@ GO Corporation

GO Technical Library

PenPoint Application
Writing Guide

| EXPANDED SECOND EDITION

@ GO Corporation

GO Technical Library

. . .

PenPoint Application Writing Guide, Expanded Second Edition provides
a tutorial on writing PenPoint applications, including many coding samples.
It also provides information about PenPoint 2.0 Japanese and how it supports
internationalized applications. This is the first book you should read as a
beginning PenPoint application developer.

PenPoint Architectural Reference, Volume I presents the concepts of the
fundamental PenPoint classes. Read this book when you need to understand
the fundamental PenPoint subsystems, such as the class manager, application
framework, windows and graphics, and so on.

PenPoint Architectural Reference;-Volume II presents the concepts of the
supplemental PenPoint classes. You shiguld read this book when you need to
understand the supplemental PenPoint sdbsystems, such as the text subsystem,
the file system, connectivity, and so on.

PenPoint API Reference, Volume I provides a complete reference to the
fundamental PenPoint classes, messages, and data structures.

PenPoint API Reference, Volume II provides a complete reference to the
supplemental PenPoint classes, messages, and data structures.

PenPoint User Interface Design Reference describes the elements of the PenPoint
Notebook User Interface, sets standards for using those elements, and describes
how PenPoint uses the elements. Read this book before designing your
application’s user interface.

PenPoint Development Tools describes the environment for.developing,
debugging, and testing PenPoint applications. You need this book when
you start to implement and test your first PenPoint application.

PenPoint

PenPoint Application
Writing Guide

EXPANDED SECOND EDITION

@ GO Corporation

GO Technical Library

VV Addison-Wesley Publishing Company

Reading, Massachusetts ¢ Menlo Park, California ¢ New York
Don Mills, Ontario ¢ Wokingham, England ¢ Amsterdam
Bonn ¢ Sydney Singapore ¢ Tokyo ¢ Madrid ® San Juan
Paris ¢ Seoul ¢ Milan ¢ Mexico City 4 Taipei

70T
D63
P49
199

Warranty Disclaimer
and Limitation of
Liability

U.S. Government
Restricted Rights

Many of the designations used by manufacturers and sellers to distinguish their products are claimed as
trademarks. Where those designations appear in this book and Addison-Wesley was aware of a trademark
claim, the designations have been printed in initial capital letters.

The authors and publishers have taken care in preparation of this book, but make no expressed or implied
warranty of any kind and assume no responsibility for errors or omissions. No liability is assumed for
incidental or consequential damages in connection with or arising out of the use of the information or
programs contained herein.

Copyright © 1991-1993 GO Corporation. All rights reserved. No part of this publication may be
reproduced, stored in a retrieval system, or transmitted, in any form or by any means, electronic,
mechanical, photocopying, recording, or otherwise, without prior written permission of the publisher.
Printed in the United States of America. Published simultaneously in Canada.

The following are trademarks of GO Corporation: PenPoint, the PenPoint logo, EDA, GO,
GO Corporation, the GO logo, GOWrite, ImagePoint, MiniNote, MiniText, and NotePaper.

. Words are checked against the 77,000 word Proximity/Merriam-Webster Linguibase, © 1983 Merriam

Webster. © 1983. All rights reserved, Proximity Technology, Inc. The spelling portion of this product is
based on spelling and thesaurus technology from Franklin Electronic publishers. All other products or
services mentioned in this document are identified by the trademarks or service marks of their respective
companies or organizations.

PenTOPS Copyright © 1990-1992, Sitka Corporation. All Rights Reserved.
PANOSE is a trademark of ElseWare Corporation, Seattle, Washington.

GO CORPORATION MAKES NO WARRANTIES, EXPRESS OR IMPLIED, INCLUDING WITHOUT
LIMITATION THE IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR
PURPOSE AND NONINFRINGEMENT, REGARDING PENPOINT SOFTWARE OR ANYTHING ELSE.
GO Corporation does not warrant, guarantee, or make any representations regarding the use or the
results of the use of the PenPoint software, other products, or documentation in terms of its
correctness, accuracy, reliability, currentness, or otherwise. The entire risk as to the results and
performance of the PenPoint software and documentation is assumed by you. The exclusion of
implied warranties is not permitted by some states. The above exclusion may not apply to you.

In no event will GO Corporation, its directors, officers, employees, or agents be liable to you for any
consequential, incidental, or indirect damages (including damages for loss of business profits,
business interruption, loss of business information, cost of procurement of substitute goods or
technology, and the like) arising out of the use or inability to use the documentation or defects
therein even if GO Corporation has been advised of the possibility of such damages, whether under
theory of contract, tort (including negligence), products liability, or otherwise. Because some states
do not allow the exclusion or limitation of liability for consequential or incidental damages, the
above limitations may not apply to you. GO Corporation’s total liability to you from any cause
whatsoever, and regardless of the form of the action (whether in contract, tort [including
negligence], product liability or otherwise), will be limited to $50.

The PenPoint documentation is provided with RESTRICTED RIGHTS. Use, duplication, or disclosure by
the U.S. Government is subject to restrictions as set forth in FAR 52.227-19 (Commercial Computer
Software—Restricted Rights) and DFAR 252.227-7013 (c) (1) (ii) (Rights in Technical Data and
Computer Software), as applicable. Manufacturer is GO Corporation, Suite 400, 919 East Hillsdale
Boulevard, Foster City, CA 94404, USA.

ISBN 0-201-62299-8
123456789—AL—9796959493
First Printing, February 1993

PENPOINT APPLICATION WRITING GUIDE / EXPANDED EDITION

Preface

The PenPoint Application Writing Guide: Expanded Second Edition is an updated
version of the PenPoint Application Writing Guide printed in March 1992. This
expanded edition includes new information that reflects GO Corporation’s
enhancements to the PenPoint™ operating system for PenPoint 2.0 Japanese
and the PenPoint Software Development Kit (SDK) 2.0 Japanese.

This book is an up-to-date introduction to the PenPoint SDK 2.0 Japanese oper-
ating system and contains errata and additional information for earlier PenPoint
SDKs. Unless stated otherwise, discussions of the PenPoint operating system and the
PenPoint SDK in this book are valid for PenPoint 1.0, PenPoint 1.01, and PenPoint
2.0 Japanese.

PenPoint 2.0 Japanese is a Japanese product with Japanese system resources (on-line
help, menu choices, and so on). Developers who do not read Japanese can run the

PenPoint SDK 2.0 Japanese with U.S. English resources, but there are some parts of
the system that show Japanese text even with the U.S. English feature enabled.

W Intended audience

This book is intended for programmers who want to write applications for the
PenPoint operating system. It assumes that you are familiar with the C program-
ming language and related development tools such as MAKE utilities.

¥ Document structure

This book contains several parts:

& Part 1: PenPoint Application Writing Guide is an introduction to the PenPoint
operating system and the PenPoint SDK. It introduces you to basic PenPoint
programming concepts, then illustrates those concepts by examining some of
the sample applications included with the PenPoint SDK.

& DPart 2: PenPoint Internationalization Handbook describes the features
PenPoint provides that allow you to write an application that is easy to port
from one national locale to another.

@ Part 3: PenPoint Japanese Localization Handbook shows how to use features
of the PenPoint SDK 2.0 Japanese that support Japanese-language application
development.

& Dart 4: PenPoint Development Tools Supplement provides new information
about the development tools you use with the PenPoint SDK. This part is
an update to PenPoint Development Tools originally published for the
PenPoint SDK 1.0.

vi PENPOINT APPLICATION WRITING GUIDE
Preface

& Part 5: PenPoint Architectural Reference Supplement provides new information
about the architecture of the PenPoint operating system and the classes that it
provides. This part is an update to PenPoint Architectural Reference originally
published for the PenPoint SDK 1.0.

& Part 6: PenPoint User Interface Design Reference Supplement provides new
information about user interface design and the user interface classes that
PenPoint provides. This part is an update to PenPoint User Interface Design
Reference originally published for the PenPoint SDK 1.0.

& Part 7: Sample Code provides descriptions and listings of the sample applica-
tions used as examples in this book, and descriptions of the other sample code
included with the PenPoint SDK.

Each of these parts was at one time intended to be a separate document, but the
P P y
have been bound together into a single volume for your convenience. Be aware that
g g Y
you may still find some cross-references that refer to a part of this volume as though
it were still a separate book.

W Other sources of information

Several parts of this book supplement existing books published for the PenPoint
SDK 1.0. These books include PenPoint Development Tools, PenPoint Architectural
Reference, and PenPoint User Interface Design Reference.

For information on the classes, messages, macros, functions, and structures that the
PenPoint SDK header files define, see the header files themselves. Many of the
header files have changed since the PenPoint API Reference was published for the
PenPoint SDK 1.0.

PENPOINT APPLICATION WRITING GUIDE / EXPANDED EDITION
CONTENTS

W Part 1/ PenPoint Application Writing Guide

1/ Introduction 5

2 / PenPoint System Overview 7

3 / Application Concepts 23

4 / PenPoint Class Manager 43

5 / Developing an Application 61

6 / A Simple Application (Empty Application) 91
7 I Creating Objects (Hello World: Toolkit) 111

8 / Creating a New Class (Hello World:
Custom Window) 123

9 / Saving and Restoring Data (Counter) 133
10 / Handling Input (Tic-Tac-Toe) 145
11 / Refining the Application (Tic-Tac-Toe) 155
12 / Releasing the Application 169

Part 2 / PenPoint Internationalization
Handbook

13 / Introduction 175

14 / Overview 177

15 / PenPoint Support for International Software 183
16 / Procedures 209

17 / Porting to PenPoint 2.0 229

18 / Localization Guidelines 235

19 / Additional Resources 237

Part 3 / PenPoint Japanese Localization
Handbook

20 / Introduction 243

21/ Japanese Characters 245

22 / Processing Japanese Text 255
23 / Development Environment 273
24 [Procedures 283

25 / Resources 301

26 / Japanese Character Set 303

P Part 4 / PenPoint Development Tools

Supplement

27 / Introduction 375

28 / Road Map 377

29 / Creating Applications and Services 381
30 / Debugging 395

31 / Tools and Utilities 403

32 / Miscellaneous 415

Part 5 / PenPoint Architectural Reference
Supplement

33 / Overview 427

34 / Class Manager 433

35 / Application Framework 435
36 / Windows and Graphics 441
37 / UI Toolkit 445

38 / Input and Handwriting Recognition 451
39/ Text 463

40 / The File System 467

41 / System Services 471

42 / Utility Classes 479

43 / Connectivity 483

44 | Resources 495

45 / Installation API 499

46 / Writing PenPoint Services 503

47 / International Services and Routines 507

Part 6 / PenPoint User Interface Design
Reference Supplement

48 / Introduction 517

49 |/ The Notebook 519

50 / The Bookshelf 523

51 / Overall System Changes 535

P Part 7 / Sample Code 549

P Index 659

PENPOINT APPLICATION WRITING GUIDE / EXPANDED EDITION

CONTENTS

W List of Tables

3-1

5-1

5-2

6-1
10-1
15-1
15-2
15-3
15-4
15-5
15-6
15-7
16-1
16-2
16-3
21-1
21-2
21-3
22-1
22-2
22-3
22-4
22-5
22-6
23-1
23-2
23-3
23-4
24-1
29-1
29-2
29-3
30-1
30-2
31-1
31-2
31-3

Notebook organization and the file system 36
Generic status values 81

Status-checking macros 82

Common header files 99

Tic-Tac-Toe files 147

How to work with strings 186

Formatting differences between countries 196
PenPoint international functions 197

Some functions from ISRH 198
International function structures 201

GO’s gesture symbols 203

Makefile variables 206

8- and 16-bit functions 213

Resource utility functions 221

Converting to international functions 226
Japanese writing 247

Unicode encoding of Japanese characters 250
Japanese font files 251

Japanese punctuation marks 257

Japanese behavior of international functions 262
Default Japanese Formatting 267

Supported Japanese eras 268

Date formats 268

Time Formats 269

Debug CharSet variable values 274

GO’s sample makefile variables 275

DOS utilities 276

Character sets in control files 278

Using UCONVERT 285

Attributes stamped by the makefile 385
Makefile variables 386

Sample distribution disk structure 390
DebugCharSet variable permissible values 398
Mini-debugger controls 402

Valid values for CHARSET 403

404

Attributes stamped on installable items 406

Attribute utilities

31-4 Attributes stamped on documents

31-5
32-1

.33-1

33-2
33-3
34-1
35-1
36-1
37-1
37-2
38-1
38-2
38-3
38-4
38-5

39-1
39-2
40-1

40-2

40-3
41-1
41-2
41-3
41-4
43-1
43-2
43-3
43-4

43-5
43-6
43-7
43-8
44-1
44-2

406
Using UCONVERT 409

PenPoint Development Tools errata 422

New header files 430

Header files changed for resource strings 430
Some data name changes 431

Part 1 (Class Manager)—typos 434

Part 2 (Application Framework)—typos 439

Part 3 (Windows and Graphics)—typos 443
clsAcetateLayout synchronization messages 447
Part 4 (UI Toolkit)—typos 449

cIsKKC messages 452

clsCharTranslator messages 456

Changed gesture names 459

Obsolete gesture names 460

Part 5 (Input and Handwriting
Translation)—typos 461

New gesture targets 463
Part 6 (Text)—typos 465

Stamped attributes—PenPoint 2.0 installable
items 467

Stamped attributes—PenPoint 2.0
documents 467

Part 7 (File System)—typos 469
472
Renamed counted string functions 474

Renamed WATCOM functions 475

Compose Text format code types

Part 8 (System Services)—typos 477
Default I/O port state settings 485
MODEM_METRICS fields 486

487

Discrete modem initialization messages

Modem service creation and initialization
messages 490

Modem service request messages 490

Client and observer notification messages 491
Predefined service managers 492

Part 10 (Connectivity) —typos 493

Resource file utility routines 495

Part 11 (Resources)—typos 497

PENPOINT APPLICATION WRITING GUIDE / EXPANDED EDITION
CONTENTS

47-1 Header files 507

47-2 Delimiting routines 509

47-3 Hyphenation routines 509

47-4 Time conversion functions 509

47-5 Formatting functions 510

47-6 Parsing functions 510

47-7 Sort and compare functions 511

47-8 Character set conversion functions 511
47-9 String compression functions 512

47-10 CHARTYPE macros 512

49-1 Gestures used in the Table of Contents 520
51-1 Non-core gestures used in MiniText 537
51-2 Gestures that work in MiniNote 541
51-3 Gestures used in edit pads 544

51-4 Gestures used in Japanese edit pads 547

P List of Figures

3-1 Application, view, and object classes 30

3-2
3-3
3-4

4-1
4-2
4-3

6-1
7-1
9-1
10-1
11-1
11-2
11-3
14-1

14-2

14-3
15-1
21-1
22-1
22-2
22-3
22-4
22-5
231

Application Framework and Notebook
hierarchy 33

The Notebook hierarchy as mirrored by the
file system 34

Notebook hierarchy and application
processes 35

Message handling by a class and its ancestors 46
Sending msgListAddItemAt to a list 47

How messages to instances are processed
by classes 49

Empty Application option sheet 94

UI Toolkit components 115

Counter Application objects 135

Tic-Tac-Toe classes and instances 146
Stationery notebook and Stationery menu 160
Quick Help 162

Application and document icons 167

Common source code for multiple
localizations 178

Multiple source files for multiple
localizations 179

Japanese Text in MiniText 180

Unicode architecture 185

Character code spaces 253

Handling the KKC gesture 259

Displaying the translated characters 259
Handling a character alternatives request 260
Text with selected bunsetsu 263

Text with sentence selected 264

Unicode Browser 280

23-2 Japanese virtual keyboard 281

28-1
31-1
38-1

Creating an application 379
Specifying a resource with RESDEL 408

Translation alternatives returned by

msgXlateData 459

Part 1/
PenPoint Application
Writing Guide

\I\\J\‘

\1\]‘

o

10
11

16
16
17
17

18

24
24

PENPOINT APPLICATION WRITING GUIDE / EXPANDED EDITION
PART 1 / APPLICATION WRITING GUIDE

Chapter 1 / Introduction

Intended audience
28

29

Other sources of information

Chapter 2 / PenPoint System Overview
Design considerations

User interface
The pen 31
Notebook metaphor

Object-oriented architecture
Architecture and functionality
Kernel layer

System layer

File system

Resource manager
Networking
Windowing

Graphics

Printing

User Interface Toolkit
Input and handwriting translation 40
Selection Manager and data transfer

38

Component layer

Application Framework layer 41

Application layer

Software development environment

Software development kit

Coding conventions P
Extensibility

PenPoint design guidelines 3

Conserve memory 44
Think small 45
Use a modular design

Your application must recover

Take advantage of object-oriented programming 47
Consider sharing code and data

Use document orientation

Design for file format compatibility

Exploit the pen

Use the PenPoint user interface 49

Chapter 3 / Application Concepts
PenPoint programming is unique

How applications work

Installing and starting applications

MS-DOS installation

PenPoint installation ' 55
Installer responsibilities

Running a PenPoint application

Life cycle of a document

Activating a document

Not all active documents are on-screen
Application classes and instances

PenPoint drives your application

Application objects

A descendant of clsApp
An instance of cdlsWin
An instance of clsObject

Understanding the application hierarchy
The Notebook’s own hierarchy

The Bookshelf

The Notebook

Page-level applications

Sections

- Floating accessories

Embedded applications
Application data

Activating and terminating documents
Turning a page and msgAppClose
Restoring inactive documents
Page-turning instead of closing

Saving state (no quit)

Documents, not files and applications
No new, no save as. . .
Stationery

Shutting down and terminating applications
Conserving memory

Avoiding duplication

Hot mode

Components

Chapter 4 / PenPoint Class Manager
Objects instead of functions and data
Messages instead of function calls

Classes instead of code sharing
Handling messages

Sending a message

Message arguments

ObjectCall() parameters

Returned values

How objects know how to respond

Creating an object

Classes and instances

An alternative explanation

The _NEW structure

Identifying _NEW structure elements
Code to create an object

Identifying the new object: UIDs

Creating a class

New class message arguments
Method tables

Self

Possible responses to messages

PENPOINT APPLICATION WRITING GUIDE / EXPANDED EDITION
/ APPLICATION WRITING GUIDE

PART

1

P’ Chapter 5 / Developing an Application

61

63

66

67

69

71

74

77

84

Designing your application
Designing the user interface
Designing classes

Designing messages
Designing message handlers
Designing program units

87

Designing for internationalization and localization
Porting from PenPoint 1.0 to PenPoint 2.0 Japanese

Preparing for internationalization

Development strategy
Application entry point
Application instance data
Creating stateful objects
Displaying on screen
Creating component classes

Development cycles
Compiling and linking
Installing the application
Debugging

A developer’s checklist
Checklist of required interactions
Checklist of nonessential items

GO’s coding conventions
Typedefs

Variables

Functions

Defines (macros and constants)
Class manager constants
Exported names

PenPoint file structure
File header comment
Include directives
Defines, types, globals
Function prototypes
Message headers
Indentation

Comments

Some coding suggestions

PenPoint types and macros
Data types

Basic constants

Legibility

Compiler isolation

Data conversion and checking
Bit manipulation

Tags

Return values

Return status debugging function
Error-handling macros

Debugging assistance
Printing debugging strings
Assertions

92

92
92
94

101

104

105

108
108

111

112

Debugging flags
Suggestions

The tutorial programs

Empty Application

Hello World (Toolkit)

Hello World (Custom Window)
Counter Application
Tic-Tac-Toe

Template Application

Other code available

Chapter 6 / A Simple Application
(Empty Application)

Files used
Not the simplest

Compiling and linking the code
Compiling method tables

Installing and running Empty Application
Interesting things you can do with Empty Application
Code run-through

PenPoint source code file organization
Empty Application’s source code
Libraries and header files

Class UID

Class creation

Documents, accessories and stationery

Where does the application class come from?
Installation and activation

Handling a message
Method table
msgDestroy

Message handler

Parameters

Parameters in EmptyAppDestroy()
Status return value

Message handlers are private

Using debugger stream output

The debugger stream
Seeing debug output

Chapter 7 / Creating Objects
(Hello World: Toolkit)

HelloTK
Compiling and installing the application
Interesting things you can do with HelloTK

Code run-through for HELLOTK1.C
Highlights of HELLOTK1

Sending messages

Creating toolkit components

Where the window goes
Why msgApplnit?

119

123

125

127

129

130
131
131

133
133

138

140

143

145

PENPOINT APPLICATION WRITING GUIDE / EXPANDED EDITION
/ APPLICATION WRITING GUIDE

PART 1

Why did the window appear?

Possible enhancements

Highlights of the second HelloTK
Only one client window per frame
Layout

Possible enhancements

Chapter 8 / Creating a New Class
(Hello World: Custom Window)

Hello World (Custom Window)
Compiling the code

Highlights of clsHelloWorld
Highlights of clsHelloWin

Graphics overview
System drawing context
Coordinates in drawing context

When to paint

When to create things
Instance data

Is it msgNew or msglnit?
Window initialization

Using instance data
No filing yet

Drawing in a window
Possible enhancements

Debugging Hello World (Custom Window)

Chapter 9 / Saving and Restoring Data
(Counter)

Saving state

Counter application

Compiling and installing the application
Counter Application highlights

Counter class highlights

Instance data

Getting and setting values

Object filing
Handling msgSave
Handling msgRestore

Counter Application’s instance data
Memory-mapped file

Opening and closing the file

Filing the counter object

Menu support
Buttons

Chapter 10 / Handling Input
(Tic-Tac-Toe)

Tic-Tac-Toe objects
Application components
Separate stateful data objects

146
147

148

150

151
152

155

159

159

160

161

164

166

169
169

170
170

Tic-Tac-Toe structure

Tic-Tac-Toe window
Coordinate system
Advanced repainting strategy

View and data interaction

Data object design

Instance data by value vs. by reference

Saving a data object

Handling failures during msglnit and msgRestore

The selection and keyboard input
How selection works

More on view and data interaction

Handwriting and gestures
Input event handling
Gesture handling
Keyboard handling

Chapter 11 / Refining the Application
(Tic-Tac-Toe)

Debugging

Tracing

Debugf() statements and debug flags
Dumping objects

Symbol names

Installation features

Stationery
Creating stationery
How Tic-Tac-Toe handles stationery

Help notebook
Creating help documents

Quick Help
Creating Quick Help resources

Standard message facility

Using StdMsg() facilities

Substituting text and defining buttons
StdMsg() and resource files or lists
StdMsg() customization function

Bitmaps (icons)

Creating icons

Chapter 12 / Releasing the Application
Registering your classes

Documenting the application
Writing manuals

Screen shots

Gesture font

On-disk structure

Sharing your classes

PENPOINT APPLICATION WRITING GUIDE / EXPANDED EDITION
PART 1 / APPLICATION WRITING GUIDE

Chapter 1 / Introduction

The PenPoint™ operating system is an object-oriented, multitasking operating We sometitres use the names
system that is optimized for pen-based computing. Writing applications for the ;g}fo”li_z‘a and Pi”?‘”tSDK
. n 15 document. pecause
PenPoint operating system will present you with some new challenges. However, this release of Penfoint has been

PenPoint contains many features that make application development far easier localized only to Japan, these
terms refer to FenFoint 2.0

Japanese and PenFoint 2.0 SDK
One feature that makes application development easier is the PenPoint Application Japanese.
Framework, which eliminates the need to write “boilerplate” code. In other oper-

than development in many other environments.

ating systems, programmers must write code to perform housekeeping functions,
such as application installation, input and output file handling, and so on. These
are provided automatically by the PenPoint Application Framework.

PenPoint also provides most of the on-screen objects used by the PenPoint Note-
book User Interface (NUI). By using these objects, your application can conform to
the PenPoint NUI, without a great amount of work on your part.

In this manual, you will learn about the PenPoint operating system, the PenPoint
development environment, and, of course, how to write applications for the Pen-
Point operating system. The PenPoint Software Development Kit (SDK) contains
several sample applications that you can compile and run. These sample applica-
tions are used throughout this manual to demonstrate concepts and programming
techniques.

Intended audience

This manual is intended for programmers who want to write applications for the
PenPoint operating system. It assumes that you are familiar with the C program-
ming language and related development tools, such as make utilities.

You should also be aware of the information in the companion volume, PenPoint
Development Tools. Pay particular attention to Chapter 2, Roadmap to SDK Docu-
mentation, which describes the organization of the PenPoint SDK documentation
and recommends a path through the manuals.

¥ Other sources of information

For conceptual information about the various classes in PenPoint, see the PenPoint
Architectural Reference.

For information on running PenPoint on a PC, see the Running PenPoint on a PC
document that comes with the PenPoint SDK.

PENPOINT APPLICATION WRITING GUIDE
Part 1 / Application Writing Guide

To learn how to use the PenPoint development tools and utilities, such as the
PenPoint source-level debugger, see PenPoint Development Tools.

For reference information on the classes, messages, macros, functions, and struc-
tures defined by PenPoint, see the PenPoint API Reference. The information in

the PenPoint API Reference is derived directly from the PenPoint header files
(in PENPOINT\SDK\INC).

PENPOINT APPLICATION WRITING GUIDE / EXPANDED EDITION
PART 1 / APPLICATION WRITING GUIDE

Chapter 2 / PenPoint System Overview

When GO Corporation undertook to build a mobile, pen-based computer system,
we quickly recognized that existing standard operating systems were not adequate
for the task. Those systems, designed for the very different needs of keyboard-based
desktop computers, would require such extensive rewriting to support this new
market that they would no longer run the installed base of applications that made
them standard in the first place. We therefore determined that a new, general-
purpose operating system would be needed, designed specifically for the unique
requirements of pen-based computing. The result is the PenPoint™ operating
system. This document is a brief introduction and overview of its design goals,
architecture, and functionality.

W Design considerations

After extensive research and analysis, GO identified the following key requirements
for pen-based system software:

¢ A direct, natural, intuitive, and flexible graphical user interface.
¢ Strong support for handwriting recognition and gesture based commands.
¢ A richer organizational metaphor than the traditional file-system model.

¢ A high degree of memory conservation through extensive sharing of code,
data, and resources.

¢ Priority-based, preemptive multitasking.
¢ Detachable networking and deferred data transfer.
¢ Hardware independence (ability to move to new processors quickly).

The PenPoint operating system was developed to satisfy these requirements.

W User interface

PenPoint’s most distinctive feature is its innovative user interface. The user interface
is the cornerstone on which the entire system is built; all other design consider-
ations follow from it. The user interface, in turn, is based on two main organizing
principles:

The use of a pen as the primary input device.
¢ The use of a notebook metaphor that is natural and easy to use.

The consequences of these two basic design features permeate the entire system.

8 PENPOINT APPLICATION WRITING GUIDE
Part 1 / Application Writing Guide

% The pen

The pen naturally combines three distinct system control functions: pointing, data
input, and command invocation. Like a mouse, it can point anywhere on the
screen to designate an operand, specify a location, draw a picture, drag an object, or
select from a menu. Through sophisticated handwriting recognition software, it can
replace the keyboard as a source of text input. Finally, it can do something neither a
mouse nor a keyboard can do: issue commands through graphical gestures.

%> Gestures

Gestures are simple shapes or figures that the user draws directly on the screen to
invoke an action or command. For example, a cross out X gesture is used to delete,
a circle © to edit, and a caret A to insert. A set of built-in core gestures form the
heart of the PenPoint user interface:

Caret A Check
Circle o© Cross out X
Flick left — Flick right —
Flick up | Flick down |
Insert space | Pigtail 7
Press & Tap 4

Tap press Undo

To exploit the unique properties of the pen, PenPoint provides strong support for
gestural command invocation. The same handwriting translation subsystem that
recognizes characters for text input also recognizes those shapes that constitute
meaningful gestures. The form, location, and context of the gesture then determine
the action to be performed and the data objects affected. Because a gesture can be
made directly over the target object, it can specify both the operand and the opera-
tion in a single act. This gives the pen-based interface a directness and simplicity
that cannot be achieved with a mouse.

%» PenPoint control

The pen has one more notable property as a control device. Because it draws
directly on the face of the screen (rather than on a physically separate working sur-
face such as a mouse pad or graphics tablet), it eliminates a major source of diffi-
culty among new computer users—the relationship between movement of the
mouse and the movement of the cursor on the screen. With a pen, the user’s eye is
focused exactly where his or her hand is working. Most PenPoint applications can
thus dispense with an on-screen cursor for tracking the pen, though one is available
as an optional user preference.

% Notebook metaphor

Instead of a traditional file system based on a hierarchy of nested directories and
cryptic file names, PenPoint uses a “notebook” metaphor for information storage
and retrieval. By using familiar models of working with paper-based documents,

CHAPTER 2 / PENPOINT SYSTEM OVERVIEW
Object-oriented architecture

the notebook approach provides a rich variety of natural and intuitive techniques
for organizing and accessing information:

¢ A bookshelf upon which multiple user notebooks may reside, as well as sys-
tem notebooks for help information and stationery, an inbox and outbox, and
various tools and accessories. A user can have any number of notebooks open
at once; typical use involves one main notebook.

¢ A table of contents offering an overview of all available documents in the
notebook, allowing easy manipulation and navigation at the global level. The
table of contents can be organized in natural page number order, or sorted by
name, size, type, or date.

¢ Sections and subsections for hierarchical organization.
¢ Page numbers and notebook tabs for direct random access.
¢ Page turning for sequential access.

Because the notebook is a familiar, physical, and stable model, a user can employ
spatial memory of layout and juxtaposition to help find and organize their infor-
mation.

Object-oriented architecture

To facilitate code sharing and overall memory conservation, PenPoint uses an
object-oriented approach to system architecture. All application programming
interfaces (APIs) above the kernel layer are implemented using object-oriented
programming techniques of subclass inheritance and message passing. This helps to
ensure that PenPoint and its APIs have these characteristics:

¢ They are compact, providing a body of shared code that need not be dupli-
cated by all applications.

¢ They are consistent, since all applications share the same implementation of
common system and user interface functions.

They are flexible, allowing applications to modify PenPoint’s behavior by sub-
classing its built-in classes.

The event-driven, object-oriented nature of the system minimizes the need to “rein-
vent the wheel” with each new application. Programmers can “code by exception,”
reusing existing code while altering or adding only the specific behavior and func-
tionality that their own applications require. Because the object-oriented architec-
ture is system-wide, these benefits are not restricted to single applications; in fact,
applications can share code with each other just as readily as with the system itself.

¥ Architecture and functionality

PenPoint’s overall software architecture is organized into five layers:

T The kernel, which provides multitasking process support, memory manage-
ment, and access to hardware. The kernel works closely with the PenPoint
class manager, which makes PenPoint object oriented.

1 / APP WRITING GUIDE

10 PENPOINT APPLICATION WRITING GUIDE
Part 1 / Application Writing Guide

2 The system layer, which provides windowing, graphics, and user interface
support in addition to common operating system services such as filing and
networking.

3 The component layer, which consists of general-purpose subsystems offermg
significant functionality that can be shared among applications.

4 The Application Framework, which serves as a “head start” for building
applications.

5 The applications themselves.

Each of these layers is discussed in detail below.

¥ Kernel layer

The kernel is the portion of the PenPoint operating system that interacts directly
with the hardware. Besides handling such low-level tasks as process scheduling and
synchronization, dynamic memory allocation, and resource management, it also
provides these services, which are needed to support the object-oriented software
architecture:

¢ Priority-based, preemptive multitasking.

& Processes and threads (lightweight tasks sharing the same address space).

&

Interprocess communication and semaphores.

24

Task-based interrupt handling.

¢ 32-bit flat memory model.

¢ Protected memory management and code execution.
@

Heap memory allocation with transparent relocation and compaction (no

fixed-length buffers).

Object-oriented message passing and subclass inheritance.

All hardware dependencies in the kernel are isolated into a library subset called the
machine interface layer (MIL) to facilitate porting to a wide variety of hardware and
processor architectures. The kernel runs on both PC and pen-based machines. All of
PenPoint’s APIs use full 32-bit addresses.

Other parts of the kernel layer support features that keep PenPoint small and effi-
cient. These parts are defined below.

Loader Unlike a traditional, disk-based operating system, PenPoint’s loader
does not require multiple copies of system and application code to be
present in the machine at the same time. Instead, it maintains a single
instance of all code and resources, which are shared among all clients.
When installing a new application, the loader reads in only those compo-
nents that are not already present in memory.

CHAPTER 2 / PENPOINT SYSTEM OVERVIEW

Power Conservation When running on battery-powered hardware, the ker-
nel reduces power consumption by shutting down the CPU whenever there
are no tasks awaiting processor time. Subsequent events such as pen activ-
ity or clock-chip alarms generate interrupts that reactivate the CPU. The
kernel also monitors the main battery and will refuse to run if power is too
low, ensuring reliable protection of user data.

Class Manager PenPoint’s Class Manager works closely with the kernel
to support object-oriented programming techniques such as single-
inheritance subclassing and message passing. The Class Manager also
provides important protection and multitasking services not found in C++
or other object-oriented languages. These services safeguard the operating
system against possible corruption arising from the use of object-oriented
techniques. For example, instance data for system-defined classes is pro-
tected so that the data cannot be altered by any subclasses. Applications
thus derive the benefits of subclassing without jeopardizing the integrity of
the system.

p System layer

PenPoint’s system layer provides a broader range of support services than a tradi-
tional operating system. In addition to the usual system facilities such as filing and
networking, it also provides such high-level services as windowing, graphics,
printing, and user interface support. This helps keep application code compact and
consistent while facilitating application development for the machine.

File system

PenPoint’s file system is designed for compatibility with other existing file systems,
particularly MS-DOS, and includes full support for reading and writing MS-DOS-
formatted disks. It provides many of the standard features of traditional file sys-
tems, including hierarchical directories, file handles, paths, and current working
directories, as well as such extended features as 32-character file names, memory-
mapped files, object-oriented APIs, and general, client-specified attributes for files
and directories.

The PenPoint file system is a strict superset of the MS-DOS file system; all PenPoint-
specific information is stored as an MS-DOS file within each MS-DOS directory. This
approach is used when mapping to other file systems as well. Additional, installable
volume types are also supported.

’» Resource manager

PenPoint’s Resource Manager and the resource files that it controls allow applica-
tions to separate data from code in a clean, structured way. The Resource Manager
can store and retrieve both standard PenPoint objects and application-defined data,
in either a specific file or a list of files. Resources can be created directly by the
application or by compiling a separate, text-based resource definition file.

System layer

1 / APP WRITING GUIDE

12 PENPOINT APPLICATION WRITING GUIDE
Part 1 / Application Writing Guide

% Networking

PenPoint provides native support for smooth connectivity to other computers and
networks. Multiple, “autoconfiguring” network protocol stacks can be installed

on the fly. AppleTalk™ protocol is built in, enabling connection to other networks
through a variety of AppleTalk-compatible gateways. With the appropriate TOPS
software, users can configure their systems to connect directly to desktop
computers.

Through the use of these networking facilities, remote services such as printers are
as easily accessible to PenPoint applications as if they were directly connected.
Remote file systems on desktop computers and network file servers are also trans-
parently available via a remote-file-system volume. A user can browse PC and file-
server directories, for instance, using PenPoint’s Connections notebook. Several
remote volumes can be installed at once: for example, a PenPoint system can hook
directly to a Macintosh and a DOS computer at the same time.

A typical user, while on an airplane, might mark up a fax, fill out an expense report
to be electronically mailed to the payables department, draft a business letter to be
printed, edit an existing document, and export it to a PC’s hard disk. Upon connec-
tion to the physical devices, conventional operating systems would require that user
to run each application, load each document and dispense with it. PenPoint’s In
box and Out box services allow the user to defer and batch data transfer operations
for completion at a later time. Upon returning to the office and establishing the
physical connection, the documents are automatically faxed, printed, and mailed.
These services are extensible and can support a wide variety of transfer operations,
including electronic mail, print jobs, fax transmissions, and file transfers.

% Windowing
The window system supports nested hierarchies of windows with multiple coordi-
nate systems, clipping, and protection. Windows are integrated with PenPoint’s
input system, so that incoming pen events are automatically directed to the correct
process and window. Windows use little memory and can therefore be used freely
by applications to construct their user interface.

Usually windows appear on screen, but they can also be created on other, off-screen
image devices, such as printers.

The window system maintains a global, screen-wide display plane called the acetate
plane, which is where ink from the pen is normally “dribbled” by the pen-tracking
software as the user writes on the screen. The acetate plane greatly improves the
system’s visual responsiveness, both in displaying and in erasing pen marks on the
screen.

CHAPTER 2 / PENPOINT SYSTEM OVERVIEW

P Graphics

PenPoint’s built-in graphics facility, the ImagePoint™ imaging model, unifies

text with other graphics primitives in a single, PostScript-like imaging model.
ImagePoint™ graphics can be arbitrarily scaled, rotated, and translated, and can be
used for both screen display and printing. ImagePoint’s graphics capabilities include
these elements:

Polylines Bezier curves
Rectangles Ellipses
Rounded rectangles Arxcs
Polygons Sectors
Sampled images Chords

Text

A picture segment facility allows ImagePoint messages to be stored and played back
on demand, facilitating a variety of drawing and imaging applications. For
improved performance, the imaging system dynamically creates machine code
when appropriate for low-level graphics operations such as direct pixel transfer. The
ImagePoint API also supports the use of color, (specified in conventional RGB
values) allowing PenPoint to run on grey-scale and color screens.

To conserve memory, ImagePoint uses outline fonts to render text at any point size.
(Bitmap fonts are automatically substituted at low resolutions for improved visual
clarity.) Fonts are heavily compressed and some character styles are synthesized to
minimize memory requirements. If a requested font is not present, ImagePoint will
find the closest available match. Text characters can be scaled and rotated in the
same way as other graphical entities.

Printing

The ImagePoint imaging model is used for printing as well as screen display,
allowing applications to use the same image-rendering code for both purposes,
rebinding it to either a screen window or a printer as the occasion demands.
PenPoint handles all printer configuration, and automatically controls margins,
headers, and footers, relieving the application of these details. (As in most other
areas of PenPoint, applications can override the default behavior.)

One key benefit of this approach is that documents to be faxed are rendered specif-
ically for a 200-DPI output device. The resulting output will be of sufficiently high
quality that mobile users may not require a portable printer at all, opting instead to
use a nearby plain paper fax machine.

PenPoint supports Epson-compatible dot-matrix printers and HP Laserjet-compat-
ible laser printers. When the printer does not have a requested font, the ImagePoint
imaging model will render and download one from its own set of outline fonts,
ensuring good WYSIWYG correspondence and shielding the user from the complex-
ities of font management.

System layer

13

1 / APP WRITING GUIDE

14

Py

PENPOINT APPLICATION WRITING GUIDE
Part 1 / Application Writing Guide

User Interface Toolkit

PenPoint’s User Interface Toolkit offers a wide variety of on-screen controls:

Menu bars Nonmodal alerts
Pulldown menus Pushbuttons
Section tabs Exclusive choice buttons
Window frames Nonexclusive choice buttons
Title bars Pop-up choice lists
Scroll bars List boxes
Option sheets Editable text fields
Dialog boxes Handwriting pads
Progress bar Grabbers
Modal alerts Busy clock
Trackers
A major innovation in PenPoint’s User Interface Toolkit is automatic layout. Also called the PenPoint Ul

Instead of specifying the exact position and size of controls, the application need 00k

only supply a set of constraints on their relative positions, and the Toolkit will

dynamically calculate their exact horizontal and vertical coordinates. This makes it
easy for programmers or users to resize elements of the user interface, change their
fonts or other visual characteristics, or switch between portrait and landscape screen
orientations, while preserving the correct proportions and positional relationships.

Input and handwriting translation

PenPoint’s input subsystem translates input events received by the hardware into
messages directed to application objects. The low-level pen events include:

In proximity Out of proximity
Tip down Tip up

Move down Move up
Window enter Window exit

These low-level events can be grouped into higher-level aggregates called scribbles,
which are then translated by the handwriting translation (HWX) subsystem into
either text characters or command gestures. These characters or gestures in turn are
dispatched to the appropriate objects via a rich input distribution model that
includes filtering, grabbing, inserting, and routing of input up and down the
window hierarchy. |

The portion of the GOWrite handwriting translation engine that matches and
recognizes character shapes is replaceable, allowing PenPoint to improve its HWX
techniques as better algorithms become available. There are two parts to the hand-
writing translation engine: the first part matches shapes, the second part uses con-
text to improve the translation.

CHAPTER 2 / PENPOINT SYSTEM OVERVIEW

The current HWX engine recognizes hand-printed characters and has the following
characteristics:

¢ Operates in real time (shape matcher operates at 60 characters per second on

33 Mhz 80486).
Runs in a background process.
¢ Handles mixed upper- and lowercase letters, numerals, and punctuation.
o Tolerates characters that overlap or touch.
¢ Recognizes characters independently of stroke order, direction, and time order.

¢ Uses context to distinguish nonunique character forms such as the letter “0”
and the numeral “0”.

¢ Tolerates inconsistency by same user (that is, the user may shape the same
character in different ways at different times).

@ Accepts optional context-sensitive aids (such as word lists, dictionaries, and
character templates) provided by an application. Applications are given great
control over this process; they may issue constraints that merely influence the
result or force a match against a predefined list.

Although PenPoint is designed primarily for pen-based input, it is not limited to
the pen. For high-volume data entry, PenPoint accepts input from a keyboard.

As an alternative, PenPoint also provides a software “virtual keyboard.” Users
can display the keyboard on the screen and input text by tapping on the keys with
the pen.

Selection Manager and data transfer

The Selection Manager subsystem maintains a system-wide selection, which is the
target for all editing operations. The Selection Manager also implements a single-
level stack for temporarily saving the current selection. Editing is based on a move-
and-copy model, rather than a “clipboard” (cut-and-paste) model. The source and
destination applications negotiate data transfers from one application to another.
The destination application requests a list of available data formats from the source
application. PenPoint supports a variety of standard transfer formats, including
Rich Text Format (RTF), structured graphics, and Tagged Image File Format (TIFF);
applications can extend this list to include other formats as well.

PenPoint’s object-oriented architecture also makes possible the PenPoint EDA™ or
embedded document architecture. This is a unique form of “live” data transfer in
which the transferred data carries with it an instance of its own source application.
Through object-oriented message passing, this embedded application instance can
then be used to display, edit, or otherwise manipulate the data from within the des-
tination application. Although more conventional forms of “hot links” and
Dynamic Data Exchange (DDE) linking are still possible in PenPoint, such live
application embedding obviates the need for most of them.

System layer

15

1 / APP WRITING GUIDE

16 PENPOINT APPLICATION WRITING GUIDE
Part 1 / Application Writing Guide

» Component layer

Above and beyond the traditional kernel and system facilities, PenPoint adds a rich,
powerful, and extensible component layer. Components are general-purpose code

units with application-level functionality that can be shared and reused as building
blocks by multiple client applications. They speed the development of applications,
reduce memory consumption, and provide for more consistent user interfaces and
tighter integration across diverse applications.

PenPoint includes several components, such as a multifont, WYSIWYG text editor
and a scribble editing window that can be embedded within any application that
needs them. You can include these components in your application without paying
any license fee to GO.

Third-party developers may market components to other developers. Applications
may also provide their own general-purpose components to be installed and shared
in the PenPoint runtime environment.

W Application Framework layer

The Application Framework is a set of protocols rigorously defining the structure
and common behavior of a PenPoint application. Through the Application Frame-
work, applications inherit a wide variety of standard behavior, including installation
and configuration, creation of new documents, application stationery (template
documents), on-line help, document properties, spell checking, search and replace,
import/export file dialogs, and printing. New code is required only for added func-
tionality or to modify or override specific aspects of the default behavior. Use of the
Application Framework thus yields significant savings in programming time and
code space.

An application developer creates the application code and any resources needed by
the application. When a user installs an application, the PenPoint Application
Framework takes care of:

¢ Copying the application code and all other auxiliary files to the system.
¢ Creating new documents.

¢ Creating and terminating tasks.

¢ Storing and retrieving user data in the file system.

Creating and destroying a main window for the application.

Active documents save their internal state in the file system, but this is invisible to
the user: there is no need to save or load the application’s state explicitly from one
session to the next.

CHAPTER 2 / PENPOINT SYSTEM OVERVIEW 17
Application layer

W Application layer

Using the “live” recursive embedding available through EDA, PenPoint’s notebook
metaphor and user interface are implemented as a set of bundled system applica-
tions. Although the user simply perceives these collectively as “the Notebook,” they
are in fact distinct applications, providing a cleanly delineated and modular
architecture.

The key bundled applications include Bookshelf, Notebook, and Section applica-
tions that together constitute the core notebook metaphor. In addition:

¢ The Table of Contents (TOC) application provides a user interface for special-
ized organization and retrieval at the front of the notebook.

¢ A bundled text editor provides end users with intuitive, pen-based Rich Text
editing. .

¢ A standard Send user interface and an Address List allow for the addressing of
all electronic mail, fax, and file transfers.

¢ A file browser allows the user to point to files and directories and use standard
gesture commands to manipulate them.

Multiple instances of the Notebook can be created; in fact, the Create, Help,
Configuration, In box, and Out box applications are all instances of the notebook
application. Developers benefit from this code sharing; users benefit from decreased
memory requirements as well as greater consistency in the user interface. The Help
notebook, for example, consists of help documents ordered by section (applica-
tion), and therefore looks just like the standard table of contents. Users already
know how to navigate through this notebook and can even create hyperlink refer-
ences to important sections. Developers can simply write ASCII text to provide on-
line documentation. Documents in the Help notebook can be any type of PenPoint
application documents. Developers can also leverage existing application code to
build very powerful help systems that can demonstrate real functionality.

W Software development environment

With the exception of some hardware-dependent code, PenPoint and the applica-
tions it supports are written in ANSI C, using current versions of leading PC-based
development tools. Developers already acquainted with object-oriented concepts,
and with the graphical user interfaces and multitasking found in operating systems
like OS/2 and Macintosh System 7, will find the development environment familiar.

% Software development kit

The PenPoint SDK provides developers with the documentation and tools to
develop applications. The kit includes a source-level symbolic debugger, as well as
an outline font editor for creating scalable and rotatable application-specific glyphs.
Because PenPoint runs on DOS 386 machines, the full application edit-compile-
debug cycle can be accomplished solely on a PC, or on a combination of a PC and a
pen computer running PenPoint. In the former configuration, you use a pen-driven
digitizer tablet to simulate pen input. In the latter configuration, the PC serves as

1 / APP WRITING GUIDE

18 PENPOINT APPLICATION WRITING GUIDE
Part 1 / Application Writing Guide

a debugging monitor, as well as a convenient repository of the development system
libraries, header files, on-line documentation, and source code.

% Coding conventions

All PenPoint code is written in accordance with modern software engineering stan-

dards, including:
+ Consistent naming conventions for modules, functions, and variables.
¢ Carefully designed modularity.
¢ Proper commenting and formatting of source code.

Almost all of the C code is structured using object-oriented programming tech-
niques. Classes are defined and objects are created and sent messages by making
calls into a library of C routines called the Class Manager. These techniques are in
the mainstream of currently evolving industry practices, but the details are unique
to GO and are well documented in the SDK materials.

% Extensibility

PenPoint is extensible in a variety of ways, allowing for the addition of new
networking protocols, imaging models, font models, and file-system volumes.
PenPoint can run on computer architectures ranging from solid-state, pocket pen
computers to powerful disk-based workstations with pen-tablet screens.

The operating system is a working whole, with most modules integrated and tested
as part of the full system since early 1988. Because of techniques such as hardware
memory protection, object-oriented programming, rigorous modularization, and
extensive sharing of code, PenPoint is a highly reliable operating system.

» PenPoint design guidelines

To this point, this chapter has presented concepts that relate to the PenPoint oper-
ating system as a whole. The remainder of the chapter describes important points
that application developers will have to keep in mind while designing and coding
PenPoint applications.

% Conserve memory

Do not squander memory. Your application should use little memory when active.
It must be able to further reduce its memory usage when off-screen. An application
that is packed with functionality but consumes a lot of memory is less likely to be

successful than one that meets key needs and requires very little memory.

W Think small

Most PC programs stand alone as large monolithic programs that attempt to do
everything. In the cooperative, multitasking PenPoint environment with its
Embedded Document Architecture, it makes more sense to provide programs that
present a facet of functionality or that orchestrate other applications and compo-

CHAPTER 2 / PENPOINT SYSTEM OVERVIEW
PenPoint design guidelines

nents. Use existing classes and components where possible rather than writing your
own from scratch.

Use a modular design

Consider writing your application as a set of separable components. A component
is a separately loadable module (a dynamic link library or DLL) that provides soft-
ware functionality. A component has a well-defined programmatic interface so that
other software can reuse it or replace it. With modular design, your application
becomes an organizing structure that ties together other components in a useful
way. For example, an outliner application might use a drawing component, a
charting component, and a table entry component; you could license these compo-
nents to or from other developers. GO is working to develop a market for third-

party components, and offers several components itself, including Text View™ and
the TableServer™ .

Your application must recover

Users may go for weeks or months without backing up their PenPoint computer’s
file system. If your application goes wrong, the PenPoint operating system will try
to halt your application rather than the entire computer, but it is your responsi-
bility to ensure that a new invocation of your application will be able to recover
cleanly using whatever information it finds in the file system. This precept some-
times conflicts with avoiding data duplication, because the memory file system is
more bullet-proof than the address space of a running application. For this reason,
filed state will usually survive a process crash.

Moreover, most users will not have the PenPoint computer boot disks on hand.
That means you cannot rely on the user being able to press the reset switch in a
jam. PenPoint uses hardware and software protection techniques to secure against
applications unintentionally corrupting the kernel and/or file system, but it is not

foolproof.

Take advantage of object-oriented programming

You don’t get to vote on using object-oriented techniques. You must write a class
for your application that inherits from clsApp. The windows your application dis-
plays on the screen must be instances of clsWin (or instances of a class that inherits
from clsWin). Of course, there are tremendous payoffs from PenPoint’s object-ori-
ented approach in program size reduction, code sharing, application consistency,
programmer productivity, and elimination of boilerplate code (those large chunks
of setup or housekeeping code that appear unchanged in every application).

Consider sharing code and data

Think about what other parts of PenPoint need to access your classes, what tasks
need to run the code in them, and who maintains their data. If your application has
a client-server architecture, with a separate back-end or a core engine, you'll need to
have the big picture in mind when choosing local or global memory, dynamic or

19

1/ APP WRITING GUIDE

20

PENPOINT APPLICATION WRITING GUIDE
Part 1 / Application Writing Guide

well-known objects, process or subtask execution, protecting shared data with
semaphores and queued access, and so on.

PenPoint is a rich operating system that makes its kernel features available to appli-
cations. A straightforward application may not need to concern itself with any of
the kernel features. It just interacts with PenPoint subsystems, which make careful
use of the kernel. For example, none of the sample programs use any advanced
kernel features.

Use document orientation

In the PenPoint operating system, the user sees documents, not separate programs
and program files. Every document on a page is the conjunction of data and a pro-
cess running an application. This leads to a document-centered approach to appli-
cation design in place of a program-oriented approach. By comparison, on a
Macintosh or IBM PC-compatible computer, the user tends to start a program and
work on a succession of files. Under PenPoint, the user turns to a new document
(or taps in a floating document) and the system unobtrusively turns control over to
the right program for that document. ‘

There are many ramifications of this orientation: applications have no Open. . .
or Save As. . . commands; the PenPoint operating system, not the user, saves data
and quits programs; you deliver application templates and defaults to the user as
stationery.

Design for file format compatibility

The PenPoint application environment differs from that of other operating systems
in that PenPoint saves your application data, along with information about objects
in the document. Because of this filing method, your data formats within PenPoint
will differ from their PC equivalents.

Most PenPoint users, however, will need to read and write application data in for-
mats that are understood by other non-PenPoint applications. Fither your applica-
tion should be able to read and write data in other formats, or you should create an
import or export filter for your PenPoint files. PenPoint provides import and export
filters for some common file formats. Because the import-export mechanism is class
based, you or other application developers can create import-export filters for other
file formats.

Exploit the pen

Graphical user interfaces built around a mouse or other pointing devices lead to
flexible program architectures that respond to the user’s actions instead of requiring
the user to perform certain steps. The pen-oriented notebook interface of PenPoint
is even more free-form. Just as with a mouse, the user can point to and manipulate
(click, drag, stretch) entities on-screen, but in the PenPoint operating system the
user can also make gestures and handwrite characters “on” the visual entities.
Taking advantage of the pen is a challenge and a tremendous opportunity.

CHAPTER 2 / PENPOINT SYSTEM OVERVIEW
PenPoint design guidelines

% Use the PenPoint user interface

The Notebook User Interface (NUI) differs from other graphical user interfaces. If
you are porting a DOS or Macintosh-based program to PenPoint, rather than create
new user interface classes, try to create a user interface that takes advantage of the
PenPoint UI Toolkit.

The PenPoint User Interface Design Reference describes the PenPoint user interface,
its rationale, and how and when to use its components. You should not deviate
from the PenPoint interface. Remember that a consistent user interface allows users
to learn your application quickly; an inconsistent user interface will count against
your application in product reviews (and acceptance in the marketplace).

The PenPoint UI Toolkit contains classes that create almost every on-screen object
in the PenPoint NUL If you use these classes, it is hard to deviate from the standard.
Additionally, it is easier to follow the conventions by using these classes than to sub-
class and change their default behavior.

21

1 / APP WRITING GUIDE

PENPOINT APPLICATION WRITING GUIDE / EXPANDED EDITION
PART 1 / APPLICATION WRITING GUIDE

Chapter 3 / Application Concepts

This chapter gives you the big picture of application development for the PenPoint™
operating system. It introduces the design issues you need to consider when writing
an application for a mobile, pen-based computer, how applications work under
PenPoint, and how you use the PenPoint classes.

This chapter also presents concepts in general terms to provide the fundamental
understanding that puts the balance of this manual in context. You needn’t have
read any of the other documentation before reading this chapter. However, if you
have the SDK software, you might want to read the “Getting Started” document in
the Open Me First packet for detailed instruction on how to compile and run the
tutorial programs.

If you want a basic look at how the PenPoint operating system works, without
a focus on writing applications, read Chapter 2, PenPoint System Overview. If
you need an introduction to object-oriented programming, read these industry
publications:

Principles of Object-Oriented Design, Grady Booch,
The Benjamin/Cummins Publishing Co., 1991.

Object-Oriented Programming for the Macintosh, Kurt Schmucker,
Hayden Book Company, 1986.

Object-Oriented Programming: An Evolutionary Approach, Second Edition,
Brad J. Cox and Andrew J. Novobilski, Addison-Wesley Publishing Company, 1991.

However you do it, make sure you come to understand the basics of object-oriented
programming, because in PenPoint every application must be class-based.

This chapter points out some of the aspects of the PenPoint operating system that
may have an notable effect on your approach to application design.

As you know, application development takes place at two levels:
¢ At the architectural level, where you design your application.
¢ At the implementation level, where you write and test program statements.

At the architectural level, this chapter assumes that you have basic familiarity
with object-oriented programming. In developing a PenPoint application you'll
be designing different kinds of objects and the interactions between them and
PenPoint. The section “How Applications Work” introduces the PenPoint
Application Framework, which influences and supports the structure of 2/
PenPoint applications.

24 PENPOINT APPLICATION WRITING GUIDE
Part 1 / Application Writing Guide

At the programming statement level, this chapter assumes that you are well-versed
in C programming. You'll be writing C code that makes heavy use of the PenPoint
Class Manager. Chapter 4, PenPoint Class Manager introduces the Class Manager
and shows you what lines of code in PenPoint look like.

With some understanding of the Application Framework and the Class Manager,
you'll have the tools necessary to understand both the architecture and implemen-
tation of simple PenPoint programs and applications. Later chapters in this manual
describe the SDK sample programs in PENPOINT\SDK\SAMPLE (the installation pro-
cedure for the SDK creates the PENPOINT directory on your hard disk).

' PenPoint programming is unique

Just as a PenPoint computer is used in work environments that differ from other
computers, PenPoint applications execute in an environment that differs from con-
ventional PC application environments. There are eight key differences found in
PenPoint application environments:

¢ Stylus-based user interaction.

¢ Object-oriented programming.

L 2

Disk storage unnecessary.

¢ Multitasking.

¢ Cooperating, simultaneously active, embeddable applications.

¢ Graphics-intensive user interface.

¢ Notebook metaphor.

¢ Document orientation instead of application and file orientation.

Dealing with these aspects of PenPoint requires you to observe a number of guide-
lines, described in the following sections. The benefit is that the software architec-
ture of PenPoint eliminates much of the work for you. ’

The Class Manager supports the pervasive use of classes and objects throughout
PenPoint; not only in the user interface area, but also in areas such as the file system
and the imaging model. These classes provide you with ready-made components
that you can use as is or customize in your applications. These objects already con-
serve memory, exploit the pen interface, cooperate with other processes, and so on.
In particular, nearly all of the work your application needs to do to work within the
PenPoint Notebook is already implemented by pre-existing classes that comprise
the PenPoint Application Framework.

» How applications work

In the PenPoint operating system, the environment in which your application runs
and how it starts up are unlike any other operating system.

MS-DOS accepts a command line, executes a single program at a time, and does
litcle while that program is running. The PenPoint Application Framework takes an
active role in running your application. The Application Framework is responsible

CHAPTER 3 / APPLICATION CONCEPTS
How applications work

for activating, saving, restoring, and terminating your application. Additionally, the
Application Framework plays a part in installing and deinstalling your application.

Because all PenPoint applications use the Application Framework, all applications
behave consistently. Additionally, the Application Framework handles the house-
keeping functions that Macintosh or MS-DOS programs must perform from boiler-
plate code. Meanwhile, the PenPoint Application Framework presents the PenPoint
user with multiple small, concurrent documents as part of a consistent, rich note-
book metaphor.

It’s difficult to cleanly define the PenPoint Application Framework, because it is
both external to your application and something your application is itself a part of.
But here’s an attempt:

PenPoint Application Framework Both the protocol for supporting multi-
ple, embeddable, concurrent applications in PenPoint, and the support
code that implements most of an application’s default response to the
protocol.

To help you understand how an application fits into the PenPoint computing envi-
ronment, this section walks through some important stages in the life of an applica-
tion. By the end of this section you should understand a little about the PenPoint
Application Framework, some of the classes of objects in PenPoint, and why classes
are so important. The next section explains class-based programming in PenPoint.

With an understanding of the PenPoint Application Framework and the Class
Manager under your belt, you'll be able to work through the tutorials on PenPoint
programming that begin in Chapter 6. The tutorial summarizes other PenPoint
subsystems: windows, User Interface (UI) Toolkit, filesystem, and handwriting
translation. The tutorial incorporates these subsystems into a set of increasingly
functional sample programs.

Installing and starting applications

After acquiring an application, the user must install the application in the PenPoint
computer. Usually an application distribution disk contains the code and data
that implement the application’s classes, and any other classes required by the
application.

We'll first look at how a user installs and starts a program on a traditional PC oper-
ating system (MS-DOS). Then we'll compare these operations with installing and
running an application on PenPoint.

% MS-DOS installation

In MS-DOS, the user usually installs a program by copying the program from distri-
bution disk to a hard disk. Once on the hard disk, the program does nothing until
the user types a command to start the program.

Some MS-DOS programs require the user to copy the files from distribution disks to
the hard disk; others provide their own installation programs that copy the files to

25

/ APP WRITING GUIDE

~

26

PENPOINT APPLICATION WRITING GUIDE
Part 1 / Application Writing Guide

the hard disk and alter system configuration parameters for their program. Installa-
tion varies tremendously from program to program.

When the user types the startup command for a program, MS-DOS loads the pro-
gram into memory from the hard disk and transfers control to the program. Once
the program is running, it controls most of the operations of the CPU until the user
leaves the program.

PenPoint installation

In PenPoint, the user installs a program by opening the Connections or Settings
notebook on the Bookshelf and turning to the installable software sheet (or by
inserting a disk that contains quick installer information).

From the installable software sheet, the user can choose various categories of install-
able items, including applications, services, dictionaries, and so on. When the user
turns to a page for an installable item, the Installer shows all the available applica-
tions that can be installed from the currently open volumes. The user selects an
item and taps the Installed? checkbox next to the item. The Installer copies the pro-
gram to an area of memory set aside for programs (the loader database) and copies
other files required by the program (such as help files, application resource files, and
stationery files) to the file system.

From this point, running PenPoint applications differs significantly from the Ms-
DOS model. Once a program is in the loader database, PenPoint can transfer con-
trol directly to it; there is no intermediate step of loading the program into
memory, because it is there already.

PenPoint transfers control to your program under two conditions: the user is
installing your program, or the user is opening a document that requires your pro-
gram (we will cover this case in the next section).

Installer responsibilities

During installation, the Installer calls a standard entry point (called main()) in your
program in such a way that you can tell that your program is being installed. At this
time, most programs create their application class and any other classes that they
need. Some programs initialize files or common data structures such as dictionaries
or stationery.

If your application requires code for other classes (such as a special character-entry
class) and resources (such as a special font), the Installer ensures that these classes
and resources are present in the computer. If they are not present, the Installer
copies and installs them also. In turn, these classes may require additional classes
and resources, and so on.

The Installer keeps track of all installed applications. When the Installer initializes
your application, the application specifies whether it should go in the Tools Acces-
sory palette or in the Stationery notebook, or both (or neither). Depending how
your application initializes itself, the user will now see the application in the
Accessories window, or in the Stationery notebook and Create pop-up menu.

CHAPTER 3 / APPLICATION CONCEPTS 27
Running a PenPoint application

After installation, your code is in a similar state to an MS-DOS.EXE or .COM pro-
gram that has just been loaded into memory but not yet run. However, when the
MS-DOS program terminates, it removes itself from memory. PenPoint programs
stay in the system until the user removes the application.

¥ Running a PenPoint application

When running an MS-DOS program, the user has to find a file that contains data
understood by the program. When the user decides to stop using the program, he
or she must save the data to a file and then exit. If the user chooses a file that the
program doesn’t understand, the program might display garbled information, at
best, and at worst the program might crash.

PenPoint takes a fundamentally different approach: the user creates a document
from a list of available applications and, at some later time, tells PenPoint to acti-
vate the document. The user doesn’t have to activate the document immediately
after creating it and, in fact, can create many, many documents without activating
any of them.

% Life cycle of a document

The standard components of an application include its application code, applica-
tion object, resource file, instance directory, process, and main window. The full life
cycle of a document created by an application includes the following operations:

¢ Document creation (create file)

%

Activation (create process)

L 4

Opening (open on screen)

L 4

Closing (remove from screen)

L 4

Termination (terminate process)

Destruction (delete file)

%

Active documents save their internal state in the file system, but this is invisible to
the user: there is no need to save or load the application’s state explicitly from one
session to the next.

% Activating a document

When the user activates the document, PenPoint finds out from the document A PenFoint document remains

what application it requires and creates a process that “runs” the application (see in the computer from the time
« L. . » .) it is created until the time
Application classes and instances” on the following page for more details). When 112t the user deletes it, but

the user deactivates the document, PenPoint saves all of the document’s informa- the application process exists
tion and then destroys the application process. Zzzvﬁhlle the document is

% Not all active documents are on-screen

It’s only when the user activates a particular document that the document has a
running application process. When the user activates a document, the PenPoint
Application Framework creates an application process and calls the standard main()

1 / APP WRITING GUIDE

28

PENPOINT APPLICATION WRITING GUIDE
Part 1 / Application Writing Guide

entry point in your code in such a way that your application can tell that it is
starting an application process (and not being installed).

However, just because a document is running, doesn’t mean that it must be on-
screen; conversely, if a document is not on-screen, its process might still be running.

The most common example of this is when the user makes a selection in a docu-
ment and then turns to another document (perhaps to find a target for a move or
copy). The document that owns the selection must remain active until it is told to
release the selection.

A second example is when the user chooses accelerated access speed (sometimes
called hot mode) from the Access document option sheet, the application processes
will continue running, even when the user has turned to another page.

For a third example, you might want to create a stock-watcher-type program that
runs in the background most of the time. This type of program will also be active,
but not on-screen.

Application classes and instances

A PenPoint computer contains only one copy of your application code in memory,
but a user can simultaneously activate several documents that use your application.
PenPoint can do this because your application code is a PenPoint class and an active
document is an instance of your application class.

When the user installs your application, your application creates your application
class. When the user activates a document that uses your application, the Applica-
tion Framework creates an instance of your application class.

Accept this as fact for now. We will spend pages and pages in this and other man-
uals explaining how this works.

PenPoint drives your application

Because of all the states that an application can be in, an application can’t take con-
trol and start drawing on the screen and processing input when its main() function
is called. In additon, your application can't find out on its own if it is on-screen or
should terminate. Instead it must be directed what to do by the PenPoint Applica-
tion Framework. The Application Framework sends messages to documents (and
hence to your application code) to initialize data, display on screen, save their state,
read their state, shut down, and so on. This is why applications must be imple-
mented as classes.

For example, when a document needs to be started up to do some work, the Pen-
Point Application Framework sends msgAppActivate (read this as “message app
activate”) to the document. When the user turns to a document’s page, the Pen-
Point Application Framework sends it msgAppOpen.

A typical MS-DOS program written in C has a main() routine that displays a wel-
come message, parses its command line, creates a user interface, initializes struc-
tures, and then waits for user input. By contrast, a PenPoint application’s main()

CHAPTER 3 / APPLICATION CONCEPTS

routine usually creates the application object and then immediately goes into a loop
waiting for messages to the application object to arrive. Because all applications
enter this loop, there is a routine, AppMain(), which enters the loop for you.

W Application objects

Most PenPoint applications perform three minimum actions:

¢ Respond to user and system events (including PenPoint Application Frame-
work messages).

¢ Create one or more windows for user input and to display output.
¢ Create one or more objects to maintain their data.

There are object classes already written in PenPoint for each of these actions:
clsApp, clsWin, and clsObject, respectively. These classes do the right kinds of

things for applications themselves, for windows, and for data. They provide a skel-

eton of correct behavior, although obviously GO’s code doesn't create the user inter-

face and data classes needed to implement behavior specific to your application. To
get the behavior you want, you often need to create descendant classes that inherit
from existing classes.

A descendant of clsApp

Lots of the behavior that is common to all applications is already implemented
for you.

The PenPoint Application Framework’s interactions are sophisticated and complex.
You'll learn more about them in the following sections. Applications need to behave
in a standard way to work well in the framework. To simplify life for the application
developer, your application class inherits most of this standard behavior from the
class clsApp. clsApp handles all the common machinery of application operation,
so that many applications do not need to do anything in response to messages like
msgAppActivate and msgAppOpen. Applications rely on clsApp to create their
main window, display the main window, save state, terminate the application
instance, and so on.

You must write a descendant class of clsApp and create it during installation. In the
example shown here, the descendant is clsTttApp. At the appropriate time, the
PenPoint Application Framework sends this class a message to create an instance of
the class (Tic-Tac-Toe application instance in the figure). However, you must
decide when to create your application’s other objects (windows and filing objects).

An instance of cIsWin

The PenPoint Application Framework creates a frame for your application by
default. This is a window with many decorations: a title bar, a shadow if the
window is floating, optional resize corners, close box, menu bar, tab bar, command
bar, etc. These decorations surround space for a client window. It is up to you to
create the client window. You can also create windows to go into your frame’s menu
bar, tab bar, and command bar, and you can create floating windows, additional

29
Application objects

i

The EMPTYAFPP sample
program in the Tutorial does
nothing significant in response
to any message, yet because it
inherits from clsApp you can
create Empty Application
documents, copy them, float
them, embed them, and so on.

Frames support only orne client
window, but you can insert

1/ APP WRITING GUIDE

other windows inside the client -

window.

30 PENPOINT APPLICATION WRITING GUIDE
Part 1 / Application Writing Guide

Application, view, and object classes FIGURE 3-1

clsObject

PenPoint .)
provides: - clsObject

several

window

subclasses
You must : :
write:

L

Tic-Tac-Toe
application
instance

.

clsView

Sereani

o

-

M

L

o

Tz’c— Tac-Toe

| view of squares§’T

Tic-Tac-Toe

| square values

.

Objects in a running
instance of your
application

frames, and so on. Most applications create one or more windows to draw in and
allow user input.

All window classes inherit from clsWin. This class does not paint anything useful in
its window, so you must either create your own window class that draws what you
want or you must use some of the many window descendant classes in PenPoint.

%y Some window classes

The Tic-Tac-Toe application, for example, creates several kinds of windows based
on existing classes in PenPoint (see Figure 3-1):

¢ A scrolling client window (an instance of clsScrollWin), which lets the user
scroll its contents.

¢ An option sheet for its options (clsOption).

¢ An option card for the option sheet (clsOptionTable).

CHAPTER 3 / APPLICATION CONCEPTS
Understanding the application hierarchy

¢ Various user interface component windows (clsButton, clsLabel, clsInteger-

Field) for the option card.
¢ Menus.
¢ A Tic-Tac-Toe view (clsTttView) to display the grid and Xs and Os.

Like clsTttApp, you have to write the code for clsTttView and create the class at
installation. Your application must create the various windows at the appropriate
times, such as when it receives msgApplnit or msgAppOpen.

Using clsView

Many applications will use clsView, a specialized descendant of clsWin, for their
custom windows. clsView associates its window with the data object it is dis-
playing; the data object sends the view a message when its data changes. In the
case of Tic-Tac-Toe, clsTttView inherits from clsView, so the Tic-Tac-Toe window
is a view.

In Tic-Tac-Toe, a clsTttView instance observes the data object (an instance of
clsTttData). More than one view can be associated with the same data; in theory
two views of the Tic-Tac-Toe board could show their state in different ways. When
the data changes, all the views are notified and can redraw themselves.

¥ An instance of clsObject

Instead of managing all of the data involved with an application itself, a PenPoint
application typically creates separate objects that maintain and file different parts of

the data. These objects respond to messages like “Save yourself” and “Restore your-
self from a file.”

clsObject is actually the ancestor of all classes in PenPoint, including clsWin and
clsApp. There is no class specifically for objects that must be filed. Filing is such a
general operation that all objects in the PenPoint operating system are given the
opportunity to respond to msgSave and msgRestore messages. PenPoint supplies
various descendant classes, which help in storing structured data, such as a list class
(cIsList), a picture segment (clsPicSeg), a block of styled text (clsText), and so on.

In Figure 3-1, the data for the Tic-Tac-Toe application (the values of the nine
squares) is maintained by a separate object, Tic-Tac-Toe square values, an instance

of the specialized class clsTttData.

¥ Understanding the application hierarchy

You may have wondered how PenPoint keeps track of all the sections, documents,
and embedded documents in a notebook if application objects are not immediately
up and running when they are created. The answer is that each document and
section in a notebook is represented in an application hierarchy in the PenPoint
file system. The Notebook table of contents displays a portion of this application
hierarchy.

31

/ APP WRITING GUIDE

TT—

32

PENPOINT APPLICATION WRITING GUIDE
Part 1 / Application Writing Guide

The reason it is called an application hierarchy is that the directory structure is the
same as the hierarchy of documents in PenPoint (including embedded documents,
accessories, and other floating documents not on a page in the Notebook). Each
notebook has a directory in the file system. Within the notebook, each document
or section has a directory. Within each section, each document or section has a

directory. Within each document, all embedded documents have a directory, and so-

on (see Figure 3-3).

As an example, when the user creates a document in a section of the Notebook, the
PenPoint Application Framework creates a new application directory in that sec-
tion’s directory. When the application is told to save its state by the PenPoint Appli-
cation Framework, the PenPoint Application Framework gives it a file to save to in
that application directory.

All PC operating systems have a file system, and in most you can store application
data in a similar hierarchy of directories and subdirectories. Some may even provide
a folder or section metaphor for their file system. But they do not directly weave
applications into this file system. The Notebook’s TOC (tap on its Contents tab to
move to it) shows the organization of documents in the Notebook, and this 7s the
organization of part of PenPoint’s file system.

In PenPoint, the application hierarchy exists in the PENPOINT\SYS\BOOKSHELF
directory on theSelectedVolume. You can inspect the application hierarchy your-
self. Modify your ENVIRON.INI file so that the DebugSet parameter specifies
/DB800. Run PenPoint and go to the Connections notebook. Using the directory
view, browse through the disk volume. In the PENPOINT directory, you should see
directories called NOTEBOOK, SECTION, and so on. Compare this with the Note-
book TOC. The Browser shows exactly what the file system looks like, while the
Notebook TOC interprets this part of the file system as the application hierarchy.

If your selected volume is your hard drive, you can also inspect this hierarchy from
DOS. However, to keep path names short, all of the PenPoint directory names
below PENPOINT use two letter names. For example, the SYS directory is SS in DOS,
the Bookshelf directory is BE the Notebook is NK, and so on.

The Notebook’s own hierarchy

The PenPoint classes and application hierarchy probably seem obscure and con-
fusing at this point. So let’s look at how the Notebook itself is written using this
metaphor. Each component of the Notebook is itself a document, with its own
main window, a parent window, and a directory in the file system’s application
hierarchy.

The important concept to grasp is that there is a correspondence among:
¢ The PenPoint applications.
¢ The functionality of the parts of the notebook metaphor.
¢ The visual presentation of parts of the Notebook.

¢ The PenPoint file system layout.

The application hierarchy
differs from the class
hierarchy explained in the
next chapter, and from the
hierarchy of windows
on-screen.

Strange and important!

CHAPTER 3 / APPLICATION CONCEPTS 33
Understanding the application hierarchy

Some of these relationships are:
Running documents are instances of application classes.

Functionality of notebooks, sections, and pages is delivered by application
classes.

Visual components of a notebook are these applications’ windows.
Sections and pages in a notebook are these applications’ directories.

Section name and page number location in a notebook combine to form a

location in the file system. The following figures are
explained in more detail in
This figure shows how a typical mix of applications in a running PenPoint system Part 2: Application Framework

uses different kinds of classes of the Fenfoint Architectural
’ Reference.
Application Framework and Notebook hierarchy FIGURE 3-2
clsObject

*

clsClass clsApp

all classes
in PenPoint

+

clsAppMgr

PenPoint
application
classes

clsRoot- clsContainer-
clsBSApp | ContainerApp App

|| theBookshelf

Noiehook

Notebook TOC,

and sections

clsSectApp

|
—n

application
i classes

applications

1 / APP WRITING GUIDE

34 PENPOINT APPLICATION WRITING GUIDE
Part 1 / Application Writing Guide

The Notebook hierarchy as mirrored by the file system FIGURE 3-3

Bookshelf
doc.res
— docstate.res
Notebook
doc.res
docstate.res
Contents
— doc.res
L docstate.res
— browstate
— Read Me First
— doc.res
docstate.res
—Samples
— doc.res
— docstate.res
— browstate
New Product Ideas

L efc...
Package Design Letter
- doc.res
I: docstate.res
Suggestion

_ doc.res
docstate.res

— efc...

Figure 3-3 and Figure 3-4 indicate how the same visual components exist in the file
system, and as processes and objects.

You can use the Connections notebook to explore the relationship between docu-
ments and the file system yourself. To view the running PenPoint file system in the
Connections notebook, you need to set the B debug flag to hexadecimal 800 in
order to view the contents of the boot file system. The easiest way to do this is to
modify the DebugFlag line in ENVIRON.INL

% The Bookshelf
The highest level of the application hierarchy is the Bookshelf. This is an applica-

tion, but there is only one instance of it—you can’t create additional bookshelves.
The Bookshelf application manages bookshelves and floating applications. Its
parent window is the entire screen of the PenPoint computer. It draws the white
background.

% The Notebook

Below the Bookshelf’s’s directory lies the directory of the main Notebook

(and other documents on the bookshelf). The Notebook application presents

the familiar visual metaphor of a notebook with pages and tabs. All applications
that “live” on a page have subdirectories in the Notebook. There are usually several
notebooks on a PenPoint computer: the main Notebook, the Stationery notebook,
and the Help notebook. Even the In box and Out box are implemented as
notebooks.

35

CHAPTER 3 / APPLICATION CONCEPTS
Understanding the application hierarchy

IGIND ONLEM ddV / L

Process O

FIGURE 3-4

on,
£
3
2
[

ion

‘Window List
f

ca

pp!

1001101
NB A
Class

App
Directory

Application
Object

Document Process

Floating
indow List
Components

NB Process

Object
File Handle
Resqurce

1001101

Document
Directory

Notebook hierarchy and application processes

ion Class

RS
i -]
Chmis e

t

ica

-
-
-
e
-
LR

ion
|
iText

-
.
ini

Application Class

M

Sect
App

R e 5l ooy G S o gy
ca .
.] | e
e o i .
o .
.

Package Design Letter
.
o

Samples

-

B
Gt Rk A

/

e

/

.. .
g

S R i mﬁ»ﬁ@&mmﬂmm xl!!uma
. s
E o
L -
.
e

=

0 S e
L - 5
... == @ @ @O

S

MiniNote
Application Class

Lo
Eaaadaun
.

.

36

PENPOINT APPLICATION WRITING GUIDE
Part 1 / Application Writing Guide

The Notebook document stores the section tab size, the current page shown in
the Notebook, the page numbering scheme, and so on in its directory.

When the user taps to turn a page in the Notebook, the Notebook traverses the
application hierarchy to the next document directory and sends a PenPoint Appli-
cation Framework message to that document’s application to start it up.

The Notebook’s window covers most of the screen except for the Bookshelf at the
bottom.

Page-level applications

The subdirectories in the Notebook’s directory relate directly to the documents Actually, sections are

and sections in the Notebook. The name of the subdirectory is the name of the -~ documents that know how to
. . . . , behave in a table of contents.

document or section. Each of these subdirectories contains the filed state of an

instance of a section or document.

This table lists some of the items in the Notebook (shown in Figure 3-3), the direc-
tory in which each of the items are stored, and the class from which each item is

instantiated.

Notebook organization and the file system TABLE 3-1
Document or sechion Stored in directory Instance of cluss
Samples Notebook Contents clsSection

New Product Ideas Samples clsMiniText

Package Design Letter Samples clsMiniText
Suggestion Package Design Letter clsMiniNote

Most applications have a menu bar. The PenPoint Application Framework supplies
a set of standard application menus (SAMs), to which applications add their own
menu jtems. The PenPoint Application Framework provides support for the menus
(Document, Edit, and Options) and many of the items on the menus.

Applications draw in the window that the Notebook provides for them. A page-
level applications’s window is the Notebook area; except for the tabs area.

Sections

Sections are similar to other applications: they are instances of an application class
(clsSectApp), they appear on a Notebook page, they can have tabs. A section appli-
cation displays a table of contents showing the documents that are in that section:
these are simply the application subdirectories in the section’s own directory.

One difference between a section and other applications is that a section has a spe-
cial attribute in its directory entry. When the Notebook is traversing the application
hierarchy (to display its table of contents, or turn to the next page), if it comes
across a section it descends into the section. This enables the Notebook to number
pages correctly.

Section data stored in the section’s directory entry includes the state of its table of
contents view (expanded or compressed). The Notebook Contents page is an
instance of clsSectApp, just like other sections.

CHAPTER 3 / APPLICATION CONCEPTS 37
Understanding the application hierarchy

" Floating accessories

Most PenPoint applications are part of the Notebook. But some applications, such
as the calculator, the disk viewer, and the snapshot tool, don’t “live” on a page in the
Notebook. These accessories “float” on the Bookshelf when active, appearing over
pages in the Notebook. Their parent window is the Bookshelf, not the Notebook
page area. They aren’t part of the Notebook’s table of contents and you can’t turn
the page to them. However, a floating application is still part of the same under-
lying model: it has a directory (it’s just not a subdirectory of the Notebook), it is

sent messages, and SO on.

¥» Embedded applications

It is possible to embed documents in other documents that permit it. For example,
an on-line “electronic newspaper” document might embed an instance of a cross-
word puzzle application in itself; the crossword puzzle class might allow the user to
embed an instance of a text application in a crossword puzzle document to let the
user jot down notes and guesses. The design of PenPoint makes it easy to write
applications that can embed, and can be embedded in, other applications.

When the user creates a new document in the Notebook, PenPoint actually embeds
the application in the Notebook application. This document embedded in the
Notebook is called a page-level application.

Only page-level applications appear in the Notebook’s Table of Contents; appli-
cations that are embedded in page-level applications do not. It doesn’t make sense
for a user to turn the page to an application embedded in the current page.

Application embedding is very straightforward. When the user moves or copies an
application, the Bookshelf application sends a msgAppCreateChild message to the
destination application. If the application permits embedding, the PenPoint Appli-
cation Framework handles this message by creating a directory for the embedded
application within the destination application’s directory.

When an application is embedded in another, the embedded application is inserted
into two hierarchies: the file system hierarchy and the window system hierarchy. In
the file system, the application directory for an embedded application is a subdirec-
tory of the application directory of the application in which it is embedded. In the
window system, the parent application supplies a window into which the
embedded application can insert its main window.

Thus, in our example, the newspaper application uses an application directory for
the newspaper document. Within that directory is an application directory for the
crossword document. Within the crossword application directory is a directory for
the text editor document. The newspaper document window contains a window
that is the main window for the crossword document. The crossword document
window contains a window that is the main window for the text editor.

1 / APP WRITING GUIDE

38 PENPOINT APPLICATION WRITING GUIDE
Part 1 / Application Writing Guide

% Application data

A document stores data in its directory so that when its running process is termi-
nated, its state lives on in the file system. The Application Framework can later
create a new process for the document and direct the document’s application to
restore the document from this filed state.

Some information is of interest to this instance only, such as the visible part of the
file, the user’s current selection, and so on. This would probably be saved by the
application itself, that is to say, when the application receives msgSave it writes this
information out.

The application can also tell the Application Framework to send msgSave to other There are many mechanisms
objects to get them to save their data (your application can’t send msgSave directly ~that automatically propagate
. msgSave to related objecte.
to another object). For example, the image in a sketching program might be imple- ¢ 05 can be set to save
mented as a separate object; when the application is told to save, it tells the Applica- child windows, views save their

tion Framework to save the image object. data objects, and so on.

By default clsApp saves the information about the document, including its com-
ments, frame window position, mode, and so on, so you only need to save those
things created by your application class.

¥ Activating and terminating documents

In the section “Application classes and instances” on page 28, we described how an
instance of the application is created. The previous section should help clarify the
relationship between the file system and an instance of your application. The loca-
tion of a document in the file system hierarchy has a one-to-one correspondence
with its location in the Notebook, on a page, within a section, and so on. See the
figure to get a sense of the relationship.

The main determinant of how and when documents blossom from being directo-
ries and data in the file system to being live running processes and objects is the
user’s action of turning the page.

When the user turns to a page, the documents on that page become visible; if they
aren’t already running, the Application Framework activates them.

% Turning a page and msgAppCIosé
When the user turns to another page, the document on the original page no
longer needs to appear on screen, so the PenPoint Application Framework sends

msgAppClose to the application instance, indicating that it can close down its user
interface.

When it receives msgAppClose, the application might still have some processing to
do or it might be talking to another application. The application can finish its work
before acting in response to msgAppClose.

To respond to msgAppClose, the application should save (to the file system) any
data about on-screen objects that the user moved or changed. The application

CHAPTER 3 / APPLICATION CONCEPTS
Activating and terminating documents

should then destroy and remove all windows that it created, thereby reducing
memory usage.

An application instance may receive msgAppTerminate after msgAppClose

(if it is’t in “hot mode”). When it receives msgAppTerminate, the application
must save all data that will be required to restore the document to the screen exactly
as it was before, because msgAppTerminate kills the document’s process.

Restoring inactive documents

When the user turns back to the saved document, the Application Framework
looks at that document’s directory. If the process for the document was terminated,
the Application Framework starts a new process, creates a new instance of the appli-
cation class, and recreates the document based on information in the directory. As
part of this re-creation, the Application Framework sends the document msg-
Restore, which tells it to read its state back in from the file system.

The Application Framework then sends msgAppOpen to the application, telling it
to prepare to draw on the screen. The Application Framework also sends msg-
Restore and msgAppOpen to any embedded applications in that document.

Finally, the Application Framework inserts the application’s windows into the
screen, and the windows receive messages telling them to paint.

From this point the user can interact with the document. When the user makes a
gesture within the document, the document’s application controls the resulting
action.

Page-turning instead of closing

As described in “Turning a page and msgAppClose,” most PenPoint applications
don’t need a Close menu item. Most documents are active until the user turns the
page; others may be active even when off-screen (for instance, if they have the selec-
tion or are involved in a copy operation). The user doesn’t know what a running
application is: when the user turns to a page, everything on it appears exactly as it
was when the page was last “open,” and every window responds to the pen. The fact
that some of the applications may have been running all the time while others were
terminated and restarted should be inconsequential to the user.

Saving state (no quit)
In an MS-DOS or Macintosh program, the user explicitly quits the application, and
thus doesnt expect the application to reappear in exactly the same state.

Because of PenPoint’s notebook and paper paradigm, you must preserve all the
visual state of your application so that when it is restarted it appears the same. This
has strong implications for the kinds of information your application needs to save
when an application receives msgSave.

39

1 / APP WRITING GUIDE

40

PENPOINT APPLICATION WRITING GUIDE
Part 1 / Application Writing Guide

 Documents, not files and applications

It’s important to understand that the application instance and the file it is editing
are conjoined.

The user should rarely, if ever, see “files.” Instead, she or he sees only documents.
(The exception to this is when importing data from and exporting data to other
computers.) Ordinarily, for every document in the application hierarchy there is an
application.

A user can deinstall an application without deleting the application’s documents in
the file system. If the user tries to turn to one of these documents, there is no code
to activate them. Instead, these orphan applications are handled by a “mask” appli-
cation that tells the user that the application has been deinstalled and prompts the
user to reinstall the application.

No new, no save as. ..

On a PC, the user usually starts an application, and then chooses what file to open
with that application. But in the PenPoint operating system, the user can start an
application by:

¢ Turning to the page that contains a document.
¢ Floating a document.
¢ Creating a new embedded document.

The document open on a page, and any floating or embedded documents on that
page, are all applications with open files. You do not open a file from within an
application. Instead, you turn to (or float or embed) another document and
PenPoint starts up the correct application for that document.

Thus, it does not make sense to try to open another document from the current
application, or to save the current document as another document.

The only time that an application needs to actually open a file from disk is when it
is importing or exporting data that will be used by a file-oriented program on a file-
oriented operating system.

Stationery

Users often want new instances of an application to start off from a particular state.
Instead of opening a template from within the application, Penpoint supports
application-specific stationery. The default piece of stationery is an application
instance started from scratch. The user can create additional stationery documents,
which are just filed documents kept in a separate notebook.

In the case of Tic-Tac-Toe, each document shows a view of its own board. There is
no new command, because the user can always create a new document. There is no
save command either—the Tic-Tac-Toe state is saved on every page turn. There’s no
open command, because the user can either turn to another Tic-Tac-Toe’s page to
“read it in,” or can start from a desired template by accessing documents in the
Stationery menu or auxiliary notebook.

CHAPTER 3 / APPLICATION CONCEPTS 41
Shutting down and terminating applications

» Shuiting down and terminating applications

If a document is in the application hierarchy, it always exists as a directory in the

file system, whether it has a running process or not, and whether it is visible or not:

When the user deletes a document (page-level or embedded), PenPoint deletes its

directory from the file system.

The user can also elect to use the installer to deinstall or deactivate an application. While the application is

not available, the mask

. application handles the
ferent application, or when the user isn’t using an application any more. Deinstalla- agﬁncaﬁon’e documents.

tion removes all application code from the loader database, which prevents the user
from running it. However, the documents still exist in the application hierarchy,
and can spring back to life if and when the user re-installs the application. Deacti-
vation also removes the application code, but PenPoint remembers where the appli-
cation came from, so that it can prompt the user to insert the appropriate disk if the
user chooses to reactivate the application.

This might be necessary when the user needs more room on the computer for a dif-

% Conserving memory

When a document is active, it is obviously consuming memory, but when it is not
active, it can still consume memory (if the computer is using a RAM-based file
system). The document’s saved state is in the application hierarchy, which can be in
the RAM file system; the RAM file system shares RAM with running processes. This
emphasizes how important it is to conserve memory.

You should also try to conserve memory when an instance is running but not open
(for example, if it has the selection but is off-screen). This is an opportunity to
destroy UI controls and other objects which are only needed when your application
is on-screen.

% Avoiding duplication
Documents receive messages from the Application Framework telling them to save
their state to their directory. When a document starts up, its corresponding applica-
tion often reads all of this state back into memory. This means that there are two
copies of the documents state; the one in its address space and the saved copy in the
file system. This can be quite wasteful of space. There are several approaches to
eliminating this redundancy:

+ Don't read state back into memory. Read information in from the file system
when needed. This works well for database-type objects. Because the applica-
tion hierarchy is in memory, file I/O is faster than you might think, but this is
still slow. It does prevent the user from reverting to the filed state of the docu-
ment, since the filed state is always being updated. Your application would
have to disable Revert, or make its own backup copy of filed state.

¢ Use memory-mapped files to map filed state into the application’s address
space. This works well for large data files, but it does interfere with Revert.

1 / APP WRITING GUIDE

42 PENPOINT APPLICATION WRITING GUIDE
Part 1 / Application Writing Guide

¢ Read state back into memory, then delete the information from the file sys-
tem. This means that if the application instance crashes, there is nothing in
the file system to recover.

¢ Refuse to save state to the file system. This implies that the application
process can’t be terminated. This also means that the application state can't
be recovered.

% Hot mode

The last alternative above is supported by the PenPoint Application Framework. An
application class or the user (by choosing Accelerated for Access Speed in the appli-
cation’s option sheet) can tell the PenPoint Application Framework that an applica-
tion instance should not be terminated. This is called hot mode. It means that the
document will appear much faster when the user turns to it, because its process
never went away. Ordinarily the Application Framework must start a new process,
create a new application object, tell it to restore its state, then put it on-screen.

¥» Components

As we have seen, you can embed applications within other applications. This is the
basis for the Application Framework’s hierarchy. Applications require a good deal of
overhead: each has its own directory, has code in the loader database, and runs as its
own process (in addition to the directories and processes used by that application’s

documents).

You can reduce the size of an application by using components. Components are
separate DLLs that provide a well-defined API to their clients. Most components can
be used as part of an applications, but they don’t require much overhead.

Components don’t run as a separate process, and don’t have a separate directory.
Some components, such as Reference buttons, manifest themselves as visible
objects and let the user embed, move, and copy them. Others, such as text views,
are visible but can be added to applications only programmatically. Still others,
such as the Address Book, do not even have a UJ; that is, they do not display on-
screen (the address book provides information that other applications then format

and display).

PENPOINT APPLICATION WRITING GUIDE / EXPANDED EDITION
PART 1 / APPLICATION WRITING GUIDE

Chapter 4 / PenPoint Class Manager

The previous chapter introduced some of the concepts in the PenPoint™
Application Framework. This section quickly covers the PenPoint operating
system’s object-oriented Class Manager. The Application Framework largely deter-
mines the overall structure of your applications; sending messages to objects using
the Class Manager makes up 80% of the line-by-line structure of your code. With
an understanding of the Application Framework and the Class Manager, you can
start the tutorial.

There are three elements to the PenPoint operating system’s object-oriented soft-
ware environment: objects, messages, and classes.

Perhaps the simplest way to introduce the concepts of objects, classes, and messages
is by looking at an example. The example discussed in the next three sections out-
lines what must happen to set the title of an icon. A user sets an icon’s title by
making the check «/ gesture over it. When its option sheet appears, the user enters
a new icon title, makes sure the layout style is one that includes the title, and taps

Apply.
If you feel that you understand the concepts of object-oriented, message-passing,

class-based systems, you can skip this introduction and go directly to the section
titled “Sending a Message.”

W Objects instead of functions and data

In a non-object-oriented system, the icon and its title would be stored in a data
structure. Any piece of code that gets or sets information pertaining to the icon
must know the exact organization of that data structure. To modify the icon title,
the program would locate the data structure that represented the icon; for example,
it might change the icon’s title string by changing a pTitleString pointer. This pro-
gram will break if the internal structure changes or if the string is later implemented
by storing a compact resource identifier.

In an object-oriented system, anything in the system can be an object. In our
example, the icon is represented by an object. The object knows about both the
data for dn icon and the functions that manipulate it. The object hides, or encapsu-
lates, the details of its data structures and implementation from clients. One of the
messages understood by the object might be “Set Your Title String,” which tells the
object to change its title.

Because the object contains the code for the functions that manipulate it, the object
locates its own internal data structures that represent the title, and changes the title.

44

PENPOINT APPLICATION WRITING GUIDE
Part 1 / Application Writing Guide

This encapsulation reduces the risk of clients depending, either deliberately or -
accidentally, on implementation details of a subsystem. If the internal structure
changes, only the object’s code that manipulates the structures must change. Any
client that sends the “Set Your Title String” message can still send that message and
will still get the same effect.

Some objected-oriented systems, including PenPoint, use software and hardware

J Y g
protection facilities to prevent clients from accessing or altering the internal struc-
tures of objects, whether accidentally or maliciously.

Ideally, in object-oriented operating systems, the objects presented to clients should
model concrete ideas in the application. For example, if your application’s user
interface requires a button, it should create an object for that button; if your appli-
cation has a counter, it should create an object to maintain that counter value.

Messages instead of function calls

Modular software systems are sometimes object-oriented without being message-
passing. That is to say, they have objects that hide data structures from clients (such
as “window”), and you pass these software objects as arguments to functions which
act on them. Using the example of setting an icon’s string, in such systems you
might pass the iconWindow object to a routine called WindowSetString().

But this approach requires that clients know which function to call, or that the
function handle many different kinds of objects. The implementation of icon
strings might change so that icons need to be handled specially by a new IconSet-
String() function. Again, all clients would have to change their function calls.

Message-passing systems flip this control structure so that the object hides the rou-
tines it uses. A client simply sends a message to the object, and the object figures
out what to do. This is known as data encapsulation. In the example we're using,
clients send the message msglabelSetString to the icon; the only argument for the
message is a pointer to the new title string.

Because icons (or other objects) respond to messages, it doesn't restrict the imple-
mentation of icons: if, in the future, icons handle titles differently than other labels,
they can still respond to msgLabelSetString correctly.

“The object figures out what to do” sounds like black magic, but it is actually not
very complicated. You call a C routine to send a message to an object. Inside the
Class Manager code, the Class Manager looks up that message in a table (created by
the developer of the icon class) that specifies what function to call for different mes-
sages. If the message is in the table, the Class Manager then calls the icon’s internal
function which actually implements the message.

One benefit of using messages instead of function calls is that many different
objects can respond to the same message. All objects that come from a common
ancestor will usually respond to the messages defined by that ancestor. For instance,
you can send msgLabelSetString to almost any object. (In some systems, this is
called “operator overloading.”)

Note The term “client” here
and elsewhere in the SDK
documentation means any
code making use of a software
facility.

An object can respond to any
message sent to it; the
message does not have to be
defined by the object’s class
or its ancestor clase.

CHAPTER 4 / PENPOINT CLASS MANAGER
Classes instead of code sharing

You can send any message to any object. Depending on whether it knows how to
respond to the message, the object chooses what to do:

¢ If the object understands the message and can handle it, the object processes
the message.

o If the object doesnt understand the message, it gives the message to its ances-
tor, to see if its ancestor knows how to handle the message (more on ancestors
later in this section).

¢ If the object understands the message, but doesnt want to handle it, the object
can ignore the message (by returning a nonerror completion status), reject the
message (by returning an error completion status), or give the message to its
ancestor.

P Classes instead of code sharing

Icons and several other similar objects have titles. Thus, each of those objects that
has a modifiable title must handle the “set string” message in some way or other.

In other programming methodologies, programmers take advantage of functional
overlap by copying function code, trying to make data structures conform so the
same routine can be used, or calling general routines from object-specific routines.
However, whether you copy code or link with general routines, the resulting exe-
cutable file contains a static copy of the shared code. The best you can hope for is
shared code implemented by the system, which is rare.

In a class-based system, an object is an instance of a specific class. The class defines
the data structures that are used by its instances, but doesn’t necessarily describe the
data in the structures (it is the data stored in these structures that differentiates each
instance). The class also contains the functions that manipulate the object’s data.

Each instance of a class contains the data for the specific thing being described
(such as an icon). Each instance also knows to which class it belongs. Thus, there
can be many instances of a class (and data for each instance), but the code for that
class exists in only one place in the entire system.

If an existing class does almost, but not quite, everything you want, you can create
a new class that inherits its behavior from the existing class. The new class is said to
be a subclass or descendant of its ancestor class. The subclass contains unique
functionality that was not previously available in its ancestor.

The subclass should not reproduce anything that was defined by its ancestor. The
subclass only defines the additional data structures required to describe the new
thing and the functions required to handle messages for the new thing.

Of course, subclassing does not stop at one generation. The icon window class, for
example, has eight ancestors between it and clsObject, which is the fundamental
class for all classes in PenPoint.

Take a look at the PenPoint Class Hierarchy in the class hierarchy poster. Find the
relationship between clsIcon and clsLabel (they’re near the lower right edge).

45

1 / APP WRITING GUIDE

46

PENPOINT APPLICATION WRITING GUIDE
Part 1 / Application Writing Guide

% Handling messages

An object can send a message to its ancestor class either when it doesn’t recognize =~ Remember that even when

the message or when it chooses to allow its ancestor class to handle the message. the ancestor handles the
message, it uses the data

Because the icon window class inherits from the window class, the icon window ~ for the object that initially
. . received the message.

automatically responds to all the messages that a window responds to (such as msg-

WinDelta to move it or msgWinSetVisible to hide it) in addition to all the mes-

sages specific to an icon window (such as msglconSetPictureSize). A class can

override or change some of its ancestors” messages; for example, the icon window

responds to msgWinRepaint by letting its ancestor label paint the string, then it

draws its picture.

Message handling by a class and its ancestors FIGURE 4-1

clsObject

msgListAddItem
——————— List

47

By making it very easy to inherit behavior from existing classes, class-based systems
encourage programmers to extend existing classes instead of having to write their
own software subsystems from scratch. If you create a new kind of window, say an
icon with a contrast knob, you can make it a descendant of another class, and it will
inherit all the behavior of that class, or as much behavior as you choose.

You may find it easier to understand class-based programming by viewing code
instead of reading abstract explanations. The next few pages give some simple
examples of using messages and classes, and even the very simplest program in the
tutorial is fully class-based (in fact, for an application to run under PenPoint, it
must be class-based).

CHAPTER 4 / PENPOINT CLASS MANAGER 47

P Sending a message

In PenPoint, you usually send a message to an object using the ObjectCall() func-
tion (or ObjectSend() if the object is owned by another process). The differences
between ObjectCall() and ObjectSend() are detailed in Part 1: Class Manager, of
the PenPoint Architectural Reference.

Here’s a real-life example of sending a message. PenPoint provides a utility class,
clsList, which maintains a list object. The messages that clsList responds to are doc-
umented in Part 9: Utility Classes, of the PenPoint Architectural Reference and in the
clsList header file (PENPOINT\SDK\INC\LIST.H). This is the definition of msgList-
AddItemAt from LIST.H:

Sending a message

/**

msgListAddItemAt takes P_LIST ENTRY, returns STATUS
Adds an item to a list by position.

**/

#define msgListAddItemAt MakeMsg(clsList, 10)

Don’t worry about the details of the definition right now; this just tells us that
msgListAddItemAt is defined by clsList, that the message uses a P_LIST_ENTRY
structure to convey its arguments, and that the message returns a value of type
STATUS when it completes.

We want to send msgListAddItemAt to a list object, telling it to add the value ‘G’
to itself at position three in the list.

Sending msglistAdditemAt to a list

FIGURE 4-2

MgListAddltem

Message arguments

Now, in order for a list object to respond appropriately to msgListAddItem, it’s
going to need some additional information. In this case the additional information
is the item to add to the list (G), and where to add it (third postion). Most messages
need certain information for objects to respond correctly to them. The informa-
tion, called message arguments, you pass to the recipient along with the message.

In this case, the header file informs us that msgListAddItemAt takes a
P_LIST_ENTRY. In PenPoint’s C dialect, this means “a pointer to a LIST_ENTRY”
structure. Here’s the structure:

typedef struct LIST_ENTRY {
Ulé position;
LIST ITEM item;
} LIST_ENTRY, *P_LIST ENTRY;
U16 is an unsigned 16-bit number, P_UNKNOWN means a 32-bit pointer to an
unknown. (Chapter 5, Developing an Application, describes the rest of PenPoint’s

ubiquitous typedefs and #defines.)

The use of a weak word

like “takes” is deliberate.
Although a class usually
requires a specific message
argument structure, there
is no mechanism available to
detect when you pass it the
wrong structure.

1 / APP WRITING GUIDE

48 PENPOINT APPLICATION WRITING GUIDE
Part 1 / Application Writing Guide

When you can deliver the message and its arguments to a list object, you're set.
Here’s the C code to do it:

LIST list; . // the object
LIST _ENTRY add; ™ // structure for message arguments
STATUS s; // most functions return a STATUS value

// Add an item to the list:

// 1. Assemble the message arguments;

add.position . = 3;

add.item = (LIST__ITEM) 'G’;

// 2. Now send the message and message arguments to the object.

if ((s = ObjectCall (msgListAddItemAt, list, &add)) !'= stsOK) {
Dbg (Debugf (U_L("add item failed: status is: 0x%1X", s)));
}

% ObjectCall() parameters

The code fragment above assumes that the list object (list) has already been created; The term “parameters” is

object creation is covered later in this chapter. As you can see, ObjectCall() takes ~ Uoed in function calls; the
term “arguments” is used for

three parameters: data required for a specific
message.

@ The message (msglListAddItem). Messages are just 32-bit constants defined by
a class in its header file. You can send an object a message defined by any of =~ We U%d 17;[0‘ ;agj ’;0 i;dicafe
R . . items define enfoint
the classes from which it inherits. .(Some objects even respond to messages and other symbols used in
defined by classes that are not their ancestors.) examples.
¢ The object (list). Objects are referenced by UIDs, unique 32-bit ID numbers.

UIDs are discussed in more detail later.

¢ The arguments for the message (add). Not all messages take arguments (msg-
FrameClose, for example, takes none), but others do (msglconSetPictureSize,
for example, takes a width and height). The PenPoint Architectural Reference
manual and the header files (in this case, PENPOINT\SDK\INC\LIST.H) docu-
ment each message’s arguments.

ObjectCall() has one 32-bit parameter for all the message’s arguments; if a message
takes more arguments than can fit in 32 bits, you must assemble the arguments in a
structure and pass ObjectCall() a pointer to the structure. In this case, msgList-
AddItem takes a P_LIST_ENTRY, a pointer to a LIST_ENTRY structure. (The Pen-
Point convention is that a type that begins with P_ is a pointer to a type.) Hence the
address of the add structure (&add) is passed to ObjectCall().

% Returned values

The result of sending a message is returned as a status value (type STATUS). stsOK
(“status OK”) is zero. All status values that represent error conditions are less than
zero. Note that STATUS is a 32-bit quantity, hence the %IX in the Debugf() state-
ment to print out a long hexadecimal.

Some messages are designed to return errors that you should test for. For example,
the status returned by sending msglsA to an object is stsOK if the object inherits
from the specified class, and stsBadAncestor if the object does not.

Some objects respond to messages by returning a positive value (which is not a
status value, but an actual number). Others return more complex information by

CHAPTER 4 / PENPOINT CLASS MANAGER 49
Creating an object

filling in fields of the message argument structure supplied by the caller (or buffers
indicated by pointers in the message argument structure) and passing back the
structure.

How objects know how to respond

The list object responds to msgListAddItem because it is an instance of clsList. But
what does that mean?

The list object has several attributes. Among them are the class that created the
object and the instance data for that object. As described above, when you define a
class, you must also create a table of the messages handled by your class.

The Class Manager finds out which class created the object and looks for the The Class Manager gives

method table for that class. The method table tells the Class Manager that the class the object a pointer to the
object’s instance data. This

has a function entry point for that message, so the Class Manager calls that func- ;7 aspect of PenPoint’s
tion entry point, passing in the message and the message argument structure. data integrity.

Although the object receives the message, its class has the code to handle the
message.

If the class decides to give the message to its ancestor, it passes the message and the
message arguments to the ancestor (but the instance data is still the instance data
for the object that received the message).

How messages to instances are processed by classes FIGURE 4-3

clsObject

MsgListAddltem
List clsList

W Creating an object

Where did the list object in the example above come from?

The short answer is that a client asked clsList to create an instance of itself by
sending msgNew to clsList. In many ways this is no different than when we sent
msgListAddItem to the list object in the previous example.

Classes and instances

The longer answer involves understanding the relationship among classes and

" instances. In the section “Sending a Message,” we discussed the fact that you send
messages to objects and those objects respond to the messages. We also discussed
how a class describes the data structures and the code used by its instances.

A class responds to msgNew by manufacturing an instance of itself. What is an
instance? It is merely an identifier and the data structures that represent an object.

1/ APP WRITING GUIDE

50

PENPOINT APPLICATION WRITING GUIDE
Part 1 / Application Writing Guide

Thus, the class asks the Class Manager to allocate the data structure and assign an
identifier to the structure.

How can a class respond to a message? This is a fundamental concept and one that
is hard to understand at first: a class is an object, just like any other PenPoint object.
And just like any other PenPoint object, an object is an instance of a class. In the
case of classes, all classes are instances of clsClass.

You can think of classes as objects that know how to create instances.

When a client sends a message to a class, the class behaves like any other object and
allows the class that created it (clsClass) to handle the message. clsClass contains
the code that creates new objects.

Thus, in answer to our original question about how did the list object come into
being: a client sent msgNew to the object named clsList. clsList is an instance of
clsClass, so the code in clsClass created a new object that is an instance of clsList.

An alternative explanation

At an implementation level, here’s what actually happens.

The PenPoint Class Manager maintains a database of data structures; each data
structure represents an object. The PenPoint Class Manager locates these objects by
32-bit values, called UIDs (unique identifiers); UIDs are explained later in this
chapter in “Identifying the new object: UIDs” on page 54. The data structure for
each object contains some consistent information (defined by clsObject) that indi-
cates the class to which the object belongs and other attributes for the object. Other
information in the data structure varies from object to object, depending on which
class created the object.

When a client sends a message to an object, the Class Manager uses the UID to
locate the object. The Class Manager then uses the object’s data structure to
find the class that created the object. The Class Manager finds the class and uses
the class’s method table to find the entry point for the function that handles the
message.

To create an object, the process works the same way. A client sends msgNew to a
class object. The Class Manager locates the object, finds the class that created the
object (clsClass), and calls the function in clsClass that creates new objects.

The NEW structure

For many classes, the _NEW structure is identical to the structure that contains the
object’s metrics.

You send msgNew to nearly every class to create a new instance of that class. In the
case of msgNew, the message argument value is always a pointer to a structure that
defines characteristics for the new object. This structure is commonly called the
class’s _NEW structure because the name of the structure is a variation of the class
name, followed by _NEW. For clsList, the "NEW structure is LIST_NEW.

[n other wordes, all classes
are objects, but not all
objects are classes.

When the object created by
clsClass is an instance of

clsClass, the new object is
a class.

The exceptions are
pseudo-classes and
abstract classes.

CHAPTER 4 / PENPOINT CLASS MANAGER

The _NEW structure is mainly used to initialize the new instance. For example,
when creating a new window you can give it a size and specify its visibility.

The _NEW structure differs depending on the class to which you send it. You can

find the specific _NEW structure to use when creating an instance of a class by

looking in the PenPoint API Reference manual or in the class’s header file. For

clsList, messages and message arguments are defined in PENPOINT\SDK\INC\

LIST.H. The _NEW structure is LIST_NEW. This excerpt comes from the LISTH file:
typedef struct LIST NEW ONLY {

LIST__STYLE style;
LIST FILE MODE fileMode;
U32 reserved[4];// Reserved

} LIST NEW_ONLY, *P_LIST NEW ONLY;

#define listNewFields\
objectNewFields \
LIST NEW ONLY list;

typedef struct LIST NEW {
listNewFields
} LIST_NEW, *P_LIST NEW;

Reading the _NEW structure definition

To read the _"NEW structure definition, you need to perform the work that the
compiler does in its preprocessor phase, expanding the macro definitions. The
_NEW structures in the PenPoint API Reference have all been expanded for your
convenience.

Start by looking for the definition for the _NEW structure (typedef struct
LIST_NEW) at the end of the example. The structure is represented by a #define
name (in this case listNewFields).

Here’s where it gets tricky; start thinking about inheritance. The #define name (list-
NewFields) has two parts:

¢ The #define name for the objectNewFields structure of the class’s immediate

ancestor (in this case, objectNewFields, which defines the arguments required
by clsObject).

¢ A _NEW_ONLY structure for the class being defined (LIST_NEW_ONLY). The
LIST_NEW_ONLY structure contains the actual msgNew arguments required
for clsList.

Each subclass of a class adds its own _NEW_ONLY structure to the ...NewFields
#define used by its immediate ancestor. This is how the _"NEW structure for a class
contains the arguments required by that class, by its ancestor class, by that class’s
ancestor, by that class’s ancestor, and so on.

In this case, however, there is only one ancestor, clsObject. objectNewFields is
defined in PENPOINT\SDK\INC\CLSMGR.H:
#define objectNewFields OBJECT NEW_ONLY object;

Creating an object

51

1 / APP WRITING GUIDE

52 PENPOINT APPLICATION WRITING GUIDE
Part 1 / Application Writing Guide

OBJECT_NEW_ONILY is defined in the same file. It has many fields:
typedef struct OBJECT NEW {

U32 newStructVersion; // Out: [msgNewDefaults] Validate msgNew
// In:[msgNew] Valid version
OBJ_KEY key; // In:[msgNew] Lock for the object
OBJECT uid; // In:[msgNew] Well-known uid
// Out: [msgNew] Dynamic or Well-known uid
OBJ CAPABILITY cap; // In:[msgNew] Initial capabilities
CLASS objClass; // Out: [msgNewDefaults] Set to self

// In:[msgObjectNew] Class of instance
// In:[msg*] Used by toolkit components
OS_HEAP_ID heap; // Out: [msgNewDefaults] Heap to use for
// additional storage. If capCall then
// OSProcessSharedHeap else OSProcessHeap
U32 sparel; // Unused (reserved)
U32 spare2; // Unused (reserved)
} OBJECT NEW ONLY, OBJECT NEW, * P_OBJECT NEW ONLY, * P_OBJECT NEW;
Most elements in an argument structure are passed [z to messages—you're speci-
fying what you want the message to do. Oz indicates that an element is set during
message processing and passed back to you. /n:Out means that you pass in an ele-

ment and the message processing sets the field and passes it back to you.

%» A_NEW_ONLY for each class

Why such a complicated set of types? Thanks to class inheritance, when you create
an instance of a class, you are also creating an instance of that class’s immediate
ancestor class, and that ancestor’s ancestor class, and so on up the inheritance hier-
archy to the root Object class. Each ancestor class typically allows the client to ini-
tialize some of its instance data. Many classes allow you to supply the msgNew
arguments of their ancestor(s) along with their own arguments.

This is true for clsList: it inherits from clsObject (as do all objects) and part of its
msgNew argument structure is the OBJECT_NEW argument structure for clsOb-
ject. clsList has three msgNew arguments of its own: how it should file the entries
in the list, a list style, and a reserved U32.

These large message arguments structures are intimidating, but the good news is
that by sending msgNewDefaults, you get classes to do the work of filling in appro-
priate default values. You then only need to change a few fields to get the new
object to do what you want.

% Identifying _NEW structure elements

As a class adds a _NEW_ONLY structure to a_NEW structure, it also gives a name to
the _"NEW_ONLY structure. From the clsList example, we can expand the
LIST_NEW definition as: '
typedef struct LIST NEW {
objectNewFields

LIST_NEW_ONLY list;
} LIST NEW, *P_LIST NEW;

CHAPTER 4 / PENPOINT CLASS MANAGER

The name list identifies the LIST_NEW_ONLY structure within the LIST_NEW struc-
ture with the name list. We can carry on the expansion to apply the definition of
objectNewFields:

typedef struct LIST NEW {
OBJECT NEW ONLY object;
LIST NEW ONLY list;
} LIST NEW, *P_LIST NEW;
You can see now, when you create an identifier of type LIST_NEW; you can specify
the _NEW_ONLY structures by specifying their names. For example, if your code
contains:

LIST NEW myList;

You can refer to the LIST_NEW_ONLY structure by myList.list, and the OBJECT_-
NEW_ONLY structure by myList.object.

Code to create an object

This example code creates the list object to which we sent a message in the first
code fragment. Later code will show how the list class is itself created.

The preceding discussion mentioned that the client sends msgNew to a class to
create an instance of the class. The function parameters used in ObjectCall() for
msgNew are the same as before (the object to which you send the message, the mes-
sage, and the message argument value).

As we have seen, the _NEW structure can get quite large (because most subclasses
add their own data fields to the _NEW structure). Many classes have default values
for fields in the _"NEW structure, yet clients must be able to override these defaults,
if they want.

To initialize the "NEW structure to its defaults, clients must send msgNewDefaults
to a class before sending msgNew. msgNewDefaults tells a class to initialize the
defaults in the _NEW structure for that class. After msgNewDefaults returns, the
client can modify any fields in the _NEW structure and then can call msgNew.

Creating an object

LIST list; // Object we are creating.
LIST NEW new; // Structure for msgNew arguments sent to clsList.
STATUS s;

// Initialize NEW structure (in new).
ObjCallRet (msgNewDefaults, clsList, &new, s);

// Modify defaults as necessary.
new.list.fileMode = listFileItemsAsData;

// Now create the object by sending msgNew to the class.
ObjCallWarn (msgNew, clsList, &new, s);

// The UID of the new object is passed back in the _NEW structure.

list = new.object.uid;
Because almost every message returns a status value (to say nothing of most func-
tion calls), your code tends to become littered with status checking. Hence
PENPOINT\SDK\INC\CLSMGR.H defines several macros to check for bad status
values. This fragment uses one of those macros, ObjCallWarn(). ObjCallWarn()
does a standard ObjectCall() with its first three parameters, and assigns the return
value to its fourth. If the returned value is less than stsOK, ObjCallWarn() prints a

Status values less than
stsOK indicate errorse.

53

1 / APP WRITING GUIDE

54

PENPOINT APPLICATION WRITING GUIDE
Part 1 / Application Writing Guide

warning to the debugging output device (when compiled with the DEBUG flag).
There are many other macros of a similar nature; they are documented in Parz 1:
Class Manager of the PenPoint Architectural Reference.

Identifying the new object: UIDs

When you send msgNew to a class, the message needs to give you an identifier for
the new object (so your code can use it). As mentioned previously, messages often
pass back values in the structure that contains the message arguments. In this case,
clsObject passes back the UID of the newly created object in its OBJECT_NEW
structure (in object.uid).

In our code example, the UID for the new object was passed back in new.object.uid.
The sample copied the value to the object named list, and henceforth uses list when
referring to the new list object.

You refer to objects using UIDs. A UID is a 32-bit number used by the Class Man-
ager to indicate a specific PenPoint object. An object’s UID is zota C pointer; it con-
sists of information used by the Class Manager to find an object and information
about the object’s class and other things. The symbol list in this example is the UID
of our list object; clsList is the UID of the list class.

PenPoint defines many classes that clients can use to create instances for their own
use (such as the list class, the window class, and so on). All of these built-in classes
are depicted in the class hierarchy poster.

When a client sends msgNew to a class to create a new object, the class is identified There are other types of
UiDe: local well-known UIDs
and local private UlDs. There
are no global, private UlDs.

by a unique value. If an application knows this value and the class is loaded in
PenPoint, the application can create an instance of the class. This value is called a
global well-known UID.

The global well-known UIDs of all the public PenPoint classes, including clsList,
are defined in PENPOINT\SDK\INC\UID.H. Because all PenPoint programs include
this header file when they are compiled, all programs know about these classes.

clsList is defined with this line in UID.H:
#define clsList MakeWKN (10,1, wknGlobal)

MakeWKN() (pronounced “make well-known”) is a macro that returns a 32-bit
constant. Here the parameters to MakeWKN() mean “create a well-known UID in
global memory for version 1 of administered ID 10.” No other well-known UID
uses the number 10.

Eventually, when you finalize your application, you will need to define your own
well-known UIDs. Contact GO Customer Services at 1-415-358-2040 (or by
Internet electronic mail at gocustomer@go.com) for information on how to get a
unique administered value.

Until that time, you can use some spare UIDs, defined in PENPOINT\SDK\
INC\UID.H, for this purpose. These UIDs have the values wknGDTa through
wknGDTg.

CHAPTER 4 / PENPOINT CLASS MANAGER 55
Creating a class

W Creating a class

You have seen how to send a message to an object and how to send msgNew to a
class to create a new object. You use the same procedure to create any object and
send it messages, so you can send messages to any instance of any class in PenPoint.

The last step is to create your own classes for your application. At the very least, you
must create a class for your own application; frequently, you will also create special
window classes and data objects that draw and store what you want.

1 / APP WRITING GUIDE

Creating a class is similar to creating an instance, because in both cases you send
msgNew to a class. When you create a class, you send msgNew to clsClass. This is
the class of classes. Remember that a class is just an object that knows how to create
instances of itself; in this case, clsClass knows how to create objects which them-
selves can create objects.

In short, to create a class, you send msgNew to clsClass, and it creates your new Some classes, such as clslist,
class object. A routine much like this in the PenPoint source files creates clsList; itis 2" created at boot time; other

. . classes are created later, such
executed when the user boots PenPoint (when the SYSUTIL.DLL is loaded). as at application installation.

/**
ClsListInit
Install clsList
**/
STATUS ClsListInit (void)
{

CLASS NEW new;

STATUS S;

ObjCallWarn (msgNewDefaults, clsClass, &new, s);
new.object.uid clsList;
new.class.pMsg = (P_MSG) ListMethodTable;
new.class.ancestor clsObject;
new.class.size SizeOf (P_UNKNOWN) ;
new.class.newArgsSize SizeOf (LIST_NEW) ;
ObjCallRet (msgNew, clsClass, &new, s);
return stsOK;

} // ClsListInit

% New class message arguments

The important thing, as always, is the group of message arguments. Here the mes-
sage is msgNew, just as when we created the list object; because we are sending it to
a different class, the message arguments are different. When sent to clsClass,
msgNew takes a pointer to a CLASS_NEW structure. Like LIST_NEW, CLASS_NEW
includes the arguments to OBJECT_NEW as part of its message arguments. Briefly,
the CLASS_NEW message arguments are:

¢ The same OBJECT_NEW arguments used by other objects—a lock, capabili-
ties, a heap to use (and a UID field in which the Class Manager returns the
UID of the object).

¢ The method table (new.class.pMsg) which is where you tell the class which
functions handle which messages. You must write the method table. This is
the core of a class, and is discussed in great detail in the next section.

PENPOINT APPLICATION WRITING GUIDE
Part 1 / Application Writing Guide

The ancestor of this class (new.class.ancestor). The Class Manager has to
know what the class’s ancestor is so that your class can inherit behavior from
it; that is, let the ancestor class handle some messages. In this case, clsList is an
immediate descendant of clsObject.

@ The size of the data needed by instances of the class (new.class.size). The Class
Manager needs the information to know how much room to allocate in mem-
ory when it creates a new instance of this class.

The size of the structure that contains information used to create a a new
instance of the class (new.class.newArgsSize).

For a list, the instance data is just a pointer to the heap where it stores the list infor- P_UNKNOWN is the typedef

mation, hence the size is SizeOf(P_UNKNOWN). For other objects, the instance used in Penfoint for a pointer
. to an unknown type.

data may include a lot of things, such as window height and width, title, current

font, etc. Note that an object has instance data for each of the classes it is an

instance of—not just its immediate class, but that class’s ancestor, and that ances-

tor’s ancestor, and so on.

The instance data size must be a constant! If, say, a title string is associated with Important! Instance data

;s g p |
each instance of your class, then you need either to have a (small) fixed-size title size must be a constant.
or to keep the string separate and have a pointer to it in the instance data.

Method tables

Nearly all classes respond to messages differently than their ancestors do—other- Some classes exist just to
wise, why create a new class? As a class implementer, you have to write methods to 4¢fine a set of messages;

the implementation of those
messages is up to its
descendante.

do whatever it is you want to accomplish in response to a particular message.

In PenPoint, a method is a C function, called a message handler. The terms mes-
sage handler and method are used interchangably.

When a client sends a message to an instance of your class, you want the Class
Manager to call the message handler that is appropriate for that message. You tell
the Class Manager what to do with each message through a method table.

A method table is simply a mapping that says “for message msgSomeMsg, call my
message handler MyFunction().” You specify the table as a C array in a file that is
separate from your code (you must compile it with the method table compiler,
described below). A method table file has the extension .TBL. Each class has its own
method table; however, a single method table file can have method tables for several
classes. At the end of the file is a class info table that maps a class to the method
table for that class. There must be an entry in the class info table for each method
table in the file. The file looks something like this:

MSG_INFO clsYourClassMethods[] = {

msgNewDefaults, "myClassNewDefaults", objCallAncestorBefore,
msgSomeMsg, "MyFunction", flags,
0,

}i

CLASS_INFO classInfo[] = {
"clsYourClass", clsYourClassMethods, 0,
0

}i

CHAPTER 4 / PENPOINT CLASS MANAGER 57
Creating a class

The quotation marks around the messages and classes are required. You can tell
the Class Manager to call your ancestor class with the same message before or
after calling your function by setting flags in the third field in the method table
(the third field in the CLASS_INFO table is not currently used and should always
contain 0).

%» Identifying a class’s message table

To convert the method table file into a form the Class Manager can use, you com-
pile the table file with the C compiler, then run the resulting object through the
Method Table compiler (PENPOINT\SDK\UTIL\CLSMGR\MT.EXE). This turns it into
a .0B] file that you link into your application.

The most important argument you have to pass to msgNew when creating a class is
a pointer to this method table (new.class.pMsg in the code fragment above). When
you create the class, you set new.class.pMsg to clsYourClass.

When an object is sent a message, the Class Manager looks in its class’s method
table to see if there is a method for that message. If not, the Class Manager looks in
the class’s ancestor’s method table, and so on. If the Class Manager finds a method
for the message, it transfers execution to the function named in the method table.

When the Class Manager calls the function named in the method table, it passes
the function several parameters:

¢ The message sent (msg).
¢ The UID of the object that originally received the message (self).

¢ The message arguments (pArgs). The Class Manager assumes that the message
arguments are a pointer to a separate message arguments structure).

¢ The internal context the Class Manager uses to keep track of classes (ctx).

¢ A pointer to the instance data of the instance.

% Self

Self is the UID of the object that received the message.

As we discussed before, when an object receives a message, the class manager first Of course, each ancestor

sees if the object’s class can handle the message, then it passes the message to its deals with only the parts of
the object data that it knows

about; an ancestor can’t
that each of those classes work on is the data in the object that first received the modify a structure defined

message (which is identified by self). This is fundamental to understanding object- % 't descendant.
oriented programming in PenPoint: calling ancestor makes more methods available
to the data in an object, it doesn't add any new data.

ancestor, which passes the message to its ancestor, and so on. However, the data

A second fundamental concept is that an ancestor may need to make a change

to the data in the object. However, rather than making the change immediately
by calling a function, the ancestor sends a message to self to make the change.

Be careful not to get pulled into the semantic pit here; self means the object

that received the original message, not the ancestor class handling the message.
(Remember that the ancestors only make more functions available; not more data.)

1 / APP WRITING GUIDE

58

PENPOINT APPLICATION WRITING GUIDE
Part 1 / Application Writing Guide

Because the message is sent to self, self’s class can inspect the message and choose
whether it wants to override the message or allow its ancestor to handle it. Each
ancestor inspects the message and can either override the message or pass it to its
ancestor. This continues until the ancestor that sent the original message receives
the message itself and, having given all of its descendants the opportunity to over-
ride the message, now handles the message itself (or even passes the message to its
ancestor!).

Possible responses to messages

Here are some of the flavors of responses you can make to a message in a message

handler:

@ Do something before and/or after passing it to the ancestor class. This might
include modifying the message arguments, sending self some other message,
calling some routine, and so on. This means that the class will respond to the
message differently than its ancestor.

¢ Do something with the message, but don’t pass the message to the ancestor
class. This is appropriate if the message is one you defined, because it will be
unknown to any ancestor classes. If the message is one defined by an ancestor,
this response means that you're blocking inheritance, which is occasionally
appropriate.

¢ Do nothing, but return some status value. This blocks inheritance, and means When such a message is new

that it’s up to descendant classes to implement the message. This is not as to a class (no ancestor), it is
. . . R called an abstract message.

rare as it sounds; many classes send out advisory messages informing
their instances or other objects that something has happened. For example,
clsWindow sends self the message msgWinSized if a window changes size.
This is useful for descendant classes that need to know about size changes, but
clsWin itself doesn’t care.

What messages does your message handler have to respond to? It usually ought to
respond to all the messages specific to your class which you define—no other
ancestor class will. Ordinarily an instance of each class has its own data, so most
classes intercept msgNew to execute a special initialization routine; if there are
defaults for an instance’s data, the class will also respond to msgNewDefaults. Most
classes should also respond to msgFree to clean up when an instance is destroyed.

Here is clsList’s method table.

//

/7 Include files

//

#include <list.h> // where the messages are defined

MSG_INFO ListMethods [] =
|

/* clsObject methods */
msgNewDefaults, "ListNewDefaults", O,
msgInit, "ListInit", O,

msgFree, "ListMFree", O,

msgSave, "ListSave", 0,

msgRestore, "ListRestore", 0,

CHAPTER 4 / PENPOINT CLASS MANAGER
Creating a class

/* clsList methods */
msgListFree, "ListMFree", 0,
// Functions for the rest of the clsList methods...

-7

-7

Vi

CLASS INFO classInfo[] =

{ "ListMethodTable", ListMethods, 0,

0

}i
Note that clsList responds to most intercepted messages by calling an appropriate
function (ListInit(), ListMFree(), and so on). The functions that implement the
various list messages are not printed here; indeed, external code should never call
routines internal to a class. One of the goals of object-oriented programming is to
hide the implementation of a class from clients using the class.

59

1 / APP WRITING GUIDE

PENPOINT APPLICATION WRITING GUIDE / EXPANDED EDITION
PART 1 / APPLICATION WRITING GUIDE

Chapter 5 / Developing an Application

Thus far, we have described the PenPoint™ operating system and PenPoint
applications from a conceptual point of view. By now you should understand
how PenPoint differs from most other operating systems and what the PenPoint
Application Framework and Class Manager do for you.

With this chapter we start to address what you, as a PenPoint apphcatlon developer,
have to do when writing PenPoint applications.

¢ The first section describes many of the things that you have to think about
when designing an application.

The second section describes some of the things that you have to consider
when designing an application for an international market.

¢ The third section describes the functions and data structures that you will
create when you write an application.

¢ The fourth section describes the cycle of compiling and linking that you will
follow when developing an application.

¢ The fifth section provides a checklist of things that you must do to ensure that
your application is complete.

& The sixth and following sections describe the coding standards and naming
conventions used by GO. Included in these sections is a discussion of some of
the debugging assistance provided by PenPoint.

¢ The last section describes the tutorial programs provided with the SDK.

» Designing your application

When you design a PenPoint application, there are several separate elements that
you need to design:

& The user interface

¢ The classes

¢ The messages

¢ The message handlers
¢ The program units

This section points out some of the questions you must ask yourself when
designing an application. This section does not attempt to answer any of the ques-
tions; many answers require a good deal of explanation, and many decisions involve
your own needs.

62

B

PENPOINT APPLICATION WRITING GUIDE
Part 1 / Application Writing Guide

Just read this section and keep these questions in mind as you read the rest of the
manual.

Designing the user interface

The most obvious part of a PenPoint application is the user interface. Almost as
soon as you determine what your application will do, you should begin to consider
your user interface.

Your user application should be consistent with the PenPoint user interface, which
is described in detail in the PenPoint User Interface Design Reference.

Designing classes

PenPoint provides a rich set of classes that can do much of the work for your
application. Your task is to decide which of these classes will serve you best. The
PenPoint Architectural Reference describes the PenPoint classes and what they can
provide for you.

If the classes provided by PenPoint don’t do exactly what you need, you should look
for the class that comes closest to your needs, then create your own class that
inherits behavior from that class.

Designing messages

After determining that you need to create your own class, you need to decide what
messages you need. Usually you add new messages to those already defined by your
class’s ancestors.

However, the real trick to subclassing comes when you decide how to handle the
messages provided by your class’s ancestors. If you do not specify how your class
will handle your ancestors’ messages, the PenPoint class manager sends the messages
to your immediate ancestor, automatically. If you decide to handle an ancestor
message, you then need to decide when your ancestors handle the message, if at all.
Do you:

¢ Call the ancestor before you handle the message?
¢ Call the ancestor after you handle the message?

¢ Handle the message without passing it to your ancestor at all (thereby over-
riding ancestor behavior)?

Designing message handlers

After determining the messages that you will handle, you then need to design the
methods that will do the work for each of the messages. In considering the methods
and the information they need, you will probably start to get an idea of the instance
data that your class needs to maintain.

CHAPTER 5 / DEVELOPING AN APPLICATION 63
Designing for internationalization and localization

% Designing program units
When you understand the classes that you require, you should consider how
to organize your classes and their methods into program units. The common
approach used in our sample code is to place the source for each class into a
separate file.

You should consider whether a class will be used by a number of different applica-
tions or used by a single application. If the class can be used by more than one
application (such as a calculator engine), you should compile and link it into a
separate DLL (dynamic link library). Each application tells the installer which DLLs
it needs at install time. The installer then determines whether the DLL is present or
not. If not, it installs the DLL.

P Designing for internationalization and localization

PenPoint 2.0 Japanese contains support for applications that are written for

more than one language or region. The process of generalizing an application so
that it is suitable for use in more than one country is called internationalization.
Modifying an application so that it is usable in a specific language or region is called
localization.

PenPoint 1.0 already includes many features that will be used to support inter-
nationalization. For example, PenPoint 1.0 uses PenPoint resource files to store its
text strings. When localizing to a specific language, a different resource file will be
created that contains text strings in that language.

There are two aspects to the changes implied by PenPoint 2.0 Japanese. The first is
making your application port easily to PenPoint 2.0 Japanese. The second is inter-
nationalizing your application.

% Porting from PenPoint 1.0 to PenPoint 2.0 Japanese

PenPoint 2.0 Japanese incorporates some major changes that will cause applications
compiled for PenPoint 1.0 to be incompatible with PenPoint 2.0 Japanese. The
data created by 1.0 applications should still work under PenPoint 2.0 Japanese, and
properly writtern 1.0 applications should be portable to PenPoint 2.0 Japanese with
nothing more than a recompilation.

This section describes how to write your PenPoint 1.0 application so that it will be
portable to PenPoint 2.0 Japanese. Using these guidelines does 7oz mean that you
will have internationalized your application! Internationalization and localization
are much larger issues, and are dealt with elsewhere. These instructions are intended
only to make it easier for you to port your United States English application to
PenPoint 2.0 Japanese.

The biggest change is that PenPoint 1.0 uses the ASCII character set, while PenPoint
2.0 Japanese uses Unicode. ASCII is an 8-bit character set; Unicode is a 16-bit char-
acter set. This affects character types, string routines, quoted strings, and other
string-related entities.

! 1/ APP WRITING GUIDE

64 PENPOINT APPLICATION WRITING GUIDE
Part 1 / Application Writing Guide

%» Character types

PenPoint provides three character types: CHARS, CHAR16, and CHAR. The first two
provide 8- and 16-bit characters, respectively. In PenPoint 1.0, the plain CHAR type
is 8 bits long; in PenPoint 2.0 Japanese, CHAR is 16 bits long. You need to convert
all of your character data to use the CHAR type, except where you know the size
you'll need will be the same under PenPoint 1.0 and PenPoint 2.0 Japanese (for
example, in the code that saves and restores data).

Any places where you depend on a CHAR having a small value, you should rethink
the problem. For example, if you currently translate a character by indexing 256-
element array (CHAR array[sizeof(CHAR)]), you probably won’t want to use the
same strategy when sizeof(CHAR), and therefore the size of your array, is 65,536.

Any places where you depend on sizeof(CHAR) being one byte, you need to change
the value.

%7 String routines

All of the familiar C string routines (strcmp, strcpy; and so on) still exist in PenPoint
2.0 Japanese, and they still work only on 8-bit characters. The INTL.H header file in
PenPoint 1.0 defines a new set of string routines (named Ustremp(), Ustrepy(), and
so on) that perform the equivalent functions on 16-bit Unicode characters.

In PenPoint 1.0, the U...() functions are identical to their 8-bit namesakes. In
PenPoint 2.0 Japanese, they are 16-bit routines. In other words, the old routines
only work on CHARS strings, while the U...() routines work on CHARS strings in
PenPoint 1.0 and on CHARIG6 strings in PenPoint 2.0 Japanese. If you use the U...()
versions and CHAR strings in your PenPoint 1.0 code, you will not have to change
anything for PenPoint 2.0 Japanese, because CHAR is an 8-bit value in PenPoint 1.0
and a 16-bit value in PenPoint 2.0 Japanese.

You should use the U...() versions wherever you use CHAR strings, which should be
for every string you display on the screen or debugging ourput device.

%» Character and string constants

When you use CHARS, you can use standard C conventions for forming character
and string constants. That is:

CHAR8 *s = "string";

CHAR8 ¢ = 'c’;
When you use the CHAR16 type, you must precede the character or string constant
with the letter L, which tells the compiler you are using a 16-bit (long) character, as:

CHAR16 *s = L"string"

CHAR16 ¢ = L'c’
When you use the CHAR type, you must precede the character or string constant
with the identifier U_L, which means UNICODE, long. In PenPoint 1.0, this tells
the compiler to use 8-bit characters; in PenPoint 2.0 Japanese, this tells the com-
piler to use 16-bit characters.

CHAR *s = U L"string";
CHAR ¢ = U_L'c’;

CHAPTER 5 / DEVELOPING AN APPLICATION
Designing for internationalization and localization

% Preparing for internationalization

PenPoint 1.0 does not contain all the messages, functions, and tools that you
will need to internationalize your application. However, there are several facilities
available in PenPoint 1.0 that you can use to reduce the work needed to inter-
nationalize. This section lists these facilities.

%7 Move strings into resource files

You should move as many of your text strings into resource files as possible. When
text strings are hard-coded into your application, they are very difficult to translate
and do not allow users to change language dynamically. If you move your applica-
tion’s text strings into resource files they are easy to translate and allow users to
change language simply by substituting one resource file for another.

If you use the StdMsg() facility for displaying dialog boxes, error messages, and
progress notes, your text strings are already in resource files. The positional param-
eter facility provided with StdMsg() and the compose text string routines do not
depend on the order of replaceable values in the function parameters. These func-
tions are unlike printf(), where the order of the function parameters is directly
related to the order of replaceable values in the string. When you use StdMsg()

or compose text, the function parameters are always in the same order, but your
string can use them in the order dictated by the national language in which you
are writing.

%v Identify and modularize code that varies with locale

When internationalizing an application, moving its text strings to resource files
allows users to change the language, but in order to support another language, parts
of your application code must be equally replaceable. For example, when sorting
characters in another language, you must be prepared to handle different sort
sequences.

PenPoint 2.0 Japanese provides a number of services to perform functions that vary
by language, such as sorting, number formatting, number scanning, numbers with
units, times and dates (input and output), character comparisons, character conver-
sions, spell-checking, and so on.

The PenPoint Services architecture enables you to create functions that users can
install and activate whenever they choose. For instance, users can install several
different printer drivers, but they only make one driver current at a time. Similarly,
users of PenPoint 2.0 Japanese can install several different sort engines and choose
one to use with the current language.

You should identify and flag any language-dependent routines, such as text manip-
ulation, in your PenPoint 1.0 application. When you port the code to PenPoint 2.0
Japanese, use services to replace them wherever possible.

65

1 / APP WRITING GUIDE

66 PENPOINT APPLICATION WRITING GUIDE
Part 1 / Application Writing Guide

Part 13: Writing PenPoint Services in the PenPoint Architectural Reference describes
how to create your own services. If you make your language-dependent functions
into services in PenPoint 1.0, the change to PenPoint 2.0 Japanese will be much
easier.

%> New fext composition routines

The file CMPSTEXTH contains ComposeText() routines for assembling a com-
posite string out of other pieces. Use these routines to create strings in your Ul—
don’t use sprintf()! The ComposeText() routines will also save you effort because
you can specify the resource ID of a format string and the code will read it from the
resfile for you. You can, of course, give the format string directly to the routines.

W Development strategy

Where do you start writing an application?

The PenPoint Application Framework provides so much boilerplate work for you,
it is very easy to create applications through incremental implementation. You start
with an empty application, that is, one that allows the Application Framework to
provide default handling of most messages. Then, one by one, you add new objects
and classes to the application, testing and debugging as you go.

As we shall see in Chapter 6, A Simple Application (Empty Application), the
PenPoint SDK includes sources for an empty application called Empty Application.
You can copy, compile, install, and run Empty Application.

This section describes the fundamental parts of PenPoint applications. These are
the parts that you will probably work on first. They are also the parts you will
return to many times to modify.

% Application entry point

All PenPoint applications must have a function named main(), which is the entry
point for an application. When the application is installed, main() creates the appli-
cation class and can create any other private classes required by all instances of the
application.

% Application instance data

In PenPoint, objects that are instances of the same class share the same code. For
example, if there are two insertion pads visible on the screen, they are both running
the same copy of the insertion pad class code, but each instance of the insertion pad
has different instance data.

As soon as your application has data that can be different for each of its documents,
your application needs to maintain instance data.

What do you save in instance data?

The most common use of instance data is to save identifiers for objects created by
your application. The PenPoint object-data model suggests that any time you have
data, you should use a class to maintain that data.

CHAPTER 5 / DEVELOPING AN APPLICATION
Development cycles

When your application class has instance data, it must be prepared to respond to Any class with instance

msglnit by initializing values in the instance data (if needed). data must respond to
msglnit in the same way.

¥ Creating stateful objects

Stateful objects contain data that must be preserved when a document is not active.

You can do some interesting things with an application that uses only the behavior
provided by the Application Framework. However, soon after you start developing
an application, you will want the application to be able to save and restore data
when the user turns away from and turns back to its documents. To save and restore
documents, you need to create, save, and restore stateful objects. '

Usually an application’s instance data contains some stateful objects and some non-
stateful objects.
If your application class has stateful objects, you must be prepared to handle:

msgApplnit by creating and initializing the stateful objects required by
a new document. Your application can create additional stateful objects
later.

msgSave by saving all stateful objects to a resource file.

msgRestore by restoring all stateful objects from a resource file.

¥ Displaying on screen
Most applications need to display themselves on screen. The PenPoint Application
Framework provides access to the screen by creating a frame object.

When your application receives msgAppOpen, it should create the remaining non-
stateful objects that it needs to display on screen, and then should display itself in
the frame provided by the application framework.

When your application receives msgAppClose, it should remove itself from the
frame and destroy all of its nonstateful objects.

% Creating component classes

If you create new component classes that can be shared by a number of different
applications (or other components), you usually define the component classes in
a DLL file.

As an application executable file must have a function named main(), a DLL file
must have a function named DLLMain(). DLLMain() creates the component
classes defined in the DLL.

9 Development cycles

The compile, install, test, and debug cycle in PenPoint is similar to the develop-
ment cycle for most other operating systems. This section briefly describes the steps
involved in the development cycle. Later sections cover these steps in greater detail.

67

/ APP WRITING GUIDE

[

68 PENPOINT APPLICATION WRITING GUIDE
Part 1 / Application Writing Guide

% Compiling and linking

There are several types of files used to compile and link PenPoint applications.
These files include:

¢ The make file.
¢ The application’s method table files.
& The application’s C source and header files.

¢ The PenPoint SDK header and library files.

%7 Method table files

You create a method table file to equate the messages handled by your class to a
function defined in your source. You create one method table per class, but one
method table file can contain several method tables.

You compile the method table and then compile the resuiting intermediate object
file with the PenPoint method table compiler, MT. This produces:

¢ A header file that you use when you compile your C source.

¢ An object file that you use when you link your application.

%# C source and header files
PenPoint applications are written in the C language; the object-oriented extensions
are provided through standard C function calls. The source for each class (applica-
tion or component) is maintained in a separate file.

Following normal C programming practice, it is advisable to define your symbols,
structures, macros, and external declarations in one or more header (H) files.

%¥ PenPoint SDK files

The PenPoint SDK header and library files are in the directories PENPOINT\
SDK\INC and PENPOINT\SDK\LIB, respectively.

You should include these directories in your compiler and linker search paths.

¥ Installing the application

One difference between PenPoint and most other operating systems is that once
you have compiled an application, you must install the application into PenPoint
before you can use it. There is no “run” command in PenPoint, so you must use the
Notebook to transfer control to the application.

Additionally, all application code in PenPoint is shared. PenPoint must know where
your application code is installed so that all instances of your application use the
same code.

CHAPTER 5 / DEVELOPING AN APPLICATION
A developer’s checklist

There are two ways to install an application into PenPoint:
Install when you boot PenPoint.
Install explicitly with the PenPoint application installer.

You can install an application when you boot PenPoint by adding your application’s
PenPoint name to your PENPOINT\SDK\BOOT\/ocale\APPINI file (where locale is
USA for United States English and JPN for Japanese).

You can explicitly install a PenPoint application by running the PenPoint applica-
tion installer (found in the Connections and Settings notebooks).

You can use the Connections notebook to tell PenPoint to display the installable
applications (or any other installable items) whenever a volume becomes available.

% Debugging

There are a number of tools available to you to aid in debugging. Among them are:

¢ Using Debugf() or DPrintf() statements to send text to the debugger stream.
You can use a second monitor or the system log application to view the debug-
ger stream. You can also save the debugger stream in a log file. The Debugf{()
and DPrintf() statements are described later in this Chapter. The system log
application is described in PenPoint Development Tools.

¢ Using the PenPoint source debugger (DB) to debug your application. The
debugger is described in PenPoint Development Tool.

¢ Handling msgDump. msgDump requests an object to format its instance
data and send it to the debugger stream. While developing an application, you
can send msgDump to any object whose state is questionable. From the
PenPoint source debugger, you can use the od command to send msgDump to
an object. It is not a good idea to send msgDump in production code.

p A developer’s checklist

When your PenPoint application does what you want it to, you can stop and
move on to your next project. However, PenPoint applications are far more useable
when they can interact with the PenPoint operating system and other applications.
There is such a wealth of interaction that it is easy to omit some behavior from your
application.

This section presents two checklists. The first checklist details all the interactions
that you should include in your PenPoint application, starting at the fundamental
Application Framework interactions. The second checklist lists the interactions that
you should consider adding to your application to improve its appearance or

usability.

69

1/ APP WRITING GUIDE

70 PENPOINT APPLICATION WRITING GUIDE
Part 1 / Application Writing Guide

% Checklist of required interactions
You should use this checklist to ensure that your application is complete. The items
in the checklist point to parts of this manual and the PenPoint Architectural Refer-
ence where the item is described in detail.
(J Handle application class installation (in main() when processCount equals 0).

U Create the application class.

L] Handle application object instantiation (in main() when processCount is
pp] P
greater than 0).

] Create any private classes required by an instance of your
application class.

I Create any other objects required at the time.
J Create and display windows.
U Insert yourself into frame on msgAppOpen.
I Remove yourself from frame on msgAppClose.
1 Handle application termination.
U Respond to msgFree protocol.
) Handle application deactivation or deinstallation (msgAppTerminate).
] Handle msgDump.
) Handle msgSave.
(J Save data.
] Handle msgRestore.
«J Restore data.
{ Restore objects.
J Observe objects.
J Handle input.
< Handle selection protocol.

{J Respond to Printing messages.

B Checklist of nonessential items

Use this checklist to ensure that you have considered all possible nonessential addi-
tions to your application. The items in the checklist point to parts of this manual
and the PenPoint Architectural Reference where the item is described in detail.

() Add menus to SAMs.

(] Handle Option sheet protocols.

Create an option sheet.

CHAPTER 5 / DEVELOPING AN APPLICATION 71
GO’s coding conventions

(J Allow Application Embedding,

(1 Respond to move/copy protocol.

1 Handle document import and export.
(J Handle Undo.

(J Respond to traversal protocols.

U Define document icons.

U Create Stationery.

U Create Help notebook files.

U Create Quick Help Resources.

P GO’s coding conventions

At GO, we have developed techniques to make PenPoint code easier to write,
understand, debug, and port. Some of our techniques are stylistic conventions,
such as how variable and function names should be capitalized. Others fall under
the category of extensions to C, including a suite of basic data types that are com-
piler and architecture independent. This section describes:

¢ The conventions that GO code follows.
¢ The global types, macros, constants, and constructions provided in PenPoint.

¢ PenPoint’s global debugging macros and other functions that we have found
useful to diagnose program errors.

While we would be delighted for you to follow all of our conventions, we obviously
do not expect every developer to do so. Conventions are a matter of taste, and you
should follow a style that is comfortable to you. However, we do recommend that
you make use of our extensions. They will help make your code easier to debug and
port. Also, by describing our style, we hope to make it easier for you to understand
our header files and sample code.

% Typedefs

All typedefs are CAPITALIZED and use the underscore character to separate words.
typedef unsigned short Ul6;
typedef Ul6 TBL_ROW_COUNT;

Pointer types have the prefix P_.

typedef unsigned short U16, * P_Ul6;
typedef TBL_ROW_COUNT *P_TBL_ROW_COUNT;

In structure definitions, the name of the structure type is also the structure tag.

typedef struct LIST ENTRY {
Ule position;
LIST_ITEM item;

} LIST ENTRY, *P_LIST ENTRY;

The tag name is used by the PenPoint source-level debugger.

1 / APP WRITING GUIDE

72

PENPOINT APPLICATION WRITING GUIDE
Part 1 / Application Writing Guide

% Variables

Variable names are mixed case, always starting with a lowercase letter, with capitial-
ization used to distinguish words. Variable names do not normally include under-
score characters.

Ul6 numButtons;
Pointer variable names are prefixed with a lowercase p. The letter following the p is
capitalized.

P_Ul6 pColorMap;
Functions

Functions are mixed case, always starting with a capital letter, with capitialization
used to distinguish words. Function names do not normally include underscore
characters.

Function names often use a Noun-Verb style. The verb is what the function does,
the noun is the target of the function’s action.
TilePopUp(); PenStrokeRetrace();

However, the main() function is simply main().

Defines (macros and constants)

Defines follow the same capitalization rules as variables and functions. Macros
follow the rules for function names (mixed-case, first letter uppercase) and con-
stants follow the rules for variable names (mixed-case, first letter lowercase).

#define OutRange(v,1,h) ((v)<(l) || (v)>(h))
#define maxNameLength 32
#define nameBufLength (maxNameLength+1)

¥ Class manager constants

You use several special kinds of constants when writing Class Manager code:
¢ Class names
¢ Well-known objects
¢ Messages

¢ Status values

%r Class names

Class names start with “cls” followed by the name of the class: clsList, clsScrollBar,
and so on.

%» Well-known objects

Pre-existing objects in PenPoint to which you can send messages have the prefix
“the”: theRootWindow, theSystemPreferences, and so on.

CHAPTER 5 / DEVELOPING AN APPLICATION
GO’s coding conventions

%r Messages

Messages follow the standard style for constants, but have special prefix “msg”. This
is followed by the name of the class that defines the message (possibly abbreviated)
and finally by the action requested by the message: msgListRemoveltem, msg-
AddrBookChanged, and so on.

The exceptions to this rule are the basic clsObject messages, including msgNew;,
msgSave, and msgFree, which apply to all classes. These basic messages do not
identify their class.

%y Status values

Like messages, status values follow the standard style for constants. However, all
status values start with the prefix sts. This is followed by the name of the class that
defines the status value (possibly abbreviated) and finally by a description of the
status: stsListEmpty and stsListFull.

For more information on the way unique messages and status values are con-
structed for a class, please refer to Part 1: Class Manager of the PenPoint Architec-
tural Reference.

% Exported names

At GO, we use prefixes to indicate the architectural subsystem or component that
defines an exported variable, define, type, or function. Prefixes help lower the possi-
bility of name conflicts across PenPoint. They also help developers find which files
contain the relevant source code.

Note that fields within exported structures are not prefixed, and locals within
sample code source files are generally not prefixed either.

For example, exported System Service names are all prefaced with OS:

#define osNumPriorities 51

#define osDefaultPriority 0

typedef U16 OS_INTERRUPT ID; // logical interrupt ID
STATUS EXPORTEDQO OSProgramInstall (

P_CHAR pCommandLine, // dlc or exe name (and arguments)
P_CHAR pWorkingDir, // working dir of the program

P_OS _PROG_HANDLE pProgHandle, // Out: program handle

P_CHAR pBadName, // Out: If error, dll/exe that was bad
P_CHAR pBadRef // Out: If error, reference that was bad

)i
The file PENPOINT\SDK\UTIL\TAGS\TAGS lists most of the exported names in
PenPoint. You can scan it to see if a particular prefix is used.

The standard global include file PENPOINT\SDK\INC\GO.H does not prefix its
identifiers—if something is common across PenPoint, such as the U16 type, it is not
prefixed in any way.

73

1/ APP WRITING GUIDE

PENPOINT APPLICATION WRITING GUIDE
Part 1 / Application Writing Guide

P PenPoint file structure

At GO, we follow a similar structure for both header files and source code files.

The general structure of a header file is shown below:

file header comment
#includes

#defines

typedefs

global variables
function prototypes
message headers

Here is the general format of the source code file for a class implementation:

file header comment

#includes

#defines

typedefs

global variables

internal functions

exported functions

“methods” implementing messages

class initialization function

main() function (for application classes)

% File header comment

The file header comment contains a brief description of the contents of the file. It
also includes the revision number of the header file. If you have a problem using a
PenPoint API, the revision level of the software is important information.

Include directives
The include directives all follow the file header and are of the form:

#include <incfile.h>

Note that the filename for the include file does not contain any directory informa-
tion. To locate include files, you specify an include path externally (either in the
INCLUDE system variable or as a compiler flag).

%r Multiple inclusion

PenPoint has many subsystems, each linked to other subsystems. Each element
tends to have its own header file(s). Consequently, including the header file for one
subsystem leads to it including dozens of other subsystems. Often the same header
files are included by other header files. This can slow down compiling and may lead
to errors if header files are compiled in more than once.

All PenPoint header files guard against being included multiple times by defining
a unique string (FILENAME_INCLUDED) and checking to see if this string has been
defined:

/‘k***

filename.h
(C) Copyright 1991, GO Corporation, All Rights Reserved.

Include file format.

CHAPTER 5 / DEVELOPING AN APPLICATION
PenPoint file structure

$Revision$
$Author$

$Dhate$
***/

#ifndef FILENAME INCLUDED

#define FILENAME INCLUDED

// defines, types, and so on of header file
#endif // FILENAME INCLUDED

where FILENAME is the name of the include file itself.

You can speed up compiling by putting the same checks in your files to avoid
reading even the first few lines of a header file a second time:

#ifndef LIST INCLUDED
#include <list.h>
#endif // LIST INCLUDED

Common header files

In a class implementation, if you include the header file of your immediate
ancestor, this will usually include the header files of all your ancestors.

If you include any header file at all, you will not need to include <GO.H>.

Defines, types, globals
This section of a file holds all of the #defines, typedefs, and global and static decla-

rations used only in this file. By grouping these items in one place, you will be able
to find them more easily.

Function prototypes

Function prototypes in header files indicate the parameters and format of PenPoint
functions. Each is preceded by a comment header:

/**

Function returns TYPE
Brief description.

Comments, remarks.

*/

function declaration;
For example:

/**

OSHeapBlockSize returns STATUS
Passes back the size of the heap block.

The size of the heap block is the actual size of the block. This may
be slightly larger than the requested size.

See Also
OSHeapBlockAlloc
OSHeapBlockResize

*/

STATUS EXPORTED OSHeapBlockSize (
P_UNKNOWN pHeapBlock, // pointer to the heap block
P_SIZEOF pSize // Out: size of the heap block
)i

The header file descriptions of functions provide a “reminder” facility, not a
tutorial.

75

1 / APP WRITING GUIDE

76 PENPOINT APPLICATION WRITING GUIDE
Part 1 / Application Writing Guide

% Message headers

Many header files contain message headers, which are where messages are described
and where their constants and related data structures are defined. Message headers

have the following format:
/***
msgXxxAction takes STRUC TURE, returns STATUS
category: message use
Brief description.
Comments, remarks.
*/
#define msgXxxAction MakeMsg (clsXxx, 1)
typedef struct STRUC TURE {

} STRUC_TURE, *P_STRUC_TURE;

For example:

/**

msgAddrBookGetMetrics takes P_ADDR BOOK METRICS, returns STATUS.

Passes back the metrics for the address book.

*/ v

#define msgAddrBookGetMetrics MakeMsg (c1sAddressBook, 8)

typedef struct ADDR BOOK METRICS {
Uleé numEntries; // Total number of entries
Ul6 numServices; // Number of known services
Ul6 numGroups; // Number of groups in the address book
U32 sparel;
U32 spare2;

} ADDR_BOOK_METRICS, *P_ADDR_BOOK_METRICS;

We relied on the regular format of message descriptions in header files to generate
the datasheets for messages in the PenPoint API Reference.

%¥ In, out, and in-out

In a message header, you can assume that all parameters and message arguments are
input-only (In) unless otherwise specified (Out or In-Out).

% Indentation

Most PenPoint header files use four spaces per tab for indentation. Most program-
mer’s editors allow you to adjust tab spacing; setting it to four will make it easier to
read GO files.

% Comments

In general, slash-asterisk C comments (/* and */) indicate the start and end of
functional areas, and slash C (//) comments are used for in-line comments within
functions.

% Some coding suggestions

Here are some of the other conventions that GO code follows (more or less):

¢ Always include the default case in your switch statements to explicitly show
that you are aware of what happens when the switch fails.

CHAPTER 5 / DEVELOPING AN APPLICATION 77
PenPoint types and macros

¢ Don't use load-time initializations, except for constant values. Since PenPoint
restarts code without reloading it, your code should explicitly initialize your
variables.

¢ Use #defines for constants and put the defines in an include file (if it is used
across multiple files) or at the beginning of the source file with a comment to
indicate its use.

¢ When defining an external function, use prototype declarations to describe
the parameters and types it requires.

¢ Make calls to external functions as specified by the include file of the sub-
system exporting the function.

¢ If your files fully declare the types of their functions, this will help them to be
independent of any flags that may be set during compilation.

¢ A source file should compile without warnings.

¢ Structure names must not be used as exported names. Use the type name to
export a structure type. Structure names should be used only for self-referenc-
ing pointers.

¢ Code for a single function should not exceed a few pages. Break it up (but
don’t go overboard!).

¢ Use GO’s Class Manager to support standard object-oriented programming
methodologies.

¢ The most important parameter to a function should be the first parameter, for
example, WindowDrag(pWin, newx, newy). This is usually the object on
which the function acts.

» PenPoint types and macros

In developing PenPoint, we found it useful to establish a “base” environment that
goes beyond the structures and macros provided by the C language. This section
describes many of these extensions. For a complete list, please look at
PENPOINT\SDK\INC\GO.H, where all of our extensions are defined.

¥ Data types

To allow for portability between different C compilers and processors, we define six
basic data types that directly indicate their size in bits. Three are signed: S8, S16,
and $32. The others are unsigned: U8, U16, and U32. W also define corresponding
pointers for each, prefixed with P_, and pointers to pointers, which are prefixed
with PP_.

To plan for internationalization efforts, we provide the CHAR data type. CHAR is
functionally equivalent to char and is defined to be a U8 in PenPoint 1.0. In Pen-
Point 2.0 Japanese, which includes support for international character sets, we've
changed CHAR to U16. Simply stated, you should use CHAR instead of char to
ensure an easier transition to PenPoint 2.0 Japanese.

1 / APP WRITING GUIDE

78

PENPOINT APPLICATION WRITING GUIDE
Part 1 / Application Writing Guide

CHAR has two related data types: P_CHAR, which represents a pointer to a char-
acter, and PP_CHAR, which is a pointer to a string. -

P_UNKNOWN is for uninterpreted pointers, that is, pointers that you do not deref-
erence and about which code makes no assumptions.

P_PROC is for pointers to functions. It assumes the Pascal calling convention.
The SIZEOF type is for the sizes of C structures returned by sizeof.

The status values returned by many functions are of type STATUS. This is a signed
32-bit value, although most subsystems encode status values to indicate the class
defining the error to avoid status value conflicts. “Return values” on page 80
describes status values in greater detail.

Basic constants
Use the enumerated type BOOLEAN for logical values true and false. The BOOLEAN

type also defines the values True, False, TRUE, and FALSE to preempt any discus-
sion about capitalization rules.

Similarly, null is the preferred spelling for null (0), but NULL is also defined. pNull
is a null pointer.

minS8, maxS8, minS16, maxS16, minS32, and maxS32 are the minimum
and maximum integer values for the three signed types. maxU8, maxU16,
and maxU32 are the maximum values of the three unsigned types. Obviously,
the minimum unsigned value is zero.

Names in many PenPoint subsystems can be no longer than 32 characters. This
limit is defined as maxNameLength. Since strings are normally null-terminated, we

define nameBufLength to be maxNameLength + 1.

Legibility
GO.H defines AND, OR, NOT, and MOD to be the corresponding C logical “punctu-
ation;” this avoids confusion with the double-character bit operators && and II.

Compiler isolation

GO.H provides macros and other #defines that you can use to ensure compiler
independence.

Function qualifiers

GO.H introduces a layer in between the special function qualifier keywords, such as
STATIC, by providing uppercase versions of all these keywords.

Using the uppercase versions allow you to easily remove or redefine these keywords
in source code if necessary. This allows you, for example, to experiment with
changing the calling sequences of your code to check for errors or changes.

It’s important to explicitly specify calling conventions in your function prototypes
so that code can compile with a different set of compiler switches from GO’s
defaults, yet still observe the protocol requirements.

CHAPTER 5 / DEVELOPING AN APPLICATION 79
PenPoint types and macros

STATIC, LOCAL, and GLOBAL are compiler #defines that support the appearance
(if not the reality) of modular programming,.

%7 Enumerated values

Some compilers base the size of an enum value on the fields in that enum. This has
unfortunate side effects if an enum is saved as instance data; programs compiled
under different compilers might read or write different amounts of data, based on
the size of the enum as they perceive it.

To guarantee that an enum is a fixed size, use the Enum16() and Enum32()
macros. These macros create enums that are 16 and 32 bits long, respectively. The
macros expect a single argument—the name of the enum to be defined.

Within an Enum16() or Enum32(), use the bit flags (flag0 through flag31, also
defined in GO.H) to define enumerated bits.

Most PenPoint header files indicate when bits in an enum can be ORed to specify
several flags. If a PenPoint header file uses the flag0-style bit flags, assume that you
can OR these flags.

% Data conversion and checking

Abs(), Even(), and Odd() are macros that perform comparisons, returning a
boolean. Max and Min return the larger and lesser of two numbers, respectively.

OutRange() and InRange() check whether a value falls within a specified range.
They work with any numeric data type.

Be careful when using the Abs(), Min(), Max(), OutRange(), and InRange()
macros because their parameters are evaluated multiple times. If a function call
is used as an argument, multiple calls to the function will be made to evaluate
the macro.

% Bit manipulation

GO.H defines each bit as flag0 through flag31, with flag0 being the least-significant
(rightmost) bit.

LowU16(), HighU16(), LowU8(), and HighU8() extract words and bytes by
casting and logical shifts. MakeU16() and MakeU32() assemble words and 32-bit
quantities out of 8-bit and 16-bit quantities.

FlagOn() and FlagOff() check whether a particular flag (bit) is set or reset.
FlagSet() and FlagClr() set a particular flag. All four can take a combination of flags
ORed together. You can use these bit manipulation macros with U8, U16, or U32
data types.

1 / APP WRITING GUIDE

80 PENPOINT APPLICATION WRITING GUIDE
Part 1 / Application Writing Guide
% Tags

There are several types of values passed around or otherwise shared among
subsystems and applications in PenPoint:

¢ Class names
¢ Messages

¢ Return values
¢ Window tags

All of these are 32-bit constants (U32). As you develop code and classes, you will
define your own. It is vital that they not conflict, so GO provides a tag mechanism
to guarantee unique names for them. GO administers a number space in which
every developer can reserve a unique set of numbers. A tag is simply a 32-bit con-
stant associated with an adminstered number. With each administered number you
can define 256 different tags: because the administered numbers are unique, so will
be the tags.

You usually use your classes’ administered number to define messages, status values,
and window tags, since these are all usually associated with a particular class. See
Part 1: Class Manager of the PenPoint Architectural Reference for an explanation of
how classes, tags, and administered numbers relate to each other.

Return values

Most PenPoint code returns error and feedback information by returning special
values from functions rather than generating exceptions. PenPoint still uses excep-
tions for certain types of errors: GP fault, divide by 0, and so on. Otherwise, func-
tions that return success or failure must return a status value. Status values are 32-
bit tags, defined in GO.H:

typedef S32 STATUS, * P_STATUS;

The universal status value defined to mean “all is well” is stsOK. By conven-
tion, return values less than stsOK denote errors, while return values greater than
stsOK indicate that the function did not fail, but may not have completed in the
usual way.

There is a set of GO standard status values that you can use in different situations
(described below), but usually each subsystem needs to define its own specific status
values. To guarantee uniqueness among status values returned by third-party soft-
ware, group your status values by class, even if the status does not come from a
class-based component. GO administers well-known numbers for classes, as
explained above in “Tags.”

%» Defining status values

GO.H defines a macro, MakeStatus(wkn,sts), to make a 32-bit error status value
from a well-known 32-bit identifier and an error number. Usually, the well-known
number is the class that defines the error.

CHAPTER 5 / DEVELOPING AN APPLICATION
PenPoint types and macros

To make a status value that does not indicate an error, use MakeWarning(cls, msg),
which creates a positive tag.

So, if you want to define status values, all you need is a reserved class. GO can allo-
cate one for you. You can then define up to 256 error status values and 255 success
status values, using MakeStatus() and MakeWarning() with numbers in the range
0-255. If you need more status values, you can request another class UID.

%» Pseudoclasses for status values

Since not everything in the PenPoint API is a message-based interface to an object-
oriented class, there are several pseudoclasses defined solely to provide “classes” for
status values from some subsystems: clsGO, clsOS, clsGoMath, and so on. You can
ask GO for your own pseudoclasses for error codes if necessary.

% Testing returned status values

To test a STATUS value for the occurrence of an error, just test whether the value is
less than stsOK. To test for one specific error, compare the value to the full error
code from the appropriate header file. There are macros to assist in this, described
.« . »

in “Error-handling macros” on page 82.

There are a small number of system-wide error/status conditions. You can return a
generic status value instead of defining your own, so long as you use it consistently
with its definition. If you need to convey a slightly different sense, define your own
context-specific status value.

Here are the generic status values. Their “class” identifier is the pseudo-class clsGO.

Generic status values

1/ APP WRITING GUIDE

stsRequestNotSupported
stsReadOnly
stslncompatibleVersions
stsNotYetImplemented
stsOutOfMem

v Non-error status values
stsRequestDenied

stsRequestForward

stsTruncatedData

TABLE 5-1
Status value Description
stsOK Everything’s fine.
W Errors
stsBadParam One or more parameters to a function call or message are invalid.
stsNoMatch A lookup function or message was unable to locate the desired item.
stsEndOfData Reached the end of the data.
stsFailed Generic failure.
stsTimeOut A time-out occurred before the requested operation completed.

The message is not supported.

The target can’t be modified.

The message has a different version than the recipient.
The message is not yet fully implemented.

The system has run out of memory.

The recipient decided not to perform the operation.
The recipient asks the caller to forward the request to some other object.

The request was satisfied, but not all the expected data has been
passed back.

82 PENPOINT APPLICATION WRITING GUIDE
Part 1 / Application Writing Guide

The macro StsOK() returns true if the status returned by an expression is greater
than or equal to stsOK. If you want to check for any status other than stsOK, use
StsFailed(). See “Error-Handling Macros,” below.

% Return status debugging function

The function StsWarn() evaluates any expression that returns a STATUS. If you do
not set the DEBUG preprocessor variable during compilation, StsWarn() is defined
to be the expression itself—a no-op. This means that whenever you call a function
that returns a status value, you can use StsWarn().

If DEBUG is defined, and the expression evaluates to an error (less than stsOK),
then StsWarn() prints the status value returned by the expression together with the
file and line number where StsWarn() was called (the special compiler keywords
__FILE__and __LINE_).

%% Human-readable status values

You can load tables of symbol names in the Class Manager so that if you have set
DEBUG, the above functions will print out a string for status return values, instead
of a number. For an example of this, see the S_TTT.C file of the Tic-Tac-Toe sample
program in Part 7: Sample Cod.

% Error-handling macros

Every PenPoint function or message returns a STATUS that you should check. The
following status macros make function checking much easier by handling typical
approaches to handling errors.

Status-checking macros TABLE 5-2
Error handling approoach Macro

Check for an error (no warning) StsChk()

Check for an error and warn StsFailed()

Return if result is an error StsRet()

Jump to an error handler if result is an error StsJmp()

Check that the result is not an error StsOK()

The Class Manager defines similar macros for checking the status values returned
when sending a message. ‘

Each status value checker works with any expression that evaluates to a STATUS.
Each takes the expression and a variable to assign the status to. All of these macros
(except StsChk()) call StsWarn(), so that they print out a warning message if you
set the DEBUG preprocessor variable during compilation.

Since often one function calls another which also returns STATUS, using these
macros consistently will give a “stack trace” indicating the site of the error and the
nested set of functions which produced the error.

The examples below assume that MyFunc() returns STATUS.

CHAPTER 5 / DEVELOPING AN APPLICATION
PenPoint types and macros

%v StsChk(se, s)

Checks for an error.

¢ Description Sets the STATUS s to the result of evaluating se. If s is less than
stsOK, returns true, otherwise returns false. Does not print out a warning
message.

¢ Example
STATUS .8
if (StsChk (MyFunc(paraml, param2), s)) {
// MyFunc() failed
}

%»r StsFailed(se, s)
Checks for an error.

¢ Description Sets the STATUS s to the result of evaluating se. If s is anything
other than stsOK, returns true and prints an error if DEBUG is set. If s is
stsOK, returns false.

¢ Example
STATUS S;
if (StsFailed (MyFunc(paraml, param2), s)) {
// MyFunc() returned other than stsOK, so check status
switch (Cls(s)) {

} else {
// MyFunc() did the expected thing, so continue
}

¢ Remarks This is analogous to StsOK(), but it reverses the sense of the test
in order to be more consistent with other checking macros.

%¥ StsJmp(se, s, label)

Jump to label on error.

¢ Description Sets the STATUS s to se. If s is less than stsOK, it prints an
error if DEBUG is set and does a goto to label. This is useful when you have a
sequence of operations, any of which can fail, each having its own clean-up
code.

¢ Example
STATUS S;
pMeml = allocate some memory;
StsJdmp (MyFunc (paraml, param2), s, Errorl);
pMem2 = allocate some more memory;
StsJdmp (MyFunc (paraml, param2), s, Error2);

return stsOK;
Error2:
// Handle error 2.
OSHeapBlockFree (pMem2) ;
Errorl:
// Handle error 1.
OSHeapBlockFree (pMeml) ;

return s;

83

1 / APP WRITING GUIDE

84 PENPOINT APPLICATION WRITING GUIDE
Part 1 / Application Writing Guide

%y StsOK(se, s)
Checks that things are OK.

¢ Description Sets the STATUS s to the result of evaluating se. If s is greater
than stsOK, returns true. Otherwise, prints an error if DEBUG is set and
returns.

¢ Example
STATUS S;
if (StsOK(MyFunc(paraml, param2), s)) {
// MyFunc() succeeded, continue.
} else {
// MyFunc() failed, check status.
switch (Cls(s)) {

}
Remarks This is analogous to StsFailed(), but reverses the sense of the test
and returns true for any status value that is not an error. In other words,

this could return true, but the status might be some other value than
stsOK, such as stsNoMatch.

%» StsRet(se, s)

Returns status on error.

¢ Description Sets the STATUS s to se. If s is less than stsOK, prints an error if
DEBUG is set and returns s. This is useful if one function calls another and
should immediately fail if the second function fails.

¢ Example
STATUS s;

// I1f MyFunc has problems, return.
StsRet (MyFunc (paraml, param2), s);

7 Debugging assistance

GO has developed a set of useful functions and macros to assist in debugging
PenPoint applications. They are no substitute for DB, the PenPoint Source-level
debugger, or the PenPoint mini-debugger (both these debuggers are documented in
PenPoint Development Tools). However, they help you trace the operation of a pro-
gram without using a debugger. They are an elaboration of the time-honored tech-
nique of inserting printf() lines in your code.

% Printing debugging strings
DPrintf() and Debugf() print text to the debugger stream. They take a formatting
string and optional parameters to display, in the same manner as as the standard C
function printf(). The only difference between DPrintf() and Debugf() is that
Debugf() supplies a trailing newline (if you want a newline at the end of DPrintf()

output, end it with \n).

Debugf ("Entering init method for clsApp");
Debugf ("main: process count = %d", processCount);

CHAPTER 5 / DEVELOPING AN APPLICATION 85
Debugging assistance

%» Debugger stream

The debugger stream is a pseudo-device to which programs (including PenPoint)
can write debugging information. There are several ways to view the debugger
stream:

¢ If you have a single screen, you can see the most recent lines written to the
debugger stream when you press Pause.

o If you have a second (monochrome) monitor, serial terminal, or PC running
communications software, you can constantly watch the debugger stream on
this monitor while you run PenPoint on the main (VGA) monitor.

You can send the debugger stream to a log file, by setting the D debugger flag
to the hexadecimal value 8000. Usually you do this in the ENVIRON.INI file,
but you can also do it from the PenPoint symbolic debugger, or from the
mini-debugger.

DebugSet=/DD8000

DebugLog=\\boot \tmp\run3. log

¢ You can use the System Log application to view the debugger stream while

running a PenPoint appliction.

None of these destinations are mutually exclusive.

¥ Assertions

Often when working on functions called by other functions, you assume that the
software is in a certain state. The ASSERT() macro lets you state these assumptions,
and if DEBUG is set, it checks to see that they are in fact the case. If they are not sat-
isfied, it will print an error. For example, a square root function might rely on never
being called with a negative number:

void MySqRoot (int num) {
ASSERT (num >= 0, "MySqRoot: input parameter is negative!");
// Calculate square root...

The test is only performed if DEBUG is defined.

% Debugging flags
At different times you want to print different debugging information, or you want
your program to work a certain way. DEBUG is the common #define used by Pen-
Point to include debugging output; if you set DEBUG when compiling, the status-
checking macros print out additional information, the ASSERT() macro is enabled,
and so on. You can use your own C preprocessor directives to get finer control over
program behavior, for example:

OBJECT myDc
#ifdef MYDEBUGL

// Dump DC state

ObjectCall (msgDump, myDc, Nil (P_ARGS));
#endif

The disadvantage of this technique is that you must recompile your program to
enable or disable this code.

1/ APP WRITING GUIDE

86 PENPOINT APPLICATION WRITING GUIDE
Part 1 / Application Writing Guide

Another approach is to check the value of a flag in your code. PenPoint supports
256 global debugging flag sets. Each flag set is a 32-bit value, which means that
you can assign at least 32 different meanings to each debugging flag set.

Because there are 256 debug flag sets, they can be indexed by an 8-bit character.
Commonly, we refer to a specific debugging flag set by the character that indexes

~ that flag. GO has reserved all the uppercase character debug flags sets (A through Z),
and has reserved some of the lowercase characters also. To find which debug flag
sets are available, see the file PENPOINT\SDK\INC\DEBUG.H.

You can set the value of a flag set, and retrieve it. The typical way you use debug-
ging flag sets is to set the value of a flag set before running a program, and in the
program check to see which bits in the flag set are on. The function DbgFlagGet()
returns the state of a flag set ANDed with a mask.

For example, if you were using the flag F in your program and were checking the
third bit in it to see whether or not to dump an object, the code above would be:
if (DbgFlagGet(’'F’, 0x0004)) {
// Dump DC state
ObjectCall (msgDump, mydc, Nil(P_ARGS));
}
You only need to compile your program once, and you can turn on object dumping
by changing the F flag set to 0x4 (or 0x8, or 0xF004, and so on). The disadvantage
of this is that the flag-testing code is compiled into your program, increasing its size
slightly. Often programmers bracket the entire DbgFlagGet() test within a Dbg()
macro so that the flag-testing code is only compiled while in the testing version of
their program.

%r Setting debugging flag sets
There are several ways to set debugging flag sets. Note that there is a single set of
these flags shared by all processes.
¢ In PENPOINT\BOOT\ENVIRON.INI, set the flag to the desired bit pattern with:
DebugSet=/DFnnnn/DEmmmmn. . .,
where F and fare letters that identify a particular flag set and nnnn and mmmm are

a hexadecimal values. For example, DebugSet=/DFE004.

¢ By typing fs F nnnn in either the PenPoint source-level debugger or the
PenPoint mini debugger.

¢ By using DbgFlagSet() in a program, for example:
DbgFlagSet ('F’,0xE004) .

P> Suggestions

%r Isolate debugging messages

In general, always isolate all debugging code using preprocessor directives:
#ifdef DEBUG
Debugf (U_L(“Debugging output string”))
#endif

CHAPTER 5 / DEVELOPING AN APPLICATION
The tutorial programs

DEBUG is the conventional flag for debugging code, used by much of PenPoint. If
you have a short statement that you want to isolate for debugging purposes, you
can use the Dbg() macro, which has the effect of using the preprocessor directives
shown above:

Dbg (Debugf (U_L(“Debugging output string”)))

Use the status-checking macros

Using the status-checking macros StsOK(), StsJump(), and so on, and their coun-
terparts for sending messages may seem cumbersome, but they provide useful
debugging information if DEBUG is defined. Also, since most functions and mes-
sage sends return the error status if they encounter an error, the “stack” of status
prints provides a traceback showing where the error first occurred and who called it.

This status error listing shows the result of sending msgDrwCtxSetWindow to
objNull:

C> ObjectCall: sts=stsBadObject "tttview.c".@232 task=0x05d8

C> object=objNull

C> msg=msgDrwCtxSetWindow, pArgs=26ec0438

>> StatusWarn: sts=stsBadObject "tttview.c".@330 task=0x05d8

>> StatusWarn: sts=stsBadObject "tttview.c".@743 task=0x05d8

Page fault in task 05D8 at 1B:440CCD52. Error code = 0004.

EAX=00000000 EBX=04000002 ECX=E002E5CF EDX=440CCD05 ESI=41BC8EF0 EDI=4401EC38
EIP=440CCD52 EBP=004329E0 ESP=004329CC FLG=00010246 CR2=0000000C CR3=00077000
CS=001B DS=002B SS=002B ES=002B FS=0000 GS=0000 TSS=05D8 TNAME=TIC1

Use the debuggers

If your code crashes unexpectedly, you can use the PenPoint mini-debugger to get
a stack trace at the assembly-language level (type st at its > prompt). The linker’s
.MAP files enable you to translate assembly language addresses to functions and line
numbers.

If you suspect that your code is going to crash or behave improperly, run it from the
PenPoint source-level debugger. This lets you step through your code, query and set
values, and evaluate simple C expressions.

Both debuggers are described in PenPoint Development Tools.

The tutorial programs

Now that you've read the broad overview of PenPoint and its class-based applica-
tions, views, and objects, you are ready to get down to some of the nuts and bolts of
writing an application. This section describes the remaining chapters in this book
and the sample programs used in those chapters. The programs are:

¢ Empty Application

¢ Hello World (toolkit)

¢ Hello World (custom window)
¢ Counter Application

¢ Tic-Tac-Toe

¢ Template Application

1/ APP WRITING GUIDE

88 PENPOINT APPLICATION WRITING GUIDE
Part 1 / Application Writing Guide

Chapter 6, A Simple Application (Empty Application), explains how to compile
and run programs using Empty Application. The chapter is quite long because it
teaches the general development cycle:

¢ How to compile an application.

¢ How to install an application on a PC or PenPoint computer.

¢ How to run an application.

¢ Some interesting things to look for when running any application.
¢ How to use some of the PenPoint debugging tools.

The Empty Application is used to illustrate these steps, but the comments are
applicable to all the other sample applications.

% Empty Application
The tutorial starts off with an extremely simple application, Empty Application.
Chapter 6 explains how to build and run it and how the application works. Empty
Application has no view, no data, and no application-specific behavior (apart from
printing a debugging message). It only responds to one message from the Applica-
tion Framework. However, it does create an application class (as all PenPoint appli-
cations must), and through inheritance from clsApp, you can create, open, float,
zoom, close, rename, file, embed, and destroy Empty Application documents.

% Hello World (Toolkit)

The next application is the traditional “Hello World” application. This prints
Hello World! in its window. Rather than creating a window from scratch, this uses
the existing User Interface Toolkit components. One of these is clsLabel, which dis-
plays a string. Hello World (toolkit) uses this existing class instead of creating its
own. The components in the UI Toolkit are rich in features; for example, labels can
scale their text to fit. If you can use a toolkit class, do so.

Hello World (toolkit) is described more fully in Chapter 7, Creating Objects (Hello
World: Toolkit).

CHAPTER 5 / DEVELOPING AN APPLICATION 89
The tutorial programs

% Hello World (Custom Window)

Of course it is possible to draw text and graphics yourself. Hello World (custom
window) draws the text Hello World in its window, and draws a stylized exclama-
tion mark beside it. To do this, the application must create a separate window class
and create a system drawing context to draw in its window, which is substantially
harder than using toolkit components.

Hello World (custom window) is described in Chapter 8.

% Counter Application

o

Counter Application displays the value of a counter object in a label. It creates a

separate counter class and interacts with it. The application has a menu created A sé
from UI Toolkit components that lets the user choose whether to display the :
counter value in decimal, hexadecimal, or octal.

-

SR
e

iy
¢ 5

Both the application and the counter object must file state. The tutorial programs
presented before Counter Application are not stateful, that is, they don’t have data

i

SRR

e
o

that the user can change permanently. Realistic applications must allow users to
change things, so they must file their state.

s

Sial

m

The application object uses a memory-mapped file to keep track of its state. Using
a memory-mapped file avoids duplicating data in both the memory file system

in program memory. By contrast, the counter object writes its value to a file when
it is saved.

The counter application is described in Chapter 9.

% Tic-Tac-Toe
The rest of the tutorial develops a “real” working application, Tic-Tac-Toe. This
application is covered in Chapters 10 and 11.

k
:
?
5

-

L k?%%g% : @%’%w:u%: .
Citaos D -

y

S
g

T
o

o
i

-
:

e
S

-

Tic-Tac-Toe presents a tic-tac-toe board and lets the user write Xs and Os on it. It is
not a true computerized game—the user does not play tic-tac-toe against the com-
puter. Instead, it assumes that that there are two users who want to play the game

e
e

cnnon

—
.

against each other.

Although a tic-tac-toe game is not exactly a typical notebook application, Tic-Tac-
Toe has many of the characteristics of a full-blown PenPoint application. It has a
graphical interface, handwritten input, keyboard input, gesture support, use of the
notebook metaphor, selection, data import and export, option cards, undo support,
stationery, help text, and so on.

-

B
2
o

o
-

e
.

o
.

canl

i

90 PENPOINT APPLICATION WRITING GUIDE
Part 1 / Application Writing Guide

¥ Template Application

As its name implies, Template Application is a template, “cookie cutter” applica-
tion. As such, it does not exhibit much functionality. However, it does handle many
“typical” application messages. This aspect makes Template Application a good
starting point for building a real application.

% Other code available

Other source code is provided in the SDK in addition to the tutorial code.

All the source to sample programs is on-disk in PENPOINT\SDK\SAMPLE. Some of
the other sample programs are described in Appendix A, Sample Code. Excerpts
from sample programs also appear and are described in those parts of the PenPoint
Architectural Reference that cover related subsystems.

PENPOINT APPLICATION WRITING GUIDE / EXPANDED EDITION
PART 1 / APPLICATION WRITING GUIDE

Chapter 6 / A Simple Application
(Empty Application)

Applications written for many operating systems have to perform housekeeping
functions by implementing their own boilerplate code; that is, code that is essen-
tially the same from one application to the next. In the PenPoint™ operating
system, the PenPoint Application Framework performs most of these housekeeping
functions. By using the Application Framework, you can create an application that
can be installed, that can create multiple instances of itself, that can handle page
turns, floats and zooms, and that can display an option sheet, all without writing an
additional line of code.

Empty Application is a very simple application. Like all PenPoint applications,
Empty Application is a subclass of clsApp, so Empty Application inherits all of the
Application Framework behavior. The only additional code in Empty Application
is a method that responds to msgDestroy by sending a message to the debug stream
(when the program is compiled with the DEBUG preprocessor #define name).

The PenPoint Application Framework is responsible for everything else Empty
Application does. Because the Application Framework handles so much of an
application’s interaction with the system, even such an insubstantial application
has substantial functionality.

¥ Files used

The code for Empty Application is in PENPOINT\SDK\SAMPLE\EMPTYAPP. There
are three files in the directory:

EMPTYAPP.C Contains the application class’s code and initialization routine.
METHODS.TBL Contains the list of messages that the application class
responds to and the associated message handlers to call.

MAKEFILE Contains rules that tell the make utility how to build Empty
Application.

There is also a text file file called README.TXT that describes Empty Application,
but the README.TXT file is not required to compile and link the application.

% Not the simplest

The name Empty Application is not quite accurate, because it isn’t totally empty.
You could create an application with no method table at all; that is, one that
responds to no messages at all and relies entirely on methods inherited from clsApp.
Empty Application handles one message by printing a string to the debug stream,
so it needs a method table.

92 PENPOINT APPLICATION WRITING GUIDE
Part 1 / Application Writing Guide

» Compiling and linking the code

The source code for sample applications is in subdirectories of PENPOINT\SDK\
SAMPLE. Each subdirectory contains a “makefile” that tells the make utility how to
build the application. All you need to do to compile and link Empty Application is
make PENPOINT\SDK\SAMPLE\EMPTYAPP the current directory and start the make
utility, but you need to understand what the files are doing so that you can later
modify the makefiles to fit your needs.

These sections describe the actual commands used to compile, link, and stamp
EMPTYAPP.

% Compiling method tables

You compile method tables into an object file by running them through the
PenPoint method table compiler (in PENPOINT\SDK\UTIL\CLSMGR\MT.EXE).

By convention, method tables have the suffix .TBL. The control files that the make
utility uses include a default rule for compiling method tables. MT produces an
object file and a header file for the method table. You use these files when you com-
pile and link the application.

¥ Installing and running Empty Application

As described in the “How applications work” on page 24, you must install an appli-
cation in PenPoint before you can run it. To install Empty Application, you either
install it at boot time or use the Settings notebook on a running PenPoint system.
The Application Installer is described in Using PenPoint.

To install the application at boot time:

¢ Add a line that says \BOOT\PENPOINT\APP\Empty Application to PENPOINT\
BOOT\/localdAPPINI (where locale is USA or JPN).

Boot PenPoint on your PC.

¢ When the Notebook appears, draw a caret a in the TOC to insert an Empty
Application document in the Notebook.

When you create an Empty Application document in the Notebook, PenPoint cre- The section “Installation and
ates a directory for the document in the application hierarchy (that’s why it shows activation” on page 101
. s R explains the difference between
up in the table of contents), but it’s only when you turn to the document’s page Inetallation and Activation,
that a process for the document is activated. Until then the document isn’t running and the relationship between
and doesn’t have a process or a valid cIsEmptyApp object. FenFoint processes and
application classes.

P Interesting things you can do with Empty Application

Although Empty Application doesn’t do any useful work, you can learn a lot about
the operation of PenPoint by studying it. PenPoint provides a host of features and
support to even the simplest application. You can try the following:

CHAPTER 6 / A SIMPLE APPLICATION (EMPTY APPLICATION)
Interesting things you can do with Empty Application

Create multiple instances (documents) of it. The PenPoint file system appends
a number to each document to guarantee a unique application directory name
in the application hierarchy. You create documents by performing one of these
actions:

+ Choose Empty Application from the Create menu in the Notebook
contents page.

+ Choose Empty Application from the pop-up menu that appears when
you draw a caret A on the contents page.

« Use the Stationery notebook to create Empty Application documents in
the Notebook.

o Tap and hold on the title bar or name of an Empty Application docu-
ment in the TOC to make a copy of an existing document. Drag the
icon that appears to where you want it to go, such as on the icon book-
shelf, or elsewhere in the TOC.

+ Tap the Accessories icon in the bookshelf below the Notebook and tap
the Empty Application icon in its window.

Float a Notebook Empty Application document by turning to the Notebook’s
table of contents and double-tapping on its page number (you must first
enable floating in the Float & Zoom section of PenPoint Preferences).
Compare the difference between an accessory and a floating document—
accessories have no page number.

Zoom a floating Empty Application by flicking upwards on its title bar
(you must first enable zooming in the Float & Zoom section of PenPoint
Preferences).

Display the properties of an Empty Application document by drawing a
check v in its title bar. An option sheet for the document appears, with sev-
eral cards in it for the document’s appearance.

In the table of contents, press and hold on a Empty Application title until a
dashed line appears around it. You can now move the document around. Try
moving it to another place in the Notebook.

Give the Empty Application document a tab in the notebook by writing a “T”
in its title bar. You can use the tab to navigate to the Empty Application docu-
ment quickly.

Give the Empty Application document a corkboard margin by writing a “C”
in its title bar. A thick strip appears at the bottom of its window.

¢ As you turn the pages, note the sequence of messages sent to each instance of
clsEmptyApp by the PenPoint Application Framework.

Select an Empty Application document in the table of contents, then use the
disk viewer to open a directory on your hard disk. Copy the document to the
hard disk. Then delete the document by drawing a cross out X over it.

93

1 / APP WRITING GUIBE

94 PENPOINT APPLICATION WRITING GUIDE
Part 1 / Application Writing Guide .

Empty Application option sheef FIGURE 6-1

¢ Set the G debugger flag to 1000 in PENPOINT\BOOT\ENVIRON.INI (or set the
flag with the fs mini-debugger command). This turns on debugging info for
reading and writing resources in clsResFile. This is the class that files objects
during msgAppSave processing.

¢ Select an Empty Application document in the TOC and move it by pressing
and holding on its title. Move it inside another open document. If the other
application supports it, the PenPoint Application Framework will embed the
Empty Application document inside the other.

Code run-through

Enough details of running Empty Application; now let’s look at its C code. First
we'll look at the layout of PenPoint source files.

% PenPoint source code file organization

Most source code in PenPoint has a similar structure. Although Empty Application
is a very simple application, it has a similar layout to other applications.

Remember that application programs have at least one class (the application class
itself), so an application program is composed of at least these two files:

& The method table that specifies the messages to which this class responds and
the functions that handle those messages.

CHAPTER 6 / A SIMPLE APPLICATION (EMPTY APPLICATION)
Code run-through

¢ The C source code for the class.

The organization of the C source code is described in the sections below.

% Method table file

The method table file lists all the messages that the class handles. The PenPoint
Class Manager sends any messages not listed in the method table to the class’s
ancestor for handling (and possibly to the ancestor’s ancestor). Looking at a class’s
method table gives you a good feel for what the class does.

The method table file always has the suffix .TBL. It looks like C code, but you pro-
cess it with the method table compiler MT before linking it into your program.

A single method table file can have method tables for several different classes. The
names of the method tables are usually pretty self-explanatory, typically the name of
the class with the word Methods appended. For example, Empty Application’s class
is cIsEmptyApp, and Empty Application’s method table is clsEmptyAppMethods.

Although the normal practice is to define a method for each message, you can use
the wild-card feature of method tables to have one method handle several messages.
Method table wild cards match any message within a given set of messages, and call
the associated method. Method table wild cards are described in Parz 1: Class
Manager of the PenPoint Architectural Reference.

%r Application C code file

By convention, an application source code file is usually organized into the
following sections:

+ #include directives for the header files required by the application.
¢ #defines and typedefs.

+ Utility routines.

Message handlers.

¢ Class initialization routine.

¢ main() entry point.

The application’s main() routine is at the end of the source file. The operating
system calls the application’s main() routine under two circumstances:

¢ When installing the application (this happens only once).

¢ When activating individual documents (this happens each time the user turns
to or floats a document that uses the application).

The C files for nonapplication classes dont have main() routines, because only

applications actually start C processes. The declaration for the main() routine is:
main{argc, argv, processCount)

The argc and argv parameters are not used in PenPoint. PenPoint uses the process-

Count parameter to pass in the number of processes running this application.

When processCount is 0, there are no other processes running this application; this

95

1/ APP WRITING GUIDE

96

PENPOINT APPLICATION WRITING GUIDE
Part 1 / Application Writing Guide

indicates that PenPoint is installing the application. Once an application is
installed, the process that has a processCount of 0 stays in memory until the appli-
cation is deinstalled.

On installation, main() initializes the application class, by calling an initialization
routine. This routine precedes main() in the source file. Standard practice is to
name this routine using the name of the application class (with an initial capital
letter), followed by “Init”. For example, the initialization routine for clsEmptyApp
is CIsEmptyApplnit().

When the initialization routine creates the application class, it specifies the method
table used by the application class.

In the method table, you establish a relationship between the messages that your
class handles and the name of a function in your C code file that handles each mes-

- sage. These functions are called message handlers and are similar to the “methods”

o

(4

of other object-oriented systems. Message handlers should be local static routines
that return STATUS. If your class does handle a message, the method table also indi-
cates whether the Class Manager should call your class’s ancestor before or after

(if at all).

Message handler parameters

Because the Class Manager calls your message handlers, you don’t get to choose
message handler parameters. The arguments passed to all message handlers are:

msg The message itself.
self The object that received the message.

pArgs The message argument. This 32-bit value can be either a single argu-
ment or a pointer to a structure containing a number of arguments.

ctx A context maintained by the Class Manager.
pData The instance data of self.

Because the parameters to message handlers are always the same, PENPOINT\SDK\
INC\CLSMGR H defines several macros to generate standard message handler decla-
rations. The MsgHandler() macro generates a message handler declaration based
on the name of the function. The MsgHandlerWith Types() macro generates a
message handler declaration based on the name of the function and the types to
which to cast its arguments.

Empty Application’s source code

This section presents an overview of Empty Application’s method table and C
source code.

CHAPTER 6 / A SIMPLE APPLICATION (EMPTY APPLICATION)
Code run-through

%y Method table

The method table file, METHODS.TBL, specifies that Empty Application has one
message handler; clsEmptyApp handles msgDestroy in a function called Empty-
AppDestroy().

MSG_INFO clsEmptyAppMethods [] = {

$ifdef DEBUG

msgDestroy, "EmptyAppDestroy",objCallAncestorAfter,
#endif

0

}i

The #ifdef and #endif statements cause the message handler to be defined only
when you specify /DDEBUG in the compiler options.

%»¥ C source code

There are three significant parts of EMPTYAPP.C:

¢ The main() routine, which handles application installation and application
startup.

¢ The initialization routine, which is invoked by main() at installation time.

¢ The message handler for msgDestroy, which was specified in the method
table.

This section presents this code without further comment. Subsequent sections in
this chapter examine the code in detail.

The main() routine for EMPTYAPPC is:

/**

main

Main application entry point (as a PROCESS -- the app's MsgProc

is where messages show up once an instance is running).
**/

void CDECL
main (

532 argc,

CHAR * argvl[],

U032 processCount)
{

Dbg (Debugf (U_L("main: starting emptyapp.exe[%d]"), processCount);)
if (processCount == () {
// Create application class.
ClsEmptyAppInit ();
// Invoke app monitor to install this application.
AppMonitorMain (clsEmptyApp, objNull);
} else {
// Create an application instance and dispatch messages.
AppMain();
}/ Suppress compiler's "unused parameter" warnings
Unused(argc); Unused(argv);

} /* main */

97

1 / APP WRITING GUIDE

98 PENPOINT APPLICATION WRITING GUIDE
Part 1 / Application Writing Guide

The initialization routine invoked by main() on installation is:
/**
ClsEmptyAppInit

Install the EmptyApp application class as a well-known UID.
**/

STATUS
ClsEmptyAppInit (void)
(

APP MGR NEW new;

STATUS s;

//

// Install the Empty App class as a descendant of clsApp.
//

ObjCallWarn (msgNewDefaults, clsAppMgr, &new);
new.object.uid = clsEmptyApp;

new.cls.pMsg = clsEmptyAppTable;

new.cls.ancestor = clsApp;

//

// This class has no instance data, so its size is zero.
//

new.cls.size = Nil (SIZEOF);

//

// This class has no msgNew arguments of its own.

//

new.cls.newArgsSize = SizeOf (APP_NEW) ;
new.appMgr.flags.accessory = true;

Ustrcpy (new.appMgr.company, U_L("GO Corporation"));

Ustrcpy (new.appMgr .defaultDocName, U_L("Empty App Document"));

ObjCallJdmp (msgNew, clsAppMgr, &new, s, Error);

//

// Turn on message tracing if flag is set.

//

if (DbgFlagGet ('F', 0x1L)) {
Debugf (U_L("Turning on message tracing for clsEmptyApp"));
(void)ObjCallWarn (msgTrace, clsEmptyApp, (P_ARGS) true);

}

return stsOK;

Error:
return s;

} /* ClsEmptyAppInit */
Finally, the message handler for msgDestroy is:

/**
EmptyAppDestroy i
Respond to msgDestroy by printing a simple message if in DEBUG mode.

**/

MsgHandler (EmptyAppDestroy)

{

#ifdef DEBUG
Debugf (U_L("EmptyApp: app instance %p about to die!"), self);

#endif
//

// The Class Manager will pass the message onto the ancestor
// if we return a non-error status value.

//

return stsOK;

MsgHandlerParametersNoWarning; // suppress compiler warnings

} /* EmptyAppDestroy */

CHAPTER 6 / A SIMPLE APPLICATION (EMPTY APPLICATION) 99
Code run-through

% Libraries and header files

You interact with most of PenPoint by sending messages to objects. Thus a typical
application only uses a few functions and only needs to be linked with APPLIB and
PENPOINT.LIB. However, you need to pick up the definitions of all the messages
you send, status values you check, and objects to which you send messages from
their respective header files.

Because Empty Application only looks for CLSMGR.H and APPH messages, it only
needs to include a few header files from PENPOINT\SDK\INC:

Common header files TABLE 6-1

Header file Purpose

GO.H Fundamental constants and utility macros in PenPoint.

OS.H Operating system constants and macros.

DEBUG.H Functions and macros to put debugging statements in your code.

APPH Messages defined by clsApp. ‘

APPMGR.H msgNew arguments of clsAppMgr used when an application class is created.

CLSMGR.H Functions and macros that provide PenPoint’s object-oriented extensions to C.
% Class UID

To write even the simplest application you must create your own application class,
so that’s primarily what Empty Application does.

Your application needs to have a well-known UID (unique identifier, the “handle”
on a Class Manager object) so the system can start it. All well-known UIDs contain
a value that is administered by GO—this keeps them unique. When you finalize
your application, you must obtain a unique administered value from GO. Contact
GO Customer Services at 1-415-358-2040 (or by Internet electronic mail at
gocustomer@go.com) for information on how to get a unique administered value.
Until you get an administered value for your application, you can use the pre-
defined well-known UIDs that are set aside for testing. These test UIDs, wknGDTa
through wknGDTg, are defined in PENPOINT\SDK\ INC\UID.H for this purpose.
Just define your class to be one of them:

#define clsMyClass wknGDTa

This is the approach that Empty Application takes. However, most other sample
applications use well-known UIDs assigned to them by GO. Because most applica-
tions aren't part of the PenPoint API, these well-known UIDs don’t show up in
PENPOINT\SDKAINC\UID.H.

You can use local well-known UIDs instead of global well-known UIDs for classes
that your application uses internally. These do not contain an administered value;
however, you must ensure that they remain unique within your application.

Be on the lookout for conflicts with other test software when using the well-known
testing UIDs (wknGDTa through wknGDTg). If another application happens to
use the same well-known testing UID for one of its classes, you will have problems
installing your application because it has the same UID as another class.

1/ APP WRITING GUIDE

100 PENPOINT APPLICATION WRITING GUIDE
Part 1 / Application Writing Guide

% Class creation

The initialization routine CIsEmptyApplnit() creates the clsEmptyApp class. It
should look familiar to you from the discussion of classes in Chapter 3, Application
Concepts. However, application classes are slightly different from other classes. You
create most classes by sending msgNew to clsClass, whereas you create application
classes by sending msgNew to clsAppMg.

STATUS
ClsEmptyAppInit (void)
{

APP_MGR NEWnew;

STATUS S;

//

// Install the Empty App class as a descendant of clsApp.
//

ObjCallWarn (msgNewDefaults, clsAppMgr, &new);
new.object.uid = clsEmptyApp;

Ustrcpy (new.appMgr.defaultDocName, U _L("Empty App Document"));
ObjCallJmp (msgNew, clsAppMgr, &new, s, Error);

%» clsAppMgr explained

The PenPoint Application Framework needs to know a lot of things about an
application before it can set in motion the machinery to create an instance of the
application. It needs to know:

¢ Whether the application supports embedding child applications.
¢ Whether the application saves its data or runs continuously (“hot mode”).
¢ Whether the application’s documents appear as stationery or accessories.

¢ The icon to use for the application’s documents.

¢ The default name for the application’s documents. Tip It is better to specify
.. s the company name, default
Instances of the application class can’t provide this information because the document name, and other
PenPoint Application Framework needs this information before it creates an locale-dependent information

T , . . . ih the USA.RES or JPN.RES
application instance. To solve this cleanly, application classes are not instances file. This helps when porting

of clsClass, but instead are instances of clsAppMgr, the application manager class. your application to other
When an application is installed, its clsAppMgr instance is initialized, and this localee.
instance can supply the needed information.

new.cls.newArgsSize = SizeOf (APP_NEW);
new.appMgr.flags.accessory = true;
Ustrcpy (new.appMgr.company, U_L("GO Corporation"));
Ustrcpy (new.appMgr.defaultDocName, U_L("Empty App Document"));
ObjCallJmp (msgNew, clsAppMgr, &new, s, Error);
Application classes should be well known so that other processes can send messages
to them. Otherwise, the Notebook would not be able to send messages to your
application class to create new documents when the user chooses it from the Create

menu. You supply the UID for your application class in the msgNew arguments.

CHAPTER 6 / A SIMPLE APPLICATION (EMPTY APPLICATION) 101
Where does the application class come from?

ObjCallWarn (msgNewDefaults, clsAppMgr, &new);

new.object.uid = clsEmptyApp;
new.cls.pMsg = clsEmptyAppTable;
new.cls.ancestor = clsApp;

//

// This class has no instance data, so its size is zero.

//
new.cls.size = Nil (SIZEOF) ;

The cls.pMsg argument to msgNew establishes the connection between the new
class and its method table. More on this later.

Documents, accessories and stationery

We have been referring to all copies of an application as documents. Not all docu-
ments in the system live on a page in the Notebook. Tools such as the clock and the
personal dictionary float above the Notebook.

If you set appMgr.flags.accessory to true, clsAppMgr will put your application in
the Accessories palette. When the user taps on your application’s document icon,
clsApp will insert the new document on screen as a floating document. If you set
appMgt.flags.stationery to true, clsAppMgr will put a blank instance of your appli-
cation in the Stationery notebook (whether or not your application has custom
stationery). When the user selects and copies the stationery document from the
Stationery palette, clsApp will insert the new document in the Notebook.

» Where does the application class come from?

The connection between a process running in PenPoint and an application class is
not immediately obvious. You're probably wondering who calls the initialization
routine for clsEmptyApp, who sends msgNew to create a new Empty Application
instance, what process corresponds to this application instance, and why the
familiar-looking C main() routine doesn’t do very much.

Installation and activation

The connection between an application class and a PenPoint process is an applica-
tion’s main() routine. Every executable must have a main() routine; it is the routine
that PenPoint calls when it creates a new process running your application’s execut-

able image.
void CDECL
main (
s32 argc,
CHAR * argv(],
U32 processCount)

Dbg (Debugf (U_L("main: starting emptyapp.exe[%d]"), processCount);)

The kernel keeps track of the number of processes running a particular program,
and passes this to main() as a parameter (processCount). For applications, there are
two points at which PenPoint does this: application installation and document
activation.

Tip For debugging purposes,
it’s convenient to be able to
create documents both as
floating accessories and
Notebook pages.

1/ APP WRITING GUIDE

102 PENPOINT APPLICATION WRITING GUIDE
Part 1 / Application Writing Guide

Application installation occurs when the user or APPINI installs the application;
that is, when PenPoint loads the application from disk into memory. No applica-
tion documents are active at this point, but the code is present on the PenPoint
computer.

Document activation occurs every time the user starts up a document that uses the
application, typically by turning to its page.

When the user creates a document in the Notebook’s TOC, PenPoint does ot exe-
cute the application code, it merely creates a directory for the document in the
application hierarchy. Try it: while turned to the TOC, create a new Empty Applica-
tion document. The Debugf() statement in main() does not print out anything
until you turn to the document.

In MS-DOS, loading and executing code are part of the same operation; on a
PenPoint computer, installing an application, creating documents for that appli-
cation, and executing application code are three separate operations.

On MS-DOS, quitting an application is an action under the control of the user.
In PenPoint, when the user turns away from a document, PenPoint determines
whether it should destroy the application process or not. PenPoint does not keep
running processes around for every application on every page, so it destroys pro-
cesses that aren’t active (thereby destroying application objects).

PenPoint starts and destroys application processes without the user’s knowledge
and, ideally, without any effect apparent to the user.

%7 A simple discussion of main()

When an application is installed, PenPoint creates a process and calls the applica-
tion’s main() to run in the process. At this time, this is the only copy of the applica-
tion running on the machine; thus, processCount contains the value 0. During
installation, you should create your application class and any other classes you
need. You then call AppMonitorMain(), which handles application installation,
import, copying stationery and resources, and so on. Empty Application doesn’t
take explicit advantage of any of these features, but other programs do.
if (processCount == 0) {

// Create application class.

ClsEmptyAppInit();

// Invoke app monitor to install this application.

AppMonitorMain (clsEmptyApp, objNull);

} else {

The process that PenPoint created at application installation keeps on running until
PenPoint deactivates or deinstalls the application. Therefore, all subsequent pro-
cesses that run the application’s code will have processCount values greater than 0.

When a document is activated (typically by the user turning to its page), PenPoint
calls main() (processCount is greater than zero). At this point you should call the
PenPoint Application Framework routine AppMain(). This creates an instance of

CHAPTER 6 / A SIMPLE APPLICATION (EMPTY APPLICATION) 103
Where does the application class come from?

your application class and starts dispatching messages to it (and other objects created
by the application) so that the new instance can receive Class Manager messages:
if (processCount == () ({
} else {
// Create an application instance and dispatch messages.
AppMain () ;

1 / APP WRITING GUIDE

}

// Suppress compiler's "unused parameter" warnings

Unused(argc); Unused(argv);

} /* main */
Most applications follow these simple steps and have a main() routine similar to the
one in EMPTYAPPC.

%» A complex explanation of main()

The following paragraphs explain the process interactions taking place around
main(). Read on if you really want to understand how application start-up works.

Installation occurs when PenPoint reads PENPOINT\BOOT\APPINI (and SYSAPPINI)
and when the user installs applications using the Installed Applications page of the
Settings notebook. PenPoint or the Settings notebook calls the System Services rou-
tine OSProgramlInstall(), which loads the executable code for your application
(EMPTYAPPEXE) into a special area of PenPoint memory called the loader database.
OSProgramlInstall() also creates a new PenPoint process and calls the function
main() with processCount equal to 0. At this point your code should initialize any
information that all instances will need, such as its application class and any other
nonsystem classes required by your application. The one thing every Empty Appli-
cation instance needs is clsEmptyApp itself, hence when the main() routine in
EMPTYAPPC is called with processCount of 0, it creates clsEmptyApp.

%r Application installation

The process that PenPoint creates when processCount equals 0 also manages other
application functions that are not specific to an individual document. These func-
tions include copying stationery during installation, de-installation, file imporrt,
and so on. Rather than saddle your application with all these responsibilities, the
PenPoint Application Framework provides a class, clsAppMonitor, which provides
the correct default behavior for all these functions. When you call AppMonitor-
Main() it creates one of these objects and dispatches messages to it. If your applica-
tion needs to do more sophisticated installation (shared dictionaries, configuration,
and so on), or can support file import, you can subclass clsAppMonltor and have a
custom application installation manager.

Activation occurs in an indirect fashion when the user chooses Empty Application
from the Tools notebook or the Stationery notebook. The Notebook or Bookshelf
application sends msgAppCreateChild to the current selection. When clsApp
receives this message, it creates a new slot in the application hierarchy for the new
document. But a process and an application object aren’t created until needed. The

104 PENPOINT APPLICATION WRITING GUIDE
Part 1 / Application Writing Guide

document may not be activated until the user turns to the document’s page, or
otherwise needs to interact with it.

%» Activating an application

At or before the point where a live application instance is needed, the PenPoint
Application Framework sends the application’s parent msgAppActivateChild.
While processing this, clsApp calls the System Services routine OSProgram-
Instantiate(). OSProgramInstantiate() creates a new PenPoint process, and in the
context of that process it calls the function main() with processCount set to a non-
zero number.

Finally, there is a running process for an Empty Application document! In theory,
you could put any code you want in main(), just like an ordinary C program. How-
ever, the only way a PenPoint application knows what to do—when to initialize,
when it’s about to go on-screen, when to file, and so on—is by messages sent to

its application object. So, the first and only thing you need to do in main() when
processCount is non-zero is to create an instance of your application class and then
go into a dispatch loop to receive messages. This is what the AppMain() call does.
AppMain() does not return until the user turns away from the document and the
application instance can be terminated.

¥ Handling a message

csEmptyApp only responds to one message. That doesn’t mean that Empty
Application documents don't receive messages—if you turned on tracing while
running Empty Application, you'll have seen the dozens of messages that an Empty
Application application instance receives during a page turn. It means only that
cIsEmptyApp lets its ancestor take care of all messages except one, and it turns out
that clsApp does an excellent job of handling PenPoint Application Framework
messages.

A real application or other class has to intercept some messages, otherwise it has the
same behavior as its parent class. In the case of an application class, the application
needs to respond to PenPoint Application Framework messages that tell documents
when to start up, when to restore themselves from the file system, when they are
about to go on-screen, and so on. If the application has standard application menus
(SAMs), it will receive messages such as msgAppPrint, msgAppPrintSetup, and
msgAppAbout, from the buttons in the menus.

Often, the class responds to these messages by creating, destroying, or filing other
objects used by the application. EMPTYAPPC doesn’t do any of this; all it does is
print a string when it receives one particular message, msgDestroy.

% Method table

Objects of your classes (especially application instances) receive lots of messages
regardless of whether or not you want your class to deal with those messages. Your
class’s method table tells the Class Manager which messages your class intercepts.

CHAPTER 6 / A SIMPLE APPLICATION (EMPTY APPLICATION) 105

This code sample is from Empty Application’s method table file (METHODS.TBL):

#ifndef CLSMGR_INCLUDED
#include <clsmgr.h>
#endif

MSG_INFO clsEmptyAppMethods [] = {
#ifdef DEBUG
msgDestroy, “EmptyAppDestroy", objCallAncestorAfter,
#endif
0
}i

CLASS INFO classInfol] = {
"clsEmptyAppTable", clsEmptyAppMethods, O,
0

}i
This basically says “If an instance of cIsEmptyApp receives msgDestroy, call
EmptyAppDestroy(), then pass the message to clsEmptyApp’s ancestor.”

The link between the functions in a method table and a particular class is estab-
lished by one of the msgNew arguments when you create the class (new.cls.pMsg).
This is the name you associate with the class’s MSG_INFO array in the CLASS_INFO
array; in this example, the pMsg is clsEmptyAppTable. This code sample is from

CIsEmptyApplnit() in EMPTYAPPC:

// Install the Empty App class as a descendant of clsApp.
//
ObjCallWarn (msgNewDefaults, clsAppMgr, &new);

new.object.uid = clsEmptyApp;
new.cls.pMsg = clsEmptyAppTable;
new.cls.ancestor = clsApp;

’» msgDestroy

The names of most messages identify the class that defined them: for example,
msgAppOpen is defined by clsApp. Messages defined by the Class Manager itself
are the exception to this convention. msgDestroy is defined by the Class Manager
in PENPOINT\SDK\INC\CLSMGR H; this is why Empty Application’s METHODS.TBL
#includes this header file. The Class Manager responds to msgDestroy by
destroying the object that received msgDestroy.

W Message handler

The message handler (also known as a method) is just a C routine you write that
does something in response to the message. Empty Application’s message handler
for msgDestroy is EmptyAppDestroy(), which just prints a string to the debugger
stream.

The name you give the message handler must match the name you specified in the

method table (EmptyAppDestroy()).

Message handler

1/ APP WRITING GUIDE

The Class Manager actually
turns around and sends the
object another message,

msegFree, to free the object.

106 PENPOINT APPLICATION WRITING GUIDE
Part 1 / Application Writing Guide
% Parameters
The parameters that the Class Manager passes to a message handler are:
msg The message received by the instance.
self The UID of the instance that received the message.
pArgs The message arguments passed along with the message by the sender
of the message. ’
ctx A context that helps the Class Manager keep track of the class in the
instance’s hierarchy that is currently processing the message.
pData A pointer to the instance data, information specific to the instance
whose format is defined by the class.

Here’s the definition from CLSMGR.H:

// Definition of a pointer to a method.
typedef STATUS (CDECL * P_MSG HANDLER) (
MESSAGE msgq,

OBJECT self,
P_ARGS pPArgs,
CONTEXT ctx,

P_IDATA pData

)i
You never call your message handlers, the Class Manager does, and always with the
same set of parameters. The PenPoint Method Table Compiler generates a header
file containing function prototypes for all the message handlers specified in the
message table; you can guard against accidentally leaving out a parameter by
including these files in your class implementation C files:

#ifndef APP_INCLUDED

#include <a§p.h> // for application messages (and clsmgr.h)
#endif

#ifndef DEBUG_INCLUDED

#include <debug.h> // for debugging statements.

#endif

$ifndef APPMGR INCLUDED
#include <appmgr.h> // for AppMgr startup stuff
#endif

#ifndef INTL INCLUDED
#include <intl.h> // for international routines
#endif

#include <methods.h> // method function prototypes generated by MT
#include <string.h> // for strcpy().

MsgHandler() is a macro that expands into the correct definition of a pointer to a
message handler. It saves you typing all these parameters.
/**
EmptyAppDestroy

Respond to msgDestroy by printing a simple message if in DEBUG mode.
**/

MsgHandler (EmptyAppDestroy)
{

CHAPTER 6 / A SIMPLE APPLICATION (EMPTY APPLICATION)

% Parameters in EmptyAppDestroy()

It turns out that Empty Application’s EmptyAppDestroy() routine doesn’t need
most of the parameters. The informative string prints out the UID of self (the
Empty Application document that received the message) and doesn't use the rest of
the parameters.

#ifdef DEBUG

Debugf (U_L("EmptyApp: app instance %p about to die!"), self);

#endif
We aren’t interested in the msg, since the Class Manager should only call this func-
tion with msgDestroy. clsEmptyApp has no instance data, so we don't need pData.
(Remember, we specified that class.size is 0 when we created cIsEmptyApp.)
Although we don’t need these parameters, there is no way to tell the Class Manager
not to send them.

The C compiler will warn about unused parameters in functions. Since many mes-
sage handlers won’t use all their parameters, CLSMGR.H defines a fragment of code,
MsgHandlerParametersNoWarning, which mentions each parameter. You can
stick this in your message handler at any point.

MsgHandlerParametersNoWarning; // suppress compiler warnings
} /* EmptyAppDestroy */

Status return value

Message handlers are supposed to return a status value. This is important both to
indicate to the sender of the message that the message was handled successfully, and
to control how the Class Manager passes the message up the class ancestry chain.
Empty Application’s method table directed the Class Manager to pass msgDestroy
to cIsEmptyApp’s ancestor after calling Empty Application’s handler:

msgDestroy, "EmptyAppDestroy",objCallAncestorAfter,

If EmptyAppDestroy() were to return an error status value, the Class Manager
would not call the ancestor, and the normal result of sending msgDestroy would be
pre-empted (the application object would not go away). Sometimes this is what you
want, but not in this case, so we return stsOK.

// The Class Manager will pass the message onto the ancestor
// if we return a non-error status value.
return stsOK;

Message handlers are private

Although message handlers are just regular C functions, you normally do 7or want
other code to call your message handlers. One of the goals of object-oriented pro-
gramming is to hide the implementation of functionality from clients of that func-
tionality. Clients should communicate with your objects by sending them messages,
not by calling your functions. That way you can change the names and implemen-
tation of a message handler without affecting clients of your API.

Message handler

107

1/ APP WRITING GUIDE

108 PENPOINT APPLICATION WRITING GUIDE
Part 1 / Application Writing Guide

p» Using debugger stream output
There are two main ways to debug programs in PenPoint:
¢ Send data to the debugger stream.
¢ Use the PenPoint source-level debugger.

Additionally, you can use the PenPoint mini-debugger, which is part of PenPoint,
but is most useful when debugging kernel and device-interface code.

Note that you can’t use debugging tools designed to run under DOS because these
packages require your executable file to be running under DOS.

This section discusses sending data to the debugger stream. For a complete tutorial
on how to use the PenPoint source-level debugger (DB) and mini-debugger (mini-
DB), see the part on debugging in PenPoint Development Tools.

¥ The debugger stream

You can send data to the debugger stream with Debugf() and DPrintf() statements
in your code. This is much like debugging a DOS application by adding printf()

statements to the code.

EMPTYAPPC uses the system debugging output function Debugf() to print strings
to the debug stream (Empty Application doesn’t use its PenPoint windows to dis-
play anything).

Debugf() is much like the standard C function printf(). The %p formatting code in
the format string means “print this out as a 32-bit hexadecimal pointer.” Because
UIDs such as self are 32 bits, this is a quick and dirty way to print a UID value. The
Class <ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>