUTIVE CONTROL PROGRAM, MONITOR I
YPE12 ITC41-TIME AND DIAGNOSTIC COUNT, MONITOR I
YPE13 IOD41-INPUT/OUTPUT DRIVER, MONITOR I AND II
YPE14 IOP41-0UTPUT PROGRAM, MONITOR I
YPE15 INP41-INPUT SUBROUTINE AND PROGRAM, MONITOR I
YPE16 SRG41-SAVE REGISTERS SUBROUTINE, MONITOR I
YPE17 RRG41-RESTORE REGISTERS SUBROUTINE, MONITOR I
YPE18 OFF41-TURN PROGRAM OFF SUBROUTINE, MONITOR II
YPE19 DEL41-SET PROGRAM DELAY SUBROUTINE, MONITOR I
YPE20 OUT41-0UTPUT SUBROUTINES, MONITOR I
YPE21 TPN41-TURN PROGRAM ON SUBROUTINE, MONITORS I,II,III,IV
YPE22 PR141-PRIORITY CHANGE STORAGE SUBRTN., MONITOR I,II
YPE23 CAD41-CORRECTIVE ACTION DIAGNOSTIC, MONITOR I
YPE24 MOR41-MULTIPLE OUTPUT REQUEST SUBRTN., MTRS I,II,III,IV
YPE25 MDR41-MULTIPLE OUTPUT DISTo DRIVER, MTRS I,II,III,IV
YPE27 SND41-SCAN DRIVER, MONITOR I

- 2 -

YPE29 PAV4l-PERIPHERAL AVAILABILITY SUBRTN., MTR. I,II,III,IV
YPE30 IOP43-0UTPUT PROGRAM - 110 TYPER
YPE32 INZ41-!NITIALIZE ROUTINE 9 MONlTOR I
YPE33 IOD 43-INPUT/OUTPUT DRIVER ~ l/0 TYPER, MONITOR II
YPE34 OPR43-0N-LINE OPERATOR PROGRAM I/0 TYPER DRUM/CORE
YPE35 TC041-TIMED CONTACT OUTPUT REQUEST SR. MTR. I,II,III,IV
YPE36 TCD41-TIMED CONTACT OUTPUT DRIVER MONITOR I,II,III,IV
YPE37 INS42-INPUT REQUEST SUBRTNa, BUFFERED INPUT, MTR II
YPE38 INP43-INPUT PROGRAM - I/0 TYPER, MONITOR II
YPE39 ITC42-TIME AND DIAGNOSTIC COUNT, MONITOR II
YPE40 MAP41-CORE MAP MAINTENANCE SUBROUTINE, MONITOR II
YPE41 MTR42-GE/PAC 4000 MONITOR II 9 DRUM~CORE, REF YPG15
YPE42 ECP42-EXECUTIVE CONTROL PROGRAM~ MONITOR II
YPE43 DTR41-DRUM TRANSFER REQUEST SUBRTN~ MONITOR II,IV
YPE44 DTD41-DRUM TRANSFER DRIVER} MONITOR II
YPE45 IOP42-0UTPUT PROGRAM, MONITOR II
YPE46 CAD42-CORRECTIVE ACTION, MONITOR II
YPE47 INP42-INPUT SUBROUTINE, MONITOR II
YPE48 OUT42-0UTPUT REQUEST SUBRTN., MONITOR II,IV
YPE49 SND42-SCAN DRIVER SUBRTN , MONITOR II
YPE50 DEL42-SET PROGRAM DELAY SUBROUTINE~ MONITOR II,IV
YPE53 OFF42-TURN PROGRAM OFF, MONITOR II,IV
YPE54 SRG42-SAVE REGISTERS SUBRTN., MONITOR II
YPE55 RRG42-RESTORE REGISTERS SUBRTNo, MONITOR II
YPE56 INZ42-INITIALIZE ROUTINE, MONITOR II,IV
YPE57 -MONITOR II COMPATIBLE PROGRAMS - REF YPE41 ,YPG15
YPE58 CAD43-CORRECTIVE ACTION DiAGNOSTIC - I/0 TYPER
YPE59 OUD43-0UTPUT DRIVER - I/0 TYPER
YPE63 INS4l-INPUT SUBROUTINE, MONITOR II
YPE64 FMR41-FIND/RESTORE WORKING CORE AREA SUBRTN. MTR II,IV
YPE75 MTR44-GE/PAC AU2 MONITOR IV
YPE76 ECP44-EXECUTIVE CONTROL PROGRAM, MONITOR IV
YPE77 ITC44-TIME AND DIAGNOSTIC COUNT~ MONITOR IV
YPE78 SRG44-SAVE REGISTERS SUBRTNo ~ MONITOR IV
YPE79 RRG44-RESTORE REGISTERS SUBRTN., MONITOR IV
YPE80 MAP44-CORE MAP MAINTENANCE PROGRAM, MONITOR IV
YPE81 DTD44-DRUM TRANSFER DRIVER, MONITOR IV
YPE82 FRP44-FIND REGISTER POINTER, MONITOR IV
YPE83 IOP44-0UTPUT PROGRAM, MONITOR IV
YPE84 IND44-INPUT DRIVER~ MONITOR IV
YPE85 OUD44-0UTPUT DRIVER, MONITOR IV
YPE86 SND44-SCAN DRIVER, MONITOR IV
YPE87 CAD44-CORRECTIVE ACTION DIAGNOSTIC, MONITOR IV
YPE88 OFF44-TURN PROGRAM OFF SUBROUTINE, MONITOR IV
YPE89 -MONITOR IV COMPATIBLE PROGRAMS - REF YPE75,YPG18

* k * * * * * * * * * * * * *
PROGRAM CLASSIFICATION -(F)- LANGUAGE PROCESSORS TRANSLATORS, ASSEMBLERS,

COMPILERS, INTERPRETERS, SPECIAL SERVICE
ROUTINES FOR LANGUAGE PROCESSORS - ETC.

*

YPFOl PAL41-PAL/412 ASSEMBLER
YPF02 PAL42-PAL 2K GE/PAC ;.:s=·:~,:_~ .. -· OFF LINE
YPF03 PAL43-PAL 4K GE/PAC ASSEMBLER - OFF LINE

- 3 -

YPF04 PAL44-PAL GE/PAC ASSEMBLER DRUM/CORE ON LINE
YPF05 PAL45-PAL/225 ASSEMBLER
YPF07 CPT42-BINARY CARD TO PAPER TAPE TRANSLATOR-225
YPF08 COR41-PAL CORRECTION PROGRAM - OFF LINE
YPF09 COR42-PAL CORRECTION PROGRAM - ON LINE
YPFlO XLT41-EXTRACT LOAD TAPE - OFF LINE
YPFll XLT42-EXTRACT LOAD TAPE - ON-LINE
YPF12 FTN41-GE/PAC FORTRAN -. MPILER-412
YPF13 FTN42-GE/PAC FORTRAN-PAL COMPILER/ASSEMBLER-225
YPF14 FTN43-GE/PAC FORTRAN COMPILER - OFF-LINE
YPF15 FTN44-GE/PAC FORTRAN COMPILER - ON LINE
YPF16 FTN45-DBL WO. FL. PT. GE/PAC FORTRAN COMPILER-412
YPF17 PTPOl-PAP TO PAL TRANSLATOR-412
YPF18 TAS03-GE/PAC TASC (OPERATES ON 412 ONLY)
YPF19 CCP41-CARD co.:v.-12 BIT BINARY TO GE/PAC INTERNAL CODE

*
PROGRAM CLASSIFICATION -(G)- SPECIAL PROJECTS REPORTI~JG

SYSTEMS, MANUALS
*

YPGlO GE/PAC 4000 INSTRUCTION REFERENCE MANUAL
YPGll GE/PAC 4000 PROGRAMMING TECHNIQUES MANUEL
YPG12 GE/PAC 4000 PROCESS ASSEMBLER LANGUAGE (PAL)
YPG13 GE/PAC 4000 MONITOR I USERS MANUAL - ALL CORE -AUl
YPG14 GE/PAC 4000 FORTRAN REFERENCE MANUAL
YPG15 GE/PAC 4000 MONITOR II USERS MANUAL-DRUM/CORE AUl
YPG16 GE/PAC 4000 MTR I ALL CORE AUl COLLECTION W-U, FC
YPG17 GE/PAC 4000 MONITOR II D/C AUl COLLECTION W-U, FC
YPG18 GE/PAC 4000 MONITOR IV USERS MANUAL (SUPERSEDED BY YPG31)
YPG19 GE/PAC 4000 FREE TIME SYSTEM USERS MANUAL
YPG28 GE/PAC 4000 OPERATOR CONSOLE MANUAL OPR41 ,YPA20
YPG29 GE/PAC 4000 OPERATOR CONSOLE MANUAL OPR42,YPA21
YPG30 GE/PAC 4000 DOUBLE-WORD FORTRAN REF MANUAL, YPF16
YPG31 GE/PAC 4000 MONITOR TRAINING MANUAL
YPG35 GE/PAC OCT.FL.PT.SIN.REG.-DEC.FT.PT.CONV.TABLES

*
PROGRAM CLASSIFICATION -(Q)- QUASI PACKAGES EACH DIFFERENT COMBINATION OF

QUASI S WILL BE SEPARATELY + UNIQUELY NUMBERED

*

YPQOl QUA41-GE/PAC 4040 QUASI INST. S.R. PKG I W/ MPV STEP
YPQ02 QUA42-GE/PAC 4040 QUASI INST. S.R. PKG 2 NON-MPV STEP
YPQ03 QUA43-GE/PAC 4040 QUASI PKG. DGL. WO. FL. PT.-MPX STEP
YPQ04 PLA41-PARTIAL WORD FIXED POINT ARITH. PKG. l
YPQ05 QUA44-SINGLE WORD FL. PT. QUASI FOR AU2 - REF YPGlO
YPQ06 QUA45-DOUBLE WORD FL. PT. QUASI FOR AU2

- 4 -

*
PROGRAM CLASSIFICATION -R- MANUAL INPUTS - OPERATOR PANEL AND OTHER DECADE

SWITCH PROGRAMS, DFS INPUTS, CARD INPUTS (CUSTOM
ORIENTED, NOT STANDARD FORMATTED SERVICE USF).

*

YPR33 ADS41-ANALYZE DECADE SWITCH SETTING SUBROUTINE

*
PROGRAM CLASSIFICATION -T- TRACKING ANALOG SCANNING PLANT MONITORING,

(T) PROCESS OR UNIT TRACKING, ETC.
*

YPT06 SCR41-SCAN REQUEST SUBROUTINE, MONITOR I
YPTll SCR42-SCAN REQUEST SUBROUTINE, MONITOR II
YPT15 SCR44-SCAN REQUEST SUBRTN., MONITOR IV
YPT37 SCF4l-SCAN OFFSET PROGRAM, MONITOR I
YPT59 SCF42-SCAN OFFSET PROGRAM, MONITOR II,IV

- 5 -

GENERAL. ELECTRIC PROCESS COMPUTERS

STANDARD ON-LINE FUNCTIONS

Standard on~line functions are portions of a total system program that are common

from one computer application to another. Because they are used so frequently,

optimum execution time and utilization of memory have been stressed in their develop~

rnente For most applications the use of these functions require little or no re=work

by user programmerse Use of these pre-checked routines eliminates programming and

debugging time.

MONITOR

MONITOR provides the skeleton of a real-time program by scheduling and giving

priority assignment to system functions. By using MONITOR the user is capable of

having an on=line program running with minimum of time spent on the program. Ad=

ditional functions can be added to MONITOR requiring no re-working of the running

system.

The routines that make up MONITOR are clear and well defined which makes for easy

understanding of the system. The layout of the MONITOR package facilitates the

addition of system functions by user programmers. The routines that comprise

MONITOR are:

Time and diagnostic count

Executive control program

Save registers routine

Restore register routine

Turn off program routine

Set program delay

Input=outp~t drive

Output program consisting of:

Output subroutine

Decimal floating point routine

Decimal fixed point routine

Octal conversion routine

BCD conversion routine

Build driver table routine

Btnary to·decimal conve~sion subroutine

GENERAL. ELECTRIC PROCESS COMPUTERS

SOFTWARE SPECIFICATIONS

Object Computer: GE/PAC 4000

PROCESS ASSEMBLER LANGUAGE

Compiling Computer:

Input:
Memory Requirement:
Peripheral Equipment:

Compiling Computer:

Input:
Memory Requirement:

Peripheral Equipment:

Output:

FORTRAN II COMPILER

Compiling Computer:

Input:
Memory Requirement:
Peripheral Equipment:

Output:

Compiling Machine:

Input:
Memory Requirement:

Peripheral Equipment:

Output:

GE 215, GE 225, GE 235, GE 412

Punched Card or Magnetic Tape
BK Core
Console Typewriter
High-Speed Printer
Card Reader or Magnetic Tape Units
Paper Tape Punch!

GE/PAC 4000

Punched Cards or Paper Tape
2 = 4K Core (Off=line)
2K Core plus 6K Drum (On-line) (in

addition to process memory re=
quirements)

Card and Paper Tape Reader
Console Typewriter or Printer
Paper Tape Punch

Paper Tape and Program Listing

GE 215, GE 225, GE 235, GE 412

Punched Cards or Magnetic Tape
8K Core
Card Reader
Console Typewriter
Card Punch
High=Speed Printer
Magnetic Tape

Punched Cards and Program Listing
(Output is in Process Assembler Language
format)

GE/PAC 4000

Paper Tape
BK Core (Off-line)
4K Core plus 8K Drum (On=line)
Paper Tape or Card Reader
Paper Tape or Card Punch
Console Typewriter
High~Speed Printer (Option)

Paper Tape or Cards and Program Listing
(Output is in Process Assembler Language
format)

Mnemonics

MAQ
OOM
STA
STQ

Description

Move A Into Q
Operate. On Memory
Store Contents of A
Store Contents of Q

GROUP V Fixed Point Arithmetic

ADD
ADK
ADM
ADO
DAD
DLA
DRA
DSU
DVD
MPY
NEG
SLA
SRA
SUB

Add
Add K to A
Add A to Memory
Add One to Bit K
Double Add
Double Left Arithmetic
Double Right Arithmetic
Double Subtract
Di vi.de
Multi.ply
Negate
Shift Left Arithmetic
Shift Right Arithmetic
Subtract

GROUP VI Floating Point Arithmetic

FAD
FSU
FMP
FDV
FIX
FLO

GROUP VII Word Logic

ANA
ANM
CPL
DLL
DRC
DRL
ERA
ERM
ORA
ORM
SLL
SRC
SRL

GROUP VIII Bit Logic

CBK
!BK
LBM
RBK
SBK

Flaoting Point Add
Floating Point Subtract
Floating Point Multiply
Floating Point Divide
Fix Floating Number
Float Fixed Number

Add to A
Add to Memory
Complement A
Double Left Logical
Double Right Circular
Double Right Logical
Exclusive Or to A
Exclusive Or to Memory
Or to A
Or to Memory
Shift Left Logical
Shift Right Circular
Shift Right Logical

Change Bit K
Isolate Bit K
Load Bit Mask
Reset Bit K
Set Bit K

=2=

Mnemonics

GROUP IX Word Tests

RNZ
SNZ
TNZ
TZE

Description

Reset TSTF If A is Non Zero
Set TSTF If A is Non Zero
Test A Non Zero
Test A Zero

GROUP X Partial Word Tests

CLO
CLZ
CMO
CMZ
COM
LXC
TSC

GROUP XI Bit Test

REV
ROD
SEV
SOD
TEV
TOD

GROUP XII Validity Tests

JNO
JNP

Count Least Significant Ones
Count Least Significant Zeros
Count Most Significant Ones
Count Most Significant Zeros
Compare On Mask
Load X With Count
Test and Shift Circular

Reset TSTF If Bit K is Even
Reset TSTF If Bit K is Odd
Set TSTF If Bit K is Even
Set TSTF If Bit K is Odd
Test Bit K Even
Test Bi.t K Odd

Jump If No Overflow
Jump If No Parity Error

GROUP XIII List Instructions

ABL Append To Beginning of List
AEL Append To End of List
RBL Remove From Beginning of List
REL Remove From End of List

GROUP XIV Variable Field Arithmetic

ADF
LDF
SBF
STF
TFE
TFL

GROUP XV Program Linkage

LRM
SRM

Add Field
Load Field
Subtract Field
Store Field
Test Field Equal
Test Field less

Load Registers From Memory
Store Registers Into Memory

-3~

GENERAL ELECTRIC PROCESS AUTOMATION COMPUTER • ;---'

l=>ROCESS COMPUTER
BUSINESS SECTION
PHOENIX, ARIZONA

PROGRAMMING
TECHNIQUES

MANUAL
I

~,

GENERAL ELECTRIC

\ \ ',< ~'

Library Control No. YPGllM __

Revised December, 1966

Copyright 1966 by General Electric Company

This manual published by:

PROGRAMMING SUPPORT
GENERAL ELECTRIC COMPANY

PROCESS COMPUTER BUSINESS SECTION
P~ O. BOX 2918 -

PHOENIX, ARIZONA 85002

For further information concerning the contents of this manual,
contact the Programming Library at the above address.

f v.

I

i
i
!

J
i

l
I

...

' i I

-I
l

GENERAL 8 ELECTRIC
PROCESS COMPUTERS

GE/PAC 4000' PROGRAMMING TECHNIQUES MANUAL,

') REVISION CONTROL SHEET
._/

l

APPROVED BY:~ r G' ~-----DATE: -~_!lbe! 3~0""""',_1_9~6_6 --·---~
-

RECORD OF CHANGE DATE REV. RECORD OF CHANGE DATE
~~SIWQ?a.:

Revised in entirity and republished

to include all model number chan ~es. .>

~

I
)

-"

- :
,,

;

'.
\ ..

- I ..

±= i
~ "' -

'

r
I

-
- I ,.._

'

I : . :
... _.

. - . - .. -· I .
-

--1-------J.- --I= i

. L--
- J l

-~~-
.1

IPAGI
l

Ir

REISSUED

1.1

1.1.1
1.1.2

1.2

1.7.1
1.2.2
1.2~3

1.2.3.1
1.2.3.2
1.2.3.3

1.2.4
1.2.S
1.2.6
1.2.7
1.2.8
1.2.9
1.2.10

1.3

1.3.1
1.3.1.1
1.3.1.2

1.3.2
1.3.2.1
1.3.2.2
1.3.2.3

1.3.3
1.3.4

1.3.4.1
1.3.4.2
1.3.4.3

1.3.,5
1.3.6
1.3.7

1.4

1.4.1
1.4.·2
1.4.3

1.5

1.s.1
1.5.1.1
1.s.1.2

CONTENTS

INTRODUCTION

ARITHMETIC AND CONTROL UNIT

Elerpents Comprising The Arithmetic Unit
Instruction Format and Sequencing

REAL-TIME PROGRAM CONTROL

Program Cont~ol~_
Memory Addressability
Address Modification
Relative Address Modification
Indexing Address Modification
The Purpose and Nature of Indexing
Subroutine Linkage
Program Switches
Tests and The conditional Branch BTS
Index and Loop Control
Quasi Instructions
XEC and Its Usage
Program Interrupt

DATA MANIPUL~TION

Data Representation
Numeric Variables
Logic Variables
Arithmetic Operations
Arithmetic Overflow
Fixed Point Arithmetic Scaling Operations
Floating-Point Arithmetic Scaling. Operations
Logic and Bit Logic Operations
Lists and Their.Usag~ _
Definitions
The Queuing List and Its Usage
The Stacking List and Its Us~ge
GEN 1 Instructions_.
GEN 3 Instructions
Count Instruc·~ions :

INPUT AND OUTPUT CONTROL

GEN 2 Instructions
Input/Output Communication
I/O Controller Instructions

DATA COMMUNICATION

Drum Memory
Instructions
Timing

-iii-

v

1

1
3

7

7
9
9
9

io,
11
11
13
15
15
1.5
17
19

23

23
23
27
28
28
30
30
31
33
33
35
36
36
37
37

41

41
42
44

47

47
47
49

1.6

1.6.1
1.6.2
:· # 1.6.2.l

1.6.2.2

1.6.2.3
1.6.2.4
1.6.2.5
L6.2.6

1.6.3
1.6.3.1
1.6.3.2
1.6.3.3

1.7

1.7.1
. 1.7.1.1

1.7.1.2
1.7.1.3

1. 7. 2' .=

1.7.2.1
1.7.2.2
1.7.2.3

1.7.2.4
1 •. 7 .2.5

1.7.3
1.7.3.1
1.7 .. 3.2
1.7.3.3
1.7.3.4

1.7.4
1.7.4.1
1.7.4.2
1.7.4.3
1.7.4.4
1.7.4.5
1.7.4.6
1.7.4.7

1.8

1.8.1
1.8.2
1.8.3
1.8.4

CONTENTS

PROCESS COMMUNICATION

Digital Input Scanner
Analog Input Scanner
Analog ~o Di'gftal Convert,ers
Specification of the Scan Command Word and .c~

Register Formats
Instructions
Interrupt Operation
Analog Input Point Addressing Schemes
Accuracy in Measurement of Arialog Quantities
Multiple Output Distributor
Inst rue t ions ·
Output Functions .
On-Line Programming Usage

PERIPHERAL COMMUNICATION

Peripheral Buffer
Instructions
Interrupt Operation
Error Detection
Card Reader (GE/PAC 4242B)
Physical Description
Operation
Card Movement Timing (from Wait Station· to

Stacker)
Input Hopper Empty
Stacker Full
Line Printer (GE/PAC 4262)
Physical Description·
Output Formatting Info.r.mation
Operation
Special Programming Considerations
Input/Output Typer - GE/PAC 4270B
Physical Description .
Operation
Operation as off-line Typer
Operation as an On-Line Device
Operation as an On-Line Output·, Typer
Operation as an On-Line Input Keyboard
Special Programming Conside·rations

GE/PAC CONSOLE

Console Description (4040)
Register Displays
Console Description (4050 and 4060)
Register Displays

-iv-

51

51
53
56

56
61
62
63
63
66
67,
68
69

72

72
74
76
78.
82
82
85

85
,,87
87
89
89
92
93
94
95
95
96
96
98
98
99

101

1.103

103
105
106
108

1.1 ARITHMETIC AND CONTROL UNIT

The computation center of the computer, the arithmetic and control
unit performs a wide variety of arithmetical and logical operations
at high speed.

It is subdivided into two parts: elements comprising the arithme­
tic unit, and instruction format and sequencing.

1.1.1 ELEMENTS COMPRISING THE ARITHMETIC UNIT

The arithmetic and control unit (AU) is comprised of data registers,
full address, and control F~ip-Flops as shown in Figure 1. The
registers used are as follows: A, E, I, P, and J. Control Flip­
Flops, along with the full address, work in conjunction with the
registers to perform arithmetic and bit manipulation operations,
and for checking and remembering conditions occuring in the AU.
Names of the Flip-Flops employed are: Test {TSTF), Overflow (OVRF),
Permit Automatic Interrupt (PAIF), Priority Interrupt First (PilF),
Execution (XECF}, Demand (DEMF). Adders are: Carry - Full Adders;
A, B, and P. The function and description of each of .these elements
is discussed in the succeeding-paragraphs.

A-Register -- the A-Register is the primary working register for
the arithmetic unit. It is comprised of 24 high speed Flip-Flops
in a bit configuration numbered 0-23; bit 23 is the most signifi­
cant. Functionally, it acts as- temporary storage for data coming
from or going to the input/output equipment of the computer. It
is the accumulator register during arithmetic and bit manipulation
operations. Transfer of data from A to internal registers of the
AU is accomplished serially. Data transferred from A to registers
and devices external to the AU is accomplished in parallel.

B-Register -- the B-Register is a 24-bit parallel entry buffer
register used between core memory and the AU. It is comprised of
24 high speed Flip-Flops arranged in the same bit configuration
as the A-Register. B is the communication link for information
transfer between memory and the AU registers A, I, and P.

I-Register -- the I-Register is a 24-bit register comprised of
24 high speed Flip-Flops arranged in the same bit configuration
as the A- and B-Registers. It is the_ holding register for the
bits that control the operation of the AU.

Full Adder A -- the FA!;_ is used in any AU operation involving the
A-Register.

-1-

To/From Memories ·
'

--~~-.A..--.~~-,
r~~~~~~~_,

MEMORY DATA

Parallel to Memories

--~~~-A.--~~~-

r ' la~, ,__MEM __ o_R_Y_A_D_D_R_E_s s _ _,

MEMORY

B-Register
F . N L

Q-Registe~

~8 Channels

lr/o SELECTOR HUB

Optional
6 Ch nnels A R I T H M E T·:r C U N I T

--1--..:.__ __ -, - --...-----

Figure 1 - CENTRAL PROCESSOR SIMPLIFIED BLOCK DIAGRAM

-2.-

Full Adder B -- the FA& is used in any AU operation involving the
I and !!_-Registers.

Full Adder P the FAE is used in any AU operation involving the
modification of the contents of the E-Register.

1.1.2 INSTRUCTION FORMAT AND SEQUENCING

There are five types of instructions employed by the arithmetic and
control unit: Full Operand, Quasi, GEN 1, GEN 2, and GEN 3. Each
distinct instruction involves either memory addressing, Input/Output
device selection, bit manipulation of the A-Register, or extended
function connnands. The bit configuration of each type of instruction
determines the operation to be performed and the control necessary
to perform it. Figure 2 summarizes these types.

The Full Operand type of instruction is used to perform arithmetic
operations, logical operations, index control operations, and data
transfers to and from memory. Data transferred to memory may be
internal with the AU or may originate from input/output equipment.
Data transferred from memory may go to the AU internal or be trans­
ferred through the AU to the input/output equipment.

Quasi instruction types are extended function commands that provide
operations not wired into the AU hardware. They are implemented by
packaged subroutines. The defined operation is analogous to a Save
I Branch instruction.

Save I may be understood by analyzing what occurs when a quasi in­
struction is implemented. The quasi instruction is t~ansferred
from memory to the B-Register, then to the I-Register to be decoded.
The operand, Bits 12-0, is stored in core cell 002 or, if desired,
are modified, then stored (Save I). The next instruction is addres­
sed from Bits 23-18 which selects one core cell location 040-077.
The instruction contained in one of these cells "branches" the
sequential program into a subroutine. Quasi instructions have the
same instruction format as the Full Operand instructions but are
distinguished by a "1" placed into Bit 23. Since Bits 23-18 are
used to address the next instruction, the 1 bit in position 23
insures that the core cell addressed is located between 040 and 077.
Examples of quasi instructions employed by this system are: Mulitply,
Divide, Floating Point Arithmetic, and those instructions involving
the use of double-length registers.

GEN 1 instructions are used for bit manipulations of the A-Register.
By controlling the operation of Full Adder A, individual bits of
the A-Register may be shifted in position, masked by ones or zeros,
tested for polarity, or counted for numbers of ones or zeros con­
tained therein. Microcoding of the instruction may be manipulated
to perform any desired function on the A-Register.

-3-

GEN 2 instructions are employed by the GE/PAC system to select
modules and devices in the input/output equipment. The format is
microcoded, using unique address bits to select deyices and modules.
GEN 2 instructions are only partially decoded in the AU and the
selection portion of its bit configuration (Bits 14-0) are never
decoded in the AU. They are transferred to the input/output equip­
ment for device and module selection.

GEN 3 instructions are used to manipulate the contents of the A­
and Q-Registers, affect the J-Counter,and optionally affect the
Overflow Flip-Flop.

All five instruction types may be modified. Modification is
accomplished by indexing and relative addressing. Indexing may
be performed on all the instruction types; relative addressing is
limited to Full Operand and Quasi instructions.

One of the core cells 001 through 007 is specified by Bits 17
through 15 of the instruction. The contents of the selected core
cell is added to Bits 13-0 of the instruction.

Relative addressing, as well as indexing, augments Bits 13-0 of
the instruction (the operand in the case of the Full Operand and
Quasi instructions). Modification takes place by adding the core
cell address of the instruction to the instruction operand. The
core cell address for most instructions 'is the bit information
contained in the P-Register.

Instruction sequencing for the AU is as follows:

1.. The P-Register transfers information to the memory address
register (MAR) and a core cell is addressed.

2. The instruction contained therein is transferred, in parallel,
via the memory data register (MOR) to AU buffer register B.

3. B (23-14)is transferred, in parallel, to the I-Register for
instruction decodings.

4. B (13-0) is transferred, in serial, through Full Adder B to I
(13-0). If desired, the contents of I are modified at this
point.

Depending on the instruction decoded, the contents of the I-Register,
modified or unmodified, will cause:

1. Address memory and retrieve data for arithmetic and logical
operations.

2. Transfer data to or from memory.
3. Transfer data to or from the input/output equipment.

-4-

FULL OPERAND
Hardware

FULL OPERAND
Quasi

GEN 1

GEN 2

GEN 3

23 22 2i 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

I

0

I Q x I *I y]
~ ¢P x I* I _,y

I ·-- -·

I 0 0 0 1 0 1 1 x I G K J
I
[
~ I 0 1 0 1 0 1 x s D

-~- ---

1 0 0 1 0 1 [x I G I K

Figure 2 - INSTRUCTION FORMATS

¢P Instruction Octal
X Index Word Indicator
* Relative Addressing Indicator
G Micro-coded Subcommand
K Bit Position of A-Register or Length of Shift
S GEN2 Subcommand
D I/O Device Address

Bit position 23 of the Full Operand formats above is used to
designate either a hardware of q~asi implemented instruction.

These formats will assist in clarifying the following
discussions on programming features.

-5-

I

I

1.2 REAL~TIME PROGRAM CONTROL

A real-time process is characterized by the occurrence of many
events; some continuous, others random in nature. Events may
occur simultaneously. Consequently, real-time programs are dis­
tinctively different from their non-real-time counterparts.

The most distinctive characteristic feature of a real-time
program is the seemingly disorganized method of execution.

1. Programs need not be completed without the occurrence of
several interruptions to execute entirely unrelated programs.

2. Internal data transfer is rarely accomplished in one operation.
3. Intercommunication between programs becomes significant and

time consuming. Information is constantly stored and retrieved
from small tables. Table storage and retrieval rates are
asynchronous.

4. If a program is likely to be interrupted prior to completion,
care must be taken to insure that its working storage is not
destroyed.

5.: Subroutines common to several programs must receive special
attention. Temporary constants used by a subroutine with
respect to a given program must be preserved until execution
of the subroutine is completed.

The second distinctive feature is that the program is an active
element in the process system. It must maintain real-time, and
initiate actions at specified real-times, and specified time delays.

The third distinctive feature is the requirement that it should
never wait upon I/O equipment; there is always some time-critical
function to be implemented. In an off-line computer system, lost
time increases costs. Lost time in an on-line operation will

- cause a failure; endangering system security.
_/

The preceding characteristic features indicate that the "house­
keeping functions", necessary in every computer program, become
extremely important in the real-time program. The program cap­
abilities of a process control computer must first provide
efficient houskeeping (program control) capabilities, then
provide arithmetic capabilities.

1.2.1 PROGRAM CONTROL

A digital computer is a serial device; it pe!forms its program
operations one-by-one.

A computer program consists of an ordered sequence of instructions
to the computer. These instructions are placed in memory cells
which have sequential addresses; ordering addresses will order the
instructions. ·

The term "program control" describes the instruction sequencing
process and is associated with a location in memory. Program
control is specified by the contents of the program counter.
Program control is normally transferred from one location to the
next sequential location as instructions are executed. Program
control can be transferred to an arbitrary location by "branch"
instructions. It can conditionally skip a location by "jump"
instructions.

Nominally, the program counter contains the address within the
program of the instruction which is to be executed next. However,
there are many exceptions. Most modern process computers have
"execute" and "program interrupt" functions which complicate the
instruction sequencing process. It is paradoxical that this
complication is one of programming description and not one of
hardware.

· The effect upon program control by the following GE/PAC functions
is similar: _ \

1. Execute (XEC) instruction
2. Quasi subroutine linkage instruction
3. Program interrupt

All three are "execute" actions which connnand the computer to
obtain its next instruction from some location other than that
specified by the program counter. One instruction, out of normal
sequence, is executed. If this (inserted) instruction is not a
branch (jump, XEC, Quasi), program control is transferred to the
next sequential location·(with respect to the program counter) in
the normal sequence.

The location of the object instruction is determined by the specific
action; XEC uses its operand address, Quasi's use their OP codes.
Program interrupt requires an address source external to the computer.

An XEC or Quasi action inhibits normal incrementing of the program
counter during.the execution of the initiating instruction. The
execution of the inserted instruction is normal. A program interrupt
action inhibits normal incrementing of the prog~am counter during
the execution of the inserted instruction; a branch in the interrupt
location may transfer program control.

-8-

1.2.2 MEMORY ADDRESSABILITY

GE/PAC memory addressability satisifes two prime addressing
requirements for process computers. The first of these is the
ability to transfer a program from bulk storage {drum memory) to

_core memory a~d instantly relocate all of its memory addressing
instructions. The term "dynamic relocatability" describes this
requirement. The _s_olutfon. is GE/PAC relative· addressing, which
modifies the Y operand address of the instruction by is location
in memory as the instruction is executed. It allows the on-line
Executive Control Program to instantly relocate a program from
drum to any available place in core. More efficient use of both
core and drum is possible. Difficulties of incorrect problem
definition, system analysis, or programming analysis a.te minimized.

The second addressing requirement is efficient program address­
ability to at least 64,000 words of random access core memory.
This requirement is medium range, but has extremely long range
implications. GE/PAC relative addressing and drum/core transfer
provide a maximum of one million core words.

1.2.3 ADDRESS MODIFICATION

1.2.3.1 Relative Address Modification

The GE/PAC instruction format allocates a one-bi~ field, I*
to specify relative address modification. This bit is called
the relative addressing indicator and is designated by an
asterisk. Relative address modification may occur in any
Full Operand and Quasi instruction. It may not occur in any
GENl or GEN2 instruction; this bit position, r 14 , is used for
other purposes in these instructions.

"\

When * is zero in a Full Ope~and or Quasi instruction, no
relative modification occurs. When * is 1, a modified operand
address! is computed by adding an addend address to the signed
13-bit operand address. The normal ~ddend address is that of
the location that the instruction occupied in memory. An
exception exists when the instruction being executed is the
"object instruction" of a Quasi instruction or of a program
interrupt; in these cases, the addend address is obtained from
the program counter. Since this address is meaningless,
branch vectors for Quasi's and program interrupts must not use
relative addressing.

1~The address is 14 bits long in the GE/PAC 4040; it is 16 bits ~ong in the
4050/4060.

-9-

Indexing Address Modification

The GE/PAC instruction fonnat allocates a three•bit field, I
to indicate indexing address modification. The field speciffes
seven consecutive core memory locations for use as index words.
The content of the field is call the "X-word address. 11

When indexing address modification is specified (the field is
non-zero), the 14-bit address2 in the specified index word is
added to the 14-bit operand address3 of the instruction in the
I-Register to form the effec.tive operand· address.

x.:.word Address

000
001
010
011
100
101
110

- 111

Effect Upon Address Modification

No Modification
Indexing Modification Using X-Word 1
Indexing Modification.Using X-Word 2
Indexing Modification Using X-Word 3
Indexing Modification Using X-Word 4
Indexing Modification Using X-Word 5
Indexing Modification Using X-Word 6
Indexing Modification Using X-Word 7

Indexing address modification occurs as defined above when the:
X-word indicator is non-zero for all instructions except the
.six indexing control instructions. The indexing control
instructions provide the means to load, store, increment, and
test' individual index words without using the A-Register.
Details are presented in the GE/PAC 4000 Instruction Reference
Manual. The usage of X-word 1 and X-word 2 is restricted.
X-word 1 is used automatically by the arithmetic unit for
subroutine linkage, Quasi instruction linkage, and program
interrupt linkage. X-word 2 is automatically used for Quasi
instruction linkage. Generally, these two X-words should not
be used within a program.

When the X-word address in an indexing control instruction is
zero, the instruction changes its meaning:

STX
INX
LXC

becomes DKr 060
LDX (16X8), LXK (07X8) and store zeros
into location zero.

STX, LXC, LDX, LXK, INX and TXH are illegal for X=O, by
progrannning convention in the assembly program.

2
-The address is 14 bits long in the GE/PAC 4040; it is 16 bits long in

3
_the 4050/60; 15 bits_in the 402'0.
Relative address modification, if required, occurs prior to indexing
address modification.

.-10-

i,.2.3.3 The Purpose and Nature of Indexing

The fundamental purpose of indexing is to accomplish address
modification of memory addressing instructions. A memory
address is always positive. Indexing address modification
is implemented within the arithmetic unit by addition of the
index and positive operand address y4 of the instruction.

Memory addressing.instructions~ have positive operand
addresses. For example, the instruction LDA -1, X which is
correctly executed on many computers, is an illegal GE/PAC
statement.5 The GE/PAC assembly program will tag all negative
absolute addresses as possible errors.

An index is, in essence, an address. Therefore it is con­
sidered as positive. The TXH instruction presumes both the
index X and the test value K to be positive, it is dangerous
to interpret an index as negative.

Indexing also permits the modification of GENl and GENZ
instructions. A portion of the operation code extends into
the operand address field; indexing permits modification of
the instruction within its. lower 14 bits (I13_

0
). Modification

is MODULO 16K.

L 2 • 4 SUBROUTINE LINKAGE

SPB saves the status6 (interrupt, test, overflow, and program
counter) of a main program, inhibits interrupt, and transfers
program control as directed by the operand address. Return from
a subroutine to the main program is implemented by the LDP instruc-_·_.
tion which restores part and by LPR which restores all of the saved
status.

Subroutine linkage to a subroutine located absolutely within the
CO'MMON are or within (assembled with) the same subprogram is ac­
complished directly by the SPB instruction. Subroutine linkage

·to a subroutine located without (separately assembled disjoint
subprogram) is accomplished indirectly via a request to the
system ECP. Figure 3 illustrates these techniques.

4~If relative addressing is specified, this is the position address (*±Y)
5

_MODULO memory size.
The following exampJe is cited:
Assume the indicated index word ·contains 310110· The arithmetic unit
will interpret the address "-1" as being 1638310 ; The effective operand
address is then (1948410) MODULO memory size. If the memory size is
less than or equal to 16K the effective operand address is 310010- If
the memory size exceeds 16K, the effective operand address will be

6-1948410·
SPB also saves the Trapping Mode Status if the memory protection option
is present. This option available -C:mly in GE/PAC 4060.

·-ti-

COMMON REGION

Subroutine K
0RG 2000

SBRK * STX SAVEX, 1

LPR SAVEX

SAVEX BSS 1

Subprogram N
0RG 0

SBRK EQL 2000

SPRN

SPB SBRK

SPB SBRJ

---------- ---
Subroutine J

SBRJ STX sx, L

PAI (Optional)

LPR sx

sx BSS 1

Figure 3 • SUBROUTINE LINKAGE (MONITOR SPECIFICATIONS)

-12-

In a real-time process system program X-word 1 must always be
saved at the beginning of a subroutine used, that is, the first
instruction executed after an SPB must be an STX. If program
interrupts are not used, and the subroutine does not contain a
Quasi instruction, this rule is not applicable.

Subroutines in the COMMON region must operate in the program inter­
rupt inhibited mode. Subroutines within a subprogram may
optionally operate in the program interrupt permitted mode.

If a subroutine calling sequence contains parameters, X-word 2 may
be used by the subroutine to access these parameters providing the
access is made prior to the execution of any Quasi or PAI instruc­
tion.

Calling Seguence Subroutine

SPB SBR STX 02' 1
LDX Yl,3 STA SA
LDA Tl,3 STX SX3,3

(Error Return) XEC · 0,2 1st Parameter
(Normal Return) XEC 1,2 2nd Parameter

INX 3,2 Set Normal Return
STX SX,2

1.2.5 PROGRAM SWITCHES

1. THE COMPITrED GO-TO SWITCH

This section describes the GE/PAC coding necessary to implement
the FORTRAN Computed GO-TO Switch •

GO TO • . • • • • N),I
n

The N. are program labels (locations). The value I
is a fixed point integral variable and may be assigned
or computed by the object program.

Typical coding:

LDA
DVD
STQ

LDX
BRU
BRU
BRU
BRU

I1
I2
I

I,3
*,3
Nl
N2
N3

BRU NN

I = Il I I2

Go To {Nl, N2, N3, .•• NN),I

-13-

2. THE ASSIGNED GO-TO-SWITCH

The ASSIGNED GO-TO requires careful study; it- is a ready
source of program error in a relative addressing computer.

In the previous section, I was an index value;· he're it is
one of the n labels Nf.
The natural way of coding this switch on a non-relative
machine is as follows:

A LDA N+K
STA I

(

N BRU
BRU
BRU

I (or XEC I)
Nl
N2

BRU NN

The preceding coding will not work on a relative
addressing computer. The instruction BRUNK is
assembled relative to N+K; its operand address is NK -
(N+K). If executed in location I, it transfers pro­
gram control to location NK - (N+K) + I instead of
location NK.

The ASSIGNED GO TO Program switch should be implemented
by the computed switch technique. Thus:

A LXK K, 2 } or { LlJK K
STX I, 2 STA I

N LDX I, 2
BRU J.

.... ' 2 or XEC* ,2
BRU Nl
BRU N2

BRU NN

-14-

1.2.6 TESTS AND THE CONDITIONAL BRANCH BTS

GE/PAC has two conditional branch instructions, BTR and BTS,
which coµditionally branch on the status (set/reset) of a Test'
Flip-Flop (TSTF). With the exception of the test for arithmetic
overflow, BTR and BTS are used for all conditional branches based·

·upon internal effect tests. The TSTF serves as a memory element
to remember the result of a previous test and will retain this
status until changed by program. Since its ·status is not destroy­
ed by BTR or BTS, many branches may be made upon the result of a
single test. The status of the TSTF is saved by SPB and can be
restored by LPR. .

Two types of testing instructions are available to the programmer:

1. The first type uses the letter T as the first character
of its mnemonic. It places the result of the test
(true/false) into the TSTF.

2. The second type uses the letter S or R as the first
character of its mnemonic. It affects (sets/resets)
the TSTF only when the test is true.

Type T tests are ordinarily used for conventional decision making.
Type S or R tests are most useful in the evaluation of logic
equation (refer to paragraph 1.3.3 for an example).

Three program control instructions (STF, RTF, LPR) are available
to set the TS1~' to a predetermined status.

1.2.7 INDEX AND LOOP CONTROL

Two GE/PAC instructions, INX and DMT are used for index control
TXH and DMT are used for end of loop testing. Figure 4 illustrates
three common loop control examples. The first two examples describe
backwards loop control; the third example describes forward loop
control. Note· that the Loop Counter Word I in example 1 may be
either an index word or an arbitrary memory location.

1.2.8 QUASI IN8T~.YCTIONS

A Quasi instru~tion is (from the hardware viewpoint) a special
two-address instruction. Its octal specifies a fixed address in
a branch (SPB) vector leading to a subroutine. Its Y address is
a normal operand address. The computer computes the effective
operand address from the Y, *, and X fields of the instruction
and saves this address in index word two. It then executes the
SPB instruction in the location specified by the instruction octal.

-15-

.-

I
t-'

°' I

FORTRAN

Example 1
00 I = 49
.01

I = I - 1
IF (I) 02, 01, 01

02
03

Example 2

10 K = 50
11

K = K - 1
12 IF (K) 12,

13

Example 3

12,

20 DO 22 N = 3,

22 CONTINUE

11

51, 2

FLOW·CHART

I = 49

I = I - 1

I = I - 1

K = K - 1

K 2: 1

' Q
N = 3

N - N + 2

N > 51

y

Figure 4 - LOOP CONTROL EXAMPLES

POl

Pll

P21

SYMBOLIC PROGRAM

. LDA D49
STA I

DMT I
BTS POl

LXK 50,K

INX -1,K
TXH l,K
BTS Pll

LXK 3,N

· TXH 51,N
BTS ~·:+3

INX +2,N
BRU P21

A Quasi instruction is one which resembles, or is used as an
instruction executed by a group of commands. For example, the
Floating Add {FAD), which is implemented by a subroutine, is used
by the programmer the same as a hardware implemented FAD instruction.
Therefore, a Quasi executes programs in memory allowing the programmer
.to demand an instruction not in the hardware. Several benefits are
as follows:

1. A more effective instruction repertoire permits easier
coding.

2. Upward program compatibility is possible.
3. This technique reduces memory requirements of programs when

compared to the use of conventional subroutine techniques.

Not all functions are best implemented as Quasi's. Square root,
which normally uses the A-Register as its operand, does not require
a two-address subroutine link. Therefore, to implement it by a
Quasi wastes the Y operand address.

1.2.9 XEC AND ITS USAGE

The address port~on of an Execute instruction {XEC) specifies an
object instruction to be executed. It does not set the location
counter to the location of the object instruction as would a
branch instruction. Thus, XEC calls a one-instruction subroutine
and specifies immediate return to the main routine.

The use of XEC operation arises directly from the fact that the
object instruction does not imply its own successor unless it is
a branch. The XEC simplifies modification of non-indexable
instructions (such as index control instructions) as well as
providing the ability to effectively modify programs {remotely)
which may not be directly modified. Effective use may also be
made of the XEC in the case of a subroutine calling sequences
where the calling sequence to the subroutine may include several
parameters specified in actual machine instructions which the
subroutine trea~s as second-order one-word subroutines.

XEC completes a set of four program control operations:~

1. Program control is retained by the main program (normal
instruction sequencing).

2. Program control is given to another program (branching).
3. Program control is usurped by another program (program

interrupt).
4. Program control is lent to another (one instruction)

program {execute).

-17-

Several examples of XEC usage are:

1. Indexing non-indexable instructions

XEC KL, J XEC KI, J XEC

KL LXK 3,K
LXK 7 ,K

KI INX 2,K
INX 3,K

KT TXH
TXH

25,K
28,K

2. Program switches -- (Described in paragraph 1.3.5)
3. Double indexing arrays

A = TABLE (I,J) XEC LT, I
STA A

LT LDA TABLE, J .
lJ)A TABLE+JM, J
LDA TABLE +2JM, J
LDA TABLE +3JM, J.

4. ~xecuting "manufactured" instructions. When it becomes
necessary to modify an instruction (other than by indexing),
it must be placed in COMMON and be executed via XEC. Extreme
care must be exercised when manufacturing memory addressing
instructions. -

5. When several programs are identical, except for one instruc­
-tion, XEC can reduce overall storage requirements by combin­
ing the programs.

LXK I,J PROG STX SX, 1

SPB PROG

XEC, INS, J

LPR sx
INS ADD NUM

SUB NUM
DVD NUM

-18.::-

1.2 .10 PROGRAM INTERRUPT

Program interrupt is the only satisfactory hardware method to
synchronize a computer program with external conditions.

An external event may be sensed and a signal (indi.cating event
true/event false) is connected to the GE/PAC Automatic Program
Interrupt module. Two types ~f event detection are provided
by the GE/PAC API module:

1. ~he event has occurred (was and/ or is true) and. a program
interrupt, to acknowledge the occurrence, has not yet
occurred.

2. The event is presently occurring (was and is true) and a
program interrupt, to acknowledge the occurrence, has not
yet occurred.

In either case, the GE/PAC API module remembers the event until
a program interrupt acknowledges its occurrence. The GE/PAC
API will then "forget'~ the event.

Type 1 event detection is normally used tp provide event re­
cording, plus accumulation, and process-to-program synchroniza­
tion. Type 2 event detection controls interrupt driven I/O
equipment.

- Two classes of program interrupt (relative to program control)
are provided in GE/PAC systems:

1. Inhibitable Interrupts

The program controls the occurrence of such interrupts.
Execution of an IAI or SPB instruction places the computer
in the program interrupt inhibited mode. Inhib~table in­
terrupts are delayed until a ~AI instruction is executed
to place the computer in the program interrupt permitted
~ode. TlJ,e instructions LDP and LPR will either inhibit or
permit interrupt depending upon Bit 21 of the referenced
memory location.

2. Noninhibitable Interrupts

The program does not normally control the occurrence of
.such interrupts~ A program interrupt which acknowledges
the occurrence of the event is made within 1 to 500 micro­
seconds of the occurrence of the event.

-19-

To assure program integrity during program-to-subroutine
communication, a hardware restriction must be placed upon the
SPB instruction to guarantee program execution of one addition­
al instruction (an STX) prior to a possible noninhibitable
progr.am interrupt. A similar restriction upon the BRU in­
struction is necessary to simplify FORTRAN program-to-subprogram
communication. These restrictions may ''hang up" the program
by locking out all interrupts if an SPB * or BRU * is executed.
BTS * and XEC * are other non-interruptable program stops.
None of these stops, however, are normally acceptable in a real­
time program.

Program interrupt may not occur more frequently than every
other instruction; the instruction succeeding the interrupt­
inserted instruction is determined by the program counter.

_If an LDP or LPR (to permit interrupt) is executed, one addition­
al instruction will be executed before an inhibitable interrupt
occurs. A non-inhibitable interrupt may occur immediately
following the LDP or LPR.

The program sequence PAI, !AI will not permit any requested
program interrupts to" occur. The sequence PAI, N~P, IAI allows
the-highest priority requested interrupt to occur, etc.

The program sequence PAI, N0P, BRU * -1 will not necessarily
guarantee the servicing of all requested program interrupts.
This sequence should be written as PAI, N¢P, NpP, BRU * -2.

A program interrupt is accomplished by executing 9ne instruction
out-of-normal program sequence. Sequential memory locations in
an Interrupt Control Table are reserved for this purpose, cor­
responding to Interrupts #0, #1, •••• The Interrupt Control Table
starts at location lOOa in 4040 and 4050/4060 systems; starting
location 2008 in 4020 systems. Altho~gh the only theoretical
limitation to the number of interrupts is memory size, avail­
able "off the shelf" hardware is limited to a maximum of 64
interrupts.

Only six GE/PAC instructions should be used within the
Interrupt Control Table. Other instructions will cause
''Program bugs" which are extremely elusive to find. Relative
addressing must not be used in these interrupt control
instructions. Permissable GE/PAC instructions are DMI', SPB,
NOP, ·BRU, 0LD, and IDL.

-20-

INTERRUPT
CONTROL
TABLE

I
I
I

s > f

echo

f
f

r-------
DMT DDAl

DMT DDA2

DMT Til1R

SPB SH

BRU SU

NOP

SPB TIMRO

SPB BFD

SPB ACT

NOP

.J

DDA_...IJ count
,__ ____ __.

Pulse accumulation

-
DDA2

~L-_c_o_u_n_t _ __, Pulse accumulation

'i _c_o_u_nt __ __,] Elapsed time coun~er

STX SX, 1
STA SA

SPB *

Automatic shut down

Automatic restart and initialize

STX TX,l

Reset
Time
Count

Update
Clock

BRU ECP

Elapsed time count overflow

STX BX, 1 I/0 Device

Buffer Driver
Subroutine

STX AX,l Special
Action
Routine

RBL LIST
OUT Device

LPR BX

LPR AX
I/O Device
Queing
List

Figure 5 - TYPICAL PROGRAM INTERRUPT USAGE

e:il~.

1.3 DATA MANIPULATION

The "bit" is t1:ie fundamental unit of data. A larger and more
convenient unit is the ''word" which, in GE/PAC, consists of an
ordered set of 24 ''bits". GE/PAC is word-organized with respect
to addressing and arithmetic; it is both word-organized and bit­
organized with respect to logic.

Data Manipulation is accomplished in one or more of the following
registers:

1. A-Register
2. Q-Register
3. Addressed memory location Z

I
The group of General instructions provide the means to load or
store each register. Arithmetic, Logic, and Test instructions
implement data manipulation operations.

The A-Register, being the primary working register, is affected
by a majority of the data manipulation operations. The Q-Register
is used as an extension of the A-Register or as an auxiliary
register. Few operations affect it. The Operate on Memory
instruction (~~M) provides a means of applying all of the A­
Register operations to an addressed memory locatfon.

·1.3.1 DATA REPRESENTATION

Data represen~ation is provided for two types of data, numeric
variables and logic variables.

1.3.1.1 Numeric variables

Numeric variables are represented by sequences of digits. The
GE/PAC word, with bits interpreted as digits, provides binary
representation of any real number with a precision of 23 binary
digits. ~,·

Three common binary representations for_· negative numbers are:

1. Sign plus absolute value
2. One's complement
3. Two's complement

In each case the left-most bit is interpreted as the sign of
the number, 0 meaning plus and 1 meaning minus.

-23-

Two's complement representation is used in GE/PAC for fixed­
point arithmetic.

Sign plus absolute value representation is used in GE/PAC for
floating-point arithmetic.

The integral and fractional portions of the number are separat­
ed by a binary point. The binary point has no analogy in hard-

·ware. In fixed-point arithmetic, the binary point is supplied
mentally by the programmer and is referred to as the scale of
the number. In floating-point arithmetic, the binary point is
defined by an exponent within the floating-point number repre-

· sentation; the mantissa is always a normalized fraction. Arith­
metic data formats are illustrated in Figure 6. Figure 7 presents
the number range of fixed- and floating-point variables.

Note on Numeric Data Representation

Any real number may be represented in binary notation as:

n n-1 -1
+ ... + ~n 2 + Xn-l 2 + • + x1 2 + x0 + X -l 2 + .+

x -n
-n . 2 + ... where the X. are the coefficients of the

l.

powers of 2 and may assume the values 0 and 1. If a one-to­
one correspondence between these X. and bits in computer words
is made, numbers may be representea by sequences of bits. The
24-bit word provides sequence lengths of 24 and 48 bits and
can approximate any real number with a precision of 23 (46)
bits.

The two's complement of a number Sn+ 23 numerically equal to the number

Thus -1 10 = 100002 - 001112 = 10012 ,

-(-1)10 = 100002 - 011112 = 00012,

and -0 = 100002 - 000002 = 00002

-24-

Single Word Fixed Point

Bit Position
Scale 1

23 ~22 o I
- 2 • 2?.
'---~----- _______ _/ Y two's ':omplement number

Sign bit

Double Word Fixed Point

Bit Position
Scale

'Not Used
(always zero)

~l-3o~l2-2~~~~~~~--oi~~~2-~~~-2~~~~~~04_,.J
y two's complkment number I
Sign bit

Single Word Floating Point

Bit Position ~22 17116 01
./

I
Sign Bit I value) Magnitude (absolu~e

Characteristic (=Exponent +408)

Double Word Floating Point

Bit Position

Not Used
(a~rys zero)

'-2-3 ,,__2_2_--.-__ 14_t 0 J_2_3 12_2 _______ ___,01

S .J B 0
- I 7 c 1) 1gn it Magnitude abso ute value

Characteristic (=Exponent +4008)

(NOTE: Sign bit 0 = +; 1 = -)

Figure 6 - ARITHMETIC DATA FORMATS

-25-

. '!

FIXED POINT NUMBER RANGE

Minimum Maximum
Format Number Numb~r Increment

Single Word
As found in Memory 400000008 377777778 000000018

2s-23 Decimal equivalent . -2s 2s-1
Double Word
As found in Memory 40000000 37777777 00000000

377777778 000000018
Decimal equivalent

000000008
-2s 2s-1 2s-47

Notes a.
b.
c.

Format

s = scale of fixed point number.
2s = 100.30s, approximately.
Although the negative endpoint, -28 , can be represented, its negative
2s, can not. Therefore -2s is not normally considered to be part of
the range of a numer.ic variable.

FLOATING POINT NUMBER RANGE

Minimum
Number

Maximum
Number Increment

Single Word
As found in Memory
Approximate decimal
Double Word

equivalent.
77777777g

-0. OOOOO'fcl09
37777777

+o. 999991c~o9
OC0000018 2C-49

As found in Memory 77777777 37777777 occooooo
000000018
2CC-69

311111118 311111118
Approximate decimal equivalent. -0.999 ,999 . +0.999 ,999

999,99*1077 999,99*1077
Notes a.

b.

c.

d.

The number "zero" is arbitrarily defined to be the number 000000008
(00000000,000000008 for double word format) as it wo~ld occur in
memory, and has the approximate decimal equivalent +O.O'fcl0-9
(+0.0*10-77, double word).
The number ''minus zero",. which is representable in "sign plus
absolute value" notation can never result from a GE/PAC floating
point operation and should be considered illegal.
C = characteristic of floating number. Single-word range of C is
0 ~ C ~.63; double-word range of CC is 0 s.cc ~ 511.
The increment is not a representable floating number. The minimum
posi~ive representable number is 00200000 and has the approximate
decimal equivalent +0.5 * 10-9. The minimum double-word representable
number is 02000000,000000008 having the decimal equivalent +O.S*lo-77.

Figure 7-FIXED AND FLOATING POINT NUMBER RANGE

--26-

1.3.1.2

An alternate method to negate anumber is to form the one's
complement and add one.

Thus -1
10

= 01112 + 00012 = 10002 + 00012 = 10012 ,

-(-1) = 11112 + -00012 = 0002 + 00012 = 00012,

and -0
10

.= 00002 = 0001
2

= 11112 + 0001
2

= 00002 •

This latter method is used in GE/PAC since:

1. The former method requires an additonal bit in the A­
Register.

2. The latter method treats subtraction as a special case of
addition.

Another way to interpret a two's complement number is to think
of the sign bit as being the coefficient of a negative multi­
plier. All other multipliers are positive.

Logic Variables

Yes/no, true/false, on/off, and set/reset conditions are repre­
sented by logic variables and obey the laws of Boolean algebra.·
If a one-to-one correspondence between logic variables and bits
are made, a set of twenty-four such variables may be represented
by a GE/PAC computer word. In such a representation, 1 means
true and 0 means false. ·

GE/PAC provides word logical instructions to operate on sets of
bits~ and bit logical instructions to operate on individual bits.

-21-

l
; .

1.3.2 ARITHMETIC OPERATIONS

1.3.2.1 Arithmetic Overflow

The result of an arithmetic operation (addition, subtraction,
multiplication, or division) upon two 24-bit numbers may exceed
24 bits. Any further computation involving the result is mean­
ingless. Arithmetic overflow occurs when the magnitude of the
resulting number is too large. GE/PAC provides arithmetic over­
flow detection for all of its arithmetic instructions except
ADr/J and NEG.

·Arithmetic underflow occurs when a result is .too small in magni­
tude to affect the least significant bit of_the register in which
the operation is performed. When underflow occurs, the result is
replaced by a zero but no underflow detection is provided.

If overflow occurred during the execution of an ADD, SUB, AKA,
SKA, MPY, DVD, SLA, DLA, FD(, FLr/J, FAD, FSU, F1iP, or FDV, the
Overflow Flip-Flop (OVRF) is set~ Otherwise, the OVRF remains
unchanged. Testing overflow with the JNr/J instruction after each
arithmetic instruction is inefficient. This test need be given
only once (at the end of the computation)· to provide valid
arithmetic overflow detection.

A carry out of the A-Register and arithmet.ic overflow are un­
related in two's complement fixed point arithmetic. Such a
carry is neither a necessary nor sufficient condition for
arithmetic overflow. Each arithmetic operation has a different
criterium for determining whether or not overflow occurred.
These criteria are:

If the contents of A and Z have like signs, and the sign of the
sum differs from that of its arguments, the OVRF is s·et; other­
wise the OVRF is unaffected.

film.

If the contents of A and the one's complementcof the contents of
Z have like signs and the sign of the difference differs from
that of its argume~, the OVRF is set; otherwise the OVRF is
unaffected.

-28-

MPY I\ REGISTER ARITHMETIC
OVERFLOW

z Q A

v M .M 0 yes
A
L M M o_ no
u
E (Z) (Q) {A) no

M in the above table is the octal number 40000000. It is an
illegal number in that this maximum negative number is its own
negative. That is, its negative is not positive in the accept-
ed sense because the so-called sign bit is a zero. Overflow _/
occurs during MPY only if the multiplier and multiplicand are
40000000

8
and the contents of the A-Register are not negative.

If arithmetic overflow occurs as a result of MPY, the OVRF is
set; otherwise the bVRF is unchanged.

If the magnitude of the contents of Z exceeds· that of the con•
tents of A, the OVRF is unaffected. If the magnitude of A
exceeds that of Z, the OVRF is set. If the magnitude of A
equals that of Z and the sign of the resulting remainder is
·the same as the sign of the divisor~ the OVRF is unaffected;
if these signs differ, the OVRF is set.

SLA and DLA

If the contents of A ?re positive: If any "1" bit is shifted
into A

23
, the OVRF is set; otherwise the OVRF is unchanged.

If the contents of A are negative: If any "O" bit is shifted
into A23 , the O~ is set; otherwise the OVRF is unchanged.

Floating-Point Instructions , t

Arithmetic overflow occurs when the magnitude of the exponent
of the result is too large for the exponent field of the .
floating-point format.

Single Word Mode

If the magnitude of the result of a floating operation is less
than 1 X 2-33, it is replaced by zero; if the magnitude is
greater than 1 X 231, it is replaced by the signed maximum
floating number and the OVRF is set.

-29-

1.3.2.2

1.3.2.3

Double Word Mode

If the magnitude of the result of a floating operation is less
than 1 X 2-513, it is replaced by zero; if the magnitude is
greater than 1 X 2511, it is replaced by the signed maximum
floating number and the OVRF is set.

Fixed Point Arithmetic Scaling Operations

The term scaling describes the analysis process associated
with the programming of numerical problems using fixed-point
arithmetic operations are subject to the following rules:

Addition and Subtraction

Variables must be scaled alike when added or subtracted. If
scales differ, each variable is scaled by multiplying it by an
appropriate power of two so the resulting scales are the same.
The scale of the result is that of its addends.

Multiplication

Variables may have different scales when multiplied. The scale
of the result is equal to the sum of the scales of its factor$.

bi vision

Variables may have different scales when divided. The scale
of the quotient is equal that of the dividend, diminished by
the scale of the divisor. The scale of the remainder is,equal
to the scale of the dividend, diminished by 23.

Scaling may be accomplished in one or both of two ways:

1. Mental multiplication by a power of 2.
2. Actual multiplication by a power of 2 as implemented by a

shift (SRA, SLA).

Most precise results are obtained when scaling is planned so
the number of significant bits in the working registers A and
Q is maximized at all times.

Floating-Point Arithmetic Scaling Operations

Floating-point arithmetic minimizes or eliminates the need
for scaling. Floating-point Scaling consists of analyzing all
equations comprising a problem, and reformulating if necessary,
to insure all variables (including results and partial results)
are representable by the floating-point format.

-30-

1.3.3 LOGIC AND BIT LOGIC OPERATIONS

GE/PAC has conventional logical instructions (CPL, 0PRA, ANA, ERA)
which address memory and operate on the addressed 24-bit words. In
addition, a GENl class of instruction allows the programmer to add­
ress individual bits of a word in the A-Register and perform the
CPL, 0RA, ANA and ERA operations on the addressed bits. Thus:

SBK K
CBK K
T'9D K

Sets the Kth bit of A to a one
Changes the Kth bit of A
Tests the Kth bit of A

(Also, others are available)

Much of a control program consists of decision making based upon
the status of true/false bit-logic variables.. These conditi"ons
are normally read into the computer via a Digital Input Scanner.

Assume that one step in a start-up process consists of determining
that one of two pumps i~ on with its valve open and that a main
valve is open.

A = Motor on, pump #1
B = Yalve ope_n,_, pump #1
C = Motor on, pump #2
D = Valve open, pump #2
E = Main valve open

The progrannning technique does not depend upon the arrangement of
variables; all may be assumed in the same word wi~hout loss of
generality. The step may be expressed in the form of a logic
equation:

- - -
If (A * B * C * D + A * B * C * D) * E = 1, G0 T0 0K

GE./PAC coding for this equation is given in Figure 9.

A shorter program can be produced by using GE/PAC conventional
l~gic instructions (CPL, 0RA, ANA, ERA) if rigid assumptions, with
respect to the location and arrangement of bit variables, are made~
When using the logic instructions, all five variables must be
assumed to be in sequence in the same digital word. GE/PAC coding
for this equation is presented in Figure 10.

A comparisQU of the two methods emp~asizes the value of bit logic.

-31-

*

*
*
*
*
*
MAS Kl
MASK2

*
*
*

*

LDA GR~UP 00
T¢D BIT A T=A
BTR ')~+5 IF (T-1) 02,01
REV BIT B 01 T = A*B*-O':-D
R~ BIT C
R~ BIT D
BRU *+5 G¢ T~ 03
SET 02 T=l
R¢D BIT B T=A*B1'"-C·k-1
REV BIT C
REV BIT D
REV BIT E 03 T=T*E
BTS ¢K IF (T-1) 04,¢K
BRU ALARM 04 G~ T~ ALARM

USE OF GEPAC BIT LOGIC INSTRUCTIONS
TO EVALUATE LOGIC EQUATION

IF (A*B*-C*-D + -A*-B*C*D) * E = 1, G¢ T~ OK

LDA GR._¢UP
SRL 1
ERA GR¢lJP
ERA MASKl
ANA MASK2
TZE

-BTS ¢K
BRU ALARM

Figure 8 - ~IT LOGIC USAGE

EABCD-----,;. ___ -

¢EABCD-------~
1-010--------- IF ¢K

BITA MUST BE BIT 22
BITB MUST BE BIT 21
BITC MUST BE BIT 20
BITD MUST BE BIT 19
BITE MUST BE BIT 23

C~N /44000000 100100000 ••••
C~N /56000000 101110000 .•••

USE OF GEPAC CONVENTIONAL LOGIC INSTRUCTIONS
TO EVALUATE LOGIC EQUATION

IF (A*B*-C*-D + -A*-B*C*D) * E = 1, G~ T¢ OK

Figure 9 - CONVENTIONAL LOGIC USAGI;:

-.

-32-

Bit logic method advantages:

a. Permits a natural and straight-forward algorithmic evaluation
of logic equations:

1. Suited for use by junior programmers without loss in
quality of coding

2. Suited for use in a compiler
3. To reduce programming time

b. Permits symbolic representation of bit variables. Minimizes
the need for programming dictation of the specific arrangement
of inputs to the Digital Input Scanner.

Disadvantages:

a. Requires more memory and execution time

Conventional logic method advantages:

a. Requires less memory and execution time if optimumally coded

Disadvantages:

a. Requires ingenuity in choice of specific technique and bit
arrangement, therefore:

1. Quality of coding is dependent upon the caliber of the
programmer. Non-optimum coding can require more memory
and execution time than produced by the bit logic method.

2. Not suited for use in a compiler
3. Increased programming time required

b. Symbolic representation of contact closures is very awkward
and requires restrictions on hardware grouping of variables.

c. A bit arrangement that is optimum for one test is probably not
optimum for another test in the same program in~olving the
same set of variables. ~

l.3o4 LISTS AND THEIR USAGE

1.3 .4.1 Definitions

A List consists of an ordered set of items contained within a
fixed length block of memory (21 + 1 words where L is an integer,
1,::iL~9).

\. -33-

,~

Address
of List Z

z + 1

t23 15 14 6 5 4

F I N f e

(K + l)st Item

.
' .
. . .
. .

(N _ l)st Item

Ending Item

Unused

Area

Beginning Item

2nd Item
-

Kth Item

3 0

L

~-

LIST CONTROL WORD

L Specifies maximum size of list
(2L items where 1 $. L $. 9).

F Specifies location of beginnin!
item {O $. F $. ~L - 1).

N Specifies number of items
currently in list {O $_ N $_ 2L)

Prior to Execution:

Address of beginning item
Z + 1 + (F+l) MOD2L

Address of ending item
Z + 1 + (F + N) MOD 2 L

The list is empty if N=O and e=l

The list is full if N=O and f=l

Figure 10 - GE/PAC LIST ADDRESSING DETAILS

-34-

1.3.4.2

The first word of the block is a list control word which is the
address or label of the list. The maximum size of any given
list is 2L items. The physical ordering of a list is circular

-· in nature; the address zL Relative to the list control word is
followed sequentially by the relative address 1. The terms be­
ginning item and ending item are arbitrarily attached to the
first and last members of the set of items currently forming the
list. Figure 10 illustrates list addressing details. Instruc­
tions are provided for appending additional items to the be­
ginning or end of the list and for removing the beginning or
ending items.

These instructions are:

ABL
AEL
RBL
REL

z
z
z
z

Append item to beginning of list Z
Append item to end of list Z
Remove beginning item from list Z
Remove ~nding item from list Z

An item, when appended, becomes the new beginning/ending item.
The removal of an item forces the adjacent item to become the
new beginning/ending item. The current beginning and ending
items are the only items addressable by program; normal table
·indexing techniques allow addressing of any entry in a table.

The Queuigg List and Its Usag~

A queuing list channels information to and through Input/Output
devices. Assume a request for the on demand print out of the
current value of an analog input is made. The scan connnand
word and appropriate control information would be appended to
a queue controlling the scanner operation. When available,
the raw· count value of this input will be appended to a queue
awaiting conversion from binary to engineering units.

Another queue is awaiting line to the binary to ~CD conversion
routine. The resulting ordered set of BCD characters is
appended to the output driver queue which controls a typewriter.,

ABL places high priority items at the beginning of the list,
RBL removes them ahead of all other items. Consequently, high
priority items are appended at the beginning of the list to
become the next item removed. Thus AEL and RBL provide
normal queuing.

-35-

1.3.4.3

. .

The Stacking List and Its Usage

The stack or push down list is so named because the most re­
cently appended item is always removed prior to the removal of
less recently appended items. The phrase last in - first out
is sometimes used to describe the operation of a stack.

Typical stack usage is a common temporary storage block for
programs subject to program interrupt. Each program, by append­
ing all of its intermediate results in the stack, could be
destroyed by a higher priority program. When all higher prior­
ity programs are completed, the destroyed program is restored
and continues from its point of interruption.

The stack requires that the relative priorities of all programs
having data within the stack do not change. Use of the stack
on GE/PAC 4040 is relatively slow. When stacking of data is
not satisfactory for a given program, one of the following
alternates must be used:

1. The program is assigned unique locations in COMMON for its
intermediate results.

2. The program is executed in the interrupt inhibited mode .
3. - The program is restarted from its initial conditions.

AEL and REL are stacking instructions.

1.3.5 GEN-1 INSTRUCTIONS

The GEN 1 instruction is executed as follows. Instruction retrieval
and indexing occur during timing states 1 and 2. Since indexing
address modification affects bits 13 through 0 of the instructions,
indexing can change the meaning of the GEN 1 instruction. Implemen­
tation of timing state 3 is as follows:

1024

1. The complemented value of k, (I4_0), is placed in the J­
Counter.

2. The control fields determine inputs to the serial adder, to
the Test Flip-Flop, and to the shifting control.

3. The contents of the A-Register are ringshifted bit by .bit
through the adder, the output of the adder being shifted
into A23 of the A-Register.

4. The J-Counter is incremented one for each one-bit shift.
The final contents of this counter is:

a. 378 if ~c = 1

b. 218-k -ift\: = o, k ~ 2310

c. 378 if !le = o, k = 2410

unique GEN 1 instruction octals are possible. The most useful

-36-

octals are utilized and are listed in the GE/PAC 4000 Instruction
Re-erence Manual

1 3,6 GEN 3 INSTRUCTIONS

GEN 3 commands are differentiated from other commands by the op code
458 They are also subdivided into commands by the m~cro-coding of
the operand portion of the command word These commands are used to
manipulate the contents of the A- and Q~Registers, affect the J~
Counter, and optionally affect the Overflow Flip-Flop GEN 3 corrnnands
are also used within the Quasi subroutines for floating-point arith­
metic operations

1-3 7 COUNT INSTRUCTIONS

CM~ and CMZ instructions count the number of most significant ones/
>~ros of the data word in the A-Registerc CL¢ and CLZ count the
number of least significant ones/zeros in the A-Register.

These instructions leave the determined "count" value in the J .. counter;
an LXC instruction must be executed to transfer it to an index word_,
Quasi instructions must not occur between a count instruction and the
LXC Therefore> each count instruction must be immediately followed
by its associated LXC No other conventions apply when using count
instructions with GE/PAC 4050 or 4060 computer''

Two conventions apply on the GE/PAC 4040 computer:

1 Count instructions are not protected from program interrupt. Certain
Quasi instructions use the J~Counter without restoring it, Each count
instruction must be immediately followed by its assi ciated LXC; these
instructions must be between an IA! and PAI in a permitted program~

IA!
CLZ
LXC X
PAI

2, Non-inhibitable pr ';ra.m interrupt action routines must <h'e and
restore the J ~counter if the action rc-tJtine contains any GEN 1
instruction,

The J-Counter is saved with the coding:

LXC X COUNT-+X.

The J~Counter is restored with this coding:

LD¢ OJX
CLZ

The A-Register is destroyed by this operation.

Figures 11 and 12 present the flow chart and coding for a typical
application which use:-> a count instruction A simple executive
routine examines bits in a computer word, transferring program
control to a subroutine as a control bit is set

8
w
00
0

Reset
Off-normal
bit K

Action
Subroutine

1

Given 1 Group of
22 Logic Variables

Compare group against groups of 22 Logic constants,
to determine which bits differ from a predetermined
normal status and are of current interest.

Are any of these "of f-norrnal"
bits .currently of interest.

Action
Subroutine

2

y

which one?

N

Figure 11 - COUNT INSTRUCTION APPLICATION

Action
Subroutine

N < 22

This technique can be used for any or all the following purposes:

1. As the ECP in Monitor
2. As a demand routine ECP
3. As a change of state ECP

Associated with program interrupt and/or contact status groups
read in via the Digital Input Scanner (DIS).

ACTA LDA GR¢UP
ERA N~RMAL
ANA INTRST

. ACTB TZE
BTS ACTC
IAI
CLZ
LXC 3
PAI

· SPB ACTION ,3
RBK 0,3
BRU ACTB

ACTC LPR SX
NORMAL BSS 1
INTRST BSS 1
ACTION BRU ACTl

BRU ACT2

BRU ACTN
SX BSS 1

000 GR¢UP ¢F 22 L~GIC VARIABLES
DETERMINE ¢FF-N¢RMAL VARIABLES
DETERMINE ~FF-N~RM ~F INTERST

001 B IF (ANY pFFNpRMAL OF
X INTEREST) --, 003, 002

002 DETERMINE WHICH ONE K

CALL ACTIONF(K)
RESET OFFNORMA.L BIT K
G¢ T9i 002

003 RETURN

Figure 12 - COUNT INSTRUCTION CODING

-39-

1.4 INPUT AND OUTPUT CONTROL

1.4.1 GEN 2 INSTRUCTIONS

GEN 2 instructions are microcoded instructions used for control of
input/output equipment and for certain computer actions. Instruction
format follows:

17

x

25 - Instruction octal
X - X word indicator

1!! 114 s 12

S - Instruction secondary-octal
D - Device address

11--D--01

D~vice address D = 00008 is a ficticious address referring to the
computer itself.

The following instructions are pr~vided:

Program Control

25010000
25020000
25030000
25040000
25050000

SSA Set Stall Alarm
PAI Permit Automatic Program Interrupt
IA! Inhibit Automatic Program Interrupt
JND Jtunp if no Demand
RCS Read Console Switches

Validity Tests

25060000
25070000

_,

JN~ Jump if No Overflow
JNP Jump if No Core Parity

Device addresses D = 11DD8 refer to peripheral devices. Device
address D = 24008 refers to the GE/PAC drum. Other device
addresses may be defined as required.

The following generic instructions are recognized by the assembly
program;

2500 SEL Select device D
2501 ACT Activate device D
2502 ¢PR Operate device D

-41-

2504

2505

2506
2507

IN

JNR
JNE

Output from A-Register and Initiate
operation of device D
Input to A-Register and initiate operation
of device D
Jump if not ready
Jump if no error

Specific meanings for each action are detennined by the specific
requirements of each given device D~ Refer to- specific descrip­
tions of the various devices for detailed information.

Since indexing address modification affects Bits 13 through 0
-of the instruct~on, indexing can change the ~eaning of the GEN2
instruction.

The device address is a function, not of the device, of the
physical location of the device within the GE/PAC cabinetry.
Therefore, it is extremely important for each system program to
permit device addresses to be changed without costly reprogramming
or major reassemblies. A recommended GE/PAC technique is to list
all device addresses in a table and assign a common symbol to each
table entry. This device address table must be located absolutely.
Each program using input/output devices will refer symbolically to
the appropriate device address as illustrated in Figure 13. A
reconnnended alternate technique is to use the EQL pseudo-op.as
illustrated in Figure 14. ,,-

1.4.2 INPtrr/OurPUT COMMUNICATION

GE/PAC 4040 provides up to twenty-four independent communication
paths between the A-Register and Input/Output devices external to
the computer. Each path is specified by the most significant 6
bits of the device address and links the arithmetic unit.with a
module. Module refers to the circuitry which controls a device
directed by the S portion of the GEN2 instructions. Associated
cabinetry is also described as a module. Examples of modules
are peripheral buffers, analog input scanners, and digital input
scanners.

The term device designates an electronic or mechanical unit con­
trolled indirectly by the computer via the GEN2 instruction. The
device is the interface between the computer arid an operator or
between the computer and the process. Examples of devices are
paper tape readers and punches, analog-input sensors, digital-
input sensors, and operator console controls. -

-42-

ORG
RDR *CON 0,1100

TYPl *CON 0,1103
RDR2 *CON 0,1105

DIS
AIS
MCO
TCO
DRUM

*CON 0,4400
*CON 0,2100
*CON 0,4300
*CON 0,4600
*CON 0,4500

TYPE LDX TYPl,X
LDA CHARACTER
OUT O,X

CONSOLE PAPER TAPE READER

TYPEWRITER NO. 1
PAPER TAPE READER NO. 2

DIGITAL INPur SCANNER
ANALOG INPUT SCANNER
MULTIPLE CONTACT OUTPUT CONTROL
TD1ED CONTACT OUTPUT CONTROL
DRUM

RECOMMENDED DEVICE ADDRESS ADDRESSING TECHNIQUE

RDR EQL I 1100 .
TYPl EQL /1107
RDR2 EQL /1101

DIS
AIS

. MCO
TCO
DRUM

.
EQL /2100
EQL /4400
EQL /4600
EQL /4500
EQL /4600

TYPE LDA CHARACTER

OUT TYPl

FIGURE 13

CONS OLE PAPER TAPE READER

TYPEWRITER NO. 1
PAPER TAPE READER NO. 2

DIGITAL INPUT SCANNER
ANALOG INPUT SCANNER
MULTIPLE CONTACT OUTPUT CONTROL
TIMED CONTACT OUTPUT CONTROL

~ DRUM

RECOMMENDED DEVICE ADDRESS ADDRESSING TECHNIQUE

FIGURE 14 r

-43-

The select instruction·, SEL, is never required in a normal system
program. If the necessary switching and data tramsmission between
the arithmetic unit and device cannot be accomplished within 24
microseconds, a SEL must be given prior to the operation of the
device.

1.4.3 I/O CONTROLLER INSTRUCTIONS

The GE/PAC 4050/60 I/O Controller instruction ¢DL combines the
functions performed by RBL and ~ to transfer data directly from
a list in memory to an output device without using the A-Register.
If the B-Register is substituted for the A-Register in the descrip-
·tion of RBL and 0UT, the composite function is identical to that :
performed by ¢DL. Similiarly, IDL combines the IN and AEL functions
without affecting the A-Register~ These instructions, when used
in a device's non-inhibitable location(s), perform hardware block
buffering of data between the list and the device. Figure 15
illustrates format details.

Output block buffering is accomplished in the following manner.
The output program assembles output data into a list by AEL'ing
each output item into a separate word of the list. The data
format is the same as the ¢UT instruction.. The device's non­
inhibitable interrupt is then ACT'ivated. Whenever the output
device is ready to receive data, it requests a non-inhibitable
data interrupt.

The ¢DL instruction in the devicevs interrupt location is executed
when the interrupt request is serviced. The program counter is
unaffected. If the list is not empty, data is removed from the
list, transferred to the device's buffer register, and a device
operation initiated. If the list is empty, a list-empty echo
signal is transmitted to the program interrupt module. This signal
requestsan inhibitable program interrupt. An SPB instruction in
this echo interrupt location transfers program control back to the
output program; additional data can be assembled into the output
list, if required. When a hardware malfunction occurs, the data
interrupt does not occur. This condition can be sensed by peri­
odically executing the appropriate JNE instruction.

Input block buffering is accomplished in an analogous manner using
the IDL instruction. Input parity errors are interpreted as
hardware malfunctions.

The I/O list must be preceded by an I/O control word as shown in
Figure 15.

-44-

Ready signal

23 f19

rv"'
Devices non-inhibitable
Device ready interrupt

location

Devices inhibitable
empty echo interrupt

23 19

I SPB I x .I* I
~ Echo signal

0

list-
location

0

y I

23 14 13

(not used)

0

Device Addresses {

I/O
Control

Word

{
List

r-~~~~~~..J..-~~~_J_-l--..L_~~~ Control
Word

f e L F N

LIST

Figure 15 - I/O CONTROLLER INSTRUCTIONS

-45-

1. 5 DATA COMMUNICATION

1. 5. 1 DRUM MEMORY

The GE/PAC drmn is available for bulk storage in various sizes from
16K to 256K words. Transfer is accomplished by full words, between
any core address and any drum address. Transfer may be specified
in blocks of N words (0 ,:5 N < 16K).

Write protect pinboard, located on the drum cabinet; provides
selective drum memory protection in blocks of 4K words Figure 16
illustrates details.

1.5.1.1

A program load option is available to provide pushbutton transfer
of 18 drum words (drum addresses 008 through 218) to core locations
008 through 2ls.

Instructions
y

Four instructions provide program control. (DRUM EQL 24008
is the device addre~s of the drum).

¢UT.DRUM
,'.

¢UT sets the drum's JNR signal not-ready and causes the drum
controller to fetch the contehts Y of location zero. Y is the
address of a block of three consecutive drum control words.
The drum controller performs a drum operation as specified by
these control words.

Location 23·
O=Re·ad Drum
l=Write

0
Starting

Dri.tm Address
Must be

3 0
number of
words to
transfer

0
Starting

Core Address

-47-

A parity check is made· on each word as the transfer is accom­
plished; the Drum Error Flip-Flop is set when a parity error is
detected. The Drum Error Flip-Flop is reset by each new ~UT
instruction. If a parity error occurs during' a drum operation
the block transfer will halt uncompleted. The faulty word is
written on drum for a core to drum transfer; it is now written
on core for a drum to core trans.fer. The c;lrum address of the
faulty word may be computed by performing a field subtraction
(see SFA instructions) of 1 from the least significant 9-bit
field of the address displayed in.the drum address register
loaded on the front of the drum cabinet.

If a drum transfer operation is in progress when ¢UT is executed,
the new ~UT is ignored.

JNR DRUM

JNR transfers program control to the second sequential location
if a drum transfer is in prograss; program is transferred to the
first sequential location if the drum is not in operation.

The JNR signal (test line 1) may optionally be connected to the
Automatic Program Interrupt module to initiate a program interrupt
when the signal changes from not ready to ready.

!

JNE DRUM

JNE transfers program control to the second sequential location
if the Drum Error Flip-Flop is reset; it transfers program control
to the first sequential location if the Flip-Flop is set (a
parity error causing a drum operation abort has occurred). The
Drum Error Flip-Flop is reset by:

l.

1. Pushing the DC POWER switch on the computer console to the
initialize position.

2. Pushing the CLEAR ERROR switch on the system console located
on the front of the drum cabinet.

3. Each new ¢UT instruction

ABT DRUM

ABT aborts any current drum operation following the completion
of the current word transfer. The JNR signal will indicate
"ready" (within 100 microseconds).when the drum operation is
terminated. ABT is ignored if the drum is not in operation.

-48-

1.5.1.2

ACT DRUM

ACT resets the drum ready signal for 8 microseconds. If the
drum is not in operation and if the drum ready signal is con­
nected to a program interrupt input, a program interrupt is
requested. If the drmn is in operation the interrupt is not
requested.

INTERRUPT OPERATION

One interrupt operation is recommended. Program control is
accomplished by an SPB instruction in an inhibitable interrupt
location. The JNR (test line 1) signal is used as both the
change and level inputs to a two-input program interrupt.
ACT is used to conditionally request this program interrupt._

Timing

The time required to'· effect the transfer includes drum
access time plus actual transfer time:

access time:
· transfer time:

variable - 0 to 16.66 MS
0.0650MS per word

When a drum transfer operation is in progress, the
arithmetic units are slowed down by small percentages
as show~ in the following tables.

~Oms access

4%--~~~~~~~~~~~~ 4%
time'\

3%

2%

1% \
AUl

0

.2%

16.66ms access time 1% \ , 16.66ms access time

1024

AU2

2048 0 1024

number of words transferred

Figure 16 - ARITHMETIC UNIT SLOWDOWN
{during drum operation)

-49-

2048

\'

000 100 200 300 400 500 600 700 PIN STORAGE
0 0 0 0 0 0 0 O· 0000

0000
0-0 0 0 0 0 0 0 0000

0000
0 0 0 0 0 0 0 0 0000

0 0 0 0 0 0 o·o
0000
0000
QOOO

0 0 0 0 0 0 0 0 0000
·0000

0 0 0 0 0 0 0 0 0000·
.0000

0 0 0 0 0 0 0 0000
0000

OJO 0 0000
370 470 .770

Pin inserted protects; Octal address of first word of
Pin removed unprotects. protected block of 4096 words

is 560000.

Figure 17 - DRUM WRITE P~?TECT PINBOARD

-so-

1.6 PROCESS COMMUNICATION

1.6.1 DIGITAL INPUT SCANNER

The Digital Input Scanner (DIS) is a solid state device which reads
groups of 21 logic variables into the A-Register. The logic vari­
ables normally indicate the status (true/false, yes/no, set/reset,
open/closed, on/off) of various process system control devices such
as relays, valves, and motors. Indication of the status of various
components within the GE/PAC computer system is another typical
application of logic variables.

23 22 21 20 19 2 1 0

Digital Input {A-Register) Format

Certain inputs may be subject to short circuit conditions. In this
event, the project engineer may provide fused protection of the input
circuits. One fuse protects 20 logic inputs in a group; the 21st
input (L

20
) indicates the status (good/blown) of .the fuse. Indica­

tion of a good fuse (L
20

= 1) does not necessarily imply that the
corresponding data is valid. L20 = 0 implies b~d data.

The DIS is packaged in standard configurations of 168, 504, and
1344 inputs: ~

Number of Inputs Group Number K

1 to 8 groups, 21 inputs each 008 thru 078

1 to 24 groups, 21 inputs each 008 thru 278

1 to 64 groups, 21 inputs each 008 thru 778

An option provides change detection on a group and provides a true
signal when any of the 21 variables of the group changes state.
The isgnal may be connected to a program interrupt input or may be
connected as a DIS input to be treated as a logic variable itself.

Figure 19 presents two coding examples of DIS usage. Figure 19a
asks a digital question. Further information on the evaluation of
a Logic equations is presented in paragraph 1.3.3. Figure 19b is
a scan for digital alarm routine. Seven consecutive groups are
scanned. Selected points are alarmed (printed in red) when they
change from normal to off-normal and alarmed again (printed in
black) when the return to normal.

-51-

' IJl
N
I

no

K = 6

READ DIS,
GROUP K.

WAS READ
VALID?

e

DETECT POINTS WITH
CP.iANGED STATUS.

DETERMINE WHICH IS
IN ALAHM CLASS.

ANY POINT TO
BE ALARMED?

r

COMPUTE ONE
DIGITAL POINT

INDEX

DETERMINE
TYPE OF CHANGE

DIGITAL ALM.
, SUBROUTINE

Figure 18··- SCAN FOR DIGITAL ALARM

yes

·REMEMBER
GROUP STATUS

K = K - 1

IS K 2:; O?

no

Operation of the DIS requires one instruction:

IN DIS +K
th IN replaces {A20_

0
) by the K group of 21 logic variables. Bits

A
23

, A22 , and a
21

are set to zero. DIS is the device address of the
Digital Input Scanner and must be defined by an EQL Pseudo-Op. The
range of the group number K is 0 SK S 778 .

Values of K greater than 778 modify the device address, becoming an
indeterminate program bug. -

1.6.2 ANALOG INPUT SCANNER

_Quantities (temperatures, rates of flow, weights, pressures, etc.)
are transduced into voltages by analog input devices. The Analog
Input Scanner (AIS) is a module which controls the selection and
conversion of these voltages into numeric count values.

The functional relation between the numeric count value and its
corresponding physical quantity is one of several forms depending
upon the specific Input Sensor Device utilized. One AIS operation
nominally requires 25 milliseconds. The AIS is not directly used
by a functional program. Ana_log values are read by queueing request
to a scan control program.

The Analog to Digital Conv~rter (A/D Converter), which measures the
input voltage and generates an equivalent numeric count value, is
the heart of the AIS. Two different types of A/D Converters are
available in GE/PAC scanners:

\, f

Successive Approximation A/D Converter_
Integrating A/D Converter

Each AIS module must have one of the above types; it may not have
both. If both types are required in a given application, two
GE/PAC scanner modules must be supplied. Refer to paragraph 1.6.3.1
for description of each type. ·

The scanner is operated by outputting a scan command word (Figure
20) from the Arithmetic Unit (0UT, ~DL instructions). Detailed
operating instructions are presented in paragraph 1.5.3.3.

·~

There are two modes of operation as seen from the program control
viewpoint:

1. Addressing of inputs individually.
2. _ Addressing of inputs in sets of N (N=2,4,8)

-53-

DIS

K
L

CON /DDDD
LDX DIS,4
IN 3,4
TEV 20
BTS INVALD
TOD 5
REV 20
BTS(TRUE)

EQt
EQL
EQL

(FALSE)
Figure

DEVICE ADDRESS

READ DIS, GROUP 3
B IF (VAL~D READING) --,INVALID,010

010 B IF (BITS * BIT 20) --,020

020
19a - EXAMPLE OF DIGITAL QUESTION

I
DIS
DSA

EQL(DEVICE ADDRESS)
LXK 6,K -000 K=6

DSAA

DSAB

DISC

LXK 120,L
IN DIS ,K
TEV 20
BTS INVALD
STA TEMP
ERA DISVAL, K
ANA ALARM,K
TZE
BTS DSAD
IAI
CLZ
LXC I
PAI
RBK O,I
STA TEMPl
LDA L
ADD I
STA J
LDA TEMP
ERA NORMAL,K
!BK I
STA COLOR
SPB
LDX J,3
LDA COLOR
LDA TEMPl
BRU DSAB

DSAD LDA .TEMP
STA DISVAL,K
INX -20,L
DMT K
BTS DSAA

(EXIT)
TEMP BSS 1
TEMPl BSS 1
DISVAL BSS 7
NORMAL BSS 7
ALARM BSS 7

L = 6" * 20 ~
005 READ DIS, GROUP K

B IF (VALID READING) --,INVALID,010
010

SAVE GROUP ..
DETECT POINTS WITH CHANGED STATUS.
DETERMINE WHICH ARE IN ALARM CLASS.

015 B IF (ANY POINTS TO BE ALARMED) -,30,2

- 020

030

040

DETERMINE WHICH ONE

,_.-_BIT I
',,

RESET BIT I AND SAVE

COMPUTE DIGITAL POINT INDEX J = L+I

DETERMINE TYPE OF CHANGE .
1 = NORMAL TO OFF-NORMAL (RED)
0 = RETURN TO NORMAL (BLACK)

CALL DIGITAL ALARM ROUTINE
CALLING SEQUENCE (POINT NUMBER)
CALLING SEQUENCE (COLOR CODE)

GO TO 015

REMEMBER GROUP STATUS

L = L - 20
K=K-1
IF (K) 040, 005, 005

CURRENT STATUS OF DIGITAL INPUTS,
NORMAL STATUS OF DIGITAL L~PUTS.
ALARM CLASS OF DIGITAL INPUTS.

_______________ ___:X::;.::___:1 = ALARM
1

0 =DO NOT ALARM,
Figure 19b - SCAN FOR DIGITAL ALARM ROUTINE

-54-

Any_AIS can be used in the first mode. The second mode is limited
to use with scanners having the automatic group advance option.

Each Scan Connnand Word (SCW) uniquely defines a single analog input
when the AIS is used in the single input mode. A zero in Bit 18
of the Scan Command Word indicates this mode. Each group may con­
sist of a maximum of 256 inputs.

- .
Each Scan Connnand Word specifies a set of N-W analog inpu~s when
the Scan Command Word indicates this mode. The initial ¢UT instruc­
tion results in the conversion of the addressed input (group W).
Succeeding IN instructions increment the group address and produces
conversion of the inputs in groups W+l, W+2, •. and N-1.

The group input mode of operation allows a higher scanning rate than
the single input mode. Scanning rates are summarized in the follow­
ing table:

NOMINAL SCANNING RATES (points per second) for All-Core Monitor

Successive Approximation A/D Converter (Hg Relays)

Single Input Mode Group Input Mode
2 pts/group 4 pts group 8/g

,,
Free-Running Scanner
4040 Progrannned Control
4060 Programmed Control

50
45
49

Integrating A/D Converter (Hg Relays)

Single Input Mode

90
82
87

140
127
140

Group Input Mode

200

'- 2 pts/group 4 pts/group 8/g

Free-Running Scanner
4040 Programmed Control
4060 Progrannned Control

28

24

Figure 20 - SCANNING RATES

N/A
N/A
N/A

N/A
N/A
N/A

To permit successful operation of the AIS in the group input mode,
all points to be so used must be grouped (arranged so inputs with·
like matrix and point addresses (scw14_7) have the same voltage
scale). Since this process involves the participation of custom­
ers, Engineering, Marketing and Progrannning personnel, the group
input mode should not be needlessly used; this avoids an unnecessary
expense to the customer. Points to be used in the single input mode
can be arbitrarily grouped.

-55-

N/A
N/A
N/A

1.6.2.1

lo 6.2 .2

Analog to Digital Converters

The successive approximation A/D converter successively
generates the sign and each of 12 bits of the count value
by comparing the input voltage to known signed voltages.
The conversion operation is accomplished in approximately
700 microseconds. The resulting numeric count value
represents a voltage value which occurred sometime during
the 700 microsecond period. The count value is placed
right justified into c23-6.

The integrating converter generates a sequence of pulses
whose instantaneous signed pulse rate is directly
proportional to the instantaneous signed input voltageo
A counter circuit accumulates -the number of pulses occur­
ring during a known period of time (integrating time) and
places it right justified into c

23
_
6

• It is an integrated
average over the specified time period.

The successive approximation converter is considerably
faster than the integrating converter. It measures
instantaneous voltage and is sensitive to noise errorso
Therefore, every input signal is usually filtered
through an individual resistance~capacitance filter
circuit. Unfortunately these circuits frequently _
introduce another type of error called common modeo
The advantage of the integrating converter is that it
tends to f.ilter the input signal; filter circuits are
not always n~cessaryo

Specification of the Scan Command Word and C-Register Formats

The various fields which compose these formats are described
in this subsection.

Sensor Address (SCW 16-7)

Bits 16 thru 7 uniquely define a s{ngle analog input.
Bits 16 thru 15 specify the inputs group address.

Operation Mode(SCW 18-19)

Bit 18 specifies the mode of operation.

Voltage Scale Control (SCW2-0)

Bits 2-0 specify the voltage range (-FSV volts to +
FSV volts) within which the input voltage-is presumed to
lie. The scanner generates {in the C-Register) a signed
numeric count value proportional to the input voltage when
the voltage lies within this range. If the voltage is
not within the specified range> a signed maximum count
value is generated and the converter overflow Qit(s) is
scto To obtain maximum precision, the voltage scale should
be chosen so that the magnitude of the input voltage falls
between~ FSV and FSV. ·

-56-

The measured numeric voltage is equal to:

Successive Approximation Converter: .
. FSV * numeric count value numeric voltage =

4000

Integrating Converter:

FSV *numeric count value numeric voltage = _F_u_l_l __ s_c_a_l_e __ c_o_u_n_t_s~

Operation Control (SCW 6-5)

Scanners with the successive approximation conve~ter ·only
measure DC voltages. Scanners with the integrating
converter measure either AC or DC voltages and can be used to
measure the pulse rate of non-continuous voltages. AC
measurements are restricted to multiples and submultiples
of 60 cycles (50 cycles when using .a 50 cycle converter).

Integrating Time Control (SCW 4-3)

This field is applicable only to s'canners with integrating
converterso Refer to paragraph l.6.2ol for a discussion
of its usage.

Unused Fields (SCW 23-20, SCW 17)

These fields are reserve.d for future use with automatic
scanning functionso In specific applications, program
information may be placed in the fields.

Converted Count Value (C23-6)

The two's complement representation of the converted
numeric count value is placed in c23_6o The AIS is·
fully compatible with GE/PAC two's complement fixed­
point arithmetico

Error Indicator Bits (C2-0)

Bits c
2

_
0

are error indicators associated with the
preceding scan operation. r~ -

-57-

000
001

010

011

100

101

110

111

Last Scan Operation

No erroro Count value is valid.
Scanner overload error. Count value is meaningless.

This is a rare hardware failure within the point
selection circuitry of the Common scanner control.
A scanner overload alarm message should be printed
with the point address. The AIS may or may not
be usable for readi~g other analog inputs.

Undefined (hardware error)

Integrating A/D Converter:

An open or high resistance thermocouple was
detected during the last scan operationa Count
value is meaningless. An alarm message should
be printed.

Undefined (hardware error)

Converter Overflow: ·count value is maximum,
but meaningless.

Undefined (hardware error)

Successive approximation A/D Converter:
converter overflow erroro If the input device
was a thermocouple, this may be indicative of
an open or high resistance thermocouple. Count
value is maximum value, 'but ~eaningl~ss.

Integrating A/D Converter:
Both converter _overflow and open thermocouple
errors. Count value is meaningless.

-58-

(
J

.r

SCAN COMMAND WORD (Successive Approximation C~nverter)

23 20 19-18 17 15 4 13 12. 11 .10 9 8 7 6-3 2

reserved group matrix point must voltage
for address address address be Scale
upward w M/N P_/Q zero Control
compati-
bility

00 = single Input mode
01 = group Input mode (2 or 4 points per group)

23 __ _

reserved
for
upward
compati­
bility

C-REGISTER

23 22

10 = single Input mode
11 = group Input mode (8

(Integrating Converter)

8 17 15 14 13 12

group matrix
address address

w M/N

r.

points per group)

11 10 9 8 7 6-5 4 -
point oper-
address at ion
P/Q con-

trol

6 43210

s Converted integral count value zero
(2's complement representation,
scaled Bl7)

Scaled offset corrected count · r

· If integrating converter:
converter overflow indicated

. If successive approximation:
converter overflow .Q.E.. open
thermocouple indicated

·If integrating converter:
open thermocouple indicated

If successive approximation:
xeros indicated

Scanner overload £!:. converter
overflow .£!. open thermocouple
indicated

-59-

inte-
grating
time
control

01

3 2-- 0

voltage
scale
control

Voltage Scale Control

FULL SCALE VOLTAGE (FSV)
-· .

Successive A pproximation Converter, Model 4130
-

Model 4 121 Model 4122 Model 4127 VIDAR
sew (PRESTON) Low-Level (PRESTON) Low-Level (PRESTON) High-Level Model 4135
02-00 Amplifi er high-common-mode Amplifier Integrating

Ampl~~~ier Converter
~

0 10 mv 10 mv 80 mv 10 mv
1 20 mv 40 mv 160 mv 20 mv
2 40 mv 160 mv 320 mv 40 mv
3 80 mv 10 v 640 mv 80 mv
4 160 mv 10 mv 2.5 v 160 mv
5. 10 v 40 mv 10 v 320 mv

I 160 mv -- 640 mv
I

10 v
__ I 1 v

6
7

·-------------- ·-

__ Operation Control for Integrating Converter

sew
06-05

0
1
2
3

Mode of Operation

Voltage, DC
Voltage, AC

·------------------------

Voltage, DC with open thermocouple detection.
Count pulses per unit integrating time.

'-________ ...__ __________ ~-~·---------
___ Integrating Time C_ontrol for Integrating Converter

sew·, Integration Time Full scale counts Operation time (MS)
04-03 (MS) at 1000 KC count rate Single input mode

60 cycle 50 cycle 60 cycle -~cle 60 cycle 50 cycle
f---·--- - ··--f--·

0 13.67 20 1:16,667 1:20,000 35.2 38.5
1 33.33 40 1:33,333. 1:40,000 51.9 58.5
2 100.0 100 1:65,535 1:65,535 118.5 118.5
3 1000.0 1000 1:65,535 1:65,535 1018.5 1018.5

Figure 21 - AIS CONTROL AND DATA FORMATS

-60-

1.6.2.3 Instructions

Program control over the AIS is accomplished with the
following instructions:

0UT AIS

0UT transfers a scan command word from the A-Register
to the AIS scanner command register T, resets the scanner

-ready and data ready signals, and initiates one complete
scan operation (connection of a ~pecif ied input point to
the scanners v~ltage measuring circuitry, signal amplifi­
cation if required, and conver.sion to an integral count
value). The time required to effect the operation depends
upon the A/D converter. The successive approximation
converter requires approximately 20 milliseconds; the
time for the integrating conver~er depends on the inte­
grating time specified. When the operation is completed,
the data ready signal is set. This signal may be used to
request a program interrupt. 0UT may be executed at any
time; if the AIS is in operation, this previous operation
will be aborted. The contents of A are preserved by this
instruction.

¢PR AIS

OPR causes the AIS to go through one partial scan opera­
tion. In the single input mode, a reconversion is made
on the previously specified input pointo The data ready
signal will be set in approximately 750 ~s with the
successive approximation converter, and the integrating
time with the integrating converter.

In the group input mode, the group address is reset to
zero and reconversion occurs. ,The successive approxima­
tion converter sets the data ready signal for the input
of group 0 in 3 MS. The integrating converter sets the
signal in the specified integrating time plus 2 MS. 0PR
may be executed at any time; any previous operation is

·abortedo

IN AIS

IN transfers the count value and error indicator bits
from the scanner converter C-Register into the A-Register.
The contents of the C-Register are not destroyedo In
the group input mode, the data ready signal is reset,
and conversion of the input in the next group is initiated.
The data ~eady signal for this next input occurs in 1.7 MS
with the successive approximation convertero

-61-

1.6.2.4

IN may be executed at any time. However, if the data
ready signal were reset, the transferred data is
meaningless.

The execution of IN, to transfer the count from the
last group, (the addressed group if the single input
mode) sets the scanner ready signal. This signal may
be used to effect a program interruptQ Any additional
IN will reread the count from the last group and
initiate a reconversion of the input in the last group.

JNR AIS

JNR transfers program control to the second sequential
location when the data ready signal is reset. If the
signal is set, program control is transferred to the
first sequential location.

JNE AIS

JNE transfers program control to the second sequential
location if an error has not occurred during some pre­
ceding scan operation; otherwise program control is
transferred to the first sequential location. The
error Flip-Flop is reset by JNE.

ACT AIS

ACT forces the scanner ready and JNR signals to be reset
for 16 ~s. If the scanner is ready and if the scanner
ready (JNR) signal is a program interrupt input, this
program interrupt is requested; otherwise the interrupt
is not requested.

Interrupt Operation

a. Single interrupt operation
Hardware required:
One 2-input program interrupt

Change input: JNR signal
Level input: JNR signal

Program required:
SPB instruction in interrupt location

1 I/O buffer driver program
1 Scan command buffer list
1 Data buffer list

b. Three interrupt operation (GE/PAC 4050/4060 only)
Hardware required:

. GE/PAC 4050/4060 Arithmetic Unit
One 2-input program interrupt

Change input: Scanner ready signal (RDY2)
Level input: Scanner ready signal (RDY2)

-62-

One 2-input program interrupt
Change input: Data ready signal (RDYl)
Level input: Data ready signal (RDYl)

One 1-input program interrupt
Change input: ¢DL list-empty echo signal

Program required:
~DL instruction in scanner ready interrupt location.
IDL instruction in data ready interrupt location.
1 Scan command buffer list
1 Data buffer list
SPB ~nstruction in echo interrupt location.

Analog Input Point Addressing Schemes

Each input is subject to three different identification
schemes:

1. System address (eog. BFlOl)
This address is assigned by the customer and/or the
system analyst.

2. Termination (scan command) addi-ess {WMNPQ)
This address is assigned by the system engineer and
refers to the location of the termination point in
the AIS termination rack.

3. Point index
This address is assigned by the progrannning analyst.
It should render a functional relationship to the
System Address •

Accuracy in Measurement of Analog Quantities

Measurement of .an analog quantity involves four separate
steps; each step contributed to measurement inaccuracies.

1. Conversion of the analog quantity to ari analog
voltage by a transducer. Equations defining
this relationship for standard transducers are
usually accurate to no more than \%_. Additional
accuracy can be obtained by individual calibra­
tion of each sensor.t

2. Transmission of the analog voltage from the sensor
to the AIS. Errors are introduced by.voltage drops
and electromagnetic inductive effects (noise).

-63-

3. Conversion of the analog voltage to a numeric voltage
by the AIS and read-in of this numeric value into
the computer memory. The conversion process is
subject to several errors which can be corrected by
program. Details are given below.

4o Conversion of the corrected numeric voltage, to a
numeric quantity corresponding to the original
analog quantity. The computer program uses the
inverse to the equation referred to in 1 above.

The GE/PAC scanner can be programmed to convert an input
voltage into a numeric count value that differs from the
true voltage value by no more than O.OOl*(full scale voltage).

Inaccuracies in measuring input voltag~s by a GE/PAC scanner
are determined by the algebraic sum of three types of errors.
These errors are gain errors (errors in the slope of the ,
input-output relationship), offset errors (the degree by
which the intercept does not go through zero) and repeat­
ability errors (noise). This total error, which is
approximately OoOOS*(full scale voltage), is subject
to reduction by programming techniques.

-,

Offset errors can be reduced by making weighted average
measurement7 on a short circuit (zero input) and reducing
all other readings by this measured offset value. The
equation for this is:

True reading = actual reading - offset reading
(signed offset and actual readings are made on
·the same voltage scale).

Gain errors can be reduced by making weighted average
measurements? on a known reference voltage and all read­
ings corrected by multiplying by a gain correction
factor calculated from thi~ reading.

)

Reference voltage actual count - offset count Gain correction factor = ~~~~----~--'-"4.-~~~~~~~~~~~~~~
Theoretical count for reference voltage

Where reference voltage actual count and offset count are
made on the same scale and theoretical count.for reference
voltage is calculated by:

Theoretical count for reference voltage =
(Reference voltage} * Full scale count

Full scale volts

7 - A suggested weighted average.is 7/32 * (sum of last four readings)+
1/8 * (new reading) when a reading is made once every 20 seconds •

. ..64-

Once the gain correction factor is determined, all other
readings should be corrected by multiplying by this
factor:

True reading= {actual reading·- offset)* {gain correc­
tion factor) {all measurements are made on the same
voltage scale)

Repeatability errors can be reduced by digital filtering.
This is the process of averaging a number of 8readings to
minimize the effects of noise in the system.

The gain correction factor and the offset correction term
both vary as a function of time and temperature. There­
fore, measurements must be made often to determine these
quantities to maintain small changes between measurements.
Experience indicates an interval of approximately five
minutes is reasonable under normal environmental condi­
tions o If the machine is located in an environment where
temperature changes are very rapid {0.5°F/min.) shorter
intervals are desirable.

The degree of improvement in each of these error terms is
dependent upon several external effects but generally
speaking improvements in the gain errors can be 5 to l;
improvements in repeatability errors can be 2 or 3 to 1.

The offset error improvement is more dependent upon the
scale used. On more sensitive scales the improvement
may be as high as 5 to 1 also.

A special type of scanner measurement error occurs when­
ever the scan operation results in a converter overflow
(the input voltage magnitude exceeds the specified full
scale voltage). The resulting numeric count value is
meaningless. Furthermore, the voltage value measured
in the next scan operation may be in error because of
residual effects from the preceding voltage overload.
The magnitude of this error is a function of' this voltage
overload, but should never exceed 0.01 * (full scale
voltage).

If this error is unacceptable, then a dummy scan
(preferably of an offset value) may be inserted
following the converter overflow to absorb the
residual voltage effects.

a-A suggested weighted average is 7/32* (sum of last 4.readings) + 1/8*
(new reading) where a reading is made once every 20 secondso

-65-

1.6.3 MULTIPLE OUTPUT DISTRIBUTOR
.

The Multiple Output Distributor (MOD) consists of a Multiple
Output Controller and output functions. The Multiple Output
Controller (MOC) module outputs data from the arithmetic
unit to output functions within the MOD. The output functions
remember the data, and control the following output devices:

1. Display output devices
2. Binary output devices
3. Analog output devices

The MOD operates through a command word from the computer to
the MOC command registero

23 ---------------- 8 71 61 5 ------ 0

Data

' MOD Command Word Format

Output function
group address

\ I

~Reserved for software
use. Refer to para.
1.603.3

\
Operatic~ delay time
0 = MS

, ' 1 = ,PS

The MOC transfers the data to the memory of the output function
specified by the command word group address. The MOD is then
ready to accept another output. If the output function's
memory is electromechanical, the transfer operation requires
4 milliseconds; if solid state, the transfer requires 40
microseconds.

Overload detection circuitry will abort the output operation and
set a MOD overload indicator if the MOC attempts to select
more than one output function address.

The MOD is usable with 0 or 1 program interruptso One interrupt
is required for efficient on-line operation.

-66-

1.6.3.1

The MOD is available in the following sizes:

--
Number of Outputs Output Function

Group Addresses

1 to 8 groups, 16 outputs each 008 thru 078

1 to 16 groups, 16 outputs each 008 thru 178

1. to 32 groups, 16 outputs each 008 thru 378
-

1 to 64 groups, 16 outputs each 008 thru 77 8 ..

Instructions

MOD program control is accomplished through the follow­
ing instructions:

f1UT/MOD

-------------0UT t:ransfErs---a - corrunand wont-- from the-- A•Register to -
the MOC conunand register. It~then initiates transfer
of the data portion of the command word to the output
function specified by the address po~tion of the com­
mand word. The contents of the A-Register.are un­
changed. Bit 7 of the command word specifies one of
MOC delay times. The delay time must be long enough
to allow the transfers to occur. If a MOD overload
occurs, the output operation is aborted and the
ready signal is set after the specified delay time.

0UT may be executed at any time; if the MOC is in
operation, the new operation is ignored.

JNR MOD

JNR transfers program control to the second_sequential
location if the normal ready signal is reset. If it is
set, program control is transferred to the first sequen­
tial location.

-67-

ACT MOD

ACT resets the ready signal for 8 ps.~ If this signal. is
a program interrupt input and the MOC is not in operation,
a program interrupt is requested.

JNE MOD

JNE transfers program control to the second sequential
location if a MOD overload did not occur during a
preceding output operation. Otherwise, program control
is transferred to the first sequential location and the

-MOD overload indicator is reseto -

INTERRUPT OPERATION

Single interrupt operation is recommended. The ready
signal (test line 1) is used as the input to an in­
hibitable one-input program interrupt. Interrupt is
conditionally requested by the ACT instruction.

Output Functions

Three standard output functions are described below.
The memory elements in each are bistable latching
relays o The "relay requires -less than _4_ MS to swit.ch
positions. -- ·

The function group address does not uniquely specify
an output function. Consequently, several output
functions could have the same output function group

'' address.

1. Display Output Function

This function provides the control for one BCD
display digit (including 4 bit BCD to decimal
conversion if required). It requires 4 data bits
of an MOD command word.

2. Binary Output Function

This function provides control for 8 logic
(binary) outputs corresponding· to 8 data
bits of the MOD command word.

3. Analog Output Function

This function provides control for conversion
from a 10-bit positive binary integer in a MOD
conunand word to an analog voltage output.

-68-

lo6.3.3

.
Normally, one or more levels of electromechanical or
pneumatic control exist between the output function and
the actuating device. Consequently, the output function
is not the final output actuating device. The MOD ready
signal cannot be used to indicate the actual time of
output action, nor as proof that the output will actually
occuro If reliability considerations require~ a set of
contacts may be attached to the actuating device. Its
status may then be read by the digital input scanner.

On-Line Programming Usage

All outputs (program control viewpoint) are initiated
by an MOD driver subroutine, never by the originating
subprogram. Each output has one of two relationships
to the originating program:

1. Program continuation is independent of the output;
therefore, the originating program is not notified
when initiation of the output operation is completed.

2. Program continuation is dependent upon the output;
therefore, the originating program must be notified
when initiation of the output operation is completed.

The originating program uses-Bit 6 of the MOD command
word to specify which relationship applies to that out­
put. Figure 22 presents the flow chart and coding
applicable to- MOD usage.

-69-

F N L

PROGRAM NUMBER

no

OUTPUT = 0?
yes

MODLST

RBL NEXT
OUTPUT FROM
LIST

WAS LIST
EMPTY?

ENTER WHEN
READY OCCURS

r -----
yes I DIAGNOSTIC

I ACTION
L ____

no TURN ON
ORIGINATING

PROGRAM

REMEMB~R OUTPUT· I
no SET NORMAL READY I

RETURN.
INITIATE OUTPUT. ,

Figure 22 - MULTIPLE OUTPur DISTRIBUTOR DRIVE
ROUTINE

-70-

* INTERRUPT BRANCH VECTOR LOCATION
SPB MODDRV INHIBITABLE- IF NORMAL READY SIGNAL

* MOD DRIVER ROUTINE--
MODDRV STX MODX,l
MOD EQL

.STA SAVEA
JNE MOD
BRU DIAGNOSTIC
LDA MODCOM
TEV 6
BTS MOD20
RBL MODLST
NOP
STA *+3
LDZ
SPB TPNCOl
BSS 1

MOD20 RBL MODLST
BRU MOD40
STA MODCOM
RBK 6
OUT MOD

MOD40 LDA SAVEA
. LPR MODX

MODLST CON 0,0000000L
BSS L

MODX BSS 1
SAVEA BSS 1
MODCOM BSS 1

00
DEVICE ADDRESS.

B IF (ERROR DETECTED IN LAST OUTPUT)--,
X 10, DIAGNOSTIC ROUTINE.

10 B IF (LAST OUTPUT A NORMAL OUTPUT)--,
x 20, 30.

20 REQUEST TURNON OF ORIGINATING PROGRAM

' .
CALL MONITOR-TURN-PROGRAM-ON-SPR(

. ·.x O, PROGRAM-NUMBER).
30 FETCH NEXT OUTPUT CO:MtvIAND WORD.

40

50

B IF (LIST EMPTY) --, 40, 50.
REMEMBER OUTPUT CO:MMAND WORD.
FORCE NORMAL READY SIGNAL.
INITIATE OUTPUT OPERATION~.
RETURN TO INTERRUPTED PROGRAM.

-71-

lo7 PERIPHERAL CO'MM.UNICATION

The ability for plant operating personnel to communicate with
the digital computer is called peripheral communicationo This
chaper describes the 4201 Peripheral Buffer, the instructions,
and interrupt operationo

lo7.l Peripheral Buffer

The peripheral buffer controls peripheral device operation.
Control information flows from the I-R~gister to the peripheral
buffer module. Data information flows by character between the
arithmetic unit and the moduleo

Peripherals available for use in the buffer are:

Paper tape reader, input
7-bit binary
Photoelectric

Paper tape punch, output
7-bi t binary

Fixed carriage typer, output
6-bit BCD

Long carriage typer, output
6-bit BCD

Fixed carriage typer, ··Input/Output
6-bit BCD

Card reader, input
12-bit binary

A maximum of eight peripherals can be attached to the peripheral
buffero One of these must be a paper tape reader.

The peripheral buffer can be connected to any Ghannel; several
buffers can share the same channelo However, to use the
standard load program, the buffer for console peripherals will
use device addresses 11DD

8
•

Each peripheral buffer provides eight device addresses: octals
DDOO through DD07. Console peripherals have standard addresses.
Other peripherals are assigned addresses by the requisition engineer.

-72-

Console Devices

Paper tape reader
Paper tape punch
Fixed carriage typer

Standard Addresses

The normal operation of a peripheral device is described in
the following:

1. Operation Initiation
The operation cycle is initiated by an IN (~UT, IDL, ~DL)
instruction. The following actions occur:

1. One character of data is transferred (see IN (QUT)
below)

2o Peripheral buffer becomes unavailable (the PBA
Signal is reset)

3o Device becomes not ready (the device's ready
signal is reset)

4. Device's deadman timer begins timing
5. Mechanical operation of the device begins

2. Peripheral Buffer Availability
.The device requires the peripheral buffer only during the
fir_st portion of_ its operation cycle _(see Figure 24).
The device will then release the peripheral buffer and
allow it to become available (the PBA Signal is -set). At
this time the buffer can be used to initiate the ope~ation
of any peripheral that may be ready.

3. Operation Completion
Upon completion of the device's operation cycle, the
following actions occur:

1. The device becomes ready (the device's ready signal is
set).

2. The device's deadman timer is turned off.

Each peripheral has an independent deadman timer which detects
and indicates device failure to complete its operating cycle.
When a device fails to turn of£ its deadman timer within 4 to
8 seconds after an operation initiation, the device's deadman
error indicator is set. If the failure occurs prior to
peripheral buffer availability, the peripheral buffer remains
unavailable until released by the.execution of a JNE instruction.
If the failure occurs after the PBA signal is set, the bu~fer
can be used to operate other peripheral devices·. In either case
the device's ready signal remains reset until the proper JNE
instruction is executed.

-73-

More than ninety percent of all peripheral failures occur prior
to peripheral buffer availabil~ty. These errors may be due to:

1. The attempted operation of a·non-operable device. A device
is non-operable if it has a mechanical defect, lacks AC power,
lacks DC power, is non-existant, or has been switched off-line.
A non-operable device normally appears ready (device ready
signal is set) until an attempt is made to operate it.

2. The attempted outputting of an illegal character to a type­
writer (an illegal character will not necessarily cause' a
failure on certain types of typewriters.)

1.7.1.1 Instructions

JNR 25X6DDOO
JNR transfers program control to_ the second sequential location
when a peripheral device attached to the addressed peripheral
buffer is in operation. If all of these devices are ready,
program control is transferred to the first sequential location.
The test implicity indicates whether or not the last initiated
operation (IN, ~UT, IDL, ¢DL) is completed.

The JN"R signal is the logical AND of the individual device
ready signals for all eight devices. A non-operable device
will test ready.

The JNR signal my optionally be connected to the Automatic
Program Interrupt module to initiate_ an interrupt whenever the
signal changes from not ready to ready. The PERIPHERAL READY
lamp, on the computer console illuminates when any device is
no~_.!"..~~.~·

~UT 2504DDOD
The ¢~r--G;struction may bg executed at any time to transfer
the right-most seven bits of the A-Register to the N-
Register within the peripheral buffer, and initiate one operation
of the addressed device. The previous contents of the N-Register
is lost.. The contents of the A-Register is not changed. Although
VHIT may be executed at any time, no action occurs if the peripheral
buffer or the addresse.d device is in operation. If the output ·
device is a paper tape punch, odd parity is generated on seven bits
and is punched as a bit in an eighth channel. ,

9- .
If the addressed device is a card punch or card reader, 12 bits of data
are transferred.

-74-

10-

Figure 26 lists ·the standard typewriter character set, and
typewriter codes.

Figure 23 lists the standard punched paper tape format.

IN 2505DDOD
The IN instruction transfers the current contents of the
addressed device's read mechanism to the rightmost seven
bitslO of the A-Register and initiates one operation of
the addressed device. The remaining bits of the A-Register
are set to zeros by this ~nstruction. _

Although IN may be executed at any time, the information
transferred is meaningless if the addressed .peripheral
buffer or device is not ready. The operation of the
addressed buffer and device is unaffected, the peripheral
buffer error indicator is set and the PB ALARM lamp is
turned on.

If the input device is a paper tape reader, these seven
data oits are checked for odd parity: Even parity sets
the peripheral buffer error indicator and illuminates the
PB ALARM lamp. The lamp can be turned off by depressing
the CLEAR switch. IN should be immediately followed by
a JNE instruction to check for correct parity.

JNE PERIPHERAL 2507DDED
JNE transfers program control to the seco~d sequential
location if the error indicator(s) specified by E is
reset. If the specified error indicator(s) ,is set, pro­
gram control is transferred to the first sequential
location and an action specified by E is taken.

If the addressed device is a card punch or card reader, 12
bits of data are transferred.

-75-

1.7.1.2

~ Error Indicator(s) Action-:

0 None None
1 Addressed Device's

Input Demarid Flip-Flop Reset Input Demand Flip-Flop
2 Addressed device's

deadman error indicator None
3 Addressed device's

deadman error indicator Reset Deadman Error Indicator
4 Parity Error Flip-Flop None
~ Parity Error Flip-Flop Reset Parfry Error
6 Any deadman error

indicator in the addressed
peripheral buffer or the
Parity Error Flip-Flop None

7 Addressed device's Deadman ,Reset deadman error indicator;
error indicator or the Reset parity Error Flip-Flop
Parity Error Flip-Flop

ACT PERIPHERAL 2501DDOD

ACT forces the addressed device's ready signal to be reset for
8 ps. If the device is ready and if this ready signal is a
program interrupt input, the device's program interrupt is
requested; otherwise the interrupt is not reques.ted.

If all peripheral devices are ready and the JNR signal is a
program interrupt input, the JNR program interrupt is requested;

· otherwise the interrupt is not requested.

Interrupt Operation

Single Interrupt Operation (one peripheral at a time)
The peripheral buffer, with the JNR signal-connected to the
AP! module and one buffer driver program IDL or 0DL instructions),
operates one device at a time. Interrupt is conditionally
requested by the ACT instruction •.

GE/PAC 4040
Hardware Required:
One 2-input program interrupt

Change input: JNR signal (Test Line 1)
Level input: PBA signal

Program Required:
SPB instruction in interrupt location.
One I/O Buffer driver program
One I/O Buffer list.

-76-

GE/PAC 406Q
Hardware Required:
One 2-input program interrupt

Change input: JNR signal (test line 1)
Level input : PBA PBE signal

Program Required:
IDL (¢DL) instruction in non-inhibitable interrupt location
One I/O buffer list

Multi-interrupt Operation (time shared operation)

The GE/PAC peripheral buffer, with individual device ready
signals connected to the API module and individual buffer
driver programs (individual IDL or 0DL instructions in the
AU2), for each device provides the _functional equivalent
of an individual hardware controller for each peripheral.
Each controller buffers characters between a list in
memory and its associated device. Each controller operates
it semi-independently of all other devices. Each peripheral
requires the use of the peripheral buffer for only the first
part of its complete cycle; the buffer can then initiate
some other peripheral. This mode allows a greater data
transfer rate (e.g., 15 characters can be typed by each
of two 15 cps-typewriters ~n approximately 1 1/30 second).
Hardware requirements are on type-2 API input per
peripheral device and additional core memory to pccommodate
individual buffer drivers and character tables. ACT con­
ditionally requests the- addressed device.'<s program interrupt.

GE/PAC 4040
Hardware required (per peripheral)
One 2-input program interrupt

Change input: Device's ready signal (RDY2) m Level input: PBA signal
Program required (per peripheral)
SPB instruction in interrupt location.
One I/O Buffer driver program.
One I/O Buffer list.

GE/PAC 4050/60
Hardware required {per peripheral)
One 2-input program interrupt

Change input: device's ready signal (RDYz)
Level input: PBA signal for output devic~s

PBA-PBE signal for input devices

-77-

1.7.1.3

GE/PAC 4050/60
Program required {per peripheral)
IDL (~DL) instruction in device's non-inhibitable interrupt
location
One I/O buffer list

Error Detection

A device failure or a parity error can be detected by
periodically executing a JNE instruction (2507DD60) placed
within a frequently entered program. However, a peripheral
buffer error (PBE) signal is available for optional use as
a program interrupt input {the PBE signal is equivalent to
the JNE signal with E=6).

-Hardware required:
One 1-input program interrupt:

Change input: PBE signal

1 0
2 0

3 0 ~~~~~--1~~~~~~~~-
s 0

Direction of 4 0--=-~~~~~---'~~~~~~------tape movement 5 0
6 0""--~~~~~~-1-~-~~----...

7 0-=-~~~~~~-;L.~-~~~-.
--~~~~--~~---~~~~-o-~~~----~~~~~~--J~~~~~

23 7
A-Register

An enlarged segment of paper tape'iS illustrated. Format details are:

1.

2.

3.

4.

5.

'.

The paper tape has nine channels, c1 thru c8 and C running
lengthwise along the tape. ·.

8

Channel C is the sprocket hole channel. A hole in this channel
defines a

8 data frame. Taht is, the hole indicates the presence
of data in corresponding punch positions of the other eight channels.
Data frames need not be equally spaced. Nominal ._spacing is 10
frames per inch.
A hole in a punch position defines a "l" data bit; no hole defines
a zero data bit. Data holes are twice the size of sprocket holes.
The IN (¢UT) instruction transmits data between a data frame
and bits A

6
_0 of the A-Register as indicated

Channel c5 is the parity channel. A hole is punched as required
to quarantee an odd number of holes in each data frame.

Figure 23 - GE/PAC PAPER TAPE FORMAT

. -78-
. ,_-'

Peripheral device

Typer, fixed carriage
normal character, LC
nonnal character, UC
carriage return

Typer, long carriage
nonnal character
carriage return

Paper tape reader
Paper tape punch

Card reader
nonnal character
card feed

Input typer, Selectric

Time lapse between ¢UT (IN)
instruction and ready signals.
Peripheral Buffer Available
signal, ms

30
95

40'

4ms
4ms

Dependent upon Operator

NOTE: All times are approximate.

Figure- 24- Peripheral' Operation Timing _,

-79-

Device ready
signal, ms

65
130
up to

100
up to

lOms
9ms

Type size Number of characters in print line
- ~-~--·

Characters IBM Selectric IBM MODEL B
per 11" 1532" 12 11 20" 30"

inch Carriage Carriage Carriage Carriage Carriage

10 85 130 88 167, 265

12 102 156 106 201 318

~

14 - - 124 234 371

NOTE: The vertical line spacing on all typewriters is 6 lines
per inch.

Figure 25 - Typewriter Fonnatting Data

-80-

OCTAL OCTAL
CHARACTER CODE CHARACTER CODE NOTE

0 00 . 73
' 1 01 + 60

·2 02 - 52
3 03 * 54
4 04 I 61
5 05 = 75
6 06 (35
7 07) 55
8 TO --~ -53
9 11 11 76
A 21 > 16 F
B 22 < 36 ' F
c 23 [12 F
D 24] 34 F
E 25 : 15 F
F 26 ; 56 F
G 27 -,- 57 F
H 30 11 13 F
I 31 @ 14 F ·-
J 41 & 32 F
K 42 \ 37 F

. L 43 f 40 F
M 44 ~ 72 F
N 45 % 74 F
0 Zj:6- 'l 17 F
p 47 ' 77 F .
Q 50 TAB 140
R 51 CR 100 I

s 62 TAB 141 to 157 OT
T 63 CR 101 to 137 OT
u 64 Black 160 OT
v 65 Red 161 OT
w 66 No action 177 R
x 67 Punch on 162 R
y 70 Punch off 164 R
z 71 lXX IT

Space 20
Control Mode}

Shift . 33 Delete 177 p

Stop 170 P.,R

NOTE: Characters are applicable on all standard GE/PAC Input/Output
devices, unless otherwise specified.

F - Not available on long-carriage typewriter
OT- Output typewriter only
R - Tape reproduction devices only
IT- Input typewriter only {hold this key down while typing a

character generates the octal lXX; this is interpreted
as one of 64 control actions). For example, typing a#
in this mode generates 1138 in the input typer's register.

P - Tape preparation device only.

Figure·26 - GE/PAC Characters & Codes

-81-

1.7.2,

1.7.2.1

CARD READER (GE/PAC 4242B)

The continuous feed card reader is used with the GE/PAC 4201B
peripheral buffer and can be programmed to read data from
punched card bulk storage. Data is read one column at a
time from standard 80-column punched cardso Card feed is
continuous at a maximum rate of.400 cards per minuteo Data­
transmitted to the computer is the 12-bit binary image of
a card column. Card row 12 corresponds to bit 11 of a
GE/PAC word; Card row 9 corresponds to bit Oo

Physical Description

The 4242B Card Reader is a desk mounted Elliott electro­
mechanical device which senses data by photo-cell diodes~
It is restricted to use the 4201B peripheral buffer and
has the following characteristics:

Card feed rate: 350 to 400 cards/min.

Card feed mode: Serial by column

Column feed period:
within card
card feed

Card specifications:

Approx. 1.3 milliseconds
Approx. 17. milliseconds

Standard 80-column card;
either square or round cornerso
Refer to Figure 230

Card hopper capacity: 600 cards~maxo

Card stacker capacity: 600 cards max.

Code:

Code conversion:

Li~ited t9 400 cards for
convenient card removal.

12-bit column imageo

None

Data validity checking: None

Read mechanism checking: Implicit checking via program
check of pseudo columns 81 and 840

-82-

Figure 27 illustrates the operator's panel located at
the top front of the reader chassiso The functions of
these switches are as follows:

AC/DC ON/OFF (rocker-typer switcho)
Setting this switch to the ON position supplies AC/DC
power to the readero In the OFF position, power is removed
from the motor and read photocellso

AUTO/MAN (rocker-type switch) _
When this switch is in the MAN position the card reader is in
an off-line state and can not be controlled from the computer.
Attempted program operation will result in the device 1 s dead­
man error indicator being set.

"When this switch is in the AlITO position the reader is com­
puter conttolledo

If the switch is set to MAN during active card reading, data
reading will cease immediatelyo

This switch has precedence over the STOP switch.

AUTO DMND (momentary action pushbutton)
This switch is enabled when the AUTO/MAN switch is in the
AUTO position and the reader's clutch Flip-Flop is set.

By depressing and releasing this button, the reader's input
demand indicator is set; its Ready signal is cycled from
ready to not ready and back to readyo The reader's clutch
Flip-Flop is interlocked with AUTO DMD so that the push­
button is disabled when the clutch is ono However, since
the clutch is turned off {by program) at column 1 of the
last card to be read, this button should never be used while
the reader is in operation. ~

LOAD/FEED (momentary action pushbutton)
This switch is enabled only when the AUTO/MAN switch is in
the MAN position.

Depressing LOAD causes one card to be moved from the Card
Hopper to the Wait Station (Figure 27) 0

Depressing FEED causes cards to feed from the Card Hopper
through the read mechanism to the card stacker at the rate
of 400 cards per minuteo

-83-

, :

STOP/CONT (rocker-type switch)
When STOP is depressed, feeding is inhibited; data input
(from IN, IDL instructions) is not inhibitedo If STOP is
depressed during card feeding, before column 60 passes the
read station, card feed terminates after that card is fed 0

If STOP is depressed after column 60 passes the read
station, one addition~l card is fed through the read station.

When CONT is depressed, card reading continueso However,
STOP must be depressed prior to depressing CONT to release
the stop inhibito Otherwise, no action occurso

Cards are transported from
hopper to wait station, then
through read station to
stackero The swing-out tray
permits removal of cards from
the bottom of the stackero

·­-

eREAD STATION

/~ ~ .
s_T_A_c.....,KE~E.-..,/_:/_''--_\-.~ .---- WAIT STATION

/~/ '~,
' /

-- -

v
}.

- §:§} FF1 E8
. §]§ §1:] \

I,

,;

\

OPERATOR'S\.
CONSOLE·(

AC/DC J; AC/DC

ON \ OFF ATTI"Q °,t
UJ. fj MAN CONT ii\ STOP

,1 ~ J}'

MAN
tr MAN I'

LOAD ?) FEED
'~j

Figure 27 - CARD READER (GE/PAC 4242B)

-84-

\

\

\
\

1.7.2.2 Operation

The following procedure is the normal method of initializing
the reader for programmed operation:

1 o Turn power on o
2o Set AUTO/MAN switch to the MAN positiono
3o Insert cards in hopper, 9 edge first, face downo
4o Depress LOAD switcho (First card is transported to

wait stationo)
So Set AUTO/MAN switch to AUTO positiono
60 Depress AUTO/DMND switch.

The card reader is now on-line, and ready to accept commands
from the computero

Programmed operation of the GE/PAC 4242B card reader is via
the 4201B peripheral buffer (see parao 1.7ol) using either the
GEN 2 instructions ACT, JNR, JNE, ~UT, and IN ~r IDL in an
interrupt location.. (See parao l.4o3)·.

Card feeding is initiated by an 0UT command (~UT READER) which
sets the reader's clutch Flip-Flopo Actual card movement lags
the 0UT command by approximately 12 millisecondso

Card feed termination is initiated by an ¢UT connnand. (0UT
READER+/10) which resets the reader's clutch Flip-Flopo Actual
card movement will continue for approximately 25 to 130
milliseconds following the 0UT commando

When a card column passes under the photocell read heads, that
12-bit data column is ready to be reado The IN (IDL) command
to transfer the data must be given withi~ Oo7 milliseconds or
the data is lost. The IN and IDL commands transfer data to
the AU and affect the device ready signal; these commands do not
affect card movement. Card movement timing with refere~ce to
the photocells is shown in figure 27.

l. t. 2. 3 Card Movement Timing (from Wait Station to Stacker)

Card Position

0UT (set clutch Flip-Flop)
Card movement begins
Colo 1 ready to read
Colso 2, 3, 4 and 5
Colo 5 ready to read
Colo 7, 8, ooo 85 ready to read
Col. 80 ready to read
Colo 81 ready to read
Col •.. a4 ready to read

-85-

Time (Milliseconds)

0
12 mso
16 ms.
lo3 mso apart
2L2 mso
1.5 mso apart
13307 mso
135: .. 2 ms o

139.9 ms.
!

Col. 1 of second card re.ady to read
Timing between successive ca~ds
(col. 1)

- 166 mso

150 mso apart

The program must synchronize itself to card movement for
proper reading of data and must maintain its own column
counto The reader's device ready signal provides this
capability. This signal normally indicates ready, but
is set not ready:

1. 700).IS prior to advent of column 1 under read
heads, and

2. by each IN (IDL) instruction.

The signal is reset to ready,by signals originating from
the card reader's electro-mechanical transport mechanism
which indicate that a card column is in reading'position.

If no IN instructions are executed during card feed, the
device ready signal cycles once for each card transported
through the reader, the pulse occurring at column one of
each cardo If k IN's are executed per card, the signal
will cycle k + 1 times (consequently, if k is less than 84,
tbe remaining columns of the card are not read). If an
IN is not given within 0.7 milliseconds of the signal's
changing from not-ready to ready, that data ~olumn moves
past the read station and is lost.

If the program gives 84 properly synchronized IN's, the
eighty-first data column is 00008 and the eighty-fourth
is 77778 • If these IN's input other than 00008 and 77773
respectively, the program must presume either hardware
failure or improper program-to-hardware synchronization.
If more than 84 IN's are given, the ready signal continues
to cycle with 1.5 millisecond period as long as IN's are
given,.until 700 ps prior to the advent of column 1 of the
following card. Since the total number of these-cycles is
variable, there would be no means (other than unique data
in column 1) to uniquely signal column 1 of this next card.

Termination of programmed card feeding is initiated by the
GEN 2 instruction ~UT READER+/lOo This conunand does not
inhibit data input; data may be inputted (IN) as long as
card columns continue to pass by the card reader's read :
station.

If this ~UT command is given between columns 1 and 50 of
a card, card feeding will cease at the end (column 85) of
the same cardo If this command is given following column
60, card feed will cease at the end of the following card.
If this connnand is given between columns 50 and 60, the
cessation of card feed will be uncertain.

Cards may be fed one-by-one by the repeated program execution
of the instructions ¢UT READER and ~UT READER+/10. The ¢UT
to stop-card-feed must be given before column 50 {but not be­
fore the device ready signal is set hot ready for column l)o
If the ¢UT to feed the_next card can be given prior to column
60 of the current card, the card feed rate is 400 cpmo !f a
program cannot give this start-card-feed ¢UT prior to column
60, it should delay giving it until after column 85 has passed
the read-station to maximize reader lifeo In this event,
the card feed rate is 350 cpmo

The reader may become non-operational for various reasons:

1. Input hopper empty
2. Output stacker full
3o AUTO/MAN switch in MAN position,
4o AC/DC power switch in OFF position
So CONT/STOP switch in STOP position

Error detection and control must be by programo Examples of
error control via program are:

1. Reader status tests
2. Sum checks
3. End of card checks {pseudo col. 81-84).

1.7.2.4 Input Hopper Empty

When the input hopper becomes empty as signaled by the hopper
empty contact, the last card cycle is completed normally, a
deadman error occurs, and card feeding is inhibited. To
continue operation of the reader, the operator must set the
AUTO/MAN line switch to the MAN position, reload the input
hopper and return the AUTO/MAN switch to the AUTO position.

1.7.2.5 Stacker Full

When the output stacker becomes full as signaled by the stacker
full contact, a deadman error occurs and further card feeding
is inhibitedo To continue operation of the reader, the operator
must set the AUTO/MAN line switch to the MAN position, remove
cards from the stacker and return the AUTO/MAN switch to the
AUTO positiono

Programming Examples

Figure 28 is an example of program for read~ng one card usi~g
the JNR instructiono

Figure 29 is an example program for reading one card using
program interrupt and the GE/PAC 4050/4060 instruction IDL.

-87-

r-r-rc I!" - r11:'!i l J.,--r-i - --] - - - I I
I i 3 • ' 6 ~' a~'!! 1!ln "''S~ 18 n 20 21 n 23 l• 2S' 16 27 28 29 30 31 32 J3 34 3513.l 37 38 ,. •9 41 42 43 .. •S 06[47 .. 49 so Sl 51 53 S4 SS 56 57 58'59 60 61 62 63 64 65 66 67 68 69 ni 71 72 73 H 75 76 77 78 79 80

~ L1NR~~tR'FJAnF.'.RH:t112 IDiCt1EJs, IHlii~!nlit"jj 1~ ~i:tre;A~· f.i:rQ TBE !QiFE"RJA1TT1v11\lA!r
l-+-J-l-+--1-f;f'"',·,...R.,,.,.R~·U, . I - - : '

i,"; I r~

H-t-t-t-~£~~IT~~~E~.f--t-f-+-IY:-+-H-++--H--+-+-l-+-+-++++:r-+-r-HH-J-++-++-++-~f-H-+-+-1-++-+-++-+-hH-1-+-+++-l4-~~~-i-1--+-J
~-+--+-l,~' l1tim ' 1* 11{ (

,.~Rli t;;<Attt~Tt-tti--rt--t-t-tt-t--rt-tt-11r!1'1~.:;:t-,c:::;'t-lt;rt-;J:t~>l\~."~111<H--t-t-t-tti-t-t--t-t--t-H-t-t--t-t-t-H-t-t-+HH+-t+t+H-H
1::1-:_8;;d--o]m.8.n..i.~1'-I",~ l "0~ !.J:]~) ~J: ~1L ~V~L4-/_l_~_L4-1-.j....1._1-+-1-1-+-1-+--1-+-+--1-1-H-+4++++-+-t--t-H--t-t-+++++-+t-t-H-1'--t-t--+-++++++ .. --i -+-' - -

1A~ll ~~§~~IR°Z=-i--1-1--+-4-!~~~1--1--1-~-1-+-~-4-4--+-+-l--l-4-++-+-+-~f-+-+~1-1--1-+-+-1-f-+-++-+-+-1-+-+-+-+-+-+-+-+-+--1-+-++-~
~ ~ TI~~ L_._._~'-'--L-4-L~~.L..-J._J_..__.__,__,_ _ _._.__.__,__, __ J_j__L_.L_J___ .. --'-'-'~-l-.1..-1-L1 ..L-1-1-'-1-L...L-L-L.-'--'---'-- -~J~~~~j

Figure 28 - CARD READ PROGRAM

A1<1nn ~..,.ce ·: Qr 121,"l cr::rzic 1 IJT~'I 1cr11\ ·1~01 r,.;r11u re 1m:~1.At r ~'
........... _.__..~~.._._L ~-.0.-\.- -~__._._.........._~-'--'-''-'-'_.._._-L-L._,_,_.L-1..-...._._.....L-L-'--l.....l-.J....._,_J-1-J'-l.-l..J-L-!.....:..r...l....L....L...l-J-.l..-L-.l-l...J...L..J....J.....L-l-..W...J...l-l-.W

; .. Figure 29 - CARD READ PROGRAM

-88-

1. 7 .3

. . / , '

1.7.3.1

LINE PRINTER (GE/PAC 4262)

The GE/PAC 4262 line printer produces printout in accordance
with specified data from an external sourceo It is used
with the peripheral buffer and can be progrannned to print
hardcopy documentation in multiple copy f ormo Each print
action can record a maximum of 120 characteis per line at
a nominal rate of 300 lines per minute.

Each print operation is a three phase action:

1. Transfers, under arithmetic unit control, the desired
line image from computer memory to the printer's in­
ternal buffer memory. The line image is variable
length. It consists of a line space co~trol code,
followed by the desired ordered sequence of character
codes and terminated by a print connnand code.

2o Printing action followed by resetting the printer's
buffer memory to spaces.

3o Paper feed of a number of lines (or to page p~sition)
specified by the line space· codeo

Physical Description

The 4262 line printer is an Anelex,- Series 5, asynchrous buffered
console printer with the following character.~stics:

Printing rate: 300 lines per minute-nominal

Text Specifications:

Coltnnns per line: 120
Horizontal character spacing: 10/inch
Vertical line spacing: 6/inch
Average character height: 0.10 inch

Paper Form Specifications:

Form width: 4 to 20 inches

Form length: 1 line to 22 inches

Multiple Copy Capability:

The nmnber of acceptable copies varies with the type of
paper.·

Any nmnber of copies up to original plus five carbons
can be provided with proper choice of paper.

-89-

Paper Feed and Line Spacing:

Paper advances after printingo

Sle~ing is under control of a vertical format unit tape.

Printer option: paper loading and receiving baskets

Figure 30 illustrates the operators control panel mounted on the
printer chassis. The functions of these indicators and back­
lighted pushbuttons follow:

ON Backlighted green round pushbutton.
Depressing this button provides AC power to the printero
Indicator glows when power is on and the printer buffer
is ready to receive data.

OFF Backlighted red round pushbutton

YOKE OPEN Backlighted red square indicator.

ALARM
STATUS

NO PAPER

TOP OF
FORM

TRACTOR
INDEX

This indicator illuminates when the printer yoke is not
fully seated in the closed position. The printer yoke
is located in· front of the print drum.

Backlighted red square indicator.
This indicator illtmlinates when the printer fails to
become ready after depressing the ON pushbutton. It
provides an indication of some error.

:Backlighted red square indicator.
This indicator illtnninates when less than 30 lines of
paper supply remain. On-line printing, one line at a
time for each depression of the START pushbutton, is -
permitted while the low paper condition exists, until
the paper supply is exhausted.

Backlighted yellow square pushbutton.
Depress this pushbutton to slew the paper form to the
top-form (ie. the first print line position of the
next form).

Backlighted yellow square pushbutton.
Depress this pushbutton to align the paper feed trac­
tors with the vertical format unit. Once this is
complete, the vertical format tape loop may be installed.

-90-

TEST PRINT Backlighted red square pushbutton.
Depress this pushbutton to initiate repeated print­
out of a test character. Operation is halted by
depressing the STOP pushbutton. This is a maintenance
operation. The TEST PRINT button is inoperative in
the on-line mode. The START and TOP OF FORM buttons
are inoperative in the TEST PRINT mode of operation.

START Backlighted green square pushbutton.
Depress this pushbutton to switch the printer:on~
line.and cause the printer's buffer memory to be
cleared to SPACEes.

STOP Backlighted red square pushbutton.
Depress this pushbutton to stop printer operation.
a) If the printer is on-line, it is .switched off­

line. If the printer is in operation or has
received at least one code in its buffer, the
switching is automatically delayed until com­
pletion of the printing and slewing action;
however, if the print connnand code is not
received within 300 MS, a print command is
forced.

b) If the printer is off-line and operating in
the TEST PRINT mode, depress STOP to terminate
the TEST PRINT operationa

START

TEST
PRINT

TOP OF
FORM

NO
PAPER

YOKE
OPEN

STOP

TRACTOR
INDEX

PAPER LOW
ALERT

ALARM
STATUS

I

GG
Figure 30 - OPERATORS CONTROL, PANEL

-91-

1.7.3.2 Output Formatting Information

The printer buffer memory consists of 122 6~bit character code
positions. The nomina~ print line length is 120 character
graphics.

Each code position in the buffer initialized to a SPACE
(208) code following a print action or by depressing the START
pusnbutton on the printer's operators panel.

The central processor transmits 7-bit GE/PAC codes to the printer
controller via the peripheral buffer at a rate synchronized by
the printer's device ready signalo ·The controller assembles the
lower 6-bits of these codes (008 through 778) in order of receipt
into the buffer from left to righto The leftmost code position
(the line space code) is loaded firsto The receipt of any code
between 1008 and 177

8
terminates the transmispion of further

characterso The lower six bits of this print command code is
OR'ed with 208 and the result loaded into the next code position
of the buffero The code should normally be a carriage return
(1008) to cause a SPACE code to be loaded into the buffero The
remaining code positions are already SPACEes; the print action
follows;.

The print line image in programmable memory may vary in length
from 2 to 122 code positionso If the desired line of output
consists of less than 120 characters, it is not necessary to
pad the line image with SPACEeso

The first code position of the line image must contain a non­
printing line space code. Paper advances after printing and
the numbe~ of lines skipped after printing is specified by the
line· space code and the 8-channel tape loop·-·in the vertical format
unit (VFU) on the printer chassiso The line space code specifies
which channel of the VFU tape loop will control the paper slewingo
Single line spacing requires 12ms to completeo Slewing of paper
occurs at the rate of 18 inches per Secondo The maximum slewing
distance is from top-form to top-forrno

The line space codes and the corresponding slewing actions follow:

Line Space Code Slew Action Following Printing

Slew to top form
Single space

j
Slew to form position
specified by channel k
of VFU t~pe (k = line. space
code + 1) o

No paper advance

-92-

The vertical format tape is an endless loop of one inch wide
tape and is used for format control. The tape may be paper or
mylar, etc. Eight channels on the tape provide a Top-of-form
position and seven other form-positions ••

The length of the VFU tape must be an integral multiple of the
length of the form, and must be between 11 and 22 inches longo
The VFU tape has punch positions spaced six per inch to match
the line spacing on the formo A hole in a punch position of a
given channel defines a form position for that channel. For
example, channel 2 has holes ~orresponding to every line of
the form.

The line space code is followed in the line image by 0 to 120
character codeso The legal printing characters are the graphics
corresponding to th~ codes between 008 and 77 8 listed in Figure 26.

The line image is terminated by the print command code described
above.

Character seqeunces are printed left justified unless preceded by
SPACE characters in the line imageo It is possible to print
different fields of the same line with separate print commands if
the line space code is a 77 8 for each field except the final fieldo-

1.7.3.3 Operation

Programmed operation of the GE/PAC 4262 line printer is via the
peripheral buffer (see para. 1.8.1) using either the GEN 2
instructions ACT, JNR, JNE, and ¢U~ or the ¢DL instruction (see
par a • L 4 • 3) o

-The printer's device ready signal is set when the printer's con­
troller is not busy and is able to accept another character code.
The signal is reset by each ¢UT (¢DL) and remains reset during the
30 to_ 60 ,us while the controller is loading a code' into the printer's
buffer and during the 194 ms of the mechanical print action.
Receipt of the print command code will inhibit further loading of the
buffer until the_ print action is complete.

For the printer to operatre at its nominal rated speed, the entire
line image must be transferred to the printer's buffer within~
12 ms following the completion of the previous mechanical print
action. If the buffer loading time exceeds 12 ms, the printer
speed is calculated as follows:

60000 - lines per minute
182 T

T is the loading time in milliseconds •

... 93_

If ~he printer's device ready signal remains reset for more
than 4 to 8 seconds, its deadman error indicator is set. The
indicator can be tested by ·a JNE instruction with E = 2

8
or

E = 3g (see para. 1.7.lol).

A deadman error may be due to one or more of the following
faults:

1. Printer off line
2. Paper supply is low
3. Broken paper
4. Open yoke
5. Printer or Computer Power failure
6. Blown fuses
7. Printer-to-Computer cable not plugged in

1.7.3.4 Special Programming Considerations

lg During the loading of the printer buffer, the printer's
device ready signal cycles at an extremely.rapid rate. It
is reset by the ¢UT (¢DL) instruction and set within the next _, ,
50 microseconds. This means that the central processor can
give an ¢UT (¢DL) to the printer at 76-microsecond intervals.

Momentary loading on the GE/PAC 4060 central processor, during
the 9 ms period that the buffer is being loaded from an ¢DL
list, is as high as 32%. Average loading over a complete print
cycle is 1. 5%.

2. If a program erroneously outputs more than 122 codes to the
printer, the 123rd and subsequent codes are lost. The printer
conti~ues to accept and discard these codes until a print
command is receiv~d. The 120 codes in the print positions of
the buf fe~ are printed.

-94-

-1.7.4.1

INPUT/OUTPUT TYPER - GE/PAC ·Lr.270B

The I/O typer, used with the peripheral buffer, can be programmed
to provide an intercommunication interface between an operator
and the computer. The I/O typer has three mutually exclusive
modes of usage:

1. Standard Typer

The ~yper, when manually switched off-line, is electrically
disconnected from the computer~· It can be used manually as
a standard fixed carriage typer~ When the typer is in this
MANUAL mode, it is unavailable to the computer.

2. On-Line Output Typer
i

The typer, when manually switched on-line to the AUTO
mode, can be program operated as a fixed carriage output
typer. Operation is identical to the GE/PAC 4221B output
typer. A pushbutton allows the operator to signal the
program when he wishes to use the typer as an input deviceo
The remainder of the keyboard is inoperative in thismodeo

3. On-Line Input Keyboard

-The-- typer, when manually switched on-line to ~he AUTO
mode, can be program operated as an input keyboard to
allow an operator to type data into th~ computer's
arithmetic unit, one character at a time. Suitable hard­
ware and program interlocks are provided to make it im­
possible to lose input data. A typed record of the data
-input is gerieratedo

Physical Description

The I/O tY,Per. consists of ·a· standard fixed·.:..carriage, IBM Selectric
typer equipped with the following manual controls:

1. A two position power-on/power~off switch marked ON and OFF.
This switch controls AC power to the typer's motor; it does
not control DC logic power to the typer:s controlso

2. A backlighted double acting (push-push) pushbutton marked
AUTO. It is illuminated when in the on-line mode. When
the switch is not illuminated, the I/O typer is in the
manual mode (off-line), the DC pow.er from the computer is
turned off, or the lamp within the switch is burned out..

3o A backlighted single acting INPUT pushbutton. It
can be illuminated in the on-line mode by the
program control to indicate to an operator that the
keyboard is unlocked and that the·program is waiting
for the operator to type on the input keyboardo

4. A single acting pushbutton marked CNTRLo If de­
pressed during the time an input character is typed,
a binary "l" is generated in the most significant
data position of the typer's 8-bit data registero
The character's code is generated in the lower 6 data
bits of the data registero Odd parity is normally.
generated in the 8th bit of the data register.

Figure 31 illustrates the 1/0 typer keyboard which dis­
plays the layout of the foregoing controls with the
character keys.

1.7.4.2 Operation

Operation of the 1/0 typer requires two power sourceso

An AC source powers the typer's mechanical operation
. (i.e .. , its motor) o This source is manually switchable
by the ON/OFF. toggle switch on the typer.. The AC power
should remain on at all times.. If the AC power is off,
an attempt by the computer to output a character (¢UT)
locks the typer's keyboard (if unlocked) and starts the
typer's deadman timer ~iming; it performs no other action.
The: .. typer is unable to perform its type action and an
eventual deadman error resultso If the AC power is off
and an input action is attempted (IN), the keyboard un­
locks and meaningless data transfers into the arithmetic
unit; no error indication is given.

The second power source is DC from the computer central
processoro

1.7.4.3 Operation as off-line Typer:

Operation of the typer in the off-line mode requires the
following switch positions:

1. The OFF/ON toggle switch must be in the ON position.

2. The baeklighted AUTO pushbutton should not be
illuminated. If it is illuminated, depress the
button to set the manual mode, turn the light off
and unlock the keyboardo If the pushbutton is not
lighted, the operator should press the switch twice
to cycle it to Auto and back to Manual; the pushbutton
is illuminated and then extinguishedo

I
\0,
I

'\'.:.:

~ TAB~ GJ GJ GJ) GJ ~ 5J ~ [J~ [i]"QJ ~~
[] GJ GJ [] GJ [] GJ 1TI GJ [J GJ ~

~ [J GJ GJ [J [] ~ GJ GJ GJ [iJ w ~ l~FF,:
SET ~ [] ~ GJ [J GJ [J Q [J LJ D I SHIFT I '

I SPACE I

,, /
'

Figure 31 - MODEL 42 70 INPur KEYBOARD

A false Manual indication, resulting from
a burned-out lamp, is detected by pressing
the switch twice.

In the Manual mode, the typer is a standard Selectric
typer; all switches and keys except the INPUT and CNTRL
pushbuttons are operativeo

Any attempt by the program to output (0UT) or input (IN)
to this typer in the Manual mode is ignored; the typer's
Deadrnan Error Flip-Flop is set.

1.7.4.4 Op~ration as an on-line Device:

Operation of the typer in the on-line mode requires
the following switch positions:

1. The ON/OFF toggle switch must be in the ON
position~

2. The backlighted AUTO pushbutton should be
illuminatedo If the pushbutton is not illuminated
depress the button to set.the AUTO mode, turn the
light on, automatically lock the keyboard, and
clear the typer's data register. If pushing the
button does not turn the lamp on, the lamp should
be replacedo

In the on-line mode, bnly the ON/OFF switch, the
AUTO pushbutton, and the INPUT pushbutton are
normally operativeo

1.7.4.5 Operation as an on-line Output Typer:

Program operation is identical to that of the GE/PAC
4221B output typero Hardware operation differs in
two ways:

1. Each ¢UT instruction locks the keyboard (if
unlocked)o

The code corresponding to the character graphic
actually printed is recordeJlin the typer's
data register. Therefor~, if an IN instruction
follows an ¢UT instruction, the program can
perform a program echo check. An echo check
determines if the character actually printed is
the same as the character that was transmitted to
the output buffer for printing. The check is
accomplished by reading this code (IN) and compar-
ing it to the code transmitted (¢UT) to the N-Register.

llThe control characters.PRINT-RED and PRINT-BLACK are the only
exceptions. The data register is unchanged when these characters
are typed~

The last character typed must be a lower case
character to allow normal operation' of the typer in
the off-line m6deo

Since the INPUT pushbutton is operative in the on-line out­
put mode, the operator may signal the program desired to use
the I/O typer as an input deviceo Pushing the INPUT push­
button simulates the ACT instruction (see paragraph 107.lol),
cycling the Typer' s Deyite: Ready s'ignal';: and sets the I/O
typer's Input Demand Flip-Flop. Pushing the INPUT button
does not change the I/O typer's mode of operation. It
remains in the output-only mode until the program gives an
IN instruction.

1.7.4.6 Operation as an on-line Input Keyboard:

The program controlling the on-line operation of the I/O
typer is responsible for detecting any cycling of the typer's
device ready signal (via JNR ~nstruction or program interrupt),
interrogating its Input Demand Flip-flop, and deducing the
cause for the cycling (See Table 1). The Input Demand Flip­
Flop is interrogated by a JNE DEVICE /10 instruction (see
paragraph 1.8.1.1). The instruction reset the Flip-Flop
following interrogation .

. When the I/O typer ~s used as an input keyboard, the following
operating procedures _apply:

1. ~epress the INPUT pushbutton.

2o The program senses the resulting cycling of the typer's
device ready signal. The program interrogates the typer's
Input Demand Flip-Flop at its discretion, and gives an
IN command to permit the operator to use the 1nput key­
boardo The IN instruction transfers the previous mean­
ingless contents of the typer's data register into the
arithmetic unit and unlocks the typer's keyboard; it
disables the INPUT pushbutton, enables the CNTRL pushbutton,
and turns on the INPUT lamp. The typer's deadman timer does
!!.2.!. begin timing (see paragraph 1. 7 .1)_.

3. The operator may then use the input keyboard to type a
character's code (plus odd parity) into the typer's eight-~
bit data register. There are 128 input characters, 64
correspond to the GE/PAC character set and 64 correspond
to the joint usage of the CNTRL pushbutton and the typer's
keyboard (see Figure 31).

-99-

\ ~-

Table 1 - ON-LINE STATUS' OF I/O TYPER

I/O typer's Control Switch Status Possible causes for a

program ~tatus Before/ After Input Input Input cycling of I/O Typer's
Cycling Keyboard Button Lamp Demand Device Rea~y Signal

Flip-Flop

--

Idle Before locked enabled off reset or set ACT instruction
'

After locked enabled off unchanged

I Before locked enabled off reset 1) INPUT pushbutton pressed;
After locked enabled off set 2) AlSo possibly an ACT instr.')

-
In use as an output Before locked enabled off reset or set 1) Typing of the last charac-
device ter is completed,

After locked enabled unchanged 2) 'Also possibly an ACT instr.')

Before locked enabled off reset 1) Typing of last character is
completed and INPUT push-

After locked enabled off set button pressed;
2) Also possibly an ACT instr. *

In use as an input Before locked enabled off reset or set ACT instruction
device After locked enabled off unchanged

Before

I
locked enabled off reset ! 1) INPUT pushbutton pressed,

After locked enabled off set 2) Also possibly an ACT instr.'~
---· - -

Before unl:o-cked di-~~bled on reset or set ACT instruction
After I unlocked dtsao1e·d on unchanged

__ t'_ .. __ ~~----~ ---
Before I :un10.c.ked disabled, ori reset 1) Operator typed a character

-
•' After locked enabled off set into the typersrdata registe

(I I I 2) Also possibly an ACT instr.*
, - ·1

I

r

--·--_.. >

*The ACT instruction possibly. occurred in action to2the first action.

Initiation of the type action (depressing any key on the
typer) resets the typer's device ready signal and starts
its deadman timer timingo Successful completion of the
type action (the printing of the character's graphic)
generates the character's code in the typer's data
register and performs the following actions:

lo Sets Input Demand Flip-Flop
2o Locks keyboard
3o Enables INPUT Button
4o Disable CNTRL Button
5. Extinguishes INPUT lamp
6. Sets device ready signal
7. Disables_ deadman timer

4o The program must sense the cycling of the typer's device
ready signal. Action is the same as 2 above, e~cept that
the data input is meaningfulo

5. The program must alternately effect steps 3 and Li- above,
to ~nput a s~quence of characterso It then interprets
the sequence as prescribed by the specific program's
console operation specifications and performs the pre­
scribed action.

1.7.4.7 Special Programming Considerations

1. The program has direct access to the ty~r's device ready
signal if each peripheral has its own device ready inter;.
rupt. If a system uses one of the other peripheral buffer
options {JNR signal, one interrupt, two interrupts, three
interrupts) the program must deduce which of. ·several
device ready signals actually cycledo For every input
demand or an input keyboard action, however, the appropri-
ate device's Input Demand Flip-Flop is set.

2. In paragraph 107.5.1, the I/O typer is described as cap­
able of three mutually exclusive modes of operation. Al­
though this is true in the strict sense, a properly de­
signed program can alternately operate the typer in the
on-line mode as an input keyboard and an output typer.
This gives (in the human frame of reference) the impression
of the instantaneous man-to-program intercomrnunicationo

· 3. The space character typed in the output mode has the uniqu~
graphic blank corresponding to the code 208 • The space
character generated from the input keyboard is not unique.
Depressing the space bar prints the graphic blank and
generates the code 208 .- Depressing the key prints the gra­
;phl:c .-6· and generates the code 20g.

4o Pushing the ~ key when the CNTRL pushbu~ton is depressed
generates 1208 with correct odd parityo Pushing the Space
Bar when CNTRL is depressed generates 1208 with incorrect
even parityo

5. The INPUT pushbutton should always be depressed momentarilyo
Continuing to depress the pushbutton longer than 4 to 8
seconds forces a deadman error; however, the error is
automatically cleared when the pushbutton is released.

-102-

108 GE/PAC CONSOLE

The GE/PAC programmer's console is an integral part of the central
processoro This console is one means for the programmer and main-

- tenance man to communicate with the computer in actual machine
languageo Plant operating personnel are not required to, nor
expected to, know how to use the programmer's console in process
control applications. Once the programming has been completed,
little use will be made of the programmer's console except for
the displaying various registers for maintenance p~rsonnel.

The underlying philosophy toward the use of consoles in the GE/PAC
system is that each module of the system may have its associated
console. More specifically, the arithmetic unit has a program­
~ing console which contains displays and. functions only related
to the arithmetic unito System displays and functions are in­
cluded on a separate Jystem console.

108.l CONSOLE DESCRIPTION (4040)

Twenty-four lights and console switches are used to display and
enter data or commands into the computer. These lights and
switches are divided into groups of three to represent eight octal
digits for programming convenience. Two modes of operation are
possible: automati-c- and manual. - -The MAN/AUTO/OFF CO~SOLE- switch
controls the mode. It is located in the lower center portion of
the consoleo During automatic operation, the 9onsole switches
can be read into the A-Register only by the programmed instruction
Read Console Switches (RCS) 250500008• If a console switch is
down, a "l" is set in that bit position in the A-Register; if up,
the contents of A are not changed. The console switches are
sometimes referred to as break-point switches during automatic
operation. The break-point refers to a decision that can be
made as the result of a switch or switches being set (down). On­
line routines which use the console switches are normally called
by the DEMAND Button. This sets the Demand Flip-Flop (DEMF)o
The programmed instruction Jump If No Demand (JND) 2504000~g-~is
interrogated periodically to determine if the switches should be
read and decipheredo

-1'.'0_3-

--------~---·-""·~-------------~-------------

0
Cl..&A1'l.

To J~

c~~ A
·----I >--· . p -, 0

~~~-- ~~~ ~~~J~~~ 0 00~ 0 0 0 ~ ~ 0 . 0 ~ 0 
0 0 0 0 0 0 0 000 000 

• .....1 -
lo' 

COlllSOLE-A 

0 

~1r @ 
So9.VE I? 

0 0 

.QTl!P 

0 0 0 0 

Figure 32 - GE/PAC CONSOLE AUl (Model 4040) 

In the automatic. mode, all console switch~s and buttons except the 
following are disabled: 

a.. Clear Alarm 
b, Power Off 
c., Demand 
d~ Save P 
e, Save I 
f. Program Switches 
g. Register Select Switch 

The CONSOI.E OYP. po~ition allows the console to be disabled when in 
the 8utom~tic (running) mode of operation, A~removable· key is 
provided to lockout the console in the automatic mode. 

Manual operation of the console enables all con~ole switches and 
buttons. M~nual op~:ir~tion normally involve• changes ta the 
instruction regi~te:r and memory locations.,, Paragraph L 8. 2 explains 
this step-by-step procedure. 



1.8.2 REGISTER DISPLAYS 

The selector switch in the lower left corner of the console allows 
the following registers to be displayed: 

Selector Switch 
Position 

Bit Position 
Within Display 

~~~~~~~~~~~+-

A • Accumulator 23 - 0

B - Buffer 23 - 0

I - Instruction

Registers
(Information Displa ed) -----l

Accumulator Register {Data)

B - Register (Next sequential
instruction as it appears in
memory) ; __ _
Instruction Register (Instruc­
tion last executed)
Operation Code
X Word Indicator
Relative Addressing Indicator

1--~~~~~~~~~~..,J.---~~~~~~+-E_f_f_e_c_t_i_v_e--"Operand Address_

Flip-Flops

P - REGISTER

J - J Counter

Status Flip-Flops
Demand Flip-Flop
Overflow Flip-Flop
Permit Automatic Interrupt

Flip-Flop
Test Flip-Flop
Peripheral Ready Flip-~-~_?P,,___--1
Program Counter

(Program Control Address)
-

s
1

Control Sequence State
s2 Control Sequence State
s3 Control Sequence State
c1 Control Sequence State
c2 Control Sequence State
C3 Control Sequence State
J Counter

AUX - Auxiliary SwitcH Optional Displays ..._ _________ _J __ . ______ ._ ______________________ _

ALARM LIGHTS
.

The following alarm lights are displayed on the console:

a. · Core Pa,rity
b. Peripheral Error (PB ALARM)
c •. Core Temperature
d. Cabinet Temperature
e.. Stall Alarm
f. Computer Ready

-105-

1. 8. 3 CONSOLE DESCRIPTION (4050 and l~060)

Data is displayed and entered into the computer via twenty-four lights
and switches located on the front of the computer cabinet. These
lights and switches are divided into groups of three to represent eight
octal digits for programming convenienceo Two modes of operation are
possible: automatic and manual. The MAN/AUTO/CONSOLE OFF switch
controls the mode. During automatic operation, the console switches
can be read into the A-Register only by the programmed 'instruction Read
Console Switches (RCS). On-line routines which use the console switches
are normally called by the DEMAND button. · This sets the Demand Flip­
Flop (DEMF). The programmed instruction Jump If No Demand (JND) is
.periodically interrogated to determine when the console switches should
be read and deciphered.

OFF ON crn,:IT/I'2::R CA~ CORE MEW
f' C :DRUM MAIN EXTStroEl> CLEAR PROGRAM DEMAND TEMP TEMP STAll .. FE'~iCE Pb

0 0 0 ~ ~ ~ ~ ~ ~ ~ ~ ~ 0 0 0
INITIALIZEREADY ALARM---1 ~PARITY--f LOAD

l>MD OVFL PAI TEST 1-------- PROGRAM LOCATION REGISTER--------1~

0 ~ ~ 0 0 ODO 000 ODO 000 ODO
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

~ INSTRUCTION REGISTER -------------1.J

0 0 0 0 0 0 0 0 0 0
2j_ 2 2 21 l 20 1_2_ 18 J i...I lb 12 l 14 J

o o o o o o o o o o o o o a o o
A B 13 12 ll 10 _9_ 8 :I_ 6 _5_ 4 3 2. 1 0

• S S S S 5 PEf!rPfl SELECTED REGISTER -1

~ ~ Q ~ 0 '2 Q 3 0 4 f 5 0 601 ~ s 0 9 010 Q 11 012 Q l~ ~4015016 0 17 ~ 18~19 Q ~oJO 21Q22 Q ~
2.: 22 2L 20 19 18 17 J6 15 J.4 13 12 11 10 9 8 7 6 5 4 3 2 1 0

000 000 000 000 000 000 000 000

SAVE I SAVE p API FENC:~ MAN~AuroCONG~~/
I/O o,_ l.

@ @ © © ~
LOCKOUT LOC:K\} :1:~

STEP

0
CONSOLE-B CONSOLE-A

0 0

Figure z·1 - GE/PAC CONSOLE (AU2 Model 4050/4060)

lo8.4 REGISTER DISPLAYS

The selector switch in the lower left corner of the console allows
the following registers to be displayed:

Selector Switch
Position

A

Q

B

H

J

AUXl
AUX2

ALARM LIGHTS

Bit Position
Within Display

23 - 0

23 - 0

23 - 0

14 - 0

4 - 0
23
22
21
20
19

20
19
18

17
~

15 - 0

Register
(Information Displayed)

Accumulator Register (Data)

Auxiliary Accumulator Registe
(Combine data with A-Register
to for double-length precisio

Bu-ffer Register between the A
and memoryo (Next sequential
instruction as it appears in
memory)

Special purpose register for
maintenance use onlyo

J Counter
s1 Control Sequence
82 Control Sequence
S3 Control Sequence
84 Control Sequence

.SS Control Sequence

Demand Flip-Flop
Overflow Flip-Flop

State
State
State
State
State

Permit Automatic Interrupt
Flip-Flop

Test Flip-Flop

P - Register (permanently
displayed)

Optional Display
Optional Display

The following alarm lights are displayed on the console:

So

b.
Co

do
eo

. f.
&o
h.,
i.
j.

Cabinet temperature
Core temperature
Stall alarm
Memory Fence Alarm
Peripheral Buffer Alarm
Peripheral Controller Parity
Drum Parity
Main Core Parity
Ext.ended Memo,ry Parity
Computer Ready

-108-

j

· l

CENERAL ELECTRIC PROCESS AUTOMATION COMPUTER

@ General Electric Company, 1965

November 1965 revised

Library-Control No. YPG12M

This manual published by:

PROGRAMMING SUPPORT
GENERAL ELECTRIC COMPANY
PROCESS COMPUTER BUSINESS SECTION
P. O. BOX 2918
PHOENIX, ARIZONA - 85002

L

For further information concerning the contents of this manual, ·
contact the Programming Library at the above address.

GE ERAL ELECTRIC
PROCESS COn\!U~UTERS

I = GE/PAC 4000 PROCESS ASSEMBLER LANGUAGE
;u.brary_Control No. YPG12M

REVISION CONTROL SHEET

~v 0 I
-~ --= r:=:: -· -- ;

RECORD OF CHANGE DATE I R~V 0 [F'Hl -..... !!CORD f2F CHANGE DATE --r---
I 1 · para 1.1 6/25/65

' -1 r-·

Page 13; para 2.6 ~

16~ J2ara 2.8.l~ ste~ 3
I

Pa_ge

Pa_ge 17; para 2.8 .. 1, example ~ I

I Page 26 i Flag 0 and I -r-t- I
I --i ~
I Append· ces E and F new I 'J

-='--t-/L-·t,/--{~:1_~_,i_z __ ~_vr_-_---ll-~-1:_1-.:_s~1_-6s.~11 _J------=----~---
JPag:.. 7; CON D and CON F I _: _J ~::

~
Page 12; para 2.5 .. 1

Page 13; para 2.5.3

Page 20; para 2.12.1

Page 21; para 2*12.2
I

IP.a

r

I • ;

:: TABLE OF CONTENTS--r--
--- --- --------------··-----

' t

1.1

1.1
1.2
1.3
1.4

:2, ' '

•

2.1
2.2
2.3
2.4
2.5
2.6
2.7
2.8
2.9
2.10
2. 11
2.12

,'3 t
•'

3.1
3.2
3.3
3.4

']

INTRODUCTION!'
- ---- - - -- - - - _.,._T____ - ---

STATEMENT FORMAT"
LOCATION FIELD
OP CODE FIELD
OPERAND FIELD
IDENTIFICATION FIELD

PSEUDO OPERA TI01'TS
ORG - ORIGIN
BSS - BLOCK STORAGE RESERVATION
DCW - DRUM CONTROL WORD
CON - CONSTANT
DCN - DOUBLE WORD CONSTANT
GEN - GENERATE DUPLICATES
EQL - ASSIGN A SYMBOLIC EQUIVALENCE
DEF - DEFINE A NEW OPERATION
SLW - SLEW PRINTER PAGE
END - END OF PROGRAM
MONITOR PSEUDO-OPS
LOADER PSEUDO-OPS

- ~ - - --- - --

PROCESSING & OUTPUT 1

ABSOLUTE & RELATIVE VALUES
COMMON SYMBOLS
ASSEMBLER VARIATIONS
OUTPUT

APPENDIX A - CHARACTER CODE TRANSLATION
- . --- ,,_

APPENDIX B; - ERROR FLAGS

APPENDIX C]. - ASSEMBLER VARIATIONS
- - - ~

APPENDIX D· - MACHINE OPERATIONS

APPENDIX E 1 - BINARY CARD FORMAT - _,,.

'APPENDIX FI - OCTAL LOAD TAPE FORMAT

1

1
1
1
5

7

8
8
8
9

11
13
14
14
20
20
20
20

23

23
24
24
24

25

26

27

28

31

33

INTRODUCTION (

This manual defines the standard Process Assembler
Language for the GE/PAC 4000 Process Computer Sys-·
tern. This manual is' intended for the experienced
programmer.

Translator programs are available for a variety of
hardware configurations. The language may be re­
stricted for some translators. The Library Write­
Ups for each translator state if the complete
language can be translated. The language definition
i~cludes:

- coding form description and usage

- pseudo operation definitions

hardware operations

- processing method and output

The hardware operations are listed in Appendix D.
Detailed definitions of their characteristics are
presented in the GE/PAC 4000 Instruction Reference
Manual. ·

!.

INTRODUCTION!

This manual defines the standard Process Assembler
Language for the GE/PAC 4000 Process Computer Sys-·
tern. This manual is' intended for the experienced
programmer.

Translator programs are available for a variety of
hardware configurations. The language may be re­
stricted for some translators. The Library Write­
Ups for each translator state if the complete
language can be translated. The language definition
includes:

- coding form description and usage

- pseudo operation definitions

hardware operations

- processing method and output

The hardware operations are listed in Appendix D.
Detailed definitions of their characteristics are
presented in the GE/PAC 4000 Instruction Reference
Manual. ·

I

il.f .STATEMENT FORMAT:

Assembly program input information is written on the "Process Lan­
guage· Statement Coding Form" (Figure 1). Each line on the coding
form represents one instruction to the assembler. The coding form
is comprised of four Fields defined in the ensuing paragraphs.

1.1 LOCATION FIELD - Columns 1 thru 6

The Location Field is used to identify the location of an instruc­
tion. A name written in this field becomes associated with the in­
struction written on the same line. Any reference to the instruc­
tion may be made by that name. Names used in the Location Field
must consist of six or fewer alphanumeric characters; the first of

* which must be alphabetic and start in column one. A decimal point
is considered as an alphabetic character in this context.

1.2 OP CODE FIELD - Columns 8 thru 10

The Op Code Field contains a two or three character operation code
which identifies the operation to be executed. The legal operations
include the pseudo operations described in Section Two and the
Assembler Instructions outlined in Appendix D.

1.3 OPERAND FIELD - Columns 12 thru 68

The Operand Field may contain a combination of parameters. When
merged, the parameters define the operand or operands required by
the operation code. Each operand is formed by parameter groups.
The following four basic parameter types are permitted in this field.

Symbolic - A name or label composed of six or fewer
alphanumeric characters; the first of which
must be alphabetic. Any such symbolic para­
meter corresponds to a name written in the
Location Field of some instruction.

Decimal - A decimal integer value.
Octal - An octal integer value, preceded by a slash(/).
Relativ~ - An asterisk (*) which acquires the value as-

* - Revised 6/65

sociated with the memory location of its own
instruction.

1-Refers to Present Location.

-1-

A single operand value may be composed of one or a combination
of the four parameter types li~ted on page one. These parameters
are combined by using the following operators:

+ add
- subtract
ic multiply
I divide

Examples of the four parameter. types follow:

S T A T E M E N T

11 12 13 14 15 16 .17 18 19 20 21 22 23 24 25 26 27 28 29 30' 31 32:33

SYMBOLIC

DECIMAL

OCTAL

RELATIVE <

LABEL
TEMP'I
PT02,2;
SYMB

1
L

--- ------ - - -- - - -- ------- ~--~------~--

Examples of parameter combinations which form a s_i~g~e ____ o~e_ra~d _ 8:~~-__ i_l~-~~--::. ·-·-· ____ _
\.,. ____ -· --------- - 't£ated beTow-:--~ · -

Single operand as a combination
of a symbolic and a decimal or

octal.

S T A T E M

1112:13141516,17:18:19:20
1

21 22 123124 25'26121'2~":

:L A!B:Eil~+A:2!_ ;
.)L:A'BE!L-14.2:

'y >V?M~Ao ..,.W i ~·~ ~~ ; ~·-!. ~

-.· \UA;B EL!+ /2:2
·.· ~.f u A.: a·: E ;c ~--112: 2·

Combinations with *

Multiplication & division

All four types combined

S T A T E M E
l ! ; i j l , ' ~

11 12:13 14 15 16,17 1a:19'20'2122123:24,2526 2i2a 29~

*+:4;2i i

*,_:4'2l
'/(+:1:2·2:
*1 ~1/2r2~-

.·T·E,M
1

P: I ,*12i
··T E1M p: I:* L,A·B EL ,i.

TEM·P'l */42
TEMPl/4
TiMP· I / L,A B,E,il:

~I 'l~+'LABEL+2-/77

:

The parameters in the preceding examples are combined strictly from left
to right. The meaning of asterisk or slash depends upon its relationship
to the remaining parameters.

For example, asterisk represents relative addressing if it is the
first character of a parameter. In all other cases, it is a
multiplication sign. The slash indicates an octal parameter when
it is the first character of a parameter; otherwise it is the
division sign.

Most assembly language statements in any program involve only simple oper­
and combinations. Rarely will the multiplication or division capabilities
be utilized. It is important to understand that the combinations of para­
meters in the statement field, -simple or complex, involve the values of the
symbols; not the contents of the locations referenced.

The rules for combining parameters to form a single operand value. are --· -----·-----·----­
presented on page three. However, many computer instructions require
more than one operand value. Most memory addressing instructions, -- --, - .. ~-
for example, may have two operands; one to specify the memory ad-
dress and a second to specify an index modification word. Multiple ,
operands are desirable in many other occasions. When several operands~-- _J

are required, the comma (,) is used to separate operand values.

-4-

Examples of two-operand instructions are presented in the follow­
ing:

TYPE S T A T E M E N T
1 a: 9 :10 11 12'13 '14 15 16 11 '1s 19:20, 21 22'23 24,25,26;27 2s 29 30·31,32

I !

L A's EL.+:2;, .X: I
' '"'' .'. • •• 1 ' •

. * 1+1v!A:L:U.E '21
.TE M·P. 1:x" I 1+

1

2!
~ ~ :y ~y ~, i ~~' !

The first blank character in the Statement Field terminates the
construction of the operand. Characters appearing after the first

.blank column are treated as comments.

1.4 IDENTIFICATION FIELD - Columns 70 thru 80

The last eleven columns are reserved for the complete and unique
identification of each line of coding. Column seventy is used to
indicate the language used. The remainder of this field is al­
located for identification of the project and program number, and
the sequence within each program.

This field is essential for proper maintenance of the symbolic in­
formation. It is used by other programs which process symbolic
records to produce additions, deletions, and corrections.

-5-

*

.2.: ;PSEUDO OPERATIONS,
' - --- -- - -- --- _ __J

The pseudo operations are written on the coding form in the
Op Code Field. They direct the assembler in storage assignments,
symbol definitions, and generation of constants. All labels
appearing in the Operand Field of pseudo operations must be pre­
defined (i.e., they must be common symbols or they must have
appeared in the Location Field of a statement preceding this
statement). A summary follows:

7 8 9 10 11 12 13

0RG Core Starting Address

B S·S Block Storage Reservation

oc'w '• Drum Loader Control Word
-- -- --

1
C'0N O''

Single Word Fixed Decimal Constant
---- --~-

C.0N F'', Single Word Floating Decimal Constant

c·0·N A, Variable Length Alpha-Numeric Constant

C{6N 0 'I
Single Word Octal Constant

C0N G ' Single Word General Constant

DCM 0 , Double Word Decimal Constant

DCN F ' Double Word Floating Constant

DCN 0'
Double Word Octal Constant

,,

GEN Generate Duplicates

E_Q L '.
I Symbolic Equivalence ---

D,E F I Define A New Operation

SL:W Slew Printer Page

END End Of Program

In addition, the following conventions and special pseudo
operations are available:

a. An asterisk in column one identifies the entire line
as a comment which will appear on the output assembly
listing.

b. An asterisk in column seven of a statement indentifies
the Location Field name as a common, absolute symbol.
(refer to page 23)

c. A dash in column seven of the statement identifies the
Location Field name as absolute (but. not Common).
(refer to page24)

d. Special pseudo operations for use with }j:ONITOR (refer
to Monitor manual).

e. Special pseudo operations for use with FORTRAN (refer
to para. 2.12).

* - Revised 11/65 -7-

2.1 ORG - ORIGIN/CORE STARTING ADDRESS

ORG specifies the core starting address of the program. , The
address must be written in the Operand Field with the following
restriction. Any symbolic that is used must be defined previously
from a common symbol tape or by appearing in the Location Field
of an earlier instruction. Note the following:

1. The ORG command produces control information for
the loader.

2. The origin value initializes the location counter
that appears on the output listing.

3. An asterisk in column seven informs the loader not
to relocate instructions following ORG, even when
instructed to relocate at load time. This inhibition
is maintained until the next ORG or DCW statement is
attained.

The Location Field is not used with the ORG pseudo-op.

Because of the relative addressing characteristics of the GE/PAC
computer, instructions are assembled in the relative rather than.
the absolute form. They may be relocated at will during loading.
Therefore, the ORG command is often unnecessary and is infrequently
used.

2.2 BSS - BLOCK STORAGE RESERVATION

BSS is used to reserve o:+ skip a block of memory. The size
of the block is designated in the Operand Field. Any symbolic
that is used must be defined previously from a common symbol
type or by appearing in the Location Field of an earlier instruction.

A symbol written in the Location Field is entered into the
assembler's table of symbolic equivalences. It is entered with the
location value corresponding to the first location of the reserved
block. This pseudo operation also generates control information
for use by the loader.

2.3 DCW - DRUM CONTROL WORD

DCW is primarily used to specify the starting drum location for
direct loading onto drum. Any symbolic that is used must be defined
previously from a common symbol tape or by appearing in the Location
Field of an earlier instruction. Two operand ~alues may be used; the
first designates the drum starting address. ~he second specifies a
core starting address, equivalent to that requir_e_d_i_n ORG. The--We.a.tio~­

Field is not used with the DCW pseudo-op. Note. the following:

-8-

2.4

2.4.1

CON

1. DCW produces control information to be used by
the loader. This information denotes a drum load.

2. The optional second operand is used to initialize
the assembler location counter as with ORG. If a
drum load is required, a separate ORG cannot be
used because it generates core load control
information.

3. An asterisk in column seven informs the loader
not to relocate instructions following DCW, even
when instructed to relocate at load time. This
inhibition is maintained until the next ORG or
DCW is attained.

CONSTANT

CON generates program constants o The five types are _
specified by an alphabetic character in column 12 as
illustrated on page seven.

Single Word Fixed Decimal Constant

The first operand, D, identifies the constant as a fixed
point decimal. The second operand presents the value of
the constant. A binary scale factor and a power of ten
exponent may be expressed in the constant. The binary
scale factor indicates the bit position of the binary
point relative to the sign bit in the word.

12 13 U 15 16 17 1B 19 20 21 22 23 2' 25 26 27 21 29 311 31 32 33 M 35 36 ~ 31 39 •o •1 42 4 '4 '5 '6 '7 '8 '9 50 51 52 53 5' 55 56 57 51 59 60 61 62 63

In the preceding examples two and three, the binary point
is assumed as indicated by the arrow:

Is I I I I I I I I I I I J CJ I .:r_.
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23

Two bit-numbering methods are presented.on the GE/PAC Console.
Bits are numbered from left to right for scaling purposes. - ··
The binary point, in fixed point arithmetic, is specified
relative to the sign (left most) bit. · /
Bits are numbered from right to left for ins~ruction purposes.
There is a class of instructions which permit bit manipulation

-9-

2.4.2

2.4.3

*

in the GE/PAC Computer. For this class of instructions,
.the bits are numbered from right to left i.e., bit zero
is the right-most bit of the A Register and bit twenty­
three is the sign bit.

The assembler will generate the binary equivalent for a
CON constant. A symbol appearing in the Location Field
of any constant will be entered in the assembler.table
of symbolic equivalences. All references to the constant
may be made by that name.

Single Word Floating Point Decimal Constant

The first operand, F, in the following example, identifies
the constant as a floating decimal. The second operand
presents the value of the constant. The number following
the E indicates the power of ten exponent.

A single word floating point constant is formed with the
characteristic in the six bits following the sign bit and
the normalized mantissa in the rightmost seventeen bits
of a word.
23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 l 0

Magnitude of Mantissa

Characteristic (= binary exponent + 40
8

)

Sign of Floating Point Number (O = +)

Variable Length Alphanumeric Constant

The first operand, A, identifies the constant as an alpha­
numeric. The second operand presents the number of characters
of the constant (between 1 and 52). The third presents the
characters of the constante The constants are translated to the
GE/PAC 6 bit code _and packed four per word from lef_t to_ righ~~- __ __
The last word is completed with blanks if there are not four char­
.acters to fill it.
EXAMPLES:

12 13 14 15 16 17 lt 19 20 21 22 23 24 25 26 27 21 29 10 31 32 33 ~ 35 36 37 3t 39 40 41 42 4 44 45 46 47 .. 49 50 51 52 53 5' 55 56 57 51 59 60 61 62 63 64 65 66

,,3,ABC
,4,ABC
10 ABCDEFGHIJ

GENERATE ¢NE W0RD--4TH CHAR. BLANK
(SAME AS AB0VE)

GENERATES THREE WORDS

* - Revised 1/65 ":"10-

·'

v

2.4.4

2.4.5

Single Word Octal Constant

The first operand, 0, identifies the constant as an octal
constant. The second operand presents the value of the
constant.

Examples:

The value of the second operand is converted to binary,
right justified, and entered in the program as a single
word constant.

Single Word General Constant

The first operand, G, identifies it as a general constant.
The second operand specifies the value of the constant.
The second operand may be any combination of parameters
defined as legal for the Operand Field. A decimal, a
symbolic, and an octal constant are illustrated here:

Examples:

I 2 3 ' 5 6 , I 9 10 12 13 U IS 16 17 11 19 20 21 22 23 2• 25 26 27 21 29 IO 31 32 33 ~ 35 36 37 31 39 .0 •I •2 :;;r .. 1'5 '6 •7 '8 ,;)""50 51 52 5~ 5'1
~CON J;,25
7-~0N ~,LABEL+6
_;~ON '1G_J_77777777

rd ..
~
~~ ~

Decimal constants of this type must be integers. B and E
as used in the C0N,D pseudo op are not allowed.

2.5 DCN - DOUBLE WORD CONSTANT

DCN is used to generate double word program constants. The
type of constant and its value is specified in the Operand
Field.

-11-

2~5.1

*

·2.s.2

Double Word Fixed Decimal

The first operand, D, identifies the constant as a fixed point decimal.
Bit zero of the Q-Register does not enter into the calculation of the
double register. The second operand presents the value of the constant.
A binary scale factor and a power of ten exponent may be expressed in
the constant. The binary point is relative to the sign bit in the first
word.

Examples:

1 2 3 4 s 6 1 , lo -'. 12 13 " 15 u 17 11 n 20 21 22 23: 2s 26 21 21 29 IO 31 32 3~ ~ 35 36 37 38 39 •o 41 42 4 "lc.s '6 47 " ,;f so 51 52 n uJs

-DCN D,42
, DCN. D,22.4B30
. DC~~ D~. 224B30E2

In the preceding examples two and three, the binary point
is assumed as indicated by the arrow:

24----

~---~~~- -~~-/ v
word 1 word 2

Always zero

Double Word Floating Point Decimal Constant

~ ' .. .,

The first operand, F, identifies the constant as a floating
decimal. The second operand presents the value of the
constant.

Examples:

1 2 3 • 5 6 , I 9 10 '1213 1' 15 1617 1119 ~ 212223 2' 25 26 2;21 29 IO 31 32 33 ~ 35 36 37 38 39 40 '1 42~~41 '6 47 '8 •tlso 51 52 53 ~
;ncN 'lF, 232.s
~lDcl\ f'!F ,2 .325E2
-· IDC:N; F_,_2325.E-1
,.

't<·;t i
The format of the double word floating constant is illustrated
below:

t2;
1
22 14

1

13 ol 1~y2
. ~ _ "--------(---Magnitude of Mantissa

binary
Characteristic (= exponent + 4008)

---+-
0

Sign of Floating Point Number (O = +)

* - Revised 11/65 -12-

:
•.
v

2.5.3

*

Double Word Octal Constant

The first operand, r/J, identifies the constant as an octal con-/·.
stant. The value of the constant is presented in the second
operand. It is converted to binary, right justified, and
entered as a double word logical constant (48 bits). Bit zero
of the Q-Register·is considered as part of the construction ·
of the constant.

Examples:
I 2 I 4 S 6 I f 10 , 12 U 14 15 16 17 19 19 20 21 22 23 24 25 26 27 21 2' Ill 31 '2 33 34 35 36 rt 31 " 40 41 42 4 44 4S 46 41 41 4f 50 SI S2 SI S4

.~DC
-DC
.. DC

2. 6 GEN - GENERATE DUPLICATES .

*

*' - Revised 11/65

A GEN instruction operand specifies the total number of
times the following instruction will appear. The operand
may be a combination of parameters defined as legal for
the Operand Field. Symbols used must be predefined.

N

'·1
*
* IS EQUIVALENT TO
* ,4

,4 I

,4
,7
,7

The GEN instruction cannot be used to
lowing pseudo-ops:

0RG
BSS
DCW
C0N,A,
GEN

-13-

EQL
DEF
SLW
END
LIB
IDN

duplicate the fol-

1'·

v

2.7. EQL - ASSIGN A SYMBOLIC EQUIVALENCE

EQL is used to assign a value to a symbol during assembly.
This function is useful in sharing storage areas, establish­
ing communication between programs, and assigning parameter
values in a form adaptable for changes.

Enter the symbol into the Lo~ation Field and its equivalent
value into the Operand Field. The operand value may be any
combination of parameters described in Section One. There
is one restriction; symbols written in the Operand Field
must be previously defined •

I 2 3 4 5 6 • a 9 10 ' 12 13 14 u 1& 11 11 19 20 21 22 23 24 25 26 21 21 29 '° 31 32 33 3'I 35 36 Y1 31 39 .io 41 •2 :;;f '445 46 47 a ,;fso 51 52 53 ,Js5 56 57 51 59160"
LABEL '.EQI' 20
!VALUE ~ EQI /777
LABELJ:EQI; LABEL+l

2.8 DEF - DEFINE A NEW OPERATION

2.8.1

DEF permits the programmer to define new operation codes
(i.e., codes that are not defined in the PAL language).

DEF is used for the following reasons:

1. An op-code may not exist for all GE/PAC Computers;
therefore it is not included in the basic PAL language.
The programmer may define the op-code when frequently
used in his system~

2. Tables of parameters may consist of more than one value
packed within a word. In this case, it is more con­
venient to write the values separtately and allow the
assembler to combine them into single words. Otherwise,
the values would have to be hand-assembled to one-word
constants and entered by using the CON pseudo-op. DEF
permits the programmer to define new operation codes
that will accept multiple values as separate operands~

A detailed procedure for using the DEF pseudo-op follows.

Op-Code Definition

Machine operations (Op-Codes) are written with optional
operands separated by commas. The assembled instruction
results from combining the values of the operands with a
"base octal" associated with the op-code. The base octal
is twenty-four bits long.

-14.:.

2-For infrequently used operations, it may be easier to insert
the undefined instruction as an octal constant.

Each operand has two format characteristics:
- Operand width (specified as the largest octal

value that may be generated)
Position (Where the value is placed in the

finished word)
Example: The machine op-code ADD is comprised of the

following:
- Base octal of 11000000
- Two operands

First operand value is placed into bits 14-0
(width 777778 , position O)
Second operand value (index register) is placed
into bits 17-15 (width 7, position 15)

When defining a new op-code, specify the base octal,
widths7 and operand positions. Up to four operands are
normally allowed3 (coded in columns 12-68). The assembler
then follows the instructions each time the new op-code is
encountered. The assembler itself uses this technique to
process op-codes which are permanently defined.

Defining a new op requires defining "audit codes." An
audit code specifies an operand width and position to
the assembler. Each audit code has a number associated
with it. Sixty-four audit codes are available for the
assembler. Audit code numbers 0-20 are pre-defined
(Refer to APPENDIX C). Codes 21-40 should be avoided by
the programmer; they are reserved for PAL and Monitor for
future op-code additions. Audit code 63 has special use
(Refer to para. 2.8.2). Therefore, only audit code ___ _
numbers 41-62 may be assigned freely by the programmer.
It is recommended that the programmer start with 62,
numbering in reverse.

Three steps in defining a new operation follow:
1. Determine width and position of all operands
2. Define audit codes for those widths and positions
3. Define the op-code by assigning to it the audit

codes from step 2 above.

The steps in detail:

1. For each operand of a new op-code, determine its width
and the position of its right-most bit (anchor bit).

-15-

3-Refer to para. 2 .8.2 when more than four_opera_nds- are
required.

_...=-------

Example: Assume a new op-code, called AAA, were needed
with the following characteristics:

a. A base octal of 12034560

b. Two operands, whose values are placed in bits 17-15
and bits 3-0. These operands are described as fol­
lows: Operand one has a width of three bits and an
anchor bit of 15. This.width is e~pressed as the
largest number it can contain in octal (in this case,·
7 is the largest number 3 bits can contain). The
second operand has a width of four bits (/17) and an .
anchor bit of zero.

2. Define audit codes for each operand as follows:

a. Write the audit code in columns one and two of
the Location Field

b. Write DEF in the Op Code Field
c. In the Operand Field, write two operands sepa:rated

by a comma.' ·The first is the width, expressed in
octal; the second is the anchor bit position. __ _

Example:

The coding for AAA above follows:

Location
62

Operand
IT, 15

61

;J
Op-Code

DEF
DEF

;to~
Audit Code Width Anchor Bit

3. When all necessary audit codes -ar-e--def-ined,-the--op-;;ocode~­
itself may be defined.

-Write the new operation mnemonic in columns one
* through three of the Location Field.

-Write DEF in the Op Code Field.
-Write the base octal and audit codes, s~parated
by commas, in the Statement Field.

* - Revised 6/65 -16-

*

2.8.2

.,., ___ .: __ ..J t:.lt:.c:

Example:
Location

AAA

MnemoniG.

Op-Code

DEF

Base Octal

Operand

First - Second
operand audit codes,
in the order the
operands will appear.

The new op-code may now oe used (note that a symbolic
operand may be used):

12 [4] ~ 12 3 3
/V'

1st Operand

Result 4
4

5 6 [2]
5 6 0

/Vf
2nd Operand

Different op-codes may share audit codes if they have operands
which coincide exactly in width and position (i.e., the
programmer need define only one audit--code---fo-r-a--p-artlcular ___.=--­

operand width and position, then that audit code may be used
freely for as many op-codes as desired) ..

Extra Operands Option

When generating special tables of data, four ~operands may-be
inadequate.

Example: A table of constants is desired where each word is
divided as follows; each section is able to take
on an independent value.

23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

The normal technique for op-codes permits only four operands,
which is insufficient (the example requires 7 operands). The
use of DEF in the Extra Operands Option permits up to 12
operands. The steps for defining an op-code when using the
Extra Operands Option are nearly identical to those for a
normal op-code •

-17-

1. For each operand, determine its width and the position of
its right most bit.

Example:

width (no. of bits) largest number anchor bit
it can contaj.n

1 1 23
4 173 19
6 773 13
1 1 12
4 178 8.
2 3 6
6 773 0

2. Define audit codes for those positions and bit lengths

Example:

1 2 3 4 5 6 I, 8 9 10 , 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 21 29)0 31 32 33 34 35 36 37 38 39 41) '1 42 4 « '5 46 47 '8 49 50 51 52 53 54 55 '6 57 5' 5'1

~nE-9W11,23 -60.
59
58
57
56
55
54

!\'11f .L ~; ,~1
~,~DEF'{~/ 17 , 19
~.~~:DEFi;:·. /77, 13
~DE1<1t) /1 12

n .L'h '

·~t:';/DE~f I 17 '8
-,~jDEE;;J I 3 6
\~· ~·, ' ~:.:DE ~i /77 0
I\\, : '
I~~
l~ ~

Note: If an audit code, with identical width and anchor bit
for an earlier op-code is defined, it need not be
defined again, but may be used for this op-code.

3. When all necessary audit codes are defined, the op-code
itself is defined. To signal the Extra Operands Option,
place audit code 63 as the first audit code.

Example: (BBB is used as the mnemonic for this op-code).

Base

Extra Operands Option

-18-

Audit codes, in the
same order the

operands will appear

-~-

4. Using the new mnemonic:

are assembled as:

23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
1 1 1
0 1 0
0 0 0

2.8.3

2.8.4

1 1 1 0 1 0 0 0 0 0
0 0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 1 0 0

General Rules

1 0 1 1 1
0 1 0 0 1
0 0 0 0 0

1 1 1
0 0 0
0 0 0

1
1
0

1 1
0 0
0 0

77202777
20021104
00020000

1. DEF is available only for additions to the·language,
not for substituting new definitions for permanently
defined PAL op-codes.

2. Operands of the DEF instruction itself may be written
in decimal, octal, or symbolic. Ho~ever, all symbols
must be previously defined. The usual rules for
determining if operands are relative or absolute do
not apply. All operands are considered absolute.

3. Operands for newly defined op-codes follow the usual
rules for translation as absolute or relative symbolics
(Refer to page 23)

4 .. Audit codes must be numeric.
5. Audit codes 41-62 only may be used. (it is recommended

that the programmer start with 62 and number in reverse).
6. New op-codes and their audit codes and their audit code

definitions are a part of the "Common Symbol Tape,"
which may be preserved for subsequent assemblies.

7. The Extra Operands Option may be used for defining all
op-codes. However, normal use of DEF for op-codes re­
requiring four or fewer operands will save space that
the assembler can use to store more symbols.

Error Conditions

1. When a mnemonic is used to define an operation that
has been permanently defined, the first definition
applies and the new definition will be flagged as a
location error (L). Permanently defined op-codes are
those that make up the PAL language codes.

2. When defining an op-code, if audit code 63 (Extra
Operands Option) is written anywhere except directly
after the base octal, an illegal operand error (I)
will occur. Definition of the op-code is terminated
at this point.

3. When defining an audit code, the numbers 0 through 20
will be flagged as a location error (L). They are
reserved for the assembler.

-19-

2.9 SLW - SLEW PRINTER PAGE

Upon encountering the SLW pseudo•op, the assembler positions
the paper to the top of the next page. Assemblers operating
on computers without output page control ignore the SLW
instruction.

2.10 END - END OF PROGRAM

END is used to terminate the assembly and must be the last
statement in a program. Upon encountering END, the assembler
generates control information for the loader.

An operand value may be specified to indicate the starting
point of the program. When this is done, the starting
address is also communicated to the loader.

2.11 MONITOR Pseudo-Ops

Pseudo-Ops exist to generate constants for MONITOR. They are
used to generate parameters for calling sequences--and format ~­
words for input/output. These Pseudo-Ops are described in
the GE/PAC MONITOR Manual and are available only through the
MONITOR Common Symbol Tape. Refer to paragraph 2.8.3, item
1fa6, of page 19.

2.12 LOADER Pseudo-ops

Two pseudo-ops are required for the GE/PAC Loader to call
pre-assembled library routines and functions as continuous
parts of a program. One identifies the pre-assembled program;
routine, or function; ,another requests that such programs
be read from a library tape.

These pseudo-ops are used by FORTRAN. They may also be used
in any PAL language program to call standard pre-assembled
subroutines without including the subroutine as a symbolic
part of the program.

2.12.1 IDENTIFY - IDN

IDN when used must be the first instruction of a program.
It identifies the program as a library subroutine which may

* be called by some other program. No ORG or DCW may appear
in a library subroutine. The identification is limit~d
to six alphanumerics, the first of which must be alphabetic.

Example: IDN SQRTF

The example states that the following program is SQRTF
and may be called by another program.
The assembler generates two lines on the listing. The octals
are preceded by an ug" control frame and contain the six-bit
BCD representation of the identification requested. No
memory is--reserved.by the"asseinble:r.

* Revised 11/65

-20-

2.12.2 LIBRARY - LIB

LIB pseudo-ops are interpreted by the loader as a command
to call preassembled functions (identified by IDN) from a
library tape of standard pre-assembled routines. Any LIB
pseudo-op must immediately precede the END card for the
program.

Example: SQRTF LIB

This example states that the programmer requests the SQRTF
function to be included as an adjoining part of his program.
The assembler generates two lines on the listing. The octals
are preceded by a "9" control frame and contain the six-bit
BCD representation of the program identification requested.
The loader, after encountering an LIB call, searches for the
specified library subroutine (SQRTF in above example). The
routine will have been identified with the IDN pseudo-op.
One memory location is reserved by the assembler for each
LIB pseudo-op. The loader fills in the relative branch to
the actual locations of the requested subroutines when they
are loaded into drum or core.

* - Revised 11/65 -21-

I l
· 3.: : PROCESSING & OUTPUT.

GE/PAC uses a two-pass assembler. During the first pass,
the assembler examines the storage allocation and forms a
table of symbolic equivalences. Each symbol appearing in
the Location Field is entered into the symbol table. Dur­
ing the second pass, the assembler completely forms each
instruction code. For each symbolic operation, the assem­
bler searches a table of permanent operation codes to ac­
quire its corresponding base octal and audit codes for op­
erand treatment. The Operand Field is scanned, and equiv­
alent values are computed using the symbol table formed
during the first pass. The base octal and the operands are
then combined using the audit codes. The final step in
the assembly of each statement is the preparation of a line
of output for listing and direct loading.

3.1 ABSOLUTE AND RELATIVE VALUES

An operand address of an instruction which refer.ences memory
may be specified to be assembled absolute or relative. An
absolute address is the true location of the referenced
memory cell. A relative address is the difference between
the address of the referenced memory cell and the address of
the instruction. The result is negative when the referenced
address issmaller than the instruction's address.

An operand as written by the programmer can consist of one
or a combination of the following terms:

An absolute label
An integer } Absolute terms

A relative label } Relative terms
The * (present location)

Combinations are formed using add(+), subtract(-), multiply
(*),and divide (/)operators (Refer to para. 1.3).

An operand is assembled relative if any relative term (a
relative label or the asterisk) appears in the combination of
terms. An operand is assembled absolute when no relative
term appears.

A label usually represents an address in memory. To reference
an address absolute, the label associated with that address
must be specified as absolute. Otherwise, it is assumed to
be relative by the assembler. A label specifleoa.S-C-ommon to
more than one program (Refer to para. 3.2) is assembled as an
absolute label in all programs in which it is referenced.
Two additional methods to specify a label absolute are as follows:

-23-

1. Place a dash in column seven of the line of coding where
the label appears in the Location Field.

Example: ALPHA -LDA BETA ALPHA will be referenced absolute

2. Use the EQL pseudo-op to equate the label to an absolute-­
operand.

Example: GAMMA EQL ALPHA+2

3.2 COMMON SYMBOLS

Both ALPHA and 2 are ab­
solute. Therefore, the
operand is absolute and
GAMMA will be considered
absolute.

A label is specified to be Common,by placing an asterisk (*) in
colunm seven of the line of coding where the label appears in the
Location Field. Each Common label and its value is available
through a corranon symbol tape to all other programs in ·a.· system~-

3.3 ASSEMBLER VARIATIONS

Variations in the capabilities of language translators originate
from the different operating environment of each. For example,
the memory available affects the size of the symbol table. It is
important that the characteristics of each translator be examined
prior to its use.

3.4 OUTPUT

Each translator of the assembly language possesses its own output
characteristics. However, all translators can produce the two
basic output requirements: ·

- an assembly listing, which includes the original syrqbolic
information plus the assembled instructions in the relativ~
and absolute forms. The output listing will aiso contain
error flags. They are defined in Appendix B.

- a punched paper tape for direct loading in the GE/PAC system •

... 24-

CHARACTER CODE TRANSLATION

The list of characters in Table I comprises
the total character set associated with the
assembler language. The six bit octal asso­
ciated with each character represents the
equivalent code produced by the paper tape
preparation device for input. The six bit
octal also represents the code produced
when using the alphanumeric constant.

The additional characters listed in Table II
are legal in the Comment Field. Table III
presents functions that have meaning in paper
tape versions of the assembler, but are not
part of the Assembler Language.

TABLE II
CHARACTER TYPER

(= 35
) = 55
= = 75
" = 76 •

$ = 53 j

TABLE Ill
CHARACTER TYPER

carriage return = 100 I

tab = 140 "
punch on = 162

pl,lnch off = 164
print red = 161

print black = 160
delete = 177

stop = 170

-25-

APPENDIX A

rABLE I

CHARACTER l TYPER

A = 21
B = 22
c = 23
D = 24
E = 25
F = 26
G = 27
H :::; ___ 30
I = 31
J = 41
K = 42
L = 43
M = 44
N = 45
RI = 46
p = 47
Q = 50
R = 51
s = 62
T = 63
u = 64
v = 65

-----W-·· --=-- 66--!-----

x = 67
y = 70
~ = 71

~

-

0 = 00
1 = - 01

' 2 02 =
3 = 03
4 = 04
5 = 05
6 = 06
7 = 07
8 = 10
9 = 11

+ = 60
- = 52
I = 61

* = 54
. = 33
, = 73

..-·-space = 1 20

*

*

l

APPENDIX Bi
. ~ _ .. _ --- - --..... -- ~ . .. --

; ERROR FLAGS·,

The assembler performs validity tests on each instruction.
When errors or suspected errors are detected, one of the following indicators
will appear on the output listing.

FLAG

L

I

x

u

c

M

2

R

F

DEFINITION

Location Field Error

Operation Field Error

Illegal Operand

Index Word Error

Undefined Symbol

Illegal Character

Multiply-defined Symbol

Second Pass definition
of symbol different
from First Pass
Relative Operand Error
Tables full

CAUSE

1. First. character of the label is not alphabetic,
(See Appendix A, Table I).

2. Using the DEF pseudo-op when:
- the mnemonic assigned is a GE/PAC machine

operation.
- requesting "Extra Operands 11 definition when

mnemonic has been previously defined as machine•
typed operation.

- there is an illegal audit code number.
3. Location Field is blank when a symbol is required.
4. Location Field contains a symbol when not allowed.
1. The Op-code not part of the language or was not

added to the table through the DEF pseudo-op. Thii
often occurs when definition was attempted but was
illegal. Consequently, it was not added to the
operation table. 2. This o~-code cannot be GENerat

1. Blank operand when an operand is required.
2. Operand not blank when it should have been.
3. One or more required ope-rands -missing--;- -~------

4. Too many operands.
5. Operand value too large.
6. Negative operand value in an instruction that will

not accept one.~- 7. Ille_g_al constant -
1. Index word 1 or 2 specified.
2. Required index missing.' -
3. Specified index word is greater than seven.
Occurs only when a symbol appears in the Operand Field
and: '
1. It never appeared in the Location Field or on the

Common Symbol Tape.
2. It appeared in the Location Field, but the symbol

table was full at that time.
A character, not associated with the assembler languag
was found in one of the following fields:
1. Location
2. Op-Code
3. Operand
(Refer to Appendix A, Table II)
1. Symbol in Location Field was flagged because:

- it has appeared in the same field on a previous
record

- it appeared on the requested EQL tape with a
value unequal to the one being assigned.

- it was saved from a previous assembly with a
value unequal to the one being assigned.

2. Any record which references a multiply-defined
symbol in the Operand Field will also be fl~gged.

Operand value was relative and should be absolute.

*

AUDIT CODES APPENDIX C
Each machine instruction may have operand values. The assembler has a
list of operand-associated numbers called audit codes. These numbers
uniquely identify individual operand requirements. Two basic character­
istics of audit codes are: the operand width expressed as a mask and an
anchor position.

A maximum of sixty-four audit codes are available. Audit codes 0 through
40 are reserved for the assembler and Monitor; 41 through 62 are avail­
able for programmer definition. The first twenty audit codes are de­
fined and listed below.

AUDIT OPERAND ANCHOR
-{OPERAND ERROR-FLAG CONDITIONS

SPECIAL REMARKS * Not
NUMBER WIDTH POSITION tlero Blank _Blank 2 1

0 o· 0 No operand ac- I
cepted

1 N (J Full operand. I
May be absolute
or relative.

2 3 15 For instructions R x x x
with optional
Tag Field. Must
be absolute if
not .h.Lank

3 14 0 Full operand. R I
Must be absolute

4 12 0 Must be ab__s_olute R _ _I

5 24 0 Pass without I
audit (any value
acce_12.ted) .

6 3 15 For instructions R r. 1: x x
requiring a tag.
Mus_t be _abs.al ut-P

7 5 0 K bits. Must be R I
absolute.

8 14 0 Value will be R I
negated (TXH).
Must be absolute.

9 23 0 ogerand may be I
a solute or
relative (DEL)

10 3 15 For STX instruc- R x I x
tion.

11 14 0 Operand may be I
relative or ab-
solute and may be

12 5 15
n~ 1.1.NX.)
Absolute ontr· R I

13 1 22 A_hs.olute _o_nly LR _I_ -.,

14 1 21 Abso..lute onL'l. R ..I
12 1 20 A b_s_ol u t.e. onlJz. _R __I

~

16 1 23 Absolute onl_y R I
17 23 0 Absolute only R I

For STR-type in- .
I R

18 3 15 struction
· Abs-ol'ute only; R I

19 12 0 may .be ne_g_ative

* - Revised J/66· ~. ·
-27-

APPtl\JDIX D

MNEMONIC

ABL
ABT
ACT
ADD
ADO
AEL
AFA *

·AKA
ANA
BRU
BTR
BTS
CBK
CLO
CLZ
CMO
CMZ
CPL
DAD
DLA
DLD
DLL
DMT
DRA
DRC
DRL
DST
DSU
DVD
ERA
FAD
FDV
FIX
FLO
FMP
FSU
TAI
IBK
IDL *
IN
INX
JND

MACHINE OPERATIONS

N A M E

APPEND ITEM TO BEGINNING OF LIST
ABORT DEVICE D's OPERATION
ACTIVATtDEVICE Das INTERRUPT
ADD
ADD ONE TO BIT K
APPEND ITEM TO END OF LIST
ADD FIELD TO A
ADD K TO A
AND TO A
BRANCH UNCONDITIONALLY
BRANCH IF TSTF RESET
BRANCH IF TSTF SET
CHANGE BIT K
COUNT LEAST SIGNIFICANT ONES
COUNT LEAST SIGNIFICANT ZEROS
COUNT MOST SIGNIFICANT ONES
COUNT MOST SIGNIFICANT ZEROS
COMPLEMENT A
DOUBLE ADD
(SHIFT) DOUBLE LEFT ARITHMETIC
DOUBLE LENGTH LOAD
(SHIFT) DOUBLE LEFT LOGICAL
DECREMENT MEMORY AND TEST
(SHIFT) DOUBLE RIGHT ARITHMETIC
(SHIFT) DOUBLE RIGHT CIRCULAR
(SHIFT) DOUBLE RIGHT LOGICAL
DOUBLE LENGTH STORE
DOUBLE SUBTRACT
DIVIDE
EXCLUSIVE OR TO A
FLOATING ADD
FLOATING DIVIDE
FIX FLOATING NUMBER
FLOAT FIXED NUMBER
FLOATING MULTIPLY
FLOATING SUBTRACT
INHIBIT AUTOMATIC INTERRUPT
ISOLATE BIT K.
INPUT FROM DEVICE TO LIST
INPUT FROM DEVICE D
INCREMENT X
JUMP IF NO DEMAND

-28-

/'
\

/'
\

MNEMONIC

JNE
JNO
JNP
JNR
LBM
LDA
LDB *
LDF *
LDI
LDK
LDO
LDP
LDQ
LDR *
LDX
LDZ
LMO
LPR
LXC
LXK
MAQ
MPY
NEG
NOP
ODL *
OOM
OPR
ORA
OUT
PAI
RBK
RBL
RCS
REL
REV
RNZ
ROD
RPT *
RST
SBK
SEL
SET
SEV
SFA *
SKA
SLA
SLL

N A M E

JUMP IF DEVICE D NOT IN ERROR­
JUMP IF NO OVERFLOW
JUMP IF NO PARITY ERROR
JUMP IF DEVICE D NOT READY
LOAD BIT MASK
LOAD THE A REGISTER
LOAD HIGHSPEED I/O BUFFER
LOAD FIELD
LOAD INDIRECT
LOAD A WITH K
LOAD ONE INTO
LOAD PLACE
LOAD THE Q REGISTER I

LOAD REGISTERS
LOAD X WORD
LOAD ZEROS INTO A
LOAD MINUS ONE
LOAD PLACE AND RESTORE
LOAD X WITH COUNT
LOAD X WITH K
MOVE A TO Q
MULTIPLY
NEGATE
NO OPERATION
OUTPUT FROM DEVICE TO LIST
OPERATE ON MEMORY
OPERATE DEVICE D
OR TO A
OUTPUT TO DEVICE D
PERMIT AUTOMATIC INTERRUPT
RESET BIT K
REMOVE BEGINNING ITEM FROM LIST
READ CONSOLE SWITCHES
REMOVE ENDING ITEM FROM LI-ST
RESET TSTF IF BIT K IS EVEN.
RESET TSTF IF A IS NONZERO
RESET TSTF IF BIT K IS ODD
REPEAT INSTRUCTION IN LOCATION Y
RESET TSTF
SET B!T K
SELECT DEVICE D
SET TSTF
SET TSTF IF BIT K IS EVEN
SUBTRACT FIELD FROM A
SUBTRACT K FROM A
SHIFT LEFT ARITHMETIC
SHIFT LEFT LOGICAL

-29-

-----=----

MNEMONIC

SNZ
SOD
SPB
SRA
SRC
SRL
SSA
STA
STB *
STF *
STI
STQ
STR *
STX
SUB
TER
TES
TEV
TFE *
TFL *
TNM
TNZ
TOD
TOR
TOS
TSC
iXH
TZC
TZE
XEC

N A M E

SET TSTF IF A rs NONZERO
SET TSTF IF BIT K IS ODD
SAVE PLACE AND BRANCH
SHIFT RIGHT ARITHMETIC
SHIFT RIGHT CIRCULAR
SHIFT RIGHT LOGICAL
SET SIALL ALARM
STORE CONTENTS OF A
STORE HIGHSPEED I/0 BUFFER
SiORE FIELD
STORE INDIRECT
STORE CONTENTS OF Q
STORE REGISTERS
STORE X
SUBTRACT
TEST EVEN AND RESET BIT K
TEST EVEN AND SET BIT K
TEST BIT K EVEN
TEST FIELD EQUAL
TEST FIELD LESS
TEST NOT MINUS ONE
TEST A NONZERO
TEST BIT K ODD
TEST ODD AND RESET BIT K
TEST ODD AND SET B1T K
TEST AND SHIFT CIRCULAR
rEsT x HlGH OR EQUAL
TEST ZERO AND COMPLEMENT
TEST A ZERO
EXECUTE

* - GE/PAC 4050 and 4060 only

-30-

--------- ----1-

/

APPENDIX E
BINARY CARD FORMAT

Data Card

Column 1, row 12 -·o if Core, 1 if Drum or Disc
Column 1, row 11 - 0 if Absolute, 1 if Relocatable
Column 1, rows 0-5
Column 1, rows 6-9

- Number of words (n) n<32
- Checksum, 4 most significant bits

Column 2 - Checksum, 12 least significant bits
Column 3, row 12 - 0
Column 3, rows 11-9 - Starting address, 11 most significant bits
Column 4 - Starting address, 12 least significant bits

Starting at column 5 are 2n columns containing n words of data, 12 bits .
in each column, the most significant half first.

Additional groups of starting addresses (same format as columns 1-4) and
data may follow the first group if there is sufficient room before column
69.

The checksum is formed by separating each data word and the starting
address into 2 parts, each 12 bits long. Each half if added to the 16
bit checksum. Overflow out of the 16th bit is ignored.

Transfer (END) Card

Column 1, rows 12-5 - 0
Column 1, rows 6-9 - Checksum, 4 most significant bits
Column 2 - Checksum, 12 most significant bits
Column 3 - Transfer address, first half
Column 4 - Transfer address, second half

A blank card is considered a TRA card, no transfer.

Identification Card (IDN)

Columns 1, 2
Column 3
Column 4
Columns 5, 6
Columns 7, 8

There is no checksum

LIB Card

Columns 1, 2
Column 3
Column 4
Columns 5, 6
Columns 7, 8

There is no checksum

- 0
- 4031

8
(reading top to bottom - I)

2445
8

(reading top to bottom DN)
- 24 bits representing the first IDN word
- 24 bits representing the second IDN word

- 0
- 4043

8
(reading top to bottom -1)

- 3122
8

(reading top to bottom IB)
24 bits representing the first LIB word

- 24 bits representing the second LIB word

-31-

I
w
N
I

1 = Core
0 = Drum

1 = Relocatable
0 = Absolute

APPENDIX E FIGURE

= IDN or LIB

______ 2n COLUMNS CONTAINING n WORDS OF DATA------
'.?, ~ ~ ~~~~ SEQ.1f

~ l f No. I _ o
1
o o o o o :

~ 2 3 4 5 6 , 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 4$ 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 6Sl5S 70 71 72 73 74 75176 71 78 79 60 I
· 1 !);, 1 1 1 1 1 1 1 1 1 1 1 1 J 1 t 1 ,·1 1 1 1 1 j

. 2 ~t 212 2 2 2 2 2 2 2 2 2 2 2

3tl33 . ~-:>

4~ 44444444444444444444444444444444444444i4444444444444444444444444444444444444

. 5 t~ 5l5 5 5 5 5

s ?}
1
s s. s s s s s s s s s s s s s s s s s s s_ s s s s s s s s s s s s s s s s j s s s s s

7 7 J 7 7 7 7 7 7 7 7 7 111 7 1 717 7 7 7 7

sFJ s a 6 s s s s s s s s s sass s s s s s sass s s s es s s s s s s s s s sass Sis s s s s s/s s s s s
s1';1:Jl s s s s s s s s s s s s s s s 9 s n s s 9 s a.s

1
s s s s s.s s s s s

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 25 27 26 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 4S 47 4S 49 50 51 52 51 54 55 56 57 ~a 59 61) 61 62 63 54 65 60 67 68 53 70 71 72 73 14 75hs 77 78 79 BJ
:-;/:' GLOBE. NO. 1 STANDARD FORM 5081 - I

(
\Starting address (Core, Drum or Disc) ~

6 is used
Checksum {16 bits) of the next 2n+2 columns for PAL

CHANNEL
NUMBERS

OCTAL LOAD TAPE FORMAT (Example)

ONE WORD OF INFORMATION

DATA FRAMES
1 2 3 4 5 6 7 8

APPENDIX F

SPACE OR
CAR. RET. OCTAL CODE

8----1
7----+
6---
5----+-
4---

0

0

0

0

0
0 0

0 --·Hundreds Position
---Tens Position 4
---Tens Position 2

0 --Parity
--Tens Position 1

• · • · • · · 0 • · · • • 0 · · 0 .. • 0 • · 0 • • · • .. ., · · 0 · · · · · • · --Sprocket Feed
3---.,.. 0 o o o ---units Position 4
2 ~:...---~-o.;:__~~o;;.__~-~o~~o---------~Units Position 2
1 3 4 5 6 7 1 2 4 CR Units Position 1

CHANNEL
NUMBERS

8
7
6
5
4

Data

BI-OCTAL TAPE FORMAT (Example)

ONE WORD OF INFORMATION BI-OCTAL CODE
r_c_o_N_T_R_O_L __ A.._D_k_T_A_F_RAME __ s_'

Not Used
FRAME 1 2 3 4 Tens Position 4
g 0 0 0 Tens Position 2
0 o o o L---~ Parity Indicator
o 0 0 0

\-----,· Tens Position 1
0 0 0 •••• ~ •.•••••••••• ,., •••••••.. "'----- Sprocket Feed

3 ----t~O 0 0 0 4 .o o 0 0 Units Position
2 ~--· o o . o Position 2
1 Bi-Octal 77 42 7~ 25 Position 1

Data

Note: All characters have odd parity

PAL BI-OCTAL
INFORMATION TYPE PRINTOUT CONTROL FRAME

Data Blank 00
Starting Address (ORG) 1 01
Checksum _02
Skip (BSS) 3 03
IDN 8 10
LIB 9 11
END "/(12
Drum Starting Add. (DCW) @ (See Note)

Note: All load tape information is in bi-octal format except a drmn starting
address. The.drum starting address appears on the bi-octal tape in the
same format as an octal tape: a (14)

8
Control Code is followed by

eight octal frames, followed by a carriage return (100)
8

•

-33-

GE/PAC 4000-.

PAL45 ~ PAL~225 Assembler

Library Control No. YPF05XR2

February 1966

Proprietary Information of the
General Electric Company

In the development of the software described~ the
General Electric Company reserves the right to modify
the design for reasons of improved performance and
operational flexibility.

Progr~w;rnf ng l 0 ib:r9. ry
G~~e~al Electric Compan;
Process Computer Section
Po Oo Box 2918
Phoenix 9 Arizona - 85002

Library Control No. YPF05XR1

IDENTIFICATION

PAL45 - PAL-225 Assembler

PURPOSE

To provide complete PAL assembly capability on the GE-225.

OBJECTIVES

l, To assemble symbolic program\s) punched on cards in the PAL format,

2. To print an assembly listing.

3. To produce a binary card load deck in a format acceptable to~

a. The 225 GE/PAC Simulator
b. Card equipped GE/PAC computers
c. The 225 Card to Paper Tape Translator for paper tape generation.

4. To save the common symbols for subsequent assemblies when selected as a
console switch option.

SYSTEM COMMUNICATION

Console Operation - GE 225

1. Place a blank tape on Tape Unit 4.

If a Common Symbol Tape is required, place it on Tape Unit 5.
Place a blank tape on Tape Unit 6 to write a Symbol Tape.

2. Place the PAL45 binary card deck and the symbolic program(s) deck(s)
to be assembled in the following order in the card reader.

Pro.c;rar.1 (leeks follow the PAL45 deck with the "END" card of one program
followed by the first card of the next program. Place three (400 CPM
Reader) or two (High Speed Card Reader) blank cards at the end of the
last deck.

3 Blank Cards for 400 CPM Reader
or 2 Blank Cards for High Speed Card Reader

3 Blank Cards
_-,.;>.

', -..,....._:_;,, -- - . --"
Deck 2 Dec~ to be assembled

Deck 1

PAL45 Deck

- 1 ~

NRL Loader

Zero Memory
Card

Library Control No. YPF05XR1

Console Operation - contd

3. Set the Card Punch ready.

4q Clear Console Switches.

56 Select options with the following switch settings~

Switch 17 - UP Do not use Common Symbol Tape"
DOWN =Use Common Symbol Tape.

18 - UP = Clear Common Symbol Table between assemblies"
DOWN = Save Common Symbols between assemblies.

19 ~ UP =Do not write a Common Symbol Tape.
DOWN =Write a Common Symbol Tape"

6. Press the following console buttons in the order listedg

a. Reset Error
b. Reset P
c. Read Card
d. Manual to Automatic
e. Start

7. Contents of the console switches 17-19 are typed for operator
verification. (0 =UP, 1 =DOWN).

Exampleg 100 Switch 17 only

If incorrect, reset switches to the correct setting and
change the status of switch O" Return to Step 7.

8. Change the status of Switch 0 to start the assembly of the
first program.

9. To process another series of programs after "END JOBu is typed~

a. Position the deck to be assembled in the card reader.
b. Set switches 17-19 to select options.
c. Change status of Switch 0.
d. Return to Step 7.

(2)

*

Library Control No. YPF05XR1

PROGRAM COMMUNICATION

Operating Delays

Under certain conditions PAL45 must communicate with the operator.
A message is typed and the program delays for operator actiono To
conti~ue, change the status of switch 0.

MESSAGE CONDITION

PUT BLANK ON 6 The program is
ready to write
a Common Symbol
Tape

PUT SYM TAPE ON 5 The program is
ready to read a
Common Symbol
Ta e.

END JOB All assemblies
are completed

HLT PR
HLT TP

HLT CR
HLT CP
ERR PR

ERR TP

ERR CR

ALM CR

Printer not ready
Tape Controller
not ready
Reader not ready
Punch not ready
Print Error

Tape Error

Error detected
while reading a
card or a card
jam occurred.

Last Card in
hopper has been
read

Language Restrictions

OPERATOR ACTION/RECOVERY PROCEDURE

Verify that a blank reel of tape
is on tape 6 of controller lo
Change status of switch 0 to con=
tinue.
Place symbol tape on Tape 5 of
controller 1. Change status of
switch 0 to continue.

See Step 9, Console Operation,
to process another series of
programs.
Restore the indicated
peripheral to ready status.
Change status of switch 0
to contine.

Line is printed again.

The tape is repositioned by the
program and the tape operation
is repeated.

Position card in error ahead of
remaining cardso Restore the
reader to ready status. Change
switch 0 to continue.

This typeout followed by HLT CR
signifies that the feed hopper
is empty. Place remainder of
deck in the reader. Restore the
reader to ready status. Change
switch 0 to continue.

PAL45 accepts without restrictions the PAL language described in
the Process Assembler Language Manual.

-;~ Addition

(3)

Library Control No. YPF05XR1

GENERAL INFORMATION

Any number of programs may be assembled at one time by PAL45. Symbolic
program card deck(s), punched in the PAL format, as well as an optional
system Common Symbol tape are acceptable input. Each program to be
assembled requires two passes to complete assembling, listing, and
punching a binary load deck.

Pass 1 forms a table of all symbols appearing in the location field
together with their values. A symbolic magnetic tape is produced
for the second pass input.

Pass 2 lists the assembled data and the contents of the symbolic cardso
Appendix A illustrates the Program Listing Formato A binary card deck
is punched to be used for loading into the 225 GE/PAC Sinulator or
card-equipped GE/PAC computers. CPT42, a separate program available
for GE-225 computers which have paper tape punches, translates cards
to paper tape for GE/PAC computers lacking card readers o (YPF07 - CPT,42
Binary Card to Paper Tape Translator/225.)

PAL45 saves the common symbols after completion of the second pA.ss for
optional use by the next program. Processing continues automatically
with the assembly of the next program in the reader. A blank card
following an "END" card signals that the last program of the deck has
been assembled. The Comr.ton Sy1rbol tape is written at this time if
that option has been selected.

Any combination of the following options may be specified by console
switch settings~

lo Switch 17 - a Common Symbol tape is read in for use by the
first program and the common symbols are saved for all
programs which follow in the deck.

2, Switch 18 - all Common Symbols are saved for all the programs
following in the deck. (Differs from switch 17 only in that
no Common Symbol tape is read ino)

3o Switch 19 - a Common Symbol tape is written after the last
assemblyo

Note~ when Common Symbols from other than the last
program in the deck are to be saved, use options 2
and 3 togethero

The Binary Card format and examples of punched cards for PAL45 are
contained in Appendix Bo

The table storage in PAL45 is set to hold up to 800 symbols and
defined op-codes.

(4)

Library Control Noo YPFOSXRl

Symbolic program card deck(s) punched in the PAL formate
System Common Symbol (Magnetic) 'Eape (optional)o

Output

Assembly listing on the high speed printer.
Binary card load deck.

8K Core
Card Reader and Puncl1
Ho.g11eL:Lc Tape on Conlroller 1
High Speed Printer

REFERENCES

Y.P."i.01
YPE04
YPFOl
YPF07
YPG12

LDRI+ 1
SIM03
PAL41
CP'ft'.i.2
GE/PAC

GE/ PLC L~:ader Package
GE/PLC S b1u b ~- t o~. t h1:; r_:F.> 225
PAL/4-12 Assembler
Dinar; Card to Paper Tape Translator/225
l:.OGO 1-'rocess .L\s[;e1:1l;lcr Language (PAL) Manual

(5)

>
I
t-'

Loca­
tion

001000

001001

001002

001003

OOlOOl~

001005

001006

APPENDIX A

PROGRAM LISTING FORMAT

Derelativized True Symbolic Card Contents
Equivalent Contents Columns 1 ~ 68

100001000 100001000 *e)RG /1000

00004000 00004000 ALPHA LDA i4000 COMMENTS MAY

32401006 32401006 STA BETA,A APPEAR AFTER

20.:>00001 :u,:JQf\COl INX 1?13 THE FIRST

24:nrn3 24337773 r~ 5-, 3 BLANK

34001000 34077774 BTS AI.PHA

14001005 14040000 u BRU GA1'1MA

~100000005 c'.; 00000005 BETA "-Y.cBSS r.:;
J

"140004000 140004000 PRC / l:-000

Note that BETA is an absolute label _, reference to it in location 1001 is absolute
:in br0Jfh the r-rue .a.nd Del'"elativize<l F;:r ·!valen-<: colurrms"

ALPHA is rel"irtve; r~t.~refore its !:'ef2.:·ence i':l lo('at;·0n 1004 is relative in the
True C.cmt~nrt~ .::·ohunn) ab:sol·_,te in tr~- aerelat i v~zed Equivalents coL:unn.

No"·"=-' t·i.,ar ar~ a-s·r,.,:t';s;. ai_,~';e.a!~ .in. <:L ·(, ;;2"-,__'~ '.1~ ·.rt., tir:s1: OR_, l'lf'C::nd 'rJh~_le t.t· ls

LDo Ffold
Colso 70 '"'80

60002900010

60002000020

60002900030

60002900040

60002900050

600029 00060

60002900070

60002900080

600029 00090

"JnT;_~ '- ~ ,,_2rtj !< :.:r '1 ~11B <$"2lC:: :;:-,y-'1 An_ tV):R,_ ;,1 - 2.C -_:.'~ t· - ::;(, , C1 f'•Dlt c·1n f p.1"·\Jdl..:U"8 a l~F:ljfT -,,"{l>ff1 t~'.)l

"'1::-i:"J · .. ~c1. 5.' '.:'''"k' ") l··-Mt~;_ug., -,,Ji: ::- -:', t •• , ·: l la-i~r :ro,,i air::cif'r·- .og a rf~l·uca.,·.,_~1n

v.al,}f- :~ .,: .:iL. rm I i'~ if~·~"t bl.an~ .; ")~· -)~ ~.., _'; p['.'(]lQi...,_:< . .:! :s~gn b : is s~~L1 w,,_ 11
:cH:n·t~,c': ·1:- l~(a:"":.::'t 1"1 aciCEpt . .as~ r..~! ,;·_, ... -.,:1 aL.2 ~.Jr.,a<f:t:v~r 1y.1.a& cr1~ere·i tr•o,_g;. ~\-'-<:'

~ ,Jr:tS '3 lf-, i5 .-. i · ,..,· h-~~

Library Control Noo YPF05XR1

APPENDIX B ~ BINARY CAFD 70RMAT

Data Card

Column 1,
Column 1,
Column 1,
Column 1,
Column 2
Column 3'
Coluntu 3,
Column 4

row 12
row 11
rowe 0··5
rows 6-9

row 12
rows l1~9

~ 0 if Core~ 1 if Drum or Disc
~ 0 if Absolute, 1 if RPlocatable
~· ~umber of words (n) n ._,32
~· Checksum, 4 most significant bits
~· Checksum, 12 least signiHcant bi.ts

0
~ Starting address, 11 most significant bits
~ Starting address, 12 least significant bits

Starting at column 5 ar~ 2n columns containing n words of data, 12 bits in
each column, the most significant half firsto

Additional groups of starting addresses (same format as columns 1~4) and
data may follow the first group if there is sufficient room before column
690

The checksum is formed by separating each data word and the starting address
into 2 parts, each 12 bits longo Each half ic added to the 16 bit checksum.
Overflow out of the 16th bit is ignoredo

transfe~ (END) Card

Column 1 ~ rows 12··5
Column 1, rows 6~·9 and"_)

Column 2 J
Column 3
Column 4

·~ 0

~· Checksum
- Transfer address, first half
- Transfer address, second half

A blank card is considered a. dummy transfer card' no trans.fer to the routi.ne 0

Identification Card (IDN)

Columns 1,2
Column 3
Column 4
Columns 5, 6
Columns 7, 8

There is no checksum on the cardo

LIB Card

Columns 1, 2
Column 3
Column 4
Columns 5, 6
Columns 7' 8
Columns 9~ 10

There is no checksum on the card,

.evo 10=65 J3= 1

-· 0
-· 4031 reading top to bottom C .. I)

2445: reading top to bottom (DN)
.. , 24 bits representing the first IDN word
.,, 24 bits representing the second TDN word

~ 0
~ 40438 reading top to bottom (-L)

3122
8

reading top to bottom(IB)
- 24 bits~location of the LIB call
- 24 bits representing the first LIB word
- 24 bits representing the second LIB word

1 = Core
O = _Dn,im

!"==Relocatable
0 =_Absolute

Number of\
Word~}

(n) n ~ 3J

Library Control No. YPFOSX

APPENDIX B - BINARY CARD FORMAT ·

. 1 = IDN or LIB

~ UJ(" 2n COLUMNS CO:ITAI:nl\G n \.IORDS 0:2 DATA j'~ PROJI SEQ~
I~ . l'i' PROG1 .

: : 1 ; ! No. i
n a.o o o coo o n e o o o o o o o o o o o o o on o n a o c o o e a o o o = ~ ~ en a~ o o o c c a ~ c o an c o o ~ e o ~ o o c ·:010 o o o c :o o o o o
:;~; ;;; ; ; ; ; ~ ~· ~2; ~ ~ ~ ;? ~ ~s; ~I~ 7; ~ ~ ~7 ~~~~I~~~;~~:;;;; ~ ~ 7 ~; 7 7; ~ ;· ~ ~ ~ ~; ~ ~ ~ ~ ;· ~ ~ ~ ~; ~: ;,~1~~1;· ~2 ~l ~· ;s~~- ~I~·~~
:1 j2 .i; 2 i 2 2 2 2 2 2 2 i 2 1 2 : 1 2 11 2 1 2 2 2 2 2 1 2 2 2 1 n 1 2 2 1 2 2 12 1 1 1 V,2 2 2 2 2 i2 2 2 2 '

h.3 l
1
l l l l l ll l l l 3 3 3 l 3 3 3 3 3 .33 l 33 l l l ll l l l l l l l l il H l l l l l l l 3 l l l 3 3 3 l 3 l l l l 3 l l 13

1
113l1:3 3 3 3 l

;•;• 4;11 4 4 c 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 ~ 4 4 ~ 4 • '4 ~ ~ 4 (4 ~ t ~ 4 4 ~ '. 4 ct 4 4 4 4 4 4 (c 4 4 4 ~ 4 4 • 4 4 r.t4j4 4 4 4 4 4 4 4 4 4

I; '1: ~ s ls) 5 ~ S S 5 S 5 5 s 5 5 5 5 5 5 S 5 5 5 5 5 5 5 5 ; j ~) S) j S 5 5 5 5 ~ : ~ S j 5 5 5 l j j l S j 5 S 5 S 5 ~ 5 l S : 5 5 6 t 5 l 5 5 5 5 5, 5 5 5 5 5

·~1u1, & 6 6 G 6' 6 6 I 6 6 6 6 6 66 6 66 66 '6 6 & & 6; 61 H §I & I 5 ! ! H 11< ! 16 6 £ ! 11 i; 6 ! & 11; 6 ! +isl& 6 t 6 6~6 s 6 6 6

111
1
'1 I 1 i 1 7 1 7 7 7 111111171111111111111 7 7 -; 1 7 11 i 11] 111 1"11111111111111111 Hl 1111 7 1 7 1 1 111 . I I .

~ s &iR a 8 s a as as a a ass a a a a gs a as Bo~! ~ 8 es a: o E ! i ! i ls! a s 1 & : 1a~11a!a1 s a as as a 111,sls ass as as~ s
f I .

9 9 s 9 9 9 9 s 9 9 9 9 9 g 9 s 9 s 9 9 9 9 9 s s s g 5 s s 5 3 9 s 3 9 5 s, 3 9 9 s g 3 ~ 9 g 9 ~ 9 s s 9 s 9 gs 9 5 s 9 3 9 9 g 919 9!9 3 9 9 9'9 9 3 9 9
I; l 4 ~' 1 ~.!r:~~·.'2'.'"~:61J'::~~~!l~CD:10~:~/~:tn~: :.;:.;:;.15J&:l'J1l!CCIC::4;44~CO<:C<':io!~"S:i;;io1!:,;!"'!olt:~!l5..i:"1i:iiio;!r; ;· 1lll14i)'::),,)1,v

(~starting address (Core, Drum or Disc) ~
Checksum (16 bits) of the next 2n~2 colut:las for PAL

Additional groups of starting addresses (same format as columns 1-4) and data may follow the first group
if there is sufficient room before column 69.

The checksum is formed by separating each data word and the starting address into two parts, each 12 bits
long. Each half is added to the 16 bit checksum. Overflow out of the 16th bit is ignored.

B-·2

I

Data Card

Column 1,
Column 1,
Column 1,
Column 1,
Column 2
Column 3,
Column 3,
Column 4

APPENDIX B

row 12
row 11
rows 0 ... 5
rows 6 ... 9

row 12
rows ll ... 9

Library Control No. YPFOSX

Binary Card Format, contd.

- C if ~ere, 1 if Drum 'or Disc
- 0 if Absolute, 1 if Relocatable

Number of words (n) 11..(32
- Checksum, 4 most significant bits

Checksum, 12 least significant bits
- 0
- Starting address, 11 most significant bits
- Starting address, 12 least significant bits

Starting at column 5 are 2n columns containing n words of data, 12 bits
in each column, the most significant half first.

Additional groups of starting addresses (same format as columns 1-4) and
data may follow the first group if there is sufficient room before column
69 •.

The checksum is formed by separating each data word and the starting
address into two parts, each 12 bits long. Each half is added to the
16 bit checksum. Overflow out of the 16th bit is ignored.

· o ·1 o ,9 o o o o o o. o. o o o o o o o In i o
I I > 4 • • , • • .. II ,, u •• II .. IJ " .. :It ,, u ,, 14 ,.)I ,, ,. lt JO u u " .14 .!\ :Ill II II It .., ti 0 •l .. ·~ .. " 'Ml " u u ~· " " tJ, .. n II " w •• :a II 11 u " ,. ,. II ,. 11 ..

1·~111t1

2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 n 2 2 2 22 2 2 22 2 2 2 22 1 12 2 n 21

3 33 3 3 3 3 3 3 33 3 l 3 3 u 3 33 3 3 3 3 3 3 3 3 3 3 3 3 l j 3 3 3 3 3 3 3 l l l l 3 3 l l 3 3 3 3 3 3 3 3 3 3 3 3 33 3 3 l 3 3 3 3 3 3 3 3 3 3. 3 3 31
4 4 44 4 H 44 4 '4 44 4 4 44 4 4 4 4 4 4 4 4 4 • 4 H 4 "4 4 4 4 4 4 44 44 4 44 H 4 4 44 4 4 4 4

. '

I 5 5 5 5 5 5 5 5 5 5 5 5 $ 5 5 5 5 5 5 5 5 5 5 5 ~ 5 5 5 5 5 5 ~ 5 ~ b 5 ~- ~ 5 5 5 s 5' 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 ~

~666666GG6i616GiG&66G6Gi,G6&&666GGG66666666&G66666666666666666666666&IS666666G6.G

l • 1 1 1 I 1 11111 1111 1 , 1 1111 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 j 1 1 7 '7 7 1 7 1 1 1 l 1 1 1 7 1 1 7 1 7 1 1 7 7 1 1 1 1 7 1 7 1 7 11111 7

a1a1aaoaaaaaaaa,1aaaaaaaa
&80999999899999998989199
, ••••• , •• dUQUM•M»••·~·-M••n•••M»»~••»•••~au~·-~·•»WNU~•MPUM•~aUMOM~-·-~nn~--nMn• • ._o oo.. - ..., -

· 'Figure 3 - EXAMPLE OF DATA CARD

Core, relocatable starting address
Card contains l data word
Checksum is 00100os
Starting address is 10028
Data word is 00000004

.. B-3 ,_,

. ,

Library .Control No. YPFOSX _

APPENDIX B - Binary Card Format, contd.

Transfer (END) Card

Column 1, rows 12-5
Column l, rows 6·9 and Column 2
Column 3
Column 4

- 0
- Checksum
... Traqsfer ·address, first half
... Transfer address, s.econd half

A blank card h considered a TR.A card no transfer.

I I
001111011110
I ' J • I • ' •••• II .. 1114 .. " u 19 .. 18 " 11n14 ",.,, ,. II JU II u " M n JO II ll " •• 41 0 " ... , .. ., 'It" " .. ,. " ~ .,, ,, :o rt 11 I) ,. IJ ,. " II ,, ..

I 1.1 1 1 1 I 1 I l 1 1 I 1 1 1 1 1 I I i l I 1 I I 1 1 1 I I I I I 1 I l I I l I I I 1 l I 1 I I 1 I 1 l 1 t I 1 1 1 1 1 I I I 1 l I I 1 I 1 I l l 1 1 I l 1 I

22 2 2 2 2 2 2 21 2 2 2 2 2 2 21 22 22 22 2 n 22 2 2 21n21 n 2 2 n 2 2 2 1 n 2 2 2 2 2 n 2 __ 2 _VJJ11Jll 2 2 2 u_ 2 2 2 2_u 2 ~-

3 3 l 3 3 3 3 3 33 l3 3 33 l 33 33 3 u 3 3 l 3 3 33 l l l l 3 l ll 3 3 l 3 l l l l 3 3 3 3 l3 l 3 3 3 l l 33 l J 3 3 3 3 l 3 3 3 3 3 3 3 3 3 3 3 3 3

44,

5 5 5 5 s 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 s 5 5 5 5 5 5 5 5 ~ 5 s s 5 5. 5 5 5 s 5 5 5 5 5 5 5 5 ~ 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 s 5 5 5 5 5 5 5 s 5 5 5 5''

··a 6· & & & e s G & & a s G a a a o & G 6 & ' 'a a a & & s s s s s & G s 6 6 s ' ' s a & G & s ' ' ' ' s a 6 6 s s & .. a i & s 6 s ' s ,. ' s- 1 a a & i I & & G &.6 ,
' ;

1111111111111111111111711111111111111111j111)1111111111~11111i111111111111111111.
·\

aaa.aaaaaaaaa.
' .

99
I • a 4 • ' ' .•• ,. II 1111 II ,, .. IUUI D IUUfHUHUU!l lit 3UUU111Uf ~ , 4HU• ••• , 411 " tUUUUUJ a '3, ,." n D 14,. JI n 1111 ..

__ ~~o aoe1 ·

Figure 4 - EXAMPLE OF TRANSFER CARD

Checksum is 0020008
Transfer starting address is 00002000 (absolute starting address of 20008)

' .,.

Library Control No: YPFOSX

APPENDIX B - Binary Card Format, contd.

Identification Card (IDN)

Columns l, 2
Column 3
Column 4
Columns 5, 6
Columns 7, 8

There is no checksum.on the card.

I I

I I I

- 0
40318 reading top to bottom (-I)

- 24458 reading top to bottom (DN)
- 24 bits representing the first IDN word
- 24 bits representing the second IDN word

oooiG&oa
l I J 4 • I 1 I • ta II II t• 14 It II II 1119 11 H 11 Ii 34 la 1e 1' It It)I U U Ii M l\ 1' 41 It It tO O 4t 0 tf 0 .. 0 .. ••Ill ti U U '4 \ft ~ti M •• H tl •• H .. II .. •t '.O ti t1 U U ft It II ,. Jt II

1 1 ~11111111111111111111I11111111111111111111a1111111111111111111l1IIIIlI11I111 I J .

2 2 2 2. u 22'222222'21222212 2 22 2 22 2 12 12 2 2 12 22 21222722212 2 2 1 2 2 22 21

3 3 3 311 3 3 3 J3 3 3 33 u 3 3 3 3 33 3 3 3 l 3 3 3 33 l 3 l 3 l 3 33 3 l 33 3 3 3l 3 l 3 3 3 3 3 3 3 3 33 3 3 3 3 3 3 l l 3 3 3 3 3 3 3 3 3 3 3 3
' '

44 4 u 4 u 44 4 4 4 4 4 4 4 u 4 4 4 4 4 4 4 4 4 44 4 4 44 4 4 4 4 4 44 44 4 4 44 4 4 4' 4 4 4 .•. 4 4 4 4 4 4 4 4 4 4 4 4 4 4 44 4 44 4 4 4 4 4

s s I 5 5 5 11 5 s 5 5 s s s 5 5 s ,5 5 6 s 5 s s s 5 s s s s s s s s s s 5. s s s s s s 5 s s s s s s s s s s s s 5 s 5 5 5 s s s s s s a s s s s s 5 s s 5 5 ti .
·a&&68866666668&6G666G66&&6i&6666666J6665G6i66666666G66666666&6666&666686666G&G6,G

11)11111111111111111111111111111111111.

a a aa aa aa aa aa u aa au u u a as a aa aa u aa aa aa a aa aa aa aa· a aa aa as a aa aa a a a au a aa aa,1 a aa a aa aa
saf••sessssssssssassssess9999999999999999999999999999g99999999999999999999ssssss,
11 TY1111Ytt~QNKa»N••naa•aaaaaaMU»~••u»»•flau•••U••~uuo~MMP»••~aUMA•~•••HnnMMnn1tn• . ••O_.

Columns 5, 6
Columns 7, 8

Figure 5 - EXAMPLE OF IDN CARD

(47512700) \
(02202020) '

)

Coded in GE/PAC code; identifies the program
as PRG02

- B·S • .

APPENDIX B

Library Card (LIB)

Columns 1, 2
Column 3
Column 4
Columns 5, 6
Columns 7, 8
Columns 9 , 10

Library YPFOSXRl

Binary card Format, 'contd.
't;,'

, ' 'I '·~ ' '

- 0 '
- 40438 reading .t1dp ,to bottom (-L)
.. 31228 reading. fop· .. to bottom (IB)

24 bits - locat.ion of the LIB call
... 24 bits represell,ting the first LIB word
- 24 bits representing the second LIB word

There is no checksum on the card.

0 0 0 n 0 D 0 a 0 c 0 0 0 O· 0 () 0 ·ll 0 0 0 0 0 0 0 0 0 0 0 0 0 0 U I D 0 0 I II n 0 0
1 2 3 4 5 6 7 8 9 tG II 12 13 14 15 11> i1 16 13 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 31 38 39 44 41 42 43 44 45 46 47 48 49 50 51 52 ~~.'i5 56,57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 71 78 79 SO

1 l 1 1 1 11 1 1 1 l 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 l 1 1 1 l 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 i {i,jj 't 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 l 1 1 1 1 1
:" '.~~<;' _",~,

222i"t'222222222222222222a222222

3 3 3 ft 3 B 3 B 3 a 3 3 3 3:3 I 3

44144IA~44

5 5 5 5 5 5 5 5 5 ~ 5 5 5 5 5 5 5 5 5 5 ~ 5 .5,. 5 5 '5 .5

6 6 G 6 6 a & 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 G G 6 s· 6 & .6 6 6 s 6 6 6 s 6 6 6 6 6 6 6 6 u 6 6 6 6 6 6 6 6 6 6
"

7771777777777777777777777777

a s a a s s s a a a a a s a a s a a a s s s s a a a a s s s s s a s a s a s s s a a a s s a s s s s s saa a s s a s a s s s a s a a s s a s s a s s s s s s a

99G9Sll9A9999999999999999999999999999999SQ99999S9999t~•iB999999999999999999!999SI
1 2 3 4 5 6 1 8 9 10 11 12 13 14 15 16 17 18 19 20 21 2Z 23 24 25 2S 2728 29 30 31 32 33 34 35 3637 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 $4 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 11 72 73 74 7576 7178 79 80

GLOBE NO. l STANnA~O FOR!.4 5081 , '

Columns 5, 6
Columns 7, 8
Columns 9, 10

Figure 6 - EXAMPLE OF LIB,c.Arul

00001751
62505163
20202020

location

Coded in GE/PAC :c;:~:ae:

B - 6

Call Program SQRT

GE/OAC 400Q

@ General Electric Company, 1965

May 1965 revised

Library Control No. YPG14M

This manual published by:

PROGRAJ."\fMING SUPPORT
GENERAL ELECTRIC COMPANY
PROCESS COMPUTER SECTION
P . 0. BOX 2 918 .
PHOENIX, ARIZONA 85002

FORTRAN
REFERENCE

MANUAL

For further information concerning the contents of Lhis manual,
contact the Programming Library at the above address.

PROCESS COMPUT!RS ----------------

GE/PAC 4000 FORTRAN REFERENCE MANUAL
Library Control No.YPG14M

REVISION CONTROL SHEET

APPROVED BY :_:_\;_·1_tl_· ._u.1_~~'-· __ :~_· ----DATE: ~~-1._9_6_5 -·--------
~
v

r. RECORD OF CHANGE DATE REVo RECORD OF CHANGE DATE

" 9; additional functions

---1-1---1-------+------
" 49; page numbers i

-1-~~~-;;.-----:--~----~~~+-~-----4r--~-11-~~~--~--~~----~~-----=-

'-;;J(luJ .u~~~

=~~
I _l
1 I I
I

.
l --l

I
-

~
f : I

~

I

_J~--~~--~--~~~~~-i-~~-+----;,------li'l----
II

I
I

CONTENTS

Foreword

Introduction to GE/PAC FORTRAN

Computation

Expressions

Computation Statements

Control Statements

Input-Output

Communication with MONITOR

Declarations

Diagnostics

Appendix A - Summary of Statements

1

5

10

14

15

23

33

35

46

49

FOREWORD

This is a reference manual for the GE/PAC FORTRAN language.
A previous familiarity, on the part of the reader, with
basic FORTRAN concepts is assumed. No attempt is made to
present the essentials of FORTRAN in a form usable for a
fundamentals course in FORTRAN language usage. The primary
purpose of this manual is to describe the specific state­
ments and capabilities of the GE/PAC FORTRAN language.

Additions have been made to the FORTRAN II language to
increase programming flexibility. In addition, they
provide the programmer with special statements which enable
him to produce a total real-time system.

Existing FORTRAN II programs can be compiled in GE/PAC
FORTRAN, provided that the specific restrictions noted
herein are not violated.

INTRODUCTION.TO GE/PAC FORTRAN

* A GE/PAC FORTRAN program is a sequence of state~ents,
each of whose characteristics is described in this manual. These
statements may be classified according to th'e following general
categories.

1. COMPUTATION statements which comprise the working body
of the program; e.g., numerical calculation and bit
manipulation.

2. CONTROL statements which specify the flow of control during
execution.

3. DECLARATION statements which supply information about the
program.

4. INPUT-OUTPUT statements which provide communication with
the system peripherals.

S. ~ AL LANGUAGE statements which may be included in
the program in order to ·~tailor" certain critical areas.

Program Preparation

The statements representing a FORTRAN program are first
entered on a coding form similar to that of Figure 1. The lines
of the coding form are divided into sixty-nine columns, each of
which may contain one character. Each statement is written on
a separate line; i= more than one line is required, as many as
four additional lines may be used as a "continuation"' of the
statement.

Columns 1 through 5 may be used for a statement number" Such
numbers may be used as labels to which other statements in the
program refer;

A non-zero, non-blank character in column 6 indicates that the
line is a continuation line.

The body of the statement itself is entered in columns 7 through
69 of the initial and any necessary continuation lines.

* - Revised 1/65 -1-

Column 70 must contain a "711 in all lines of all statements of
categories 1 through 4 above. Lines which contains a "6" in.
column 70 are of cat~gory five. All category five state­
ments are transmitted unchanged into the object program.

A 11 C11 in column l' indicates that the statement is a comment. Like
category 5 statements, comment statements are passed directly into
the object program at the point of encounter. The text of the comment
may be entered in columns 2 through 69 of the initial line and in
columns 7 through 69 of continuation lines.

A "B" in column 1 indicates the statement is of type "Boolean" and
that certain numerical calculations contained in the statement are
to be performed with logical rather than arithmetic operations.

Except for columns 1 and 6 and certain alpha.numeric fields, blanks
are ignored and may be used freely to increase legibility.

The first line of any program, irrespective of content, is assumed
to be the title line and contains the text (columns 1. through 39)
which will head pages of the output listing and the program identi­
fication number (columns 71 through 75) which will be transmitted
to all generated object lines~

The last line of a program must be an END statemento An END
statement may contain no other characters in columns 7 through 69
except "END11

•

Sample Program

It is de.sired to fit the best straight line approximation to a
population of data by the method of least squares. The following
program indicates how this would be done using FORTRAN. The general
formula for the approximation is of the form y = a+b.x. To solve
for a and b by the method of least squares we evaluate the formulas:

(~ y) 2
~2. x2 {2xyl, c~. x 2

a = (n) (~ .x2) (2 x)2

b
~n) ~:2:xy) ~~ x2 {~y)

(n) (2:.x2) (~ .x) 2

Line 1 is the TITLE CARD. It is also a FORTRAN comment card. The
Sample Program is illustrated in Figure 1 on the following page.

k - Revised 5/65 -2-

GUHRAL ELECTRIC
PROCESS COMPUTER SECTION

PHOENIX, ARIZONA

LOCATION"'

PC-506 (2-64)

TYPE
o !OP CODE)

(_

PROCESS LANGUAGE STATEA\ENT
CODING FORtJl

Project Name

Program Name

Page 3 of 4 9 Date

Programmer

PROCESSOR Kf'(~

GEN'L. 0- Delete

GE 312 3 - NOAP

2-PAP
GE412 4-COOL

Gf?PAC 6 -Assembler
.... l...!..!+ 7 - Fortran

B R A N C H C 0 N T R 0 L F I E L 0 K Proj. Prog. Sequence
n S T A T E M E N T

(OPERAND)

t-.~~~~.--~~~..-~~~-.-~~~-.-~~~~E n n
C =O ;tO + Any Case y

FIGURE 1

The dimension statement of line 2 declares X and Y to be one
dimensional arrays each containing 20 numbers. This declaration
sets aside two groups of 20 consecutive storag~ spaces for X and Y
and allows them to appear as subscripted vari~bles within the
program. ____ .. ---

Line 3 is an input statement that reads a record of previously
prepared data from tape under control of FORMAT statement 10
and places it in the consecutive locations oi the X and Y arrays.

Calculation actually begins with line 4 in which a variable called
SUM is set equal to zero. Similar operations are performed on
lines 5, 6, and 7.

Line 8 sets up a series of repetitive calculations in what is known
as a DO loop. It causes the calculations up to and including state­
ment 5 on line 12 to be performed 20 times. The subscripting
variable I is set to 1 for the first execution of the following four
instructions. and is d.ncreased by 1 for each subsequent execution.
In this manner it is possible to refer to successive values of X and
Y for calculation purposes.

In line 9 a value of X is added to SUM and the result is assigned to
SUM. A similar operation is done for Y on line 10.

In line 11 a value of X is squared, added to SUMSQX, and assigned
to SUMSQX.

In line 12 a value of X is multiplied by a value of Y, added to
SUMXY, and assigned to SUMXY.

After the previous four calculations have performed 20 times, control
passes from the DO loop to the statement on line 13·in which A is
calculated. Then B is calculated on line 14.

Line 15 is an output statement which causes the values of A and B
to be printed on-line according to FORMAT statement number 10
'(line 16). This FORMAT statement indicates two answers are to be
printed on the same line, each answer occupies 14 spaces (including
blanks) and there are 6 digits after the decimal point.

Line 17 is a control card indicatirig the END of the example.

-4-

COMPUTATION

Basic Elements

* The basic elements used as oper~nds in FORTRAN computations are
constants, variables, and functional references, all of which
represent numerical quantities·o In the FORTRAN language, these
elements are represented by symbols composed of character strings.

Quantities

Two types of numerical quantities are recognized by FORTRAN,
arithmetic and logical. Within the designation arithmetic, two
modes are recognized, real and integer. Integer quantities represent
integers within the range -8,388,608 (-223) through 8,388,607 (2 23-1)
inclusive. Real quantities represent real numbers and are represented
in the computer by floating-point configurations comprised of a 6 bit
exponent and a 17+sign bit mantissa. The approximate range of float­
ing quantities is -109 through -10-9, 'o and io-9 through 109.

·Within the designation logical, only octal digits (O through 7 inclusive)
are recognized. A maximum value of 77777777 is allowed.

Constants

Constants are numbers of arithmetic or logical type which appear in
the source program in explicit form.

Arithmetic integer constants are written as a string of decimal digits.

Examples:

0
1
1964

Logical integer constants are written as a string of octal digits.

Examples:
0
252525
77777777

In ~ither type, the integer represented must lie within the range
specified above for integer quantities.

* - Revised 1/65 -5-

*

Real constants are written as a string of decimal digits which
includes a decimal pointo

Examples~

oO
1.
2 0 71828

Real constants may be given a scale factor by appending an ·~E ..
followed by an integer constant, which indicates the power of ten
by which the number is to be multiplied. This scale factor may
be preceded by a u+u or ··-·· sign to indicate positive or negative
powers of ten. If no sign is given, it is assumed to be positive.

Examples:

LE-12
o00314159E+3

l9o64E+2

-12
means 10
means 3.14159
means 19640

As another alternative, a real constant may be expressed as an
integer constant followed by a scale factoro

Examples:

55E-3
132E45
69E4

means 0055 45 means 132 x 10
means 690000

In any representation the number must lie within the range described
above for floating quantitieso

Identifiers

Identifiers are used to name the variables, subprograms, and
dummy arguments which appe.ar in a FORTRAN program. An iden-
tifier is a string of letters and digits, the first of which
must be a letter. The stri.ng may be any desired length, but only
the first six characters wi.11 be usedo Identifiers may be declared
as integer or real, either explicitly or implicity. Implicit
definition depends upon the first letter of the identifiero If the
first letter is from the group (I~J~K~L~M.and N) then the iden­
tifier is of the class integer. If the first letter is not from
this group then it is of class realo Explicit definition of identifiers
is accomplished by the declarative statements REAL and __ I~~~~R.

Examples~

Real

Integer

RATE
DECREMENT

L307
M(i)NTH

* - Revised 1/65 -6-

v

Variables

Variables represent quantities which may assume many different
values and are referred to by name. They ·may be either scalar·
or array variables, depending on the natu~e of the quan~ity they
represent.

Scalar Variables

Scalar variables represent a single real or integer quantity and
are written as simple identifiers.

Examples':

DISTANCE
z
NJ

Array Variables

An array variable represents a single element within an array of
quantities. The array variable is denoted by the array name
followed by a subscript list enclosed in parentheses. The subscript
list contains one or more arithmetic expressions separated by commas.
Each expression corresponds to a subscript and the values of the
expressions determine which array element is to be referenced. The
number of subscripts in the list must equal the number of dimensions
specified for the array.

Examples:

A (4)
BETA (M+3)
JOHN (2*ITEM-13)

Subscripts

A subscript may be any expression of the type, arithmetic; however,
its significance is of integer mode and limited in range by the size
of the array dimension involved. Therefore, when necessary, the
value of any expressi~n used as a subscript is truncated to an integer
and reduced modulo 2 before being employed in reference.

=7=

Single-Bit Arrays

As the operands of certain GE/PAC 4000 FORTRAN ·stat~ments .
(SET BIT, RESET BIT, IF BIT), the individual bits in the binary
representations of scalar variables (not array variables) may be
referred to by appending a single subscript (in parentheses) to
the scalar identifier. The subscript is calculated as any other
~Ub$cript but refers to the bit position in the memory word and
consequently has meaning only in the range 0 through 23. The
appearance of a scalar identifier with a subscript is legal only
in SET BIT, RESET BIT and IF BIT statements.

Examples:

FLAGS (J)
TRIGRS (13)
INRI~ (XMINOF(J,K+2))

~ction References

A function is a subprogram which acts upon one or more quantities
called arguments to produce a single quantity called the function
value. Functional references are denoted by the identifier which
names the function, followed by an argument list enclosed in
parentheses~

identifier (argument, argument, o••) argument)

An argument may be an expression or an array identifier.

The ·function value may in turn act as an element whose mode is
determined by the mode of the identifiers naming it, or by use of
the appropriate form of the FUNCTION statements, and may, therefore,
be independent of the types and modes of its arguments.

Examples:

ATANF (ALPHA)
DATE (MONTH, DAY, YEAR)
GAMMA (N, Z*SQRTF(ZETA))

Reserved Functions

Certain commonly and frequently used arithmetic functions are
provided as part of the system library and will be incorporated in
the compiled program by the compiler through the use of a "LIB"

* - Revised 1/65 ""8-

~---~---

operation. The names of these functions must, therefore, be
"reserved" and limited to use as subprogram identifiers for the
library subprograms to which they refer.

The following table lists these names together with information
about the functions themselves.

Modes
Number !=integer R=real

of ·~=-~---..,~-.-~~~~ Function Subprogram
Identifier Function Args Value Arg(s)

ATANF Trigonometric Arctangent
SINF Trigonometric Sine
COSF Trigonometric Cosine
SQRTF Square Root

f-- LOGF Log base e ____ _
EXPF ______ - exponential -(~--to _a ___ powerf ____ ----·- --
ABSF absolute value
XABSF absolute value
SINHF Hyperbolic sine

t---~~~~---r- ~yp~~-!>-~_l i:_~ __ c_~3 i£1~-------·------ ________ ---·
TANHF Hyperbolic tangent
MODF arg1 - [arg1/arg2J arg2 (See Note)
XMODF arg1 modulo arg2 SIGNF Signum (arg2) *arg1

--

1
1
1
1
1
1
1
1
1
1
1
2
2
2

R
R
R
R
R

---- ----·- -- -

R
R
I
R
R

-· - -
R
R
I .
R
I

R
R
R
R
R

~ .. 4 -- ~

R
R_
I
R
R
R
R_
I
R

I

-- -

r---~~I~NF _____ -~ ig?-~_IE- ___ (_a~g2) ·karg1 1-- 2
DIMF (arg1 -arg2) if arg1 > arg

2
; else 0 --- ---·---2··--· - --i----R· --- _____ R ___ _

XDIMF (arg1 -arg2) if arg1 > arg
2

; else 0 2
MAXOF Maximum value of args. . Var o

I
R

I
I

MAXlF Maximum value of args.. Var. R R
XMAXOF Maximum value of args.. Varo I I

·-X}{AxI:ii'" Maximum vafue--oTa-rgs-:---- ----- ·--- ----· . Var 0 --- -- ··i---- R
MINOF Minimum value of args. ·.-v-a.ro ___ R ___ ·-I-
MINlF Minimum value of args.. Var. R R
XMINOF Minimum value of args. Var. I I
XMINlF Minimum value of -~1:~~-~ ____ Var. I R
INTF - i -- r---R-- --· --+--· R---
XINTF Integer part (truncation) 1 , I · R
D~ 1 ~

FLOATF Float an integer 1 R

NOTE - [J indicate "greatest integer in"

* - Revised 5/65 -9-

R ...,

I

EXPRESSIONS

An expression is a sequence of elements separated by operational
symbols and/or parentheses in accordance with conventional
mathematical notation. an.d certain FORTRAN restrictions, Two
types of expressions are recognized, ari.thm.eti.c and logical.

Formation of Expressions

An expression has a single numeric value equal to the result of
the calculation specified by the numeric quantities and arithmetic
or logical operations comprising it., The arithmetic operational
symbols are"+", u.,.rr:i "'*", "I"~ and "'k*~\ denoting respectively
addition, subtraction, multiplication, division., and exponentiation~

A logical or ".Boolean." expression is formed in the- same----fashion---as
an arithmetic expression except that the operational symbols
recognized are "+11

, "/" 1 "* 0
, and",,.", denoting logical sum ("or"),

logical difference ("exclusive or"), logical product ("and") and
logical complement ("not") respectively., An expression is declared
Boolean by the placement of a "B" in column 1 of the first line of the
FORTRAN statement in which it occursr In any statemen~ declared
Boolean, all operational symbols in expressions are~interpreted in
the logical sense except in those expressions used as subscripts to
arrays (subscript expressi.ons are universally of type arithmetic ...
integer)~ In Boolean expressions, all constants are interpreted as
type logical-integer and appear as octal integers. All other
representations are illegal.

An expression may be as simple as a single element, i~e., a
constant, variable, or function reference.

Examples:

3,,142
OMEGA (T)
COSF (DELTA)

Compound expressions may be formed by using operation symbols
to combine basic elements. ·/

Examples:

Z+2
SUMX/N
SQRTF(B**2·4*A*C)

An expression may be enclosed in parentheses and considered
as a basic element.

Examples:

(Z-3)/LAMBDA
(ALEPH)
COSF (SINF(2*PI*R*T))

Any expression may be preceded by a "+" or "-" sign.

Examples:

+TEN
... (A*B)
-SINF (+ALPHA)

With the exception of logical complement, no two operational
symbols may appear in sequence" The expression:

X*-Y

is illegal in arithmetic expressions, but is allowed in Boolean
~xpressions. The use of parentheses, yields the correct arithmetic
form:

X*(-Y)

~dherence to the above rules will allow the formation of all
permissible expressions.

If the precedence of arithmetic operations is not stated explicitly
by parentheses, it is implicitly interpreted to be as follows, in
order of decreasing precedence:

Symbol

*"''(
* and I
+and -

Operation

exponentiation
multiplication and division
addition and subtraction

In Boolean expressions, the implied precedence in decreasing order
is:

Symbol
k

Operation

logical complement
7(logica 1 product
I logical difference
+ logical sum

·· 11-

For example, the expression

U*V+w/X**Y+Z

is taken to be

(U*V)+(W I (X**Y))+Z

Since sequences of operations of equal precedence can result in
ambiguities, they are resolved by grouping from the left. Thus

A**B**C and
X/Y/Z

are interpreted as

(A**B)**C ancf
(X/Y)/Z

respectively.

Evaluation of Expressions

Except for Boolean expressions, which are modeless, the numerical
value of any expression may be of integer or real mode, as
determined by the modes of its elements. Tpere are three possible
combinations: a 11 elements are, integer (integer expression); a 11
elements are real. (real expression); or both real and integer elements
occur (mixed expression). All combinations are permissible in
GE/PAC 4000 FORTRAN~·

Integer Expressions

An integer expression is evaluated using· integer arithmetic through·
·out to yield an integer result. Fractional parts arising in division
are truncated, not rounded. For example, 5/3 gives l, 4/7 gives 0.

Examples:

L .
I*2+m
(J,-3)*MAN+INDEX

-· l2e.

Real Expressions

A real expression is evaluated using floating-p·oint arithmetic
throughout to yield a real result.

Examples:

(Y(N+l)+Y(N•l))/2.*DX)
COSF{ALPHA+BETA)

Mixed Expressions

Mixed expressions are evaluated by converting all integer variables
to real variables and then treating the expression as if it were real.
The result is given as a real quantity.

Examples:

Z*2*(I+L)
A**J+J**C
R(K+2)*ATANF(Xl)

Boolean Expressions

Boolean expressions are evaluated using full memory word logical
operations upon the elements without regard to mode, All
c~nstants encountered are interpreted in octal. Array elements
may occur, the subscripts of which will be interpreted as ari~hmetic­
integer expressions. All other elements (e.g., function values,
expression values) are treated as modeless full-word binary con­
figurations.

Examples:

WORD*MASKI+FIELD
I*77 /COMUTR
A(2~l-S)*(·B(2*I)/·C(I))

-13 ..

. ----=----- -

COMPUTATION STATEMENTS

Assignment Statement

The assignment statement specifies an expression which is to be
evaluated, and a variable called the statement variable to which
the expression value is to be ass ign~d,.

Form: variable = expression

Note that the "=" sign means replacement, not equality. The first
example below is not a mathematical equation but a valid assignment
statement meaning "take the value of Z, cube it and assign the result
to X."

Examples:

X = Z*~\-3

J = K*(L .. 5)
A(X) • LOGF (1+2*X)

The value of the expression in an assignment statemen-t--Is-maoe to
agree with the mode of the statement variable before the replacement
is performed. If the statement variable is real, an integer
expression value will be converted prior to replacement, and
conversely~ For example, in the statement ··

A a 3*J+K

the integer value of the expression is conve.rted to floating-point
before assignme~t to A.

Bit Assignment Statements

.The bit assignment statements, SET BIT and RESET BIT, provide
for the assignment of values (l or 0) to the individual bits of
scalar variableso

Form: SET BIT scalar variable (subscript),~ •• ,scalar
variable (subscript)

RESET BIT scalar variable (subscript),, •• , scalar
variable (subscript)

The individual bits referred to in the list following the SET BIT or
.RESET BIT preamble are "set" (set = l) or "reset" (set = 0) as
indicated.

Ex.arnples:

SET BIT JOE (2~1-1)~ ~AM(23),FLAG(PERIF(J))
RESET BIT X(3) iFlAG(PERH'(J·:-1)) .,LOC(O)

CONTROL STATEMENTS

In a FORTRAN program, control normally passes sequentially from
one statement to the next in the order in which they are presented
to the compiler. Control statements allow the programmer to alter

, this normal program flow. To implement this, FORTRAN source
statements may be labeled with numbers which are referred to by
control statements~

Statement Nu~

A statement number consists of an unsigned integer constant of up
to five digits. Leading zeros are ignored. The value of the integer
must be greater than zero.

Although statement numbers appear in the source program as
integers they must not be confused with numerical quantities~
They represent a distinct type of quantity in a FORTRAN program
known as a statement number, and are used for ... the identification
of addresses within the object program.

Since statement numbers are used for identification they must be
uniquely defined; i.e., no two statements may have the same number.
No order or sequence is implied by statement number magnitudes.
Non~referenced statements need not be numbered, in fact it is waste­
ful of compiler storage to do so unnecessarily.

·unconditional GO TO Statement

Form: GO TO n

when n is a statement number&

This statement transfers control to the statement numbered n .. "

Example~

GO TO 13

Computed GO TO Statement

The computed GO TO statement transfers control to one of a group
of statements; the particular statement chosen is determined by the
computed value of an expression.

-15-

-~-

Form: GO TO (n 1 ,n2 ,n3 ,.~.,nk)' expression

where n1,n2 ,n3, •• v,nk are statement numbers. Control will be
transferrea to statement number n1 ,n2 ,n3 , ••• ,nk depending on
whether the expression has the vaiue 1,2,3, ••• , or k, respectively.

Example:

GO TO (37,24,36), SIZE

will transfer control to statement number 24 if 'SIZE has the value
2. The value of the expression will be truncated if required.
Expression values outside the range 1,2,3, ••• ,k will cause a run­
time error indication.

Example:

GO TO (1~2,3,27), Y+2

will transfer control to statement number 27 if Y has the value
2.6183, but a value of 3.142 for Y will cause an error indication.

Assigned GO TO Statement

Form: GO TO variable or
GO TO variable, (n1,n2 ,n3,.,.,nk)

This statement transfers control to the statement whose number was
last assigned to the variable by an ASSIGN statement. The variable
must appear in a previously executed ASSIGN statement, or a runtime
error indication will result.

Examples:

GO TO JAIL
GO TO ERROR

The variable of an assigned GO TO statement is a control variable
and has a statement number rather than a numeric quantity as its
value. A control variable may be shared between a program and its
subprograms as may any other variable.

The (n1,n2,n3 , •. ~,nk) is a parenthetical statement number list of
footnofe value only and may be included or omitted at the option of
the user.

·-16-

ASSIGN Statement

Form: ASSIGN integer TO variable

This statement sets the value of the variable to be used by a
subsequent assigned GO TO statement. The integer is the number
of the statement to which control will be transferred by the assigned
GO TO statement.

Examples:

ASSIGN 37 TO JAIL
ASSIGN 3 TO ERROR

This FORTRAN capability is very useful in transferring to a sequence
of statements that is used as a subroutine by other parts of the
program. For example, the statement

ASSIGN 13 TO EXIT
GO TO 44

will transfer control to the sequence beginning at 44. If the
sequence ends with

GO TO EXIT

control will be transferred back to statement 13.

IF Statement

Form: IF (expression) n1,n2,n3

where n1,n2,n3 are statement numbers. This statement transfers
control to ~tatement n

1
,n2 , or n

3
depending on whether the value of

the expression is less than, equal to, or greater than .zero
respectively.

Examples:

IF(Y(I)-LIMIT) 6, 12, 18
IF(SUM) 3, 4, 5

In the first example above control is transferred to statement number
6 if Y(I)<LIMIT, to statement 12 if Y(I)=LIMIT, and to statement 18
if Y('I) >LIMIT·,

IF BIT Statement

Form: IF BIT (scalar variable(subscript))n1,n2

where n and n
2

are statement numbers. This statement transfers
control1to the statement numbered n

1
if the bit of the variable

referred to is a "l" and to statement n2 if it is a "O".

Examples:

IF BIT (FLAG(NOFAIL)) 14, 13
IF BIT (X(23)) 6, 7
IF BIT (J(O)) 9, 10

The second and third examples accomplish negative-positive and
odd-even tests respectively.

IF SENSE SWITCH Statement

Form: IF(SENSE SWITCH expression) n1,n2

where n1 and n2 are statement numbers.

This statement provides a test for the individual status of each of
the 24 switches on the GE/PAC 4000 console, These switches are
numbered from 23 through O, going from left to right. The expression
may be of either mode but will be converted to arithmetic-integer
in use and has meaning only in the range 0 through 23. If the console
switch specified by the value of the expression is in the down (•l)
position at the time of execution, control is transferred to state­
ment. n1 ; if it is in the up (==O) position, control transfers to state­
ment n

2
,

Examples:

IF (SENSE SWITCH 7) 102, 103
IF (SENSE SWITCH IOREDY) 6, 7

·IF ACCUMULATOR OVERFLOW Statement

Form: IF ACCUMULATOR OVERFLOW n
1

, n2

where n1 and n2 are statement numbers.

This statement provides a test of the GE/PAC 4000 overflow trigger.
Control passes to statement n

1
if the overflow trigger is ·"on" and

•18-

,:i!

*

to n2 if the overflow trigger is "off" at the time of execution. In
either case, execution of the test resets the overflow_trigger to
the "off" state.

Example:

IF ACCUMULATOR OVERFLOW 23, 31

IF I/O Statements

A series of IF statements has been provided for testing the status
of individual I/O devices. These statements are described fully
in the INPUT-OUTPUT section of this manual.

DO Statement

The DO statement allows a series of statements to be executed
repeatedly under the control of a variable whose value changes
between repetitions.

Forms: DO n integer scalar variable =
DO n integer scalar variable =
expression

3

expression1 , expression2
expression1 , expression2 ,

where n is a statement number and expression < expression2 at object
time. If, as in the first form, expression j is not stated, it is assumed
to have the value, 1.

The DO statement causes the following statements up to and including
statement n to be executed repeatedly. This group of statements is
called the range of the DO statement. The scalar variable of the DO
statement is called the index or induction variable and must be of
integer mode. The values of expression1 , expression2 , and expression3
are called respectively the initial, limit and increment values of the
indexo Each may be of either mode but will be converted to ar1thmetic­
integer mode before useo

The initial execution of all statements within the range is always
performed with the initial value assigned to the index, regardless
of the value of the limit and increment. After each execution of the
range the increment is added to the value of the index and the result
compared with the limit. If the result has not passed the limit,
the statements within the range are again executed using the new value
of the index.

* - Revised 1/65 -19-

*

After the last execution program control passes to the statement
inunediately following statement n. Exit from the range may also
be accomplished by a transfer from within the range"of the DO
statement. The value of the index is retained for computation
purposes on both normal and abnormal exits from the DO loop~

The range of a DO statement may include other DO statements
provided that the range of an "inside" DO loop is completely
contained within the range of any "outside" DO loop. In other
words, the range of two DO statements may not partially intersect
each other. Only tota 1 intersection or no intersect-i-on--i-s-a-1-1-owed--;- · - ________.---

The index of a DO statement is treated as any other scalar variable.
Its value may be used for calculation outside the range of the DO
statement as well as within the ranges. In addition, the values of
the limit, increment, and index may be altered within the rang~ of
the DO statement,

It is also permissible to transfer into the range of a DO statement
from outside the range,

Examples:

DO 37 I= 3, 12
DO 15 INDEX = FIRST, LAST,:> INCREMENT

As an example of the use of the DO statement consider the following
sequence which will sum all the numbers within a suitably specified
array.

SUM = 0.
DO 3 I=l,N

3 SUM = SUM+X(I)

Q.QliIINUE Statement

Form: CONTINUE

The rules of FORTRAN state that the range of a DO statement
cannot end with a control transfer statement. In order to gain this
capability without violation of the rule, a dummy statement,
CONTINUE, is provided that may be used to end the range of a DO,
or as the target point for transfer statements within the range of a
DO where repetition of all or part of the range is conditional,
Consider the following statement sequence:

·-k ~ Revised 1/65 -20-

. ·

DO 3 !=START, STOP

IF (ALPHA) 3, 17, 51
3 CONTINUE

A negative value of ALPHA will initiate another execution of the
range. The CONTINUE statement provides a target address for
the IF statement and ends the range of the DO statement. The
following sequence is illegal and must not be used since ·the DO

_loop ends with a conditional transfer.

2 DO ~ !•START, STOP

3 IF (ALPHA) 2, 17, 51

CALL Statement

Forms: CALL identifier
CALL identifier (argument, argument, ••• , argument)

.This statement is used to call (transfer control to) a subroutine
subprogram. The identifer is the name of the subroutine •

The arguments, as in the case of functions, may be expressions
or array identifiers. Unlike a function, however, a subroutine may
have more than one result and may use one or more of· its arguments
to return these results to the calling program, The first form of the
CALL statement is used where a subroutine requires no arguments.

Examples:

CALL DUMP
CALL MATMPY (X (I, J), Y (J, K))
CALL SEARCH (MTABLE, RALPH)

The-mode of the subroutine name has bearing on the mode(s) of its
results.

RETURN Statement

Form: RETURN

This statement returns control fr~m an external subprogram to the
calling program. Therefore, the last statement executed in a

-21-

-~--

*

subprogram will be a RETURN statement, though it need not be

1
physically the last statement within the programo "Any number
of RETURN statements may be used and they may occur at any point
within the subprogram at which execution is to be terminatedo A
RETURN statement is necessary to return control whether a subpro­
gram is explicitly referred to in a CALL statement, or implicitly
referred to by a functional reference.

STOP statement

Form: STOP

Since, in a process control application, it is not permissible to
stop the computer by program, this statement.his interpreted as
an instruction to MONITOR to stop operating this programo It
therefore generates the calling sequence which would' be ~ssociated
with the statement:

TURN PROGRAM OFF,O,l,O,O,O

This means that the next time the program is turned on, it will
be entered at the beginning with all flip-flops reset except the
PAIF, which is set.

STOP must appear by itself on a card.

END Statement

Form~ END

The END statement is used to communicate to the compiler the
logical end of a program or sub-programo It causes the compiler
to finish the compilation by reserving memory locations for all
variables named, etco

END must appear by itself on a cardo

* - Revised 5/65 -22-

*

INPUT-OUTPUT

Input-Output Statements

, Input-output statements call for the transmission of information
records between computer memory and various inp~t or output units
which are attached to the computer. In general, an input-output
statement provides:

1. Specification of the operation required; whether input or output
and the particular unit involved.

2. Reference to a data format specifying the conversions required
between internal and external data forms. This reference is to
the number of a FORMAT statemento

3. A iist of the variables whose values are to be transmitted. The
list order of the variables corresponds exactly to the order in
which the information exits in the input medium or will exist in
the output medium. For example, the statement

PRINT 20, ALEPH, BETH, GIMEL

specifies that the values of ALEPH, BETH and GIMEL are to be
printed on line according to the format specified in the FORMAT
statement numbered 20.

Input-Output Records

All information appearing in external media is grouped into records.
The amount of information contained in one record and the manner in
which records are separated depends upon the medium. For punched
~ards, each card constitutes one record; for punched paper tape, a
record consists of 80 or less frames, followed by a carriage return;
in printing, a record is one line of 120 or less characters; etc.
The actual amount of information contained in each record is specified
by the FORMAT statement.

Each execution of an input or output statement initiates the trans­
mission of a new data record. Therefore, the statement

READ 12, UN, DEUX, TROIS

is not necessarily equivalent to the statements,

READ 12, UN
READ 12, DEUX
READ 12, TROIS

* - Revised 1/65 -23-

v
since in the latter example at least three records are required,
whereas in the former example one, two, three or even more
records may be required depending on the FORMAT statement
numbered 12.

If an input~output statement requests less than a full record of
information, the unrequested portion of the record is lost and .
cannot be recovered by another input-output statement.

If an input-output statement requests more than one record of
information, successive records are transmitted until the data
request is satisfied~

Input-Output Lists

The list of variables in an input-output statement specifies the order
of transmission of the variable values, During input, new values of
listed variables may be used as subscripts or in control expressions
for variables appearing later in the list. For example,

READ 4, J, A(J), B(J+l)

reads in a new value of J and uses it in the subscripts for A and B,

The transmission of array variables may be controlled by indexing
similar to that used in a DO statement. A series of subscripted
array variables ~nd/or scalar variables followed by an index control
may be enclosed in parentheses and will act as a single element of
the ~nput-output list~ For example,

READ 7 , (X (I) , I = 1, 4)

is equivalent to

READ 7 , x: (1) , X (2) , X (3) , X (4) ;

and

PRINT 8, (X(I), Y(I), Q, I = 1,2)

is ~qui va.lent to

PRINT 8, X(l), Y(l), Q, X(2), Y(2), Q.

As in the DO statement, the initial, limit, and increment values of
the index may be given as expressions; e.g.,

PRINT 2, K, (ARRAY(M), M = l,J,K).
---------·

-24-

The indexing may also be compounded as in the following example,

PUNCH 3, ((TIME(K,L), K • 1,4), L • i,8).

This statement outputs elements of the array TIME in the order - -----

TIME (1, 1), TIME (2, l)~.vTIME (4, 1), TIME (1, 2) •••
TIME (4, 3), etc~

If an entire array is to be transmitted~ the indexing values may be
omitted and only the array identifier written. The array is trans­
mitted as in the previous example, in order of increasing subscripts
with the first subscript varying most rapidly. Therefore, the
previous example could be replaced by

PUNCH 3, TIME

READ Statemen~

Forms: READ n~ list
READ (expression) n, list

where n is a FORMAT statement number.

This statement causes information to be read from the input device
identified by the value of the expression, converted to internal binary
representation according to FORMAT statement n, and stored as
values of the variables specified by the input~output list. If no
expression is entered (first form), the device specified will be the
one corresponding to the value 0 . -- ~-

PRINT Statement

Forms: PRINT n, list
PRINT (expression) n, list

where n is a FORMAT statement number,

This statement causes information contained in memory as values of
the variable specified by the input-output list to be converted to BCD
representations according to FORMAT statement n and printed on the
output device specified by the value of the expression.

As with READ> absence of the expression and its enclosing parentheses
will produce a reference to device number O~

-2.5-

PUNCH Statement

Forms: PUNCH n, list
PUNCH (expression) n, list

where n is a FORMAT statement number#

This statement accomplishes exactly the same function as the PRINT
statement and in an identical manner, except that the information to
be output will be punched rather than printed.

Input-Output Tests

Prior to actual execution of I/O operations, it may pe d~sirable ~o
test the status of the ~'about to be -employe'd" I{O 'device.

/ 'Fore. this
purpose a series of IF statements of the form:

IF I/O type
IF I/O type

where n
1

, n2 , n3 are statement numbers, has been provided to
accomplish fhe desired testing.

The six specific forms recognized are:

IF-READ nl,n2,n3
IF READ (expression) nl'n2,n3 IF PRINT nl,n2,n3.
IF PRINT (expression) n1~n2 ,n3 IF PUNCH nl ,n2,n3
IF PUNCH (expression) nl;n2,n3

As with the corresponding I/O statement, the device number is
indicated by the value of the expression with absence of the expression­
signifying device number O.

n1 is the statement number of the first statement in a,routine to which
control is to pass when the tested device is "busy", or whose "table"
is full..

n 2 is the statement number of the beginning of a "faulty" or 1'bad 11 or
"error condition" routine for the tested device.

n3 is the statement number of the starting statement in an ''out~of­
service" routine.

If no such impediments are found to exist at the time of execution by
the testing routines in the execution system, control passes to the
next sequential statement following the IF I/O statement.

-26-
\.,_

fORMAT Stat~

All input or output of BCD information requires the use of a FORMAT
statement specifying the external format of the data and the types of
conversions to be performed. Any FORMAT statement may be used
with any input-output medium~ and since they are not executed, they
may appear anyplace in the program,

Form: FORMAT (s1,s2, ..• ,Sk)

where S is· a data field specification.

Numerical Fields

Four different types of numerical data co1wergion are available:

l. Type E

Interna 1 Form - Binary floating-point
External Form - Decima 1 floating· .. point

2, Type F

Internal Form - Binary floating-point
External Form - Decimal fixed-point

3. .Type I

Internal Form - Binary integer
External Form - Decimal integer

4. Type 0

Internal Form - Binary integer
External Form - Octal integer

The four types of conversions are specified by the following- general
forms:

1. Ew.d
2. Fw.d
3. Iw
4. Ow

The letter E, F, I, or 0 designates the conversion type; w is an
integer specifying the data field width with·a·rnaximum of 630 And
d is an integer specifying the number of decimal places to the right
of the decimal point. The value of d must be ~15. For E type output
conversion> w should exceed d by at least seven.
For example, the statement:

FORMAT (I3, Fl0.4, El5 • .5, 08)

* - Revised 1/65 -27-

\j

could be used to print th~ line

37 -14.2639 0.46972E 3 37777

on the output listing.

Note that plus signs are not printed.

Note also that in type F conversion there is a decimal point but no
exponent, whereas type E conversion has an exponent. On output, the
exponent always has the form shown, i.e., an "E" followed by a signed
two digit integer. On input, however, the "E" or the sign or the entire
exponent may be omitted. The following are all valid ElS.6 data fields
for input:

.327409+2

.964718E4

.003276-4
305976.

The field width w includes all of the characters (decimal point, signs,
blanks, etc.) which comprise the number. If a number is too long for
its specified data field, the excess characters are lost. Since numbers
are right justified within their fields the digits lost are those with
the most significance. The spacing of output data for legibility must
be considered when specifying a data field width.

During input, the appearance of a decimal point "." in an "E" or "F"
· data field specification overrides the "d" specification of the field.
In the absence of an explicit decimal point, the point is positioned d
places from the right of the field not counting the exponent, if one is
present. For example, a number appearing externally as 314159E-l with
a data field specification of El2.5 will be interpreted as 3.14159E-1.

In addition, a scale factor, indicated by a signed or unsigned decimal
integer followed by the letter, "P", may be imployed with E and F fields.
If used with an "F" field, it will achieve multiplication of floating
quantities by powers. of 10 before conversion on output or after conversion
on input. If used with a "E" field, it will be ignored on input and will
cause P whole-number digits to precede the decimal point and the exponent
to be decreased by P. The P-factor must not be negative for use with E­
fields. The maximum absolute value must be< 9. AP-factor holds -for all
succeeding E and F fields in the FORMAT statement. To end its influence,
a P-factor of zero must be stated.

Examples:
6PE9.3

2P4f7.2

Suppose that the above examples are employed as follows:

PRINT 7, X, (PRCNT(I), I= 1,4)
7 FORM.AT (PEl0.3, 2P4F7.2)

-28-

Assume further that the values of the variables concerned are:

x
'PRCNT (1)
PRCNT · (2)
PRCNT (3)
PRCNT (4)

6,494,650
.012345
.596938
.856062

1. 56032

The resulting printed line would app~ar ~§;

O. 649E .7 L23 59.69

Alphanumeric Fields

85.61

Alphanumeric d4ta can be transmitted in much the same ananner as
numeric data through use of the form Aw wher~ A t$ a control ~harac•
ter a.nd w is the number of charac.ters in the fi~ld and has a tl'l~ximum
of 63. The alphanumeric characters are transmitted as the value of a
'Variable in an input .. ·output list. The variable may be of eithe·r mode.
For 1 exampl~,

READ 17, V
17 FORMAT (A3)

will cause three characters to be read an4 plac~d i~ ~emory a~ tpe
value of the variable V.

If the format ·specification had indicat~d ~ f~~ld wtdth gr~~t~r: than
4, the additional characters.will be grp~pe4. in fours ~nd p1§g~q in
V + 1, V + 2, ~c- etc., until the e~t.ire ti@ld w~dtq ts sati~fied.
If the last such group contains less thai4 characters, they will be
left .. jus·tified.

Alphanumeric Format Fields

An alphanumeric format field may be specified by· p·receding the alpha­
numeric string with the specification nH, where n is the number of
characters in the string including blanks and h~s a maximum value

· of 120. For instance, the following sequence:

PRINT•. 3
3 .. FORMAT (9H NOT DONE)

will print the words NOT DONE on line. The n ~haracters of the. data .
field are ~Qt. transmitted as the value of a variable~ but are-stored in
the memory space allotted for the FORMAT statement ·itself.. The n
characters may be replaced by n other characters by means of an
input statement which references· the FORMAT stateme.nt~ , The value of n
must be S. 120.
An input~output list is not required for the transmissi.on of ·this type
of field. During input, n characters are extracted from the input
record and used to replace the n characters within ·the specification.
During output the n characters specified or the n characters which
have replaced them become part ·of the output record~-- -For-e.xample-,--- -~
the sequence -

Revised 1/65 -29-

*

READ .3
3 FORMAT (9H NOT DONE)

PRINT 3

will print the words ALL DONE on line provide.d ALL DONE appears in
positions 1-9 of the input record being processed-by -the----READ--3--·
statemento

Alphanumeric Notes

Alphanumeric information can also be placed in an output line by
use of a special feature, ca.lled a "note". -For instance, the. words
"NOT DONE" as shown in the. previous example could be inserted· by:

PRINT 3
3 FORMAT ($ NOT DONE$)

__ ___,=---

The number of characters between the two "$" symbols would be counted
and the same information would be generated as in the previous example;
Note that the "$11 symbol cannot. be a member of a note, since it signals
termination of the noteo

Blank or Skip Fields

Blanks may be introduced into an output record, or characters
skipped on an input record by use. of the specification nX. The
control character is X and n is the number of blanks or characters
skipped with a maximum value of 31. For example, the statement:

FORMAT (SH JOB I.3, lOX, 4HOONE)

may be used to output the line-

JO:S .397 DONE

,with 10 blanks separating the two quantities.

Mixed Fields

An alphanumeric format field may be placed among the other fields of
the FORMAT statement to enhance the readability of output listings.
For example~

FORMAT (SH FORCE = F9o4, 5H LBSo)

may be used to print ...

FORCE =· 2 9 7. 6.3 74 L:BS

Note that the separating comma may be omitted after an alphanumeric
format field.

Repetition of Field Specifications

Repetition of a field specification may be specified by preceding the
* control character E, F~ I, A, or 0 by an unsigned integer less than or

equal to seven giving the number of repetitions desired. The specified
number of repetitions must not be zero. For example:

* - Revised 5/65 ..,30 ...

FORMAT (3I2, 2Fl2. 6 ,' 204)

is equivalent to

FORMAT (12, 12, 12, Fl2.6, Fl2.6,' 04, 04)

Repetition of Groups

A group of field specifications may be repeated by enclosing the
group within parentheses and preceding the whol~ group with the
number of desired repetitions, For example,

FORMAT (3I2, 2(Fl2.4, 3E8.2})

is equivalent to

FORMAT (3I2, Fl2.4, 3E8.2, Fl2.4, 3E8.2),

Alphanumeric fields may also be repeated in this manner, ~

PRINT 7
7 FORMAT (3(5H BANG)) or '

will cause the following on line output,

BANG BANG BANG

Five levels of repeated groups are allowed.

Multiple Record Formats

n
u

PRINT D
FORMAT (3($ BANG$))

In the case where a group of successive input-output records have
different field specifications, a slash, "/", is used to separate those
fiel-d specifications. For example, the statement

FORMAT (408/13, 3Fl2e8/12A3)

is equivalent to

FORMAT (408)

for the first record,

FORMAT· {13, 3Fl2. 8)

for the second record, and

FORMAT {12A3)

for the third record.

;': - Revised 1/65 ·31-

The comma separating data field specifications may be omitted
when a slash is used. Blank records may be written on output or
records skipped on input by using consecutive slashes. On printed
output a slas~ always causaY a skip to a new line after completing
the record. Both the slash and the closing parenthesis at the end
of format indicate the termination of a record. If an input-output
statement list indicates that data transmission is to continue after
the closing parenthesis of a format statement is reached, the format
is repeated from the last left parenthesis.

The.statement

FORMAT (2El2*6, 2(3F7.4, 208, 17))

is equivalent to

FORMAT (2El2 .6, 3F7. 4, 208, 17, 3F7.4, 208, 17)

for the first record, ')nd

FORMAT (3F7.4, 208, I 7)

for all succeeding records.

The total of all field widths specified for a .record is the length of
that record. If the record length. specified is greater-than--the-- -----------=-----
maximum allowable on a particular input-output device, the excess
characters are lost.

Drum Trans fer Statements ,

Two statements, READ DRUM (drum to core) and WRITE DRUM
(core to drum), provide a method for transferring blocks of
information (programs and data) between core memory, where
execution takes place, and drum memory, where large amounts of
bulk storage are available. Each statement calls for the transfer
of a single continguous block and, therefore, no input-output
list is employed. ·

Forms:

where

READ DRUM (symbolic1), (symbolic
2
), (symbolic

3
)

WRITE DRUM (symbolic1), (symbolic2), (symbolic3)

Symbolic1 is the initial drum address in PAL symbolics.
Symbolic2 is the number of words to be transferred in
PAL symbo lies •
Symbolic3 is the initial core address in PAL sy~b~,lics'.

-32-

*

COMMUNICATION WITH REAL-TIME MONITOR

In order that programs may undergo dynamic scheduling and relocation
as components of a real-time complex, certain statements which com­
municate initiation, termination, delay and segmentation of the
components to the overall control or MONITOR routine become neces­
sary. Description of a series of such statements provided within
GE/PAC FORTRAN follows.

TURN PROGRAM ON Statement

Form: TURN PR¢GRAM n ¢N, expression

where n is an integer constant indicating the "program number"
by which the program to be "turned on" is known to the MONITOR ..
The value of the expression specifies the time of next execution
of the "turn on" program with a 0 value indicating immediate
execution.

Example:

TURN PROGRAM 21 ON, NOW + 1000

TURN PROGRAM OFF Statement

Form: TURN PROGRAM OFF, m1 , m
2

, m3 , Return, m4

This statement turns the current, program off, i.e., places it in
the inactive state

Example:

* TURN PROGRAM OFF, 0, 1, 0, NXENTY ~ 0

* m1 , m2 , m3 , m
4

, and Return are PAL symbolic fields interpreted as
follows:

ml: 1 = set ¢VRF

m2: 1 = set PAIF

m3: 1 = set TSTF

m4: 1 = set TMFF to TRAP

Return: Symbolic location for ECP entry
at time of next "turn on"

(TMFF-Memory Fence Flip-Flop)

DELAY PROGRAM Statement

Form: DELAY PROGRAM, m
1

, m2

* - Revised 5/65 -33-

*

This statement places the current program in an inactive state for
a specified length of time.

m1 and m2 are PAL symbolic fields indicating the following:

l = program's area of occupancy
is now availableo

0 = area remains unavailable

m
2

: indicates length of delay

SEGMENT Statement

Form: SEGMENT n, m
1

, m
2

, m
3

, NXENTY, m4

where n is the program number of the following "segment" to be
as.signed and recognized by MONITOR (as in TURN PROGRAM ON) .

Aside from its declarative properties (see section of this manual
titled DECLARATION), SEGMENT n is equivalent to the following
statement sequence.

TURN PROGRAM n ON, .0
TURN PROGRAM OFF, m

1
, m

2
, m

3
, NXENTY, m

4 END

m
1

, m
2

, m
3

, m4 , and NXENTY are as defined in TURN PROGRAM OFFo

* - Revised 5/65 -34-

DECLARATIONS

A declaration describes certain properties of a FORTRAN program,
as opposed, to the imperative assignment, control or input-;outpu't
stat'eme11i:s. ·severs 1 FORTRAN statements are reserved for the ·
purpose of supplying the system with declarative information.
These statements are primarily concerned with the interpretation
of identifiers occurring in the source program and with memory
allocation in the object program.

Classification of Identifiers

Each identifier in a source program is classified in accordance with
the FORTRAN element it identifies. Five main classifications are
recognized.

1. Scalar identifiers
2. Array identifiers
3. Subprogram identifiers
4. DummY, identifiers
5. Single bit arrays identifiers

The classification is made according to the context in which the
identifier makes its first physical appearance in the source program.
This first appearance amounts to a declaration, explicit or implicit,
of the proper interpretation of the identifier throughout the program.

Mode Declarations

In addition to being classified, each identifier appearing in a FORTRAN
program is of mode integer or real. The statements INTEGER and
REAL are used to specify identifer modes explicitly~ An identifier
may appear in only one of these statements and this appearance· must
precede the use of the identifier in any non-declarative statement~·'.

Identifiers whose mode is not explicitly declared are assigned modes
implicitly according to the following convention.

1.. Identifiers beginning with I, J, K, L, M or N are ass'igned
integer .mode.

2, Identifiers not included in the above classification are assigned
real mode.

* - Revised 1/65 ..35.

INTEGER Statement

Form: INTEGER identifier, identifier,···~ identifier

This statement declares the listed identifiers to be integer.

Example:

INTEGER PHI, KAPPA, SIGMA

Notice that KAPPA need ~ot appear in this statement since it would
be declared integer mode implicitly.

REAL Statement

Form: REAL identifier, identifier, ••. , identifier

This statement declares the listed identifiers to be real mode.

Example:

REAL FORCE, MASS, LOG

Notice that FORCE need not appear in this statement since it would
be declared real mode implicitly.

DIMENSION Statement

The DIMENSION statement declares an identifier to be an array
identifier, and also specifies the number and limits of the array
subscripts. Any number of arrays may be declared in a single
DIMENSION statement.

Information provided by a DIMENSION statement is required for the
allocation of storage for arrays. Each array variable appearing in
a program must be previously declared as an element of an array in
a DIMENSION statement. Each array variable must have the same
number of subscripts as were declared for the array, and the value
of each subscript must lie within the limits specified by the
DIMENSION statement~

Form: prMENSION s l' s2, 'sk

when S is an array specification.

-36-

Each.array specification gives the array name and the minimum
and maximum values that each of its subscripts may assume. The
minimum and maximum values for each subscript must be given as
signed or unsigned integer constants with the maximum value
greater than the minimum value. An array identifier may have any
numb~r of subscripts.

Two· forms for specification of the maximum and minimum subscript
vilues are recognized:

identifier(min
1

/max1, ...)
identifier(maxi,max2 , •..)~

In the latter form, a minimum value of one is implied, i.e8, the
latter specification is equivalent to

identifier (l/max1, l/max2, ., .).

The two forms are syntactically independent and may, therefore,
both occur as different subscript limit specifications in the array
specification.

Example:

DIMENSION X(lO), Y(·l/5,20), Z(-3/-1,2,0/3,5,2)

Subprogram Definition Statemen!!

The two types of subprograms which may be called, or referred to
by a FORTRAN program are classified as external or internal sub­
programs.

Internal subprograms are defined within the'program that calls them,
and are defined within a single statment known as an arithmetic
function definition statement. Internal subprograms may be used
only within the program containing their definition. External sub­
programs are defined separately from~ i.e., externally to the
program calling them. They are ~omplete autonomous FORTRAN
programs within themselves, and as such are compiled independently.
There are two types of external FORTRAN subprograms which may
be declared: FUNCTION subprograms and SUBROUTINE subprograms,
both of which are described below. Any subprogram, whether internal
or external may call other subprograms; however, recursion is not
allowed. All subprograms constitute closed subroutines; i~e., they
appear only once in the object.program regardless of the number of
times they are called.

-37-

v

Dummy Identifiers

A subprogram definition statement declares those identifiers
appearing as arguments of the subprogram to be dunnnies, They
are used as ordinary identifiers within the subprogram definition
and indicate the mode and use of the arguments. Dunnny
identifiers are replaced by actual arguments when the subprogram
is executed.

Arithemetic Function Definition Stat~

Form: identifier(identifier, identifier, ... , id~ntifier) =expression

This statement completely defines an internal subprogram. The
first identifier is the name of the subprogram being defined~

Arithmetic function subprograms are functions; i.e they are
single va.lued and must have at least one argument. The mode of the
function is determined by the mode of the function identifier,

The identifiers enclosed in parentheses represent the arguments of
the function. These so,:alled dummy identifiers have meaning and
must be unique only within the defining statement. They may in fact
be identical to identifiers appearing elsewhere in the program_. They
must agree i.n order, number, and mode with the actual arguments
given at execution time.

The use of an argument within the definition statement is specified by
the use of its dummy identifier. Expressions are the only permissible
arguments for internally defined functions, therefore, dummy
identifiers may appear only as scalar variables in the defining
expression. The use of an array identifier or a subprogram identifier
is not allowed.

Identiiiers appearing in the definition statements which do not
represent arguments are treated as ordinary variables, In addition,
external functions or other previously defined internal functions may
appear in the defin~tion statement.

Examples~

F(XJY) = (X+Y)*(X-Y)
SINH(ZETA) = (EXP(ZETA/B),.EXP(.,.ZE'.IA/B))/2
Q (X) Y, Z) = .F (X ~ Y) /SINH(Z)

In the second example above, ZETA is a dummy identifier and B is
an ordinary identifier, At execution time the function will be

\ ,, •. /

evaluated using the current value of B. The third exa~ple is allow­
able if the first and second definitions precede it in the program.

If the accompanying·source program contained the statement

,y • A*SINH(ALPHA)~

the arithmetic function defining SINH would be evaluated using the
current value of ALPHA as its argument. The result would be
multiplied by A-and the product assigned as the value of th~ variab~a

·Y.

All internal subprogram definitions of any FORTRAN II program must
precede the first non-declarative statement of the program.

FUNCTION Subprograms

Like the Arithmetic .Function Definition Statement, the FUNCTION
subprogram is also a function, is single valued, and is referenced
as a basic element in an expression. FUNCTION subprograms may
be used ,when more than one FORTRAN statement is needed to define
the functional relationship. In or'der to logically separate a
FUNCTION subprogram from the calling programs, the subprogram
always begins wit'h a FUNCTION declaration and returns control to
the main program via the RETURN statement.

FUNCTION Statement

·Forms:

'"
FUNCTION identifier {identifier, identifier, . C<' identifier)
REAL FUNCTION identifier (identifier, identifier, .. ,,, identifier)
INTEGER FUNCTION identifier (identifier, identifier·,. 7'' identifier)

This statement declares the following program to be a function sub­
program. The first identifier is the name of the subprogram being
defined. This ident'ifier must appear as a scalar ·variable and is
assigned the value of the function resulting from execution of the
subprogram. Xhe function mode is declared implicitly by the initial
letter of the function name, or may be declared explicitly by using
the second or third forms of the FUNCTION statement.

Those identifiers.appearing in the list enciosed by parentheses ~re
dummy identifiers which represent the function arguments, and must
agree in number, order, and mode with the actu_a-1--arguntents give-n----

- 39 -

at execution time. These arguments may be array names as well
as expressions. Therefore~ the dummy identifiers may appear as
array identifiers or scalar identifiers. A FUNCTION statement
must have a.t least one argument. Durruny identifiers representing
array names must appear in a DIMENSION statP.ment in the FUNCTION
subprogram as well as the calling program, and must agree with the
specification of the arrays in the calling program.

Examples:

FUNCTION SEARCH (LIST,ALPHA)
REAL FUNCTION INDEX (Al~B2,C3)
INTEGER FUNCTION DELTA (ARG1,ARG2)

~ROUTINE Subpro~

The SUBROUTINE subprogram is not a function in that it may be
multi-valued and is referred to only by the CALL statemente The
SUBROUTINE subprogram begins with the SUBROUTINE declaration
and returns control to the calling program via the RETURN statement.

SUBROUTINE Statemen~

Form: SUBROUTINE identifier (identifier,identifier, ... ,identifier)

This statement declares the following program to be a SUBROUTINE
subprogram, The first identifier .is the name of the subroutine.
Those identifiers appearing in the list enclosed in parentheses are
dummy identifiers which represent the subprogram arguments. As
in the FUNCTION statementy these arguments may be scalar or array
identif~ers.

Dummy identifiers representing array names must be _dec1ared--1n a--­
DIMENSION statement within the subprogram and must agree with
the specifications of corresponding arrays specified in the program
containing the CALL statement.

Contrary to the FUNCTION and Arithmetic Function Definition State­
ments, the result of a SUBROUTINE subprogram is not,necessarily
a single value and the value of the name of the ai.0program may or
may not (depending on the subprogram) be meaningful. Instead specific
results are normally returned as values of variables in the argument
list.

A SUBROUTINE subprogram does not necessarily require arguments;
in the absence of an argument list no results can be returned via the
arguments.

~ 40 -

Examples:

SU BRO UT INE BURST
SUBROUTINE FACTOR (COEF1,COEF2,ROOT)

Implicit Declaration of Identifiers

Identifiers appearing in declaration statements such as DIME!~SION,~
FUNCTION, SUBROUTINE, etc., are expficitly classified by their
appearance in that statement. If the first appearance of an identifier
is in an imperative statement rather than a declarative statement,
the identifier is classified implicitly according to its context.

For example, in

DIMENSION ALPHA (5,10)

the identifier ALPHA is explicitly declared to be a two-dimensional
array. Similarly

FUNCTION ALPHA (X,Y)

explicitly declares ALPHA to be a single-valued functiorr~ith­
arguments X and Y. Conversely,

ALPHA (X,Y) • 2*X+Y

implicitly declares the identifier ALPHA to be an internal subprogram
because it appears in an arithmetic function definit'ion ~tatement. -Note
also in the three previous examples that in the absence of declarative
statements to the contrary, ALPHA is implicitly declared to be the
identifier of a real quantity" As a further example note that in the
statement

SUBROUTINE ALPHA (X,Y)

ALPHA is explicitly declared to be the name of a subprogram with
arguments represented by dummy identifiers X and Yo

However, if the 11.nqH"esa:L~n

ALGFNC + ALPHA (A)B)+Z/3

has not been preceded in a program by any of the four previously
mentioned declaration statements ALPHA will be implicitly declared
to be an external subprogram whose presence will be mandatory at
runtime for execution of the object program .

* - Revised 1/65 ... 41 ...

Memory Allocation

Memory allocation statements are used to supply the system with
supplemental information regarding the storage of variables and
arrays; and when the program is to be subordinate to a real-time
system, to supply memory assignment of the program in bulk memory
and specify coincident cross-references as may be necessary.

DEFINE Statement

Form: DEFINE identifier1 (~ymbolic), identifier2 (symbolic), •••

The DEFINE statement provides a method of incorporating uniform
reference to variables which are to be part of a "permanent memory
space" in an overall system.

The identifiers occurring in the list may be array or scalar identi-
* fiers, or subprogram names. The symbolics enclosed within the

parenthesis may be PAL symbolic expressions to which the preceding
identifier will be equated by the compiler.

Identifiers appearing in DEFINE statements are as"sumed to have
space allocated by the overall system and are not, therefore,
assigned space by the memory allocation section of the compiler.

* The temporary storage area created by the compiler is named $TEMP.
It can be assigned to permanent memory by naming it in the DEFINE
Statement ..
EXAMPLE:

DEFINE X(V01T25), SQRTF(/3000), $TEMP(/4020) ~ COMMON(/3127)

COMMON Statement

Form: COMl'.tON identifier, identifier, ••• ,identifier

Within the space allocated by the overall system as "permanent
memory", a section is set aside with the symbolic iabel of the
first locations as "Common". For this purpose, the symbol, COMMON,
is reserved in both the FORTRAN and PAL languages and is used ·
solely for reference to this specially named section of memory.

The identifiers in the COMMON statement may be either array or
scalar names provided that the array names also appear in a
DIMENSION statement in the same program.

During allocation, each variable to be allocated in COMMON .is
assigned the next block (one word for scalars, array size for
arrays) relative to the previous allocation with the first such
allocation being a simple equation to the symbol, "COMMON".
EXAMPLE:

COM:MON SCALAR,J, ARRAY, A

* - Revised 5/65 -42-

In the above example, suppose that SCALAR and J are scalars·and,
that ARRAY and A are dimensioned elsewhere as ARRAY (-1/3,5).,·
and A(lOO). The resultant equations to COMMON would be:

SCALAR
J
ARRAY
A

EQL
EQL
EQL
EQL

COMMON
COMMON+ 1
COMMON+ 2
COMMON+ 27

In view of the implicit property of the symbol, COMMON? as a
member of the same space as that referred to by the DEFINE state­
ment, the above equations to COMMON can be seen as equivalent tfo'"
those which would be produced by

DEFINE SCALAR (COMMON) o- J(COMMON + 1),
ARRAY (COMMON+ 2)~ A(COMMON + 27)

EQUIVALENCE Statement

The EQUIVALENCE statement allows more than one identifier to
represent the same quantityo

Form:

where R denotes a location referenceo

The location references of an EQUIVALENCE statement may be
simple scalar or array identifiers, or may be identifiers appended
by an integer constant enclosed in parentheses" All location
references enclosed within the same parenthetical expression share
the same storage location o Such a gr.oup is known as an equivalence
set. For example~

EQUIVALENCE (BLACK~WHITE)

states that the identifiers BLACK and WHITE refer to the same storage
location.

To refer to a specific location in an array~ that location must be
appended to an array identifier as an integer constanto For example,
if A is a scalar variable and B is an array the statement ·

EQUIVALENCE (A~B(S))

specifies that A and the fifth location of the array B share the same
storage location.

* - Revised 1/65

To refer to a specific.quantity in a multiply dimensioned array the
location of that quantity must first be calculated. As an example,
consider the three dimensional array specified by

where L. and U. denote the lower and upper limits of the i th sub­
script. i To calculate the location of

use the formula

Therefore the statements

DIMENSION SPACE (12), VOLUME (2, 2, 2)
EQUIVALENCE (SPACE(3), VOLUME (7))

specifies that the quantities SPACE (3) and VOLUME (1,2,2) .will
·share the same storage location, Notice that only the relative
location of the quantities within the array matters, since the entire
array is adjusted to satisfy the EQUIVALENCE statement. In the
example above, the statement

EQUIVALENCE (SPACE(l)~ VOLUME (5))

would have had the same effect as

EQUIVALENCE (SPACE(3), VOLUME (7))

Where the location of a variable is known relative to a second
variable, this location may be specified by appending an.integer
constant to the identifier of the second variable. The integer to be
used is determined by considering the sequence of quantities as an
unidimensional array. For example~ if we have in storage at

the statement

LOCATION

Ll: ALEPH
12 ~ BETH
13 ~ GIMEL
L4: DALETH

EQUIVALENCE (GAMMAJALEPH(3))

will specify that GAMMA and GIMEL refer to the same storage
location.

·Note that the property of equivalence is transitive; the statement

EQUIVALENCE (X,Y),(Y,Z)

· ··has the same ef feet as

EQUIVALENCE (X,Y,Z)

Jgint DEFINE, COMMON and EQUIVALENCE Rules

In the event that identifiers appear mutually in DEFINE, COMMO~
t11d/or EQUIVALENCE statements, the DEFINE statement takes
precedence followed by the CCA'iMON statement.

All equivalences to DEFINE and COMMON variables are equated
off, i.e., removed from the remaining equivalence sets and
entered in the object 'code as equations to symbols occurring in
DEFINE statements or to the symbol, COMMON.

BEGIN PROGRAM AT Statement

Form: BEGIN PROGRAM AT n

where n is a PAL symbolic specifying the location in bulk memory
into which the ensuing program is to be loaded.

SEGMENT Statement

Form:

where n is the MONITOR recognized program number of the following
segment. This statement is used to break a large program into a
number of smaller segments.

In addition to segmentation by turning 11off 0 and turning the next
part (segment) "on", the SEGMENT statement causes the execution (at
compile time) of'a FORTRAN "END". This execution allocates
storage, published errors and removes all known names and labels
from.the tables before proceeding to the next job. Therefore, the
only information carried forward to the next "segment" will be the
relative location in bulk memory. Care must be taken to assure that
variables which are common to segments are declared in each segment
by "COMMON" or "·DEFINE" ,statements. ,

* - Revised ~/65 .. 45-

DIAGNOSTICS

Statement Diagnostics

Statements which violate the syntax or semantic rules of the
FORTRAN language are detected during compilati.on and are
discardetlo An error message is printed on the line printer and
compilation proceeds as if the erroneous statement had never
been encounteredo The error message consists of the statement
in the form in which it entered the computer; then one character
of the statement is indicated by a dollar sign:. "$", printed
beneath ito For example~ in

13 FUNC ~ 2~X+Y*+A
$

The character "+" is marked as an error. In the case of syntax
errors~ the marked character iLself is unacceptable as in the above
examp1eo In the case of a semantic error, an identifier or other
construct is being improperly used. and the dollar sign indicates
the last character of the construction. For instance, in the state­
ment

ASUM ,~ PART**3+4
.$

the dollar sign would indicate that the identifier PART is.being used
incorrectly; e.g<, PART may be the name of a subprogram.

The compiler will try all possible legal interpretations of a state­
ment before finally discarding it_ The dollar sign position indicates
the greatest amount of correct information~ starting from the left,
that was found under any assumption about the statemento

A comment indicating the reason for the error is then printed at the
left margin after the marked lineo· These comments are as follows:

SYNTAX

This comment usually occurs because of erroneous punctuation or
illegally constructed arithmetic expressi.onso

NUMBER

A constant~ label~ or input~output symbolic unit number is too large
or is incorrectly construcced,

=46,.,

ID DEClARATION

The identifier indicated is being used in a manner contradictory to
a previous declaration.

SUBSCRIPTS

There are too many subscripts~ an expression describing a subscript
is incorrectly constructed~ or the number of subscripts used in an
array variable does not agree with the number declared in the
DIMENSION statemento

ALLOCATION

1. A negative or zero array size was specified in a DIMENSION
statement.

2. The rules of COMMON or EQUIVALENCE have been viqlated.
In either statement the identifier causing the violation is
marked.

PROGRAM OVERFLOW

The working c~re storage available to the compiler has been
e~ceeded,

ARGUMEN'.CS

A FORTRAN reserved function has been employed with the wrong
form and/or number of arguments.

Program Diagnostics

Comments concerning labeling and allocation errors are listed at
the end of compilationo The label errors comment is followed by
a list of statement labels~ and the allocation errors comment by a

/ list of the offending identifiers.

LABEL ERRORS

lie The. following statement numbers were used in control
instructions within the program but referred to an unnumbered
statemento

2. Two or more statements have the same label"

3. The statement closing a DO loop was never reachede

4. The final statement in the range of a DO loop was a transfer
statement.

5. The DO loop was illegally nested.

ALLOCATION ERRORS

The identifiers that follow this error message violated. DEFINE,
COMMON and/or EQUIVALENCE rules, such as the use of a
function or subroutine name as the name of a variable in either
a COMMON or EQUIVALENCE stat~ment.

'*'48-

C)

*

APPEDNIX A

SUMMARY OF GE/PAC FORTRAN STATEMENTS

COMPUTATION
Arithmetic Assignment Statement
SET BIT
RESET BIT

CONTROL
Unconditional GO TO
Computed GO TO
Assigned GO TO
ASSIGN
IF
IF BIT
IF SENSE SWITCH
IF ACCUMULATOR OVERFLOW
DO
CONTINUE
CALL
RETURN
STOP
END

INPUT-OUTPUT
READ
PRINT
PUNCH
IF READ
IF PRINT
IF PUNCH
FORMAT
READ DRUM
WRITE DRUM

COMMUNICATION WITH REAL-TIME MONITOR
TURN PROGRAM ON
TURN PROGRAM OFF
DELAY PROGRAM

DECLARATIONS
REAL
INTEGER
DIMENSION

~
14
14
14
14

15
15
15
16
17
17
18
18
18
19
20
21
21
22
22

23
25
25
26
26
26
26
27
32
32

33
33
33

35
--------3-6---

36
36

Arithmetic Function Definition Statement
FUNCTION

38
39

SUBROUTINE
REAL FUNCTION
INTEGER FUNCTION
DEFINE
COMMON
EQUIVALENCE
BEGIN PROGRAM AT
SEGMENT

- 40
41
41
42
42
43
45
45

* - Revised 5/65 -49-

GE7PAC 40001>

DOUBLE-WORD
FORTRAN

REFERENCE
MANUAL

© General Electric Company, 1965

Library-Control No. YPG30M

This manual published by:
PROGRAMMING SUPPORT
GENERAL ELECTRIC COMPANY
PROCESS COMPUTER SECTION
P. 0. BOX 2918
PHOENIX, ARIZONA - 85002

For further information concerning the contents of this manual,
contact the Programming Library at the above address.

CONTENTS

SECTION PAGE

FOREWORD

1 INTRODUCTION TO GE/PAC DOUBLE·-WORD FORTRAN 1

2 COMPUTATION 5

3 EXPRESSIONS 10

4 COMPUTATION STATEMENTS 14

5 CONTROL STATEMENTS 15

6 INPUT-OUTPUT 23

7 COMMUNICATION WITH MONITOR 34

8 DECLARATIONS 36

9 DIAGNOSTICS lt7

APPENDIX A - SUMMARY OF STATEMENTS 50

FOREWORD

This is a reference ~anual for the GE/PAC Double-Word FORTRAN language"
A previous familiarity~ on the part of the reader~ with basic FORTRAN
concepts is assumedo No attempt is made to present the essentials of
FORTRAN in a form usable for a fundamentals course in FORTRAN language
usage. The primary purpose of this manual is to describe the specific
statements and capabi.liti.es of the GE/PAC Do;~~ble-Word FORTRAN lang~1age"

Additions have been made to the FORTRAN 1J language to increase pro­
gramming flexibili.tyo In addition 5, they provi.de the prograi:nmer with
special statements which enable him to produce a total real-time system.

Existing FORTRAN II programs can be comp i.led in GE /PAC FORTFAN .1 provided
that the specific restrictions noted herein are not violated. Programs
written for GE/PAC Single-Word FORTRAN can be compiled in Double ·-Word
FORTRAN provided that the restrictions noted in BIT statep]ents and
BOOLEAN statements are followedo

1 INTRODUCTION TO DOIJ8LE-WOF\D FORTR.AN

A GE/PAC FORTRAN program is a sequence of statements 3 each of whose
characteristics is described in this manual. These statements may
be classifie'd according to the following general categories 0

1. COMPUTATION statements which comprise the working body
of the program; eogo, numerical calculation and bit
manipulationo

2. CONTROL statements which specify the flow of control
during execution.

3. DECLARATION statements which supply information about the
programo

4. INPUT-OUTPUT statements which provi.de communication with
the system peripherals.

5. PAL LANGUAGE statements which may be i.ncluded in th12:
program in order to "tailor" certain critical areas.

PROGRAM PREPARATION

The statements representing a Double-Word FORTH.A!\! program are first
entered on a coding form similar to that of Figure lo The lines of
the coding form are divided into sixty-nine columns~ each of which
may contain one charactero Each statement is written on a separate line;
if more than one line is required:> as many as four additional lines
may be used as a ucontinuation" of the statemento

Columns 1 through 5 may be used for a statement numbero Such numbers
may be used as labels to which other statements i.n the program refer"

A non-zero~ non-blank character in column 6 indicates that the line is
a continuation lineo

The body of the statement itself is entered in col~mns 7 through 69 of
the initial and any necessary continuation lines.

Column 70 must contain a "7" in all lines of all statements of categori.es
1 through 4 above. Lines which contain a "6" in column 70 are of category
5. All category 5 statements are trans:u.t::ed tmchanged into the object
programo

~ 1 -

A wtc" i.n column 1 indicates that the staten!ent U; a co:rri-'TIEmt, Like
category 5 statements:, cowme.ntl stace:·1,,r:.ent~ are passed ~:1 re:cLly :1 nto
the object program at the po lxu:. of em::ou.nter" Tb.e rex': of tbe co1rm:ient

may be entered :in colLTtms 2: t»hro,\,.1.gh 69 of ttre. rni.tlal 1 nt. and in
columns 7 thro,_.,g1-1 6S o~: cont t::'!.t'a1d on 1.it n2.~"

A "B" in column 1 indicat12s 'lhe :~.tat .. ,;.~.~~.E'n:r ~soi typt~ n:Boolc:an" and that
certain numerica.1 calc·~ .. lat :i.on.s conr.al.ned in cb.e stcE.lt: e:1a~rn are to be
performed with logical n~ther t:.t:a.n arHb-~net tc o-p2car ions,,

Except for coli;;.mns 1 an.d 6 and c~,.cud.o.. alpr}.m,, :'n·f:1:':il c fie las~ bla1a.1>;J:; are
ignored and may be used ft'eely to fatcr.ease legibH.U:y o

The first line of any progra-m 1 ·tr:l".'e::,pie.ct li'.1112: of cont.en[, fs assumed to
be the title Une and con.ta:tns '.':J1e tff~:t {col;J.mns 1 '(:b,:r:o·,_»gh 'j9) ·~:vb.icr.

wi.11 head pages of tJ·,1.e. o·>.1tr 1,,t U.st i.ng and '~.he progra'm idEm.t Jn esuon
number (columns 71 tb.robgr. J.5) \lllb.ich ~d.11 b<::, ~c.:r.a.nSillA tr.E.d r o all gEDer·-·
ated object U.nes,

The last line of t'h.e pr.ograrr.< :GLn .. st b~: .an. E:l\:I) 8rat 12:.'.l]e1Jt', An END st ate,~
ment may contai.n n.o othe:r cba:racters :~n. col.L:.1mns 7 1rhrO'"gh fi.9 ~:x:eepil

"END" o

SAMPLE PROGRAM

It is desired to fi.t the: best st.ra·i ght l l'.111.r;i; approxt·m;t.t; on t"o a pop·,.
ulation of data by the method of lel@.st ~qi·1 i . .el..rt'E",1L the: toU.0·1.fing p:r.ograrn
indicates how this 1~10~~10. be done using ·~·oRTRML T"i:"'.~~ gt>:neral ~or.rr11. 1 la

for the approximation is of the for1·1 y ·~ a~rb1:::ic. The· solve .;;:or a and b
by the method of least sq\ .. ares we ev9.L;,a.:t e t!o.e fo.rrt--..las ~

a §

(n)
b ~ (n)

Line l is the TITLF CAR.Du It :ls also a FOR1'FAN c:>i:"'rne.nt r.ard. rn,~

Sample Program is ~-lh:.c;;::«t.'ate:ct tn E'ig'-":i:e l on th1e :follo·I\ mg pag~,

The dimension statemt:nt of U nt: 7. de.cla:tes X arui ·11 to b!;:.; onE: d.': ff'>::'n··,

sional arrays each coru: a·~n:.rn.g 20 n, '[1:bE::rf\ T»b.1.s de:elar.at~ on sets a.!S.·1.dP:
two grocps of 20 coP.seci .t ~i ve storage spaces f0r X and 1· and al lm\Js t tY::.:r1
to appear as subscripted vari able.B '~•d.t!.Y~_J1 the p:-:·og.ra·,-_ .

Line 3 is an i.n.put. star:eme.nt tr~at read£ a rer;o.rd. of pr-c:VhJ,"3ly p:r.P·pare:d
data. from tape ~nder conu:ol of. FORMAT ~1cate•l.11ent 10 r:md. placi.:,s :u. :;,n
the consecutive locat:i ons of LhE.. x and Y arrays:

PROCESS COi',iPUTEi:\ SEC""flON
· PHOENIX, ARIZONA

. ·;-

PF!OCE55 l.l\E\~GUAGz SY-~ Y!Er-:u~~rr
COKiBINIG f onrA

•Restricted to five characters for COOL"" ~.~~1 Shaded areas indicate PAP format restrictions

·,.

' . . ~ .· .
...... • I.~ --FIGURE 1

Project Name

Program Narne

~Page of Date

Programmer

Type Code: 0-deletioo, 2-PAP, 3-NOAP. 4-COOL

Sequence
It

Calculation actlllally begins with line 4 in which a variable called
SUM is set equal to zeroo Similar operations are performed on lines
59 6~ and 7o

Line 8 sets up a series of repetitive calculations i.n what is kn.own
as a DO loop o It causes the cs.lc~.1JJ.at.Lons up to and inclu.diLng sLate·~
ment 5 on line 12 to be perfo:rn:nf;d ~O tlwe~:L The s:JbscriptLng varlable
I is set to 1 for the first execut:ion of the following four l.nstru.cti.ons
and is increased by 1 for each subsequent execut:i.ono In. this manner .i.t
is possible to refer to s'l.:'.cc:ess ive val'..les of X and Y for calculation
pdrposeso

In line 9 a value of X is added to SUM an.d the result is assigned to
SUMo A similar operatl.on is done for ·r on line 10 o

In line 11 a value of X is sq 7.2ared 9 aGde.d ico St1M.S~X..::i and assi.gne.d to
SDMSQX.

In line 12 a vah1e of X 1.s m •. d Up lied by a value of Y ~ adde.d to S tf.MXY :>

and assigned to SU~fXYo

After the previous four ca.lc·:ilat:l.ons have performed 20 times J control
passes from the DO loop to the statement of line 13 ln which A :i.s cal­
culated o Then B is calcu.lated on line 14 0

Line 15 is an mitput stat:errient which cau.ses the values oi A an.d B to be
printed on~line accordl.ng to FORl~'I' statement number 10 (line 16). This
FORMAT statement indicates two answers are to be printed on the same
line~ each answer occupies 14 spaces (including blanks) and there are
6 digits after the decimal pointo

Line 17 is a control card indicatlnl the END of the exawpleo

~ 4 =

2 COMPUTATION

BASIC ELEMENTS

The basic elements csed as operands in Double~Word FORTRAN computations
are constants lJ vari.ables ~ and functional references:> all of which. repre~
sent numerical quantities. In the FORTRAN language~ these elements are
represented by symbols composed of character strings.

QUANTITIES

Two types of numerical qt:.ant:l.ti.es are recogn:i.zed by E'OR'rRAN:i arithmetic
and logicaL Wi.thin the desi.gnatl.on ari.thmetic ~ two modes are recognized:>
real and integer. Integer quantities represent 1.ntegers -within the range
-8 ~ 388 i> 608 (-223) through 8 q 388, 607 (223-1) i.ncVJ.sive .~ and occupy one
machine word. Real quanti.ti.es represent real m.:i:.rr:bers and are represented
in the computer by floating~poi.nt configurations compri.sed of a 9 bit
exponent and a 37+sign bit mantissa and occcpy two machine words.. The
approximate range of floating quantities is -1076 through -10-77.9 0 and
lo-77 through 1076.

Within the designation logical:- only octal dig:i.ts (0 through 7 i.nclusive)
are recognized. An octal quantity occcpies one machine ·word and has a
maximum value of 77777777.

CONSTANTS

Constants are numbers of arithmetic or logical type which appear in the
source program in explicit formo

Arithmetic integer constants are written as a strL1g of de;cimal digits"

Examples~

0
1
1964

Logical integer constants are written as a string of octal digitso

Examples~

0
252525
77777777

- 5 -

In either type~ the integer represented must lie within the range
specified above for integer quantitieso

Real constants are written as a string of decimal digits ··~hich includes
a decimal pointo

Examples~

oO
L
2071828

Real constants may be given a scale factor by appending an "E" followed
by an integer constant~ which indicates the power of ten by which the
number is to be multiplied. Th.is scale factor rnay be preceded by a ii+"
or "-" sign to indicate positive or negative powers of ten. If no sign
is given, it is assumed to be posi.ti.veo

Examples~

LE-12
o00314159E+3

19o64E+2

means
means 3. 14159
means 1961.'.i o

As another alternative, a real constant may be expressed as an integer
constant followed by a scale factor.

Examples~

55E-3
132E45
69E4

means 0055
45 means 132 x 10

means 690000

In any representation the number must lie within the range described
above for floating quantiti.eso

I DENT IF IERS

Identifiers are used to name the variables~ subprograms:· and dummy
arguments which appear in a FORTRAN programo An iGientifi.er is a string
of letters and digits, the fi..rst of which roust be a lettero The string
may be any desired length:) but only the fl.rst s tx characters wi.11 be used o
Identifiers may be declared as integer or real? either explicitly or
implicityo Implicit definition depends upon the first letter of the
identifiero If the first letter is from the group (I,J:>K~L)M~ and N), then
the identifier is of the class integero If the first letter is not from
this group then it is of class realo Explicit definition of identifiers
is accomplished by the declarative statements REAL and INTEGER,,

= 6 =

Examples~

VAIUABLES

Real RATE
DECREMENT

L307
M~NTH

Variables represent quantities which may assume many different values
and are referred to by nameo They may be either scalar or array vari­
ables, depending on the natGre of the quantity they represent.

SCALAR VARIABLES

Scalar variables represent a si.ngle real or integer quantity and are
written as simple identifierso

Examples~

DISTANCE
z
N3

ARRAY VARIABLES

An array variable represents a single element within an array of quan­
tities. The array var.iable is denoted by the array name followed by
a subscript list enclosed in parentheses. The subscript list contains
one or more arithmetic expressions separated by commaso Each expression
corresponds to a subscript and the values of the expressions det~rmine
which array element is to be referencedo The number of subscripts in the
list must equal the number of dimensions specified for the arrayo

Examples~

A (4)
BETA (M+3)
JOHN (2*1TEM~13)

SUBSCRIPTS

A subscript may be any expression of the type:. arithmetic; however., its
significance is of integer mode and limited in range by the size of the

array dimension involvedo Therefore~ when necessary~ the value of
any expression used as a subscript is truncated to an integer and reduced
modulo 214 before being employed in referenceo

- 7 -

SINGLE~BIT ARRAYS

As the operands of certain GE/PAC 4000 FORTRAN statements (SET BIT:i
RESET BIT~' IF BIT)» the 1.ndi.vJ.dua1 bits i.n the binary representations
of integer scalar variables (not array variables or real veriables)
may be re:fer:red to by appending a s 1.ngle S'~.:.bscri.pt On parentheses) to
the scalar identifier o Thte scJJbscript ls calculated as any ot.her s12b~

script but refers to the: b:Lt position i.n the memory word and consequently
has meaning only in the range 0 through 230 The appearance of an. integer
scalar identifier with a so:.bscri.pt is leagal only in SET BIT ;i RESET BIT
and IF BIT statements"

Exa'Ilples ~

LIGHT (J)
M0DES (13)
INHIB (Xl1INOF(J ~ K+2))

FUNCTION REFERENCES

A function is a su.bprogram ·which ac·ies L~pon one or more quantities
called arguments to produce a s:i.ngle quantity called the function value.
Functional references are dentoed by the identifier which names the
function:.i followed by an argument list enclosed in parentheses.

identifier ((arg\ ... 11J1ent, argt.•.ment ~ .. 0 ,, argument)

An argument may be an expression or an array identifier"

The function value ma.y in \Ct.:rn act as an element whose mode is determined
by the mode of the identi.f iers nam:h1g :Lt" or by ~-ise of the appropriate
form of the FUNCTION statme nts ~ and may:J therefore~ be independent of
the types and modes of its arguments"

Examples~

ATANF (ALPRA)
DATE (MONTH:i DAY:i YEAR)
GA.'MMA (N :i Z'kSQRTF (ZETA))

RESERVED FUNCTIONS

Certain commonly and frequently dsed arithmetic functions are provided
as part of the syste·1n library and will be incorporated in the compiled

program by the compiler thl"ou.gh che liSe of a 11LIBH operat ton. The names

of these functions must" therefore~ be "reserved" and li.irited to use as
subprogram identifiers for tbe library st..bprogr:ams to which they refero

= 8 -

The following table Hsts these names together with information about
the functions themselveso

Modes

Subprogram
Identifier

Number ..
of

~. I=inte_g_er R~real
Function.

.Function Ar gs Value Arg(s~

ATANF Trigonometri.c Arctangent 1 R
SINF Trigonometric S1ne 1 R
COSF TrigonoMetri c CosJ.ne 1 R
SQRTF Square Root 1 R
LOGF Log base e 1 R
EXPF' expone"".ltial '.:~ to a power) 1 R.
ABSF absoldte value l R
XABSF absolut:e value 1 1
SINHF Hyperbolic si.ne 1 R
COSHF Hyperbolic cosine 1 R
TANHF Hyperbolic tangent 1 R
MODF arg

1
~ [arg

1
/arg

2
] arg

2
(See Note) 2 R

R
R
R
R
R

R
R
I
R
R
R
R

XMODF' arg
1

.rnodu lo arg
2

2 I
SIGNF Signu.m (arg) '?~arg 1 2 R R

.___x_s_r_G_N_F_· __ -1-S~i~g~n_u_Jm_._~~·a_r~gz? *argl~--~----------1----2 ______ -+-__ I ______ -1--___ 1 __ ~1
DIMF (arg

1
~arg2) ~.f arg

1
:arg

2
; else 0 2 R R

X:uIMF (ar~1 ~arg2) 1f arg
1

.>arg
2

; else 0 2 I l
MAXOF Maxi.mum value of args o Var o R I
MAXlF' Maximum value of args 0 Var o R R
X."t1AXOF Maximum value of args o Var 0 I I
XY!A.XlF Maxirm . .<:m value of args. Var o I R
MINOF Minimum value of args 0 Var" R I
MINlF Minimum value of args 0 Var 0 R R
XMINOF Minimt-~m valtle of args o Var o 1
XMINlF Mi.nhrum value of ar_g_s 0 Var o I
~N1.1F n J. R
XINTF Integer uart (ti·1..mcat.ion) l I
XFIXF ~ I
FLOATF Float an integ€r l R

NOTE ~ [J indicate "greatest integer in"

- 9 -

I
R
R
R
R
1

3 EXPRESSIONS

An expression is a sequence of elements separated by operational
symbols and/or parentheses in accordance with conventional mathe­
matical notation and certain FORTRAN restrictions. ·Two types of
expressions are recognized, arithmetic and logical.

FORMATION OF EXPRESSIONS

An expression has a single numeric value equal to the result of the
calculation specified by the numeric quantities and arithmetic or
logical operations comprising it. The arithmetic operational symbols
are "+" 3 "-", "*" ~ "/ ":> and "**" ~ denoti.ng respectively addition,
subtraction, multiplication, division, and exponentiation ..

A logical or "Boolean" expression is formed in the same fashion as
an arithmetic expression except that the operational symbols recog­
nized are 11+", "/", "*", and "-", denoting logical sum ('.'or"),
logical difference ("exclusive or"):> logical product ("and") and
logical complement ("not") respectively. An expression is declared
Boolean by the placement of a "B" in column 1 of the first line of
the FORTRAN statement in which it occurs" In any statement declared
·Boolean, all operational symbols in expressions are interpreted in
the logical sense except in those expressions used as subscripts to
arrays (subscript expressions are universally of type arithmetic­
integer). In Boolean expressions, all constants are interpreted as
type logical-integer and appear as octal integers. All other represen­
tations are illegal. All variables in Boolean expressions must have
integer definitio~s; all other representations are illegal~

An expression may be as stmple as a single element~ i~eo a constant,
variable» or function referenceo

Examples:

3,142
OMEGA (T)
COSF (DELTA)

Compound expressions may be formed by using operation symbols to
combine basic elements.

Examples:

Z+2
SUMX/N
SQRTF(B**2-4*A*C)

-10-

An expression may be enclosed i.n parentheses and considered as a
basic element"

Examples~

(/iAMBDA
{ALEPH}
COSF (SINF(2*PI*R~t>T))

Any expression may be preceded by a n+" or H=H signo

Examples~

+TEN
~,(A*B)

=SINF (+ALPHA)

With the exception of logical complement~ no two operational symbols
may appear i.n sequenceo The expression:;

is illegal in arithmetic expressions~ but is allowed i.n Boolean
expressionso The use of parentheses, yields the correct ari.ghmet:ic
form~

1~~' (~J)

Adherence to the above ru.les will allow the formation of all permissible
expressionso

If the precedence of arithmetic operat1,ons is not stated explicitly
by parentheses>i it is implicitly interpreted to be as follows)) in
order of decreasing precedence:

1e and /
+and 0

·'

exponenciation
rrivlt ipli ca ti on and di.vision
addition. and svbr...ract1on

In Boolean expressions~ the implied precedence in decreasing order is~

Symbol

I
+

QEera.t ton

logical complement
log:tcal product
logical difference
logical sum

for example, the arithmeti.~ expression

U>'r.V+W /X**Y+Z

is taken to be

Sin.ce sequences of operations of equal precedence can result in
ambiguities, they are resolved by grouping from the left, Th.us

A**B.,.('*C and
X/Y/Z

are interpreted as

(A**B)iC'*C and
(X/Y)/Z

respectively.

EVALUATION OF EXPRESSIONS

Except for Boolean expressions, which are modeless, the nLlmerical
value of any expression may be of integer or real mode, as determined
by ·the modes of its elerrents. There are three possible combinations:
all elements are integer (integer expression); all elements are real
(real expression); or both real and integer elements occur (mixed
expression). All combinations are permissible in GE/PAC 4000 FORTRAN.

INTEGER EXPRESSIONS

An integer expression is evaluated using integer arithmetic through­
out to yield an integer result. Fractional parts arising in di.vision
are truncated, not rounded. For example, 5/3 gives l~ 4/7 gi.ves 0

Examples:

L
11~2+m

(J - 3) ~\-MAN+ INDEX

-12-

REAL EXPRESSIONS

A real expression is evaluated using floating-point arithmetic through~
out to yield a real result.

Examples~

((Y{N+l)+Y(N-1)) /2. *DX)
COSF (ALPHA+BETA)

MIXED EXPRESSIONS

Mi.xed expressions are evaluated by converting all integer variables to
real variables and then treating the expression as i.f it. were real"
The result is given as a real quantity"

Examples:

Z*2*(I+L)
A**J+J**C
R(K+2)*ATANF(Xl)

BOOLEAN EXPRESSIONS

Boolean expressions are evaluated using single~word logical operations
upon the elements. All constants encountered are interpreted i.n octal"
Array elements may occur, the subscripts of which will be interpreted
as arithmetic-integer expressions. All other elements (e,.go~ funct.1.on
values)) expression values) are treated as one-word binary configurations"

Examples~

IWORD*MASKI+IFIELD
I*77 /JCOMUTR
M(2*I-5)*(-N(2*I)/-L(I))

-13-

4 COMPUTATION STATEMENTS

ASSIGNMENT STATEMENT

The assignment statement specifies an expression which is to be evalu.ated,.,
and a· variable called t:he statement variable to which the expression
value is to be assigned.

Form2 variable - expression

Note that the "=" sign means replacement, not equali.tyo The first example
below is not a mathematical equation but a valid ass'ignrnent etatement
meaning "take the value of ZJ cube it and assign the result to Xu"

Examples~

X = Z1b~'3

J = K1>'(L-5)
A;(X) :7 LOGI' (l+2'>'e.X)

The value of the expression in an assignment statement is. made to agree
with the mode of the statement variable before the replacement i.s per­
formed o If the statement variable i.s real~ an integer expression value
will be converted prior to replacement, and conversely.. For example:, i.n
the statement

A = 3-it>J+K

the integer value of the expression is converted to floating-point before
assignment to Ao

BIT ASSIGNMENT STATEMENTS

The bit assignments statements~ SET BIT and RESET BIT~ provi.de for the
assignment of values (1 or O) to the individual bits of integer scalar
variableso

Form~ SET BIT int.e.ger scalar variable (subscript),"""~ integer
scalar variable (subscript)

RESET BIT integer scalar variable (sltbscript) :J", ";) integer
scalar variable (subscript)

The individual bits referred to in the list following the SET B l.T or
RESET BIT preamble are rvset" (set ~ 1) or "reset" (set :~O) as i.ndicat:edo

Examples:

SET BIT JOE (2..,~I,"l),ISAM(23)~JFLAG(PERIF'(J))

RESET BIT K(3)~IFLAG(PERIF(J+l))~LOC(O)
-14-

f

5 CONTROL STATEMENTS

In a FORTRAN program, control normally passes sequentially from one
statement to the next in the order in which they are presented to the
compiler. Control statements allow the prograrrmer to alter this normal
program flow. To implement this, FORTRAN source statements may be
labeled with numbers which are referred to by control statements.

STATEMENT NUMBERS

A statement number consists of an unsigned integer constant of up to
five digits. Leading zeros are ignored. The value of the integer must
be greater than zero.

Although statement numbers appear in the source program as integers
they must not be confused with numerical quantities. They represent
a distinct type of quantity in a FORTRAN program known as a statement
number, and are used for the identification of addresses within the
object program.

Since statement numbers are used for identification they must be uniquely
defined; i.. e., no two statements may have the same number. No order or
sequence is implied by statement number magnitudes, ·Non-referenced
statements need not be numbered, in fact it is wasteful of compiler storage
to do so unnecessarily.

UNCONDITIONAL GO TO STATEMENT

Form: GO TO n

when n is a statement number.

This statment transfers control to the statement numbered n.

Example:

GO TO 13

COMPUTED GO TO STATEMENT

The computed GO TO statement transfers control to one of a group of
statements; the particular statement chosen is determined by the computed
value of an expression.

-15-

where n
1

~ n 2 ~ n 3
~ o o o ~ nk are. s ta temE;r1t nu.:nbe·~~ o Cont ro 1 'i'iJ:i 11 be transferred

to_ statement number n
1

~ n 2 ~ n~:V " o "~ nk d7pending on ''\.\Jhetb.er the expression
has the va.lue 1;; 2 9 3 :i ,. v ",,or ~~ > resrpec trve 1.y"

Example~

GO TO (37,24~36)~ SIZE

will transfer ,control to statement thJ.mber 2!.i ,~ f SIZE has t...he valu.e 2 o

The value of the expression wi..11 be truncated if requi..redo Expression
values outside the range 1:\2,,3:;i 0" " 9 k ·will cause a runtime error indicationo

Example~

will transfer CC?ntrol to statement: number 27 If Y has the value 206183 3

but a value of 3olii.2 for 'if wi.11 cause an error tndJ'cat.ion,,

ASSIGNED GO TO STATEMEN'r

Form~ GO TO integer variable or
GO TO 1 ntege:c variable~ (n

1
:' n

2
~ n

3
~ " o , ~ n..k)

This statement transfers control t.o che sLatewent whose m.:~niber was last
assigned to the variable by an ASSl.GN st atemEmt" 'l.r:e variable must appear
in a previously executed ASSIGN statement~ or a runtime er:ro:r l.nd:icati.on
will result o

Examples;

GO 1'0 JAIL
GO TO ERROR

$.The variable of an assigned GO TO stateu:1ent -!s a control variable.
and has a state.ment n1:.,;mbe:r racher than a nu;:neric q ... antity as i.ts value"
A control varfable may be sha1~8d beti-1ee:n a program and :its subprograms
as may any other variableo

The (n1 sin2 "n3 ~ o o o ~nk) is a parentheLi..cal stateinent nuwber list of footnote
value only and may oe included or omitted at the opt:ion of the u.sero

ASSIGN STATEMENT

Form: ASSIGN integer TO integer variable

This statme~t sets the value of the variable to be used by a subsequent
assigned GO TO statement. The integer is the number of the statement
to which control will be transferred by the assigned GO TO statement.

Examples:

ASSIGN 37 TO JAIL
ASSIGN 3 TO !ERROR

This FORTRAN capability is very useful in transferring to a sequence of
statements that is used as a subroutine by other parts of the program.
For example, the statement

13

ASSIGN 13 to IEXIT
GO TO 44

will transfer control to the sequence beginning at 44. If the sequence
ends with

GO TO !EXIT

control will be transferred back to statement 13.

IF STATEMENT

Form: IF (expression) n
1

,n
2

,n
3

where n
1

,n
2

,n
3

are statement numbers. This statement transfers control
to statement n

1
,n

2
, or n

3
depending on whether the value of the expression

is less than, equal to, or greater than zero respectively.

Examples:

IF(Y(I)-LIMIT) 6, 12, 18
IF(SUM) 3, 4, 5

In the first example above control is transferred to statement number
6 if Y(I)<LIMIT, to statement 12 if Y(I)=LIMIT, and to statement 18 if
Y(I)>LIMIT.

-17-

IF BIT STATEMENT

Form: IF BIT (integer scalar variable (subscri.pt))n
1
,n

2

where n
1

and n
2

are statement numbers. This statement transfers contol
to the statement numbered ~ 1 ~.f ~he bi.t. of the variable referred to is
a "1" and to statement n2 if it is a "O"o

Examples:

IF BIT (IFLAG(NOFAIL)) 14, 13
IF BIT (K(23)) 6, 7
IF BIT (J(O)) 9, 10

The second and third examples accomplish negative-positive and odd­
even tests respectivelyo

IF SENSE SWITCH STATEMENT

Form~ IF(SENSE SWITCH expression) n1,n2

where n
1

and n
2

are statement numberso

This statement provides a test for the individual status of each of the
24 switches on the GE/PAC 4000 consoleo These switches are numbered
from 23 through 0, going from left to right, The expressi.on may be of
either mode but will be converted to arithmetic-integer in use and has
meaning only in the range 0 through 23. If the console switch specified
by the value of the expression is in the down (=l) position at the time
of execution)) control is transferred to statement n

1
; if it is in the up

(=O) position, control transfers to statement n2 o

Examples:

IF (SENSE SWITCH 7) 102~ 103
IF (SENSE SWITCH IOREDY) 6, 7

IF ACCUMULATOR OVERFLOW STATEMENT

Form: IF ACCUMULATOR OVERFLOW n
1

, n
2

where n
1

and n
2

are statement numberso

This statement provides a test of the GE/PAC 4000 overflow triggero
Control passes to statement n

1
if the overflow trigger is "on" and

-18-

to n if the overflow trigger is "off" at the time of execution. In
eith~r case~ execution of the test resets the overflow trigger to the
"off" state.

Example:

IF ACCUMULATOR OVERFLOW 23~ 31

IF I/O STATEMENTS.

A series of IF statements has been provided for testing the status
of individual I/O devices. These statements are described fully in the
INPUT-OUTPUT section of this manual (Refer to page 23).

DO Statement

The DO statement allows a series of statements to be executed repeatedly
under the control of a variable whCBe value changes between repetitions,

Forms~ DO n integer scalar variable
DO n integer scalar variable
expression

3

~ expression1 , express~on2
- expression1 , expression2 ,

where n is a statement number and expression :::;, expression2 at object
time. If, as in the first form, expression

3
i.s not statea, it is

assumed to have the value, 1.

The DO statement causes the following statements up to and including
statement n to be executed repeatedly, This group of statements is
called the range of the DO statement. The scalar variable of the DO
statement is called the index or induction variable and must be of
integer mode. The values of expression1 ~ expression

2
, and expression3 are called respectively the initial, limit and increment values of the

index. Each may be of either mode but will be converted to arithmetic~
integer mode before use.

The initial execution of all statements within the range is always
performed with the initial value assigned to the index, regardless of
the value of the limit and increment. After each execution of the
range the increment is added to the value of the index and the result
compared with the limit. If the result has not passed the limit~
the statements within the range are again executed using the new value
of the index.

-19-

After the last execution program control passes to the statement
innnediately following statement n. Exit from the range may also be
accomplished by a transfer from within the range of the DO statemento
The value of the index is retained for computation purposes on both
normal and abnormal exits from the DO loop.

The range of a DO statement may include other DO statements provided
that the range of an "inside" DO loop is completely com::ai.ned wi.thin
the range of any "outside" DO loop. In or.her words, the range of two
no· statements may not partially intersect each other., Only total inter­
section or no intersection is allowed.

The index of a DO statement is treated as any other scalar variableo
Its value may be used for calculation outside the range of the DO
statement as well as within the ranges. In addition~ the values of the
limit~ increment~ and index may be altered within the range of the DO
statement.

It is also permissible to transfer into the range of a DO statement
from outside the range.

Examples:

DO 37 I = 3, 12
DO 15 INDEX = FIRST, LAST, INCREMENT

As an example of the use of the DO statement consider the following
sequence which will sum all the numbers within a suitably specified
array.

SUM = 0
DO 3 l'=l,N

3 SUM = SUM+X(I)

CONTINUE STATEMENT

Form~ CONTINUE

The rules of FORTRAN state that the range of a DO statement cannot end
with a control transfer statement. In order to gain this capability
without violation of the r\1le,) a dummy statement:> CONTINUE~ is provided
that may be used to end the range of a DO, or as the target point for
transfer statements within the range of a DO where repetition of all or
part of the range is conditional. Consider the following statement sequence~

-20-

DO 3 l=START:1 STOP

IF (ALPHA) 3, 17, 51
3 CONTINUE

A negative value of ALPHA will initiate another execution of the rangeo
The CONTINUE statement provides a target address for the IF statement and
ends the range of the DO statemento The following sequence is illegal
and must not be used since the ~O loop ends with a conditional transfero

2 DO 3 I=START, STOP

3 IF (ALPHA) 2, 17, 51

CALL STATEMENT

Forms: CALL identifier
CALL identifier (argument? argument:. ,, o ,~ argµment)

This statement is used to call (transfer control to) a subroutine
subprogramo The identifer is the name of the subroutineo

The arguments, as in the case of functions, may be expressions or array
identifers. Unlike a function, however, a subroutine may have more than
one result and may use one or more of its arguments to return these
results to the calling program. The first form of the CALL statement is
used where a subroutine requires no argumentso

Examples:

CALL DUMP
CALL MATMPY (X(I~J)~Y(J~K))
CALL SEARCH (MTABLE~RALPH)

The mode of the subroutine name has bearing on the mode(s) of its
resultso

RETURN STATEMENT

Form: RETURN

This statement returns control from an external subprogram to the calling
program. Therefore, the last statement executed in a subprogram will be a

-21-

RETURN statement, though it need not be physically the last statement
within the program. Any number of RETURN statements may be used and they
may occur at any point within the subprogram at which execution is to be
terminated. A RETURN statement is necessary to return control whether
a subprogram is explicitly referred to in a CALL statement, or implicitly
referred to by a functional reference.

STOP STATE}liENT

'Form~ STOP

Since, in a process control application, it is not permissible to stop
the computer by program~ this statement' is interpreted as an instruction
to MONITOR to stop operating this program. It therefore generates the
calling sequence which would be associated with the statement~

TURN PROGRAM OFF,0,1,0,0~0

This means that the next time the program is turned onj it will be
entered at the beginning with all flip-flops reset except the PAIF,
which is reset.

STOP must appear by itself on a card.

END STATEMENT

Form: END

The END statement is used to communicate to the compiler the logical
end of a program or sub-program. It causes the compiler to finish
the compilation by reserving memory locations for all variables named~
etc.

END must appear by itself on a card.

-22-

6 INPUT-OUTPUT

INPUT-OUTPUT STATEMENTS

Input-output statements call for the transmission of information records
between computer memory and various input or output units which are
attached to the computer .. In general, an input~output statement provides~

L Specification of the operation required; whether input or output
and the particular unit involved.

2o Reference to a data format specifying the conversions required
between internal and external data formso This reference is to the
number of a FOR.MAT statement.

3o A list of the variables whose values are to be transmitted. The
list order of the variables corresponds exactly to the order in
which the information exits i.n the input medium or will exist i.n
the output medimrio For example~ the statement

PRINT 20, ALEPH~ BETH~ GIMEL

specifies that the values of ALEPH, BETH and GI.MEL are to be
printed on line acco·rding to the format specified in the FORl'1AT
statement numbered 20.

INPUT-OUTPUT RECORDS

All information appearing in external media is grouped tnto records.
The amount of information contained in one record and the manner in
which records are separated depends upon the medium. F'or punched cards~
each card constitutes one record; for punched paper tape, a record
consists of 80 or less frames;} followed by a carriage return; i.n printing~
a record is one line of 120 or less characters~ etc. The actual ar!'lount
of information contained in each record is specified by the FOR.MAT
statemento

Each execution of an input or output state~ent initiates the tras­
mission of a new data record" Therefore~ the statement

READ 12 ~ UN~ DE UX ;i TROIS

is not necessarily equivalent to the statements:.

READ 12~ UN
READ 12~ DEUX
READ 12f] TROIS

-23~

since in the latter example at least three records are required, whereas
in the former example one, two, three or even more records may be
required depending on the FORMAT statement numbered 12.

If an input-output statement requests less than a full record of infor­
mation~ the unrequested portion of the record 1s lost and cannot be
recovered by another inp,~t-outpL.t statement,

If an input-output statement requests more than one record of infor­
mation, successive records are transmitted until the data request is
satisfied o

INPUT-OUTPUT LISTS

The list of variables in an input-o~tput statement specifies the order
of transmission of the variable values. During input, ne~ values of
listed variables may be used as subscripts or in control expressi.ons
for variables appearing later, in the list" For example,

READ 4, J, A(J)~ B(J+l)

reads in a new value of J and uses it in the subscripts for A and B.

The transmission of array variables may
similar to that used in a DO statement"
array variables and/or scalar variables
may be enclosed in parentheses and will
the input-output li.st. For example,

READ 7~ (X(I), I = 1,4)

is equivalent to

be controlled by indexing
A series of subscripted

followed by an index control
act as· a single element of

READ 7~ X(l), X(2), X(3), X(4);

and

PR INT 8 , (X (I.) , Y (I) , Q, I - 1, 2)

is equivalent ot

PRINT 8, X(l), Y(l), Q, X(2), Y(2), Q,

As in the DO statement~ the initial, limit, and increment values of
the index may be given as expressions; eogc,

PRINT 2, K, (ARRAY(M)~ M =l,J,K),

-24-

The indexing may also be compounded as in the following example~.

PUNCH 3~ ((TIME(K~L)~ K = 1~4)~ L = 1~8).

This statement outputs elements of the array TIME in the order

TIME { l ,) 1) ~ TH'iE (2 ~ 1) . o c TIM.E (4 :• 1) .9 TINE (1 ~ 2) ,, , ,
TIME (4$ 3}~ etc,

If an entire array is to be transmitted~ the indexing values may be
omitted and only the array identifier written, The array is trans­
mitted as in the previous example, in order of increasing subscripts
with the first subscript varying most rapidly, Therefore, the
previous example could be replaced by

PONCH 3 ~ TIME

READ STATEMENT

Forms: READ n~ list
READ (expression) n~ list

where n is a FORMAT statement number.

This statement causes information to be read from the input device
identified by the value of the expression, converted to internal
binary representation according to FOfil/iAT statement n~ and stored as
values of the variables specified by the input=output li.sto If no
expression is entered (first form), the device specified will be the
one corresponding to the value 0,

PRINT STATEMENT

Forms~ PRINT n~ list
PRINT (expression) n:1 list

where n is a FORMAT statement number.

This statement causes informa~ioncontained in memory as values of
the variable specified by the input~outpu.t li.st to be: converted to
BCD representations according to FORMAT statement n and printed on
the output device specified by the value of the expression.

As with READ, .absence of the expression and its enclosing parentheses
will produce a reference to device number 0,

PUNCH STATEMENT

Forms ~ PUNCH n ~ list
PUNCH (expression) n~ list

where n is a FOR]f!f.AT stateMent m::'JJ.ber o

Thi.s statement accomplishes exactly the same f·u.nction as the PR.I.NT
state·ment and in an identical manner :i except that the information to
be output will be punched rather than pri.ntedo

INPUT=OUTPUT TESTS

Prior to actual execution of I IO operations~) it may be desirable to
test the status of the nabonic to be employed" I/O dev:iceo For this
purpose a series of IF statements of the form:

IF I/O type
IF I/O type

where n1 ~ n2 ~ n
3

are statement numbers~ has been provided to accor.:t­
plish tfie desired testing.

The six specific forms recognized are:

IF READ
IF READ
IF PRINT
IF' PRINT
IF PUNCH
IF PUNCH

1:11 ~ n2 ~n3.. .
(expression} n1 ~n2 ~n3
n 1 ;}n2

:-n
1

(expression) n1 ~n2 ~n3
nl f) nz.9n3 0

(express ion) n
1

~) n
2

~ n
3

As with the corresponding 1.10 statement~ the device number is
indicated by the value of the expression wi.th absence of the expression
signifying device number 00

n1 is the statement number of the first state·r.ient in a routine to
wnich control is to pass when the tested device is "busy"!) or whose
u'table 0

' is full o

n
2

is the statement mJmber of the beginning of a 6'faulty" or Hbadvv
or wierror condition" routine for the tested device o

n is the statement n~nber of the: start:lng statement in an nout =·of­
s~rvice" routineo

If no such impediments are found to exist at the time of executi.on
by the testing routines in the execution systero~ control passes to
the next sequential statement following the IF I/O statement.

=26~

FORMAT STATEMENT

All input or output of BCD information requires the use of a FORMAT
statement specifying the external format of the data and the types of
conversions to be performedo Any FORMAT statement may be used with any
inpu.t=Ol;;.tput meditum!'l and since they are not executed~ they may appear
anyplace in the progra~o

Form~ FORMAT (Sl ~) s2 :'> o o o oi Sk)

where S is a data field specification"

NUMERICAL FIELDS

Foti.ir different types of· numerical data conversion are available~

L Type E

2o

30

4o

Internal Form = Binary floating-point
External Form ~ Decimal floating=point

Type F

Internal Form - Binary float i.ng-point
External Form ~ Decimal fi.xed.=point

Type I

Internal Form = Binary integer
External Form = Decimal integer

Type 0

Internal Form - Binary integer
External Form = Octal integer

The four types of conversions are specified by the following general
forms~

L Ewod
2c Fwod
3o . Iw
4o Ow

The letter E:i F~ I9 or 0 designates the conversion type; w i.s an integer
spedfy:Lng the data field width and must bt: ;5630 And d is an integer
specifying the number ·of decimal places to the right of the decimal point o

The value of d must be $_15o For E=type output conversion!') w should exceed
d by at least 7o For example~ ·the statement~

FORMAT (I3~ Fl0o4~ El5o5~ 08)

=27=

could be used to print the line

37 -14, 2639 37777

on the output lis ti.ng ,.

Note that plus signs are not printed"

Note also that in type F conversion there is a decimal point but no
exponent)) whereas type E conversion has an exponent. On outp~t the
exponent always has the form shown, i.e., 9 an 1VEv 1 follo·wed by a signed
two digit integer o On :input, however, the "En or the sign or the entire
exponent may be omitted" 'rhe following are all valid El5 o 6 data fields
for inp·u.t ~

.,327409+2
o964'718E4
0003276=4
305976 u

The field width w includes all of the characters (de:ci.mal point~ signs~

blanks~ etc") which comprise the n·umber,, J.f a m;mb€.r i.s too long for
i.ts specifi.ed data fi.eld the excess characters are lost, Si.nee numbet'S are
right justified wi.thi.n their fi.elds, the digits lost are those \"11th the
most significance o The spacing of output data for legi.bi.li.ty must be
considered when speci.fying a data fi.eld wi.dt:h,

Duri.ng input~ the appearance of a decimal po.int ''" 11 in an "Eli or ":f.m
data field specification overrides the "d" spec1.fl.cat:lon of the fiel~:L
In the absence of an explici.t deci.mal po:l.nt: ~ the poi.nt: is pos:i.t:I oned
d places from the ri.ght oi the fi el.d not co·i.::.nt i.ng r.he expon.ent ~ i. f. on,e i.s
present, For example,.; a numbel' appearing externally as 31~.159E.,'1 with
a data Held speciHcaUon of El2"5 1wi.ll be interpreted a,s .. L 141.59E·,,L

In additi.on$ a scale factor,., i.nd:l.cated by a slgn.ed or unsigne.d d 1ec.Lnal
integer followed by the lette.r~ "P" ... , may be 1employed '"~ll.t:b. E and F He:lds ,,
If used wi.th an "F" field, i.t wi.11 achi.eve mclt.lpUcatl.on of floating quan ...
tities by powers of 10 before conve;rsi.on ort output or after com1ersi.on on
input" If used wi.th an "E" fieldi, it ·will be fgn.ored on. 3np~.t and \Al:i.11
cause P whole nu~ber digits to precede th.e decimal point and the exponent
to be decreased by P. The P-factor must not be negacive for use with
E=fields. The maximum absolute value must be <.9" A P~fact or holds for
all succeeding E and F fields i.n the F'ORMAT st:i'tement,, To end :i.ts
influence, a P-factor of zero must be stated"

Examples~

6PE9.3
2P4F7.2

Suppose that the above examples are employed as follows~

=28=

PRINT 7 ~ X)! {PRCNT(IL I -· l 9 4)
7 FORMAT (PE10o3~ 2P4F7u2)

Assume further that the values of the variables concerned are~

x 6:)494:, 650
PRC NT (1) 001234.5
PRCNT (2) u 596938
PRCNT (3) 0856062
PRCNT (4) lo56032

The resulting printed line would appear as:

7 L23
I

59 069 156003

ALPHANUMERIC FIELDS

Alphanumeric data can be transmitted in much the same manner as numeric
data through use of the form Aw where A is a control character and w.
is the number of characters in the field and is ~630 The alphanumeric
characters are transmitted as the value of a variable in an inp~t~output
listo The variable may be of either mode. For example,

READ 17, V
17 FORMAT (A3)

will cause three characters to be read and placed in memory as the value
of the variable Vo

If the format specification had indicated a field width greater than
4j) the additional characters will be grouped in fours and placed in
V + ljl V + 2j) =~= etco~ until the entire field width is satisfiedo If
the last such group contains less than 4 characters~ they will be left~
j ustifiedo

ALPHANUMERIC FORMAT F'IELDS

An alphanumeric format field may be specified by preceding the alpha~
numeric string with the specification nH~ where n is the nu:rnber of
characters in the string including blanks and has a maxi.mum value of 1200
For instance~ the following sequence~

PRINT 3
3 FORMAT (9H NOT DONE)

will print the words NO'r DONE on lineo The n characters of the data
field are not transmitted as the value of a variable~ but are stored

~29 ~

in the memory space allotted for the FORMAT statement itself., The n
characters may be replaced by n other characters by means of an input
statement which references the FORMAT statement, The val-u.e of n must
be :$_120,

An inp"J.t~output li.st is not req1 .. i.i red for the. transmission of t.hls type
of fieldc During fnpu.t ~ n characters are extracted from the i.n.p.J.t
record and used to replace the n characters within the sµeci.fication,
During output the n characters specified or the n characters which have
replaced them become part of the. output record, For example~ the sequence=

READ 3
3 FORMAT (9H 1·0T DONE)

PRINT 3

will pri.nt the words ALL DONE on line, provided ALL DONE appears i.n
positions 1~9 of the input: :record beLng processed by the. READ 3 state=
ment,

ALPHANUMERIC NOTES

Alphanumeric information can also be placed in an o.-'tp·w.t line by use of
a special feature~ called a "note", :For instance.~ the words "NOT DONEu
as shown in the previo~s example could be inserted by~

PRINT 3
3 FORMAT ($ NOT DONE$)

The number of characters between the two "$" symbols would be counted
and the same information woi..i.ld be generated as i.n. the previous exampleo
Note that the "$" symbol cannot be a member of a note~) since ·1 t: signals
termination of the note,

BLANK OR SKIP FIELDS

Blanks may be introduced i.nto an 011cpu.t record, or characters skipped on
an input record by t:se of tbe sped ficati.on nX o The control character i.s
X and n is the number of blanks or characters ski.pped with a maximJm
value of 31, For example~ the statement~

FORMAT (SH JOB I3 ~ lOX,. 4HDONE)

may be used to output the line-

JOB 397 DONE

with 10 blanks separating the two quantities,

MilCErl FIELDS

Art alphanumeric format field may be placed among the other fields of
the FORMAT statement to enhance the readability of output listing~Q For
example~

FORMAT (8H FORCE ~ F9 o 4 9 5H LBS ")

may be used to pript-

FORCE~ 297.6374 LBS

Note that the s~parating comma may be omitted after an alphanumeric
format field.

REPETITION OF FIELD SPECIFICATIONS

Repetiti4)n of a field specifi.cation may be specified by pre~eding the
control charac~er E~ F~ I, A, or 0 by an unsigned integer less than or
equal to seve~ giving the qumber of repetitions desired. The specifie4
number· of repetitipns must not be zero. For example~

FORMAT (312, 2Fl2.6~ 204)

is equivaleU:t to

REPETITI~ ~F GROUPS

A group of Held specifications may be repeated by enclosing the group
wit~in parentheses and precedipg_ the w.hole group with the number Qf
de~ired repetitionso For example 9

FORMAT (312~ 2(Fl2.4~ 3E8.2))

is equivalent to

Alphanumeric field~ may also be repeat~d in. this me.nner,

PRINT 7
7 FORMAT (3(5H BANG)) B

or

will cause the following on ~ine output~

BANG BANG BANG

Five levels of repeated groups are allowed .
... 31 ...

PRINT 8
FORMAT (3~$ B~G$)).

MULTIPLE RECORD FORMATS

In the case where a group of successive input=output records have different
field specifications~ q. slash, "/"~ is used to separate those field
specificationso For example~ the statement

FORMAT u~os/13 ~ 3Fl2o8/12A3)

is equivalent to

FORMAT (408)

for the first record!)

FORMAT (I3~ 3Fl2.8)

for the second record:1 and

FORlV.lAT (12A3)

for the third recordo

The comma separating data field specifications may be omitted when a
slash is used. Blank records may be written on outpdt or records skipped
on input by using consecutive slashes,, On printed output, a slash always
causes a skip to a new line after completing the recordo Both the slash
and the closing parenthesis at the end of format indi.cate the termination
of a recordo If an input-output statement li.st. indicates that data
transmission is to continue after the closing parenthesis of a format
statement is reached&i the format is repeated from the last left parenthesis.

The statement

FORMAT {2El2o6~ 2(3F7o4~ 208~ 17))

is equivalent to

FORMAT (2El2. 6 ~· 3F7 o4 ~ 208 ~ I7 ~ 3F7o4 9 208 ~ I7)

for the first record,) and

FORMAT (3F7 ,4 .' 208 ~ I7)

for all succeeding recordso

The total of all field widths specified for a record is the length of
that recordo If the record length specified is greater than the maxi.m11rn
allowable on a particular input=output device 9 the excess characters are
losto

DRUM TRANSFER STATEMENTS

Two statements~ READ DRUM (drum to core) and WRITE DRUM (core to drum),
provide a method for transferrring blocks of information (programs and
data) between core memory, where execution takes place, and drum memory~
where large amounts of bulk storage are availableo Each statement calls
for the transfer of a single conti.nguous block. and~ therefore~ no i.nput~
output list is employedo

Forms~

where

READ DRUM (syrnbolic
1
), (symbolic2)~ (symbolic3)

WRITE DRUM (syrnbolic1), (syrnboli.c2) ~ (syrnbolic3)

Syrnboli.c
1

is the initial drum address in PAL syrnbolicso
Symbolic2 is the number of words to be transferred in
PAL symbolics.
Syrnbolic

3
is the initial core address in PAL symbolics.

-33~

7 COMMUNICATION WITH REAL-TIME MONITOR

In order that programs may undergo dynamic scheduling and relocation
as components of a real~time complex, certain statements which com~
rnun.icate initiation~ terrninat.ion~ delay and segmentation of the com·~

ponents to the overall control or MONITOR routine become necessaryo
Description of a series of such state!Dents provided within GE/PAC
FORTRAN follows o

TURN PROGRAM ON STATEMENT

Form~ TURN PR0GRAM n 0N:i expression

where n is an integer constant i.ndicati.ng the nprogram number 0 by which
the program to be "turned on.11 is known to t:he MONITOR. The value of the
expression specifies the ti.me of next executi.on of the rvturn on" program
with a 0 value indicating i.mmedi.ate execution.,

Example~

TURN PROGRAM 21 ON, NOW + 1000

TURN PROGRAM OFF STATEMENT

Form~

This statement turns the current program off 9 i.eo~ places it i.n the
inactive state

Example~

TURN PROGR.AJY'f OFF ~ 0 ~) 1 :; 0 ~ NXENTY, 0

m
1

~ m
2

.~ m
3

::i m
4

D and Return are PAL symbolic flelds interpreted as follows~

1 ~ set (/JVRF

1 ~ set: PAIF

1 => set TSTF

1 _, set TMF'F to TRAP

Return~ Symbolic location for ECP entry
at time of next "turn on''

(TMFF-Memory Fence Flip-Flop)
~34-

DELAY PROGRAM STATEMENT

Form:

This statement places the current program in an inactive state for a
specified length of time"

m
1

and m
2

are PAL symbolic fields indicating the following~

1 = program's area of occupancy
is now available.

0 = area remains unavailable

indicates length of delay

SEGMENT STATEMENT

Form:

where n is·the_program number of the following "segment" to be assigned
and recognized by MONITOR (as in TURN PROGRAM ON)"

Aside from its declarative properties (see section of this manual
titled DECLARATION)~ SEGMENT n is equivalent to the following
statement sequence.

TURN PROGRAM n ON, 0
TURN PROGRAM OF'F, m

1
:1 m

2
~ m

3 9 NXENTY ~ m
4

m
1

~ m2 9 m
3

~ m
4

~ and NXENTY are as defined in TURN PROGRAM OFF.

~35-

8 DECLARATIONS

A declaration describes certain properties of a FORTRAN program~ as
opposed to the imperative assignment.:> control or input-output statements,
Several FOR.TR.Al.~ statements are reserved for the purpose of supplying
the system with de;cl.a.rative information o These statements are pri1marily
concerned with the :interpretation of identif lers occurring in the source
program and with memory allocation in the object programo

CLASSIFICATION OF IDENTIFIERS

Each identifier in a source program is classtfied· i.n accordance wi.th the
FORTRAN element it identifies" Four main classificat~.ons are recognized~

1. Scalar identifiers
2. Array identi.fi.ers
3. Subprogram identi.fi.ers
4. Dummy identifiers
5. Single bit arrays identifiers

The classification is made according to the context i.n which the identifier
makes its first physical appearance in the source program" This fi.rst
appearance amounts to a declaration, explicit or implicit, of the proper
interpretation of the ident.i.fier throughout the program"

MODE DECLARATIONS

In addition to being classified,, each :l denti fi.er appearing in a F'OR.TRAN
program is of mode i.nteger or re.al. 'The statements INTEGER and REAL are
used to specify identHer modes explicit.ly o An i dent.ifie.r may appear i.n
only one of these stateme:nts and this appearance must precede the use of
the identifier in any non-declarative staceroent,

Identifiers whose mode is not explicitly declared are assigned modes
implicitly according to the following conventi.on.,

L '.:dentifiers beginning wi.th I.~ Joi K~ L~ M or N are assigned integer
modeo

2c Identlfiers not included in the above classification are assigned real
modeo

-·36-

INTEGER STATEMENT
I

Form~ INTEGER identifier~ identifier,o o•' identifier

This statement declares the listed identifiers to be integer; each of
them will be assigned to a single word.

Example~

INTEGER PHI~ KAPPA~ SIGMA

Notice that KAPPA need not appear in this statement sine~ it would be
declared integer mode implicitly.

REAL STATEMENT

Form~ REAL identifier~ identifier, •. Q~ identifier

This statement declares the listed identifiers to be real mode; each of
them will be assigned to two words.

Example:

REAL FORCE, MASS ~1 LOG

Notice that FORCE need not appear in this statement since it would be
declared real mode impli.citly.

DIMENSION STATEMENT

The DIMENSION statement declares an identifier to be an array identifier~
and also specifies the number and. limits of the array subscripts. Any
number of arrays may be declared in a single DIMENSION statement.

Information provide·d by a DIMENSION statemen.t is required for the allocation
of storage for arrays. Each array variable appearing in a program must
be previously declared as an element of an array i.n a DIMENSION statement.
Each array variable m~st have the same number of subscripts as were
declared for the array~ and the value of each subscript ~ust lie within the
limits specified by the DIMENSION statemento

Form~

when S is an array specification.

=37=

Each array speci.f ication gives the array names and the mini.mum and
maximum values that each of its Sllbscripts may assumeo The mi.ni.mum and'
maxi.mum values for each subscript must be given as signed or unsigned
inte,ger constants with the maximum value greater than the minimum value,
An array identifier may have any number of subscri.ptso

Two forms for specification of the rnaximu.m and minimum subscript values
are recognized:

identifier (rnin
1

/max1 , ..•)
identifier (ma~l~max2 ~.,.).

In the latter form~ a minimum value of one is implied~ i.e.~ the latter
specification is equ:tvalent t'o

The two forms are syntactically independent and may:; therefore:i both
occur as different subscript 'limi.t specifications in the array speci, ~
fication.

Example~

SUBPROGRAM DEFINITION STATEMENTS

The two types of subprograms which may be called:~ or referred to by
a FORTRAN program are classified as external or internal subprograms,

Internal subprograms are defined witb.~i,n the progran that calls them~
and are defined within a single statement kn.own as an arithmetic f'unction
definition statement o Internal sv.bprograrns may be t:sed only within the
program containing their definitionc External subprograms are defi.ned
separately from (externally to) the program calling theme They are
complete autonomous FORTRAN programs within themselves~ and as such are
compiled independently 0 There are two types of external FORTRAN sub,=
programs which may be declared~ FUNCTION subprograms and SUBROUTINE sub=
programs 9 both of which are described below o Any sc:bprograrrL, whether
internal or external may call ocher subprograms; however:i recursion i.s not
allowedo All subprograms constitute closed subroutines, Leo:i they appear
only once in the object program regardless of the m..:.mber of times they are
calledo

=38=

DUMMY IDENTIFIERS

A subprogram definition statement declares those identifiers appearing
as arguments of the subprogram to be dummies. They are used as ordinary
identifiers within the subprogram definition and indicate the mode and
use of the arguments. Dummy identifiers are replaced by actual arguments
when the subprogram is exect;:.ted.

ARITHMETIC FUNCTION DEFINITION STATEMENT

Form: identifier(identifier, identifier, ... , identifier)= expression

This statement completely defines an internal subprogram. The first
identifier is the name of the subprogram being defi.ned.

Arithmetic function subprograms are functions; :.e., they are single valued
and must have at least one argument. The mode of the function is deteru
mined by the mode of the function identifier.

The identifiers enclosed in parentheses represent the arguments of the
function. These so-called dummy identifiers have meaning and must be
unique only within the defining statement. They may i.n fact be identical
to identifiers appearing elsewhere in the program. They must agree in
order, number, and mode with the actual arguments given at execution time.

The use of an argument within the definition statement is specified by
the use of its dummy identifier. Expressions are the only permissible
arguments for internally defined functions, therefore~ dummy identifiers
may appear only as scalar variables in the defining expression. The use
of an array identifier or a subprogram identifier is not allowedc

Identifiers appearing in the definition statements which do not represent
arguments are treated as ordinary variables. In addition~ external
functions or other previously defined internal ftJ.nctions may appear :i.n
the definition statement.

Examples~

F(X,Y} = (X+Y)*(X-Y)
SINH(ZETA) = (EXP(ZETA/B)-EXP(-ZETA/B))/2
Q(X,Y,Z) = F(X,Y)/SINH(Z)

In the second example above, ZETA is a dummy identifier and B is an ordinary
identifier. At execution time the function will be evaluated using the
current value of B. The third example is allowable if the first and
second definitions precede it in the program.

-39-

If the accompanying sou.rce program contained the statement

Y = A*'SINH(ALPB.A) o

The arithmetic f11nction defining SINH would be evaluated usi.ng the
current value of ALPHA as its arg·,i:mci.nt" The result "wOi:.ld be multi.plied
by A and the product assigned as the vab~e o:f the variable Y'o

All internal subprogram definitr.ons of any FORTF.AN II program must
precede the first non=declarative statement of the progranio

FUNCTION SUBPROGRAMS

Like the Arithmetic n\,.nc:ir .LOn Definition StaternenL, the .FUNCTION sub~
program i.s also a function~ is single valu.ed:i and i.s referenced as a
basic element in an expressi.on" FD'NCTION st.::.bprograws may be used when
more than one FORTRAN statement is needed to define the functional
relationshipo In order to logically separate a FUNCTION si.ibprogram
from the calling programsll the subprogram always begins wi.th a FUNCTION
declaration:.i ends with an END sr:atement, and returns control to the
main program via the RETURN statemento

FUNCTION STATEMENT

Forms:

FUNCTION identifier (identifier.) i.dentifl.er'.l o o ":· identifier)
REAL FUNCTION identi.fi.er (identifier~ identi.fier, 0 o,,, identifier)
INTEGER FUNCTION identifier (identifier, identifier~ o o o ·; identifier)

This statement declares the following program to be a fonct~on sub~,

programo The first i.denti.fier is the name of the s0.bprogram being
definedo This idE::ntif·1er mu.st appear as a scalar vari.able and is assigned
the value of the function resulting from exec ~tion of the s-ubprogramo The
function mode is declared impl::ic.itly by the i.ni.dal letter of the fonction
name~ or may be declared explicitly by using che second or tr:·i.rd forms
of the FUNCTION statemento

Those identifiers appearing in the list enclosed by parentheses are
dummy identifiers which represent the f'-'n.cti.on arg~~ement s ~ and rn0.st

agree in number~ order~ and mode T>\fi.th t:he actual arguments given. at.
execution timeo These arguments may be array names as well as expressionso
Therefore,i the dummy identifiers may, appea:r as array ident.ifiers or scalar
identifierso A FUNCTION statement must have at least one argu:rnent. Dummy
identifiers representing array names must appear i.n a DIMENSION statement
in the FUNCTION subprogram as well as the calli.ng progra·Jl:'l and must
agree with the specification of the arrays in the call:Lng prograwo

Examples:

FUNCTION SEARCH (LIST,ALPHA)
REAL FUNCTION INDEX (Al,B2,C3)
INTEGER FUNCTION DELTA (ARG1,ARG2)

SUBROUTINE SUBPROGRAMS

The SUBROUTINE subprogram is not a function in that it may be multi­
valued and is referred to only by the CALL statement. The SUBROUTINE
subprogram begins with the SUBROUTINE declaration, ends with an END
statement, and returns control to the calling program via the RETURN
statement.

SUBROUTINE STATEMENT

Form: SUBROUTINE identifier (identifier,identifier, ... ,identifier)

This statement declares the following program to be a SUBROUTINE
subprogram. The first identifier is the name of the subroutine. Those
identifiers appearing in the list enclosed in parentheses are dummy
identifiers which represent the subprogram arguments. As in the FUNC­
TION statement, these arguments may be scalar or array identifiers.

Dummy identifiers representing array names must be declared in a
DIMENSION statement within the subprogram and must agree with the speci~
fications of corresponding arrays specified in the program contai.ning the
CALL statement.

Contrary to the FUNQTION and Arithmetic Function Definition Statements,
the result of a SUBROUTINE subprogram is not necessarily a single value
and the value of the name of the subprogram may or may not (depending on
the subprogram) be meaningful. Instead,specific results are normally
returned as values of variables in the argument list"

A SUBROUTINE subprogram does not necessarily require arguments; in the
absence of an argument list no results can be returned via the arguments.

Examples:

SUBROUTINE BURST
SUBROUTINE FACTOR (COEF1,COEF2,ROOT)

-41-

IMPLICIT DECLARATION OF IDENTIFIERS

Identifiers appearing in declaration statements such as DIMENSION~ FUNCTION~
SUBROUTINE~ etc., are explicitly classified by their appearance in that
statement. If the first appearance of an identifier is in an imperative
statement rather than a declarative statement, the identifier i.s classified
implicitly according to its context"

For example~ in

DIMENSION ALPHA (5,10)

the identifier ALPHA is explicitly declared to be a two-dimensional
array. Similarly

FUNCTION ALPHA (X~Y)

explicitly declares ALPHA to be a single-valued function with arguments
X and Y. Conversely~

ALPHA (X:i Y) = 2i~X+Y

implicitly declares the identifier ALPHA to be an internal subprogram
because it appears in an arithmetic function definition statement. Note
also in the three previous examples that in the absence of declarative
statements to the contrary~ ALPHA is implicitly declared to be the
identifier of a real quantity. As a further example note th.at i.n the
statement

SUBROUTINE ALPHA (X,Y)

ALPR.A is explicitly declared to be the name of a subprogram with arguments
represented by dummy identifiers X and Y.

However~ if the expression

ALGFNC + ALPHA (A~B)+Z/3

has not been preceded in a program by any of the four previously mentioned
declaration statements, ALPHA will be implicitly declared to be an external
subprogram whose presence wi.11 be mandatory at runtime for exect.tion of
the object programo

-42-

MEMORY ALLOCATION

Memory allocation statements are used to supply the system with supplemental
informati.on regarding the storage of variables and arrays; and when the
program :Ls to be subordinate to a real-time system, to supply memory
assignment of the program in bulk memory and specify coi.ncldent. cross,~
references as may be necessaryc

DEFINE STATEMENT

Form~ DEFINE identifier
1

(symbolicL identifier
2

(symbolicL " , o

The DEFINE statement provides a method of incorporati.ng uniform reference
to variables which are to be part of a "permanent memory space" i.n an
overall systemo

The identifiers occurring in the list may be array or scalar identifiers,
or subprogram nameso The s)7mboli.cs enclosed wi.thi.n the parentheses may
be PAL symbolic expressions to which the preceding identifier will be
equated by the compi.ler o

Identifiers appearing i.n DEFINE statements are assumed to have space
allocated by· the overall system and are not 9 therefore, assi.gned space
by the memory allocation section of the compilero

The temporary storage area created by the compiler is named $TEMP" It
can be assigned to permanent memory by naming i.t in the DEFINE Statemento

Example~

DEFINE X(V01T25) ~ SQRTF(/3000), $TEMP(/4020) :J COMMON(/3127)

COMMON STATEMENT

Form~ COMMON identifier~· identifier~ o o o ~identifier

Within the space allocated by the overall system as uwpermanent memory";)
a section is set aside with the symbolic label of the first locations
as 61Cornmon 11 o For thi.s purpose:i the symbol~ COMMlON:i is reserved i.n both
the FORTRAN and PAL languages and is lie·ed solely for reference to this
specially named section of memoryo

The identifiers in the COMMON statement may be either array or scalar
names provided that the array names also appear in a DIMENSION statement
in the same programo

During allocation') each variable t:o be allocated in COMMON is assigned the
next block (one word for scalars, array size for arrays) relative to the
previous allocation with the fir.st such allocation being a simple equation
to the symbol, "COMMON".

Example~

COMMON SCALAR:iJ~ ARRAY:> A

In the above example~ suppose that SCALAR and J are scalars and that ARRAY
and A are dimensioned elsewhere as ARRAY (=1/3~5) and A(lOO). The resultant
equations to CO:MMON would be:

SCALAR
J
ARRAY
A

EQL
EQL
EQL
EQL

COMMON
COMMON + 2
COMMON + 3
COMM:ON + 53

In view of the i:mplici.t property of the symbol~ COMMON» as a member of
the same space as that referrred to by the DEFINE statement~ the above
equations to COMMON can be seen as equivalent t.:o those which ·would be
produced by

DEFINE SCALAR (COMMON) si J(COMMON +2),
ARRAY (COMMON+ 3), A(COMMON +53)

EQUIVALENCE STATEMENT

The EQUIVALENCE statement allows more than one identifier to represent
the same quantity.

Form~

where R denotes a location reference.

The location references of an E'QUIVALENCE statement may be simple scalar
or array identifiers)) or may be identifiers appended by an integer constant.
enclosed in parentheses. All location references enclosed within the
same parenthetical expression share the same storage location. Such a
group is known as an equivalence set. For example~

EQUIVALENCE (BLACK~WHITE)

states that the identifiers BLACK and WHITE refer to the same storage
location.

=44-

To refer to a specific location in an array, that location must be
appended to an array identifier as an integer constant. For example 9

if A is a scalar variable and B is an array the statement

EQUIVALENCE (A,B(5))

specifies that A and the fifth location of the array B share the same
storage locationo

To refer to a specific quantity in a multiply dimensioned array, the
location of that quantity must first be calculated. As an example~
consider the three dimensional array specified by

DIMENSION CUBE (L
1
/u

1
, L

2
/u

2
, L

3
1u

3
)

where 1. and U. denote the lower and upper limits of the i th sub­
script.1 To calculate the location of

CUBE (KpK2 !}K3)

use the f orrnula

Therefore the statements

DIN..ENSION SPACE (12), VOLUME (2:12,2)
EQUIVALENCE (SPACE(3), VOLUME (7))

specifies that the quantities SPACE (3) and VOLUME (1~2~2) will share
the same storage locationo Notice that only the relative location of
the quantities within the array matters~ since the entire array is
adjusted to satisy the EQUIVALENCE statement. In the example above~
the statement

EQUIVALENCE (SPACE(1) ~ VOLUME (5))

would have had the same effect as

EQUIVALENCE (SPACE(3)~ VOLUME (7))

Where the location of a variable is known relative to a second variable~
this location may be specified by appending an integer constant to the
identifier of the second variable. The integer to be used is determined
by considering the sequence of quanti.ties as an unidimensional array.
For example, if we have in storage at

the statement

LOCATION

Ll: ALEPH
12 ~ BETH
13: GIMEL
14: DALETH

EQUIVALENCE (GAMMA,ALEPH(3))

will specify that GAMMA and GIMEL refer to the same storage locationo

-45=

Note that the property of eq~ivalence is transitive; the statement

EQUIVALENCE (X!)Y)!){Y;iZ)

has the same ef feot as

EQUIVALENCE (X~Y!)Z)

JOINT DEFINE!) COMM:ON AND EQUTVALANCE RULES

In the event that identifiers appear mutually in DEFINE, COMMON and,/or
EQUIVALENCE statements~ the DEFINE statement takes precedence followed
by the COMMON state'!TienL

All e q·u:Lvalences to DEFINE and COMMON va.ri ables are equated off~ Le" :i
removed from the remaining equivalence sets and entered in the object
code as equations to symbols occu.r:ri.ng i.n DEFINE statements or to the
symbol~ COM1.V!ON o

BEGIN PROGRAM AT STATEMENT

Form~ BEGIN PROGRAM AT n

where n is a PAI~ symbolic spec:i fy'f.ng the location i.n b11.lk memory i.nto
whi.ch the ensuing program i.s to be loadedo

SEGMENT STATEMENT

F'orm ~

where n is the MONITOR recognized program nurober of the following segmento
This statement is used to break a large program into a nu.rober of smaller
segmentso

In addition. to segmentation by turni.ng 11 off!I and t:l:',rning the n.ext part
(segment) 1 'on"~ the SEGMENT statement cadses the execution (at compile
time) of a FORTRAN "END"" This exet..1ction a.llocat.es storage,. published.
errors and removes all known names and labels from the tables before
proceeding to the next job o Therefore~' the only information carried
forward to the next "segment" wi.11 be tha relative location in bulk memory"
Care must be taken to assure that varl.ables which are common to segments
are declared in each segment by "COMMON" or 1'DEFT.NE" statements"

9 DIAGNOSTICS

STATEMENT DIAGNOSTICS

Statements which violate the syntax or semantic rules of the FORTRAN
language are detected idu:r:·ing compilation and are dlscardedo An err.or
message is printed on the line printer and c~~pi.lation proceeds as if the
erroneous statement had never been encoLlnt:eredo The error message consists
of the statement i.n the forn'1 i.n whi.ch it entered the computer; then one
character of the statement is indicated by a. dollar sign~ "$" 51 printed
beneath ito For example, in

13 FUNC ;=. 2*X+Y*+A
$

The character "+" is marked as an erroro In the case of syntax errorsD
the marked character itself i.s unacceptable as in the above exampleo
In the case "f a semantic error~ an identi.fi.er or other construct is
being improperly used:, and the dollar sign indicates the last character
of the constructi.ono For instance:> in the statement

ASUM = P ART':it'*3+4
$

the dollar sign would indicate that the i.dentifi.er PART is being used
incorrectly; eogc 9 PART may be the name of a subprogramo

The compiler will try all possible legal interpretations of a stateme.nt
before finally discarding ito The dollar si.gn position indicates the
greatest amount of correct information;) starting from the left~ that was
·found under any assumption about the state1nent 0

A comment indi.cati.ng the reason for the error 1.s t:hen printed at the left
margi.n after the. marked Hne o These comments are as follows~

SYNTAX

This comment usually occurs becau.se of erroneous p.~mctuation o:r illegally
constructed arithmeti.c expressionso

NUMBER

A constantll label:') or input=output symboli.c uni.t number is too large or
is incorrectly constructedo

ID DECLARATION

The identifier indicated is being used in a manner contradictory to a
previous declaration.

SUBSCRIPTS

There are too many subscripts, an expression describing a subscript
is incorrectly constructed, or the number of subscripts used in an array
variable does not agree with the number declared in the DIMENSION statement.

ALLOCATION

1. A negative or zero array size was specified in a DIMENSION
statement.

2. The rules of COMMON or EQUIVALENCE have been violated. In either
statement the identifier cacsing the violation is marked.

PROGRAM OVERFLOW

The working core storage available to the compiler has been exceeded.

ARGUMENTS

A FORTRAN reserved function has been employed with the wrong form and/
or n~mber of arguments.

PROGRAM DIAGNOSTICS

Comments concerning labeling and allocation errors are listed at the end
of compilation. The label errors comment is followed by a list of state­
ment labels, and the allocation errors comment by a list of the offending
identifiers.

LABEL ERRORS

1. The following statement numbers were used in control instructions
within the program but referred to an unnumbered statement.

2. Two or more statements have the same label.

3. The statement closing a DO loop was never reached.

4. The final statement in the range of a DO loop was a transfer statement.

5. The DO loop was illegally nested.

-48-

ALLOCATION ERRORS

The identifiers that follow this error message violate DEFINE, COMMON
and/or EQUIVALENCE rules, such as the use of a function or subroutine name
as the name of a variable in either a COMMON or EQUIVALENCE statement.

-49-

APPENDIX A

SUMMARY OF GE/PAC FORTRAN STATEMENTS

COMPUTATION
ARITHMETIC ASSINGMENT STATEMENT
SET BIT
RESET BIT

CONTROL
UNCONDITIONAL GO TO
COMPUTED GO TO
ASSIGNED GO TO
ASSIGN
IF
IF BIT
IF SENSE SWITCH
IF ACCUMULATOR OVERFLOW
DO
CONTINUE
CALL
RETlJRN
STOP
END

INPUT-OUTPUT
READ
PR.INT
PUNCH
IF READ
IF PRINT
IF' PUNCH
FORMAT
READ DRUM.
WRITE DRUM

COMMUNICATION WITH REAL-TIME MONITOR
TURN PROGRAM ON
TURN PROGRAM OFF
DELAY PROGRAM

DECLARATIONS
INTEGER
REAL
DIMENSION
ARITHMETIC FUNCTION DEFINITION STATEMENT
FUNCTION
SUBROUTINE
REAL FUNCTION
INTEGER FUNCTION
DEFINE
COMMON
EQUIVALENCE
BEGIN PROGRAM AT
SEGMENT

-50-

~
14
14
14
14

15
15
15
16
17
17
18
18
18
19
20
21
21
22
22

23
25
25
26
26
26
26
27
33
33

34
34
34
35

36
37
37
37
39
40
41
42
42
43
43
44
46
46

COMMENT RECORD

GE PAC 4000 Double-Word Fortran Reference Manual

HOW WELL DOES THIS PUBLICATION PERFORM ITS INTENDED FUNCTION?
YOUR CRITICISM IS INVITED FOR THE IMPROVEMENT OF THIS DOCU­
MENT~ PLEASE COMMENT ON THE EFFECTIVENESS OF PRESENTATION
AND SUGGEST ANY INCLUSIONS WHICH WERE INADVERTENTLY OMITTED.

-----------------·----------..---.. ----- ·~-·-·· ... ·---~--

To enable us to send you the missing information, please com­
plete the following and forward to the PROGRAMMING LIBRARY

NAME -----------------------COMP ANY --------------------ADDRESS --------------------CI TY STATE -------------- ------ZIP CODE -----

GENERAL ELECTRIC COMPANY
PROCESS COMPUTER SECTION
P. 0. BOX 2918
PHOENIX, ARIZONA - 85002

GE PAC

MONITOR

TRAINING

MANUAL

@ General Electric Company~ 1965
December 1965 Revised
Library Control Noa YPG31M

This manual published by~
PROGRAMMING SUPPORT
GENERAL ELECTRIC COMPANY
PROCESS COMPUTER BUSINESS SECTION
Pc Oo BOX 2918
PHOENIX 9 ARIZONA - 85002

1.

1.1
L2
L3
1.4
LS
1.6
1~7
L8
ltJ9
L,10
Lll
Ll2
1.13
ld)l4

INTRODUCTION

GENERAL

SYSTEM DESCRIPTION

Executive Control Program .•..
Time & Dia.gnostic Count Driver. .
Save Registers Subroutine ..•.

CONTENTS

. 1-1
. . 1-6

. 1-7

. 1-7 Res tore Registers Subroutine" " • . . . • • •
Turn Program Off Subroutine . ~ ... o ,, • " • • • .,. .,. 1 ... s
Set Program Delay Subroutine. ~ ~ ,, o . 1-9
Turn Program On Subroutine. " ~ . • ••• • It . 1-10
Core Map MainterLmnce Subroutine ft •• •••••• & 1-11
Drum/Disc Transfer Request Subroutine ,. ~ .. ,,
Drum/Disc Transfer Driver ,, "l o n • • • & • •

Find Register Point.er Subroutine" " • • ,, ,, •
Peripheral Availi!bility Subr.outine" • o • • ~ • " • .. •

Output Subroutineso .. " •• ~ ••
Output Programo n o • " • e • • • n ~ & • • 8 ~ ~ •

L14!!)1

1,.14~2

L14"3

Ll4,,6

Binary to F'ixed.=Point Decimalo tlt ••••

DF.X Monitor Pseudo-Op and Format Word
Binary to 4=Bit BCD~ • ., " • 8 ~ • •

n3B Monitor Pseudo=Op and Format Word
Bimry to 6=Bit BCD,, ., . . ,, .. ~ ,. • ..
BCD Monitor Paeudo=Op and Format Word
Binary to Non-Edited Chara~ter •
BCN Monitor Pseudo~Op and Format Word
Binary to Octalo . . • 8 • ., .. •

(}ICT Monitor Pseudo·~Op and Format Word
Clock Output o ~ , • o , • • • • ~ • •

CLK Monitor Pseudo=Op and Format Word

• 1-12
. " . • . 1-13

" 1-13
. i ... 14

• " • " . 1-16
• . ~ • • 1-18

. . " •• 1·19

8 1-20

... 1 ... 21

& 1-22

• • 0 1-23

1-24

Ll4,, 7 Floating Point to E-1ype Floating Point Decimal.
DFE Monitor Pseudo=Op and Format Word

. • 1~25

Floating Point to Fixed Point Decimal.. ~ • • ~ .
DFP Monitor Paeudoc-Op and Format Word

• • 1-26

11!! 15 Input Driver,, . ,, " o o " n • • .. ,, • ~ • .. • ft • & • • ., • 1 ... 2 7
1 .. 16 Input/Output Dt·iver Program . • • » • & • .. 1 ... 2 7
1.,17 Output Driver D n • " u n • " • • • • • " • • • • 1-27
1~18 Input Request Subroutine. . • • 1·28
1.19 Input Progr~m • n • o p • • • • • ~ •• o • 1-31
l_,20 Multiple Output Request Subroutine. o • .. • • • ~ •• " ~ 1-31
1.21 Multiple Output Driver., ,. ~ a o <> .. " • .. • • 1-34
1~22 Timed Cont~ct Output Request Subroutine . , • • • .. ~ • • .. ., 1~35

1~23 Timed Contact Output Driver a • " o .. • g 4 ~ • • s ~ ~ 1-36
1~24 Scan Request Subroutine ~ e a •• ~ • • • •••• 1-36
L25 Scan Driver o •• " • ., • • • ~ o 1-39
le26 Scan Offset Program 4 o o • " " • • • • .. • • ~ a 1-39

L27
L28
1.29

Corrective Action Diagnostic Program
Initialization Routine •
On~Line Operator Program (Console Switches).

L29. l
L 29"2
L29.3
L29.4
L29.5
L29u6
1.29. 7
1.29.8
1.29.9
L29~10

1.29 .11

Memory Change
Loader
Dump
Clock
Program Status
Peripheral In/Out of Service
Paper Tape Duplicator
Extract Load Tape
PAL GE/PAC Assembler
Demand Scan
Controller Change

. 1-39

. 1-40

. 1-40

1.30 On~Line Operator System (I/O Typer)o . , 1-41

1.31
1.32

L30,l
L30.2
L30,3

Memory Change
Loader
Dump

Find/Restore Working Core Area Subroutines ••.
Run, Stop, System Subroutine • , •

APPENDIX A - Monitor Pseudo=Ops
APPENDIX B ~ Communication Calls
APPENDIX C ~ Symbols

~ 1-43
. 1-44

A-1
B-1
c-1

INTRODUCTION

The GE/PAC MONITOR Training Manual presents ways of using the
Monitor System on the GE/PAC 4000 Process Automation Computerso

This manual has been designed ~specially for the Monitor 4sero
It tells him what Monitor does and what he must do in order to
use ito The individual subprograms which make up the Monitor
System are discussed. The communication links which nwst be
included in the functional programs in order to communicate
with Monitor are also giveno A detailed analysis of the Monitor
logic is reserved for the prog:ram write~ups and is not included
in this manualo

The reader is expe.cted t·o be familiar wi.th realu·time system
requb:ements. He should aho know GE/F'AC programmfng techn.1 .~,
ques and the PAL Assembly Lang:a.ge 0

.t

GENER.Al

A real .. ,time process is charact.eriz,ed by the occurrence of many
events~ some contin1.1ous~ others random in nature" Events may
occur simultaneo~sly A digital computer, however~ is a serial
device; that is, it performs its program operations serially,
one by oneo Therefore~ the matching of the digital computer
and a real-time process reqcJres a control system which co­
ordinates the requirements and characteristics of both.

A GE/PAC Monitor is an operating system composed of a library
of subprograms wbich provide the basis for a process computer
systemo It is the framework to wh.::.ch the specific f·;.mctional
programs are addedo The Monitor accomplishes the timing and
scheduling operations~ inpct/ourput, internal data transfer,
timed contact, multiple o~tput~ correct~ve action, init:aliza­
tion ~ etc c Many options are available ·r.vt>.1 ch may or may not
be included in a tailored Monltor System.

The ~ser requests a tailored Monitor by checking the desired
options on the Monito1 Chec'.~.lisL The Checkli.st is obtained
from the Programming Librar.i.an,

GE/PAC MONITOR INTERRUPTS

60 Cycle
DMT f- - ~ ECHO

J SYSTEM
.......-'! TIMER

.. ~
DRUM/DISC XFER

....... COMPLETE

SCAN
........
7 COMPLETE

.:::::J MULTIPLE
+--~.,.,,.. OUTPUT

COMPLETE

I/O BUFFER
r----~-::illl READY

OTHER
t---~> SYSTEM

INTERRUPT

TIME ClCf~lNG EXE CU TIVE
& DIAGNOSTIC

~-,---:>
CONTR OL

COUNTDOWN PROGR AM

DRUM/DISC XFER
I DRIVER

SCAN

DRIVER

M~O,,

DRIVER

INPUT/OtTTPUT
DRIVER

DR.IVER

\I/

FUNCTION r-
' l
i

1l

7~

I
l

I
JJ1

RESTORE
REGISTERS

\/

RETURN
TO

INTERRUPTED
PROGRAM

FUNCTION

2 -------.----"

,--1
I
I

.1.

'FUNCTION

3 ETC,,

1. SYSTEM DESCRIPTION

Monitor consists of the component programs, as described
below I>

1.1 Executive Control Program (ECP)

The Executive Control Prcgram schedules the execution of
programs based on i:riority :> execurion time!' and' core
availability a All t:ime·-·cri.tical int:errupts a.re permitted
before system programs are e~ecuted~

System programs .a.re exec.1lted i.n priority order by comparing
the programsu next execution time (PROG) with the current
time (TIME) ,q The~ highest priority progP.am for which the
execution time is equa.l to or less than the current ti.me is
executeda When the exec.ut ion ti.me is current for a. program~
the ECP requests a transfer from drum or disc. to core pro­
viding~

11> The program is not in core
2" The program is not pre~ently being transferred.
36 A core area is available.

After the transfer has been comple.ted.:1 the program is
initiateda If there is no available core area for that
program~ ECP tests the e~ec~Jt ion time for the next lower
priority program.

If a program has a viturned off" or "locked out" code in its
PB.f<; location~> it is not executed until a. time for exe-·
cution is assigned.

In the AU2 l) there. are three c.l.assifications, of register
storage for funct.ional pr.ogr.am.s., They are:

L Programs which h·3.ve no register storage of the.ir
2,, Programs whi.ch have thei.r own 8·~l.-10rd block of

regi.ster. storage.,
:L Progl'.' a.ms whi.ch share a.n 8·"\.TOrd bloc:k of register

storage with other. func..tional programs,

The Register Jfointer Ta.ble (RSX) tells what classification
is assigned for each program and contains the following
information~

~: All programs in the AUl have their own 8·-word
block of register storage~ The RSX Table is eliminated
when all AU2 system programs have. their own 8·--word register
storage block,,

l=l

own,

Register Pointer Table (AU2 Only)

This table contains an index to the 8-word storage block for programs
having full register storage or sharing storage. For programs with
no register storage, the table contains the flip-flop status and the
program's next entry location.

23 22 21 ·20 19 18 17· 16 15 0
RSX 1 0 -- ---- 0-----------------

~~------- ----- -- ---·-----
'lf} . 0 0 p T F R -~~-L . .l_l~~.::~ ~-~_.~er y L~-~ _:_

O! 3
1 31--~--~--~~~~----~-.. 1

0 6 --------------..-
f/J P T F iI-:t-f_L-IN:e~.!:__:§n t: !Y- I,o c •

0 = No Register Storage
1 = Register Storage

0 = Return to program after ITC Timer or Drum/Disc
Transfer Comple.te. Interrupts

1 = Return to ECP after ITC Timer or Drum/Disc
Transfer Complete Interrupts

For programs sharing full register storage, the index would
be the sameo

Register Storage Table (REGSTG) ·:stored in permanent core,,.

23 22 21 20 19 18 17 16 15 0 ---···

I
I

I
AREG
QREG

'i'C'PREG
X3REG
X4REG
X5REG
X6REG
X7REG

01
Re_g_ister

01 pJ T}

Contents at Next

FI R 1 NJ. O L:~-~
Program I I No.04,

=D
ress /

l(

Entr_y

Next Ent~y Add

-
-l I

I l
ECP I I

~)
/
·1·
'

~
Third 8-Word Block of Register Storage

. -·--·-- --··-- -- ... _______ .., - -·.
AREG+32

l Fourth 8-Word Block of Register Storage j:...f
:Xl.IM+l2 -----------·-· --------------· -·-· ------· ·- ·-------- -- ·- -- ---- -- · -· · ··· ·· --- · -- - ··---·-:i

:~:::::f ::::~~~~~~~ Bioc~-o-f R-;;i~~:~-~~~t:~-a~: _____ ' .. r-----
*PREG Flip-Flops

~ = 1 - Set Overflow; 0 - Reset
P = 1 = Set Permit Interrupt; 0 - Reset
T = 1 - Set Test Flip-Flop; 0 - Reset
F = 1 - Set Memory Fence; 'O - Reset (AU2)
R = l - Absolute Permanent Core Location

0 - Relative Address (Drum/Core)
For an all-core system, R is always zeroo

N = 1 - Negative Relative Entry Address (Bits 0-15)
0 = Positive Relative Entry Address (Bits 0-15)
For an all-core system, N is always zero.

I
I

__ I

The other tables assisting the ECP in performing its functions are:

PR~G - Program Execution Time Table

TIME (000014331

Program IF
1 PR0G
2
3
4
5
6
7

PROGRAM OFF
PROGRAM CURRENTLY RUNNING
PR OGRA..M DEl,A. Y ED
l,OC KED Ctt'T
OF'F
OFF
PROGRAM ON (Based on event)

Drum Transfer Control Table

Program
No. 0
Transfer
Group

23 22 21 20 19 18 17 15 13 0
DRMLele lO BEG-iNNlNG DRUM/DISC ADDRESS =.J

I l:l · INDEX TO NUMBER OF WORDS TN I SIZE

C0RL0C

DRML0C+3
SIZE+3

C0RL0C+3

A C T N S 3-WORD GROUP PROGRAM
IN SAVE TABLE (SAVED BLOCK NOT

_ _.._..........__ INCLUDED)
- ------fBEGlNNING CORE ADDRESS I

Drum Transfer Con~rol-~~-----~------i
Group for Program #1 I

-;...

Drum Transfer Control Group _______ }

for Program #n 1
C(DRL0C+3n ! __J

A ·~ Area Availability on Entry From ECP
1 :, Available~ 0 ':I Unavailable

c 1 = Program is in core
0 = Program is net in core

T - 1 = Program is i.n transfer from drum/core
0 == Program is not in transfer

N "" 1 = Pr·ogram is running with c.ore area available
0 = Program is running with core area una.vailable

s - l = S.a.ve temporary storage on drum if overwritten
0 = Do not sa.ve temporary storage

The Save Status Area Concrol Table is used for programs requid_ng
temporary storage to be saved in a.n unptotec. ted area on drum before over, ..
writingb This feature is called "Save Status". The EGP transfers the
temporary storage of programs having "Save Status" to drum before
another program is transferred in its place" However~ when a functional
program is turned off, its temporary storage is not automatically saved
on drum.

Save· Status is specified i~ the Drum Transfer Group Table above in
the SIZE Word, Bit 19.

SAVTBL

SVSIZE

SVL0C

Save Status Area Control Table

23 22 15 13 0
0 BEGINNING DRUM OR DISC ADDRESS FOR l

__ ..._~~.~~~~~~-S_A_V_E_D A;=R=EA-'---~~~~~~~-

1 NUMBER OF WORDS IN SAVED~
BLOCK AT END OF PROGRAM

BEGINNING CORE ADDRESS

ECP Drum/Core Communicati.ons

'\ 115
413 \

i

:.-----\ I

I fft4

/
DRUM/CORE LOCATION TABLE

(Permanent Core)

/

CURRENTLY
UNUSED

PERMANENT
CORE

VJ'ORKING
CORE

1-4

ECP Drum/Core Communications

OCCUPIED BUT AVAILABLE
CORE

TO BE SAVED ON DRUM
(SAVE STATUS)

UNAVAILABLE CORE \
Each bit in the following two tables represents 64 cor~ locations (1008).

OCCUPIED AREA MAP

CQ)RMAP 23 22 21 20 1.9 18 17 16 15 14 13 12 11 10 9 8

AVLMAP

1 l 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0
1 1 1 1 1 1 1 l l 1 1 1 1 0 0 l l 1 1 1 ------------------
1 1 1 1 1 1 l 1 1 1

, 1 1 1 , 1 1 1 1 1 1 ...
1 1 l 1 1 l 0 1 1 1 1 1 1 1 1 1 1 1 0 1

. -·-·--"'
UNUSED 1 = Core Area Occupied by a Func~ional Program

AVAI,LABLE AREA MAP

23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 1 1 1 1 1 1 1 1 1
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
1 1 1 1 1 1 0 0 0 1

7

UNUSED

1 1 1
0 0 0
0 0 0
1 1 1

1-5

-
1 1
0 0
0 0
1 1

1 1
0 0
0 0
1 1

0
0
0
1

~ ~ ;-++ ;~
0 0 0 0 0 QJ
0 O _ _Q~Q__Q __ QJ

-1 - Core Area Unavailable for
Overwriting

1. 2 Time and Diagnosdc Count Driver (ITC)

ITC uses two interr...ipts to control the sys ten t rnling.. The
first (non..,inhibi.table) interrupt occurs each 16 2/3 MS, On
interrupt~ a IJ:1T counter is decreased by one,, When the
counter equals minus one, th"~ second (i.nhibitable) interrupt
is triggered,,

The second interrupt causes entry to ITC., The DMT Counter
is initiaU.zed by ston.n.g che nc.rober of 16 2/3 MS intervals
in a ti.me cocnto This n.1..r:nber~ '.NCYCLE~ must:: be evenly di.vis··
ible into sixty and is specif i.ed by the System Programmer at
assembly time. NCYCLE determines the length of time represent-
ed by one time count (1 second~ 1/2 second, 1/4 second, etco).
ITC increases the time of day (TIME) by one. The time of day
is cleared at mi.dnight" ITC also references all program and
auxiliary time counters at the beginning of each day. Aux1llary
Time Cot,;.nters are: used by functional programs whicb are turned
on by the Monitor Initialize Routine which require i.ni.tiati on
at set time intervals (1 minute, 2 minutes, etc.), Typical
programs would be the Scan or Perfor~ance CalcLlati ons"

ITC also tests for intern.pt driven device failures on the
Peripheral Buffer, Octput Distributor, Scanner, etc" Each
device is assigned a spec] f ied COUNT which is used for count­
ing the time required for activating a particular device. This
location (COUNT) represents the maximum number of ti.me count
intervals in. which act.ion sb.O'~..:.ld be compleced ,, lf a COUNT
becomes negative, the :lev~ce f".as fai.led and ::he Corrective
Action Program is t-u.rne i on o

When an i.nter:rupt. occurs d:J.ri ng the execution. of a.n i.nter­
ruptable sybt em S'-1.braL..t. i.ne .. lTC reL:rns i::nmedi.ately to the
interrupted s u.bro·i_,t ine 0

ITC returns control to the interrupted program or to the
ECP depE;:nding on the indicator set. i.n the Register Storage
Table (RSX)<

1=6

1. 3 Save Registers Subroutine (SRG)

SRG saves the register contents and/or next entry location for
a functional program,) Fox· functi.onal programs having full
register storage or sharing register storage, the P Counter,
A, Q, and X3 through X7 Registers for the i.nterrupted program
are transferred to the R.egi.ster Storage Table. Otherwise,
only the mtert entry point to the functional program is saved.

L 4 Restore Registers Su.brout i.ne (RRG)

RRG returns to an interrupted program at the designated entry
point. The contents of register storage are transferred to
the register locations for programs havi.ng full register
storage. These values represent the contents of the various
registers for the running program at the time of its last
inter.rupt.,

1-7

1.5 Turn Program Off Subroutine (0FF)

The Turn Program Off Subroutine stops the ECP from
initiating the execution of functional programs. Programs
are turned off by placing the 119ff" constant, 40000000

8
, as

the next execution timee Only a running program may turn
itself ofL

After the "off" constant is stored, control is transferred
to the ECP ...

To communicate with 0FF, use the following calling sequence:

SPB •FFCol-- 40 -- 000

~=~!~/0,1,0i,STAR\ \~OMoo --
emory

- \ Reset
Set Permit \
Interrupt Test

Flip-Flop
Reset \

\
Core \
\

..._Must be relative
to start or zero,,

1-8

Fence
(AU2 only)

\

Clock
PRCk; 00000631

4000000
40000001

~ OOOQQQO

00000832

n
\

I
1-I.

10004640 !Next
:--~~~~I Entry

ll1oc ~

..._____J

1.6 Set Program Delay Subroutine (DEL)

DEL clelays the execution of a functional program for a
specified time period~ The delay, in time counts, is
added to the current time and stored in PRf)G for the

n
calling function~

·The A, Q and X3 through X7 Registers are saved for those
programs having register storage"

To set a delay, use the following calling sequence:

System Clock

SPB DELCO!
DEL 0, 3*SECND

R.eturn from

TIME (9oooo6oq
41 of Secs~ ~-
ECP~ 600

~+ 14

6~
Clock_for all Programs 0 = Area is set unavailable

during delay
(1 = Area available)

PR(bG 4000000
~ 400Q0001

(Program 3)

The above example shows a 1/4 second system~

1-9

QQQQQ631
00014200
400000Q_
4000000
40000QQ_

1.7 Turn Program on Subroutine (TPN)

The Turn Program On Subroutine is used to change the
execution time of functional programsc The execution time
and the program number are give.n in the calling sequence.

After the new execution time is stored for a.·program,
control is returned to the calling function.

Programs which are "locked out", next time of execution
40000001

8
, ma.y not be turned. on by TPNo

TURN PROGRAM 3 ON

LDZ
SPB TPNCOl
CeN G 31 HL{itG

RETURN

HLf>G EQL 3

. Clo~!_ all Progr.ams
OOQQ_QO
000001

I
(Program 3)

00000631
00014200 I

1- 40000000 -,
I 40000000 I
[;OQQOOOO i

~
TO TURN A PROGRAM ON ON1~1 IF IT rs CURRE~1'ltY" 1PFF

\

LDA Execution Ti.me or LDZ
SPB TPNC02
C(l}N GJHSCAN

RETURN

HSCAN EQL 8

\

\
\
\

Program 8 is turned on.

TPN returns with a.11 ones in the A~,Regi.ster when a· request
is made to turn a program on which is "locked out".

1=10

C(l)RMAP

AVLMAP

J
'
I

l, 8 Map Maintenanc.e Snbro,)tine (MAP)

MAP is used to uprate die c::ire map tables (C0RMAP and AVLMAP)
0

Core areas may be se1: <.."'ccup LedJ unoccupied, available, or
unavailable~

SPB MAPOl ~- Set Acea. (Jccupied or
SPB MAP02 '0 Set Area l 7ncccupied £E_
SPB MAP03 3et: Area Pnava. ilab le or
SPE MAP04 ")et Area .hn:d lab le

Return t 1) the calling program

Occupied Core Area Map Table
C0RMAP

23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
~~.~~~~~~~~~~--~~~~~~--

0 0 1 1 1 1 l 1 1 1 1 1 1 0 0 0 0 1 1 1 1 1 1 1
i--~~~~~-~~~~--~-

0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0
t--~~~~~~~~·~~-~- -~~.~--~~~--~~~-~~~~--~~ __ o_o_~o_o ___ o_~o __ 9_Q_Q __ o _ _Q __ o o o. __ o __ o __ o __ o __ o __ o .. _o ___ o_o __ o
,_1_1 __ 1 __ 1._1 ___ 1_ 1 1 0 1 1 1 1 ___ 1 __ 1_1 __ 1_ ,_1_1 ___ 1 ___ 1 __ 1~_0 __ 0,

In this table :i none" bi ts indicate that the core area represented is
occupied by a functional program whether its area is available or not"

Available Core Area M~~ble

AVLMAP

23 22 21 20 19 18 17 16 1. 5 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 0 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0

~ 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 -
0 0 0 0 (: 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
~-----·--~-~~-·-------

1 1 1 1 0 0 1 1 1 1 l 1 1 1 0 1 1 1 1 1 1 1 1 1 ------'--.,....._.._ _____ _..

In this tat- le~ "one" bits indicate that the core area is unavailable
for overwr« .. ting.

Eae:h bit represents zK weirds of working core area." For example,, if
k =i 5 1 each bi.t represents 32 words of core" The working core a.rea
starts at fixed location such as 120008 .

In our e>'~amp le~ .5 progra.ms a.t'e. in core occupying area.s:

120008 '"' 1233'7 g (word 1 :, bits 0 .. 6)
12:-408 '~ 13277 8 (wor:d L bits 11 '~ 21)
136008 =· lli-7378 (word 2 :• bits 4 ,. 22)

165008 - 173'">7 (word 4.) bi.ts 2 ~' 14) .). 8
174008 ~ 1777'7 ('"

1ord 4,:, bits 16 - 23) 8

NOTE~ The progra~ in core area 120008 - 123378 is running with its
core area available.

The beginning of the ma.p table is the upper right hand bit
of the table and ~he end is the lower left hand bit.

SPB
LDK

1.9 Drum/Disc Transfer Reqv.est Subroutine (DTR)

DTRCOl

DTR requests transfers between drum or disc and core memory. The
core <+..4dress of the 3-word cransfer co.mand and the pre.gram number
are stored in the Driver Table fRfi may ·T-etu'fn to the
calling progra-,Tt im".:lediately after the request is stored
or after the completion of the actual transfer,

To return to the calling pf Ogram immediately after the
request i.s stored i.n the Driver Table,

Direction of transfer
~ 1 = core to drum

/"' 0 = drum to core

DRMXF~ (May be Indexed)
Error Return (7:able Full) 23/ 16 15 14 0

\

\
\

DRIVER TABLE i . •
~ F N Ifie! sr
~--~

~ Drum Address
l fl of Words

!Core Address

~-----

DRMXFR = Address of Three-Word
Transfer Command
DEL D,Drum Address
C0N G,Number of Words
LDA Symbolic Core Address

The core address of the 3-word
transfer command and the transfer
direction are stored as one word
in the Driver Table, The second
word in the Driver Table contains
the program numr.>er und the drum/core
number (3Xn) ,.

To return to the calling program after the requested
transfer has been completed~

SPB DTRC02
LDK DRMXFR (May be Indexed)

Error Return (Driver Table Full)
Normal Return

1-12

1..10 Drum/Disc Transfer Driver (DTD)

DTD initiates transfers between core memory and drum
or disc. It is entered from the Drum Transfer Complete
Interrupt,,

Following each interrt;pt .. a transfer is initiated by an
eUT Drum/Disc Command. Requests from th~ Scan Driver
are given priority.. Return from DTD is to the interrupted
program or the FCP. (Refer to 142).

1.11 Find Register Pointer Subroutine (FRP)

FB.P determines a program~s type of register storagee It
gives the starting address of the 8-word storage block or
the next entry address for the specified program,,

LDA Program Number
SPB FR.PCOl

Returns with the address in the A-Register
and Test Flip-Flop Status

The test flip-flop is set if the program has full register
storage~ Otherwise, it is reset'.

See Register Pointer Table under 1.1.

1-13

1012 Peripheral Availab1.l f ty SubrnLt ine (PAV)

The Peri,pher.s.l Aval.la.bi llty S1.1,brm..ttine is lJsed as a
combination call to check for peripheral avai.labili ty,
make an output request~ or perform peripheral subs ti tuti.on.
when a per:lph,eral fs not free~ appropriate diagnostic
action is taken o:r pE:r::pher·a,l subst::ltLltion is made if the
peripher'al i.s bad or o-u::. ·-,of ··se::cvi ce,,

PAV also provides an optional feature for checking data
areas. A data area is assigned to each output message
representing the dr1'.m, di.sc ~ or permanent core area
containing the mE:ssage" When an output request is made
for availability and th~ area is available, the area is
set unavailable and ls set free when the last character of
the outp·ut message ~,s completedo

Data 9.rea numbet's range :tro'11. 1-24 u Zero is reserved as a
dummy area rn1rnber when ava·i labil:i ty is not requ.ired. Area
number zero is always consider.ed avai.lableo The data
number :is used as a tag to identify a message area. The
tag may apply to an individual message or a buffer which
that message occup~.es. Two messages whi.ch share the same
buffer may not have the same tago Until the driver removes
the data tag~ no other program can use this tago

A peripheral availability call must not occur in a sub­
r01.1tine used by more than on.e functional program u The
PAVCOl call selects an alternate output device when the
requested device 1.s n.oiL free"

.------~

Core Format
and Data
Locations

SPB PAVCOl (Fixed Message Call)
DEL 0 , Ffi)RMAT

EL
:F({;R

O~ DATA __..,... No Test for Data Area Required
DEVICE~ 0 ~ ~ 0 = Dummy Area Number
RETURN

R~!~~I~!~~:iE IS -·~-·-1 A~~-1~;··
Stacking Ta~-

1--F_u_l_l __ ,. __ ~_.,,_...,..._D_e_l_a....,L!L 2 Sec o and try again.
Device is Bad Request output on alternate
or Out=of=Service deviceo

-~~:--~~.--~~~--'~
No Alternate is Bypasses output requesto
Available

Peripheral Availability (co~Message Number

SPB PAVC02 ~ (Checks stacking table and data area
F0R DEVICE9AREANe availability)

Place the Output!
Data in the Tablel Return is made when the

area is available and the
device~s stacking table
is not full.

SPB
SPB

(lequests output and places request in
Stacking Table)

Drum
Address

Core
Address

To Place a Message at the Top of the Stacking Table
(Priority Request)

SPB PAVC04
DEL O:iF0RMAT

EL OllDATA
F0R LGTYPE:i oam---- Area Number

Re tern

Device Prl.ority Number

Core Addresses
of Format and
Data Locati.ons

LGTYPE EQL 2

STACK3

lal3 Output Subroutines (9.}UT)

¢UT is composed of three functions" The ¢>UTC01 call is
used to test f~r peripheral availability and data area
statuso The {t>UTC02 (Normal Request) and f/>UTC03 (Priority
Request) calls make the output requesto The given data
and format locations are stored in the proper tables and
the peri.pheral ALERT bit is set for the Output Program.

When the output request returns to the "available return"
(data area and peripheral free), the system program may
then assemble its data in the data area in preparation
for the actual output request" Fur every "available
return") there must be an associated out.put request.

Ou.tput Requests may be made for the printer, typewriter
(including I/O), paper tape and ctrd punches, and magnetic
tape ..

To Test Peripheral Availability and Data Area Status,

SPB ~UTCOl Core

F
0

R /~~!~!~ia~::E:etu~~---~~ 1-~:·:~A~E - -----------1
I Available Retum -, __ , eci -----j I A A '

' ;'~ ~~
Peripheral ~ '1 I_ ------
Number . , -1'

r--23 ___ ~~--,....;;;.5.,.,.. O A-,REGISTER ~1 REASON UNAVAILABLE
} l -~ CONTENTS

r--_:;;_-=---0---/--S-T_A_C_K_I_N_G_T_AB_L_E_F_U_L_L_~. r

1 I PERlPHElilll\L IUtUJJRE" j
r---------~-~

REQUEST OUTPUT

I 2 J DEVICE OUT-OF-SERVICE Ii

~ t+f" DATA AREA UNAVAILABLE _

·SPB .UTC02 (Normal Request)
Address of 1st Format Word

DEL 0~ DATA Address of 1st Data Word

F0R [CTYPER, HLAREA
Return ~.

"Data Area Noc 3

Peripheral
-.Number

Core Addresses

HLAREA EQL 3 1=16

Output Tables

SPB
DEL
DEL
F~R

Core
Addresses

CTYPER EQL 2

Hardware
Address

DVCODE 60001100
,J4000l102
"' 40001103

I 40001101

' l
ALTTBL 0000000

\ 00000002
"-00000001

00000003

Alternate Device Table

-
............

"-..

Device
Priority

--
............

~2:-i
:ffoo
tn
ffo2
:/fo3

:/iO
:/11
:/F2
113

CORE MEMORY

-- - -- FORMAT

-..........

~DATA
[

OUTPUT]
DATA

STACKO

STACKl

STACK2

LIST CONTROL

LIST CONTROL

. LIST CONTROL
00004520
00004600
00003000
00003600

30008

I

Format and data words must be stored on drum or in permanent
coreo Format words and data words are stored in separate tables.
Addresses given in the 0UTC02 and 0UTC03 calls must be absolute
symbols. Either common (*) or local absolute (-) may be used.

1-17

OUTPUT
FORMATS

L14 Output Program (I(l)P)

Monitor outputs information by using a group of related
routines and subroutines within the Output Program. The
Output Program is turned on after receiving an output
request from the Output Sucroutines"

The stored format word is decoded into separate fields.
Format words which are stored on drum or disc are trans­
ferred to an eight-word core buffer for processing. Data
which is stored on drum or disc is placed in a sixteen-
word core bufferb Both buffers are within the Output Pro­
grame s temporary storage (save) area. The proper conversion
routine, as indicated in Bits 23-21, is then entered. Each
conversion routine is discussed as subcategories of l,,14:

L14,.l
1.14.2
1.14.3
1.14.4
L 14 . .5
Ll4.6
1.14 0 7
Ll4.8

Binary to Fixed-Point Decimal
Binary tc Four-Bit BCD
Binary to Six-Bit BCD
Binary to Non-Edited Character
Binary to Octal
Clock Output
Floating Point to E-Type Floating Point Decimal
Floating Point to Fixed Point Decimal

The following subroutines are also contained within the Out­
put Program to assist in placing the converted information
in the Driver Table, printing error messages (EEE*,999*,
000*, *) etc. They are:

Store Character in Driver Table Subroutine
Store En:or Cod~ in BCD Table Subroutine
B~ild Driver Table Subroutine
Erro:r Subrcutin8s
Update Index and Load Data Subroutine

Error typeoucs indicate the following:

999.,,,.. ·• Number too la.rge
000'>',· ·~ Number too smal 1
EEE* - Incorrect format word

~ - Field size less than three

The End of Messa~ wo:rd is all bits set (77777777) 8 .
Every table of format words must contain an end word
which is generated by~

C0N </), 77777777

1=18

1.14 .1

The format words shown in the following conversion
t:·outi.nes include an example of the MONITOR Pseudo-operation.
These pseudo-op instructions can only be used when assem­
bling with GE/PAC Monitor or the GE/PAC Monitor. EQL tape.

Binary to Fixed-Point Decimal (DFX41)

DFX41 converts jnformarion from binary fixed-point to
decimal fixed~point. leading zeros are automatically
suppressedo Numbers exceeding the field size are typed
as all nines followed by an asterisk.

Binary to Fixed-Point Decimal

Pseudo~·op Example.:·

DFX 10 , 0 t ' 4 J. ~ l , 1

23 21 20 I 15 ~ 12 ~\, ~ ~\;~\~~o
1·[:~Tol_~ __ oT-;ALO 1 ~~0-0-:~:~yo 1~~-0Ji111 lil I

WORD WIDTH FACTOR SCALE OF

23
1 0

OF I FACTOR FRACTIONS COLOR

FIELD I ! 1 = RED

I :
SIGN

DECIMAL
POINT

One value.,,, scale:d B.5;, i.s typed in a ten column fi.eld. The
value:s are pJ:·:i.nte~. in red with decimal point and four
fractional digits. The sign is printed if the value is
negative.

' 0 1 0 0 1 0 0 0 1 0 0 0 0 0 0 0 0

' Conversion tc
Fixed Point Decimal_.,.. 2.5 .132 ll ~,

~----, /,-·.-
'::."''

,,,/_
~" ' ,,.,,.. ,

Three sp e c e s ___ ,,,,,. --.. -- ·-.. -... _ ..

preced~ rhe va.l 1ie
to make a ten~·column

field,
1~·19

0
0 0 QI

Red printout

DATA
WORD

1.14.2 Binary to Four~Bit BCD (FBB41)

FBB41 converts binary data, left justified, to six 4-bit
BCD c.haracters per wordo After the conversion, each BCD
charac.ter is stored as one word in the Output Driver Table.

Binarv to Four-Bit BCD

Pseudomop Example~ FBB./0 ,6 ,0,0

/ ~-·
23 22 21 20 "'f{5· 14 Ii 11 7 6 .__._ ~~ _O

~ l 1 I 11 11 oj_QJ.j_Lo 1T_o),-9JJU_ o J- o i o Io 1 o! o i o i 1 : 1 i o 1 o : o I o:
I [___ ~~~:L _____ jl'-·R';;E~;; \-~:;E~ -) t t
I WIDTH I FACTOR OF II l I FORMAT I :

L____ WORD OF CHARACTERS COLOR CONTROL
FIELD 0 = BLACK;

1 = RED

DASH CONTROL
1 = PRINT DASH

One value~ consisting of 6 characters, is typed in black.

23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

I o I o I l I o I o I o I i I 1]:=-Q.11 I o~ I~ o Io I [[on I o I 1 I 1 I o I o I 1 I i I 1 I

I

~
--·-----~-!

23456 7 I

_/

I
~

Black printout

4 blank spaces ~ ten column field

Note: If the repeat factor is used, each data word
musr have the same number of characters.

~

Format
Word

Data
Words

Pseudo-op

23 21

Binary to Sb.=Bit BCD (4 Characters Per Word)

BCD41 converts bina.ry information to six-bit BCD
characterso The data word contains six-bit BCD
cha.rac1:'.ers 9 left justified.. After conversion~ ea.ch
word contains foiJr BCD characters"

Example: BCD 10 3 1

20 I 12 11 \ 6

1

1 0 ·----------.------------,.----->-------.----.
1 0 0 0 0 0 0 0 ,__~--~f--~~~~~-~~1_.~o __ ,l__Q+1_0~--o~~~·---1!:--~~~~ 0 0 0 0 0 1

NUMBER OF
CHARACTERS

One carriage return and three
spaces are made before the BCD
characters are typed.

NUMBER OF
LEADING
SPACES

ff TABS OR
C/R ns
INSERTED CO OR
BEFORE
LEADING
SPACES OR °1(

Codes 01-17 = 1-15 con-
8

secutive carriage returns.
Codes 41-57

8
= 1-15

consecutive tabs.

C0N A~9, TAPE. FI.LE ~pseudo~op generating data words)

carriage retur
3 leading Spaces

*AU2 Vertical Page Control Co e

1-21

Alpha.numeric
typeout in red.

00 - No Advance
01 ~ Slew 1 Line (Single Space)
02 - Slew 2 Lines (Double Space)
03 - Slew 3 Lines (Triple Space)

04-07 - Page Control Unique to
each System

77 - Slew to Next Page

Format
Word

1.14.4

23
1

Table of
Characters

CHANNEL
NUMBERS

Paper 8
Tape 7

6
5
4

•••••••
3
2
1

0

Binary to Non-Edited Character {BCN41)

BCN41 stores chaI"acters {one character per word) into the
Output Driver. Table with no transformationo One character
is containEd in Bits 23-0 of each data word, right justified.
The number of filled bits depends on the output device being
usedo The maximum number of non·-edited characters permitted
in one BCN f~~mat word is 63.

P.scudo~op Example~ 2

21 20 0
0 1 1 0 Nor USED

No. of CharacLers

23 7 6 0
---~--------.. --

tr-1-!-1-1 =i
0 0
0 -- 0 .
0 0
0 0

-----~

0 0 0 1 0 0 0 0 1
0 0 0 0 0 1 0 0 0

--~-~---------'.
0 0 0 0 0 0 0 0 0

!-·--·

0 0 c 0 1 1 0 1 1 ----1-·
0 0 0 1 0 0 1 0 1

·-i!-~~---------
0 c 1 0 0 0 0 1 1

·--·-··--·~ ----------
0 -----0 0 0 0 0 1 0 0

'"""----~- r-----~~~--~-~-~~-

0 0 0 1 1 1 1 1 0
~----- i...~-------:

.<

Punches 12 chaxa.c~ers with no transformation.

DATA F'R.AMES

111 f/:2 113 1fo4 .fl5 116 1n f!B 1~9 1110 fill 1112
..___,,,..,_,,__,,,..,...~- ~- .. ----- -----

0 0 undreds
0 0 0 0 0 1.nd· Tens

0 0 0 0 2nd Tens

Pos.
Pos.
Pos.

0 0 0 0 Parity Ind.
0 0 0 0 0 2nd Tens Pos.

8 0 e 0 I'! ti Q c G 8 • • Sprocket Feed

~

0 0 0 0 0 1st Units Pos.4
0 0 0 0 0 1st Units Pos.:
0 0 0 0 0 0 1st Units Pos.:

123 54 2 75 41 10 0 33 4.5 103 4 76 Pos. =
Position

*Even frames require a pal:'ity punch~ otherwise:i a
parity flip=flop is seL

1=22

Format
Word

First
Data
Word

1.1-4.5 Binary to Octal (0CT41)

0CT41 converts binary integers to eight octal
characters.

Binary to Octal

Pseudo-op Example:

23
l 0

21 20
1 1 (0 0 0

TOTAL
WIDTH OF
FIELD

1
v

1 llf2£JJ 0

REPEAT
FACTOR

J 2--.....1 ·o
0 0 0 1 oJo o1ol

- ' NUMBER COLOR
OF

CHARACTERS

Six low order octal digits are typed in a seven-column field
using black ribbon. The next data word would be processed
in the same manner. (Repeat Factor 1).

0
·I o o o I o ·o 1 [o i o I o 1 1 I 1 o o I i o 1 I 1 i o J 1

23
1 .. 1

(Binary Integer)

Octal Conversion

Black typecmt

· Space

1-23

FORMAT
WORD

1.14 .6 Clock Output (ClC41)

CLC41 converts the time of day from system time counts
to decimal hours and minutes" It is then printed as
four dec:Lmal digits,

Time Count To Hours And Minutes

Pseudo~op Example~ CLK 3 , 1 ,

1

_23 __ 2_2_2_1_20 ______ ~-·- -%~-~--- ________ o_
1 I 11 o l ___ o_o __ o_o:::O o o o ~~ o Q___L_! 1 .Q___Q__Q __ o __ o __ 1_J-~'--'

NOT USED NUMBER OF
LEADING
SPACES

41 OF TABS OR
CR ti S TO BE
INSERTED
BEFORE LEADING
SPACES OR
VERTICAL PAGE
CQN'TROL FOR
PRINTER";"'

COLOR
CONTROL

Use Octal Codes 01-17 for the inserted number of consecutive
carriage returns (l·-15)" The inserted number for 1-·15
consecutive tabs are octal codes 41-57.

The above example types or punches time in hours and minutes
preceded by a carriage return and three spaces using black
ribbon. . I

l / 4 SEC1' COllNTS

Data Word (TIME) 110010000001OCi0000 I
~ --T--~

Time

xxxx.x

• 1015 ~---+-----~black typeout
hours & minutes

···"'-·~
-.._ __ ,,,,,,,..--~

*Vertical Page Control Code for Pri.nter 00 - No Advance
01 - Slew 1 Line (Single Space)
02 - Slew 2 Lines (Double Space)
03 ~· Slew 3 Lines (Triple Space)

04-07 - Page Control Unique to each
System

77 - Slew to Next Page

FORMAT
WORD

DATA
WORD

(FLOATING
POINT
BINARY)

L14.7 Floating Point to E~Type Floating Point Decimal (DFE41)

DFE41 converts binary floating point information to
decimal floating pointo

Floa~ing Point to Floa~!ng Point Decimal

TOTAL WIDTH
OF FIELD

REPEAT
FACTOR

NUMBER
OF
WHOLE
NUMBERS
TO
PRECEDE
THE
DECIMAL
POINT

FRAC­
fIONAL
DIGITS PRINT

DECIMAL
POINT

PRINT
SIGN

COLOR CONTROL
0 = BLACK
1 = RED

23 22 ' . 7 16 0
I l (1 I 0 I 0 I _QO[fil_lp]:=§r__ruTIJ-:::-QJOTOT 0 I orOT]U:::QIQlOToi;9 t ~!~~~: ---- _, I ~~~~~ED

SIGN '

... 100, OOOOE-02 .-Black printout
Floating Point (minus one)
Decimal Conversion

DATA
WORD
(BINARY,
FLOAT­
ING
POINT)

Ll4.8 Floating Point to Fixed Point Decimal (DFP41)

DFP41 converts binary floating~,point information to
decimal fixed-,poinL The floating point number is
multiplied by lON if N is negative, or divi.ded by ioN
if N is positive. (N is the multiplying factor, maximum
range of absolute 9 located in the format field.)

FACTOR
CHJ\GNITUDE)

lO+N

FRAC·-
l'HBAL
DIGITS i

f
I
,1

1 =. ~-··

I

' SIGN OF
MULTTPLYTNG

FACTOR

PH TN l' DEC IML\.L
POINT

S LGN COIHROL, ..,.. __ ! l
1 = PRINT '

COLOR CONTROL
0 = BLACK
1 :: RED

This pseudo-operation specifies type or punch four values with
multi.plying factor of 10+2 and two fractional digits in an
8·~column field, It will print the de"-imal point, and sign,
using the black ripbon on the typewriter.

23 22 , 17 16 t 0
1 I 1 I 0 I 0 i 0 !__Ll_l_ j _u_ 0 ! 21 1 '. 0 I 0 : 0 I 0 I 0 \ 0 ITTOTC>! 0- ! -0 ~ 0 TQJ
I L ________ v _______ J\ ___ -=--=--==~===~-:-==---=~-------~------~-"'/

Conversion to
Fixed Point
Decimal

SIGN

FRACTION

1,--~5-- 1~ B<a.ck typeout

• ~- ·~spaces (4)

I I .----·----- ,. ..
L/ 1-26

1.15 Input Driver (IND - Ar2 Only)

. 1.16

The Input Driver is entered from any of the following
in terr up ts~

1. 1/0 Device Ready
2. I/O Typer 0DL Echo
3. 350 CPM Card Reader IDL Echo
4. 350 Card Reader Ready Interrupt

IND initiates a card reader~ paper tape reader, or
1/0 Typer re~uest. Other functi.ons accomplished by IND
are:

1. Resets diagnostic counts for 1/0 Devices.
2, Tests for a.n Input Demand from the 350 CPM

Gard Reader..
3. Tests for a valid card read.
4. Notifies the Corrective Action Di.agnostic Program

of a photo-cell card reader error~

Input/Output Driver Progra.m ~· 1/0 Typer (I0D)

I0D is turned on by the Input Driver (IND). Selection
codes and output characters for the I/O typer are stored
one character per word in the Output Driver Table. Input
characters from the I/O Typer. Paper Tape Reader; o~ 70 CPM
Card Reader, are stored one per word in the lnput Data Table
for the requesting program.

When the end .. "of~·ta.pe" stop code 1 requested number of
characters has been read~ or if the input list is full,
I0D exits to tbe ECP.

For 1/0 type.r: input. , a.n "IN" Comma.nd is given to unlock
the keyboard, At the e·nd of the record:• T.0D l0cks the
keyboard and turns che Input Program on.

1.17 Output Driver (~UD - AU2 only)

0UD is entered from the 0DL Echo Interrupt when a
peripheral devicesu Driver Table is empty. Flags a.re reset
when there is no ccnversion in progress for ou·tput typers,
paper tape punches~ card punches, or high speed printers.

1-27

1.18 Input Request Subroutine (INS)

INS accepts input requests from the paper tape reader.
card reader, or 1/0 typewriters, Input f.rom more than
one peripheral may be requested at any time, However,
each device is limited to one request at a time. Each
request must be tested for completion uf input by the
calling function.

The following ca.11 i.ng sequence i.E· used for Buffered
Requests~ A buffered request returns imme.diBtely to
the "normal return" of the calling sequence after the
read is initiated. During this time~ the calling
function may process the characters placed in the
alternate input liBt by the previous read request. In
this manner» the calling program may process one list
of characters whi.le the Driver is storing characters in
another table., (This procedure dr i.ve.s the input device
near maximum speed.)

Variable Length Message
______ A..._

fsToP co DE~· -A=R EG r STW OR LDZ (No Stop Character)

SPB INPCOl
DEL 1, INPUT .. Starting Loe a.ti on of Data
F0R ____.---- 0. 80 ,__ (N-w. of Characters to be

,,_---~~--- - ---------.. ~r0ad (0 indic.:"Jlcs to read
Input Chars. A- / i!navailable Ret-~ 1~nti l the Inp:1t Da la Table
on Drum 'Normal Return~s full - variable length)

.

// ~ Device !lad,

~ Out-of-Service, or
Input Device Noo

1=28

DRUM

in use. See
INCOl fable.

READ COMPLETION R~UEST

SPB INPC02
CON G:i 0.W--·--"·---~-· Device Numbe.r

Bad Read Retu.rn ------...
Read Co:o:cplet P..::J. Rer:u.r·n. °""·-.,

I/

11'
The requested number of characters
A "Stop Code 0 was encountered"
The end-of-tape was found.
The calling function's input data

A..,REG BAr> REA'.)
__ c_·o~TF]_T_S _.,_..;;;;.,;R;__EA::..:;;s::;_., O;;..;.:N.;___

c Pan.ty Erl'.'or
Aborted by Operator

i--------1-

Devi cE~ .Failed
bit 3 Dlffi.ng F.ead
------+----------

1 f.npu.t Data
bit w. ~ TablE! Ovt:-rtlo,~1

/bf r '; 1 No J:/O. TypPr b Stor C::>d<o c: . 6
--- £~~~c;~~-~:!~i~~~-

~b
.;: t 7 '1" / (1 'fyr• .-. r·
..II. •' • I.,, , '• !:' ~ ..

. l"i.~t-.! Abo:r. ~. ·----- _____ ..., __ .
btt' 8 :350 CPJv'J:

I j Ca:rd H1~ppe:r. l l Em.p1:y

1-29

·---------
POSSIBLE
ACl' ION _____ _

Qnit

Select: Alternate
Int:n1t Device
------ - - ---------- --..

Reniove from
1 ist before
t"'g.bk ls f'-11L __

9~:!5 ~ ---- ---·-·-- --·- -­
l.n 1 t i.at e· an.other

!·!1.P~.t_:re~9._'.~~-T':-----­
Wa'i.t f o.r opera.tor
t.o place. 1:a:cde
.tn rea.dE>·r

L 18 lnput Request Sc:brou.tine: ~ Contd o

When a non-buffered 1.np-.:t request i.s made, the calling
function is locked OL'.t cnt:il the. read i.s completed or
an error is encou.ntered"

STOP CODE-----l·--A-R.egisteu ... _ -. ._ -.. .. __
SPB INCOl ------
DEL 0 INPUT- .._..,

1
'
60

-----..__ (0 = No Stop Character)
j ------ ~Starting Location of

Input chars -----------· Input Data List
in core. ~ }Jnavai.l~b~~ or B~d Retu.rn

/Normal Retu.rn. N f Cl R d

I Oo o laracters .equeste
Input Device (0 = read ·~mtil Input

Number ~ Data Table is full.)

REASON
UNAVAIL

T
: ACTION

--~~~~~--~-----~----1 Select
Device Bad I Alr:ernate
Device Select
Out-of=Service Alternate Device ---·---*:_s_e_t ______ . _______ _

J Dela_y in u.se
Device Failed I Select
n~ring Read IAitetnatt

1~·--~~~-~---=-------+--~·----·----~--
I np·u. t Data le-;;r..ov.!2! trom
'Table Overflow t~6Iel>~:s0I~ll

i---~~~-~-~-------1---~------~1
No I/O Typer
Stop Code Q'd,t ________ _

i---~~~-+-I~-/~O~T~_y_p_e-~r-- -1~--- .
..._------1-R e_,,__qu_e __ s_t_A_l?ort.ed~---------

I/O Type:t" · I Inlt~.ate. another
'rime Abort ~ _in~~..,t. _~~'ct es~.::.___
350 CPM I Wa.1..t tor operator

1

Card Hopper I to place cards
Empty 1 in reader

Parity Error l, Quit 1
Aborted by
Operator I_ _ _____ l
A flex code 177

8
acts as a tr~e delete code and is skipped

when reading paper tape. The delete code should not be used
as the 11stop 0 cha.ractero

After the first character has been read on paper tape, ten
consecutive blanks serve as end-of-tapeo

1-30

1.19 Input Program (INP)

After an input request has been completed, INP notifies the
calling function of the completion. It also performs the
following actions - resetting the flags for the input device,
testing the "end" code of the input record, and notifying
the calling function of .an errora

The following error messages may be initiated:

1. NO STOP CODE (I/O Typers only - Bit 5 is set in
the -A-Regi.ster, and !NP returns to the calling
function at the "bad read" return.)

2. DEVICE n PARJTY is typed for a paper tape reader
· parity error followed by the message, ENTER DATA

VALUE :XXX or] .· The operator may correct the
. error by typing the appropriate three characters

on the I/0 Typer or abort the request by typing
. a right bracket~·

For an abort request, INP sets the A-Register to
zero and enters the calling funct~on at the
"bad read" return.

An "end" code (stop, abort, or end job character) is
removed from the Input· Data. Table.

i.20 Multiple Output Request Subroutine (M0R)

Mq)R permits requests for analog, decimal, or binary contact
status to be made for the Multiple Output Distributor. M0R
~as the provision for non-timed priority or normal requests
or for timed-latched contact outputs.

Non•Timed Regue·st-s ·.

1 = CONTACT TO BE CLOSED
0 = CONTACT TO BE OPENED OR

REMAIN UNCHANGED

1-31

Delay Time
1 = 40 jJS'4-
0 = 4 MS

GROUP NUMB~ (0-63)

1 = RETURN AFTER
OUTPUT IS COMPLETED

0 = IMMEDIATE RETURN

1.20 Multiple. Output Request Subroutine (M.0R) - contd,

Non-Timed Requests - contd.

23 8 7 0 ·---
Q-Registe.r L~~~~~. ·- 1----------- -~ -------- 3

1 = CONTACTS TO BE CHANGED NUMBER OF MULTI.PLE
0 = CONTACTS TO REMAIN UNCHANGED OUTPUT DISTRIBUTOR

(USED WHEN SYSTEMS
HAVE MORE THAN ONE
M .. O~)

SPB M0RC01 (Normal Request) or SPB M0RC02 (Priority Request.)

A-REGISTER
0
1
2
4
8

ERROR RETURN

NORMAL RETURN~

ERROR
DRIVER TABLE FULL
GROUP FAILED PREVIOUSLY
OUTPUT FAILED (OVERLOAD)
INVALID GROUP ADDRESS
M.O. TIMER FAILED

1-32

POSSIBLE SYSTEM
ACTION
Delay and try again,
Quit - try next output.,
Hardware condition (2 groups addressed
Programming Error
No output may be done.

Timed Request

23
A-Register

23

DATA

1 = CONTACT TO BE !..AtCHE
0 = CONTACT UNCHANGED

Delay Time l
1 - 40 jJS _ _l
0 = 4 MS

8 7

GROUP NPMBERS (0-63)

1 = R ETFRN AFTER OUTPUT IS
COMPLETED

0 = IMMEDIATE RETURN

0

Q-llegisterl ----
=i---------- ____ o]

A-REGISTER
0
1
2
4
8

NUMBER OF PULSE COUNTS FOR
RELAY TO REMAIN LATCHED
(l COUNT = 50 MS)

NO,~ O!f •11:.iLI. if iE · OJTP'U'l' D~'$1'RIBlTTOR

APPL IC ABLE ONLY WHEN A SYSTEM
HAS MORE THAN ONE,

SPB M0RC03 (Normal Request) or SPB M0RC04 (Priority Request)

ERROR RETURN
NORMAL RETURN~

'•

ERROR

'

NO TIMER AVAILABLE

-~

GROUP FAILED PREVIOUSl-Y
OUTPUT F AU.ED (OVFRLOAD)
INVALID GROUP ADDRESS

POSS
ACT!
Dela
Q1Jj t

Hard
Prog

M., 0., TIMER. ~-~Il,ED -·------i!_~~

IBLE SYSTEM
ON
y and try again. i

,.. try next output , j'
ware condition ~2 groups addressed)
ramming Error
utput may be done.
----------------·- ---- _ .. __ ------

1.21 Multiple Output Distributor Driver (MDR)

MDR is initiated by the M0D Interrupt to execute
requests made by M0R-. To output a request~ the
command word from the driver table is placed in the
A~Registero The data is transferred to the location
specified. by the:~ group address of the command word.
The Multiple Output Distributor is then ready to
accept another request.

All output c.ommand.s are initiated from the Priority
Driver Table before information is taken from the
Normal Driver Table.

.l,,22 Timed Contact Output Request Subroutine (TC0)

The Timed (;onta.ct Output Request Subroutine supplies the
communication link for ma.king requests through the Timed
Contact Output Controller~ The TC0 Output Command Word is
stored in the Normal or Priority Output Driver Table.

TC0 Command Word

23 16 15 7 6 0

A-Register ct of Timing]'ulses ; :;.r..,,,,.. _____ _,,,, Matrix. Address I __,__...___

0 = Immediate
Return Time a Contact is

to be closed.

if of Tjmed
Contac.t
Controller 1 - Return after

output is
completed ..

i.f more
than one ..

0 ·-· GE/PAC Pulse
Output

1 - Pulse Duration
Output

0 = Move Setpoint Controller UP
1 = Move Setpoint Controller DOWN

SPB TC0C01 (Normal Request) or SPB TC(DC02 (Priority Request)

ERROR RETURN

NORMAL RETURN --- -··----a..
~-----------~-------····----------

A.~REGISTER

CONTENTS ERROR
·i-------------i --------- _____________ .. _____ ·-

0

2

4

Driver Table Full

-- - R.equ::ted. Group has ·1
failed on 2 consecutive~
ove.rloads

Invalid Matrix Address I
______ 8 ____ T_i_m_e_r_F-'a,il ure 1

1-35

I
I

L23 Timed Contact Output Drivet· (TCD)

L24

The Timed Contact Output Controller is used for addressing
and controlling timed contact output groups from the
Arithmetic Unito To octput a request, TCD pla.ces the command
word in the A-Register. The data is transferred to the
locati.on specifi.ed by th~ group a.dd.ress of the command. word.
The Timed Contact Output Controller is then ready to accept
another requesL

All output commands are initiated from the Priority Driver
Table before information is taken from the Normal Driver Table.

Scan Request Subroutine (SCR)

The Scan Request Subroutine stores the addresses of the
Scanner Command Word and Count Value Tables in a stacking·
table. The Sca.nner Commands a.re executed by the Sc.an Driver"
SCR process normal or priority, buffered. and non-buffered
scan requests~ A normal request is processed on a first
in/first out basis. Priority requests are processed on a
last in/first out basisQ

1=36

1.24 Scan Request Subroutine (SCR) - contd.

Buffered ieguests permit the Scanner to be driven near
maximum speed by allowing a func.tional program to proce.ss
one set of count values while another group of analog values
is being scanned for the same program. It is recommended
that scanning be done from core to save on drum/disc
transfers,

SPB SCRC03 (Normal Request) £!. SPB SCRC04 (Priodty Rectuest)

r
~SCNTBA --- --
>CNTTBA, ·-------

"- ·-~
L_

SCAN COMMAND
Drum BUSY RETURN (Stacking Table Full) TABLE "A"
Addresses NORMAL Return

SCAN INCOMPLETE
SCAN COMPLETE

"'

\
Request
process

scan for "B" Tables and\
new counts in "A" Table \

\

1-37

\
\
\

I--·
7 7 7 7 7 7 7 7 ---- ---·-

~~[----*: i
i--~~~~~~~--~· -+-~-+--t

0

I COUNT TABLE I

i- "A" ---~--· rt-+
.-------------.--L-.+-

I
I

---~-------------~~----

----------------~---! ---• ""---------·--------

!=-SCAN cOMMAND~=1 ~1 I TABLE "B" t--- ----
i r------·----------·
~ 7 7 7 7 7 7 7 7 I 1--·-- ~-----"

~ 4 0
- _JQOI - .;., (
; l _,

~-COl'NT TABLE __ j----; --

r--- "B "-=-=-t f i--+---i

~'-=--==--!m-, ------+-' I
l 1 I

--------: I I

~- -:-1-1 '.' __ I i · I

A non ... buffered sc.ap request. locks out the calling program
until the analog sc:an request. i.s pt·ocessed.

SPB SCRCOl (Normal Request) or SPB SCRC02 (Priority Req11est)
Core ~~SCNTBL
Address~1,COIJNTS"-.

--......,
Drum Address !: "'-.

ERROR RETURN {Stac·ki.ng Table Full}
SCAN Cc.tPLETE RETVRN ".....

i "

Count
Value
Scaled
Bl7

COUNTS
23 6 s 4 3 2 1 0

- ·---··--n --T~!

______ --_ ~ t ~
I :QQ f--i i--.-----------+---- I j . ___________ µQ-2-~-~

__________________________ L.i,

i-------------;-----·--: ~~
I ['

'--"--------~ ,----~-.1
I •1 I Scaled, Offset i J 1 I

Corrected Count I I I
Invalid
Voltage Sc.ale

! I
Converter Overflow -1•J
Open Thermoeoup le --~I

i

Sc.an.net· Over lo::id ___ !

'4.
SCNTBL :
,- ·. W(.~DDRESS OF MATRll' lOClGjl~

1===c=r-=======· ~--==1 ;. ' J__----------~- ----·
i ___ _L_j_ __________ ,..._ _____ ,_,_~ -- -i
I I
r--~-~-------------- ---\

l_ ~===--=~===-=---- --~--1 7 7 7 7 7 7 7 7 ~1 1' -· .
End of Scan Table

;~M - 0,2 - Single Input
M = 1~3 ... Group Input

~
8-·Channel Scanner

Reference~ Scan Command Word;; Program.ming Techniques Manual

1~·38

L25

1..26

L27

Scan Driver (SND)

The Scan Driver outputs Sc·.anner Commands to a Driver
Table o They are sent t.o t.he Scanne.r by an 0DL or (Dur
Commando The count '1a.lues a.re returned by an IDL or IN
Instruction and sto~ed jn the Rpecified table. The count
values are com~er r.e.d., off se r c or· rec t ed :· and sea.led before
storingc After all requested p0ints have been scanned,
the calling functicn is rurned on.

Scan Offset Program (SCF)

The analog readinge of the shorted pair are obtained
for each voltage scaleo Thts new off~et is calculated
from the weighted .gve.rage of t.be current reading and
four previous offser values for each volt~ge scale.

Corrective Action Diagnostic (CAD)

CAD performs peripheralJ drum:, disc .. multiple output
distributor~ ecanner: ~nd timed-ccncact output corrective
actions for the GEIF'AC Monitor, Corrective acti.on is
taken for the following peripherals~

100 CPM Ca.rd Punch
350 CPM Card Read.er.
300 LPM Printe.r

70 CPM Card Reader
Output Typers
J.iO Tvpers
Paper. Iape Pl.mch
Paper Tape Reader

CorrectivE. a.c.1_.:i.cns :-HE- ~'"' 1 i c.;tE:-d:,

l., Substitute an a.l ternate output peripheral when
an output peripheral fails.

2. Permit. cpera.tor recovery for the 350 CPM Ca.rd
Reader~ 100 CPM Cat'd. Punch, a.n.d 300 LPM Printer.

3. Reset device flags and switches for the failed
device"

4. Turn on any pr0gt:ams ''loc.ke.d. 0 11t" for the failed
device.

5. Type alarm messages ind.i~ating the ex~ct location
of the fail~re~ when possibleo

After the nec.essary a.c.t:ions .::lre completed.,. CAD turns
itself off and exits to the ECP.

1.28 Initialization Routine (INZ)

INZ initializes the eitart-up cond.it.i.ons fol' a Monitor
System~ Initial storage 0 switches~ and ';a.ria.ble locations
are set for Mon:h:or and Compa ti.ble: PI'ograms.

Each system should add their cwn system in:l tia.1 i za.U.on to
this routi.ne.

L29 Console Switch On,~l,ine Operat:oI' Progr.~m (0PR.)

L29.4

L29.5

This program is used to communicate with the on-line service
routines.. Each I'outJ.ne: is requested by using the Console
Switches on the GE /PAC Con so] e. (R.efeI'em.-.e ~ GE/PAC 4000
Operator Sysr.em. ConsC"le R.efere.nce Manu-3.l :• l,ibra.ty Control
No., YPG29.) The following rou.t.i.ne::. oper.ate under fliPR42:~

On-Line Memory Cha.nge with Punch Cpd.on (MCG)

Types and/or changes memory contents.
Records program cha,nges by typewriter and papet· tape ..

On=Line Loa.der (LDR}

Transfers infor'ma.t ion gtor.ed. on paper tape into memory.
Compares memory contents with ta.pe i,nforma.t iono.
Relocates t.::tpe informac:ion when storing into memclry.
Loads pre=assembled libra:r.·y subi:·outines"

On=Line Dump (0LD)

Punches memory contents on pa,per t-3.pe.
Types memory c.onten-c:s on the Console Typewriter.

On=Line Cloc:k (CV(!

Resets the s y-:, ~.em time, o

Upclates the prog,ra.m c.xecuti.on times and amdliary time
counters based. on the n~w system time .•

Program Sta.tus (PST)

Initia.tes or stops the eJC:ec.ut ion of func.tiona.1 programs
operating undP.r MONITOR. contrclo
Locks out any functional program preventing it from
being turned on.

An option.; whic:h permits a. program t.o be turned on at a
def!;ign.:;ted timeJ is ?ls0 3va.ilableo Without this 0pti0n.,
a program is turned on immediatelyo

1°~40

L29,,6

1..29~8

L29.9

1. 29 .11

Peripheral In/Out of Service (P«)S)

Removes periµhera..l devices from service without an
alarm nocificaticn.

Restores failed or out-of~service peripherals to service.

On-Line Pape.r Tape Duplica.tor (DUP)

Duplicates paper tapese

Extract Load Tape Program (XLT)

Produces a bi-·octal tape from the PAL 01Jtput symbolic
tape~

PAL GE/PAC Assembler (PAL)

Assembles symbolic programs punched on paper tape or
cards. Types an -3.ssembly Ii.sting.
Produces a bi-octal paper tape.

Demand Scan (DSN)

Assists in calibr.ar.ing analog points by demand scanning
of one analog point at a timeo

Controller Gh~ng~ (CCG)

Changes the value of an analog poi.nt on the. Analog
Scan ControllerQ

L JO Qn ... Line Opera.tor· Syste.m (IIO 'Type.r:) 0PR43

LJO,,l

This program calls on-line service routines requested by the
1/0 Typewriters" The following routines may be called
under (bPR43~

On=Line Memory Change. with Punch Option for I/O Typer (MCG43)

Changes mE:!mory loca.rions through the 1 /0 Typer"
Types the contents of memory locati.ons.
Punches a tape record of any changed locationD

1-41

1. 30. 2

1. 30. 3

On-Line Paper Tape Loader - I/O Typer (LDR43)

Transfers information stored on paper tape into memory"
Compares memory contents with tape information.
Relocates tape information. when storing into memory.
Loads pre-assembled library subroutines,,

On-Line I/O Typer Dump (0LD43)

Punches memory contents in the bi-octal format on the
paper tape punch.

Types or prints memory contents in the octal format on
the I/O Typer or Printero

1-42

1.31 Find/Restore Working Core Area Subroutines (FMR)

The Find Working Core Area Subrouti.ne is used to find space
for reading data from paper tape, scanning analog points,
transferring a progI'am segment, building an output data
table, transferring an untested program of the Free·Time
System, etco When a space is found, this area is set to
unavailable~ occupied gt~tu,15.,,.

The Restox·e Worki.ng Core Area Subroutine releases an
area by setting i.t Lnoccupied and available a

To find a working core area,

LDA Number of Locations
SPB FMRCOl

Ul1e.vailable Return
Normal Return with the location of che free
core area in the A-Register

The 0 Unavailable Return" is taken when a working cdre area
is not availableo The system programmer, at this time,
should set a delay and then initiate another FMRCOl sub­
routine calL

To release a working core area,

DLD A-Register with the Number of Locations
Q00Register with the starting core location

SPB RMRCOl
Normal Return

1-43

L32

RMP requests transte:rs for system subroutines from drum
or disc int·ei ~ -~·t.1o:r·Jdng corA :srea" After transfer~ RMP
branches to >::.:bE' f.·{ rst l0cation of -che subroutine, When
the s-cobr':)'t;:t 1ne 'has r.:ornp leted its funct i.ons, R._MP releases
the wo:rk:i ng c.orE.: aJCE!&S and retv.rns to the cal ling program.

To request a syster:i subroutine"

Set program area unavailable,, (See MAP
D:LD A"'Regist.er v,71,th the dru'!1 location

Q=Re6±s~ttSY' Yrilith t[r"ile n:c;imber of words
SPB RMPCOl

Busy Ret·uit"n
No:r;ryal Ret::urn

To release its working core area, the subroutine must
know its own size and its present core locationo

DLD A~~R.eg~ .. ster ;,;-:,th No., of Words
Q~Reg:tster 11111.tr .. Core Location

LDX R.etv.:K'n!l 2
SPB s~·:ecOl

If the requested program is busy with another re.quest·'
return is made at the bc..:sy returno If either FMRCOl or
DTRC02 i.s b·u.sy ~ a q"'larter second delay is initiated i.n
the calling 'l?>:togra.n. a'"V3 the rE:q· . .:.r;st is re~initiat.8d
afts:r che delay"

1=44

APPENDIX A

MONITOR PSEUDO-OPS

Pseudo-ops defined by MONITOR are~

BCD - Binary to 6=B~t BCD
BCN - Binary to Non~Edited Ctaracter
CLK .. Clock
DEL .. Delay
DFE - Floar.ing Point to E T'ype Floating Point Decimal
DFP - Floating Poinr: to F ix1:?d-·Point Decimal
DFX - Binary to Fix~d~Point Decimal
FBB - Binary to 4-Bit BCD
F~R -
f)CT ... Binary to Octal (i.ntegera)
PRG
SIZ

The BCD, BCN 9 CLK~ DFE, DFP~ DFX~ FBB~ and ~CT pseDdo-ops are used
with the Output Prog1·a12 as ior.m;.t words 0 Refer to the Output Pro­
gram, subcategories of lol4~ for explanation of these psendo-opso:
The DEL, F0R, PRG, and SIZ pse.udo·~ops are used in su.brouti.ne calls
and are explained below~

The DEL pseudo-op is u.sed in r.h~ Scan Requr::st, Input Request, Output
Request, 1st word of the 3···word Drum Transfor Request, and Set Program
Delay Subroutine Calls. Coding ~xamples and format are as follows:

DEL 0, 15'*·'SECND DEL l,FMTB

123 c ~1 20 ~9 ~-1-1._1_2_1_s_14_l1-.l~-:_1:_1~1~0.__.2.____a_z __ 6 __ s ____ 4 _____ '.l __ ") ____ 2_~

Delay in Secon.:is:; Core or Drum Address~ ,2!. Dr"um Address of
a Three-Word Drum Transfer Group

rO = Area Unavailable for a delay call:; core address; 2!.
,_______ drum to con: tr-an.s fer

) 1 = Area Ava!.lable rot· a delay call; dr1Jm ad:fress, .Q.E.
- core to dr·..:.:JI cran.sfer

The F~R Rseudo 0 op is ~sed as noted belo~

F0R LTYPER, 0 F0R CRRDR~ 24

23 22 2·1 20 19 1......,.8__...l "7 _...1"-'"6__.._15---.-1 4 ____ 13 _____ 1 ____ 2_1__.1....__...1 0_9 ___ 8 ___ 7_6 __ _5 _ __A---=3'"---"2~

I Peripher-S-Cn~~ice I
_Number _

~)
~-~~~~~~----y---·~~~~·~~~~~~

A-1

Message Area Number in 0UTC01, 0UTC02,
OUTC03, PAVCOl, PAVC02~ PAVC03, and
PAVC04 scbro1J.tine calls, or Number of
characters to be read in INCOl or INPCOl
subro·..:..tine calls.

The PRG psec.do=op i,s usE:d to maJ.n.tain tbe R.EGSTG and RSX (AU2 only) Tables
of ECP and. by the Turn Progr_a.m. Off ·Subrou.ti.ne o It con.ta:.ns t-b.e flip~·flop
status of overflO\'rii~ per.11.H i.n.tr:·rr.'.:.pt, test~, and memory fencP (AU2 ot1.ly) :,
plus tb.e ne:xt en.t.ry locati.on.o

PRG 0~ l~ 0: START (!JsE.d. by AVl =·No Memory Fence FH.p~Flop}
PRG 0 ~ 1., 0? START I 0 tl''s~d by A1J2. rrieP10!')7 fon:ce' S\t'.'atl!.S)

\, r· I 'o ·- Reset

I l - Set
\

'4~,~~: .. J ,\"i '':},~ '',,.'~ ~'Ji~ ",;, \: ~

For ct·P,:r~m:l.Co.r_~ Si.YStf.!.n.,. i.f-. t:<b~ p.e~I ... e:qtry add_re.~s ,ii=; ~et:.'. ~~P-.·?ie.ro.1 • t·he
' • \-,. (,,' <,. '., ... -~ '. 1 : \'-'t <' ,','-.; ,' ,

pro.g.~~J9:i b~g-in$_ ,a,f:, :.its, ~·~-~st).opa.tion o" , . ~,, :.£ :~ . J·'t(' ~i
~ '

~ ,, ~ ~ ,.i.~: ~) . :' ~ t; .r. :.. 9 ,

The SIZ pseudo-op specifies the r1.=::quired parameters for the second word
of ~.~h~~ t;h111e~,:JiY,O~d, E:qp Drufn ·~rf:lnRfer- Grouµ .. o, ,, 1 :<~·· ,

JI l '\. \ M .ri . ' {, " .:0 ?:, t·., ' , "

::; .. -: Sll'~. J ".· .1,., ;:}, i.f.r)q'.
' ~, ~-

: (', ~ ~ , , "l' ~ • '"- -~ ,..-,~ .. ,.· ~ ~~ ~ 4J1 ~o""~I,.<,;

.(r~1:.s P5.~~~.-:PP t~·~:~;s'°'·~~,~ ::~;t?:~l~>'~v~.q~~l u ty
-~ t acl:.s, Bit 23; save status~ Bit 19; sa~1e

. ~ . \ ,; ' c:: t:&t·;,.11s, p,oJ..ntBr -:i.ndP.X1," Bi ts 18-14; and S iz.e
o·: rt.t- Progr''affi o) . ··

'; ~.. _, --l ,, }'; \ ,' .;- '

0 - Area is S~~ Unava1labtt .at ECP ~n~ry
· "·,. k"' i\.c~e__i~.1,i!,~:+!vaiiitl?_~ .. 2.£.,J&.li'l'"~~ry.,;...~ ..

A-2

DELCOl
DTRCOl
DTRC02
F'MRCOl
FRPCOl
INCOl
INPCOl
INPC02
MAPOl
MAP02
MAP03
MAP04
.M~RCOl
MQJRC02
M~RC03
M@RC04
0FFC01
QJUTCOl
QJUTC02
~UTC03
PAVCOl
PAVC02
PAVC03
PAVC04
RMPCOl
RMRCOl
SCRCOl
SCRC02
SCRC03
SCRC04
SCRCOS
SMPCOl
TCQJCOl
TC(JC02
TPNCOl
TPNC02

APPENDIX B

COMM~JNICATION CALLS

Set Progr~m Delay
Drum Transfer Request (Immediate Return)
Drum Transfer Request (Dr.um Transfer Completed Return)
Find a Working Core Area
Find Register Pointer
Non-Buffered Input Reque:st
Buffered Input Request
Read Completed Request
Core Map Maintenance = Set Area Occupied
Core Map .!Yia.i ntenanct' ~ Set Area Unoccupied
Core. M.a.p Mainte'1ance w• Set Area Unavailable
Core Map Mai ntenanc..e ·- Set Area Available
Normal Non~·Ti.med Multiple Output Request
Priority Non~Timed Multiple Output Request
Normal Timed MulUple Output Request
Priority Timed Multiple Output Request
Turn Program Off Request
Peripheral Ava.ilability & Data Area Output Request
Normal Output Requ.est
Priority O~tput Request
Peripheral Availability Request with Alternate Selection
Data Area Ava.ilability Request
Output Request Which Places Request in Stacking Table
Priority Request (Places request at the top of the list)
Request a System Subroutine
Release a WoTkin~ Core Area
~c,rme1 l Nun·.,h 1_._.!.'1.f r1-·(j Sc.:,.n Request
Priority Non-buff~r~d Scan Request
Norma 1 :suffered Scan Request
Priority Buffered Scan Request
Scan Completed Request
Release Working Con~ Ar.ea of a System Subroutine
Norma 1 'I imed Cont.act Output Request
Priority Timed Con.tact O·.itput Request
Turn Program On Requ.es t
Tt.lr:n. Program On Request if Program is Currently Off

B-1

.!.=9
1 ... 12
1-12
1°'43
1"~13

1-30
1-28
i..,z9
1~·11

1=11
1~11

1-· l.l.
1,.,32
1~32

1,.,33
1 ... 33
1~8

1-16
l"" 16
1-17
1 MO ll}

1-15
1~15

1-15
1-44
1-43
l" 38
l'z•38
1-37
l~,3 7
lm37
1,.,,44
l,~35

1-35
1~10

lu>lQ

APPENDIX ~

SYMBOLS
<:Or'-~---

ALERT ~ Periphe.ral Act.ivar.e Flag
The peripheral de\ri.ce priority number corresponds
to the ass0ciared b~ta

Example~ Devic2 #3 ~ BJt 3 of Flag
ALTFLG~ No Alte:cn.ate Dev:.ce .Flag

This flag stlows t.hat an 0·1~~tput message for the requested
outp.Jt per 1.pheraJ. Las no 'Alo.r·lt.i "'.";.g al ter.nate ~ therefore,
the outp~t ~essage was destroyed.

Example~ Device priority number i corresponds to bit .i ,,
ALTTBL- Alternate :Uevi.ce Priority N•lmbers for Peripheral Devices

The alternate for devi.ce priority number i is found in
ALTTBLfio

Example~ Pr~,01:l ry JJevi.ce 1ft5 =- ALTTBL.il5
AUXTM ~ 'rable of Au.x1.U"ary Tir:,e Cot~nters
AVLMAP~ Available Area)_\1ap ~ s~e 1, 1 of this manual.
BAD - Peripheral Device Fa:i'..lcn·: :nag

The peri.pr~eral dev·~c1::: p.~·Lon.ty n.t.i.rnber corresponds to the
associated bir:.

Example:: Dev:i ce tfl+ !;, Bit. 4 of Flag
CQ}RMAP- Occupied Area Map -· See 101 of this manual.,
DMCRN¢- Three Times the Running Progt'am Number
DTAREA- Data Area Bi.t Word

Area. corresponds to Bit. ~
l, I.~ .I.

Example;: Are.a 2 _, Bit 1

DVC~DE- Device CodPs
A table of hardwar·e: ad.dresses for peripheral devices arranged
in desce~ding order.

Exarn_(:le~ 1faJ :.: .. F'gb:st f':rit.or:Jty Device
FAILUR- Peripheral or qard~are Fail~re Device Flag

Bit 0 ·~· Oc!.!!Cp~t Typ~::' ,££ Pa.per Tape Punch or
Eigh Speed Pe~ipheral Failurs

1 ·~ MOD Timer Fa1.lure
2 ··· Drum o:c D~.3c Timer Faih1re
3 Q, Scanner T:~.1\!E:I' '.Fai.l~re

~- = TCO Ttmer Fail 1".n:.

5 - I/O '!.'yper,, :Paper T.!ipe Reader~ or 70 CPM Reader Fad.ure
A one i..n any ot tbE-. abovt:: bits indi.caces a. fai.l·1Jre.

00s ~, Peripheral Jevice O' :t·~o~~SP-rvict: Flag
The peri:pheral device number corresponds to the associated bit ..

PRI0N0~ One ':times the Runn~.ng Program Number
PR(bCFG- 0:.:.Jq;ut Peri.phe:ral Devke.,in~·P:.cogress Flag

The periphe.ral dev:LcE: m ... r.!'1ber c.:irresponds to the assoc:~ated b:i t.
PR0G - Program Execution Times

The table starts with Program ~foo 1.
PR0GN0- Eight Times the Ru.nntng Program Number
SELECT- Peripheral Action Flag

The peripheral dev lee nu:riber corresponds to the associated bi. t ,

TIME .. Time in System Counts (Cleared. ,at Midni,ght)
WAITFG- Output Peripheral Message Completion Flag

The peripheral device number corresponds to the associated bit"
WAITRQ- Number of Words Re9e1~'\red in the Stacking Table for Output

Peripheral Message (Each octput request requiret two words
in the table),
This table is indexed by device priority na~ber.

XFER - Number of Drum Transfer Requests Waiting for a Program
This table i.s referenced by program number,,

Example: Program 7 ~ XFER.f]

C=2

Gn'PAC4000
GENERAL ELECTRIC PROCESS AUTOMATION COMPUTER

MONITOR

USER'S

MANUAL

GENERAL ELECTRIC COMPANY
PHOENIX, ARIZONA

Library Control No. YPG51M

(Q) General Electric Company, 1966

This manual published by:

PROGRAMMING SUPPORT
GENERAL ELECTRIC COMPANY

PROCESS COMPUTER BUSINESS SECTION
P. O. BOX 2918

PHOENIX, ARIZONA 85002

For further information concerning the contents of this manual,
contact the Programming Library at the above address.

8.1

8 .1.1
8 .1.2
8 .1.3
8.1.4
8 .1.5
8 .1.6
8 .1. 7
8 .1.8
8 .1.9
8 .1.10
8.1.11
8 .1.12
8 .1.13
8 .1.14

8 .1.14 .1

8 .1.14. 2

8.1.14.3

8 .1.14 .4

8 .1.14. 5

8 .1.14. 6

8 .1.14. 7

8.1.14.8

8 .1.15
8 .1.16
8.1.17
8 .1.18
8 .1.19
8 .1. 20
8.1.21
8 .1. 22
8 .1. 23
8 .1.24
8.1.25

INTRODUCTION

GENERAL

MONITOR INTERRUPTS

SYSTEM DESCRIPTION

Executive Control Program
Time & Diagnostic Count Driver
Save Registers Subroutine
Restore Registers Subroutine
Turn Program Off Subroutine
Set Program Delay Subroutine
Turn Program On Subroutine
Core Map Maintenance Subroutine
Drum/Disc TransfeF Request Subroutine
Drum/Disc Transfer Driver
Find Register Pointer Subroutine
Peripheral Availability Subroutine
Output Subroutines
Output Program

Binary to Fixed-Point Decimal
DFX Monitor Pseudo-Op and Format Word
Binary to 4-Bit BCD
FBB Monitor Pseudo-Op and Format Word
Binary to 6-Bit BCD
BCD Monitor Pseudo-Op and Format Word
Binary to Non-Edited Character
BCN Monitor Pseudo-Op and Format Word
Binary to Octal
¢CT Monitor Pseudo-Op and Format Word
Clock Output
CLK Monitor Pseudo-Op and Format Word
Floating Point to E-Type Floating Point
DFE Monitor Pseudo-Op and Format Word
Floating Point to Fixed Point Decimal
DFP Monitor Pseudo-Op and Format Word

Input Driver
Input/Output Driver Program
Output Driver
Input Request Subroutine
Input Program
Multiple Output Request Subroutine
Multiple Output Driver
Timed Contact Output Request Subroutine
Timed Contact Output Driver
Scan Request Subroutine
Scan Driver

-iii-

CONTENTS

v

vii

viii

1

1
6
7
7
8
9

10
11
12
13
13
14
16
18

20

21

22

23

24

25

Decimal 26

27

28
28
28
29
32
32
36
37
38
38
41

8 .1.26
8.1.27
8 .1. 28
8 .1. 29

8 .1. 29 .1
8.1.29.2
8.1.29.3
8. l. 29. 4
8.1.29.5
8 .1. 29. 6
8 .1.29. 7
8.1.29.8
8.1.29.9
8.1.29.10
8 .1. 29 .11
8 .1. 29 .12

8 .1.30

8. L30 .1
8.1.30.2
8.1.30.3
8.1.30.4
8.1.30.5
8 .1. 30. 6
8.1.30.7
8 .1. 30. 8
8.1.30.9
8.1.30.10
8 .1.30 .11

8.1.31
8 .1. 32

Scan Offset Program
Corrective Action Diagnostic Program
Initialization Routine
On-Line Operator Program (Console Switches)

Memory Change
Loader
Dump
Clock
Program Status
Peripheral In/Out of Service
Paper Tape Duplicator
Extract Load Tape
PAL GE/PAC Assembler
PAL Correction Program
Demand Scan
Controller Change

On-Line Operator System (I.O Typer)

Memory Change
Loader
Dump
Clock
Program Status
Peripheral In/Out of Service
Paper Tape Duplicator
Extract Load Tape
PAL GE/PAC Assembler
PAL Correction Program
GE/PAC FORTRAN Compiler

Find/Restore Working Core Area Subroutines
Run,Stop, System Subroutine

APPENDIX A
APPENDIX B
APPENDIX C
APPENDIX D
APPENDIX E

- Monitor Pseudo-Ops
- Communication Calls
- Monitor Symbols
- Monitor Assembly Checklist
- Audit Codes

-iv-

CONTENTS

41
41
42
42

42
43
43
43
43
43
43
43
43
44
44
44

44

44
44
44
44
45
45
45
45
45
45
45

46
46

A-1
B-1
C-1
D-1
E-1

INTRODUCTION

The objective of the MONITOR USER'S MANUAL is to present ways of
using the Monitor System in conjunction with GE/PAC 4000 Process
Automation Computers. Use of this manual is predicated upon, and
presupposes the reader's familiarity with, real-time system require­
ments, GE/PAC programming techniques, and Process Assembler Language.

Designed especially for the .µser, the manual explains what Monitor
does and what the programmer must do to insure its successful opera­
tion. The publication also discusses individual subprograms which
comprise the Monitor System, and includes the connnunications links
which must be provided in the functional programs to allow necessary
exchanges of data between Monitor and the outside world. A detailed
analysis of Monitor logic is not included in this manual; rather, it
is covered in the various Monitor program write-ups which are avail­
able through the Programming Library.

Examples used throughout the text showing various calling sequences
are not to be construed as being the only method of using such calls.
It would take more space than is practicable to allow in such a text
to show all the possibilities of each subroutine call.

The GE/PAC family of programming manuals consists of separate, complete
booklets, each of which deals with a specific subject. MONITOR USER'S
MANUAL is the eighth in this series of publications, and can be identified
as such by the use of the numeral eight prefix in paragraph headings and
subheadings.

~-

GENERAL

A real-time process is characterized by the occurrence of many
events, some continuous, others random in nature. Events may
occur simultaneously. A digital computer, however, is a serial
device; that is, it performs its program operations serially,
one by one. Therefore, the matching of the digital computer
and a real-time process requires a control system which co­
ordinates the requirements and characteristics of both.

A GE/PAC Monitor is an operating system composed of a library
of subprograms which provide the basis for a process computer
system. It is the framework to which the specific functional
programs are added. The Monitor accomplishes the timing and
scheduling operations, input/output, internal data transfer,
timed contact, multiple output, corrective action, initializa­
tion, etc. Many options are available which may or may not
be included in a tailored Monitor System.

The user requests a tailored Monitor by checking the desired
options on the Monitor Checklist, a copy of which is included
in this manual (see Appendix D). Additional copies of the
Checklist may be obtained upon request from the Programming
Library.

-vii-

~ ...-

...::::::,,,.

......... ...-

........... ...-

........... _...

GE/PAC MONITOR INTERRUPTS

60 Cycle
1-1 DMT ECHO

1~·
I

I
SYSTEM
TIMER

INTERRUPTS

DRUM/DISC XFER
READY

INTERRUPTS

SCAN
READY

INTERRUPTS

MULTIPLE
OUTPUT READY

INTERRUPTS

I/O BUFFER
READY

INTERRUPTS

OTHER
SYSTEM

INTERRUPT

I----

TIME COUNTING
& DIAGNOSTIC 1-- -

COUNTDOWN

DRUM/DISC XFER
DRIVER

SCAN
DRIVER

~

M.O.
DRIVER

INPUT/ OUTPUT
DRIVER

DRIVER

\II
FUNCTION ,--

1
r--

[I

'1t t
-ix-

EXECUTIVE
--....-- - - -p CONTROL
/\ PROGRAM

I
I
I

\JL
RESTORE

REGISTERS

\V
RETURN

TO
INTERRUPTED

PROGRAM

\V \ll
FUNCTION FUNCTION

2
r- -

3
I

J

1-E

-

ET c

-

INPUT
REQUEST'

INITIALIZES MONITOR
LOCATIONS FOR PROPER
EXECUTION OF MONITOR

INITIALIZATION
ROUTINE

ON-LINE OPERATOR
PROGRAM (I/O TYPER
& CONSOLE SWITCHES

CALLS ON-LINE .
DEBUGGING ROUTINE
SUCH AS LOADER, I
MEMORY CHANGE,
DUMP, ETC.

DRIVERS
(RETURNS TO THE

THE EXECUTIVE CONTROL PROGRAM OF MONITOR
EXECUTES SYSTEM FUNCTIONAL PROGRAMS PLUS
MONITOR PROGHAMS AS SHOWN.

OUTPUT
PROGRAM

I 0 DRIVER
PROGRAM

CORRECTION ACTION
DIAGNOSTIC
PROGRAM

INITIATED BY INTURRUPTS TO COMMUNICATE
WITH HARDWARE DEVICES, UPDATE SYSTEM
TIME, INITIATE DRUM TRANSFERS, ETC.

-------.--------,-------.---; INTERRUPTED PROGRAM OR 1-------......,..------....-------.....

TIME &
DIAGNOSTIC
COUNT DRIVER

MU LT IP.LE
OUTPUT
DRIVER

DRUM DISC
TRANSFER
DRIVER

TO THE ECP IN SOME
CASES)

INPUT DRIVER OUTPUT

SCAN TIMED CONTACT
DRIVER OUTPUT DRIVER

SUBROUTINES
(RETURNS TO THE CALLIN

PERFORMS REPETITIVE FUNCTIONS
FOR MONITOR & SYSTEM
FUNCTIONAL PROGRAMS.

DRIVER

PROGRAM OR TO THE ECP i--;----;------..------.------...---------­
IN SOME CASES.)

MULTIPLE
OUTPUT

TURN OFF
PROGRAM

SET PROGRAM
DELAY

DRUM/DISC
TRANSFER REQUEST

TIMED CONTACT
,,...,.~-- --~

(6uTPUT REQUES!

FIND
REGISTER
POINTER

SCAN
REQUEST

TURN
PROGRAM ON

PERIPHERAL
AVAILABILITY

CORE MAP
MAINTENANCE

OUTPUT

RUN, STOP
SYSTEM S.R.

IND/RESTORE
WORKING CORE

'AREA

8.1 SYSTEM DESCRIPTION

Monitor consists of the component programs, as described below.

8.1.1 Executive Control Program (ECP)

The Executive Control Program runs permitted and schedules the exe­
cution of programs based on priority, execution time, and core avail­
ability. All time-critical interrupts are permitted before system
programs are executed.

System programs are executed in priority order by comparing the
programs' next execution time (PR~) with the current time (TIME).
The highest priority program for wh~ch the execution time is equal to
or less than the current time is executed. When the execution time is
current for a program, the ECP requests a transfer from drum or disc to
core providing:

1. The program is not in core.
2. The program is not presently being transferred.
3. A core area is available.

After the transfer has been completed, the program is initiated. If
there is no available core area for that program, ECP tests the exe­
cution time for the next lower priority program.

When a program priority change request has been made, the ECP will
begin its search 'at the top of the priority list as a result of this
change. Examples of such program actions are: M~D (Multiple Output
Distributor), TC¢ (Timed Contact Output), Output Completed Returns,
Scan Complete Returns, ITC (Interrupt Time Counter), or Drum/Disc
transfer interrupts.

If a program has a "turned off" or "locked out" code in its PR¢G
location, it is not executed until a time for execution is assigned.

There are three classifications of register storage for functional
programs. They are:

1. Programs which have no register storage of their own.
2. Programs which have their own 8-word block of register storage.
3. Programs which share an 8-word block of register storage

with other functional programs.

The Register Pointer Table (RSX) tells what classification is assigned
for each program and contains the following information.

The current ECP priority order is defined in the PRGTBL Table. The
latter is included in the Monitor ¢File tape and allows the progrannner
to change the priority of a program after the initial Monitor Assembly.

Note: Any direct branches to the ECP must be done in the inhibited state.
The RSX Table is eliminated when all system programs have their own
8-word register storage block.

-1-

Register Pointer Table

This table contains an index to the 8-word storage block for programs
having full register storage or sharing storage. For programs with no
register storage, the table contains the flip-flop status and the program's
next entry location.

RSX
Next Entr

p T F R N Next

= No Register Storage
= Register Storage

Entr

0
Loe.

3
3
6

Loe.

1 =Return to program after ITC Timer (see paragraph 1.2,
page 1-6), or D~um/Disc '
Transfer Complete Interrupts

0 Return to ECP after ITC Timer or Drum/Disc
Transfer Complete Interrupts

For programs sharing full register storage, the index would
be the same.

Register Storage Table (REGSTG) stored in permanent core.

AREG 23 22 21 20 19 18 17
QREG

i'"PREG
X3REG
X4REG
X5REG
X6REG
X7REG

AREG+32
'

R_££ister Contents at Next Entry
oI __0] PIT} F} R[Nl Next Entry Address

Third 8-Word Block of Register Storage

Fourth 8-Word Block of Register Storage

0

Program
No. 0

ECP

,,,

X7REG+32

AREG+56 Seventh 8-Word Block of Register Storag0~----------~~

X7REG+56.__ ______ ~~~~~----~~--------~----~----~~----__.
·kPREG Flip-Flops

</J 1 - Set Overflow; 0 - Reset
p = 1 - Set Permit Inferrupt; 0 - Reset
T = 1 - Set Test Fl ip-FlOp; 0 - Reset
F = 1 - Set Memory Fence; 0 - Reset
R = 1 - Absolute Permanent Core Location

0 - Relative Address (Drum/Core)
For an all-core system, R is always zero.

N = 1 - Negative Relative Entry Address (Bits 0-15)

0 - Positive Relative Entry Address (Bits 0-15)
For an all-core system, N is always zero.

-2-

The other tables assisting the ECP in performing its functions are:

PR0G - Program Execution Time Table

TIME I 00001433

Program if
1 PR0G 40000000
2 00001342
3 00001465
4 40000001
5 40000000
6 40000000
7 00000000

Drum Transfer Control Table

PROGRAM OFF
PROGRAM CURRENTLY RUNNING
PROGRAM DELAYED
LOCKED OUT
OFF
OFF
PROGRAM ON (Based on event)

23 22 21 20 19 18 17 15 13 0
Program
No. 0
Transfer
Group

DRML0C

SIZE

C0RL0C
DRML0C+3

SIZE+3
C0RL0C+3

0

A

v

BEGINNING DRUM/DISC ADDRESS
INDEX TO NUMBER OF WORDS IN

c T N s 3-WORD GROUP PROGRAM
IN SAVE TABLE (SAVED BLOCK NOT

I
INCLUDED)

BEGINNING CORE ADDRESS

Drum Transfer Control
Grou_Q_ for Pro_g_ram tfal

v

1
Drum Transfer Control Group !

C0RL0C+3n~~~~~~~~~~-f_o_r~P_r_o~g~r_a_m~tfa_n~~~~~~~--'J

A - Area Availability on Entry From ECP
1 = Available; 0 = Unavailable

c 1 = Program is in core
0 = Program is not in core

T - 1 = Program is in transfer from drum/core or has
requested DTRC02 XFER

0 = Program is not in transfer
N - 1 = Program is running with core area available

0 = Program is running with core area unavailable
s - 1 = Save temporary storage on drum if overwritten

0 Do not save temporary storage

The Save Status Area Control Table is used for programs requiring
temporary storage to be saved in an unprotected area on drum before over­
writing.· This feature is called "Save Status". The ECP transfers the
temporary storage of programs having "Save Status" to drum before
another program is transferred in its place. However, when a functional
program is turned off, its temporary storage is not automatically saved
on drum.

Save Status is specified in the Drum Transfer Group Table above in
the SIZE Word, Bit 19.

-3-

Save Status Area Control Table

SAVTBL 23 22 15 13 0

01 BEGINNING DRUM OR DISC ADDRESS FOR

SVSIZE

SVL0C

0 0 0 0

SAVED AREA

0 0 O O O o/ NUMBER OF WORDS
BLOCK AT END OF I BEGINNING CORE ADDRESS

ECP Drum/Core Communications

DRUM/CORE LOCATION TABLE
(Permanent Core)

-4-

PERMANENT
CORE

IN SAVED
PROGRAM

ETC.

CORE CURRENTLY
UNUSED

WORKING
CORE

C0RMAP

AVLMAP

\..

STSMAP

ECP Drum/Core Communications

UNOCCUPIED CORE

OCCUPIED BUT AVAILABLE
CORE

TO BE SAVED ON DRUM
(SAVE STATUS)

UNAVAILABLE CORE
PERMANENT WORKING CORE

CORE

Each bit in the following tables represents 64 core locations 100
8

(standard
block size). \

OCCUPIED AREA MAP ~

23_ 22 21 20 1 9 18 1 7 1_6_ 1.5. lii:_ 13 12 11 10 9 8 7 6 5 4 3 2 1 0
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 1 1 1 1
1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 1 1 1 1 1 1 1 1 1
1
1 1 1 1 1 1 0 1 1 1 1 1 1 1 1 1 1 1 0 1 1 1 1 1

7

UNUSED 1 = Core Area Occupied by a Functional Program

AVAILABLE AREA MAP
23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 1 1 1 1
0 0 0 0 0
0 0 0 0 0
1 1 1 1 1

UNUSED

1 1 1 1 1 1 1 1 1
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
1 0 0 0 1 1 1 1 1
7

1 1 1 0 0 0 1 1 1 1
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
1 1 1 1 0 0 0 0 0 0

1 = Core Area Unavailable for
Overwriting

OCCUPIED SAVE STATUS AREA MAP
23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0
O' 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 0 0 0 0
0
1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

7
UNUSED 1 = Occupied by save status

-5-

8.1.2 Time and Diagnostic Count Driver (ITC)

ITC uses two interrupts to control the system timing. The
first (non-inhibitable) interrupt occurs each 16 2/3 MS.
On interrupt, a DMT counter is decreased by one. When the
counter equals minus one, the second (inhibitable)
interrupt is triggered.

The second interrupt causes entry to ITC. The DMT Counter
is initialized by storing the number of 16 2/3 MS intervals
in a time count. This number, NCYCLE, must be evenly
divisible into sixty and is specified by the System
Programmer at assembly time. NCYCLE determines the length
of time represented by one time count (1 second, 1/2 second,
1/4 second, etc.). ITC increases the time of day (TIME) by
one. The time of day is cleared at midnight and the
calendar is updated. ITC also references all program and
auxiliary time counters at the beginning of each day.
Auxiliary Time Counters are used by functional programs
which are turned on by the Monitor Initialize Routine
which require initiation at set time intervals (1 minute,
2 minutes, etc.). Typical programs would be the Scan or
Performance Calculations.

ITC also tests for interrupt driven device failures on the
Peripheral Buffer, Output Distributor, Scanner, etc. Each
device is assigned a specified C~UNT which is used for
counting the time required for activating a particular
device. This location (C~UNT) represents the maximum
number of time count intervals in which action should be
completed. If a c¢UNT becomes negative, the device has
failed and the Corrective Action Program is turned on.
The system programmer may also count for special timing
functions. When a system count becomes negative, the ITC
turns on a system program {APR0GM), which handles diagnostic
functions.

When an interrupt occurs during the execution of an inter­
ruptable system subroutine. ITC returns immediately to
the interrupted subroutine.

ITC returns control to the interrupted program or to the
ECP depending on the indicator set in the Register Storage
Table.

-6-

8 .1.3

8 .1.4

Save Registers Subroutine (SRG)

SRG saves the register contents and/or next entry
location for a functional program. For functional
programs having full register storage or sharing
register storage, the P Counter, A, Q, and X3
through X7 Registers for the interrupted program
are transferred to the Register Storage Table.
Otherwise, only the next entry point to the
functional program is saved.

Restore Registers Subroutine (RRG)

RRG returns to an interrupted program at the
designated entry point. The contents of register
storage are transferred to the register locations
for programs having full register storage. These
values represent the contents of the various
registers for the running program at the time
of its last interrupt.

-7-

8 .1. 5 Turn Program Off Subroutine (0FF)

The Turn Program Off .Subroutine stops the ECP from initiating
the execution of functional programs. Programs are turned off
by placing the "off" constant, 40000000

8
, as the next execution

time. Only a running program may turn itself off.

After the "off" constant is stored, control is transferred to
the ECP.

To communicate with 0FF, use the following calling sequences:

SPB 0FFC0k.... £E. SPB 0FFC02
PRG O,l,~,STAR1,~~

/t!Retur s to the ECP
Overflow/ Memory
Reset ~ Reset

Set Permit
Interrupt

START

~

Test Flip-Flop

Reset \

Core

~
46408

I

Must be relative to start or
zero (drum/disc systems only).

Fence

PRG 0,1,0,START,0
Returns to the ECP

PR0G

REGSTG

Exe.cu tion Time
00000631
40000000
40000001
00000000

Program ff 5
00000732

10004640 Next
Entry
Location

(Reference: Page 1-2)

The ¢FFC02 call gives the programmer the ability to set the
program area unoccupied and available while the program is turned
off. Save status is not saved on drum/disc. Programs that are
transferred from drum to core each time executed could effectively
use this call.

-8-

8 .1.6 Set Program Delay Subroutine (DEL)

DEL delays the execution of a functional program that is
running currently for a specified time period. The delay,
in time counts, is added to the current time and stored in
PR0G for the calling function. Only a running program can
delay itself.

The A, Q and X3 through X7 Registers are saved for those
programs having register storage.

To set a delay, use the following calling sequence:

SPB DELCOl or SPB DELC02
DEL 0,3*SECND # of Secs.

eturns After Delay

O= Area is set unavailable
for overwriting during
delay

(1 = Area Available)

DEL 1,3,*SECND
Returns After Delay

600~~--~~~~~­
+14
6148

Execution Times
PROO 40000000

40000001

00000631
00014200
40000000
40000000
40000000

TIME
System Clock
I 00000600 I

(Program 3)

The above example shows a 1/4 second system.

DELC02 call gives the programmer the ability to set the
program area unoccupied and available during long delays.
Save status will not be saved on drum/disc. This call
should be used by programs which run at long time intervals.
Setting the area unoccupied cuts down ECP map search time.
Programs that are transferred from drum to core each time
executed would also use this call effectively.

-9-

8 .1. 7 Turn Program on Subroutine (TPN)

The Turn Program On Subroutine is used to change the execution time
of functional programs. The execution time and the program number
are given in the calling sequence.

After the new execution time is stored for a program, control is
returned to the calling function.

Programs which are "locked out", next time of execution 40000001
8

,
may not be turned on by TPN.

TPN returns with all ones in the A-Register when a request is made
to turn a program on which is "Locked out".

Turn Program 3
LDg
SPB TPNCOl
C0N G,HL0G

Return

HL~ EQL 3

PROO
Execution Times

40000000
40000001

(Program 3)
00000631
00014200
40000000
40000000
40000000

The TPNCOl call can turn a program on immediately or set any
execution time desired in the PR0G Table.

To enter an execution time only if the program has the off
constant in the PR0G Table:

LDA Execution T'ime or LDZ
SPB TPNC02
C0N G,HSCAN

Return

HS CAN EQL 8

The following calling sequence allows the system programmer to
specify which program will run next. If the program is in core,
it will be entered immediately; if it is on drum, its transfer
will be initiated.

LDti
SPB TPNC03
C0N G,MSCAN

MSCAN EQL 7

At the next ECP entry, the MSCAN program is turned on. If this
program has the "lockout" constant in its PROO location, the
request is ignored.
An example of when to use the TPNC03 subroutine call would be: If
program #X decides that another program must run next, program X makes
a TPNC03 call and either delays or turns itself off. The use of this
calling sequence is only required when a program is dynamic and changing
and the computer speed is not fast enough to handle functions in their
normal sequence.

-10-

8. 1.8 Map Maintenance Subroutine (MAP)

C0P~AP

AVLMAP

MAP is used to update the core map tables (C0RMAP and AVLMAP).
Core areas may be set occupied, unoccupied, available, or
unavailable:

SPB MAPOl - Set Area Occupied 2.E.
SPB MAP02 - Set Area Unoccupied .Q.E.
SPB MAP03 - Set Area Unavailable 2.E.
SPB MAP04 - Set Area Available

Return to the calling program

Unoccupied Core Area Map Table

C0RMAP

23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0
0
0
1

0 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0
0
1 1 1 1 1 1 1 0 1 1 1 1 1 1 1 1 1 l· 1 1 1 0 ·O

In this table, "one" bits indicate that the core area represented is
occupied by a functional program whether its area is available or not.

Available Core Area Map Table

AVLMAP

23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0
0
0
1

0 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0
0
1 1 1 1 1 1 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0

In this table, "one" bits indicate that the core area is unavailable
for overwriting.

Each bit represents 2k words of working core area. For example, if
k = 5, each bit represents 32 words of core. The working core area
starts at fixed location such as 12000

8
.

In our example, 5 programs are in core occupying areas:

120008 123378 (word 1, bits 0 6)
125408 13277 8 (word 1, bits 11 21)
136008 147378 (word 2, bits 4 22)
165008 17337 (word 4, bits 2 14)
174008 17777~ (word 4, bits 16 23)

NOTE: The program in core area 120008 12337
8

is running with i t.s
core area available.

The beginning of the map table is the upper right hand bit
of the table and the end is the lower left hand bit.

-11-

8 .1.9

SPB
LDK

DRMXFR DEL
F0R
LDA

F

Drum/Disc Transfer Request Subroutine (DTR)

DTR reque:sts transfers between drum or disc and core memory.
The core ·address of the 3-word transfer connnand and the program
number are stored in the Driver Table. DTR may return to the
calling program immediately after the request is stored or
after the completion of the actual transfer.

To return to the calling program innnediately after the request
is stored in the Driver Table,

DTRCOl
DRMXF~(May be Indexed)
Error Return (Driver Table
Normal Return f Full)

1,/12000
1,100
/25000

DRIVER LIST

N 1£ I e I. L

J

Direction of Transfer
1 = core to drum

~O =drum to core

23 22 16 15 14 0
D Drum or Disc Address
Controller No. No. of Words

I Core Address

DRMXFR Symbolic Address of three­
Word Transfer Connnand
DEL D, Bulk Address
F~R Controller No., No. of Words
LDA Symbolic Core Address

Example:
No. Controller (Drum or Disc)

0 First
1 = Second

Etc. = Etc.
The core address of the 3-word
transfer command and the
transfer direction are stored
as one word in the Driver
Table. The second word in
the Driver Table contains
the program number and the
drum/core number (3Xn).

To return t.a the calling prog.ram after the requested
trans·fer has been completed,

SPB DTRC02
LOK DRMXFR (May be Indexed)

Error Return (Driver Table Full)
Normal Return

The Bulk Trans.fer Driver Program wili process disc transfers as· though
all disc storage (within a controller) is continuous addressing. The
progrannner is not concerned with data or programs physically split
between disc platters.

-12-

8.1.10

8.1.11

Drum/Disc Transfer Driver (DTD)

DTD initiates transfers between core memory and drum or
disc; It is entered from the Drum Transfer Complete
Interrupt.

Following each interrupt, a transfer is initiated by an
0UT Drum/Disc Command. Return from DTD is to the interrupted
program or the ECP. (Refer to 1.2).

Find Register Pointer Subroutine (FRP)

FRP determines a program's type of register storage. It
gives the starting address of the 8-word storage block or
the next entry address for the specified program.

LDA Program Number
SPB FRPCOl

Returns with the address in the A-Register
and Test Flip-Flop Status

The test flip-flop is set if the program has full register
storage. Otherwise, it is reset.

See Register Pointer Table under 1.1.

-13-

8.1.12 Peripheral Availability Subroutine (PAV)

The Peripheral Availability Subroutine is used as a
combination call to check for peripheral availability,
make an output request, or perform peripheral substitution.
When a peripheral is not free, appropriate diagnostic
action is taken or peripheral substitution is made if the
peripheral is bad or out-of-service.

PAV also provides an optional feature for checking data
areas. A data area is assigned to each output message
representing the drum, disc, or permanent core area con­
taining the message. When an output request is made for
availability and the area is available, the area is set
unavailable and is set free when the last character of
the output message is completed.

Data area numbers range from 1-24 (23 and 24 are reserved
for Monitor). Zero is reserved as a dummy area number
when availability is not required. Area number zero is
always considered available. The data number is used as
a tag to identify a message area. The tag may apply to
an individual message or a buffer which that message
occupies. Two messages which share the same buffer may
not have the same tag. Until the driver removes the
data tag, no other program can use this tag.

A peripheral availability call must not occur in a sub­
routine used by more than one functional program. The
PAVCOl call selects an alternate output device when the
requested device is not free.

Fixed Message Calls

DEVICE

SPB PAVCOl (Normal Request) or SPB PAVC04 (Priority
Request)

DEL
DEL
F0R

•
O,F0RMAT
O,DATA ~No Test for Data Area Required
DEVICE,O 0 =Dummy Area Number
Return

EQL 3

Core Format
and Data
Locations

Note: A fixed message call may be used if the format
and data words are built at assembly time. A
priority call places the request at the top
of the stacking list.

Format and data words on drum or disc must be in the
lower 256K of a drum or disc system.

-14-

Peripheral Availability (cont'd.)

SPB
F0R

REASON DEVICE IS
UNAVAILABLE

Stacking List
Full

Device is Bad or
Out-of-Service

No Alternate is
Available

Message Number

PAVC02 ~
DEVICE,AREAN0

Place the Output
Data in the Table

•
•

ACTION

Delays and tries again

Request output on alternate
device.

Bypasses output request.

(Checks stacking list
availability)

and data area

Return is made when the
area is available and the
device's stacking list
is not full .

PAVC03
0UTC02
A,F0RMAT

(Requests output and places request in
Stacking List)

Drum
Address

A = 0 =
1 =

A DATA
DEVICE,AREAN0

Core
Address

Core Address
Drum Address

-15-

STACK.3

8.1.13 Output Subroutines (¢UT)

¢UT is composed of three functions. The ¢UTC01 call is
used to test for peripheral availability and data area
status. The ¢UTC02 (Normal Request) and ¢UTC03 (Priority
Request) calls make the output request. The given data
and format locations are stored in the proper tables and
the peripheral ALERT bit is set for the Output Program.

When the output request returns to the "available return"
(data area and peripheral free), the system program may
then assemble its data in the data area in preparation
for the actual output request. For every "available
return", there must be an associated output request.

Output Requests may be made for the printer, typewriter
(including I/O), paper tape punches, and magnetic tape.

To Test Peripheral Availability and Data Area Status,

0UTC01
CTYPERJ HLAREA
Unavailable Return
Available Return

Core

MESSAGE AREA

·~-~-~3 __

Peripheral
Number A-REGISTER

CONTENTS
EASON UNAVAILABLE

23 5 0
0

1 DEVICE FAILURE

2 DEVICE OUT-OF-SERVICE

REQUEST OUTPUT 4 DATA AREA UNAVAILABLE

SPB 0UTC02 (Normal Request)
DEL A,FORMAT Address of 1st Format Word in the Format Table
DEL ,DATA Address of 1st Data Word in the Data Table
F0R CTYPER,HLAREA

Return ~

Peripheral
Number

Core Addresses

HLAREA EQL 3

Data Area No. 3

A = 1 = Drum Address
0 = Core Address

Note:

-16-

Format and data words on
drum or disc must be in
the lower 256K of a drum
or disc system.

Output Tables

SPB 0UTC03 (Priority Request)
DEL A,FORMAT
DEL A, DATA

F0R CTYPER, 0
~
Return

Core
Address

CTYPER EQL 2

In the device code table (DVC0DE),
the octal address is deciphered as
follows:

Example: 60101100
The first two digi~s are
called the Type Code (60). Type
codes are used to specify the
following peripherals:

40 - Paper Tape Punch or
Output Typewriter

42 - Card Punch
44 - High Speed Printers
50 - I/O Typer
60 - Paper Tape Reader

or 70 CPM Reader
76 - 350 CPM Reader

The third digit is the classification
code which specifies the peripheral
number.

0 = Printer {fl

1 = Printer 112
ETC.

Core Memory

FORMAT

DATA OUTPUT
DATA

STACK 0

STACK 1
STACK 2

Address of
Format Words
Address of
Data Words

Request for Output

23 22 18 17

[
OUTPUT
FORMATS

LIST CONTROL

LIST CONTROL
LIST CONTROL
00004520

I Location

23
j A j Location

-17-

LA = 0 = Core Address
1 = Drum Address

The classification code is a running number (0-7) for input peripherals
(type Codes 50, 60, and 76). The 350 CPM Readers should have the highest
priority classification code.

In the code, the last four digits specify the hardware address for that
peripheral.

Format and data words must be stored on drum or in permanent core. Format
words and data words are stored in separate tables. Addresses given in the
0UTC02 and ¢UTC03 calls must be absolute symbols. Either common (*) or
local absolute (-) may be used. Absolute addressing must be used in drum
or disc systems only.

Hardware Address
For Device

Device
Priority
Number

DVCODE 60101100
"40001102

I 40001103

110

lfl r-----1
112-----.

I 40001101 113
I

ALTTBL 00000000 110
111
112
113

', 00000002
..... 00000001

00000003

Primary Alternate Device
Table

ALTTB2 00000007
00000005
00000004
00000001

110
111
112
113

8 .1.14

Secondary Alternate Device
Table

Output Program (I¢P)

Monitor outputs information by using a group of related routines
and subroutines within the Output Program. The Output Program
is turned on after receiving an output request from the Output
Subroutines.

The stored format word is decoded into separate fields. Format
words which are stored on drum or disc are transferred to an
eight-word core buffer for processing. Data which is stored on
drum or disc is placed in a sixteen-word core buffer. Both
buffers are within the Output Program's temporary storage (save)
area. The proper conversion routine, as indicated in Bits 23-21,
is then entered. Each conversion routine is discussed as sub­
categories of 1.14:

-18-

8 .1.14 Output Program (I¢P) (cont'd.)

1.14 .1 Binary to Fixed-Point Decimal
1.14. 2 Binary to Four-Bit BCD
1.14 .3 Binary to Six-Bit BCD
1.14 .4 Binary to Non-Edited Character
1.14. 5 Binary to Octal
1.14. 6 Clock Output
1.14. 7 Floating Point to E-Type Floating Point Decimal
1.14 .8 Floating Point to Fixed Point Decimal

The following subroutines are also contained within the Output
Program to assist in placing the converted information in the
Driver Table printing error messages (EEE*,999*,000*, *) etc.
They are:

Store Character in Driver Table Subroutine
Store Error Code in BCD Table Subroutine
Build Driver Table Subroutine
Error Subroutines
Update Index and Load Data Subroutine

Error typeouts indicate the following:

Number too large
Number too small
Incorrect format word
Field size less than three

The End of Message word is all bits set (77777777)
8

.
Every table of format words must contain an end word which is
generated by:

C¢N ¢, 77777777

The repeat factor is used when more than one data word is
associated with a format word. For example, if four data
words use the same format, three is placed in this field.
If only one data word is used, the repeat factor should be
zero.

The multiplying factor positions the decimal point for
typing under log headings.

Example:

Multiplying Factor

Pressure of
Boiler "A"

-3
XlO lbs.

(-3)

-19-

Temperature of
Steel Furnace

+2 XlO degrees
(+2)

8 .1.14 .1

23

0 1

The format words shown in the following conversion
routines include an example of the MONITOR Pseudo-operation.
These pseudo-op instructions can only be used when assem­
bling with GE/PAC Monitor or the GE/PAC Monitor EQL tape.

Binary to Fixed-Point Decimal (DFX41)

DFX41 converts information from binary fixed-point to
decimal fixed-point. Leading zeros are automatically
suppressed. Numbers exceeding the field size are typed
as all nines followed by an asterisk.

Binary to Fixed-Point Decimal

Pseudo-op Example:

DFX 10 0 5 1

21 20 15

0 0 1 0 1 0 0 0 1 0 0 1 0

1

c FORMAT TOTAL REPEAT
FACTOR

BINARY
SCALE

FACTOR

NUMBER
OF

FRACTIONS
WORD

23

r+l-0 1
L DATA

WORD

1

WIDTH
of

FIELD

COLOR
1 = RED

SIGN

DECIMAL
POINT

One value, scaled BS, i
values are printed
fractional digits.

typed in a ten column field. The
d with decimal point and four
sign is printed if the value is

negative.

0 0 1 0 0 1 0 0 0 1 0

Conversion to
Fixed Point Decimal

I ~

Three spaces
precede the value
to make a ten-column
field.

-20-

0 0 0 0 0 0 0

25.1328

0

0 0 0

Red printout

DATA
WORD

8.1.14.2 Binary to Four-Bit BCD (FBB41)

23 22
1 1

FBB41 converts binary data, left justified, to six 4-bit
BCD characters per word. After the conversion, each BCD
character is stored as one word in the Output Driver Table.

Binary to Four-Bit BCD

Pseudo-op Example:

21 20
1 0 0 1 0 0

FORMAT TOTAL REPEAT NUMBER
OF

CHARACTERS
t WORD WIDTH FACTOR

OF COLOR CONTROI
FIELD 0 = BLACK;

1 = RED

FOLLOWING DASH CONTROL
1 = PRINT DASH

One value, consisting of 6 characters, is typed in black.

23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

I o I o l 111 I 1 I

234567 Black printout

4 blank spaces = ten column field

Note: If the repeat factor is used, each data word
must have the same number of characters.

-21-

8 .1.14. 3 Binary to Six-Bit BCD (4 Characters Per Word)

BCD41 converts binary information to six-bit BCD characters. The
data word contains six-bit BCD characters, left justified. After
conversion, each word contains four BCD characters.

Binary to 6-Bit BCD

Pseudo-op Example: BCD 10 3 1

23 21 20 I 12 1 0

Format 1 0 0 0 0 0 0 0 1 0 1 0 0 0 0 1 1 0 0 0 0 0 1 1
Word

Data
Words

NUMBER 0
CHARACTERS

One carriage return and three
spaces are made before the BCD
characters are typed.

NUMBER OF
LEADING
SPACES

1fa TABS OR
C/R's
INSERTED
BEFORE
LEADING
SPACES OR *

COLOR

~~~~~-.A.---.--..~~--r codes 01-17 = 1-15 con~ 
. 8 . secutive carriage returns. 

Codes 41-57
8 

= 1-15 
consecutive tabs. 

C0N A,9,TAPE FILE (pseudo-op generating data words) 

23 18 17 12 11 6 5 
1 1 0 0 1 1 0 1 0 0 0 1 1 0 0 1 1 1 0 1 0 1 0 
0 1 0 0 0 0 0 1 0 1 1 0 0 1 1 0 0 1 1 0 0 0 1 
0 1 0 1 0 1 0 1 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 

carriage return--~~~~~~~~ 
3 leading Spaces~---------------'4i.TAPE FILE Alphanumeric 

typeout in.red. 

*Vertical Page Control Code for Printer 
(Octal) 

00 
01 
02 
11 
12 
13 
14 
15 
16 
17 
20 

-22-

No Advance 
Slew 1 line (Single Space) 
Slew 2 lines (Double Space) 

Slew paper to control 
channel 1 through 8 
respectively (1 is considered 
top of next page) 

0 
1 
1 
0 



8 .1.14 .3 

8. 1.14 .4 

23 
Format 
Word 

I 1 

Table of 
Characters 

0 

Binary to Six-Bit BCD (4 Characters Per Word) - cont'd. 

By inserting 40
8 

in the BCD (FORTRAN Option) word, the 
Output Program uses the first. character of the data line 
as the form control. Control codes are as follows: 

Octal Control Code 
20 (Blank) 
00 

01 } 

20 

60 (Plus) 

Single Space 
Double Space 

Slew to Channel N 

Suppress Spacing 

Binary to Non-Edited Character (BCN41) 

BCN41 stores characters (one character per word) into the 
Output Driver Table with no transformation. One character 
is contained in Bits 23-0 of each data word, right justified. 
The number of filled bits depends on the output device being 
used. The maximum number of non-edited characters permitted 
in one BCN format word is 63. 

Binary to Non-Edited Character 

21 20 

Pseudo-op Example: BCN 12 

~ 
o 1 1 o oJ ___ __,) 

'v' 

No. of Characters 

23 7 6 
0 0 1 
0 0 0 
0 1 0 0 
0 
0 f 0 0 

0 0 
0 I 0 0 
0 0 0 
0 0 0 
0 0 0 
0 
0 \ 0 1 

0 0 
0 0 0 

NOT USED 

0 
0 1 0 0 1 1 
1 0 1 1 0 0 
0 0 0 0 1 0 
1 1 1 1 0 1 
1 0 0 0 0 1 
0 0 1 0 0 0 
0 0 0 0 0 0 
0 1 1 0 1 1 
1 0 0 1 0 1 
0 0 0 0 1 1 
0 0 0 1 0 0 
1 1 1 1 1 0 

Punches 12 characters with no transformation. 

-23-

0 



8 .1.14. 4 Binary to Non-Edited Character (BCN41) cont'd. 

DATA FRAMES 
CHANNEL 
NUMBERS 1J:l 1J:2 if 3 1J:4 1J:5 1J:6 1F7 118 1J:9 no 1111 1112 

8 0 0 Hundreds Pos. 
Paper 

7 0 0 0 0 2nd Tens Pos. L 
Tape 

6 0 0 0 2nd Tens Pos. 
5 0 0 0 0 Parity Ind. 
4 0 0 0 0 0 2nd Tens Pos. 

••••• ••• • (I • • • • • • • • • • Sprocket Feed 
3 0 0 0 0 0 1st Units Pos. 
2 0 0 0 8 0 

1st Units Pos. 
1 0 0 0 0 0 1st Units Pos. 

123 54 2 75 41 10 0 33 45 103 4 76 Pos. = 
Position 

*Even frames require a parity punch which hardware generates on 
output, otherwise a parity flip-flop is set during input mode. 

Format 
Word 

8 .1.14. 5 Binary to Octal (¢CT41) 

¢CT41 converts binary integers to octal 
characters. 

Binary to Octal 

Pseudo-op Example: 

23 21 20 

0 1 1 0 0 0 1 1 

TOTAL WIDTH 
OF FIELD 

REPEAT 
FACTOR NUMBER 

OF 
CHARACTERS 

Six low order octal digits are typed in a seven-column 

COLOR 

field 
using black ribbon. The next data word would be processed 

I 

23 
First I 0. 0 0 I 
Data 
Word 
(Binary Integer) 

0 

in the same manner. (Repeat Factor 1). 

' 0 
0 11 0: 1 oj 0 1 ll 1 0 oj 1 0 11 1 1 ol 1 1 11 

Octal Conversio~ 
234567 Black typeout 

Space 

-24-



8·1.14. 6 Clock Output (CLC41) 

CLC41 converts the time of day from system time counts 
to decimal hours and minutes. It is then printed as 
four or six decimal digits. 

Time Count To Hours, Minutes and Seconds 

Psuedo-op Example: 

CLK 

23 22 21 

1 1 0 0 0 

0 = Message Time (no data word 
1 = Event Time (data word) 

Number 
of 

Leading 
Spaces 

Color Control 
0 = Black 
1 = Red 

0 = Hr/Min Printout (XXXX) 
1 = Hr/Min/Sec Printout (XXXXXX) # of Tabs or Carriage 

Returns to be inserted 
before leading spaces 

Data Word (TIME) 

.Q£. Vertical Page Control 
for Printer -1~ 

Use Octal Codes 01-17 for the inserted number of consecutive 
carriage returns (1-15). The inserted number for 1-15 
consecutive tabs are octal codes 41-57. 

The above example types or punches time in hours and minutes 
preceded by a carriage return and three spaces using black 
ribbon. 

1/4 SEC, COUNTS 

100100000010010000 

xxx 

Time black typeout 
hours & minutes 

* Please refer to page 1-22 for Vertical Page Control Code for Printer. 

-25-



FORMAT 
WORD 

8 .1.14. 7 

23 
0 

Floating Point to E-Type Floating Point Decimal (DFE41) 

DFE41 converts binary floating point information to 
decimal floating point. 

Floating Point to Floating Point Decimal 

Pseudo-op Example: DFE 13 , 0 3 

TOTAL WIDTH 
OF FIELD 

REPEAT 
FACTOR 

NUMBER 
OF 
WHOLE 
NUMBERS 
TO 
PRECEDE 
THE 
DECIMAL 
POINT 

4 1 ' 1 ' 0 

6 
0 1 

11 OF 
FRAC­
TIONAL 
DIGITS PRINT 

DECIMAL 
POINT 

PRINT 
SIGN 

COLOR CONTROL 
0 = BLACK 
1 = RED 

23 22 17 16 0 

~~!~ I 1( 11 q ! q o 11,t1 1 o I o I o 1 o I o ,1 o I o I~ I o 1 o I o I o I o I o I o I j 
(FLOATING r EXPONENT NORMALIZED 

POINT (+40) 8 FRACTION 

BINARY) 

SIGN 

Floating Point 
Decimal Conversion 

-26-

Black printout 
(minus one) 



8 .1.14. 8 

FORMAT 
WORD 

DATA 
WORD 
(BINARY 
FLOAT­
ING 
POINT) 

23 22 
1 1 

SIGN 

Floating Point to Fixed Point Decimal (DFP41) 

DFP41 converts binary floating-point information to 
decimal fixed-po*nt. The floating point number is N 
multiplied by 10 if N is negative, or divided by 10 
if N is positive. (N is the multiplying factor, maximum 
range of absolute.9, located in the format field.) Leading 
zeros are automatically suppressed. 

. 24 -23 The permitted range for any number is< 2 or> 2 

Floating Point to Fixed Point Decimal 

Pseudo-op Example: DFP 8, 3, 

N, 
MULTIPLYING 
FACTOR 
(MAGNITUDE) 

SIGN OF 
MULTIPLYING 

FACTOR 

10 -t N 

0' 1, 2, 

\ \ 
6 3 
0 0 1 0 

NUMBER 
OF 

FRAC-
TIONAL 
DIGITS 

1 = 
PRINT DECIMAL 

POINT 

SIGN CONTROL 

2 1 
1 1 

1 = PRINT ~..--J 

COLOR CONTROL 
0 = BLACK 
1 = RED 

0 

0 
0 

This pseudo-operation sp~lified type or punch four values with 
multiplying factor[of 10 and two fractional digits in an 
8-column field. It will print the decimal point, and sign, 
using the black ri~bon on the typewriter. 

17 
0 0 0 1 1 

EXPONENT 

+408 

Conversion to 
Fixed Poirtt lie.. 
Decimal~~~~~~-

1 0 0 0 0 0 0 0 0 0 0 0 

FRACTION 

- . 45 1·~----- Black typeout 

-27-

Four Blank Spaces for 
Eight-Column Field 

0 
0 0 



8 .1.15 

8. 1.16 

8. 1.17 

Input Driver (IND) 

The Input Driver· is entered from any of the following 
interrupts: 

1. I/O Device Ready 
2. I/0 Typer 0DL Echo 
3. 350 CPM Card Reader IDL Echo 
4. 350 Card Reader Ready Interrupt 

IND initiates a card reader, paper tape reader, or 
I/O Typer request. Other functions accomplished by IND 
are: 

1. Resets diagnostic counts for I/0 Devices. 
2. Tests for an Input Demand from the 350 CPM 

Card Reader. 
3. Tests for a valid card read. 
4. Notifies the Corrective Action Diagnostic Program 

of a photo-cell card reader error. 

Input/Output Driver Program - I/O Typer (I0D) 

I0D is turned on by the Input Driver (IND). Selection 
codes and output characters for the I/O typer are stored 
one character per word in the Output Driver Table. Input 
characters from the I/O Typer Paper Tape Reader or 70 CPM 
Card Reader, are stored one per word in the Input Data Table 
for the requesting program. 

When the end-of-tape, stop code, requested number of 
characters has been read, or if the input list is full, 
I0D exits to the ECP. 

For I/O typer input, an "IN" Command is given to unlock 
the keyboard. At the end of the record, I0D locks the 
keyboard and turns the Input Program on. 

Output Driver (0UD) 

On the AU2, 0UD is entered from the 0DL Echo Interrupt when 
a peripheral device~ Driver Table is empty. Flags are reset 
when there is no conversion in progress for output typers, 
paper tape punches, card punches, or high speed printers. 

For the AUl, 0UD is entered from the Output Device Ready 
Interrupt when the previous output has been completed. Each 
device is assigned its own driver table and 0UD outputs the 
next character unless the driver table is empty. If the 
table is empty, flags are reset when there is no conversion 
in progress for the output typers and paper tape punches. 

-28-



8 .1.18 Input Request Subroutine (INS) 

INS accepts input requests from the paper tape reader, 
card reader, or I/O typewriters. Input from more than 
one peripheral may be requested at any time. However, 
each device is limited to one request at a time. Each 
buffered request must be tested for completion of input by 
the calling function. 

The following calling sequence is used for Buffered 
Requests. A buffered request returns immediately to 
the "normal return" of the calling sequence after the 
read is initiated. During this time, the calling 
function may process the characters placed in the 
alternate input list by the previous read request. In 
this manner, the calling program may process one list 
of characters while the Driver is storing characters in 
another table in core. (This procedure drives the input 
device near maximum speed.) 

Buffered Input Request 

Variable Length Message 

r--S-T_O_P_C_O_D_E-~-A.. A-REGISTER'"\ OR LDZ (No Stop Character) 

SPB INPCOl 
DEL l,INPUT ~Starting Location of Data 

~ read (0 indicates to read 
0, 80 ~{No. of Characters to be 

Input Chars. Unavailable Ret. until the Input Data Table 
on Drum Normal Return is full - variable length) 

Input Device No. 

DRUM 

-29-

Device Bad, 
Out-of-Service, or 
in use. See 
INCOl List. 

INPUT ,._F,_....__.__f _._e___._I-1 

INPUT 
+ 79 



READ COMPLETION REQUEST 

SPB INPC02 
c¢N G, 0 ~ Device Number 

Bad Read Return 
Read Completed Return 

/ 
The requested number of characters has been read. 
A "Stop Code" was encountered. 
The end-of-tape was found. 
The calling function's input data list is full . 

... _ 

A-REG BAD READ 
CONTENTS REASON 

0 Parity Error 
Aborted by Operator 

Device Failed 
bit 3 During Read 

Input Data 
bit 4 List Overflow 

bit 5 No I/0 Typer 
Stop Code 

bit 6 I/O Typer 
Request Aborted 

bit 7 I/O Typer 
Time Abort 

bit 8 350 CPM 
Card Hopper 
Empty 

-30-

POSSIBLE 
ACTION 

Quit 

Select Alternate 
Input Device 

Remove from 
list before 
list is full. 

Quit 

Quit 

Initiate another 
input request 

Wait for operator 
to place cards 
in reader 



8 .1.18 

A-REG 
CONTENTS 

bit 0 

bit 1 

bit 2 

bit 3 

bit 4 

bit 5 

bit 6 

bit 7 

bit 8 

zero 

Input Request Subroutine - Cont'd. 

When a non-buffered input request is made, the calling 
function is locked out until the read is completed or 
an error is encountered. 

Non-Buffered Input Request 

REASON 
UNAVAIL. ACTION 

Select 
Device Bad Alternate 

Device Select 
Out-of-Service Alternate 

Device Set 
in use Delay 

Device Failed Select 
During Read Alternate 

Input Data Remove from list 
before list is 

List Overflow full. 

No I/O Typer 
Stop Code Quit 

I/0 Typer 
Request Aborted Quit 

I/O Typer Initiate another 
Time Abort input request. 

350 CPM Wait for operator 
Card Hopper to place cards 
Empty in reader 

Parity Error Quit 
Aborted by 
Operator 

A flex code 177
8 

acts as a true delete code and is skipped 
when reading paper tape. The delete code should not be used 
as the "stop" character. The stop code is used as the end-of­
record indicator. For the I/O typer, the right bracket is the 
end-of-record indicator. 

After the first character has been read on paper tape, ten 
consecutive blanks serve as end-of-tape. 

-31-



8. 1.19 

8.1.20 

Input Program (!NP) 

After an input request has been completed, !NP notifies the 
calling function of the completion. It also performs the 
following actions - resetting the flags for the input device, 
testing the "end" code of the input record, and notifying 
the calling function of an error. 

The following error messages may be initiated: 

1. NO STOP CODE (I/0 Typers only - Bit 5 is set in 
the A-Register, and !NP returns to the calling 
function at the "bad read" return.) 

2. DEVICE n PARITY is typed for a paper tape reader 
parity error followed by the message, ENTER DATA 
VALUE XXX or ]. The operator may correct the 
error by typing the appropriate three characters 
on the I/0 Typer or abort the request by typing 
a right bracket. For systems without I/0 typers, 
the operator may correct the error by placing the 
octal character in the console switches and pressing 
the "demand" button. To abort, lower switch 22 only, 
and press "demand". 

For an abort request, !NP sets the A-Register to 
zero and enters the calling function at the "bad 
read" return. 

An "end" code (stop, abort, or end job character) is removed 
from the Input Data Table. 

Multiple Output Request Subroutine (M0R) - (Local Terminals Only) 

M0R permits requests for analog, decimal, or binary contact 
status to be made for the Multiple Output Distributor. M0R 
has the provision for normal, timed, and pulsed requests. 

Non-priority or priority calls can be made for each Multiple 
Output Request. In addition, an unlatch call can be made for 
a timed request. The required information must be loaded in 
the A and Q-Registers before the ~ubroutine call is made. 

Information for each request is placed in its respective 
Priority or Non-Priority Driver Table. However, no informa­
tion is placed in the Driver for a request to unlatch a 
previous request. In this case, a previous request is 
aborted before the requested time has elapsed. 

The operation delay time is the time required to transfer a 
command word from the A-Register to the M~D Command 

-32-



A-Register 

Q-Register 

IA-REGISTER 
CONTENTS 

0 
1 
2 
4 

8 

Multiple Output Request Subroutine (M0R) (Cont'd.) 

Register and to initiate the transfer of data portion of 
the command word to the output function specified by the 
matrix address. 

The error return indicators in the A-Register are the same 
for all subroutine calls. 

Normal Requests 

23 8 
jDATA 

23 

1 = CONTACT TO BE CLOSED 
0 = CONTACT TO BE OPENED 

OR REMAIN UNCHANGED 

Delay Timer 
1 = 40 )lS 0 

75 MS 
0 = 4 MS 

jDATA 
< 

V' 
1 = CONTACTS TO BE CHANGED 
0 = CONTACTS TO REMAIN UNCHANGED 

5 0 
MATRIX ADDRESS I 

GROUP NUMBER (0-63) 

8 7 

1 = RETURN AFTER 
OUTPUT IS 
COMPLETED 

0 = IMMEDIATE RETURN 

0 

v 
INDEX TO THE MULTIPLE 
OUTPUT DISTRIBUTOR 
(USED WHEN SYSTEMS 

HAVE MORE THAN ONE 
M.O.) 

SPB M0RC01 (Non-Priority Request) or SPB M~RC02 (Priority Request) 
or e urn..., Err R t 

Normal Returtj 

~ 
POSSIBLE SYSTEM 

ERROR ACTION 

DRIVER LIST FULL Delay and try again. 
GROUP FAILED PREVIOUSLY Quit - try next output. 
OUTPUT FAILED (OVERLOAD) Hardware condition (2 groups addr 'd.) 
INVALID GROUP ADDRESS OR Programming Error. 

M0D INDEX 
M.O. TIMER FAILURE No output may be done. 

-33-



Timed Request 

A-Register 23 8 7 6 5 0 
DATA MATRIX ADDRESS 

1 = CONTACT TO BE LATCHED 
0 = CONTACT UNCHANGED 

GROUP NUMBER (0-63) 

Q-Register 

Operation 
Delay Time 
1 = 40 ).lS 

75 MS 
0 = 4 MS 

23 

NUMBER OF COUNTS FOR 
RELAY TO REMAIN LATCHED 
(1 COUNT = 16-2/3 MS) 

8 7 

1 RETURN AFTER OUTPUT 
IS COMPLETED 

0 = IMMEDIATE RETURN 

INDEX TO MULTIPLE OUTPUT 
DISTRIBUTOR (APPLICABLE 
ONLY WHEN A SYSTEM HAS 
MORE THAN ONE. ) 

0 

SPB M¢RC03 (Non-Priority Request) or SPB M¢RC04 
SPB M¢RC05 

(Priority Request) or 
(Unlatch a Previous 
Request) 

Error Return~ 
Normal Return ~ 

A-REGISTER 
CONTENTS ERROR 

0 NO TIMER AVAILABLE OR 
STACKING LIST FULL 

1 GROUP FAILED PREVIOUSLY 
2 OUTPUT FAILED (OVERLOAD) 
4 INVALID GROUP ADDRESS OR 

INVALID M¢D INDEX 
8 M.O. TIMER FAILED 

-34-

POSSIBLE SYSTEM 
ACTION 
Delay and try again. 

Quit - try next output. 
Hardware condition (2 groups addressed) 
Programming Error 

No output may be done. 



Pulsed Requests 

23 

A-Register Data 

1 = Contacts to be closed 
0 = Contacts to remain opened 

Operation Delay Time 
1 40 ps or 75 MS 
0 = 4 MS 

Ready Signal 
1 = Return after output is 
0 = Immediate return 

8 7 6 5 
Matrix 
Address 

0 

23 8 7 0 

Q-Register [ __ ........, _____ l __ v-___ J 
Number of counts for relay 
to be latched 

SPB M0RC06 (Non-Priority Request) or 

SPB M¢RC07 (Priority Request) 
Error Return 
Normal Return 

-35-

Index to Multiple 
Output Distributor 
(Applicable only when 
a system has more 
than one M.O.D.) 



8.1.21 Multiple Output Distributor Driver (MDR) 

MDR is initiated by the M0D Interrupt to execute 
requests made by M0R. To output a request, the 
command word from the driver table is placed in the 
A-Register. The data is transferred to the location 
specified by the group address of the command word. 
The Multiple Output Distributor is then ready to 
accept another request. 

All output commands are initiated from the Priority 
Driver Table before information is taken from the 
Non-Priority Driver Table. 

For timed requests, a timer is activated. When the 
requested time has expired, MDR executes the unlatch 
command. 

For pulsed requests, a pulsed timer is started. 
When it expires, the contacts are opened. 

-36-



8 .1.22 Timed Contact Output Request Subroutine (TC¢)- (Local Terminals Only) 

The Timed Contact Output Request Subroutine supplies the 
communication link for making requests through the Timed 
Contact Output Controller. The TC¢ Output Command Word is 
stored in the Normal or Priority Output Driver Table. 

Timed Contact Output Request 

TC¢ Command Word 

23 16 15 11 10 9 7 6 0 
A-Register # of Timing Pulses Address 

Time a Contact is 
to be closed 

Contact 
Controller 
if more 
than one 

= Immediate 
Return 

= Return after 
output is 
completed 

= GE/PAC Pulse 
Output 

= Pulse Duration 
Output 

0 = Move Setpoint Controller Down 
1 = Move Setpoint Controller Up 

SPB TC¢C01 (Normal Request) or SPB TC¢C02 (Priority Request) 

ERROR RETURN 

NORMAL RETURN 
A-REGISTER 

CONTENTS ERROR 

0 Driver List Full 

2 Requested Group has 
failed on 2 consecutive 
overloads. 

4 Invalid Matrix Address 

8 Timer Failure 

-37-



8.1.23 

8.1.24 

Timed Contact Output Driver (TCD) 

TCD uses the Timed Contact Output Controller for addressing 
and controlling timed contact output groups from the 
Arithmetic Unit. To output a request, TCD places the command 
word in the A-Register. The data is transferred to the 
location specified by the group address of the command word. 
The Timed Contact Output Controller is then ready to accept 
another request. 

All output commands are initiated from the Priority Driver 
Table before information is taken from the Normal Driver Table. 

Scan Request Subroutine (SCR)- (Local Terminals Only) 

The Scan Request Subroutine stores the addresses of the 
Scanner Command Word and Count Value Tables in a stacking 
table. The Scanner Commands are executed by the Scan Driver. 
SCR process normal or priority, buffered and non-buffered 
scan requests. A normal request is processed on a first 
in/first out basis. Priority requests are processed on a 
last in/first out basis. The system has the option of 
storing time of the completed scan as last word of scan 
request count table. 

-38-



8 .1.24 Scan Request Subroutine (SCR)- cont'd. 

Core 
Addresses 
Only 

Buffered requests permit the Scanner to be driven near 
maximum speed by allowing a functional program to process 
one set of count values while another group of analog values 
is being scanned for the same program. 

SPB SCRC03 (Normal Request) or SPB SCRC04 
O,SCNTBA 
O,CNTTBA 
Busy Ret~~ (Stackin 
Normal Return 

"' 

(Priority Request) 

1~~~~- SCAN COMMAND __ __,1-----1 

TABLE "A" ----~-1 

PROCESS COUNT VALUES IN 
TABLE B. CONVERT, LIMIT 
CHECK, ETC. 

7 7 7 7 7 7 7 78 

COUNT TABLE 

5 0 
ooo 

SCAN COMPLETE REQUEST SCRC03 "A" 

SPB SCRC05 

Scan Incomplete 
Scan Complete 

Request scqn for ''B Tables and 
process new counts in "A" Table 

-39-

• 7 7 

SCAN COMMAND 
TABLE "B" 

7 7 7 7 7 78 

5 0 
000 

COUNT TABLE 
"B" 



A non-buffered scan request locks out the calling program 
until the analog scan request is processed. 

SPB SCRCOl (Normal Request or SPB SCRC02 (Priority Request) 
Core _ DEL_/'O,SCNTBL 
Address ~\O,COUNTS ~ 
Only Bus Return (~tacking List Full) 

Count 
Value 
Scaled 
Bl7 

I 

I 

I 

I 

Complete Return 

"" Voltage 
"'- Scale 

SCNTBL 

/ 

COUNTS 
23 

""'~ \ 
6 5 4 3 2 1 0 23 20+,l...;;.9.....,18~1......;7 _______ __;::3~--2 -...:::o-0 

0 0 0 
Q 0 0 

_Q 0 0 
0 0 0 
_c 0 0 
__g 0 0 
JJ 0 0 
J: 0 0 
_Q 0 0 
_Q 0 0 

\... JJ _Q_ _Q 

' ~ Jl~l 
Scaled Offset 

Corrected Count 

.... 
f Integrating Converter: 
Converter Overflow Indicated 

f Successive Approximation: > Converter Overflow or 
Open ~hermocouple 
Indicated .J 

f Integrating Converter: :}--
Open Thermocouple Indicated 

f Successive Approximation: 
o's Indicated 

7 

M* ADDRESS OF MATRIX roe GAIN 

7 7 7 7 7 7 7 

~ 
End of Scan Table 

*M = 0,2 - Single Input 
M = 1,3 - Group Input 

' 8-Channel Scanner 

Scanner Overload or 
Converter Overflow or 
Open Thermocouple Indicated 

SCNTBL 

23 

G 

22 20 19 

Thermocouple Ref-
erence Junction 
Temperature Index 

G = 0 (No Gain Op~imization) 
G = 1 (Gain Optimization on Single 

API or Single Channel Scanner) 

3 2 0 

GAIN 

(Reference: Scan Command Word, Programming Techniques Manual) 

-40-



8 .1.25 

8. 1. 26 

8.1.27 

Scan Driver (SND) 

The Scan Driver outputs Scanner Commands to a Driver 
Table. They are sent to the Scanner by an ~DL or ~UT 
Command. The count values are returned by an IDL or IN 
Instruction and stored in the specified table. The count 
values are converted, offset corrected, and scaled before 
storing. After all requested points have been scanned, 
the calling function is turned on. 

Scan Offset Program (SCF) 

The analog readings of the shorted pair are obtained 
for each voltage scale. This new offset is calculated 
from the weighted average of the current reading and 
four previous offset values for each voltage scale. 

Corrective Action Diagnostic (CAD) 

CAD performs peripheral, drum, disc, multiple output 
distributor, scanner, and timed-contact output corrective 
actions for the GE/PAC Monitor. Corrective action is 
taken for the following peripherals: 

1-00 CPM Card Punch 
350 CPM Card Reader 
300 LPM Printer 

70 CPM Card Reader 
Output Typers 
I/O Typers 
Paper Tape Punch 
Paper Tape Reader 

Corrective actions are as listed: 

1. Substitute an alternate output peripheral when 
an output peripheral fails. 

2. Permit operator recovery for the 350 CPM Card 
Reader and 100 CPM Card Punch. 

3. Reset device flags and switches for the failed 
device. 

4. Turn on any programs "locked out" for the failed 
device. 

5. Type alarm messages indicating the exact location 
of the failure, when possible. 

After the necessary actions are completed, CAD turns 
itself off and exits to the ECP. 

-41-



8 .1. 28 

8. 1.29 

8. 1. 29 .1 

Initialization Routine (INZ) 

!NZ initializes the start-up conditions for a Munitor 
System. Initial storage, switches, and variable locations 
are set for Monitor and Compatible Programs. 

Each system should add its own system initialization to 
this routine. 

To initialize an all-core system, the programmer must 
follow the outlined steps: 

1. Branch to the starting location of the 
Initialize Routine (37

8
). 

2. Press Console ~ B. 
3. Turn key to "Automatic". 
4. Press "Step" button. 
5. Reset the "AP! Lockout" switch. 

For a drum/core system, follow these steps: 

1. Turn keyswitch to the ''Manual" position. 
2. Set "AP! Lockout" switch to "Inhibit" position. 
3. Turn "Off/On" switch to "Initialize" position. 
4. Press "Program Load" button. 
5. Press "Demand" button. 
6. Turn keyswitch to "Auto" position. 
7. Press "Step" button. 
8. Press "Demand" button. 
9. Raise all console switches. 

10. Press "Demand" button. 
11. Set "AP! Lockout" switch to "Permit" position. 

The system time can be seen counting right-justified in 
the A-Register. 

Console Switch On-Line Operator Program (¢PR) 

This program is used to communicate with the on-line service 
routines. Each routine is requested by using the Console 
Switches on the GE/PAC Console. (Reference: GE/PAC 4000 
Operator System Console Reference Manual, Library Control 
No. YPG29.) The following routines operate under ¢PR42: 

On-Line Memory Change with Punch Option (MCG) 

Types and/or changes memory contents. 
Records program changes by typewriter and paper tape. 

-42-



8 .1. 29. 2 

8. 1. Z9 .3 

8. 1. 29 .4 

8. 1. 29. 5 

8. 1. 29. 6 

8. 1. 29. 7 

8. 1. 29. 8 

8. 1.29 .9 

On-Line Loader (LDR) 

Transfers information stored on paper tape into memory. 
Compares memory contents with tape information. 
Relocates tape information when storing into memory. 
Loads pre-assembled library subroutines. 

On-Line Dump (0LD) 

Punches memory contents on paper tape. 
Types memory contents on the Console Typewriter. 

On-Line Clock (CLK) 

Resets the system time. 
Updates the program execution times and auxiliary time 
counters based on the new system time. 

Program Status (PST) 

Initiates or stops the execution of functional programs 
operating under MONITO~ control. 
Locks out any functional program preventing it from 
being turned on. 
An option, which permits a program to be turned on at 
a designated time, is also available. Without this 
option, a program is t~rned on immediately. 

Peripheral In/Out of Service (P0S) 

Removes peripheral devices from service without an 
alarm notification. 

Restores failed or out-of-service peripherals to service. 

On-Line Paper Tape Duplicator (DUP) 

Duplicates paper tapes. 

Extract Load Tape Program (XLT) 

Produces a bi-octal tape from the PAL output symbolic 
tape. 

PAL GE/PAC Assembler (PAL) 

Assembles symbolic programs punched on paper tape or 
cards. Types an assembly listing. 
Produces a bi-octal paper tape. 

-43-



,, y 

8.1.29.10 PAL Correction Program 

Updates a PAL or FORTRAN language program by reading 
a tape containing changes to the program. Inserting, 
deleting, and replacing instructions are permitted. 
The revised program may be typed and resequenced by 
tens. 

8.1.29.11 Demand Scan (DSN) 

Assists in calibrating analog points by demand 
scanning of one analog point at a time. 

8.1.29.12 Controller Change (CCG) 

8.1.30 

8.1.30.l 

8.1.30.2 

8.1.30.3 

8.1.30.4 

Changes the value of an analog point on the Analog 
Scan Controller. 

On-Line Operator System (I/O Typ~r) ¢PR43 

This program calls on-line service routines requested 
by the I/O Typewriters. The following routines may 
be called under ¢PR43: 

On-Line Memory Change with Punch Option for I/0 Typer (MCG43) 

Changes memory locations through the I/O Typer. 
Types the contents of memory locations. 
Punches a tape record of any changed location. 

On-Line Paper Tape Loader - I/O Typer (LDR43) 

Transfers information stored on paper tape into memory. 
Compares memory contents with tape information. 
Relocates tape information when storing into memory. 
Loads pre-assembled library subroutines. 

On-Line I/O Typer Dump (¢LD43) 

Punches memory contents in the bi-octal format on 
the paper tape punch. 

Types or prints memory contents in the octal format 
on the I/O Typer or Printer. 

Clock (CLK43) 

Resets the system time. 
Updates the program execution times and auxiliary 
time counters based on the new system time. 
Establishes the date in the Monitor program. 
Types a record of the time and date change. 

-44-



8.1.30.5 

8.1.30.6 

8.1.30.7 

8. 1.30.8 

8. 1.30 .9 

8.1.30.10 

8.1.30.11 

Program Status (PST43) 

Initiates or stops the execution of functional 
programs under MONITOR control. 
Locks out any functional program preventing it 
from being turned on. 
Supplies a time option which permits a program to 
be turned on at a specified time. Without this 
option, a program is turned on immediately. 
Types a record of all program status changes. 

Peripheral In/Out of Service (P¢S43) 

Removes peripheral devices from service. 
Restores failed or out-of-service peripherals 
to service. 
Types a record of the service performed. 

Paper Tape Duplicator (DUP43) 

Duplicates paper tapes. 
Types an actal checksum of the tape characters 
duplicated. 
Issues error messages when parity or device 
failures are detected. 

Extract Load Tape Program (XLT) 

Produces a bi-octal tape from the PAL output 
symbolic tape. 

PAL GE/PAC Assembler (PAL) 

Assembles symbolic programs punched on paper tape 
or cards, types an assembly listing, and produces 
a bi-octal paper tape. 

PAL Correction Program 

Updates a PAL or FORTRAN language program by 
reading a tape containing changes to a program. 
Inserting, deleting, and replacing instructions 
are permitted. 
The revised program may be typed and re-sequenced 
by tens. 

GE/PAC FORTRAN Compiler 

Compiles GE/PAC programs written in the FORTRAN 
language. 
FORTRAN statements may be read from paper tape or 
cards. 
From the input, a paper tape is created for 
listing on the flexowriter or assembly by the PAL 
Assembler. 

-45-



8.1.31 

8 .1.32 

Find/Restore Working Core Area Subroutines (FMR) 

The Find Working Core Area Subroutine is used to find space 
for reading data from paper tape, scanning analog points, 
transferring a program segment, building an output data 
table, transferring an untested program of the Free-Time 
System, etc. When a space is found, this area is set to 
unavailable, occupied status. 

The Restore Working Core Area Subroutine releases an 
area by setting it unoccupied an available. 

To find a working core area, 

LDA Number of Locations 
SPB FMRCOl 

Unavailable Return 
Normal Return with the location of the free 
core area in the A-Register 

The "Unavailable Return" is taken when a working core area 
is not available. The system programmer, at this time, 
should set a delay and then initiate another FMRCOl sub­
routine call. 

To release a working core area, 

DLD A-Register with the Number of Locations 
Q-Register with the starting core location 

SPB RMRCOl 
Normal Return 

Run, Stop System Subroutine (RMP) 

RMP requests transfers for system subroutines from drum 
or disc into a working core area. After transfer, RMP 
branches to the first location of the subroutine. When 
the subroutine has completed its functions, RMP releases 
the working core areas and returns to the calling program. 

To request a system subroutine, 

Set program area unavailable. (See MAP) 
DLD A-Register with the drum location 

Q-Register with the number of words 
SPB RMPCOl 

Busy Return 
Normal Return 

-46-



8.1.32 Run, Stop System Subroutine (RMP) - cont'd. 

To release its working core area, the subroutine must 
know its own size and its present core location. 

DLD A-Register with No. of Words 
Q-Register with Core Location 

LDX Return,2 
SPB SMPCOl 

If the requested program is busy with another request, 
return is made at the busy return. If either FMRCOl or 
DTRC02 is busy, a quarter second delay is initiated in 
the calling program, and the request is re-initiated 
after the delay. 

-47-



APPENDIX A 

MONITOR PSEUDO-OPS 

Pseudo-ops defined by MONITOR are: 

BCD - Binary to 6-Bit BCD 
BCN - Binary to Non-Edited Character 
CLK - Clock 
DEL - Delay and Drum/Core Addresses 
DFE - Floating Point to E Type Floating Point Decimal 
DFP - Floating Point to Fixed-Point Decimal 
DFX - Binary to Fixed-Point Decimal 
FBB - Binary to 4-Bit BCD 
F0R - Peripheral Device No. and Message Area No. for Output Calls. 
0CT - Binary to Octal (integers) 
PRG - Maintains REGSTG and RSX Tables of ECP 
SIZ - Size of Program 

The BCD, BCN, CLK, DFE, DEP, DFX, FBB, and 0CT pseudo-ops are used 
with the Output Program as format words. Refer to the Output Pro­
gram, subcategories of 1.14, for explanation of these pseudo-ops. 
The DEL, F0R, PRG, and SIZ pseudo-ops are used in subroutine calls 
and are explained below: 

The DEL pseudo-op is used in the Scan Request, Input Request, Output 
Request, 1st word of the 3-word Drum Transfer Request, and Set Program 
Delay Subroutine Calls. Coding examples and format are as follows: 

DEL O, 15*SECND DEL l,FMTB 

23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 

Delay in Seconds, Core or Drum Address, or Drum Address of 
a Three-Word Drum Transfer Group 

0 = Area Unavailable for a delay call; core address; or 
drum to core transfer 

1 = Area Available for a delay call; drum address~ or 
core to drum transfer 

The F0R pseudo-op is used to specify the peripheral device number 
and message area number for output calls, or peripheral device 
number and number of characters to be read for input calls. 

F0R LTYPER, 0 F0R CRRDR, 22 

23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 

Peripheral Device 
Number 

Message Area Nu~ber in 0UTC01, 0UTC02, 
~UTC03, PAVCOl, PAVC02, PAVC03, and 
PAVC04 subroutine calls, or Number of 
characters to be read in INCOl or INPCOl 
subroutine calls. 

A-1 



The PRG pseudo-op is used to maintain the REGSTG and RSX Tables of ECP 
and by the Turn Program Off Subroutine. It contains the flip-flop status 
of overflow, permit interrupt, test, next entry location, and memory 
fence. 

PRG 0, 1, O, START 
PRG 0, 1, O, START,O 

23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 

Next Entry Address 

Memory Protect 

Test Status 

..__~- Permit Interrupt Status 

Overflow Status 

Reset 
Set 

For a Drum/Core system, if the next entry address is set to zero, the 
program begins at its first location. 

The SIZ pseudo-op specifies the required parameters for the second word 
of the three-word ECP Drum Transfer Group. 

SIZ 1, 1, 3, /400 (This pseudo-op tells the area availability 
status, Bit 23; save status, Bit 19; save 
status pointer index. Bits 18-14; and Size 
of the Program.) 

23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 

Save Status Size of Program 
Pointer Index 

7K 7Eo Temporary Storage is = Not Saved; 1 = Temporary Storag e 
is Saved 

0 = Area is Set Unavailable at ECP Entry 
1 = Area is Set Available at ECP Entry 

A-2 



DELCOl 
DELC02 
DTRCOl 
DTRC02 
FMRCOl 
FRPCOl 
INCOl 
INPCOl 
INPC02 
MAPOl 
MAP02 
MAP03 
MAP04 
M0RC01 
M0RC02 
M0RC03 
M0RC04 
M0RC05 
M0RC06 
M0RC07 
0FFC01 
0FFC02 

0UTC01 
0UTC02 
0UTC03 
PAVCOl 
PAVC02 
PAVC03 
PAVC04 
RMPCOl 
RMRCOl 
SCRGOl 
SCRC02 
SCRC03 
SCRC04 
SCRC05 
SMPCOl 
TC0C01 
TC0C02 
TPNCOl 
TPNC02 

TPNC03 

APPENDIX B 

COMMUNICATION CALLS 

Set Program Delay for A Specified Time Period 
Sets Program Area Unoccupied and Available During Delay 
Drum Transfer Request (Immediate Return) 
Drum Transfer Request (Drum Transfer Completed Return) 
Find A Working Core Area 
Find Register Pointer 
Non-Buffered Input Request 
Buffered Input Request 
Read Completed Request 
Core Map Maintenance - Set Area Occupied 
Core Map Maintenance - Set Area Unoccupied 
Core Map Maintenance - Set Area Unavailable 
Core Map Maintenance - Set Area Available 
Normal Non-Priority Multiple Output Request 
Normal Priority Multiple Output Request 
Timed Non-Priority Multiple Output Request 
Timed Priority Multiple Output Request 
Unlatch A Previous Timed Request 
Pulsed Non-Priority Multiple Output Request 
Pulsed Priority Multiple Output Request 
Turn Program Off Request 
Set Program Area Unoccupied and Available During the 
Time Program Is Turned Off 

Peripheral Availability and Data Area Output Request 
Normal Output Request 
Priority Output Request 
Peripheral Availability Request with Alternate Selection 
Data Area Availability Request 
Output Request which Places Request in Stacking Table 
Priority Request (Places Request at Top of the List) 
Request A System Subroutine 
Release A Working Core Area 
Normal Non-Buffered Scan Request 
Priority Non-Buffered Scan Request 
Normal Buffered Scan Request 
Priority Buffered Scan Request 
Scan Completed Request 
Release Working Core Area of A System Subroutine 
Normal Timed Contact Output Request 
Priority Timed Contact Output Request 
Turn Program On Request 
Turn Program On Request If Program Is Currentiy 

Turned Off 
Specifies Next Running Program 

B-1 

1-9 
1-9 
1-12 
1-12 
1-46 
1-13 
1-31 
1-29 
1-30 
1-11 
1-11 
1-11 
1-11 
1-33 
1-33 
1-34 
1-34 
1-34 
1-35 
1-35 
1-8 
1-8 

1-16 
1-16 
1-17 
1-14 
1-15 
1-15 
1-14 
1-46 
1-46 
1-40 
1-40 
1-39 
1-39 
1-39 
1-47 
1-37 
1-37 
1-10 
1-10 

1-10 



APPENDIX C 

MONITOR SYMBOLS 

The following symbols are defined by Monitor, and should not be defined by 
the programmer: 

ALERT 

ALTFLG 

ALTTBL 

ALTTB2 

AUXTM 
AVLMAP 
BAD 

C0RMAP 
DMCRN0 
DTAREA 

DVC0DE 

FAILUR 
00s 

PRI0N0 
PR0CFG 

PROO 

PR0GN0 
SECND 

SELECT 

Peripheral Activate Flag 
The peripheral device priority number corresponds to 
the associated bit. 

Example: Device #3 =Bit 3 of Flag 
No Alternate Device Flag 
This flag shows that an output message for the requested 
output peripheral has no working alternate, therefore, 
the output message was destroyed. 

Example: Device priority number i corresponds to 
bit i. 

Primary Alternate Device Priority Numbers for Peripheral Devices 
The alternate for device priority number i is found in ALTTBL+i. 

Example: Priority Device #5 = ALTTBL+5 
Secondary Alternate Peripheral Substitution Table. Provides 
another alternate table in the event a secondary alternate 
peripheral device is required. 
Table of Auxiliary Time Counters 
Available Area Map 
Peripheral Device Failure Flag 
The peripheral device priority number corresponds to the 
associated bit. 

Example: Device #4 =Bit 4 of Flag 
Occupied Area Map 
Three Times the Running Program Number 
Data Area Bit Word 
Area . corresponds to Bit . 

1 1 i-

Example: Area 2 =Bit 1 
Area 3 = Bit 2 

Device Codes 
A table of hardware addresses and classification codes for 
peripheral devices arranged in descending order. 

Example: #0 =Highest Priority Device 
Peripheral or Hardware Failure Device Flags 
Peripheral Device Out-of-Service Flag 
The peripheral device number corresponds to the associated bit. 
One Times the Running Program Number 
Output Peripheral Device-in-Progress Flag 
The peripheral device number corresponds to the associated bit. 
Program Execution Times 
The table starts with Program No. 1. 
Eight Times the Running Program Number 
One second in real-time counts: 1 =One second system; 2 =One-half 
second system; 4 = One-quarter second system, etc. 
Peripheral Action Flag 
The periphera1 device number corresponds to the associated bit. 

C-1 



STSMAP 
TIME 
WAITFG 

WAITRQ 

ZFER 

APPENDIX C 

MONITOR SYMBOLS 

Occupied Save Status Area Map 
Time in System Counts (Cleared at Midnight) 
Output Peripheral Message Completion Flag 
The peripheral device number corresponds to the associated bit. 
Number of Words Reserved in the Stacking Table for Output 
Peripheral Message (each output request requires two words 
in the table). 
This table is indexed by device priority number. 
Number of Drum Transfer Requests Waiting for a Program 
This table is referenced by program number. 

Example: Program 7 = XFER+7 

C-2 



APPENDIX D 

MONITOR ASSEMBLY CHECKLIST 

In building a Monitor system, the programmer must define the 
specific parameters and system options. The following check­
l~sts are used to specify these parameters. When the che-ck­
llsts are completed, send them accompanied by the interrupt 
assignment for the system to the Programming Librarian. 

By judicious selection of system options, it is possible to 
acquire a Monitor which contains only those capabilities that 
are needed for each application. The size of Monitor varies 
with the combination of options selected. 

Additional copies of the Checklist may be obtained upon request 
from the Programming Library. 

D-1 



t:1 
I 

N 

SYSTEM PARAMETERS (ALL EQL 1 s must have an assigned value.) 

1. IS YOUR SYSTEM FOR 1. AUl {GE/PAC 4040) Drum/Disc Core 
(check One) 2. AUl (GE/PAC 4040) All-Core 

3. AU2 (GE/PAC 4050/4060) Drum/Disc Core 
4. AUZ (GE/PAC 4050/4060) All-Core 

2. QUASIS - Check one or more depending on the system's need. 
Single-word floating point (AU2) ~ 
Double-word floating point (AU2) 
Single word with Multiply Step (AUl) 
Single word without Multiply Step (AUl or AU2) 
Double word floating point with Multiply Step (AUl) 

Is floating point being used in your system? 

3. NUMBER OF COUNTS USED BY SYSTEM PROGRAMS 
Number of System Program to be turned on when a system 

count becomes negative. 
This program must be written by the System Programmer 

YES NO --

Option count. System calendar updating YES NO __ 

4. TOTAL NUMBER OF FUNCTIONAL PROGRAMS 

5. NUMBER OF FUNCTIONAL PROGRAMS HAVING SAVE STATUS. 
(Include Monitor Programs listed in 11.) 

6. NUMBER OF 8-WORD REGISTER STORAGE BLOCKS 
{Include Monitor Programs listed in 11.) 

Library Control No. 
Programmer's Name---~~~­
Date 

~-------~---~ 

SYMBOL i EQL 

AA EQL 

APR0GM EQL 

B EQL 

BB EQL 
I 
I 

BBB I EQL 
! 
; 



t::I 
I 
w 

SYSTEM PARAMETERS (ALL EQL's must have an assigned value.) 

7. STARTING ADDRESS OF THE FLOATING WORKING CORE AREA 
(Starts after MONITOR and system permanent core 
and must be a multiple of 1003.) 

8. MAXIMUM CORE ADDRESS 
MAXIMUM DRUM/DISC ADDRESS 

9. NUMBER OF ON-LINE PERIPHERAL DEVICES 
Peripheral devices are typewriters, printers, card readers, 
card punches, paper tape punches, magnetic tapes, etc. 

. 10. STACKING TABLES, 1 per peripheral device 
One stacking table is required for each peripheral device (printer, 
magnetic tape, typewriter, or punch). The size of each stacking 
table must be a power of two (Fi). The number of requests in each 
stacking table represents the number of concurrent outputs that 
can be requested on a peripheral. Each request requires two entries. 
The actual size of the stacking table is equal to Fi. For four 
concurrent requests on device 2, the stacking table must have eight 
locations. The following peripherals (input) require no stacking 
tables: (Assign zero for these peripherals). 

70 CPM Card Readers 
Paper Tape Readers 
350 CPM Card Readers 

Recommended sizes for the other stacking tables are: 
Paper Tape or Card Punches 
Printers 
I/O Typers 
Output Typers 
Magnetic Tapes 

- 4 
8 
8 
8 or 16 
4 

Library Control No. 
Programmer's Name 
Date 

SYMBOL EQL VALUE 

BASE EQL I 

MAXC EQL I 
MAXD EQL I 

E EQL 

Fo EQL 
Fl EQL 
Fz EQL 
F3 EQL 
F4 EQL 
Fs EQL 
F6 EQL 
F7 EQL 
Fs EQL 
Fg EQL 
Flo EQL 

Fll EQL 
Fl2 EQL 
F13 

I 
EQL 

F14 
I 

EQL 

Fl5 
I 

EQL I 

--------

--- ---- ----~' 

I 
I I --;---------------- --- ----- .1 



SYSTEM PARAMETERS (ALL EQL's must have an assigned value.) 

11. PROGRAM NUMBERS 
Output Program 
I/O Driver 
Scan Off set Program 
Input Program 
Corrective Action Program 
Console Switch Operator Program 
I/O Typer Operator Program 

12. SIZE OF SYSTEM INITIALIZATION 
Do not include Monitor initialization area. 

13. MESSAGE TYPE OR STOP OPTION FOR DRUM/DISC FAILURE 
Device Address of typer for Drum/Disc Alarm 

14. NUMBER OF 50 OR 60-CYCLE PULSES IN ONE TIME COUNT INTERVAL 
This EQL defines the length of the time count interval 
the system. The system time may be kept in seconds, 
multiples of seconds, or fractions of seconds. For 
example, in a 60-cycle system, a time count interval of 
1/4 seconds, NCYCLE would be fifteen. NCYCLE would be 
sixty for a one-second interval. 

Check 50 or 60-Cycle Pulse Required 

for 

Library Control No. 
Programmer's Name 
Date 

SYMBOL EQL VALUE 

G EQL 
IQJDPRG EQL 
SCF EQL 
KNMBR EQL 
L EQL 
s EQL 
SS EQL 

SINZTL EQL 

ITCTYP EQL I 
NCYCLE EQL 



t:I 

' V1 

SYSTEM PARAMETERS (ALL EQL's must have an assigned value.) 

Library Control No. 
Programmer's Name 
Date 

SYMBOL EQL VALUE 
1----- --------·-----------------------------------------·--------·-1 ----- -------+-----'--4 

15. OUTPUT PROGRAM INFORMATION 
Number of Lines Per Page of Printer Output 
(Specify lines for each printer.) 

16. ECP OPTIONS 
REGISTER POINTER TABLE 
Check this option if there are 
Programs within your system which have single 
word register storage or 8-word shared register 
storage. 

PRIORITY TABLE OPTION 
If program priority changing is 
desired, this table must be included in 
your Monitor 

DOES YOUR SYSTEM HAVE FIXED WORKING 
CORE AREAS'Z' 

LP AGE EQL 

YES RSX 
NO 

YES PR GT BL --
NO 

YES NO 
1--· ---· . ------· .. ·--------------·----------------------------------+------!----£-----------· 

17. TURN PROGRAM ON S.R. CALL 
This optional call, TPNC03, 
specifies which program to run next. 

18. UNOCCUPIES, AVAILABLE OPTION FOR SET PROGRAM 
DELAY AND TURN PROGRAM OFF SUBROUTINES 

DELC02 Call 
0FFC02 Call 

YES --
NO 

YES NO -- --
YES NO 



j 
I 
j"\ 

--
SY.STEM PARAMETERS (ALL EQL Is must have an assigned value.) 

I-· -

19. DEVICE CODES - Priority Order #0-#15 
Priority levels must be established for each 

~ 

peripheral device. Devices which must be activated 
as soon as possible upon request are placed in the 
highest priority. 

The 16-character device name is used for alarming 
actions. 

If the FORTRAN Submonitor is desired, fill in its 
device number. (System Option #20) FORTRAN 

SYMBOL 

Mtr. Priority 16-Char. 
No. Name for 
ff O 
ffl 
ff2 
Ji3 

____jf_!± 
__ Ji5 

ff6 
ff7 
ff8 

Library Control No. 
Programmer's Name~-~-~~ 
Date 

~~~~~~~~~~~~~ 

~L I VALUE

Device Device Alt. Alt
FORTRAN
SUBMTR

CAD Address {Fl ff2 NO.

peripherals are divided into three categories-Input, _jj9 ----._ __
I-----------

Printing, and Punching Peripherals. Each category ____ Jllf) ___ -+_

begins with Device No. o. ffll
f----------~--------------1

_ ... _________
--·-----< ~--

fH2
1--------1

fl.] 3
. .. f/:.11±.

fflS ! ----
Device Lines Lines to Top
Prior.ff Per Page of Next Page

20. IS THE PAGE CONTROL OPTION DESIRED FOR
TYPEWRITERS?.' YES NO - ----------

The lines per page is usually 58; lines to
---~- ---~------- t---------------------·

top of next page is usually 8.

21. IS THE ASCII CODE TO BE USED IN YOUR SYSTEM? YES NO ASW0RD -- --
I-·

22. CORRECTIVE ACTION DIAGNOSTIC PROGRAM
Priority Number of Device for Operator Messages DTYPER EQL
Check if corrective action messages should be
printed in red. YES NO -- --
Check is special Multiple Output corrective
action. YES NO -- --

Note: If special action is required, define your
system needs.

l SYSTEM OPTIONS

f
I 1. INPUT

i Give the program number of the program which

I
will be turned on if the Input Demand Button
is pressed for the following peripheral

l

! devices:
I
I
I I/O TYPER 1H
I I_LO TYPER 4f2

I
Paper Tape Reader7fl
Paper Tape Reader 1F2

I io ___ CPM Reader #1

I -7 o CPM Rea<le-r· ttz-· ·-· -----~--- ._ __ ---- ---- ------- --------- ------ --- --- -

i 400 CPM Reader ffl l

t 400 CPM Reader #2
I If no is associated witn tne Tnput l program
i

Demand Button, place N/A for that device.

i 2. ON-LINE OPERATOR SYSTEM (Console Switches)
' Priority Number of Console Typewriter
' Priority Number of Console Punch

Priority Number of Console Reader
This option is used for on-line debugging. The programs
listed under the OPR System may be called during system
operation.

·kA. Memory Change - displays or changes the contents of

f
memor_y.

-,'{'B. On-Line Loader enters data from - new programs or
1 paper tape ,

;'~. On-Line Dump - displays large blocks of memory
:

* Requires the Octal Output Routine.

CHECK

..._.. --~- ------ ·--~-

Library Control No.
Programmer's Name
Date

~~~~~~~~~~~~~ 

SYMBOL EQL VALUE 

PROGRAM 
NUMBER 

----

__ ..,._ ------------- ------------ ~----------- --- -- --- - - - -- --

--

CTYPER EQL 
CPUNCH EQL 
RDR EQL 

--· 

~ 



t:I 

' 00 

! 

~ SYSTEM OPTIONS 
t 

I 2. ON-LINE OPERATOR SYSTEM (Console Switches) - cont'd. 

I D. On-Line Clock - updates the system time or initiates I the system time according to the time of day. 
Option - Date YES NO --

E. Program Status - On/Off /Lockout - turns on, turns 
off, or "locks out" system functional programs. 
Option - Turn on Program at a specified time. 

YES NO -- --
F. Device In/Out of Service - removes peripheral 

devices from service when making repairs or 
changing paper or ribbon and restores them to 
service upon completion of repair. 

1--
l 

I G. Paper Tape Duplicator - duplicates a paper tape. 
I 

I 
Extract Load Tape produces a bi-octal I H. Program -

l paper tape from a PAL output symbol tape. l 
i 
I I. GE/PAC FORTRAN Compiler - Compiles GE/PAC programs l 
! 

written in the GE/PAC FORTRAN language. l 

l 
I J. Demand Scan - scans one analog point at a time. 

K. Controller Change - changes the value of an analog 
point. 

CHECK 

Library Control No. 
Programmer's Name 

~~~~~~~~ 

Date
~~~~~~~~~~~~~~-

SYMBOL. EQL VALUE 

...... 

--------- --



t:I 
I 

"° 

SYSTEM OPTIONS CHECK SYMBOL 
r 

Library Control No. 
Programmer's Name -------Date 

-----------~~~ 

EQL VALUE 

I 
I 3. ON-LINE OPERATOR SYSTEM (I/0 Typer) 

Priority Number of Console Punch 
Priority Number of Console Reader 

CPUNCH 
RDR 

EQL 
EQL I 

I 

l 
f 
i 

I 

! 

: 

Device Priority Numbers of I/O Typers which may 
communicate with 0PR. 

The following programs may be called under the I/O Typer 
ChPR. 

A. 
B. 

c. 

D. 

On-Line Memory Change - displays or changes memory. 
On-Line Paper Tape Loader - enters new programs or 
data from paper tape. 
On-Line I/O Typer Dump - types and punches 
memory contents. 
On-Line Clock - resets the system time and 
updates the program execution times and 
auxiliary time counters. 

EQL 

E. 
Option - Date YES NO 

,.___---:=-----:p:..-r-o_g_r-am--=s-t-a""".'"t_u_s----=o=-n-/r.:O=-:f,.....,f,.....,/-r.:L=-o-c.....,k,.....o-u-,-t-----·==---==-=-----+----------- ---------- ---------1---------------- -

I 

: 
; 

i 

F. 

; 

! G. 
' 

initiates, stops or locks out the execution 
of functional programs under MONITOR control. 
Option - Turn on a program at a specified 
time. YES NO 
Peripheral In/Out of Service - removes 
peripheral devices from services or restores 
failed or out-of-service peripherals to 
service. 
Paper Tape Duplicator - duplicates paper 
tapes issuing error messages when parity 
or device failures are detected. r--------P-AL--G-E~/-P-~-C-A_s_s_e_m_b_l_e_r ___ a_s-se_m_b_l_e_s_s_y_m_b_o_l_i_c_p_r_o_g_r_a_m~(s-)~+-----4------'----~----~----------H. 
punched on paper tape or cards. 
Symbolic Table Size TBLSZE EQL 

___ ---------~n~ic~-~~--!-~-~~--~_p ~~-s__;.,_i __ f __ d __ i_f __ f_e_r_e_n_t __ th_a_n __ 1_1_2 _____ 1--------4,--P_RMT __ R ___ -+-_E_;Q~L---+---------------------_____ _ 
I. PAL Correction Program - Updates a PAL or 

_______ F_O-:R_T_R_AN __ L_a_n.J.<g'-u __ a..JiL-_gie_P_r_o_~g_r_a_m_. ______ --,--------~-----+-----~---~--------------- ____ _ 
J. GE/PAC FORTRAN Compiler - Compiles GE/PAC Programs 

written in the GE/PAC FORTRAN language. 



t:1 
I ..... 

0 

SYSTEM OPTIONS 

4. AUXILIARY TIME COUNTERS (Number of Auxiliary Time 
Counters) 

This option must be chosen if there are functional 
programs in the system which initiate themselves 
at regular time intervals and are also initiated by 
system or operatpr demands. The regular time 
interval should be saved in an auxiliary time 
counter. 

5. FLOATING POINT CALCULATIONS AND OUTPUT (Requires BDC41) 
Select this option for making calculations in floating­
point and converting to decimal fixed point or to code 
in FORTRAN. 

6. BINARY E TYPE FLOATING POINT (Requires BDC41) 
Select this option for converting binary floating 
point data to decimal floating point. 

7. DECIMAL FIXED-POINT OUTPUT (Requires BDC41) 
This option converts binary data to fixed-point 
decimal format for ~utput. CAD requires this 
routine. 

8. OCTAL OUTPUT 
This option must be used to output binary data in 
octal format. The Memory Change, On-Line Dump and 
On-Line Loader Routines require this option. 

9. ALPHA-NUMERIC CHARACTER OUTPUT (6-Bit BCD) 
l If alphanumeric messages are required using 
j 6-Bit BCD data (four characters per word), 
I this option must be checked. The On-Line OPR 
) and CAD require this option. 
I 

CHECK 

c 

Library Control No. 
Programmer's Name ------Date -------------------------

EQL VALUE 

EQL 



SYSTEM OPTIONS 

10. NON EDITED CHARACTER OUTPUT (One Character Per Word) 
This option is used for non-standard character 
formats. It is required by the OPR Systems, 
Memory Change, and On-Line Dump. 

11. TIME OUTPUT 
Select this option to convert system time counts to 
hours and minutes or hours, minutes and seconds 
in decimal. CAD requires this option. 

12. 4-BIT BCD CONVERSION 
This option converts binary data to four-bit 
BCD information. 

13. MULTIPLE OUTPUT DISTRIBUTOR 
Select this option if your system has a 
Multiple Output Distributor. Each multiple 
output request requires two entries in the 
appropriate driver table 

Number of Multiple Output Groups per 

I 
Controller 

t 
I Total Number of M¢D Controllers in System 

i Device Address for Controller 111 
I Device Address for Controller #2 

Device Address for Controller #3 
Device Address for Controller #4 
Size of Normal Multiple Out_E_ut Driver Table 
Size of Priority Multiple Output Driver Table 

I Option-Time Latching YES NO i 

I -- --
I 

This option requires 2 extra API's -

I 
60-C_y_cle DMT and 60-C_ycle DMT Echo. 

~ 

Number of Latched Output Timers 
! (Maximum of 24) 
I 

i 

·CHECK SYMBOL 

MXGRPO 
MXGRPl 
MXGRP2 
MXGRP3 
MT¢TAL 
M¢DO 
M0Dl 
M0D2 
M0D3 
M0DNMB 
M0TNMB 

TMNBP. 
]_ 

Library Control No. 
Programmer's Name 
Date 

EQL VALUE 

EQL 
EQL 
EQL 
EQ_L 
EQL 
&Q.L 
EQL 
®_L 
&QL 
®_L 
EQL 

EQL 

.. 

' 



l SYSTEM OPTIONS 

13. MULTIPLE OUTPUT DISTRIBUTOR {cont'd) 
Location of 60-Cycle DMT for M0 Timing 

14. 

15. 

Option-Pulsed Motor n;s __ NU __ 

This Option requires 3 extra API's 
60-Cycle DMT, 60-Cycle DMT Echo, and 
a non-inhibitable 0FS. 
Location of 60-Cycle DMT for M0 Pulsing 

TIMED CONTACT OUTPUT CONTROLLER 
Select this option if your system has a Timed Contact 
Output Controller. Each timed contact output request 
requires two entries in the appropriate driver table. 
TC0 Controller Address 
Number of Timed Contact Output Groups 
Size of Normal Timed Contact Output Driver Table 
Size of Priority Timed Contact Output Driver Table 
(Recommended ·size - 8 or 16) 

ANALOG SCAN 
Scan Controller Address 
Largest Group Mode Used (Number of Channels) 
Scan Command Words for Off set Points 
(The Scan Off set Program is required 
Include this program on your ECP Information 
Check Type of Amplifier 

Preston High 
Preston Low 
Vidar Integrating Converter 

Sheet.) 

: 

CHECK 

Library Control No. 
Programmer's Name · -------Date ---------------

SYMBOL EQL VALUE 

TML¢c.i EQL 

PUL0C. 
1. 

EQL 

TC0 EQL 
MXTCGP EQL 
TC0NMB EQL 
TCINMB EQL 

SCAN EQL 
SCNGRP EQL 
SF SC WO EQL I 
SFSCWl EQL I 
SFSCW2 EQL I 



I SYSTEM OPTIONS 

15. ANALOG SCAN (cont'd) 
Options: Add the Reference Block Temperature for 
thermocouples. YES NO -- --
Store time of day as the last word of the 
Count Table YES NO -- --
Gain Optimization (Used only for a single channel 
scanner) YES NO -- --
Check if buffered scanning is desired. 
Buffered requests permit a functional program to 
process one set of count values while the Driver 
is scanning another set. 

Is interruption of the current scan request for a 
priority scan request required? (AUl single API) 

YES NO -- --

16. OFF-LINE DRUM/DISC CORE MEMORY CHANGE 
This option displays or changes memory off-line· 

17. CHARACTER SET (Check One) 
1. 4201A - Peripheral Buffer 
2. 4201B - Peripheral Buff er 
3. ASCII 

18. FIND/RESTORE WORKING CORE AREA 
This option searches for a working core area and 
sets it unavailable or restores an area by setting 
it available. 

CHECK 

Library Control No. 
Programmer's Name ------Date 

~------------

SYMBOL EQL VALUE 

SFSCW3 EQL I 
SFSCW4 EQL I 
SFSCWS EQL I 
SFSCW6 EQL I 
SFSCW7 EQL I 



SYSTEM OPTIONS 

19. RUN, STOP SYSTEM SUBROUTINE (Requires Option 18) 
Check this option for finding space for a 
system subroutine stored on drum or disc 
and runs it in working core. 

20. FORTRAN SUBMONITOR 
Check this option to communicate to MONITOR through 
FORTRAN. FORTRAN Submonitor also requires 
option 18 and 19. Check the desired options: 

Input 
Decimal to Binary 

Card Input 
Output 

? I/O Availability 
~ Drum Read/Write 

Subroutine Linkage 
Computed GO TO 
Assigned GO TO 
Data Link 

If the free-time system is required, all options 
with the exception of data link, must be included. 

21. INTERRUPTABLE SYSTEM SUBROUTINES 
If there are subroutines within the system which 
must run with interrupt permitted (due to length) 
and are used by more than one functional program, 
they must follow special entry and exit conven­
tions. When this is the case, this option must 
be selected. 

CHECK 

Library Control No. 
Programmer's Name 
Date 

SYMBOL EQL VALUE 



Library Control No. 
Programmer's Name ------Date 

~------------

r 
INITIAL 

F/F STATUS 
PROG. NAME 0 p T T DRUM/DISC ')\-(a) -/('(b) 1f WORDS SAVE if WORDS OF *(c) -/((d) 
PRIORI- v A s M ADDRESS AREA SAVE OF STATUS AREA SAVE STATUS REG. ITC & DTD 
TY NO. R I T F STATUS STATUS PROG. ADDRESS AREA STORAGE INTERRLf 

F F F F RETURN 

1 

2 

3 

4 

5 

6 

7 

8 
-

*Place a checkmark (\/') in the corresponding column marked with an asterisk if: 

a) Area status is available 
b) Save status is required 
c) 8-word register storage is required 
d) Interrupt Time Counter and Drum/Disc Transfer Complete Interrupts r~turn to ECP. 

** Applies to Drum/Disc Systems. Insert starting core address in the drum/disc address column for 
these programs. 

C..tlECK IF 
PROGRAMS 
RESIDE IN 
PERM. CORE*** 



APPENDIX E 

AUDIT CODES 

Following is a list of Monitor Audit Codes and the Psuedo-Ops they define. 
For a more detailed discussion of Psuedo-Op subroutines, refer to the 
appropriate Monitor User's Manual section shown opposite each mnemonic. 
See page 27 (Appendix C) of Process Assembler Language Manual for additional 
information relative to Audit Codes. 

Section/Page 
Reference Psuedo-Op 

1.14. 3 BCD *DEF /40000000, 30, 28, 29' 31 
1.14.4 BCN *DEF /50000000, 38 
1.14. 6 CLK *DEF /60000000, 63, 25, 26, 28, 29, 31 
A-1 DEL *DEF /00000000, 16, 9, o, 0 
1.14. 7 DFE *DEF /10000000, 63, 38, 37, 28, 34, 33, 32, 21 
1.14.8 DFP *DEF /00000000, 63, 38, 37, 36, 35, 34, 33, 32, 31 
1.14 .1 DFX -1<DEF /20000000, 63, 38, 37, 28, 34, 33, 32, 31 
1.14. 2 FBB *DEF /70000000, 63, 38, 37, 34, 32, 31 
A-1 F¢R -1<DEF /00000000, 27, 3, 0, 0 
1.14. 5 ¢CT -l<DEF /30000000, 38, 37, 34, 31 
A-1 PRG *DEF /00000000, 63, 13, 14, 15, 1, 39 
A-2 SIZ -l<DEF /00000000, 16, 39' 40, 3 

Assigned Monitor Audit Codes 

25 -l<DEF /1, 18 
26 *DEF /1, 15 
27 -1<DEF /777' 15 
28 *DEF /37' 7 
29 *DEF /77' 1 
30 *DEF /777' 12 
31 *DEF /1, 0 
32 *DEF /1, l 
33 *DEF /1, 2 
34 *DEF /17' 3 
35 *DEF /17' 7 
36 -l<DEF /1, ll 
37 -l<DEF /7, 12 
38 -1<DEF. /77, 15 
39 *DEF /1, 19 
40 *DEF /37, 14 



Gn'PAC4000 
GENERAL ELECTRIC PROCESS AUTOMATION COMPUTER 

TASC 

INSTRUCTION 

REFERENCE 

MANUAL 

GENERAL ELECTRIC COMPANY 

PHOENIX, ARIZONA 



Library Control No. YPF18M 

(§') General Electric Company, 1965 

This manual published by: 
PROGRAMMING SUPPORT 

GENERAL ELECTRIC COMPANY 
PROCESS COMPUTER SECTION 

P. O. BOX 2918 
PHOENIX, ARIZONA 85002 

For further information concerning the contents of this manual, 
contact the Programming Library at the above address. 

IN THE DEVELOPMENT OF THE SOFTWARE DESCRIBED, THE GENERAL ELECTRIC COMPANY RESERVES THE 
RIGHT TO MODIFY THE DESIGN FOR REASONS OF IMPROVED PERFORMANCE AND OPERATIONAL FLEXIBILITY. 

ii 



CONTENTS 

INTRODUCTION v 

GENERAL vi 

1 STATEMENT FORMAT 1 

2 CARD FORMATS & DESCRIPTIONS 4 

2.1 JOB CONTROL CARD 4 

2.2 TSK CONTROL CARD 4 

2.3 HDG CONTROL CARD 5 

2o4 DEL CONTROL CARD 5 

2.5 DLF CONTROL CARD 5 

2.6 TSK END CARD 5 

2.7 FIN CONTROL CARD 5 

2.8 POINT SUMMARY CARDS 5 

2.9 TASC LANGUAGE CARDS 8 

3 T ASC INSTRUCTIONS 9 

ADA ASSIGN DRUM ADDRESS 9 

AQ ANALOG QUESTION 10 

AQM ANALOG QUESTION-MAGNETIC 13 

ATE ASSIGN TABLE ANALyzER ENTRY 17 

BEG BEGIN PROGRAM 18 

BNB BRANCH TO NEXT BLOCK 19 

BP BREAK POINT COMMAND 20 

iii 



BRS BRANCH TO STRAIGHT LINE CODING (PAL) 21 

BRT BRANCH TO TASC (RETURN FROM PAL) 22 

BRU BRANCH UNCONDITIONALLY 23 

CQ CLOCK QUESTION 24 

CQS CLOCK QUESTION AND SET 24 

DLY DELAY COMMAND 27 

DQ DIGITAL QUESTION 28 

DQG DIGITAL QUESTION GROUP 31 

END END PROGRAM 33 

EQT EQUATE TASC SYMBOL 34 

ERC ERASE CLOCK 35 

G0X GO X TIMES 36 

INS INSERT IN SCAN 37 

¢TP OUTPUT COMMAND 39 

0TS REMOVE FROM SCAN 41 

PRB PRINT BLACK 43 

PRR PRINT RED 45 

RMV REMOVE BIT 47 

SET SET BIT 48 

SKP SKIP n LOCATIONS 49 

SLW SLEW PAGE 50 

SPL SAFE POINT LAST 51 

SPN SAFE POINT NEXT 52 

STC STORE TIME IN CLOCK 53 

STP STOP PROGRAM 54 

4 OPERATING PROCEDURES 55 

APPENDIX A - ERROR CODES 57 

iv 



INTRODUCTION 

GE/PAC TASC (Tabular Sequence Control) is a two-pass 

assembler program which provides efficient symbolic 

progrannning capabilities for coding sequence routines. 

GE/PAC TASC is advantageous to any assignment which 

requires a sequential progression of steps to control 

a continuous process. These steps may be in fixed 

sequence or alternate predetermined sequences depend­

ing upon the process at specified times and/or con­

ditions. It is unlimited in the number of steps per­

mitted, subject only to the size and flexibility of 

the computer being used and relationship of other 

functions requiring memory. 

GE/PAC TASC operates from a table which provides the 

variables which are distinctive to a particular plant. 

Initial coding and final documentation of the sequences 

are in an understandable language. Minimum training is 

required for personnel to effectively use the language, 

either for initial coding or updating operating programs. 

When completed, the final documentation is expressed in 

terms easily understood by plant personnel without com­

puter progrannning background. 

-v-



,• 

GENERAL 

GE/PAC TASC (TAS03) compiles TASC language programs and 

saves the data on an Output File Tape. It also updates 

programs on an Input File Tape as specified by the con­

trol and correction cards. Changes to existing programs 

are accomplished on a match/merge basis. 

The following processing operations may be performed by 

TAS03 using the control cards described herein: 

1. Assemble one or more new programs, creating a 

new Output file tape or adding to a current tape 

2. Modify existing programs on an Input file tape 

3. Delete existing programs from an Input file tape 

4. Prepare a common EQL tape from several assemblies 

5. Prepare a point summary tape from input cards 

Programs written in the TASC language may be interspersed 

with PAL, COOL, FORTRAN, etc. language programs on an 

Output file tape. Interspersing is possible because each 

program has its own project-program number. TASC will 

copy TSR programs; TSR will copy TASC. 

-vi-



1 STATEMENT FORMAT 
TASC language cards include both TASC statements and PAL 
commands. Input information is written on the "TASC Coding 
Form" (Figure 1). Each line on the coding form represents 
one instruction to the assembler. All GE/PAC instructions 
are valid except those concerned with input/output. The 
only valid PAL pseudo operations are BRT, CON, DCN, DEF, 
and EQL. The format and restrictions or conventions for 
PAL records are contained in the "Process Assembler Lan­
guage" manual. The coding form is composed of fourteen 
fields defined as follows: 

1.1 LOCATION FIELD - Columns 1 thru 6 

This field is used to identify the instruction location. 
A name written in this field becomes associated with the 
instruction written on the same line. Any reference to 
the instruction may be made by that name. Names used in 
this field must consist of six of fewer characters, the 
first of which must start in column one. A decimal is 
considered as an alphabetic character in this context. 

COLUMN 7 IS NOT USED 

1.2 OP CODE FIELD - Columns 8 thru 10 

This field contains a two or three character operation code 
which identifies the operation to be executed. The legal 
operations are defined in Sec ti on 3 (page 9 through 54 ) . 
Ref er to the "Process Assembler Language" manual (YPG12M) 
for straight-line coding techniques. 

1.3 POINT !DENT FIELD - Columns 11 thru 16 

This field contains a six-character alphanumeric symbol 
which is the name of the point in the point summary table. 

1.4 STATUS FIELD - Column 17 

A single character in this field designates the desired 
status of the input: 

H = High ~ • Open 
L = Low C = Closed 

1.5 VALUE FIELD - Columns 18 thru 23 

This field is used to enter the numeric value required by 
the specific TASC op-code. Formats are: 

XXXXXX, XXXX.X, XXX.XX, XX.XXX, X.XXXX, and .XXX.XX 
The number is right justified; leading zeros not required. 

1.6 TRY FIELD - Columns 24 and 25 

This field designates the number of times to ask a question 

-1-



or execute a designed path of coding. Right justified; 
leading zeros not required. 

1.7 DELAY FIELD - Columns 26 thru 29 

A value (minutes, seconds, or fractional seconds) in this 
field designates the length of time for a program delay. 
Formats are: XXXM, XXXS, X.XS, or X.XX. The last format 
is assumed seconds. The decimal point must appear in col­
umn 27 when used. Right justified; leading zeros not re­
quired. 

1.8 A FIELD - Columns 30 and 31 

This field contains the previous breakpoint number. 

1.9 B FIELD - Columns 32 and 33 
This field contains the current breakpoint number. 

1.10 TYPE FIELD - Column 34 

An alphabetic character appearing in this field defines the 
type of alarm specified by a system. Acceptable codes are 
A or P which correspond to 0 and 15 in output. 

1.11 ABNORMAL RETURN FIELD - Columns 35 thru 40 

This field contains the symbolic location of the path for 
the analyzing subroutine wnen the condition of input is 
not as specified. This field is also known as the Branch 
Field. 

1.12 COMMENTS FIELD - Columns 41 thru 69 

This field is used at the descretion of the programmer to 
make remarks associated with each instruction. 

1.13 ~y FIELD - Column 70 

A character in this field designates the language or a 
change for the line of coding on which it appears. The 
two characters used when coding in TASC are: 

8 TASC language 
0 = Delete 

1.14 IDENTIFICATION FIELD - Columns 71 thru 80 

The project-program number is written in columns 71 thru 
75. Sequence numbers appear in columns 76 thru 80. 

-2-



GENERAL. ELECTRIC 
PROCESS COMPUTER SECTION 

PHOENIX, ARIZONA 

2 

3 

4 

5 

6 

7 

SYMBOLIC 
LOCATION 

' i i • 

; 

! 

OP 
CODE 

POINT 
IDENT s VALUE 

TASC 
TABULAR SEQUENCE CONTROL 

CODING FORM 

Project Name 

Program Name 

Page 

Programmer 

RY DELAY A 
~ABNORMAL 

B p RETURN COMMENTS 

of Date 

K Proj. Prog. 

~ ff 11 
SEQ. 

ff 
: ; ' ' : I ; I I ' ' I I ~*' ' I - -,~: --

31 32\33 34 35'.36 37,3si39\40 414243 44 45:46\47 48,49 50 51,52\53 54 55 56'57:58 59,0!61;62!63,64 65 66'67'68)69, 70 71!72 73 74 75 76:77,78 79;80 

-+--+--+-+-~--~~~-i 

0 

2 

3 

4 

5 

6 

7 
i--. ________ ....,. ____ ......, ________ ....,. ..... ________ .._--ii------..... --i--........... ---------+-----"""""--------..... -------+-------............ ----_...,----......... .-...---+-----+--------1 

0 

2 

3 

4 

5 

6 

7 

0 

2 

3 

4 

5 

7 

i 

' - i '" 
I I 

J 

__..._._"'"-t~~-T---;-'"---+--

'''" ,,+,,,,-,4 

0 

2 

3 

4 

5 

6 

7 
i""""""------~to-t-----i--------i--+-+---------+-~i------+---t---+-t----------t-----i--+--------+--1-------+--------+--------+--------+..-.+-...0..-+-----li------.....i 

0 

2 

-t---t--t--'--~--"--t-~--t--t-~~-,-+--~~-+-~~~+--+--+---+--+--+-~~8=+-....-+--"--+~~___._13 
8 4 

8 5 
8 I I 6 

I 
--·' 8 I 7 

PC-505 3165 

FIGURE 1 



2 CARD FORMATS & DESCRIPTIONS 
The card formats used with GE/PAC 
following paragraphs. These card 
the information required on each. 
constant is printed on the coding 
are bracketed. 

TASC are described in the 
descriptions illustrate 
Information which remains 

line; other requirements 

2.1 The JOB control card is the first card in every input deck 
processed. Columns 31-68 are printed as the heading on the 
printer output unless/until an HDG control card is encountered. 

Operator 
Input File 
Tape 11 for 
corrections 
or additions 

Date, Programmer Name, 
Project Name, etc. 

2.2 The TSK control card precedes each program of TASC language cards. 

Proj-Prog 
11 of input 
cards and/ 
or tape 

Resequence and 
start with this 
number if col. 
29 is S. Change 
Proj-Prog to 
this number and 
resequence start­
ing at 00010 if 
col. 29 is L. 
If blank, re­
sequence and 
start with 00010 
if col. 29 is S. 
(Ignored if col. 

29 is blank.) 

S=Resequence 
L=Change Proj­

Prog 11 
Blank = Do not 

resequence or 
change Proj­
Prog 11 

Blank=Clear 
EQL tables. 
Character = 
Save previous 
EQL tables. 

Blank= No 
EQL tape 
input. 
Character = 
Use system 
EQL tape. 

Blank = 
No EQL 
tape out­
put. 
Character= 
Write 
system EQL 
tape 

Note: It is possible to resequence and change Project-Program number 
on initial assemblies. 

-4-



2.3 The HDG control card is used to change the heading on subsequent 
printer output. It could be used preceding each assembly if 
required. 

l 2 3 4 

New heading for each page of output 

2.4 The DEL control card is used to delete a program from the 
Input File Tape. 

Proj-Prog. # of program to be deleted 

2.5 The DLF control card is a special card for block deletion of 
magnetic tape records. 

Sequence # of last 
record to be deleted 

Sequence # of first record 
to be deleted 

2.6 The TSK END card indicates the end of a point summary table 
generation or a TASC assembly. It must appear at the end of 
each assembly to indicate the end of pass 1. 

1 2 3 4 S 6 7 8 9 10 11 12 13 14 lS 16 17 18 19 20 21 22 23 24 2S 26 27 28 29 30 31 32 33 34 3S 36 37 38 39 40 41 42 J3 44 4S 46 47 48 49 SO Sl S2 S3 S4 SS S6 S7 S8 S9 60 61 62 63 64 6S 66 67 68 69 70 71 72 73 74 7S 76 77 78 79 80 

END 

2.7 The FIN control card indicates the end of the processing run. 
It appears following the last TSK END control card. 

2.8 Point Summary Cards 

The point summary enables the programmer to refer to input points, 
output points, bits, and clocks by their identification number 
instead of location when coding in TASC. 

Point summary cards are used to create the point summary table 
on magnetic tape which is used by all TASC assemblies for a 
given system. When the tape is created, the table is also loaded 
on drum for use by the compiler. On subsequent processing runs, 
it is called by the first program to be assembled and is retained 
on drum throughout the processing run. 

-5-



2.8.l The TSK POINT control card is used to create a point summary 
tape from point sunnnary input cards and precedes the point 
summary cards. The point summary table is placed on drum 
during card process~ng. 

2.8.2 

Blank = No point~ 
sunnnary input tape 
to update. 
Character = Update 
previous point 
summary tape. 

Input Format 

Any combination 
of alphas, 
numerics, and 
blanks to be used 
as identification 
throughout system. 

Type: 
A = Analog 
B = Bit 
C = Clock 
D = Digital 
E = Conditional 

Alarm 

~ 
Blank = No printer listing. 
Character = List point 
summary on printer. 

group no. 
octal or 
decimal as 
specified by 
col. 18 

Position No: 
2 character 
position no. 
octal or 
decimal as 
specified by 
col. 18 

Note: All fields on point summary cards are right justified except 
Point ID, which is left justified. In all numeric fields 
leading zeros are not required, and if zero is desired, the 
field may remain blank. 

-6-



2.8.3 Output Format 

Point ID: 
Any combination 
of alphas, 
numerics, and 
blanks to be 
used as identifica­
tion throughout 
system. 

Module No: 
0 = First 64 groups 
1 = Second 64 groups 
2 = Third 64 groups 
3 = Fourth 64 groups 

Number of pulses 
(type 4 only): 
3-character decimal 
number 1 - 256. 

for 

Set Point 
Indicator 
(types 4 and 

5 only): 
0 = Down or None 
1 = Up 

Proj-Prog 
and 
sequence 
numbers. 

= TASC 
0 = Magnetic Latching Relay 
1 = Non Latching or Pulse 

MOD 
MOD 
MOD 
MOD 
TOC 
TOC 

3-character 
octal no. for 
bits 0-5 of MOD 
or 0-6 of TOC 
output word. 

Point Posit ion 
Mask (types 0 
and 1 only): 
6-character 
octal number 
showing point 
bit(s) to be 
acted upon. 
(Bits 8-23 of 
MOD output 
word.) 

= Delete 

2 = Analog 
3 = Display 
4 = Fixed Length Timed Contact 
5 = Variable Length Timed Contact 

-7-



2.9 TASC Language cards are used to enter or remove a single entry 
in the point summary or a program. 

Refer to STATEMENT FORMAT (page 1 ) 
for proper usage. 
Blank if single record delete. 

Initial assembly: 
card to be processed. 

8-Corrections: card 
to be inserted or 
to replace existing 
record. 

0-Corrections: delete 
an existing record 
(See special card 
for block deletions 
on page 5.) 

Project-Program number 

Proj-Prog. # must 
agree with number on TSK control 
card and sequence numbers must be 
in ascending order. (On point 
summary cards point ID, cols. 1-6, 
must also be in ascending order.) 

-8-



3 T ASC INSTRUCTIONS 

ADA - ASSIGN DRUM ADDRESS 

!PURPOSE 
To assign drum storage for sequence table information. 

!REMARKS 
This Op Code must be used at the beginning of each assembly. Ending 
address of a memory block may also be specified. Successive ADA 
records (up to 8) may be used for different drum areas. 

Symbolic Location IX 

Op Code Field x 

Point Identity x 

Status Field x 

Value Field x 

Try Field x 

Delay Field x 

A Field x 

B Field x 

Type Field x 

Branch x 

CONVENTIONS 

ADA 

Starting address. 
right iustified. 

Six octal characters 
Leadin_g zeros not re_guired. 

Ending Address. Six octal characters right 
justified. Leading zeros not required. Must 
be last location in memor_y block. (See ATE) 

- 9-



Afl_ - ANALOG _IDmSTION 

!PURPOSE 
To determine the status of one or more analog inputs or clocks. 

REMARKS 
May or may not alarm 
May or may not contain outputs 
May or may not print conditional alarm 

Symbolic Location 

Op Code Field x 

Point Identity x 

Status Field x 

Value Field x 

Try Field 

Delay Field 

A Field 

B Field 

Type Field x 

Branch 

x 

x 

x 

x 

x 

x 

FIRST RECORD 

CONVENTIONS 

AQ 

Point ID of analog input or clock 

H for High; L for Low 

Actual High or Low Limit Decimal, right 
justify 

Number of times to try if delay and re­
trial is desired. 

Amount of delay between retrials. 
See DLY for restrictions. 

Indicate type of alarm: A or P 

Symbolic location to branch when no answer 

_, 10 -



AQ (cont'd) 

PURPOSE 

Second and succeeding records 

~EMARKS 

Symbolic Location ~ 

Op Code Field x 

Point Identity 

Status Field x 

Value Field x 

Try Field x 

Delay Field x 

A Field x 

B Field x 

Type Field x 

Branch x 

CONVENTIONS 

Point ID of additional input, output, or 
conditional alarm. 
Not r2C111ired for _s_econd limit on same ooint ....... 

H for High; L for Low 
Desired status for MLR outputs 

-

. ., 

Not re_g_uired for conditional alarm or other out1uts 
Actual High or Low Limit for inputs. 
Decimal, right justify. 
Not re_guired for other records. 

Delay for MLR output 

-11 -



Sequence 
Subroutine 11 

Number of 
Inputs 

No. of 
Outputs 

Cond. Alm 
O=No,l=Yes 

·~-) ~2 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 

t.LU *I I I 
"V' V' 

Times to try Delay Integer 

5 4 3 2 1 0 

@ 
Delay 
Fraction 
(~ or ~) 

. ~2 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 

~ II 111 1.j 
Conditional Conditlonal 

Group Position 

~.~':: 21 20 19 18 17 16 15 14 13 12 1110 9 8 7 6 5 4 3 2 1 l 

lJJj:;J 
Number Output Output Output Output Output Output Output 
of MLR 7 type 6 type 5 type 4 type 3 type 2 type 1 type 
outputs 

T 22 21 20 19 18 17 lt) 15 ] 4 13 12 11 10 9 8 7 6 5 4 3 2 1 0 

Word 1 

Word 2 
(If required) 

Word 3 
(If required) 

Word 4 
(If required 

'-_ 1 I I Jil--1-1 ________ _ I ] Output Words 
) (See OTP forma 

Output Word 

; J 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 

QiIUJD I 1/ 111 -v ) 
Input Word 

Low SF High SF Input Group Input 
Position 

- ., :~2 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 

• _J .. . 1 · j I I I I .J Input Word 2 

"---------------- _(And 3 if requ: 
High or""'Low Limit 

(May have both) 

~.-· ~~2 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 

I l I I I 
'V 

Absolute drum address of branch location 

NOTE: Output and Input words are repeated as many times as necessary 

Last Word 
(If requiredj 



AQM - ANALOG QUESTION-MAGNETIC 

lURPOSE 
I To test the status of an analog input and adjust a piece of 

equipment using an MLR output. 

!REMARKS 

See flow diagram for usage. 

CODING REQUIREMENTS ~ 

z<>~~ 
L~:J:~ 

Symbolic Location x 

Op Code Field x 

Point Identity x 

Status Field x 

Value Field x 

Try Field x 

Delay Field x 

A Field pc 

B Field x 

Type Field x 

Branc.h ~ 

~~ .. ~ ~ FIRST RECORD 

CONVENTIONS 

AQM 

Point ID of analog input 

H for High; L for Low 

Actual High or low limit 
Decimal, right justified 

Number of times to try in external loop 

Delay for extern.al loop. See DLY for 
restrictions. 

Indicate type of alarm: A or P 

Symbolic location to branch to when no answer 

-13 -



~URPOSE 

Second record 

!REMARKS 

Symbolic Location X 

Op Code Field X 

Point Identity x 

Status Field x 

Value Field x 

Try Field x 

Delay Field 

A Field x 

B Field x 

Type Field x 

Branch x 

AQM (cont'd): 

CONVENTIONS 

Point ID of MLR output 

Desired status of output: 
O= Open, C = Closed 

Percentage value for limit in internal 
loop. Decimal, right justified 

Number of times to try in internal loop. 

Delay forinternal loop 
See DLY for restrictions 

- 14-



AQM 

2322212019181716151413121110 9 8 7 6 s 4 3 2 1 0 

olojO'Oll\l 

Sequence 
Subroutine 11 S.F. 

___ A __ _ 

/Output Status' 
O=open;l=closed 

Branch Address 
O=No; l=Yes 

23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 

( I I J I-vi I l 1 I 2 I I l I I lvl I J I J 
Internal Times Internal Delay Internal Delay 

to try Integer Fraction 

2322212019181716151413121110 9 8 7 6 5 4 3 2 1 0 

(111u1 l11fi1l llUIJIJ 
External Times External Delay External Delay 

to try Integer Fraction 

23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 

( 1 I bl I ,11 1I11 I II11 I J IJ 
Percentage Input""Point Inpu~Point 
Factor Group Position 

23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 

[ 1 I I 1 I I 1 I I 1 113 I I 1 111 I I l IJ 
Limit Engineering Units 

23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 

[ 1 I l I I 1 I 1 SI I 1 I I I I I I ) 
Output Word 

23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 l 0 

I 1 ! o~ I l I I I I I !; I I I I l [ J I ) 
Absolute drum address of branch location 

Word 1 

Word 2 

Word 3 

Word 4 

Word 5 

Word 6 

Word 7 
{If required) 



COMPLEX ANALOG QUESTION (ASK & DO) 

ANALOG QUESTION 
(IS ''X" GREATER THAN "Z" ..-_,__ 

NOTES: 

OR (IS ''X"LESS THAN "Z"? 

NO 

CLOSE MAGNETIC 
LATCH RELAY 

DELAY"A" SECS. 

ANALOG QUESTION 
(IS''X"GREATER THAN 
OR {IS ''X "LESS THAN 

YES 

OPEN MAGNETIC 
LATCH RELAY 

DELAY"B"SECS. TO 
STABILIZE BEFORE 
TRYING QUESTION AGAIN 

1. "A" - INTERNAL' TIME DELAY 

NO 

2. "B" - EXTERNAL DELAY BETWEEN QUESTION TRIALS. 

EQUIVALENT FLOW 
DIAGRAM SYMBOL 

ANALOG QUESTION 

C COMMAND A 

YES 

NO 

YES 

EXAMPLE 

HP FIELD CURRENT 
--- LESS THAN 430 A? 

0 G 316 X 2 

YES 

3. "C" - MAXIMUM NUMBER OF TIMES TO ASK QUESTION IN INTERNAL LOOP 

Gl22 

4. ''E" - MAXIMUM NUMBER OF TIMES QUESTION CAN BE ASKED IN EXTERNAL LOOP WITHOUT ALARM. 
5. "P" - PERCENT OF "Z" (ANALOG LIMIT) REQUIRED TO OPEN RELAY. 

-16-



ATE ASSIGN 'T'ARLE ANALYZER. tt:N'lKY 

WURPOSE To inform the assembler of the entry address for the Table Analyzer 
or Sequence Executive Routine. Also block size, number of filler 
words at end of block, and the filler word to be used. See also 
BNB and BRT. 

REMARKS 
This Op Code must be used at the beginning of each assembly. 
The block is the portion of sequence table brought into core 
at one time to be operated on ( usually 64 or 128 words.) 

Symbolic Location ~ 

Op Code Field 

Point Identity 

Status Field x 

Value Field x 

Try Field x 

Delay Field x 

A Field x 

B Field x 

Type Field x 

Branch x 

CONVENTIONS 

ATE 

Table Analyzer Entry Address. Five octal 
characters right justified. 

Number of filler words to leave at end of 
block. Two decimal characters right justified. 

Block Size. Two decimal characters right 
justified. Must be power of 2 to be compatible 
with Monitor. 

Filler word. First two octal characters. 

Filler word. Last six octal characters. 

-17 -



BEG - BEGIN PROGRAM 

~URPOSE 

To turn a program on. 

~EMARKS 

Used to set the appropriate program clock to zero and initiate 
program entry. 

CONVENTIONS 

Symbolic Location x 

Op Code Field x BEG 

Point Identity x Alphanumeric program name. For documentation 
purposes only. 

Status Field 

Value Field 

BEG 

BEG 
Word 2 

(If required) 

Branch 

x 

x Program Number. Decimal number, right 
justified 

23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 

l0 1°1fi-[1I jrl#Ao.: J [ J l~ l J !) 
Sequence ~Begin-Stop Program Number 

Subroutine # 0 = Begin 

23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 lJ 4 3 I 1 O 

[1 Io~ I I ~I J l I I I l l l J 

x 

Absolute arum address 
of branch location 

Symbolic location to branch to next. 

- 18-



BNB - BRANCH TO NEXT BLOCK 

PURPOSE 

To enable starting of routines or sections at the beginning of a block and to 
leave space for additions or corrections at the end of the current block. 

!REMARKS 

This connnand will generate a BRU connnand to the first word of the next block 
and fill the remainder of this block with filler words. 

CONVENTIONS 

Symbolic Location X 

Op Code Field x BNB 

Point Identity x 

Status Field x 

Value Field x 

Try Field x 

Delay Field x 

A Field x 

B Field x 

Type Field x 

Branch x 

-19 -



- BREAK POINT COMMAND 

URPOSE 
To indicate the current breakpoint. 

EMARKS 

CODING REQUIREMENTS 

CONVENTIONS 

Symbolic Location 

Op Code Field 

~" ~2 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 l 0 
BP lo Io I 1JJ lo I o:.: I J I ~ b I l ) 

Sequence 

BP 
Word 2 

(If required) 

A Field 

B Field 

Type Field 

Branch 

Subroutine # A Field B Field 

23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 D 4 3 I l 0 

Ii lo WJIJ' 1 I~ I I l I l J 

x 

x 

x 

x 

Absolute drum address 
of branch location 

Previous Breakpoint Number. 
characters. 

Two decimal 

,current Breakpoint Number. Two decimal 
characters. 

Symbolic location to branch to next. 

-20 -



BRS - BRANCH TO STRAIGHT LINE CODING 

~URPOSE 
To furnish linkage between TASC coding and straight line or 
PAL coding. 

REMARKS 
May go to the first word of PAL coding or skip as many words 
as desired. The number of words of PAL coding must be specified to 
determine the ability to fit in this block. 

CODING REgUIREMENTS ~~~~~~ 
',..'°'~o CONVENTIONS 

~~~~-~1'-'1---------------------------------------------------------~ 
Symbolic Location X

Op Code Field

Point Identity

Status Field

Value Field x

Try Field x

Delay Field

A Field

B Field

x

x

x

x

x

BRS

Number of words of PAL coding. Include all
generated words for multi-word constants.

Increment past first word to enter PAL
coding.

?.3 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

11I1- I l l I ! ~ l I i l l l l j
Absolute~rum address

BRS

of here + 1 + indicated increment

-21 -

BRT - BRANCH TO TASC

lURPOSE
To furnish linkage between straight line {PAL) coding
and TASC coding.

EMARKS
May have branch specified if desired. Generates SPB
in machine language to special entry of the Table Analyzer.

CODING REQUIREMENTS

Symbolic Location

Op Code Field x

Point Identity

x

x

CONVENTIONS

Symbolic location is used for PAL
references only.

BRT

Cols 12-17 {PAL Operand)
Symbolic location to branch to next.

23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
BRT

BRT
Word 2

(If required)

I 0 I 1j1 j 0i1 I iJ 0 I 0 l 010 l I I I l 1 l j I)
Address of Table

Analyzer Specified by ATE

23 22 21 20 19 18 17 16 1514 13 12 1110 9 8 7 6 5 4 3 2 1 0

11!0~ l1~ II ll{1
') 'V'

Absolute drum address
of branch location

BRU - BRANCH UNCONDITIONALLY

[PURPOSE

To symbolically branch to another line of logic.

~EMARKS

CONVENTIONS

Symbolic Location IX

Op Code Field x BRU

Point Identity x

Status Field x

Value Field x

Try Field x

Delay Field x

A Field x

23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 l 0
BRU l11°W#4'i I I I I - I

<) v
Absolute drum address
of branch location
'

Branch x Symbolic location to branch to.

-23 ~

CQ - CLOCK QUESTION
CQS - CLOCK _QUESTION AND SET

WURPOSE: To interrogate a clock with respect to a previously set time, the
current time, and the time differential specified. CQS is also used to
s~t the current time in the clock on one path.

~EMARKS: To be meaningful, an STC connnand must be previously executed to
establish a stored time. A conditional alarm may be printed on one
path if desired.

Symbolic Location X

Op Code Field

Point Identity ~

Status Field ~

Value Field ~

Try Field ~

Delay Field pc

A Field pc

B Field IX

Type Fie+d pc

Branch x

FIRST RECORD

CONVENTIONS

CQ or CQS

Point ID of clock

Time differential. See DLY for restrictions.

Symbolic address of alternate path

- 24-

CQ and CQS (cont'd)

!PURPOSE
Second record if conditional alarm is required

!REMARKS

CONVENTIONS

CODING REQUIREMENTS ~~a; ~e.'0-.. 0:,'a ~ v
~ta~ "<·o-v

r-t-if-t---1
Symbolic Location X

Op Code Field X

Point Identity x Point ID of Conditional Alarm

Status Field x

Value Field x

Try Field x

Delay Field x

A Field x

B Field x

Type Fi,eld x Indicate type of alarm: A or P

Branch x

-25-

CQ or CQS

_ Z3 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 l O

~ 1° I~ I 0 1
1

)
0 I_ 1 I I I {I I J i l 1 I bl J j

Sequence Clock Group Clock
Subroutine # Position

23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

l 0 I 0 I ~l 1 0 I 0 l " i I I I J I I J I 11 l h 1 I J
Sequence Clock Group Clock

Subroutine # Position

CQ
Word 1

CQS
Word 1

23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Jr~ I I l I \ ~ I I. I I I DJJ cQ ~~~dc~s
Con: Alarm Integer Seconds Fractional
O=No, l=Yes Time Differential Seconds

(~ or ~)

23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

~,1 ll~I IJli~llJ
Type
Code

Conditional
Group

Condi tiona 1
Position

2J 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

11 I 0 ~ I I I I I I I b I j I I I I I l I)
Absolute drum address
of branch location

-26-

CQ and yQS
Word 3

(If required

CQ and CQS
Word 3 or 4

DLY - DELAY COMMAND

~URPOSE
To set an indicated delay for the program being processed.

!REMARKS
DLY is a function of the ECP cycle time.
Delay value may only have the following forms:
XXXS, XXXM, X.XX, X.XS or X.XM

Symbolic Location ~

Op Code Field x

Point Identity

Status Field

Value Field

Try Field

Delay Field x

x

x

x

CONVENTIONS

DLY

Special use flag
Blank=zero, l=one in output word

Specified delay. See above for restrictions
S=Seconds, M=Minutes. X.XX is assumed to be
seconds.

23 22 21 20 19 10 17 16 15 14 13 12 11 io g a 7 s s 4 a 2 l o
DLY

DLY
Word 2

(If required)

Branch

lo I o 11 Lo l o 11 j ~ I I I Li l I lQJ
Sequence Subroutine ~cial Use Flag Integer Seconds Fractional Seconds

23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 a 7 6 5 4 3 2 l 0 (~ or ~)

J 1 i 0~ I l i I I I I i I J I I 1 I l l ~ J
Absolute dru~address of branc1iocation

x Symbolic location to branch to next.

D_Q_ - DIGITAL _QUESTION

~URPOSE
To determine the status of one or more contact inputs or bits.

!REMARKS
May or May not alarm
May or may not contain outputs
May or may not print conditional alarm

Symbolic Location

Op Code Field ~

Point Identity IX

Status Field ~

Value Field

Try Field

Delay Field

A Field

B Field

Type Field x

Branch

x

DQ

FIRST RECORD
CONVENTIONS

Point ID of contact input or bit

Desired status:
o = open orreset, c = closed or set

Number of times to try if delay and
re-trial is desired

Amount of delay between re-trials
See DLY for restrictions

Indicate type of alarm: A or P

Symbolic location to branch to if no
answer is found

-28 --

DQ - (cont'd}

Second and succeeding records

!REMARKS

Symbolic Location X

Op Code Field X

Point Identity x

Status Field x

Value Field

Try Field x

Delay Field

A Field x

B Field x

Type Field x

Branch x

CONVENTIONS

Point ID of contact input; or bit for
additional inputs; point ID of output
n_oint_:_ _conditional alarm_._
Desired status for additional inputs
or for MLR output. Not required for
conditional alarm or other outJluts

Count value for analog output

Delay for MLR output

---------- ------ ·-

23 22 21 20 19 18 17 16 15 14 13 12 11 l

Sequence
Subroutine 11

Number of
Inputs

Times to try Delay Integer

23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1llllillJlllll)
\..

Conditional Group Conditional
Position

Number Output Output Output Output Output Output Output
of MLR 7 Type 6 Type 5 Type 4 Type 3 Type 2 Type 1 Type
Outputs

23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

(I l ul i l j ~I I I 1 l l ·l l J
Output Word

23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 .. 3 2 1 0

~A~l 1 IJ I j IJt lJl l)
Input Status Input Input

O=Open,l=Closed Group Position

23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 l 0

Word 1

Word 2
(If required)

Word 3
(If required)

Word 4
(If required)

Output Word
(See OTP form

Input Words

Ji IO rlA I l l I [I I ! J J I l l l 1] J Last W?rd
' _ _ _ (If required)

Absolute drum address
of branch location

23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

I 1 1 l l I I t I I l I I J I I l 1 ·r l 11

NOTE: Output and Input Words are repeated as many times as necessary.

DQG - DIGITAL QUESTION GROUP

ll'_URPOSE

To determine the status of several contact inputs or bits where they
are known to appear at several points in the same group.

tREMARKS

See DQ for second and succeeding record formats,

~
FIRST RECORD

CODING REQUIREMENTS ~
~~ '(,

~~ ~~ CONVENTIONS

Symbolic Location ~

Op Code Field IX DQG

Point Identity IX Point ID of contact input or bit

Status Field IX Desired Status

Value Field IX

Try Field IX
Number of times to try if delay and
re-trial is desired

Delay Field
IX

Amount of delay between re-trials. See DLY
for restrictions~

A Field x

B Field x

Type Field x Indicate type of alarm: A or P

Symbolic location to branch to when no
Branch x answer.

- 31-

DQG Branch O=No,l=Yes

23 22 21 20 19 18 17 16 15 14 13 12 11.10 9

Sequence Number of
Subroutine # Input Groups

23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 l 0

(J lvl I l I \ J ~I I \ \ l LlJJ
Times to try Delay Integer Delay

Fraction
(\ or \)

23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

~ I~\\ IJ1l~lIJ
Conditional Group Conditional

Position

23 12 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Number Output Output Output Output Output Output Output
of MLR 7 Type 6 Type 5 Type 4 Type 3 Type 2 Type 1 Type
Outputs

23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

[11J1I\11l1 Li I JI\ l l ! l !J
v

Output Word

23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 l 0 UllJ I I I l l I I I I ~I J I I l l 1 l I J
Group #

(First 4 Point Position
Bits)

23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 l 0

LI£lJI j I l i I I ~Ii I j Ii l l l 1 IJ
Group # Point JO = Open

(Second Desired Status \1 = Closed
4 bits)

23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1°~ i I l 1 I j \ I J. I l I l l 1 l I J
Absolute arum address
or branch location

Word 2
(If required

Word 3
(If required

Word 4
(If required

Output Wor
(See OTP for

Input
Word 1

Input
Word 2

Last Word
(If required)

NOTE: Output and Input Words are repeated as many times as necessary.

END - END PROGRAM

!PURPOSE

To signify the end of the symbolic information for this assembly.

REMARKS

~~~ ~ 
CODING REQUIREMENTS ~ 

~~-- CONVENTIONS 

Symbolic Location x 

Op Code Field x END 

Point Identity x 

Status Field x 

Value Field x 

Try Field x 

Delay Field x 

A Field x 

B Field x 

Type Field x 

Branch x 

-33 -



EQT - EQUATE TASC SYMBOL 

!PURPOSE 

To provide symbol equating from one assembly to another. 

!REMARKS 

~
~~o 

CODING REQUIREMENTS,,,"' "'.:,<;"' 

'--~"---"--~~~~~~~~~~~~~~~~~~~~~~~ 

CONVENTIONS 

Symbolic Location X 

Op Code Field X 

Point Identity X 

Status Field 

Value Field 

Try Field 

Delay Field 

A Field 

B Field 

Type Field 

Branch 

x 

x 

x 

x 

x 

x 

x 

x 

TASC symbol to be equated 

EQT 

Six octal characters of absolute drum address 
of symbol. Right justified. ·--·----·--··------



ERC - ERASE CLOCK 

URPOSE 

To erase the time set in an indicated clock. 

EMARKS 
The clock is assigned a group and position number by the point 
sunnnary. The clock status may be interrogated by AQ, CQ, or 
CQS. 

CODING REQUIREMENTS 
CONVENTIONS 

Symbolic Location 

Op Code Field 

Point Identity x Point ID of clock to be erased 

ERC 

ERC 
Word 2 

(If required) 

Branch 

23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 S 7 6 D 4 I I l O 

t1 °1~ 111 I 0J2Jl I I I J I I 1 l J t I ~ I [ j 
Sequence See 

Subroutine # SET & RMV 
Point Group Point 

Position 

13 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 

Ii Io~~ I ----·-- l LI i 1 i l l 
' ) 

~ Symbolic 

V' 

Absolute drum address 
of branch location 

location to branch to next. 

- 35·~ 



GOX - GO ''X" TIMES 

URPOSE 

To provide a loop counter. 

EMARKS 
Proper use of this command enables clearing of the counter, controlling 
the number of times through a loop, and alarming upon completion of the 
specified number of times. A counter must be cleared before starting 
to count. 

CODING REQUIREMENTS 

Symbolic Location X 

Op Code Field x 

Point Identity x 

Value Field x 

Try Field. x 

CONVENTIONS 

GOX 

Point ID of conditional alarm 
May be used only if try ~ 0 

Counter number. Two decimal characters, 
right justified. 

Number of times to go through conunand. 
Decimal, right justified. 
Set to zero o 

23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 
GOX 
Word 1 

GOX 
Word 2 

(If required) 

GOX 
Word 3 

(If required) 

Branch 

NOTE: 

~I I I I 11-l 1 I l t Id I I J 
Conditional Group Conditional Position 

2~ 22 21 20 19 18 17 16 15 14 13 12 ll lO 9 8 7 6 D 4 I I l 0 

11~111111li)1llllllll 
Absolute drum address of branch location 

x Symbolic location to branch to. 
Must be used only if try ~ O. 

Only word 1 will appear when clearing counter 



INS - INSERT IN SCAN 

!PURPOSE 

To insert points in scan for alarming. 

[REMARKS 
May be used to act upon several points with one INS connnand. Analog 
and digital points must be in separate commands. 

Symbolic Location ~ 

Op Code Field 

Point Identity 

Status Field 

Value Field 

Try Field 

Delay Field 

A Field 

B Field 

Type Field 

Branch 

x 

x 

x 

x 

x 

x 

CONVENTIONS 

INS 
Required only on first line if several points 
beimz a_c_ted uoon.... 

Point ID of point being acted upon. 

Required for digital points only: O=Open, 
C=Closed. May optionally- contain an A to 
indir.at:P- ana.lna nnint-~ for r-- :-.:...--it-~.t.i_on 

- A 

Symbolic location to branch to next 

- 37-



INS 
e3 22 21 20 19 i0 17 16 15 14 13 12 11 io 9 a 1 6 5 4 3 2 i o 

b1ojog1010~ ~ l lj [ ! J 
Sequence INS or OTS Analog or Number 

Subroutine# O=INS,l=OTS Digital of 
O=Digital Groups 
l=Analog 

23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 

l l t I 1J 11Ji11 l l l lj 
Group # 

(First 4 
bits) 

23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 

lLUJ I t 1 "_I __ l _1 t_l_l _l j 
Group 11 

(Second 4 bi tf} 
Point 

Desired Status 
) O=Open 
) l=Closed 

as a2 ai 20 19 is 17 16 15 14 13 12 11 10 9 a 7 6 5 4 3 2 1 o 

~~ ~l , 1~1 /~--1b[[jj 
Second Group 

Number 
(If required) 

First Group 
Number 

23 22 21 20 19 19 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 

~ l~I I 11lllj 
Point Position· First Group 

23 22 21 20 19 19 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 

~ I" I t 1 I I I I l l lj 
'V 

Point Position Second Group 

23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 

~ I I l l ~ I I I I J~/ 16 J5 t4 ~ [ 2 [ 1] 0 J 
Group Number Point Position 

23 22 21 20 19 19 17 16 15 14 13 12 11 10 9 8 7 6 5 4 ~ 2 l 0 

I 1 J 
0~, I I I I I I I i ~ J I I l J [ l J ) 

Absolute drum address 
of branch location 

Word 1 

INS Digital 
Word A 

INS Digita 
Word B 

OTS Digita 
Word A 

OTS Digita: 
Word B 

OTS Digital 
Word C 
(If requirE 

INS & OTS 
Analog 
Word A 

Last Word 
(If require 

NOTE: Words A, B and C are repeated as many ti·mes as f necessary or the 
number of groups. 



~TE_-OlIT_PJlT COMMAND 

~URPOSE 

To provide output signals. 

REMARKS 

May be used to give several outputs with one 0TP connnand. 
Output types may be mixed as required. 

Symbolic Location X 

Op Code Field x 

Point Identity x 

Status Field 

Value Field x 

Try Field 

Delay Field 

A Field 

B Field 

Type Field 

Branch x 

x 

CONVENTIONS 

0TP 
Require~ only on first record if several outputs 
ar_e_ to ne sriven. 

Point ID of output point. 

Used to indicate status desired on MLR 
outputs. 

Used for output counts on analog output number of 
pulses on TOC output and the four characters on 
display output. Alway-s decimal_,_ right justified. 

Used to indicate delay on MLR outputs 
See DLY for restrictions. 

Symbolic location to branch to next 

-39 ~ 



0TP 

23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 

lolol~1lo\1~ l l ~ l l J 
Sequence 

Subroutine 41 
Output Output Output 
4 Type 3 Type 2 Type 

Output 
1 Type 

Number of 
Outputs 

23 22 21 20 19 18 11 16 15 14 13 i2 11 io 9 a 7 s 5 4 a a l o 

Output 
12,20 
Etc. 

Output 
11, 19 
Etc. 

Output 
10,18 
Etc. 

Output 
9, 17 
Etc. 

Output 
8, 16 
Etc. 

Output 
7, 15 
Etc. 

Output 
6, 14 
Etc. 

Output 
5, 13 
Etc. 

23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 

l 1 I I I I~ : JJ1 l d l l j 
Point Mask Taken from Point Sununary Module 

Number 
Group 

Address 

23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 

l:'l~.A- I IJ I I I I tJ l l l J 
r ' Output status 
O=Open, l=Closed 

Delay 
Integer Seconds 

Delay 
Fraction Seconds 

2:1 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 

l 1 I j l I I I i;i I I I I i I lLl I I J l I J 
Output Counts 

Taken from Value Field 
Module 
Number 

Point 
Address 

23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 

1 I~! JJ 
Char. 1 Char. 2 Char. 3 Char. 4 Module Point 

Number Address 

23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 

I I 0 ~ 0 

Pulse Count Point 
Taken from Point Sununary No. Address 

O=Down or non 
l=Up 

23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 

l 1 I J I~) l I~ I l l llLJ 
Pulse Count Set PointModule p · t 

Ol.n 
Taken from Value Field Ind. Number Address 

Word 1 

Word 2, 3 ~ 

Type 

Type l=Pu: 

Type O=MLJ 
Word 1 

Type 0-MLl 
Word 2 

Type 2 
Analog 

Type 3 
Display 

Type 4-Fix 
Length TOC 

Type 5-Var 
Length TOC 

NOTE: Point or Group Address, Module Number, and Set Point Indicator taken 
from Point Summary. 



OTS - REMOVE FROM SCAN 

lURPOSE 

l To remove points from scan for alarming. 

EMARKS 

May be used to act upon several points with one 0TS command. 
Analog and digital points must be in separate conmands. 

CONVENTIONS 

Symbolic Location ~ 

Op Code Field pc 0TS 
Required only on first line. 

Point Identity x Point ID of point being acted upon 

Status Field IX 
May be used to indicate analog or digital 
(A or D) for documentation. 

Value Field x 

Try Field x 

Delay Field x 

A Field x 

B Field x 

Type Field x 

Branch x Symbolic location to branch to next. 

- 41~ 



01'8 

23 22 21 20 19 18 17 16 15 14 13 12 11 io 9 a 7 6 5 4 3 2 1 o 

lolo,lo!dol~ l l d 1 J J 
Sequence INS or OTS Analog or Number of 

Subroutine # O=INS Digital Groups 
l=OTS O=Digital 

l=Analog 

23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 

OJll_I _l_t --v I J I I l l l l IJ 
Group # Point Position 

(First 4 bits) 
23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 

lllJJIJ l.1~1\ i1L1tJJ) 
Group 1ft 

(Second 4 bits) 
Point 

Desired Status 
) O=Open 
) l=Closed 

23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 l 0 

~I I I~ I l i 7', I I 1 ~l l l J 
Second Group First Group 

Number Number 
(If required) 

23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 

~II l~t l11ltllj 
Point Position 
First Group 

23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 l 0 

~ll li I liJllllltllJ 
Point Position 

Second Group 

23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 

~-. __ I _l 1_1J __ J( I 11 ! l l I J 
Group Number Point Position 

23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 

I 11° -- I l I I l l I I I I I 1 l l l I J 
'V" 

Absolute drum address 
of branch location 

Word 1 

INS Digit 
Word A 

INS Digita 
Word B 

OTS Digita 
Word A 

OTS Digita· 
Word B 

OTS DigitaJ 
Word C 
(If requirE 

INS & OTS 
Analog 
Word A 

Last Word 
(If require 

NOTE: Words A, B, and Care repeated as many times as necessary for the 
number of groups. 



PRB - PRINT BIACK 

l'_URPOSE 

To print a message and value in black. 

!REMARKS 

PRB will accept analog, digital, or conditional alarm points 
assigned by the point summary. 

CODING REQUIREMENTS ~><v.~a~~ <>. 
~01 ><v. 
~ CONVENTIONS 
,__L~~----------------; 

Symbolic Location X 

Op Code Field x PRB 

Point Identity x Point ID of point to be printed 

Status Field x 

Constant value to be printed. If left blank, the 
Value Field x actual value of the analog or digi. ta 1 point is to 

be _printed. Value is decimal~ ri2ht Justifi_.e.d. 

Try Field x 

Delay Field x 

A Field x 

B Field x 

Type Field x Indicate type of alarm: A or P 

Branch x Symbolic location to branch to next. 

-43 ~ 



'.:) ~i~ 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 l 0 

lo 1 o I f o i 11 o ~" I I I I ~ I I J 1 I : [11 J 

Value Indicator 
O=Use this value 
l=Get current value 

Sequence Color Point Point 
Subroutine # Code Group Position 

O=Black 

~~ 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 

I_ I I I I I I I I 

Binary 
Value 

----Analog/Digital 
Indicator 

O= Digital 
l= Analog 

23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 

11 1 o~ I I I I I I I I I I I J 
v 

Absolute drum address 
of branch location 

' -44-

PRB 
Word 1 

PRB 
Word 2 

PRB 
Word 3 
(If reqt 



PRR - PRINT RED 

lURPOSE 

l To print a message and value in red. 

EMARKS 

PRR will accept analog, digital, or conditional alarm points 
assigned by the point summary. 

CONVENTIONS 

Symbolic Location ~ 

Op Code Field PRR 

Point Identity IX Point ID of point to be printed. 

Status Field pc 

Value Field pc Constant value to be printed or blank 

Try Field x 

Delay Field x 

A Field x 

B Field x 

Type Field x Indicate type of alarm: A or P 

Branch x Symbolic location to branch to next. 

-45 ~ 



23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 

0 0 1 0 1 0 

Sequence 
Subroutine 11= 

Value Indicator 
0 = Use this value 
1 = Get current 

value 

Color Code 
1 = Red 

Type 
Code 

Analog/Digital 
Indicator 
O=Digital 
l=Analog 

Point Group 

Binary 
Value 

Point 
Position 

23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 

1
1 I 0 •a( I 1 l I I I IJ I J I I l I l I I J 

V" 

Absolute drum address 
of branch location 

-46-

PRR 
Word 1 

PRR 
Word 2 

PRR 
Word 3 
(If requj 



RMV - REMOVE BIT 

URPOSE 

To set an indicated bit to a "zerd'. 

EMARKS 

The bit is assigned a group and position number by the point 
summary list. The bit status may be interrogated by the DQ. 

CODING REQUIREMENTS 

CONVENTIONS 

Symbolic Location 

Point Identity Point ID of bit to be removed. 

~3 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 

RMV . 0 i 0 011 I 1 I 0 I I I I I I I I I 

RMV 
Word 2 

(If required) 

Branch 

Sequence 
Subroutine 11 

See 
SET 

et or Remove 
O=Set 
l=Remove 

Point 
Group 

Point 
Position 

23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 

l1io~_1. ____ IJ 111111 J 

x 

Absolute drum address 
of branch location 

Symbolic location to branch to next. 

-44 -



SET - SET BIT 

PURPOSE 

To set an indicated bit to a "one". 

i.lEMARKS 

The bit is assigned a group and position number by the point 
summary list. The bit status may be interrogated by the DQ. 

Symbolic Location x 

Op Code Field SET 

Point Identity Point ID of bit to be set. 

SET 

SET 
Word 2 

(If required) 

Branch 

23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 

0 0 0 1 1 0 

Sequence 
Subroutine 4/: ---Bit or Clock 

O=Bit 
l=Clock 

Point 
Group 

Point 
Position 

23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 

I 1 I 0~ 1 I 11 I I l l [ l ! ) 
~ 

Absolute drum address 
of branch location 

X Symbolic location to branch to next. 

-48 ~ 



SKP SKIP n LOCATIONS 

~UR.POSE To provide space in-line for future additions or corrections. 

~EMARKS SKP will fill the desired number of words with filler words. 
The number of words skipped does not include the words to 
remain at the end of a block if the SKP overflows a block. 
It is assumed that the SKP command is preceded by a BRU 
command. 

CODING REQUIREMENTSL~-~~~~~~~--~-~-~~~~~~~~~~~~~~~~~~~~~~ ~'~ CONVENTIONS 

Symbolic Locaticin X 

Op Code Field x 

Point Identity x 

Status Field x 

Value Field x 

Try Field x 

Delay Field x 

A Field x 

B Field x 

Type Field x 

Branch x 

SKP 

Number of words to be skipped. Two decimal 
characters right justified. May not be greater 
than _block _s_i.ze snecifiP.d in A.TR 



SLW SLEW PAGE 

PURPOSE 
To slew printer paper to next page. 

!REMARKS 
This conunand is used to make better documentation by enabling 
routines or sections to start printing on a new page. 

CONVENTIONS 

Symbolic Location 
x 

Op Code Field SLW 

Point Identity ~ 

Status Field IK 

Value Field ~ 

Try Field Pc 

Delay Field ~ 

A Field Pc 

B Field Pc 

Type Field Pc 

Branch ~ 

-50 ~ 



SPL - SAFE POINT LAST 

URPOSE 

To indicate the last safe stopping point number. 

EMARKS 

CODING REQUIREMENTS 

Symbolic Location 

Op Code Field 

SPL 

Sequence 
Subroutine 1/: 

CONVENTIONS 

A Field B Field 

~3 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 l 0 
SPL 
Word 2 

(If required) 

A Field 

B Field 

Type Field 

Branch 

I 1 I 0 ~1 ·· l-l 1---1 i I I I l l l l J 
Absolute drum address 

of branch location 

x Breakpoint Number. Two decimal characters. 

x Safepoint Number. Two decimal characters. 

x 

x Symbolic location to branch to next. 

-51 ~ 



SPN - SAFE POINT NEXT 

URPOSE 

To indicate the next safe stopping point number. 

EMARKS 

CODING REQUIREMENTS 

CONVENTIONS 

Symbolic Location 

Op Code Field x SPN 

SPN 

SPN 
Word 2 

(If required) 

A Field 

B Field 

Type Field 

Branch 

23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 l 0 

(0Joj1glolo)%¥Mli I Jvl l,~l l!_l JJ 
Sequence A Field B Field 

Subroutine 1fa 

~J 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 

I 1 H~W:~1~~ll 1 I I I I LJ I I 1 I l JIJ 

x 

x 

x 

x 

Absolute drum address 
of branch location 

Breakpoint Number. Two decimal characters. 

Safe Point Number. Two decimal characters. 

Symbolic location to branch to next. 

- 52~ 



STC - SET TIME IN CLOCK 

PURPOSE 

To set an indicated clock to the present time. 

EMARKS 

The clock is assigned a group and position number by the point sunnnary. 
The clock status may be interrogated by AQ, CQ, or CQS. 

CODING REQUIREMENTS 

CONVENTIONS 

Symbolic Location 

Op Code Field STC 

Point Identity Point ID of clock to be set 

STC 

STC 
Word 2 

(If required) 

Branch 

23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 G ~ 4 3 2 1 0 

~ j o Io~ l 1 I 8 I J I 1 J 1 l ~ l I J 
Sequence See Point Point 

Subroutine # SET Group Position 
& 

RMV 

23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 

11 I 0 ~~ l 1 I I i 0 1 I i 1 I l ) 

:x 

Absolute drum address 
of branch location 

Symbolic Location to branch to next. 

-53 -



STP - STOP PROGRAM 

PURPOSE 
To turn a program off. 

!REMARKS 
Used to set the appropriate program clock off. 
It is assumed next re-entry is set elsewhere. 

CONVENTIONS 

Symbolic Location x 

Op Code Field x STP 

Point Identity x Alphanumeric program name. For 
documentation purposes only. 

Status Field 

Value Field 

STP 

STP 
Word 2 

(If required) 

Branch 

x 

x Program number. Decimal number, right 
justified. 

23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 l 0 

t 1°1°1 1l 1 I ~~·1~ I l I I J 
Seq:-ence /Begin--:---Stop'\ Prog;:,m 

Subroutine # l=Stop Number 

Z3 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 :5 4 3 2 l o 
11 Io PiiYA( ~ J I I l l l l l ) 

Absolute drum address 
of branch location 

x Symbolic location to branch to next. 

-54 ~ 



4 OPERA TING PROCEDURES 

1. Load blank tapes on magnetic tape drives 2 and 3 
2. Place cards in reader and initialize 
3. Load GE/PAC TASC master tape on drum using BLTOl 
4. Load OPR02 and call GE/PAC TASC using OPR02 operating procedures 

Operator action for typed messages: 

Message Action 

GE/PAC TASC To indicate that blank tapes are mounted 
on tape units 2 and 3 and that cards are 
in reader and ready to process, change 
switch O. 

FIRST CARD NOT JOB Cards are not positioned correctly in card 
reader or JOB card is missing. Correct 
and change switch Oo 

OFILE NO ON T2 IS Place the tape reel number mounted on tape 
drive 2 in switches 8-19 and change switch o. 
Number will be typed for verification. If 
number is correct, raise switches 1-19 and 
change switch O. If number is incorrect, 
place proper number in switches 8-19 and 
change switch O. Number will be typed and 
program will stop for verification again. 
Proceed as above for correct or incorrect 
number. 

MOUNT TAPE XXXX ON Tl Mount previous Ofile tape requested on tape 
drive 1 and change switch o. 

WRONG TAPE MOUNTED Wrong tape was mounted above. Mount correct 
tape and change switch o. 

CNTRL CD ERR Control card is not HDG, TSK, DEL or FIN, 
or DEL with no input tape. Correct control 
card, reload card reader and change switch O. 

MOUNT POINT SUMMARY Mount previous point summary for this system 
TAPE ON TS on tape drive 5 and change switch O. 

MOUNT BLANK TAPE ON T4 Mount blank tape for point summary output 
and change switch O. 

- 55-



OPERATING PROCEDURES (cont'd) 

Message Action 

REMOVE AND !ABEL TAPE ON T4 Remove and label tape as point summary 
for this system. 

XXXXXX OUT OF SEQ IGNORE Point summary input card is incorrect as 
XXXXXX DUPE IGNORE indicated. Return these messages to 
XXXXXX TYPE CODE ERROR - progrannner. 

NOT ON DRUM 

MOUNT EQL TAPE ON T4 Mount previous system EQL on tape drive 
4 and change switch O. 

MOUNT BLANK ON T4 Mount blank tape for new EQL on tape 
drive 4 and change switch O. 

REMOVE AND LABEL EQL ON T4 Remove and label tape as EQL for this system. 

Actions taken for peripheral messages are listed in HPSOl - High 
Speed Peripheral Package writeup. 



APPENDIX A - ERROR CODES 

The assembler performs validity tests on.each instructipn. When errors 
or suspected errors are detected, one of the following indicators will 
appear on the output listing. The following error codes apply to TASC 
language coding: 

CODE DEFINITION 

p Point ID Error 

P2 Second Line Point ID 

s Second Record Missing 

T Too Many Points 

u Undefined Symbol 

CAUSE 

1. Input, output, or conditional 
alarm point indicated is not 
in point sunnnary table. 

2. Wrong type of point indicated 
for this connnand (DQ calling for 
analog point, etc.). 

For commands which have special 
format for second line-either 
of above reasons. 

For commands which must have 
more than one line. 

Too many points have been 
indicated for a multi-point 
command. 

1. A symbol appeared in branch 
field which was not defined by 
appearing in location field of 
command or EQT. 

2. Symbol table was full when the 
symbol was defined. 

The following PAL error codes app~y when coding .in the PAL language: 

L Location Field Error 

Operation Field Error 

1. First character of the label is 
not alphabetic, (See Table I, page 
25 in PAL manual). 

2. Using the DEF pseudo-op when: 
- the mnemonic assigned is a GE/PAC 

machine operation. 
- requesting "Extra Operands" 

definition when mnemonic has been 
previously defined as machine-typed 
operation. 

- there is an illegal audit code number. 
3. Location Field is blank when a symbol is 

required. 
4. Location Field contains a symbol when not 

allowed. 

1. The Op-code not part of the language or 
was not added to the table through the 
DEF pseudo-op. This often occurs when 
definition was attempted but was 

-57-



I 

x 

u 

c 

M 

2 

R 

F 

Illegal operand 

Index Word Error 

Undefined Symbol 

Illegal Character 

illegal. Consequently, it was not 
added to the operation table. 

2. This op-code cannot be GENerated. 

1. Blank operand when an operand is 
required. 

2. Operand not blank when it should have bee 
3. ·One or more required operands missing. 
4. Too many operands. 
5. Operand value too large. 
6. Negative operand value in an instruction 

that will not accept one. 
7. Illegal constant. 

1. Index word 1 or 2 specified. 
2. Required index missing. 
3. Specified index word is greater 

than seven. 

Occurs only when a symbol appears in the 
Operand Field and: 
1. It never appeared in the Location 

Field or on the Common Symbol Tape. 
2. It appeared in the Location Field, but 

the symbol table was full at that time. 

A character, not associated with the 
assembler language, was found in one of 
the following fields: 
1. Location 
2. Op-Code 
3. Operand 
(Refer to Table II, page 25 in_ PAL manual) 

Multiply-defined Symbol 1. Symbol in Location Field was flagged 
because: 

Second Pass definition 
of symbol different 

'from First Pass 

- it has appeared in the same field on 
a previous record 

- it appeared on the requested EQL tape ~ 
a value unequal to the one being assign 

- it was saved from a previous assembly 
with a value unequal to the one being 
assigned. 

2. Any record which references a multiply­
defined symbol in the Operand Field will 
also be flagged. 

Relative Operand Error Operand value was relative and should be 
absolute. 

Tables full 

-58-



GEzPAC 4000~ 

FREE- TIME 

SYSTEM 

USER'S MANUAL 

@) General Electric Company, 1965 
December 1965 Revised 
Library Control No. YPG19M 

This manual published by: 
PROGRAMMING SUPPORT 
GENERAL ELECTRIC COMPANY 
PROCESS COMPUTER BUSINESS SECTION 
P. Oo BOX 2918 
PHOENIX» ARIZONA - 85002 



IN THE DEVELOPMENT OF THE SOFTWARE 
DESCRIBED, THE GENERAL ELECTRIC 
COMPANY RESERVES THE RIGHT TO MODIFY 
THE DESIGN FOR REASONS OF IMPROVED 
PERFORMANCE AND OPERATIONAL FLEXI­
BILITY. 



GENERAL@ ELECTRIC 
PROCESS COMPUTERS 

'LE 

FREE-TIME SYSTEM USER'S MANUAL 
Library Control No. YPG19M 

REVISION CONTROL SHEET 

-· 
APPROVED BY: kl l .JA/lA ~)../' DATE: L(-SJ~ ls 

A 

v -
lEV. RECORD OF CHANGE DATE REVo RECORD OF CHANGE DATE 

\ Pa_g_e 2-l_.i_ 2.1 - I/O T_Y'E_er 11/8/65 B Pa_g_e 3-l_.i_ 3 • 1 and 3 • 1. 2 12/7 /65 

Pa_g_e 3-4; 3.2 - 116 " 3-2_;_ elimin. last _p_ara. 

PB:_g_e 3-6; para. 1 3-j_;_ chan_g_ed 5 & 6 

Pa_g_e 3-7; 3. - para. 3 3-5; elimin. last para. 

Page 3-8; 1. ' 2.' & 3 1-6: 4 t_v12es of con trill cJ_rds 

Page 3-9; Real-Time, para. 1 3-7z added 4. 

I 3-16 ;' Compile, para. 1 
chg. in 1st para. 

Page 3-9_;_ under LOAD 
' 

l 
Page 3-18; Example 8 3-10; chan_g_ed _E_ara. 3 

Page 3-23; para. 2 3-11; retitled decks 
T -

Page 3-24; title change 3-12; cha~ged_p_ara. 2 
added 1. & paras. 4 & 5 

Pa_g_e 3-25; _2_ara. 2 3-23; _Ear a. · 2 chan_ged 

Pa_g_e 3-26_;_ _p_ara. 2 3-25_;_ added _Q_ara. 3 

l Pa_g_e 3-28; Examples 20 & 21 3-262 cha~ged e~amQ.le 18b 
T 

3-30; 2, 3' & 4 changed I/O l Page para. 3-30; 
I 

~ Pa_g~ 3-31; paras. 1 & 2 4-2; eliminated 4.4 -
Pa_g_e 4-2_;_ _Q_ara. 4.3 9_:-1; added A 

Pa_g_e A-1_;_ 115 C-3; added C. 

Page B-1; additional DUMP 
q;_ (' ; , II . /I LA.l ..l:A-~..k-L...r l</1/6. 

v I 
, 

Pa_ge B-2; PERM. & KEEP added 

Pa_g_e C-2_;_ 12. & added 20 

'9l4;;-ililW~ -
~ I Pages 1, 2, & 3 a~ded 12/7 /65 

2-1; para. 2.2 changed 

A tP.~~~ 11/65 
1P;G 

O. L. Jones --
B :~~LL ~2165 REISSUE] 

_J,L_ 
.• 



INTRODUCTION 

PURPOSE 

SYSTEM ORGANIZATION 
Program 
Core 
Disc 

1. SYSTEM CAPABILITIES 
lol System Protection 

2. SYSTEM REQUIREMENTS 
2.1 Hardware Requirements 
2.2 Software Requirements 

3. SYSTEM DESCRIPTION 
3.1 Free=Time Executive Program 

JeB Control Card 
3o2 Language Processing & Debugging System 

Control Cards, General Description 
Control Card Usage 

FIN Card 
L0AD Ua.rd 
REAL TIME STATUS Ca.rd 
DIAGNOSTIC COMPILE C•rd 
C(liMPILE Card 
END C(bMPILATION Card 
REM(l}VE Card 
TEST Car.,d 

EXECUTE Card 
C(6RRECT Card 
DUMP Card 
BULK ST(!}RE Card 
INPUT DEVICES Card 
(l)UTPUT DEVICES Card 
PR0GRAM Card 

4. (l)PERATING INSTRUCTIONS 
4ol Card Handling 
4.2 Operating Requirements 
4.3 Operator Errors 
4o4 System Protection Errors 

APPENDIX A =· Restrictions 
APPENDIX B ~ List of Control Cards with 

All Options 
APPENDIX C = Format Errors 
APPENDIX D = Illustrations 

CONTENTS 

1 
2 
3 

2=1 
2-1 
2-1 

3-1 
3=1 
3=1 
3=4 
3=6 
3~8 

3-8 
3-9 
3-9 
3~15 

3=16 
3-16 
3=21 
3=23 
3=24 
3=25 
3~26 

3=30 
3=30 
3=30 
3=31 

4=1 
4=1 
4=2 
4=2 
4=2 



INTRODUCTION 

This manual describes the capabilities and usage of the Free~Time 
System and the Language Processing and Debugging System for the 

ic GE/PAC 4060 computer o Refer to the appropriate manual for further 
information on F0RTRAN~ PAL, and MfJNIT•R~ (See references below.) 

The combined purpose of the Free-Time and Language Processing and 
Debugging Systems is to provide the user with the ability to compile, 
test, and execute functional programs in a real-time environment, 
Existing service programs may be initiated by a control card. New 
programs may be tested and entered into the overall system in easy 
stages~ starting with an untested program and arriving at an oper­
ating real=time programn 

This system provides "load and go" or "compile and go" with 
debugging at the symbolic level$ using the names of FORTRAN variables. 
The dynamic relocation of programs and automatic allocation of 
storage frees the progrannner from any concern other than the success~ 
ful compilation and testing of his program. 

References 

YPG31M 
YPG14M 
YPG12M 

*Revised 

J 

MONITOR USERS MANUAL 
FORTRAN REFERENCE MANUAL 
PROCESS ASSEMBLER LANGUAGE MANUAL 



GENERAL PURPOSE 

'rhe primary purpose of a GE/PAC proc,ess control computer is to 
react automatically t:o real ""time process conditions, Even though 
this reaction may use most of the available tjme when the process 
is undergoing a change~ some available time is usually presento 
This time, referred to as free-time~ will normally be plentiful 
and can be used for c.ornputations which are independent of the 
processo These free=time functions must not disturb the reaction 
time of the real=time syste,mo 

Purpose of Free=Time Syst~m 

An operator~ using the Free ~,Time System~ ma,y request the execu= 
t:ion of any free=ti:me program not related to the process and some 
real=time programs wh.ich are related to the processo Execution 
is requested via a control card describing the desired program, 
Real-time programs are designated by their program-priority 
numbers in the Process Systema FrE€ 00 time programs are designated 
by the first six characters of their nameo 

The purpose cf the langu~ge Processing and Debugging (lPD) SystEm 
i.E to provide the USf'T •.vtth ~ht> abil:Hy to compile~ tf;St;; and 
maintain several libraries of programs during the free~tlme Bvail­
able in the GE/PAC 40600 Both real"'time and free~time. programs may 
be processed and ma in ta,i ned by LPD o Provisions al so exist to 
maint,a.in the system common symc~J, cable and the FORTRAN s·J'btcutine 
library o All of these b .. mctions are requested 1:-y control c.ards o 

o Language Processing 0~ compiles FORTRAN and PAL 
language programs and entera them into the free= 
time~ rcal=,time ~ or undebugged library on request o 

@ Testing c~ t'ebitS the e:orn:t;ilt::d pr:ogrA,ms under 
simulated condi[ions. 

<iJi SystFJTI Protecti.cn protects the system from the 
actions of untested programs by using the memory 
and input/output protection of the GE/PAC 40600 



1 2. 3 
lt 

1 

PROGRAM ORGANIZATION 

-

I MONITOR ) 
REAL-TIME 

ECP 

l 
• ...... -----..... 

FREE-TIME 
EXECUTIVE 
PROGRAM (E'l'X) 

. ·-----,r--------------..,..--------------.....,.--------------"'"----' .. l I T 
FREE-TIME 
PROGRAM #1 

FREE-TIME 
PROGRAM 112 

TEST 

LANGUAGE 
PROCESSING & 
DEBUGGI~G 

SYSTEM (LPD) 

FOR~ 

PAL 
ASSEMBLER 

FREE~TIME 

PROGR~ #3 

•••••• ..... ---------t-------.1.---P~R~OG;;.;;.;RAMS;;.;+.-:B~E~IN~G:;...:TE:.:,:.S=TE~D:,._...__.. __ ___ 

1 

REAL-TIME 
SYSTEM 

FREE-TIME 
SYSTEM 

LANGUAGE 
PROCESSING & 
DEBUGGING 
SYSTEM 



l, GENERAL 

Address 
0 

4K 

(N-8)K 

NK 

MONITOR 

----- -- - -- -; } 
REAL-TIME, 
LPD 
SHARED 
CORE AREA 

2. LPD usage of last SK 

A, Language Processing 

COMPILER or 
ASSEMBLER 

CORE ORGANIZATION 

REAL-TIME 
CORE AREA 

When the LPD is running, it uses this area of 
core for its programs, If the real-time system 
requires some or all of this area, this area is 
saved on disc in a special save areao 

B. Testing (numbers are approximate) 

4K 

2K 

2K 

2 

Program being 
tested 

Program EQL Table 

Prepare T~st~ Run Test~ 
Memory Protect 



Address 0 
12K 

22K 

BK 

400 

800 

800 

2K 
46K 

L 

M 

N 

</J 

p 

N 

DISC O&GANIZATION 

MONITOR, SUB-MONITOR, OPR 

LPD PROGRAMS 

LPD Save Area 

FORTRAN Library Catalog (100 programs, maximum) 

Free-Time Library Catalog (200 programs, maximum) 

Undebugged Library Catalog (200 programs, maximum) 

System EQL Table 

Real-Time Library 

FORTRAN Library 

Free-Time Library 

Undebugged Library 

Temporary Disc Area 
(LPD Scratch Area) 

3 



1" SYSTEM CAPABILITIES 

The System has the ability to: 

• Re~uest, through control cards, the execution 
of programs associated with the process 
(real-time), or programs independent of the 
process (free-time)o 

e Compile and/or test programs during on~line 
operation of the GE/PAC 40600 

o Add or remove programs from the real~time, 
free-time, or FORTRAN Subroutine libra.rieso 

o Permit modification to the list of common 
symbolso 

e Protect the system against destruction 
by untested programso 

l,l SYSTEM PROTECTION 

System protection prevents an untested program from 
destroying information outside its own area or from 
disturbing the rest of the systemo 

Any untested program may legally~ 

0 Branch to any location within its own areao 

o Store into its own area or permanent core 
areao 

MONITOR and Input/Output Subroutine requests are trapped 
and interpreted before they are executed, because un~ 
tested programs must not have access to such devices 
as the Multiple Output Distributor~ Time Output Contact~ 
Scanner, etco 

1=1 



2. SYSTEM REQUIREMENTS 

2.1 Hardware Requirements 

Input to the Free-Time and Language Processing and Debugging 
System is accomplished by punched cards; output by punched 
cards and a line printer. The following devices are required 
and have the minimum listed capabilities: 

GE/PAC 4060 - 16K Core 
OcS million words of bulk storage 

Card Reader - 350 cpm 
Card Punch - 100 cpm 
Line Printer - 300 lpm 
Input/Output Typewriter 

Operator response to the system is through the I/O Typewriter. 

2.2 Software Requirements 

The MONITOR used with the Free-Time System contains com­
munication for the peripheral devices listed above. 

Programs in all libraries must conform to the following rules~ 

• All programs must be assembled with a starting 
location of zero (no 0RG or DCW). 

• All programs must maintain the following order~ 

a. Instruction area, including constants. 
b. Storage area - must be BSS's (block reservation). 
c. Library routines~ including programmer=,def ined 

subprograms. 

! All storage areas not relative to the program must 
be in permanent core or bulk storage. 

• All input/output requests must be made through 
standard MONITOR communication. 



3. SYSTEM DESCRIPTION 

3.1 Free-Time Executive Program (FTX) 

The Free-Time Executive Program is under direct control of 
the MONITOR System. It is· 'ca1iea via the ReaT-Tirrie' Executive 
Program by an Input Demand Button on the Card Reader. The 
Free-Time Executive Program finds the name of the program to 
be executed by reading a J0B card. When the J0B Card calls 
for a free~time program, the Free-Time Executive Program lta.kes 
a request for MONITOR to operate the program. 

* If the J~B Card requests a valid real~time program, a request 
is made to the Real-Time Executive Program to execute the 
program. Some real-time programs may not be called by a J0B 
Card. For example, the Output Program is only turned on by the 
Output Request Subroutine; the Input Program is initiated by 
the Input Driver~ etc.id;: When a request is made which violates 
the MONITOR system rules, the J0B Card is ignored, and an error 
message is printed. 

3.1.2 J0B Control Card 

f<Revised 

The JfB Control Card identifies the beginning of the card deck 
associated with a job. The J0B card determines the program to 
be called~ and) if it is a free-time programj specifies a heading 
line for printer output, 

The J0B card is divided into three fields, All fields except 
the last are terminated. by a comma" The last field is terminated 
by two blank columns, Single blank columns are ignored and may 
be used anywhere for clarity, 

The first field of the J¢B card must contaU\ only the word~ 
J~B. The second field contains the program name or number 
and is interpreted as follows~ 

• If the first character is numeric~ the field is 
assumed to contain three or less digits which 
are the real-time program number. 

• If the first character is alphabetic~ the first 
six characters of the field are used as the 
name of a free=time program. 

e A comma terminates the program name, 

3-1 

**See Appendix A. 



* 

*Revised 

The third field is an identification field and is used as the 
printer output heading for a free-time programo Single blank 
columns are preserved in this field and the f ~eld may not 
ext•nd past column 69. 

The following rules must be observed when preparing a J0B Card: 

• The first character for a free-time program 
must be alphabetic. 

• Single blank columns are pe~mitted for ease 
in reading and are ignored, 

• The characters following the comma after the 
program name are used as the heading line for 
printer output, 

• The card is terminated by two consecutive 
blank columns or at column 69 (end of heading), 

Any J0B card which does not follow the prescribed format is 
ignored by the Free~Time Executive Program, and the J0B Card 
is printed, followed by an error message. 

3-2 



.. 3.1.3 J0B Control Card Examples 

' ' ) ''1 l I l ' l l i ' ' l ' ; l ! l ' ' ! I i I i ' l ' ' i I I ; l i ! ' t I 

1, 2 '. 3, 4: 5; 6 1 a 9' 10u\12:13, 14 15 16 ;11;1a '.19 20 21'.22;23'24 ~25, 26121·28, 29 30 31 !32,33;34 35!36~37 :38'39 '4o;.W42;43 44 45!46,47i4&' 49 50 51.52 ~53 ·54 551 

E}t~mp~~,I )-~--, \~j -~-,.L.t,"~---~--·~-t ; ; t--~ ' -~,--J- /1··, <, ))~-~----; ... ~ --~.+)-~----~ .. i. ' L 
__ : __ LJ .. L,t_,_ -~~-~~~~iiitl1~1Pr~gra~ wi~h .Six lettet,..J~_a;til~_:and~ __ I\2.LP~~ t g;.--t-' '. 

J ~~)'B'.~ '.Ll A olEtB :~?LJJ..JJJ ' \ L.Ji ' ' ' .t .LJ.L !. --l :. 
' i , ' ; \ ·:~1 ! j ! ! i \ i : l l j I 

' ' i 
l ",l~ . ~ ~-J 

J·¢:e:.,'.o'.u. 
l 

3-3 

--4-+-~L·~~.:_-
, ! J ; 

e. p:t,·:r~g~ ~-~'H!.pt~L 
; l ! : 

-1-t-t-· 



3.2 Language Processing and Debugging (LPD) System 

*Revised 

The LPD System is used to compile, t~st and add new programs 
to the over-all program system. 

The LPD System has the ability to: 

1. Compile and assemble programs. 

2. Compile and execute directly ("compile and go"). 

3 . "Load and go . " 

4. Output compiled programs to bulk memory or to 
binary cards. 

5. Test programs stored in bulk memory. Octal 
corrections are permitted. Snapshot dumps, and 
starting and ending run addresses may be specified. 

6. Specify a bulk memory area in which storing of 
information is permitted and the availability of 
each input/output device. 

7. Maintain programs in bulk memory which are: 

a. run under control of the System MONITOR. 
b. run by the Free-Time System. 
c. available to the Debugging System. 

8. Maintain a FORTRAN library of subroutines in 
bulk memory. 

9. Maintain a table of symbols and their values or 
locations which have been specified as "common" 
and to provide the ability to: 

a. add the common symbols, from a program which 
has been compiled, to the common symbol table. 

b. remove the entire common symbol table. 
c. load a new common symbol table from binary cards. 

3-4 



* 
* 

* 

*Revised 

The LPD System consists of: 

1. A series of programs, each designed to do a 
particular function, such as compile, test, 
read cards, punch cards, print and check card 
validity. 

2. A sequencing program which processes control 
cards and chooses the program& to accomplish 
the desired function. 

Programs may be entered into the system by one of two methods: 

• 
• 

Compiling FORTRAN language statements, 

Loading binary cards produced by the GE/PAC language 
processor, 

The program name or number and the particular library into 
which this program is being placed are specified on the 
compile or load control card preceding the input decko 

Program libraries exist for the following~ 

(1), Real~Time Programs (numbered programs~ 1, 2, 
3, . , ,) executed directly by MONITOR, The 
system status of these progtams.roust be specified 
when the program is entered in this library, 

(2). Free-Time Programs (six character alphanumeric 
names, LOADER, DUMP, etc,) executed by FIX, Free­
time programs may not directly initiate the 
execution of (turn on) real-time programs, 

(3) Either real or free-time programs, which have 
not been tested, executed by LPD, 

3-5 



3.2.1 Control Cards 

The order of parameters on control cards is immaterial, since 
the names of the fields uniquely identify the action to be 
takeno However~ the first field must identify the type of 
Control Cardo 

Single blank columns may be used for formating and clarityo 
They are ignored by the LPD Systemo Two blank columns in 
a row signify the end of information on a cardo 

* Four types of control cards exist for the LPD Systemo 

1. Actions to be taken by the LPD Systemo 

a. FIN - signifies the end of a jobo All programs 
in temporary status are removed and control 
i.s returned to FTX which will process the 
next J0Bo 

b. DIAGNOSTIC COMPILE ~ initiates a FORTRAN compilation 
and no object program is producedo 

c. COMPILE - initiates a FORTRAN compilation or a PAL 
assemblyj and transfers the object program to 
bulk memory. 

d. LOAD - loads the following binary program or symbol 
table card deck into bulk memoryo 

'*llevised 

eo TEST - transfers a free-time untested program to 
core for execution by LPD. ,,,, 

f o REMOVE =· removes from the system a program or symbol 
table which has been entered by LOAD or COMPILEo 

The REMOVE card can be followe4 only by an action control cardo 
The FIN can be followed only by a J~B card. 

Each of these cards~ except REMOVE and FIN, are followed 
by either language cards to be compiled~ binary deck to 
be loaded~ or cards giving TEST operating conditions or 
data. 

The TEST operating condition cards are CORRECT, DUMP, 
and EXECUTEo These cards modify the program, specify 
the breakpoints for dumping, and supply additional 
information for p'roce ss ing enviornment o 



·:!'(Re.vised 

20 a, CORRECT - corrects the program as it exists in 
core using symbolic or numeric addresses 
and octal contents. 

b, DUMP - gives locations and limits for snapshot 
dumps, , 

c, EXECUTE - executes the program between given locations. 

3, The ,~Y§te~_frot£_c ti on cards are BUL,K STORE,? INPUT DEVICES» 
OUTPUT DEVICES" and PROGRAl'f, These cards specify the 
memory and input/output protection during the testing of 
a. program? and defines those real~ time programs which 
may be legally initiated by that program. 

a. BULK STORE ~ specifies the bulk area into which 
the program being tested may write. 

b. INPUT DEVICES = spec:if ies the input devices which the 
program being tested may use. 

c. OUTPUT DEVICES - specifies the output devices which 
the program being tested may use. 

d, PROGRAM ~ allows the program being tested to initiate 
the execution of programs in the Real­
Ttme L:ibra.ry through the Real-Time 
Executive Program. 

All of the above cards have a variable format with fields 
separated by commas" Each field is uniquely identified 
by the first si:x characters or by the prepos1tions nro!' 
nFROM~ H or i'Af. 11 All U~lds ~ except the first field 
(card name)~ may appear in any order" If there ,are 
less than six ch~rac:te:rs in a program name~ blanks a.re 
added for the remaining characters to form a unique six-
character identifier o (Any field may exceed six 
characters.) 

Numeric 6iddresses are assumed to be relative to the 
begihning of the p·rogram ~xcept on the BlTLK ST0RE Card" 

4. ,Other c.ontrol cards are~ 

ao END COMPILA:tION - indicates the end of a FORTRAN decko 

b, END TEST = indicates the end of a program test deck. 

c" REAL TIME STATUS - specifies the opera.ting parameters 
for a PERMANENT program running under 
the Real-Time Executive Program" 

3·-~ 7 



3 .2·.2 Control Card Usage 

"Action-to-be-taken" Examples 

FIN 

FIN signifies "end of job" and removes all programs in the 
system that are in temporary (initial testing) status. 

< i • l -, j, ~ ,,,,J_,,! • -~w~; ~· ~ • • ~ '' • • ~ .. J .,,.,_~i. ,,,,',__,,, ~ •-<'-••-'·--,.___._,,,.,,,._,, . ...._ 

Fin C~rd :- INo ;catalog; specified!. 
A" t-A A ' "" h .... ,.., ::.~ • <A -r"' J h \. ... A "' ,._,A~ 

l i l ! ! . t • 

+ ·-·+- . ( . ' --{ . . 
Usa e I 

< h :' ----~ 

! ... J ~ ~' 
(~~r~ 'deck. fo.~ ... ~?~~i;1~11.g_ or d~bugging) · 

J ~ ; f 

J j J. 

An option on the FIN cards allows the progrannner to d~termine 
what programs are in the system and how much bulk storage is 
used by them. 

If a catalog is requested, the following items are listed. 

1. Names (Numbers) and sizes for: 

a. .Real-Time Programs in "permanent" stat us.** 
b. Free-Time Programs in "permanent"·status. 
c. Programs in the FORTRAN Library. 
d. Programs (either Real-Time or Free-Time)in "keep" status. 

2. Total bulk memory required for: 

a. Real-Time Programs 
b. Free-Time Programs 
c. FORTRAN Library Subroutines 
d. Programs in "KEEP" Status. 

3. Available Bulk Memory 

**Programs in PERMANENT status are under direct control of the Free­
Time or Real-Time Executive Programs. Programs in KEEP status may 
be run only under the LPD System. 

3-8 



* 

* 

1<Revised 

When a FIN Card is missing or another card error results in 
ignoring the FIN Card, a subsequent J0B Card may appear to be 
out of sequence. If this happens, the J0B Card is treated as 
a FIN Card, and the job is ignored. 

LOAD 

The LOAD Control Card loads a binary program-deck and symbol 
table deck into bulk memory. Programs are identified by the 
program number (three digits), or the first six characters 
(excluding blanks) of the program name. If no name or 
number is given, the LPD system assigns the name TEMPOl 
(temporary status) to the program. An attempt to load sub­
sequent programs with no name stated, prior to a FIN Card, 
causes ~hese programs to be ignored. The status of the ~ 

program may be specified either KEEP or PERMANENT. If no 
status is specified, the program is placed in temporary 
status and is removed by a FIN card. 

Programs in the KEEP state are retained in bulk memory follow­
ing a FIN Card and may only be called by the LPD program via 
a TEST Card. Programs in the PERMANENT state are also' 
retained in bulk memory following a FIN card, but they may 
be initiated either by the Free-Time Executive Program via 
a J0B Card or by the Real-Time Executive Program via a 
program turn-on. 

Programs placed in PERMANENT status must be identif: ~y: 

1. a number for a real-time functional progra-; 
operating under the Real-Time (MONITOR) Executive 
Program. (This LOAD Card must be followed by a 
REAL TIME STATUS Card) • 

2. a symbolic name for a free-time library program 
which is called with a J0B Card. 

REAL TIME STATUS 

A PERMANENT program operating under control of the Real-Time 
Executive Program must have its operating parameters specified 
on a Real-Time Status Card. The following states are assumed 
if no status is specified on the REAL TIME STATUS Card: 

1. Interrupts will be permitted to occur. 

2. The program's core area is available for use by 
higher priority programs. 

3. The program can be initiated by a J0B Card. 

3-9 



Operating conditions other than those shown above may 
be specified as follows: 

1 • INHIBITED 
2. UNAVAILABLE 
3. N(l) J0B 

Every L0AD or C(l)MPILE card specifying a PERMANENT real-time 
(numbered) program must be followed by a REAL TIME STATUS 
Card. 

An additional status, FORTRAN LIBRARY, is used for programs 
which were compiled as FORTRAN LIBRARY subroutines. These 
subroutines are loaded without symbol tables. 

The program is in temporary status and will be remove'~ f com 
the system by a FIN card. 

3-10 



To load a binary deck produced by the Free-Time System. 

FIN 
separator 

table 

program deck 

L0AD 
Jf)B, LPD 

Jf)B, LPD 

1<Revised 

binary deck 

To load a binary deck from some other source. 

IN 

separator 

binary deck 

A symbol table will be expected by the loader. If 
none exists, an extra blank card must be included. 

3-11 



The program is placed in KEEP status. It is not removed by the FIN 
Card and need not be reloaded for subsequent testing. 

A listing of all free-time, real-time, and FORTRAN Library programs 
and the bulk storage allocation is produced on the printer. 

~AD 

J(>B, LPD 

GE/PAC 
4060 

Catalog 

blank cards 

deck 

3-12 



F; I ;N ! f 

·r·1·~i~TT 
~'.; ~~, -~ 

1 ' l , l ! ; ! 
,._, y < "t"° ; l 1~-1_,, ;-1 ~ ~<. ~q, ; yt < > 'Vi"~V~~N..-i-'<'~~--

- __ ~!:ti's' program~ (C~VE.)~,IT) may: _be; ini tict te 
l t ; y i ~ i ' 

~ ~ ; ' L~i-~L ~~ ~~y :~ 

,'Load,, .. a;_ .£in:iishe'd ·program' into;' th~ ~rea'1.: d.me ',,~i~rar 
,. ' t I i ' l ' ' 

, 'gram.1.!'l:,i~l'..ie,main in ,bulk storage ),and, can. 'be 'ini:ti 
Rea:l~T;ime! Executive Pro ram.· Th~ 'ro ram will not 
sel:f.'.J:~ ;.be. lint;'err.µpt,~.qJ~y 'automati~. priority, .inte r 

" ' . ' ' ' : ' ' ' i ' , ' ' , 
· wUL; i'.t !al.fow,,lts;, dore.~ciire';,.. to be used. by another 
, d~r;i1:1g:,. i_t i:; .. :~-~~~.~!:~~.9!1}~ .. : ... .'fheJprogr~I!!: Cfifl:ng~ 
J0B Card.· 1 ; ; : ; l : ; "·;; : ; · · · 

3-13 



0AD 

J0B, LPD 

GE/PAC 
4060 

2 blank cards 
IN 

deck 

A new symbol table is loaded if the program· name is SYMBOL TABLE. 

3-14 



DIAGNOSTIC COMPILE 

The FORTRAN language cards following this card are compiled using 
the common symbol table.- All statements containing errors are 
listed with the proper error indicators. Generated programs are 
not saved. The LIST option produces a printout of all input 
statements. The common symbol table is not revised to include the 
common symbols from this program. The F0RTRAN deck must be followed 
by an END.COMPILATION Card. 

2 blank cards 
FIN 

~~PILATI0N 

Fortran 
DIAGNOSTIC 
C0MPILE 

J0B, LPD 

GE/PAC 
4060 

Error 
Listing 

3-15 



COMPILE 

The FORTRAN language cards following this card are compiled using 
the common symbol table. The generated program is placed in bulk 
memory and is identified by the program number (three digits), or 
the first six characters of the program name. Compilations may 
be made in either the temporary, KEEP, FORTRAN LIBRARY, or 
PERMANENT status. If the C0MPILE card specifies a PERMANENT 
Real-Time Program, it must be followed by a REAL-TIME STATUS CARD. 

If no status is specified, temporary status is assigned and the 
program is removed when the FIN card is encountered. If .more than 
one status is specified, the program is assigned KEEP Status. If 
no program name is given, the name TEMPOl is assigned and the 
program is given temporary status. An attempt to compile subsequent 
programs with no name, prior to a FIN Card, results in compiling 
and listing these programs, but none are saved. 

All FORTRAN decks must be followed by an END COMPILATION c&rd. 

f""'+-~"'""'.--1--'-l:>-H-
r ~h,, ,.,~~---{ ... J __ L .. ~- --h 

[E.tf P.. 1c:0 Mp: I il . . .. ··-; . 
F N 

'>'<'Revised 

:·The; name DEMAND1i'sLa~aig~k.d to the: p'rogr~m'. ... ;. 
}~T.h~. p.ro~rant inci~.Lb:~.i l~~.d~_di~]Jy}.:,the. '.1Pti R~uti.h~ .. {ind~ · 
: L-: .. ~~ipo~e4'.. frbni .. tl:i~ !c-~k~t~~( py(,:.t~£:_i~!!'1-£~~9:.·i~-i__LJ. 
:·~ l i : (Tempc;raryi stad.is): :·.·;~ \;~;~ ! i • 1 ! 1 

1 l : 1 1 

3-16 



The CARD option produces a program deck and a symbol table 
including only symbols which have been used. This deck consists 
of: 

1. The binary program deck {including all subroutines 
which have been obtained from the FORTRAN subroutine 
library), 

2. a separator card, 

3. the symbol table used by this program, 

4. separator card. 

Each card in the deck will contain the six-character or three-digit 
name and a sequence number in the last ten columns. This deck may 
be loaded by using a LOAD card. 

COMPILATION 

END 

Fortran 
C0MPILE 

J0B,LPD 

GE/PAC 
4060 

Program deck 

3-17 

FIN 

Symbolic 
and 
Octal listing 



3-18 



2 blank cards 
FIN 

~~~PILATI ON 

Fortran Deck
C0MPILE

J0B,LPD

GE/PAC
4060

Symbolic
and

Octal
Listing

3- 19

The ADD SYMBOLS option of the COMPILE. Card adds the common symbols
from the program being compiled to the conunon symbol table. When
the same common symbol name is defined in the common symbol table
before compilation and in the program being compiled, only the
value from the program being compiled is saved.

3-20

REMOVE

Using the REMOVE card, programs may be removed from any library (real-time,
free-time, or FORTRAN Subroutine Library) or the common symbol table
may be cleared. Specify the program by either the three-digit number
or the six-character alpha-numeric name and the status(PERMANENT or KEEP).

When a REMOVE, SYMBOL TABLE is requested, the symbol table is dumped on
binary cards ..

Before an existing program or the symbol table is replaced, it must
be removed from the system by a REMOVE card.

REM ~E

JOB,LPD

GE/PAC
4060

Symbol table

blank cards
FIN

bol table

3-21

GE/PAC
4060

Catalog

cards

3- 22

2 Prr'~~r-'mS
Removed

TEST

The program named on the TEST card, is tested as follows:

1. The program is called from bulk memory.

2. The operating conditions, as specified in the system
protection cards, are set.

3. The program is modified according to the CORRECT cards.

4. Traps are placed in the program to initiate snapshot dumps.

5. The program is executed.

All cards specifying conditions for the first program segment must
follow the TEST card, but precede the first EXECUTE card. Similarly,
all cards for the second segment must follow the first EXECUTE Card
and precede the second EXECUTE Card, etc. The program name may be
either symbolic or numeric. If no program name is given, the program
name TEMPOl (temporary status) is assumed.

The test deck must be followed by an END TEST card.

'~i'tl;f;''i: ~i ~1,li ;~ ~- ~t~ 11~
1l 12 13 14 15 16:17 ,1s 19 20,21.22:23,24,25 26;27,28 29 ao 31 :32,33 34 35 36 37'38 39 40 414243 44 45i46'47'48'49 50151:52\53 54

* A 4K core area (4096 locations) is available for testing a program.
An attempt to test a larger program results in loading and testing
the first 4K of the program.

* The program symbol table allows a maximum of 600 symbols. All
symbols exceeding 600 are dropped after compilation, and are not
available for symbolic references during a TEST.

3-23

7<Revised

Test Operating Condition Examples

EXECUTE

* The EXECUTE Card initiates the running of a program segment. It gives
the first and last locations to be executed during the debugging of this
segment. When an EXECUTE Card is encountered, the program is executed
starting at the FROM location and continuing until:

1. an invalid Branch Instruction is encountered,
2. the T0 location is executed,
3. the maximum time limit specified on the EXECUTE card

is exceeded, or
4. a MONITOR Turn Program Off request is encountered.

The maximum allowable running time for each segment of the test is
specified on the EXECUTE Card. If no time is specified, the maximum
time is set to one minute.

If the FROM Statement is not given, execution starts at the first
location of the program. When the T0 statement is not given, the
segment is terminated by either the maximum real-time being exceeded,

-a program turn off, or an invalid branch instruction.

Symbolic or numeric locations (relative to the beginning of the program)
may be used in the EXECUTE Card.

~-'.~T";; 6 1 e ! 9; ;o 11. 12 13 '14 15:16 l11 '.le '.19' 20 · 21'.22 '23 :24 1 25]~;;;-;a 29 ao" 31 !;2;33:34 :3s ;36,37 i3e 39 4o 41 -42 43 44 45 :46 4,'4e 49 50 's1
1
s2 ls3 .54

~~P-~.~!., 6
l ~ ! ~ ~

~+++~·-t.-+-~

--~·-+--H·- -!···

E, X;.E1.CU; J E , ~-~T
' ! ; : ! '. l

.-~~~;i·~~-- 6 '
' ;

' ; I l ! ' I I ; l l I : ' ; ' i , ~ + +· i· 1 I • 'f -t~l·' : ~ ~ ~ "'j +-~-+ + : ' : ' <

Ex~cu~eJ al. prbgram .. froqLit.s: origirLto-~ta~eme.nt.~$2 ~ imunL.;_ ·
·real; time1 allowed for I the. 'test is orie'. minute.I i . 1 1 ;
· ,., ; .. !"'"''T __ ,, •. ---.~--1····t·--r t· ;-- < •• • -~-,-- • • • '· ·"j ·-·r--1···4-~.,- · ;· -:- ·~···•-,;-1 · :+t-
~ ·: i ~ i I i ! ; 1 ; ! ; ; ;i ~ 1

1 ~ ! ! t 1 ! ~ f } ~ ~ ,

ime-t-t-
; 1 I I __ 4.JJ__
l_lLl -rrr-1·-

*

Data cards which are read by the program being tested must follow the
EXECUTE card for the segment(s) containing the READ statements.

CORRECT

The CORRECT card permits octal corrections (only) to be made to a
segment while it is being tested. It also permits insertion of data
in a symbolic common location. Numeric addresses are assumed to be
relative to the beginning of the program. Corrections are sequential,
starting with the location following "AT". Corrections are right­
justified if less than eight digits in length and two consecutive
commas are interpreted as "skip one location."

In card example 17a given below, there is one eight digit correction,
one correction with four leading zeros and four digits, followed by a
skip and a word of zeros. The last comma could be removed without
affecting the correction.

A maximum of 27 corrections and "skips'' may be entered on each card.
Corrections are retained only until the END TEST Card is encountered.

1 ~'tf 1 $t~$i~ ;t~ ~ I~ ii l ~ t ~ '

1 2l 3 .4 · 5:6 1 8 9 10 111213•14115'.16,17,18·19 20:21'22 23 24 25.26'27 28 29 30 31132 133:34 35 36 37!38 139,40'•1'42 43 44 45 46 47'48 49 50 5152'5354

* Since a program includes only instruction and data areas as compiled,
the programmer must provide any additional area needed during debugging
unless the program is less than 4K.

3-25

°1<Revised

·,,

*

-~~~mp,~~j_
. ' . ' !

I ; i i 1 i
:M~rrr-ri-·
........ --! ..-J __ -l--J_ '

! I I I

DUMP

The DUMP Card displays the contents of the specified areas or location
on the printer before the designated instruction is executed. The
format of the DUMP is either floating or fixed point decimal (integer)
depending on whether the FORTRAN definition of the beginning label is
floating or fixed. If the definition is neither floating or fixed
(example: $TEMP), the format is octal. The format inferred by the
label may be overridden by using a stated option. Permissible options·
are INTEGER, REAL, and OCTAL. This allows the programmer to follow
the data formats as declared at compilation time.

All DUMP requests are removed at the end of each program segment.
Therefore, all dumps desired between EXECUTE Cards must be specified.
When more than twenty DUMP Cards are entered between EXECUTE Cards,
only the first twenty are used.

I
' ;

3-26

,.<R~vised

.... '" ... -; --.--, , i : ; - , : ' i : i -: t , • l ! : I ! 1 l 1 , -; • , I · 1 l '
s 9, 10 n 12, 13·14 1s 16.11.1a 19 20 21122 23·24 -2s. 26· 27 2a 29 30 31 ;32 ,33134 :3s :36-37 38 '39 .4o '.41 ,42;43 44 45 46' 47 :48'49 so ;s11.s2 ·53 54

ExampJ'.e : 19

.1-i--i i, ... (..
1 ~ ! l !

~ • 1~ - ;~-.. :·' -+- ~:' .~
i ~

I ' I ' ' I ' \ ' I l l '., l l ! ! : i '1 ! l l I 1 : l
' i- i ! ' : i' 1 + ; i 'i' '. .'' ' ' '.··T·t-L-t,.·-~-- -~ ··,-+--1--t-__,,. L -- J. l !

Exec~t'.e. 1 a: pr?gram frp~ ~ts'. o'rig~l{j;_tj ____ ~~at':~~~Jl1:)7Q_. ... must'
.. not rJn 1 lpriger thari. 5 !minute's·~ I 'ljestj da:ta i~ erite e TABLE'~
'ahcf 'fti~T t·~ t~m • s" t~~~~r-ir' 'st~~-J- ··;·~i-~--!<lis' ·1;~-J<l:. · ~ -~oint
fp~ma ~ ... ?n! th~---!Pf ir ~e~~1.,~en:. t.he ~~-°?~g~_-[rtaFhe~ ... it~ .~o-~--i~-"

; a~tef j.sta~1m~~.t !Jj3. f,, .. l++·t-·. . !·-f·-H·-;:·--~-+-+·+ -~-+--t-L •----1----t--·-+---+-··--t-+-+~---+-
. .! . ++ · t--H+t+!-h- . · :-i+H-t+-H+t-·h H~+

3 , : t I ~ i : 1 ;

··ofrnaryrn~---~"·····-~'--4-.4--i,. .. 4..-"--1--,.;·
< ' t ~

.: : {~--l"-i .. ++--:.'
r. p I Mi !cle>':N:Ti ' ; '

GE/PAC
4060

Test Deck
Listing
Dump
Listing

;_ (

blank cards

~END TEST
EXECUTE

C¢)RRECT

TEST

3-27

I i ;
l ' !, J.,

"Compile and Go"

. \ T I ' ! 'd,) l I l l l T I : I ; l i l ' ~' ' ' l I I I f T f 1 j I T ; ! ' ' : ~~~
1 1 2;3 !4 t 5!6 1 a; 9!10 n'.:12'13'14115:16 111Bi19;20·21;22l23:24,25i26:2128 29 30 31 ;32,33;34,35'36>31'39:39'.40;41;42;43 44 45!46'.47 4& 49 so 51,52 s3 s.

E m: 1' l 'lQ • :~'--~ I \ : 1 + i I I l I ! ! ! I I :(1 r l i ! ! : i ! I l I i 1 l I ; l l I l j . ., ~~ .. P~. ~:-.}·· • t'"-t-~ \~k '",.,_,_ ,., ... L... ,.J,_,l-·-r-+···t-···i.-·-+--·1- ,,,_,,.),,.,_,,' ·; ... ~\ ' ' ···+-~·-··{·-Lt. -···+--f--.-l---i-- i,, " - +-..... -+-·r. ··' ;_ ·-
• < f i ' ~:; i ~ t ! i ~ in ; ' j l f f ! ..} " ~ \< ~ I l ;) ~ ~ ~ ~ ; ~ ; < s l 1

~* -l.-f-~t.}-... , .. -+-+ ::;.c;otp~-~-~I ~h~ .. -fOR!RAN ~ro~tam '.LE~S~ squARE~ ~a~d;.~~:u~¢h ·Bf,,prpgr~~--~e1c~-·
_L~-1.J.J . ., -+-+-· .1~ E'.nt.e'.t: j'ti_qhan1ge_ P.t th'e 1.symb_'olic .. i1ocation. SUMSQ'.. ; E~e~ute '.the ----l·· ~---4

: l l I l · :~r~~ami fr~m _S_t1.iem~nl_ !3..: ·to A_ !!Jic~_t_ion_s_: ~ft:e'r :_s_t~ t e~en~ _10 '. wheri
v ; J , ; j 1 1 \ ' f l ~ ~ ? , < ' l ' , j , I i ~ i : {

l . I·-+-+- :.i th¢_j>JtQgram ... l+.ea~he.$_Jt~.eL4th.:looatJ9Ji.J1£,t_et, ... h~tetnE n~ 10 ,; dii3play"_.t-
•. l. l , 1_,_,4 __ i'"· ·:~t qhJ.th~_jn·!iAt~~ ... the].Jo~.tbnt1s_ ;~iJsymbJ1lii ... i.cicat:ion'. ~I~MALin. 1 f~oatini

'1_).-
1

i·-r--+·· · .. :::~ p'.o~n~ .. :.(~~G*ALi$(.~. FO~T*N .floa~i~g; __ po~~t.l.sy~bof)!. ~lsc>-klispfay
1 • the contents! of: th~ !150 word table startiqg' at Sl.MAi- l

fl 1.1~1. 1 > : J J I·: 11 I_ ! J i J J I ! ; ! ! I .',, j i T ' . ; ; I ! ; J.. : "

"Test where program is in KEEP Status (in bulk memory)"

-.~-:~--~-p~~l--~--~1?~ -;, , " : .;.J J...~··+-~·: i i .. ;··l--f-+r;.· _· ·-+·1-~-~L} .. :.J_~:- L .. i ... i.. - --r~---
"'J.-l_LL_;__ A program.iR00TFINDER :i·s :.in bulk ;memory'. in KEEP ... sta
j_~_J.~_.L. ·.cut~

1
~h~;. _p_i;-~~~~~ ... fr.om :~~a.tement_ ~ 1-\ ~-~-~~he-~~-~~'.!.--~·-~e

; I 1 ! I . ram 1rea'clies !statement: 45 "dis la ithe contents; of

IF l_;N: ; i L i !
.L

I i
.L J. 1 i l t

*Revised 3- 28

Program deck

C0MPILE

GE/PAC
4060

deck

EST

END COMPILATI N

deck

Octal &
Symbolic
Listing

Figure for Example 20.

3-29

ank cards

Test deck
Listing
Dump Listin

System Protection Examples

If no system protection cards are included in the deck, the program
* will only be allowed to store in its own area or in 90MMON, and branch

within its own area.

BULK, STORE

The BULK STORE allows the program being debugged to transfer data from
core to the designated area in bulk memory. Symbolic labels must' be
absolute bulk storage locations. Numeric addresses must be entered as
octal. Bu,lk store parameters are effective until either a new BULK ST0RE
or the END TEST Card is encount·ered.

Example~ · ~ ' [..... L.~-L 1--·i- ~ .. L.: "~ 1
.• '.J '· ": .1L~.~~-.:- t L ~ 1

; j , .. L~-
~The pro~ram being: exkduted. may ttans'fer: to' bulk m
. ~~~~~-~~~.-~~~. ~e:e$i:f~e~·t·l .!b~·~t.~·on~.!~-~L-~~~~1J~~j~~~t i
laqels; j l l : : : , : ! , ! ! l ; ; ; l ; ; ! i , ;

* Input/Output During Testing

These cards are used to specify which I/O devices may be used by the
program being tested. They are effective until the END TEST card i-2
encountered. Device numbers (i) are FORTRAN device numbers. IL not
stated, device 0 is assumed. All devices of one type must be speci­
fied on one card.

INPUT DEVICES

This card is effective until a new INPUT DEVICES card is encountered.
1. READi specifies a card reader, paper tape reader, or

input typer.
2. LINKi specifies data link input.

OUTPUT DEVICES

This card is effective until a new OUTPUT DEVICES card is encountered.
1. PRINT i specifies an output typer or printer.
2. PUNCHi specifies a card or paper tape punch.
3. LINKi specifies data link output.

-.'<Revised
3-30

~ ~ { : j ~ l . ;-~ ~ ; ; : ! :

,T~-~. pr'.~~r~ci .~e~it\gr-~x~ciuted m1

ay ~;~-; -o~i; th~. :sp~1ci
,o_u1:--~~-~~k~!Y.\~~-~'} ·~.' ~~-~d r~ad~?:L.e~1!.~.~f-,t~.L~~-~f~
• ' ! ! l i' I : l ; ; i l ; i : ! ' ' I ! (!' !
.(l ~ ~ ' ' ~ J 1 ~ f ~

PROGRAM

i d'_input
d punc~.
><~-' , ~,,,,,,_.,-,..'iW""~-~v ~

i i

:
1 1 I

-~ .; . +--+··
and .. J-1 .. -+----·---+--·

~~-+-· ·- ;·
!

The PROGRAM Card tells which real-time programs may be turned 0n by
the program being tested. Programs to be turned on are specffied by
their program number.

Programs which are considered a part of MONITOR (e.g. Input, Output)
may not be turned on. (See Appendix A.) Program card parameters are
effective until either a new PROGRAM Card or the END TEST Card is
encountered.

i · . }r;L~=hii-frU~.tr;~- : · 1-t±+P-~ L :_;. ·
,_..;.Thcr .. :pr.ogram.:b.e.ipg .. ~~e.c~~~-d .Jrtay ~Jn~tJ.~t,tL.~lie.:_~~~-~u ly the;_)
. . ecifi~d t~a1-:time 1 rd rams·".'(Nos .i 23; and :2~); { 1 1

Violation of any of the above system protection restrictions by program
is noted by an error printout (See 3.2.4 - Card Errors). The card in
error is ignored.

3-31

• : ? ' ' \ t '~ J t ~ l t ! ~ ~ j { l ~ ' ' i 1 j ' ' i ! f 1 r t I ~ ' •

1 2 . 3 · 4 : S : 6 7 8 l 9 110 1l~12• 13 14 IS '16, 17 ,18 ·19, 20 21: 22'23 24 :2S' 26 27 28 29 30 31 :32 33 34 35 .36 37 38 '39 ·40 '41 42 43 44 4S •46· 47, 48. 49 SO '.51 '52 ~S3 54',

.. &~~mp.l~L s J _'. .. ~ ; '. ... J ; .\ ... l .. i L; .. ;J. .!;(_ h J .. L.Lf---~J ... J __ j,,~JJJ.
l I ! I i ·" \\~l'h~--P~.ogram,LzsUi~ ~t.61 ___ 1,ef0delbugig~c(~i~. ti. tl\e [fp~lg

-t-.....,~-........ 1 ·--r ,.,~.,-.. ~ ~ , , , if. , , , , l { ~ I . .
I. i ! ! : "·~ l I ' •' '. ' I ' i I ' '. l ; (i :; : 1 : : i l l ; !
• 1 : ; ··~.r.PS.ti:Jlcti·ons 1: ••. , 1. J ... 1 ;. :" L,,L-i.-._\---}--~ .. l .. ~----t-·~ _ _,,_,,1---:··-t-"""(" ' r"' ! ! ' ! i ' ' ' ' ,.. ' ' i ' ' i

' ! ' ·,:;:·1 l '. irt ma ! re' Jestl tdm:$fe'"'s ltc» 'bulk l~~-~~a. e ·on
\ ; ' odtal1 addresses 463000 and 4712001 inclusive.

' ' l 2;. ! It may only, make: input. requests ;through the
:J;~··trt!'"inay · orilyi"niake~ .. ·output requests of the prin
4: ... ·It may ·i-pitiate the· execution ·of ·real .. t·ime p

' 5 and · · · · ·· · . · · ·
Branch instpict~oh~ .. '!ire ,.inserted.~~ .. ~he~ .. 6t.~_ arid;_ (t
after stateme~_t_ 1~0.·L'..!.' . · ·', L LJ : J .. L. j J '. :. , -~·
When the prpgrall) reach!es statement : 56 ,: the: content
locatio~s ;wii.11: be~ qiSp!layed on th~ iprlriter' in, fi~e

' < ' ~ ' I , < ' I t ' ' , '

3-32

. locatio sf-~--~-~--
,) f f t 1 :

' ; { t '
-~-..~ ~! ~

< ~ ~ j

4o OPERATING INSTRUCTIONS

4.1 Card Handling

Review all card decks to insure that they are in correct orderc
For instance, a COMPILE request should have~

L J0B Card

2, Ct)MPILE Card

Jo Ff/)RTRAN Deck or Decks

4o END Cf)MPILATifN Card

5. FIN Card

A L-AD request should have~

L J~B Card

2. Lf)AD Card

3. Binary Deck

4o Separator Card

If there is a symbol table to be loaded, there must also be a
symbol table deck and another separator carda

If the program is not being loaded in the KEEP or temporary status,
there must be no symbol deck. A program in the KEEP or temporary
status with no symbol deck must have an additional separator card
added at the end of the deck" Note~ A blank card may be substi­
tuted for a separator cardo

A TEST deck should have~

2" TEST Card

3o C0RRECT Cards (Optional)

4o DUMP Cards (Optional)

5. System Protection Cards (Optional)

6.. EXECUTE Cards

7,, END TEST Card

8,, FIN

Place the card deck in the input hopper and press the demand button
on the card reader~

4-1

4.2 Operating Requirements

Refer to the operating instructions for the card reader, printer,
and card punch.

A run may be aborted at any time that the LPD System is not
reading cards by pressing the Input Demand Button on the card
reader. This action simulates reading of a FIN Card and the
JOB is terminated.

* If LPD is reading cards, turn the card reader off. This
simulates peripheral failure, and action should be taken accord­
ing to paragraph 4,3,

* Other free-time programs can be aborted in the same manner
by checking the input demand flag, or by peripheral failure
on an input request.

4.3 Peripheral Failures

*Revised

When there is a malfunction on any of the peripheral equipmentj
the system types the appropriate error message:

LINK2 FAILURE
READl FAILURE
PUNCHl FAILURE

The operator notifies the system if the device will be repaired,
If a repair is not possible, the Free-Time System turns itself
off and the J0B must be restarted after the repair has been made.

4-2

'1<Revised

APPENDIX A

RESTRICTIONS

lo Program or symbol names should not begin with the
following identifiers:

KEEP
PERMAN (ENT)
ADDSYM (B0LS)
F~RTRA(N)
TEMPOl
SYMB0L
CARD

AT
T0
FROM
REAL
INTEGER
0CTAL

2, The first six letters of any two program or symbol
names should not be the same,

3. No temporary locations (BSS) are permitted within the
program, for instance, those produced by PAL coding, All
temporary locations (BSS) are placed at the end of the
program by FORTRAN,

4. Information placed after column 69 on the control card is
ignored,

5. The following Monitor functional programs may not be called
using the J0B card or by a Turn Program On request:

a, Output Program
b, Input Program
c. Corrective Action Diagnostic
d. Free~Time Executive Program
e, Operator Routines.

A-1

APPENDIX B

LIST OF CONTROL CARDS CONTAINING ALL OPTIONS

B-1
*Revised

, I
. I

I

f
l

B-2

APPENDIX C

ERROR MESSAGES

A. System Protection Errors

Messages are printed when an error is located within a
program which violates the system protection rules as defined
by the test system correction cards.

When an invalid instruction is found, an error message,
"ILLEGAL XXXXX~ relative address, instruction, contents of
the Index Register or Device or O", is printed, XXXXX may be
a STORE INST~ BRANCH INST, I/O INST, MTR ENTRY, BULK TRANS~
00MED INST, RPTED INST, or INPUT REQST.

Examples~

1. ILLEGAL STORE INST~ 00076 32340174 00000012

2. ILLEGAL I/O INST. 00043 25430000 00002400

3" ILLEGAL BRANCH INST. 00042 14040163 00000000

B. Control Card Errors

Messages are printed when control cards do not contain valid
information, or when the deck following the control card does
not match the control card.

Checking begins with the first JQ)B Card and all cards following
are tested for correct format. An error is indicated by the
appropriate message following the listing of the card in error.
No processing is accomplished on this card, Subsequent c:Jrds
are processed in the normal manner.

1. No program name or number on the JQ)B Cardo
J{/)B
ILLEGAL PROGRAM REQUEST

2. Program name starting with a non-alphabetic character
(free time program).

J(l)B » 6DUMP
ILLEGAL PROGRAM REQUEST

3. Program name not in the library (free time or real time)"
J(l)B, SZYGXK
NOT IN LIBRARY

or
J(l)B, 125369
NOT IN LIBRARY

C-1

APPENDIX C (contd.)

4. The second field on the FIN Card is not CATALOG.
FIN, CXTALOG
ILLEGAL FIELD

5. The second field on the DIAGNOSTIC COMPILE Card is not LIST.
DIAGNOSTIC COMPILE, JUST
ILLEGAL FIELD

6. Program name is the same as another field on the card.
(See Appendix A).

COMPILE, PERMANENT, CARD, PERMANENT
ILLEGAL FIELD

7. Unidentifiable or excessive fields on any card
REMOVEj CARDEX, PERMANENT, LIST
ILLEGAL FIELD

8. A non-FORTRAN deck following a COMPILE card.
SYNTAX ERROR on every card

9. A non-binary deck following a LOAD card.
FORMAT ERROR YPK0300335

Columns 70-80 of the first card in error will be printed.

10. Missing separator cards,
FORMAT ERROR

11. Slashes, numbers greater than seven, or alphabetics in
the CORRECTION field of the CORRECT Card.

CORRECT, AT ALPHA~ 0493602K8
ILLEGAL FIELD

CORRECT, AT BETA, /04567
ILLEGAL FIELD

12. The given symbol does not exist in the Symbol Table.
DUMP, AT XGMPX, FROM A, TO B
ILLEGAL FIELD

13. A missing field or a blank field where no blank field is
permitted (no status was specified),

REMOVE, 41
ILLEGAL FIELD

14. Program number of compiled or loaded program too big.
LOAD, 99362? PERMANENT
ILLEGAL PROGRAM NAME

C-2

APPENDIX C (contd.)

15, Attempting to add a program which already exists without
using a remove card.

LOAD~ 15, PERMANENT
ILLEGAL PROGRAM NAME

16, Attempting to remove a non~existent program
REMOVE~ 92, PERMANENT
ILLEGAL PROGRAM NAME

17. Attempting to remove an operating real-time program.
REMOVE, 21, PERMANENT
PROGRAM ON

18, Overloading bulk memory
NO TEMPORARY BULK STORAGE AVAILABLE

19, Attempting to compile a FORTRAN program with too many
statements.

NOT ENOUGH TEMPORARY BULK STORAGE FOR COMPILATION

20. Missing FIN Card.
NO FIN CARD

21, Too many DUMP Cards between EXECUTE Cards or an unidentified
card,,

ILLEGAL CARD

C. Programming Errors

Messages are printed following the listing of a compiled and
assembled program to call attention to errors made by the
programmer. These errors may cause the program to be loaded
incorrectly, resulting in an invalid run. XXXXXX in the
messages denotes program or subroutine name.

l, Requesting a FORTRAN subroutine which is not in the FORTRAN
library. No action taken.

XXXXXX SUBROUTINE REQUESTED, NOT IN FORTRAN LIBRARY

2, Requests for library subroutines exceed 100. •eU¥lin~ers

are noted in error messages and ignored"

TOO MANY LIB CALLS o REQUEST FOR XXXXXX NOT INCLUDED

APPENDIX C (contdo)

30 Attempt to include a function or subroutine with a.
program to be added to the FORTRAN 1 ibrary. The sub,_
program is ignored.

FORTRAN LIBRARY PROGRAM XXXXXX HAS A SUBPROGRAM

4. More than one status given for a program which has a
name or number. Program is added to undebugged library.

TOO MANY STATUS FIELDS SPECIFIED. ASSUME KEEP STATUS

5. A program without a name or number has a status specified.
Program is given name TEMPOl and is added to undebugged
library.

STATUS SPECIFIED~ N0 NAME GIVEN. ASSUME TEMP STATUS.

6. A program deck was requested, but the card punch failed
during the punchout.

PUNCH BAD OR OUT OF SERVICE~ PROGRAM DECK INCOMPLETE

7. Number of labels referenced in program exceeds 600.
The remainder are ignored and cannot be referenced
symbolically on TEST deck cards.

TOO MANY LABELS. EXCESS LABELS CANNOT BE REFERENCED

8. The program exceeds the scratch bulk storage area. The
program is deleted.

PROGRAM BEING ASSEMBLED EXCEEDS BULK SCRATCH AREA.

C-4

APPENDIX D

ILLUSTllATIONS

Load and Test (Load & Go)
Compile and Test (Compile & Go)
Enter New Symbol Table
Enter New Program into Real-Time Library
Enter New Program into Free-Time Library

D-1

3-25~ 3-26,
3-30,

3-29
3-33
3-22
3-13
3-13

GEJ'PAC®4000
GENERAL ELECTRIC PROCESS AUTOMATION COMPUTER

FREE-TIME SYSTEM
USER'S MANUAL

:>ROCESS COMPUTER
3USINESS SECTION
:>HOENIX, ARIZONA

(FTS02)

GENERAL. ELECTRIC

Library Control No. YPG58M

COPYRIGIIT 1966 BY GENERAL ELECTRIC COMPANY

This manual published by:

PROGRAMMING SUPPORT
GENERAL ELECTRIC COMPANY

PROCESS COMPtrrER BUSINESS SECTION
P .o. Box 2918

PHOENIX, ARIZONA 85002

For further information concerning the contents of this manual,
contact the Progranuning Library at the above address.

6.1

6.1.1
6.1.2
6.1.3

6.2

6.3

6.4

6c4el
6.4.2

6.5

6.5.1
6. 5. 2·
6.5.3

6.6

6.6.1
6.6.2

6.7

6.7.1
6.7.2

6.7.2.1
6.7.2.2
6.7.2.3
6.7.2.4

6.7.3
6.7.3.1

INTRODUCTION

PURPOSE

General Purpose
Purpose of Free-Time System
Purpose of the Language Processing and Test Function

SYSTEM CAPABILITIES

SYSTEM PROTECTION

SYSTEM REQUIREMENTS

Hardware
Software

SYSTEM ORGANIZATION

Bulk Organization
Core Organization
Program Organization

SYSTEM DESCRIPTION

Free-Time Executive Program (FTX)
JOB Control Card

LANGUAGE PROCESSING AND TEST (LPT) FUNCTION

General Information
LPT Cards, General Description
Action Control Cards
TEST Operating Condition Cards
System Protection Cards
END Cards

LPT Card Usage
Action Control Cards (Action To Be Taken)

FIN Control Card
LOAD Control Card

No Status Specified·
KEEP Status
PERMANENT Status
FORTRAN Status

REMOVE Control Card
COMPILE Control Card

No Status Specified
KEEP Status
PERMANENT Status
FORTRAN Status
NO LIST Option

-iii-

CONTENTS

1

1
1
1

3

3

5

5
5

7

7
8
9

11

11
11

13

13
14
15
15
15
16

16
16
16
18
20
21
22
24
24
26
26
27
28
29
29

6.7.3.2

6.7.3.3

6.8

6.8.l
6.8.2
6.8.3

CARDS Option
SYMBOLS Option
DIAGNOSTIC Option

TEST Control Card

TEST Operating Condition Cards
EXECtITE Card
CORRECT Card
DUMP Card

System Protection Cards
BULK STORE Card
INPtIT Card
OUTPtIT Card
PROGRAM Card

OPERATING INSTRUCTIONS

Card Handling
Operating Requirements
Peripheral Failure

29
30
33
35

39
39
41
42

46
46
46
47
47

51

51
51
52

APPENDIX A - Restrictions 53
APPENDIX B - List of Control Cards Containing Examples of All Options 55
APPENDIX C - Error Messages 57
APPENDIX D - List of System EQL'S 60
APPEND IX E - Dump Format 63

-iv-

INTRODUCTION

This manual describes the capabilities and usage of the General Free-Time System
for the GE/PAC* 4050-4060 computers.

The purpose of the General Free-Time System is to provide the user with the
ability to compile, test, and execute functional programs in a real-time
environment. Existing service programs ~ay be initiated by a control card.
New programs may be tested and entered into the overall system in easy stages,
starting with an untested program and arriving at an operating real-time program.

i

This system provides "load and go" or "compile and go" with testing at the
symbolic level, using the names of FORTRAN variables. The dynamic relocation
of programs and automatic allocation of storage frees the programmer from any
concern other than the successful compilation and testing of his program.

The GE/PAC family of programming manuals consists of separate, complete.booklets,
each of which deals with a specific subject. The FREE-'i:iME SYSTEM MANUAL is the
sixth in this series of publications and can be identified as scch by the use
of the numeral six prefix in paragraph headings and subheadings.

Reference is made in the test to the following publications which are available
through the Programming Library:

YPG51M - MONITOR USER'S MANUAL,
YPG14M - FORTRAN REFERENCE MANUAL,
YPG12M - PROCESS ASSEMBLER LANGUAGE }IANUAL

* Registered Trademark of the General Electric Company.

·-v-

6.1 PURPOSE

6.1.1 GENE~AL PURPOSE

6.1.2

6.1..3

The primary purpose of the GE/PAC Process Cpntrol Computer is to react
automatically to real-time process conditions. However, there is
normally a considerable amount of time, called free-time, available for
computations which are independent of the real-time process. The Free­
Time System is designed to make use of this time without disturbing the
operation of the real-time systemo

PURPOSE OF FREE-TIME SYSTEM

An operator using the Free-Time System may request the execution of
any free-time program not related to the process and some real-time
programs which are related to th.e process~ Execution is requested via
a control card describing the desired program~ Real-time programs are
designated by their program-priority nwnbers in the Process Systems
Free~·Time programs are designated by the first six characters of their
name.

PURPOSE OF THE LANGUAGE PROCESS ING AND TEST Fffi\it.:TION

The purpose of the Language P:i::-ocessing anci Test (LPT) Function within 1 ~
tht:. Free-Time System is to provide the user with the ability to compile,
test, and maintain several libraries of programs. This is done during
the free-time which is availabl8 even while the GEiPAC is on-line·. Both
real-time and free-time programs may be processed and maintained by LPT.
Provisions also exist to maintain the system common symbol table and the
FORTRAN subroutine library. All of these functions are requested by
control cardso

1. Language Processing ~ Compiles FORTRAN and PAL language programs
and enters them into the free-time, real-time, or TEST library
on request.

2. Testing - Tests the compiled programs under real-time conditions •

.3,. System Protection - Protects the system from the actions of
untested programs by using the memory and input/output protection
hardware.

602 SYSTEM CAPABILITIES

The System has the ability tog

lo Request 9 through control cards~ the execution of real=time programs
associated with the process 9 or free 0 time programs independent of
the process 9

2o Compile and/or test programs during on=line operation of the GE/PAC 9

3o Add or remove programs from the real=time~ free=time~ or FORTRAN
subroutine libraries~

4o Add or remove tables from the data table library (option)~

5o Permit modification to the list of common symbols,

60 Protect the system against disruption by untested programse

6.3 SYSTEM PROTECTION

System protection prevents an untested program from destroying information
outside its own area or from disturbing the rest of the systemc

Any untested program is allowed to~

lo Branch to any location within its own area,

2o Store into its own area or free=time permanent core area.

Monitor and Input/Output subroutine requests are trapped and interpreted
before they are executed~ because untested programs must not have access
to such devices as the Multiple Output Distributor~ Time Output Contact,
Scanner~ etco

=3-

6 .4 SYSTEM REQUIREMENTS

6 • 4 •. 1 H.MDWARE

Input to the Free-Time System is accomplished by punched cards; output
is by optional punched cards or printinge Certain devices are required
for a minimum systemo These are:

le GE/PAC 4050,4060 - 16K Core Minimum

2e Bulk Storage Device

30 Card Reader

4o Input/Output Typewriter

For optimum system communication, a second printing device is reconnnendede
This could be an Anelex line printer, a Selectric output typewriter, or a
Model B output typewriter. Also, if it is desired to maintain binary
card decks for back-up of all programs, a card punch is a required
peripheral device~ (See COMPILE Control Card, P. 26.)

SOFTWARE

The Monitor used with the Free-Time System contains communication for the
peripheral devices chosen.

Programs in all libraries must conform to the following rules:

1. All programs must be assembled with a starting location of
zeroG (The ORG or DCW pseudo-ops are considered illegal by
the assembler.)

2e All storage areas not relative to the program must be in
permanent core or bulk storage;

3. All input/output requests must be made through standard Monitor
or FORTRAN connnunicatione

-5-

6.5 SYSTEM ORGANIZATION

6.5ol BULK ORGANIZATION

Sizes shown below are approximate, They are given to indicate
the relative size of the units within the Bulk Organization.

Various
Sizes,
Static

Fixed

Various
Sizes,
Static

Various
Sizes,
Dynari1ic

{
{

\. r

"-.
f

\..

12K

22K

BK

2K

A

B

c

D

E

F

G

H

I

J

K

L

M

N

0

Monitor~ Submonitor, OPR

LPT Programs

LPT SAVE Area

System EQL Table

Real=Time Library Catalog (Optional)

FORTRAN Library Catalog

Free-Time Library Catalog

Data Table Library Catalog (Optional)

Untested Library Catalog

Real-Time Library

FORTRAN Subroutine Library

Free-Time L~brary

Data Table Library (Optional)

Untested Library

Temporary Bulk Area
(LPT Scratch Area)

\

6.5.2 CORE ORGANIZATION

1. GENERAL

Address 0 The Monitor shown includes all peripheral devices
needed by the Free•Time System plus a full Sub­
monitor. It does not include those 4rivers
associated with Process I/O, nor does it include
permanent core system functions.

~4K

(N·B)K
or

(N-S)K

NK
(N2: 16)

Monitor

COMMON

Real-Time Core Area

When the LPT is running, this area of core is
used for its programs.

NK =.Maximum Core Area

2 • LPT USAGE OF CORE

A. Language Processing

BK
Compiler

or
Assembler

-8-

B.. Testing {numbers are approximate)

/\/lK

/\/ 4K

Memol;y Pro~ect
Software

Program Being Tested.

6.5.3 PROGRAM ORGANIZATION

Real-Time Real-Time
Pro ram Pro ram

Highest Second
Priority Priority

Real-Time
Program

Third
Priority

Free-Time
Executive
Program (FTX)

Lowest

(Free-Time programs are not assigned priorities.)

Priorit

... -----··~-----·-----~·---
Free-Time
Pro ram

Free-Time
Pro ram

TEST

Language
Processing_,
and Test
Function (LPT)

Free-Time
Pro ram

F_QRTRAN

PAL
ASSEMBLER

Programs Being Tested ------..,-------~--,.-------------- ...
a b c

-9-

Real-Time
System

Free-Time
System

Language
Processing
and Test
Function

)

\
,/

6 .. 6 SYSTEM DESCRIPTION

6.6.1

6.6.2

..
'l

FREE-TIME EXECUTIVE PROGRAM (FTX)

The. Free-Time Executive Program is under direct control of the Monitor
system (as outlined on P. 9). It is called via· the ·Real-Time Executive.
Program by the INP1IT DEMAND Button on the ·card reader. The Free-Time
Executive Program finds the name of 'the program to be executed by read-.
ing a JOB Card. When the JOB Card calls for a free-time program, the
Free-Time Executive Program makes request for Monitor to operate the
program.

If the JOB Card requests a valid real-time program, a request is made
to the Real-Time Executive Program to execute the program. Some real~
time programs may not be called by a JOB Card. For example, the Output
Program is only turned on by the Output Request Subroutine; the ·Input
Program is initiated by the Input Driver, etc.l When a request is made
which violates the Monitor system rules, the JOB Card is ignored, and
an error message is printed.

JOB CONTROL CARD

The JOB Control Card identifies the beginning of the card deck associated
with a job. The JOB Card specifies the program to be turned on, and, if
it is a free-time program, specifies a heading lL~ for printer output.

i

The JOB Card contains three fields, separated by commas. The" last ,field
terminates in Column 80. Single blank columns are ig,nored except in the
heading, and may be used anywhere for clarity._

The first field of the JOB Card must contain only the word "J¢B".

Th~ second field contains the program name or number and is- ~nterpreted
as; follows:

1. If the first character is numeric, the field is assumed to con­
tain three or fewer digits, which is the real-time program number.

EXAMPLE 1:

Real-Time Program - Called by Monitor Priority Number.

1Refer to Appe~dix A.

-11-

EXAMPLE 2:

2. If the first character is alphabetic, .the first six characters
of the field are_ used as the name of a free-time program ..

If the program referred to is a free-time program, the third
field is used as the printer output-heading for the job.

Free-Tipe Progrprn with Six Le~ter N~me and ~o Pfinter H~ading.

EJ.AMPLE: 3:

Free-Time Program with Name Less Than Six Characters and Printer Headin~.

~XAMPLE 4:

Spaces Added for Clarity Using Example 3.

EXAMPLE 5:

Free-Time Program With A Name of More Than Six· Characters.
The first six characters (spaGes deleted) make up pr~gram name ..

EXA.~LE 6:

Abbreviated Form of Example 5.

Any JOB Card which does not follow the prescr~bed form?t is ignored by
the Fre-e-Time Executive Program, and the card is print~d, -fpllowed by an
error message.

-12-

(

(
"·

6.7 LANGUAGE PROCESSING AND TEST (LPT) FUNCTION

6.7.l GENERAL INFORMATION

The LPT Function is used to compile, test, and add new programs to the
over-all program system.

The LPT Function has the ability to:

1. Compile and assemble, then:

a. Output the program to bulk,
b. Execute the program ("compile and go"), and
c. Output a binary program deck (Card punch necessary).

2. Load a program from binary cards, then:

a. Output the program to bulk, and/or
b. Execute the program - "load and go" (Card punch necessary).

3. Test programs stored in bulk memory. The programmer may:

a. Make octal corrections,
b. Take snapshot dumps, starting and ending run addresses,
c. Specify a bulk memory area in which storing of information is

permitted,
d. Specify the availability of each input/output device.

4. Maintain programs in bulk memory which are:

a. Run under control of the System Monitor,
b. Run by the Free-Time System,
c. Available to the TEST System.

5. Maintain a library of FORTRAN subroutines in bulk memory.

6. Maintain a library of data tables (optional).

7. Maintain a table of symbols and their values or locations which
have been specified as "connnon", and to provide the ability to:

a. Add or remove symbols from the common symbol table,
b. Remove the entire connnon symbol table (Card punch necessary).
c. Load a new common symbol table from binary cards (Card punch

necessary}Q

-13-

6.7.2

The LPT Function consists of:

1. A series of programs, each designed to do a particular function,
such as read cards, check card validity, compile, test, punch
cards, and print.

2. A sequencing program which processes control cards and chooses
the programs to accomplish the desired function.

Programs may be entered into the Free-Time System by one of two methods:

1. Compiling FORTRAN language statements.

2. Loading binary cards produced by the GE/PAC language·processor.

The program name or number and the particular library into which this
program is being placed are specified on the COMPILE or LOAD Control Card
preceding the input deck.

Program libraries exist for the following:

1. Real-time programs (numbered programs, 1, 2, 3, •oo) executed
directly by Monitor. The system status of these programs must be
specified when the program is entered in this library.

2. Free-time programs (six character alphanllllleric names, LOAFER,
CURVEF, etc.) executed by FTX.

3o FORTRAN subroutines which may be called by any program when that
' program is compiled.

4. Data tables (numbered) which may be retrieved by any program
(option).

So Untested real- or free-time programs, executed by LPT under
surveillance of memory - protect hardware and software.

LPT CARDS,. GENERAL DESCRIPTION

Single blank columns may be used in coding for formatting and clarity.
They are ignored by the LPT Function. Two blank collllllns in a row signify
the end of information on a card.

Four types of control cards exist for the LPT Function - Action, TEST
Operating Condition, System Protection, and END. These cards are
explained in detail, with examples, as they arise in the text.

-14-

6.7.2.1

), .
I

6.7 .. 2.2
~~

6.7.2.3

·.

Action Control Cards

Action Control Cards indicate actions·- taken by the LPT Function:

a. FIN-'· --signifies the end of a job. All programs in temporary
status are removed, and control is returned to FTX which
will p·rocess the. next JOB.

b. LOAD - loads the following binary program or.symbol table card.
deck into bulk storage.

c. REMOVE - removes from the system a program or symbol t~ble which
has been entered by LOAD or COMPILE.

d. COMPILE - initiates a FORTRAN compilation or a PAL assembly, and
transfers the object program to bulk.storage. With a
card punch, a binary deck may be produced.

e. TEST - transfers a free-time untested program to core for
execution by LPT.

The Rfu.'10VE Card can be followed only by an action control .. card •. ·The
FIN Card can be followed only by a JOB Card.

Each of the others is followed by either language cards to be compiled,
a binary deck to be loaded; or cards givi~g TEST operating conditions
or data.

TEST Operating Conditioq Cards

TEST Operating Condition Cards are_CORRECT,.DUMP, and EXECUTE~ These
cards modify th~ program, specify the breakpoin~s_for dumping, and
supply additional information for pr~cess~ng environment.'

a.

b.
c.

CORRECT -

DUMP
EXECUTE

c.orrects the program as it· exists in ,core, using -
symbolic or numeric address'es and octal contents.
gives locations and-limits for snapshot dumps.
·executes the program betwe-en. given ioc-ations.

Svstem Protection Cards

System Protection Cards are BULI\ STORE, INPur, OUTPUT,- and PROGRAM ..
These cards specify the memory and input/output protectio~ du~ing -
the testing of a program, and define those real-time programs which
may be legally initiated by that program. -

a. BULK STORE - specifies the bulk area into which the program
being tested may write.

bo INPUT. - specifies the input devices which the program being
tested may use.

c. QtITPUT - specifies the. output devices which :the program being
tested may use ..

d.. PROGRAi'1 - allows the program being tested to· initiate the_
execution of programs in the Real-Time Library
through the Real-Time Executive Program ..

. -15-

6.7.2.4

All of the .Type 2 and Type 3 cards listed abe>Ve have a variable format (
with fields separated by cornmaso Each' field-is uniquely,identified
by the first six characters or by the prepositions AT, FROM-or TO~
If there are less than six characters in a program name, blanks are
added for the remaining characters ,to form a unique six-character
identifier. (Any field may exceed six characterso)

Numeric addresses are assumed to be relative to the beginning of the
pro~ram except on the BULK STORE Card.

END Cards

END Cards are:

a. END COMPILATION
}:>. END TEST

indicates the end of a FORTRAN (symbolic) deck.
indicates the end of a program test deck.

Both of these cards must be followed by an Action Control Card.

Because of constant reference to these cards throughout the manual,
they are noted as they are first encountered. There is no separate
section explaining these rwo cards.

o.7.3 !:PT CARD USAGE

6.7.3.1

EXAMPLE 7:

Action Control Cards (Action To Be Tak~n)

FIN Control Cards

FIN signifies "end of job 11 and removes all programs in the system
that ara in ·temporary (initial testing) status.

FIN Control Card - No Catalog Specified.

An option on the FIN Cards all~#s, the progrannner 'to, determi~e what
programs are in the system and how much bulk_ storage is used by them~

-16-

0 EXAL'fPLE 8 :

) .,
·.-

. EXAMPLE 9:

FIN Control Card - Catalog Specified.

' If a catalog is requested, the following items are listed:

1. Names (Numbers) and sizes for:

2.

3.

a.
b.
c.
d.
e.

Real-time programs
Free-time programs
Subroutines in the
Data tables.

in "permanent" status.2
in "permanent" status ..
FORTRAN library.

Programs (either real-time
library.

or free-time) in the TEST

Total bulk memory required for:

a. ·Real-time programs
b. Free-time programs
c. FORTRAN 1 ibrary subroutines ·
d. Data tables
e • P"tograms in the TEST lihrary

Remaining bulk storage •

FTI{ Control Card Used with Ca~d Deck.

2Programs in PERMANENT status are under direct.control of the Free-Time or
Real-Time Executive Programs. i?'rograms in the,.TEST li~rary may be run only
under the LPT Function

-17-

The following illustration depicts Example 9:

FIN

J~B, LPT

GE/PAC
SYSTEM

When a FIN Card is missing or another card error results in ignoring
the FIN Card, a sqbsequent JOB Card may appear to.be out of sequence.
If this happens, the JOB Card is treated as, a FIN Card, and the job
is· ignored.

LOAD Control Card

The Load Control Card loads a binary program deck and symbol table
deck into bulk storage

The first field on the card contains the word. "LO.AD"

The second field ~n the card is the program or data table' number
(three digits), the first six characters (excluding blanks) of the
program name, -or· the word 'tsYMBOLS.~': In Example' 10, the letters·,
CURVEF represent the program name.· If no name is given, the LPT
Function assigns the program to. the TEST library in. tempora.ry status •.
An attempt to load subsequent programs ·wi'th no na~e stated,· p-i;ior to
a FIN Card, causes these programs to be ignored,. The, F'W Card caus;es
removal of such temporary programs. ~·

41

J,

The third field indicates the status of .the program as either
PERMANENT, KEEP, DA'rA, or FORTRAN (per Example 10). ,If-no status ~s
•specicified, the program is placed in the.TEST library in temporary
status_ and is removed by a FIN Card. This status indicates "what-­
happens to the material.once action, as directed by the control card,
has been completed_ For example, the status KEEP~places th~ material·
into the TEST library on bulk. storage', to b~ called only, by the .TEST·
Card. Status is discussed foll~ing Example 10 and its illustrations.

* Revision ll67 .-.18-

:.l EXAMPLE 10:

\i

"'

Load A Binary Deck and Symbol Table

The following illustration depicts a binary LOAD deck produced by
the iree-Time System (with optional card-punch) and its storage (from
Example 10).

Sepai:ator

Binary deck

.Save Status
Cardl

Lf)AD

J~B, LPT

GE/PAC
SYSTEM

The followi~g illustration depicts a binary LOAD- deck from some
source other than the Free-Time System._ A symbol table is
expected by the loader. If none exits, as per illustration, an

1The SAVE STATUS CARD contains an 8-digit octal number in Columns 1 through 8,
stating the size of the Save Status Area for this program. It is punched by
the system when binary cards are requested. It must be hand-process~d and
a9ded to the deck if the source is other than. the Free-Time System.

-19-.

1

extra blank· (s~parator) card must be included. This figure also
applies to the coding from Example 10.

Separator

See Footnote on Page 19.

Save Status
Cardl

No Status Specified

L~AD

J¢B, LPT

GE/PAC
·s·tsTEM

If no· status is specified on the LOAD Card, the program. is placed
in the TEST library in temporary status and is removed by a FIN·
Card (per Example 11).

EXAMPLE 11:

I 2j3 ·Itl6~_1I91~12fi3 u Uh• 17 19 19 20 21J22 2n•!2.s:_u•;:n21tnil0 11 ll l~l• JS~ 37 381391·~·;42 •ii•· '5146 •1 •!l.o sos11s~1.5"3fs~isss6!s1 ssr;.1.aol~Ml .. ,.;r,H7 6llf69 7~11in 7317' 75 76 77 78J7• SQ '

o i:0B1, 1 .r.um 1 r. 1 1 I 1 l 1 . · · ! i I 1 T ! o
1ti0A~20liBvE iEJl!· 1 n u 1 1 1L1 : 1 r i

2 l }IT J~ ·f'l' I l 1 11 !... l l i I I I 2

a l 1 .>1 [Qr.cg.ram ~ 1ec! i ! I l T l i 1 · l T. i I !

4 l i ~ ~I 1 I l I ! i I I l i 4

5 Il~tri' Jil:(~/J~ !:BJ.T I l l ' l ! I I I l 5

1i ! l 1 l 1 !~ •:'! 1 1 ! T I T ·IT I 1 I I t 6

1 • I 1 1 ~: ~ !~e~m: '<\e¢l<l ' 1 ! , 1 1 1 1 i , 1 1 1 ·1 1 , ·! 1

0 ! I I : ~;_ eJ1 ! I 1 I l I ' I l i I I I . I I j H j I l T I 11 I j f l I G

I R!N tnF T. l ~ . I 11 I I ! J L I 1 I I L j : .L I

ztf.UN 1 1 }._ 1 1 .1 1 1 1 1 i r 1 1 1 1 1 TT 1 1 1 1 2

l l _l l I I l I I I 11 l I ! J 1 L I . ! T ~ l l_ - 3

Load A Binary Card Deck and Symbol Table for Testing.

(The program is in temporary status and is-removed from the
system by the FIN Card. Note. the·use.of the.END TEST Card to
halt the testing.)

-20-

(

(

:> The figure below illustrate~ the LOAD deck for Example 11:

1

Separator FIN _____ _.....__,

Save Status
Cardl

Se~ Footnote on Page 19.

KEEP Stiatus

L¢AD

J~B, LPT

·Programs in KEEP status are.retained·in the TEST library following a
FIN Card and may only be called by the LPT Function via a TEST Card.

I

.EXAMPLE 12:

To Load A Program for Subsequent Testing and Catalog Listing.

In Example 12, the program is placed in KEEP status._ · It is 110t f~­
moved by the FIN Card and need not be reloaded for.· subsequent tes·t­
ing. A listing of all program libraries and the bulk storage allo•
cation (the catalog) is produced on:· the printer~

-21-

The following illustration depicts the deck, its storage, and the
catalog printout:

FIN

PERMANENT Status

J¢B,LPT

GE/PAC
SYSTEM

Catalog

Programs in the PERMANENT status are also retained in bulk storage
following a FIN Card. They may be- initiated. either ·by the Free- ·.
Time Executive Program via a JOB Card or. by the Real-Time Executive
Program via a program turn-on.

Prbgrams placed in PERMANENT status must be identified by:

1. A number, for a real-time functional program operating. under
·the Real-Time Monitor Executive- Program, or

2. A symbolic name, for a free-time library program which is
called with a JOB Card.

·A PERMANENT program operating under control· of the.Real-Time Executive
Program must have its operating parameters specified on.the LOAD Card.
The follo~ing states are assumed if no status is specified on the card:

-22-

(

) 1. The p~ogram's core area is available for use by higher­
p~iority programs.

2. The program can be initiated by a JOB Card.

3. The program·contains FORTRAN I/O requests subroutines, and/·
or functions.

Operating conditions other than those shown above may be specified
as follows:

· 1. UNAVAILABLE

2. N¢ J_¢B'

3. N)i SUBR~INES

Every LOAD Card specifying a PERMANENT real-time (numbered) program
must specify those conditions which will differ from the stated
assumptions.

The following examples give the coding for loading finished programs
with PERMANENT status into free-time ·and real-time libraries~

EXAMPLE 13:

i ·To Load A Finished Program into The Free-Time Library.
l
'

IniExample 13, the program is to remain in bulk storage for .regular.
use by programmers. Following this job, the program may be initiated
by a JOB Card • - . ·

·-~- ---------
In Example 14, the program will remain in bulk storage and can be
initiated by the- Real-Time Executive Program. The program will not
allow its core area to be used by another program during· its
execution. The program cannot be initiated by' ·a J'OB Card.

-23-

EXAMPLE 14:

EXAMPLE 15:

·'

FORTRAN Status

An additional status, FORTRAN, is used for programs which were
compiled as ,FORTR..J\N subroutines.' These subrqutines are loaded
without symbol tables (per illustration, 'p .2q).

To load a binary deck into the FORTRAN subro4tine library, use the
following instruction: L0AD, (program name), F~RTRAN.

When it is desired to replace the removed system symbols, the binary
deck produced by REMOVE, SYMBOLS (p.25) is preceded by the instruc­
tion L~AD, SYMB,QiLS.

REMOVE Control Card

By using the REMOVE Control Card, programs may be removed from any
library, or the conunon symbol table may be cleared.

The first field of the REMOVE Card contains the word "REM.¢vE".

The second field of the card contains -~ither the th:ree".'digit number
or the six-character alpha-numeric nam~ of the program, or the word
0 SYMByiLS" ..

i
The third field contains the status of the program (PERMANENT, KEEP,
DATA, or FORTRAN).

1 iJal •I sJ~~1sJ!.Gf.ffi2:1~14l15!10i11}i3 19\2m1!22)nj2•j;1;i1'!21l:njn'Jo 31\~ 1d3s[~_l1 '91-"'1"'1 .'1\"1 oj .. j._,'.,, 47i•sl•91511 s1 s2\::[_s•ls~s• sis• s• h<ll«l~~J ••1Hf .. lu16& oi.970t11 172 ttl1• 1S 10 11!1!\.7!1!0
0 :f~~: ! n· u 11n1111111 1 l l l~ 1 l .I l 1 ! I I l l 1 t l r o
l B VE,~LEAsTi 1soums~K'.t1E1P u 1 1 1 l ' Il l lT I I I 11· l .I Ill 1

I 1 1 I ll l I T ill 2

-T l ll 3
·r4 4;1·~~+I !Jl I!]] 1 · 11
l ~ tff : I ·~f(jJ I : ! l T I I I J j l j II I I Tl I I! I I l 1 ' l t • lrf~.LJIJJ I I 1IlTTL l Li J J ,_._ ! __ lJ ' I , 111 T ! I I I 1 1 t JlJ 4

,,

Remove TEST Program "LEAS:Tsn and Real-Time Program Number 41
from The System and Print. a Catalog.

-24-'

(

:,

/

0 The following illustration depicts Example· 15:

FIN

REM~VE

REM¢VE

Jg)B; LPT

Two
Programs ---­ GE/PAC

SYSTEM
Catalog

Removed

EXA..1\ifPLE 16:

When REMOVE, SYMBOLS is requested, the symbol table dumped on binary
cards. This is an option - a card ·punch is necessary.

. Load A Symbol Table In Place o~ The Current-Common SyD:lbol Table

As shown in E~ampie 16 and the illustration beloiv, before an existing
program or the symbol table is replaced, it. must be removed from the
system by a REMOVE Card.

FIN

Symbol Table..:::;;' -----t
(Removed)

-25-

J¢B, LPT

GE/PAC -
SYSTEM- ,.

" i

COMPILE Control Card

The FORTRAN (symbolic) language cards following the COMPILE Control
Card are compiled using the common symbol ta~le •. The generated ·
program is placed in.bulk storage· and is identified by the program
number or data table number (three digits), or the .first six charac-

. ters (excluding blanks) of the program name. This ·identification is.
the second field of the card. If no name.or number is given, the
LPT Function assigns the program to the TEST library in temporary
status. An attempt to load subsequent programs with no name stated·,
prior to a FIN Card, causes these programs to be ignored. The FIN
Card causes removal of such temporary programs.

The third field of the card is the status of the program and may be'
specified either PERMANENT, KEEP, DATA, or. FORTRAN. If no status is
specified, the program is placed in the TEST library in temporary
status and is removed by a FIN Card. Explanation of status, in
relationship to the COMPILE Card, with examples, .follows.

All symbolic decks beginning with a C0~1PIL.E Control Card must be
followed by an END COMPILATION Card. All cp.rds in the symbolic
deck must have a key 1{1 Column 70 indicating whether they are PAL
or FORTRAN statements. The symbolic card preceding the.END COMPI­
LATION Card must be an END Card (symbolic) with a 7 in Column 70.

EXAMPLE 17:

Symbolic Compilation to Cards (Program Deck).

In Example 17, the name DEMAi'ID is assigned.to the program. Since
PERMANENT, KEEP, DATA, or FORTRAN is.not given in the third field;
the program is placed in temporary status·and is.removed.by the ·
Flll Card. • .

1The numeral "6" indicates PAL.
The numeral "7" indicates FORTRAN~

(

·The followi~g illustration depicts Examp~e 17:

EXAMPLE 18:

FIN

KEEP Status

C0MPILE

J¢B, LPT

GE/PAC
SYSTEM

Program
Listing

Program
deck

Programs in KEEP status are retained in the TEST library foilowing
a FIN Card and may be called only by the LPT,'Function via a· TEST
Card.

FORTRAN Compilation - Program to Remain in Bulk Storage

'>
'1

The following illustration depicts Example 18:

FIN

ND.COMPILATION

C0MPILE

J¢B, LPT

GE/PAC
SY$TEM

·Example 18 shows a program which is not tested and may .only be
called by LPT. It is not removed from the System by the FIN Card.

PERMANENT Status

Programs in PERMANENT s.tatqs are also retained in bulk storage
following a FIN Card, but· they are.initiated either by the Free­
Time Executive Progra~ via a JOB Card or by the Real-Time Executive
Program via a program turn-on.. ·

j

Pr?grams placed in PERMANENT status must be identified by:

· L A number for a real-·time functional program op·e~a~ing under
the Real-Time Monitor Executiv~ Program, or

·2. A symba li c name for a free~time library. I>~ogram which is
called with a JOB Card.

A PERMANENT program operating: under· control 9f the Real-Time
Executive. Program must have its operating .. parameters specified on
.the COMPILE Card. The following -s-tates <fr·e- assumed {f no status is
specified on the card: -

-28-

(

) 1. The program's core area is available for use by higher­
priority programs.

2. The program can be initiated by a JOB Card.

3. The program C'ontains f'OR'l"RMT I/O ·requests ·subroutlnes, and/
or functions.

Operating conditions other than those shown above may be specified
a·s follows:

1. UNAVAILABLE

2. N¢ J¢B

3.. N¢ SUBR~U!INES

Every COMPILE Control Card specifying a PERMANENT real-time (number~d)
program must specify those conditions which.will differ from the
stated assumptions.

FORTRAN Status

An additional status, FORTRAN, is used for·programs which are to be
compiled as' FORTR.L\N subroutines. Th~se may be called by any program.

NO LIST Option .

I
The NO LIST option suppresses symbolic listing of _both input state··
ments and the genera~ed PAL .coding ill order to increase speed of·
c·ompilation.

CARDS.Option

The. CARDS option produces a deck which_ consists of:

'
1. A binary program deck (including all subroutines.which have

been obtained from the FORT&&~ subroutine library) •

2. A S?parator (blank) card,,..

3. The symbol table used by this pr·ogra;m.

4. A separator (blank) card •..

Each card in the deck will contain the six-char-act.er or three•digit
name and a sequence number in the .last ten columns. '!'his deck may
be loaded using a LOAD Card. ..

-29-

EXAMPLE 19:

t 1 31•!5 ·-~ 8 911~ 12\n 141~6171819202122l32•2s;i&l21!:isT29'° 3132 J 3• lS ~~7 JSl39l4EJ 41•2 43.4.C •S 46j'1i•a!49 so s1Lsi1s3 s•lss[so s11~!s~!•o
1 61 ~2 63 •• 65 M67 68 69 10 nln 13J7,'75

I
1e n{ao 7• 17

1t re;B": Tm l'IlTf · l I T I I I I I T IT l· 0

1 iClfl'YlP],I) ~l lRrJs i 1 I 1 ! ! I r l

2 il i -I l ! ~- J'] I J _j 1 I I l 2
H-f-·:

3 . i . .; ~1swasu :il(; ,d__E <il 11 i -r I : I I j 3 I

• I ~-~@ij ti fl -,
1' i I •! I 4

I I I (I
S 11"! :NO iCdf ~nmj· 1 1, I T 1 _;_ ! I 5

6 pl IF lt ~1J 1 I I l I I I T I 6

7 I l ~~ 11 :- • 1:. ot:ner :cane: s 1 1 1 I I I ! I ! I I I i T, l I 1

OJ. I l l I ~- I I T ~ l l J I 1 I IL l:l I I I j l l I l l I I I 0

irJJN ! J: liJ I l I _t T T l I 1

z •. IIIlJ IJ I~ 111 I 11 Lill l IJJITT TT T T
!l

I 11 T [Lz

FORTRAN (Symbolic) Compilation - No Name Specified.

Since no name is specified, temporary status is implied. A card
output is specified. The compiled program is not tested. It may be
loaded and run for testing purposes ortly, under control pf LPT.

The following illustration depicts Example 19:

f'

FIN

Program deck

SYMBOLS Option

Symbolic deck

c¢MPILE

--{ J¢B, LPT

GE/PAC
SYSTEM

Sy-mbolic

and J Octal
Listing

The SYMBOLS option of the COMPILE Card adds the common symbols to
the common symbol table from the program bei~g compiled. When the
same name is defined in the common symbol table, both before com­
pilation and in the program being -compiled, only the. value fr'om the
program being compiled is saved.

(

0 EXAMPLE 20:

EXAMPLE 21:

FORTRAN Compilation ~dding The Commqn Symbols in Program 29 to the
Common Symbol Table.

The following example shows a batch compilation of several programs:

I 213 ~ s ~ ;19 -I~ 1_tl13J u 15l16l11 18 19 2012i, i2j23\2•!"· l~ 2121j 21iJo JI J2ill!J• i:L.~11~1 l91•o •tl~i· '3 .. " 4d •11..:~· 50 SI 52(53 5' 55JS4 S7JSl''S9/60'41J62i63/6•J6Sj&6 67 6816• 7_G 11172 7Jj7' n 7S 11'1e 79 lC ,,

o io\~1 .. 1 .tJ?rrt., 1-MTmH LJ :81L1rn1 1 1 J I Tl 1 1 1 1 l i 1 i I o
I ifl)Mi-1'1 · 'R l j j 1 l J t 1 1 I l j 1 ~ 1 I I 1 l I

2 I 1~· I l\ ·f'i l]] I] f I I J l l 1 i i J] I j 2

l i l:i I l; •1 > S!Ymbid,liJc !rec~] 11 l 1 1] i]. l I 13

I I r. I LJ ~ ! I J _U tJ I I I I ! I! 1 ! ! ; If l 1 I: ; I I 111 I 1 4

5 Nt fnlWPi I :IU\(l:Il©l\. I I l f ! I T l 1] J ; 1 l 5

s 1Jivl1prrifY. J_.nzr!AlN'D1, !r<lEm -TJ ! 1 1 1 1 i 1 r i 1 i 1 6

.1· ri.- 1 : ~d~! , , . 1 : , 1 1 1 , : T I 1 . ·r 1 ITT T , ; · , . , . 1 1 ,_ ,

11 I~ I l J •:\[!Stvmbi'dl!ilc 1cil~dki : i ; 1 ·: i 1 I 1 l l 1 ! 1 i ' I i l I i J ' i ! I J i 0

• I!· rm- ·17i , . J 1 1 T 1 1 ~ 1 1 1 1 i ; , 1 T , 1 1

z IN, 'rl)J:~VI L©N l T I I I I I I -4- I I l I ! I J i l t T ' 'Z

3 1tif..it,1-1u_tr:.1 1 I RV!Fl i'FiTm,i R1EIE1P!>f r~gims t T ~ 1 T 1 : r J T ~ 1
' I l ' I , ·:I : I II I ; i I ' l l t ! T l i l T. 4

5 ! < I . n ls I fr.• il!i!c _!d!_ed~ l I l I I I 1 j j t I I I 5.

' •• I • ·J] ' II Ii i 11 1 I T l ! T 6

7 N· crJJ·· ' :L\iTJif'i1N, n I I I l ; l r I I . I ! l T I ' f J t j I t 1

11 T ,N I. j ·;i J l I I I I L 1 I I l j i f I J l ' j I . I j j J I I I I 1 J l l 0

• t_ i If T 1-.: I '·- J 1.1 n n I I I 1 '1 .T JT 11 1111 rr T j_ . -]J 1

FORTRAN Compilation of Several Programs in Various Stages of
Testing.

-31-

The following illustration depicts Example 21:

FIN

END C0MPILATI¢N

Symbolic deck

C¢MPILE

Program deck

END C0MPILATI0N

C¢MPILE

J¢B, LPT

GE/PAC
SYSTEM

-32-

Program
Listing

·(

,<
!

DIAGNOSTIC Option

Using th~ option with DIAGNOSTIC in the second field, generated programs
are not saved, and the compiler produces.ft printout· of all input state­
ments. All statements containing errors are indicated with the proper
error message. The corranon symbol table cannot be revised ~o include the
common symbols from .this program. The FORTRAN (symbolic) deck is follow-
ed by the END COMPILATION Card. .

- EXAMPLE 2 2 :

Compilation (Diag110stic)° with Symbolic Listing.

The following illustration depicts Example 22:

FIN

END CfOMPILATI~

Symbolic
Listing

Symbolic

9f1PILE ,DIAGN¢

-33-

J0B, LPT

\
GE/PAC
SYSTEM

' '~ C~ILE, DIAGN,e)STIC, Nf) LIST suppresses all print:ing- other than state­
ments in error plus corresponding error messages. The following coding
example and ~llustration show the use of this option.

EXAMPLE 23:

Compilation (Diagnostic) and No Program Listing

FIN

Other cards

Error
Listing

Symbolic .deck

C¢MPILE ,DIAGN¢>

Other cards

GE/PAC
SYSTEM

-34-

)

~i
jJi

TEST Control Card

The TEST Control Card has a first field, which contains the word "TEST",
and a second field which is the thre·e-digit or six-character name ·of the
program tcr be tested.

The program named on the TEST Card is tested as follows:

1. The program is called from ?ulk stora~~·

2. The operating conditions are set using:

a. System Protection Cards - Section 6.7.3.3
b. CORRECT Cards for modification - Section 6.7.3.2-
c. DUMP Cards to initiate snapshot dumps - Section 6.7.3.2

3. The program is executed. (EXECUTE Card - Section 6.7.3.2)

4. The TEST is terminated by an END 'l'EST Card.

_.,END TEST Card

At least onet EXECUTE Cards
EXECUTE Card DUMP Cards
is necessary. ~
More than onel
may be used)

More than one of each of
these cards may be used.
None are required.

System Pro­
tection Cards

TEST Card

The program named on the TEST Card ;nay be either symbolic or numerico
If no program name is given, the te.mporary program is assumed. The·
TEST Deck must be followed by an END TEST Card.

EXAMPLE 24:

Programs 31 And LE.AST SQUARES Are To Be Tested.

-35-

Example 24 shows two tests performed following_~nd prior to other portions·
of the LPT Function; therefore, neither JOB nor FIN C~rds are indicated~ · ~
The following illustration depicts Example 24: •

Other Cards
END TEST

deck

TEST
Listing

TEST
END TEST

TEST

Other
Cards

GE/PAC
SYSTEM

A 4K core area (4032 locations) is available for testing a program.o An
attempt to test a larger program r~sults.in loading and testing only' the·
first 4K of the program.

The program symbol table allows a maximum of 640 symbols. All syr.µbols
exceeding 640 are dropped after compilation and are not available ~or ·
symbolic references during a TEST.

A TEST segment is defined by the starting and ending locations stated on
the EXECtrrE Card. If no starting address. is. specified, the segment··· begins
at Location Zero.

Only one program at a time may be tested~ However, each program may hav:e
more than one TEST segment. These TEST_ segments can be tested consecutively .
using only one TEST Control Card, with condition cards :and EXECUTE Cards
initializing segment testing.~

-36-

(f

All cards specifying conditions for the first TEST segment of the
program must follow the TEST Control Card, but prece~e the first
EXECUTE Card. Similarly, all condition cards for the second.TEST
segment of that program must follow the first EXECUTE. Card and
precede the second EXECUTE Card, etc. {See Example 25 and its
illustration.)

EXAMPLE 25:

Segments of Program 31 Are To Be Tested·

The following illustration depicts Example 25:

END TEST

EXECUTE,FROM
/---
11 Condition Card~

TEST
Listing

EXECUTE,T~

Cards

Other Cards

GE/PAC
SYSTEM

}Program
31.

. TEST Deck

) "6.7.3.2

EXAMPLE 26:

EXAMPLE 27:

TEST Operating Condition Cards (Test Parameter Cards).

EXEClITE Card

The EXEClITE Card initiates the ~unning of' a program se~ent. I~ gives
the first (FROM) and last (TO) locations to be executed during the
TEST of this segment.

If the FROM statement is not given, execution starts ·at the first
location of the program. When the TO statement is not give~, the
segment is terminated by either the maximum time being exceeded;' a
program turn-off, or an invalid branch instruction.

The maximum allowable running time for each segment of the TEST is
specified on the EXECUTE Cp.rd in minutes. If no tlme is specified
(per Example 27, following), the maximum real-time allowed is set
to one minute.

When an EXECUTE Card is en~ountered,·the program is executed' start­
ing at the FROM location apd continuing until:

1. An invalid branch instruction is encountered.

2. The TO location is executedo

3. The maximum time limit specified on the EXECUTE Card is
exceeded.

4. A Monitor Turn Program Off request is,encountered. (Refer
to YPG51M - MONITOR USER'S YiANUAL.)

Execute A Program From the 10th Location After The.Beginning Of
The Program To The Symbolic Location G¢BACK

(The maximum ~eal-time allowed for the test is three' minutes.)

The following example shows, coding which executes a program_
from its origin to Statement $20:

--39-

Since no time is specified, the maximum real-time allowed for the test . (.
is. one minute •

In the exampie-below (Example 28)~ the EXECUJ::E Card is shown in use with
other cards and a program decko

EXAMPLE 28:

This coding loads and executes a program from its origin until it turns
itself off'• but for not longer than two minutes. If an invalid branch
is encountered within the deck,. the program will be ··turned off. Because
of :KEEP status, the program will remain in bulk stp-rage after the run ..
The. following illustration depicts Example 28:

TEST
Listing

FIN

L¢AD

J¢B, LPT

-40..:.

GE/PAC
SYSTEM

END TEST

EXECUTE

TEST

) .
I Data cards which are read by the program being tested must follow the

EXECUTE Card for the segment(s) containing the READ statements.

CORRECT Ca.rd

The CORRECT Card pe~mits octal corrections {only) to be made to a
segment while it is being tes.ted. It also permits insertion of data in
a symbolic common location. Numeric addresses are assu.~ed td be
relative to the beginning of the program. Corrections are sequent.ial,
starting with the location following AT. Corrections are right­
justified if less than eight digits at length, and two consecutive
commas are interpreted as "skip one locationu ..

EXAMPLE 29:
1 2 JI, j s J4

1 iFfi~ · 12Ji3lul1sji6f1fi;r1~ 2alaj°:iiul:ilzs2ol21!21b'I'° 11 12!J~ 1•l;s;fl7 l! l'll~ <tl•~o' ,J45' 46 ,,!.s!•9flo s1inJs1s•!sslS6 srjsals9i60J•1 •2!•1•0A!l_66l•1l•a o 1~ 1±2 n!" 15 1•ln ,1sh1woj

n ! T ; I l •)_ ! 1 l I TT ITT 1 l I T ! TT f ! T f I J J T ! 1 l I T I TI l i · l l _ I jo
t l I ~~ J ! •! > Id~ ica'tds T I l ! l l j T T 1 ! I I ! l l J I 1 J I 1 l

z 1 1 i .. ~~: ·1 , , I 1 1 1 m 1 i 1 1 I i , l T r 1 1 l 1 1 1 1 I 1 1 I 1 r 1 2

l 0RREGTt'i :R ~ :RRAY1'1 12~or5noao ,1 14!.,, 11 ~wr,i r i : T 1 1 1 : : T 1 T T . 3

• -:Iwl. ·r' r Ti in 1 1 1 u 1 r , T r n 1 1 T: i 111 1 , 1 r 1 1 1 , 1 1 1 4

s .: l l ·- 0 1 ~Teitln~1i-+c'9Tds I T 1 i ! T T : 1 I 1 I I T ! 1 I l I I j 5

5 ~J. TI ~': •; TIT IT I I IT l Ti T 1 1 l I I l T IJ l I i L 11 I l l 1 l I rT]s
1 ~ IT !ill : l 1 II I 1 I I l 1 TUT l 1 l TT i T I 1 I 1 I · JI TT T rttJ? .~

.. ..

In Ex~~ple 29, there is one·eight-digit correction, one correction
with four leading zeros and four digits, followed -_by a skip and a
word qf zeros.. The last comma can be remoyed without af fee ting the
correction~

EXAMPLE 30:

t 2bl • 516 J; s J 9]10 : 121ujr./t5h61t1j111nl20/n[;12Jnjuh5< i&\r. 2Sj J; n dn' 1~n!iof:itf3lli 39 •o' •tl~o "lo •6., •aj,qlso }l s2!53fs•jss1 s4js11sa s9f4ol•1J62l6l16•JHl66]67 6! 69 10 njn n)N 1s 1&J7d1a 77'aoj

0 ! I ' l I ; •_lt_ J 11 J I] l 1 J · i. I 1 ! f l 1 TT , ' I : I I I l ' ! Ti I I . j I 0

l l . I , ~lod1e~ l;fa_~~ l ! 1 l ~ ! I 1 1 l J l l l j IT j r 1

2 1 JJ_._. • 11 r i 1 1 n n I u1 · n Tn 1 1 1 1 IJJ tTLT I 2
3 ~M~TefJ:A.-, iif~'.'1 ~~Of!.OPOOr ; l T TT I 'J I ! .. I J J I 'i 1 IT I 3
, 1 r Ji· •1-- 1 1 I , 11 , 1 1 i 1 T 1 1 i 1 f T l J ll t 1.1 r 1 1 11 11 ,. 4

$ j ; l t· •1 '} lu'L~ ' .~ ~ro~ n i Tl i l ! l I '. I l l IT I 5

, 1 " I I 1; •· n !J i rn T ; u 1 r 1 n l 1 l · I ~u I i : (1 1 1 1 s
1 I I . I J;j I I I I l I I I I .1T l ! i l T I TT j T ! I , ' -1 I l J ' T T ,_

This example changes the 44th (oct~l). locat~on from the beginning of
the program to the instruction ''brttnch tp here plus ·three locatjions·"
(BRU * + 3) o ..

A maximum of 10 corrections and "skips" may be entered on.each card.
Corrections are retained only until the ~ND TEST Card is encountered.
A maximum of 15 CORRECT Cards may be ent~red between EXECUTE Cards.

Si.nee a pI'ogram includes only instru9tioµ and. data areas. as compiled,
the programmer may use the additional area up. to 4K as needed for
patches during T~ST (ing).

-41-

The Dl:.Jl-t1P Car~ displays on the printer the' contents of the area specified
between the locations prefixed by the prepos~tians FROM and TO as they .:. "
existed prior to the execution of the designated instruction (AT.)G . The
format of the dump (Refer to Appendix E) is either floating- or fixed­
point decimal (integer) depending.on whether the FORTRAN definition of
the beginning (FROM) labels is floating.or fL~ed. If the definition is.
neither floating- nor fixed-point (example: $TEMP), the format is octal.
The format inferred by the label may be overridden by using a stated
option. Permissible options are INTEGER, REAL, and OCTAL·. This allows
the programmer to follow the data formats as declared at compilation. time

All DUMP requests are removed at the end of each program segment. ·Therefore,
all dumps desired between EXECIITE Cards must be specified~ When more than
five DUMP Cards are entered between EXECurE Cards, only the first.five are'
used.

EXAMPLE 31:

Example 31 she\vs coding to display the contents of the- loca;:ions from
MARGIN to VAR inclusive when the program reaches the 163rd (octal) loca­

, tion from the beginning. The dump is in fi:~ed-point foJ;;mat.

Instead of the preposition TO, the n.mnber of worqs cesired may be used
(per Example 32, below). When a FORTRAN. statement number is to be
specified as the symbolic location for· any o.f the prepositiop.s, 'the
number must be preced.ed by a $ (dollar-sign) o

EXAMPLE 32;

Exar.iple · 32 shows coding to display the cpntents of the 64-word. table,.
DIGITS, in floating-point format, when the program r·ea.ches Sfatetnent 20.

- '

When only one item is desired, th~ preposition FROM is not necessarily
included (as in Example 33).

EXA.t.'1PLE 3 3 :

) When the program reaches the 10th {decimal) location from the
beginning, display the octal contents at.the tempor~ry storage
loca~ion ITEMo {Example 33)

Example 34 below executes a program from its origin to Statement 20.
The TEST must not run longer than five minutes. TEST data is
entered into ATABLE, and the temporary storage of the program is·
displayed in floating~point format on.the printer when the program
reaches the fifth location after Statement 33. ·

EXAMPLE 34:

The following illustration depicts Ex~ple:34:

FIN

,0

L¢AD

J0B, LPT

GE/PAC
SYSTEM

Test Deck
and Dump
Listing

END TEST

EXECUTE

CORRECT

·TEST

-43-

Example 35 ('!compile and go") below shows coding that performs the
following:

EXAMPLE 35:

1. Compil~ the FORTRAN (symbolic) progra~ LEAST SQUARES and punch
.a program deck.

2. Enter a change at the symbolic location S'ffi1SQ.

3., Execute the program from Statement 3 to four locations after
Statement 10.

44 When the program reaches the fourt~ location after Stata~ent
10, display on the printer the contents of symbolic location
SIGMA in floating-point·(SIGMA is a FORTRAN floating-point
symbol).

5. Display the contents of the 150-word table starting at SUMA.

6. Enter a new value in ST.IMSQ and re-run the program from Statement
20 to Statement 10,.

7. When the program reaches Statement 30, display the contents of
the locations from TABLE. to BTABLE (inclusive) in floating­
point format.

8~ Upon completion, ~emove program LEAST SQUARES from the System.

Compile and Go.

-44-

)

The following illustration depicts Example 35:

- FIN

END. TEST

Program Deck

J~B, LPT

GE/PAC
SYSTEM Octal and

Symbolic
Listing

TEST Deck
and Dump
Listing

In Example 36, a program, ROOTFINDER, is in bulk storage in KEEP
status. Execute the program from Statement 1 t'C> the endo: when the
program reaches Statement 45, display the contents of the 48-word
floating-point table, ROOTS. Change the contents of the. 135th I

location from the beginning to a store instruction and repeat the
test. The program will remain in bulk storage after the test.

EXAMPLE 36:

Test Where Program i$ in KEEP Status (Bulk Storage).

-45-.

6.7.3.3 System Protection Cards

If no system protection cards are included in the deck, the program will
only be allow~d to store in its own area or in ,COMMON, ~nd branch within
its own area.

BULK STORE Cards

The BULK STORE Card allows the program,being tested to transfer data
from core to the designated area in bulk storage. Symbolic labels
must refer to absolute bulk storage locations. Numeric addresses must
be entered as octal. Bulk store parameters are effective until either
a new BULK STORE Card or the END TEST Card is encountered. The system

-must reserve a bulk storage area in order for the prograrnr.:ier to know
where on bulk certain locations exist. Example 37 shows coding for the
BULK STORE using symbolic and numeric addresses.

EXAMPLE 37:

1 2hj. , 6B~;~12l1Jhi!nt~l11'1a 19 20J?1!~3jz;/2siu.l11i:sl1.TJ0 31 l2 :lJf~;fJst 36jJ7 » JOY,-0 •I ~l 4ll ulul'6~7f"8 •9 so/sr!sa[s3ls•1ss; ,.·s11~a sJ 1ool•ii•2i6l/64.fSl&~1 68 o 10 n 1213Frs 76 77]79

11RULK1 S'i'' ~--·' lIR~ ATABLE~.! lTlfTBT w na T. 1 1 T TT 1 l I I 1 1 t L TI • f([[} ! l f ll1IITilI1 · ITT T T i i I l l ' l l l 1 I 1I
2 BU;L KJ ~:rfl)H:R ~ ~R~ m 6i1171QQ,,1 mJI m lJ 4-~Q~ T T T T T ! 1 l l l I 11 Tl
l Jtlili1 ·ri1 11TJ1T1;1tl TTT T T I TT 1 TT LL __u l l t

..
'I

J. 11

Tfie program being executed may transfer to bull,< storage only
between the specified locations. Symbolic names must refer to
apsolute, locations.

Jnout{Output During Testing (INPUT Card, ourPUT Card).

These cards are used to specity which I/0 devices may be used by the
program being tested. They are effective until'the END TEST Card is
encountered.

A peripheral may have more than one identifying number within the
system. Device numbers "i" represent tpe FORTRAN Submonitor number
of the input/output device as indicated the Monitor check,list. If
not stated, Device "O" is assumed'~

All devices of one type must be specified on one ~ard, and no more
than six devices may be placed on a, card.

INPUT Card

I

This card is effective u~til a new INPUT Carq or END TEST Card
is encountered. READi specifies a 'card reader, paper ··tape reader,
or input typer. ("i" represents a number assfgned to each in•
dividual inp·ut device.) ,

' ; ' ~

-46-

7'10

(

11

l

2 '
l

)

EXAMPLE 38:

OTITPUT Card

This card is effective until a new OUTPur Card or END TEST Card is
encountered. PRINTi specified an ou~put typer or printero PUNCHi
specifies a-card or paper tape punch. ("i" represents a number'.

·assigned to each individual output device.)

The program being executed may use only the specified input and
output devices, i.e. card reader:. for.~input, printer and card punch
fpr output.

PROGRAM Card

The PROGRAM Card tells which real-time programs may be turned on by
the program being tested. Programs to be turned on are specified by -
their program number. A maximmn of four programs are allowed to be
specified per PROGRAM Card. ·

P=ograms which are considered a part of Monitor (e.g. Input) Output)
may not be turned on~ (See Appendix A.) Program card parameters are
effective until either a new PROGRAM Card or the END TEST Card is
encountered.

EXAMPLE 39:

Initiation of Real-Time Programs Numbers 23 and 24.

Violation of any of the above system_ protection restrictions by the
program· is noted by an error printout; the:card in error is ignored.

In Example 40~ the program, 25, is_to be tested with the
- following restrictions:

1. It may request transfers to bulk storage only between
octal addresses 463000 and 471200 inclusiveo

2.. It may only make input requests through the card reader .•

-l~7-

EX.AMPLE 40:

3. It may 9nly make output requests of the printero

4. It may initiate the execution of Real-Time Programs 4,5,
and 15 only.

Branch instructions are inserted at the 6th and 7th locations after
Statement 10.

When the program reaches Statement 56, the contents of 130 locations
starting with ATABLE will be displayed on the printer in fixed-point
(integer)format. The_ program will be executed from its beginning to
Statement 60, with a maximum time limit of five minuteso

To Compile and Test Program Number 250

-48-

The illustration below depicts Example 40:

FIN

TEST Deck

END c¢MPILE

Symbolic Deck

C0MPILE

JVJB, LPT

GE/PAC
SYSTEM

Output
Listing

-49-

END TEST

EXECU!E

DUMP

C¢RRECT
~--·- MM.·- + -- - ~~·~

PR¢GRAM

~UT~---~
BULK "ST(l}RE

TEST

6.8 OPERATING INSTRUCTIONS

6.8.l CARD HANDLING

6.8.2

Review all card decks to insure that they are in correct order so that
an invalid run may be avoided. For instance, a COMPILE request should
have:

1. JOB Card.
2. COMPILE Card.
3. FORTRAN (symbolic) deck or decks.
4. END COMPILATION Card.
5. FIN Card.

A LOAD requ~st should have:

1. JOB Card.
2. LOAD Card.
3. Binary (program) deck.
4. FIN Card

A TEST deck should have:

1. JOB Card.
2. TEST Card.
3o CORRECT Cards (optional).
4. DUMP Cards {optional).
5. System Protection Cards (optional).
6. EXECUIE Cards.
7. END TEST Card.
8. FIN Card.

..
Place the desired card deck in the input hopper and press the ~NPUT
DEMAND Button on the card reader.

OPERATING REQUIREMENTS

Refer to respective-operating instructions furnished with each system
for the card reader, printer, and card punch.

A run may be aborted at any time that the LPT System is not reading
cards by pressing the INPUT DEMAND Button on the card reader. This
action simulates failure of the card reader, and the job is terminated.

If LPT is reading cards, turn the card reader off. This simulates
peripheral failure, and action should be taken according to Pa~agraph
6.8.3.

Other free-time programs can be aborted in the same manner by checking
the input demand flag, or by peripheral failure on an input request.

-51-

6.8.3 PERIPHERAL FAILURE

When there is a malfunction on any of the peripheral equipment,
Corrective Action Diagnostic types an appropriate error message.

The operator notifies the system if the device will be repaired.
If a repair is not possible, the Free-Time System turns/itself
off and the job must be restarted after the repair ha~ been made.

-52-

APPENDIX A

RESTRICTIONS

lo FREE=TIME SYSTEM RESTRICTIONS

Ao Program or symbol names should not begin with tµe following identifiers:

1) KEEP 8) TO
2) PERMAN (ENT) 9) FROM
3) FORTRA (N) 10) REAL
4) SYMBOL (S) 11) INTEGE (R)
5) CARDS 12) OCTAL
6) LPT 13) DIAGNO (STIC)
7) AT

~

Appendix D contains a list of all symbols preloaded in the System EQL Table.

Bo The first six letters of any two program or symbol names should not be the
sameo

Co The following Monitor functional programs may not be called using the JOB
Control Card or by a Turn Program On request:

1) Output Programo
2) Input Programo
3) Corrective Action Diagnostico
4) Free=Time Executive Programo
5) Operator Routineso

20 GE/PAC PROCESS FORTRAN RESTRICTIONS

Ao Since all bulk allocation is accomplished by the system, the statements
BEGIN PROGRAM AT and SEGMENT are not allowed.

Bo Normally~ the compiler generates the data area~ as referenced by the FORTRAN
. statementso However~ certain labels for variables are reserved for the

systerno Reference to these labels in a FORTRAN statement causes the compiled
program to access these system vatlableso They are treated as if they had
been DEFINED (refer to FORTRAN REFERENCE MANUAU). A list of these labels
is included in Appendix Do

3 o PAL LANGUAGE RESTRICTIONS o.

Ao Since both bulk and core storage allocation is 1 done .by the system, the ORG
and DCW pseudo~operations are not allowed by the assembler. If used, they
are flagged as illegal operations and are. ignoiled. Each,.program is assem~
bled relativei: to Location 0 o

Bo When the op=code and/ or operand written by the ;.programmer causes the assem­
bler to gen~rate. an illegal operation~ or if the assembler cannot under­
stand the instruction as written, the assembler replaces the offending
instruction with one which has no effect (BRU*+l).

=53=

).
APPENDIX B

LIST OF CONTROL CARDS CONTAINING EXAMPLES OF ALL OPTIONS

GEHEIUL. HECTRIC
PROCESS COitFIJTER BUSINESS SECTION

PHOENIX, ARIZONA

_ GEf PAC~ LANGUAGE STATEMENT -

CqOING FORM

Projact Name l"IOCtSSOllKFIS

0-0ELETE

6-PAL

I 7-FORTRAH

K PIOf. Prog. Sequence
E It It It
y

APPENDIX C _, _____ ,
ERROR MESS:<iQES

1. SYSTEM PROTECTION ERRORS

Messages are printed when an error is located within a program which violates
the system protection rules as defined by the TEST System protection cards~

When an invalid instruction is found, an error message, "ILLEGAL XXXXX, relat~ve
address, instruction, contents of the Index Register or Device or O,'' is printed.
XXXXX may be a STORE INST, BRANCH INST~ IN/OUT INST, MTR ENTRY, BULK TRANS, OOM
REQUEST~ RPT REQUEST~, INPUT REQUEST, OUTPUT REQUEST;, or p:-:,,;_u ADDRESS.

EXAMPLES;

A. ILLEGAL STORE INST
B, ILLEGAL IN/OUT INST
C. ILLEGAL BRANCH INST

00076 32340174 00000012
00043 25430000 00002400
00042 \~040163 00000000

An additional error message, ILLEGAL BRANCH - OUT OF BOUNDS TO / (absolute
address), is printed when an attempt is made to branch above the maximum
location allowed or below the minimum location allowed.

2 . PROGRAMMING ERRORS
-.----· ' - ------ -
I MESSAGE I CAUSE LI 'ACTION TAKEN
f,---~·--~----·-. - ---~-~ -----1 ·-,,-----~~---- ·--·---·- -~ ------~- -----·-- -------- ·---

: ILLEGAL CARD FIELD L~-'-~~~£gram I.D_,__"!1 JOB Card. I Card is skipped.
~~·_.Pro~m not in library, _J_g.ard is ski]?.ped. ________ !
t£_-._'Qgg~_U.ng_g_i_i_? lc;L . ..9.!LiL_~ar_fL _____ _J Ca)'."d __ i~-§...~~P.J2.e4:.!.-------~
id" Attempt to load or compile I Program is not loaded. j
~ an a 1 read y~~~j.J>_t.~!lL.2!°..f>K!:§l.l!h___j 1

~e. More than one status on ! Program is not 1s:aded.
! COMPILE or LOAD Card .. ! l
\ f. Non=existant lab~T"-;;~-·-;-·TES_T ___ ,_T ca~<l-i-;-·;kfppe-d--. ~~-"-----1
I Control Card, i l
i g. Alph~:--~~--;~~-~o~t~l-digit ~i;-- rc·;rd -~is skipped. ---1
' • ! '
~---tJJ..e_GQE.RE CT ... _C;:i:i,:~t,,_,,_~-------··--· --·-------~-~---· _ rn~---;
\h. More than four program num- j Excess are ignored.
l hers specified on a PROGRAM !

'- j___card_. ----------·----------~----·--l-i l I----
f ILLEGAL ,.~ONTROI.. CARD~ a Missing field on a control ~ Card is skipped.

' i ; __ c_c;t_rd ~------~ J

lb. Too ma.ny of a particular I Card is skipped.
'. type card ~ Dt'MP or CORRECT, 1

for example, l
iz-·· JOB--c~arci'-i~~~-e.r~a<l; .. ·~~t fo_ll_o_w-,-~ -1 The JOBfollowing~this --~

ing a FIN Card. i card is lost# Must be
j re loaded in card reader. h

-----~---'·---·- -·--------1--------·---~-------~--·----"'

i
L.,_ _____________ J _____ _

~57~

APPENDIX C ~ contd

MESSAGE ·CAUSE ACTION TAKEN

NOT ·ENOUGH BULK The scratch area remaining Program is not

I
is too small to contain the compiled or l?aded.
present:
a. Compilation ii or
ho Load.

ILLEGAL LIB REQUEST a. A requested subroutine a. Subroutine cannot
did not follow the pro= be appended to
gram and was not in the program.
FORTRAN library. b. Program not included

in an_y librar_y.
b. More than 100 LIB

requests Excess are i_g_nored.
c. Program being compiled Program not included

for FORTRAN library has in any library.
a subroutineo

TOO MANY SYMBOLS a. More than 640 references Excess not included.
in this program~

b. More than 1088 common System symbol table
symbols. is not updated

NO SYSTEM SYMBOLS A REMOVE, SYMBOLS was not Program cannot be
followed by a LOAD, SYMBOLS~ assembled.

PROGRAM TURNED ON A request to remove a real- Request ignored.
time program found the pro-
gram running.

~

""58-

APPENDIX D

LIST OF SYSTEM EQLS

The following labels are preloaded into the system EQL table:

LABEL

CRDRDR
PRTR
SECND
CTYPER
CPUNCH
FTSKOl
ECPCOl
MAPOl
MAP02
MAP03
MAP04
SRGCOl
SRGC02
RRGCOl
RRGC02
FRPCOl
GADCOl
RMRCOl
PAVC02
FMRCOl
RMPCOl
¢UTC01
¢UTC02
¢UTC03
PAVC03
PAVC04
INPCOl
INPC02
DELCOl
¢FFC01
TPNCOl
TPNC02
PAVCOl
DTRCOl
DTRC02
INCOl
PNHCOl
DRLCOl
RRLCOl
DLRCOl
DLRC02

TYPE OF
ENTRY

EQL
EQL
EQL
EQL
EQL
EQL
BRU
BRU
BRU
BRU
BRU
BRU
BRU
BRU
BRU
BRU
BRU
BRU
BRU
BRU
BRU
BRU
BRU
BRU
BRU
BRU
BRU
BRU
BRU
BRU
BRU
BRU
BRU
BRU
BRU
BRU
BRU
BRU
BRU
BRU
BRU

VALUE OR MEANING

Priority Number of Card Reader
Priority Number of Printer
Number of Time Counts in One Second
Priority Number of the Console Typer
Priority Number of the Card Punch
Disc Address of the Free-Time SAVE Area
MONITOR BRANCH VECTOR
See appropriate Monitor subroutine

write=up for usage.

Data Link
Branch Vector

-59-

----- --·---·------------------------·--------·--~-----·~' . ,.._ - '

APPENDIX D ~ contd

TYPE OF
LABEL ENTRY VALUE OR MEANING

E01Fl9 BRU Convert A Card Image Subroutine
E02Fl9 BRU Convert One Column Subroutine
$INPur BRU Submonitor
$¢TPUT BRU Branch Vector
$DLDAT BRU
$DLLiJC BRU
$DLHLT BRU
$READ BRU
$PRINT BRU
$PUNCH BRU
$INTRP BRU
$DMYSU BRU
${l}UTRP BRU
$BLK9}T BRU
$BLKIN BRU
$BLKTP BRU
$I¢TST BRU
$HLTIN BRU
$BLKHL BRU
$HL(l)UT BRU
$CG{l}T{l} BRU
$AG¢T{l} BRU
QSTRAP BRU System Trap "" BRU*
ZER{l} C¢N D Table of Integer Constants
(/)NE C9}N D
TWCD C9}N D
THREE C¢N D
F{l}UR C{/}N D
FIVE C9)N D
SIX Cf)N D
SEVEN C{/}N D
EIGHT C~N D
NINE C{/}N D
TEN CgJN D
IZER{l} CV)N D Table of Integer Constants for FORTRAN
U)NE C~N D·
ITW{/) C(l}N D
I THREE C{l}N D
IF{l}UR C{l}N D
IF IVE C(>N D
ISIX C{6N D
!SEVEN C{l}N D
!EIGHT Cfl)N D
!NINE C{l}N D
ITEN Cf{>N D

'""60-

LABEL

TENXO
TENXl
TENX2
TENX3
TENX4
TENX5
TENX6
TENX7
TENX8
TENX9
MSKR3
MSKR5
MSKR6
MSKR.7
MSKR.8
MSKRll
MSKR.13
MSKR14
MSKR15
MSKR16
MSKR.17
MSKL5
MSKL9
MSKL18
D24
TIME
!TIME
C{bUNT
IC¢UNT
PR{i}GN9}
PRI{bN¢
DMCRN{l}
PR{bG

IPRc/JG

AUXTM
IAUXTM
LCNT
LP AGE
PAGEN{l}
IPAGN0
VCNT
PTHBl
¢FF¢1

TYPE OF
ENTRY

C~N F
C¢N F
Cc/JN F
C¢N F
C{bN F
Cc/JN F
C{l}N F
CqJN F
C¢N F
C¢N F
C¢N ¢
C(hN ¢
C¢N ¢
C¢N ¢
C¢N ¢
Cc/JN¢
C¢N ¢
C¢N ¢
C¢N ¢
C¢N 0
C¢N ¢
C{bN r/J

C¢N c/J
C¢N ¢
CqJN D
CqJN
C¢N
CgJN
C¢N
BSS
BSS
BSS
BSS

BSS

BSS
BSS
BSS
Cc/JN
BSS
BSS
BSS
BSS
EQL

APPENDIX D - contd

VALUE OR MEANING

Table of Floating~Point. Powers of Ten.

Table of Right.,.,Bit Masks. Number Denotes
Bit Position of Highest Bit.

Table of Left-Bit Masks. Number Denotes
Number of Left-Bits In Mask~

Decimal 24
Time In Counts Since Midnight.
Time In Counts Since Midnight {FORTRAN).
Diagnostic Count Table.
Diagnostic Count Table {FORTRAN).
Running Program Number - Times 8.
Running Program Number - Times lo
Running Program Number - Times 3.
Table of Next Execution Times For All

Real=Time Programs.
Table of Next Execution Times For All

Real-Time Programs {FORTRAN).
Table of Auxiliary Time Counts.
Table of Auxiliary Time Counts (FORTRAN).
Number of Current Lines To Be Printed.
Number of Lines To Be Printed Per Page.
Current Page Number.
Current Page Number (FORTRAN).
Current Vertical Page Control.
Current Heading.
Free-Time Turn~Off Flag.

=61""

LABEL

ALTFLG
XFER
DRML{l}C
SIZE
C9)RL{l}C
SAVTBL
SECDAY
ISECDY
LK9)UT
DEROl
DMDFLG
DMD2
RLISTl
INPTBl
C¢MM{l)N

TYPE OF
ENTRY

BSS
BSS
BSS
BSS
BSS
BSS
C¢N
C{l}N
C{l}N r/J
EQL
BSS
BSS
BSS
EQL
EQL

APPENDIX D - contd

VALUE OR MEANING

Alternate Device Availability.
Number of Bulk Transfers Waiting For Each Program.
Three-Word Pointer For Each Real-Time Program.

Table of Pointers for SAVE Status.
Number of Time Counts In 24 Hours.
Number of Time Counts In 24· Hours (FORTRAN).
Constant Which Is Used To Lock-Out A Program.
Derelativize An Address Subroutine.
Flag Word For Demands From Various Demand Buttons
Flag Word For Second Demands.
Input Buffer For Card Reader.
Punch Output Buffer.
Start of FORTRAN Common Storage Areao

-62-

Th ls coding will produce the dump which follows:

DUMP AT W~RK

~· ..
APPENDIX E

DUMP FORMAT ,

Where '/J = Octal
X = Decimal
E = Exponent
0 = Zero

. A Q P I X2 X3 X4 XS X6 ' X7
~~0fJ~~~~ '/J~'/Jr/Jr/J'/J'/J'/J ~'/J¢0r/J¢0'/J '/J¢~r/J'/Jr/J~'/J '/Jr/J00'/J~~~ ¢~~0¢¢¢¢ '/J'/J(J'/J'/Jr/J'/Jr/J ~'/J~'/J~0~'/J '/J¢0¢'/J0'/J'/J ·00~00000

:FROM VALUE

f
~

.•

I OoXXXXXE xx O.XXXXX.E xx o.XX.XXXE xx o.X.XXXXE xx O.XXXXXE xx o.XXXXX.E xx O.XXXXXE xx o.XXXXXE xx O.XXXXXE x .. x O~XXKXJ:..~ xx
j'I
,,,., 0. XXXXXE XX 0. XXXXXE XX 0 o :xxxxxE XX 0. XXXXXE XX 0. XXXXXE XX .
I

FROM LABEL
Y..XXXX .'.xxxxx xxxxx xxxxx xxxxx xxxxx xxxxx xxxxx xxxxx xxxxx
XXYVCX xxxxx xx.xxx xxxxx xxxxx x.xxxxl

t'ROM · $TEMP
f:f;l/J(J'/Jf/;¢'/J '/tf1</;¢tJfl¢~ ~!6f/J0¢</J0r/J . '/Jt/J'/Jr/Jf/J'/Jr/Jf) '/;f/1</J'/J~~(J'/J ¢s1tJ'/J'/J'/Jrt>r/J tJt/Jr/J¢¢r>'11'1 MY/J r/J r/J f>f; ~~
f/J'/J '1 '/J r/J fJ r/J r/J f.!¢r/Jr/J~'/JfJ'/J , f/J(Jr/J~r/Jr/J0r/J ¢fJ'/Jf/Jr/Jr/J(JfJ 'l>'/1¢r/Jflf/Jr/lt/J ~MJ'/10'/J'/J'/J fl '/Jr/Jf/Jf/JYJ r/Jl/J '/Jr/Jr/Jir/J¢~f~
1J'/Jf/Jr/J'/J'/Jr/Jt/J f/l</Jfjr/Jf/Jr/Jr/J(J '/Jr/Jr/Jf/jVJr/Jf/J</J r/JfJ¢'/Ji>0'/J0

1 = NEXT

GENERAL ELECTRIC PROCESS AUTOMATION COMPUTER

, PROCESS COMPUTER
BUSINESS SECTION
PHOENIX, ARIZONA

MONITOR
MANUAL

PRELI MINAR'(

Library File Now YPG53M

Revised January 1967

Copyright 1966 By General Electric Company

This manual published by:

PROGRAMMING SUPPORT
GENERAL ELECTRIC COMPANY

PROCESS COMPUTER BUSINESS SECTION
P. O. Box 2918

PHOENIX, ARIZONA 85002

For further informa_tion concerning the contents o_f this manual,
contact the Program.~ing Library at the above address.

1.

1.1

* 1.1. l

* 1.1.2
L2
l.3
1.4
LS
1.6
1. 7
1.8
1.9
1.10
1.11
1.12
1.13
1.14
l.14.1
l.14.2
1.14. 3
1.14.4
1.14.5
1.14. 6
1.15
1.16
1.17
1..18
1.19
L20
1.21
l.22
l.23
L24
1.2.5
1.26
L.27
1 .. 28
1.29
1.30
l.:Jl
1..32
1.33
L34
1..35
l..36

*Revised 12/66

INTRODUCTION

GENERAL

GE/PAC MONITOR INTERRUPTS

MONITOR ECHELON CHART

SYSTEM DESCRIPTION

Executive Control Program (ECP)
Save Registers Subroutine (SRG)
Restore Registers Subroutine.(RRG)
Time and Diagnostic Count Driver (ITC)
Tu't'n Program Off Subroutine (0FF)
Set Program Delay Subroutine (DEL)
Turn Program On Subroutine (TPN)
Map Maintenance Subroutine (MAP)
Drum/Disc Transfer Request Subroutine (DTR)
Drum/Disc Transfer Driver (DTD)
Find Register Pointer Subroutine·(FRP)
Find Save Status Subroutine {FSS)
Output Availability Check Subroutine (¢UC41C/B)
Out put Request Subroutine {~UR41C/B)
Output Program (0UP41C/B)
Output Driver (0UD41C/B)
Binary to Decimal Conversion (BTD41C/B)
Binary to Octal Conversion {¢CT4iC/B)
Binary to Eight-Bit BCD Conversion (BCD41C/B)
Binary Charact~r Output {BCN4lC/B)
Clock Output (CLK41C/B)
Binary to Four-Bit BCD {FBB41C/B)
Input Request Subroutine (INR41C/B)
Input Driver(IND41C/B) -
Input Progra~ (INP41C/B)
Multiple Output Request Subroutine (M¢R)
Multiple Output Distributor Driver (MDR)
Scan Request Subroutine (SCR)
Analog Scan Driver (SND)
Scan Offset Program (SCF)
Remote Digital Input Request Subroutine (RDS) ·
Corrective Action Diagnostic (CAD)_
Initialization Routine (INZ)
Find/Restore Working Core Area Subroutine (FMR)
Remote Scanner Driver (RSD)
Analog Inputs ·
Digital Inputs
Digital and Analog Inputs
Timed Contact Outputs
Peripheral Buffer Inputs and Outputs
.Priorities and Indexing -- ·
Polling Digital Scan
System Restrictions
Computer Operator Subsystem

-iii-

CONTENTS

v

vii

ix

x

1

1
8
8
8
9

10
10
12
13
_14
14
14
15
20
22
24
25
29
29
32
32
34
36
42
43
45
SJ
56
63
63
63
64
65
65
66
67
68
69
71
72
72
73
73
74

CONTENTS

Appendix A - Monitor Pseudo-Ops 76

Appendix B - Communication Calls 79

Appendix C - Monitor Syn_ibols 80

Appendix D - Monitor Assembly Checklist 81
,

Appendix E - Audit Codes 107

-iv-

INTRODUCTION

The objective of the MONITOR MANUAL is to present various ways of using the
Monitor System in conjunction with GE/PAC* 4020 Process Automation Computers.
Use of this manual is predicated upon, and presupposes the reader's familiarity
with~ real-time system requirements, GE/PAC prog~amming techniques, and Process
Assembler Language.

Designed especially for the user, the manual explains what Monitor does and
what the prograT.ner =~st do to insu=e its successful operation. The publication
also discusses individual subprograms which comprise the Monitor System, and
in~ludes the communications links which must be provided in the functional
program~ to allow necessary exchanges of data between Monitor and the outside
world. A detailed analysis of Monitor logic is not included in this manual;
rather, it is covered in the various Monitor program write-ups which are avail­
able through the Programming Library.

Examples used throughout the text showing various calling sequences are not to
be construed as being the -0nly method of using such calls. It would take more
space than is practicable to allow in such a text to show all the possibilities
of each subroutine call.

*Registered Trademark of the General Electric Company

GENERAL

A real-time process is characterized by the occurrence of many events, some
continuous, others random in nature. Events may occur simultaneously. A
digital computer, however, is a serial device; that is, it performs its program
9ptions serially, one by one. Therefore, the matching of the d{gital computer
and a real-time process requires a control system which coordinates the require·
ments and characteristics of both.

A GE/PAC Monitor is an operating syst.em composed of a library of subp~ograms
which provide the basis for a process computer system. It is the framework
to" which the spec Hie functiona 1 programs are a·dded. . The r1onitor accomplishes

. the timing and scheduling operations, input/output, inrernal data transfer,
timed contact, multiple output, corrective action, i~itialization, etc. Many
options are available which may or may not be included in a tailored Monitor
System.

The user requests a tailored Monitor·by checking the desired options on the
Monitor Checklist, a copy of which is included in this manual (see Appendix D).
Additional copies of the Checklist may be obtained upon request from the
Programming Library. ·

-vii-

..
I\
{

"'J ECHO

50 60 CYCLE!
DMT GE/PAC MONITOR INTERRUPTS

l~
I

SYSTEM
TIMER

INTER.l?.UPT

. I

Tifl.E COUNTING
. DIAGNOSTIC

COUNTDOWNS

I DRUM/DISC XFER ! DRUM/DISC XFER
READY -- DRIVER

INTERRUPTS

LOCAL ~~ALOG
SCA.t'i READY
INTERRUPTS

LOCAL MULTIPLE
OUTPUT READY
INTERRUPTS

!/O BUFFER
READY

INTERRUPTS

OTHER
SYSTEM

'INTERRUPTS

LOCAL TIMED
COMTACT READY
INTERRUPTS

REMOTE SCMrfi-"ER
READY

INTERRUPTS

LOCAL ANALOG
SCA.J.'T

DRIVER

, LOCAL
M.O.

DRIVER

INPUT/OUTPUT
DRIVERS

SYSTEM
DRIVERS

LOCAL TIMED
i-------1 CON'TACT DRIVER

REMOTE
SCANNER .
DRIVER

,--.. - -
I
I
I
I
I
I
I
I

V/

RETURN
TO

INTERRUPTED
PROGR~J1

EXECUTIVE
CONTROL
PROGRAM

I
I ----1
I
1
;

i FUNCTION

l

FUNCTIO;N

2

FUNCTION

l 3 . i
! ------~--~_:I""-· _ _...._ _ __....__-'I_ - __J
f t \/ v w

-4W•l.X--

• H
I

INITIALIZES MONITOR
LOCAT+ONS FOR PROPER

_::_x~._c_u_T1_o_N __ · _oF_,_M_o_Nr __ T_o_a __ f"> ________ ~-----
MONITOR
EC HE LOU

CHART

1 ~ INITIALIZATION
ROUTINE . 11~,........------~

THE EXECUTIVE CONTROL PROGRAM OF MONITOR

f
EXECUTES SYSTEM FUNCTIONAL PROGRAMS PLUS

-MONITOR PROGRAMS AS SHOWN.

---------:......,

ANALOG SCAN
OFFSE'I'
PROGRAM

:\I/

INPUT
PROGRAM

FUNC'l'IONAL
PROGRAMS

OUTPUT
PROGRAM

\i/
CORRECTION ACTION
DIAGNOSTIC
PROGRAM

OU-LINE OPERAT,OR
J?ROGRAM KEYBOARD I ~

CALLS OU-1,IllE.
DEBUGGING
ROUTINE SUCH
AS LOADER,
MEMORY CHANGE,
DUMP, ETC.

INITIATED BY INTERRUPTS TO COMMUNICATE
TYPEWRITER ~ -

£
WITH HARDWARE DEVIC_ES, UPDA'l'E SYSTEM
TIME,, INITIATE DRUM TRANSFERS, ETC.

DRIVERS
(RETURNS TO THE

----------------'IItTERRUPTED PROGRAM OR

TIME &
DIAGNOSTIC
COUNT DRIVER.

\II

\V .
DIHlfvJ7D ISO
TRANSFER
DRIVER

LOCAL MULTIPLE
OUTPUT
PROGRAM

TO TITE ECP IN SOME
CASES)

,,,
LOCAL ANALOG
SCAN DRIVER

A

contd on page xi

INPUT
DRIVER

LOCAL TIMED
CONTACT OUTPUT
DRIVER

OUTPUT
DRIVER

l
~D REMOTft1R

SC ANNE
DRIVER

I
M

SUBROUTINES

PERFORMS REPETITIVE FUNCTIONS
.Pon MONITOR & SYSTEM
FfJ.NCTIONAI, PROGRAMS.

---------~---i(RETURNS TO THE CALLING ______ __________ __,

INPUT
HE QUEST

REM OT;-\,
DIGITAL SCAN
RE9UES'l'

TURN OFF
PROGRAM

S;;-~50GRAM
DELAY
'\-·~--~-

PROGRAM OR '110 THE ECP
Iff SOME CASES.)

FIND
REGISTER
POINTER

-)
.. ~--,.. ~(.....,""1Tfl,'\~•

OU'.PPUT
AVAILABILITY

CHECK
------·-·--·-/

CORE MAP
MAINTENANCE

OUTPUT
.REQUEST·

FIND RESTORE
WORKING CORE
AREA

SAVE
llEGIS'l;ERS

RES TOR~~
~_:TE:_;

1. SYSTEM DESCRIPTION

Monitor consists of the component programs described below.

1.1 EXECUTIVE CONTROL PROGRAM (ECP)

The Executive Control Program runs permitted and schedules the-execution
of programs based on priority, execution time, and core ~vailability.

System programs are executed in priori~y order by comparing the
programs' next execution time (PR¢G) with the current time (TIME).
The highest priority program for wµ~ch the ~xecution time is equal to
or less than the current time is executed. When the_ execution time is
current for a program, the ECP requests a transfer from drum or disc to
core providing:

1. The program is not in core,
2~ The program is not presently being transferred.
3. A core area is_available.

After the transfer has been completed, the program is initiated. If there
is no available core area for that program, ECP tests the execution time
for the next lower priority program. :

There are two levels of p.riority program search. The first allows the
system program to indicate that the prog.ram X should be run next. The ECP

~ would initiate the program if in core, or initiate the transfer into core,
if there is room. This search is initiated by a TPNC03 call.

The second Program Priority search beg~nning level is at the top ·of the
program list which will result from one- of the following actions:

•._

M0D (Multiple Output Distributor - Alternate Return Only)
TC0 (Timed Contact Output - Alter~ate Return Only)
~TC (Interrupt Time Counter Interrupt} -
;DTD (Drum/Di.sc Transfer Interrupts)
·sND (Scan Complete Interrupts)

If a program has a "turned off" or "locked out" code in its PR0G loc·~tion,
it is not executed until a time for execution is assigned.

There are three classifications of register storage for functional
programs. They are:

l. Programs which have no .regi'.ster storage of their .own.
2. Programs which have their own 8-word block of register s.torage.
3. Programs which share an 8-word block of register storage with

other functional programs.

The current ECP priority order is defined in the PRGTBL Table. The latter
is included in the Monitor 0File tape and allows the programmer to change
the priority of a program after the initial Monitor Assembly._

-1-

NOTE: Any direct branches to the ECP must be done in the inhibited state.
The RSX Table is eliminated when all system program~ have' their oWil
8-wor~ register storage block.

REGISTER POINTER TABLE (RSX)

This table contains an index to the 8-word storage block for programs having.full
register storage or sharing storage. For programs with no register storage, the
table contains the flip-flop status and the program's next entry location.

A. Format for Shared or Single 8-Word Register Storage

23 22 21 0
_1 _______ ~--~--~~--~~

8-Word Register
Block Index

0 = Return to ECP after ITC Timer or Drum/Disc
Transfer Complete Interrupts.

1 = Return to Program after ITC Timer or
Drum/Disc Transfer Complet~ Interrupts.

B. Format for No Register Storage
"' ·1

23 22 21 20 19 18 17 16 15 : ·- 0
O 0 p"TTT~!11!fl·-oTtj~irtcyLocati.Oll j

' \ l 'L-, ·:-. ·---~- .:.: .
i ' •
) N • 1: ~egative Relative Entry Address (Bits 0~15)

L 0: Positive Relative Entry Address (Bits 0-15)
For an all-core system, N is always zero.

R = 1: Absolute Permanent Core Location
0: Relative Address (Drum/Core) ,

I
For an all-core system, R is always ,zero.

------~--F = 1: Set Memory Fence; 0: Reset
J.-------- T = 1: Set Test Flip-Flop;. 0: Reset ·

--~~~~~~~ P = 1: Set Permit Interrupt; O: Reset
1.----------~--~~- 0 = 1: Set Overflow; 0: Reset

~: Each program will have one word, in numerical order, in the RSX
Table beginning with ECP (Prog~am Number zero).

-2-

Examples:

* 0

RSX 0 ECP

* Program Number l

1 Program Number 2

1 Program Number 3

2 Program Number 4

* Program Number- 5

Register Storage Table (REGSTG) stored in permanent core:

0

A-H.EG REGISTER CONTENTS AT NEXT ENTRY

QREG

.FREG.~IL..l-..:Jl-.._......l.-........... :......-i.-~...JJ..4.-~~~~~~~~s~s~--1

X3-REG

\!, X4-REG
')

X5-REG

X®

XrREG

*Revised 12/66

-3-

First 8-word Register
Storage Block

(ECP)

Second 8-word Registex
Storage Block
Programs 2 and 3

Third 8-word Register
Storage Block
Program 4

The other tables assisting the ECP in per~orrning its functions areJ

PR0G PROGRA..~ EXECUTION TIME TABLE

TIME loooo1433l

Program lfa
l
2
3
4
5

'6
7

PR(/JG

(SYSTEM TIME COUNTS)

40000000
00001342
00001465
40000001
40000000
40000000
00000000

PROGRAM OFF
PROGRAM CURRENTLY RUNNING
PROGRAM DELAYED
LOCKED OUT.
OFF
OFF ·
PROGRAM ON

DRUM/DISC TRANSFER CONTROL TABLE

23 22 21 20 19 18 17 15 14 13
DRML<flC 0

0
PROGRAM
No. n
Transfer
Group

A C T N F -W PRUM/DISC
BEGINNINr DrUMf.Q.ISC ADDRESS

SIZE OF PROGRAM*
SIZE bONTROLLER 0

- INDEX ifa ,

23 16 15

\._ C¢RLQ1C

DRML0C+3(n+l)
SIZE+3(n+l)

C0RL0C+3(n+l)

RESERVED FOR EEGHlNING CORE
FUTURE USE

Disc/Drum Transfer Control
Group for Program #n+l

Disc/Drum Transfer Control
For Ern2:ram i~K

A - Area availability on entry from ECP
0 = Unavailable

.'i =Available

C - Core Status
0 = Program is not in core
l = Program is in core

T - Transfer Status
0 = Program is not in transfer

Group

•'

ADDRESS

1 i= Program is in transfer or has requested DTRC02 t-ransfer from/to
bulk.

*For programs with adjacent save status, this size figure -includes save
status and program. For programs with disjoint save status, this size
figure is for program only.

N - Current Area Status
0 = Program is running with core ar~a unavailable
l = Program is running with core area available

F - Fortran Available Subroutine Usage Status
0 =Program does not use subroutine white runniµg available
1 = Program uses subroutines while running available

-4-

~

W - Fixed working core status
0 = Program can run anywhere in working core
1 = Program must run from fixed working core area

For permanent.core programs

DRML¢C = 000000008

SIZE = 200000008

or

Size for documentation
·only

C0RL¢C =~.

permanent core starting core address of program

The Save Status Area Control Table is used for programs requiring
temporary storage to be saved in an unprotected area on drum before
overwriting. This feature is called Save Status. The ECP transfers
the temporary storage of programs having Save S.tatus to drum befor_e
another program is transferred1 in its. place. However, when a func­
tional program is turned off~ its temporary storage is not autom~- .
tically saved on drum.

Save Status is determined by the Find Save Status Pointer Subroutine
(FSSCOl).

SAVE STATUS AREA CONTROL TABLE

SAVTBL
n ol STARTING DRUM/Drsc ADDRESS

SAVSIZ
n

23

s

22

RESERVED
FOR
FUTURE
USE

17 15 14(13

DRUM/DISC
CONTROLLER -o
INDEX

If

SIZE OF SAVE StATUS
BOTH ADJACENT AND
DISJOINT AREAS

l - t•o Save Status Classifica i n

*Revisad 12/ 66

1 = Adjacent Save Status
0 = Disjoint Save Status

-5-

0

0

FOR

23·~~~~-~~1_6~1_s~~~~----·-· ~~~~o
RESERVED FOR BEGINNING CORE ADDRESS '1

FUTURE USE _

The d~termination of save status is by bit testing and counting of
the STSBTS table.

Bit 8tatus

0 = Program does not have Save Status
l = Program has Save Status
,

Example:

There are 50 programs in a system of which 10 have save status.

23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8* 7 6 ·5 4 3 2 1 0
STSBTS 0 1 l 0 i 0 I 0 l 1 l 0 : 0 l 0 ! 1 i 0 I 0 ! 0 l 1 '. 0 1 0 J 0 ·'. 0 ; 0 I 0 l 0 l 0 j 0 \ 0 i

0 OJ 0 1 I 0 l 0 I 0 I 0 t 0 I 1 i Oi 0 ! 0: 0 l 0 J 0 I 0 l 0 ! 0 l 01 Q l 1 l 0 I 61
0 OJ 0 0: 1 i 0 I 0 i 0 I 0 i 0 ~! 0 l 1 i 0 i 0 ! 0 I 0 ! 0 l 0 i 0 ! 011 111 01
o o 1 o o ! o l o 1 o l o1Q!<f; o 1 o 1 o 1 1 l 1 1 o l o 1 o I o o i 1 1 o o Lo 1

* Locate Save Status Programs by Counting from ·--------....,..------· __ 7
The Left of Bit 8 Summation of Bits In

PROGR.Al'1S HAVING SAVE STATUS

2
6-

10
14
22
28
35
43
49
50

Previous Words

ASSOCIATED 3 WORD XFER GROUP USED

0
1
2
3
4
5
6
7
8
9

(Group Consists of -
SAVTBL, SAVSIZ,
and SAVIJDC)

The Find Save Status Subroutine (FSS) must be used by all systems having Save Status.

ECP DISC/DRUM/CORE COMMUNICATIONS

DISC/DRll-1/CORE LOCATION TABLE
(Permanent Core)

Revised 1/67

4fo7 etc.

-6-

ECP-DRUM/Dt SC /CORE COMMUNICATIONS

UNOCCUPIED CORE

OCCUPIED BUT AVAILABLE
CORE

TO BE SAVED ON DRUM
(SAVE STATUS)

UNAVAILABLE CORE

1110'0 '
8

PERM.Ai~ENT WORKING CORE
CORE

\

\ '
"' ~ Each bit in the· following tables represents 64 core locations 1008 (standard

-: . block ·Size) •

CelRMAP ?

1 1 1
1 1 l
1 1 l
1 1 1

UNUSED

2.3 22 21 20
AVLMAP 0 1 l 1

0 0 0 0
0 0 0 0
1 1 1 1

'
.UNUSED

23 22 21 20
STSMAP 0 0 0 0

o· 0 0 0
0 o· 0 0
1 1 1 1

UNUSED

1
1
1
1

19 18
1 1
0 0
0 0
1 1

7

\
~-

5 2 l 0
1 1 1 1 1 1 1 1 0 0 l 1 1 I
1 l 1 1 1 0 l 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1 1 1 1 1 1
0 1 l l 1 1 1 1 1 1 0 1 1 1 1

1 = Core Area Occupied by a Fune tional Program ·

17 16
1 1
0 0
0 0
0 0

AVAILABLE AREA MAP
15 14 13 12 11 10.

1 1 1 1 l 1
0 0 0 .o 0 0
0 0 0 0 0 0
0 1 1 1 1 1

9 8 7 6 5 4 3 2 1 0
1 l. 1 0 0 0 1 1 1 1-
0 0 0 0 0 0 0 0 0 ·o
0 0 0 0 0 0 0 0 0 .o
1 . 1 1 1 0 0 0 0 0 0

1 = Core Area Unavailable for
Overwriting

OCCUPIED SAVE STATUS AREA }{,AP
19 18 17 16 15 14 13 12 11 10 9 8 7 6 2 l.J. 3 2 1 0

0 0 0 0 0 0 0 0 0 o· 0 0 ·a 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 0 0 0 0
0 0 0 0 0 0 0 0 0 o- 0 0 0 0 0 0 0 0 0 0
1 l 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
__,)

1 = Occupied by save status

-7-

1.1.1 SAVE REGISTERS SUBROUTINE (SRG)

SRG saves the register content~ and/or next entry location for a function-.
al program. For functional programs having full register storage, A> Q,
·and X3 through X7-Registers for the interrupted program are transferred ·to
the Register Storage Table. Otherwise, only the next entry point to the
functional program is saved.

1.1. 2 RESTORE REGISTERS SUBROUTINE (RRG)

RRG returns to an interrupted program at the designated entry point. The
contents of register storage are transferred to the register loc~tions
for programs having full register storage. These values represent the con­
tents of the various registers for the running program at the time of its
last interrupt.

1.2 TIME AND DIAGNOSTIC COUNT DRIVER (ITC)

ITC use·s two interrupts to control the system timing .. The first (non-in­
hibit.able) interrupt occurs each i6 2/3 MS on 60-cycle systems, or eac.h
20 MS on 50-cycle systems. Upon interrupt, a DMT counter is decreased by
one. When the counter equals minus one, the second {inhibitable) inter­
rupt is triggered.

The second interrupt causes entry to ITC. The D~Il' counter is initialized
~ by adding the number of 16 2/3 or 20 ~.S intervals in a time count. This

· number, NCYCLE, must be evenly divisible into fifty/sixty and is speci­
fied by the system programmer at assembly time. NCYCLE determines the
length of time represented by one time count (one second, ~ second, ~
second, etc.). ITC increases the time of day (TIME) by one. The time of
day is cleared at midnight and the calendar is updated. ITC also adjusts
all program and auxiliary time counters_ at the beginning of each day."
Auxiliary time counters are used by functional programs which require
initiation at set time intervals (one minute, two minutes, etc.)~Typical·
programs which may.use auxiliary time counter- are the Scan or Performance
Calculations.

ITC al.so tests for interrupt driven device failures on the P_eripheral. Buf­
fer, output Distributor, Scanner, etc .. Each device is assigned a specified·
C¢UNT which is used for counting the time required for activating a particu-·
lar device. This location (C¢UNT) represents. the maximum number of ~ime
count intervals in which action should be completed. If a C0UNT becomes
negative, the device has failed and the Corrective Action Program is turned ·
on. The system programmer may also count for special timing functions. When'
a system count becomes negative, the ITC turns on a system program (APR¢GM),
which handles diagnostic functionso

When an interrupt occurs during the execution of (1) .interruptable system
subroutine, (2) Executive Cont:r'ol Program, (3) TIM/TOM Local Analog Scan
Driver, or (4) a program having single-word register ~torage only, ITC
returns imme·diately to the intet"rupted sub't"outine.

In all other case~, ITC returns control to the interrupted prog~am or to
the ECP, depending on Bit 22 being set in the Register Storage Table for

.systems having RSX~ For those without RSX, ITC returns to ECP.
·Re.vised 12/ 66 -8-

·1.3 TURN PROGRAM OFF SUBROlrrINE (0FFl

The Turn Program· Off Subroutine- stops the ECP from init.iating the
execution of functional programs. Programs are turned off by pl~cing
the "off" constant, 400000008 , as the nex_t ex,ecution time. Only a
running program may ~u~n itself off. · ·

After the "offlt constant is stored, control is transferred to the ECP.

To cbmmunicate with OFF, use the follewing calling sequences:

SPB 0FFC01 ---------------.
PRG O,l,O,START,O----,M

J - -~~n ·~ e~cy
Ove::!J.~rns to the ECP Reset

Reset

Set Permit

\ Interrupt

SPB
P.R.G

START

Test Flip-Flop

or

Rese\.

0FFC02 \
0, 1, 0, START , 0
Returns to the ECP

\ i Core

Fence

t__Must be relative to start or
zero (drum/disc systems only).

Execution Time
rooooo63i]
~ 40000000
! 40000001
' 00 00000

Program 1fo5

10004640 Next
Eh try
Location

(Reference: Page 2)

The 0FFC02 call gives the programmer the ability to _set the program area
unoccupied and available while the program is turned ·off. , Save status
is not saved on drum/disc. Programs· that are transferred from drum to
core each time execute~ could effectively use this call.

·-9-

i.4 SET PROGRAM DELAY SUBROUTINE (~EL)

DEL delays the execution of a func~ional program that is. running currently
for a spec~fied time period. The delay, in time counts, is.added 'to the
current tim~ and stored in PR0G for the·catling function. Only a running
program can delay itself.

The A, Q and X3 through X7-Regis·ters are saved for those programs having
register storage~

To set a delay, use the following calling sequence:

·-'SPB DELCOl
DEL 0,3*SECND (#

Returns After

or

SPB DELC02

of Secs ..)

Dela~

DEL 1~3*SECND .
~Returns After Delay

-1 - Area Available

0 ::; Are.a is set unavailable
for overwriting quring
delay

600 E--<---TIME
+14
6148

The above example shows a 1/4·s~cond system ..

System Clock
I 00000600 J

Execution Times ~

40000000 l
40000Q9_1_\

. (Program 3)
00000631
00014200
40000000
40000000
40000000

DELC02_call gives the programmer the ability to set the program area
unoccupied and available during long delays. -Save status will not' be - -
saved on drum/disc. This call should be used by programs which ri~n at
long time intervals. Setting the area unoccupied cuts down .ECP map'
search time. Programs that are transferred from drum to core each time
executed would also use this call effectively.

1.5 TURN PROGRAM ON SUBROUTINE {TPN)

The Turn Program On Subroutine is used to change the execution time.of
functional programs. The execution .time and the program number are
given in the calling sequence. ,; -

.-10-

After the new execution time is stqred for a program, control is returned
to the calling_function.

Programs which are "locked out", next time of execution-400000Qle, may
not be turned on by TPN.

TPN returns with all ones in the A-Register when a request is made to
turn a program on which is ~'locked out". ·

Turn Program 3 on
LDZ
SPB TPNCOl
C¢N G,HL¢G

Return

HL¢G EQL 3

PR¢<;

Execution Times
40000000
40000001

-- (Program 3)
00000631

'00014200
4000000()
40000000
40000000

The TPNCOl call can turn a program on immediately or set any exe.cution
time desired in the PR¢G Table.

To enter an execution time only if the program has the off constant in
the PR¢G Table:

I.DA Execution Time or LDZ
SPB TPNC02
C~N G,HSC.AN

Return

HSCAN EQL 8

The following calling sequence allows the system programrJer to specify
which program will run next. If the program is 'in core, it will be
ei1tered immediately; if it is on· drum,_ .. its transfer will be initiated.

LDZ
SPB TPNC03
C¢N G,MSCAN

MSC.AN EQL 7

At the next ECP entry, the MSCAN program is turned on. If this program
has the "lockout" constant in its PR¢G location,, the request is ignored.

An example of when to use the TPNC03 subroutine call would be: If program
#X decides that another program must run next;· prograt.tl X makes a TPNC93
call and either delays or turns ,it~elf off. The use of this calling sequence
is only required when a program is, dynamic and changing and the .. computer
speed is not fast enough to handle functions in their normal s'equence.

' . -·- '

1.6 MAP MAINTENANCE SUBROUTINE (MAP)

, MAP is used to update the core map tables (C¢RMAP and AVLMAP) .. Core areas
may be set occupied, unoccupied·, available, or unavailable. The, following
tables are maps of working core:

SPB :MA.PO! - Set Area Occupied'.£!
SPB MAP02 - Set Area Unoccupied or
SPB MAP03 - Set Area Unavailable or
SPB MAP04 • Set Area Available

Return to the calling program

UNOCCUPIED CORE AREA MAP TABLE C0R..MAP

C0RMAP 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 0 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 1 1 1 1 J. 1 1
0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 l 0 0 0 0

~_Q_Q __ o __ o 0 0 0 0 0 0 0 0 0 0 0 0 o~ 0 0 0 Q Q Q
1 1 1 1 1 1 1 1 0 1 1 1 1 1 1 1 l 1 1 1 1 1 0 0
1 l 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

In this table, "one" bits indicate that the core area represented is occupied
by a functional program whether its area is available or not.

· AVAILABLE CORE AREA MAP TABLE AVLM.~P

AVL"MAP 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 6. 3 2 1 Q
0 0 1 1 1 1 1 1 1 1 1 1 1 0 O' 0 0 o_, 0 0 0 0 0 0
0 1 1 1 1 1 1 1 1 1 l l l 1 1 l 1 1 1 1 0 0 0 0
0 0 0 0 0 0 0 .0 0 0 0 0 0 0 0 0 0 0 -0 0 0 0 0 0,
l 1 1 1 ,1 1 1 1 0 1 1 1 1 1 l 1 1 , 1 . l 1 l 1 0 0
1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 'O 0 0 0 0

UNUSED

In this table, "one0 bits indicate that the core are~ is unavailable for use.

Each bit represents 64K words of working core area. For example, if k = l,
each bit represents 64 words of core. The working core area of ·a 12K system
starts at fixed location 12000

8
i~ the above· example.

*'Revised 12/66

-12-

In our example, five programs are in core occupying areas:

120008 12677 8 (Word 1, Bits 0 - 6)

133008 14577 8 (Word 1, Bits 11 - 21)

154008 176778· (Word 2, Bits 4 - 22)

·232008 24677 8 (Word 4, Bits 2 - 14)

I 250008 25777 8 (Word 4, Bits 16 23)

~: The program in core area 12000
8 area available.

12_677
8

is running with its core

The beginning of the map table~s the upper right hand bit of the
table and the end is the lower left hand bitw

1. 7·~ DRUM/DISC TRANSFER REQUEST SUBROUTINE (DTR)

"' 'I

DTR requests transfers between drum or disc and core memory. The core
address of the 3-word transfer command and the program number plus the
three words of the transfer group are.stored in the Driver_ Table. DTR
may return to the calling program immediately after the· request is stored
(DTRCOl) or after the completion of the actual transfer, DTRC02.

SPB DTRCOl
LDK DRMXFR

Error Return
Normal Return

(May be Indexed)
(Driver Table Full)

The Bulk Transfer Driver Program will process disc -transfer~ as though all
disc storage (within a controller) is continuous' addressing.· The
programmer is not concerned with data or programs physically split between
disc platters.

DR.i.'1XFR = Symbolic Address of (3} Word Transfer Comm.and Group

FORl.'1.AT OF {3) WORD TRANSFER GROUP

23 22 16 15 14
D] Drum or Disc Address

Controller No. l Number Of Words · - l Core Ad<l:ress

D =·Direction of Transfer
0 ;:; Drum to Core
1 = Core to Drum

BUILDING PROCEDURE FOR (3) WORD TRANSFER GROUP

DEL D, Bulk Address
F¢R Controller No., Number of Words
LDA Symbolic Cora Address

-13-

0

1.8 DRJ.]M;/DISC TRANSFER DRIVER (DTD)

DTD initiates transf.ers between core memory and drum or disc. .It is entered
from the Drum/Disc Transfer Complete Interrupt.

Following each interrupt, a transfer is initiated by an 0UT Drum/Disc Command.
Return from DTD is to the interrupted program or the ECP.

,
. l.9· . FIND REGISTER POINTER SUBROUTINE (FRP)

FRP determines a program's type of register storage. It gives the-starting
address of the 8-word storage block or the next entry address for the speci­
fied program. ·

LDA Program Number
Sl?B FRPCOl

Returns with the address in the A-Register and Test
Flip·Flop Status

The test flip-flop is set if the program has full register storage. Other­
wis·e, it is reset.

See Register Pointer Table under Paragraph 1.1.

U~.10 FIND SAVE STATUS SUBROUTINE· !F~S}

FSS determines whether programs have save status. For those programs with
save st:atus, it gives the index to the 3-word save· status_ trans fer group
"(SAV!BL).

LDA Prngram Number
. SPB FSSCOl

Returns with the indax to the 3 .. word transfer gr,oup in the A-Regis-­
ter and Test Flip~Flop Status.

The test Flip-Flop is set if the program has sav~ status. Otherwise, ·it' is
reset.

. -14-

* 1.11 ~iJ:.lC/B OUTPUT AVAIIABILITY CHECK' SUBROUTINE

~UC is used whenever the programmer d~~ires to:check the availability
of an output device, a specific fixed data area, or to· locate an
available floating data area. If the request returns to the."avail­
able return", the calling function may assemble its message in the
specified area prior to making -the actual output _request .. · · · ·

A data area may be.assigned to each output message representing the
drum, disc, or permanent co~e area containing the _message. When an
output availability check is made a~d the area is available, the area
is set unavailable and is set free again when the last character of
the output message is completed.

The data area number is used as a tag to identify a _message area. The
tag may apply to an individual message or a buffer which that message
occupies. Until the driver removes the data area tag, no ether program
can use this tag.

Fixed Data Areas

Fixed Data Areas are disjointed designated areas in core or bulk
where output data _words may be stored. The system must allocate, and
system programs must check for, the specific area .·to be used.

Floating Data Areas

The Floating Data Areas are designated contiguous fixed areas i.n·
core (all-core) or on bulk (bulk-core) wh~re output data words may·
be stored. The system program may use the first available area.

!!Qf!: On. systems where format words are built, they may be stored. with
the data words in the same data area.

For a fixed area request, the Q-Register will contain ,data of. ,an unknown
nature if the available return is made .. , ~e A-Register will ,contain,-the
number of the data area. For floating data areas, ·the address of the area
to be used will be in the Q-Register upon return to the call~ng function.
Bi.t 23 will indicate whether this is a core or bulk address •. If this is
a bulk address, Bit 23 is set and the Q-Register can be stored~ without
change, as the first word of the bulk.transfer group. The A-Register
contains the data area number. ·

For every "available return", where the data area was found, there must
be an associated output request. The calling function must realizg that
an area remains reserved until output.: is accomplished, therefore, if an
area is requested it must be used or .it.will remain· reserved and uriused
indefinitelye The calling function ~an'release a reserved area.by re­
setting the data area's bit·in the data area availability flag, DTAREA.
For example, to release data area 13:

* Revised 12/66

¢¢11
RBK

DTAREA
13

':"15-.

*

..
1

) -

DTAREA, the data area availability flag, is illustrated below:

23 22 21 20 0

I~ t -- _:J
OPR FREE . FIXED FLOATING

AREAS TIME AREAS
SYSTEM

Figure 1. FORMAT OF DTAREA

Data areas 21-23 are reserved for the use of the OPR and Free-Time System.
A predetermined number of areas. are reserved as fixed areas for the system.
The remaining areas are considered to he floating areas, available on a
first come, first served basis. The number of floating areas is equated
to DTAID-ffi when the system's Monitor is built.

~UC detennines the address of the data area by using the system's check
list words· DTFBSE and DTFSZE. DTFBSE defines the beginnfog address of the ·
first floating area (area number 0) and DTFSZE is equal to the size of a
floating area. DTFSZE is defined by the system, but must be a mul.tiple .of
64.

Calling Sequence

p-1
p
p+l
p+2

W¢RD

Where:

DAREA,

DVPN0,

DVCHCK,

FDAREA,

CKAREA,.

LDA WORD
SPB ¢ucco1

Unavailable Return
Nonnal Re.turn

¢uF O,CKAREA,FDAREA,DVCHCK,O,
DVPN~,O,O,DAREA

•

Bits 0-4, specifies the area to be checked if a specific area
check is requested.-

Bits 14-18, is the device priority nUIQber of the device to be
checked (O $. n $. 23).

Bit 20 of the ¢UF word controls the device check. O = no
device check, 1 = per~orm a device check.

Bit 21 of the ¢UF word controls the type of area check to be
performed. If Bit 21 ~s set, this check is for a~ available
floating area. If Bit 21 is reset, this is a specific area
check.

Bit 22 of the ¢UF word controls the area check. 0 = no area
check, 1 = perform an area check.

Upon entry, ¢UC examines Bit 20 of the ¢UF word. If Bit20 is set, a device
check is performed. The particular peripheral, defined in Bits 14-18 of
the ¢UF word, are examined for failure, serviceability, and ~vailability.

* Revised 12/66 - --16-

*

.. -,

This test is performed by examim.ng the BAD and </Jr/JS - flags and the device.'.s
stacking table respectively. BAD, the peripheral failure flag, indicates~
which peripheral bas actually failed, and ¢¢s, the out-of-service flag, ·
indicates which peripherals are presently out-of-service (removed. for

.repairs, p·reventive maintenance, etc.).

A request stacking table exists for each device and this table is checked
to determine if th~re is space for·this request. This check is merely a
deter.nination of space at this time and does not reserve that space. There~

fore, the calling function cannot rely on this space remaining available
until a request is issued. When the actual output request is made, the
table is re-examined and if space is not available, ~' the Output Request
Program initiates a delay until space is available.

If Bit 22 of the ¢UT word is set, an area availability check is performed.
After determining that an area check is required, ¢UC ·examines Bit 21 to
determine the type of check that is required. If Bit 21 equals 1, ¢UC is
to find a floating area. A floating area is found by searching the data
availability word, DTAREA. Once found, the area number is placed in the
A-Register and its address in the Q-Register. If this is a bulk address,
Bit 23 of the Q-Register is set. If an area is not available at this time,
a return is made to the calling function with an unavailable ·indication in
the A-Register.

If a peripheral has failed, is out-of~service, has a full stacking table
or has no area available at this time, control is transferred to the
"unavailable return" with the proper indication set in the A-Register
(see Figure 2) •

Contents of A Reason Action

0 Stacking Tab le Full Delay and try again

1 Device Failure Request an., .alternate
. device or bypass output

2 Device out-of-service Request an alternate
device or bypass output

4 No data area available Delay and try again

Figure 2. REASONS AND INDICATIONS OF UNAVAIIABI;LITY

The calling function m1lJ!St then take an appropriate action dependidg upon
this indication. The. indications are suc.h ··that bit testing or a count of·
significant zero's can be used to determine exact reason for unavailability.

For bulk systems, the floating areas are located on bulk. For multiple
bulk systems, the floating areas mus~ be on one bulk .co~troller. In an all­
core system, the. floating areas are designated cqre areas.

The ·call to ¢UC destroys the contents of the A- and Q-Register·s and Index
Register Number Two.

* Revised 12/66 -17-.

* ILLUSTRATIVE EXAMPLES:

1: Request for Device Check Onlv

STE Pl
STE Pl

TYPER

LDA
SPB
BRU

EQL

¢UF

W¢RD
9)UCC01
"fi¢DEV
N:ormal Return

3

o,o,0,1,o,TYPER,O,O,O
.,

In the previous example, an availability check is requested for device
number three¥ If device three is not available for any reason, the return
will be to STEPl, the unavailable return, and the calling program branches
to ics corrective routine based upon the indication witnin the A-Register.
If the device is available, the return is 'to STEPl+l and normal processing ·
continues.

2. geguest for Soecific Data Area, No Device Check

LDA W¢RD
SPB ¢UCC01

RETURN BRU UNAVLB
Normal Returq.

.
. W~RD ¢UF o,1,o,o,o,o,o,o,nARF..A6 .

DAREA6 EQL 6

In this example, Bit 20 of the ¢UF word is 0 indicating 'that a device check
is not requested. There is, however, a request for data area rtumber 6·. If
area number 6 is available th~ return will be RETURN+l with 6 in the A-Register.
If this area is not available the return will be to. location RETURN.

3- Request for Anv Available Area, No Device Check

4.

LDA W¢RD
SPB ¢ucco1

XR.TNOl BRU N¢AREA
Normal Return

¢UF O,l,l,O;O,O,O,O,O,

In this example, Bits 22 and 21 of the.¢UF word ·indicate that the calling ,
function is willing to use any area that is. availabie. If an area is ·.
available, the return is to XRTNO_l+f with the number. o,f the available area . ,
in the A-Register and the address of the floating-· data area in· the q ... Register. ·.
If an area is not available, .return is to XRTNOl where the responsibility is
returned to the calling function.

Check Device Number 6 2 Check Data Area Number 3

LDA W¢RD
SPB ¢ucco1

Unavailable Return
Normal Return

W¢RD ¢UF o,1,o,1,0,6,o,o,3
* Revised 12/66 -18-

* If successful on search for both, the return will be to p+2. In this case
the data area. is reserved. However,'even though, the stacking table is not
full at this time, it may be full by the time the ¢URC01 re.quest is 'made:

1.12 -~UR41C/B - OUTPUT REQUEST SUBROUTINE

The ¢UR call provides automatic peripheral substitution if the requested
peripheral is bad or out-of~service. ¢UR also checks the availability of
the stacking table ·for the peripheral or its select_ed substitute.. If the
stacking table for the requested peripheral or its· alternat_e is full, a
delay is initiated which lasts until the tabte can contain this request.
Neith~r of these actions, automatic peripheral substitution or-stacking
table full delay, requires special coding or further action on the part
of the calling function. ·

If an alternate device cannot be found, an alternate unavailable indica­
tion (777777778) is placed in the A-Register and return is made to the
calling function. Since this return is the same as a normal return the
calling function must immediately test for a minus one condition.

If the peripheral or its alternate is available and the stacking table
can contain the request, ¢UR stacks the request, sets the appropriate
bit in ALERT) the request-for-peripheral flag, indicating that a request

· does exist for this device, and turns the Output Program "ON".

The contents of A, Q and X2 are destroyed by this routine.

Calling Sequence

p
p+l
n-:..? r. '-

SPB 9lURCOl
LDK IABEL(,X)

Return

Where: LABEL(,X) is an address and can be absolute in the first
16K of core, + 8K relative to the I.DK instruction. · An ·
index can contain.the starting location of an FMR area,
and LABEL is the increment from the beginning of the area.
''X" can be Registers 3-7. The format of the Laber-Table is:

I.AB-EL ¢UF PRINT,C¢NTR¢L,AREAN¢.,DEIAY1,FUNc,DVPN¢,9'f.J'll'I¢D,BULKDl,BULKFl

Where:

DAREA,

DAT..A..,

F¢R.!.'1AT,

A,

DEL A,F¢RMAT .
C~ii G,-_ DAREA (or BSS 1, if data area is not used)
DEL A, DATA

is the number of the data area being used (0 :Sn :S 23).

is the address of the first word in the data area.

0 for data words in core (~ddress can be relaf'ive or absolute).
l_for data words on bulk {Address must.be absolute).

is the address of the first format word.

if A = O, format words are in core (Address can be relative or absolute
i~ A = 1, format words are on bulk (Address m~st be absol~te) ."

is Bit 23 of _the OUF word. If Bit 23 is set, page line count
control is desired. If Bit 23 is reset, control is ·not desired.
This bit applies to printing and typing devices only.

1 These parameters are utilized in bulk"core systems only.

* Revised 12 / 66 •19-

* C.¢NTRL,

AREAN¢,

DELAY,

FUNC,

DVPN¢,

{i)UTM¢D,

BULKD,

is Bit 22 of the ¢UF word. It indicates whether ASCII/CPC. or
EIA-RS244 code is desired. If Bit 22 is set EIA-RS244. o~tput _:
conversion is desired. If Bit 22.is reset, ASCII/CPC code- is
desired.

is Bit 21 and indicates whether data areas are used _in -output
request. If Bit 21 is set, the data areas are used. If Bit
21 is re~et, data areas are not used.

is Bit 20 and indicates delay status, if Bit 20 is' set, delay.
is opposite of present availability status; if Bit·ZO is reset,
area availability status is not changed.

is Bit 19 of the ¢UF word. If Bit 19 .is set, output is to be
punched. If Bit 19 is reset, a printed output is desired •. This
bit is necessary when either the normal or alternate device is
an ASR teletype.

Bits 14 to 18 are the device. priority number.

is Bit 13 and when set indicates this message is to be output .
in binary. Binary output is allowed on card punches ·and
devices with a paper tape ptL.~chi~g function only. If the bit is.
reset the message is output as symbolic characters.

Bits 5 to 9 are the bulk controller index to the data ~ords.

BULKF, Bits 0 to 4 are the bulk controller index to the format words.

1. A and Q Established by ¢UR Call

WORD

!ABEL

PRNTR

I.DA W¢RD
SPB ¢ucco1
BRU .UNAVL

Normal Return

SPB ¢URC01
LDK LABEL
TNM
BTR N¢ALTS

¢UF 0,1,1,o,o,PRNTR,O,O,O

¢UF o,o,1,0,o,PRNTR,O,O,O
DEL O,FV}RMl
C¢N G,DAREA
DEL O,DATA

EQL 3

The data area number, as well as the data address IABEL + 2 and ·LABEL + '3,
must be stored after making the ¢UC call. The DEL word in the Label Table
specifies a core address for FORMl, the location of the ·format .table·. The
request is for device number three;(PRINTER). The return from ¢UR is to
the T1'Th'1 instruction. This instruction. tests the contents of the A-Register

* Revised 12/66 -20 ..

*

2.

3.

• 'l

upon return. If A-Register is minus one.-(all o·ne's) the peripheral or
its substitute. is not available at. this time •. If this fact is not important,
the test need not be made. This example is for-a line printer· utilizing -
page control and printing in ASCii (Amer:ican Standard Code for Informati'on
Interchange) • ·

No Data Area Used

SPB ¢URC01
LDK !ABEL
TNM
BTR N¢ALTS

._)

I.ABEL ¢UF o,o,o,o,1,PUNCH,l,O,O
DEL O,F¢RM1
BSS 1
DEL O,DATA

This example is for a binary record on a card punch with no data areas.
The teletype punch is an alternate so the fifth field is ·a one bit.

Fixed Area Message

LDA W¢RD
SPB ¢UCC01
BRU UNAVL

Nonnal Return

SPB ¢URC01
LDK LABEL
TNM
BTR N~LTS

W¢RD ¢UF o,1,o,o,o,3,o,o,11

LABEL ¢UF 0,1,1,o,1,3,o,o,o
DEL O,MESSl
C¢N 0,17
DEL O,.DATA

This example is similar to Example !_of.Section 1.11 except that I.ABEL+2
and LABEL+3 need not be upd~ted~ The data area and data address in this
example are - fixed. Since the fifth' parameter_ of the ¢UF word _is a i,
this device has a punching function. - Output wil1 be EIA.

* Revised 12/66

* 1.13 ~UP41C/B - OUTPUT PROGRAM

Monitor outputs information by using a group- of related. routines and sub­
routines ·within. the Output Program.. The Output Program is tut.•ned on.
after receiving an ou~put request from the Output Request Subroutine.

The stored format word is decoded into separate fields. Format words which
are stored on drum or disc are transferred to a· 64-word core buffer for
·processing. Data which is. stored on drum or disc is P.laced in a (64)

. word core buffer. Both buf~ers are ~ithin the Output Program's ~emporary
storage (save) area.

There are two of these (128) word data-format areas, allowing data and
format words for two devices to be saved. The .highest priority 'device
outputting uses one (128) word buffer. The other buffer is shared by
the remaining devices which have messages to be output. The data-format
word buffer is not released until the devices output buffer has been
either filled or end-of-message is reachedo ·

The proper conversion routi~e, as indicated in Bits 23~21, is then
entered.

The following routines operate exclusively under control. of the Output·
Program:

*BTD - Binary to Decimal Conversion Subroutine for t~e
following output formats:

*0cT
BCD

*BCN
*CLK

a) DFP - Decimal Floating Point
b) DFE E-Type Floating Point
c) DFX - Decimal Fixed Point

- Binary to Octal Conversion
- Eight-bit BCD Conversion

Binary Character
Print Clock Time

*FBB - Four-Bit BCD Conversion

The following subroutines are also contained ~ithin the Output Program
to assist in placing the converted information in the Driver Table,
printing error messages, etc. They are:

UPD - Update Index Pointer to Data Word
SCD Store Character Executive

Subroutines: within SCD:

STR - Store Character Subroutine
*Pee._:- Page Control Subroutine

*Indicates Optional Subroutine

*.Revised 12/66 -22-

*

Error Typeouts indicate the following:
. -

Incorrect format and.data words are indicated by printing an· F* .(for
format), anc:L7~ (for large), or D* (for data)· instead of the desired
information. Unnormalized floating point numbers are an example of
an incorrect data word.

Numeric values which cannot be displayed are indicated by.printing or_
punching an u~ for numbers which are"'too large. Numbers which ar.e too
small are printed as zero.

The End of Message word is all bits set (777777778).

Every table of format words must contain an End of Message word which is
generated by:

C0N ¢, 77777777

The repeat factor is used when more than one data word is associated
with a format word. For example, if four data words use the same:
format, thre.e is placed in this field. If only one data word is used,
the repeat factor should be zero.

The multiplying factor positions the decimal point for typing in logs.

Example:

Multiplying Factor
To Be Used:
in Format Word
Column 1, -3
Column 2, +2_

LOG HEADINGS

Pressure of Temperature o'f
Boiler . "A" Steel Furnace

XlO-J lbs. x10+2 degrees

Color control can only be achieved.:_by using one of the following three
format words!

A: BCD
B: CLK
C: FBB

·-
This would· mean that if within a message the programmer wants .to ~hange
color control, a format word may need t_o be insert.ed for that purpose
only.

*Revised 12/66

-23

If a minus sign is requested, it will be printed if the valu~ is negative.
Hence,iif no stgn is requested and the value is negative, the absolute
value will be typed. Plus signs are never typed.

There is double word output capability in BTD. The maximum number of ·
characters that can be output is 31. · (Total width of field, preceding
spaces plus characters.) The maximum number of characters for DFP and
DFE will be 15a The maximum number of whole numbers that can be indicated
in DFX is 9. This limit is caused by the minary scale factor limit of 31.

BCN, binary output can only be ~utput to a punching device.

L 14 OUTPtrr DRIVER (¢UD41C/B)

¢UD41C/B is entered from the chann'el-ready interrupt~ All ·registers are
saved for the interrupted program in the register storage area for each
device, reserved for drivers.

If this is the channel-ready interrupt and the end-of-message flag, EOMFG,
is set, then an actual end-of-message exists. Under these conditions, the
EOMFG and PROCFG flags are reset and~ if a data area was used for this
message, it is set available.

If EOMFG is not set, the i~terrupted system is returned to following the
re.storation of the registers and resetting of. MESSFG, the buffer avail­
ability flag.

For I/O devices, a channel-busy check is made on the channel-ready interrupt.
If busy-~ this indicates that an operat_or ·has initiated a request using the
operator demand function of that device. If there is·a functional program
asso~iated with this I/O device.and that program .is currently off, the .
driver turns on the program with an information word_in the A-Register on
subsequent entry. In addition, a flag is set indicating that the demand
function has occurred. This information .. word specifies the device
priority number of the input device and whether the device is a keyboard,
paper tape reader, or card reader~

Interrupt Entries

Data Ready Interrljpt - T~M "'Output Buffer· Addres.s."
Channel Ready Interrupt - ¢UDEii

NOTE:

Where ii is the system's output interrupt index number.

The 4020 buffer may contain output packed in· several modes, hence,
several Channel-ready interrupts will be generated and several
T¢M words used.

-24-

The format words shown in the following conversion routines include an
example of the Monitor Pseudo-operation. 'l'hese pseud·o-op in;;tructions.
can only be used when assembling with GE/PAC Monitor or the GE/PAC Mo~i-
tor EQL tape.

t.14.1 BINARY TO DECIMAL CONVERSION (BTD41C/B)

"' 1

BTD41C/B converts binary floating point numbers or binary fixed-point.
numbers to decimal fixed point characters and stores them in the driver
table of the selected device.

A. FLOATING POINT TO FIXED POINT DECIMAL

DFP

23 22 21 20 16 15 12, ll

0 0 0 Total width Repeat
of field Factor

6 = Divide by lON N l j
1 = :!'.ultiply by 10 f

-25-

10 7 6 3_ 2 1 0

Multiplyiµ.g Number
Factor N of Frac.

Digits

0 = No decimal po.inty .4
printed .

1 =-Print decimal
point

0 = No sign
printed

1 = Print minus

0 = Single word
1 = Double word

. t

* .

*

Pseudo-op Example: 3, 1 2' ' 1,

FORMAT
WORD

DATA
WORD

. (BINARY
FLOATING
PO.INT)

\

~' MULTIPLYING
FACTOR

(MAGNITUDE)

0 = DIVIDE BY lON
N=l

6
0 Q

1 =
PRINT DECIMAL

POINT J
SIGN CONTROL

1 = PRINT
MUTUS SIGN

0 = SINGLE WORD

This pseudo-operation specifies output of four values with
a multiplying factor of io-1 and two fractional digits in an
8-column field. It prints the decimal point and minus si.gn.

23 22 17 16 0

I t (:1 I: 0 I ~ 0 I t I iJ,1 I 0 I 0 I i I 0 I 0 I 0 ! (} r31 0 r 0 I 0 I 0 I 0 I 0 [0 COJ
. EXPONENT . . FRACTION .

SIGN Three Blank Spaces for ·
...._---+-----Eight-Column Field

This is the first of the
four values that are
typed.

*Revised 12/66

-26-

B. FLOATING POINT TO FLOATING POINT DECIMAL

DFE

2_3 21._ 21 20 16 15 12 11 10 7 6 3 2 1 0
Total Width Repeat Not Number of Number ;~

0 0 1 of Field Factor Used whole nos. Frac. J ·
-- Di_g_its

0 = No decimal point 1 printed
1 = Print decimal

point

0 : No sign printed ____ .._..

1 = Print minus sign

0 = single word ---------1 = double word

Pseudo-op. ExanlP'le: DFE 13,

TOTAL WIDTH
OF FIELD

REPEAT
FACTOR

NUMBER OF
WHOLE

NUMBERS
TO PRECEDE

THE DECIMAL
POINT

NUMBER OF
FRACTIONAL

DIGITS
PRINT

DECIMAL.
POINT

PRINT
MINUS SIGN

0 : SINGLE WORD

23 22 17 16 0
DATA I 1 i 1 l o I o l o l l [i I o I o \ o I o I o I o] o j -o I o 1 o Df[o I o I o I o 1
WORD Jr\' v /(-"--------------,,.--------~
(FLOATING I EXPONENT NORMALIZED FRACTION
POINT
BINARY) (+40) 8

S!GM

.. 27-

C.. BINARY TO FIXED POINT DECIMAL

* DFX

23 22 21 20 16 15 12 11
TOTAL WIDTH REPEAT

0 1 0 OF FIELD FACTOR

Pseudo-op Example:

3 2 l 0
B.INARY SCALE · NUMBER OF

FACTOR FRACTIONAL
DIGITS

0 = No decimal poi~t J
printed

1 = Print Decimal point

.

0 = No sign printed ----i 1 : Print minus sign

0 : single word
1 = double word ---------

·nFX 10 , 0 , 5 , 4 , 1 , 1 , 1

23 21 20 I 16 15 ii 11 7 6 I 3\ \ \

~g~Tl 0!1! o(o l 1!~l 1l o~o~Elo !1~1111 .
TOTAL WIDTH REPEAT .BINARY NUMBER OF i·' SINGLE

~ OF FIELD FACTOR SCA~E FRACTIONS WORD
1 FACTOR .

One value, scaled B5, is typed in a ten-column field •. The
values are printed with decimal point and four tractional
digits. The sign is printed if the.value ·is negative.

MINUS
SIGN

DECIMAL
POINT.

23 ~
DATA r o 1 r t i 1 o w 1 ; o 1 o 1 i 1 o 1 o .. 1 o f i · 19]~ r a 1 a i a r o r a t o 1 o i: a r ii
WORD

'BINARY

~Revised 12/66

SCALE FACTOR

Three spaces
precede the value to
make a ten-column field.

-28-

1.14.2 BlNARY TO OCTAL CONVERSION (OCT41C/B)

¢CT41C/B converts binary integers to octal integers.

23 22 21 20 16 15 12 11 7 6 3 2 1 0
¢CT 0 l 1 Total width Repeat 0 0 0 0 0 Number of 10 Q_ 0

of Field Factor -Octal

l , Chars.

Pseudo~op E~ample: ·0CT 7, 1, 6~

23 21 20 ~15 12 11 7--6 2 1 0
Format 0 1 1 0 0 1 l 0 -0 0 1 0 0 0 0 0 0 0 0 0
Word

TOTAL WIDTH
OF FIELD

REPEAT
FACTOR

NUMBER
OF
CHARACTERS

Six low order octal digits are typed in a seven-colu.mn field.
The next data word would be processed in the same manner.
(Repeat Factor 1).

first [§ o Q1..Q. o 1JI:r"P[{~1[-i o · oj 1 o ii l l .ol :1 :i j
Data .
Word
~.Binary Integer)

234567 • Space

i.14.3 BI.NARY TO trGHT--Br± J3cn coN'vERsio-N (Bcn4ic!Bf-----:_

BCD -

B~D41C/B converts binary information. to eight~bit BCD characters.

23 20 12 11
1 ol 0 Number of

Characters

-29-'

7 6 2 1 0
Number of Format lJ Leading Control
Spaces (See Page 30)

CHARACTER MODE----1 /~
0=3 Per Word Packing
l=l Per Word Packing

COLOR CONTROL
O~Black~~~~~~-

l=Red

FORMAT CONTROL

Line and Control Codes, Printer

Code Action

00 No Action
01*

02*

10*
ll"k
12"'"
131;:-
14*
15"k
16*
171•
20

Print one line with data in printer output buffer~
Single line advance.
Print one line with data in printer output buffer.
Double line advance.
Print-line slew to channel 1 - nonnafly top of form
Print-line slew to channel 2
Print-line slew to channel 3
Print-line slew to channel 4
Print-line slew to channel 5
Print-line slew to channel 6
Print-line slew to channel 7
Print-line slew to channel 8
Use first character of Data String for Control
(Fortran usage)

* The following action is taken when control is in the first format word.

Code

00
01*
021;:'

20

* The

An 01 has no effect, that is, no action will be taken.
An 02 causes one blank line to be'printed.
kn 10-17 causes a slew to the specified channel.

Card Control Characters - Card Punch
.

Action

No action
Punch one card with data in the card output buffer.
Punch one card with dat'a in the card output buffer. Punch one
blank card.
Use first character of Data String for Control (Fortran usage~

:

following action is taken when control is in first format word ..

An 01 has no effect, that is, no acti-on is taken.
fu"'l 02 causes one blank card to be punched.
An 10-17 is ignored.

Fonna.t
Word

*

DATA
WORDS

Leading Carriage Returns - Other Devices

Code Action

00 No action -
01* One inserted carriage return
02* Two inserted carriage ~eturns
10 Advance to top of form . -
20 Use first character of Data String for Control 'cFORTRAN Usage)

* The following action is taken when control is in the first format word.

An 01 has no effect, that is no action will be taken.
An 02 causes one carriage return to ~e executed.
The necessary line feeds are inserted for teletypes.
:A 10 causes an effective "advance to top of · form"
through carriage returns.
A 11-17 is ignored.

Pseudo-op Example: BCD 1, o,

23 21 20

1 0 0 0 0 0 0 Q 1 0 1

NUMBER OF
CHARACTERS

NUMBER OF
LEADING
SPACES

FORMAT 7 C~LOR
CONTROL (RED)

3 CHARACTERS PER
_WORD PACKING

CON A, 10 VALVE OPEN (pseudo-op generating data words}

23 22 21 20 19 18 17 16 15 14- 13 12 11 10 9 8 7 - 6 5 4· _3 -'2 1 ff_
0 iI 01 lf 0 li l} 0 0I1 010·0 01011 0 l t 0 l 0 -llli OlO
0 ll 0 1! 0 I 11 0 011 o J·o 0 110]1 0 o I 1--l o otoioto
0 it· ·a oJ 1 1 11 1 0 11 o I 1 0 oJolo 0 i1,o to Oflt 010
0 11 0 oI 1 1 lJ 0 0J1 lll 1 l J 1J1 0 lJ 1 l·l 1 f l l i- t 1

*Revised 12/66

*

CARRIAGE RETURN
3 LEADING SPACES

ALPHANUMERIC
TYPEOUT IN RED

1.14.4 BINARY CHARACTER OT.ITPUT (BCN41C/B)

BCN41C/B places binary-information directly into the dirver table for the
selected punching device.

23 22 21 20 12 11 0
BCN 1:1! OI ij Number of words j 010101010101010101010101

Pseudo-op Example:

BCN- 3

I?
23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 ·5· 4 3 2 1 0
[11 0 I 11 Q I 0 I 0 i 0 I 0 I 0 I 0 (11 i I 0 I· 0 i 0 I 0 l 0 I 0 I 0 I 0 i 0 I 0.1 0 I 0 i

- - \..)
• < V' . '

~

~ 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 ' 5 4 3 2 1 0
DATA
WORDS

1.14.5

CLK

0
0
1

11 1 01 0 o l 1 l o l 1 I -1 ! 1 I 1 I o I 1 J o I o I o J 1 I 1 r 1 l O I o I o I o
ll 0 01 1 1 1 01 l l ·O I 0 1 1 I 0.1 0 ! 1 i. 0 I 1 ! 1 I 0 I 0] 1 ! 0 1 1 l 1 I 0
01 0 11 11 o I 11 o l o I 1 l o 11 l I l o I 1 I o l o t o J· 1 I o J 1 I o 1 o 11

If output is to a card punch the first six columns are punched-with odd
colµmns using data Bits 23-12 ~d even columns using Bits 00-11.

I

CLOCK ourPur (CLK41C/B)

CLK.41C/B converts the time of day fr6m system tiroe'counts to decimal hours,
minutes, and seconds. It is then printed as four or six decimal digits.

23 22 21 20 19 18 17 16 15 14 13 12 11 1

Requested Time~
= O; message time,

(no data word)

·= 1, event tioe
(data_word)

0 0 0 0 Number of
Leadino S aces

~Line and Card------1'
Control)

0 = HR/MIN Printout (XXXX)
l = -HR/MIN/SE~ Printout (XX.\XXX)

0

l
Color Control

0 = Black
1 = Red

~Revised 12/66

-32 ...

FORMAT CONTROL

Line and Control Codes, Printer

~ode Actions

No action 00
01-!c Print one line with data in printer output buffero:-single

advance.
Print one line with data in printer output buffer-double.

10
11
12
13
14
15
16
17

advance ..
Print line
Print line
Print line
Print line
Print line
Print line
Print line
Print line

slew
slew
slew
slew
slew
slew
slew
slew

to channel 1 - normally top of fonn
to channel 2
to channel 3
to channel 4
to channel 5
to· channel 6
to channel 7
to channel 8

* Action taken when control is in the first format word:
An 01 will have no effect, that is no action will be takeno
An 02 will cause one blank line to printed' first.
An io ... 17 will cause a slew to the specified·· channel.

Card Control Characters - Card Punch

Code t Action I

00 No action
01~\' Punch one card with data in the card output buffer.·.
02* Punch one card with data in the card output buffer

Punch one blank card.

* Action taken when controi is in the first format word.
A..~ 01 will have no effect, that is, no action will ~e taken.
An 02 will cause one blank card to be· punched.
>..n 10-17 will be ignored.

Leadin_g Carria_ge Returns - Other Devices

Code Action

00 No action
01* One inserted carriage returns**
02-1: Two inserted carriage returns**
10* Advance to top of page

* Action taken when control is in the first format word.
An 01 will have no ef feet, that is no action will be taken. -
An 02 will cause one carriage return** to be executed. .
An 10 will cause an effective advance to top ci~ page through

_carriage returns*"k.
~ The necessary line feed·s will be inserted for teletypes.

Codes 11-17 will be ignored.

-33-

J

line

line

.,

*

Psuedo-op Example:

CLK O, O, 3 1 0

,_ .. ·"'-""~
23 22 21 20 19 18 17 16 15~12 11 --1 6-_ 2 0

1 1 0 0 0 0

.Q = Message Time (ho data word)
1 = Event Time (data word)

0 =Hr/Min Printout (XXXX)~--------~~
1 = Hr/Min/Sec Printout (xxx.xxf{)

Number
of

Leading
Spaces

Control

The above example types or punches time in hours and minutes preceded by ·
a carriage return and three spaces using black ribbon.

Data Wo-;d (TIME)

1/4 SEC-,, GOUNTS

" 1000000100100000010010000}

~------~lack typ-eout ~ ~hours & minutes only
. \....,

1.14.6 BINA.RY TO FOUR-BIT BCD (FBB~lC/B)

FBB41C/B converts binary data, left-justified, to six 4-bit
BCD characters per word.

23 22f21 20 16 15 i2J11 6 5 3· 2 lj 0

*. FBB :d 1
Total width Repeat l 0

Number l of 1 of field Factor

*Revised 12/66

-34-

0 0 0 0 0 Chars.!.

Following Dash Control
= O, No dash
= 1, Print dash

Color Control
~ O, Print black
= 1, Print red

0

11\ Ii\

DATA
WORD

Pseudo-op Example: FBB 10,0,6,0~

23 22 21 iO- l~ ~ 3 2----1 0

C
Jf1lili\l1lcililo~QlolOlolQ~ololil ·

\. . / . '
'V"

FORMAT TOTAL . REPEAT NUMBER OF COLOR
WORD WIDTH FACTOR . CHARACTERS . CONTROL

OF 0 = BLACK;
FIELD 1 = RED

FOLLOWING DASH CONTROL
1 = PRINT DASH

One value, consisting of 6 characters, is typed in black.

~2 21 20 19 la 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3' 2 1 0
oTI'i I o].J2 r o] i l ~ I o I i l o 1 · o I o I i r o J i I o I 1 I 1 I o I o I 1 Ii J 1 I

+
·234567 Black printout

4 blank spaces = ten column field

Note: If the repeat factor is used, e,ach'data word
must have the same number of characters.

-35-

*

L 15 nm.41C/B - INPUT REQUEST SUBROUTINE

INR accepts input requests from the paper tape reader, card reader, I/O .
. typer, or teletypes. Input from more than one peripheral may be requested.
However, each device is. limited to one request at any.time~ Every request
must be tested for completion by using the INRC02 call.

If an INRCOl request is made when the device is available, the.read is .
initiated and the calling program is entered immediately at the "avail- .. -_
able return" location. At this time the calling program may perform any'
processing desired.

At any time following the input request, the c~lling function must request
a test for completion by using the INRC02 call. Upon making a completion
request, the functional program is locked out until the read is completed
or until a failure is discovered.

Upon entering.INR, the availability of the device requested in the INF
word is tested for whether it has failed, is out-of-service or is currently-,
being used. If any of these conditions exist, INR returns to the unavail­
able return with the reason for unavailability in the A-Register.

If the device is available, the input request· is store~, the device is
activated, and the exit is to the normal return.

The symbolic address INPTBL, in the DEL word, points to the list control
word. Input characters are stored starting at this address plus one and·
continue for n number of words.

When specifying NRCL'9AR, the number of characters to be read, the system
prograr.'lmer must make allowances for all characters. In the case of the
paper tape reader, this table must allow for the media- disable code ETX.,
If the device is a keyboard, ~his list· must all0".t1 for any operational
errors, carriage returns and correction characters.

Calling Sequence

Request

p SPB INRCOl
p+l LDK LABEL(,X)
p+2 Unavailable Return
p+3 Normal Return

Where: The operand LA.BEL(,'x) is the same _as for OURCOl. The format
oi the Label Table is:

!ABEL L'N"F C¢DE,PCKM¢D,FUNC,DVPN¢,NCHAR
DEL O,INPrBL

Test for Completion

p-1
p
p+l
p+2

NOTE:

LDK DVPN~
SPB INRC02

error return
read complete

The requesting program must have full 8~word_ register storage.

* Revised 12/66 -36-
,.

*
*

**

*

Where: INPTBL is the label assigned to the input data list. INPTBL must·
be a core address (relativ~ or.a~solute) and is the address of :the
second word of the input area. The first word is the number of
characters read, which is inserted by Monitor.

INPTBL

. C¢DE -

FUNC -

· PCKM¢D

DVPN¢

NCP'AR

BSS 1 CHARACTERS READ

BSS 1 LIST CONTROL WORD

BSS N

N = Number of Words for Input Data •

is Bit 22 of the INF word and indicates the input mode. If Bit 22
is set, the input mode is binary and if Bit 22 is reset, the input
mode is symbolic.

is Bit 19 of the INF word and indicates whether this device has a
keyboard or non-keyboard function. o· keyboard input functio~ and
1 non-keyboard input.

is Bit 20 of the INF word and indicates the desired packing mode.
Packing is a function of the device. ·rf Bit 20 is·reset, the
packing mode is one per word.· If Bit 20 is set, packing occurs.

Packing Mode
DEVICE ·-

Binary Symbolic
Input Input

Paper Tape 4 1,3

Cards 1,2 1,3

Keyboard N/A 1,3

is the input device priority number (Bits 14 to 18)

is the maximum number of characters allowed for this read (number
of BSS words reserved in memory, ·BsS.N-0£ previous.e~ample) •. See
Input Buffer Size under General Information. (Bits 0·13). ·

INPUT BUFFER SIZE

A. Binarv Inptit

-
L Card - Record Size, 40 or 80 words -- Input Data plus two words for

character total and list control_ word. (N~mber of words
depends on packing mode.) When entered in 40 words, it'iS
unpacked to 80 words if single-word packing is desired. ·

* Revised 12/66
** Revised 1/ 6 7

_37 ..

*

*

2. Paper Tape - Number of characters divided by four, plus three words
(ETX and the two above).

B. Symbolic Input
.

1. Card - 80 words Input Data plus two words, for character total and
list control word. (One character per word packing).

40 words Input Data plu~ two words for character total and
list control word. (Three character per word packing).

2~ Paper Tape - Record Size plus three words (ETX, device address and
list control word). (Record Size =Number of characters or
Number of characters divided by 3 plus one if remainder,
depending on packing mode.)

3. · Keyboard - Number of characters (including carriage return) plus
two words plus an allowance for error characters, (divided
by three, if three characters per word packing is desired).

PROGRAM COMMUNICATION

INR41C/B returns to the "unavailable return" of the calling sequence with
the reason unavailable in the A-Register. (Refer to Table 1.)

Contents of I A-Register Reason

0 ·Device busy
1 Device failed
2 Device out-of-service
4 Alarm line 3 (Media problem)

Table 1. Unavailable Indications

The !NRC02 call, test for completion, returns to the normal return when the
=ead is complete or the error return· if the read was in. error. The error
indication is in the A~Register of the calling program.· Table 2 describes
these error conditions. These errors are cetected by _the Input D~iver and
alarmed by the Input Program. The actual cor.rective action is the respon­
sibility of the system programmer.

Upon returning under normal conditioµs or if a data error occurs, the A­
Register of the calling program contains the·number of words accepted.

* Revised 12/66 -38-

Contents of
A-Register Cause ·Possible Action

Bit 19
Bit 20
Bit 21

Bit 22

Bit 23

Keyboard Input Message Time Aborted
.Input Buffer Overflow _
Alarm line 4 (Data error)

Alann line 2 (Mechanical or
electrical failures

Alann line 1 (Operator intervention)

Reinitiate request
·. Reinitiate request

Have record repositioned,
then reinitiate request
Terminate until repairs
are made
Delay and reinitiate
request

~: There will be no conversion or filtering on ·error returns except for
alarm line 4. (Data error) j

Table 2. Error Indications

Examples~

* 1. Request for input using a card reader:

, ..
·;

p SPB INRCOl
p+l LDK LABEL
p+2 BRU RD ERR
p+3 Noni.al Return

I.ABEL INF 0,1,l,READER,80
DEL O,INBUF

. READER EQL 3
BSS 1

IlIBUF BSS 1
BSS 40

In this calling sequence, the request is for input of 80 charactersl
which are to be packed. Packing is·three per word,· left jttstified.
The right-most position of the 27th word is· .zero.:..filled. RDERRl is the
address of a system-defined error routine.·_. If th:e· requested device was
unavailable, the return to the calling program is· ~o the branch toi RDERRl.
At RDERRl the system program must perform some appropriate corrective
action, depending upon the nature of-the error. _The reason for-··err~r is
contained in the A-Register of the re.questing program (see Table 1).

1rf.the request has specified any number of characters other than.80
(such as 27, 40, or 160) the actual number· of characters- accepted is
80 characters (one full ca.rd) •

-!~ Revised 12"/66 · ... 39_

*

*

*

2.

. Test for completion:

At any time following the input request, the calling function must make
a test for completion using the INRC02 call.

LDR READER
SPB INRC02
BRU RDERR2

After a successful read complete, th~·requesting program can expect to
find 27 words of data starting at location ·INBUF+L ·

If the read had been in error the requesting' program.branches to RDERR2
for analysis and corrective action depending upon the nature of the error.
The actual error can be determined by examining the bits in the A-Register
upon return to the requesting program (refer to Table 2). ·

Request for input using a card reader:

p SPB INRCOl
p+l LDK !ABEL
p+2 BRU RDERRl
p+3 Normal Return

!ABEL Il1F l,l,l,READER!l80
DEL O, il"\IBUF

~ This request is the same as example number one except the input is
binary. This effects the packing mode, causing packing to be two
characters per word. The results are located from INBUF+l to.INBUF+40.
-The test for completion is the same. ·

3. Request for input using a•keyboard:

p SPB
p+l LDK
p+2 BRU
p+3

IABEL INF
DEL

KEYED EQL
BSS

KE YIN BSS
BSS

INRCOl
LABEL
KEYRl
Normal Return

O,l,O,KEYBD,30
O,KEYIN
4
l
1
lo+n

Where ''n" is the number of characters
that might be typed incorrectly plus ~he
DELETE character (~). The·number of.
c~aracters should include a carriage return.

, '
This request for device number, four indicat~s that th_irty characters
are to be inputted through the keyboard into:buffer·KEYIN. ·Packing is
three characters per word. Ho¥ ever,· the size of the: 'buffer., is 10
words + n. The buffer must be able to accommodate the entire record
plus any operational errors and correction characters. that may be
entered. All characters are accepted and placed in the buffer, three
per word. If nore than 30 characters are entered,these additional

* Revis.ed 12/66 .-40-

* 4.

.. . '

* 5.

characters are ignored. After: the read is completed, the input
program edits and packs the data in the desired mode. The number·
of charact~rs read is the BSS word at KEYIN-1. The number of words
packed is in the A-Register of the calling program upon return to .
that program. In this example, the words.should be in KEYIN+l to
KEYIN+lO. If less than or more ·than 30 ·characters were accepted,
this is reflected in the ''nllmber of words" found in. the A-Register
upon return to-the requesting program. A test for comple~ion must
follow the input request.

LDK KEYBD
SPB INRC02
BRU KEYER2

Request for input, keyboard:

SPB INRCOl
LDK !ABEL
BRU KEYERl

Normal Return

!ABEL INF O,O,O>KEYBD,30
DEL O,KEYL'\f

LDK KEYBD
SPB INRC02
BRU KEYER2

Normal Retur:Ll

·This request is the same as the previ~us request except that packing
is not desire~. The characters, therefore, are stored one per worµ
starting at KEY~l. ·

NorE: An L"f\TF word of INF l,x,x,x,x (binary input) constitutes an
illegal request for a keyboard. The result_ of-such a request
depends upon the packing mode. The.input program assumes that
the characters are symbolic and edits and packs them accordingly.

Request for input, paper tape reader:

. SPB INRCOl
.LDK !ABEL
.BRU PTERRl

Normal Return

!ABEL INF 1, 1, 1, PAPERD, 60
DEL O,PTRBUF

PAPE RD EQL 5
BSS 1

PTRBUF BSS 1
BSS 16

* Revised 12/66 -41-

'*

*

. ·This request is for 60 binary characters• Packing has been reque..sted .
and is four characters per word. In fact, binary input fro!U paper t'ap~·
is always packed four characters per word whether,. it is specified or
not. The 7th.bit of the input character is deleted when packed.

Test for completion: .

LDK PAPERD
SPB INRC02
BRU PrERR2

6. Request for input, paper tape reader:

~l.16

IABEL

SPB INRCOl
LDK I.ABEL
BRU FTERRl

INF
DEL

Normal Return

O, 1, 1,PAPERD)60
O,PTRBUF

This request is the same as the previous request except that ·input is ·
symbolic. Symbolic input is always pac~ed three per word.

Test for completion:

LDK PAPE.RD
S PB Ii'ffi.C02
BRU PTERR2

INPUT DRIVER (IND41C /B)

The Input Driver non-inhibitable data-ready interrupt-will be a TU1
1

instruction.

GE/PAC 4020

Data Ready Interrupt - TIM "Input .Buffer Addressu
Channel Ready Interrupt - SPB INDEii · ·

ii = system's input interrupt index number

Upon receipt of the channel-ready interrupt, the Input Program is turned
on.. If this device is I/O in nature,, i.:ts output function is tested to
.determine if there is something in the.buffer to output. If it' is, an
enable command is issued for the output channel and ·the diagnostic c.ount
for that device is set.

For input devices, a channel busy che~k is made on the channel-ready
interrupt. If busy, this indicates.that an operator has initiated a
request using the operator demand function of :that device. · It there. is
a functi.onal program associated with this.~ ·r;o device and that program· is
currently off, the driver turns on the, program.with an :information word

·in the A-Register on subsequent entry .. 'In a'dditon, a. flag is. 'set in­
dicating that the demand function has occurred~ This· information word·
specifies the device pr~ority nUi--nber of° the input device arid whether the
device is a keyboard, paper tape reader or card reader.

*· Revised 12/66 -42-

_·,

1.17 INPUT PROGRAM (INP41C/B)

The input program is turned ON by the Input Driver upon-receipt-of the
channel ready interrupt.

Upon er:itry, the Input Program INP searches for requested input devices
in priority number. w1len a device with "read complete" is found, its'
rea~ status is checked to determine ~f input occurred _error~free.

If an error was found_while reading, the reason for the error is placed
in the A-Register of the calling·progr_am and this program is turned ON
if a test for completion had been initiated. -

If the read was error-free or has only a data error, the INF word for this
request is decoded and a check is made to determine .the type of conversion
needed. If the device is a card reader, the characters can be stored as
read or converted from Hollerith to ASCII. If the device is an IBM
Selectric, the CPC code is converted to ASCII. All ·illegal characters are
converted to a special error character~

·If input is through a keyboard,. the data i's filtered and then packed as
requested.

The total number of words, after packing, are in the A-Register of the
calling program which is turned on at this time.

The Input Program returns to e'ither the error return or read-complete
return of the utest fo.r completion" call, ·of the requesting progr_am. ·The
test for completion calling sequence is:

p-l LDK DVPN0
p SPB INRC02
p+l error return
p+2 read complete

Wh~re: DVPN0 is the device p:riority J1Umber

If the return is "read complete", the A-Register of the calling program
contains the total number of wo~ds in _the buffer. If the r~turn is an
"error return", the A-Register contains an error indication. If the error
was a data error, it will also contain the .number of words. These indica­
tions are summarized below:

_43 ...

Contents of
A-Register

Bit 19
Bit 20
Bit 21

Bit 22

Bit 23

Cause.

Keyboard Input.Message Time Aborted
Input Bu.ffer Overflow

.·Alarm line 4 (Data error)

Alarm line 2 (Mechanical or
electrical failures)

Alarm line 1 (Operator intervention)

Possible Action

.Initiate Request
Reinitiat'e Request
Have record repositioned
initiate request.
Terminate until repairs
are made
Delay and Initiate
Request

NOTE: There will be no conversion or filtering on error returns except for
Alarm line 4, (data error).

-44-

1. 18 . MULTIPLE OUTPlIT REQUEST SUBROurINE LOCAL AND REMOTE (MOR4_6)

The Multiple.Output Distributor is used for' addressing and controlling
decimal, binary, or.analog data output groups from the Arithmetic Unit.
M!JR46 supplies the communication link. to the Local or Remote driver ·for
obtaining these outputs.

,., A group status word is needed if the. unaffected bits on an output must
be set to the same position as the last output for that group.

The status word table contains one word of data for each group in that ·
MflD defined by the programmer as having a current ·status word. Each
word contains a group address and the current status of the contacts
for that groupo Group status words may be arranged in any order within
the table o If bit 7 of the Q-Register equals' zero·, the index used by
the calling program is an index to the' status table.

Two words are required to request output of a particular group.

E~ample:

A-Register

Q-Register

1000
1001
1002
1003
1004
1005
1006
1007
1010

E~planation:

23 22 21 20 19 18 17
I i l 0 1 1 0 0

1 1 1 1 1 1 1

Status Tables
0 0 0 1 0 o, l
0 1 0 1. 0 1 1
1 0 0 l l o. l
l 1 0 1 l· 1 1
0 0 0 1 0 0 1
0 l 0 l 0 1 1
1 0 1 0 1 0 l
1 0 0 l 1 0 1-
1 1 0 1 1 1 1

16
.Q

0

0
0
0
0
0
0
0
0
0

15 14 13 12 11 10 9 8 7
0 1 0 0 o· 0 0 o I o I
0 0 ,Q 0 0 0 0 o! o!

7
0 0 1 1 0 1 Q, 0 1
0. 1 1 1 0 0 0 0 0
1 0 1 1 l 1 0 0 ·o.
l 1 1 1 0 0 0 0 0
0 0 1 l 0 1 0 0 1
0 l 1 1 l· ·O 0 ·. 0 0
0 0 1 1 0 0 1 1 0
l 0 1 t 1 l 0 0 1
l l 1 1 0 0 0 0 0

6 5 4
1 I 0

0 0

6
0 3
0 2
0 1
0 2
o· 1
0 O'
O· 2
a 11
0 0

In the mask word (Q-Register), bit _7 is reset meaning that this group has
a current status word and bits 0-5 of the A-Regis.ter contain an index to

3
6

4

2
7
4
1
3
6
2
5
4

the status table, which is 06. Since bits 17-23-?f. the Q-Register are set,
the corresponding bits of the A-Register are output as shown. The remaining
bits {8-16) are output as shown in the gro~p status word for.group 22
(index 06), with one exception~

... 45 ...

2 10
I
·I

Explanation: contd

Any bit set in the A-Register ~--16, is or'ed into the status word and·
output. The request and driver programs do not check this' and it should
be considered a sy~tem program error, (see bit 14 of A-Register in the
foregoing example).

'rbCAL REQUEST

The first word (A-Register) contains a group address or a~ index
to the status word table. Bit 7 of the' second word (Q-Register),
if set, indicates that the first word contains a group address and
has no status word. If bit .7 is reset, it implies that the.first
word contains an index to the status word table and there is status
saved for this group 9 The second word contains an index to the
correct multiple output distributor. If a group has a.status .. tabie,
the status words are initially set by the system programmer.

REMOTE REQUEST

Eit 23 of the fi=st word ir.dicates the mode of the request, whether
normal or repeat. If the repeat mode is selected, the driver, sets
the repeat bit on its output request. The Remote Scanner Controller
saves and sends the output request back to the driver for verification.
The driver then resets the repeat bit and sends the output, knowing
the Remote Scanner Controller will compare this request with the saved.
command. If they agree, the o~tput is made, otherwise, an error condi­
tion exists. This first wqrd also states the type of formats used,
either 8-bit (8 bits of data plus 5 bits for group aadress) or 10-bit
(10 bits of data plus 3 bits for group address). 'The 10-bit format
words have only one operational delay time. This, ts four milli­
seconds., The 8-bit format words have two, 76 or 4 milliseconds•,·
Bits 5"0 of the first word contain a group.address if' bit 7 of the
Q-Register is set. Otherwise, they contain an index to the status
word table if bit 7 is reset.

In addition, the second word contains an index to the correct multiple
output distributor.

NORMAL OUTPUT - LOCAL OR REMOTE

For Local and Remote requests, all bits set' in the first word ?r~
outputo For normal requests, the fi_rst word contains group output,
in bits 8-23; operational delay time in bit, 7, alternate (1) or immediate
(O) return to calling program in bit' 6 and a group number,,or status table
index in bits 0-5.

The second word contains a mask of the bits to be changed in the
status word bits 8-23, bit 7 indicates whether thii group has a.
status word, and bits 0-6 indicate the Multiple Output Dist~ibutor
being used.

-46-

NORMAL OUTPUT - LOCAL OR REMOTE - contd

The current status is updated for those groups which have status. There
. is no updating for groups without status. In either case, the output
comma~d and program number are stored in the appropriate Priority or
Non-priority Driver Table.

TIMED~LATCH OUTPUT - LOCAL ONLY

In the case of the timed-latch request,' the first word indicates which
positions of the output group to latch. The second word gives the time
required between the latch and unlatched commands.

When a timed request is made, M~R46 tests the timer availability flag.
If a timer location is free, M;iR46 places the timer number and output
command in the appropriate Priority or Non-priority Driver Table. It
also saves the program number,_time of latching and contact status for
driver.

F<?r a request to unlatch a previous reques, t, no information is stored in
the Driver Table. The unlatch flag is set for the output driver which
aborts the request befQre the request time expires. Three flags are
used for Tim~d Latching Output:

1.. Unlatch Flag Word - set on completion or abort.
2. Timer Available Flag Word - set when timer in use.
3. Timer Active Flag Word - set when timer is timing.

PULSED OUTPVT - LOCAL ONLY

For a pulsed request, the first word states the direction of the pulseso
The second word contains the number of pulses to. be sent out •. The output
command, number of pulses and program number are,

1

,stored 'by MQR46 in the
Pr.iority or Non-priority Driver-Table for pulsed request. - -

OUTPUT OPTIONS

The operation delay time is the time required to transfer a command word
from the A-Register to the M~~ Command Register and to initiate the trans-

. fer of the data portion of the conl.~and word to the output function specified
by the matrix address. The time to comp~ete these transfers is either four
milliseconds, sev·enty-five milliseconds or forty microseconds, depending
upon the output function for a local. request. For' a remote request, the
transmission time must also be added to get total time~

·--·---·-There--are- -two.types-oT-·r-et-urns-ifl~_c-1!.--~a-ri:_s_p_~~~ft~d~by-bit: 6~-~f_ -_-th~--fi-~;~--~~d .
.,. ---~--The Imme-dl.3.t·e- Return- returns to the normal exit· of the calling sequence

after the output demand is stored in the Driver Table. The other return
locks out the calling function (which is turned on by th_e Output Driver)
unt-il the output is completed.. Control is then returned. to the normal
exit of the calling sequence •

... 4z-

*

~

"\

SYSTEM COMMUNICATION

Calling Seauence

NORMAL REQUEST - LOCAL·

p - 2 ~lace the change word in the A-Register (First Word)

Bits 23-8 - Data:

1 = contact to be closed
0 = contact to be opened or remain unchanged.

Bit 7 - Operation Delay Time:

. 1 = 40 microseconds output or
75 milliseconds output

0 = 4 milliseconds output

Bit 6 - Ready Signal:

1 = Return when output is complete
0 = Immediate Return

Bits 5-0 ~ Multiple Output Group Number if Bit 7 Change Mask Word
is set, or

Bits 5-0 - Index to the Status Word Table if Bit 7 of Change !Mask.
Word is reset.

p - 1 Place Change Mask Word in the Q-Register. {Second Word).

Bits 23-8 - Data:

1 =Bit to be set or reset as in A-Register.
0 = Bit to remain as in status if group ·has status word.

Bit 7 - Status

1 = Group has no status word.
0 = Group has a status word ..

Bits 6-0 - Index to Multiple Oµtput Distributor

~ SPB M~RCOl Non-Priority Request
or

P SPB M~RC02 Priority Request

P+ 1 ERROR RETURN

P+2 NOR.NIAL RETURN

*Revised 12/66

-48-

NORMAL REQUEST - REMOTE

P 2 Place change word in the A-Register (First Word)

Bit 23 - Repeat bit

0 = Normal mode
"1 = Repeat mode

Bit 22 - Unassigned

Bit 21 - Size of Data Field

0 = 8-bit format word
.1 = 10-bit format word

Bit 20 - Operational Delay Time

For 8-bit format words

Bit 20 0 ~ 4 millisecond output
= 1 = 75 millisecond output

For 10-bit format words

Bit 20 must be zero for a 4 millisecond output only

Bit 19-7 - Data and Group Address

For 8-bit format words;•

Bits 19-12 - Data

1 = Contact to be closed
0 = Contact to be opened or remain uncha~ged

Bits 11-7 - Group Address

For 10-bit format words

Bits 19·10 - Data

1 = Contact to be closed
0 =Contact to be opened or remain·unchanged

Bits 9-7 - Group Address

-49-·

I

Bit 6 - Ready Signal

l.= Return when output is complete
0 =·Immediate Return

Bits 5-0 - Multiple Output Group Number if Bit 7 of Change Mask
word is set, or

Bits 5-0 - Index to the Status Word Table .if Bit 7 of Change Mask
word is reset.

P - 1 Place Change Mask Word in the Q-Register (Second Word).

Bits 23-20 - Unassigned

For 8-bit format

Bits 19-12 - Data

0 = Bit to be unaffected
1 = Bit to be changed

p

p

Bits 11-8 - Unass.igned

For lO•bit fonnat

Bit 7

1
0

Bits

SPB

SPB

Bits 19-10 - Data

0 = Bit to be unaffected
1 = Bit to be changed

Bits 9-8 ~ Unassigned
- Status

= Group has no status word.
= Group has a status word.

6--0 - Index to Multiple Output

M(j}RCOl Non-Priority Request
or

M(flRG02 Priority Request

P+ 1 ERROR RETURN

P+2 NORMAL RETURN

_50-

Distributor

TIMED REQUEST - LOCAL ONLY

P-2 Place the latch command in the A-Register ·(First Word).

Bits 23-8 - Pata

1 = Contact to be latched
0 = Contact to re~ain unchanged

' Bit 7 - Operator Delay Time

1 = 40 microseconds output or
75 milliseconds output

0 4 milliseconds.output

Bit 6 - Ready Signal

1 = Return when output is completed
0 = Immediate Return

. '

Bits 5-0 - Multiple Output Group Number if Bit 7 of Timer Word is
set, or

Bits 5-0 - Index to the .Status Word Table if Bit 7 of Pulsed Word is
reset.

P-1 Place the Timer Word in 'the Q-Register (Second Word)

Bits 23-8 - Number of counts for r~lay to remain latched.

(1 count
(l count

lQ 2/3 milliseconds for 60-cycle.systems)
= 20 milliseconds for 50-cycle systems)

Bit 7 Status

1 = Group has no status word
0 = Group has a status word

Bits 6-0 - Index to the Multiple Output Distributor

p SPB MQRC03 Non-Priority request
or

p SPB MCJRC04 Priority requ.est
or

p SPB M(,ifRC05 Unlatch a p,revious request (Immediate

P+ 1 ERROR RETURN

P+2 NORMAL RETURN

-51-

return only)

PULSED REQUEST

-P-2 Place pulse command in the A-Register.

Bits 23-8 - Data

1 = Contacts to be closed
~O =Contacts to remain open

Bits 7 - Operation De lay Time

1 = 40 microseconds output or
75 milliseconds output

0 = 4 milliseconds output

Bit 6 - Ready Signal

l = Return when output is complete
0 = Immediate Return

Bits 5-0 Multiple Output Group Number if Bit 7 -0f Pulse Word
is set, or

Bits 5-0 - Index to the status word if bit 7 of pulsed word_is
reset.

P-1 Place Pulse Word in Q-Register (Second Word).

Bits 23-8 - Number of pulses to be sent: outo

Bit 7 - Status

1 = Group has no status word*
0 = Group has a status word')\"

*NOTE: A pulsed request does not need status~

P SPB MQRC06 Non-Priority Request
or

P SPB M¢RC07 Priority Request

P+ 1 ERROR RETURN

P+2 NORMAL RETURN

-52-.

PROGRAM COMMUNICATION

M<PR46 returns to the "Error Returntt of the _calling sequence when one of the
following conditions exist:

A-Register
Contents

0

1

2

4

8

16

Error Condition

Driver Table Full or No Timer Available for Timed Requests.

Requested Group has failed on two previous consecutive overloqds.

-output failed on two consecutive overloads (Alternate Return).

Invalid Multiple Output Group Address (Status, Index, Max. for
groups with status) or Multiple Output Distributor Index).

Multiple Output Distributor Timer .Failure, Remote Scanner
Failure, or Communications Coupler failed.

Invalid Remote Output Requested.
I

1.19 MULTIPLE OUTPUT DISTRIBUTOR DRIVER - LOCAL (MDR)

MDR is initiated by the MCJD Interrupt to execute requests made.by M~R. To
~ output a request, the command word fr.om the 4river tab le is placed in the
,A-Register. The data is transferred to the location specified-by the group

address of the command word. The Multiple Output Distributor is then ready
to ~ccept another request.

All output commands are initiat~d from the Priority Driver Table before informa­
ti?n ~s taken from the Non-Priority' Driver Table.

For timed requesG, a timer is activated, When the requested time has expired,
MOR executes the unlatch command .. -

For pulsed requests, .a pulsed timer is started.
are opened.,

When it expires, the contacts
I

Timed Contact Output Request Subroutine-Local and Remote (TCfP42)

The Timed Contact Output Controller is used ,for addressing and controlling
timed contact output gr.cups from the, Arithmetic Unit_. TCG42 supplies the
comnrunication link for obtaining these outputs.

The output command is stored with the program number in the Normal or
Priority Output Driver Table. In a normal request~ the new output
command is placed in ~he Normal Driver rable. 'For a priority request,
the new output comm.and is stored in. the Priority Driver Tabl_e. All,
priority requests are serviced prior to Normal Driver'Table requests.

-53-

• j

,,

There are two types of returns (specified by bit 7 of the Command
Word) following a request for output. Return 1 returns to the normal
exit of the calling. sequence after the outp.ut command .has been store.d
in the driver table. Return 2 locks out the calling program until. the·
output is completed<> The calling program is then turned on arid contr.01 ··
is returned to the normal exit of the c~lling. sequence.

SYSTEM COMMUNICATION

Calling Sequence (Local Controllers)

p-1 Place the TC9 Command Word in the A-Register:

Bits 23-16 - Number of timing pulses for contact closure time or

p

p
p+l
p+2

stepping.
Index # of Controller 15-11

10 - Position for Setpoint Controller

9
0 = Move Setpoint Down; 1 = Move Se'tpoint Up
0 = GE/MAC*PULSE OUTPUT
1 = PULSE DURATION OUTPUT

7 • 0 = Normal Return (ItTu~ediate)
1 =Alternate Return (After Operation is Completed),

6 - 0 = Matrix Address ·

SPB TC¢C01 Normal Request
or

S?B TC(t1C02 Priority Request
Busy/Error Return
Normal Return

Calling sequence (Remote Controllers)-

p-1 Place the Toi Connnand Word in the A-Regis t'er

p

p+l
.p+2

Bits 23 ... 0 = Normal Mode
1 = Repeat Mode

22-17-Mumber of timing pulses for contact closure time~ or stepping
16-0 = Move Setpoint Down I

1 = Move Setpoint Up
15-0 ~ GE/MAC Pulse Output

1 = Pulse Duration Output
14-8-Index # of Controller

7-0 = Normal Return (Immediate)
l =Alternate Return (after operation is completed)

6-0-Matrix Address

SPB TCQC03 Normal Request
or

SPl3 TC¢C04 Priority Request
Busy/Error Return
Normal Return

* Trademark of General Electric Company

-54-

PROGRAM COMMUNICATION

TC~42 returns to the .. .'busy I error re~~rn" of the calling sequence when one
of the following conditions exist:

A-Register

0
2
4
8

Error

Driver Table Full
Output Failed on Two Consecutive Overloads

. Invalid Matrix Address
TCfJ Timer Failure (DeadmanY, Remote Scanner, or
Communications coupler failed.

Timed Contact Output Driver (LQCAL) - TCD

TCD uses the Timed Contact Outp~t Controi'ler for addressing
and controlling timed contact output groups from the Arithmetic
Unit. To output a request, TCD places the command word in the

· A-Register. ·The data is transferred to the location specified
by the group address of the command word •. The Timed Contact
Output Controller is then ready to accept another request.

All output commands are initiated from the Priority Driver
Table before information is taken from the Normal Driver Table.

-55-

1.20 SCAN REQUEST SUBROT.ITINE (SCR) - (LOCAL' AND REMOTEY

..
'i

The Scan Request Subroutine stores the addre~ses of the Scanner
Command Word and Count Value Tables ~n a stacking table·_. The __ ... __ . ---------
Scanner Commands are executed by the Sca·n _Driver. SCR :J?.E'~~i~is·~~- ~_J:J.o:tmal ·
or priority, buffered and non-buffered scan requests. A normal
request is processed on a first in/first out basis •. Prio.rity requests
are processed on a last in/first out basis. The system has the option
of .-storing time of the completed scan as last word· of scan request
count table.

SYSTEM CO:t:1MUNICATION

Calling sequence

Non-buffered Scan Reguest

p
p
ptl
p+2
p~3

SPB
SPB
DEL

SCRC06
SCRC07
O,SCPTR

Normal Reuest or
Priority Request

Busy/error return
Scan Complete return

SCPTR ~ address of Analog Scan request table

Buffered Scan Reouest

P"· SPB SCRC08 Normal request or
p SPB SCRC09 Priority request
ptl DEL 0,SCPTR
p+2 Busy/error return

Normal return

To Determine Wh~n a Buffered Scan Request has been Comoleted

p SPB SCRCOS
p+l Scan Incomplete return
p+2 Scan Complete return

-56-

Analog Scan Request Table Layout

SCPTR table example

·scannerA index number
Core address of.scan command words
Core address of count value table

ScannerB index number
Core address of scan command words
Core address of.count value table

groups of three for
each analog scanner

77777777
8

End _of request indicator

The last word of the individual scanner's Scan Command Word Table
must also be a 777777778 .

Example of Scanner Index number:

Four local and two remote analog scanners have index numbers 0-5.
These.index numbe~s are the systems programs link or identification
with the correct scanner~

PROGRAM CO:M£1UNICATION

A scan request retl..'j.rns to the "bu~y return" of the calling sequence with
zero in the A-Register when:

1. The individual scanner's stacking table of requests is full 2!.

2. The program currently has a buffered scan in progress £.£.

3~ The system is currently processing the maximum number of scans
from the system ~tacking tableo

It returns to the "busy return" with a 77777777 8 in the A-Regist¢r if none
of the requested scanners are good.

If anSCRCOS request is made after. a buffered scan is complete, its ret~rn
is to p-2. The A-Register contains a minus one (777777778) if any
scanners have failed and a zero if all scanners.are good.

The program must check SCNBAD to deter~ine which of his requested scanners
have failed. These scanners could be b.oth loca1 and remote. If scans from

· several scanner controllers were requested,, the scans are compl'eted on, the
working scanners before returning. If a request is made, and t.he scanner
has already failed, the request will not be stacked for the fa,iled scanner.
To pl'ace a bad analog scanner back in sezyice, the SCNBAD bit. must be
reset.

-57-

GENERAL INFORMATION

'!he locatipns of the Scan Command Word Tab.le·, Count Table·, and the ·
numbe-r of the ca.lling program are saved in 'the scan stacking tables •.

A flag is set indicating that a scan· is in progress for this pr,ogram
(if the call is for buffered scan). The flag is reset by the Scan
Driver when the scanning is completed. A pro.gram cannot request ·a second
scan uptil a first buffered scan is complete.

A scanner can only be called once per request. The scanner index
number~ in the Analog Scan Request Table, SCPTR, need not be in
order.

For each Remote Scan Command Word, it is possible to request one of·
two modes. The first is an analog input only. The second is an
analog input followed by a digital input in the counts table. This
option is shown by bit 18 in the Scan Command Word.

A remote or local 1 API priority scan request interrupts a normal scan.
·However, a local priority 3 API scan request.allows a normal scan in
progress to finish before the priority is serviced.

The thermocouple reference count correction along with the offset
correc~ion and scaling is completed before storing a value in the
counts table.

The System Programmer must update.up to eight thermocouple reference
count values for each analog scanner in the system. The label for this
is:

RETMXX where XX is the Analog Scanner 'Index number. The first
analog scanner will- be #OO.

-58-

SCAN COMMAND WORD FORMATS

A. LOCAL SCANNERS

. B.

R

1. Successive approximation Converter (high and/or low level)

23 22 20 19' 18 17 15 14 11.10 7 6 3 2 0
THERMOCOUPLE

REFERENCE -
BLOCK

TEMPERATURE

GROUP
ADDRESS

w

MAT~DC
ADDRESS

, M/N

POINT MUST VOLTAGE
ADDRESS BE SCALE

P/Q ZERO CONTROL

(
INDEX

i---i.--____....-..,.--i..--___,___--......i-___:._-----"-------l

0 = No gain optimization
1 = Gain optimization desired

(applies only to single
channel, single API scanner)

2q Integrating Converter

= Single Input Mode
: Group Input Mode (2 or 4 points

per group
= Single Input Mode
·= Group Input Mode (8 points per

group)

23 22 20 19 18 17 15 14 '11 10 7 6 5 4 3 2 0
THERMOCOUPLE

REFERENCE
TEMPERATURE

:GROUP MATRIX POINT OPERATION INTEGRATING VOLTAGE
ADDRESS ADDRESS ADDRESS CONTROL TIME SCALE

W ,M/N P/Q CONTROL CONTROL
. INDEX

0 = No gain optimization desired
1 = Gain optimization desired

(applie~ nnly rn oin~1o - v,., o•'-"

single API s~anner}

.REMOTE SCANNERS
•

Successive approximation converter

= Single Input Mode
: Group Input Mode (2 or 4 points

per group)
: Single Input Mode
: Group' Input Mode (8 points per

group)

RESERVED GROUP MATRIX MATRIX POINT ~OINT VOLTAGE
FOR ADDRESS ADDRESS ADDRESS ADDRESS ADDRESS SCALE

FUTURE -W M N, - P CONTROL
USE GAIN

= Analog and Digital Input
: Digital Input Not_ Saved

Thermocouple Reference Block Temperature Index

= No Gain Optimization
= Use Gain Optimization

= Normal Mode
• Repead Mode (The Remote Scanner will ·save and send the output request

back to the Driver for verification before starting input)

-59-

Buffered Scan Request

Buffered scanning is an option which may be· selected at the time a request

is made.

A request to test for buffered scan completion can be made by making -an
SCRC05 call. If the scan is· comple~e, the program· gets a "p+2 11 r·eturn,
otherwise an incomplet? return (p+l) resul.ts. ·

When the scan request is stored in the request tables, return is made
immediately to the normal return. ·

At this time the functional program processes the count values placed in
the alternate count table by a previous scan request, In this way, a
functional program can process one set of count values while the scan
driver is placing count values in an alternate list and drive the scanner
at close to maximum speed.

SPB SCRC08 (Normal Request) or SPB SCRC09 (Priority Request)
DEL : 0, SCPTR

- ~Busy Return (Stacking List Full)
/ Normal Return

Cor~ ·
.,Addresses

SCAN COMMA!.'rD ··0n1 . y

SCAN GOMPLETE REQUEST SCRC08 or SCRC09

SPB SCRCOS

Scan Incomplete·
Scan Complete

Request scan for ~'B Tables and
process new counts in "A" Table

-60-

7 7 7

7 7 "7
I

TABLE "A"

7 7 7 7 713.

5
000

COUNT TABLE 1
"A"

.,

'
SC A..'l\T COMMAND

TABLE "B''

7 7 7 7 78

0

I

I

I

,-=: - - -
PROCESS PREVI
COUNT VALUES

OUSLY REQUESTED -
IN TABLE B, IF -

~Y. CONVERT) LIMIT CHECK, ...
ETCo ------- - - - --

Non-Buffered Scan Request

5
--.. 000

COUNT ~ABLE
"B" ,

·-

When the scanning is completed 1 return is made to the "Scan Complete
Return". Local and remote (1) API are normal requests processed on a

; first in/first out basis. Local 3 API priority requests are processed
on a last in/first out basis. Remote and lOC.al -1 API priority requests
are processed on a first in/first out bas~s. - There are separate ~ables
for normal and priority (1), API scans.'

-61-

0

A non-bu.ffered scan request locks out the calling program
until the analog scan request is processed.

(Priority Request) SFB ,SCRC06 (Normal Request _£E. SPB. SCRC07
Core DEL . 0, . SCPTR .
Address~ (.)

1
Busy Return Stacking List Full

On Y Scan Complete Return

Voltage

COUNTS
23

·scNTBL
6 5 4 3 2 l 0 23. 201918~17.

Sea:\

0
IOC GA:ilr

Count
Value· "
Scaled
Bl7

r1

' '---..... ____ _ ___ I
V'"'

Scaled Offset
Corrected Count

0 0 -0
.o o a
~o o o
_Q o a
_Q 0 _Q
0 0 c
0 0 c
o o a
.~ 0 J.
J] 0 J;

If Integrating Converter: J
Converter Overflow Indicatedt

If Successive Approximation:
Converter Overflow or
Open Thermocouple
Indicated

If Integrating Converter:
Open Thermocouple Indicated

If Successive Approximation:
O's Indicated

I

I·

,

-62-

fM•k IADDRESS OF MATRIX
'

7 7 7 7 7 7 7 7_a

1t
End of Scan Table

*M = 0,2 - Single Input
M = 1,3 - Group Input

l If'
I

8-Channel Scanner

Scanner Overload or
Converter Overflow or
Open Thermocouple Indicated

1. 21 . ~ANALOG SCAN DRIVER (SIID) LOCAL

The Scan Dciver outputs Scanner Commands from a Driver Table. They are ·
sent to the Scanner by a·T0M or 0UT Command. ·The, count values are· re~
turned by a TL~ or- IN Instruction and stored in the specified table. The
count values are converted, offset corrected, and scaled before storing.
After all requested points have be·en scanned, the calling 'function is
turn~d on.

1. 2 2 SCAN OFFSET PROGRAM (SCE')_

The analog readings of the shorted pair are obtained for each voltage
scale. This riew offset is calculated from the weighted average of the
current reading and previous offset values for each voltage scale.

" - -- ,,.... ~ -.
REMOTE DIGITAL Iht1UT REQUEST SUBROlITINE (RDS41)

RDS41 is used to request digital inputs from digital input controllers
bn systems having remote scanners. The system programs requesting digital
input are n1ocked out" while their digital input requests are being
p~ocessed.

SYSTEM COMMUNICATION

Calling Seauence

p-1 Place the DIS Command Word in the A-Register
p SPB RDSCOl
p+l Busy/Error Return
p+2 Normal Return

The format of the DIS Command Word is shown below:

.22 17 16
RESERVED

FOR
FUTURE

USE

0 = Normal Mode
I= Repeat_ Mode·

. 9 8 6 5 3 2

RESERVED
Ll Lo FOR

FUTURE
USE

Digital Input
Group Address

Digital Input Controller Index

0

(The remote scanner will save and send the output request back
to the driver for verification before starting input)

The digital Inpu~ Controller index indicates which controller is
being requested.

-63-

...
'\

e.g. Two controllers in system

1st has index # = 0
2nd has index # = 1

The number of data contacts read per digital input group (111 0) has
been reduced to eleven plus validityo

PROGRAM COMMUNICATION

RDS41 returns to ubusy/error return" of the calling sequence when one of
the following conditions exist:

A-Register
0
8

Error
Driver Table full
Digital Input.Controller, remote scanner, or

communications coupler has failed.

RDS41 returns to the "normal return" of the calling·sequence with the
following word in the A-Register:

23 l.1 12.
RESERVED ·FOR VALIDITY

FUTURE usr; INDICATOR

11 10 0
DATA

CONTACTS

I/O Typer Input Demand or Character Ready
From the Addressed 4307 Remote Scanner

Bit 11 will always be reset at this time. For more information on ·the use
of this bit, see TSD41 Rernot~ Sca?ner Driver Section.

RDS41 is a permanent core subroutine which runs inhibited._ It restores
the original interrupt condition upon return to the calling program.
RDSCOl is a common label defined on the system EQ1 tape.

A program using this subroutine must have full eight-word re,gister
storageo

1.24 CORRECTIVE ACTION DIAGNOSTIC (CAD)

CAD performs peripheral, drum,. disc, multiple output distributor, scanner,
and timed-contact output corrective actions for the GE/PAC Monitor.
Corrective action is taken for the ~ollowing peripherals:

4221C
4223C
4233C
4253C
4262C
4270C
4282A
4224C
4213C

Fixed Carriage Output Typer (15 CPS)
Long Carriage Output Typer (10 CPS)
Teletype (10 CPS)
Paper Tape Punch (120 FPS)
Line Printer (300 1PM)
I/O Typer (15.5 CPS)
Card Punch (100 CPM)
Card Reader (CR 10)
Digitronics paper tape readers (100, 200, 300, FPS)

-64-

1.25

Corrective actions are as listed:

1. Substitute an alternate output peripheral when.
an output peripheral fails.

2. Permit operator. recovery for the card reader>·
card punch and printer.

3. Reset device flags a_nd switches for. the failed
device.

4., Turn on any programs .. "locked out" for the failed
, device.

5. Type alarm messages indicating the· exact location
of the failure, when possible.

After the necessary actions are completed> CAD turns itself off and
exits to the ECP.

INITIALIZATION ROUTINE (INZ)

INZ initializes the start-up condition_s for a Monitor _Syst.em. ·Initial
storage, switches, and variable locations are set for Monitor Programs.

Each system should add its own system initialization to this routin~.

To initialize an all-core system, the programmer must follow the out­
lined steps:

1. Branch to the starting location of the
Initialize Routine (37

8
).

2. Press Console -+ B.
3. +urn key to "Automatic".
4. Press "Step" button.
5. Reset the "API Lockout" switch.

For a drum/disc core system; will be defined later.

1.26 FIND/RESTORE WORKING CORE AREA SUBROUTINES. (FMR}

The Find Working Core Area Subroutine is used to find space for reading
data from paper tape, scanning analog points, transferring a program
segment, building an output data table, transferring an untested program
of the Free-Time System, etc. When a space 'is found, this area is set
to unavailable> occupied status.

The Restore Working· Cor~ Area Subroutine releases an area by setting it
unoccupied and available.

~65-

_________ _ ~- .-- _,_

To find a working core area,

LDA Number of Locations
SPB FMRCOl

Unavailable Return
Normal Return·with the location of the free
core area in the A-Register

The ','Unavailable Return" is taken when a wo-rking core area is not _
available. The system programmer, at this time, should set a del~y and
then initiate another FMRCOl subroutine call.

To release a working core area,

DLD A-Register with the Number of Locations
Q-Register with the starting core location

SPB RMRCOl
Normal Return

--"·-)·?? ____ Remote Scanner Driver (RSD41) _

e
t\

The Remote Scanner Driver is used to operate the Model 4307 GE/PAC Remote ·
Scanner Controller through the Model 4306 Communications Coupler. It
perm:j.ts:

<'

1. Analog scanning from remote Analog Input Controllers

2. Digital scanning from remote Digital Input Controllers

3. Digital ·and analog outputs to remote Multiple -Output Controllers

4. Timed contact outputs to remote Timed Output' .Controllers

Peripheral buffer inputs and outputs to remote 4201B Peripheral
Buffers

-66-

CENTRAL
PROCESSOR
UNIT

4306

FUNCTIONAL DIAGRA.~

____ c_oMMUN __ ~r_c_AT_r_o_N_s_c_o_u_P_L_ER __ ~-----~'·

REMOTE SCANNER CONTROLLER (maximum 4)

REMOTE CONTROLLER MOD§.ESJ (maximum 5)

4130

f
a.

Only one of each module b.
is allowed for each

Model 4100 Analog Input Controller and
A/D Converter.
Model 4400 Digital Input Controller~­
Model -4300 Multiple Output Controller.
Model 4302 Timed Output Controller.
Model 4201B Peripheral Buffer l

e.
~Remote Scanner Controller.

. ~-· e •
. -

1.28 ANALOG INPUTS

The Analog Input function operat~s similar to the Analog Controller
operation if it were attached to the central_ processor except that it
is slower in operation, and its scanner command for:nia.t is compressed,
and merged with the module address •. _Automat'ic- group advance type, ;con­
toller is not allowed. The scanner is single-channel successive approxi·~
mation only. Matrix overload and converter overflo~ is handled separately
and their indication is returned as non-data responses.

The system programi.~er has two options for each scan command word presented
to Monitor, which are indi~ated in Bit 18.~---

1) Analog Input only or
2) Ana~og and Digital Inputs

If bit 18 is not set, the analog value is stored followed by the digital
value.

-67-

'I<

·~~

ANALOG REQUEST FORMAT

23 22 21 20 19 18 17 16 15 14 13 12 11 10 - 9 - 8 7 6 5 4 3 ·2 l 0
W M M N N p p Q Q

{
O =·Analog and Digital Input
1 = Digital Input not saved

--~----~~~--~~~~Thermocouple Reference Index

i ~SER D FOR
~UTURE)JSE

)

GAIN

--~~~~~~~~-------------t~O = No Gain Optimization
1 = Use Gain Optimization

~~--~~~~~--~~~~----~O =Normal Mode
1 = Repeat Mode

OBJECTIVES

lo To input the analog count value from the scannero
2. To store the val':le in the specified count table· if the point is ·

3.

4.
5 ..

6.
7.

8.

9.

10.

11.

not "locked out" of scan.
To scale all count values to correspond with the lowest voltage
scale.,
To subtract the offset voltage {counts) from the raw count.
To add the thermocouple reference block temperature voltage .(counts)
to the raw count.
To gain optimize upon request when converter overflows.
To optionally store the time in system counts as the iast word of
the scan count value table.
To repeat a scan conunand output for verification of line trans-
mission if requested.. _ , .
To store a digital count value ·upon request -after the analog value
in the specified count table if correct expected response for-
mats are received. , ,
To notify the calling program after two_ consecutive transmission
or non-expected response errors with_a specified bit set in the
-A-Register.
To turn on a non-buffered calling program when all scans have-been
completed with a scanner failed code in the A-Register if required.

1.29 DIGITAL INPUTS

The Digital Input function must by necessity work in a different manner
than when attached to a central processor due to transmission out and
back. To conserve line ti~e it operates in two modes:

1) In conjunction with the Analog Scanner
2) Separately

The number of contacts read per digital input group (111
0

) is reduced to
eleven plus validity. The driver does not che6k the valid~ty bit~

-68-

RESERVED FOR
FUTURE USE

DIGITAL REQUEST FORMAT

DIGITAL INPUT
CONTROLLER INDEX

L
1

0 = Normal Mode
· 1 = Repeat Mode

OBJECTIVES

1. To inpµt the digital 'count value from the remote scanner.
2. To store the value in the program's.A-Register within his

register storage block,
3o To repeat a digital output for verification of line tr.ansmission

if requested.
4. To turn on the calling program after digital request has beeri

completed.
So To notify the calling program afte;;· two consecutive transmissions

on non-expected response errors with a specified bit set in the
A-Register.

1.30 DIGITAL AND ANALOG OUTPUTS

~ The Analog and Digit~l Output function operates similar to the present
Multiple Output Driver, except that the format· is changed. Digital
Outputs will be eithe·r eight bits':~per word with 32 groups ~:iddressable or
10 bits per word with eight groups addressable.

8-BIT REQUEST FORMAT

23 22 21 20 19 18 17 16 15 14 -13 12. 11 10 9 8· 7 6 5 4' 3 2 l·· 0

O=Normal Modi'
l=Repeat: Mode

0 0

' 0=4MS
1=75MS

DATA
\.. .J

'V'
GROUP ADDRESS GROUP/INDEX ADDRESS

-69-

O=Immediate Return
l=Return When Output Complete

(Alternate return)

10-BIT REQUEST FORMAT

23 22 21 20 19 18 17 16 15 14 13 -12 11 10. 9 8 7 6 5 4 3 2 1 0

0 = Normal Mode DATA GROUP t GROUP/ INDEX
1 = Repeat Mode ADDRESS I ADDRESS

ltl ol il ol_1 __ !_-_I ± ! I ! I ;e;g (1 12 I lj

0 = Irt4~ediate Return
1 = Return When Ou~put Complete

(Al~ernate return)

NOTE: The use and position of Bit 6 is kept the same as in the local output. ·
The Group/Index address in Bits 0-5_ has the same usage as in local.outputs.
If there is no status word table, this number is a Group Address~ See
M0R44 - Multiple Output Request Subroutine~ for further informationo

-70-

OBJECTIVES

1. To output analog, binary or decimal.contact status.
2. To request a normal output only.
3. To repeat an analog, binary, or decimal contact output for· verification of

line transmission. ·
4. To turn on the calling program after output has been completed ori an alternate

return request.
5. To notify the calling program after two. consecutive _transmissions or non­

expected response errors with a specified bit set in the A-Register.
6. To notify the calling program.after two consecutive overload errors with a

specified bit set in the A-Register!

1.31 TIMED CONTACT OUTPUTS

The timed contact output function is similar to the operation of a timed contact
output controller when connected to a central processor except for reduced speed
and a compressed format word merged with the module address. There are only 32
group addresses and the count is restricted to 6 Bits.

TIMED OUTPUT REQUEST FORMAT

23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8
I I t

NUMBER OF . j
TIME COUNT(

0 := Normal Mode
1·= Repeat Mode

TIMED OUTPUT
CONTROLLER TI-.1DEX

0 = GE/PAC Pulse
1 = Pulse Durati,on.

0 = Move Setpoint Controller Down
1 = Move Setpoint Controller Up

OBJECTIVES

6 5 4 3 2 1 0

GROUP ADDRESS

0 =·Immediate Return
1 = Return, When Output

Complete (Alternate
· Return)

1. To output timed contact closures for a specified.time period.
2. To repeat a timed contact output for verification· of line transmission if ·

requested.
3. ·To turn on the calling program after output has been completed on an alter­

nate return request.
4. To notify the calling program after two consecutive transmissions or expected

response errors with a specified bit _set in the A-Registe'r. ··
5. To notify the calling program after' two consecutive overload errors with a

specified bit set in the A-Register. ··

1.32 PERIPHERAL BUFFER INPUTS AND OUTPUTS

* The peripheral I/O functions operate as did the 4201B Peripheral Buffer.which was
connected directly to the central process, except that speeds are slower _and

*

the device types restricted. · The Devices offered will be the following:
·,

- - .._ ~ -~--

a) Model 4221B Output Typer
o) Model 4223B Long Carriage Typer
c) Model 4270B I/O Typer
d) Model 4253A Paper Tape Punch
e) Model 4240B Card Reader (70 CPM)
£) Model 4213A High Speed Paper Tape Reader

Peripheral Buffer input/output Monitor requests continue to be handled in the
same manner. No repeat of remote I/O requests are allowed. If the peripheral
buffer is not ready, the driver will do other requests or polling until it be·
comes ready.

1. 33 PRIORITIES AND INDEXING

Two Remote Scanner Driver entries, from interrupts, are required for each Communi­
cations Coupler. The Remote Scanner Modules have priorities within a Communications
Coupler. A normal request from a higher priority m~dule will be processed before
a priority request from a lower priority module in the same communication coupler.
T~ese module Priorities must be defined at. the time the Monitor is built_.

Modules, both local and remote, have indices which must be specified at assembly
time. The indices are for a table of pointer words. The pointer w_ords / :indicate
the location of a module's associated stacking tables.

Examole:

Four loca 1 and two remote modules of the same type have index -.numbers . 0-5.
These index numbers are the system program's link or identification with
the co.rrec t mo du le.

Index words must also be specified at assembly time giving the 4307 each remote
oodule is associated with.

The digital input controllers, multiple output controllers, and timed output
controllers are handled in a similar w~nner.

A Communications Coupler communicates w.i~h only one module at a time. A t~o­
second diagnostic count will be set to check'for interrupt failure. Each
Communications Coupler has the following interrupts:

DMr NON-INHIBITABLE
TIM NON-INHIBITABLE
SPB {TL~ ECHO) RESPONSE INHIBITABLE (TABLE FULL)
SPB· TRA.~SMIT INHIBITABLE

*Revised 12/66
**Revised 1/ 6 7

-72-

.- 1..34 POLLING DIGITAL SCAN

T4is driver does a sampling (polling) of each 4307:at timed intervals. This is
required to bring in change detection and I/O typer input demand. It is also
required to keep the driver active_ while waiting for a TC~, M0 or PB ready signal.
It is ·accomplished by digital scan of group #00 of the Digital Controller.

If there is no digital controller on the 4307, the. digital scan request to a_
dummy group #00 will still bring in the required information.

CHANGE DETECTION

A table of words called CRGDET is set up with one word for each Communications
Coupler. The remote scanners are also assigned a priority. When a change
detection occurs, a biti is set in the correct word (communications coupler) using
this priority as an index. Also, a system program which is designated (CHDPRG),
is turned on. This system program must then determine which remote scanner had

.the Change Detection, reset the bit and take the appropriate action.

Repeat

The "R" repeat bit is used in the following Iranner. Each remote analog input,
digital input, multiple output, and timed output request, must define whether this
request is to be repeated.. If the "R" option is selected, the drivBr sets the "R"
bit on its output request command. The 4307 saves and sends the output request
back to the ~river for verification. The driver then sends the output req~est
again without the "Rt.! bit, knowing _the 4307 will compare this request wi'th the saved
command. If an error occurred, a non-data response reply will be returned to the
driver with the error transmission bit' set •

..
1

Transmission Soeed

. Line speed can be selected by a plug-in jumper at 150, 300, 600, 1200 and 1800
bits per second. Usually the 1800 is selected for general remote scanner
application ..

1.35 SYSTEM RESTRICTIONS

1. Only one I/O ~yper can be used for each remote scanner.
2. Only (4) Remote Scanners can be connected to a single Model 4306 Communications

Coupler.
3. A maximum o-£ (5) modules, one of each type, can be connected to a s~ngle Model

4307 Remote Scanner.
4. Only (1) peripheral or module can be ,accessed at a time on a given Model 4306

Communications Coupler (Party Line).
5. Each analog scan automatically gives a digital input, during the ~ime.the

analog scan is being accomplished. The digital group address, however, is
the same as the N .. P .. Q. specified for the analog point_. (A program option _
exists, which allows the program.mer the, choi~e of saving this, digital input.)

6. Only single~channel, successive approx~mation scanners can be'used.
z. Only one digital input group can be requested in a single request by a ·program.

The number of ·contact points per group is 11. . ·
8. No repeat of remote peripheral buffer requests will be allowed.
9. No Pulsed or Timed fultiple Outputs can be used.· ,

10. Teletypes can he used as remote output peripherals only;
11. A single system can have no more than· 24 peripheral devices.

NOTE: See Remote Scan~er Driver {RSD41), for more information.

L~3h COMPUTER OPERATOR SUBSYSTEM

This subsystem is fun~tionally equivalent to that which has traditionally
been known as OPR, but its organization is somewhat different: and its
capabilities somewhat expandedo Two distinct versl.ons are available, one
for core-only.memory systems, and a second for core-bulk memory systems •

.
The subsystem consists of an executive function and a group of programs
which are designed to perform the specific requested functions.

The executive function operates within the framework of Monitor as a functional
program' and is activated (turned on) by operator demand from an I/O keyboard-.
printer device. The executive communicates with the operator via the I/O
keyboard-printer to determine which of the available .functions is requested ..

It then establishes communication between the requested program and Monitor
so that the requested program may then continue .the communication with the
operator to determine the specific parameters required to perform the task
requested. ·The executive is then free to accept requests for other function$.
The number of concurrently operating functions is limited by the number of
positions in the Monitor priority table made available to the Utility Subsystem.

The specific functions which are available under this subsystem are:

a. LOADING of binary data from any specified input device to any specified
memory medium.

b. DUMPING of binary data from any specified memory medium to any .specified
non-printing output device. Output format is to be acceptable to LOADING
function~

c. DUMPING of octal data from any specified memory medium to any specified
printing device~

, d,. COMPARING binary data from any ·specified input device against contents of
any specified memory medium with documentation of discrepanc~es on any
specified printing device. • .

e• Translating octal data from any specified input device to binary data
output to any specified non-printing outpu.t device. Output format is
t;o be acceptable to LOADING function. .

f o Processing Library cal ls in program input files. . This fun-ct ion accepts
from any specified input device the binary outp~t of the PAL assembler.
It requests input of required library subroutines and appends them to
the assembled program. The output consis-ts of binary data ·in fdrmat
acceptable by LOADER function, and it may be directed· to any sp~cified
non-printing output device. . .

g. MEMORY CHANGING and DOCUMENTING - This function documents and/or changes
the contents of any designated memory location. Documentation of changes
is in octal (version 1) or in decimal (version 2)>on the sa~e I/O keyboard­
printer device through which the parameters are communicated.·

h.· Setting system CLOCK and CALENDAR.
i. Changing PROGRAM STATUS (On, Off, Locked Out).
j. Changing PERIPHERAL.STATUS (in or out of·service).

-74"-

k. Media conversion - This function accepts inp~t from any specified input
device and reproduces it on a re-cord by record bas is on any specified
output deviceo Input records must no·t be longer than the !'Ilaximum· per­
missible record in the specified output' medium. If the inp~t _device is a
keyboard, standard "delete previous 'character". and "delete record" charac­
ters are recognized so that the function can serve as an effective paper
~ape or card pre.para tion too 1. · . _

l. Establish :MEMORY PROTECT~ON STATUS for a designated functional program.
This function provides capability for ~etting_up memory protec~ion.
parameters for a program. ~o be debugged. It includes standard trapping ·
subroutines for protection-violation and API stall traps.

These subroutines document the occurrence of traps, and when feasible
cause re-entry to the offending program for further execution. If
re-entry is infeasible the offending-program.is turned off.

In addition to the basic configuration and the required memory space, hardware
requirements for each of the described functions are evident. from the functions
themselves ..

-75-

APPENDIX A

MONITOR PSEUDO-OPS

Pseu~o-ops defined by.MONITOR are:

BCD Binary to 8-Bit BCD
BCN Binary Character Output
CLK - Clock _
DEL - Delay and Drum/Core A~dresses
DFE - Floating Point to E Type Floating Point Decimal
DFP -.Floating Point to Fixed-Point Decimal
DFX - Binary to Fixed-Point ·Decimal
FBB Binary to 4-Bit BCD
F0R Drum/Disc Controller Index and Number of Word in bulk request,
INF - Input Request Information word
@CT - Binary to Octal (integers)
0UF - Output Avai la bi li ty Check and Information Word
PRG - Maintains REGSTG and RSX Tables of ECP
SZE - Size of Program

The BCD, BCN, CLK, DFE, DFP, DFX, FBB, and 0CT pseudo-ops are used with the
Output Program as format words. Refer to the Output Program, subcategorie? of
1.14, for explanation of these pseudo-ops. The DEL, F~R, INF, PRG, 0UF, and
SZE pseudo-ops are used in subroutine·calls and are explained, below:

The DEL pseudo-op is used in the Scan Request, Input Request, Output .Request,
1st word of the J~word Drum Transfer Request, and Set Program Delay Subroutine
Ca l,ls. Coding examples and format are as fo 1 Lows :

"•

DEL 0, 151.-SECND DEL l,FMTB

1 0
t

De lay in Seconds, Core or Drum Addre-ss, or Drum Address o £ a
Three-Word Drum Transfer Group

~~~-- core transfer 
{

O =Area Unavailable for a delay call; core address; or drum to 

1 =Area Available for a delay call; drum address, or core to drum 
transfer 

The F0R pseudo-op is used to specify the drum/disc controller index and the number 
of words in a DTRCOl or DTRC02 request. 

F0R 0,/300 

23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 

JDrum/Disc c~ntroller index Number of words to transfer 

~76-



The INF pseudo-op is used in Inp_ut .. Request.· :_A: _co<;li[lg_ e~ample-_ !1.nd -.-~o~ma~_ ?e~tn~ti?r:1:., 
·:ft) llo~s :· ' _. ~ - .,-. : . : ; -: ' . •,-. j .. ;· ., '' r • 

INF O, 1, 1, 4, 25 

14 13 0 

* lolol ol 1111 o o i o ~ o loo o o o o o o o i 1-0 o i[ 
Bit 22 
Btt 20 

* 

indicat~s that the input mode is symbolic characters. (Set indicates binary) 
indicates that packing will occur. 

Packing Mode 
Device 

Binary Symbolic 
Input Input 

Paper Tape 1,4 1,3 
Cards 1,2 1,3 
Keyboard NA 1, 3 

Bit 19 indicates paper tape input. (Reset indicates keyboard input. This bit has 
meaning for teletypes only.) 

Bits 14-18 is·- the in.p'ut device priority number-. 
Bits .0-13 are·the maximum number of characters to be read. 

'i 

The ~UF pseudo-oe is used in Output Availability Check and Output Request. ~ coding 
ex~mpLe and format definition follows: -

Bit 23 
Bit 22 
Bit 21 
Bit 20 

0UF O~ 1, O, O, 0, 3, O, O, 17 

23 22 21 20 19 18 
I o :I i I or o I ot o o o 1 

14 13 12 . l 0 9 5 4 0 
lf ol Reserved I 0 0 0 0 011 0 0 0 1 

for future 
use 

indicates no page control is desired for this message. 
indicates EIA - RS 244 output conversion is desired. (Reset for ASCII/CPC) 
indicates that a data area is not used in this message.' 
indicates that the area availability status ,will not-be changed. (Set indicates 
del~y in opposite of present stauts) 

Bit 19 indicates that the message is ·to be-typed. (Set for punching. Has meaning 
only on teletypes .. ) - . -

Bit 14-18 indicates the device priority number. 
Bit,13 indicates this message is output as symbolic characters. (Set indicates binaryj 
Bits~S-9 is the bulk controller index to the data words. 
Bits 0-4 is. -the bulk contra ller index to the format words. 

*Revised 12/66 



The PRG pseudo-op is used to ~int.:;in the REGSTG and RSX Tables of ECP and by the 
Turn Ptogram Off Subroutine. It contains the flip-flop status of overflow, perm~t 

interrupt, test, next entry location and memory fence. 

PRG O, L, O, START, 0 

23 22 21 20 19 18 17 16 15 14 13 21 11. 10 9 8 7 6 ·, 5 4 3 2 l 0 

Next Entry Address 

Memory Protect 
Status 

Permit Interrupt Status 
--~~ ·overflow Status 

{~: Reset 
Set 

For a Drum/Core system, if the next entry address is set to zero, the program begins 
at its first location. 

The SZE pseudo-op specifies the required parameters for the second word of the 
three-word ECP Drum Transfer Group and the second word of the three-word save status 
tables. 

ECP 
Drum Transfer Group 

SZE 1, O, 0,0, /400 (This psuedo-op tells the area 
availahility·status, Bit 23; 
Fortran status, Bit 19; fixed· 
core status, bit 18; drum/disc 
controller index bits 17-15; 
and size of program, bits 13-0 

,-·· ~- ·23 22 21 20 19 18 17 ------15 14 13 --- 0 

SIZE A c Tl NI 

l 
F wj Drum/Disc 0 *Size of·. .. 

Controller Program 
I 

,. 

Index Number , 

A - Area availbility on entry from ECP 
0 = unavailable 
1 = available 

C - Core status 
0 = program not in core 
l '= program in core 

T • Transfer Status 

* 

0 = program not in transfer 
l = program in .transfer or requested DTRC02 transfer to or from bulk 

For progr,arns with adjacent save stat us, th.is size figure includes save status and 
·programs Q For programs· with disjoint save status, thi~ s·ize figure is for program 
only .. 

N Current Area Status 
0 = program running with core area ·unavailable 
l = program running with core area available 

F - FORTRAN Available Subroutine Usage Status 
0 = program does not use subroutine while running available 
L = program uses subroutine while running available 

W - Fixed Working Core Status. 
0 = Program can run anywhere in working core 
1. = Program must run from fixed working core area .. 

-78-



DELCOl 
DELC02 
DTRCOl 
DTRC02 
FMRCOl 
FRPCOl 
FSSCOl 
INRCOl 
INRC02 
MAPOl 
MAP02 
MAP03 
MAP04 
:Mf>RCOl 
M0RC02 
M¢RC03 
M~RC04 
~RC05 
M~RC06 
M¢RC07 
~FFCOl 
~FFC02 

~UCCOl 
¢>UR.co1 
RDSCOl 
RMRCOl 
SCRC06 
SCRC07 
SCRC08 
SCRC09 
SCRCOS 
TCf}COl 
TC/)C02 
TCOC03 
TCDC04 
TPNCOl 
TPNC02 

TPNC03 

APPENDIX B 

COMMUNICATION CALLS 

Set Program Delay for A Specified Time Period 
Sets Program Area Unoccupied and Available.Du~ing Delay 
Drum Transfer Request \Immediate Return) 
Drum Transfer Reques·t (Drum Transfer Comp,_~eted Return) 
Find a Working Core Area · 
Find Register Pointer 
Find Save Status Pointer 
Input Request 
Read Completed Request 
Core M.ap Maintenance - Set Area Occupied 
Core Map Maintenance - Set Area Unoccupied 
Core Map Maintenance - Set Area Unavailable 
Core Map Yiaintenance - Set Area Available-
Normal Non-Priority Multiple Output Request 
Normal Priority Multiple Output Request 
Timed Non-Priority Multiple Output Request 
Timed Priority Multiple Output Request 
Unlatch A Previous Timed Request 
Pulsed Non-Priority Multiple Output Request 
Pulsed Priority Multiple Output Request 
Turn Program Off Request 

Page 
10 -
10 
13 
13 
66 
14 
14 

36,39,40,41,42 
36,38,40,41,42,43 

12 
12 
12 
12 

48,50 
48,50 

51 
51 
51 
52 
52 

9 
Set Program Area Unoccupied and Available During the Time Program 
Is Turned Off 9 

Output Availability Check 
·Output Request 
Remote Digital Input Request 
Release A Working Core Area 
Normal Non-Buffered Scan Request -~· 

Priority Non-Buffered Scan Request 
Normal Buffered Scan Request · 
Priority Buffered Scan ~eque.s t 

- Scan Completed Request . 
Normal Timed Contact Output Request (Local) 
Priority Timed Contact Output Request· (L;cal) 
Normal Timed Contact Output.Request (Remote) 
Priority Timed Contact Output Request (Remote) 
Turn Program On Request 
Turn Program On Request If Program Is Currently 

Turned Off 
Specifies Next Running Program. 

-79-

16' 17' 18, 19 
20 
63· 
66 
56 
56 
56 
56 
56 
54 
54. 
54 
54 
11 

11 
11 



APPENDIX C 

MONITOR SYMBOLS 

Th~ following symbols are defined by Monitor, and should not be defined by the 
programmer: 

ALERT - Output Peripheral Activate Flag 
The peripheral device priority number corresponds to the associated bit. 
Example: Device #3 =Bit 3 of Flag 

ALTFLG - No Alternate Device Flag 
This flag shows that an output message for the requested output peripheral 
has no working alternate; therefore, the output message was destroyed.· 
Example: Device priority number i corresponds to bit i. 

,ALTTBL - Primary Alternate Device Priority Numbers for Peripheral Devices •. The 
alternate for device priority number i is .found in ALTTBL+i. · 
Example: Priority Device :/f 5 = ALTTBL+5 · · 

ALTTB2 - Seco~dary Alternate Peripheral Subst·itution Table. Provides another 
alternate table in the event a secondary alternate peripheral device 

AUXTM 
AVLMAP 
BAD 

is required. 
- Table of Auxiliary Time Counters 

Available Area Map 
- Periph,::a 1 Device Failure Flag 

The· Peripheral device priority number 
Example: Device #4 =Bit 4.of Flag 

corresponds to the associated bit. 

C0R}'f.AP Occupied Area flap . 
DMCRN0 - Three Times the Running Program Number 
DTAREl\ - Data Area Bit Word 

.Area. corresponds to Bit i• 
Example: Area 2 =Bit 2 

Area 3 Bit 3 
DVC0DE - Device Codes 

EOMFG 
FAIL UR 
MESSFG 
c/;(/JS 
PRic/;Nc/; 
PRftSCFG 
PR~G 

PRc/JGN0 
SECND 

STSM...i\P 
TIME 
XFER .. 

A tab le of hardware address es and classification codes for periphera 1 . 
devices arranged in descending order. 
Example: :/FO.- Highest Priority Device 

~ A one-word flag indicating that e~d-of-message has been reached for device i. 
Peripheral or Hardware Failure Device Flags 

- A one-word flag indicating the availability of the output buffer for device i. 
Peripheral Device Out-of-Service Flag 
One Times the Running Program-Number 
A one~word flag set· when the firs~ buffer of a message is ready for output. 
Program Execution Times . . 
The· table starts with Program No. t. 
Eight Times the Running Program Number 
One second in real-time counts: 1 =One second system; 2_= One-half 
second system; 4 = One-quarter second system, etc. 
Occupied Save Status Area Map 
Time in System Counts (Cleared at.Midnight) 
Number of Drum Transfer Requests Waiting for a Program 
This table fs referenced by-program number .. 
Example: Program 7 = XFER+7 

-80-



APPENDix~o 

MONITOR ASSEMBLY CHECKLIST 

\ 

In-building a Monitor system, the programme::- must define the 
specific parameters and system options. The following check­
l~sts are used to specify these parameters·... When the check ... 
llsts are completed, send them a.ccompanied by the interrupt 
ass.ignment .for the system to the Programming Librarian. 

By judicious selection of sy'stem options, it.is possible to 
acquire a Monitor which contains only those capabilities that -
are needed for each application. The size of Monitor varies 
with the c:ombina.tion of options selected; · · .. < 

Additional copies of the Checklist may be obtained upon 
from the Programming Library. 

,; 

~i:-



i co 
N 
f 

* 

Library File .Na.·: .. ::. -------. Programmer's Name -------Da~e __________________________ _ 

SYSTEM :PARAMETERS (ALL EQL 1 s must have an assigned value.) SYMBOL EQL VALUE 
f--____ ........, ________________ .._. ____________ __. ______ ..._ ____ ~---------------------+----------t--------- -----

l. IS YOUlt SYSTEM FOR. l l. IGE/PAC 4020) Drum/Di.sc Coro 
. (Check one)+--:-t2 ...... ---.<Gf7rAc 46ro~Iff:coie·---------....;. 

I~----------------------
2. QUASI'S - Check one or more depending on the sys tern's need. 

Single-word floating polnt a· .. 
Double-word floating point 
Single/Doub le-word floating point 

Is floating point being used in your system1 YES NO_ 

If yes, is hardware float:ing point being used in.your system? 
YES NO -- -...., ______ __, ____ --:---••-4$_l_llillbl-""'flll_T_O -l if ...... R~--~-.,,;.,...-,.1-fP'P_,, ~~411 d 1151' 1l1Ci, yep~ ~~~,.,...,-17--~,,--....,.•-~--'f-----+------t-------'f 

3. ~Mmm OF GOUNTS USED BY SYSTEM l?ROGRAMS 
Number of System Program to be turned on when a system 

count becomes negative. 
This program must be written by the System Programmer 
Opti.on count •. System calendar updating YES_ NO _ 

4. TOTAL NUMBER OF FUNCTIONAL PROGRAMS 
(Include Monitor. Programs listed in 11.) 

AA EQL 

APRt(iGM EQL 

B EQL 
1----------~-~-~..._ ...... -..-w--------------~-... ---,..._ .. r._n __ , -• --•·~ ..,..,,..__._~~-~ ...... -......-~ .. ~~ .. -----

5. NUMBER OF FUNCTIONAL PROGRAMS HAVING .SAVE STATUS. DB EQL 

,__6. -. -N-UMB_E_R ... -~-;.-··~ :;~~· .. ·~i;;E-~R-. ST-OR_A_;--;;;c~s -··~ ,__._....._. __________ t'_·~BB ~~~----4--.. ----{j 
All Monitor Programs require 8-word reg~ster storage blocks. 

-------#'"""""-~- ...... ~~ . ~' ~· .. ""'"" ..... " ........... ~ --~~·"' ... ,,,....,-~,,~ ...... ,,~ ........... -~ ... ..-.~~ .. ~, ... ..-..~ ......... ~1 ...... otot .............. .....__,, .. __ 1~ ......... A~---~4~~----.....-.. .... --~~---,..._~~ ... ~ ...... -.,~ ...-.....---.....-

* Revised 1/67· 



& 
w ... 

SYSTEM PAR.A.METERS (ALL EOL's must have an assi_g_ned value.) 
7. ·STARTING .ADD~S S OF THE FLOATING WORKING CORE AREA 

(Starts after MONITOR and system permanent core 
and must be a multiple of lOOa.) 

8. A .l MAXIllUM CORE ADDRESS 

B. BULK CONTROLLER DATA: 
1) Bulk Controller 1: 

a. Controller Address 
b. Pointer Address 
c. Maximum Address 
d •. ' Check whic;:h bulk device is used:; 

Drum ·Disc --If disc: 

'' 

l ', s ta t'e. number of dr_i ves ;: ' ' ,•' 
· .. ·-,·Is _Seek Ahead·. option ·-desired,?: ... 
', ', .. ·YES' ' ' :,;' , NO " ' 

.2) Bulk Controller 2: 
· · ·· a;. Controller _Address 

b. Pointer Address 
c. Maximum Address 

. d_. Check which bulk device is used: · 
Dru~ · ·' Disc·· ---If disc: 

State number of drives1 
Is· Seek.Ahead Option desired? 
YES. . '-No --

C, ARE ~UFFERED BU1-4K CALJ .. S (DTRC03 ,DTRCOl~) DESIPJm? 
Y~S. · -- · NO 

; ., --
* Revised 1/67 

\ 

I. 

Library File No. 
Prograinmer 's Name ------

Date ------------------------

SYMBOL 
BASE 

MAXC 

BULKl 
BULKlP 
MAXDl 

DRIVEl 

BULK2 
BULK2P 
MAXD2 

DRIVE2 

EQL 
EQL 

EQL 

'EQL 
EQL 
EQL 

EQL · 

EQL 
EQL 
EQL 

EQL 

l 

VALUE 

I 

I 

) 
/· 
l 

. ' ,,, 

I 
J 
I 

l,"• 

'f 
, I 

-· . ' 



I 
00; 
.p. 
• • 

* 

SYSTEM PARAMETERS .(ALL EQL 1 s must have an assi_g!led value.) . 
9 $ · NUMBER OF ON-LINE· PERIPHERAL DEVICES 

10. 

11. 

Peripheral devices are tipe~iiters~ printers: card readers, 
card punches, paper tape punches, magnetic tapes, etc. 

E~CU I/O DEVICE REQUIRES TWO DEVICE NUMBERS. 

STACKING TABLES, one ,)er each peripheral device number. 
One stacking table is required for each peripheral device (printer, 
magnetic tape, typewriter, or punch). The size of each stacking ' 
.table must be a power of t~vo (F.). The number of requests in each 
stacking table represents the ntmber of concurrent. outputs that 
can be requested on a peripheral. Each .requE!Sl:. requires four entries. 
The actual size of the stacking table is equa~ to Fi. For four 
concurrent requests' on Devic• 2, th~ stacking table must have 
sixteen locations. The followfog peripheral~; (input) require no 
st;:ack:Lng .~~bles: ·(Assign zero for these perlpher'als). 

·Card. Readers 
·Pap-er Tape Readers 
Keyboard Input: 

RecomJ.Uended sizes ·for "the· other stacking ta.'bles are: 

.~ ' -

PROORAM lHJMDERS 
. l 

o.1tpl1t ·:t;>rograrn 
Scan Of fse.t Program 
Input Program 

Papef Tape or bard Punches - 8 
· Printers . 16 
I/O Typers 16 

.·.Output Typer~ 16 or 32 
.. · · ... Magnetic Tapes. 8 ·· 

. ''nata ·Edit Displays 8 

Corrective Action Program 
Keyboard/I/O Typer ·Operator Program . ., ... 

* Revised 1/67 

Liprary File No. 
Programmer's Name-----------­
Date 

SYMBOL EQL VALUE 

E EQL 

F EQL 
FO EQL· 
Fl EQL 2 
F EQL 

3 
1?4 EQL 
F5 EQL 
F EQL 
F6. EqL 
F7 EQL a . 
F9. EQL. 

·FlO EQL .. 
Fll EQL 

Fl2 EQL '•' 

F13 EQL 

F lL~ EQL 
'' 

Fl5 EQL 

... 

; 

~UP EQL 
SCF EQL 
!NP EQL : 

CAD EQL 
~PX EQL . 

I 
l, .. 



.. 
6:> 
lJl. 
l 

* 
~.STEM PARA1'1E!ERS \ALL EgI. 's .. must have an assigned value.) 

12. FREE-TIME SYSTEM Is Free-Time System desired? YES _ NO _ 
If so, refer to the Free-Time $ystem checksheet. 

13. SIZE OF SYSTEM INITIALIZATION 
Do n_ot include Monitor initialization area. 

-...-

Vt. NUMBER ·op 50 OR 60-CYCLE PULSES IN ONE Tll1E COUNT INTERVAL 
This EQL defines the length of the time count interval for 
the system.· The system time may be kept ~n seconds, 
multiples of seconds, or fractions of seconds. Fo~ 
example, in a 60-cycle system a time count interval of 
·l/4 seconds, NCYCLE would be fifteen. NCYCIJE would be 
sixty for a one-second interval. 

· : check .50 .. or 6Q ... cycle Pulse Required 50 .. cvcLE ~ 60,..CYCLE ~ 

*' 15. O,UTPUT PROGRAM INFORMATION 

16. 

A. Number of" ·float_ing dat:~ al:-eas . , 
B. : Drum .. dis~ address .·of, floating area,: or core address 

c. 
D. 

syst~ms . 
Sizes of floating· ·data areas (Multiple of 64) 
Number. of data area (Multiple of 24) 

,,. 

ECP OPTIONS 
'',"' 

·A. REGISTER PO.INTER TA~LE 

B. 

Check this option if there are· · 
'programs ··within y'our system whi.ch have single 
word register storage or· 8-word shared register 
storage. 

PRIORITY TABLE OPTION 
If program priority changing is 
desired, this table" must be included in --. 
your Monitor. 

DOES YOUR SYSTEM HAVE FIXED WORKING .. 
CORE AREAS? : ' YES 

on all-core 

YES 
NO 

YES 
NO· 

NO ---

·Library Fil~ No. 
~rograrnmer•s Name 
Date 

' .. 
SYMBOL EQL VALUE 

F'):'X EQL .. ' I ,,. 
•I~ .t 

r-
·'~ 

SINZTL EQL. 

NCYCLE EQL 
, ~ 

I . 
( 

'' ~ 

.. 
: 

'• 

,•. 

'DTANMB EQL ' ,,, 

DTFBSE EQL ·' 

DTFSZE EQL 
DT~AL EQL 

. . . 

"· 



• .:...:1 

SYSTEM PARAMETERS _{ALL EQL 1s must have an assiBned value.) 

* 17. TURN PROGRAM ON SUBROUTINE CALL YES 
This optional call, TPNC03;· NO 
specifies. which program is to run next. 

13. UNOCCUPif.:D, AVAIIABLE OPTION FOR SET PROGRAM DELAY SlillROUTINE 
DELC02 Call YES --- .._ 

19. CORRECTIVE ACTION DIAGNOSTIC PROGRAM 
A. Priority Number of Device for Operator Messages 
B. .. s.hould corrective action messages be printed .in red? ·YES 
c .. Is special Multiple Output corrective action required? 

YES 
Note: If speci.al action is required, define your syst·em needs. 

... 

OUT I> UT 
.. ,, 

2.0. PAGE CONTROL 
Is the Page· Gontrol Option desired for printing devices? YES 
If so, furnish: 

' ,, Device Priori.ty ·Lines--per Lines to.Yap 
Number Page of Next Page:_ 

-
., 

~ -
~. 

. . ' . .,. 
'" "' . ' .. 

<o 

The lin~s per page is usually 50; lines to the top of the next 

! usually ·10. 

* Revised 1/67 
*i: Added 1/67 

Library File No. 
Programmer's Name------------
Date -------------------------

SYMBOL EQL VAI.UE 
'4 

: 
.. •. 

'• 

NO 

. 
DTYPER EQL 

NO . 
. 

NO 
; 

•, .. 

NO 

I 
page is I 

,• 

.· 
.' I 



Library File No, 
Programmer's Name 
Date 

-----------------------------

I 
00 
-t 
I 

* 

-

-

\ 

SYSTEM PARAMETERS __(All EQI" 1 s must have an assigned value). 

2:1. DEVICE CODES - Local and Remote 

If Local, 
I.f input P oB •. Hardware 
device~give Address. 

Monitor R=REMarE Device associated If Remote, 18-Character Device 
Priority. L=LOCAL Type program c.cQ Hardware Device Name Address 
Number @ ~ Address. for CAD 

·-
0 
1 
2 
3 
4 
5 -6 
7 
8 
9 

10 
11 
12 
13 

' 1.4 
15 

@Examples: 1/0 Typer = I/O Card Punch = CP 
Pa.per Tape Punch = PTP Keyboard Send/Receive Teletypewriter: = KSR 
Card Reader = CR Automatic Send/Receive Teletypewriter· = ASR 
Paper Tape Reader = PTR Receive Only Teletypewriter· = RO 
Fixed Carriage I.Aong Carriage Typer = LC 

Output = OP ' ' 

Alternate 
Device 

:/fol :/fo2 

' ' v ~ ' I 

' ' ~· ' I 

(£@, This is the prog~am which will be turned on if the ·Input Demand/Break Key is pressed. If 110 

is associated with the Input_ Demand/Break Key, pl?ce an N/A for the device. 
' ' 

* Revised -1/67 

FORTRAN 
SUBMONITOR 
NUMBER 

program 



I co 
.co 

I 

* 

I 

•.;>Y, 

SYSTEM PARAMETERS _(AT.iL EQL's must have an assi_g_ned value.) 

21. DEVICE CODES - Local and Remote ___ ~ Contd 

Priority level~ must be established for each peripheral device. 

Devices which must be activated as soon as possible .. upon request 

are placed in the highest priority. Each I/O requires two con-

secutive priority numbers with outp.ut first. The 18-character 

device name is used for alarming. 

If the FORTRAN Submonitor is used in the system, fill i.n its 

.device number. FORTRAN peripherals.are divided into three 

categories: Input, Printing, and Puncqing Peripherals. Each 

category begins with Device Number O. 

* Revised 1/67 

'•,, 

Library File No. 
Programmer's Name 
Date 

SYMBOL EQL VALUE 

.. •. 

" . { 

·" 

. .. 

.• . 

'f 
l 

1 1 I' 

'· 



SYSTEM OPTIONS 

1. ON-LINE COMPUTER OPERATOR SUBSYSTEM 
.. 

a, Device Priority Number of-· Input Devices which may communicate 
with the subsystem and their output devices. The following 
programs may be called using the Computer Ope~ator Subsystem: 

·* b. Number of Program PrJority Numbers to be controlled by the 
Operator Executive. A 

* \. 
c, Number of programs to be run as ¢PR programs 

* A. Octal Memory Change - changes and/or documents memory. 
Check if punch option required. 

B •· Binary Loader - enters new progr~ms or data 

J 
CO I 

c. Binary Dump .. punches memory . contents. 

'° I . D. Printed Dump - Prints memo'ry ·contents· •. 

E-. Clock ... resets the system time and cal~ndar and updates the .. 

program execution times and auxiliary time counters. Check 
if the calendar option requ:i.red. 

F .• Program .Status.- - On/Off/Lockout .. . 
initiites, sto~~ or locks out the execution oJ: functional 

• programs under MONITOR control, 

. G. Peripheral In/Out of Service· ~ removes peripheral devices 
from services or restores failed or out-of-service peripherals 
to $ervice. Q 

~ -' 

* Revised 1/67 

CHECK 

\ 

YES NO 
I --

YES NO 

i--

Library File No, -------------­
Programmer• s Name 
Date 

SYMBOL E_Q_L VALUE 
... 
.. ~~ 

~PRSUB ' 
~PRNMB 

( 

' I 

J 

:,., 

.. 

, 
.. 

~· 

.; 

.. 

. ( 



i . 
\.Q 

0 

• 

* 
SYSTEM OPTIONS 
2. AlJ'A.ILIARY TIME COUNTERS (Number of Auxiliary Time Counters) 

This option must be chosen if there are funct:l.onal programs 
in the system which initiate themselves at regular time 
intervals and are also initiated by system or operator 
demands. The regular time interval should be saved in 
an auxiliary time counter. 

* 3. FLOATING POINT OUTPUT 
Select this option for making calculations in floating-point 

*and converting to decimal fixed point or to code in FORTRAN. 

4 •. BINARY E TY~E FLOATING POINT OUTPUT 

5. 

6. 

Select this option for converting binary floating 
point data to decimal 'floating point. -

DECIMAL FIXED-POINT OUTPUT 
This opti.on converts binary data to fixed-point decimal 
·format for output. 

OCTA!.. OUTPUrr 
This -option must be used to output data in , octal format. 

7. ALPIIA-Nfil1ERIC CHARACTER OUTPU'r _ (8-Bit BCD) 
, If alphanumeric messages are required usi.ng 8·Bit BCD data 

(three or one character (s) per word), , this option must be 
checked. 

* Revi.sed 1/67 

Library File No. 
Programmer•s Name. _________ .._ __ _ 

Date ---------------------------

CHECK SYMBOL EQL VALUE 

.. •. c E.QL 

f. 



. I 
\..0 
t-' 
I 

SYSTEM OPTIONS 

8. BINARY CIIARACTER OUTPUT 

9. Tillli OUTPUT 
Select this option to convert system time counts to hours 
and minutes or hours" miµutes and seconds in decimal. 

10~ 4-BIT BCD OUTPUT 
This option conver:ts binary data to four-bit BCD information. 

'· .. 

,, 
., ,' ,, . 

. 

·_ h 

Library File No. 
Programmer's N~me -------------

Date --------~------~--------

CHECK SYMBOL EQT... VALUE 
· .. 

.. •. 

t 

I 

I 

.. 1 

' 

, , 
"' 

. 

i ••• 



* SYSTEM OPT'!ONS 

lL MULTIPLE OUTPUT DISTRIBUTOR 

M¢D Controller Class L=LOCAL 
Index No. R=REMOTE 

@ ~ 

0 

l 

2 

3 
, .. 

'·5 ·. 

6 

7 -
@ Example of Clas·s Index Number: 

Four local and two remote M~D 

-
. 

NNDTSi 
NORMAL/TIMED 
Non-Priority 
Driver Table 

Size 
(%1 

-

-

-

NPDTSi 
NORMAL/TIMED 

Priority 
Driver Table 

Size 
@@ 

Library File No. 
Programmer's Name 
Date 

PNDTSi 
Pulsed 

Non-Priority 
Driver Table 

Size 
~ 

controllers wi 11 have Index Numbers 0-5. 

------------------

PPDTSi 
Pulsed Priority 
Driver Table 

Size 

~ 

: 

These index numbers are the system programs' link or i.dentification with the correct M¢D. 

~ NORMAL/TIMED Driver Tables require two locations for each request. 

I 
@...~ Pulsed Dri.ver Tables require four locations for each request .. .. 

* Revised 1/67 . 



Library File No. . . 

SYSTEM OPTIONS Programmer's Name 

* 11: MULTIPLE OUTPUT DISTRIBUTOR - Contd Date 

List 
\ 

the Groups for each M~D that will have a c.urrent status worq: 

l'!\,1D Controller . 
Index No. Group Numbers 

-
0 - - ---

1 -
2 
3 
l+ ' 

5 
6 
7 

IF LOCAL 

M¢D Controller N9'J)i. Mj)DGPi Puqici TML¢Ci TMNBRi 
Class Index llardware Address: Total Noo Pulsed DMT Timer DMT Maximum Nao of 

No. If Local~ of Groups' Interrupt Locatiox Int~rrupt Locatio·n Concurrent Timed 
M~D Controller. Requests Being 

If Remote, Processed 
·.Communication Cot~Q.le-r. ~ 

Q,. 

l 

2 
,' 

3 

l1, 

5 

6 

7 

~ Each Timer Request requires three locations in-a tab lee 
--

Maximum number of timers = 2!• per controller 

* Revised 1/67 



t 
\Q 
+"' 
t 

SYSTEM OPTIONS Library File No. _______ _..,. _______________ -+----------------~---------------"""'i 

I 

12. TIMED CONTACT OUTPUT 

TC~ Controller, R=REMOTE 
Class Index ~ L=LOCAL 

Number 0 

·Number 1 . 

! 

.. 

Ni1mber 2 

Number of 
TCV) Groups 
On Controller 

rrog·rammer Is Name 

Size of 
If Local.) Driver Table 
Controller Address. @2 

If Remote, 
C.C. Hardware Address. Priority Normal 

. 

'' 

'" 

Date 

For Use 
by 

Library Only 

LROOT EQL 
CCOOT 

AOOT 
T¢NPOO 
T~NSOO 
T~PPOO 

· T~PSOO 
LROlT EQL 
CCOlT, 
AOlT 

T¢NP01 
T¢>NSOl 
T¢1,ro1 
Tj!PSOl 

LR02T EQL 
CC02T 
A02T 

T¢NP02. 
TpNS02 
T¢PP02 
T~PS02 

i---------------~~------~--------------+------------------·-----i----------·i---------++----.......... ----------------+ . ~lumber 3 LR03T EQL 

These class index numbers are the system programs' link or .identification with the 
Example of TC0 Index Numbers: 

.. CC03T .· 
A03T 

T¢,NP03 
T~NS03 
TflPP03 
T~PS03 

correct TC~. r Four local and two remote TC~ Controllers will have index class numbers 0-5. 

I @ Each TC\ll request_ requires two locations in a Driver Table.· 

-J; Revised 1/67 

.,~ 

i ' ' 

, . 
'' ' . 

t • 

. , 
1 • 

... 



I 
l..P' 
Ul 
I 

SYSTEM OPTIONS 

12 • TIMED CONTACT OUTPUT .. C.ontd Progr.ammer 1s Name 

If Local_, 
Number of Controller Address. 

TC¢ Controller R=REMOTE TC¢ Groups If Remote, 

Library File No. 

Size of 
Driver Table 

@'] 

Date 

For Use 
by 

Library Only 
Class Index@· L=~OCAL On Controller C .C. Hardware Address. Priority Normal 

l=============::;==1;=:=:::::::====~r========:;::;;;:;:;:;:::::==JF-=======================t-=====:::::::==t========i~t==::==================t·~. 
Number lJ. 

·Number 5 

Number 6 

Number 7 
t ' 

\ ; 

LROLt-'r EQL 
CC04T 
AOL~T 

T¢NP04 
T0NS04 
T0PP04 

. T¢PS04 
LROST EQL. 
CC05T 

A05T 
T¢NPOS 
T¢NS05· 
'!'¢PJ?05 
T¢PS05 

ql06T EQL 
CC06T. 
A06T 

T(bNP06. 
T¢NS06 
T¢PP06 
T¢PS06 

LR07T EQL 
, ccorr 

A07T 
. T¢NP07 
·T¢NS07 
T~PP07 
~~PS07 

-@~These class index numbers are the system programs~ link or identification with the c·orrect TC~. 
Example of TC0 Index Number: 

Four local and two remote TC0 Controllers will have index class numbers 0-5. 

~ Each TC~ request requires two locations in a Driver Table. 

* Revise<l 1/67 

(' 

f • 
, ' ' , ' 

.•., 

.. , 

. ' ~ . 

~ . '"' 



* 
SYSTEM OPTIONS 

13 • ANALOG SCANNER 

Scanner 
Class 
Index 

R;;REMOTE 
L=LOCAL 

Amplifier 
Type 

If Local, 
·3 API 
or 1 API 

~rogrammer's Name 

If Lcical, ~­

Group Mod·e 
of Hardware 

If Local---Controller 
Address. 
If Remote­
CoC• Hardware 

Library File No. 

Size of 
Driver Table 

0Cc(g 

Date 

For Use 
by 

Library Only 
@ @:§ •• •. 1' .. 

-·-===::::::::::::::::i::=:::::::::::::::::::::l:===::::::::=::==i::::::::::::-=-=--==--===3::::::=.::::=========C:.:A::<l::<l::r::e::s ::s :::o ======±:P::r::i::o::r::~ i=t~Y=1::::N::o::r:::m:=a::l=u===========t .... ~ 
~-~--~~+-~~~~"4----~~~~~~~--~--;i--~~~--~-

Number 0 

Number 1. 

Number 2 

LROOS 
APIOO 
ccoos 

AOOS 
SNNSOO ·: 

.$NNPOO 
SNPSOO 
SNPPOO 

;--.- LROlS 
APIOl 
CCOlS 

AOlS 
SNNSOl 
SNNPOl 
SNPSOl 
SNPPOl 

LR04S 
API02 
CC02S 

A02S 
SNNS02 
SNNP02 
SNPS02 

EQL 

f 
-1 

EQL 

EQL 

. SNPP02 ___________ ........,. ________ "'---------·~--------.._.--.._ ____________ ~--------------1---------~------~----------------------to 
@These class index numbers Qare the system programs' link-or i<lent~fication with the co~~ect scanner. 

Exampl~ of Scanner Index Number:" l 

Four local and two remote analog .scanners uill have Index Class Number$ 0-5 •. 

@@One API Scanning allows a priority scan to inte~E~Pt a nonnal scan in progress. 

, @:..C\'E Each analog request requires one location in a Driver Table. 

"' ' 

: 

... 
: 

; 

.. 

* Revised 1./67 



SYSTEM OPTIONS Libra_!Y_ File No. 

*' 13. ANALOG SCANNER• contd Programmer's Name Date 
\ If Local-

Scanner R=REMOTE Amplifier If I,ocal, If La·c~l, · Controller Size of For Use 
Class I~= LOCAL Type, 3 API Group Mode Address. Driver Table by 
Index or 1 API of Hardware If Remote .. ~ Library 

@ (%\ c .. c. Hardware -
Address!! P_i:iorit~ Norms.1 

Number 3 LR03S .. API.03 
CC0,3S 

A03S 
I SNNS03 · 

SNt'tlJ03 .. 
•, -- · SNPS03 

' -. . SNPP03 
Nu:nbei: 4. \ .,, 'LR04S 

·-'. API04 .. 
' CC04S . ' 

~ 
A04S .. 

-~ SNNS04 
""-' ' 

I '. :. SNNP04 
·SNPS04 
SNPP04 

Number 5 LROSS 
' ... AP I OS 

CC05S 
A05S" . _ SNNS05 . . 

SNNP05 
SNPS05 

- ' SNPPos· 

·@ These class index numbers are the 1;3ystem· programs 1 link or identification with the co~rect scanner. 
Example of Scanner Index Number: • 

Four local and two remote a_nalog scanners will have Index Class Numhers 0-5. 

<£@ One AP! Scanning allows a priority scan· to interrupt a n·ormal scan in progress. 

@9@ Each analog request requirE:$ one location in a Driver Table. 

* Revised 1/67· 

Only 

EQL 

EQL 

. ' 
•' 

EQL 

' 
..... 

1 

1 ... 

. ' 



I SYSTEM OPTIONS 

* 13. ANALOG SCANNER - Contd 

Scanner 
Class 
Index 

@ 

-
Number .. 

' 

6 

R=REMOTE 
L=LOCAL 

Amplifier . 
Type 

If Local, 
3 API 

or 1 API 
@'.? 

If LocE+l, 
·Group Mode 
of Hardware 

Libra.!Y_ File No. 

Pro_grammer 1 s Name I>at"e 

If Local­
Controller 
Address. 
If Remote-
C oC. Hardware 

· Address o 

Size of 
Driver Table 

@g@ 

Priorit_y Not"ma l 

For Use 
by 

Library Only 

LR06S EQL 
AP.106 
cco6s 

A06S 
SNNS06· 
s·NNP06 
SNPS06 

ll .. 

, , SNPP06, _r 
.-.--~--~4-----..-----1..-----------4-----~~--..+---~""'!'--------i-----~--------""---------.-.-------&J....~.~----.....--------~~ ·" 

. "°. co 
I 

\ 

@ These' class index numb~rs are the system programs 1 l:i.nk ot. identification with the correct scanner, 
Example of Scanner Index Number: • · , · · 

Four local and t\Vo remote analog scannero will have Index Class Numbers 0-5 • 

. · ·@ll One A.PI. Scanning allows a priority scan to interr.upt: a normai··scan in pro~ress. 

~Each ~nalog request require~ one location in a Driver Table. 

* Revised 1/67 

. ' . 

... . . ' 



SYSTEM OI-'TIONS 

* 13. ANALOG SCANNER ... contd 

· .Qptions a2ply to all scnm1ers in the system 

1. Options: Add the Reference Block Tempetaturt~ for thermocquples o 

• YES NO --

2 • Si: ot'e time of day as the. last wot'd of the Count Tab le. 
YES NO ---

3. Gain Optimization (used only for a singte-channel single API Scanner) 
YES NO ---

4 •. I~. bu~fered scanning desired·?. 
• ,· • '~ .,_, .,. .: ' I ' ' " 

YES NO ---
~uff~re4 reque~ts permit a functional program 
to process one set of count values while the 
Driver is scan~_ing an~the.t" set. 

s. What is the maximum number of analog scan requests that can be 
stacked at one time? 

This can be a maxi~um of 24 and neve~ needs to be more than tbe 
number of system -programs that can request analog scanning 
because a program can only request one scan at a time. 

6, Is priority scanning required? 

) 
YES NO ---

* Revised 1/67 

Library File No~ 
Programmer•s Name -------------­
Date 

---------------------------

For Use by Library Onl_y 

SNPROO EQL 
T~SCN EQL 



I ..... 
·o 
0 
I 

* 
SYSTEM OPTIONS 

l/i. o FORTRAN S UBMONITOR 

15. 

Checl< this option to communicate to NONITOR through 
FORTP~N. Check the desired options: 

Input: ,--...------~~~~ 

a. Decimal to Binary 
h. Alphanumeric 
c. Octal 

Output 
a. Printed-
1:>. Punched 

I/O Availability 
Drum Read/Write 
Subroutine Linkage 
Computed GO TO 
Assigned·GO TO 

If the free-time systein is 
included •. 

required, all opticins must be 

INTERRUPTABLE SYSTEM SUBROUTINES 
If there are subroutines within the system which 
must run with interrupt pennitted (due to length) 
and are.used py more than one functional program, 
they must Jolfow special entry and exit conventions. 
When this is the case, this option must be selected. ( 

•' ,, 

" ,, 

* Revised 1/67 

Library File ·No. 
Programmer's Nnme --~---------

Date --------------~--~------
CHECK SYMBOL Iill_L VALUE 

I .,. 
'! 



Library File No. 
Programmer's Name -------Date --------------------------

SYSTEM OPTIONS 

. INITIAI.l 
F/F STATUS 

•ROG. NAME 0 p T T DRUM/DISC @ (a) ' @ (b) :/J WORDS SAVE :/} WORDS OF @ (c) @ (d) 
'RIOlU ... v A s M ADDRESS AR.EA SAVE OF STATUS AREA SAVE STATUS REG. ITC &. DTD 
'Y NO. R I T F STATUS STATUS PROG~ ADDRESS AREA STORAGE INTlpiRUPT 

F F F F RETURN 

1 

2 -
3 • 

; 

-
l~ 

5 

6 

7· 

8 . 

@ Place a checkmark ( V) in the corresponding column marked with an .11@11 sign if: 

a) Area status is available 
b) Save status is required 

· c) a ... ~ford register storage is· required . 
d) Interrupt Time Counter and Drum/Disc Transfer Complete Intert·upts return to ECP. 
@:Ii Applies to Drum/Disc Systems. Insert starting core address in the drum/disc address column for 

these programs .. 

:!vised 1/67 

CHEGK IF 
PROGRAM 
RES ID~ IN 
PE11lj 1 CORE® 

-



Library File No. 
Programmer's Name 

----~--~----~~-'Q ate 
------------------~--...;..... _______ __ 

REMOTE SCANNER 

* 1. -REMOTE SCANNER PACKAGE 

CENTRAL 
PROCESSOR 

UNIT 
4306 .COMMUNICATIONS COUPLER ( C. C.) 

REMOTE SCANNER C01ITROLLER (maximum 4) 

4307 

od 
REMOTE CONTROLLER MODULES (ma:ximum 5) 

Only one of each module 
will be allowed for each 

·Remote Scanner Controller 

ao Model 4100 Analog Input Controller and -
4130 A/D Converter 

b.. Model 4400 Digital Input Controller 
·c. Mod~l 4300 Multiple Output Controller 
d. Model 4302 Timed Output Controller· 
e. Model 4201B Peripheral Buffer 

Devices Allowed on Peripheral Buffer Module: 

·l) ~ixed Carriage Output Typer, Model Noo 4221Bo 
2) Long Carriage Output Typer, Model No. 4223B. 
3) !/O Typer (one per PoBo), Model Noo 4270B. 
4) Paper Tape Punch, Model No~- 4253A. 
5)- Card Reader (70 CPM)> Model No.· 4240B. 
6) Paper Tape Reader, Model No. 4213B. 
7) Teletype;·rriter, : Model Noo · 4233.A ~ 

All modules have c.lass index numbers. This ralates the controller or 
buffer t;o other controllers or buffers of the same-type. These indeJic numbers 
are the system programs- 1 link or identification with the correct controller 
or buffer. 

Example: Two local and three remote analog scanners ~ill have Class Index 
Numbers 0-4 in the analog scan section of the Monitor checklist. 

A further explanation of the terms used- in the checklist is given in the 
following program writeups: 

YPE.A.7X - Remote Scanner Driver (RSD41) 
YPT86X - Analog Scan Request (SCR45) 
YPED5X - ~ultiple Output .Request (M!»R46) 
YPED6X - Timed Output Request (TC~42) _ 
YPEA6X - Remote Digital Input Request (RDS41) 

* Added 1/67 

-102-



REMGrE SCANNER Pro_g_rammer's Name 

* 1. REMarE.SCANN~R PACKAGE - contd 

Communications Coupler Index Number @ 
.Hardware Address 

Library File N-0. 

Number of Remote Scanners on this Communications Coupler 

Priority of Module 
On This 

Communications Coupler 
~ 

11 0 
1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13' 
14 
15 
16 

~ 17 
18 
19 
20 
21 
22 
23 

TYPE 
MODULE 

Polling 
Polling 
Polling 
Polling 

Remote Scanner 
Address t 3 

Class Index 
Number of 

Module 

·Date 

For Use By 
Library Only 

CC-POO EQL 
01 
02 
03 
04 
05 
06 
07 
08 

-09 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 

@ Every Communications Coupler must be assigned-an index number in. relationship 

@@ 

to the other Communications Couplers. · · 

Example: If there are three Communications Couplers in a system their Index 
Numbers will be 0, 1 and 2. j 

A copy of this page is required for each Communications Coupler in the System. 

Types of modules on a Communications ·coupler are·:. 
1. Polling (digital input) 4. TC¢ 
2. Analog Scanner 5. · · Peripheral Buffer 
3. M¢ 6. Digital Scanner 

List all the modules on this Communications Coupler in priority· order you 
would like t~ have them serviced •. The Remote Scanner·number has no bearing 
in determining this priority. 

The class index number of polling· is the same as Digital" Input of the same 
Remote Scanner. 

* Added 1/67 

-103-



* REMO'rE SCANNER 

l.. REMOTE SCANNER -PACKAGE - contd 

1. Does system have Change Detection? 

YES __ NO __ 

2. What is program number of Change Detection? 

3. At what interval is Polling required? 
(suggest one second) 

/, 
.:;,,...,. . ,, 

Polling time must be in multiples of 
system time. 

Minimum polling time one-half second 
system = one second. 

Minimum polling time one-quarter second 
system = one-half second. 

Maximum System Time = ~ Second 

At whet interval is re~ote Module back-in 
service initialization required? 

Minimum Initialization Time = one minute 

{must be in multiples of one minute) 

5. Program Number of Remote Corrective Action. 

* Added 1/67 

-104-

Library File No. 
Programmer's Name 

Date ----------------------~-

For Use By 
Library Onlv 

CHDPRG EQL 

P¢LL EQL 

EQL 

CAR EQL 



a ...... 
0 
Vl 

• 

* REMOIE SCANNER Programmer's Name 

2. REMarE DIGITAL SCANNER 

··" 
Size of 

Class Index Communications Coupler Scanner Driver Table 
@ Hardware Address @@ 

Number 0 -- --

!lumber 1 
~ 

Number 2 

'. 

. ' 

Number 3 

Number l1-

Number 5 

Number 6 

Number 7 

--. 

@- Class Index Number is for }.'{emote Digital Scanners 2nly. 
@@ Each digital reqllcst requires. two locations in a Driver Table. 

* Arld~cl 1/67 

Date 

For Use By 
Library Only 

ccoon· EQL~ 
AOOD 

DNNSOO 
DNNPOO 

COOlD EQL 
AOlD 

DNNSOl 
DNNPOl 

CC02D EQL 
A02D . 

'DNNS02 
DNNP02 

CCOJD EQL 
A03n 

DNNS03 
DNNP03 

CC04D EQL 
A04D 

DNNS04 
DNNP04 

CC05D EQL 
A05D 

DNNS05 
DNNPOS 

CC06D EQL 
A06D 

DNNS06 
DNNP06 

CC07D EQL 
A07D 

DNNS07 
DNNP07 



* REMarE SCANNER 

3. REMOTE PERIPHERAL BUFFERS __ ,_ ---

Class Index Communications Coupler Mtr. Priority 
@ Hardware Address Numbers of Devic~s 

-
~mber 0 

umbf!r 1 
I 

J Number 2 

Number 3 '-

Number 4 

Number 5· 

Number 6 

.t 
Number 7 

.@ Class Ind~x Nun1ber.: is for· Remote Peripheral Buffers onlI• 

* A_dded 1/67. 

on This P. 

Library File No. 
Prograrmner's Name 
Dat~ 

" 

B. 



* 

. , 

APPENDIX E 

AUDIT CODES 
. . 

-Following is a list of ~onitor Audit Codes and the Pseudo-Ops they define. 
For a.more detailed discussion of Pseudo-Op subrontines, refer to the 
appropriate Monitor Manual section shown opposite each mnemonic. See 
Appendix C of Process Assembler Language Manual for additional inform~-
tion ·relative to Audit Codes. · 

- - - - - - -- ~ 

Section/Page 
Reference Pseudo-Op 

1.14 .. 3 BCD ~·:DEF /40000000, 63, 30, 28, 29, 32, 31 
1.14.4 BCN i:DEF /50000000, 30 
1.14.5 CLK 7•DEF /60000000, 63, 25, 26, 28, 29, 31 
1.4 DEL -!:DEF /00000000, 16' 9, o, 0 
1.3 DFE *DEF /10000000, 63, 38, 37' 28, 34, 33, 32, 31 
1.3 DFP · i•DEF /00000000, 63, 38, 37, 36, 35, 34, 33, 32' 31 
1.3 DFX i•DEF /20000000, 63, 38' 37, 28, 34, 33, 32, 31 
1.3 FBB *DEF /70000000' 63, 38, 37, 34, 32, 31 
76 F¢R *DEF /00000000, 27, 3, o, 0 
77 INF *DEF /00000000, 63, 13' 15, 39, 40, 3 
1.3 ¢GT *DEF /30000000, 38' 37' 34 
77 ¢UF -l:DEF /00000000, 63, 16, 13' 14, 15, 39, 40' 41, 42) 7 
78 ""' PRG *DEF /00000000, 63, 13' 14, 15, 1, 39 

SZE *DEF /00000000, 63, 16, 39, 25, 18' . ' 3 

Assigned Monitor Audit Codes 

25 *DEF /1, 18 
26 1.-DEF /1, 16 
27 *DEF /777' 15 
28 i:DEF /37' 7 
29 *DEF /37' 2 
30 *DEF /777, 12 
31 *DEF 1/l, 0 
32 *DEF. /1, 1 
33 ,. .. DEF /1, 2 
34 *DEF /17' 3 
35 *DEF /17' 7 
36 i:DEF /1, 11 
37 *DEF /17' 12 
38 7<DEF /37' 16 
39 *DEF /1, 19 
40 *DEF /37', 14 
41 *DEF /1, 13 
42 *DEF /37' 5 

* Revised 1/67 

-107-



SUBJECT: QUESTIONS AND ANSWERS CONCERNING YPG53M - 4020 MONITOR MANUAL (PRELIMINARY) 

April 28, 196 7 

The following questions, concerned with the Real-Time Multiprogrannning Operating 
System found in YPG53M, have been submitted and are answered herin for the purpose 
of clarifying portions of that document. 

1. Page 2, Section B 

QUESTION: The "R" bit is specified as "zero" for both drum-core and all­
core systems - explain. 

ANSWER: The "R" bit explaination should read: 

R = 1: Absolute Permanent Core Location 
0: Relative Address 

For an all-core system, "R" is always "zero". 

2. Page 2, Section B 

QUESTION: Where is the condition of the FMS bit stored where a program 
is interrupted? 

ANSWER: If single-double or double only for a program, the program 
must have full register storage. 

On p. 3, in the REGSTG Table, Bit 23 of the P-REG is 0 for 
single or 1 for double. 

For drivers that go back to program immediately, Bit 23 of 
I-Block plus 2 is the indicator: Where I-Block is the same as 
First 8-Word Register Storage Block (ECP). 

3. Page 9, Section 1.3 

QUESTION: In what condition does the 0FFC01 subroutine leave the program's 
area'? 

ANSWER: Occupied, but available. 

4. Page 10-11, Section 1.5 

A. QUESTION: If the TPNC02 call is used and the program to be turned on is 
in delay, what happens? 

ANSWER: Return is made to the program with a -1 in the A-Register. 

B. QUESTION: Is the request ignored? 

ANSWER: Yes. 

c. QUESTION: If ignored, is there any indication given that the request was 
ignored? 

ANSWER: Yes, in the A-Register upon return. 

-1-



5. Page 11 

QUESTION: If TPNC03 call is used to turn on a program that is currently 
in core, is that program entered immediately, without regard 
to a higher priority request? 

ANSWER: The next time ECP is entered, it goes immediately to that 
program, without regard to priority. (Only one TPNC03 call 
is allowed at a time.) 

6. Page 11 

A. QUESTION: If a TPNC03 call is used to turn on a program that is not 
currently in core, is the request for its transfer serviced 
immediately or is this request simply entered at the bottom 
of the transfer request list? 

ANSWER: The reguest is serviced immediately; the transfer goes to the 
bottom of the list similar to all other bulk transfer requests. 

B. QUESTION: When the transfer of the program is completed, is the program 
entered immediately, without regard to priority? 

ANSWER: Yes .. 

7. Page 13, Section 1.7 

QUESTION: Does the DTRC02 set the calling program's area unavailable 
until the transfer is complete? 

ANSWER: The area is not changed. 

8. Page 14, Section 1.10 

QUESTION: Is the index to the first 3-word group a "O"? 

ANSWER: Yes. 

9. Page 15, Section 1.11 

A. QUESTION: Is there any limit to the size of a fixed data area? 

ANSWER: There is no limit. 

B. QUESTION: Must the address of a fixed area be pre-defined to the 
operating system? 

ANSWER: No. 

-2-



10. Page 16, Section 1.11 

A. QUESTION: When using floating data tags, is it always necessary to 
transfer the data to the area associated with that tag before 
requesting output? 

ANSWER: 1) In an all-core system, the floating data is a core 
address. 
ao Find the area 
bo Enter the data 

2) In a bulk-core system: 
ao Build either before or after making check 
b. Find data area before transfer 
c. Bulk-transfer the data 

B. QUESTION: Is it possible to simply check for a floating tag and request 
output from some other area - a data area in core, for instance? 

ANSWER: Yes, but not recommended. 

11. Page 19, Section 1012 

QUESTION: If a request is made to output information, formatted BCD, 
to a card punch, in the symbolic mode, will the output 
routine perform the ASCII to 80-column card conversion? 

ANSWER: Yes. (If already 24-bit binary, use BCN.) 

12. Page 28, Section C 

QUESTION: Is there any procedure that can be followed to output numbers 
with negative scale factors? 

ANSWER: Floating-point may be used .. 

13. Page 32, Section l.14o4 

QUESTION: What is the format for the binary cards produced by the 
output routine? 

ANSWER: Bits 23-12 represent the odd columns; 
Bits 11-0 represent the even columns. 

14. Page 37, Section 1.15 

A. QUESTION: Does the location ahead of the input list control word always 
contain the number of characters read, regardless of how 
they were packed? 

ANSWER: Always the number of characters read on normal return or 
error returns with data error. 

B. QUESTION: Does this refer to the numbers of characters before or after 
editing? 

ANSWER: This is the number of characters after editing. 

-3-



15. Page 41, Section 1&15u3 

QUESTION: What action does the input program take when more than the 
specified number of characters have been entered? (Assume 
the input list is large enough to receive all the characters.) 

ANSWER: Assume a request for Device Number 4 indicates that 30 
characters are to be inputted through the keyboard into 
buffer KEYIN. If less than or 30 characters are accepted, 
this is reflected in the "number of words 91 found in the 
A~Register upon return to the requesting program's Normal 
Returno If more than 30 characters are entered, return is 
to the INRC02 call Error Returno If keyboard input, it is 
either uTirne Abort" or "Overflow Error",, 

16. Page 41, Section 1015 

A~ QUESTION: On a normal return from an INRC02 call~ the A=Register 
contains a count of the "number of wordsuo Is this the 
number of words occupied by the input message before or 
after editing? 

ANSWER: After editing. (The number of words including partial words 
after editingo) 

B. QUESTION: Are partially occupied words included in this count? 

ANSWER: Yeso (Partially filled words are left=justified with zero's 
on the right ende) 

17. Page 38, Section 1015 

QUESTION: Does the input routine edit information received from symbolic 
paper tape? 

ANSWER: No, it just edits out ETX codes. 

18. Page .51, Section L 18 

A. QUESTION: If~ in a timed output request (MfiJRC03), a "0" in the AmRegister 
leaves a contact uunchanged", what is the status word used for? 

ANSWER: "Bits 23 =8 ~ Data" should state: 

1 = Contact to be latched 
0 = Contact to remain unchanged or unlatched when no status 

B. QUESTION: Is the status word affected by an M~RC03 request? 

ANSWER: The status word is updated when the group requested has status. 

=4= 



} ... 

19. Page 51, Section 1.18 

A. QUESTION: When aborting a timed output (M¢RC03) request with an M¢RC05 
request, what information should be placed in the A and 
Q-Registers? 

ANSWER: The same contents of the A and Q-Registers in the M¢RC03. 

B. QUESTION: Can a single contact involved in a timed request be aborted? 

ANSWER: No. 

20. Page 51, Section 1.18 

QUESTION: If a delayed return from the M¢RC03 routine is chosen, will 
control be returned to the calling program immediately, after 
the relays have been operated, or after the time count has 
expired? 

ANSWER: It returns after the time count has expired. 

B. QUESTION: Does the M¢RC03 affect the status of the calling program's 
area when the delayed return option is selected? 

ANSWER: It doesn't touch the area. 

21. Page 52, Section 1.18 

QUESTION: In a pulsed output request (M(bRC07), will a "O" in the A-Reg­
ister cause a currently closed relay to be opened? 

ANSWER: A zero means no action to be taken, 

22. Page 53, Section 1.18 

QUESTION: What is the duration of a pulse put out through the M¢RC07 
routine? 

ANSWER: It is hardware defined - time base. (Greater than one 
cycle) 

23. Page 53, Section 1.18 

QUESTION: Can a pulsed output (M¢RC07) request be aborted? 

ANSWER: No. 

24. Page 53, Section 1.18 

QUESTION: Does the M¢RC07 routine affect the area occupied by the 
calling program when the delayed return is chosen? 

ANSWER: It doesn't change the area status. 

-5-



25. Page 56, Section 1.20 

QUESTION: Does the non-buffered scan routine affect the area occupied by 
the calling program? 

ANSWER: It doesn't touch the area. 

26. Page 59, Section 1.20 

QUESTION: In the single input scan mode, when is the 10 code used in 
Bits 19 and 18 of the control word and when is the 00 code 
used? 

ANSWER: Only Bit 18 must be zero. (Hardware defined) Bit 19 is 
ignored. 

~ichael S. Purtill 
Technical Writer 
Programming Publications 

-6-



GEJ'PAC®4000 
GENERAL ELECTRIC PROCESS AUTOMATION COMPUTER 

PROCESS 
ASSEMBLER 
LANGUAGE 

CASCII Character Set) 

•ROCESS COMPUTER 
SUSINESS ~ECTION 
•HOENIX, ARIZONA GENERAL. ELECTRIC 



Library Control No. YPG52M 

Copyright 1967 by General Electric Company 

This manual published by: 

PROGRAMMING SUPPORT 
GENERAL ELECTRIC COMPANY 

PROCESS COMPUTER BUSINESS SECTION 
P. O. BOX 2918 

PHOENIX, ARIZONA 85002 

For further information concerning the contents of this manual, 
contact the Prograrrnning Library at the above address. 



1 STATEMENT FORMAT 

1.1 
1.2 
1.3 
1.4 

Location Field 
Op Code Field 
Operand Field 
Identification Field 

2 PSEUDO-OPERATIONS 

2.1 

2.2 

2o3 
2.4 
2.5 
2.6 
2.7 
2.8 
2.9 
2.10 
2 .11 

@RG - Origin/Core Starting Address 
DCW - Drum/Bulk Starting Address 
IDN - Identify Library Subroutine 
LIB - Call Library Subroutine 
BSS - Block Storage Reservation 
C@N - Co'1stant 
DCN - Double Word Constant 
GEN - Generate Duplicates 
EQL - Assign A S~bolic Equivalence 
DEF - Define A New Operation 
SLW - Slew Printer Page 
END - End of Program 
Monitor Pseudo-Ops 

3 PROCESSING & OUTPUT 

3.1 
3.2 
3.3 
3.4 
3.5 

Character Codes 
Absolute and Relative Values 
Common Symbols 
Assembler Variations 
Output 

APPENDIX A - ASCII Character Code Translation 

APPENDIX B - Error Flags 

APPENDIX C - Audit Codes 

APPENDIX D - Machine Operations 

-iii-

CONTENTS 

1 

1 
1 
1 
3 

5 

5 

6 

7 
7 
9 

10 
11 
11 
17 
17 
17 

19 

19 
19 
20 
20 
20 

21 

22 

24 

25 



INTRODUCTION 

This manual defines the standard Process Assembler Language 
(PAL) for the GE/PAC* 4000 Process Computer System using the 
American Standard Code for Information Interchange (ASCII). 
This discussion of PAL is directed toward the programmer 
familiar with GE/PAC programming concepts and techniques at 
the assembly language level. It does, however, include 
examples and references useful to the less experienced 
programmer. 

First, the statement format is defined and PAL techniques 
are discussed. The pseudo-operations are then outlined and 
defined followed by assembly preparation and loading techniques. 

* Registered Trademark of the General Electric Company 

-v-



1 STATEMENT FORMAT 

Assembly program input information is written on the "GE/PAC Language 
Statement Coding Form" (Figure 1). Each line on the coding form represents 
one instruction to the assembler. The coding form is comprised of four fields: 

1. Location Field 
2o Op Code Field 
3. Operand Field 
4. Identification Field 

lol LOCATION FIELD - Columns 1 through 6 

The location field is used to associate a name with the instruction or 
data written on the same line. Any reference to the instruction may be 
made by that nameo Names used in the location field must consist of six 
or fewer alphanumeric characters; the first of which must be alphabetic 
and-start in column one. A decimal point is considered as an alphabetic 
character in this context. 

1.2 OP CODE FIELD - Columns 8 through 10 

This field contains a two or three-character operation code which identifies 
the instruction to be executed. The legal operations consist of the pseudo 
operations described in Section 2 and the machine operations outlined in 
Appendix D. 

103 OPERAND FIELD - Columns 12 through 69 

The operand field may contain a combination of parameters. When evaluated, 
the parameters define the operand or operands required by the operation codeo 
The following four basic parameter types are permitted in this field: 

Label - A name composed of six or fewer alphanumeric characters; the 
first of which must be alphabetic. Any such symbolic parameter 
corresponds to a name written in the location field of some 
instruct ion. 

Decimal - A decimal integer value 

Octal - An octal integer value, preceded by a slash (/) 

Present { 
Location An asterisk (*),which represents the address of this 

instruction's present memory location 

Examples of the four parameter types follow: -- ... 

{ 
II 12 13 1• 15 16 17 11 19 20 21 22 23 2• ~ :16 21 lal29 l~:n ~:13 I~~ 1:1u1 

It< 
rv 

,.,ir.1• 
11 

l'I Ide 

Label 

/l 
Decimal 12 

llll 

~21i 
l1 Ll Octal 
.11.J.] Li. iJI] 

Present Location l*1 

-1-



GENERAL. ELECTRIC GEf PAC;, LANGUAGE STATEMENT Pro1ect Name PROCESSOR KEYS 

PJogramN-. 0-DELETE 
PROCESS COMPUTER BUSINESS SECTION CODING FORM 

Paae of Joate 6-PAL PHOENIX, ARIZONA 
Proa-• 7-FORTRAN 

K Prq. Pq. Sequence 
E II II 

LOCATION • GP CClllE OPERAND 
y 

I 2 3. 5. 7 • ' 10 1112 131' 15 16 17 " 19 20 21 n 232• 2~ 26 2721 29 30 31 32 3~ 3• 35~ 3738 39~ ... ~ '' '6 
., .. '9 50 51 52 53,. ~56 57s1 S9 60 6162 636' 656' 67 61 .. 1q 71 72 73,. 7576 

Ii 

17 

la. 
PC 511 (4-&6) *REG TRADEMARK OF THE GENERAL ELECTRIC COMPANY 

Figure 1 - GE/PAC CODING FORM 

Single Operands 

A single operand value may be composed of one or a combination of the four 
parameter types listed on page one. These parameters are combined using the 
following operators: 

+ add 
- subtract 

* multiply 
I divide 

II 

77 71 

Examples of parameter combinations which form a single operand are illustrated 
below: 

Single operand as a combination 
of a symbolic and decimal or 
octal 

Combinations with * 

Multiplication and division 

All four parameters combined 

{ 
{ 
{ 

11 1213 I 15 16 17 II I 20 21 22 

r~ R ~ "l 
A R 1-1 "l 

~ ~I H- Zjl 
1;-:1 i- /I 122 

!\IRIR1 EILv1 tt.ml nil 

~'(ff-j +I) 
f/4-1 

., 
~H:IL 21 
~l-1 ILi' ~! 

rlEI M!P k') 

1 r.J[p lj)~] BE[ 

r r.Jte t1(1Z 
I r.l[P 1111~1 
1 1"11.t' I/ Hl:t: 

~·fl: rr~ RR -H~ ~IL 

23 2• ~26 27~ ~- 31~ ~37 3~~ 

[l1Lj 

The parameters in the preceding examples are combined strictly from left to 
right. Ordinary precedence rules apply. 

-2-

79 10 



The meaning of asterisk or slash depends upon its relationship to the 
remaining parameters. For example, an asterisk represents multiplication 
only if it is connecting two parameters. In all other cases, it represents 
present location. The slash indicates an octal value when it precedes a 
numeric parameter; otherwise it is a division sign. 

Most assembly language statements in any problem involve only simple operand 
combinations. Rarely will the multiplication or division capabilities be used. 
It is important to understand that the combinations of parameters in the operand 
field, simple or complex, involve the value (usually the location) of the 
symbol; not the contents of' the location referenced. 

Multiple Operands 

Many computer instructions require more than one operand value. Most memory 
addressing instructions, for example, may have two operands; one to specify 
an index register and a second to specify the memory address. Multiple 
operands are desirable in many other occasions. When more than one operand 
is required, the comma (,) is used to separate them. 

Examples of two-operand instructions are presented in the following: 

I 2 3 4 s • ' . 9 I 11 12 13 14 IS 16 17 II 19 20 21 22 23 24 ~26 21[.! ~· 31~ 
,31,. 1391:111 J7 

[ lA LA IF!R +I? txl1 
s ll:l ~± ~!A11 !:!; 2 
~h' IA h1R MP IXll l+I? 

17 

The first blank space in the operand field terminates the instruction. 
Characters appearing after the first blank space are treated as comments. 

1.4 IDENTIFICATION FIELD - Columns 70 through 80 

The last eleven columns are reserved for the identification of each line 
of coding, being used in some assembly systems, for proper maintenance of 
the symbolic information. 

Information in this field also permits assemblers to differentiate between 
various languages the programmer has used. The use of this field may vary. 
The documentation for the various assemblers or other language processing 
systems describes its use. 

-3-



2. PSEUDO-OPERATIONS 

rhe pseudo-operations are written on the coding form in the op code field. 
They direct the assembler in storage assignments, symbol definitions, and 
generation of constants. All labels appearing in the operand field of 
pseudo-operations must be predefined (i.e., they must be common symbols or 
they must appear in the location field of a statement preceding this). A 
summary of the PAL pseudo-operations follows: 

1 2 3 4 5 6 1 I 910111213U15161711192021J223242~2627131j2Ul:ll :11131·1~.il..i•l'4CS'6'7~'95051~535'~565~5159~06162636'65 

~R ' hlrliq~ l~ld~P 1ua fl.IT 1A1cl(1TrA~~ 

~1 

N 

Ik::llelnJt !ilflYI f · 1 ri ~ l.::11 1-rl rlt It I ii rte 
Call [1; N 11rnc1~ ilrle 

s B11n1r-1k s B~~Jll:lud~ .din 
N lin~l~ wld~d ~H l'dilrlt l~rliln1al 

) hl111 P Win~ li~id1~ li:iilrliln1a1 
~I Ohl 1bl Pl Allrlrl F'1 n~ Ii TIQ :n 
0 hl.1lnl ~ N~~ lrlr~ll 

;.;, E:l.I e.1 lnh ml Ii 

[Pw lri~t~~ ~l~e 
~hff b~ 

In addition, the following conventions apply: 

Ii-JI t 

IC 11. 

1 q ciri ~ tl::iJrhJ 

1. An asterisk in Column 1 identifies the entire line as a comment 
which will appear on the output assembly, but has no effect on 
the program. 

2. An asterisk in Column 7 of a statement identifies the location 
field name as a common, absolute symbol. 

3. A dash in Column 7 of the statement identifies the location field 
name as absolute (but not common). 

4. Special pseudo-operations are available for use with Monitor 
(refer to GE/PAC MONITOR MANUAL). 

2.1 0RG - ORIGIN/CORE STARTING ADDRESS 
DCW - DRUM/BULK STARTING ADDRESS 

0RG and DCW are used to specify, to the loader, the following information: 

1. The location in core (0RG) or bulk (DCW) where the loader is to 
place the instructions that follow. 

2. An indication if this segment should be permitted relocation at 
load time. 

-5-



When a segment is designated relocatable the loader accspts, from the 
operator, bulk and core relocation values which tell the loader to move 
the program. Placing an asterisk in Column 7 of an 0RG or DCW instruction 
inhibits this action for the entire program up to another 0RG or DCW 
instruction. 

The 0RG requires one operand, which specifies the core starting location. 
DCW requires two operands. The first specifies the bulk starting location; 
the second (optional) specifies a corresponding core location. 

In the extreme left column of the listing produced by the assembler is the 
location of each instruction. This location is a core location initialized 
to the value of the 0RG operand or the second operand of a DCW. 

If a program has no 0RG or DCW, it is assembled as though it were headed 
with an 0RG O, permitting relocation. 

Any symbol used in an operand must appear 
previous instruction within this program, 
as a common symbol from another program. 
DCW pseudo-op must remain blank. 

2.2 IDN - IDENTIFY LIBRARY SUBROUTINE 
LIB - CALL LIBRARY SUBROUTINE. 

in the location field of a 
or must have been communicated 
The location field of an 0RG or 

The IDN and LIB pseudo-ops are used with FORTRAN library subroutines. 
They may be used to build and call other library subroutines as desired. 

The appearance of an LIB at the end of a program signals the loader to 
search for a program by th

1
at name (identified by IDN) to load and establish 

communication between the calling program and the library routine. 

Examples: I 2 
3 ' 

I. 7 • • 10 II n 13 1 15 .. 17 II .!.! 20 :nn 23 ,, 2521 21lJll I~•,. , .. 1 .. 11 

[ ~ s r.rr 

p~ ~1-,· ~~ 

An IDN appears only once in a library routine, and must be the first 
statement in the routine. An 0RG or DCW may not appear in the routine. 
The name of the routine (a Label as defined in paragraph 1.3) appears 
in Columns 12 and following. 

The LIB statements must appear at the end of the calling program. The 
number of them is limited only by the number that the loader can accom­
modate, which varies with the loader being used. The library subroutine 
name is a label appearing in the location field. 

-6-



2.3 BSS - BLOCK STORAGE RESERVATION 

BSS is used to reserve or skip a block of memory. The size of the block is 
designated in the operand field. Any symbol that is used must be a conunon 
symbol conununicated from another program or must have appeared in the loca­
tion field of an earlier instruction within this program. 

A symbol written in the location field is entered into the assembler's table 
of symbolic equivalences. It is entered with the location value corresponding 
to the first location of the reserved block. 

2.4 C0N - CONSTANT 

2.4.1 

C0N generates program constants. The five types are specified·by an 
alphabetic character in Column 12 as illustrated on page five. 

The assembler generates the binary equivalent for a C0N constant. A 
symbol appearing in the location field of any constant is entered in the 
assembler table of symbolic equivalences. All references to the constant 
may be made by that name. 

Single-Word Fixed-Point Decimal Constant 

The first operand, D, identifies the constant as fixed-point decimal. 
The second operand presents the value of tha constant. A binary scale 
factor and a power of ten exponent may be expressed in the constant. The 
binary scale factor indicates the bit position of the binary point relative 
to the sign bit in the word. 

0 

I 2 , . I 6 1 • • 1 II 12 13 1' 15 16 »" It 20 ~~ nu ~M ~1· I~•~ 'p 
~-~~ 

u~ D l2 
I~~ r ~ ~~ 114 
tu~ I~., ll2 ~~ 11~ IEll 

In the preceding examples 2 and 3, the binary point is assumed as 
indicated by the arrow illustrated below: 

Bit 

20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 

1 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 

Bits are numbered from right to left; binary points (equivalent to a 
decimal point) are numbered from left to right. The binary point is 
considered as being located to the right of any bit. Consequently, 
if a point is to the right of Bit 23, the data word is considered to 
be a fraction scaled BO. The data word is considered to be a full 
integer scaled B23 when the point is to the right of bit zero. 

-7-



2.4.2 

2.4.3 

Single-Word Floating-Point Decimal Constant 

The firstoperand, F, in the following example, identifies the 
constant as a floating-point decimal. The second operand presents 
the value of the constant. The number following the E indicate~ the 
power of ten exponent. 

C0N F,22.5 
C0N F,225E-l 
C0N F,.225E2 

A single-word floating-point constant is formed with the exponent 
in the six bits following the sign bit and the normalized fraction 
in the rightmost 17 bits of a word. 

23 22 - - - - 17 16 - - - - - - - - - - - - - 0 

l 
~gnitude of Norma lized Fraction 

Exponent (=actual binary exponent + 408) 
Sign of Floating-Point Number (O = +; 1 -) 

Variable Length Alphanumeric ·constant 

The first operand, A, identifies the constant as an alphanumeric. 
The second operand presents the number of characters in the constant 
(between 1 and 52). The third presents the characters of the constant. 
All characters are translated to the seven-bit ASCII code, an eighth 
bit (always zero) is appended on the left of each, then they are 
packed three per word from left to right. If the number of characters 
requested is insufficient to fill the last word, it is completed with 
null codes (177

8
). 

C0N A,2,AB 
C0N A,3,AB 
C0N A,9,ABCDEFGHI 

Generates one word; third character null 
Generates one word; third character blank 
Generates three words 

2.4. Single-Word Octal Constant 

The first operand, 0, identifies the constant as an octal constant. 
The second operand presents the value of the constant. 

C0N 0,777 
C0N 0,311 
C0N 0,77777777 

The value of the second operand is converted to binary, right 
jus~ified, and entered in the program as a single word constant. A 
plus or minus sign is not usable with C0N 0. 

-8-



2.4.5 Single-Word General Constant 

The first operand, G, identifies it as a general constant. The second 
operand specifies the value of the constant. The second operand may be 
any combination of parameters defined as legal for the operand field 0 

A decimal, a symbolic, and an octal constant are illustrated below: 

C0N G,25 
C0N G,LABEL-6 
C0N G, /77777777 

Decimal constants of this type must be in~egers. B-scale factors and 
E multipliers as used in the C0N D pseudo-op are not allowed. 

2o5 DCN - IOUBLE-WORD CONSTANT 

2.5.1 

DCN is used to generate double-word program constants. The type of 
constant and its value are specified in the operand field. 

Double-Word Fixed-Point Decimal Constant 

The first operand, D, identifies the constant as a fixed-point decimal. 
The second operand presents the value of the constant. A binary scale 
factor and a power of ten exponent may be expressed in the constant. 
The binary point is relative to the sign bit in the first word.- The 
value is placed in two words. The sign of the second word is not used 
and is set to zero. It is analogous to the sign of the Q-Register which 
is not used in GE/PAC arithmetic instructions. 

DCN D,42 
DCN D,22.4B30 
DCN D, .224B30E2 

In the second and third examples, the binary point is assumed 
between Bits 15 and 16 of word two as indicated by the arrow: 

0----------- 23 

WORD 2 

23 22----------16 15----------0 

23-----30----- 46 

Not Used 
(always zero) 

Since Bit 23 of word two is not used, Bit 22 of word two and Bit 
zero of word one are contiguous. Therefore, binary point 23 is 
between Bit zero of word one and Bit 22 of word two. 

-9-



2.5.2 

2.5.3 

Double-Word Floating-Point Decimal Constant 

Th~ first operand, F, identifies the constant as a floating decimal. 
The second operand presents the value of the constant. 

DCN F,-232.5 
DCN F,2.3252E2 
DCN F,2325.E-l 

The fonnat of the double-word floating-point constant is illustrated 
below: 

23 22 --------14 13----------o 23 22--------------------------------0 

Exponent (actual binary 
exponent - 4008) 

Sign of Floating-Point Number (O= +; 

Double-Word Octal Constant 

· Magnitude of The 
Normalized Fraction 

l= -) 

The first pperand, 0, identifies the constant as an octal constant. 
The value of the constant is written as the second operand. It is 
converted to binary, right justified, and entered as a double word 
logical constant (48 bits). Unlike arithmetic instructions, which 
ignore the sign bit of the Q-Register, GE/PAC logical instructions 
use the sign bit of Q. Therefore, Bit 23 of the second word of a 
double word octal constant is utilized. 

DCN 0,77 
DCN 0,311 
DCN 0,7777777777777777 

2.6 GEN - GENERATE DUPLICATES 

A GEN instruction operand specifies the total number of times the 
following instruction will appearo The operand may be a combination 
of parameters defined as legal for the operand field. Symbols used 
must be predefined. 

I 2 ! • •• 7 • 9 ID II I 213 I • 15 "~ ntt H~ n" ~~ M» 1~8 -~ ~~ ~~ ~~ ~~ ~~ ~~ 
p. 
ri 
J. ~~ ~n1 ~b crn2 
u! N ~~ 

' ~ ~ 

~ P-181 I~~ ·~· 
llA ITl~ 4~ 

~N ~ 
rl ~ 
~I 1~ Ida li~g 'tlb lils 

~~ 
~ ~ ~ 

~ 

-10-



The GEN instruction cannot be used to duplicate the following 
pseudo-ops: 

0RG 
BSS 
DCW 

C0N A 
GEN 
EQL 

DEF 
SLW 
END 

2.7 EQL - ASSIGN A SYMBOLIC EQUIVALENCE 

LIB 
IDN 

EQL is used to assign ~ value to a symbol during assembly. This 
function is useful in sharing storage areas, establishing connnunica-
tion between programs, and assigning parameter values in a form adaptable 
for changes. 

Enter the symbol into the location field and its equivalent value into 
the operand field. The operand value may be any combination of parameters 
described in Section 1. There is one restriction; symbols written in the 
operand field must be previously defined • 

.. 
I 2 3 • . ' 7 • 9 IG " 12 I>" "16 17 II !!I• 21 22 23 2• 25» 211211 12'1•'1 ~ 

4Kfi: !!; rl 
!\ H E: lll1 l'21'i 
~·Rli'.' tl E l~ ~IF. rCIJI 

2.8 DEF - DEFINE A NEW OPERATION 

DEF permits the programmer to define new operation codes (i.e., codes 
that are not defined in the PAL language). 

DEF is used for the following reasons: 

1. An op code may not exist for all GE/PAC computers; therefore it is 
not included in the basic PAL language. The programmer may define 
the op code when frequently used in the system.l 

2. Tables of parameters may consist of more than one value packed within 
a word. In this case, it is more convenient to write the values 
separately and allow the assembler to combine them into single words. 
Otherwise, the values would have to be hand-assembled to one-word 
constants and entered by using the C0N pseudo-op. DEF permits the 
programmer to define new operation codes that will accept multiple 
values as separate operands. 

A detailed procedure for using the DEF pseudo-op follows. 

1 
For infrequently used operations, it may be easier to insert the 
uncle.fined instruction as an octal constant. 

-11-



2.8.1 Op Code Definition 

2 

Machine operations (op codes) are written with optional operands 
separated by commaso The assembled instruction results from 
combining the values of the operands with the base octal associated 
with the op code. The base octal is 24 bits long. 

Each operand has two format characteristics: 

1. Operand width (specified as the largest octal 
value that may be generated) 

2. Position (where the value is placed in the 
finished word) 

Example: The machine op code, ADD, is comprised of base octal 
11000000 and two operands. The first operand value 
is placed into Bits 13-0 (width 37777

8
, position O)o 

Second operand value (Index Register) is placed into 
Bits 17-15 (width 7, position 15). 

To define a new op code all the following must be specified: 

1. 
2. 
3. 

The base octal 2 
The number of operands it will accept 
Format characte£istics for each operand 

Defining a new op code requires defining audit codes. An audit 
code specifies an operand width and position to the assembler. 
Each audit code has a number associated with it. Sixty-four audit 
codes are available for the assembler. Audit code numbers 0-24 
are reserved; 0-19 are predefined (refer to Appendix C). Codes 
25-50 should be avoided by the prograrrnner; they are reserved for 
PAL and Monitor for future op code additions. Audit code 63 has 
special use (refer to paragraph 2.8.2). Therefore, only audit code 
numbers 51-62 may be assigned freely by the prograrrnnero These may 
be reused within the same program, one definition applying only until 
the next definition is encountered. It is recorrnnended that the 
programmer start with 62, numbering in reverse. 

Three steps in defining a new operation follow: 

1. Determine width and position of all operands. 

2. Define audit codes for those widths and positions. 

3. Define the op code by assigning to it the audit codes 
from Step 2 aboveo 

Up to four operands are normally allowedo When more than four are required, 
information outlined in paragraph 2.8.2 applies. 

-12-



The steps in detail: 

1. For each operand of a new op code, determine its width and 
the position of its rightmost bit (anchor bit). 

Example: Assume a new op code, called AAA, were needed 
with the following characteristics: 

a. A base octal of 12034560 

b. Two operands, whose values are placed in Bits 17-15 
and Bits 3-0. These operands are described as follows: 
Operand one has a width of three bits and an achor bit 
of 15. This width is expressed as the largest number 
it can contain in octal (in this case, seven is the 
largest number three bits can contain). The second 
operand has a width of four bits (/17) and an anchor 
bit of zero. 

2. Define audit codes for each operand as follows: 

a. Write the audit code in Columns 1 and 2 of the 
location field. 

b. Write DEF in the op code field 

c. In the operand field, write two operands separated 
by a comma. The first is the width, expressed in 
octal; the second is the anchor bit position. 

Example: 

The coding for AAA above follows: 

Location 

62 
61 

/ 
Audit Code 

Op Code 

DEF 
DEF 

Operand 

/7,15 

)7,0~ 

Width Anchor Bit 

3. When all necessary audit ·codes are defined,· the op code 
itself may be defined as indicated below: 

a. Write the new operation mnemonic in Columns 1 
through 3 of the location field. 

b. Write DEF in the op code field. 

c. Write the base octal and audit codes, separated 
by commas, in the operand field. 

-13-



2.8.2 

Example: 

Location 

AAA 

I 
Mnemonic 

Op Code 

DEF 

Base 

Operand 

/4560,6r\ . 
Octal First - Second 

Operand, Audit Codes 
(in the order the 
operands will appear) 

The new op code may now be used (note that a symbolic 
operand may be used): 

I 2 3 4 S 6 7 8 9 10 11 12 13 1' IS 

EQL 3 
AAA 4,2 Result 12 [j] 3 4 5 6 [~] AAA A,0 

' - - --~----- 12 3 4 5 6 

1st I Operand 2nd ' Operand 

Different op codes may share audit codes if they have operands 
which coincide exactly in width and position (i.e., the 
progrannner need define only one audit code for a particular 
operand width and position, then that audit code may be used 
freely for as many op codes as desired). 

Extra Qperands Qption 

When generating special tables of data, four operands may be 
inadequate. 

Example: A table of constants is desired where each word is 
divided as follows; each section is able to take 
on an independent value. 

23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 

t I I I 
The normal technique for op codes permits only four operands, which 
is insufficient (the example requires seven operands). The use of 
DEF in the Extra Operands Option permit's up to 12 operands. The 
steps for defining an op code when using the Extra Operands Option 
are nearly identical to those for a normal op code. 

-14-

1 0 

.I 



1. For each operand, determine its width and the position of its 
rightmost bit. 

Example: 

Width Largest Number 
(No. of Bits) It Can Contain Anchor Bit 

1 1 23 
4 178 19 
6 773 13 
1 1 12 
4 173 8 
2 3 6 
6 773 0 

2. Define audit codes for those positions and bit lengths. 

Example: 

I 2 3 4 56 7 I 91 111213U15161711H:l92122ia!Joll2:1»IJ7lalnj•n~l33'3'i:isi3'1371•3tl«411'24Jl4<U•'7<11'950515l535' 

~ii u I~ 

lc 11 ' 

I~ IEIJilF _i - ~ Id 

Note: If an audit code, with identical width and anchor bit 
for an earlier op code is defined, it need not be 
defined again, but may be used for this op code. 

3. When all necessary audit codes are defined, the op code 
itself is defined.- To signal the Extra Operands Option, 
place audit code 63 as the first audit code. 

Example: (BBB is used as the mnemonic for this op code). 

I 

1 2 3, s, 71t101112n1'15161711192021222324252627l:11 :itl0'11121IM111l31 37131 3tf'4 .. 42 '1 ... ., .. '7 <11 .., 50 51~ ~5' 

R[BR llill:i ILi( 0 0 II.. o .. 1E1·~1.IEIC 1clS1 _1c1E l'\1 li:f( _le c: rcrz 1~ 

1..4 It -lt. k 
If I\ II 

.1 1' j 

IL v f\ 17 
lh_ IZ 

0 u " IJ 

Base
1
octal "! 

Extra Operands Option 

-15-

Audit Codes (in th e 
same order the operands 
wi 11 appear) 



4. Using the new mneomonic: 

I 2 3. I t 1 • 9 10 111213 1'15 16 17 "" 20 21 2223 2• 2~ 26 27 21 29 :IO 31 

I 11-1.., 
IB 1l11.., it-( m It; '5 [1 
!E [L" !t ··-"- '2_..J ,.-14 
:B re 11 r c ..al re ,..-

--

The foregoing is assembled as follows: 

23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 
1 1 1 1 1 1 0 1 0 0 0 0 0 1 0 1 1 
0 1 0 0 0 0 0 0 0 0 1 0 0 0 1 0 0 
0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 

2.8.3 General Rules 

!2 !3 30~ 131137~ 

6 5 4 3 2 1 0 
1 1 1 1 1 1 1 
1 0 0 0 1 0 0 
0 0 0 0 0 0 0 

77202777 
20021104 
00020000 

1. DEF is available only for additions to the language, not for 
substituting new definitions for permanently defined PAL op codes. 

2. Operands of the DEF instruction itself may be written in decimal, 
octal, or symbolic. However, all symbols must be previously 
defined. The usual rules for determining if operands are relative 
or absolute do not apply. -All operands are considered absolute . . 

3. Operands for newly defined op codes follow the usual rules for 
translation as absolute or relative symbolics (refer to page 18). 

4. Audit codes must be numeric. 

5. Audit codes 51-62 only may be used. It is recommended that the 
programmer start with 62 and number in reverse. 

6. Audit codes and op codes not reserved for PAL may be redefined 
within a program as often as the-progranuner desires. 

7. New op codes, audit codes, and their audit code definitions are 
a part of the common symbol table which may be preserved for 
subsequent assemblies. 

8. The Extra Operands Option may be used for defining all op codes. 
However, normal use of DEF for op codes requiring four or fewer 
operands will save space that the assembler can use ~o store 
more symbols. 

2.8.4 Error Conditions 

When an attempt is made to redefine an op code or audit code that has been 
permanently defined, the permanent definition still applies and the new 
definition will be flagged as a location error (L). Permanently defined 
op codes are those that make up the PAL language codes. 

-16-



When defining an op code, if audit code 63 (Extra Operands Option) is 
written anywhere except directly after the base octal, an illegal operand 
error (I) will occur. Definition of the op code is terminated at this 
point. 

When defining an audit code, the nubers 0 through 24 will be flagged 
as a location error (L). They are reserved for the assembler. 

2 .9 SLW - SLEW PRINTER PAGE 

Upon encountering the SLW pseudo-op, the assembler positions t~e 
paper at the top of the next page. Assemblers operating on com­
puters without output page control ignore the SLW instructions. 

2.10 END - END OF PROGRAM 

END is used to terminate the assembly and must be the last statement 
in a program. Upon encountering END, the assembler generates control 
information for the loader. 

An operand may be used to indicate the starting point of the program. 
When this is done, the starting address is also ~onununicated to the 
loader. 

2.11 MONITOR PSEUDO-OPS 

Pseudo-ops exist to generate constants for Monitor. They are used to 
generate parameters for calling sequences and format words for input/ 
output. These pseudo-ops are described in the GE/PAC Monitor Manual 
and are available only through the Monitor Common Symbol Tape. 

-17-



3.0 PROCESSING AND OUTPUT 

GE/PAC uses a two-pass assembler. During the first pass, the assembler 
examines the storage allocation and forms a table of symbolic equival­
ences. Each symbol appearing in the location field is entered into the 
symbol table. During the second pass, the assembler completely forms 
each instruction code. For each symbolic operation, the assembler 
searches a table of permanent operation codes to acquire its corres­
ponding base octal and ~udit codes for operand treatment. The operand 
field is scanned, and equivalent values are computed using the symbol 
table formed during the first pass. The base octal and the operands 
are then combined using the audit codes. The final step in the assembly 
of each statement is the preparation of a line of output for listing 
and direct loading. 

3.1 CHARACTER CODES 

Appendix A presents the character set associated with PAL. Additional 
codes applicable to the Model 4233 Teletypewriter, Model 4262 Line Printer, 
Model 4223 Output Typer (long carriage), Model 4270 I/O Typer, etc. are 
presented on a separate sheet available from the Progranuning Library. 
They are legal as conunents in the operand field depending upon the device 
used for listing at assembly time. Any character may be used in the operand 
of a C0N A instruction if the character code is 1-egal for the devices that 
will read and write that character, at assembly and at run time. 

3;2 ABSOLUTE AND RELATIVE VALUES 

An operand of an instruction which references memory may be specified 
to be assembled as an absolute or relative addresso An absolute address 
is the true location of the referenced memory cell. A relative' address 
is the difference between the address of the referenced memory cell and 
the address of the instruction. The result is negative when the 
referenced address is smaller than the instruction's address. Assembling 
addresses in their relative form permits a progr~m to operate anywhere 
in the GE/PAC. 

An operand as written by the progranuner can consist of one or a combina­
tion of the following terms: 

An absolute label 

Absolute terms 

An integer 

A relative label 

Relative terms 

The *(Present location) 

Combinations are formed using add (+), subtract (-), multiply (*), 
and divide (/) operators (refer to paragraph 1.3) 

-19-



An operand is assembled relative if any relative term (a relative 
label or the asterisk) appears in the combination of terms. An 
operand is assembled absolute when no relative term appears. 

A label usually represents an address in.memory. Addresses in the 
GE/PAC may be referenced relative or absolute. To reference an 
address· absolute, specify as absolute the label associated with 
that address. Otherwise, it is assumed to be relative by the 
assembler. A label specified as common to more than one program 
(refer to paragraph 3.2) is assembled as an absolute label in all 
programs in which it is referenced. Two additional methods to 
specify a label as absolute are as follows: 

1. Place a dash in Column 7 of the line of coding where the 
label appears in the location field. 

Example: ALPHA -LDA BETA ALPHA 
will be referenced absolute. 

2. Use the EQL pseudo-op to equate the label to an absolute 
operand. 

Example: GAMMA EQL ALPHA+2 

3.3 COMMON SYMBOLS 

Both ALPHA and 2 are absolute. 
Therefore, the operand is ab­
solute anl GAMMA will be con­
sidered absolute. 

A label is specified to be conman by placing an asterisk (*) in 
Column 7 of the line of coding where the label appears in the 
location field. Each counnon label and its value is available 
through a common symbol table to all other programs in a system. 

3.4 ASSEMBLER VARIATIONS 

Variations in the capabilities of language translators originate 
from the different operating environment of each. For example, 
the memory available affects the size of the symbol table. It is 
important that the characteristics of each translator be examined 
prior to its use. 

3.5 OUTPUT 

Each translator of the assembly language possesses its own output 
characteristics. However, all translators can produce the two 
basic output requirements: 

1. An assembly listing, which includes the original symbolic 
information plus the assembled instructions in the relative 
and absolute forms. The output listing will also contain 
error flags. These are defined in Appendix B. 

2. Output for loading in the GE/PAC system. 

-20-



APPENDIX A 

ASCII CHARACTER CODE TRANSLATION 

The list of characters in Table I comprises the 
total ASCII Character Set associated with the 
assembler language. The octal associated with 
each character represents the equivalent code 
produced by the paper tape preparation device 
for input. 

The additional characters listed in Table II 
may be legal, as connnents in the operand field 
depending upon the device used for listing at 
assembly time, or in the operand of a C~N A 
instruction if ali devices that read or write 
that character can recognize it, at assembly 
and at run time. 

TABLE II 

CHARACTER I TYPER 

( = 050 
) = 051 
= = 075 
" = 042 
$ = 044 

= 047 
ti = 043 
@ = 100 
& = 046 
% = 045 
? = 077 

= 041 
> = 076 
< = 074 
[ = 133 
] = 135 

= 072 
= 073 

\ = 134 
/\ = 136 

= 137 

-21-

TABLE I 

CHAR.:\CTER T TYPER 

A = 101 
B = 102 
c = 103 
D = 104 
E = 105 
F = 106 
G = 107 
H = 110 
I = 111 
J = 112 
K = 113 
L = 114 
M = 115 
N = 116 
0 = 117 
p = 120 
Q = 121 
R = 122 
s = 123 
T = 124 
u = 125 
v = 126 
w = 127 
x = 130 
y = 131 
z = 132 

0 = 060 
1 = 061 
2 = 062 
3 = 063 
4 = 064 
5 = 065 
6 = 066 
7 = 067 
8 = 070 
9 = 071 

+ = 053 
- = 055 
I = 057 

* = 052 
. = 056 
, = 054 

space = 040 
-t 



APPENDIX B 

ERROR FLAGS 

The assembler performs validity tests on each instruction. When errors or suspected 
errors are detected, one of the following indicators will appear on the output lis'ting. 

FLAG DEFINITION 

L Location Field Error 

Operation Field Error 

I Illegal Operand 

x Index Word Error 

u Undefined Symbol 

c Illegal Character 

CAUSE 

1. First character of the label is not alphabetic 
(see Appendix A, Table I). 

2. Using the DEF pseudo-op when: 
a. The mneomonic assigned is a GE/PAC machine 

operation. 
b. Requesting "extra operands" definition when 

mnemonic has been previously defined as 
machine-typed operation. 

c. There is an illegal audit code number. 
3. Location field is blank when a symbol is required. 
4. Location field contains a symbol when not allowed. 
5. Label not found in the table, probably due to 

overflow of the table (some assemblers) on the 
first pass. 

1. The op code not part ~f the language or was not 
added to the table through the DEF pseudo-op. 
This often occurs when definition was attempted 
but was illegal. Consequently, it was not added 
to the operation table. 

2. This op code cannot be GENerated. 

1. Blank operand when an operand is required. 
2. Operand not blank when it should have been. 
3. One or more required operands missing. 
4. Too many operands. 
5. Operand value too la~ge. 
6. Negative operand value in an instruction that 

will not accept one. 
7. Illegal constant. 

1. Index word 1 or 2 specified. 
2. Required index missing. 
3. Specified index word is greater than seven. 

Occurs only when a symbol appears in the operand field 
and: 
1. It never appeared in the location field or on the 

common symbol tape. 
2. It appeared in the location field, but the symbol 

table was full at that time. 

A character, not associated with the assembler "lang­
uage, was found in one of the following fields: 
1. Location 
2. Op Code 
3. Operand 
(Refer to Appendix A, Table II) 

-22-



APPENDIX B 

ERROR FLAGS 

FLAG DEFINITION CAUSE 

M Multiply-defined Symbol 1. Symbol in location field was flagged because: 
a. It has appeared in the same field on a 

previous record. 
b. It appeared on the requested EQL tape with a 

value unequal to the one being assigned. 
c. It was saved from a previous assembly with a 

value unequal to the one being assigned. 
2. Any record which references a multiply-defined 

symbol in the operand field will also be flagged. 

2 Second Pass Definition 
of Symbol Different 
from First Pass 

R Relative Operand Error Operand value was relative and should normally be 
absolute for this operation. 

F Tables Full 

-23-



\ 

AUDIT CODES 

Each machine instruction may have operand values. The assembler has a 
list of operand-associated numbers called audit codes. These numbers 
uniquely identify individual operand requirements. Two basic character­
istics of audit codes are: 

1. Operand width ex­
pressed as a mask 

2. Anchor position AUDIT 
NUMBER 

OPERAND ANCHOR REMARKS 
WIDTH POSITION 

A maximum of sixty-four 
audit codes are available. 
Audit codes-0 through 50 
are reserved for the as­
sembler and Monitor; 51 
through 62 are available 
for progrannner definition. 
The first twenty audit 
codes are defined and 
listed in the table at 

0 0 0 No ORerand acce2ted 
1 14 0 Full operand. May 

be absolute or 
relative. 

, --
2 3 15 For instructions 

with optional tag 
field. Must be 
absolute if not 
blank. 

the right. 3 14 0 Full operand. 
Must be absolute. 

4 12 o. Must b_g absolute.,,. 
5 24 0 Pass without 

audit (any value 
accepted). 

6 3 15 For instructions 
requiring a tag. 
Must be absolute. 

7 5 0 K bits. Must be 
absolute. 

8 14 0 Value will be 
negated (TXH). 
Must be absolute. 

9 23 0 Operand may be 
absolute or 
relative _{DEL). 

10 3 15 For STX instruction. 
ll 14 0 Operand may be 

relative or abso-
lute and may be 
negative (INX). 

12 5 15 Absolute only 
13 1 22 Absolute onl_y 
14 1 21 Absolute onl_y_ 
15 1 20 Absolute only 
16 1 23 Absolute only 
1J 23 0 Absolute _onlv --.. 

18 3 15 For STR-type 
instruction. 

19 12 0 Absolute only; 
may be ne_g_ative. 

-24-



APPENDIX D 

MACHINE OPERATIONS 

ABL APPEND ITEM TO BEGINNING OF LIST 

ABT ABORT DEVICE D's OPERATION 

ACT ACTIVATE DEVICE D's INTERRUPT 

ADD ADD 

AD~ ADD ONE TO BIT K 

AEL APPEND ITEM TO END OF LIST 

AFA ADD FIELD TO A 

AKA ADD K TO A 

ANA AND TO A 

BRU BRANCH UNCONDITIONALLY 

BTR BRANCH IF TSTF RESET 

BTS BRANCH IF TSTF SET 

CBK CHANGE BIT K 

CL~ COUNT LEAST SIGNIFICANT ONES 

CLZ COUNT LEAST SIGNIFICANT ZEROS 

CM~ COUNT MOST SIGNIFICANT ONES 

CMZ COUNT MOST SIGNIFICANT ZEROS 

CPL COMPLEMENT A 

DAD DOUBLE ADD 

DLA (SHIFT) DOUBLE LEFT ARITHMETIC 

DLD DOUBLE LENGTH LOAD 

DLL (SHIFT) DOUBLE LEFT LOGICAL 

DMT DECREMENT MEMORY AND TEST 

DRA (SHIFT) DOUBLE RIGHT ARITHMETIC 

DRC (SHIFT) DOUBLE RIGHT CIRCULAR 

DRL (SHIFT) DOUBLE RIGHT LOGICAL 

DST DOUBLE LENGTH STORE 

DSU DOUBLE SUBTRACT 

DVD DIVIDE 

ERA EXCLUSIVE OR TO A 

FAD FLOATING ADD 

-25-

FDV FLOATING DIVIDE 

FIX FIX FLOATING NUMBER 

FL~ FLOAT FIXED NUMBER 

FMP FLOATING MULTIPLY 

FMS FLOATING MODE SHIFT 

FSU FLOATING SUBTRACT 

IAI INHIBIT AUTOMATIC INTERRUPT 

IBK ISOLATE BIT K 

IDL INPUT FROM DEVICE TO LIST 

IN INPUT FROM DEVICE D 

INX INCREMENT X 

JCB JUMP :lF CHANNEL IS BUSY 

JDR JUMP IF DATA READY 

JND JUMP IF NO DEMAND 

JNE JUMP IF DEVICE D NOT IN ERROR 

JN~ JUMP IF NO OVERFLOW 

JNP JUMP IF NO PARITY ERROR 

JNR JUMP IF DEVICE D NOT READY 

LBM LOAD BIT MASK 

LDA LOAD THE A-REGISTER 

LDB HIGHSPEED I/O BUFFER 

LDF LOAD FIELD 

LDI LOAD INDIRECT 

LDK LOAD A WITH K 

LD~ LOAD ONE INTO BIT K 

LDP LOAD PLACE 

LDQ LOAD THE Q-REGISTER 

LDR LOAD REGISTERS 

LDX LOAD X WORD 

LDZ LOAD ZEROS INTO A 

LM~ LOAD MINUS ONE 



APPENDIX D 

:MACHINE OPERATIONS 

LPR LOAD PI.ACE AND RESTORE 

LXC LOAD X WITH COUNT 

LXK LOAD X WITH K 

:MAQ MOVE A TO Q 

MPY MULTIPLY 

NEG NEGATE 

N¢P NO OPERATION 

¢DL OUTPUT FROM DEVICE TO LIST 

¢¢M OPERATE ON MEMORY 

¢PR OPERATE DEVICE D 

¢RA OR TO A 

¢UT OUTPUT TO DEVICE D 

PAI PERMIT AUTOMATIC INTERRUPT 

RBK RESET BIT K 

RBL REMOVE BEGINNING ITEM FROM LIST 

RCS READ CONSOLE SWITCHES 

REL REMOVE ENDING ITEM FROM LIST 

REV RESET TSTF IF BIT K IS EVEN 

RNZ RESET TSTF IF A IS NONZERO 

R¢D RESET TSTF IF BIT K IS ODD 

RPT REPEAT INSTRUCTION IN LOCATION 7 

RST RESET TSTF 

SBK SET BIT K 

SEL SELECT DEVICE D 

SET SET TSTF 

SEV SET TSTF IF BIT K IS EVEN 

SFA SUBTRACT FIELD FROM A 

SKA SUBTRACT K FROM A 

SI.A SHIFT LEFT ARITHMETIC 

SLL SHIFT LEFT LOGICAL 

-26-

SNZ SET TSTF IF A IS NONZERO 

S¢D SET TSTF IF BIT K IS ODD 

SPB SAVE PLACE AND BRANCH 

SRA SHIFT RIGHT ARITHMETIC 

SRC SHIFT RIGHT CIRCULAR 

SRL SHIFT RIGHT LOGICAL 

SSA SET STALL Al.ARM 

STA STORE CONTENTS OF A 

STB STORE HIGHSPEED I/O BUFFER 

STF STORE FIELD 

STI STORE INDIRECT 

STQ STORE.CONTENTS OF Q 

STR STORE REGISTERS 

STX STORE X 

SUB SUBTRACT 

TER TEST EVEN AND RESET BIT K 

TES TEST EVEN AND SET BI'!\ K 

TEV TEST BIT K EVEN 

TFE TEST FIELD EQUAL 

TFL TEST FIELD LESS 

TNM TEST NOT MINUS ONE 

TNZ TEST A NONZERO 

T¢D TEST BIT K ODD 

T¢R TEST ODD AND RESET BIT K 

T¢S TEST ODD AND SET BIT K 

TSC TEST AND SHIFT CIRCULAR 

TXH TEST X HIGH OR EQUAL 

TZC TEST ZERO AND COMPLEMENT 

TZE TEST A ZERO 

XEC EXECUTE 



PROCESS COlVIPUTER 
BUSINESS SECTION 
PHOEN"IX'" ARIZON~ 

ON-LINE PROCESS 

OPTIMIZATION 

SYSTEM 
· PRELU\11NARY 

ELECTRIC 



Library Control No. YPG63M 

COPYRIGHT 1966 BY GENERAL ELECTRIC COMPANY 

This manual published ·by: 

PRoGRAl-~1ING SUPPORT 
GENERAL ELECTRIC COMPANY 

PROCESS COMPUTER BUSINESS SECTION 
P.O. Box 2918 

PHOENIX, ARIZQNA 85002 

For further informa~ion concerning the contents of this manual, 
contact the Progr.amming Library at the above address. 



): 

..... 
~~--~~~~~~--~--.r-~~~~~~~~~--~~~..:....-~~--

'. 

.LIST OF EFFECTIVE PAGES .*INSERT LATEST CHANGE PAGES 
DESTROY SUPERSEDED ·PAGES 

. . ~ -.... ~· .. : 
.. 

The.total number of pages in this publication is 22"3, 
consisting of t~e following: 

Page 

i - ii 
*iiia - iva 
v - vi 
1-1 
2-1 - 2-2 
3-1 - 3-2 
4-1 - 4-7 

*5-lA 
5-2 . 

*5-3A - 5-4A 
5-5 

*5-6A - 5-7A 
5-8 - 5-12 
6-1 - 6-7 

*6-8A 
6-9 - 6-10 
7...:1 - 7-9 

*7-lOA - 7-12A 
7-13 - 7-17 

*7-18A 
7-19 - 7-20 

*7-21A 
7-22 - 7-29 

*7-30A 
·1-31 - 7-6 3 . 
8-1 - 8-5 

*8-6A 
8-7 :._ 8-11. 

' ' . 

Date 

11/1/66 
11/30/66 
11/1/66 
·11/1/66 
11/1/66 
ill/l/66 
11/1/66 
11/30/66 
11/1/66 

,11/30/66 
11/1/66 
11/30/66 
11/1/66 
11/1/66 
11/30/66 
11/30/66 
11/1/66 
11/30/66 
11/1/66 
11/30/66 
11/1/66 
11/30/66 
11/1/66 
11/30/6() 
11/1/66 
11/1/66 
11/30/66 
11/1/66 

Page Date 

9-1 11/30/66 
*9-2A - 9~4A 11/30/66 
*9-4.1 11/30/66 
*9-SA - 9-6A 11/30/66 

A-1 - A-5 11/1/66 
B-1 - ·B-2 ·11/1/66 -

· *B-3A "11/30/66 
B-4 - B-5 11/1/66 
C-1 - C-3 11/1/66 
D-1 - D-9 11/1/66 

*D-lOA 11/30/66 
D-11 11/1/66 
E-1 - E-21 11/1/66 

*E-22A. 11/30/66 
*E-22.l 11/30/66 
E~23 - E-26 '11/1/66 
F-1 - F-15 11/1/66 
G-1 - G-3 11/1/66 
H-1 - H-4 11/1/66 
I-1 - I-2 11/1/66 

. *I-3A - I-7A .11/30/66 
I-8 il/1/66 
J~l -·J-2 11/1/66 
*K~l - K-5 11/30/66 
*L-1 ~ L-3 11/30/66 

GLOSSARY(l-4) 11/1/66 
*INDEX (1~7) . 11/30/66 

: ... . ~. . . 
1. ' ~ 

: . . ~ .. - - .. 

. ~ 

: J 

' -

Note: Revisions are -indicated .. by vertical lines in outer margins except 
for typographical corrections, - orientation, and illustrations •. ·· 

'.· ... 
4. ' 

·. 
A 



TABLE OF CONTENTS 

Section 

SECTION 1 

INTRODUCTION 

1.1 PURPOSE OF THE MANUAL ---------------~----------------- 1-1 

1.2 BRIEF DESCRIPTION OF ON-LINE . . 
PROCESS OPTIMIZATION SYSTEM -----------------~-~------- 1-l 

SECTION 2 

PROBLEM 

2.1 GENERAL PROBLEM --------------------------------------- 2-1 

2.2 EXAl\lPLE PROBLEM --------------------------------------- 2-2 

SECTION 3 

METHOD OF SOLUTION 

3.1 RESTRICTED LP ----------------------------------------- 3-1 

3.2 LINEARIZATION ----------------------------------------- 3-2 

SECTION 4 --·----
USING OFO · 

4.1 USER SUPPLIED REQUIREMENTS --~-----~--------------~---- 4-1 

4. 2 USER ACTIONS -----------------...:.---'---------:...------·--:--- 4~2 . 

4. 3 OPO Cl\PABILITIES --·-------:--;... _ _:_: __ .::. ______ ~-·------------ 4-4 · 

4 •. 4 ri~FINITJONS.-------~---~----------------~-------------- 4-5 . 

i. 



TABLE OF CONTENTS (cont.) 

Section .·P~ge 

SECTION 5 

MODELS -

5 .1 MODEL ------------------------------------------------ 5·-1 

5.2 MODEL COMPUTATIONAL METHODS ----------------~---------· 5-2 
5.3 ·MODEL TYPES _____ ;_ ____________________________________ 5-3 

5. 4 CPO-MODEL INTERFACE ______ :._ ______ . ________________ .:_:____ 5-5 

5.5 STEP LIMITS ------------------------------------------ 5-8 

SECTION 6 

DATA SETS 

6.1 INTRODUCTION ----------------------------------------- 6-1 

6.2 UNIT COMMON DATA SET -----------------~--------------- 6-1 

6.3 OPTIMIZER DATA SET ----------------------------------- 6-2 

6.4 DATA EDITING ----------------------------------------~ 6-3 

6. 5 EXAMPLE ----------------------------------------------- 6-4 

SECTION 7 

COMMANDS 

7.1 COMMAND REPRESENTATION ---------------------------~--- 7-2 

7.2 TASK DELIMITING COMMANDS ~------------:-----------..:_ ____ 7-10 
. . 

7.3 INPUT COMMANDS AND FOIUl.tATS ~-------------------------- 7-12· 

. 7. 4 CONTROL. COMMANDS.--·~ _ _.:. _______________________ :._.:_ ________ 7-41 _. 

7.5 COMMUNICATION COMMANDS --=------------------------------- j:...45 ·_ 

ii 

(' 
I~ 



R 
TABLE OF'CONTENTS (cont.). 

Section 

7.6 SOLVE COMMAND ---------------------------------------- 7-55 

7.7 OUTPUT COM.l'fiANDS AND FORMATS -------------------------- 7-56 

8.1 

8.2 

8.3 

SECTION 8 

TASK MliNAGEMENT FUNCTIONS 

FUNCTIONS AVAILABLE TO THE OPERATOR ------------------

FUNCTIONS AVAILABLE TO THE INTERNAL 
FUNCTIONAL PROGRAM -----------------------------------

CALLING PROCEDURE 
. 

-------~---~--~---------------------

SECTION 9 

ERROR PROCESSING 

8-1 

8-4 

8-8 

9.1 AVAILABLE OPERATOR RESPONSES ---------~--------------- 9-2 

9.2 OPERATOR NOTIFICATION --------------~--------~-------- 9-4A 

9.3 OPERATOR RESPONSE ------------------------------------ 9-SA 

APPENDICES 

Appendix Page 

A OPTIMIZER DATA SET ----------------------------------- A-1 

B UNIT COMMON DATA SET COMPONENT~ ---7-~~--------------- B-1 

c WORKING VECTORS ------------------7--~---------------- C-1 , ~ .. - , ' 

D EXTERNAL COMMAND·FO~TS --~--------~----------------- D-1 

E INT~RNAL TASK FORMATS ------------------~~----~------- E-1 

~ REPORT FORMATS -------------,.---------:-:----------------- F-1 , _, 



TABLE OF CONTENTS (cont.) 

Appendix 

G OPO STATUS RE~ORT -------------------------------------­

H .INTERLOCK STATUS BLOCK---------------------------------

I STORAGE REQUIREMENTS -----------~---~------------------­

J HARDWARE AND SOFTWARE (MONITOR) 
REQUIREMENTS -------------------------------------------

K MODEL RESULT STORAGE RULES -----------------------------
1 

L OPO SYSTEM LIMITATIONS AND RESTRICTIONS ----------------

GLOSSARY 

ALPHABETICAL INDEX 

. ' 

l 
1. 

'. 

' . ' 

iv-a 

, ,' ·'. 

P~ge 

G-1 

H-1 

I-1 

J-1 

K-1 ·I 

L-1 

. I 



LIST OF ILLUSTRATIONS 

.. 
F~gure Page_ 

5-1 SAMPLE TYPE 1 MODEL ---------------------------------- 5-12 
. . 

6-1 EXAMPLE TASKS . (EXTERNAL FORMAT) ----------------------- 6-5 

7-1 EXTERNAL FORMAT CARD FIELDS -----------------~-------- 7-5 

7-2 TABULAR DATA CARD SEQUENCE ------------------~-------- 7-24 

-7-3 VARI~BLE NAME DEFINITIONS---------------------------- 7-25 
.. 

7-4· LUC TABULAR INPUT EXAMPLE ----------------------~----- 7-26 

7-5 

7-6 

7-7 

EXAMPLE LUC COMMAND 

EXAMPLE ETD COMMAND 

EX.1.Z\.MPLE MOD COMMAND 

. ' 
-------~--------~----------------~ 7-28 

7-36 

7:-40 

7-8 READING PROGRAM INTERLOCK CODE ----------------------- 7-53 

7-9 WRITING PROGRAM INTERLOCK CODE.----------------------- 7-54. 

8-1 QUEUE SERVICE INTERLOCK FLOW ------------------------- 8-10 

v 



LIST OF TABLES . ' 

Table 

7-1 , COMMAND AND DATA STATEMENT FORMAT ---------------~----

9~1 AVAILABLE OPERATOR RESPONSES __ ""7 ________ , ____ ·----~-----

9-2 PERMISSIBLE RESPONSES FOR ERROR CLASSES -----~--------

>.' 

vi 

Page, 

7-4 

9-1 

9~2 

. ...., ' 



SECTION 1 INTRODUCTION 

1.1 PURPOSE OF THE MANUAL 

This manual describes external functional characteristics of 

the On-Line Process Optimization System.Chereinafter referred to 

as OPO) • The relationship between process and opo· is defined. The 

communication interfaces between the user and OPO are included. 
. . 

Related file management facilities are also described. 

It is assumed that the user of this manual has a working 

knowledge of the GE/PAC MONITOR, process control, and linear pro-

gram.ming techniques. 

f 

1.2 BRIEF DESCRIPTION Of ON-LINE PROCESS OPTIMIZATION SYSTEM 

The OPO is a non~linear optimization system' consisting of a 

set of functional programs designed to operate in conjunction with 

user-written process monitoring programs and user-written process 

simulation programs to achieve on-line process optimization. The 

system may also be used in non-control appllcations for the pur-

poses of experimentation and verification and for the acquisition 

of management information._ A variety of metho~s are provided to 

facilitate communications between users and OPO. A data mana9e­

ment subsystem is included to minimize the amount of data which 

must be furnished by the user each time.CPO is utilized. . ' 

OPO may be used for proce~s optim~zation in an open or closed,' 

loop application. In all ?PP1icati6ns the user must supply ~ set 

of data which describes the prob~em and a functional program which 

simulates the process to be optimize~~ 

1-1 



SECTION 2 PROBLEM 

2.1 GENERAL PROBLEM 

OPO is generally designed to determine settings of controlla-

ble independent process variables in such a manner that a pro~ess 

will operate in an optimum manner as defined by some objective 

function and subject to limiting values on some dependent process 

variables •. 

j 
The independent process variables may also be limited to cer-

tain ranges of values. 

It may be desirable to limit both the independent and depend-

I 
ent process variables. There may be "hard0 limits which must not 

be violated under any circumstances. There may be "soft" limits 

which can be violated but the magriitude.of the violation must be 

minimized. In later sections of this manual, "hard" limits will 

be referenced as bounds and "soft" limits will be referenced as 

targets. 

Some dependent process variables depend.in part upon their 

own value. Such variables are referred to in this manual as 

implicit variables. 

Generally, the ~ependent variables and the obje~tive function 

are non-linear functions of the independent variable: 

2-:-1 . 



2.2 EXAMPLE PROBLEM 

TO better illustrate the problem, a hypotheti9al proc~ss is 

discussed in the followi~g par~graph of this section. 

A reactor yields three products; X, Y, and z. The amount 

of each yield product produced is a non-linear function of the . 

temperature (T) and the pressure (P) at which the rea~tor is oper­

ated and the quantity of feed stock (F) fed into the reactor. The 

reactor should be operated by methods which tend to maximize the 

value of the products produced. 

The amounts of each of the products which can be produced is 

limtted. There may be marketing restrictions on how much of each 

product can be sold and there may be an obligation to produce at 

least some fixed minimum amount of each product~ Th·"·Se limits 

are "hard" limits or bounds. There may be "soft" limits or targets 

on some-products. For example, it might be possible to sell 

product X above a certain quantity only at the reduced price. 

In addition, there may also be limits on the process variables. 

The feed stock quantity may not b~ less than zero and may also be 

limited by the .supply available. Physical limitations' of the 

reactor may place "hard" r~strictions on operating temperature and. 

pressure. Excessive maintenance c~sts due to very high operating 

temperatures and pressures may. impose "soft" restrictions.· 

'. 



SECTION 3 - METHOD OF SOLUTION 

3.1 RESTRICTED LP 

The solution to the non-linear optimization problem is obtained 

by solving a series of highly restricted linear optimization prob-

lems. 

Linearizi~g the problem about _the starti~g values of the inde­

pendent variabies and applying upper and lower-bounds to the inde-

pendent variables makes it possible to solve a highly restricted 

LP and gain an improvement in the objective function. The prohlem 

can then be relinearized about the new set of independept va;iable 

values and another LP solution computed. 

The linearization of the problem and evaluation of the depend-_ 

ent variables and objective functions are performed by calling the 

user-supplied process simulation program which is called a model. 

Each such LP solution is a step toward the solution of the 

non-linear problem; the sequence of steps made in arriving at the 

solution of the non-linear problem constitutes a move. After each 

step, tests are made to determine whether a solution to the non-

linear p~oblem has been reached. 

' , 

The bounds_ generated by the solution program to control the 

step size are compared with the bo?nds on~the problem supplied by 

the user. The most restrictive of these bounds is used to con-

trol the step size. 

. 
3-1 



3.2 LINEARIZATION 

The non-linear dependent variables and objective function must 

be· linearized about the positio~ (value) of the independent vari­

ables in order to solve the. linear program. 

The partial derivatives of the dependent variables are com­

puted at "the position of the independent variables and these·are 

used as the coeffic_ients of the LP matrix. 

The partial derivatives are computed with the aid\ of a sub­

program which sLmula~es the pr9cess bei~g controlled. This program 

is supplied by the user and is referenced herein as a MODEL. 

After the system is linearized the solution program deter­

mines the step size permissible. This step si~e is input by the 

user or is computed, based on the curvature of the functions. A 

detailed explanation is given in Section 5. 



SECTION 4 USING OPO 

4.1 USER SUPPLIED REQUIREMENTS 

ply 

. ' 

In order to use OPO to optimize a process, the user must _sup-

the f ollowi!lg three items. 

1) A functional pr~gram which simulates the process to be 

optimized. This program, given a set of value's of independent 

process variables, produces numerical values describing the 
I 

relationship of the.dependent_ process var~ables and the objec­

tive function on the independent variables. This program is 

the model mentioned earlier. Characteristics of a· model -and 

its interface with OPO are described in Section 5. 

2) A set of data which defines the process unit within the 

OPO system. These data comprise a·unit common data set. 

When this data set is installed, all space_used by OPO for 

data associated with that unit is reserved. The unit common. 

data set contains the names of the process variables and may 

contain restrictions which are· used to edit data entered 

later for that unit • 

3) An optimizer data set (ODS) which is the actual problem. 

to be solved. It inciud~s the independent vaiiables' start-

ing values, the bounds and targets. to be applie?-~o t~e de­

pendent and independent variables, and all data necessary to 

control the progress of the solution • 

. ' 

'... ". 

4-1 ': 



.In addition to the above req~iremenls, the user must provide 

process monitoring programs where 'the application includes closed­

loop optimization. 

The Optimizer. Data Set (ODS) and the MODEL (M) which simulates 

the process are logically an entity which is denoted as ODS/M. 

The.following subsections describe how the .user performs the 

actions required t~ optimize .a process using OPO. 

4.2 USER ACTIONS 

1) The user writes a MODEL in either FREE-TIME FORTRAN or 

PAL and installs it in the GE/PAC .MONITOR as a real-time· 

functional program. 

2) He prepares the input data for unit common and enters 

it in the system using a Load Unit Common (LUC) Command 

(refer to Section 7). 

3) He prepares the input data for the problem and enters it 

in the system using a Build Test Data Set (BTD) Command {re­

fer to Section 7) • 

4) He orders the execution of the op~imizing algorithm 

using the ODS and its 'associated MODEL (ODS/M) with a SOLVE 

{SOL) Command (refer to Section 7) • 

. . 
4-:2 



5) If reports and results disseminated during execution of · 

the optimizing algorithm are·not sufficient for his n~eds,· . . . 
'the user obtains additional information ~hro~gh the FILE, 

PRINT, and MATRIX Commands (refer to Section 7). 

~ssuming the MODEL to be installed in the GE/PAC MONITOR, the 

OPO responds to the above commands as follows: 

1) .Unit space is allocated in OPO bulk storage and the unit 

common data is stored after bei!lg processed. These actions 

are invoked by the tuc Command. 

2) Execution of the BTD command results in alloc?tion ~f 

ODS space in OPO b~lk storage. Before the ODS data is stored, 

it is subjected to an edit using the restrictions in the unit 

common data. If any ODS data violates the,editing restric-

tions, the user is so notified on the I/O typer and is given 
. . 

an opportunity to correct the error. 

3) Utilizi!lg the bounds, initial values, and other informa­

tion - including the MODEL's program number - in the ODS, the 

optimizing algorithm produces an optimum set of independent 

process variable values. The opt~mum set _of values may be 

displayed or passed to a functional process monitor program 

whose program number was specified as part of ~he ODS data. 

4) Additional information, such as the reduced costs, may 
' . 

be displayed on the printer or transmitted to a communica-· 

tion area on the bulk memory device where_ it may be retrieved 

by any functionai' program. knm·dng the location of the data· ... 
> ' ,· .. 

4...:3 



4.3 OPO CAPABILITIES 

The commands referenced in the preceding paragraphs are ele-· 

ments of the OPO command language. The user directs data ·input, 

control.actions, communication with other functional programs, 

execution of the optimizing algori th~,. and output thro~gh the 

medium of this language (refer.to Section 7). The user presents 

his commands to OPO in the form of task.s. Because OPO is capable 

of optimizing several process units concurrently and can simulta­

neously maintain several optimizer data sets and associated MODELS 

for each unit, .a task is a sequence of commands directed at a par-

ticular ODS/M in a specified unit. Tasks may be presented to the 

system without regard to the disposition of prior tasks; OPO 

queues them on the appropriatemits and schedules their execution. 

Tasks may originate from external or internal sources. The 

commands have an external fonnat suitable for preparation on 

punched cards for entry into the system through the card reader. 

Internal sources such as a pro~essn0nitoring program generate 

tasks in an internal format and store them in ·bulk memory for 

transmission to the system. 

A set of task management functions are also provided as part~· 

of OPO. These functions are utilized by the us~r to order OPO to 

accept new tasks from both internal and external sou:ces., delete 

tasks from the syst~m, m<?ve a task to the front of its queue, and-_ 

obtain information concerning the status of the system. Those 

task management functions which may be used by an external.user 

4-4' 

:,'_• 



are invoked and furnished with parameters thro~gh the GE/PAC MONITOR 

OPR Su9rout:lne. An internal user initiates execution of a· task 

management function by turning on the functi~nal program contain~ 

ing the task management function and furnishing it with the location 

of a block of previously prepared parameter values. The task man­

agement functions, their parameters, and uses are further described 

in Section 8. 

I 
4.4 DEFINITIONS 

Further description of the system requires the definition of. 

additional tenns. ·opo data or unit common data of a given type 

that are associated with process variables are termed vectors. 

The remainder of the data, which are not associated with process 

variables, are system parameters. For example, ___ a MODEL program 

number is a system parameter. 

The user has the.facility to select a subset of the process 

variables defined for a unit (refer to Section 7) to be active in 
' . 

a particular execution ~f the optimizing algorithm. Only variables 

designated as active in an ODS are considered by ~he optimizing 

~lgorithm. Variables that are required by MODEL, but not control­

lable, would be inactive. 

Some dependent process variables may be implicit variables. 

These variables a~e, i~ part, functions of themselves and are 

described by the equation 

4-5 



·where y and x rep~esent d~pendent and independent iets of process 

variables respectively. In order for a solution to' be meaningful, 

Y ·= Y -is a requirement. The methods for handling implicit vari-. y x 

ables within OPO are described in Section 5.6. 

The optimizer data sets and associated MODELs (ODS/Ms) in a 

unit may consist of no more than one control ODS/M and several 

test ODS/Ms. The aontroZ ODS/M in a unit 1s one that is actively 

controlling the process unit. The results of an optimization on , 

the control ODS/M are utilized by an on-line functional program 

for transmission to the process. Only one control ODS/M can exist 

in a given unit at any one time. Before an ODS/M attains control 

status, it mus.t pass through a test phase. A test ODS/M is used 

for experimentation and verification of an ODS and its associated 

MODEL. A test ODS/M may aiso be ~sed for the acquisition of man-

agement information not normally required to be produced by a 

·control ODS/M. Several test ODS/Ms_ may exist in a unit simulta-

neously. 

The preceding paragraphs do no~ describe the full capabilities 

of OPO which are implied in the following list of principal OPO 

characteristics. .· 

·1) OPO can be used to optimize several process units con-

currently. 

2)· OP~ can sim~ltaneously maintain several data sets in 

each unit. 

4-6 



3) OPO commands are furnished for data input and modif ica­

tion. 

4) OPO automatically edits all input data according to user. 

specifications. 

5) OPO can perform its functions in response to tasks 

emanating from internal sources such as pro.cess moni taring 

functional programs in the GE/PAC 40~0 Real-Time Library or 

from external sources via the card reader. 

6) OPO can accept input data from both ·external and inter­

nal sources; it can output data to external and internal 

destinations. 

4-7 



SECTION 5 - MODELS. 

5.1 .MODEL 

During the course of an optimization, the OPO optimizi~g 

. algori t~ requires: . · 

1) The distance of the _current values of the dependent 

/~rocess variables·and the objective function from their 

respective bounds, and 

2) The incremental effe~ts of a change in any independent 

pr.ocess variables (x) on the ~alues of the objecti~e func­

tion (y
0

) and on the values of the dependent process vari­

ab 1 es ( y i , i = l , 2 , • . • ) • 

In order that this.information may be made available, the user 

must furnish OPO with a MODEL that, given a set of values of the 

independent process variables (X), computes and returns the corre-

spending value of the objective functio~ (y
0

) and the correspond-

· ing values of the dependent process variables (y.,i = 1,2, ... ) •. 
J. 

This function is required of a MODEL. A MODEL may, at the user's 

option, also compute the partial derivatives {incremental changes) 

and return them to the OPO. This option is further described in 

Section 5. 3. · 

Other than the required function and the op~ional function 

stated above, nothing more of a computing nature is expecte~ .of_ 

a MODEL. · All problems of input, output, violation of bounds and 

targets are outside of a MODEL's domain. A MODEL is required to 

5-JA 



properly interface with OPO. The interface is described in Sec-

tion 5. 4., 

5.2 MODEL COMPUTATIONAL METHODS 

OPO places absolutely no requirements on the manner in which 

the vector Y (Y = y 0 ,y1 ,y2 , ••• ) or the partial derivatives of Y 

are computed by a MODEL. However, because a MODEL is called 

many times in the course of an optimization, it should be pro­

grammed and coded to execute quickly and efficiently. ) 
I 
I 

For mathematical.accuracy and operating efficiency~ the user 

must consider the following points when formulating and.program-

ming a MODEL. 

1) All dependent process variables must be continuous. 

2) If the MODEL incorporates iterative procedures in the 

computation of Y or the partial derivatives of Y, care must 

be taken that loose convergence does not lead to ina(,.:curate 

results. 

3) If the user decides not to compute the partial deriva­

tives of Yin his MODEL, he should.insure that the computed 

values of Y(X) are ac~?rate. 

4) The dependent variable vector:? computed by .M<?DEL, must be,. 

stored in sequential locations starting in the bulk location 

specified in the communications area. The'first dependent 

variable (Y } must be the objective function~· 



5) The indepen~ent variables are presented.to MODEL as 
, . ,: 

double precision numbers and_the aependent variable values 

must be returned in double precision. 

6) When implicit variables exist in a problem they exist 

·in both the independent and dependent variable sets. If 

there are I implicit variables, these are represented in the 

first I indep~ndent variable~ cx1 - x1 ) and the first I de­

pendent variables following the objective function. 

5.3 MODEL TYPES 

While a MODEL must be capable of coroputi~g Y{X), given X,· the 

u~ei may also choose to compute partial derivatives of Y in his 

MODEL. Further; he may choose between computing the partials of 

:i::t:e:::::c:
0
t:1: :i(i~~:) (:c:) =o:,::~~~)~ng the partials of Y 

Type 0 MODEL 

~type 0 MODEL computes only the vector Y(X), given X. ·The. 

incremental effects are calculated by OPO using the central dif-

ference approximatio~ 

where 

and. 

ay. 
1 

ax. "" 
J 

y = 
x = 

Yo 
/).X. 

J' 

· y. (X+L\x.) y. (X-tix.) 
1 J i J 

26X• 
) 

(yO,yl, ••• )., 

(xl,x2, ••• ), 

I i = Q I 1, 2 t • • ·• 

represents the objective function,. 

represents an incremental change in x .• 
J· 

5-3A 



Type 1 MODEL 

In addition to being capable of computing Y(X), a type 1 MODEL 

can also compute the vector 

aY{X) = (ayo (X)' aY1 (X) ' .·_· ·) 
ax ax. ~x. . . . J 0 J 

for a given j iµdicated by OPO. 

This type of MODEL should be utilized by the user
1
when analyt-

r 

ical methods for computing the partials are known and pr_oduc~ more 

accurate results than· the cent~al difference approximation used by 

OPO and described above. The use of a type 1 MODEL, as· opposed to 

a tipe O, may result in more efficient execution since OPO needs 

to make only one call on a type 1 MODEL to obtain the incremental 

effect of a change in xj on Y •. 

Type 2 MODEL . 

A type 2 MODEL extends the function of a type 1 in that it is 

capable of c?mput~ng, in response to a single call from OPO, the· . 

partials of Y with respect to each and every independent variable, 

i.e., the vectors 

.• 

Here, OPO need make only one call on ·the MODEL where N calls on a 
. . 

type_! MODEL would be required (N representing the number of.inde-

pendent process variables) • A type 2 Model may be used only when · 

the entire LP Matrix can fit in core.~ 
.. 

5-4A 



A type 2 MODEL must also be ~apable.of computi~g Y(X) when 

so requested by OPO. 

5.4 OPO-MODEL INTERFACE 

The interface between OPO and a MODEL consists of five items. 

Each item and its interpretation are discussed below. 

1) MODEL Type Flag (MTF) 

I 

OPO calls on a MODEL with MTF set to either zero or to 

the MODEL'S type:. 

a) When OPO calls for the execution of a type 0 MODEL, 

OPO always sets MTF to 0. 

b) When calling a type 1 MODEL, OPO always sets MTF 

to 0 or 1. 

c) OPO always sets MTF to 0 or 2 when calling a 

type 2 MODEL. 

When a MODEL, regardless of its type, is called by OPO 

with MTF set to zero, it must perform the following two ac-

tions: 

a). The MODEL mu'st reset MTF to its type, i.e., a 

type 0 MODEL leaves MTF alone, a type 1 sets· MTF to 1, 

and a type 2 sets MTF to 2. 

· b} The MODEL must compute Y (X) • 

5-:5 



When a type 1 MODEL is called by ·OPO with MTF set to 1 1 

the MODEL is expected to compute the vector 

oY(X) 
ax. 

] 

where j is also set by OPO {refer to 5 below). 

When a type 2 MODEL is called by OPO with MTF set to 2, 

the MODEL is expected to generate a complete LP matrix exclusive 

'of the right-hand-side. 

2) Bulk Controller Number {NBC) 

Numerical values are communicated between OPO and a MODEL 

via bulk memory areas.ass~gned by OPO. OPO sets NBC with the 

number of the controller in cha~ge ·of the des~gnated bulk mern·-· 

ory device. A MODEL does not alter the contents of NBC. 

3) !~dependent Process Variable Communication Area (LOCX) 

OPO sets LOCX with the bulk memory address of the first 

independent process variable to be used by the MODEL in its 

current computations. The remainder of the independent vari­

able values follow the first in double precision locations.' 

The called MODEL utilizes the· contents of NBC and LOCX 

to locate X. 

.· 5-6A· 



4) Dependent Process Variable Commtmication Area {LOCY) 

OPO sets LOCY with the Bulk Memory address of the first 

location in the ?rea where the MODEL is to dep.osit its com..:. 

puted results. 

A type 0 MODEL stores the vector Y (X). ·in the area. 

A type l MODEL, if called with MTF set to zero, also 

stores Y(X) in the area. If the MODEL is called with MTF 

set to 1, it stores.aY(X) in the area. 
ax. 

J 
A type 2.MODEL, if cailed with MTF set to zero, stores 

Y(X) in the area. If called with MTF set to 2, the MODEb 

stores aY (X} 
ax

1 

I • • • in the area. 

See Appendix K for MODEL result storage rules. 

5) Index Value (~MODL) 

This parameter, set by OPO, is utilized only by a type ,1 

MODEL. The value of JMODL specifies the independent process 

variable with respect to which partial derivatives·of Y are 

to be taken, i.e., aY(X) 
axJMODL 

-'-'-- ·, 

These five items are contained in common stor~ge at location 

OPOMOD. · Each item occupies one full word. 

5-7.A 



5.5 STEP LIMITS 

When a type 0 MODEL is used, it is possible for the optimizer 

to determine the curvature of the dependent variables with respect• 

to each independent variable and to limit the size of the step 

that may be taken by the solution before re-linearization is nee-

essary. 

The step limit is detennined for each X as follows: 

ES 
x 

= Min 
ally 

/ 

dy 
ES d . Y(X=dx) - Y(x-dx) _ 

x'. X . 2 
Y(X) 

whe~e X
5 

is the step limit, dx is the increment used in computing 
I 

partial derivatives with re-spect to X, and dy is user inpu!: for 

this calculation. 

When type 1 or 2 models are used, step limits cannot be cal-

culated as above and the user input values must be read. 

The user ,may input both absolute and fractional ·step limits. 

In this case, the step limit used for the calculation is the 

largest of the two. 

ESX = Max 

5. 6 IMPLICIT VARIABLES-' 

. Implici_t ·variables take -the form Yy = f (X, Yx). · For a solution 

to be meqningful the condition Y = Yx must be satisfied~ 
y ' 

s_-s. 



This condition is satisfied in OPO by.forci~g the difference 

Yy - Yx to be equal to zero. 

Yx is a member of the independent variable set and the differ~ 

ence Yy - Yx = f (X,Yx) - Yx is a member of the dependent variable 

set. 

If there are I implicit variables in the problem (Yy - Yx) 

must be the first I_ members of the dependent set following the 

objective function (Yi - Yr). 

5.7 EXAMPLE.MODEL 

To illustrate the functions of a MODEL and its interface·with 

OPO, an example of a MODEL which simulates a simple proces~ is de­

scribed below. 

The process unit is a hypothetical reactor which yields three 

products: X, Y, and z. The amount of each yield product is a 

function of temperature (T), pressure (P), and feed quantity (F). 

X(F,P ,T) = {4 ( .004P + • 78) (T-300) 

Y(F,P,T) ·f .-865 x 10 - 3 (-.002P + 

Z(F,P,T) = F - X(F,P,~) - Y(F,P,~) 

(300)]}.F 
T2 

-1 5 . 
1.11) [(_T-300) (.3~0) • ] } F 

The objective of the optimization is to determine.the tempera-

ture and pressure settings that will maximize the total value of· 

the reactor products. The objective function is 

V(P,T) 
2 . 

= 100 X(F,P,T} + 125 Y{F,P,T). - 55Z (F,P,T) •. 

5-9 



For the purposes of illustration, a type 1 MODEL is pres~nted •. · 

To prepare a type 1 MODEL,· the equations for the partial deriya-. 

tives of the dependent process variables with respect to each of 

the independent process variables are required. These are: 

av(F,P,T) 
aF 

av(F,P,T)' 
aP 

av(F,P,T) 
3T 

ax(F,P,T) 
aF 

ax(F,P,T) 
aP 

ax(F,P,T) 
aT 

aY (F, P,. T) 
aF 

ay(F,P,T) 
aP 

ay(F,P,T) 
., aT 

( 

az·(F,P,T} 
·aF 

az (F, :P, T) 
aP 

az (F,P,T) 
,aT 

loo 
ax(F,P,T) ay(F,P;T) 

= aF + 125 aF 
a Z (F ,P ,T) 

100 Z (F,P,T) aF 

= 

= 

= 

= 

= 

= 

= 

= 

= 

;:::: 

= 

100 
()X(F,P,T) 

+ 125 
ay (F, P, T) 

- 110 aZ(F,P,T) 
aP aP Z (F ,P ,T) 

100 
ax(P,T) 

+ 125 
ay(P,T) 

aT BT - 100 Z{P,T) 

300 
4{.004P + .78_) [(T-300) c-,;2)] 

F ( • 016 ( T- 3 0 0) (300) 
2 ) 

T 

F(-1200(.004P + 
. 2 

.78)T- (l-600T-l) 

oZ(P,T) 
oT 

.865 x 10 - 3 . ( 300 )1· 5 

(-. 002P+l. ll) [ (T-300) ~ 

{1.73 x 
_s 3001.s) 

10 (T-300) (rr) 

_ l+ 
1.11) (300) 1. 5 (1-900) F(-4.32 x 10 (- 002P + 

T . .T 

.. 

1.0 - ax(F ,P ,'I'>' · aY(F,P,T) 
3F aF . 

(-ax (F ,P ,T) 
3P . · 

ay (F ,P ,'.J'~ 
aP 

(-ax CF, P.,T) 
aT 

ay (F,P ,T~ 
aT 

ap 

} 

5-10 



In the Free-Time FORTRAN Pr~gram pre.sented below, the follow­

ing. relationship between mathematical symbols and programming sym-· 

bols wi 11 exist: · 

Mathematical Symbol Programnling Symbol 

F x (1) 

p X(2) 

T x (3) 

V(F,P,T) Y{l) 

X(F,P,T) Y(2} 

Y(F,P,T) Y(3) 

Z(F,P,T) y {4) 

The partial derivatives of V, X, Y, and Z-will also be stored 

in Y(l), Y(~f, Y(3), and Y(4}, respectively. 

An additional note required before presenting the MODEL 

program: the permane~t core symbols, MTF, NBC, LOCX, LOCY, and 

JMODL, are available to a FORTRAN Program only if the Free-Time 

FORTRAN compiler is used. 



c 

c 

c 

c 

c 

SAMPLE TYPE 1 MODEL 
MTF,NBCtLOCXtLOCY,JMODL, ARE DEFINED IN OPO COMMON 

DIMENSION XC3>•YC4) 
OBTAIN VALUES OF INDEPENDENT PROCESS ·VARIABLES FROM BULK·MEMORY 

READ DISC CNBC>t<LOCX), X· 
CALCULATE COMMON SUB-EXPRESSION · . 

Tl=X<3J-300.0 
CALCULATE Y(X) 

Y<2>=<4.0 * (o004*XC2l+.78J *Tl* C300.0/XC3>**2>> * Xfl) 
Y<3>=C0.865E-3 * C-o002*X<2>+1.ll) * Tl * (300.0/X(3)J**l•5> 

1 * XCl) 
Y(4)=X<l> - Y<2l - YC3l 

BRANCH ON TYPE OF CALL 
GO TO C10~20)t MTF+l 

c· TYPE 0 CALL - SET MTF AND COMPUTE OBJECTIVE FUNCTION 
10 MTF=l 

c 
c 

c 

c 

c 

c 

c 

c 

YCl>=lOO.O*YC21 + 125.0*Y<3> - 55.0*CY<4>**2J 
GO TO 60 

TYPE 1 CALL - COMPUTE PARTIALS 
SAVE Y < 4.> = l < P , T > 

20 T2=Y(4) 
BRANCH ON INDEPFNDENT VARIABLE NUMBER 

GO TO <25,30,40), JMODL 
COMPUTE PARTIALS ~ITH RESPECT TO F 

25 Y<2>=4.0 * C.004 * Xt2> + e78J * Tl * (300.0/XC3>**2> 
Y<3>=8.65E-4 * C-.002 * XC2> + loll) * Tl * <300.0/X(3Jl**l•5 
Y(4)=1.0 - YC2> -YC3) 
GO TO 50 

COMPUTE PARTIALS WITH RESPECT TO P 
30 Y<2)=C.Ol6 *Tl* C300.0/XC3>**2)) * X(l) 

Y<3>=<-1.73E-6 *Tl* <300.0/XC3>>**1•5> * Xtl) 
YC4)=-YC2>-YC3) 
GO TO 50 

COMPUTE PARTIALS WITH RESPECT TO T 
40 YC2>=<-1200.0 * Co004*X<2>+.78) * XC3l**l-2l 

1 * Cl.0-600e0/X(3})) * X<ll 
YC3>=<-4.325E-4 * <-.002*XC2>+1.11) * <300.0/XC3l~**l•5 

1 · * < l.0-900.0/XC3> > > * X<ll 
Y(4)= -YC2)-Y(3) . 

COMPUTE PARTIAL OF OBJECTIVE FUNCTION 
50 Y<I>=lOO.O*Y<2> + 125.0*YC3) - 110.0~T2*Y(4) 
TRANSMIT RESULTS TO BULK MEMOR~ 
60 WRITE DISC <NBCJ,<LOCY), Y 

STOP 
END 

Figure 5~1 Sample Type 1 Model· 

,• 

5-12 



SECTION 6 - DATA SETS' 

6.1 INTRODUCTION 

The data furnished by the user to OPO is divided into the fol­

lowing classifications: 

1) Unit Common Data Set 

a) Required data 

b) Optional data 

2) Optimizer Data Set (ODS)' 

a) Required data 

b) Optional data 

6.2 UNIT COM1'10N DATA SET 

A unit common data set {unit common) consists of the names 

of the variables in the process unit, editing restrictions on ODS 

data, unit op~rating parameters, and other data pertinent to all 

ODS/Ms in the unit. Unit common is primarily utilized by the OPO 

data management facilities to perform file maintenance and to edit 

CDS input data. Unit common data must be entered in CPO before 

any ODS is constructed in the unit. The elements of a unit common 

are named and defined in Appendix B. _. 

A unit common data set is divided into required and optiona·1 

subsets (which are identified in Appendix B). The· required sub-

set consists of the process variable names and several paramet~rs 

6-1 



r . 

. required for proper allocation of the _bulk memory area to hold 
' . 

unit common and ODS data sets to be_ included in the. ·process unit~ 

Some of the parameters in the.optional data subset have de­

fault values. These are the parameters which specify_ the standard 

operator responses for error classes l thro~gh 5 (refer to Bection 

9). The remainder of the parameters are editi!lg restrictions on 

ODS 1parameters. 
I 

·1 

All vectors in the optional subset of unit common are editing 

restrictions on ODS vectors. Each ODS vector name has two asso-

ciated unit common vector names: ~) the name of the vector hold-

i~g lower editing restrictions on the ODS vector, and 2) the name 

of the upper editing restriction vector. If a-user furnishes OPO 

with data for an ODS vector (either required or optional), the cor-

responding unit common editing ve.ctor s are not. required. If one 

or both of the editing vectors is furnished with data, the indi­

cated type of editing is applied by OPO to any input ODS data. 

6.3 OPTIMIZER DATA SET 

An optimizer data set (ODS) consists of data·utilized by the 

OPO optimizing algorithm. The components of an ODS are named and 

defined in Appendix .A. 

The required data subset must be furnished by t~e user in' 

order for the optimizing a~gorithm to operate. -O~e subset compo­

nent of special interest is MODL. This is the pr~gram number of 

the user supplied process simulation pr~gram (MODEL) • · 

6-~ 



The components of the optional data subset are not required 

for operation of the optimizing a~gorithm. The majority of these 

components are tolerance parameters and process variable bounds. 

If the user suppli~s data for them, the optimizer will utilize it. 

Some components of the optional data subset have default 

values. If the user does not supply the components, OPO will 

auto~atically utilize system-defined values. These data items, 
I 

which are identified in Appendix A, are required for operation of 

the algorithm, but it is not required that the user supply them. 

ODS data is input to OPO via data statements used in conjunc-
~ 

tion with a BUILD TEST DATA SET (BTD} command (refer to Section 7.2.3) 

6.4 DATA EDITING 

OPO can edit for consistency those elements of an ODS for 

which the user supplies data. In general, editing consists of a 

comparison of an ODS datum against a lower ~estriction and an upper 
7 

restriction as the datum is input into the ODS. Whenever an ODS 

datum violates an editing restriction, an error diagnostic is 

emitted and the operator is given an opportunity to correct the 

error. (Refer to Section 9 for a more detailed discussion of 

error processing)~. 

The user controls OPO's performance of editing in.the follow-

ing manner: 

6-3 



1) Each ODS vector or parameter. that may be edited has corre-
•f 

spending editing vectors or parame.ters in unit common (refer 

to Appendix B for the c-orrespondence) • 

2) If the user supplies data for an editi~g vector or param-· 

eter, then that vector or parameter will be utilized; that is, 

editing will be performed on the appropriate ODS vector or 

parameter as it is being loaded. 

Appendix B lists the editing parameters and vectors which may 

be added to a unit common data set in addition to t~e ODS param-

eters and vectors which they affect. 

6.5 EXAMPLE 

To illustrate the basic concepts of the preceding sections, 

an example of an external CPO job· is presented below. The example 

consists of two parts: 

1) Two tasks expressed in external command format. 

2) Task management function calls that an external user 

might make with respect to the tasks. 

NOTE 

A third part, the program MODEL, appeared 
in Section 5. ' " 

6-4 



BOT,AAtltltU 
Luc,3,3,o,1012a 
DCLtUXUBtLXU5,UYUB,UXLB,LXLB,LYLB 
SETtUYUBtloO, LYLB,o.o 
PAR,UMXTt1050t UPMN,loE-4 
TBX, UXUB LXUB 

FEED 100000.0 99000.0 
PRES 1so.o 149.9 
TEMP 700.0 650.0 

ENT · 
TBY, 

PRDl 
PRD2 
PRD3 

UXLB 
50000.0 
55.0 
3.25E2 

ENT 
DEF,UXUBtLXUB,UYUB,UXL3tLXLBtlYLB 
END 
'EOT 
BQT,ABdtltDl 
ero, . 

LXLB· 
sooo.o 
.55El 
300.0 

SET,XFML,l~E-2t YFMLtl.E-2' YUPBtleOt YLOBtO•t XSTT,o., 
x~os,o., XAMLtOotXASLtO., XAML,O. 

PAR,~ODL,46, RLOC,140300, RBCNtOt RPRGt22 
TBX, XSTT XUPB XLOB 

FEED 75000.0 100000.0 30000.0 
PRES 55.0 150.0 50.0 
TEMP 600.0 700.0 300.0 

ENT 
TBY, 

PRDl 
PRD2 
PRD3 

ENT 

YAML 
· lo E-2 

2.E-3 
6oE-3 

XAML 
10000.0 
s.o 
io.o 

DEf ,XFMLtYFMLtYUPB,YLOB,XSTT,XUPB,XLOStXAMLtXASL,Y~ML 
END 
SOLtl 
Fllt/17567t XSTTtO, YSTT,64t RDCT,128 
TOP,24 
EOT 
FIN 

·F~gure 6-1 Example Tasks (E"xternal Format) 

} 

} 
CV 

(§) 

~ 2 
XUPBtOot c 

XASL 
@ 

1000.0 
5.0E-3 
loE-2 

6-5' 



6.5.1 Tasks 

Briefly, the function of the first task, AA, is to establish 

a unit and load the unit' common data for that unit. The second 

task establishes a test ODS, loads the data for the ODS, calls 

for an execution of 'the optimizi~g a~gorithm, and transmits results 

_to a real-time functional program. The encircled numbers to the 

right of the conunands refer to explanatory notes following the 

tasks. 

The followi~g notes correspon~ to.the encircled reference 

numbers in the right-hand-margin of the preceding listing. 

1) The first task is identified by the characters AA, has 

priority 1, and is directed at unit l's unit conunon data 

set· (refer to BOT ComJnand, Section 7. 2 .1) • ' 

2) The process unit will have 3 independent process variables, 

3 dependent process variables, and no implicit process vari-

ables. The unit will require no more than 10,128 words of 

bulk memory storage (refer to LUC Command, Section 7.3.2). 

3) Six optional unit common editing vectors are declared 

{refer to Sections 7.3.l and 7.3.2 for further discussion 

of the .DCL CoITu~and and Appendix B for discussion of unit 

common editing vectors)-. 

·4) The editing vectors 'UYUB and LYLB are initially loaded 

with· the values 1.0 and O, respectively. The SET data 

statement is discussed in Sections 7.3.l and 7.~.2.: 

6.-6· 



5) Two.of the optional unit common parameters, UMXT and UPMN, 

are loaded with values (refer· to Sections 7. 3 .1, 7. 3. 2 ,· and 

App_end~x B) • 

6) Four editi~g vectors associated with the independent 

process variables are loaded with data using a tabular.input 

format. The names of the independent proce$S variables are 

. to be FEED, PRES and TEMP. (Refer to Sections 7.3.1 and 7.3.2.) 
I 

7) The value card deck following the TBX data statement is 

terminated by an ENT {END TAB) data statement. {Refer to 

Sections 7.3.l and 7.3.2.) 

8) The nan1es of the three dependent process variables are 

to b~ PRDl, PRD2, and PRD3 (refer to Data Loading in Section 

7.3.2). 

9) The DEF Command causes the vectors named in the command 

to be marked as defined in the unit common data set and these 

named vectors will be used. 

10) The END (END DATA) data statement terminates the LUC 

command. (Refer to Sections 7.3.1 and 7.3.2.) 

11) The EOT (END OF T~SK) command terminates task AA. 

(Refer to Section 7. 2. 2. )· 

12) Task AB has priority level 1 and is directed at ODS 

number"l in unit 1. 

6-7· 



13) A test ODS is to be constructed in the unit. (Ref~r tP 

Section 7.3.3). 

14) The real-time functional program number, 46, of the MODEL 

to be associated with this ODS is loaded into MODL. The OPO 

optimizing algorithm is to store the optimized independent 

process variable values in bulk, starting in bulk location. 

140300s. The disk is controlled by disk controller number O. 

The algorithm is to turn on real-time functional· program n~­

ber 22 which will utilize the results. (Refer to 1 Section 7.6 

and Appendix A.)_ . 

15) Various ODS vectors are to be loaded with data using "the 

tabular input forrna~. (Refer to Section 3.3.2 and Appendix A.) 

16) The DEF command causes the vectors moved in the command 

to be marked as defined and they may be used by subsequent 

conunands directed at the optimize data set. 

17) The END command terminates the BTD command. 

18) The optimizing algorithm is to operate on the ODS using 

its associated MODEL. A scratch basis will be used for the 

first step. (Refer to Section 7.6.) 

19) The contents of the vectors XSTT, YSTT, and ~DCT are to 

be stored in a bulk memory communication area whish is· speci-. 

fied in the interlock status block located at address. 17567~ 

in p·erman·ent core. (Refer to Section 7.5 and Appendix H.) l ' 



20) Real-time f1:1nctional pr~g_ram number 24 is turned on, 

presumably to ·utilize the data placed in the communication 

area by the precedi~g FILE coinmand (refer to Section 7.5.1)., 

21} Task AB- is terminated. 

22) The FIN card terminates the task sequence. 

6.5.2 Task Management Functions 

An external user is .required to call on the task ~anagement 

function GET TASK in order to enter a task into the system from 

the card reader. In addition, the example below contains a call 

. on tpe STATUS function to obtain a report on the physical struc­

ture of the unit and the data sets.-

The example is in the form of· a facsimile of the communication 

between operator and OPO on the I/O type~. Lines typed by OPO or 

the MONITOR are denoted by a t in the left-hand-margin; lines typed 

by the operator,· by *· Neither the t or * will _actually appear 

on the I/O typer output. It is assumed that the operator has 

loaded the tasks from the preceding section in the card_ hopper and 

has depressed the input button on the I/o' typer._. 

* OPOS 

t CARD TASK-:L,DELETE-2,MOVE UP-3tSTATUS-4 

* .:L 

t END JOB. 

t END TASK AA 

t END TASK AE -'., 

, ' 

6-~9 



Here, the two tasks have been. executed by OPO and the operator 

wishes to check the status of the task queues. He again depresses 

the input button on the I/O typer. 

* OPOS 

t CARD TASK-l,DELETE-2,MDVE UP-3,STATUS-4 

.,, 4· "r 

t QUEUE STATUS REPORT :L24036PM. :L0-23.:.66 

t OPO BULK /604400 0 /700000 

t UNALLOCATED OPO BULK ·I 631700 /562500 

t UNIT l DESCRIP/16043 UNIT BULK /606000 /23700 

t QUEUE EMPTY 

t DATA SETS BASE LENGTH 

t u /606000 /1000 

t l /607000 /3500 

t END REPORT 

t END JOB 

Task management functioni are described more fully in 

Section 8. 

6-10. 



SECTION 7 COMMANDS 

·. 
The commands defined in the OPO syst~m provide facilities 

which enable a user to.establish models in the system, order the 

execution of the optimizi~g algorithm using th~ data in any one 

of the optimizer data sets, and transmit the results produced by 

the algorithm to any of several destinations, depending upon how 

the results are to be utilized. 

Specifically, the commands may be separated into six groups 

as follows: 

1) TASK DELIMITING COMMANDS 

2} INPUT COMMANDS. 

3) CONTROL COMMANDS 

4) COMMUN I CAT ImJ COMMANDS 

5) SOLVE.COMMAND 

6) OUTPUT COMMANDS 

The task.delimiting commands demarcate a task for OPO. The 

input commands are used to establish units and data sets and to 

enter data into the system through peripheral devices. One of 

the communication commands allows the user to obtain data for the 

system from functional pro~rams not.~ncorporated in OPO. 

The SOLVE command is used to order an ·execution of the opti­

mizing algorithm. 

7-1 



Displays of the ·solution res~lts, in addition to other perti-
. . 

nent information, are accomplished through use of the output com~ 

mands. If the results are to be utilized by other GE/PAC func-

tional pr~grams, one of the communication commands will accomplish 

the ·required transfer of data. Output commands are also used.to 

prod~ce printouts of system ~nformation for ~eb~ggi~g purposes. 

The final_ group, control commands, furnish facilities for the 

deletion of units and data sets, installation of control data setsi 

and synchronization of ·the executions of tasks with those of ex-

ternal functional pr~gr.ams. A fallback command is also provi~ed 
. . 

which allows a unit to be. easily reestablished should it be inad-

vertently destroyed. 

7.1 COMMAND REPRESENTATION 

OPO commands and data statements have both an external and an 

internal representation. The external representations, which are 

used for tasks entering OPO through the card reader, are card­

oriented and designed for readability. The internal representa­

tions are utilized for ·tasks generated by functional programs not 

incorporated in OPO, e.g. a process monitoring,- real-time, func-

tional program. The inter~al representations are designed for 

compactness and_ for ~ase in generation.by fu~ctional program~-

The external repr~sentations, because of their readability, 

are used throughout the discussion of corrunands and data statements 

in this section. The internal· representations are not presented 
' -~ 

in this section,. but are found in Appendix· D. 

7-2 



'.' 

7.1.l General Externa~ Representation 

, All OPO commands and data statements, with the·exception of 

tabular input statements (TBX, TBY, and value statements) share a 

common card layout: The command and data state~ent keywords appear 

in ~olumns 1 through 3. A comma (,) in column 4 separates the key-

word and parameter fields. I_f the parameter field is blank 1 the 

comma need not appear. 
I 

The command and data statement parameters 

start in column 5 and may extend through colUmn 67. Column 68 is 

used for command and statement continuation control. The rema~n-

der of the card, columns 70 through 80, is used for program identi-
.. 

fication and sequencing. Figure 7-1 depicts the card fields while 

Table 7-1 defines the possible contents of the card fields. 

7.1.2 Continuation Control 

When the para~eter field of a single card cannot accommodate 

all the desired parameters, the command may be continued into the 

parameter field of another card by placing a 11 C11 in column 68 of 

the card beini continued. 

There is no restriction on the number of cards comprising a 

command or statement. The only restrictions involved in continu-

ation are: 

' 1) A "C" must appear in column 68 of each card,, except the 

last, in the command or data statement. 

7-3 



Table 7-1 Command and Data Statement Formatt 

Columns Field 

1-3 

4 

. 5-67 

68 

70-80 

Keyword Field: Contains one of the following 
keywords - BOT, EOT, Lµc, BTD, MOD, DCL, PAR, 
SET , ALT , DEF , ENT , END , F I L , GET , A TD , D TD , . 
DUC, TOP, SAV, SOL, PRT, MAT, or DMP. 
The keyword field is utilized only in the 
first card of a command. 

Column 4 contains a conuna (,),separating the 
keyword and parameter fields. 

Command and Statement Parameter Field: 
Contains the p~rameters (if any) of the com­
nabd or data statement separated by·commas. 
The various types of parameters are: 
1) vector names, 2) variable names, 3} task 
identifiers, 4) data set indicators, 
5) decimal, floating-point numbers, 6) ·· deci­
mal, integer numbers, and 7) octal, integer 
nTu~bers. Two consecutive blanks will tenni­
nate the parameter field prior to column 67. 

Continuation Field: A "en is punched in this 
column of each card that is continued. This 
"C" should appear in each card of a command 
or statement except the last card. 

Card Identifieation Field: May be used for a 
card sequence number, program "identification, 
or left blank. 

f The. format described in this table and in 
Figure 7-1 does not apply to tabular 
input statements ·{TBX, TBY, and Value. cards}. 
Their fonnat is described in Section 7.3.1. 

7-4 



t f 

(Column 4) 

PARAMETER FIELD 
(Columns 5-67} 

,,., .. :. 
; ~ ..:-.-- -

CONTINUATION FIELD 
·{Column 68) 

UNUSED 
(Co 1·umn 69) 

CARD IDENTIFICATION FIELD 
'· (Columns 70-80) 

-----~KEYWORD' FI ELD 
(.Columns 1-3) 

+Tabular irip~i statements (TBX, TBY, and Valtie stat~~ents) d6 not 
conform to this.format (refer to Section 7.3.l). 

Figure 7-1· External Format Card Fields·· 

7-5_. 



2) The keyword field (columns 1-3). and column 4 ~ay not be 
•' 

" utilized on any card of the command except the.first. 

Neither can column 4 be utilized on any card in the command. 

~) A parameter must not be split between two cards; e_ .. g. a: 
. . 

portion of a name must not appear on one card while the re-

mainder of the name appears in the parameter field of the· . 

next card. 

7.1.3 OPO Character Set· 

The OPO commands and data statements,· in their external rep-

resentation, utilize the following character set. 
I 

Alphabetic 

Numeric 

Special Characters 

A through Z 

0 _through 9 

+ ... I • I blank 

The elements of ·aPO commands and data statements are con-

structed of characters drawn from the above set. Typically, OPO 

commands and data statements consist of a keyword followed by a . 

list of parameters. Parameters may be classified on the basis of 

structure as-follows: vector names; variable names; task identi-

f iers; data ·set indicators;. activity indicators; task priori t~; 

decimal, floating-point.numbers; decimal integer numb~rs; and 

' .oct.al, integer numbers. The form of each _type is defined ln the 

subsections below. 



7.1.4 Vectpr Names 

Vector names, which are system-defined, consist of exactly 

four alphabetic characters. The vector names are listed in 

Appendi~es A, B, and I. 

Examples: XSTT YLTR RDCT 

The names of process variables, which are defined by.the user, 

may consist of one to.four characters. The corruna {,) is the only 

character which must not be-used in a variable name. 

character of a name must be an alphabetic character: 

Examples of valid variable names: 

PRES 
X:L . 

Y/2 
AB-4 

I6B 
Y3/2 

Examples of invalid variable names: 

4AB TEMP1 
/B3 +AB. 

7.1.6 Task Identifiers .. 

The first 

Task identifiers are defined by_ the user and must consist of 

exactly two characters. The comma(~). and. the blank are the onli 

two ch.aracters which may not be used in a_ task identifier .. 

Examples of valid task identifiers: 

AA 
43 

. . . 

B6 
Bl 

.. 

/-A 
4. ~ ' 1 • 

7-7 



Examples of invalid task.identifiers: 

B TSK c,t 

7.1.7 Data Set Indicators 

There are three fonns of data set indicators. 

Form 1: U 

U implies the unit common data set in a unit. 

Form 2: C 

C implies the control optimizer data set'(control ODS) 

in a unit. 

Form 3: Dn O<n<9 

Dn implies the nth ODS in a unit, based on the order in 

which the optimizer data sets were built. 

7.1.8 Activity Indicators. 

There are two forms of activity indicators. 

Form 1: A 

A implies activate • 

. Form 2: I 

I implies deactivate. 
,• 

7"-8 



7.1.9 Task Priority 

A task pri?rity is a decimal int~ger n in the r~ge O~n~99. 

Priority is directly proportional to· the ascending integer 

sequence 0,1, ••• , 98,99. 

7.1.10 Decimal, Floating Point Number 

/ ~ecimal, floating point numbers· are represented by a string 

of ~p to 11 decimal digits and either a decimal point or an ex­

ponent representing a power of ten. The permitted forms are: 

nE n. .n n.n nE±e n.E±~ n.nE±e 

n is the base; e is the exponent to the base 10. The range of JE( 

is 0 through 77. When e is positive, the sign preceding e·may be 

omitted. Each of the forms may be preceded by a + or - sign. 

Single imbedded blanks will be suppressed. 

Examples: 

-0.999 999 99999E77 
'46E-3 

7.1.11 Decimal Integer Numbers 

4E 

A decimal integer nUrnber ·is represented by a string of up to 

seven decimal digits. Decimal integers are restricted to the 

range O through ·a,388,607. Only positive deci.mal integers are 

valid.· 

·Examples: 

4 62308· 994 

7-9 



·7 .1.12 Octal Integer Numbers 

An octal ·integer is represented by a slash (/) followed by a 

string of up to e!ght octal integers. Only positive octal integers 

are valid. The octal int~ger ra~ge is 0 thro~gh _37777777s. 

Examples: 

/4 /37777777 /602 

7.2 .TASK DELIMITING COMMANDS 

The BEGIN TASK (BOT) and END TASK (EOT) conunands serve as . 

task delimiters.· A task is a sequence of conunands directed to· a 

part~cular data set within a specific unit. This data set may be 

the unit common, the control ODS, or any one test ODS in the-unit. 

7.2.l BEGIN TASK Command 

Syntax 

Column 1 5 

n 1 - task identifier 

n 2 - task p'riority 

.n 3 - ~unit number; a decimal integer. 

n 4 - data set indicator 

Example:_ 

Column 1- _ s· · 

.. -

I , 

7-lOA 



A BOT conunand must be the first command in a task. In addi-

tion to denoting the beginning of a task, the BOT conunand has four 

associated paramet~rs which describe the task to the OPO. These 
·-

parameters are: -
,.. .... ____ ,.. __ - --- .-., .. -~ .. -- -- -- ... ~,-~--.-.- ... 

·1) Task Identifier - This user-supplied identifier identifies 

the task to the OPO and is specified by the user whenever he 
... --·- .. , ,. ... - - ' .... • .. • .. - ••..4 ·- ... ... .. -· •. -· ~ .. • -·- . ~ - . . 

i ~ishes to move the task or delete it. The identifier should be 

unique within the unit to which the task is directed. 

2) Unit Number - The unit to which the task is to be applieq 

must be identified.-

3) Data Set Indi~ator - The data set indicator specifies 

which data set within the unit is to be the object of the -

task. There are three permissible settings for this param-

eter: unit common (U), control ODS (C), or the letter D 

followed by n representing the number of a test ODS (O<n~9). 

4) Task Priority - The user assigns his task a prior~ty 

which is used by the OPO in scheduling the execution of the 

tasks. A tasks' priority remains constant for the life of 

tpe task. The priority_ value is a decimal integer in the 

range -O~n<99 _. 

- ... ) " 7-llA 



7.2.2 END TASK Command 

·syntax 

Column 1 

EDT 

The END TASK command serves only as a task delimiter and marks · 

the ~nd of a task. 
J 

7.2.3 FIN Control Card 

When a series of task are sub~itted thro~gh the card reader, 

the last task must be followe·d by a FIN card. 

Syntax 

Column 1 

FIN 

7.3 INPUT COMMANDS AND FORMATS 

Three commands are provided to furnish data input facilities. 

These are: 

LOAD UNIT COMMON 

BUILD TEST ODS 

MODIFY 

(LUC) 

(BTD) -

(MOD) 

7-12 A 



The first two commands, LUC and BTD, are used for unit common 

and obs establishment, respectively. MOD is used to modify and 

update data sets after the unit and its data sets are established. 

LUC, BTD, and.MOD commands physically precede specifications 

of data. The various types of data cards that comprise the data_ 

specifications are described in the following subsection. The 

inpuf commands and their uses are described in later subsections. 

7.3.l Data Formats 

There are six types of data cards: Declare (DCL), System 

Parameter (PAR), Set (SET), TAB (TBX and TBY}, Define (DEF), and 

Alter (ALT) . Two additional statements, the End Data statement 

(END) and the End Tabular statement (ENT) , are used to denote the 

end of a sequence of data specifications. 

The format of each data card is a combination of fixed and 

free field. Certain information on the cards must be punched in 

system-define~ posi~ions on the cards. 

1) DECLARE - The Declare card contains a list of system-

defined vector names. It has the following format: 

Syntax.· 

Column 1 5 

vi -· a four character vector name· (refer to Appendices A and B) • 

7-13 



r. 

Example 

Column 1 . 5 

· DCL,XDEL,YUTR,YDEN,XLTR 

This card is used in conjun~tion with the LUC and BTD 

commands to declare the vectors that will be utilized in unit 

common and optimizer data sets. Declaration of a vector name 

/causes an area in OPO bulk storage to be allocated to the 
I 

vector. 

Vector names that may ·appear in a DCL statement are de-

fi~ed in Appendices A and B. 

2) SYSTEM PARAMETER - The PAR statement is used to specify 

the values of system parameters. 

Syntax 

Column 1 5 

p. - a four character system parameter name {refer to 
1. 

Appendices A and B) • 

v. - a 
1 

numerical value which may be: 

( l)" decimal, floating point 

{ 2) decimal, integer_" 

( 3} octal, integer 

Example· 

Column 1 5 

PAR,MXIT,~050,RLOC,14025,DZR0,1.5E~6 

·. 
7-14· 



The parameter. names are system-de~ined. The permissible .. 
values vary with the parameter and its definition {refer to 

Appendices A and B). "PAR statements may be used with a LUC, 

BTD, or MOD command. 

3) SET - The SET statement is used to specify initialization . 

. options for data set vectors. The ·statement appears as 

Syntax 

Column 1 5 

v. - a four character vector name 
J. 

o. - a set option which may be; · 
1 

(1) decimal, floating point number, 

Example 

Column 

{2) Dn, where n is a model number, O<n<lO 

(3) A 

{ 4) I 

1 5 

SET, X UPB, 0. , PV AR, A, Y LOB ,"D6, XDE L, 2. OE-4 ;. 
. ' l 

There are four SET· options defined.· The last·two options­

(c and d) · apply -only to_ the process variables. ·· These four 

options are: 

·~ - .. - 1 • 

7-15 
", 



,, 

a) ODS Number 
. ,, 

b) Initialization Value ., 

c) Active 

d) Inac~ive 

The ODS ·ntunber option means that values for the associated 

vector are to be obtained from the vector of th~ same name in 

the specified ODS. This option may be used'only when the SET 

card is under the control of a BTD or MOD command. It may 

not be used with a LUC command. 

The initialization value option is expressed as a double 

precision, floating point numerical value. All elements in 

the associated vector are filled with this numerical value. 

It may be applied to vectors in a unit common or in an ops. 

The active and inactive options app~y only to selection 

of the set of process variables that will be active in the · 

LP problem of a particular ODS. This selection will be dis­

cussed in the· descriptions of the BTD and MOD commands. 

4) TAB CTBX and TBY} - The TBX and TBY cards and their asso­

ciated value cards provide a tabul-ar input· form for loading 

elements of several vectors with· a single record from the 

.system input device. The TAB cards sp~cify _·.vecto~ names 

and establish a correspondence between card fields and those 

names. Succeeding· va1ue cards contain the data to be loaded 

into ·the vectors. Continufttion control does not apply to 

tabular input data statem~nts and value cards. 

7-16, 



T:BX Card 
. ' 

Syntax 

Column 1 9 21 33 45 57 

TBX, v v v v v 
1 2 3 4 5 

v - a four character name of a.vector associated 
i 

pendent process variables 

I 
'Example 

Column 1 9 21 33 45 57 

TBX, XUPB XLOB ·XUTR XLTR XFML_ 

TBY Card 

Syntax 

Column 1 9 21 33 45 57 

TBY, v v v v v 
1 2 3 4 5 

v. - a four character name of a vector associated 
1 

pendent process variables. 

Example 

Column 1 9 21 33 45 57 

TBY, YUPB YLOB YUTR YLTR YFML 

Value Cards 

syntax 

Colunm 2 9 ~ 21 33 45 57 

·x el e2 e3 et+ ·e~ 
. 
'. 

x - a 'one to four character process variable name 

e - a floating point,,decimal number 

with inde-. 

with de-

.. 



Example 

Column 2 33 45 57 

XX~A +.043692E+l3 0.2 -4.BE-Z .5E-5 60. 

ENT Card 

Syntax 

Column 1 

ENT 

Example of tabular input: 

Column l 9 21 33 45 57 

. · TBX, XDEL, XLT~ XFML XFSL ., 

PRV:L a556E-6 2.0 •:LO .5E-:L 

NPTG .75E-3 2000.0 .02 .• 3E-3 

ENT : •• 1: 

T:BY, YUPB YLOB YUTR YLTR ·· YDEL 

MTHG :1500.0 750. 0 . :1495. 762.0 .33E-4 

ENT 
... : 

The vector names (v1 ,v2 ••• ) are system-defined. The pro-

cess variable names (x) are user-suppli°ed and must appear on 

the value cards~ The combination of vector name and variable 

name define a particular field on a particular card; that 

field contains the datum destined for the element of the vec-. . 

I" 

tor associated with the variable. A biank field at a variable-· 

vector intersection is 'interpreted to be zero • 

. -, ' -

7-18A 



TBX is used when the succeeding variaples pertain to the· 

set of in~ependent process va~iables. TBY is used with vari­

ables from the dependent variable set .which includes the ·im-

plicit variable_ set. The ENT statement terminates a sequence 

of value cards. The use of these forms is further explained 

in the subsections on LUC and BTM commands. 

5) ALTER - An ALT statement is used to assign a value to a 

single datum in a vector. There may be more than one such 

assignment specified in an ALT statement, e.g., 

Syntax 

Column 1 5 

c. - a four character vector.name 
1 

r. - a one to four character variable name 
1 

v. - a decimal, floating point number 
1 or 

an activity indicator (A or I) 

Example 

Column 1 5 

ALT, XUPB,XXlA,2.0E-l,XLOB,XX46,4.576E-8,PVAR,XXlA,A 

7-19 



6) D~FINE - A DEF statement is used to "definen-vectorst 
.. 

~ 

A vector.will not be utilized by OPO unless its name has been 

specified in a DEF statement~· This statement is included in 

the system in order that a vector will not be utilized unless 

it contains meani~gful values. 
'' . 

Syntax 

/column 1 5 
! 

v. - a four character vector name 
1 

Example 

Column 1 5 

DEF, XDEL,YASL,XLTR 

7) END DATA - The END statement carries no data specifica-· 

tions. It is used to mark the end of a sequence of data cards 

of the types described above and to terminate a LUC, BTD, or 

MOD command. 

Syntax 

Column 1 
'. 

END 

" 

7-20 



7.3.2 LOAD UNIT COMMON Conunand 

The LUC command-causes the OPO to allocate space for a unit 

and to prepare for loadi~g of .editi~g data. The data specifica­

tions must immediately follow the LUC command. The specifications 

consist of declarations of vect<?rs, definitions of.)~r.ocess vari-_ 

able names, and specification of values for vector elements. 

Syntax 

Column 1 5 

n1 - number of independent process variables; n1~100 

n 2 - number of dependent process variables; n2~100 

n3 - number of implicit process variables; n3~n2 

n4 - number of words on disk required for all ODS and 

unit common data in the unit 

Example 

Column 1 5 

LUC, 42,73,12,150000 

The first three are self-explanatory. The fourth is the 

number of words required to accommodate, in bulk memory, all the 

data sets that will exist in the unit at any one time. This 
'' 

estimate will ~e calculated by the user on the basis of formulas 

given in Appendix G. 

·1 

,·, .. , 

'-· 7-2l_A 



Unit Common System Parameters 

Unit Common system parameters consist .of editi~g restrictions 

on ODS system parameters and standard operator responses for error 
• 

classes l through 4. The names and definitions of unit corrunon 

system parameters are to be found in Appendix B •. 

The user sets a parameter value by specifying the parameter's 
I 

name ·and the desired value in a PAR data statement. The user is 

not required to furnish values fo~ unit common parameters. The 

various standard error responses have system-defined default 

values Jsee Appendix B) while an unvalued editing parame~er implies 

that editing will not be performed on the corresponding ODS param-

eter. 

Figure 7-5 is an example LUC command and contains a PAR data· 

statement. 

Vector Deciarations 

DCL statements which identify the editing vectors that will 
. 

be utilized in this unit causes the allocation of the proper 

amount of space for the specified unit conunon vectors.-

The declaration of a vector_ does not mean that the vector will 

be unequivocally utilized by the OPO·; - the vector must also be 

specified in a-DEF statement before OPO considers it defined and 

available for use. The declaration of a veGtor insures only· that 

space will be available for storage ot' the vector's values at the 

7-22 



c, 

time they are loaded. Th~ required DEF statement does not have to 

be specified in the LUC command; it may be placed in the data 

· specific?ttioD:s of a subsequent NOD command. 

Unit common vectors do not have to be specified in a DCL state­

ment in order to be allocated bulk memory space. Space will be 

allocated for a previously unallocated vector whenever its name ·.is 

encountered in a DCL, SET, TBX, TBY, qr ALT data statement use4 in 

conjunction with an LUC corcunand. 

The vectors in unit common are editing vectors. If an edit­

ing vector is not defined {in the OPO sense), the type of editing 

it represents will not be applied to the optimizer data sets in the 

unit. All unit common vectors are named and defined in ApP.endix B. 

Initial Value Speaifiaation 

When the user wishes to load all the elements of a vector 

with the same datum, he may do so by using a SET statement with the 

initialization value option. 

The initialization value option is the only option that may be 

used with SET urider control of the LUC command~ 

The statemen't. 

SET, UXST, 2.30E+2, UXUT, 60.5E-2 

causes each element of the vectors UXST and UXUT to contain.the 

values 230.0 and 0.605, respectively. 

7-23 



If a vector specified in a SET statement is not currently allo­

cated (e.g. ·via a DCL statem_ent), it's appearance in the SET state­

ment will result in a bulk storage allocation for it. 

Data Loading 

Data destined for vectors may be specified using TBX and TBY 

cards. Because only vectors are loaded using the TAB cards, all 
I 

data on the accompanying va+ue cards are associated with the pro-

cess variables. The vectors are divided into two groups: those 

associated with the independent variables and those associated 

with the dependent variables. All vectors in a group have the 

same length. 'The groups are loaded separately; all data associ-

ated with the independent variables are loaded before the depend~ 

ent variable data or vice versa. 

,• 

X2 ••• 

l 
TBX v:L v2J 

X2 ••• 

Xl ••• 

-------.,· 
vrn. ym1 t 

. Figure 7-2 Tabular Data Card Seq~ence 

7-24 



More than one set of TAB and value cards are perm'itted _within 

a group when there are more vectors to 'be loaded than can be named 

on a single TAB card. _Variable names are required on each set of 

value cards. 

The variable names on TBX and TBY value cards have special 

significance when used with the LUC command. The appearance of a 

variable name on a value card followi~g the first TBX or the first 

TBY card after an LUC ·command defines that variable as a process 

variable. If a TBX card i.s involved, the variable is an independ-

ent process variable; in the case of a TBY card, it is a dependent 

process variable. A name must appear in the first set qf TBX or 

TBY valu~ cards to be defined as a process variable. 

Column 1 9 21 

TBX UXST LXST 
X:L 24 22. 
X2 78 10. 
X3 39 38. 

ENT 
.TBX UYAM UXAS 

X4 SE-4 25E-6 
ENT 

Figure 7-3 Variable Name Definitions 

In the example in Fig~re 7-3, the ind~pendent process vari­

ables for the unit will_be Xl, X2, a-nd X3; X4 will not be a 
·. 

process variable because it did no~ appear-on a value card follow-· 

ing the first -TBX. An ·anatogo~s situation exists with respect- to 

TBY and dependent variables. 

7-25 



Figure 7-4 is an example o.f tabular inpu·t and includes TBX, TBY, · 
.. 

value, _and ENT statements. The vectors specified in TBX and TBY. 

state~en~s are unit common editi~g vectors (refer to Appendix B). 

Column 1 9 

). 

'.. --- •(o. ........ __ ~ • .... # -......__ 

TBX 
XV.Rl 
XVR2 
I • 

• 
• 

XVRK 
ENT 
rsx, 

XVRl 
XVR2 

• 
• 
• 

XVRK 
ENT 
TBY 

YVl 
YV2 

• 
• 
• 

YVN 
ENT 
TBYt 

YVl 
YV2 

• 
• 
• 

YVN 
ENT 

UXST 
1.25 
48.0 

10. 

LXLB 
• 33' 
32 • 

UYUB 
24.0 
1430. 

63. 

LYAM 
c.2E-2 
1.0 

o lE-3 

21 

LXST 
5 
43.0 

a.o 

UXAM 
.SE-4 
.876E-5 

.SE-2 

LYUB 
21.0 
1400 • 

60.0 

33 

UXUB 
1.75 
53.0 

15. 

LXAM 
e25E-4 

' • 42E-5 

o45E-2 

UYLB 
21.0 
1375.0 

Figure 7-4 LUC Tabular Input Example 

45 

LXUB 
i.20 
51· 

10· 

LXAS 
o28E-5 
.sE-6 

.777E-4 

LYLB 
-11.0 
1250. 

so. 

57· 

UXLB 
.75 
36.0 

7.5 

UXAS 
ol4E-5 
.2sE-6 

. • 33E-4 

UYAM 
.4E-2 
4.0 

.sE-3 

7-.26 ~. 



Datum Changes 

Another data statement that may be used in conjunction with 

the LUC command is the ALT statement. Its primary use in this con-. 

text is to set isorated values in a vector that was initialized 

through specification in a SET stateme~t with the initialization 

value option. It may also be used to change values that were 

loaded using the TBX and TBY cards. 
I 
t 
I ~ 

ALT statements used in conjunction with LUC commands must 

follow the required TAB cards in order that the process variable 

names will be defined prior to the appearance of the ALT • 
• 

If a previously unallocated vector is encountered in an ALT 

statement, bulk storage wi.11 be assigned to the vector as a conse­

quence of the vector's appearance in the ALT statement. T~at is, 

Column 1 5 

ALT,UXST,XVl,42.0 

and 

Column 1 5. 

DCL,UXST 

ALT,UXST,XVl,42.0 •, 

are equivalent~ .. 

•, 

7-27. 



Veator Definition· 

The final type of data statemen·t that may be used with an LUC 

·command is the DEF statement. All vectors specified in a DEF state-

ment should be fully loaded with data prior to the appearance of the 

DEF statement. If the user specifies in a DEF statement the name 

of an editing vector not fully loaded with data, editi~g will be 

perf~~ed with meaningless restrictions. 

Only editing vectors that have appeared in a DEF statement will 

be used to edit input data destined for an optimizer data set. 

Example LUC Command 

Figure 7-5 depicts an LUC command which utilizes all of the 

various typei of data statement. 

LUC ,3 '3 ,o '10128 
DCL,UXUB,UYUB,LXUB,LYUB,uxLB,LXL~ 
SET,UXAM,.SE-3, UXAS,oSE-4, LXAM,olE-3• LXAS •• lE-4· uvus,1.0, LYUBtC 

o.o 
PAR,UMXTtl05Q,UPMN,lE-4 
TBX UXST LXST 

FEED 97000.0 95000.0 
PRES 135.0 100.0 

. TEMP 350.0 150.0 
ENT 
TBY 

PRDl. 
PRD2. 
PRD3 

ENT 

UXUB 
iooooo.o 
15000 
100.0 

ALT,UYLBtPRDlt4S60o.o~ . 
DEF,UXAMtUXAS,LXAM,LXAS,UXST,LXST,UXUB,LXUB 
END 

Figure 7-5 Exruuple LUC Command 

.. 

LXUB 
9900000 
149+9 
650.0 



Several points may be noted in the f~gure: 

1) The DCL data statement does not contain all of the edit--

ing vectors specified in the entire command. 

2) None of the vector names specified in the SET statement 

appear in the DCL statement; .nevertheless, bulk memory space 

w{ll be assigned to these vectors as a consequence of their 

I 
, appearance in the SET statement. 

3) The SET statement require~ two cards, involvi~g the use 

of continuation control. 

4) Two of the vectors in the TBX statement, UXST and LXST, 

do not appear in the DCL statement. B~lk memory spac~ will 

be assigned to the two vectors due to their appearance-in the 

TBX statement. 

5) The TBY statement contains no vector names. The·associ-

ated value statements exist solely to define the names of the 

dependent' process variables. 

6) UYLB, specified in the ALT statement, appears in no other 

statement in the command. Bulk storage will be allocated for 

UYLB because of its specification in_ the ALT statement. 

7) The ALT statement, which specifies a value for the element 

of UYLB associated with the dependent process variable PRDl/ 

is specified after the dependent proc~ss variable names have_ 

been defined. 

1-29 



8) Only the editing, or unit common, vectors specified in 'the 

DEF statement, will ~e used ~n subseque.nt editi?g of data ".' 

destined for an ODS. This statement is based on the assump-· 

tion that a succeeding MOD conunand directed at unit common 

does not 'enable' additional editing vectors. 

7.3.3 Build Test ODS 

The BTD command prepares the OPO system for the establishment 

of an optimizer data set. Establishment consists of allocating 

space for the ODS and loadi~g of data. The data specifications 

for the ODS are expressed in data statements which follow the BTD 

command. The pro~ess of building a test ODS is similar to loading 

a unit common data set. However, the two differ in detail: 

The optimizing a~gorithm is not required to operate on the 

entire set of process variables in the unit. OPO furnishes facil­

ities for designating a subset of the set of process variables to 

be optimized. Therefore, establishment of an ODS includes setting 

system parameters, declaring vectors to be utilized in the ODS, 

loading data into the ODS .vectors, and des~gnating the variables 

to be active in the optimization. 

The data loaded into test ODS vectors during execution of a 

BTD command are subject to editi~g. The actual appl~cation of a· 

type of editing depends ·upon the defi~i.tion of the correspondi!1g · 

editing vector in unit common.· If an editi~g vector is defined 

7-30A. 



{specified in an LUC DEF statement} in unit conunon, the type of 

editing it represents· is _applied; _otherwise, it is not. 

Syntax 

Column 1 5 

BTD,m 

m - an ODS data set indicator (C or Dn where O<n<9 

Examples 

Column 1 5 

BTD,D4 

BTD 

ETD Command Parameters 

The BTD has a single, optional parameter. This parameter is 

an ODS specifier and, if specified, implies that the system param­

eters in the ODS being built are to be initialized with values 

identical to those of the system parameters in the indicated ODS. 
~ 

Any system parameter obtained with this option may be changed 

via a PAR statement following the BTD command. 

ODS System Parameters 

The system parameters in an ODS may·be set-using a PAR state­

ment. ·rf the.system p?rameter option appeared in the BTD command, 

values specif~ed in PAR statem~nts will ~uperseoe values obtained 

as a result of .the option's presence. 

7-31 



The system parameters in an ODS are used primarily for holdi~g 

infonnation required by ~he·optimizi!lg a:1gorithm. Some are utilized 

by the data management portions of OPO. Some of these parameters 

have default values; e_.g .. , if the user does not set a parameter, 

either wi~h the BTD option or in a PAR statement, OPO will set-it 

with a system-specified value. The ODS system parameters are de­

fined in Appendix A and default values are specified where applicable. 

Vector Declarations and Definition 

The ODS vectors are named and defined in Appendix A. They may 

be classified as required or optional. The user has the responsi­

bility of ensuring that the right required vectors are fully loaded 

with, data prior to the execution of the optimization algorithm. 

Required vectors do not have to be specified-in either a DCL or a 

DEF statement; they are both allocated and defined_ automatically· 

before any data st~tement in a BTD command is processed. 

All optional ODS vectors that are to be eventually utilized 

must be specified in a DCL statement in order that space be re­

served for them in the OPO data files. After they have been loaded 

with data, they must be specified in a DEF statement in order that 

they will be utilized by the optimrzation algorithm. Optional 

vectors must be declared in a BTD command; .they may be loaded and 

defined either in the s~~e BTD command or in a subsequen~ MOD com­

mand. 

" -

7-32°. 



Automatic Vector Loading 

SET cards are used to specify types of aptomatic vector loading. 

In addition, bulk storage will be allocated for previously un~llo-

cated vectors encountered in a SET statement. 

All SET options listed in Section 7.3.l may be used in con-

junction with the BTD conunand, including the initialization value 

option discussed in· Section 7.3.2. 

' Because of the inter-ODS communication allowed by.GPO, an ODS 

number option may be·used in conjucntion with the BTD command. 

When this option is used on a SET statement, e.g., 

Column 1 5 1 5 

SET,vname,Dn or SET,vname,C 

the values for the vector vname are obtained from the vector of the 

same name in ODS number n or in the control ODS. The ODS number 

option may not be used in the establishment of the first ODS in 

the unit. 

) 

The two remaining options, active and inactive,· can be applied 

only to the name PVAR (process variables). PVAR is defined as the 

collection qf_ names of all process variables. It is not a vector 

and it is not explicitly loaded by the user. The name· PVAR is 

used only in the context of selection of active variables. The SET 

statement 

Column 1 .. 5 

SET , P VAR , ·A 

< - ,_ ~ ' 

7-33 



results in all process variables bei!lg set in active status for·.' 

this ODS. The statement· 

Column 1 5 

SET t PVAR ,I 

implies that all process variables are to be inactive in this ODS~· 

The ODS number option may also be applied to PVAR. The 

statement 

Column 1 5 

SET,PVAR,Dn 

speqifies that the set of active variables in the current ODS is 

to be identical to that of existing ODS n. 

The active-inactive status of any variable may be specified 

using.the ALT statement. This function provides a facility for 

overriding automatic loading accomplished through the use of the 

above options. 

Data Loadina 

The TBX and TBY cards, with their associated value cards,· are· 
. 

µsed to load data from the system input device. Their use ·with 'the 
'+ - •• 

BTD command is ·identical to their use u!).der the ·LUC qo~and_.. Only 

the vector names that may be speciffed on the TAB cards are dif-

ferent. 

7-34 



The variable names specified on the value cards are solely for 

identification purposes. There is no definition implied by their 

appearance. The use of a name that was not de~ined during loading 

of unit conunon is an error. 

Datum Changes 

The uses of the ALT card described in connection with the LUC 

command are permitted with relation to the BTD command. In addi-

tion to the specification of data for elements of vectors, variables 

~ay be activated or inactivated usi~g the ALT statement. 

The statement 

Column 1 5 

ALT,PVAR,Xl,A 

implies that the variable Xl is to be active· in the LP problem 

while Y4 is to be inactive. 

Through proper combinations of the SET and ALT statements, the 

user may minimize the amount of data card preparation.required to 

indicate the active variables. For example, if only a few variables 

are to be active such as Xl, X2, Yl, and Y2, the cards 

SET,PVAR,I 
. . 

.ALT,PVAR,X1,A,PVAR,X2,A,PVAR,Y1,A 

result in· the proper status se~tings. 

' : ,' 

.. 
7-35. 



. ' 

ExampZe BTD Command 

Figure 7-6 depicts a BTD conunand which utilizes the majority 

of· the data statements. 

STD 
DCL,XDEL,YASL 
PAR,MODLt46tRL0(,/40300,RBCN,O, RPRGt22 
SET,XAML,.25E-3,YAMLte25E-2,xAsL,.3E-4t YFML,.1, PVAR,AtXFSL,.01,' c 

XLoe,o.o,yLoB, o.o,yups,91000.0 
·rex 'i XSTT XUP3 
FE~D. 96000. 0 99500.0 
TEMP 200.0 675.0 
PRES 125.0 149.95 

ENT 
ALT,YUPBtPRD3,90000.0 
DEF,YFMLtXFSL 
END 

Figure 7-6 Example BTD Command 

Several points concerning the example should be noted: 

1) Only two vectors are specified in the DCL statement. The 

remainder of the vectors named in the command were either 

automatically allocated bulk storage because they are required 

vectors (e.g. XSTT, XUPB, YUPB) or because they were unallo-

cated when they were encountered in another data statement 

(e.g YFML, XFSL). 

2) The required ODS paramete~ MODL is loaded with the func­

tional program number (22) of the user's MODEL.-

3) The variable names in the value statemen~s associated with 

the TBX statement do not appear in the- same order as they were 

defined in the example LUC command in Figure 7-5. This is a 
' . ' 

permissible .occurrence. 

7-36 ·" 



4) No TBY statement appears as all required and.desired ODS 

vectors associat.ed with deperiden~ proc~ss variables have been· 

loaded with data using other means •. 

5) The DEF statement defines only the two optional ODS 

vectors YFML.and XFSL. The required vectors are automatically 

d~fined and their names do.not have to appear in a DEF state-

ment. All optional ODS vectors whose names appeared in data 

statements other than DEF.have been allocated but; are not 
~ 

defined. 

6) Coordinating the example LUC command in Figure 7-5 and 

the above example, editing will be performed on the ODS vec-

tors XSTT, XUPB, XASL, and XA.Tl1L·. There are no editing viola-

tions. 

7.3.4 Modify 

The MOD command is used primarily to effect chan~es in exist­

ing values in unit common or ODS ·data. It may also be used to load 

vectors that were declared in a LUC or BTD command but were not 

loaded with data at that time. 

Syntax. 

Column 

MOD 

.All user-supplied data in a.unit are· subject to modification. 

System. parameters, entire vectors, and particular elements ·of vectors . 
. : 

7"737. 



may all be cha!lged. The compo·sition of the set of variables activ~ 
·~ 

in an ODS may also be changed.' 

OPO contains facilities for inspecti~g reques~ed modifications 

to insure that the proposed values satisfy criteria specified by 

the user for the unit. These criteria are contained in the edit-

ing vectors which comprise part of unit common. The actions taken 

by o~o when a proposed modification violates an editi~g criterion 

are described in Section 9, Error Processing. 

System Parameter Modifiaations 

The PAR statement is used to change the-value of a system 

parameter. 

Veator Element Modifiaation 

The ALT statement specifying vector, variable, and new datum 

may be used to change a particular element i_n a vector. 

·Vector elements may also be changed using tab statements with 

associated value statements. Only the vector elements .correspond-' 

fng to a process variable name on a value card will be affected. _ 

For instance, the cards 

Column 1 9 21. 
* 

TBX XSTT UXST 

X:L 2.0 3.0 
<> 

X6 6.0 

',-,, > 

7-38 



will result in 2.0 bei~g stored in the element of XSTT associated 
.. 

with X)- {XSTTXl), 3.0 being stored in UXSTXl'. 6.0 bei!Jg stored in 

UXSTX6 , and 0.0 bei~g stored in XSTTX6 • The remainder of XSTT 

and UXST would not,be affected. 

Veator Modification 

i An entire vector may be furnished with new values using either 
I 

a SET statement or a TBX or TBY statement with associated value 

statements. All SET options are permissible for use in conjunc-

tion with the MOD command. 

Vari ab Ze Status 

Variables are added or removed from the set of variables 

active in. the model with the ALTER card •. For instance, the card 

Column 1 5 

specifies that Xl is to be removed from the active variable set 

and Y2 is to be added. The number of variables\added does.not 

have to equal the number removed. 

Example MOD Command ·: · · 

. 
Figure 7-7 is an example of a MOD command and illustrates 

some of the techniques of using the co~anq. This example aeals 

with the same vectors used in the example LUC and BTD commands·in. 

7-39 



Figures 7-5 anq 7-6. It is assumed that the MOD command in the 

example is containedm a task .directed at an ODS. 

MOD 
PARtMODlt48 
TBx·, XSTT 

PRES 120.0 
TEMP 165.0 
FEEO 95500.0 

ENT 

XDEL 

DEr ,xDEL ' . 
ALT•XFSLtFEED,.02,yL08tPRD2t32005.0 
SET,YASL,Dl 
DEF,YASL 
END 

• 
Figure 7-7 Example MOD Conunand 

Some of the pertinent points in the above·ex~mple are: 

1) The MODEL a~sociated with the ODS is being changed in the 

PAR statement. 

2) The TBX statement and its value cards specify a change 

in all the values of XSTT. 

3) Referring to Figure 7-6, it may be seen that XDEL was 

declared in the BTD command but not loaded with data or de-

fined. The TBX statement and its value statements load XDEL 
' and the succeeding DEF statement defines it. XDEL will sub-

sequently be utilized by the optimizing algorithm. 

4) There are two DEF statements in the command. This is 

pe_rmissible. 

'. 
7-40 



5) The ALT statement alters the contents of elements of 

XFSL and YLOB. 

6) The SET statement specifies that the contents of the vec-· 

tor YASL in the first ODS in the unit are to be transferred 

to YASL in the current ODS. The first ODS must have been 

previously built for this to be a valid statement. 

7) The second DEF statement enables YASL and makes it avail­

able for use by the optimizing algorithm. 

7.4 CONTROL COMMANDS . -

The five commands in the control group are used for a variety , 

of purposes. Included in the group are commands to delete a unit 

common or an ODS and to establish a control ODS. Two additional 

commands provide facilities for ordering the execution of external 

functional programs and for restoring a unit to a prior state. 

7.4.1 ACCEPT TEST ODS Command 

The ATD command establishes a test ODS as the control ODS in 

the appropriate. unit. After execution of the command, all tasks 

directed to· the control ODS, will apply to the 11 accepted" ODS. 

Syntax 

Column 1 

ATD 

·- . ... 

·, ,• 

7-41"· 



The ODS that will assume control status is the' one specified 

in the BOT command of the task conta1ni~g the.ATD command. 

Exe-cution of the command does not cause the destruction of 

any infonnation in the unit. The specified test ODS becomes the 

control ODS while the supe.rseded control ODS reverts to test ODS 

status: The ODS number associated with the superseded control 

ODS prior to its elevation to control ODS status is ~gain in 

effect after its demotion. 

7.4.2 DELETE TEST ODS Command· 

i The DTD command is used to remove a test ODS from its unit. 

The ODS will no longer exist as far as OPO is concerned. 'The 

ODS and unit are specified in the BOT command of the containing 

task. The command has no parameters. 

Syntax 

Column 1 

DTD 

7 .• 4. 3 DELETE UNIT COMMON Command 

Execution of the DUC command results in the erasure of all 

data residing in the data files of the specified unit ·common.· It· 

has an effect on the unit with respect to the OPO similar to the. 

effect of the DTD command on an ODS with resp~ct to the unit~ The·. 

:-'' 

1-·42 



·command may be viewed as the "unit deactivati!lg" command. The 

command has no parame~ers.· 

Syntax 

Column 1 

DUC 

7.4.4 TURN ON PROGRAM Command 

The TOP command enables the user to turn on a spe9ified func- · 

tional program during the execution of a task. 

·syntax 

Column ·l 5 

TOP ,n 

n - a decimal integer; O<n<99 

Example 

Column 

TOP,42 

Parameters 

Program Number - The number which identifies the functional 

program to the GE/PAC Monitor must be specified~ 

Usage 
. ; 

I. .,.· 

The TOP command will gen_e.rally be used immediately following. 

SOL and FIL commands. These functions may i~volve· storing of OPO 



data files in areas acces.sible to _functional pr~grams not inc9fpO­

rated in the OPO. The TOP command: is then used to initiate the 

processing of data stored in this manner. 

There are no restrictions on the ·placement of a TOP cormnand 

other than it must be contained within a task and cannot appear 

among the data cards which follow a LUC, BTD, or MOD command. 

7.4.5 SAVE Command 

.The SAV command provides a fallback or fail-safe capability. 

Execution of the command results in a punch-out {in· binary card 

deck form) of all information in the unit. The unit to be saved 

is ~pecified on the BOT card of the containing task. The output 

deck is structured and formatted for reloading by the GE/PAC 

MONITOR Loader .. 

Syntax 

Column 1 

SAV 

The SAV command is also used to obtain a backup copy of unit 

information. The backup copy will be loaded by the operator to 

restore the unit should OPO's data files within the computer sys-; 

tern be inadvertently destroyed. The information will be loaded 

into the same locations in· the computer.and the rand9m ~cc~ss · 

memory_d~vice that it occupied at the time the SAV 'command.was 

executed. 

7-_4 4 . ., .. 



7 •. 5 COMMUNICATION COMMANDS 

The communications group consists of two commands·: FIL ·and 

GET. The_ general function of these· two commands ·is to effect 

the transfer of data to and from bulk memory files. 

The primary use of these ·commands is for communication, 

through bulk storage, between the OPO ~nd external functional pro-

grams. For e~ample, if data is to be furnished by the CPO for. 

utilization by an external functional program, the data is moved 

using a FIL command to a designated bulk area known to the func­

tional program. After the move is completed, the data is available 
.. 

to the program. Communication in the reverse direction involves 

an analogous use of the GET conunand. 

When communication between OPO and a user program is performed 

through bulk memory, precautions must be tak~n to prevent conflicts 

·in referencing the bulk area. To protect_ the data in the OPO and 

the external functional program, each bulk area so utilized has 

an associated interlock status block located in core memory. The 

inter.lock block and it's use are described in Section 7. 5. 3. 

7.5.l FILE Conunand 

The FIL C0114~and is usea to transfer data from the OPO to bulk 

memory.· All vectors in the system, for whiqh the user initially 

supplies data, may be specified i~ a FIL command. Rows and columns 
.. 

of an LP matrix are also candidates for filing, in addition to 

~;. " ' 

'·. 7-45 ''. 



other syste~-generated vectors which are named and defined in 

Appendix I. 

Syntax 

Column 1 5 

I 
m - an octal integer 

· v. - a four character vector name 
1 

or 

MATX,r where r is a one to four character process 

variable name 

n. - a decimal integer 
1 

Example 

Column 1 5 

FIL,/4065,XDEL,O,XELL,64,MATX,PRVl,l28 

The parameters of the FIL may be divided into two types, 

interlock status block address and object vector specifiers. 

1) Interlock Status Block Address - The interlock status 

block address is a core memory address of a three word block 

of storage. The block contains items which, in addition to. 

describing the bulk communication area, are used to ?rotect 

the area from access,by unauthorized p~ograms. The interlock 
~ ' 

status block c6ncept ls discussed in detaif in Section 7.5.3~ 

1-46 



2) Object Vector Specifier - An object vector _specifier iden-

tifies.the vector or LP matrix row or column to be·moved. 

There is no limit on the number of specifiers that may appear 

in a single FIL command. The specifier consists of the vector 

name and an address. This address identifies-the specific· 

destination for the vector, relative to the base location of 

the bulk area. 

The sum of a relative address specified in a FIL cDmmand 
! 
I 

and the base location of the bulk conununication area (refer 

to Section 7. 5. 3} mu.st be. a bulk memory sector origin, i·. e. 

a multiple of 6410- Failure of such a sum to be a·multi~le 

of 64 10 results in an error condition (refer to the OPO 

Operations Manual for error de~criptions). 

The example FIL command on the preceding page specifies that 

the contents of the vectors XDEL and XELL {refer. to Appendix A) 

are to be transferred to a bulk conununication area. The location 

of the area (B) is specified in an interlock status biock located· 

at location 4065 8 in core memory. The contents of XDEL will be 

deposited in the communication area, starting at location B+O. The 

contents of XELL will be stored in the area starting at location 

B+64. The transmission will not be initiated as long as some other 
"' 

functional program is reading data from the area (refer to Section· 

7.5.3). 

. - ' ~. 

7-47 



7.5.2 GET Command 

The function of the GET command is -inverse to that of the FIL 

command.. GET is used to obtain data fo~ the OPO from bulk memory 

communication areas. Only vectors for which the user may supply--·· 

data may be specified in a GET command (refer to Appendices A and B)~ 

Re.ferences to the rows-and columns of an LP matrix or other system­

generated information ·are ill~gal. There is no limit to the number 

of vectors that may be specified in a single GET command. 

Syntax 

Column. 1 5 

m - an octal integer 

v. 
1 

a four character vector name 

n. - a decimal integer 
1 

Example 

Column 1 5 

GET,/4070,YLOB,~28,YDEL,256 

The parameters of the_ GET command are identical ip form and·_ 

usage to those of the FIL command.' 

l} Interlock Status Block Address The interlock status 

block address is a core memory ~ddress of a three word block 

of storage. The block ~ontains items w~ich, i_n addition to· 
desc.ribing the bulk communication area, are used to protect __ 

· ... ,• 



the area while GET-specified data is bei~g read from the area. 

Section 7.Se3·describes the interlock status block in detail. 

2) Object Vector Specifier - A specifier consists of a vector 

name and an address. This address identifies the starting 

location, relative to the base location of the disk area; of 

th~ data to be obtained. 

The exampl~ GET conunand specifies that the ODS vectors YLOB 

and YDEL (refer to Appendix A) are to be loaded with data from a. 

bulk communication area. The location of the communication area 

is contained in the interlock status block situated in core mem-, 

ory at location 4070 8 • If Bis the base location of the area,-· 

sufficient data to fully load YLOB will be fetched from the area 

starting at location B+l28 10 • Location B+256 10 is the base loca­

tion of the data to be stored in YDEL. The transmission of data 

from the communication area to OPO data files will not take place 

as long as some other functional program is writing in-the area 

(refer to Section 7.5.3). 

7.5.3 Interlock Status Block Concept 

To insure data protection to the OPO and external functional 

progr~ns when FIL and/or GET coITu~ands are used to communicate 

between the two~ each bulk area utilized in .this mann~r has an 
-

associated interlock status block~ The interlock status must be 

set and interrogated by both participants in the communication. 

7-49 



The OPO is not responsible for the allocation of either the inter­

lock block o·r the bulk communication area. The user must provide 
. ' . 

for the existence of all desi~ed interlock blocks in core as well 

as for the areas in bulk memory. In ·addition, the user is respon­

sible for initialization of the interlock block items. 

There are five l~gical items defined in an interlock block as 

follows: 

1) Bulk Communication Area - The bulk communication area is 

specified by its base location, its le~gth, and the number 

of the appropriate bulk controller. These three values are 

used to determine absolute bulk memory addresses from the 

relative addresses associated with each vector in the ,FIL and 

GET commands and to guard against overflow of the area. 

2) Write Status - There are two flags associated with Write 

Status; the Write Active flag and the Write Waiting flag 

(off-on flags). Write Active is set when a write operation 

on the coinmunication area is currently in progress. Write 

Waiting is set when a write operation is pending, either be-

cause a prior write operation is active or because reading 

operations are currently.proceeding. 

3) Number of Readers - This item is a counter which is 

incremented by one just prior.to inibiation of a reading 

operation and decremented by one when a read operation is 

completed. 

7-50 



4) Unit Number -·The Unit Number.is used to restrict the use 

of. the associated conununicati6n area to one unit. This 

restriction provides protectio~ ~gainst overlayi~g of data 

'obtained from two or more units. 

5) Control ODS Only Write - This off-on fl~g is intended to 

protect data emanating from a control ODS from bei~g destroyed. 

/by test ODS tasks. If the flag is on, a test ODS task may not 

write in the associated conununication area, but may read from 

the area. Control ODS's and external functional programs may 

read and write in the area. The physical structure of an 

interlock status block is given in Appendix J. 

Write Status and Nmnber of Readers are usea to prevent merging 

·of logical reads and writes which reference the same communication 

area. Protection is ·necessary since a logical.I/O operation may 

·consist of several physical operations. For example, each vector 

specified in a FIL command implies at least one physical write 

operation. Therefore, without protection, an external functional 

program could attempt' to read data not FILed. 

The flowcharts in Figures 7-8 and 7-9 depict the actions that 

must be performed by reading and writing external functional pro- : 

grams in order to properly utilize the interlock items, Write 

Status and Number of Readers. 

The user has the responsibility for synchronizing the OPO and 

an external functional program. He must insure that the OPO does 

not GET data from a disk area before the program has placed it 

7-51 



there. Similarly, ·an external functional pr~gram must n·ot _attempt 
... 

to utilize data before it has been FILed by the OPO. One method 

of synchronization involves the TURN ON PROGRJ\i.~ command (TOP; 

described in Section 7.4.4. For example, the command sequence 

Column 1 . 5 

FIL,/5036,XSTT,O 

TOP, ::L6 

where 16 represents the n.ame of the.utilizi!lg external ;real-time 

functional program, in_sures a proper data transfer of the con-f::ents 
. . 

of XSTT from OPO to 16. One method of transferring datq from ~6 

to OPO is for 16 to transfer the data to the communication area 
I 

and then present an internal task containing the.appropriate GET 

conuuand to the OPO (refer to Section 8. 3 and :Appendix D) • 

7-52 



• 
• 
• 

IS A WRITE 
ACTIVE OR 
WAITING 

NO 

NOR <l­
. NOR+ 1 

YES 

SECTION OF PROGRAM OR 
PROGRAMS, CONTAIN I.NG 
LOGICAL READ OPERATIONS 

NOR <l­
NOR-1 . 

• 
• 
• 

. .• 

. -

F~gure 7-~ Readi~g Pr~gram Interlock Code 

DELAY 

7-53 



• • . 

:', 

WRITE 
ACTIVE 

YES<:'<'l---~--------~-------------

WRITE 
ACTIVE 

SET WR.ITE 
.... .__-~ ...... ·wAITING FLAG 

NO 

CLEAR HRITE 
WAITING FLAG 

SET WRITE 
ACTIVE FLAG 

----------- _____ ,... ____ _ 

SECTION OF PROGRAM 
OR PROGRAMS CONTAIN­
ING LOGICAL WRITE 
OPERATIONS 

CLE-AR WRITE 
ACT1 VE FLAG 

DELAY , 

j 

NO 

SET WRITE 
HAITI NG 
FLAG 

DELAY 

CONTINUE 
. ' 

Figure 7-9 Writi!lg _?ro_gram· Interlock Code . · · 

: •, 

T-54 



7.6 SOLVE COMMAND 

7. 6 ·• 1 Functiori 

The SOL command causes OPO to determine a solution for the 

optimization problem. This solution is a move from the plant 

position or starting position to a new recommended optimum posi­

tion. 

Syntax 

Column 

n - 1 or 2 

Example 

Column 

1 5 

SOL,n 

l 5 

SOL,2 

7.6.2 Parameters 

The SOL coromand has one parameter. This parameter specifies 

the type of starting. basis to be used in the first step of the 

s'olution. 

If the parameter is 1, a scratch (slack) basis will be used. 

If the parameter is 2, a basis selected by the user ~ill be used 

as the_~tarting basis. The user selects a starting basis by 

specifying a starting position for the move. 

This option applies only :to the first step of the move. 

7-55 



7.6.3 Consequences 

A MOVE is made resulti~g in the generation of a new recom­

mended position for the process unit. Duri~g the MOvE, reports on · 

' the progress of the solution will be printed as specif ~ed in the 

reforting ~p~cifications set up by the user in the ODS. These 

reports include iteration reports, subset selection reports, step 

repo+ts, ·and move reports. 
I . 

The user may specify, in the ODS 
' 

parameters (refer to Appendice~ A and F) , the detail to be included 

in these repo~ts and the frequency at which the reports should be 

published. 

7. 7 OUTPUT COMMA.i.l\JDS Al\JD FORMATS 

The OPP system produces two general classes of printed output •. 

The first type of output is generated by the solution program in 

response to controls set by the user in the ODS. The second type 

of output is generated.in response to specific conunands which are 

part of a task. Output formats are described in Appendix F. 

7.7.1 Solution Generated Output 

Five reports are generated during the solution process; the 

iteration log, ·subset selec,tion log, step log, the solution report, 

and the .reduced cost .report •. 

Iteration Log - Tne iteration log is available for.each LP 

iteration made during the LP solution in a single step. The report 

, . 

7-5.6 



is generated, or not, accordi~g to the setti~g of control parameters 

in the ODS. These parameters can be set or modified by the user. 

The iteration l~g reports the follo~i~g data: 

1) The number of iterations in the move 

2) Variable entering basis 

I 
3) Variable leaving basis 

I 
'4) .Value of pivot element 

5) New value of the objective function 

6) Cause of iteration 

7). Unit and ODS identification 

Subset Select Log - The subset select log is available for 

each subset select cycle taken. The report is generated or not · 

according to the setting of parameters in the ODS. 

The subset select log reports. the following data: 

1) The number of subset select cycles in step 

2) The n\lfl1ber of exchanges made i_n cycle 

3) The number of pivot steps in the transforraation 

4) The objective function value 

5) The· number of iterations in the move 

6) The number of unacceptable pivots reje_cted 

7) Unit and ODS identification .. 

Step Logs.- The step log is available for each step in a move. 

The l?g is generated or not according_ 'to parameters in the ODS. 

7-57 



The step l~g reports the following data: 

•' .. 
l)· The number of $tep completed 

2) Objective function va·lue 

3) The number of iterations in .move 

4) The number of subset select cycl~s 

5) The number of unacceptable pivots rejected 

'6) Unit and ODS identification 
I . 

Solution Report - The solution report can be output after each 

step of a move, after each nth step of a move, and/or at the end 

·of a move. If an·y solution reports are requested, a report wi'll -. 
" 

4 • 

be.made after the last step of the move regardless of reporting 

interval. Solution report controls are set in ±he ~DS by the user. 

The solution report includes the following data for the whole 

step: 

1) Unit and ODS identifiers 

2) Step number 

3) Time of day 

4) Number of steps in move 

5) Objective function value 

6) The number of iterations in move· 

7) The number of infeasibilities 

8) The number of variables outside the target range 
,-

9) Objecti~e function improvement ~-

7~sa: · 



For each variable the solution report includes the followi~g: 

1) Variable name 

2) Variable value.at optimum 

3) Variable status 

4) Most restrictive bound values 

5} Target values 

The. variable status information includes whether the variable 

was in the optimization, whether it is basic, and its status in 

relation to each of the bounds. Status is reported with respect 

to outer limits, move limit~, step limits, and target v~lues. 

The report includes the values of the most restrictive upper 

and ,lower bounds on the variable and type {outer li~it, move limit, 

or step limit) of each such bound •. 

Reduced Cost Report - The reduced cost report is produced 
. . 

after each step or each nth step •. If any reduced cost reports 

are produced, a .report is made after the last step of a move re-

gardless of the reporting interval~ 

Reduced cost report controls are set in the ODS by the user 

and are independent of the solution _report controls. 

For each variable the reduced cost report includes: 

1). Variable name· 

2) 

3) 

4) 

·. 
Yariable status 

D. for each-non-basic variable 
J . , . --

The effective costs 

7-59-



The reduced cost (Dj} is the net cost of cha~gi~g the variable 

value in a po~itive direction. 

The effective cost? are the costs used in co~puti~g the value 

of the reduced cost. These costs include any move penalties or 

target penalties which may be active in the reduced cost computa­

tion. 

The abov~ .reports and the means of selecting and c~:mtrolling 

their generation is explained more fully in Appendix F. 

7.7.2 Command Generated Output 

Output can be generated on the printer in resp~nse to commands 

included in a task. These commands are the MAT, PRT, and DMP com-

mands. 

MATRIX Command - The MAT command in a task causes the contents 

of the LP matrix, in the ODS to which the task is directed, to be 

output to the .Printer. This matrix is generated in the solution 

process. Any time a MAT command is executed, the matrix printed 

is the one used in the last step made in finding the optimal solu~ 

t'ion. The printout is in a standardized- format (see Appendix F). 

Syntax 

Column 1 -· 

MAT 

7-60 . 



Print Command - The PRT command can be used to print any 

vector, or vectors, in unit common,· in an ODS, or in the LP matrix 

in an ODS. 

_syntax 

Column 1 5 

V· - a four character vector name 
1 

or· 

MATX,r where r is a one to four character variable name 

Ex~rnple 

Column 1 5 

PRT1XUPB 7 XELL,YELL,XSTT,MATX 7 XVRl 

The names appearing in the command are the names of the vec-· 

tors to be printed. 

Each vector is printed as a column on the page. If all col-

urnns named in the command cannot be _printed across a single page, 

then multiple pages can be used as needed. Appendix F shows the 

format of output generated by the PRT command. 

Each column is headed py the vector name. The vectors which 

may be printed ~nclud~ all of the model vectors to which the user 

can input data {refer to Appendice'.3 A and_B), all working vectors 

used in· the s~lution (~efer to Appendix C), and all rows and col­

urnns of. the LP matrix •. 

'· 



Dump_ Command - The DMP conunand is intended to be used for 

debugging purposes._ It ailows the:user to obtain hard copy of the 

contents 'o'f ·an ODS or unit. The hard copy is produced on a high-

speed printer. 

Syntax 

Column 1 5 

n. - ODS data set indicators (C~r Dn, O<n~9; ref~.r to Sec­
. 1 

tion 7 .1) 

The command may be used in a unit task (one whose ~OT card 

spec,ifie·s unit common) or an ODS task (when the BOT card specifies 
i 

an ODS) • 

Parameters 

The command has no parameters when used in a task directed at 

an ODS. The contents of unit common and the ODS that.is the object 

of the task will be dumped. 

When·used in a unit task, DMP may have a list of <?DS numbers 

as parameters. These ODS numbers identify the ODS's ·to be dumped. 

Unit common will also be dumped. 

If there are .no ODS numbers appended to the command in· a unit 

task,. ail ODS's in the unit are dumped in addition to unit common~ 

7-62 



Output 

All systems parameters and vectors in unit common and speci­

fied ODS's will ·be printed, includi~g system-generated information 

which.was not originally furnished by the user. 

A list of unallocated vectors will be produced with an identi­

fying title. Names and contents of declared, but undefined, vec­

tors will be printed, accompanied by an indication of their unde­

fi,ned state. 

Format 

i The contents of unit common and any specified, or implied, 

ODS's will be printed separately .. The unit conu~on title line will 

contain the identifying number of the involved unit. The contents 

of an ODS will be preceded by a title identifying the ODS. 

The formats for unit common contents and ODS contents are 

quite similar. System parameter values with their names will be 

printed immediately after the title lines followed by the vector 

information printed in a format similar to that used for TAB 

input. A line of vector names will be-printed followed by the 

vector values aligned with ,the names. Process variable names will 

appear in the left column to· identify the vector elements. The 

format of the printout is illustrated in Appendix F ._ 

7-63· 



SECTION 8 - TASK MANAGEMENT FUNCTIONS 

The task man~9ement functions allow both the operator and 

internal functional pr~grams to present and manipulate the tasks 

directed to the OPO. The operator can also initiate the execution 

of functions to check the format of his input card deck or to give 

a summary report of the present ?tatus of the OPO System. 

There are seven task management functions as follows: 

1) GET TASK FROM CARD READER 

2) DIAGNOSTIC SCAN 

3) STATUS 

i' 4) MOVE UP TASK 

5) DELETE TASK 

6) ACCEPT TASK 

7) CONTROL TASK INTERRUPT 

The first five task management functions listed (1-5} are di­

rectly availaple to the operator. The last four functions listed 

( 4-7) are avai-lable to internal functional pr?grams. A brief 

description of these functions is given below. For detailed in-

formation on the operating" procedure of- those_ functions available 

to the operator, the user is directed to Section 2 of the OPO 

Operations Manual. 
·. 

8.1 FUNCTIONS AVAILABLE TO THE OPERATOR.· 

The "five functions available to the operator are accessed 

through the Operator Linkage Program (OLPOl-YPClB) which-' operates 

8--1 



within the GE/PAC MONITOR-I/O Typer OPR System. All-conununications 

occur via the I/O Typer. OLPOl, acting for OPO, will ask the oper-

.ator which of the five task management functions is desired. 

(Refer to Section 8.1.6 for an· example.) 

8.l.l GET TASK FROM CARD READER 

This function is the required manner in which the operator 

reqJests OPO to accept a new job (i.e., one or more tasks) from the 

card reader. The BEGIN TASK (BOT) card is read and parameters 

extracted. OLPOl, as a functional° program, uses the ACCEPT TASK 

function (refer to Section 8.2.1) to enter the card task into the 

OPO System~ 

8.1.2 DIAGNOSTIC SCAN 

This function wtll read the cards of the first task presently 

residing in the input hopper of the card reader. The format of 

each card will be checked. When a syntax error is found, a mes­

sage on the pri'nter will reprod~ce the card and identify the column 

where the error was noted. The task is not executed and no edit-

ing of values occurs. Since a syntax error will terminate the 

execution of a card task~, it is desirable to have OPO run a diag­

nostic scan on a task before a request fo~ its acceptance is made. 

*Card tasks will be aborted on a syntax error and.the remaining 
cards automatically given a diagnostic scan because they are 
essentially free-time applications. Proces-sing the errors found 
on these tasks may unduly tie-up the OPO and prevent it from _, 
achieving its main objective the on-line, real-time'- opti- _ 
mization of the process. 

s~2 



8 .1. 3 STATUS 

A report of the.current condition of the task queues and unit 

descriptors are. giyen on the I/O Typer. This function may be used 

as a ~ystem deb~gging aid, to·determine the pr~gress of particular 

tasks, and to determine current state and structure o~ OPO system 

bulk storage. As the report conforms to present conditions of the 

system, it may assume many forms. Appendix G shows a representa­

tive format of the STATUS report. 

8.1.4 MOVE UP TASK 

The purpose of this function is to move a previously accepted 

tas~ to the head of its queue, thereby causing its execution to 

precede the execution of· other tasks in that queue. The operator 

is required to·furnish the task's identifier and the task's unit· 

number. These parameters are called separately by OLPOl. If the 

task is not found in the queue, the operator is notified. 

8.1.5 DELETE TASK 

This function will r~move a task from the system. OLPOl 

calls for the task's identifier and unit numbe.r. The task's .queue 

is searched for the particular task. When located, it is removed,· 

_thereby canceling lts exec~tion. If it is not located or is be.ing 

executed, the operator is notified. 

8-3 



8.1.6 Example of Conversation between Operator· and bPo·· 

An example of the conversation between the operator and OPO 

over the I/O typer is given below. The user.is referred to the 

OPO .o~erations Manual for full operating instructions. 

T~ illustrate·, the. operator wishes to move the previously ac­

cepted task X4 to the head of unit 3's task queue. The: items entered 

by the operator. are underlined. After the operator depresses the 

input button on the I/O typer, the following conversation occurs: 

READY OPOS; 

CARD TASK-1, MOVEUP-2, DELETE-3, DIAG SCAN-4, STATUS-5 2; 

UNIT 3; TASK X4; 

END JOB 

8.2 FUNCTIONS AVAILABLE TO THE INTERNAL FUNCTIONAL PROGRAM 

Four task management functions are available to any functional 

program in the GE/PAC MONITOR System. These functions and their 

required parameters are described below. The calling sequences 

are also shown. It should be noted that sufficient space has been 

allocated in the parameter communications words so that the two 

·characters identifying the task may be in ·either Common ·Peripheral 

or ASCII code. The user must use the code with which his 

GE/PAC MONITOR nonnally operates .• · 

·s-4 



8.2.1 ACCEPT TASK 

This function is equivalent to the qperator's GET TASK FROM 

CARD READER function {8.1.1). This function requests that OPO 

accep~ a new task located:in bulk storage.· 

~aaept Task Parameters 

I 
, Parameters for ACCEPT TASK are loaded into permanent core_ 

location OPOQSR. 

OPOQSR 

OPOQSR+l 

OPOQSR+2 

BULK ADDR 

00 0 00000 

where BULK ADDR is the bulk address of the new task's Task Status 

Word {refer to Appendix E) and C is the associated bulk device 

controller number. 

NOTE 
. 

{OPOQSR+2)=0 identifies the ACCEPT 
TASK function. 

8.2.2 MOVE UP TASK 

The overall effect of this function is exactly the same a~ 

the ope~ator's version (8.1.4). 

8-5 



Move Up Task Parameters 

Parameters for MOVE UP TASK, which are loaded into OPOQSR, are 

required in the following format~ 

7 0 
UNIT# 

OPOQSR 

23 8 
TASK ID OPOQSR+:L 

OPOQSR+2 00000 OO:L 

where the TASK ID is the. task's identifier_ (two charac~ers, left­

j ustif ied in the fiel~), the UNIT# is the task's unit numbe~. · 

NOTE 
-

(OPOQSR+2) = 1 identifies the 
MOVE UP TASK function.-

8.2.3 D~LETE TASK 

Again, 'this function, in effect, is equivalent to the opera-

tor's version (8.1.5). 

Detete Task Parameters 

As before, these parameters are loaded into OPOQSR. 

OPOQSR. 7 0 
UNIT# 

23 8 
TASK ID 

OPOQSR+:L 

00000 003 

·. 



where the.TASK ID is the task's identifier (two characters.left-

justified in the field), the UNIT#' is the task's ~nit number. 

NOTE 

(OPOQSR+2) = 3 identifies the DELETE 
TASK function. 

8.2.4 CONTROL TASK INTERRUPT 

This function is a composite of ACCEPT TASK, MOVE UP TASK and 

an interrupt of the test task (i.e. a task not on the control ODS), 

if one is in progress. It is used to prevent ~elays on control 

tasks generated by internal.functional programs- by interrupting 

the execution of a test task. 

The composition is as follows: 

1) A request to accept a new task which must be directed 

at the current control ODS. 

2) At the same time, this new task is to go directly to the 

head of its task que~e. 

3) If a test task is in progress, it will be interrupted 

at the conclusion of the next conunand and the new control-

task will be the next task executed~hen OPO services this 

queue. 

4)' If a. control task is' in progress, the new control task 
. , , 

will" not interrupt but wi~l merely pe moved to the second 

position in the task queue and be executed once the ·'current, 

control task is completed. _ -
. , 

8-7, 



Control Task Interrupt Parameters. 

The parameters required for this function are quite similar · 

to those of ACCEPT TASK: 

OPOQSR 

OPOQSR+:L 

OPOQ.SR+2 00 

BULK ADDR 

- :L7 :L5 
c 
0 00002 

where BULK ADDR is the bulk address of the new control task's, Task 

Status Word (refer to Appendix E) and C is the associated bulk 

device controller number. 

NOTE 

(OPOQSR+2) = 2· identifies the CONTROL 
TASK INTERRUPT function. 

8.3 CALLING PROCEDURE 

To use any of these four functions, the internal functional 

program must perform three distinct acts. 

1) AV A I LAB I LI TY TEST 

2) PARAMETER LOAD 

3) TURN-ON FUNCTION 

8.3.l AVAILABILITY TEST 

Tne functional program must determine if the OPO Task Manage-­

ment Functions are free to honor a request. The functions are· 

available for use whenever th~ contents of permanent. core· location 

8-8: 



OPOQSR are zero. OPOQSR is non-zero whenever one of the functions 

is operating. The test should be made with interrupts inhibited to 

insure proper results. 

8.3.2 PARAMETER LOAD 

After locating the functions available for use, the parameters, 

as specified in S~ctions 8.2.1, 8.2.2, 8.2.3, and 8.2.4 are loaded 

into OPOQSR. 

8.3.3 TURN-ON FUNCTION 

Once parameters are loaded, the functional program can turn on 

the functional program (using the Monitor subroutine TPNCOl) which 

operates the functions. This program (Queue Service R~quest -

YPClC) has a Monitor program priority number equal to OPOMPN. 

8-9 



Figure 8-1 

. ' 

INHIBIT 
INTERRUPTS 

(OPOQSR):Q 

= 

LOAD 
PARAMETERS 
INTO OPOQSR 

PERMIT 
INTERRUPTS 

TURN ON 
PROGRAM 

~JI TH NUMB E R 
OPOMPN 

= DELAY 

Queue ~ervi~e ·~nteriock Flow 

8-10 



8.3.4 . 

In PAL codi~g statements, the three steps may be ~erforrned 

as follows: 

!AI 

LDA OPOQSR 

TZE 

BTS *+'4 

SPB DELCO:L 

DEL :L, ·SECND/2 

BRU *-6 

LDA UNITNO 

LDQ TASK ID 

DST OPOQSR, 

LDK F 

STA OPOQSR+2 

PAI 

LDA ZERO 

SPB TPNCO:L 

CON G,OPOMPN 

TASKID CON A,2,Xl 

UN I TN 0 CON D , 3 . 

IS FUNCTION F AVAILABLE 

YES 

NO, DELAY AND TRY AGAIN 

PI CK UP 

PARAMETERS 

AND 

LOAD 

THEM IN 

TURN-ON FUNCTION 

FOR .BOTH COMMON PERIPHERAL. 

CODE.AND ASCII SYSTEMS 

TO INDICATE UNIT 3 

8-11 



SECTION 9 ERROR PROCESSING 

The· basic concept of OPO .error processing is to allow the 

operator to respond to an error in order to specify some correc-
. , 

tive action. Allowing the operator to communicate in this manner 

results in better through-Eut times for a given task than could 

be achieved without such communication. 

The errors, which are listed in the OPO Operations Manual, 

are classified according to the subset of responses available to 

the operator. Table 9-1 gives the whole collection of responses 

available to the operator. ·The numbers are the assigned response 

codes. 

Table 9-1 Available Operator. Responses 

1. HOLD 

2. ABORT TASK. 

3. SK IP-

4. IGNORE 

5. ACCEPT VALUE 

6. ACCEPT RESTRICTION 

7. RESET RESTRICTION 

8. _SUBSTITUTE NEW VALUE 

9. STANDARD 

9-1 



There are six error classes each defined by the permissible .. · 

responses the operator may use. Table 9-2 lists these six error 

classes and their ~espective subset of responses. An expanded 

discussion of these error classes appears in Section 4 of the OPO ' 

Operations· Manual • .' 

Table ·9-2 Permissible Responses for Error Classes 

c L A $ s 

RESPONSE 1 2 3 4 5 6 
"\. 

.. 

HOLD (:],,) ·1 I I I I 
.. 

ABORT TASK ( 2) I I I I I I 

SKIP (3) I I 

IGNORE (4) I I I 

ACCEPT VALUE ( 5) I 

ACCEPT RES TR I CTI ON ( 6) - I 

RESET RESTRICTION (7) I 

SUBSTITUTE NEW VALUE ( 8) I I I I I 

STANDARD (9) I i I I 

9~1 AVAILABLE OPERATOR RESPONSES 

9·. 1.1 HOLD { 1) 

This response requests a holq. for a defined period of time while 

the operator determines a course· of action. After three consecu­

tive holds by the operator, OPO will assume the standard response {9) • 

. 9-2A 



9 •. 1. 2 ABORT TASK { 2) 

Execution of the current task wherein the error occurs is 

terminated and the task is deleted. If the task is a card task, 

the_rema~nder o~ tha task will b~ passed thro~gh the card_reader •. · 

Since special actions may occur as a result of this response, the 

user is directed to the particular error as listed in the OPO 

Operations Manual, Section 4.3.-

9 • 1. 3 SKIP ( 3) 

Depending on the error, an entire command or one component 

of a command will be skipped._ Processing will continue·~with the 

next command or command component. The action taken in a partic­

ular case can be determined by referring to Section 4.3 of the 

OPO Operations Manual. 

9.1.4 IGNORE (4) 

Again, actual action of this response depends greatly on the 

particular error in mind. Section 4.3 of the OPO Operations 

Manual describes the action according to the error. In general,· 

a violating value will be ignored and the orlgina~ ·yalue re~ained, 

a vector name may be skipped, or default value incorporated. 

9.1.5 ACCEPT VALUE (5) 

A_yiolating value.is· to be accepted in spite of its violation 

of an editi~g restriction. 

·. 9-3~. 



9.1.6 ACCEPT RESTRICTION (6) · .. ·· 

The violati~g value will be ~gnored and the violated restric-. 

tion will be accepted in its stead. 

9.1.7 RESET RESTRICTION (7) 

The violati~g value will replace the violated editi~g restric­

tion. This voids the violation. 

9.1.8 SUBSTITUTE NEW.VALUE (8) 

A new value, vector name, variable name, keyword, etc., sup­

plied by the operator, will replace the violating name or value •. 

9.1.9 STANDARD (9) 

The standard response is preset by the user to be synonymous 

· with one of the other r~sponses. The respons.es HOLD, SUBSTI'rUTE 

VALUE and STANDARD may not be the standard for any error class. 

The standard. response is selected by the user by setti~g the 

unit common system parameters STDl, STD2, STD3, and STD4 for error 

classes 1-4. A standard response cannot be selected for classes 
. 

5 and 6. 

9.2· OPERATOR NOTIFICATION 

.. 
When an error is detected, OPO Informs the operator via the 

I/O typer that the erro-r has occurred and identifies ·the error by _ · 

givi.?g the' error's co~responding error code. The error code is a· 

9-4A 



three d~git number where the tirst d~git identifies the error's 

class and the other two d~gits serve to identify_~he error in that 

error class. 

A complete list of all OPO error conditions and codes is con­

talned in the OPO Operations Manual. 



9.2.l Error Message Components 

Each error mess~ge will have at least one line of·I/O typer 

output. This line ·is called the leadi~g line and always assumes 

the following fonn: 

OPO.ERROR CODE XYZ UNIT K ODS N TASK AB 

where XYZ is the error code (Xis the error class)~ 
i -
1 

K is the unit number of the unit where the error was 

detected, 

N is the number of the Data Set (D) (U for Unit.common 

and.C for Control ODS) upon which the error was detected, 

and AB is the identifier of the task being executed when.the 

error was detected. 

The.leading line may be followed by a group of names or values, 

at most three to the line, which ar~ ~ertinent to error processing. 

Positional meaning to these values will be given a~d their actual 

meaning will be found listed, by error code, in Section 4.3 of the 

OPO Operations Manual. 

9.3 OPERATOR RESPONSE 

If the error permits an operator response, the word RESPONSE_. I 
wiil follow the error notification. ,• 

9-5 A 



9.3.l Example 

OPO ERROR CODE 402 U~IT ·2 ODS 3 TASK L2 
LUC XXPR l.OE3 

RESPONSE 

The operator will respond with the code of the chosen response. 

If the respons~ is Substitute Value, OPO will call for ~he new 

name (or value, etc.) by typing NEW VALUE. The operator now enters. 

his new value or name. If the Standard· response is taken,· OPO 

will inform the operator of the action taken by typing ACTION J, 

•he~ J is the code corresponding to that action. 

OPO ERROR CODE 402 UNIT 2 ODS .3 TASK L2 
LUC XXPR J.r.OE3 

'RESPONSE.9; ACTION 4; 

For full explanations and examples, the user is referred to 

Section·4 of the OPO Operations Manual. 

9-6 A· 



APPENDICES 

I , 

., 



APPENDIX- A 

OPTIMIZER DATA SET 

•, A-1 



APPENDIX A 

OPTIMIZER DATA SET-

The f ollowi~g is a list of parameters and vectors which com-

prise. an optimizer data set. 

Certain parameters and vectors are required and must be 

loaded by the user before a solution can be generated. 

Some parameters are optional because the system assumes a 

value if_ none is input. For these parameters the definition is 

followed by the default value. 

Required Data 

Parameters-

MODL - the pr~gram number of the user-supplied MODEL to be 

utilized duri~g execution of the .. OPO optimizing 

a~gorithm. 

Vectors 

XSTT - Starti~g values of the independent process variables (X~. 

XUPB - Upper bounds on the values of X. 

YUPB - Upper bounds on the values of the dependent and im­
plicit process variable~ (Y). 

XLOB Lower bounds on the values· of X. 

YLOB - Lower bounds on the values ot Y: 
XM4L - Absolute meve lim;its on x.-

YAML Absolute move limits on Y. 

XASL - Absolute step limits on x. ., 
'' ', 

.. 
. -



Optional ·Data 

Parameters 

Non-default parameters are: 

RLOC - The location of a bulk memory area where results are 
to be stored by the optimizing algorithm for use by 
a user's functional prograrq.. 

RBCN - The number of .the controller in charge of the bulk 
memory device used in connection with RLOC. 

RPRG - The program number of the user's functional program to 
be turned on at the completion of an execution of the 
optimizing algorithm in order to utilize the results 
previously stored (refer to RLOC above). 

XMPN - The penalty applied to X to prevent small moves 
(refer to DZRO below) near the optimum. 

YMPN - The penalty applied to. Y to prevent small moves· 
(refer to DZRO below) near the optimum. 

Parameters with default values are: 

MXIT - Maximum number of iterations to be made by the.opti­
mizing algorithm during one step. Default value is 1000. 

MXSP - Maximum nTu~ber of steps to be made during·one move. 
Default value is 500. 

MXIL - Maximum nlli~ber of iterations to be made without print­
ing the iteration log. Default value is 10. 

MXSS -. Maximu."'n number of subset select cycles ·to be made 
without printing a subset select log. Default value is 10. 

MXSL - Maximum number of steps to be taken during a move without 
printing a step log. Default value is 10. 

MXSO - Maximum number of steps to be taken in a move. without 
printing.p. solution report. Default value is 10. 

MXRC - Maximum n~ber of steps to be taken in a move without 
p_rinting a. reduced cost report. Default value is 10. 

A-3 · 



(. 

RPRT - Specifies optional formats of· the iteration log. 
Default value is 31. 

PMIN - Minimum acceptable pivot value. Default value· is .00001. 

DZON - Tolerable amount of constraint violation by any element 
of Y •• Default value is .0061 • 

. NOTE 

DZON will be utilized by the optimizing 
algorithm only if the optional vector 
YDZN is not furnished by the user. · 

AZRO - Coefficients in the LP matrix whose magnitude is less 
than AZRO will be considered to be zero. 
Default value is .00001. 

XEMX - Estimated maximum nurnb~r of independent process vari­
ables active in the optimization at any given time. 
Default value is NX. . 

YEMX 

DZRO 

KIMP} 
DOBJ 

Estimated maximum number of dependent process variables 
active in the optimization at any given time. 
Default value is NY.· 

Coefficients in the reduced cost equation whose magni­
tude is less than DZRO will be considered to be zero. 
Default value is .00001. 

NOTE. 

DZRO will be utilized by the optimizing 
algorithm only if either of the optional 
parameters X~WN and YMPN is ·not furnished 
by the user. 

A move will be terminated if KIMP consecutive steps 
produce less than DOBJ improvement in the value of the 
objective function. Default values of KIMP and DOBJ 
are 5 and .001, respectively. 

A-4· 



Vectors 

XUTR Upper target limit on x. 
YUTR - Upper target limit on Y. 

XLTR Lower· t .. arget limit on x. 

YLTR - Lower ta~get. limit on. Y. 

XTPN -.Penalty applied when x violates its ta:rget ra!lge. 

YTPN·- Penalty applied when Y violates its target ra~ge.· 

f xFML - Fractional move limit on X. 

YFML - Fr.actional move limit on Y. 

YDZN - Limit on allowable- constraint violation by each Y. 
(refer to the optional parameter DZON). 

" XD'EL - Incremental changes in X used in the calculation of 
partial derivat1ves and adaptive linearity limits. 

NOTE 

XDEL is optional if ·a type 1 or type 2 
MODEL is being used, otherwise, it is 
required. · 

YDEL - Constants used to compute adaptive linearity limits. 

The .furnishing ~of data for this vector 
by the user will result in the cal.cula:... 
tion of adaptive linearity limits when 
a type 0 MODEL is being used; the vec­
tor will be ignored when a type 1 or 
type 2 MODEL is.used. 

,"'',. 

XFSL - Fractional step limit on X. 

YFSL - Fractional step limit on-Y. -· 

YASL Absolute step limit on Y. 

A-5 ·· . l -



APPENDIX B 

UNIT COMMON DATA SET COMPONENTS 

.. 

• r - ~' ' .: 



APPENDIX B. 

UNIT COMMON DATA BET COMPONENTS 

Required Data 

Parameters 

The followi~g four parameters are part of the LUC com­

mand and haye no system-defined names. 

1) The number of independent process variables in the pro­

cess unit •. 

2) The number of dependent process variables in the process 

unit. 

3) The number of implicit process variables in the process 

unit. 

4) Estimated amount of bulk storage space to be reserved for 

the process unit. 

Optional Data 

Parameters 

Four unit common optional parameters have default values. 

These are the standard operator.responses to errors in error 

classes 1 thro~gh 4 (refer to Section 9, Error _Processi~g). 

The parameter values· are specified by the user usi!'lg PAR data 

statements· in conjunction. with an LUC command. 

B-2 



STD:L - Standard response for error class 1 •. Default value is. 3 •. 

STD2 - Standard response for error class. 2. Default value is 4. 

STD3 - Standard response for error class 3. Default value is '4. 

STD4 - Standard response for error class 4. Default value is 4. 

The remainder of the parameters do~not have default .. 

values and do not enter into OPO operations unless the user 

furnishes data for them in the data statements of an LUC or 

MOD conunand. 

UXMT - Upper editing restriction on MXIT. 

UXMS - Upper editing restriction on MXSP. 

UPMN - Upper editing.restriction on PMIN. 

LPMN - Lower editing restriction on PMIN. 

UDZN - Upper editi!lg restriction on DZON. 

LDZN - Lower editing restriction on DZON. 

UAZR' Upper editi!1g restriction on AZRO. 

LAZR Lower editing restriction on AZRO. 

UDZR Upper editing restriction on DZRO. 

LDZR - Lower editi!lg restriction on DZRO. 
•'\ 

UXMP - Upper editing restriction on XMPN. 

LXMP - Lower editi!lg restriction on XMPN. 

UYMP Upper editing restriction on .YMPN. 

LYMP - Lowe:r editing restriction .. on YMPN. .. 

-. 
- ''• 



Vectors 

The vectors listed below are all editi~g vectors and 

contain upper and ~ower restrictions on ODS data. The left-. 

hand column contains the names of .the unit common editi~g · 

vectors; the right-hand column contains the names of the 

restricted ODS ~ector corresponding ~~ the editi~g vectors. 

The ODS vectors are defined in Appendix A. 

Editing 
Vector Names Restricted Vector 

UXUB} 
LXUB XUPB 

UYUB} 
LYUB YUPB 

UXLB} 
LXLB XLOB 

UYLB 
. LYLB} YLOB 

UXUT} 
LXUT XUTR 

UYUT} 
LYUT YUTR 

UXLT} 
LXLT XLTR 

UYLT} 
LYLT YLTR 

UXFM} 
LXFM XFML 

UYFM} 
LYFM. YFML 

UXAM} 
LXAM XAML 

UVA~·}' 
LYAM YAML 

UXSTl 
LXST · XSTT 



UXDL 
. LXDL} XDEL . 

"f 

UYDL} 
LYDL . YDEL 

UXFS 
.. LXFS} XFSL 

UYFS 
LYFS} YFSL 

UXAS 
LXAS} XASL 

UYAS} 
LYAS YASL 

UXTP 
LXTP} XTPN 

UYTP} 
LYTP YTPN 

UXMP} 
LXMP XMPN 

UYMP. 
LYMP} YMPN 

UYDZ 
LYDz} YDZN 



e ,• 

'• 

APPENDIX C 

WORKING VECTORS 

,• 



APPENDIX C · 

WORKING VECTORS 

The follo~i~g is a list of vectors generated in the optimizer 

data set by the solution program. The user cannot input data to 

these vectors, but he can use their contents. The use~ can obtain 

the contents of these vectors by naming them in FIL or PRT commands. 

YSTT - Starting value of dependent variables as computed by. 
MODEL, based on XSTT. 

XDVL - (XINT-XELL) at start of. move. 

XHUJ3 - Hard upper bound on X; minimum (XUPB, XINT + move limit). 

XHLB - Hard lower bound on X· I maximum (XLOB, XINT - move limit). 

XHU:S - Hard upper bound on Y; minimuin (YUPB I YINT + move limit). 

XHLJ3 Hard lower bound on X· I maximum (YLOB I YINT - move limit). 

XINT - Initial value of x. 
.. XINT - Initial value of Y. 

XELL - Effective lower limit on x. 
XEUL Effective upper limit on x. 

YELL - Effective lower limit on Y. 

YEUL Effective upper limit on Y. 

XSTA Status of x. 

YSTA Status of Y. 

XESL Effective step limit on x. 

YESL Effective step limit on Y.; 

XRDC - Reduced cost ·of x·. 

YRDC - Reduced cost of Y. 

,. . ' 

-:;: .. . 

C-2 



NOTE. 

The reduced costs of X·and Y are non-zero 
.only fo~ the non-basic ~ariables. -

c--3 



APPENDIX D 

-- ~ EXTERNAL--~COM1'"1AND FORMATS 

D-1 



APPENDIX D 

EX~ERNAL COMMAND FORMATS 

1.0 'BEGIN TASK Command (Section 7.2.1) 

1.1 Syntax 

Column 1 5 

ni - task identifier 

n2 - task priority j 

(Refe·r to Section 7. l) 
n3 - unit number 

n4 - data set indicator 

· 1. 2 Example 

Column 1 5 

BOT,24,46,3,D3 

2.0 LOAD UNIT COMMON Command (Section 7.3.2) 

2 .. 1 Syntax· 

Column 1 ,5 

n1 - number of independent process variables; n1~100 

n2 - number of dependent process variables; n·2·~lOO 

n3 - number of implicit process varia~les; ·n3~n2 

n 4 - number of words on disk required for all ODS and unit· 
common data in the unit (refer to Appendix H}. 

D-2 



2.2 Example. 

Column 1 5 

Luc,42,73,12,1soooo 

~.o BUILD TEST ODS Command (Section 7.3.3) 

3.1 Syntax 

Column .l 5 

BTD,m 

m - Dn, where n is an ODS number; 0~~9. 

m is an optional parameter~ 

3.2 Examples 

.- Column 1 5 

BTD,D4 

BTD 

D~3 



5.0 DECLARE Data Statem~nt (Section 7.3.1) 

5.1 ~yntax. 

Column. 1 5 

v. - a four character vector name 
1 

5.2 ~xample 

Column 1 5 

DCL,XUPB,YUPB,XLOB,YLOB 

6.0 SYSTEM PARAMETER Data Statement (Section 7.3.1) 

6.1 Syntax 

Column 1 5 

p. - a four character system parameter name 
1 

v. - a numerical value which may be: 
1 

(1) decimal, floating point 

(2) decimal integer 

(3) octal int~ger 

6. 2 Example · 

Colllinn 1 5 

(Ref er to 
Section 7 .1) 

PAR,MXIT,t050,RLOC,t4025,AZRO,t.5E-6 

.. 

D-4 



'7 .• 0 SET Data Statement (Section 7 .•. 3 .1) . 

. ~ 

7.1 Syntax 

Column 1 5 

V· - a four character vector name 
l. 

oi - a set option which may be: 

7. 2 Example 

Co.lumn 

(1) decimal, floating point .number 

(2) ODS data set indicator . · 

(3) activity indicator· 

1 5 

{Ref er to 
Section 7~1) 

SET,XUPB,O.,PVAR,A,YLOB,D6,XTPN,2.0+2 

8.0 ALTER Data Statement {Section 7.3.1) 

8.1 Syntax 

Column 1 5 

C· - a four character vector name 
l. 

r. - a one to four character variable name 
l. 

vi - a decimal, floating point number 
O!J 

an activity status (A or I) 

(Refer to 
Section 7. ;t) 

D-5. 



8.2 :8xample 

Column 1 5 

ALT,XUPB,XXtA,2.0E-l,XLOB,XX46,4.576E-8,PVAR,XX1A,A 
.... 

9.0 TAB Data Statements (Section 7. 3. 1) 

9.1 TBX Data Statement (Section 7. 3 .1) 

9.1.l Syntax 

Column l. 9 21 33 45 57 

TBX, Vl V2 V3 

v. - a four character name of a vector associated with 
1 independent process variables 

9.1~2 Examples 

Column l 9 21 33 45 57 

TBX, XUPB XLOB XUTR XLTR XFML 

9.2 TBY Data Statement (Section 7.3.1) 

9.2.1 Syntax 

Column l 9 21 33 45 57 
.. 

TBY, 

v. - a four character name of· a vector associated with-
1 dependent process variables. 

9. 2. 2 .. Example 

column· ·1 9 21 33 45 57 

·TBY YUPB 'YLOB '(UTR YLTR · · YFML · 

D-6. 



9.3 Value Data Statements (Section 7. 3 .1) ' 

9.3.l Syntax 

Column 2 9 21 33 45 57 

x e1 e2 e3 e4_ es 

e ·- a floating point, decimal number 

name} · · (refer to 
Section 7 .1) 

x - a one to four character process variable 

9.3.2 Example 

Column 2 9 21 33 

XX4A +.04369922E3 0.2 -4.8E-2 

9.4 ENT Data Statement (Section 7.3.1) 

9.4~1 Syntax 

Column 1 '5 

ENT 

' 9.5 Example of Tabular Input 

Column 1. 9 21 33 

TBX, XDEL XLTR XFML 
PRVl • 556E-6 2.0 . •:LO 
NPTG .75E-3 2000.0.02 

TBY, YUPB YLOB YUTR 
MTHG :L500.0 750.0 1495. 

ENT 

10.0 END DATA Data Statement (Section 7.3:1) 

10.1 Syntax 

Column 1 

END 

45 57 

.5E-E 60. 

45 57 

XAML 
.5E-:L 
.3E-3 
YLTR YDEL 
762.0 .33E-4 

D-7 



11.0 FILE Command (Section 7.5.1) 

11.1 Syntax 

Column 1 s 

m an octal integer_ 

v. - a four character vector name 
1 or 

MATX ,.r where r is a one to four character 
process variable name 

n. - a decimal integer 
1 

11.2 Example 

Column 1 5 

12.0 GET Command (Section 7.5.2) 

12.l Synta~ 

Column l 5 

m - an octal integer 

vi - a one to four character vector nam~ 

ni - a decimal integer 

12.2 Example 

Column 1 5 

GET,/4070,YLOB,256,YDEL,64 

::!It,; 

,L 

·-

(refer to 
Section 7 .1) 

(refer to 
· Section 7. 1) · 

D-8 



·13. 0 ACCEPT TEST ODS Command (Section 7. 4 .1) 
<' .. , 

' . 

13.l Synta)_C 

Column 1 

ATD 

14.0 DELETE TEST ODS Command (section 7.4.2) 

14.l Syntax 

Column · 1 

DTD 

15.0 DELETE. UNIT COMMON Command (Section 7.4.3) 

15.1 Syntax 

Column 1 

DUC 

16.0 TURN ON PROGRAM Command (Section 7. 4. 4) 

16.l Syntax 

Column 1 5 

TOP,n 

n - a decimal integer; n2-99 

16.2 Example 

Column 1 5 
' • , > ~' 

TOP,42 

. ' 

D-9 



17.0 SAVE Command (Section·7.4.5) 

17.1 Syntax 

Column 1 

SAV 

18.0 SOLVE Command (Section 7.6) 

18.1 Syntax 

Column 1 5 

SOL,n 

n - one or two 

18.2 Example 

Column l 5 

SOL,2 

19.0 PRINT Command (Section 7.7.2) 

19.1 Syntax 

Column 1 5 

v. - a four character vector name· 1 . 

or 

MATX,r where r is a one to four character variable name. 

19.2 Example 

Column· 1 - 5 

PRT,XUPB,XELL,YELL,XSTT,MATX,XVRI· 

D-lOA 



.20.0 MATRIX Conunand (Section 7.7~2) 

20.l Syntax· 

Column 1 

MAT 

21.0 DUMP Command 

I 
21.1, Syntax · 

·column 1 5 

DMP,n 1 ,n2 ,n 3 , ••• 

n. - ODS data set indicators (C or Dn, 0 n 9; 
1 

refer to Section 7.1) 

22.0 END OF TASK Command (Section 7.2.2) 

22.1 Syntax 

Column 1 

EDT 

.. 

D-11 ~ 



APPENDIX E 

INTERNAL TASK FORMATS 



APPENDIX E 
' INTERNAL TASK FORMATS 

Internal tasks are generated by real-time functional programs 

and stored in bulk memoPy. The. generating program presents the 

task to OPO and manipulates it (if necessary} through calls on the 

task management functions. The task management functions avail-

able to the generating program are given in Section 8.2 • 

. There are three primary differences between external and in-

ternal tasks that are of concern to the user: 

1) The commands and data statements comprising an· internal 

task are .represented in an internal format. 

2) An internal task is headed by a task status word which 

may be interrogated by the generating functional program to 

determine the status of the task. 

3) The task management functions are invoked by setting up 

of parameters and functional program turn-ons. 

The meanings of the cowmands and data statements us~d in an 

1nternal task are identical to their meanings in external tasks. 

E.l C0~11Y1AND AND DATA STATEMENT INTERNAL FORt'1ATS 

The internal fonn~ts for each conunand and data statement are 

given in Section·E.4. The internal formats ~r~ designed to: 

E-2 



. -

1) Occupy less memory space _than the external 'formats. · 

2) Minimize the effort ·required for the user to generate ·an 

·internal task and yet retain a high degree of similarity to 

the syntax of the external formats. 

.. 
3) Minimize the number of conversions that.must be performed 

by OPO in processi~g comrnands and data statements; 

A command expressed in its internal format may be viewed as 

a parameter block for OPO. The general form of an internal format 

is: 

1) The command or data statement keyword in the first word 

of the command. 

2) The command length in the second word of the command. 

3) Command para~eters in succeeding words. 

E.1.1 Keywords 

The keywords (e.g. BOT, DCL, FIL) are expressed in the char-

acter code of the system (Common Peripheral Code or ASCII) • The 

keyword is left-justified in the word. Assuming Common Peripheral 

Code {CPC) to be the charaqter set code of the system, a FIL key-

word would app~ar as 263143208 in the internal representation. 

In ASCII, the keyword would be 106.1111145. The PAL pseudo-op 

CON A,3,~XX 

is a convenient way of generating a keyword. . . 



E. 1. 2 Command Length . 

The command le~gth, occupyi~g the second word of the command, 

is the number of words required for storage of the command: ~he 

number is expressed as a singlep:-ecision, binary integer. The 
. '-· 

command length includes the words required to hold the keyword and 

the conunand length itself. 

A FIL command·requiring 20 10 words of bulk storage for its 

parameters will have a command length of 22 10 words. The first two 

words of this command in its internal format would appear as: 

L 263:14320 

L+:L 000000-26 

assuming Common Peripheral Codes (CPC). · 

E.1.3 Parameters 

Parameters may be classified as: 

1) Vector and variable names 

2) Numerical Values 

a) double precision, floating point· 

b) single precision integers 

· i) task priorities 

ii} unit .numbers 

3)· Data set indicators 



·4) Activity status indicator~ 

5) Task identifier 

Vector and Variable Nam.es 

Vector and variable names require two words in an internal 

command, regardless of the le~gth of the name. The names are 

expressed in the character code of the system (Common Peripheral 

Code or ASCII) .and are left-justified in the first of the two words. 

The vector name XSTT would appear as 

67626363 

20202020 

in ~ CPC system and as 

:130123124 

124040040 

in an ASCII s~stem. 

The variable name 

'• 

67022020 

20202020 

in a CPC system and as 

:t 3006.2040 

040040040 

in an ASCII system. 

X2 would appear as 

E-5 



, ·, 

Numeric Va Z.ues 

All numbers, regardless of precision, require two words in an 

internal format. Double precision·numbe1s occupy both words while 

an ~n~eger must be right-justified in the second word with first 

word containing zeros.-· 

· All numbers are expressed internally in binary. The PAL 

pseudo-ops, CON and DCN, ·provide a convenient way to provide the 

numbers in the generating program. 

Examples: 

double precision, floating point, decimal number 

DCN F,2.325E2 

single precision, decimal integer 

CON O,O 
CON D,9 

single precision, octal integer 

CON O,O 
CON 0,76 

Task priorities and unit numbers, subject to the restrictions 

specified in Section 7.1, are treated as single precision, decimaf 

integers. 

. E-6 __ 



Data Set IndiaatoPs 

The data set indicators (U, C, and Dn; refer to Section 7.1). 

each require two words .in an internal ·format. The firs~ word 

always contains zero." The indicator is in the second word. 

Thus, 

The indicators U and C are left-justified in the second word •. 

CON O,O 
CON A,lt,U 

will generate a data set indicator specifying ~nit common. 

The ODS specifier Dn is handled differently. The D.is dis-

carded and n is treated as a decimal integer right-justified in 

the second word. The data set indicator D4 (in its external 

representation) would be generated internally by 

CON O,O 
CON D,4 

Activity Status Indicators 

The activity status indicators (A and I) require two words in 

an internal format. They are anal~gous to the data set indicators 

U and C. The PAL pseudo-ops 
. -

CON O,O 
CON A, :L, I 

generates an activity status in its internal form.' 



·Task Identifiers 

A task identifier also requires two words in an internal format. 

The first word is filled with zeros ·while the identifier is left-

justified in the second word and expressed in the character code of 

the system. The PAL pseudo-ops 

CON o,o 
CON A,2,AB 

generate the internal form of the task identifier AB. 

The internal formats of each OPO command and data statement is 

given in Section E. 4. · 

E.2 TASK STATPS WORD 

The task status word (TSW) is a flag word allocated by the 

user at the head of his task. The TSW must occupy the bulk memory 

word immediately preceding the BOT command of the task 

L TASK STATUS WORD 

L+l BOT 

It is the location of the TSW that the user furnishes ACCEPT · · 

TASK when presenting the task to OPO. · 

The structure of a TSW is illustrated in Figure E-1. 

' . , .. 

E-8 . 



23 8 7 6 5 4 3 2 1 . 0 

unused TO TS TE TD DI TI TA TC 

Figure E-1 · -Task Status Word Structure 

Each of the items in a TSW is a one bit flag having an on-off 

setting. The items are each defined below. 

TASK ACCEPTED (TE; bit 5) 

Set· (1) 

Reset. ( 6) 

I 

' - The task has been accepted by ACCEPT TASK 
and has been entered in the appropriate 
unit task queue. 

The task has not yet been accepted by 
ACCEPT TASK and is not yet in· a unit's 
task queue. 

TASK STARTED (T.S; bit 6) 

Set ( 1)- - Execution of the task 'has been initiated; 
the first command in the task is either 
being processed or has been processed. 

Reset (0) - Processing of the first command in the 
task has not been initiated. 

TASK DONE (TD; bit 4) 

Set ( 1) - The task has been terminated and is no 
longer in the OPO unit task queues. The 
task may have been terminated by deletion, 
abortion or success~ul completion. 

Reset (0) - The task has not yet been terminated and . 
is still in a ·unit task queue.·· 

TASK DE LE TED ('J;O; bit 7) .. 

Set (1) 

Re·set ( 0) 

- Execution of the task was never initiated 
and the task has been removed from its· 
unit's task queue as the result of a call 
on the task-management function DELETE TASK. 

The ~ask has not been deleted~ 
' '~ . 

~ ; 

-E-.9 



TASK ABORTED (TA; bit 1) 

· .Set {l) The task'has been aborted, either as a 
result of an operator resp9nse to an 
error or because a class 6 error was­
encountered (refer to Section 9 of this 
manual and to the OPO Operations-Manual). 

Reset (0) - The task has not been aborted. 

UNIT INACTIVE (TI; bit 2) 

The meaning of this flag is defined only when the 
T~SK ABORTED flag is set. 

Set (1) The task has been aborted because it was 
directed at a unit which is either un­
allocated or allocated and inactive. 

Reset (O) - The task has been aborted, but not 
because the unit was inactive. 

ODS INACTIVE (DI; bit 3) 

The meaning of this flag is defined only.if the 
TASK ABORTED flag is set. 

Set ( 1) The task has been aborted because it was 
directed at an ODS which was either un-: 
allocated or allocated and inactive. 

Reset (O) - The task has been aborted but not 
because the ODS was inactive • 

. TASK CORRECTED (TC; bit 0) 

Set (l} 

Reset {O) -

. 
. 

The task has been corrected in the user's 
bulk memory task area as the result of an 
operator response to an error diagnostic. 
The pertin~nt point is to note ·that the 
t'ask has been altered in some fashion be­
tween the time· it was entered into OPO 
and the time that.its execution was com­
pleted •. 

.No task correction has occurred. 

·-

'~ . E~lO 

f•_ '/!ff;~. , 



E.3 TASK MANAGEMENT CALLS 
' . .. 

The procedures for the invoki~g of a task man~gemerit function 

by an internal user are given in Sections 8.2 and 8.3 of this 

manual. 

E.4 COMMAND AND DATA STATEMENT INTERNAL FORMATS 

This section contains general fonns, for each command and data 

statement, of. their internal format.s. Component groups are denoted 

by a solid line along side the words in the appropriate conunands. 

Each component type permitted in a give~ command appears at least 

once in the appropriate general fonn. 

E.4.1 BEGIN TASK 

word 1 BOT 

2 1010 command length 

3 0 

4 nt task identifier 

5 0 

6 np task priority 

7 0 

8 nu unit numqer 

9 0 

10 nm data set indiqator 

E-11 



E.4.2 LOAD UNIT COMMON 

word 1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

IWcl 
~ 

0 

nx 

0 

ny 

0 

n. 
1 

0 

.nw 

E.4.3 BUILD TEST ODS 

word 1 BTD 

2 4 

3· 0 

4 n 

~. 

or 

word 1 

·E:E 2 

command length 

- . 
number of independent process variables 
(single precision, binary integer) 

number of dependent process variables 
(single precision, binary integer)· 

number of implicit process variables 
(single precision, binary integer) 

bulk storage requirements for unit 
{single precision, binary integer) 

command length 

ODS number (single precision, 
binary integer) 

command lengt-h 

E-12 : 



K.4.4 MODIFY 

'• 

word 1 I . MD: I 2 command le!1gth 

E.4.5 DECLARE 

word l DCL 

2 command length 

3 

I v1 vector name 
4 

5 

I V2 vector name 
6 

7 
V3 vector name 

8 

' . 

I 

E-13. 

'• 



E.4.6 SYSTEM PARAMETER 

word 1 PAR 

2 

3 

4· 
t- p ....... 

5 
1--f-

6 

7 

8 
t- p -

9 0 

10 
~ 

11 

12 
I- p -

13 0 

14 n 

. • . # , 

command length 

parameter name (left-Justified in first 
word of a two word blank) 

parameter value (double precision, 
floating point binary number) 

-ODS number (single precisio~, 
binary integer) 

parameter value (single prec1s10~ 
binary integer} 

E-14 



E.4.7 SET -
·word 1 

2 

3 

4. 

5 

6 

7 

8 

9 

10 

11 

12 

13 

14 
. • 

.. _ 

SET 

Po- v-

I-- f -

.,..___ v-

0 

n 

1--PVAR-

0 

a . . 

.. 

I 

command length 

vector name (left-justified) 

initialization option value (double 
precision, floating point bi~ary number} 

.ODS number (single precision, binary· 
integer} 

acti~ity status ~A or I in character 
codes, left-justified) 

E-15 



E.4.8 ALTER 

word 1 ALT 

2 

3 
t-- v -

4 

5 
f-- r -

6 

7 
~ f -

8 

9 
t--PVAR -

10 

11 
t-- r -12 ______ 1--- -- -- -~ 

13 0 

14 a 
.-. 

E.4.9 Tabular Input 

TBX 
word 1 

2 

3 

4 

s. 

6 

•' 

TBX 

t-- v -

t-- v -

-1: 

command length 

vector name (left-justified} 

variable name { le_ft-justified}. 

value (double precision, floating 
point binary number) 

activity status (A or I in 
character codes, left-justified) 

command length 

vector naJ'lle 

E-16, 



A maximtun of five vector names may be specified in a TBX ,. 

statement. A TBX statement with no vecto'r names is valid -when 

the statement and its associated value statements are to be used 

only to define independent process variable names. 

TBY 

word 1 TBY 

2 conunand length 

3 
~v - vector name · 

4 

5 
r-- v -

6 

A maximum of five vector names may be specified in a TBY 

statement. A TBY statement with no vector names is valid when 

the statement and its associated value statements are to·be used 

only to defin~ independent process variable names. 

·. 

.-

•, 

E-17 



~ 

· Value Statement 

word 1 0 

·2 

3 
I-- r __, 

4 

5 
!--- f -

6 

7 
~ f ~ 

8 
• . . 

command length 

variable name 

value (double precision, floating 
point, binary)_ 

iThe number of values (f) specified in a value statement must 

be exactly equal to the number of vector names specif ie·d in the 

preceding TBX or TBY statement. 

ENT 

word·l 

2 command length 

;,.. .. - ... 



~.4.10 DEFINE 

word 1 

2 

3 

4 

5 

6 

7 

8 

E. 4 .11 END-

'word 1 

2 

DEF 

V1 

V2 

V3 

. 

-; . 

command length, 

vector name 

! 

command length 

. , 

'' ". \<, ' : , ... ~ ,_, ~ 



E.4.12 FILE 

word 1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

12 

13 

14 

E.4.13 GET 

word 1 

2 

3 

4 

5 

6 

7 

8 

FIL 

0 

nI 

- v ___, 

0 

nr 

t-MATX-

I-- r -
- --~ -~--- f----· 

0 

n . . 

GET 

0 -

n 

t-- v __, 

0 

n ' 

. . 

command .length 

core memory address of interlock status 
block (single precision, binary integer). 

- vector name (left-justified) 

relative address in disc.area {single 
precision, binary integer) 

variable name (left-justified) 

relative address in disc area 
{single precision, binary integer) 

command length 

interlock status bloc~ addr~ss 
{single precision, binary integer) 

' . 

vector name (left-justified} 

relative address in disc area 
(single precision, binary intege~} 

~ . 

E~.20 



E.4.14 ACCEPT TEST ODS 

word 1 

2 

E.4.15 DELETE TEST ODS 

word 1 

2 

a 
D 

E.4.16 DELETE UNIT COMMON 

E.4.17 TURN ON PROGHAM 

word 1 TOP 

2 '4 

3 0 

4 n 

E.4.18 SAVE. 
c~ > Y ~ 

word 1 rd 2 

command length 

command length 

command length 

command ~ength 

program number (single precision 1 

binary integer) , 

,_ ' ,•, 

command length 

' ~- ' ' ' . 



E.4.19 SOLVE 

word. 1 SOL 

2 4 

3 0 

4 n 

or 

word 1 

2 ~.· 
E.4.20 PRINT. 

; 

word 1 PRT 

2 

3 
r- V:.1 -:---

4 

5 
r- Vz---' 

6 

7 
i-:MATX ... 

8 ·-

.9 
1-- r-

10 

. • . 
• . • 

command le!lgth 

starting basis option ( 0 or 1; single · 
precision, binary integer) 

command length 

vector name (left-justified) 

variable name 

' .. ~ .. _ 

.. ' .. -

·--....... 

'" 

'• . ~ .. . 



E. 4. 21 MATRIX 

word 1 

2 

,• 

command length 

- ' 

-·· 



E.4.22 DUMP 

word 1 DMP 

2 command le~gth 

3 0 

4 n1 ODS data set indicator 

0 
{single precision, binary i~teger or C) 

5 

6 n2 
. . 

E.4.23 END OF TASK 

word 1 

2 command length 

E. 5 INTERNAL TASK EXAi'1PLE 

An OPO task will be presented in both its external and inter-

nal representations. The internal representation will be in the 

form of PAL pseudo-ops which would generate the approp~iate fonnats 

is assembled. 

The task in its ex'ternal form is shown in Figure ,-E-2. 

is one of the two tasks which appeared in F~gure 6-1-of this 
\ 

manual. 

''' 
•, ' 

This 

E--23." 



BOTtAAtltl,U 
LUC, 3 ·, 3 '0 t 10.12 8 . 
DCL,UXUBtlXUB,UYUB,UXLBtLXLBtLYLB 
SET,UYUB,1.0, LYLs,o.o 
PAR,UMXTtlOSO, UPMNtl.E-4 
rsx·, UXUB - LXUB 

FEED 100000.0 99000.0 
PRES 150.0 149.9 

·TEMP 700.0 650.0 
ENT 
TBYt 

PRDl 
PRD2 
PRD3 

UXLB 
soooo.o 
55.0 
3.25E2 

ENT 
DEF,UXUBtLXUB,UYUB,UXLBtLXLBtLYLB 
END 
EOT 

Figure E-2 OPO Task in External Fonnat 

.LXLB 
sooo.o 
.55El 
300.0 

l The task in its internal form appears on the following two 

pages. Some items of interest concerning the internal task are: 

1) The use o~ the pseudo-ops to achieve the proper number of 

words for a parameter. For example, CON A,5,xxx reserves two 

words for a name regardless of the character code (Conunon 

Peripheral Code or ASCII) used in the system. DCN D,nnn is 

also very useful. 

2) Only the first empty component of the TBY sta~ement must 

be explicitly zeroed (see card 71). The first empty component 

in a TB.X or TBY statement implies that the remainder of the 
.. · 

components are also empty. OPO then proceeds t~ ·process value 

statements. 

,· 

E-24 

.. 



Card 
No .. -·--
1 
2 
3 

A 
5 
6· 
7 
8 
9 

10 
11 
12 
13 
14 
15 
16 
17 

. 18 
19 
20 
21 
22 
23 
24 
·25 
1
26 

• 27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
3·8 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 

CON o,o 
CON A,3,BOT 
CON DtlO 
CON o,o 
CON At2tAA 
DCN 0,1 
DCN Dtl 
CON OtO 
CON AtltU 
CON At3tLUC 
CON DtlO 
DCN Dt3 
DCN Dt3 
DCN DtO 
DCN D,10128. 
CON At3,-DCL 
CON D., 14· 
CON A.,5,UXUA 
CON At5tLXUR 
CON At5tUYUB 
CON At5tUXLR 
CON A,5,LXLB 
CON A,5,LYLB 
CON At3tSET 
CON D, 10 
CON At5tUYus· 
DCN F,1.0 
CON A,5,LYL~ 
DCN F,o.o 
CON At3tPAR 
CON 0,10 
CON At5tUMXT 
DCN D.!050 
CON AtStUPMN 
DCN Ftl.E-4 
CON A,3,TBX 
CON Dtl2 
CON At5tUXUB 
CON At5tLXU8 
CON AtS,UXLB 
CON At5tLXLB 
DCN DtO 
CON OtO 
CON Dtl4 
CON At5tFEED 
ocN F,1ocooo.o 
DCN f ,99000.0 
DCN FtSOOOO,O 
DCN FtSOOO.O 
DCN Q,Q,_ 

CON DtO 
CON Dt14 
CON At5tPRES 
DCN F'150.0 
DC N F , 14 9 •. 9 

TASK STATUS WORD 
BOT KEYWORD 

COMMAND LENGTH 

TASK I DENTl FI ER 
TASK PRIORITY 
UNIT NUMBER 

DATA SET INDICATOR 
LUC KEYWORD 

COMMAND LENGTH . , 
NO• OF INDEPENDENT VARIABLES 
NO• OF DEPENDENT VARIABLES 
NO• OF IMPLICIT VARIABLES 
UNIT BULK STORAGE REQUIREMENT 

DCL KEYWORD 
COMMAND LENGTH 
VECTOR NAME 
VECTOR NAME 
VECTOR NAME 
VECTOR NAME 
VECTOR NAME 
VECTOR NAME 

SET KEYWORD 
COMMAND LENGTH 
VECTOR NAME 
INlTIALIZATION VALUE 
VECTOR NAME 
INITIALIZATION VALUE 

PAR KEYWORD 
COMMAND LENGTH 
PARAMETER NAME 
PARAMETER VALUE 
PARAMETER NAME 
PARAMETER NAME 

TBX KEYWORD 
COMMAND LENGTH 
VECTOR NAME 
VECTOR NAME 
VECTOR NAME 
VECTOR NAME 
EMPTY TBX COMPO.NENT : 

VALUE STATEMENT 
COMMAND LENGTH 
INDEPENDENT VARIABLE NAME 
VALUE FOR UXU3CFEED> 
VALUE FOR LXUB<FEEDl 
VALUE.FOR UXLB<FEED>· 
VALUE FOR LXLB<FEED> 
EMPTY VALUE STATEMENT COMPONENJ 

VALUE STATEMENT 
COMMAND LENGTH 

~ ,, ~ 

INDEPENDENT VARIABLE NAME, 
VALUE FOR UXUB<?RES> 
VALUE FOR LXUBCPRES> 

·Figure E-3 _Internal Task Example E-25 . 



56 DCN f ,55.0 VALUE .FOR UXLB<PRES> 
57 DCN f ,.SSEl VALUE FOR LXL8CPRES> 
58 DCN DtO EMPTY VALUE STATEMENT COMPONENT 
59 CON OtO VALUE STATEMENT 

-60 CON o, 14 COMMANI;> LENGTH 
61 CON At5tTEMP INDEPENDENT VARIABLE NAME 
62 DCN FtSOO.O VALUE FOR UXUB.< TEMP.) 
63 DCN Ft650.0 VALUE FOR LXUB<TEMP) 
64 DCN F13.25E2 VALUE FOR UXLBCTEMP) 
65 DCN f ,300.0 VALUE FOR LXLB<TEMPJ 
66 DCN o,o EMPTY VALUE STATEMENT COMPONENT 
67 CON At3tENT ENT KEYWORD 
68 CON Dt2 COMMAND LENGTH 
69 CON At3tTBY TBY KEYWORD 
70 CON D t 1~. COMMAND LENGTH 
71 DCN D tO, EMPTY TBY STATEMENT COMPONENT 
72 BSS 8 4 MORE EMPTY COMPONE~TS 
73 CON o,o VALUE STATEMENT 
74 CON -Dtl4 COMMAND -LENGTH l . 
75 CON A,5,?RDl DEPENDENT VARIA~LE NAME 
76 SSS 10 5 EMPTY COMPONENTS 
77 CON o,o VALUE STATEMENT 
78 CON Dtl4 COMMAND LENGTH. 
79 CON At5tPRD2 DEPENDENT VARIABLE NAME · 

iao ass 10 5 EMPTY COMPONENTS 
81 CON Q,O VALUE .5 TA TEMENT 
82 CON-D•l4 - - -- - - COMMAND LENGTH 
83 CON At5tPRD'3 DEPENDENT VARIABLE NAME 
84 SSS 10 5 EMPTY COMPONENTS 
85 CON At3tENT ENT KEYWORD 
86 CON Dt2 . .COMMAND LENGTH 
87 CON A,3,DEF DEF KEYWORD 
88 CON D' 14 COMMAND LENGTH 
89 CON At5tUXU8 VECTOR NAME 
90 CON At5tLXUB VECTOR NAME 
91 CON At5tUYUB VECTOR NAME 
92 CON Ai5tUXLB VECTOR NAME 
93 CON At5tLXL~ VECTOR NAME 
94 CON At5tLYLB VECTOR NAME 
95 CON At3tEND END KEY\'JORD 
96 CON 0,2 COMMAND LENGTH 
97 CON At3tEOT EOT KEY\~ORD 
98 CON Dt2 COMMAND LENGTH 

--
3) Because no vectors were specifie~ in the TB~ ~tatement, 

only the variable name component of the associated value· 

statements will be e~amined by OPO. Thus, the value compo-· 

nents. of the va1ue statements need not be explicitly zero~d -

~ltho:-igh the words- must be allocated· (see. cards 73-84)-~ 
"- .... 



APPENDIX F 

REPORT FORMATS 

. j 



APPENDIX F 

.REPORT FORMATS 

Iteration Log 

The iteration log is printed under control of the report con­

trol parameter RPRT. If this parameter contains a one (1), 

iteration l~gs are printed as often as specified in the parameter 

MXIL. 

If the user makes no specification; every tenth iteration is 

The iteration log will prese~t the followi~g data: 

1) .KITT, number of iterations in move 

2) Index of variable entering basis 

3) Index of variabl~ leaving basis 

4) Value of the pivot element for the iteration-· 

5) OBJL, value of the objective functi~n after iteration 

6) Cause of iteration (O inversion, 1 optimize)· 

7) Unit and optimizer data set identification 

' - ·. 

NOTE 

Independent variables are indexed from 1. · 
Dependent variables are indexed from 1001. · 



Subset Seleat Log 

Subset select cycles are l~gged if iterations are 1~9ged., 

They may be specified without iteration l~gs by placi~g a two '(2) 

in the report control parameter RPRT. The frequency of l~ggi~g 

is specified in MXSS. Subset select cycles will be l~gged for 

optimize .cycles, but not irivert cycles. 

The subset select l~g will present the followi~g data. 

f 
l 

1) KSSS t number of subset select cycles in step~ 

2) KXCH number of excha~ges made in cycle. 

3) KXBS the number of pivot steps involved in transformi~g· 

the matrix 

4) OBJL the objective function value. 

5) KITT the number of iterations in move. 

6) KRET number. of variables rejected due to unacceptable 

pivots. 

7) UNIT and ODS identification . 

. . 

F-:3 



Step Logs 

Step l~gs will be printed if subset select l~gs are printed. 

Step logs may be printed without subset select logs by placing a 

four (4) in the parameter RPRT. The frequency of printi~g step 

l~gs is controlled by the parameter MXSL. 

If the user makes no specifications, every tenth step is 

logged. 

The step l~gs will present the following data. 

1) KSTP number of steps.completed in move 

2) OBJL objective function value 

3) KITT number of iterations in move 

4) KSSS numbers of subset select cycles in step 

5) KREJ nurober of variables rejected due to unacceptable 

pivots. 

6) UNIT and ODS identification 



Solution Report 

The solution report is printed under control of the report 

control parameter RPRJ. If this parameter contains an e~ght (8),. 

a solution.report is printed at the end' of each move and at step 

intervals specified by the parameter MXSO. 

If the user makes no specification, the solution report is 

printed at the end ·of each move. 

l 
The solution report.will present the followi~g data. 

1) UNIT identification· 

2) Optimizer DATA SET identification 

3) Time of day 

4) KSTP the number of steps in the move 

5) OBJL the value of the objective function·at the end of 

the move 

6). KITT the number of iterations in· the move 

7) The number of infeasibilities· 

8) The number of var1ables outside the· target ra~ge . 

9) The improvement in the objective function 

' '·. ~ . ' , .. 

. , ' 
, ,< /. 



For each variable the solution_ Fepo~t will show: 

1) Variable label. 

2) Optimum value of the variable. For independent variables, 

this is the value determined by the solution.- For dependent 

variables, this is the value_ generated by calli~g MODEL 

with the optimum values of the independent variables. 

3) Status indicates the status of the variable at the 

optimum with _respect to four types of bounds; 

a) OL (outer -limits) 

b) ML (move limits} 

c) TG (targets) 

d) ST (step limits) 

The status indicators are interpreted as follows: 

-2 optimum value is less than lower limit 

-1 optimum value is at the lower limit 

0 optimum value is between lower and upper limits 

1 optimum value is at upper limit 

·2 optimum value ·is gr~ater than upper limit 

9 the variable is not bei~g .set by·· the LP 

.. 

- '~ 

F-6 



4) BOUNDS gives the most restrictive limits of feasibility. 

which were applicable for each step. Each ~ound value is 

fol-lowed ~Y a code which denotes the type of limit which 

was the boundi~g value. 

l =outer limit· 

2 =move limit· 

3 = step limit 

S) 'Target ·gives the upper and lower limits of the ta~get. 

ra~ge for the variable. 

. . 

F-7 · 



Reduced Cost Report 

The reduced cost report is printed under.control of the re-

port control parameter RPRT. If this parameter contains a _six­

teen (16), a reduced cost report is printed at the end of each 

move and at step intervals specified by the parameter MXRC. 

If the user.makes no specification, the reduced cost report 

is printed at the end of each move. 

The reduced cost report will show: 

1) Variable name 

2) Indicator if variable is basic (B) 

3) Reduced cost, i-.e-., the cost-of-moving -a non-basic variable 
in the positive direction ~ · 

4) Effective cost, including target penalties, of movi~g a 
no'n-basic variable in the positive direction. 

p..:.g 



~epo~t Selecti~n 

Report RPRT Frequency 

Iteration L~g 1 at each MXIL iterations 

Subset Select LOG 1 or 2 at each MXSS subset 

select cycles 

Step L~gs 1 or 2 or 4 at each MXSL steps 
' ! 

I 
I 

Solution Report 8 at each MXSO steps 

and at end of move . 
. 

J Reduced Cost 16 at each MXRC steps 

Report and at end of move" 

Any combination of reports_may be obtained by setting RPRT 

to the sum of the settings required to get the individual reports. 

<I.' 

F-:9 

- '',._ 



Matrix Command Output 

The matrix command will cause the printing of a full matrix 

tableau. For each row and column the following datq will be in-

eluded:-

1) Variable identification 

NOTE 

Independent variables are indexed from 1, 
dependent variables are indexed from 1001 

2) Upper bound 

3) . Variable value -

For each non-basic variable (column) , there will be included 

the reduced cost (DJ). 

When the matrix con~a~ns more· columns than can fit on a 

single page, the excess columns are output on additional pages.-

,1 •', 

-.. 



Print Command Output 

The output gener~ted by a print command is a tabular output 

of all the vectors named in the print command. Seven vectors can 

be accommodated on a page. As many pages as necessary will be 

used to accommodate all the vec.tors named in the command. 

Each page will be headed by a line which includes: 

1) Unit identification 

2) Data set identification 

3) Time of day 

F-11 



Dump Command Output 

. The output of a dump command is a tabular output of all the 

vectors in a data set. Seven vectors can be accommodated on a 
.. 

page and as many pages as necessary a~e used to output the entire 

data set. Data set parameters are output as vectors of length 

one (1) • 

I 
: Each data set dump is headed by a line which includes: 

1) Unit identification 

2) Data set identification 

3)" Time of day 

F-12.· · 



REPORT FORMAT EXAMPLES 

ITERATION LOG 

INTERATION AAAA BBBB CCCC .DDDDDE+DD .FFFFFFFE+FF G HH II 

A = NUMBER OF ITERATIONS IN MOVE 
B = INDEX OF ENTERING VARIABLE· 
C = INDEX OF LEAVING VARIABLE 
D. = VALUE OF PIVOT 
F = NEW OBJECTIVE FUNCTION VALUE 
G = O,INVE~SION !,OPTIMIZATION 
H = UNIT 
r· = ODS 

SUBSET SELECTION LOG 

SUBSET SE~ AA AA BABB CCCC oDDDDDDDE+DD FFFF GGGG HH II 

STEP LOG 

A = NUMBER OF SS CYCLES IN STEP 
8 = NUMBER OF EXCHANGE MADE IN CYCLE 
C = NUMBER OF PIVOT STEPS IN UPDATE 
D = NEW OBJECTIVE VALUE 
F = NUMBER OF ITERATIONS IN MOVE 
G = NUMBER OF REJECTED PIVOTS 
H = UNIT IDENTIFIER 
I = ODS IDENTIFIER 

STEP LOG AAAA .BSBBBBBBE+BB -CCCCC DDDD FFFF GG HH 

A = NUtABER OF STEPS IN MOVE 
B = OBJECTIVE FUNCTION VALUE 
c = NUMBER OF ITERATIONS IN MOVE 
D = NUMBER OF SS CYCLES IN STEP 
F = NUMBER OF REJECTf:D PIVOTS 
G = UNIT IDENTIFIER 
·H = ODS rnENT IF I ER 

F-13. 



SOLUTIO!f REPORT 

UNIT ODS -- TIME ------ STEP OBJECTIVE------------
INTERATION --7-- INF OUT OF PNG -~~ OBJ IMP --------------· 

VARBL OPTIMUM 
LABEL VALUE 

STATUS 
OL ML TG ST 

BOUNDS TARGETS 
LOWER * UPPER * LOWER UPPER 

AAAA BBBBBBBE+BB CC DD EE FF GGGGGGGG H IIIIIIII J KKKKKKKK LLLLLLLL 

UNIT 

LABEL 

AAAA 
AAAA 

A = VARIABLE LABEL 
B = OPTIMUM VALUE 
c = OUTER L_IMIT STATUS 
D = MOVE LIMIT STATUS 
E = TARGET LIMIT STATUS 
F = STEP LIMlT STATUS 
G = LOWER SOUND VALUE 
H = LOWER BOUND TYPE 
I = UPPER BOUND VALUE 
J = UPPER BOUND TYPE 
K = LOWER TARGET VALUE 
L = UPPER TARGET VALUE 

REDUCED COST · 

REDUCED COST VARBL * DJ OJI 

AAAA B CCCCCCCCCCCCC DDDDDDDDDDDDD 

A = VARIABLE LABEL 
B = BASIC,8 OR NON-OASIC 
C = R~DUCED COST 
D = EFFECTIVE COST 

MAT COMMAND OUTPUT 

DATA SET TIME ------

UPPER SD 

·BBBBBE+B 
.88888fi+B 

AAAA. AAAA 

oBBBBBE+B .BBBBBE+B 

VALUE .cccccE+c oCCCCCE+C 

DJ oDDDDDE+D ·DDDDDE+D 

•CCCCCE+C efFFFFE+F ofFFFFE+F 
•CCCCCE+C -. FF.FFFE+F .FFFFFE+F 

A=VAR I ABLE. L.ABEL 
B=UPPER BOUND ON VARIABLE 
C=VARIABLE VALUE 
D=VARIABLES REDU(~6 COST 
F=MA TR IX EL_EMEN T VALUE . 

AAAA AAAA 

.BBBBBE+B .BBBBBE+B 

.cccccE+c .CCCCCE+C 

·DDDDDE+D .DDDDDE+D 

eFFFFFE+F oFFFFFE+F 
.FFFFFE+F oFFFFFE+F 

AAAA · 

oBBBBBE+B 

.cccCCE+C 

.DDDDDE+D 

.• FFFFFE+F. 
.FFFFFE+F 

F-14 



PRINT COMMAND OUTPUT 

UNIT -- DATA SET TIME ------

LABEL AAAA AAAA. AAAA AAAA AAAA 

BBBB .CCCC£E~C .CCCCCE+C .ccCCCE+C .cccCCE+C .CCCCCE+C 
BBBB .cccccE+C .CCCCCE+C .cccccE+C .ccCCCE+C .cccccE+C 

A=VECTOR LABEL· 
B=VARIABLE LABEL 
C=ELEMENT VALUE 

DUMP COMMAND OUTPUT 

UNIT DATA SET TIME ------

AAAA AAAA AAAA AAAA AAAA 

.BBBBBE+B .BBB8BE+B .BBBBBE+B .BBBBBE+B .BBBBBE+B 

cc cc cc cc cc cc cc cc 

.DDDDDE+D .DDDDDE+D .DDDDDE+D .DDDDDE+D 
eDDDDDE+D .DDDDDE+D .DDDDDE+D .DDDDDE+D 

A~PARAMETER LABEL 
B=PARAMETER VALUE 
C=VECTOR LABEL 
D=VECTOR ELEMENT VALUE 

F-15· 



APPENDIX G 

OPO STATUS REPORT 

•'.-



APPENDIX G 

OPO STATUS REPORT 

A typical example of the general appearance of the STATUS 

REPORT is shown. below. The numbers on the r~ght are note· number's 

to explanations of particular items in the report. 

QUEUE STATUS REPORT 

OPO BULK 0 /0030~400 /702000· 
UNALLOCATED OPO BULK /00520500 /466700 

UNIT 1 DESCRIP /026420 UNIT BULK /025700. 
UNSED UNIT BULK /00342200 /025700 
QUEUE PRIORITY 03 TIME 0938t8 TASK-IN-PROGRESS C7 

TASKS PRIORITY TIME SOLlRCE DATA SET 
C7 03 093848 1 /00104307 1 C 
A4 12 094034 CARD READER U 

DATA-SETS BASE LENGTH . -
u /00306400 /017400 

---li--C - - /003260.00 -/014200 . 

UNIT 2 DESCRIP /016432 UNIT BULK /00370100 /041400 
UNSED UNIT BULK /00511100 /004400 

·QUEUE EMPTY 
DATA-SETS BASE . LENGTH 
u /00410100 /020600 

UNIT 3 DESCRIP /016444 UNIT BULK /00431500 /037600 
UNIT DELETED . 

UNIT 4 DESCRIP /016456 UNIT BULK /00471300 /024200 
UNSED UNIT BULK /00430700 /000600 
QUEUE PRIORITY 07 TIME 093619 NO TASK-IN-PROGRESS 

TASKS PRIORITY TIME SOURCE DATA SET 
RP 07 093619 0 /007664 70 · I 

DATA-SETS BASE LENGTH 
u /00473300 ,/005400 
.1 /00500700 /004100 
2 c /00505000 /004100 

END REPORT 



NOT.ES 

1) The si~gle· number is 'the system bulk_controller number. 

The e~ght octal digit number following is the base address 

of OPO system bulk stor~ge. The last number is the or~ginal 

size of OPO bulk stor~ge. 

2) Wherever two numbers appear, as here, the first will be 

the base location and the second the size of the area. 

3) The permanent core location of Unit l's descriptor is 

/016420. -

14) The Task Time is the time the task was accepted by OPO. 

5) The letter ti· aria-·c-~meari~-Unit -common Data Set and Con-

trol .Data Set, respectively. 

6) Unit 2 has no tasks to execute, therefore, its queue is 

empty. 

7) Unit 3 has been deleted, but it's allocated stor~ge 

remains in force because of the existence of Unit 4. 

8) Although Unit 4 has tasks to process, none is currently 

in pr~g~ess. 

G-3 



"• > 

APPENDIX H 

INTERLOCK STATUS BLOCK 

H-1' 



APPENDIX H 

INTERLOCK STATUS BLOCK 

The interlock status block (ISK) structure is as follows: 

L 
23 COMMUNICATION AREA BASE LDC AT !_ON_ o 

(CADA) 
L+:t 

23 22 21 20 l 8 l 7 7 6 0 

WW WA co CABC CAL UN 

L+2 
23 ,0 

NUMBER OF READERS (NOR) 

Communioation Area Base Location (CABA) - The bulk memory address 

of the first word in the communication area. 

Communioation Area Bulk Controller (CABC) - The device number of 

the controller in charge of the bulk memory device holding the 

communication area. 

Write Waiting Flag (WW) - The flag is set (1) when a write opera-

tion utilizing the communication area is pending, either because 

a prior write operation on the area is in progress or because read 

operations on the area are in progress. The flag is reset (0) 

when there is no write operation waiting to modify the contents. of 

the communication area. 

Write Aotive Flag (WA) - The flag is set (1) when a write operation 

is currently modifying the contents 'of the communication area. 

The flag 'is reset (O) where there· is no write operation on the 

area cur~ently in execution. 

H-2 



Unit Number (UN) - If this 'item is zero, the communication area 

may be accessed by FIL or GET commands in a task directe·d at any 

defined,. ·or active, unit·. If the item is non-zero, it contains 

a unit number .. The communication area may be accessed only by 

FIL.and GET commands in tasks directed at the specified unit •. 

Control ODS Only· Write (CO) - If reset (0), the conuuunication area 

may be. accessed b¥ FIL or GET conuuands in a task directed at any 

data set - unit common, a test ODS, or the control ODS. If set 

(1), only FIL·and GET commands in tasks directed at a control ODS 

may access the area. 

Communication Area Length (CAL) - The number of words in the 

communication area. 

Number of Readers (NOR) - The number of programs currently reading 

data from the conuuunication area. Each reading program increments 

NOR by one just prior to initiating an operation on the area and 

decrements it by one when the operation is completed. No write 

operation on the area should be initiated while NOR is non-zero. 

H-3'. 



'Usage 

The user is responsible for the allocation in core memory of 

all required interlock status blocks. An interlock .status block 

may b~ assigned to pennanent core or to working core, at the user's 

option. However, the ISB addresses specified ~n FIL and GET com­

mands are absolute addresses. This means that if a specified ISB 

is relocated in core, its contents will be lost to,OPO. 

The communication area protection items are ~nly ?perable if 

external functional progrru~s accessing the areas properly update 

them. For instance, if an external functional program ~nitia~es 
- . 

a logical read consisting of 'several physical reads without incre-
1 . 

menting the Number of Readers, an OPO FIL command may initiate a 

write operation between execution of two reads and destroy data · 

desired by the external functional program. 

There should be at exactly one ISB for each bulk communica-

tion area that the user defines. Sharing an ISB betw~en two or 

more areas by modifying its contents or providing_two or more ISB's 

for a single area will most probably result in the loss of area 

protection •. 

..· 

H-4 



APPENDIX I 

STORAGE REQUIREMENTS 

I-=-1 



APPENDIX I 

STQRAGE REQUIREMENTS 

1.0 CORE STORAGE REQUIREMENTS 

The f ollowi~g requirements are based on the size of the . 

largest program in the OPO system. 

The minimum amount of core in which OPO can operate is 2000 

words. However, for increased efficiency, it is advisable to have 
i 

I 

appr~ximately ·4000 words"available for OPO so that more than one 

system. ~omponent can.reside in.core at a given time. 

In addition, OPO requires 50 words of conunon plus 10 words 

of common for each unit that the user's particular system can 
- ' 

handle. The maximum number of units to be perm~tted is specified 

when-the user's OPO system is installed; 

These requirements are in addition to any core required 

for the Monitor and other pr~grarns in the user's syst~m. 

\ ' .. · 

I-:2 



2.0 BULK STORAGE REQUIREMENTS 

The foll~wi~g·bulk storage estimates ·are based on the_v.ectors 

required for models and units. 

Quantities used in· the followi~g discussions are defined as 

follows: 

NX is the ·number of independent variables in the unit. 

_Ny is the number of dependent varlables in the unit~ 

The following restrictions hold on NX and .Ny. 

Nx < 100 

Ny < 100 

2.1 OPO System Bulk Storage 

OPO System Bulk Storagecontains system constants (such as 

vector and parameter names) and as a holding area for information 

which must be temporarily saved. The unit queues are also ·located. 

in this section of bulk. 

Fixed OPO System Bulk Storage: 

.Variable OPO System Bulk.Storage! 

256 words 

r4.U6~ ,631 •64 words 

I . 



where U is the maximum number of units that may be 

defined in the system and ral is the 

i~teger portion of a. 

Onit.task queues: U·64 words 

Total OPO System Bulk Storage: 256 + f4 •06: 631·64 
+ 64U words 

2.2 Unit Commqn Bulk Storage Requirements 

-

Each defined (LUCed) unit has a unit commo~ bulk area. Each 

unit common bulk area consists of an area fixed in size. The 

variable-sized area has lower and upper bounds. 

Fixed unit com.men bulk: 128 words· 

variable unit common bulk: 

Minimum size 

{r\: 6~ +I~\: 6~} ·64 words 

' • _.f 

Maximum area 

{rx :/~ +2o ~<Nx>:/~ + ~y :/~ 
, +22 ~(Ny) 6: 6iJ • 64 words 

Thus, ~given unit common may require from 

. -

c =·{;+· ·rNx :46 ~·+ r~y :4~Jl} ,, 
• 64 words. 

(H-1) 

(H-2) 

I-4 A 



To 

The actual size a giv~n unit conunon bulk area is given by: 

AC = c + 
[

X r2{Nx) + 631 
c . 64 -1 

0 < Xe < 20 

0 :5.. y c < 22 

whe:t:e Xe and ye· represent the number of editing vectors alloc.ated 
I 

in the unit common. Xe represents the number of editing vectors 

associated with independent process variables a~d Y
0

, the number 

associated with dependent _process variables. 

2.3 ODS Bulk Storage Requirements 

There. may be one to nine optimizer data sets in 8aah unit. 

A single ODS consists of a fixed and a variable area. The .vari-' 

able area is bounded above and below. 

Fixed ODS bulk: 128 words 

'_; 

I-SA -



Variable ODS bulk: the formulas for the variable area 

are le~gthy and will be developed 

in· stages. 

s = 6(Nx + 4) 

t = 2(Ny + 4) 

= ~{140~-:) + ~ r 

rl4o~:...s) 

~ q = . 2 

p = rNx - rq+ q -1 
)' 

(r!~31 + M = rF·t!~~ +p ~-t+631 64 . 

--- --- ·-~ - -- ---~----· ·---· 
j 

+ r 6 (Nx +4) + 631}·64 words 
64 (H-5) 

--~ - __ .,... _.,,. __ ~~---. --·- - . .:::,.. - ----. -

(M is the bulk stor~ge requirement for the LP matrix) 

Minimum variable ODS area (c} 
.. 

d M + (1s r (Nxl + 631 . f-2 {Ny) +' 6~ } .64 words . (H-6) , I :::: +13 
64 64 . 

I-6A~ 

'' - . 



Maximum ODS variable area (D) 

The actual size of a given ODS is: 

AD = d + {xo r2 cNx> 
6
: 6~ . f: (Ny) + 

+Yo 64 
6~} .64 words 

0 < XD < 6 - -
·o < y < 9 - D -

where x0 and Y0 represent, respective~y, the number of optional 

ODS vectors associated with independent variables (e.g. XDEL) and 

the number of optional ODS ·vectors associated with depende~t vari-

ables (e.g YTPN) that were allocated by the user in the ODS. 

2. 4· Total OPO Bul.k Storage Requirements . 

The total requirement can be a widely varyi~g quantity and 

depends on: 

1) The number of process units in the system 

2) The number of independent, dependent, and implicit 

process variables defined in each unit 

3) The number of optimizer.data. set~ (ODS) allocated in 

eaJ::h unit 

4) The number ?f optional unit common and ODS vectors 

allocated by the users in themits~ 
•. 

I-7A 

(H-8) ., ... 



Assuming the user has sufficient data ~t hand,. equations H-1 

through H-8 will allow him to determine the bulk storage require­

ments for any ODS, unit common, unit, or system. 

I-8 



APPENDIX J· 

HARm·lARE AND SOFTi·lARE (MONITOR) REQUIREMENTS 

J-1 ··.· 



APPENDIX J 

HARDWARE AND SOFTWARE (MONITOR) REQUIREMENTS 

Hardware 

1) GE/PAC 4000 (8K core minimum, 16K core recommended} 

2) I/O Typer 

3) Card Reader/Punch 

4) Line Printer 

5) Bulk ·Storage, Device {Disc, at least 131K) 

Software (Monitor) 

1) GE/PAC Monitor, I/O Typer OPR System (with calendar option). 

2) Find working core storage program, FMR. 

3) Run system subroutine program, RMP. 

4) Six (6) consecutive.functional program numbers. 

5) One functional program number for each process ·simulation 

program (MODEL) • 

6) Double precision quasi package. 

OPO assumes that the bulk storage device is read and written 

in blocks of 64 words. 

J-2 



·' 

APPENDIX K 

MODEL RESULT STORAGE RULES 

MZ-6-1 Added 11/30/66 _· K-1 



APPENDIX K 

MODEL RESULT STORAGE RULES 

When MODEL is called by OPO all communications are accom-

plished via a five word communications.area OPOMOD in permanent 

core. The fourth word of this communications area contains the 

location, on bulk, at.which MODEL must store its result •. 

This resu~t stor~ge location must be interpreted by MODEL as· 

follows for each model type. 

Type 0 - Assuming M dependent variables, MODE!, must compute 

M+l result values to be stored beginni~g at the bulk loca­

tion spec~fied at OPOMOD+3. 

The first value (Y ) is the value of the objective func-
0 

tion. The remaini~g M values are dependent (constraint} 

variable values. 

This rule applies to Model types 1 and 2 when they are 

called with the model type flag set to zero. 

All the result values must be double precision. 

YLOC+O OBJV 

+2 y 
:L 

+4 y2 

-• • 
• I-·--·-y ' +2M 
M 

MZ-6-1 K-2 



Type·1 - Assumi~g M dependent:variables MODEL must compute 

M+l result values to be stored beginning at the bulk loca-
- . -

tion specified at OPOMOD+3. 

The results for a type 1 MODEL are partia.1 · deri va ti ves 

of the M+l dependent variables and the objective function 

with respect to the independent variable specified in JMODL 

at OPOMOD+4. 

All result values must be double precision. 

YLOCTJ-.0 

2 

4 

• 
• 

2M 

a 

d 

a 

a 

OBJV 

yls f 

{' 
2· 

• 
• 

YM 

!lf_pe 2 - A type two MODEL may be used only when the whole LP 

Matrix will fit in core. 

If the active part of the problem has N independent and 

M dependent variables, and the users OPO system has MATSIZ 

·words available for matrix stor~ge then the matrix will fit 

core if:._ 

(6+2N)(4+~)~MATSIZ 

MZ-6-1 K-3 



A type 2 MODEL must comp~~e N double precision vectors, 

each of le?gth M+l elements. The i th vector is the set of 

partial derivatives of the dependent variables w~th respect 

to the i th independent var~able (refer to type !_above). 

The type 2 MODEL may compute rows and columns onZy for 

the variables which are active in the problem. 

' -

Mz-6-1 K-4 

-~ 



Given the starti~g location YLOC the MODEL must store 

) . the matrix as follows: 

f"!I 

YLOC+O d OBJV 
1 

d y 
1 1 

> COL :L . . 
+2M a y 

1 M 
- - ,... 

- - SKIP 3 ELEM 
+2M+8 a OBJV ['\ 

2 

+2M+lb a y 
2 .1 

. i COL 2 · 

. 
+4M+8 a y I 

2 M li 

- - SKIP 3 ELEM - -
~ 

+4M+l6 a O~JV 
3 

- ) COL 3 -
+6M+l6 a y 

3 M . 

--
-
-

+2(N-l)CM+4) aNOBJV ~ 

!'. 

+2CN-:1) CM+4}+2 a y 

+2CN-:L)(M+4)+2M 
N 1 : 

• : > COLN 

• 

-aNYM 
iJ. 

~ ~... .. .. 

MZ-6-1 .. K-5. 



APPENDIX L 

OPO SYSTEM LIMITATIONS AND RESTRICTIONS 

'· ' 

MZ-6-1 Added 11/30/66_ 



APPENDIX L 

OPO SYSTEM LIMITATIONS AND RESTRICTIONS 

Problem Size 

·Maximum problem size is one hundred independen·t and one hun-

dred dependent variables (100 ~ 100). 

The maximum size problem that can be· solved in-core is 
•. 

nominally (22-· x 22). This can be increased by increasi~1g the 

matrix work area above the standard 1400 words at assembly time. 

The ratio of trade-off between depen~ent and indep~ndent 

variables is proportional to the ratio of the·n~mber of dependent 

variables to the number of independent variables. 

lm //J.n = f'.fX/NY z y 

Data Sets and Units 

The maximum number of optimizer data sets per unit is 10. 

These may be up to 5 units in the standard system. This 

may be roodif ied at assembly time. 

· There-is one task queue per unit. The number of tasks 

waiti~g in a queue is restricted to l? •. This restriction may be 

relaxed at assembly time. 

The.re may· be one and only one control data set per unit., 

MZ-6-1 ~. L-2 · 

.· 



Model Restrictions 

A type two model may be used only when the matrix will fit 

in core. Refer to Appendix K. 

Dependent process variables must be continuous. 

Conve!gence in iterative procedures must be t~ght. 

All a~guments and results are double precision. 

MZ-6-1 L-3 



, 

GLOSSARY 

l· 



ACCEPT.TASK 

ACTIVE 
VARIABLES 

' COMMAND 

CONTROL 
DATA SE"T 

DEPENDENT 
VARIABLES 

EDITING 

GLOSSARY 

To insert a task into a task queue in preparation 

for execution of the task. 

The subset of the independent and dependent vari-, 

ables which is to be considered in s9lvi~g a par­

ticular model. 

- A statement specifying an action to be performed on 

a data set. 

- A data set which is.being used to control the process 

with which the unit is associated. There can be 

only one control data set in a unit. 

- The set of variables whose value is determined by 

the value of the independent variables. 

- A scheme by which limits are applied to quantities 

input to a data set. The purpose of editing is to 

detect possible errors. 

. 
EXTERNAL - Any functional program that is not incorporated in 
FUNCTIONAL 
PROGRAM the OPO. 

FILE - The process of loading, modifying, or deleting·qata 
MAINTENANCE 

sets by means of a set of commands grouped under the 
~ ~ .... . .. 

heading of file maintenance. 

2 .. 



IMPLICIT 
VARIABLES. 

The set of variables whose value is in part determined 

by itself. These variables are represented in the ·. 

ind.e_Pendent and dependent sets. 

INDEPENDENT - The set of variables which may be cha~ged by OPO in 
VARIABLES 

OPTIMIZER 
DATA )JET 

MOVE 

the optimization process. 

- Data needed to optimize process. A collection of 

vect9rs {costs, targets, etc.) plus. a~ L?. matrix. 

- The process of generating a recommended plant .posi-

tion. A move includes a series of steps. from a 

starting position to the optimum (recommended) posi-

tion. Each step is made by solvi~g an LP. · 

OPO - Online Process Optimization. 

RECOMMENDED - A set of values of the independent variables which, 
POSITION 

MODEL 

SOLVE 

accordi~g to the results of a solve, will yield an 

optimum value of the payoff. 

- A use~ supplied functional program which computes 

a set of values for the dependent variables when 

.given valueq of the independent variables. 

- To generate for a .. U~it,.by means of ~aki~g a move; 

a new recommended position. Optional reports may· 

be printed by the solution process. 

3 



START · 
POSITION 

STEP 

TARGET 

TASK 

i . 

TASK QUEUE 

·TEST 
DATA SET 

UNIT 

- A set of values of the independent variables which 

the user wants to use as a starti~g point for a 

solve. 

- The alteration of the recommended position made by 

solvi~g an LP.on a small ·r~gion of the solution 

space which is treated as bei~g linear. 

- A vector of values which are desirable for the in-

dependent or dependent variables. 

- A string of commands applying to one data set in 

one unit with an associated priority. Delimited by 

begin and end task commands. 

- A list of tasks waiting to be serviced. There is 

a separate queue for each unit. Queues are ser-

viced according to priority of h~ghest priority 

task waiti~g in queue. 

An optimizer data set which is not bei?g used to con­

trol the process. A unit in test mode. 

---.. ~ 

- A set of optimize data sets which pertain to a sin-
. . 

gle pr?cess (real or not) bei~g controlled • 

. • 

UNIT COMMON - A set ·of vectors coro.mon to all optim{ze-r data sets in 

~·unit i~cluding variable labels and editing vectors~/ 

VECTOR - A set of related quantities which apply to each of 

the independent or dependent variables. 

4 



ALPHABETICAL INDEX 

1 



SUBJECT 

ABORT TASK OPERATOR RESPONSE 
ACCEPT TASK FUNCTION 
ACCEPT TEST ODS COMMAND 

,EXTERNAL FORMAT . 
,INTERNAL FORMAT 

ACCEPT. RESTRICTION OPERATOR RESPONSE 
ACCEPT VALUE OPERATOR RESPONSE 
ACTIVITY INDICATORS 
ALT STATEMENT - REFER TO ALTER STATEMENT 
ALTER STATEMENT 

,EXTERNAL FORMAT 
,INTERNAL FOR.MAT 

ATD COMMAND - REFER TO DATA SET COMMAND 

BASIC, SCRATCH (SLACK) 
BEGIN TASK COMMAND 

,EXAMPLE 
,EXTERNAL FORMAT· 
,INTERNAL FORMAT 

BOUNDS, ON VARIABLES 
BUILD TEST ODS COMMAND 

, EXAMPLE . 
,EXTERNAL FORMAT 
,INTERNAL FORMAT 
PARAMETERS 

BTD COMMAND - REFER TO BUILD TEST ODS COMMAND 

CHARACTER SET 
COMMANDS 

,COMMUNICATION 
,CONTINUATION OF 
,CONTROL 
,EXTERNAL FORMATS 
7 INPUT 
~INTERNAL FORMATS 
,LENGTH 
,OUTPUT 
,REPRESENTATION 
,SOLVE 
,TASK DELIMITING 

COMMUNICATION INTERLOCK BLQCK 
. ,COMPONENTS 
,STRUCTURE 
,USE 

CONTROL TASK INTERRUPT TASK MANAGEMENT FUNCTION 

DATA f.D·ITING 
,ERROR RESPONSES 

DATA INPUT 
. ~~ ... 
': 

PAGE 

9-3A 
.. 8-5 

. 7-41. 
D-9 
E-21. 
9-4A 
9-3A 
7-8,E-7 

7-1.9,7-27,7-35 
D-5 
E-1.6 

7-55 
6-5,7-10,D-2 
6-5 
D-2 
E-1.:1 
2-2,3-l,APPENDIX A 
6-5,7-13,7-30 
6-5,7-36 
D-3 
E-:L2 
7-31. 

7-6 
7,4-2,APP.D,APP.E 
7-45 
7-3 
7-4:1 
APPENDIX D 
7-:L2 
APPENDIX .E 
E-4 
7-56 
1-2 
7-55 
7-:LOA 
7-45,7-46,APP.H 
7-50,H-2 
APPENDIX H 
7-49,M-4 
a.:..1 · 

6-l,6-317-30A,APP.B 
9-3A 
7-l2A,7-~4,7-30A 

'2 



SUBJECT 

DATA SET 
INDICATORS 
,OPTIMIZER 
~UNIT COMMON 

DCL STATEMENT - REFER TO DECLARE STATEMENT 
DECLARE STATEMENT 

. ,EXAMPLE 
,EXTERNAL FORMAT 
,INTERNAL FORMAT 
tWITH BTD COMMAND 
,WITH LUC COMMAND 

DEFINE STATEMENT 
, EXAMPLE . 
,INTERNAL FORMAT 

DELETE TASK (TASK MANAGEMENT FUNCTION) 
DELETE TEST ODS COMMAND 

,EXTERNAL FORMAT 
, INTERNAL FORMAT · 

DELETE UNIT COMMON COMMAND 
,EXTERNAL FORMAT 
,INTERNAL FORMAT 

DiAGNOSTIC SCAN FUNCTION 
DMP COMMAND - REFER TO DUMP COMMAND 
DTD COMMAND - REFER TO DELETE TEST ODS COMMAND. 
DUC COMMAND - REFER TO DELETE UNIT COMMON COMMAND 
DUMP COMMAND 

,EXTERNAL FORMAT 
,INTERNAL FORMAT 
,RESULTS OF 

EDITING - REFER TO DATA EDITING 
END STATEMENT - REFER TO END DATA STATEMENT 
END DATA STATEMENT 

,EXTERNAL FORMAT 
,INTERNAL FORMAT 

END TAB STATEMENT 
,EXAMPLE 
,EXTERNAL FORMAT 
,INTERNAL FORMAT 

END OF TASK COMMAND 
,EXAMPLE 
,EXTERNAL FORMAT 
, INTERNAL FORMAT 

ENT ~TATEM.ENT - REFER TO END TAB STATEMENT · 
EDT COMMAND - REFER TD END OF TASK COMMAND 
ERROR, PROCESSING 

, CLASSES. · 
, EXAMPLE. 
,MESSAGES 
,NOTIFICATION TO OPERATOR. 
,RESPONSES 

SEC.6,APP.A,APP.B 
7-8,7-tOA,7-ttA,E-7 
6-2,APPENDIX A 
6-:L,APPENDIX B 

7-J,3 
- 6-5 

D-:h4· 
E-:L3 
7-32 
7-22 
1-20,1-28,7-32 
6-5 
E-:L9 . 
8-3,8-6 
7-42 
D-9 
E-2:t 
7-42 
D-9 · 
3-2:t 
8-2 

7-62 
D-:t:t 
E-23 
F-:L2,F-t5 

7-20 
D-7 
E-:L9 
7-:LS 
6-5 
D-7 
E-:L8 
7-:L2A 
6-5 
D-:h:L 
E-23 

SECTION 9 
9-2A 
9-6A 
9-5 
9-4A 
9-:L,9-.2A,9-5 

3 



SUBJECT 

FILE COMMAND 
,EXAMPLE 
,EXTERNAL FORMAT 
, INTERNAL FORMAT 

FIN CONTROL CARD 
,EXAMPLE 

GET COMMAND 
,EXAMPLE 
,EXTERNAL FORMAT 
,INTERNAL FORMAT -

GET TASK FROM CARD READER FUNCTION 
~ ' 

HARDWARE REQUIREMENTS 
HOLD ERROR RESPONSE 

IDENTIFIERS, TASK 
IGNORE OPERATOR RESPONSE 
INTERLOCK STATUS BLOCK - REFER TO COMMUNICATION 

INTERLOCK 
INTERNAL TASKS 

· , TASKS EXAMPLE 
ITERATION LOG . 

,EXAMPLE 

LINEARIZATION OF NON-LINEAR PROBLEM 
LOAD UNIT COMMON COMMAND 

,EXAMPLE 
,EXTERNAL FORMAT 
,INTERNAL FORMAT 

LOGS 
LUC COMMAND - REFER TO LOAD UNIT COMMON COMMAND 

NAT COMMAND. -··:REF ER TO t'.A TR IX C GM MAND . 
MATRIX COMMAND 

,EXTERNAL FORMAT 
, · , INTERNAL FORMAT. 

,RESULTS OF 
. MATRIX, LP 

,COEFFICIENTS 
,MAXIMUM DIMENS!ONS 

MOD COMMAND - REFER TO MODIFY COMMAND 
MODEL 

• <_, 

,COMPUTATIONAL METHODS 
;.EXAMPLE 
,INTERFACE WITH OPO 
,TYPES 
, TYPE 0 . 
, TYPE 1. . 
,TYPE 2 
,TYPE FLAG . 
,REQUIRED CHARACTERISTICS 

PAGE 

.. 7-45' 
6.-5 
n:..a 
E-20 
7-:L2A 
6-5 

7-48 
6-5 
D-8 
E-20 
8-2 

APPENDIX J 
9-2A 

7-7,E-8 
9-3A 

APPENDIX E 
E-23 
7-56,F-2· 
F-:L3 

3-2. 
7-:L3,7-2:1A 
6-5,7-28 
D-2 
E-12 
7-56,APPENDIX F 

·1-60 
D-:1:1 
E-22 -. 
F-:LO,F-:L4 
3-2 
5-:L 

3 - 2 ' s E c • 5 ' L1:-- :L 
5-2· 
7-4,5-9 
5-5 

. s·-3A 
5~3A 

5-'1-A 
5-4A 
5-5 
5-2 . 

4 



SUBJECT 

MODIFY COMMAND 
,EXAMPLE 
,EXTERNAL FORMAT 
, INTERNAL FORM.AT 

MONITOR REQUIREMENTS 
MOVE 

,DEFINITION 
MOVE UP TASK (TASK MANAGEMENT FUNCTION) 

NUMBERS 
,DECIMAL,FLOATING POINT REPRESENTATION 
,DECIMAL, INTEGER REPRESENTATION 
,OCTAL, INT~GER REPRESENTATION 

OPTIMIZER DATA SET 
,CONTROL 
·,DATA INPUT FOR 
,OPTIONAL SUBSET.· 
,REQUIRED SUBSET 
,TEST 

OUTPUT 
,COMMANDS 
,EXAMPLE 
, FORMATS 

PAR STATEMENT - REFER TO PARAMETER STATEMENT 
PARAMETERS, SYSTEM 

,OPTIMIZER DATA SET 
,UNIT COMMON 

PARAMETER STATEMENT 
,EXAMPLES 
,EXTERNAL FORMAT 
, INTERNAL FORMAT 

PARTIAL DERIVATIVES 
PRINT COMMAND 

,EXTERNAL FORMAT 
, INTERNAL FORMAT 
,RESULTS OF 

PRT COMMAND - REFER TO PRINT COMMAND 

REDUCED COST REPORT 
, EXAMPLE OF-­

REPORTS 
,EXAMPLES 
,SELECTION OF 

RESET RESTRICTION OPERATOR RESPONSE 

SAV COMMAND - REFER TO SAVE COMMAND 
SAVE COMMAND 

,EXTERNAL FORMAT 
, INTERNAL FORMAT 

PAGE 

7-:13,7-37t7-60 
7-40 
D-3 
E-13 
APPENDIX J 
3-:L,7-56 
3-:L 

·.a-3,a-s 

7-9,E-6 
7-9 
7-9 
7-10A 

4-:L,7-30,APP.A 
1+-6 f 7-4:L 
7-30A 
A-3 
A-2 
4-6 c • 

7-56 
7-60 
7-4 
APPENDIX F,7-56 

4-5,7-14 
6-2,7-30A,A-2 
6-li,7-22,B-2 
7-~4,7-22,7-38,7-31 

6-5 
D-4 
E-:L4 
?-2,5-3 
7-61 
D-:LO 
E-22 
F-li:L,F-15 

7-59,F-8 
F-14 
APPENDIX F 
F-:L3 
F-·9 
9:..4A 

7-44 
D-:LO 
E-2:L 



SUBJECT 

SET STATEMENT 
,EXTERNAL FORMAT 
,INTERNAL FORMAT 

SKIP OPERATOR RESPONSE 
SOL COMMAND - REFER TO SOLVE COMMAND 
SOLUTION REPORT 

,EXAMPLE OF 
SOLVE COMMAND 

,EXAMPLE 
,EXTERNAL FORMAT 
,INTERNAL FORMAT 

STANDARD OPERATOR RESPONSE 
STATUS TASK MANAGEMENT FUNCTION 

,RESULTS OF 
STATEMENTS, DATA 
STEP, DEFINITION 

LOGS 
LIMITS 
SIZE 

STEP LOGS 
. t EXAMPLE OF 

STO~AGE REQUIREMENTS 
SUBSET SELECT LOG 

,EXAMPLE OF 
SUBSTITUTE NEW VALUE OPERATOR RESPONSE 

TARGETS, FOR VARIABLES 
TASK, EXTERNAL . 

,CONTROL INTERRUPT 
,DEFINITION 
,EXAMPLE 
,IDENTIFIER 
,INTERNAL 
,PRIORITY 
, STATUS ~~ORD 

TASK MANAGEMENT FUNCTIONS 
,AVAILABLE TO INTERNAL USERS 
rAVAILABLE TO bPERATOR 
,EXAMPLES 

T.BX STATEMENT 
,EXAMPLES 
,EXTERNAL FORMAT 
,INTERNAL FORMAT· 

TBY STATEMENT 
,EXAMPLES 
·'EXTERNAL FORMAT 
, INTERNAL FORMAT 

/ 

TOP COMMAND - REFER TO TURN ON PROGRAM COMMAND 
TURN ON PROGRAM COMMAND 

,EXAMPLE 
, EXTERNAL FORMAT . 
, INTERNAL FORMAT .. 

PAGE 

7-15,7-23,7-33,7-39 
D-5 
E-15 
9-3 

7-58,F-5 
F-14 
7-55 
6-5 
D-:10 
E-22 
9-4A 
8-3,APPENDIX. G 
APPENDIX G 
7-:L3 
3-l t. 

7-57 
5-8 
3-2 
7-57 ,"F-Lt 
F-13 
APPENDIX I 
7-57,F-3 
F-:L3 
9-4A 

2-2 
4-4 
8-7 
4-4 
6-4 
7-7,7-:LOA,7-:L:LA,E-8 
4-4,APPENDIX E 
7-9,7-:LOA,7-:L:LA 
E-2,E-8 
8,4-4 . 
8-:L,8-4,8-:11 
8-:L,8-4 
6-4,'6-9,8-418-1.l 
7-16,7-34,7-38 
6-5,7-:LSA,7-26 
D-6 
E::..16 . 
7-16,7-34,7-38 
6-5,7-l8A,7-26 
D-6 
E-:L7 

7-43 
. 6-5 

D-9 
E-2:1. 

6 



SUBJECT 

UNIT BULK SIZE 
UNIT COMMON DATA SET 

,LOADING 
,OPTIONAL SUBSET 
_,REQUIRED SUBS ET 
,VECTOR DECLARATIONS 

UNIT NUMBER 

VALUE STATEMENT 
,EXAMPLES 
,EXTERNAL FORMAT 
,INTERNAC FORMAT 

VARIABLES 
,DECLARATION OF 
,DEPENDENT PROCESS 
,IMPLICIT 
,INDEPENDENT PROCESS 
,NAMES 

VECTORS 
,DECLARATION 
,DEFINITIONS 
,NAMES 
,OPTIMIZER DATA SET. 
,UNIT COMMON 
,INTERNAL 

.·• 

PAGE 

· 7-2:1A 
4-:L,6-l,APPENDIX B 
7-2:1A,7-23 
6-:1,B-2 
6-:1,B-2 
7-22,7-23 
7-:L:LA 

7-:16 
6-5,7-:18A~7-26 
D-7 . 
E-:18 
2-:1,3 
7-25 
2-:1; 
2-:1~7-2:1A,4-5,5-8,5-3 
2-:1 
7-7,4-:L,7-lSA,E-5 
4-5 
7 - :13 ; 7 - 2 2 .­
APPENDIX A, ·APP.B 
7-7,APP.A,APP.B,E-5 
6-2,7-32,APP.A 
6-:L,APP.B 
APPENDIX C 

. 3 7 


	00_0-01
	01_1-01
	01_1-02
	01_2-01
	01_2-02
	01_2-03
	01_3-01
	01_3-02
	01_3-03
	01_4-01
	01_5-00
	01_5-01
	01_5-02
	01_5-03
	01_5-04
	01_5-05
	01_5-06
	01_5-07
	01_5-08
	01_5-09
	01_5-10
	01_5-11
	01_6-01
	01_6-02
	01_6-03
	01_6-04
	01_6-05
	01_6-06
	02_1-01
	02_1-02
	02_1-03
	03_0-00_progr_techniques
	03_0-01
	03_0-02
	03_0-03
	03_0-04
	03_1-001
	03_1-002
	03_1-003
	03_1-004
	03_1-005
	03_1-006
	03_1-007
	03_1-008
	03_1-009
	03_1-010
	03_1-011
	03_1-012
	03_1-013
	03_1-014
	03_1-015
	03_1-016
	03_1-017
	03_1-018
	03_1-019
	03_1-020
	03_1-021
	03_1-023
	03_1-024
	03_1-025
	03_1-026
	03_1-027
	03_1-028
	03_1-029
	03_1-030
	03_1-031
	03_1-032
	03_1-033
	03_1-034
	03_1-035
	03_1-036
	03_1-037
	03_1-038
	03_1-039
	03_1-041
	03_1-042
	03_1-043
	03_1-044
	03_1-045
	03_1-047
	03_1-048
	03_1-049
	03_1-050
	03_1-051
	03_1-052
	03_1-053
	03_1-054
	03_1-055
	03_1-056
	03_1-057
	03_1-058
	03_1-059
	03_1-060
	03_1-061
	03_1-062
	03_1-063
	03_1-064
	03_1-065
	03_1-066
	03_1-067
	03_1-068
	03_1-069
	03_1-070
	03_1-071
	03_1-072
	03_1-073
	03_1-074
	03_1-075
	03_1-076
	03_1-077
	03_1-078
	03_1-079
	03_1-080
	03_1-081
	03_1-082
	03_1-083
	03_1-084
	03_1-085
	03_1-086
	03_1-087
	03_1-088
	03_1-089
	03_1-090
	03_1-091
	03_1-092
	03_1-093
	03_1-094
	03_1-095
	03_1-096
	03_1-097
	03_1-098
	03_1-099
	03_1-100
	03_1-101
	03_1-102
	03_1-103
	03_1-104
	03_1-105
	03_1-106
	03_1-107
	03_1-108
	04_1-001_process_asm
	04_1-002
	04_1-003
	04_1-004
	04_1-005
	04_1-01
	04_1-02
	04_1-03
	04_1-04
	04_1-05
	04_1-07
	04_1-08
	04_1-09
	04_1-10
	04_1-11
	04_1-12
	04_1-13
	04_1-14
	04_1-15
	04_1-16
	04_1-17
	04_1-18
	04_1-19
	04_1-20
	04_1-21
	04_1-22
	04_1-23
	04_1-24
	04_1-25
	04_1-26
	04_1-27
	04_1-28
	04_1-29
	04_1-30
	04_1-31
	04_1-32
	04_1-33
	04_2-00_pal225
	04_2-01
	04_2-02
	04_2-03
	04_2-04
	04_2-05
	04_2-a-01
	04_2-b-01
	04_2-b-02
	04_2-b-03
	04_2-b-04
	04_2-b-05
	04_2-b-06
	05_1-000
	05_1-001
	05_1-002
	05_1-003
	05_1-01
	05_1-02
	05_1-03
	05_1-04
	05_1-05
	05_1-06
	05_1-07
	05_1-08
	05_1-09
	05_1-10
	05_1-11
	05_1-12
	05_1-13
	05_1-14
	05_1-15
	05_1-16
	05_1-17
	05_1-18
	05_1-19
	05_1-20
	05_1-21
	05_1-22
	05_1-23
	05_1-24
	05_1-25
	05_1-26
	05_1-27
	05_1-28
	05_1-29
	05_1-30
	05_1-31
	05_1-32
	05_1-33
	05_1-34
	05_1-35
	05_1-36
	05_1-37
	05_1-38
	05_1-39
	05_1-40
	05_1-41
	05_1-42
	05_1-43
	05_1-44
	05_1-45
	05_1-46
	05_1-47
	05_1-48
	05_1-49
	05_2-001_double-word_fortran
	05_2-002
	05_2-003
	05_2-01
	05_2-02
	05_2-03
	05_2-04
	05_2-05
	05_2-06
	05_2-07
	05_2-08
	05_2-09
	05_2-10
	05_2-11
	05_2-12
	05_2-13
	05_2-14
	05_2-15
	05_2-16
	05_2-17
	05_2-18
	05_2-19
	05_2-20
	05_2-21
	05_2-22
	05_2-23
	05_2-24
	05_2-25
	05_2-26
	05_2-27
	05_2-28
	05_2-29
	05_2-30
	05_2-31
	05_2-32
	05_2-33
	05_2-34
	05_2-35
	05_2-36
	05_2-37
	05_2-38
	05_2-39
	05_2-40
	05_2-41
	05_2-42
	05_2-43
	05_2-44
	05_2-45
	05_2-46
	05_2-47
	05_2-48
	05_2-49
	05_2-50
	05_2-51
	06_1-001_monitor_training
	06_1-002
	06_1-003
	06_1-004
	06_1-005
	06_1-006
	06_1-01
	06_1-02
	06_1-03
	06_1-04
	06_1-05
	06_1-06
	06_1-07
	06_1-08
	06_1-09
	06_1-10
	06_1-11
	06_1-12
	06_1-13
	06_1-14
	06_1-15
	06_1-16
	06_1-17
	06_1-18
	06_1-19
	06_1-20
	06_1-21
	06_1-22
	06_1-23
	06_1-24
	06_1-25
	06_1-26
	06_1-27
	06_1-28
	06_1-29
	06_1-30
	06_1-31
	06_1-32
	06_1-33
	06_1-34
	06_1-35
	06_1-36
	06_1-37
	06_1-38
	06_1-39
	06_1-40
	06_1-41
	06_1-42
	06_1-43
	06_1-44
	06_1-A-01
	06_1-A-02
	06_1-B-01
	06_1-C-01
	06_1-C-02
	06_2-001_monitor_um
	06_2-002
	06_2-003
	06_2-004
	06_2-005
	06_2-007
	06_2-009
	06_2-00b
	06_2-01
	06_2-02
	06_2-03
	06_2-04
	06_2-05
	06_2-06
	06_2-07
	06_2-08
	06_2-09
	06_2-10
	06_2-11
	06_2-12
	06_2-13
	06_2-14
	06_2-15
	06_2-16
	06_2-17
	06_2-18
	06_2-19
	06_2-20
	06_2-21
	06_2-22
	06_2-23
	06_2-24
	06_2-25
	06_2-26
	06_2-27
	06_2-28
	06_2-29
	06_2-30
	06_2-31
	06_2-32
	06_2-33
	06_2-34
	06_2-35
	06_2-36
	06_2-37
	06_2-38
	06_2-39
	06_2-40
	06_2-41
	06_2-42
	06_2-43
	06_2-44
	06_2-45
	06_2-46
	06_2-47
	06_2-A-01
	06_2-A-02
	06_2-B-01
	06_2-C-01
	06_2-C-02
	06_2-D-01
	06_2-D-02
	06_2-D-03
	06_2-D-04
	06_2-D-05
	06_2-D-06
	06_2-D-07
	06_2-D-08
	06_2-D-09
	06_2-D-10
	06_2-D-11
	06_2-D-12
	06_2-D-13
	06_2-D-14
	06_2-D-15
	06_2-D-16
	06_3-001_tasc
	06_3-002
	06_3-003
	06_3-004
	06_3-005
	06_3-006
	06_3-01
	06_3-02
	06_3-03
	06_3-04
	06_3-05
	06_3-06
	06_3-07
	06_3-08
	06_3-09
	06_3-10
	06_3-11
	06_3-12
	06_3-13
	06_3-14
	06_3-15
	06_3-16
	06_3-17
	06_3-18
	06_3-19
	06_3-20
	06_3-21
	06_3-22
	06_3-23
	06_3-24
	06_3-25
	06_3-26
	06_3-27
	06_3-28
	06_3-29
	06_3-30
	06_3-31
	06_3-32
	06_3-33
	06_3-34
	06_3-35
	06_3-36
	06_3-37
	06_3-38
	06_3-39
	06_3-40
	06_3-41
	06_3-42
	06_3-43
	06_3-44
	06_3-45
	06_3-46
	06_3-47
	06_3-48
	06_3-49
	06_3-50
	06_3-51
	06_3-52
	06_3-53
	06_3-54
	06_3-55
	06_3-56
	06_3-57
	06_3-58
	07_1-001_free-time
	07_1-002
	07_1-003
	07_1-004
	07_1-005
	07_1-006
	07_1-01
	07_1-02
	07_1-03
	07_1-04
	07_2-01
	07_3-01
	07_3-02
	07_3-03
	07_3-04
	07_3-05
	07_3-06
	07_3-07
	07_3-08
	07_3-09
	07_3-10
	07_3-11
	07_3-12
	07_3-13
	07_3-14
	07_3-15
	07_3-16
	07_3-17
	07_3-18
	07_3-19
	07_3-20
	07_3-21
	07_3-22
	07_3-23
	07_3-24
	07_3-25
	07_3-26
	07_3-27
	07_3-28
	07_3-29
	07_3-30
	07_3-31
	07_3-32
	07_4-01
	07_4-02
	07_A-01
	07_B-01
	07_B-02
	07_C-01
	07_C-02
	07_C-03
	07_C-04
	07_D-01
	08_1-001
	08_1-002
	08_1-003
	08_1-004
	08_1-005
	08_1-01
	08_1-03
	08_1-05
	08_1-07
	08_1-08
	08_1-09
	08_1-11
	08_1-12
	08_1-13
	08_1-14
	08_1-15
	08_1-16
	08_1-17
	08_1-18
	08_1-19
	08_1-20
	08_1-21
	08_1-22
	08_1-23
	08_1-24
	08_1-25
	08_1-26
	08_1-27
	08_1-28
	08_1-29
	08_1-30
	08_1-31
	08_1-32
	08_1-33
	08_1-34
	08_1-35
	08_1-36
	08_1-37
	08_1-39
	08_1-40
	08_1-41
	08_1-42
	08_1-43
	08_1-44
	08_1-45
	08_1-46
	08_1-47
	08_1-48
	08_1-49
	08_1-51
	08_1-52
	08_1-53
	08_1-55
	08_1-57
	08_1-58
	08_1-59
	08_1-60
	08_1-61
	08_1-62
	08_1-63
	09_1-00001_monitor
	09_1-00002
	09_1-00003
	09_1-00004
	09_1-00005
	09_1-00007
	09_1-00009
	09_1-00010
	09_1-00011
	09_1-001
	09_1-002
	09_1-003
	09_1-004
	09_1-005
	09_1-006
	09_1-007
	09_1-008
	09_1-009
	09_1-010
	09_1-011
	09_1-012
	09_1-013
	09_1-014
	09_1-015
	09_1-016
	09_1-017
	09_1-018
	09_1-019
	09_1-020
	09_1-021
	09_1-022
	09_1-023
	09_1-024
	09_1-025
	09_1-026
	09_1-027
	09_1-028
	09_1-029
	09_1-030
	09_1-031
	09_1-032
	09_1-033
	09_1-034
	09_1-035
	09_1-036
	09_1-037
	09_1-038
	09_1-039
	09_1-040
	09_1-041
	09_1-042
	09_1-043
	09_1-044
	09_1-045
	09_1-046
	09_1-047
	09_1-048
	09_1-049
	09_1-050
	09_1-051
	09_1-052
	09_1-053
	09_1-054
	09_1-055
	09_1-056
	09_1-057
	09_1-058
	09_1-059
	09_1-060
	09_1-061
	09_1-062
	09_1-063
	09_1-064
	09_1-065
	09_1-066
	09_1-067
	09_1-068
	09_1-069
	09_1-070
	09_1-071
	09_1-072
	09_1-073
	09_1-074
	09_1-075
	09_1-076
	09_1-077
	09_1-078
	09_1-079
	09_1-080
	09_1-081
	09_1-082
	09_1-083
	09_1-084
	09_1-085
	09_1-086
	09_1-087
	09_1-088
	09_1-089
	09_1-090
	09_1-091
	09_1-092
	09_1-093
	09_1-094
	09_1-095
	09_1-096
	09_1-097
	09_1-098
	09_1-099
	09_1-100
	09_1-101
	09_1-102
	09_1-103
	09_1-104
	09_1-105
	09_1-106
	09_1-107
	09_2-01
	09_2-02
	09_2-03
	09_2-04
	09_2-05
	09_2-06
	10_1-001_proc_asm
	10_1-002
	10_1-003
	10_1-005
	10_1-01
	10_1-02
	10_1-03
	10_1-05
	10_1-06
	10_1-07
	10_1-08
	10_1-09
	10_1-10
	10_1-11
	10_1-12
	10_1-13
	10_1-14
	10_1-15
	10_1-16
	10_1-17
	10_1-19
	10_1-20
	10_1-21
	10_1-22
	10_1-23
	10_1-24
	10_1-25
	10_1-26
	11_1-0001_proc_optim
	11_1-0002
	11_1-0003
	11_1-001
	11_1-002
	11_1-003
	11_1-004
	11_1-005
	11_1-006
	11_1-01
	11_2-01
	11_2-02
	11_3-01
	11_3-02
	11_4-01
	11_4-02
	11_4-03
	11_4-04
	11_4-05
	11_4-06
	11_4-07
	11_5-01
	11_5-02
	11_5-03
	11_5-04
	11_5-05
	11_5-06
	11_5-07
	11_5-08
	11_5-09
	11_5-10
	11_5-11
	11_5-12
	11_6-01
	11_6-02
	11_6-03
	11_6-04
	11_6-05
	11_6-06
	11_6-07
	11_6-08
	11_6-09
	11_6-10
	11_7-01
	11_7-02
	11_7-03
	11_7-04
	11_7-05
	11_7-06
	11_7-07
	11_7-08
	11_7-09
	11_7-10
	11_7-11
	11_7-12
	11_7-13
	11_7-14
	11_7-15
	11_7-16
	11_7-17
	11_7-18
	11_7-19
	11_7-20
	11_7-21
	11_7-22
	11_7-23
	11_7-24
	11_7-25
	11_7-26
	11_7-27
	11_7-28
	11_7-29
	11_7-30
	11_7-31
	11_7-32
	11_7-33
	11_7-34
	11_7-35
	11_7-36
	11_7-37
	11_7-38
	11_7-39
	11_7-40
	11_7-41
	11_7-42
	11_7-43
	11_7-44
	11_7-45
	11_7-46
	11_7-47
	11_7-48
	11_7-49
	11_7-50
	11_7-51
	11_7-52
	11_7-53
	11_7-54
	11_7-55
	11_7-56
	11_7-57
	11_7-58
	11_7-59
	11_7-60
	11_7-61
	11_7-62
	11_7-63
	11_8-01
	11_8-02
	11_8-03
	11_8-04
	11_8-05
	11_8-06
	11_8-07
	11_8-08
	11_8-09
	11_8-10
	11_8-11
	11_9-01
	11_9-02
	11_9-03
	11_9-04.0
	11_9-04.1
	11_9-05
	11_9-06
	11_A-00
	11_A-01
	11_A-02
	11_A-03
	11_A-04
	11_A-05
	11_B-01
	11_B-02
	11_B-03
	11_B-04
	11_B-05
	11_C-01
	11_C-02
	11_C-03
	11_D-01
	11_D-02
	11_D-03
	11_D-04
	11_D-05
	11_D-06
	11_D-07
	11_D-08
	11_D-09
	11_D-10
	11_D-11
	11_E-01
	11_E-02
	11_E-03
	11_E-04
	11_E-05
	11_E-06
	11_E-07
	11_E-08
	11_E-09
	11_E-10
	11_E-11
	11_E-12
	11_E-13
	11_E-14
	11_E-15
	11_E-16
	11_E-17
	11_E-18
	11_E-19
	11_E-20
	11_E-21
	11_E-22.0
	11_E-22.1
	11_E-23
	11_E-24
	11_E-25
	11_E-26
	11_F-01
	11_F-02
	11_F-03
	11_F-04
	11_F-05
	11_F-06
	11_F-07
	11_F-08
	11_F-09
	11_F-10
	11_F-11
	11_F-12
	11_F-13
	11_F-14
	11_F-15
	11_G-01
	11_G-02
	11_G-03
	11_H-01
	11_H-02
	11_H-03
	11_H-04
	11_I-01
	11_I-02
	11_I-03
	11_I-04
	11_I-05
	11_I-06
	11_I-07
	11_I-08
	11_J-01
	11_J-02
	11_K-01
	11_K-02
	11_K-03
	11_K-04
	11_K-05
	11_L-01
	11_L-02
	11_L-03
	11_M-01_glossary
	11_M-02
	11_M-03
	11_M-04
	11_N-01_index
	11_N-02
	11_N-03
	11_N-04
	11_N-05
	11_N-06
	11_N-07

