

On to IMAGE.

I purposely left out any information on IMAGE except for the opens and closes
because there isn't as easy a flow as VIEW has. The IMAGE performed paragraphs
will do a wealth of processing for the programmer as long as a few ground rules are
understood on how the paragraphs work.

First, all calls to the IMAGE routines will need at least the data base name.
Most will need the data set name. These should always be put in to insure that the
performed paragraphs are initialized before each call. All access of the data base which
will return data (DBGET"s) will need to have a MOVE statement immediately after.
Again, the performed paragraphs are generic and, as such, will return the data in a
field called DATA-BUFFER. I think you will be able to see how all of this ties
together over the next examples. One thing to remember, once the above simple rules
are understood, you will be able to access any kind of data without knowing a lot about
IMAGE (Well, that's not entirely true because the only way to understand what
happens in a data base is to understand IMAGE, but, a new user can learn while
doing).

The first example that will be shown is a simple inquiry to a manual master.
The data set that will be accessed is VENDOR-MASTER. The copy member that
defines the vendor master data set contains a line in the copy member:

01 VENDOR-DATA-SET PIC X(16) VALUE
"VENDOR-MASTER;".

To access this data set the program needs the following information:

1. the name of the data base
2. the name of the data set
3. the argument value (in this case the vendor number which is the key)

So the code will look like this:

move apdb-data-base to data-base
move vendor-data-set to data-set
move ap001-vendor-number to argument
perform image-calculated

The above code will either (1) successfully retrieve the vendor master recdrd
from the data base or (2) fail in finding the record with the value stored in the field
ap001-vendor-number.

Simplified IMAGE and VIEW Calls Paper # 3206 Page 9

The next 2 lines will check out the value of the result of the call to DBGET
through an 88 level assigned to IMAGE-CONDITION-WORD:

if image-no-errors
move data-buffer to vendor-record
else ...

The above code will check to see if the record was found. If it was found, the
initial data would be placed in the field DATA-BUFFER. This is another generic field
used in the processing the DBGET.

As you will se in the follwoing examples image-calculated is a powerful
paragraph. It will call DBINFO to find out what kind of data set you are trying to
access, then, if the data set is an automatic or manual master, it will call DBGET.
However, if the data set is a detail, it will first call DBFIND then call DBGET.

The next example in the first program is to add a transaction to the data base.
This is accomplished by performing first a data base lock then a put to the data base
then a data base unlock. The only reason I chose a data base lock was for quick clarity.
I would normally have chosen a data set lock for this kind of maintenance. The code
that is required is:

move apdb-data-base to data-base
perform image-base-lock

move apdb-data-base to data-base
move vendor-data-set to data-set
move vendor-record to data-buffer
perform image-put

move apdb-data-base to data-base

perform image-unlock

The above example will first call DBLOCK with an unconditional lock. There
is a field that is initially set to "U" to set up the unconditional lock. If you would rather
have conditional locking, set LOCKING-TYPE to spaces. It will then set up the data
set and move the data into the generic DATA-BUFFER for the call to DBPUT.
Finally, it will release the data base lock by calling DBUNLOCK.

The update routine is similar to the add routine in that the same exact code is
used except the perform image-put is replaced with perform image-update. The

Simplified IMAGE and VIEW Calls Paper # 3206 Page 10

update paragraph will call DBUPDATE with the data buffer containing all the changed
data. Please be aware that the routine will not succeed if the user attempts to change a
critical item (sort or search item).

The delete routine is similar to both the add and update. In this routine the user
only needs to perform image-delete. This routine does not need the data buffer since
no data is being manipulated.

To summarize all maintenance to the data base (adds, checnges, deletes and
inquires):

1. Give the name of the data base to data-base

2. Give the name of the data set to data-set

3. If detail data set, give the search item name to search-item

4. Give the argument value to either argument or argument-9999

5. The result data will be palced in the field data-buffer

6. Move the result data to your own data record layout

Now that we have laid out accessing a record in the data base, let's expand and
get multiple records. We do this by either reading serially through a data set or by

reading forward or backward on a chain.

There is one performed paragraph that will allow the user to read serially
through a data set. The code to read a data set serially is:

move apdb-data-base to data-base
move vendor-data-set to data-set

perform image-serial-read

if image-no-errors
move data-buffer to vendor-record

This small piece of code will probably be in a performed looping paragraph.

The data set will be serially read through until the end of data set happens. Then the
image condition word will be set to 11.

Simplified IMAGE and VIEW Calls Paper # 3206 Page 11

On the other hand, let's say that you have already performed image-calculated
on a detail data set and now wish to read the next record on the chain. To do this:

move apdb-data-base to data-base
move detail-set-name to data-set

perform image-get-next

The three lines of code will read the next entry in the chain. The converse of
this would be to perform image-get-previous. Either perform will read along the
chain. This way the user can read multiple records and search for data with just a few
lines of code.

The rest of the performed paragraphs will take care of other tasks such as
IMAGE logging, rewinding a data set, directed and primary gets and re-reading
locations.

To rewind a data set (this is used to insure that the program always starts a
serial read at the first record in the data set):

move apdb-data-base to data-base
move vendor-data-set to data-set

perform image-rewind

The data set will now begin at the first record. This routine will call DBCLOSE
with mode 3.

To re-read the same location (this is used mainly when mass deletes are done to
a manual master data set to get rid of migrating secondaries):

move apdb-data-base to data-base
move vendor-data-set to data-set

perform image-re-read

This will return an error 17 (no entry) if there is no record at the location.

Simplified IMAGE and VIEW Calls Paper # 3206 Page 12

To begin/end IMAGE logging:

move apdb-data-base to data-base
move "This is the start of logging" to image-text

perform image-begin-log
do something

move apdb-data-base to data-base
move "This is the ena of logging" to image-text

perform image-end-log

Now IMAGE will have logical transactions in the data base.

In conclusion:

I hope this short paper will help out users, especially new users, who are unsure
of IMAGE and VIEW. Granted, not everything that you can do is in this copy library,
but, given the time, many other functions can be placed in the copy library to allow
many different accesses and changes to the data flow of your programs. I tried to give
reasonable names to the performed paragraphs so that not only could someone (myself
included) could look at the programs months or years from now and still understand
what was going on. I have always felt that the clearer the names, the easier to follow. I
think that performing a paragraph names image-get-mext is clearer than calling
DBGET in mode 5.

Simplified IMAGE and VIEW Calls Paper # 3206 Page 13

i

ap§ cobol 8

flow 1 lsu:‘;wd To stop

Worryipg
apd love The Domb

Pobert 0. Karlip
Korlips' Korper
1626 Uap [roord ace.
1. frollywsood co.
01605

(815) 982-9331

ANS COBOL 85 or How I Learned to
Stop Worrying and Love The Bomb 3207-1 Robert A. Karlin

INTRODUCTION

In May of 1959, the leading suppliers of computer hardware met with the
Department of Defense for the Conference on Data Systems Languages, CODASYL.
Charles Phillips, from the Department of Defense, informed the representatives of
IBM, Burroughs, Honeywell, General Electric, National Cash Register, Philco,
Sperry Rand, RCA and Sylvania that the Pentagon wanted a uniform business
programming language, and wanted it as soon as it could get it.

The conferees went to work, and by mid-autumn had developed the basis for a
new language, called Common Business Oriented Language, or COBOL. But even
before the designers could present the language to the full committee, another group of
committee members declared the project dead, and endorsed an entirely different
language developed by Honeywell, called FACT (Fully Automated Compiling
Technique). In fact, Charles Phillips, who now chaired the executive committee of
CODASYL, one day received a heavy crate. Upon opening it, he found a small
marble tablet with a recumbent lamb carved at the top. Chiseled into the marble was
the single word "COBOL". There was no epitaph.

Premature reports of the death of COBOL have since abounded. From RPG, to
PL/1, to PASCAL, to BASIC, to 4GL, to SQL and other "user friendly" report writers
and database update packages, to dBASE, to C, the list goes on and on. And yet
COBOL still survives, and is the most commonly used language for today's business
community. What is it about the language that seems to attract so many people?

First, and probably most important, many programs are written in COBOL
precisely because many programs have already been written in COBOL. There is a
wealth of experience to draw on, and there is a certain safety in going where everyone
has gone before.

Second, COBOL seems to have a very shallow learning curve. Programmers
become prolific in COBOL faster than in most other languages. This is partly because
of COBOL's strengths, but is also in part because of COBOL's weaknesses. Many
errors that plague other languages are impossible in COBOL, because of the lack of
such features as implicit variable definition, local variables and parametric procedures.

Third, there is a large pool of trained COBOL programmers available. And, in
addition, most of these programmers are also trained in modern development
techniques, such as structured design and analysis, data base design and

ANS COBOL 85 or How I Learned to
Stop Worrying and Love The Bomb 3207-2 Robert A. Karlin

implementation and user interaction tools and techniques. This is not always true of
programmers trained only in Pascal or C.

And, finally, COBOL is an evolving language. Since the initial COBOL
specifications were published in April of 1960, there have been three major language
revisions, the first in 1968, the second in 1974, and the third in 1985. Each revision
has added strength and power to the language. The COBOL committee of the
American National Standards Institute (ANSI) is presently working on the fourth
revision, to be published sometime in the mid-1990s.

In specific, the 1985 version of COBOL has provided an enormous wealth of new
features. This paper describes some of these features, along with examples of how
these features can provide software that is both easier to write and easier to maintain.
When possible, actual programs have been used to illustrate these features.

Unfortunately, some features described here have not yet been implemented on all
hardware platforms. If there is any doubt, check the specific reference manual for the
hardware platform that is being used.

ANS COBOL 85 or How I Learned to
Stop Worrying and Love The Bomb 3207-3 Robert A. Karlin

SCOPE TERMINATORS

One of the most useful additions made to COBOL by the 1985 ANSI standard was
the addition of Scope Terminators, that is, constructs that terminate the scope of a
COBOL verb. Consider the following:

COBOL-74

IF RECORD-IDENTIFIER EQUALS 'PAYMENT'
COMPUTE AMOUNT = RECORD-AMOUNT / 10
IF RECORD-TYPE = 'LOAN!'

COMPUTE AMOUNT = AMOUNT + RECORD-INTEREST
COMPUTE PAYMENT-DUE = (AMOUNT / 365) * DAYS-PAID
ELSE '

COMPUTE PAYMENT-DUE = (AMOUNT / 365) * DAYS-PAID.

Note that the computation for the PAYMENT-DUE field must be repeated twice.
Now, let's look at the same calculation in COBOL-85:

COBOL-85
IF RECORD-IDENTIFIER EQUALS 'PAYMENT'
COMPUTE AMOUNT = RECORD-AMOUNT / 10
IF RECORD-TYPE = 'LOAN'
COMPUTE AMOUNT = AMOUNT + RECORD- INTEREST
END-IF
COMPUTE PAYMENT-DUE = (AMOUNT / 365) * DAYS-PAID
END-IF.

We can now easily see that the PAYMENT-DUE calculation is the same regardless
of what the record type is, a fact that was not evident in the first instance. Also, since
the PAYMENT-DUE calculation is in only one place, any modifications to that
calculation are made only in that one place, preventing the possibility of missing the
second calculation. Note that the final END-IF is not required by most compilers.

Let's take a look at another example:

COBOL-74
IF RECORD-IDENTIFIER EQUALS 'PAYMENT'
COMPUTE AMOUNT = RECORD-AMOUNT / 10
IF RECORD-TYPE = 'LOAN'
COMPUTE AMOUNT = AMOUNT + RECORD-INTEREST.

ANS COBOL 85 or How I Learned to
Stop Worrying and Love The Bomb 3207-4 Robert A. Karlin

One of the most prevalent errors in COBOL coding is the misplaced period. In the
above example, a period after the first compute statement would change the calculation
in a certain number of cases. Because the particular scenario that produces an error in
result may only occur sporadically, it could easily go unnoticed for years. Using
scope terminators, however:

COBOL-85
IF RECORD-IDENTIFIER EQUALS 'PAYMENT'
COMPUTE AMOUNT = RECORD-AMOUNT / 10
IF RECORD-TYPE = 'LOAN'
COMPUTE AMOUNT = AMOUNT + RECORD-INTEREST
END-IF
END-IF.

If a period was accidentally placed after the first compute statement, the compiler
would reject the second END-IF statement as superfluous, signalling to the
programmer that an error of some sort had occurred.

It should be noted that all verbs that contain multiple operands may take a scope
terminator. Whereas an END-MOVE statement seems excessive, END-READ
statements that terminate an AT END condition on a read statement are extremely
useful. Other scope terminators that are useful for documentation purposes are the
END-COMPUTE, the END-SEARCH, and the END-[arithmetic]. We will discuss
two other scope terminators, the END-PERFORM and the END-EVALUATE, later.

ANS COBOL 85 or How I Learned to
Stop Worrying and Love The Bomb 3207-5 Robert A. Karlin

INLINE PERFORMS with TEST BEFORE and TEST AFTER

One of the more frustrating problems with COBOL has been the lack of effective
block control structures. Looping through code involved either separating the code
into a separate subroutine, or resorting to the excessive use of the GO TO verb. In
addition, there was no construct that allowed the programmer to always execute a loop
once, since the COBOL perform would always examine the conditional prior to
executing the performed subroutine. COBOL-85 has enhanced the PERFORM
statement to answer these two problems.

The first enhancement to the PERFORM statement allows the programmer to code
his subroutine directly within the perform statement. For example, in COBOL-74:

COBOL-74

PERFORM 0100-INITIALIZE-TABLE
VARYING TABLE-INDEX FROM 1 BY 1
UNTIL TABLE-INDEX IS GREATER THAN 10.

-

.

0100-INITIALIZE-TABLE.
MOVE TABLE-INDEX TO TABLE-LINE(TABLE-INDEX).

while in COBOL-85

COBOL-85
PERFORM VARYING TABLE-INDEX FROM 1 BY 1
UNTIL TABLE-INDEX IS GREATER THAN 10
MOVE TABLE-INDEX TO TABLE-LINE(TABLE-INDEX)
END-PERFORM.

There need not be anything within the PERFORM as in the following:

COBOL-85
PERFORM VARYING TABLE-INDEX FROM 1 BY 1
UNTIL TABLE-LINE(TABLE-INDEX) =
END- PERFORM.
ADD 1 TO TABLE-POLICIES(TABLE-INDEX).

LINE-OF-BUSINESS

In addition to the inline PERFORM, COBOL-85 includes the additional syntax
options WITH TEST BEFORE and WITH TEST AFTER. The default is TEST
BEFORE, to maintain compatibility with earlier releases.

ANS COBOL 85 or How I Learnedto .
Stop Worrying and Love The Bomb 3207-6 Robert A. Karlin

EVALUATE

Another traditional lack in COBOL has been a CASE structure, that is, a structure
that allows a programmer to select alternatives from some form of interrogatory list.
The GO TO DEPENDING ON allowed limited branching based on numeric selection,
but was insufficient in providing maintainable, easy to read code in any case that had
more than a half dozen selections. Extensive use of nested IFs could provide a
solution in many cases, but the resultant code could give strong men nightmares.

COBOL-85 has provided the EVALUATE verb, possibly the most powerful case
structure verb that exists in third generation procedural languages. In its simplest form
it would look like this (I have provided an IF statement in COBOL-74 to illustrate the
comparable syntax):

COBOL-74
IF RECORD-TYPE = 'A!
PERFORM PROCESS-ADD
ELSE
IF RECORD TYPE = 'C'
PERFORM PROCESS - CHANGE
ELSE
IF RECORD-TYPE = 'D!
PERFORM PROCESS-DELETE
ELSE
ADD 1 TO TYPE-ERROR
PERFORM PROCESS-ERROR.

COBOL-85
EVALUATE RECORD-TYPE
WHEN 'A'
PERFORM PROCESS - ADD
WHEN ‘C'
PERFORM PROCESS - CHANGE
WHEN 'D'
PERFORM PROCESS-DELETE
WHEN OTHER
ADD 1 TO TYPE-ERROR
PERFORM PROCESS-ERROR
END-EVALUATE.

ANS COBOL 85 or How I Learned to
Stop Worrying and Love The Bomb 3207-7 Robert A. Karlin

The WHEN clauses need not be in any order. Each WHEN is terminated either by
the next WHEN, the END-EVALUATE, or a period. WHEN OTHER is used to
select all conditions not explicitly specified. If there are no statements between WHEN
clauses, the EVALUATE falls through and executes the first executable statement it
finds within the EVALUATE. To process a null option, the CONTINUE place holder
must be used:

COBOL-85
EVALUATE RECORD-TYPE
WHEN ‘a’
WHEN 'A!
PERFORM PROCESS-ADD
WHEN 'c'
WHEN 'C'
PERFORM PROCESS-CHANGE
WHEN 'd'
WHEN 'D'
PERFORM PROCESS-DELETE
WHEN 'I'
CONTINUE
WHEN OTHER
ADD 1 TO TYPE-ERROR
PERFORM PROCESS-ERROR
END-EVALUATE.

The strength of the EVALUATE is in the fact that the conditional comparison may
be as complex as necessary. For example:

COBOL-85
EVALUATE (LOAN-AMOUNT * INTEREST) / 100
WHEN 0 THRU PRINCIPLE * .20
PERFORM NEW- LOAN
WHEN PRINCIPLE * .20 THRU PRINCIPLE * .80
CONTINUE
WHEN OTHER
PERFORM MATURE- LOAN
END-EVALUATE.

The EVALUATE command may also contain a second conditional comparison as
well:

ANS COBOL 85 or How I Learned to
Stop Worrying and Love The Bomb 3207-8 Robert A. Karlin

COBOIL-74
IF RECORD-TYPE = 'L' AND RECORD-ACTION = 'A'
PERFORM NEW-LOAN
ELSE
IF RECORD-TYPE = 'A' AND RECORD-ACTION = ‘A’
PERFORM NEW-ACCOUNT
ELSE
IF RECORD-TYPE = 'L' AND RECORD-ACTION = 'C’'
PERFORM CHANGE - LOAN
ELSE
IF RECORD-TYPE = 'A' AND RECORD-ACTION = 'C°'
PERFORM CHANGE - ACCOUNT
ELSE
IF RECORD-ACTION = 'D'
PERFORM DELETE-RECORD.

COBOL-85
EVALUATE RECORD-TYPE ALSO RECORD-ACTION
WHEN 'L' ALSO 'A'
PERFORM NEW-LOAN
WHEN 'A' ALSO 'A!
PERFORM NEW- ACCOUNT
WHEN 'L' ALSO 'C'
PERFORM CHANGE - LOAN
WHEN 'A' ALSO 'C!'
PERFORM CHANGE - ACCOUNT
WHEN ANY ALSO 'D'
PERFORM DELETE-RECORD
END - EVALUATE.

And the EVALUATE command may take a completely generic conditional, that is,
a construct that can choose from among many diverse and posibly unrelated choices:

COBOL-85
EVALUATE TRUE
««..WHEN HEADER-RECORD
PERFORM LAST-RECORD
WHEN PRINCIPLE = 0
PERFORM PAID-OFF-LOAN
WHEN PRINCIPLE > INTEREST
PERFORM MATURE-LOAN
WHEN PRINCIPLE NOT > INTEREST
PERFORM YOUNG-LOAN
END-EVALUATE.

ANS COBOL 85 or How I Learned to
Stop Worrying and Love The Bomb 32079 Robert A. Karlin

Note that the EVALUATE command processes the conditional statements in the
order that they are expressed. In the above example, when PRINCIPLE equals zero,
the second condition will be executed, and then the EVALUATE verb is exited, even
though the last condition may also seem to apply. It should be noted that FALSE is
also a valid generic conditional for the EVALUATE verb.

ANS COBOL 85 or How I Learned to
Stop Worrying and Love The Bomb ~ 3207-10 Robert A. Karlin

SETTING CONDITIONALS

One of the more interesting features of COBOL was the 88 level conditional data.
This feature allowed programmers to provide meaningful descriptions of codes and
switches in programs. Unfortunately, the programmer still needed to know what the
switch setting and the switch name was in order to set the proper value. COBOL-85
provides a new method of setting 88 level conditionals using the SET verb.

01 SWITCHES.
05 END-OF-FILE-SWITCH PIC X VALUE 'N'.
88 END-OF-FILE VALUE 'Y°'.

COBOL-74
READ INPUT-FILE
AT END MOVE 'Y' TO END-OF-FILE-SWITCH.

COBOL-85
READ INPUT-FILE
AT END SET END-OF-FILE TO TRUE.

Note that not only is the programmer insulated from the value of the switch itself,
but the switch is being set with the same name that it will be interrogated with later. If
there were multiple values coded for an 88 level, the COBOL compiler will choose the
first VALUE to move to the switch:

01 SWITCHES.

05 RECORD-TYPE-FLAG PIC X.
88 DEPOSIT VALUE 'D'.
88 LOAN PAYMENT VALUE 'L°'.
88 WITHDRAWAL VALUE 'W'.
88 MONEY-IN VALUE 'D' 'L'.
88 MONEY-OUT VALUE 'W'.
COROL-85

SET MONEY-IN TO TRUE.

In the above example, RECORD-TYPE-FLAG would be set to ‘D', since that was
the first value in the value fist. Unfortunately there is no way to SET an 88 level to
FALSE, since the compiler would not know which value to chose.

ANS COBOL 85 or How I Learned to
Stop Worrying and Love The Bomb 3207-11 Robert A. Karlin

INITIALIZATIONS

COBOL-85 has provided a number of interesting features to facilitate some
common programming chores. One of the most useful is the INITIALIZE verb. In its
simplest form, the INITIALIZE verb will set all subordinate levels for a data item to
zeroes or spaces, depending on the type of data being initialized. The INITIALIZE
statement will also initialize any class of data subordinate to a data item to any
characters that are appropriate to that data class.

01 DATA-STRUCTURE.

05 FILLER PIC X.
05 NUMERIC-ITEM PIC 9.
05 ALPHA-ITEM PIC X.
05 FILLER.
10 NUMERIC-EDITED-ITEM PIC 9.9.
COBOL,-85

INITIALIZE DATA-STRUCTURE.
Is equivalent to

COBOL-74

MOVE ZEROES TO NUMERIC-ITEM,
NUMERIC-EDITED- ITEM.

MOVE SPACES TO ALPHA-ITEM.

Note that the INITIALIZE verb does not move spaces to elemental FILLER items.

COBOL-85
INITIALIZE DATA-STRUCTURE REPLACING ALPHANUMERIC BY '*',

This construct will move asterisks to ALPHA-ITEM. NUMERIC-ITEM and
NUMERIC-EDITED-ITEM will be unchanged.

The INITIALIZE verb will work on all occurrences of table items declared with the
OCCURS clause, but will not affect items that are INDEX items, and items that
contain or are subordinate to a REDEFINES clause (though DATA-STRUCTURE
may contain a REDEFINES clause or be subordinate to one).

ANS COBOL 85 or How I Learned to
Stop Worrying and Love The Bomb 3207-12 Robert A. Karlin

MOVE ENHANCEMENTS

COBOL-85 finally corrects a deficiency that has plagued software designers since
the language was originally developed , that being the ability to dynamically access
part of an alphanumeric field. The STRING and UNSTRING commands, added by
the COBOL-74 standard, allowed the programmer to parse a field, if there were a
limited number of delimiters, if the number of fields were known, if the resulting field
sizes were known, if .., if ..., if COBOL-85 provides Reference Modification,
the ability to specify a starting byte position (relative to one) within a field, and the
number of bytes to move (i.e. [START]:[LENGTH])):

COBOL-85
01 ALPHAMERIC-LINE PIC X(80).
01 ALPHAMERIC-LINE-2 PIC X(40).

MOVE ALPHAMERIC-LINE (21:10) TO ALPHAMERIC-LINE-2.
MOVE ‘LITERAL' TO ALPHAMERIC-LINE (32:7).

The move takes place using the rules for moving simple alphanumeric fields. The
fields must be defined as USAGE DISPLAY (the COBOL default), and, if the sending
field is numeric or numeric edited, it is treated as if it had been redefined a s simple
alphanumeric field. The starting position and/or the length may be any arithmetic
expression.

COBOL-85
PERFORM VARYING POSITION FROM 1 BY 1 UNTIL POINTER > 10
MOVE ALPHAMERIC-LINE (POINTER:l1) TO
ALPHAMERIC-LINE-2 (POINTER * 2:1)
END- PERFORM
MOVE SPACES TO
ALPHAMERIC-LINE-2((POINTER * 2) + 1:32 - (POINTER * 2))

The last line translates as MOVE SPACES to the beginning of ALPHAMERIC-
LINE-2 plus 1 plus (POINTER times 2) bytes, for a length of 32 minus (POINTER
times 2).

Another enhancement to COBOL provides the DEEDITED move, that is, the
ability to move from a numeric edited field to a computational numeric field.

ANS COBOL 85 or How I Learned to
Stop Worrying and Love The Bomb 3207-13 Robert A. Karlin

COBOL-85

01 NUMERIC-EDITED PIC 22Z9.99CR.
01 NUMERIC-CALCULATED PIC S9(4)V99 COMP-3.

MOVE -35.42 TO NUMERIC-EDITED.
MOVE NUMERIC-EDITED TO NUMERIC-CALCULATED.

Note that NUMERIC-EDITED cannot be used on the right side of a computation
as in: NUMERIC-CALCULATED = NUMERIC-EDITED + 1.

ANS COBOL 85 or How I Learned to
Stop Worrying and Love The Bomb 3207-14 Robert A. Karlin

NESTED SOURCE PROGRAMS

Earlier in this text it was mentioned that COBOL does not provide the ability to use
parametric procedures. This is not entirely correct. COBOL-85 has provided a
method of local variable storage and parametric procedures: the nested program. A
nested program must occur at the end of the procedure division, and is treated very
much like an external called program. Like a main program (see Miscellaneous
Enhancements), a nested program does not need to contain all four divisions. A
program may optionally declare data or files that may be referenced by all programs
subordinate to it, or may declare data or files that can be shared by any program in the
run unit, that is, the aggregate code file produced by the compile and link.

COBOL-85
IDENTIFICATION DIVISION.
PROGRAM-ID. CALLER,
ENVIRONMENT DIVISION.
INPUT-OUTPUT SECTION.
FILE-CONTROL.
SELECT FILE-1 ASSIGN TO 22222.
SELECT FILE-2 ASSIGN TO YYYYY.
DATA DIVISION.
FILE SECTION.
FD FILE-1 IS GLOBAL.
01 RECORD-1.

03 FIELD-11 PIC x(10).
03 FIELD-12 PIC X(10).
FD FILE-2.
01 RECORD-2 IS GLOBAL.
03 FIELD 21 PIC X(10).

WORKING-STORAGE SECTION.

77 STATUS-FIELD PIC Xx(1).
88 GOOD VALUE 'Y'.
88 BAD VALUE 'N'.

PROCEDURE DIVISION.

0000-MAINLINE.
OPEN INPUT FILE-2

ANS COBOL 85 or How I Learned to
Stop Worrying and Love The Bomb 3207-15 Robert A. Karlin

OUTPUT FILE-1l.
READ FILE-2
AT END MOVE HIGH-VALUES TO RECORD-2.
PERFORM UNTIL RECORD-2 = HIGH-VALUES
CALL 'SUBPROGRAM-1' USING STATUS-FIELD
IF GOOD
CALL 'SUBPROGRAM-2' USING STATUS-FIELD
IF BAD
DISPLAY 'BAD RECORD ' RECORD-2
END-IF
END-IF
READ FILE-2
AT END MOVE HIGH-VALUES TO RECORD-2
END-READ
END- PERFORM.
CLOSE FILE-1
FILE-2.
IDENTIFICATION DIVISION.
PROGRAM-ID. SUBPROGRAM-1.
DATA DIVISION.
WORKING-STORAGE SECTION.

01 COUNT PIC S9(9) VALUE 0 EXTERNAL.
LINKAGE SECTION.
77 STATUS-FIELD PIC X(1).

88 GOOD VALUE 'Y'.

88 BAD VALUE 'N'.

PROCEDURE DIVISION USING STATUS-FIELD.
0000-MAINLINE.
IF RECORD-2(1:2) = 'OK!'
SET GOOD TO TRUE
ADD 1 TO COUNT
ELSE
SET BAD TO TRUE.
EXIT PROGRAM.
END PROGRAM SUBPROGRAM-1.
IDENTIFICATION DIVISION.
PROGRAM-ID. SUBPROGRAM-2.
DATA DIVISION.
WORKING- STORAGE SECTION.
01 COUNT PIC S9(9) VALUE 0 EXTERNAL.

ANS COBOL 85 or How I Learned to
Stop Worrying and Love The Bomb 3207-16 Robert A. Karlin

LINKAGE SECTION.

77 STATUS-FIELD PIC X(1).
88 GOOD VALUE 'Y'.
88 BAD VALUE 'N'.

PROCEDURE DIVISION USING STATUS-FIELD.
0000-MAINLINE.

MOVE FIELD-21 TO FIELD-11.

MOVE COUNT TO FIELD-12,

WRITE FILE-1.

SET STATUS-FIELD TO GOOD.

EXIT PROGRAM.

END PROGRAM SUBPROGRAM-2.

END PROGRAM CALLER.

The GLOBAL keyword allows all subordinate programs to reference the file
and/or data item that contains it, as well as all data items subordinate to the GLOBAL
item. The EXTERNAL keyword defines a data area that is common to all programs
that include the definition. Note that if there are subordinate items to the EXTERNAL
item, they must be defined exactly the same in all referenced cases, but the data area
may be subsequently redefined.

A nested program may also include the keywords COMMON and INITIAL on the
PROGRAM-ID line. The COMMON keyword specifies that the program may be
called by any program in the run unit. The INITIAL specifies that all items are to be
reset to their initial state, that is, to either the values specified in the VALUE clauses,
or to an undefined state if there is no VALUE clause specified.

COBOL-85
IDENTIFICATION DIVISION.
PROGRAM-ID. SUBPROGRAM-3 IS COMMON PROGRAM.

COBOL,-85
IDENTIFICATION DIVISION.
PROGRAM-ID. SUBPROGRAM-4 IS INITIAL PROGRAM.

COBOL-85
IDENTIFICATION DIVISION
PROGRAM-ID. SUBPROGRAM-4 IS INITIAL COMMON PROGRAM.

Note aiso that multiple COBOL-85 programs may follow one another in a
compilation stream. Each program is terminated by an END PROGRAM statement, or
by the termination of the input stream.

ANS COBOL 85 or How I Learned to
Stop Worrying and Love The Bomb 3207-17 Robert A. Karlin

MISCELLANEOUS ENHANCEMENTS

COBOL-85 has provided a number of minor enhancements that are useful to know
about. One of these is enhancement to the CALL verb to allow data to be passed by
value instead of by reference.

COBOL,-85

01 FIELD-1 PIC X VALUE ‘'A'.
01 FIELD-2 PIC X VALUE 'B'.
01 FIELD-3 PIC X VALUE 'C'.

CALL 'SUBPROG' USING BY REFERENCE FIELD-1
FIELD-2
BY CONTEXT FIELD-3.

Another enhancement included in COBOL-85 is the implied FILLER statement.

COBOL-74
01 FIELDS.
03 FILLER PIC X.
03 FIELD-1 PIC XX.
03 FILLER REDEFINES FIELD-1.
05 FILLER ' PIC X.
05 FIELD-12 PIC X.
COBOL-85
01 FIELDS.
03 PIC X.
03 FIELD-1 PIC XX.
03 REDEFINES FIELD-1.
05 PIC X.
05 FIELD-12 PIC X.

And yet another enhancement found in COBOL-85 is the reduction in the minimum
program. The following illustrates the minimum compilable program.

COBOL-74

IDENTIFICATION DIVISION.
PROGRAM-ID. COBOL74.
ENVIRONMENT DIVISION.

ANS COBOL 85 or How I Learned to
Stop Worrying and Love The Bomb 3207-18 Robert A. Karlin

DATA DIVISION.
PROCEDURE DIVISION.
STOP RUN.

COBOL-85
IDENTIFICATION DIVISION.
PROGRAM-ID. COBOL-85.

The above also illustrates a fourth enhancement to COBOL-85. The compiler will
automatically generate a program exit after the last line of the program if the program
falls through it. The compiler will also automatically close all open files when the
program is exited.

COBOL-85 provides another arithmetic operator, **, for exponentiation. 3 ** 2
will result in three squared, or 9. The exponent may be fractional, 4 ** .5 will result
in the square root of 4, resulting in 2. The exponentiation operator may appear
anywhere that any other arithmetic operator may occur.

COBOL-85 allows fields that contain OCCURS clauses to be initialized using a

VALUE clause. This would be equivalent to coding each entry separately with a
VALUE clause.

COBOL-74
01 FIELDS.
05 FIELD-A.
10 FILLER PIC 9 VALUE 0.
10 FILLER PIC 9 VALUE 0.
10 FILLER PIC 9 VALUE 0.
05 FILLER REDEFINES FIELD-A.
10 FIELD-1 PIC 9 OCCURS 3
TIMES.
COBOL-85
01 FIELDS.

05 FIELD-1 PIC 9 OCCURS 3 TIMES VALUE O.

COBOL-85 allows the substitution of BINARY and PACKED-DECIMAL for
COMP and COMP-3, respectively.

In COBOL-85, the CONTINUE statement acts as a NO OPERATION and may

ANS COBOL 85 or How I Learned to
Stop Worrying and Love The Bomb 3207-19 Robert A. Karlin

occur anywhere a COBOL-85 procedure division statement may occur.

COBOL-85 enhances the INSPECT verb, adding the INSPECT CONVERTING
option:

COBOL-85
INSPECT FIELD-A CONVERTING 'ABC' TO 'DEF'.

COBOL will examine each byte of FIELD-A, comparing it to each byte of the
string "ABC". If a match is found, COBOL will replace it with the corresponding byte
from the string 'DEF'. If FIELD-A contained 'CAT", the above would convert it to
‘FDT'.

COBOL-85 provides two new class tests, ALHABETIC-UPPER and
ALPHABETIC-LOWER. :

COBOL -85
IF FIELD-A IS ALPHABETIC-LOWER
PERFORM UPSHIFT-FIELD-A.

COBOL-85 allows the programmer to define a SYMBOLIC to identify a particular
character in an alphabet.

COBOL-85
SPECIAL NAMES.
SYMBOLIC CHARACTER BEL IS 07.

MOVE BEL TO FIELD-A.
DISPLAY BEL 'WAKE UP'.

COBOL-85 allows the programmer to specify his own class test for use in
conditionals. When used in a conditional phrase, COBOL-85 checks each character in
the compared field to determine if it is part of the class. In the following example, if
all characters in FIELD-A were A or B or C or Q or Z, the conditional would be true
and the MOVE would be executed.

COBOL,-85
SPECIAL NAMES.
CLASS A-THRU-C-AND-QZ IS 'A' THRU 'C' 'Q' 'Z'.

ANS COBOL 85 or How I Learnedto
Stop Worrying and Love The Bomb 3207-20 Robert A. Karlin

IF FIELD-A IS A-THRU-C-AND-QZ
MOVE FIELD-1 TO FIELD-2.

COBOL-85 allows subscripted and indexed tables to be referenced by an offset to
a current subscript or index.

COBOL-85
MOVE TABLE-ENTRY (INDICE + 1) TO TABLE-ENTRY (SUB - 3).

And, finally, COBOL-85 elimitates the REMARKS section in the
IDENTIFICATION division, and the NOTE paragraph in the PROCEDURE division.
These are considered replaced by the COBOL-74 '*' (comment) in column 7
construct.

ANS COBOL 85 or How I Learned to
Stop Worrying and Love The Bomb 3207-21 Robert A. Karlin

BOMBS AWAY

COBOL has changed greatly since its conception in 1960. And COBOL has
grown to be the most widely used business programming language today. Much of
the credit for this goes to the original design team, who created a language that was
easy to understand and simple to use. But credit must also be given to the American
National Standards Institute Technical Committee for their effort in keeping COBOL a
living, growing product that is responsive to the needs of current users. The next
version of COBOL. will probably be available by the middie of this decade. Under
discussion are enhancements to provide Object Oriented extentions, network related
structures, and asynchronous task support. Copies of the current standard may be
obtained from: '

American National Standards Committee
1430 Broadway
New York, NY. 10018

Ask for ANSI Standard X3.23-1985. There will be a nominal publication charge.
Any comments about COBOL-85, or enhancement suggestions should be addressed to
TECHNICAL COMMITTEE X3J4 (COBOL) at the above address.

ANS COBOL 85 or How I Learned to
Stop Worrying and Love The Bomb 3207-22 Robert A. Karlin

Paper #3208
Integrating the OMNIDEX IMS Into Your System Applications

Tim Klooster
DYNAMIC INFORMATION SYSTEMS CORPORATION
§733 Central Avenue
Boulder, Colorado 80301
(303) 444-4000

This paper will present examples of applications using the OMNIDEX Information Management
System (IMS). These examples represent actual systems or designs that have incorporated
features of the OMNIDEX IMS and put into practice the concepts discussed.

Thepurposeistopmentthweexamplsinawaydntwillhelpthemdetd\inkofwaysto
incotporate similar implementations into his own applications.

The examples presented illustrate database design with the OMNIDEX IMS, keywording,
IMSAM discrete mode, and Document Management.

Thispapetprmmwlhatd;ereadctlmsabasiclmowledgeoftheconceptsusedbytheOMNIDEX
IMS.

EXAMPLE 1: KEYWORD RETRIEVAL
Problem Tracking System:

This example takes advantage of the power of OMNIDEX keywording. Keywording simply refers
to the ability of OMNIDEX to parse or break down a field by its special characters and give
retrieval access to the field by any word within the field. The power of this feature becomes
especially apparent with a large descriptive ot textual field where many keywords exist within the
field.

Another feature utilized in this example is data item grouping. Grouping in OMNIDEX is a
feature where two o mote fields are logically treated as a single entity. This allows multiple
fields to be searched simultaneously for a value or values.

This feature is set up during the OMNIDEX installation simply by appending the grouping option
to the field name. When searching for a value in the field, OMNIDEX recognizes that it is a
grouped field and automatically searches across all fields in the group for the same value.

The requirements for this application included the ability to catalog and retrieve data associated
with all customer accounts.

Additionally, storage of all problem situations and the resolutions for each account was required.
Thsesiumﬁmscouldbetefermcedw}wnasimﬂarptd)lemwasenooummd The database
would setve as a “knowledge base* for solving problems.

3208-1
Integrating the OMNIDEX IMS Into Your System Applications

Since the customer service department assists customers as they call in, it was necessary for them
to be able to access the data while the customer remained on the phone. This required their data
processing department to create a system that would give the users a fast and flexible environment
for their data retrievals.

The design that was implemented included a customer master dataset with associated problem
description and resolution desctiption detail datasets. The customer master provided keyword
lookups by customer name, company, title, city, state, zip, and phone. The customer name, title,
company name, and company-alias fields were grouped together so that the user could simply
enter any of the information at a single prompt and retrieve the master data immediately.

The problem detail dataset provided keyword access on the comments and error description fields.
The users can access this information by an error code or by entering any word in the description
or comments fields. The resolution detail dataset provided access by any word in the description
or comments fields. The customer service department can now provide assistance to their
customers while the customer is on the phone.

This system also allowed the company to catalog and isolate problem areas with their service.
Daily and monthly summary reports are generated showing areas needing attention. Forecasting
of future problems is also possible.

Keywording can be a benefit to any application wheze flexible retricvals are required on data that
is textual in nature.

Other applications that can benefit from keywording include marketing, legal case tracking, and
medical chart tracking.

EXAMPLE 2 - DATABASE DESIGN
Sales Order Database

This example uses a sales order database designed in IMAGE to allow multiple path entry into the
primary datasets (see Figure 1-1). KSAM files were used to allow partial key lookups by product
name and customer name. Automatic master datasets wete created for access by sales date and
order number.

In the redesigned database model (see Figure 1-2), we see that OMNIDEX and IMSAM have been
incorpotated to create a much simpler database structure.

The KSAM files were replaced with OMNIDEX keys on product name and customer name. This
eliminates the worry of maintaining external KSAM files. If a sort is required on either of these
fields, IMSAM could be added.

The automatic master datasets, sales-dates and orders, have been replaced by OMNIDEX keys.
The inventory dataset can now become a manual master dataset physically as well as logically
with the multiple key capability of OMNIDEX.

We now have restored the natural IMAGE structure of a parent-child relationship (one record to
many) between the order header and order lines datasets.

This structure allows much easier retrievals across the datasets because we now have data
structures that are cotrectly represented in IMAGE.

3208-2
Integrating the OMNIDEX IMS Into Your System Applications

EXAMPLE 3 - DATABASE DESIGN
Franchise Management System

This example illustrates how OMNIDEX domains can allow a hierarchical tiered structure design
in an IMAGE database. Hietarchical databases traditionally facilitate a “top-down® style of data
retrieval much better than a network database like IMAGE.

Figure 2-1 shows the structures involved in a franchise management system. Each level has a one
to many relationship with the level below it. For example, there are multiple divisions within a
company and each company has multiple offices.

Network databases sch as IMAGE are designed for a two level or single master to many detail
dataset relationship. The master dataset represents a single entity with the detail data sets
representing multiple entities or events associated with the master dataset. Since IMAGE will not
allow levels below a detail dataset, we find our designs going horizontally instead of
“top-to-bottom"” as they logically are in real life.

Using OMNIDEX search item (SI) domains, we can simulate a hierarchical design inside of
IMAGE. A search item domain refers to indexing a detail dataset with its associated master
dataset. Figure 2-2 shows the IMAGE design of the structure outlined in Figure 2-1. Automatic
masters are used to allow for OMNIDEX SI domains to be placed around each detail dataset.
Generally, automatic master indexes are not required in IMAGE when OMNIDEX or IMSAM
indexes are present. Iuse them in this design to create an SI domain for each detail dataset.

The multifind function in OMNIDEX will allow us to easily cross SI domains for our retrievals
requiring multiple dataset access. These domains illustrate a “sawtooth” design which generally
favors the “top-down” type of retrievals that are difficult in IMAGE.

The retrieval outlined below illustrates how a “top-down” retrieval can be easily performed in
IMAGE using OMNIDEX SI domains. If we ask the question, “How many people under the age
of 21 are employed in the Colorado region?”, we are required to start at the companies level and
end up in the people level.

IMAGE retrieval without OMNIDEX:

The retrieval process would begin with a serial read of the companies dataset since state would not
be the most likely key. To find the associated divisions for each qualifying company, we would
do a chained read into the division detail set. We would continue by finding the chain head for
every office within each qualifying division and then read down the chain into the office dataset.
We would continue this process until we reached the people dataset, where program logic would
be required to select the age group while reading down the chain.

To satisfy this retrieval, we had to perform a serial read of a dataset, build record selection logic
into our program, and read all the records in each detail chain, whether we needed them ot not.

By retrieving records that we don’t need, through a serial or chained read, we incur an increase in
the time it will take to execute this retrieval. Building selection logic into a program also requires
programming time when developing this application. These requirements often preclude the
ability to perform ad-hoc reporting requests against our data.

3208-3
Integrating the OMNIDEX IMS Into Your System Applications

OMNIDEX retrieval:

To petform this retrieval using OMNIDEX, the multifind feature would be utilized.* The serial
read in IMAGE of the company dataset would be replaced with an ODXFIND intrinsic call to
qualify only the entries that we require. We then perform our “top-down” retrieval process using
multifind to cross the domains. This process requires only a call to ODXFIND to qualify the
entries in our target domain. When we reach the people domain, we can qualify the entries that
satisfy our age requirement.

An added performance benefit of this design is that multifind takes action only against the
OMNIDEX index sets. In most cases, this can result in a much faster qualification of the entries
compared to retrieving the records from the IMAGE datasets.

This action lends itself easily to an ad-hoc query environment as long as the number of
OMNIDEX IDs that are qualified and used as input to the multifind operation are kept at a
reasonable number. DISC recommends that this number be under a thousand.

Alternative design:

An alternative to using automatic master datasets and search item domains in the above design
would be to create stand-alone detail datasets for each level of the hierarchy. OMNIDEX detail
domains (DR) would be installed under detail datasets. OMNIDEX indexes would be placed on
the common fields between the detail datasets.

A new feature was added to OMNIDEX version 2.05/2.06 that allows any specified field to be
written to an ASCII file using the ODXTRANSFER intrinsic. The contents of this file is then
used as input into the ODXFIND intrinsic against the target dataset. The ODXTRANSFER call
uses the new mode +100 and allows you to specify the field you want to transfer in the “options”
parameter.

This feature allows multifind to cross detail domains whereas before you were limited to crossing
search item domains ot into one detail domain.

The advantage of this design is that it’s more simplistic and provides improvement in update
overhead over the design using automatic master datasets. The enhancement to ODXTRANSFER
allows the creation of a “relational-like” environment where linkages between files can be
dynamically created as needed instead of being pre-defined at design time. The files can be inside
the same database or in different databases. The only requirement is a common data item with
OMNIDEX installed on the target dataset.

The disadvantage of using stand-alone details and ODXTRANSFER is a possible increase in
processing time due to the disk activity of writing and reading the ASCII file that is used as the
link between the two datasets. Careful planning of the relationships between datasets when setting
up your design can help insure acceptable retrieval times.

*For a discussion of Multifind, refer to Page 2-78 of the OMNIDEX Administrators Guide

3208-4
Integrating the OMNIDEX IMS Into Your System Applications

EXAMPLE 4: IMSAM DISCRETE MODE
Statistical Reporting System

Discrete mode refers to taking action against the OMNIDEX and IMSAM indexes only. By
comparison, normal mode refers to action taken against both the OMNIDEX and IMSAM indexes
along with the IMAGE datasets.

IMSAM discrete mode can greatly benefit data retrieval access times since information can
generally be extracted from the IMSAM indexes much faster than the IMAGE datasets.
Additionally, IMSAM retutns the data sotted to your program.

Discrete mode requires that all required data is stored in the IMSAM index key. This is
accomplished using composite keys. Composite keys are a feature of IMSAM where all or parts
of multiple fields can be concatenated into one key. When the data is returned, it is sotted in the
order of the components of the composite key. Currently, you can have up to seven components
in an IMSAM composite key for a total of 128 bytes in length. IMSAM discrete mode is generally
30 - 100 times faster than normal mode.

This application called for the ability to store and access a very large amount of data for a period
of two to three years. IMSAM was chosen to provide multiple level sotting on the data.

Discrete mode retrievals were chosen to provide the performance required in the monthly
reporting cycle. The application began with a few million records and would grow up to ten
million in the next year.

A single stand-alone detail dataset was created for storage. (Note: A stand-alone b-tree is possible for
this application. A stand-alone detail set was chosen because updates were performed on a monthly
basis, requiring all the data to be present in either a flat file or data set to load into the IMSAM indexes.)

IMSAM composite keys were constructed based on the sort requirements and control breaks for
the monthly summary reports. All sales amounts and quantities were included at the end of the
key. '

Reporting the data utilized IMSAM discrete mode by calling DBIGET using mode 1300 to
position the pointer at the requested area of the b-tree. Subsequent DBIGETS with a mode 1090
are then used to read down the b-tree.

3208-5
Integrating the OMNIDEX IMS Into Your System Applications

A sample performance analysis of expected retricval times is as follows:

. IMSAM has a maximum tree block size of 4096 bytes.

2. One of the IMSAM composite keys has a length of 64 bytes.

3. Each disk drive access will yield a maximum 64 IMSAM keys.
(IMSAM block size | IMSAM keysize = number of keys per read)

4. The average number of records per month = 416,667.
(10 million total records / 24 months = records per month)

5. Most monthly reports will report the previous months sales and a comparison with
the same month in the previous year.

6. An average of 833,333 records will be read for each report. (416,667 x 2 =
833,333) - 2 months

7. The disk drive average access time per monthly report would be approximately 6.6
minutes.
The calculation is as follows:

- 833,333 / 64 (recs per block) = 13,021 I/O’s (rounded)
- add 8 I/O’s to position record pointers in the b-tree
(4 for previous year + 4 to reset at cutrent year)

- 13,029 I/O’s / 33 = 395 seconds ot 6.6 minutes
(33 = HP benchmark of the number of J/O’s per second for an Eagle disk drive)

This performance analysis shows that it is possible to have great petformance on a large number
of records in your dataset when using IMSAM discrete mode for the retrieval.

When setting up your IMSAM composite keys, use the following guidelines:

1. Your selection fields should be the leftmost fields in the composite key.
2. The order of the components should match the sort order of your report.

In the event that your selection order differs from your sort order, you should maintain the sort
order as your most important ctiteria. The selection fields can be spread out over the composite
key in some cases. For example, if you need to select on the first and forth components of your
key, you must insure that the second and third components are set to low values so they don’t
cause unwanted selections. You must also monitor those fields as you read down the b-tree. It
may be required that you periodically reposition your record pointer as these values change.

Other good applications for IMSAM discrete mode include any large historical application, an

online general ledger, or any ad-hoc requirements where all the required data can be stored in the
key.

3208-6
Integrating the OMNIDEX IMS Into Your System Applications

EXAMPLE 5: DOCUMENT MANAGEMENT
Correspondence Tracking System

Document management in OMNIDEX provides the ability to index any ASCII file. Each word in
the document can be indexed allowing for keyword retrieval anywhere in the document. The
DATADEX KEYWORD command must be used to load the documents into the index sets.
Datadex or any programming language can then be used for retrieving and displaying the
documents. The only design requirements for a document management system are an IMAGE
master dataset with fields to store an internal number for each document and the name of the file
that has been indexed. Retrievals are then performed against the OMNIDEX index sets and file
names are returned to the program. The ODXVIEW intrinsic is used to view the files online in
your programs. ODXVIEW allows for user input while viewing the document. The user is
allowed to scroll forward or backward in the file by lines or pages.

A large corporation needed to catalog internal and external correspondence and track the routing
of memos internally. Functionality included the ability to retrieve documents by the sender,
sendees, memo subject, and document keywords. The documents were scanned and loaded into
ASCII files on the HP. DATADEX was then used to load the keywords into a database.

The database included a master dataset with the following fields:

- document number (J2) KEY
- filename (X26)

- subject (X30)

- sender initials X4

- sendee initials (X4)

- memo-date ’32)

- comments (X30)

A memo routing detail dataset allowed for memos to be passed to other people with the senders
comments and tickler and due dates.

The master and detail sets were indexed together using a search item domain installation. Memos
could be retrieved by any master field or document keyword. A screen function key was set up to
list the cotresponding memo routing information. This detail set was linked to the master using
the document number search item. Document number was sorted by a send date field so that the
most recent routing would be displayed first. Viewing the actual memo is possible using the file
name from the master dataset as input into a call to the ODXVIEW intrinsic.

Utilizing a document management system like this allows instant access to any document without
having to search for paper copies or through documents archived to microfilm.

Other examples of document management systems include a source code cross-reference, online
reference manuals, and legal documents.

3208-7
Integrating the OMNIDEX IMS Into Your System Applications

SUMMARY

There are many places where an indexing system like the OMNIDEX IMS can be used in your
applications. Database design can be heavily influenced when OMNIDEX ot IMSAM are used.
Remember, you don’t have to change your database design to use the OMNIDEX IMS though! If
your existing database cannot be altered, you can still install OMNIDEX or IMSAM without
affecting your data.

The keywording power of OMNIDEX can be used in practically any application. IMSAM
ptovidwagxeatalwnmﬁvetosonkeyswhmyomcbairsmlmgorchainmnimemmeishigh.

Discrete mode retrievals in IMSAM can make complex reparting possible when before it was
considered impossible. Larger amounts of data can be stored and accessed online. When deciding
whether to use IMSAM discrete mode or not, it is highly beneficial to work through an analysis of
your disk ovethead in retrievals and updates. This analysis will provide you with a basis to
determine keysize, components of the keys, and tree block size.

You will also be able to predict the speed of your retrievals and which reports and queries are
feasible.

Document management also illustrates the power of relational keywording. The ability to retrieve
and maintain documents online can be of value in many applications.

Hopefully, I have presented an example or two that made you think of a new way that you can put
your new indexing system to work in your company. Getting information to your usets in a fast
and flexible way is becoming more and more important every day.

Good luck with your new applications!

3208-8
Integrating the OMNIDEX IMS Into Your System Applications

EXISTING DATA BASE

(N

ORDER-NO

by o)
CUSTOMER-NO CUSTOMER-NO
PRODUCT-NO
ORDER-NO

ORDER-HEADER INVENTORY ORDER-LINES CUST-NOTES

Figure 1-1

3208-9
Integrating the OMNIDEX IMS Into Your System Applications

REDESIGNED DATA BASE

PRODUCTS

PRODUCT-NO CUSTOMER=-NO CUSTOMER-NO
PRODUCT-NO
ORDER-NO

INVENTORY ORDER-LINES CUST-NOTES

OMNIDEX IMS
INDEXES

Figure 1-2

3208-10
Integrating the OMNIDEX IMS Into Your System Applications

Database Design

Figure 2-1

3208-11
Integrating the OMNIDEX IMS Into Your System Applications

Paper #:3209

The EH Safety Representative Information System on the Safety Performance
Measurement System is where you will find... Word Processing and Helps with a

V-PLUS!

Patricia Irene Loo
EG&G Idaho, Inc.
P.O. Box 1625
Idaho Falls, Idaho 83415-3405
(208) 526-6063

Introduction

What are some of the current environmental, safety, and health problems being found at
different DOE facilities? What are some of latest software products available for HP-3000
on-line applications? How can I meet my customer’s ever-changing requirements? These
and many other questions will be focused on within this review of the Environment, Safety,
and Health (EH) Safety Representative Information System (SRIS) located on the Safety
Performance Measurement System (SPMS). SPMS is a collection of automated
environmental, safety, and health information modules for reference by DOE and DOE
contractors. SPMS is operated by the Management Information Systems (MIS) Unit of the
System Safety Development Center at EG&G Idaho, Inc.

In the following sections an overview of SRIS, an on-line system designed for the HP-3000,
will be presented along with an analysis of design methods and software packages used to
develop the system.

What is the EH Safety Representative Information System (SRIS)?

2.1 General Overview of SRIS

If your job requires keeping updated on environmental, safety, or health findings
within DOE, SRIS and other modules on SPMS are invaluable tools for analysis.
SRIS was developed to disseminate safety representative reports across the DOE
community. Currently, safety representatives are located at the following locations:

The EH Safety Rep. Information System on SPMS is where you will find...
‘Word Processing and Helps witha V-PL U S!

3209-1

2.2

Idaho Falls, Idaho
Oak Ridge, Tennessee
Richland, Washington
Golden, Colorado
Aiken, South Carolina

QKb v

The EH Safety Representatives report directly to DOE Headquarters and perform
continual inspections at their respective locations. Following their inspection, the
safety representatives document their findings by entering them into the SRIS
database. These findings include any environmental, safety, or health problems.
When completed, the safety representative submits the report for review by the
appropriate operations office. According to DOE guidelines, the operations office
is given two full working days following the submittal of the safety representative’s
report to respond. After two full working days, the report is automatically released
to the DOE community for review.

Capabilities of SRIS

SRIS is a responsive system providing keyword search, report generation, on-line
data entry with a word processing environment, and personal computer (PC) data
interface capabilities. '

Searches can be performed to locate findings and responses on a variety of attributes
(e.g., site, organization code, occurrence date of finding, keyword search on
narrative text). After retrieving requested items the appropriate report (daily,
weekly, monthly, or special) can be generated.

Safety representatives may enter their reports using a PC application or on-line data
entry screens. This versatility allows users to select the software environment they
feel most comfortable with for data entry. The PC application allows data entry
using almost any familiar word processor and provides a window environment with
easily accessible help screens. The HP-3000 also offers a word-processing
environment and a help facility.

Access Restrictions
The Department of Energy (DOE) can be divided into three unique entities:
1. DOE contractors (e.g., EG&G Idaho, Inc., Westinghouse Idaho Nuclear

Company, Inc.) - Companies who have received ‘contracts from DOE to
perform designated tasks such as operate DOE-owned facilities.

The EH Safety Rep. Information System on SPMS is where you will find...
Word Processing and Helps witha V-PL U S!

3209-2

2. DOE Operations Offices (e.g., Idaho Operations, Richland Operations) -
These regional DOE offices perform contract administration and oversight.

3. DOE Headquarters - Located in Washington D.C., this is the parent office
of all DOE facilities.

SRIS is designed to allow only authorized DOE and contractor personnel to read,
write, and respond to certain reports.

Users searching for report items are limited by the following "reading restrictions":

Contractors may read all released' reports for their own facility.
Operations office personnel may read all submitted reports for their own
site and all released reports.

] DOE Headquarters personnel may read all released reports.

EH Safety Representatives (who enter findings) and contractors and operations office
personnel (who respond to findings from safety representatives) are limited by the
following "writing restrictions":

] Contractors may respond to daily, weekly, or monthly items that are related
to their own facility.
. Operations office personnel may respond to daily, weekly, or monthly

submitted reports that are related to their operations office.
U Safety representatives may add to or update any of their site’s daily, weekly,
or special reports until the reports are released.

System Requirements of SRIS

Safety Representatives are located at various DOE facilities throughout the United States and
enter daily, weekly, monthly, and special reports for DOE Headquarters review. This factor
accounted for the most comprehensive and difficult requirement of SRIS. That is, provide
a centralized, easily accessible, and timely reporting system. Due to the diversity of skills
among Safety Representatives, "user-friendliness” was also of prime consideration. To
provide an "easy to use” system several modes of data entry were developed. (Initially, time

Released reporis refer to all SPMS SRIS reports that have been "submitted” by the safety
representative for more than two full working days.

Submitted reports refer to all reports that have been completed by the safety representative.

The EH Safety Rep. Information System on SPMS is where you will find...
Word Processing and Helps witha V-PL U S!

3209-3

4.0

restraints also made it imperative that a system be prepared quickly with available expertise
and software. After initial development, enhancements and other modes of data entry were
designed). These included data entry screens on the HP-3000, PC data entry screens with
an "upload” facility to the HP-3000, and with the use of a "template”, a user may create a
file using almost any familiar word processor and then load the information to the HP-3000
database. For dissemination of reports, a centralized, easy to use, and fast means to retrieve
reports was required. Security restraints were also of primary consideration for both data
entry and retrieval.

Methods used to achieve requirements on the HP-3000

4.1

Data Entry Screens, Help Facility and Word Processing

To provide user-friendly data-entry screens on the HP-3000, HP’s VPLUS utility
was used for fast screen generation of data entry modules (see Figure 1 on the
following page as an example VPLUS screen). To improve "ease of use” in the
VPLUS data entry screens, software was reviewed to provide on-line helps. Of
primary importance, the help screen software needed to provide an easy method of
integration with existing VPLUS screen applications (since the majority of our data
entry applications use VPLUS). "AUTO HELP" by PROBUS accomplished this task
to best meet our needs. By pressing f6 the user can receive a general help
information on the current data entry screen. Also by placing a question mark (?)
in the field being questioned and pressing the numeric pad’s <ENTER> key, help
can be retrieved for the respective field. The help screen might appear as shown in
Figure 2 on the following page.

Due to the combined factors that VPLUS does not include any word processing
functionality and the extensive amount of narrative text that safety representatives
enter, research was also performed to find an efficient means for entering narrative.
It was determined that word processors with available "hooks" into an HP-3000
application are extremely rare products! Fortunately, however, one that met the
requirements of SRIS was found. Minisoft's MiniWord and Toolkit provided a
complete word processor for on-line applications. Commands are all performed
through assigned function keys and/or control key sequences. A template of allowed
functions was provided to each safety representative as a quick reference guide.
Figure 3 shows an example of how the word processor appears to the users.

The EH Safety Rep. Information System on SPMS is where you will find...
Word Processing and Helps witha V-PL U S!

3209-4

** ADD %% EH Safety Representative Report Input Screen

KhAkkkakkdt® REPORT KEY WANANAAAAhAN
Site Date Type Section Item org Facility Building
ID 08/09/90] ? 01 3003003 IF wecB

Discipline Code:
Priority:

Group Responsible: S8SDC
Keywords: SSDC SRIS WORD PROCESSING DATA ENTRY
References:

Title: SRIS DATA ENTRY AND WORD PROCESSING CAPABILITY

Note:
* k k kK * k& * & * * ¥ Kk & & @x * kK k kKRR XK TR R R KRR KK
* TAB - forward Screen HELP - £6
* <ghift> TAB - backwards Field HELP - "?" and numeric ENTER key
* * Kk k ok Kk Rk kX kN kN L B B R R R IR K K R R IR 2 RN

Enter data — Press f1 (ADD) when you are ready to add text.

» % % %

Figure 1. SRIS data entry screen.

Field : REPORT_SECTION
Section is a code for the desired section Auto Help
(or subtitle) of the report. Allowable 2.04 EG&G -0001
sections are as follows:
(c) COPYRIGHT 1989
Report Type Section Code Section Name ALL RIGHTS RESERVED
Daily (D) FIND Findings PROBUS
International
Weekly (W) ADM Administrative Inc.
MFWA Major Focus of
Weekly Activities
Wso Weekly Summary of
Observations
Monthly (M) ADM Administrative
Mso Monthly Summary of
Observations
Special (S) INTRO Introduction
FIND Findings

Figure 2. SRIS help screen.

The EH Safety Rep. Information System on SPMS is where you will find...
Word Processing and Helps witha V-PL U S!

3209-5

PG 0001 LINE 01 COL | ! ! ! ! ! | | |
]
1

eeeeTeceeTeeeeTeeeeTeeeeTeeeeTeeeeTeeeeTeceeecnesccccccnccnne Receooo ceccces
This is an example of the word processing capabilities for

the EH Safety Representative Information System. MiniWord by

MiniSoft, Inc. is a complete word processor with wordwrap,

spell check, blocking functions, and other various formatting

functions.

Figure 3. MiniWord word processor linked into VPLUS application.

4.2 Search and Retrieval

To meet the basic search and retrieval requirements for SRIS, in-house software
(HP's Image, a database management system, and Omnidex by Dynamic
Information Systems Corporation, a high-speed search indexing utility) and
previously written search routines were utilized to provide responsive and accurate
searches. Figure 4 shows an example of the search and retrieval capabilities within
SRIS:

The EH Safety Rep. Information System on SPMS is where you will find...
Word Processing and Helps witha V-PL U S!

3209-6

KRR R AR R RN R AR RN R R RN AR AR AR R AR R AR AR R AR AR R AN AR R A AR AR RN AR AR AR TN

** Safety Representative Information System Search and Reports **
AR R R AR AR R R R R R AR AR NN TR R AR NN A AR AR R AR R AR AR AR R AR AR AR AN AN AR oh

1. Ssite 8. Priority (I,II,III) 15. Contractor Response
2. Report Date(yyyymmdd) 9. Group Responsible 16. Verification Narr.

3. Report Type (D,W,M,S) 10. Keywords 17. Add Date (d)
4. Organization Code 11. References 18. Create Initial Subset
5. Facility Acronym 12. Title 19. Reinitialize

6. Building 13. Report Narrative

7. Perf. Objective 14. Field Office Response

Type "HELP" for general info. or "HELP" and an item #, ie. "HELP 3".
Press ‘RETURN’ key only to end selection or enter field number(s):
1

Now enter your Site

For help on this field, type "HELP"
Press ‘RETURN’ only for previous prompt
IDp

176 cases met the search requirements.

1. Ssite 8. Priority (I,II,III) 15. Contractor Response
2. Report Date(yyyymmdd) 9. Group Responsible 16. Verification Narr.

3. Report Type (D,W,M,S) 10. Keywords 17. Add Date (d)
4. Organization Code 11. References 18. Create Initial Subset
5. Facility Acronym 12. Title 19. Reinitialize

6. Building 13. Report Narrative

7. Perf. Objective 14. Field Office Response

Type "HELP" for general info. or "HELP" and an item #, ie. "HELP 3".
Press 'RETURN’ key only to end selection or enter field number(s):
13

Now enter your Report Narrative

For help on this field, type "HELP"
Press 'RETURN’ only for previous prompt
fire,safety

14 cases met the search requirements.

Figure 4. Example of SRIS search and retrieval.

4.3 Report Generation

For report generation, a fourth generation report writer (QUIZ by Cognos) provided
a quick, easy means to develop the necessary reports. Figure 5 shows an example
of generating a report after performing the search shown in Figure 4.

The EH Safety Rep. Information System on SPMS is where you will find...
Word Processing and Helps witha V-PL U S!

3209-7

a number between 1 and 7

*
*

ol This is

Site: XXX OPERATIONS

Finding No: 01
Priority: III

Finding:

During a tour
were observed
22Z facility.
prevent drips

wet pipe fire
heads.

1. safety Rep. Daily Finding Report 5. Safety Rep. Special Report

2. Daily Report with Headings 6. List of Report Titles (by Site)

3. safety Rep. Weekly Report 7. List of Report Titles (alphabetic)
4. safety Rep. Monthly Report

For general help, type "HELP"

For help on any field, type "HELP", followed by
Press ‘RETURN’ key only to end selection criteria
Enter Report field choice number 1

hdadodd Print DAILY Findings Report Ldddd

a 80 column portrait report bkl

Do you want your output on your terminal or
on the SSDC printer. (T/P/L) (T) 2T

Do you desire a hardcopy (Y/N) [N] 2N
Do you want to pause after each screen (Y/N) [Y] ?Y

Printed from SPMS on 08/09/90 Page 1

EH SAFETY REPRESENTATIVE INFORMATION SYSTEM
Daily Report of Findings for 08/20/90

Title: INSTALLATION OF DRIP TRAYS WHICH DID NOT RECEIVE
SAFETY REVIEW

on 8/17/90, several (8-10) plexiglass drip trays
in the overhead of the -13 foot elevation of the
The trays were apparently installed to

from acid and cadmium bearing system valves and

flanges from falling to the floor. Above the trays, were

protection sprinkler components, including spray

Figure 5. Example of SRIS report generation.

The EH Safety Rep. Information System on SPMS is where you will find...
Word Processing and Helps witha V-PL U S!

3209-8

Conclusions

SRIS utilizes a variety of software packages to provide a powerful system which can meet
the changing requirements of the customer in a timely manner. Too often, system analysts
try to meet their customer’s requirements by using available in-house software and/or
developing the system with the use of only one software development tool. This can create
a system which may not fully meet user requirements. The EH Safety Representative
Information System has made use of advanced technologies in HP-3000 application software,
providing a comprehensive, easy to use, and maintainable system. As requirements and
technologies change, so can SRIS!

The EH Safety Rep. Information System on SPMS is where you will find...
Word Processing and Helps witha V-PL U S!

3209-9

The Omnidex Handbook:
Tips for Tuning Omnidex Performance

C. Shawn Morris
Dynamic Information Systems Corp.
5733 Central Avenue
Boulder, Colorado, 80301
(303) 444-4000

Introduction

Much has been written about IMAGE performance as it relates to the
underlying IMAGE indexing structure. This information has helped
users to identify real or potential performance problems, and
adjust their data base administration practices to avoid problemns
and improve performance. However, little information is available
to guide the user in diagnosing problems with alternate indexing
products such as Omnidex.

This paper will provide the Omnidex user with specifics about the
internals of Omnidex keyword indexes. Common problems and their
underlying causes will be discussed as well. Along the way,
remedies and recommendations will be provided as guidelines to help
the Data Base Administrator maximize Omnidex index efficiency and
throughput.

Omnidex Indexing Structure

In order to understand the overhead and possible pitfalls of
Omnidex keys, one must first gain a basic understanding of the
internal structure of Omnidex indexes. Before beginning that
discussion, however, a few terms need to be defined.

Terms to Know

An Omnidex keyword field is an IMAGE field that has been designated
as an Omnidex key at installation time. A keyword is a word found
somewhere in the Omnidex keyword field. Keywords are delimited by
spaces, special characters and field boundaries, and one Omnidex
keyword field may contain several keywords.

A record complex is defined as a master record and it’s associated
detail records. An example of a record complex is a customer
master record and all order records for that customer, or a batch
header record, and all batch detail records entered for that batch.
Another way to think of a record complex is a single, variable
length record containing all data related to an entity.

The Omnidex ID is a double word integer value (e.g. IMAGE type 1I2)
between 1 and 8,388,607 that uniquely identifies a record complex.

The OMNIDEX Handbook 3210- 1

In practice, the Omnidex ID is either the IMAGE search item value
of a record (if the search item is a double word integer), or a
number that uniquely identifies the search item. This allows
omnidex to store double word integer references to search items
rather than the search items themselves which can be as large as 64
words.

An IMAGE domain is defined by a master data set and it’s associated
detail sets. All data sets in the domain are related by a common
field known as the IMAGE search item. Thus, a data set contains
records, and a domain contains record complexes.

An Omnidex domain is defined by the data sets of an IMAGE domain
that contain Omnidex keyword fields. The common search item for
those sets is called the Omnidex search item.

To summarize, an Omnidex ID either is a search item, or has a one-
to-one relationship with a search item. The search item associated
with an Omnidex ID is common to the master and possibly one or more
detail records in a record complex. Because Omnidex IDs are used
to identify the record complex that a keyword belongs too, it is
helpful to examine first how the Omnidex ID is stored and how it is
assigned.

The Inverted File Structure

When building the indexes for an Omnidex keyword field, all records
in the Omnidex domain are searched, and words in the Omnidex
keyword field (delimited by spaces and special characters) are
parsed out of the field and copied to a file. With each keyword,
an Oomnidex ID is recorded which identifies the search item of the
record complex from which the word came. In the simplest case, the
omnidex ID is also the IMAGE search item.

After all keywords are extracted, the unload file is sorted by
keyword and Omnidex ID. All IDs are then loaded into a master and
detail data set, with each unique keyword becoming a search item
for a chain of Omnidex IDs. This structure is called an inverted
file index because the data values are used to retrieve search
items, rather than using the search items to retrieve the data.

To illustrate the indexes that result from this process, assume
that 3 records exist in a CUSTOMERS master data set, as shown
below:

CUSTOMER-NO: 2 7 9
CUSTOMER-NAME: Joe Smith Joe Jones Sloppy Joe

If CUSTOMER-NAME is designated as an Omnidex keyword field, the
resulting inverted index would look like this:

The OMNIDEX Handbook 3210~ 2

JONES SMITH SLOPPY

r
oNN O
)

This list allows Omnidex to very quickly determine how many records
contain a keyword such as "JOE" and to determine the unique search
item for each record.

Implementing the Inverted File Index

The Omnidex indexing method is implemented using IMAGE data sets
and is maintained using only IMAGE intrinsics. As a result,
Omnidex index maintenance participates in all IMAGE activities,
including shared locking, set and item security, and logging. An
approximation of the actual IMAGE implementation is discussed next.
While not exact in every detail, the discussion is adequate to
understand the performance issues involved with Omnidex indexing.

As stated earlier, the main Omnidex index sets consist of a master
and detail data set. The master record holds the keyword, and the
detail set holds the Omnidex IDs of the records that contain the
keyword. 1In graphic form, the structure would look like this:

Master data set WORDS
with a search
item of ODX’WORD.

Detail data set

chained by ODX'WORD \ ®o /

that holds Omnidex
IDs.

For simplicity, assume that each detail record can
hold up to three Omnidex IDs. Leaving a space in

each record for insertion of new Omnidex IDs, the

physical records to track the keyword JOE would look
like Figure 1.

To retrieve all records containing the keyword JOE, w
Omnidex simply performs an IMAGE DBFIND on ODX’WORD w
with an argument of "JOE", followed by a chained

read of the detail data set. Omnidex then returns Figure 1

the search items to the application program. For

each search item returned, IMAGE reads can be

executed on the appropriate master or detail data sets to retrieve
the corresponding records.

The OMNIDEX Handbook 3210- 3

Maintaining the Inverted Index

Now, let’s take the example a bit further and add a customer to the
data set, then consider the IMAGE transactions required to maintain
the list for JOE in "real time".® Here’s the customer record:

CUSTOMER-NO: 10
CUSTOMER-NAME : Joe

Before adding the record, Omnidex parses the keyword out of the
field CUSTOMER-NAME, and establishes the head of the
chain containing IDs for the keyword JOE. Backward
chained reads are then performed until the proper
record is found in which to insert the new Omnidex
ID. In this case, only one backward read is needed
to find where to put an Omnidex ID of 10. Finally,
DBUPDATE is called to insert the ID in the ID chain.

The resulting Omnidex ID chain looks like Figure 2. w

Estimating Omnidex I/O

. . Fi
This example illustrates the most favorable igure 2

situation for Omnidex indexing;

If the Omnidex ID being inserted is always greater than the
largest Omnidex ID in the chain, only 1 read to disc and 3
writes to disc are needed to index a keyword.

Adding 3 initial reads, the estimate for indexing a new Omnidex
record is then:

#I/0s = 3 + 4 * jkeywords

where #I/0s is the total number of reads or writes required to
index the entire record, and #keywords is the number of words
(separated by spaces and special characters) in the record to be
indexed. If only 1 keyword occurs in each Omnidex keyword field,
then the estimate is:

#1/0s = 3 + 4 * jKkeys

where #keys is the number of Omnidex keyword fields installed on
the data set.

This formula should look familiar; it is also the estimate for I/0
required to update an IMAGE path. With IMAGE, however, the
occurrence of secondaries can greatly increase the amount of work

1 por the purposems of this the
to indaicate that the Omnidex indexes are
with the add, update or delete of a rocord.

al time*” ia used
simult 1y

The OMNIDEX Handbook 3210~ 4

required to maintain the IMAGE path. With Omnidex keys, a similar
affliction can occur.

The Perilous Packed Pointer Predicament

Omnidex IDs must be inserted in an ID chain such that they remain
in sorted order. This is no problem when an empty slot is
available. Yet, when an index record is completely "packed" with
IDs, all IDs greater than the one being inserted must be shifted by
one along the ID chain. Consequently, the highest ID in the
insertion record must in turn be inserted in the next record in the
chain. If many consecutive records are packed, then many
repetitions of this "ripple effect" can occur. I call this
phenomenon the "perilous packed pointer predicament”.

To illustrate, let’s go back to our original example, and add three
records who’s Omnidex IDs are not the largest values in the chain.
Here are the records:

CUSTOMER-NO: 4 5 3
CUSTOMER-NAME: Good Joe Joe Bob Smith Joe Bob Jones

Conceptually, the new inverted index looks like this:

BOB GOOD JOE JONES SMITH SLOPPY
3 4 2 3 2 9
5 3 7 5
4
5
7
9

Remember that the Omnidex IDs for the records to which each keyword
belongs are kept in sorted order. This allows for easy comparison
of lists and is the basis for the ability of Omnidex to perform
"AND", "OR" and "NOT" logic. The IMAGE procedure calls required to
add references to records 4, 5 and 3 (in that order) for the
keyword JOE would proceed as follows:

For record 4:
Perform DBFIND mode 1 on the ODX’WORD search item ;

using "JOE" as the argument. Read the chain
backwards until the proper record is located.

Call DBUPDATE to update the record so that it W
contains the new Omnidex ID in the proper order. w

The OMNIDEX Handbook 3210~ 5

For record 5:

Perform DBFIND mode 1 on the ODX’WORD search item
using "JOE" as the argument. Read the chain
backwards until the proper record is located.

Call DBUPDATE to update the record so that it
contains the new Omnidex ID in the proper order.

"Push" the ID for record 7 into the next index
record using DBGET mode 5, followed by DBUPDATE.

For record 3:

Perform DBFIND mode 1 on the ODX’WORD search item
using "JOE" as the argument. Read the chain
backwards until the proper record is located.

Call DBUPDATE to update the record so that it
contains the new Omnidex ID in the proper order.

Push the Omnidex ID for record 5 into the next
record using DBGET mode 5, followed by DBUPDATE.

By now, you should notice the following;

238 4
LY,

To insert an Omnidex ID into a packed record takes an extra
forward chained read and update (2 I/Os) to push an ID to the

The OMNIDEX Handbook

3210- 6

next record.

Just to make sure this concept hits home, let’s insert another
record for customer number 1.

CUSTOMER-NO: 1
CUSTOMER~-NAME : Joe Lunch Pail

using "JOE" as the argument. Read the chain

Perform DBFIND mode 1 on the ODX’WORD search item
backwards until the proper record is located. ;

Call DBUPDATE to update the record so that it
contains the new Omnidex ID in the proper order.

NEEwa®

579

Push the Omnidex ID for record 4 into the next index
record using DBGET mode 5, followed by DBUPDATE.

Push the Omnidex ID for record 9 into a new index
record using a call to DBPUT.

ﬂﬁﬁ‘i

W
\e-- /

To extend the observation from before;

When inserting an Omnidex ID into a packed index record, two
additional disc I/0s are required for EACH CONSECUTIVE PACKED
RECORD.

That’s the perilous packed pointer predicament. It occurs when
Omnidex "ripples" all IDs forward in an ID chain until a record is
found with an open slot for an Omnidex ID. True Omnidex indexing
allows for up to 64 Omnidex IDs per index record and 4 empty slots,
making it much less likely that this will occur. Over time on an

The OMNIDEX Handbook 3210~ 7

active data base, however, the conditions for this phenomenon can
develop.

Similar to Migrating Secondaries

This situation is very similar to the problem of migrating
secondaries, where IMAGE "bumps" a record with a secondary search
item to make room for a primary, and attempts to relocate the
record. IMAGE may read through several IMAGE blocks before finding
an empty address for the record with the secondary search item.

omnidex Overhead Summarized

To summarize the previous discussion, the overhead required to
index a keyword depends on where in the ID chain that the ID must
be inserted. If the ID is not inserted at the end of the ID chain,
any extra work required depends on the availability of an empty
slot in the index record. If no empty slots exist, the overhead
increases by two I/Os for every packed index record after the one
in which the Omnidex ID is initially inserted. Therefore, it is
helpful to know how Omnidex IDs are assigned to determine if there
is potential for performance problems.

Assignment of the Omnidex ID

When a new record is introduced through a DBPUT call, the Omnidex
ID that is assigned is usually greater than any previously used.
Consequently, maintenance of the chains of Omnidex IDs is done at
the end of the index chain, and overhead is minimized.

One instance where insertion of Omnidex IDs occurs somewhere in the
middle of an ID chain is after records are deleted. Whenever an
omnidex record complex is removed, the Omnidex ID that was assigned
to the record complex is saved for later use on the "free ID list".
omnidex IDs are then re-used on a last in, first out (LIFO) basis.
The free ID list is very similar in concept to the "delete chain"
that IMAGE uses to track and re-use detail data set addresses from
which records are deleted.

The other instance where Omnidex IDs are inserted is when records
are updated, or when detail records containing Omnidex keyword
fields are added to an existing record complex. In both instances,
keywords in Omnidex keyword. fields are assigned to an Omnidex ID
that was previously allocated to a record complex. The value of
the ID, and where it might be inserted in an index chain is often
unpredictable.

Finally, a Useful Conclusion!

While little has been put forth to this point as to what actions

The OMNIDEX Handbook 3210- 8

can be taken to minimize Omnidex overhead, enough information is
available to establish our first guideline:

If records are not deleted, or deletes are rare, overhead for
adding new records is minimal.

If a data set is fairly static, at least from the standpoint of
deletes and updates, then most of the IMAGE transactions required
to maintain Omnidex ID chains occurs at the end of the chains.

This is not uncommon for reference files such as customer masters,
catalog masters, vendor masters and history files. In many cases,
records in these files are rarely modified after their initial
load. As a result, these kinds of data sets are great candidates
for Omnidex indexing, because the cost to maintain them is 1low,
while the benefit from increased retrieval capability is high.

Minimizing Omnidex Overhead

In many cases a data set will not be static, receiving frequent
add, delete and update transactions. Consequently, Omnidex
indexing can add significant overhead to these transactions. Just
as one would hesitate to add an IMAGE path to a detail data set
unless it served some useful purpose, one must weigh the usefulness
of a new Omnidex key against the overhead it adds. Fortunately,
Omnidex keys have many more useful purposes than IMAGE keys!

Now that the pertinent features of the Omnidex indexing mechanisms
are revealed, it’s time to look at ways of minimizing the overhead
associated with an Omnidex keyword field. The available methods
reflect two strategies:

- Defer indexing to periods of low activity
- Manage indexes for real time throughput
Deferring Index Transactions

Several methods exist to avoid the extra IMAGE transactions
required to index keywords in real time. Usually, this involves
some method of preventing Omnidex from indexing keywords, followed
by a complete or partial rebuilding of indexes at some strategic
time.

Disabling Real Time Indexing

The easiest way to avoid the overhead of indexing keywords is to
completely bypass the mechanisms that cause indexes to be
maintained in real time. If it is not imperative that records be
available for retrieval by Omnidex keys immediately after they are
added, disabling real time indexing eliminates the overhead

The OMNIDEX Handbook 3210- 9

associated with Omnidex indexing.?

For example, if users wish to retrieve GL transactions in an
accounting data base, it’s conceivable that only those transactions
for closed months are of value for retrieval. In this case, one
may wish to index all records after the period closing, and bypass
real time 1ndex1nq during the day-to-day transaction 1nput. When
the new period is closed, all records can be indexed again. The
ways to disable real t1me indexing are straightforward.

If a program calls the Omnidex IMS intrinsics DBIPUT, DBIDELETE and
DBIUPDATE to write to a data base, these intrinsics can be called
using "IMAGE-only" mode®. This causes Omnidex to bypass the
indexing of keywords at the time of the transaction.

Another option, for programs that do not use the Omnidex "DBI"
calls to update the data base, is to simply decline to 1mp1ement
the call conversion feature of Omnidex. The call conversion
feature traps calls to DBPUT, DBDELETE and DBUPDATE, and calls
DBIPUT, DBIDELETE or DBIUPDATE on behalf of the program. If this
mechanism is not put in place, no indexing of records occurs in
real time.

After a period of act1v1ty, usually every night, or after a
milestone such as the close of an accounting perlcd, a complete
reindexing of the Omnidex keys is performed. During this time, no
other processes are allowed to have the data base open. After the
process completes, all keyword fields are indexed and available for
Omnidex retrieval.

The BI Field Option

The BI or "Batch Indexing" option is assigned at the time that a
field is designated as an Omnidex keyword field. While disabling
real time indexing bypasses indexing for all key fields, the BI
option allows the user to choose specific keys for which to
disregard indexing.

Assuming that the mechanisms for real time indexing are not
disabled, Omnidex keyword fields possessing the BI option are
excluded from indexing at the time of a put, delete or update. all
keyword fields not installed with this option are indexed in real
time. As with the "disabling" alternative described earlier, all
omnidex keyword fields are reindexed in a period of low activity to

2 ote that this alternative is beast nul.ted when mosmt of the
uni.ndoxad activity comes from naw IMAGE record
de:l.oten or updnt s occur without x.-ea:l. t:L 4 mai

- e the i tho data recoxrds '-ny
ze-ult-

3 If the dntn bamo J.- opoened with -hoz-od » moAify accoms
1), IMAGE—oNnly modeoe uld be used with

(¢
DBIm oas woll.

The OMNIDEX Handbook 3210-10

reflect the most recent transactions.

Again using the example of accounting transactions, you may wish to
designate several fields as Omnidex keyword fields, and add the BI
option to all Omnidex keyword fields except the posting status. If
a mechanism for real time indexing is in place, the posting status
field is indexed immediately after a record is added, while other
omnidex keyword fields are ignored. This technique permits quick
retrievals using the posting status keyword field (perhaps to
retrieve unposted records), while other Omnidex retrievals would be
permitted only on records for closed periods.

Advantages/Disadvantages

The advantage of the above techniques is that index updates are
ignored either completely or for selected keys. Consequently, no
I/0 is generated to maintain the Omnidex indexes. The drawbacks
with these methods are that changes to keyword fields are not
immediately reflected in the indexes, and a complete reindexing of
all keys, whether they were indexed in real time or not, is
required to make the indexes consistent with the data records. A
technique called "Deferred Update" can give the same benefits, but
requires a less intensive process to bring the indexes up-to-date.

Deferred Update Indexing

The Deferred Update process consists of two steps. In the first
step, a flag is set, either at data base open time, or separately
with the ODXUTIL utility program, which instructs Omnidex to defer,
rather than ignore all indexing activity. For each put, delete or
update, all keywords and Omnidex IDs to be added to or deleted from
the indexes are written to files. Since the records are small and
the blocks large, writes to the files consume very little I/O
overhead. As a result, the time required to add 1000 records with
indexing disabled is essentially the same as the time required to
add 1000 records with indexing deferred.

After all records are added, the ODXUTIL indexing program is used
to update the deferred keywords. In this step, the deferred
keyword files are first sorted in keyword and ID order. Then the
indexed keywords are unloaded from the Omnidex index data sets and
sorted in the same order. Finally, all keywords are merged back
into the indexes, with common keyword deletes and adds canceling
each other out. This process takes only slightly longer than a
simple primary path reload of the Omnidex detail index data set.

Advantages/Disadvantages of Deferred Update
The advantage of the Deferred Update process is that the sort/merge

procedure takes considerably less time than an exhaustive read and
reindex of the entire data set. This follows from the fact that

The OMNIDEX Handbook 3210-11

the index data sets are considerably smaller and more compact than
the data files that they reference.

Of course, nothing is free, and there are a couple of drawbacks.
First, when a process is performing IMAGE updates in deferred
update mode, it must have exclusive write access to the data base
(DBOPEN modes 3 or 4). While other processes may have the data
base open for reading, no other processes may write to the data
base during the first step of the Deferred Update process®. During
the ODXUTIL update step, exclusive access is required to the data
base, and no other processes may have the data base open.

The other drawback to this method is that a Deferred Update process
may be performed on only one Omnidex domain at a time. While
programs may be run repeatedly in deferred update mode to update
the same domain, the deferred activity must be updated (via the
second step of Deferred Update) before any other domains may be
updated, or before the data base can be opened in shared,
read/write mode.

For these reasons, deferred update is best suited for speeding up
nightly batch updates that normally have exclusive access to the
data base. It will almost always be faster than real time indexing
of each transaction (unless a small percentage are updated), and
will usually beat a complete reindexing as well (unless a very
large percent of records are updated).

Managing Indexes for Real Time Throughput

All of the above described methods use techniques that completely
avoid the overhead of real time indexing. They each have the added
advantage of leaving the indexes "well organized" after the process
is finished, whereas real time indexing may gradually proceed
towards packing of index records. However, real time indexing is
often desired to get immediate retrieval capability on the Omnidex
keyword fields. It is here that some knowledge of the index
internals, and a few techniques, can help to keep Omnidex indexing
running smoothly.

The Excluded Words List

The Excluded Words List represents the easiest, most effective, yet
possibly the most neglected technique for improving real time
throughput. It is easily built, easily installed, improves both
real time and batch indexing performance, and its concept is
simple. In short, the Excluded Words List contains words that
should not be added to the Omnidex indexes. Whenever a reindexing
is performed, or a record is added or updated, keywords that are

4 concurrent read ies all only with DBOPEN mode 4.

The OMNIDEX Handbook 3210-12

parsed from the Omnidex key fields are checked to see if they exist
in the Excluded Words List. If so, they are not indexed, reducing
disc accesses and increasing overall throughput.

Typically, the excluded words list contains "noise" words that are
of little value for retrieval purposes like "and", "the" and "of".
For free form keyword fields, a comprehensive Excluded Words List
can save a dgreat deal of the I/O required to index each record.
Take for example a field in a customer record that contains
customer names. Each name would consist of a first name, last
name, middle name or initial, and a salutation such as Mr., Mrs.,
or Ms., for a total of four keywords per key. By adding the words
MR, MRS and MS to the Excluded Words List, only three of the four
words in each name field must be indexed - an I/O (and time)
savings of 25 percent!

The excluded words list should also contain keywords that occur in
a majority of the record complexes in an Omnidex domain. For
example, if most of the record complexes in a domain contain a
company code of "01", the Omnidex ID chain associated with the "01"
keyword may be very long. Consequently, many disc access may be
required for searches of the chain, causing new ID insertion or
omnidex retrievals to take a prohibitive amount of time.

It is easy to determine the likely candidates for excluded words.
A good starting point is the default excluded words file,
XCLUDES.PUB.DISC, provided with the Omnidex software. Then, after
indexing all keyword fields (or a representative subset), use the
keyword 1lookup feature of the DATADEX inquiry program to
interrogate the indexes for each keys®.

From the list of words that were indexed, identify obvious noise
words or words that occur in more than 1/2 of the record complexes
in the Omnidex domain. Add these words using the editor of your
choice to your file containing excluded words. Load the file using
the ODXUTIL "XCLUDE" command, and reindex all keys.

Periodic Reindexing

If the Excluded Words List is the most neglected method of
improving throughput, then Periodic Reindexing is the second most
neglected, but effective method of improving throughput. As

indicated earlier, records in an Omnidex ID chain normally contain
64 slots each for Omnidex IDs. After a complete reindexing, 4 of
those slots are empty, reserved as "pad" space for insertion of new
IDs. As a result, insertion of new Omnidex IDs can be accomplished
without the "ripple effect" that sometimes increases Omnidex

5 A DATADEX retrioval on an Oomnidex keyword field using the
- i >4 1 from an ASCII fiald.
Refer to the DATADEX reforenca manual for more information on the
keyword lookup feature.

The OMNIDEX Handbook 3210-13

overhead.

Another benefit of Periodic Reindexing is that the resulting
omnidex ID chains are sorted in primary path order on the ODX’WORD
keyword path. This is advantageous for Omnidex indexing, as it
would be for any detail data set that is reloaded on a commonly
used IMAGE path. Since all records for a given keyword are
physically contiguous in the Omnidex detail index set, several
chained reads can be accomplished without generating another read
to disc. Since there are 7 records per block in the Omnidex detail
index set, Omnidex can scan as many as 448 Omnidex IDs per I/0 when
searching for the place to insert a new Omnidex ID°. For the same
reasons, Periodic Reindexing enhances the performance of Omnidex
keyword retrievals as well.

The benefits of a reloaded detail index set can be obtained without
completely reindexing by simply reloading the Omnidex detail index
data set using any popular IMAGE data base utility. A program
called ODXMGR is provided with every Omnidex software tape which
gives the capability to perform capacity changes and reloads on
omnidex index data sets. If you have a regular schedule for
reloading detail data sets, include your Omnidex detail index sets
in the rotation. You can identify the sets by first obtaining a
list of all data sets in the data base. Every data set beginning
with the characters "XODX’" is an Omnidex detail index set.

Increasing Index Pad Space

As stated earlier, 4 slots are left in each of the Omnidex detail
index records for insertion of new Omnidex IDs. In a dynamic data
base, however, these slots will be systematically taken, creating
increasing numbers of packed records. As the occurrence of packed
index records increases, forming chains of contiguous packed
records, Omnidex overhead problems begin to develop.

While reindexing the Omnidex keyword fields will alleviate the
packing problem, and option in ODXUTIL utility program can greatly
extend the time it takes for index records to become packed with
omnidex IDs. This in turn will reduce the frequency with which you
should periodically reindex.

By using a command called "SET PAD", ODXUTIL permits the user to
increase the "pad space" to a maximum of 16 slots for insertion of
new IDs. As a result, four times as many IDs can be inserted into
a given index record before all slots are used up. The SET PAD
option must be used every time you reindex with ODXUTIL if you want
more empty slots than the default of 4.

€ A maximum of 64 Omnidex IDs poxr x'acotd
records per IMAGE block, yields 448 IDa S1ac
Omnidex detail is reloaded in primary path raor-.

ltlglﬂ.od by 7
en the

The OMNIDEX Handbook 3210-14

The tradeoff for increasing the pad space is that it takes more
records (and possibly a higher capacity and more disc space) in the
Omnidex index detail set to hold the same number of Omnidex IDs.
For a pad setting of 16, expect the number of Omnidex detail index
records to increase by around 15%.

Conclusions

This paper focused on a conceptual model of the "real time"
updating of Omnidex indexes. The model aids in presenting the
kinds of performance problems that can occur when maintaining the
detail data set that contains the inverted file index.

In general, performance problems begin when the IMAGE detail
records that contain the Omnidex ID references become "packed".
Consequently, inserting an ID into the chain causes a "ripple
effect" that adds 2 I/Os for every consecutive "packed" index
record (moving forward from the first record) in the chain.

Performance can best be enhanced by not indexing in real time at
all. The indexing can be completed nights or weekends, when there
are CPU cycles to spare. This option is best suited for static
data bases, because new updates are not reflected in the Omnidex
indexes until the next reindex process is performed.

If real time indexing is required, then performance can be greatly
improved by using the Excluded Words List. Periodically rebuilding
the indexes (weekly if possible, monthly if not) reallocates slots
for insertion of new IDs and reloads the Omnidex detail index set.
Increasing the number of empty slots using the ODXUTIL "SET PAD"
option allocates many more slots for insertion, reducing the need
for periodic reindexing.

The suggestions contained herein will give the Omnidex user an
assortment of weapons with which to fight the perpetual performance
battle. More importantly, however, it is my hope that a glimpse of
the Omnidex internals, accompanied with the explanation of when and
how each suggestion improves performance, will permit the data base
administrator to tailor a mixture of these procedures that best
fits his or her unique data base environment.

The OMNIDEX Handbook 3210-15

Tradition vs. Transcendence in Software Engineering

Paper No. 3211

Natalie M. Minenko
Technical Staff

Oracle Corporation

HP Products Division
400 Oracle Parkway
MD: 40P-11
Redwood Shores, CA 94065
(415) 506-7000

Abstract

When developing a new software product for the marketplace,
several questions must be asked early in the design stage, including,
"Who are my users?”, "How will my software impact my users?",
"How easy will it be for them to learn and use this product?", and
"How will this product make my users more efficient, more
productive, and more profitable?" This paper focuses on the
dichotomy of two software engineering principles that are essential
to user centered design: tradition versus transcendence.

Tradition is the principle which measures how much of the
user's outside knowledge and previous experience can be applied to
the new product. Transcendence is the quality which indicates how
progressive and innovative a product is, whether it is a bold advance
which will revolutionize the way users think and do their work or
something that is not so much a break from tradition.

This paper will examine these two principles of software
engineering and show how they are essential in answering the above
questions and creating a usable and marketable product. Some
examples will be drawn from case studies using Hewlett-Packard's V
Plus and Oracle Corporation's SQL Forms in the MPE XL environment.
These two software packages are both commercially available from
Hewlett-Packard and Oracle Corporation, respectively.

Tradition vs. Transcendence..3211-1 N. Minenko

If the city of San Diego suddenly passed an ordinance to
reverse all of its street lights, such that green meant “stop” and red
meant “go,” the results would immediately be felt in hospitals and
insurance claim offices citywide. Even after local residents got used
the new system, accidents would still occur due to the unsuspecting
tourist who missed the signs proclaiming, “In this city, green means
stop and red means go.” Rescinding the law could only make matters
worse in the short term--motorists and pedestrians would be so
confused that they might start avoiding San Diego altogether rather
than take their chances at getting hit.

While this is a rather extreme example, it serves to illustrate
the point that successful software products must provide the user
with a familiar environment to work in for maximum productivity.
If a user can apply previous knowledge gained from the outside
world to a product, that guarantees a shorter learning curve than if
he or she had to learn all of the product methodology from scratch.
As Shneiderman offers in his guidelines for form fill-in design, “If
Address were replaced by Domicile, many users would be uncertain
or anxious about what to do.” “Tradition” is the principle which
measures how much of the user’s outside knowledge and previous
experience can be applied to the new product.

Providing users with familiar environments is one of the
reasons for Oracle Corporation’s software engineering strategy.
Oracle Corporation’s HP Products Division is solely responsible for
modifying generic “base code” to run on an HP 3000 MPE XL system.
It is necessary that the finished product has a similar look-and-feel
to what MPE XL users have experienced in the past, from other
companies as well as from previous ORACLE software releases.
ORACLE for MPE XL products cannot, for example, allow file name
extensions as the DOS and UNIX environments do. They must
support the eight softkeys found on HP terminals whenever possible.
And even though developers in Oracle’s Macintosh group are
required to use the desktop metaphor and the Macintosh Graphical
User Interface, the HP Products Division cannot expect its customers
to point and click in order to use ORACLE until the NewWave
interface is supported. These are all examples of the constraints of
tradition in software engineering.

Yet without some changes and adaptations, software would not
evolve and improve over time. Sometimes, just a small feature is

Tradition vs. Transcendence...3211-2 N. Minenko

needed to make a big difference in a product. Function key support
that eliminates repetitive keystrokes might fall into this category. At
other times, a complete reworking of the design is needed to achieve
the desired result. This is often the case when the logical flow of a
process must be redefined to maximize the user’s productivity.
“Transcendence” is the quality that indicates how progressive and
innovative a product is, whether it is a bold advance which will
revolutionize the way users think and do their work or something
that is not so much a break from tradition. It is a quality that must
be exploited carefully, so that users can see the connection between
their current approach to the task at hand and the methodologies
used in your product. Too much innovation, and your users won’t be
able to see how your 23rd century product will help to solve their
problems today.

Having defined tradition and transcendence in the software
development context, we proceed to examine user centered design
and the questions that it raises. "Who are my users?”, "How will my
software impact my users?”, "How easy will it be for them to learn
and use this product?”, and "How will this product make my users
more efficient, more productive, and more profitable?" are the basic
questions that must be asked early in the design phase of a product.
When considering each question, the engineer must weigh the
influences of tradition and transcendence to determine the overall
design.

A common pitfall of designers in all professions is failing to
identify the user’s needs and the design issues they raise, then
designing to meet those needs and solve the user’s problem. Too
often in their haste to be innovative, engineers can architect a
product that either fails to solve the user’s problem because (1) the
parameters of the problem were misunderstood, or (2) the result
embodies a great solution to a problem that the user never had in
the first place. A classic example of failure to ask “Who are my
users?” comes from architecture and the ill-fated Pruitt-Igoe low
income housing complex. [Bannon 28] Built in St. Louis in the early
1950’s, it consisted of large apartment complexes surrounded by
open spaces while bypassing traditional streets, gardens, and
semi-private spaces. Although it won an award from the American
Institute of Architects and was notable in that “the intelligent
planning of abstract space was to promote healthy behavior” [Jencks
9], the design was totally inappropriate for the occupants. The

Tradition vs. Transcendence..3211-3 N. Minenko

architect neglected the fact that most of the occupants did not have
prior experience living in a densely packed community, nor did he
incorporate many places for traditional social activity in his design.
In his effort to provide an innovative housing structure, the architect
failed to consider the parameters of the design problem and meet his
users’ needs. The end result is that the complex became the site of
vandalism, drug abuse, and crime, and was demolished within
twenty years.

The question “How will my software impact my users?” is
overlooked far too often at many development sites. Whether they
intend to or nut, designers impose their own values and expectations
on end users to varying degrees. The Pruitt-Igoe housing project is
an example of an intentional attempt at behavior modification that
failed miserably. Word processing software provides an example of
how computerization has unintentionally modified some people’s
methodology for document production. In the days when a writer
had only a typewriter and a red pen to create his or her works, a
common scenario consisted of 3 stages. First the writer would jot
down his or her initial ideas in free form on a page. Once these ideas
jelled, the writer would then type out one or two drafts of the
document in a rough form. During the final part of this process, the
writer usually typed very carefully, as each revision at this stage
was potentially the final copy. The large amount of retyping
required to make any major changes was a big disincentive for the
writer to change the structure of the document at this point. Today,
word processing software has virtually eliminated the third stage in
this process, as well as combined parts of the first and second stages
for maximum productivity. The result is that the writer is much
more efficient at producing a document and has maximized his or her
creative potential. Because of its total flexibility, word processing
software has fostered a generation of writers who feel comfortable
putting their initial thoughts up on the screen and making changes
up through the final printing.

Along the same lines, the prudent software designer will
consider the product’s impact on the end users in terms of the
learning curve for the product. He or she must keep in mind
scenarios for the beginning, intermediate, and advanced user, and
design accordingly. When making design decisions, the software
developer must anticipate where users might be overly frustrated
and where they would be bored stiff. It is helpful to ask, “Is the

Tradition vs. Transcendence...3211-4 N. Minenko

logical flow of my program clear? Should I shorten the commands
needed by the experienced user?” when critiquing the software
design.

Often software developers focus on the steps necessary to learn
and use a new product, but fail to ask “How easy will it be to learn
this product?” and as a corollary, “How can I make the task of
learning simpler?” An example of this comes from user interface
design. The traditional user interface is a command line with a list of
somewhat cryptic commands. Through trial and error, and a host of
documentation manuals, users eventually become comfortable with
the syntax and commands and learn to use the machine. With the
advent of real time graphics came Graphical User Interfaces (GUIs)
and a new look for computing. Through the use of metaphors, GUI
architects can capitalize on the user’s knowledge of the real world.
For example, objects in the Macintosh GUI behave in a traditional
sense: folders are where one stores files, and the trash can is where
one throws them away. Objects in the trash can stay there until the
user empties the trash. The transcendence that made this object
oriented interface revolutionary was the emphasis on “see and point”
to manipulate objects rather than “remember and type.” [Apple
Computer Corp. 4] With just a few tips to get one started, the new
user can become proficient with a GUI very quickly. Very often, as
is the case in this example, simplifying the user’s task of learning a
new operating system required a total rethinking of its design, as
opposed to merely eliminating a few keystrokes.

Ease of learning and increased user productivity are two
reasons Oracle Corporation strives for a common look and feel among
its products while maintaining a native look-and-feel for each
individual platform. Current development efforts in the HP Products
Division are focusing on programmable softkeys for HP terminals and
workstations. Although the varied functionality of ORACLE tools
prevents 100% correspondence for each key in every product,
similar functionalities will have similar key mappings in each
ORACLE tool. Additionally, the mechanism to allow end user
customization of the eight softkeys will become standard throughout
Oracle’s HP MPE XL product line. These two features promote
common look-and-feel among products. While our default
configuration will ensure a native MPE XL look-and-feel, the fact that
each user will be able to customize the softkeys ensures that ORACLE

Tradition vs. Transcendence...3211-5 N. Minenko

products will be flexible enough to provide an environment that is
familiar to the user.

An additional example of common look-and-feel among MPE
XL products is evident in standardized installation procedures. All
products are now shipped with two installation scripts. TAPEINST is
the script which will restore files from a distribution tape into the
ORACLE customer’s MPE XL software account. Before completion,
TAPEINST instructs the customer to run the product installation script
which creates the necessary users and tables in the database account
and completes the product installation. Naming convention dictates
that this script will begin with alpha characters that identify the
product and end in -INST. Since all ORACLE for MPE XL tools follow
this convention, even if a product arrives without documentation, the
customer will know how to install it on his or her system.

Finally, the most important question to answer is, “How will
this product make my users more efficient, more productive, and
more profitable?" This is where transcendence becomes a key issue,
because any product that does not help end users accomplish their
tasks better than they did before does not have much potential in
the marketplace. The successful software product will be flexible
enough to accommodate users with multiple levels of expertise,
provide expanded and enhanced capabilities with minimum of user
effort, and remain intuitive enough so that the user knows what to
do next. Answers to this question usually become key selling points
for the product."

Oracle Corporation resolves this issue by designing a tightly
integrated product line and maintaining an architecture that is highly
portable across different software platforms. This strategy not only
allows maximum efficiency for ORACLE development efforts but
minimizes the learning curve and increases productivity for end
users. This is not to say that ORACLE software is stagnant, however.
New technology is constantly being investigated, developed, and
implemented in new product releases and revisions.

Examples of transcendence in software engineering can be seen
in the SQL*Forms product. When SQL*Forms was first introduced in
the MPE XL marketplace, users immediately realized significant gains
in efficiency. With the 4th-generation environment that SQL*Forms
provides, users could build a powerful form-based application in a

Tradition vs. Transcendence...3211-6 N. Minenko

matter of minutes, because SQL*Forms takes care of the low level
details of implementation and access to the form. A comparable
application could take days to implement with Hewlett-Packard’s V
Plus: since this is a 3rd-generation tool, the form structure is
defined, but the user must code all routines needed to access the
form. Although it took some time for users to switch from a
3rd-generation language to a 4th-generation development
environment, the resulting increase in productivity, both in terms of
development time and application portability, more than made up
for the small amount of time spent learning the new product.
SQL*Forms V3.0 incorporated additional innovations into the product.
In previous versions, the use of macros left users clamoring for a
means of procedural control in their applications. Development
responded by introducing triggers which utilized PL/SQL code.
Although this meant that many users now needed to learn PL/SQL,
the tradeoff for streamlined, easy to create applications was
acceptable.

When developing new software for the marketplace, it is
important to remember the concept of tradition vs. transcendence
and maintain each quality in proper proportion. A user centered
approach to design begins by posing relevant questions to identify
end users and their needs. In this method, it is essential that the
product designer determine what traditional context end users are
familiar with before deciding how much innovation or
“transcendence” to introduce in a new product. For maximum
benefit, these issues must be considered early and often during the
software design cycle.

Tradition vs. Transcendence...3211-7 N. Minenko

Works Cited

Apple Computer Corp. Apple Interface Guidelines. Chapter 1,
Philosophy

Bannon, Liam J. “Issues in Design: Some Notes”, Chapter 2,
User Centered System Design. Ed. Donald A. Norman and Stephen W.

Draper. New Jersey: Lawrence Erlbaum Associates, Inc. 1986

Jencks, C. The language of post modern architecture. New
York: Rizoli. 1984

Shneiderman, Ben. Designing the Human Interface. Chapter 2,
Theories, Principles, and Guidelines. p. 41-80

The author wishes to thank Prof. Terry Winograd, Department
of Computer Science, Stanford University, for introducing the concept
of Tradition vs. Transcendence.

ORACLE is a registered trademark of Oracle Corporation.

MPE XL, NewWave, and V Plus are registered trademarks of
Hewlett-Packard.

DOS is a registered trademark of International Business Machines.

UNIX is a registered trademark of AT&T.

Macintosh is a registered trademark of Apple Computer Corporation.

Tradition vs. Transcendence...3211-8 N. Minenko

Tradition

« How much of the user's outside
knowledge and grevious
experience can be applied to the

new product?

Tradition vs. Transcendence...3211-9 N. Minenko

Transcendence

« How progressive and innovative
is the product?

 Bold revolutionary advance?
* Or not?

Tradition vs. Transcendence...3211-10 N. Minenko

* Who are my users?

* How will my software impact m
users?

* How easy will it be for them to
learn and use this product?

* How will this product make my
users more efficient, more

Tradition vs. Transcendence...3211-11 N. Minenko

Paper #3212:
MPE V/E FORTRAN: The Internals of Alternate Return Paths

Craig Nickerson
United Electric Controls Co.
P.O0. Box 9143
Watertown, MA 02172-9143
U.S.A.

Tel. (617) 926-1000

Introduction

As a systems/applications programmer, I have worked
extensively with FORTRAN 66 (FORTRAN/3000) under MPE since
our company first acquired an HP3000 in 1982. FORTRAN 77
was added to our system when a major upgrade in our ASK
manufacturing software was released in that language. We
never implemented this upgrade because of the extent of our
own modifications and enhancements to the earlier FORTRAN 66
version; however, I found that in many situations,
FORTRAN 77 made program coding and structuring a lot easier,
it having such features as IF-THEN-ELSE, the ability to call
most Compiler Library procedures directly, and the ability
to suppress actual, as well as formal, parameter checking.

Over the past several years, in the course of modifying and
developing applications software (not to mention a lot of
digging through manuals), I have written a large body of
general-purpose library procedures, most of them in
FORTRAN 66; these include several subroutines using alter-
nate return paths. This is one area where the two FORTRANs
are mutually incompatible, and in this paper it is my pleas-
ure to share with you how I worked around this obstacle.

Basically, my solution consists of original library
procedures called by one FORTRAN to handle operations per-
formed transparently by the other FORTRAN's object code.
Unfortunately, I have no SPL source code to show you--we
don't have the SPL/3000 compiler, and we've never bothered
to get it because I've found ways to work around it (which I
touch on briefly in Appendix II); so, my discussion of these
procedures will be in terms of their logic. I hope that my
descriptions will be clear enough to enable you to write
them yourself.

I am assuming that you are a FORTRAN programmer with some
experience and understanding of the MPE stack architecture,
and have recourse to SPL. The HP3000/MPE shops most likely
to have both FORTRAN compilers are those that are running
ASK software and have upgraded their manufacturing or other
applications from that vendor to the FORTRAN 77 conversions
from FORTRAN 66.

After studying this paper, you will have the potential
ability to:

] Call an alternate-return subroutine compiled in one
FORTRAN from a program compiled in the other.

FORTRAN Alternate Return Path Internals 3212-1

] Design a FORTRAN alternate-return subroutine to be
callable from either 66 or 77 in the conventional
manner, through separate entry points.

n Set up, in FORTRAN, a code segment address as an
alternate return point.

Where I am describing code syntax or giving examples, I
observe the following conventions:

] Optional coding is enclosed in square brackets ([]).

] Braces ({)) indicate a choice that must be made among
two or more coding options.

n Generic names of procedures or parameters are given in
lower-case.

] Since I am assuming FORTRAN experience, my code samples
are skeletal; an ellipse (...) on a line by itself
indicates that source code not relating to my point has
been left out.

n Where the FORTRAN manuals use the terms "actual
argument"” and "dummy argument", I adhere to the more
general terms "actual parameter" and "formal param-
eter", respectively.

What Is an Alternate Return Path?

wWhat I am calling the "alternate return path" construct is a
means by which a FORTRAN program may specify a statement
label where execution may conditionally resume when a called
subroutine returns. It is a standard feature of both
FORTRANs and well-documented in the manuals, but I review it
here for your convenience.

This is the general syntax in FORTRAN 66 of the CALL
statement using an alternate return path:

CALL subrtn([parml[,parm2...],]$labell[,$label2...])

The calling sequence is identical in FORTRAN 77, except that
"kt jg used instead of "§".

The called subroutine--which you must write in the same
version of FORTRAN (66 or 77) as the caller, if you're
programming strictly "by the book"--is designed for alter-
nate returns by the inclusion of the appropriate number of
nxiig in the formal parameter list, according to the number
of label identifiers to be passed by the caller:

SUBROUTINE subrtn([parml[,parm2...],]*[,*...])
A simple RETURN statement returns control to the caller at

the statement following the CALL; an alternate return path
is taken by including a "label index" in the RETURN state-

FORTRAN Alternate Return Path Internals 3212-2

ment. For example: If the formal parameter list contains
at least two "*"'s, a RETURN 2 statement will return to the
caller via the statement indicated by the second label
identifier in the CALL.

Only a SUBROUTINE-type procedure may employ alternate return
code.

To illustrate:

C OPEN THE MANUFACTURING DATABASE.
CALL OPENMFGDB (MFGDB, #800, *810)
PRINT '(" Mfg. Database opened."/)!
C CAN'T GET IN JUST NOW.
800 CONTINUE
PRINT ' (/" **MFG. DATABASE NOT AVAILABLE*#*"/) !
STOP
C SERIOUS PROBLEM!
810 CONTINUE
PRINT '(/" **CAN''T OPEN MFG. DATABASE#**" /)¢
CALL QUIT(1)
STOP
END
SUBROUTINE OPENMFGDB (IDB, *, *)
RETURN
RETURN 1
RETURN 2

END

If the Manufacturing Database is opened successfully,
subroutine OPENMFGDB executes a simple RETURN statement
which returns control to the PRINT statement following the
call; if the database is down for maintenance, OPENMFGDB
displays an informative message and RETURN 1 selects a re-
turn via statement 800; if the database can't be opened for

any other reason, RETURN 2 selects a return via statement
810.

What the Object Code Does

This is what generally happens in FORTRAN at object-code
level when a normal subroutine or a function is called
(assuming that no parameters are passed by value):

1. Any constants passed to the procedure are copied from
the code segment to the top-of-stack (TOS). If an
actual parameter is an expression, which could involve
a nested function call, it is evaluated and the result
placed at the TOS.

2. If the procedure is a function, one or more words,

FORTRAN Alternate Return Path Internals 3212-3

depending upon the function data type, are allocated at
the TOS for the returned value.

3. If there is at least one passed parameter, a parameter
list is built at the TOS, consisting of one DB-relative
word address or byte pointer per parameter (a
FORTRAN 77 string descriptor involves an additional
word for the byte count); each address points to where
a variable has been mapped by the compiler, or to where
a constant or expression value has been stacked.

4. When the PCAL instruction (the active ingredient of the
CALL statement and function reference) is executed, a
4-word stack marker is placed at the TOS above the
parameter list (if present), and the Q-register is set
to the resultant S-register (TOS pointer) value. Among
the machine register values saved in the stack marker
is that of the index (X-) register, accessible to the
called procedure (at object code level) at Q-3; this is
important to FORTRAN 66, as we'll see further on.

5. When the subroutine or function executes an EXIT
instruction (the active 1ngred1ent of the RETURN state-
ment), the machine registers are reloaded from the
saved values in the stack marker, which is then deleted
from the TOS along with the parameter list. Since the
P- and status registers are also saved (at Q-2 and Q-1,
respectively, from the perspective of the called proce-
dure), this is how the CPU knows at what address in
what code segment to resume execution.

6. Any residue at the TOS--function and expression values,
constants, etc.--is put away or otherwise deleted by
the caller's object code before execution of the next
statement so that the stack is "in balance", i.e. the
S-register is pointing where it was when the statement
calling the procedure began execution.

I have included, as Appendix I to this paper, an excerpt
from our Supplemental Procedure Library documentation which
describes the stack marker in the context of the entire
stack structure.

When an alternate-return subroutine is called in FORTRAN 66,
the object code in the caller loads a 0 into the X—reglster
just before executing the PCAL. The X-register save word in
the stack marker thus initially contains a 0.

When a FORTRAN 66 subroutine takes an alternate return path,
the object code stores the label index, specified in the
RETURN statement, to Q-3 just before exiting. The caller's
object code then branches to one or another location depen-
ding upon the value it finds in the X-register.

In FORTRAN 77, the caller's object code calls the subroutine
as though it were a typp INTEGER*2 function, i.e. it stacks
a 0 and the parameter list, in that order.

When taking an alternate return path, the object code in the

FORTRAN Alternate Return Path Internals 3212-4

"callee" behaves as though it were returning the label index
as a function value. The caller's object code then uses the
value it finds at the TOS to determine where to branch.

In both languages, a returned label index value of 0
indicates a normal return via the next statement after the
CALL.

At object code level in the above FORTRAN 77 sample,
OPENMFGDB finds the address of array MFGDB (formal name IDB)
at Q-4 and the label index word, initialized to 0, at Q-5.
A simple RETURN statement leaves the index word alone, but
RETURN 1 or RETURN 2 stores thereto a 1 or a 2, respective-
ly. All RETURNs generate an EXIT 1 instruction, which
deletes only the MFGDB address along with the stack marker,
leaving the label index at the TOS for the caller's object
code to test and branch to the PRINT statement following the
CALL, or to statement 800, or to statement 810, depending
upon whether a 0, 1 or 2 is found.

FORTRAN 66 loads and tests the label index in the same
manner, except that the called subroutine stores it at Q-3--
the X-register save word in the stack marker--so that upon
return, the caller finds it in the X-register.

The two methods of setting the label index are illustrated
on the next page.

FORTRAN Alternate Return Path Internals 3212-5

(Top-of-Stack)

S===>

Data local to the currently
executing procedure.
Q+1 >

Q=-==> delta-Q (Q - prev. Q) A
|

|
Stack marker
Q-2 > Return address (rel. P) |
|

+->Q-3 > X Index v

Q-1 > STATUS

Q-4 > 1 or more parameters

passed to currently

executing procedure
(optional)

+-=>

|
Values of constants and |
expressions passed as par- |
| ameters, pointed to by |
| parameter list (optional) |

|

I

Data local to the caller
v v

+-- A FORTRAN 77 subroutine sets the label index here;
the caller finds it at the top-of-stack. It is
tested and deleted, along with any stacked con-
stant/expression values of passed parameters,

| before execution of the next statement.

Fom————— A FORTRAN 66 subroutine sets the label index here;
the caller finds it in the X-register.

FORTRAN Alternate Return Path Internals 3212-6

The Solution for Mutual Callability
Part I: 77 calling 66

To solve the problem of calling a FORTRAN 66 alternate-
return subroutine from FORTRAN 77, I prepared two
procedures: subroutine PUTXREG and function GETXREGF.

Internally, PUTXREG copies the formal parameter value to
Q-3, whence it is placed in the X-register upon exit;
GETXREGF simply returns the value it finds in Q-3.

Implementation of these procedures is as follows:

Your

INTEGER([#2] GETXREGF

CALL PUTXREG(0)
CALL subrtn[(parmi[,parm2...])]

IDX=GETXREGF ()

labell
IF (IDX.GT.0)GOTO (\(}anel1,label2[,labels...]),IDx)
FORTRAN‘77 program must adhere to these design points:

Compiler options must include "CHECK ACTUAL PARM 1w,
which suppresses checking of actual parameter type and
plurality for compatibility with the called procedure.
The object library structure counts FORTRAN 66 labels
as typed parameters in both reference and entry defin-
itions, even though they don't have entries in stacked
parameter lists.

All parameters passed to subrtm must be either local
simple variables or constants, since array element
addressing involves the X-register, and expression
evaluation and references to global data (especially
within COMMON blocks) are more than likely to do so.
Where subrtm is expecting an array name, you must use a
local simple variable EQUIVALENCEd to the appropriate
element (in which case, the array itself must also be
local).

Your program size is limited with respect to the amount
of local stack. After the first 127 words above Q are
exhausted for mapping local and initialized global
data, the compiler resorts to mapping arrays for any-
thing that's left and may have to use the X-register
even when a local item isn't subscripted. The X-
register must contain a 0 when PCAL is executed. Use
of the "TABLES" compiler list option will show you
where and how all of your variables are mapped.

The value returned by GETXREGF must be captured in a
separate statement as shown above, never implicitly
within an expression.

FORTRAN Alternate Return Path Internals 3212-7

The Solution for Mutual Callability
Part II: 66 Calling 77

If a FORTRAN 77 alternate-return subroutine was compiled
under option "$CHECK FORMAL PARM 0" and has at least one
data parameter, all you need to do in FORTRAN 66 is to call
it as a type INTEGER function:

INTEGER subrtn

iﬁi:subrtn(parml[,parmz...])

IF (IDX.GT.0)coTo (L1abell)
-GL. (labell,label2[,label3...]),IDX

Otherwise, two new procedures are called for. Mine are
PUSHTOS and POPTOS, which emulate the operations their names
imply; the former "pushes" one word of data onto the TOS,
the latter "pops" one word of data from the TOS into a
variable.

Internally, PUSHTOS overwrites the formal parameter address
with the parameter value, then does an EXIT 0 which leaves
it at the TOS. POPTOS finds the target value at Q-5, which
it copies into the passed variable; an EXIT 2 then deletes
the "popped" word from the TOS along with the (one-word)
parameter list.

(Happily, PUSHTOS works whether I pass it a variable or a
constant. I designed it with a reference parameter so that
when one has occasion to use it in FORTRAN 77, one need not
suffer the embarrassment of forgetting to employ an $ALIAS
directive.)

Implementation is as follows:

CALL PUSHTOS (0)
CALL subrtn[(parmi[,parm2...])]
CALL POPTOS (IDX)

IF(IDX.GT.0)GoTo (l3bell

(labell,label2[,label3...]),IDX’

Here, the restriction applying to the parameters passed to
subrtn is that no constants or expressions are allowed; this
is because constant, expression and function values have to
be stacked before the parameter 1list is built. The
manually-stacked label index word and the parameter list
must be directly adjacent.

This time, there is no need to worry about actual parameter
checking (which can't be controlled in FORTRAN 66 anyway),
since FORTRAN 77 labels are transparent to the object lib-
rary structure.

Designing a Subroutine for Two-Way Compatibility
An alternate-return subroutine may be designed to be

callable from either FORTRAN by using a separate entry point
for each language and a utility procedure for passing the

FORTRAN Alternate Return Path Internals 3212-8

label index in the required manner. My active ingredient
for this scheme is (in SPL notation):

PROCEDURE SETRTN (ICTL, IPATH) ;
INTEGER ICTL, IPATH;

ICTL is a control word indicating which FORTRAN is
anticipating an alternate return path, and where to put the
label index; IPATH is the label index itself. After calling
SETRTN, a simple RETURN statement is all that's needed to
exit via the selected path.

In the case of FORTRAN 77, the label index must be returned
to the word just below the parameter list, so SETRTN needs
to know the length of the list in words; absent any passed
string descriptors, this is simply equal to the number of
parameters exclusive of label identifiers. SETRTN may be
provided the list length directly through ICTL, but if the
subroutine has multiple entry points, SETRTN may alternat-
ively be told through a flag bit to fetch the 1list length
from the subroutine’s Q+1, where it has been placed trans-
parently by the initialization code (so that a RETURN
statement may be executed at any point in the subprogram
unit with the correct stack decrement). The parameter list
length is, of course, irrelevant for FORTRAN 66, since the
label index is always returned to the X-register via the
stack marker.

Internally, SETRTN locates the subroutine's stack marker by
using the delta Q value stored at address Q in its own stack
marker; thus, we have Q'=Q-delta_Q. Flag bit ICTL(0:1)
indicates whether we're using "mode 66" (off) or "mode 77"
(on); if this bit is on, flag bit ICTL(1:1) indicates
whether to fetch the subroutine's parameter list length from
field ICTL(10:6) (off) or from address Q'+l (on). The
desired label index, supplied by IPATH, is copied to Q'-3
for mode 66, or to Q'-plist len-4 for mode 77.

I recommend that the two-way subroutine calling SETRTN be
written in FORTRAN 77 and structured this way:

$CONTROL SHORT,CHECK FORMAL PARM 1[,...]
SUBROUTINE ftn77_entry([parms...,]®[,*...])
control=140000B
GOTO label

ENTRY ftné6entry[(parms...)]
control=0

(o]

label CONTINUE
CALL SETRTN(control,path)
RETURN

END

The entry point for FORTRAN 77 should be the primary, with

FORTRAN Alternate Return Path Internals 3212-9

"k"!'s provided for the sake of documentation; the name
should also include the underscore ("_") character to make
it unreferenceable from FORTRAN 66. All formal parameter
checking must be suppressed to enable linkage from
FORTRAN 66; level 1 checking retains the requirement that
both entry points be referenced as subroutines. (By the
way, this is what is meant by the phrase "procedure type":
function type checking may be suppressed by using any check-
ing level less than 3.)

The label index is specified in the call to SETRTN rather
than in the RETURN statement. Since the label index word is
always initialized to 0 by the caller's object code, it is
not necessary to call SETRTN for a normal exit; nor will a
si:ple RETURN statement clobber a label index you've just
set up.

I have successfully used SETRTN in a COBOL II subroutine to
set an alternate return path in mode 77; mode 66 is not
practicable because COBOL II's formal checking level and the
actual checking level in FORTRAN 66 are both fixed at 3. I
have not determined precisely how COBOL II handles the par-
ameter list length for multiple entry points, but since it
is fixed at object time for each entry point, you can always
set up the appropriate value to be passed explicitly to
SETRTN.

Another Kind of Alternate Return:
The Code Segment Address as Actual Parameter

In designing a COBOL II interface to the FORTRAN 66
Formatter intrinsics, I was forced, for lack of SPL, to
write in FORTRAN 77 so that I could "$ALIAS" around the
apostrophes in the procedure names. Then, I ran into an
interesting problem with the FMTINIT' procedure--the LAST
parameter, described in the Compiler Library Reference
Manual as a "label identifier", is really an address in the
calling code segment! Obviously, the "*label" construct is
of no use here, for when a error is detected, FMTINIT' takes
its alternate return path by copying LAST into Q-2--the
return address save word in its stack marker--just before
exiting.

The procedures I designed to get around this difficulty are
FMTATOP and FMTABOT, as shown in this FORTRAN 77 sample:

$CONTROL STANDARD LEVEL SYSTEM, SHORT
$CHECK_ACTUAL PARM 2,FTN3000 66 CHARS ON
SALIAS FMTINIT = “FMTINIT'" (%REF $VAL, $VAL, $VAL, $VAL)
$ALIAS TFORM = "TFORM'"
« otheé.éALIAs's as needed for the list element transfer »
« routines. »
INTEGER GETXREGF
C VERY FIRST STEP!
CALL FMTATOP (LAST)

FORTRAN Alternate Return Path Internals 3212-10

C TEST CONDITION CODE.
CALL SAVECCODE
ICC=GETXREGF ()
IF(ICC)10,10,100

10 CONTINUE !ALL SET.

CALL FMTINIT (FORMAT,UNIT,REC,IOTYPE,LAST)

« list element procedure calls and other processing. »
CALL TFORM !NORMAL END OF CALL BLOCK.
100 CALL FMTABOT !TATL MARKER.

CALL SAVECCODE
ICC=GETXREGF ()
IF(ICC)errlabel,oklabel,eoflabel

FMTATOP copies the return address from Q-2 into LAST, with
bit 0 set on (you'll see why presently), sets up CCG in the
status save word (Q-1), and does an EXIT 0 which leaves the
address of LAST at the TOS. CCG results in a branch taken
around everything to the call to FMTABOT.

At this point, LAST is pointing at the instruction following
the PCAL to FMTATOP; bit 0 in LAST is on to indicate that
this is not the "label identifier" we intend to pass to
FMTINIT'.

FMTABOT reads LAST by doing a load-indirect from Q-4.
Finding bit 0 on, it saves this value internally, reloads
LAST from Q-2, reloads Q-2 from the saved previous value of
LAST with bit 0 cleared, sets up CCE and exits. The next
time FMTABOT is called (upon exit from TFORM'), it finds
LAST bit 0 off, in which case it does nothing but exit.

By manipulating the return vector in the stack marker, the
initial call to FMTABOT forces a return via the Condition
Code test following the call to FMTATOP, which detecting
CCE, allows procession to the call to FMTINIT'; at this
point, LAST is pointing where it is supposed to--the
Condition Code test following the call to FMTABOT; succeed-
ing calls to FMTABOT just drop through, leaving intact the
Condition Code from TFORM'.

As you can see, FMTATOP and FMTABOT, as well as the
Formatter routines themselves, require some careful program
structuring. I deemed it needful to pass LAST to FMTABOT
via the TOS, because the object code generated to build a
parameter list would put the Condition Code from TFORM' at
risk. Because it is, therefore, absolutely essential that
the address of LAST be at the TOS when FMTABOT is called (an
extra word which may be removed at a suitable time by cal-
ling POPTOS with a dummy variable), LAST must be a simple
variable, to insure that the object code will not delete any
additional words from the TOS after FMTATOP returns.

I should mention that unless an error occurs and it has to

exit through LAST, FMTINIT' creates a temporary global area
above the caller's procedure-local data and stores the key

FORTRAN Alternate Return Path Internals 3212-11

address in DB-2, for use by the transfer routines; this area
is cleared away by TFORM'. (The SORT/MERGE intrinsics com-
municate with each other in a similar fashion.)

Doubtless you're wondering why I'm not using
"IF(CCODE())..." to test the Condition Code--somewhere bet-
ween versions A.00.09 and A.01.00 of FORTRAN 77/V, HP
decided to render the CCODE() construct completely useless
except for declared system intrinsics, so I developed
SAVECCODE as a work-around. All it does is read the saved
Condition Code from Q-1, and store to Q-3 a 0, +1 or -1,
depending upon whether it finds CCE, CCG or CCL, respective-
ly. I chose to work with the X-register so that with no
parameter list to build for SAVECCODE, the status register's
precious cargo is out of harm's way until it is saved in the
stack marker. Our old friend GETXREGF can then be called to
retrieve the representative value in a "plain vanilla" var-
iable--providing for more flexible methods of testing than
would be possible with the standard construct. Please note,
however, that SAVECCODE does not work (in FORTRAN 77) with
any MPE system intrinsics that are explicitly declared as
such in your source code.

Conclusion

With the utility procedures I've described added to your
systems/application programming library, you won't have to
rewrite existing FORTRAN 66 alternate-return subroutines (at
least, not until you migrate to a different operating sys-
tem). With the range of mutual callability between the two
FORTRANs thus extended, you'll have greater flexibility in
choosing a compiler language for a new program. Bear in
mind, however, that this interface is best suited for stand-
alone utility programs, and interactive applications where
the CPU time required for each transaction is not a critical
factor.

You may find these procedures useful for other things. For
example, my universal procedure call interface, used in
FORTRAN to call dynamically loaded SL procedures, uses
PUSHTOS and POPTOS to stack parameter lists and allocate and
retrieve function values.

FORTRAN Alternate Return Path Internals 3212-12

[The following is an excerpt from reference documentation
that I wrote for our programming staff.
have been made for the purposes of this paper.
information about the Process Control Block Extension
(PCBX), see Eugene Volokh's excellent paper "Secrets of
System Tables...Revealed!"

APPENDIX I

Washington, D.C.).]

Z-—=>

QOB >

Qi ->

DB ->

FORTRAN Alternate Return Path Internals

Iser Process Stack S8tructure

unused

Data local to the currently
executing procedure.

Slight alterations
For more

(1985 INTEREX Proceedings,

delta-Q (Q - prev. Q)

STATUS

Return address (rel. P)

X Index

A

Stack marker

v

1 or more parameters

passed to currently

executing procedure
(optional)

Main program local data +
any other stack markers and
procedure-local data.

Initial stack marker

Fixed global area

3212-13

DB

DL

Qi

QOB

User-managed global area

DL ->
DL-1> eDL - @a ~
DL-2> eDL - @b
DL-3> eDL - @c
DL-4> PXFIXED expansion count
DL-5>
PXFILE
c=--=>
PXFIXED PCBX
b-==>
PXGLOB
a---> v

Data Base. Word address is always 0, by definition.
Register value is a segment-relative offset stored at
PXGLOB 1.

Lower limit of accessability in User Mode. Register
value is relative to DB (<=0). Segment-relative offset
stored at PXGLOB O.

Base of local data of currently executing subprogram.
Register value is relative to DB.

Q-initial; highest DB-relative address of the static
global area. Stored at PXFIXED 3. Address Qi contains
the PARM value passed through the :RUN command or the
process-handling intrinsics; Qi-1 and Qi-2 contain the
byte pointer and length, respectively, of the INFO
string.

Base of the outer block's (main-program's) local data.
For a user process, QOB=Qi+4.

Pointer to the current top-of-stack. Register value is
relative to DB. The net effect of calling PUSHTOS or
POPTOS is to respectively increment or decrement the
S-register value by one.

Highest value ever attained by S. Value is stored at

FORTRAN Alternate Return Path Internals 3212-14

PXFIXED 2. Displacement relative to DB may be dynam-
ically set through the 2ZSIZE intrinsic; left to its own
devices, it never decreases in value.

Stack Markers

The PCAL instruction, generated by CALL statements and
function references in FORTRAN, and the CALL verb in COBOL,
pushes a four-word stack marker onto the top-of-stack and
reloads the Q-register from S. This object contains the
following information:

Q-3 Index register contents at the time of the
PCAL.
Q-2 Code-segment-relative offset of the

instruction immediately following the PCAL in
the code segment of origin.

Q-1 Status register contents at the time of the
PCAL. The following fields are of signific-
ance to the programmer:

(0:1) 0 = User Mode;
1 = Privileged Mode.
(1:1) Set on if external interrupts
enabled.
(2:1) Set on if user traps enabled.
(6:2) Condition Code:
0 = CCG;
1 = CCL;
2 = CCE.
(8:8) CST number of the code segment of

origin; this and the code offset in
Q-2 constitute the return vector.

Q-0 Displacement, in positive words, from the
Q-register value just prior to the PCAL;
backward link to the previous stack marker.

If the called procedure has one or more parameters, a
parameter list is pushed onto the top-of-stack by other
compiler-generated instructions prior to executing PCAL.

The EXIT instruction, generated by the RETURN statement in
FORTRAN, and the GOBACK verb in COBOL, is the reverse of
PCAL; the index and status registers are restored from Q-3
and Q-1, respectively; Q is decremented by the number of
words indicated by Q-0; and process execution resumes at the
location given by the return vector. The stack marker, and
everything on the stack above it, is deleted from the top-
of-stack, and S is adjusted to reflect the number of words
deleted. The stack decrement (SDEC) field of ‘:he EX.T
instruction may specify up to 255 additional words to be

FORTRAN Alternate Return Path Internals 3212-15

deleted...

All stack markers are backward-linked through the 4th word,
as far as the initial stack marker...

Any stack marker may be read, modified, or relocated and
relinked...; however, the stack locations containing the
status save words of stack markers that were "on-line", i.e.

in the trace-back chain, as of the last PCAL or EXIT are
write-protected in User Mode.

FORTRAN Alternate Return Path Internals 3212-16

APPENDIX II:
How I Did It Without SPL

As far as the operating system is concerned, a USL that you
created is your data file to do whatever you want with; so,
you are at liberty to alter the machine code that your
compiler gave you, and prepare it as changed.

To manage without SPL/3000, I wrote a library procedure for
each of several basic stack addressing and register
retrieval operations. In each case, I created a program
structure in FORTRAN 66, using dummy statements to allocate
space for special machine code, and compiled it into a
separate USL with all list options. With help from Chapter
9 of the MPE V Tables Manual, I then edited the Relocatable
Binary Module (RBM) with the DISKEDS utility, replacing
object code generated by the dummy statements with the
machine instructions I needed. Thus, the operation that
"could only be done in SPL" was reduced to a simple library
procedure call.

By the time I needed access to the index register for my
alternate return path interface, I had enough SPL-type oper-
ations encapsulated to write PUTXREG and GETXREG(F) as
FORTRAN 66 procedures that work as written, without any

post-compile editing. Here is the source code that resul-
ted:

$CONTROL SEGMENT=UEC'SEG' 3, CHECK=0
Ck*

C** PROGRAM NAME: PUTXREG/GETXREG
C** SOURCE FILE : XREGS
C*% VERSION : STANDARD U.E.
C*#* PROGRAMMER : C.R.N/UE
C** CREATED : 10/31/89
c
C*#* UPDATED : 02/28/91 CRN...SPECIAL PARAMETERLESS
c INTEGER FUNCTION ENTRY
c "GETXREGF" FOR FORTRAN 77.
c
C DESCRIPTION : PROCEDURES USED BY FORTRAN77 FOR CALLING
c FORTRAN66 SUBROUTINES WITH ALTERNATE
c RETURNS. THESE WORK BY MANIPULATING THE
c INDEX REGISTER SAVE WORD IN THE STACK
c MARKER.
c
SUBROUTINE PUTXREG (IX)
c
INTEGER GETQREG, PEEKDB
c
CALL POKEDB (IX,GETQREG (IDUM)-3)
RETURN
c
ENTRY GETXREG (IX)
c
IX=PEEKDB (GETQREG (IDUM) -3)
RETURN
c

FORTRAN Alternate Return Path Internals 3212-17

C*%2/28/91 CRN. . .FUNCTION-TYPE GETXREG ENTRY FOR FORTRAN
77 PROGRAMS WITH VERY LARGE LOCAL STACK. MUST
BE REFERENCED AS A PARAMETERLESS INTEGER
FUNCTION.

ENTRY GETXREGF

0 0000

IT=GETQREG (IDUM)

CALL POKEDB (PEEKDB(IT-3),IT-4)
RETURN »

END

Integer function GETQREG returns the stack marker location
(Q-register value) for the procedure calling it. The loca-
tion of the initial stack marker (QOB) for the calling
process is returned to the passed variable.

GETQREG resides in a privileged code segment added to our
system library; Privileged Mode is required to read the Q-
initial value from the PCBX (see Appendix I).

PEEKDB and POKEDB are User Mode procedures used, often in
conjunction with GETQREG, to access calculated addresses
anywhere on the stack at or above DL. I also use them with
the DLSIZE intrinsic, and another procedure of mine called
GETDLREG, to access the "heap" (user-managed global area).

* % % * *

FORTRAN Alternate Return Path Internals 3212-18

Database indexing: The key to performance

F. Alfredo Rego
Adager Lab Manager

Adager
Sun Valley, Idaho
83353-0030
U.S.A.

Telephone +1 (208) 726-9100 Fax +1 (208) 726-8191

Typically, we are interested in accessing a group of entries from a database (for instance, "all
the outstanding orders from customer XYZ"). One approach is to scan the database serially,
beginning with the first entry and ending with the last entry, "running into" the desired entries
along the way. If we have millions of entries, with only a few that meet our selection criteria,
we may not be able to afford to use this approach for on-line applications. Another approach
is to use indexing methods that allow us to jump directly into the entry or entries which
interest us without having to wade through millions of irrelevant entries.

The only purpose of an indexing system is to serve as a performance booster. There are many
kinds of indexing methods, with various advantages and disadvantages. In this essay, I focus
on the technological challenges posed by the requirement that we should be able to add,
maintain and delete indices quickly and conveniently.

Breaking free from indexing traps

There are several types of indexing methods, just as there are many kinds of database
management systems. But let's not be confused by this apparent variety. Deep down inside,
all databases are nothing more, or less, than bunches of bits. All indexing schemes are, by the
same token, attempts to shortcut the route that leads us into certain desired bunches of bits
within a database.

As long as we keep these fundamental concepts straight, we will be able to take advantage of
indices when they exist, without having a nervous collapse when they are gone. Let’s take one
paragraph from Hewlett-Packard as an exercise in going back to basics. More than 5 years
ago, on page 24 of the March 1986 issue of HP's Information Systems & Manufacturing News,
Terrie Murphy said in an article on ALLBASE;

HPSQL'’s simple tabular-data structure, with no predefined data-access paths, significantly
increases database-administrator (DBA) and programmer productivity. DBAs have great free-
dom in structuring the database, since it is not necessary to predict all future access paths at
design [time]. If the data is available in the database, it is immediately accessible at any

3213-1

future time. In non-relational models, all access paths need to be known when the database is
designed. This adds significantly to overall program-development time. In addition, with no
predefined data-access paths, the data structure can be modified in many ways without affecting
existing programs; thus greatly simplifying application maintenance.

The issue is "predefined access paths”, as viewed from an ALLBASE/SQL perspective. We can
easily rewrite the same paragraph from an IMAGE viewpoint:

IMAGE’s simple tabular-data structure, with (or without) predefined data-access paths, signifi-
cantly increases database-administrator (DBA) and programmer productivity. DBAs have great
freedom in structuring the database, since it is not necessary to predict all future access paths at
design [time]. If the data is available in the database, it is immediately accessible at any
future time. In IMAGE, all access paths need not be known when the database is designed. This
saves significant overall program-development time. In addition, with (or without) predefined
data-access paths, the data structure can be modified in many ways without affecting existing
programs; thus greatly simplifying application maintenance.

Without too much effort, we can re-write this paragraph so that pre-defined access paths
appear as slaves or liberators from the perspective of any database management system. Since
most of the HP3000 users share IMAGE as a common bond, and since IMAGE has undeserved-
ly gotten bad press regarding indexing and pre-defined access paths, let’s use IMAGE as an
example. Even though we will speak in IMAGE terms, let's remember that the same
methodology applies to any DBMS.

IMAGE allows you independence from predefined access paths (and from many structural
modifications), provided you follow some sensible guidelines.

As a prerequisite, you should be aware of several IMAGE design criteria that people tend to
ignore:

1. An IMAGE dataset is a simple tabular data structure. The widespread belief that IMAGE is
a "pointer-based network DBMS" is not true. You can build an IMAGE database that does
not have any pointers whatsoever. You can always scan a dataset serially, from beginning to
end, to select the entries of interest to you, but you might get bored doing this (particularly
if you have millions of entries). IMAGE gives you the choice of two kinds of datasets
(masters and details), each optimized for a given high-speed access method. You may,
almost instantly, access specific master entries using hashing, if you wish. But please
remember that you don't have to use hashing at all. Likewise, you may access, extremely
quickly, specific detail entries using an IMAGE-provided combination of hashing and
chaining, if you wish. But please keep in mind that you don’t have to use chains at all.

2. The IMAGE intrinsics that allow you to add, access and update entries (DBPUT, DBGET,
DBUPDATE) have an important parameter: the list of those specific fields that interest you.

3. The IMAGE DBINFO intrinsic gives you a wealth of information at run time.

Binding: at compilation time or at run time?

Knowing these (and other) IMAGE design criteria is necessary but not sufficient. As another
prerequisite, you should use high programming standards (this, naturally, applies to any kind of
computer work that you do). A very important programming standard is that you should
postpone binding as much as possible. This means that you should not burden your programs,
at compilation time, with hard-wired stuff. You should wait until run time to adjust to the

Rego 3213-2

prevailing conditions of the day.

In the case of predefined access paths, if any, you should not even think about including (or
excluding) them in the strategy of your programs. You should find out, at run time, whether a
given field in a given dataset is an IMAGE search field or not (using DBINFO). If you are not
dealing with a search field, you might have to do a serial scan of the whole dataset (using
DBGETs mode 2 or 3) to find those entries, if any, whose field values you want. (You are
certainly free to develop non-IMAGE indexing schemes to avoid such serial scans.) If you are
dealing with an IMAGE search field, you can be much more efficient. For a master dataset,
use hashing (DBGET mode 7). For a detail dataset, use an IMAGE-provided combination of
hashing and chaining (an initial DBFIND followed by DBGETs mode 5 or 6).

If you follow these reasonable guidelines, your applications will be totally immune to changes
in access paths. You will be able to add or delete paths at will, to suit the performance needs
of your users. And, as a fun bonus, since the only difference between masters and details is
access method, you will also be able to change masters to details or details to masters without
impacting any of your application programs.

What do you think now about Hewlett-Packard’s assertion that "In non-relational models, all
access paths need to be known when the database is designed"? I am sure HP meant to qualify
this statement by adding, "if your programming standards are so low that you hard-code
everything".

This hard-coding issue has nothing to do with being relational or non-relational. If you
hard-code in SQL, nothing will save you from getting into deep trouble. Let's illustrate this
observation.

In the case of adding, accessing or updating IMAGE entries, you should not even think of
using "@" to specify the list of fields that interest you. The "@" list asks IMAGE to deal with
all the current fields in the dataset. If you add, delete or shuffle the fields of a dataset, you
must then edit and recompile all the programs that access that dataset. (Absolutely the same is
true in SQL if you use SQL's "*" instead of a specific list of columns.)

Since this prospect does not attract me, I strictly follow a methodology with IMAGE field lists.
Even though it may take a little more effort up front, I always build a list with the names of
those specific fields that the program needs to access. The first time I invoke an access
intrinsic (DBPUT, DBGET or DBUPDATE), I pass it this list. Afterwards, when I invoke an
access intrinsic that depends on the same list, I pass it IMAGE’s asterisk list ("*"), which tells
IMAGE "don’t bother to assemble and check my list; simply use the previous list". (The
asterisk "*" means different things to different people: It is important to remember that SQL
interprets it to mean "give me everything".)

For more than a decade now, I have been able to add, delete and shuffle fields in my IMAGE
datasets. Even though this fact, in itself, is significant, it is even more impressive because I
have not been forced to edit or recompile those programs that don’t use such fields.

What do you think now about Hewlett-Packard’s opinion that "[with SQL] the data structure
can be modified in many ways without affecting existing programs"? Of course, HP meant to
qualify this opinion by adding, "provided you don’t use the SQL asterisk '* instead of a
specific list of columns in your SQL statements",

Rego 3213-3

Indexing and structural freedom

By binding as late as possible, we gain two kinds of freedom: the freedom from pre-defined
access paths and the freedom from rigid data structures.

We are able to add, maintain and delete indices quickly and conveniently. We can use the
indices that are "bound" with the official DBMS (such as hashing and chaining in IMAGE) and
we can use our own (or third-party) indices to complement the official indices.

Since indices are only one aspect of the general database structure, we are also able to add,
maintain and delete any other database objects as well.

The fact that, with run-time binding, our indexing schemes are flexible is just one of the
consequences of having a flexible over-all approach to database management.

Rego 3213-4

TITLE: Managing A PowerHouse Environment

AUTHOR: David Robinson

PowerSpec International

403 Cross Lake Drive

Fuquay-Varina, NC 27526

919-552-8049

FINAL PAPER WAS NOT AVAILABLE AT TIME OF PRINTING.

PAPERNO, 32U

USING MPE XLL TO YOUR ADVANTAGE -
A GUIDE FOR THE APPLICATIONS PROGRAMMER
Pamela Herbert Bristow
A.H. Custom Software, Inc.
E1l Cerrito, CA 94530
(415) 535-5070

The introduction of the RISC architecture and the MPE XL
operating system marked a strong advancement for the HP 3000
line of computers. MPE XL, although similar in commands and
syntax to its predecessor MPE V, is g far superior operating
system. And now MPE XL 2.x (either 1 or 2) has been delivered
and with it comes an even greater functionality than was found
in the initial MPE XL offering.

In this paper I will give an overview of the new features
in MPE XL for those readers who are new to XL. Then I will
discuss a few of the features implemented in version 2.x that
are of most interest to me including some aspects of the
native mode spooler, 'command input/output redirectionr and the
FINFO command.

USING VARIABLES

There are 2 types of variables in MPE XL. These are the
predefined global variables and the user defined variables.
Of the 70 some predefined global variables (as a I counted
them in version 2.2) some are read only but many of them can
be used to 'customize' the environment for any given user or
job by using the :SETVAR command. To see what all of the
possibilities are try typing

:SHOWVAR @

This will give you a listing of all of the system global
variables and what their values are. It will also show you
any user defined variables that have been set up and what
their values are. I will refer to several of these variables
in discussing other features of MPE XL that I like to use.
A :SHOWVAR without the @ will show you all of the user defined
variables.
The way you alter any variable is to use the

:SETVAR

command.

Variables can have 3 different value types - integer,
string and Boolean. The system variables have a preset type
and if you try to set one to the wrong type of data the system
will return an error. User variable can be set in any of

USING MPE XL TO YOUR ADVANTAGE -
A GUIDE FOR THE APPLICATIONS PROGRAMMER 3215 - 1

three ways e.g.

:SETVAR X 1 or :SETVAR X 'XYZ' or SETVAR X TRUE

Once a variable has been declared the value it contains

can be de-referenced to allow variable substitution, and
string functions can be applied to extract parts of a variable
value. For example the system variable HPDATEF is set to the
date in the format
TUE, FEB 27, 1990.
To extract the day of the week enter

:SETVAR DAY "![LFT(HPDATEF,3)]"
The exclamation point de-references the variable HPDATE
meaning that it substitutes the value of the variable in place
of the variable itself. The LFT parameter along with the ,3
following the HPDATE variable extracts just the left most 3
characters so that now if you type

:SHOWVAR DAY
you will see :DAY = TUE
If you then enter

:SETVAR TIMEFRAME “!!DAY"
:SHOWVAR TIMEFRAME

MPE XL will return :TIMEFRAME = !DAY

This is because the double exclamation points resolve to a
single exclamation point giving you back the variable. If you
then type

¢:SETVAR THISTIME = "!TIMEFRAME"
:SHOWVAR THISTIME

MPE XL will return
:THISTIME = TUE

This de-referencing technique can be used in command files to
dynamically set the value of a variable.

USING MPE XL TO YOUR ADVANTAGE -
A GUIDE FOR THE APPLICATIONS PROGRAMMER 3215 - 2

A BRIEF WORD ON EXPRESSION EVALUATOR FUNCTIONS

In an example above I use the LFT function to extract the
3 left most bytes of a character string. This is but one of
many expression evaluator functions that MPE XL provides.
These functions return boolean, string or numeric results and
can be used to parse character strings, do numerical
manipulations and set up TRUE/FALSE conditions and tests. An
explicit discussion of them would require a paper in itself
but I mention them here because I use a couple more in
examples further on in this paper.

COMMAND LINE HISTORY STACK

The command line history stack was the first MPE XL
feature I discovered. In MPE V if you miss-typed a command
and then tried to recover with a :REDO only to type :REOD, you
would be stuck keying in the entire command again. Not so
anymore. MPE XL has a command line history stack that will
store a variable number of commands. The exact number of
commands is determined by a predefined variable called
HPREDOSIZE that has a default value of 20. To see what is
in the stack you type

: LISTREDO

What is returned is a listing of the last 20 commands you have
issued along with their absolute number e.q.

11) LISTF FILEA,2

12) RENAME FILEA,FLEB
13) RENAME FILE,FILEB
14) QE

15) QUICK

30) LISTF FILEC,2

These commands can be referenced in several ways, either by
absolute number (i.e. REDO 20) or by relative number (e.q.
REDO =-2) or by initial characters (e.g. REDO LISTF). This
last technique will bring back the most recent command that
begins with the characters LISTF.

There is also a :DO command that allows you to re-execute
any command in the history stack directly. You can access the
command as you do for :REDO (by absolute or relative number
or by character string) with the default being the 1last
command executed. The :DO command has an additional feature
that allows you to edit the command before executing it. The

USING MPE XL TO YOUR ADVANTAGE -
A GUIDE FOR THE APPLICATIONS PROGRAMMER 3215 - 3

syntax is

:DO [CMD=cmdid] [EDIT = editstring].
For example if you typed in

:QUECK

when you had intended to key in :QUICK you could edit and
execute the command in one step by entering

:DO ," RI"
which would return and execute the string
:QUICK

The options on the edit string must be in the same
position as they would be if you were using the interactive
:REDO command. Trying to get the insert, delete and replace
commands to come out in the right place strikes me as more
difficult than using the interactive :REDO but there are some
very handy ways to use :DO. These are:

> appends characters on to the end of the line.

>R replaces characters at the end of the line so that the
last character in the >R command is at the end of the
line. :

Cc changes all occurrences of one string to another.

>D deletes from the end of the line moving from right to
left. You can enter multiple Ds.

For example, if you typed
¢:LISTF MYPROD, 2

and what you really meant was :LISTF MYPROG,2 you could re-
execute the command quickly by typing

:DO ,C/D/G
which would immediately re-execute the previous command
changing all occurrences of 'D' to 'G'. Similarly if you
forgot that you needed to run a program with a LIB=G

parameter you could say

:DO ,">;LIB=G" or :DO RUN, ">LIB=G"
Note that you must surround the edit string with quotes if
there are embedded blanks or special characters such as semi-
colons.

USING MPE XL TO YOUR ADVANTAGE -
A GUIDE FOR THE APPLICATIONS PROGRAMMER 3215 - 4

GREATER EASE AND FLEXIBILITY IN CREATING AND EXECUTING
COMMANDES AND PROGRAMS

There are now more options for implementing and executing
command files and programs. In MPE V you could either

execute a cataloged command (UDC) or an MPE command or :RUN
a program. If you wanted to catalog a new command you had to
reset the entire catalog. These bonds have been broken.

The command interpreter (CI) now searches through 3
'areas' each time it tries to resolve a command. The catalog
is checked first to see if the command is a UDC. If the
command is not found there it is then checked to see if it
is a regular MPE command (e.g. LISTF or PURGE). If it is not,
the CI then checks for the command in any of the groups or
group.accounts specified in the variable HPPATH. The default
path is your logon group followed by the PUB group of your
logon account, followed by PUB.SYS. The CI also uses an
implied RUN so that you can just type the name of a program
in and if it is found it will be executed.

This means several things. First of all it means that
you never need to create a UDC to execute a program stored in
PUB.SYS. If you type in

:DBUTIL

the CI will find the program DBUTIL.PUB.SYS and execute it.
It also means that if you want to alter the way an MPE command
functions by using a command file (e.g. having the STREAM
command execute STREAMX), just typing the name of the command
won't work because the CI will execute the MPE command before
it finds the command file. You can get around this by using
the :XEQ command which will directly execute the file,
bypassing the UDC and MPE regular command checks (but using
the HPPATH search).

Given all of these options you now must consider the most
advantageous place to store any given command. Just briefly,
the major advantages of UDCs are that they execute very
quickly, they are shared by all users who have access to them
and they cannot be inadvertently purged as easily as command
files. The advantage to command files is that they are very
easy to change and can be stored and maintained in private
groups.

There is another option somewhere in between which is
the ability to APPEND and DELETE individual UDCs from the
catalog without having to reset the entire thing. This can
be very nice if you have a team working on a project where you
want to catalog a command that may need to change a bit from
time to time or if you need to keep adding UDCs as the

USING MPE XL TO YOUR ADVANTAGE -
A GUIDE FOR THE APPLICATIONS PROGRAMMER 3215 - 5

project develops. To do this you type
:SETCATALOG UDCB;APPEND

If you now need to alter UDCB you can edit it as UDCC and
reset the commands in it by typing

:SETCATALOG UDCB;DELETE
¢:SETCATALOG UDCC;APPEND

This prevents altering the wrong editor file for all of the
other UDCs at the user or account level and ruining everyone's
day when you reset the catalog to the incorrect file of
commands.

Similarly, you can create individual command files in the
group of your choice and change them easily. This is
especially useful if you are working on a test version of a
program and need to set up a bunch of file equations to run
your test version along with a bunch of productions versions
of programs. For example, you can create a file called
FILEQ.mygroup that looks like this:

FILEA = FILEA.TRAINING
FILEB = FILEB.TRAINING
BASEA = BASEA.TRAINING

and then set the variable HPPATH to point to your group

:SETVAR HPPATH "mygroup, !hpgroup,pub,pub.sys"
When you type in the characters

:FILEQ
all of the file equations in that command file will be created
and you never have to touch the catalog. If the file
equations need to change you can just edit the file and re-
execute it and the new equations will be in place.
SETTING THE HPPATH VARIABLE

The HPPATH variable can be used very effectively to

customize the working environment for each programmer. One
of the simplest solutions is to have a logon UDC that says

SETVAR HPPATH " !HPJOBNAME, ! HPGROUP, PUB,PUB.SYS" or
SETVAR HPPATH "!HPJOBNAME, !HPPATH"

USING MPE XL TO YOUR ADVANTAGE -
A GUIDE FOR THE APPLICATIONS PROGRAMMER 3215 - 6

HPJOBNAME is set to the characters that you type as the first
part of your :HELLO command before you type the user name as
in

tHELLO PHB,MANAGER.TRAINING

As long as there is a group called PHB, the HPPATH will be set
to check that group for commands first (after checking the
UDCs, and MPE commands and not finding the command there) so
that if 3 people want to use

:QE

to call QEDIT but they all want to bring it up with different
parameters they can all have their way without having a
catalog war.

THE PRINT COMMAND

:PRINT allows you to direct the contents of a file to
prlnt wherever you want it to. The major advantage to this
is that you don't have to wait for a program to execute to
list the output. There are also some options to control the
listing. The syntax for the command is .

:PRINT filename;OUT=outfile;START=m;END=;n;PAGE=p;UNN

The :PRINT default is to list the file to your terminal
and stop every 23 lines and ask you if you wish to continue.
You can use the PAGE parameter to control this by typing

:PRINT FILEA;PAGE=0

to cause the entire document to print out without a page
break. This is useful if you are using a slave printer and
want to run with LOG BOTTOM ON to print the file out
immediately. If you know which lines of a file you want to
look at you can use the START and END parameters. :PRINT
FILEA;START=20 will start listing the file at 1line 20.
¢:PRINT FILEA;START = -20 will list the last 20 records of the
file.

CHANGING GROUPS WITHOUT LOGGING ON AGAIN

How many times have you gone to run DBUTIL or KSAMUTIL
or some other data base/file management program only to
discover that you are not logged on in to the group that the
data reside in? Until now you had to log in again, specifying
the correct group as your home group. In doing so you would

USING MPE XL TO YOUR ADVANTAGE -
A GUIDE FOR THE APPLICATIONS PROGRAMMER 3215 - 7

lose any file equations or variables that you had set up
during your session. With MPE XL you can issue the

:CHGROUP groupname

command and you will be 'moved' to the group specified. When
you are done with the file maintenance you can type :CHGROUP
without the group name parameter and you will be back in your
logon home group.

COPYING FILES WITH FAR FEWER KEYSTROKES

FCOPY always seemed to me to be a tedious command to use.
All of that 'FROM=' and 'TO=' and designating a file's current
status (NEW,OLD etc). seemed such a bother to me. ' With MPE
XL comes the :COPY command that eliminates all of that. You
can now type

:COPY FILEA.MYGROUP,FILEA.PUB;YES

and FILEA will be purged from .PUB if necessary and copied in
from .MYGROUP. If you leave off the ;YES parameter the system
will ask you if you wish to purge the 'TO' file giving you
an opportunity to confirm the copy before executing it.

THE FINFO COMMAND

The FINFO command gives you an easy way to get
information on a file. It has the same capabilities as the
FLABELINFO intrinsic but can be used directly. The syntax for
the command is

FINFO(MYFILE,KEY) where MYFILE is the name of the file
of interest and KEY can have either a numeric or 1literal
value. Some of the possible values are:

option option return type and meaning
num name/alias
0 "exists" boolean TRUE if file exists
1 "full filename" string, fully qualified name
2 group name" string
3 "account name" string
6 "creation date" string format DAY, MM DD, YYYY
6 "created"
-6 "intcreated" integer format YYYYMMDD
7 "accessed" string, format DAY, MM DD, YYYY
-7 "intaccessed" integer format YYYYMMDD
8 "last mod date" string format DAY, MM DD, YYYY
-8 "intmoddate" integer format YYYYMMDD
12 "file limit" integer

USING MPE XL TO YOUR ADVANTAGE -
A GUIDE FOR THE APPLICATIONS PROGRAMMER 3215 - 8

i3 "formatted foptions" string
19 "end of file" integer
24 "last mod time" string HH:MM AM or PM

You can use the command to return a boolean value e.g.
IF FINFO("MYFILE","EXISTS") = TRUE
THEN ...
or you can write a little command file to give you information
about a file or about a file equation in a format of your own
personal design that is most useful to you e.g.

PARM FILE
IF FINFO("!FILE","EXISTS") = TRUE THEN
SETVAR A FINFO("!FILE","FULL FILENAME")

SETVAR B FINFO("!FILE","CREATION DATE")
SETVAR C FINFO("!FILE","FILE LIMIT")
SETVAR D FINFO("!FILE","END OF FILE")
SETVAR F FINFO("!FILE","LAST MOD DATE")
SETVAR E FINFO("!FILE","LAST MOD TIME")
ECHO khkhhkhkhhkhhkhkhkhhhkhkrhkhhkkhkhkhkkkhhkrthkhkhkkkkk
ECHO file name: !A
ECHO created : !B
ECHO limit : Ic
ECHO eof : !D
ECHO last mod : !F !E
ECHO dededodode g dk de e e e ok ok ok e e e e e e ok ok ok ok ok ok ko ok ok e ke ek
ENDIF
IF FINFO("!FILE","EXISTS") = FALSE THEN
ECHO ====-- !> The file !FILE does not exist (<-—=—=--

ENDIF

To use this command file you simply enter
SF MYFILE
at the MPE prompt and, if MYFILE exists you will see

khkkhkhhhkhkdkhkhhkkhhkhhkkhhkhkhkhkhkhkhhkkhkhkkkhkhkkkhk
file name: MYFILE.MYGROUP.MYACCT

created : MON, MAY 6, 1991

limit : 100

eof : 25

last mod : WED, MAY 8, 1991 12:24 PM

dhkkhhhkhhkhhkihkhhhhkhhhhkhhkhhhhkhhhhkhhkhhhk
If you have a file equation such as
TESTFILE = MYFILE.MYGROUP.MYACCT

you can enter

USING MPE XL TO YOUR ADVANTAGE -
A GUIDE FOR THE APPLICATIONS PROGRAMMER 3215 - 9

SF TESTFILE

and the display described above will be returned. This is
very handy if you have command files that set a particular
file equation to any of many values depending on what you are
testing and you can't remember how it is currently set.

If TESTFILE does not exist this command file will return

The reason for the exclamation points is to prevent MPEXL from
trying to evaluate the 'less than' and 'greater than' signs
as part of the expression.

THE NATIVE MODE SPOOLER

With the release of MPE XL 2.1 came the demise of that
ghastly, ghostly utility SPOOK. Spool files are handled quite
differently in MPE XL 2.1 and beyond. The output spoolfiles
are now written to disk as regular MPE files (with a lot of
special characters to control printing) with the name

dfid.OoUT.HPSOOL

where dfid is the file's device file id. Just as with SPOOK
you can keep the file on disk by using an OUTCLASS parameter
with a low number in your job card. Then, when you raise the
outclass number to allow the file to print it will be deleted
from disk. However, if you use the ;SPSAVE parameter in your
job card, the file will remain on disk even after it has
printed. This gives you automatic report backup. To see what
output spoolfiles you have you can use the LISTSPF command.

The feature I most like about the native mode spooler is
that you can use the PRINT command on the dfid.OUT.HPSPOOL
file while the job is executing! This allows you to view the
progress the job is making along the way which, for long
running jobs, can be very nice.

COMMAND INPUT/OUTPUT REDIRECTION

MPE XL 2.1 and above gives you the ability to 'grab' the
output of any command and write it to a disk file , or to
'feed' input to a command from a disk file. This is a very
powerful feature because it gives you almost unlimited
capabilities for using the operating system to read and write
files. It also gives you the ability to manipulate the output
from commands and use the result as is, or altered, as input
to another command. I have used this feature to create a
STREAM command that traps the job number and output spoolfile
device id and stores them in variables so that I can easily

USING MPE XL TO YOUR ADVANTAGE -
A GUIDE FOR THE APPLICATIONS PROGRAMMER 3215 -10

device id and stores them in variables so that I can easily
manipulate the job. I called my STREAM command STRM so that
I didn't have to catalog it to override the MPE STREAM
command.

This is the command file STRM:

IF FINFO("!JOB","EXISTS") = TRUE THEN
CONTINUE
STREAM !JOB > CMDS
CONTINUE
IF HPCIERR <> 0
PRINT CMDS ;START=2
ENDIF
RESET CMDS
INPUT JOB_NUM < CMDS
ECHO {JOB_NUM
SHOWOUT SP;JOB = !JOB_NUM > CMDS
SETVAR FILE_INFO FINFO("CMDS", "EOF")
IF FINFO("CMDS","EOF") > 2 THEN
PRINT CMDS;START=2;END=3 > DFIDFILE
ENDIF
INPUT DFID_NUM < DFIDFILE
SETVAR DFID RTRIM(STR(DFID_NUM,11,8))
ECHO !JOB_NUM !DFID
ELSE
ECHO
ECHO :
ECHO THE JOB FILE !JOB DOES NOT EXIST
ECHO
ECHO
ENDIF

When this command executes it first checks to see that
there is such a file as !JOB that can be submitted. I could
simply have returned the HPCIERRMSG but I preferred a move
informative and personalized response. 1In this case, if I try
to STRM MYJOB.JOB and no such file exists the command file
returns

THE JOB FILE MYJOB.JOB DOES NOT EXIST

Otherwise, it streams the job and writes the output of
the stream command to a temporary file called CMDS. If the
streaming was not successful (due to a bad job card or
something) then the second line of CMDS is written to the
screen. This contains the error message.

A successful stream will cause the #Jxxx that usually
shows up on the screen to be written to CMDS. This output is
then referred to as INPUT and the value is written to the

USING MPE XL TO YOUR ADVANTAGE -
A GUIDE FOR THE APPLICATIONS PROGRAMMER 3215 -11

variable JOB_NUM which is echoed to the screen so that I can
see what it is.

The command file then executes a SHOWOUT command on the
job and writes the output to CMDS again so that I can trap the
output spoolfile device file id. The actual output from the
SHOWOUT command is:

DEV/CL DFID JOBNUM FNAME STATE FRM SPACE RANK PRI
1]

LP #01234 #3789 $STDLIST OPENED 2048 1
1

OUTFENCE = 1

OUTFENCE 1 FOR LDEV 6

what I want from this output is just the #01234 which, in the
real 80 column world starts in position 11 of the second line
and can be up to 8 characters long. Therefore, I print the
second line of the CMDS file to a file called DFIDFILE and
then use this as INPUT to DFID_NUM which is parsed into a
variable called DFID using the expression evaluator functions
RTRIM and STR. What I actually see on the screen is

#3789
#3789 01234

and what I have is a variable called JOB_NUM that is set to
the job number of the last job I submitted (in this case
#3789) and a variable called DFID which is set to the output
spoolfile device file id of the last job I streamed.

I now have one additional command file that I use to monitor
the progress of my job. I call this one PRT and it performs
a PRINT command on the output spoolfile for the last job I
submitted:

PARM PAGE=0,START=1
PRINT !DFID.OUT.HPSPOOL;PAGE=!PAGE;START=!START

The PAGE and START parameters can be altered as time goes on
so that I can start further and further in to the spoolfile
as it gets longer. For example, when the job has just been
executed I can type

PRT

and see the output from the first line to the end with no
stops. If I see 50 lines at that time and want to check back
in 5 minutes, I can type

PRT 0 50

USING MPE XL TO YOUR ADVANTAGE -
A GUIDE FOR THE APPLICATIONS PROGRAMMER 3215 -12

and the output to my screen will begin at line 50 of the
spoolfile.

You can use these same techniques to write command files
to alter the input priority of a job or abort it or whatever
you choose and have the privileges to do.

If you wish to have output from a command appended to the
end of an already existing file you can specify that as:

SHOWOUT SP;JOB=!JOB >> CMDS

SUMMARY

The MPE XL command interpreter has some very powerful
features that allow you to customize your working environment
and to create simple or complex command procedures to automate
routine functions. The end result for me has been an
increase in productivity and in my level of satisfaction with
working on the 3000. Whether you choose to become proficient
at developing complex command files or just use some of the
more basic features of this operating system, you are sure to
find that the improvements it offers will make your
professional life much more efficient and a lot more fun.

REFERENCES
Cooper, Kevin "A Programmer Looks at MPE XL" Interact volume
8, issue 10

Cressler, Scott and Vance, Jeff "The Life of an MPE XL
Command"
Interact volume 9, issue 9

Mak, James Tsze-Leung "Customizing MPE XL Commands" Interact
volume 9, issue 12

Cressler Scott, and Vance, Jeff "Advanced CI Programming"
BARUG ~ Proceedings of the 1990 Santa Cruz Conference

USING MPE XL TO YOUR ADVANTAGE -
A GUIDE FOR THE APPLICATIONS PROGRAMMER 3215 =13

Paper Number 3216
MAKING QTP RUN EFFICIENTLY

by
John D. Alleyn-Day
Alleyn-Day International
1721 M. L. K. Way, Suite 3
Berkeley CA 94709-2101
415-486-8202

Fourth Generation Languages have great power and can be used
to write processing programs easily and quickly. However,
they also have a reputation for being extremely inefficient
--= a reputation which may not be entirely deserved. Many
programs written in fourth generation languages are ineffi-
cient because the programmer is tempted to use programming
methods without really understanding what the language is
doing.

I am going to discuss a particular example using QTP (Power-
house). The same situation could arise in several other
fourth generation languages. Some of what I will present is
more complex than would normally be the case, but it con-
tains elements that serve as a general example for use as a
cookbook for anyone that wants to follow my technique. Also
my remarks apply principally to Classic machines running
MPE/V. Spectrum machines have different considerations that
will modify what I am considering here.

I have worked at several clients with fourth generation
languages and seen various circumstances in which Dbatch
programs written in QTP or some similar language were taking
excessive times to run. The fourth generation language is
usually used to access data from KSAM files and from IMAGE
databases. Some batch programs have taken all weekend to
run, just +to turn out a report. In some cases, the time
needed was so extreme that the jobs were aborted so that
other users could get their share of computer resources!

It ©became apparent to me that the inefficiencies were not
necessarily an integral part of the fourth generation lan-
guage but rather of the way in which the language was used.
The simplicity of the programming methods encourages pro-
grammers, myself included, to construct very inefficient
programs without realizing the true import of their code. I
will illustrate this for you as we go along.

The usual start to a QTP program (or a QUIZ program) is a
statement along the following lines:

access datafile link to auditfile

MAKING QTP RUN EFFICIENTLY 3216 - 1

followed by various selection, sorting and updating crite-~
ria. Most other fourth generation languages will have a
similar statement +that joins two or more files +together.
The performance problems start right here with this state-
ment. We have to look very carefully at what this statement
is doing.

Let us suppose that these files are big files. In this
context, by a "big" file, I am going to mean about 500,000
records. With files of this size the program will take many
hours to run. If it starts at 5.00 p.m. then it may not be
finished when work starts at 8.00 am the next morning!

If we had written a good COBOL program to solve this prob-
lem, it would have taken only an hour or two to run. Howev-
er, this inefficiency is not an inescapable problem associ-
ated with the fourth generation language. There is a cardi-
nal rule which must be applied. Know what your fourth
generation language is actually doing.

The statement above is asking QTP to read "datafile" sequen-
tially and for each record to read a corresponding record
from +the "auditfile". The records are linked by a "key"
value, implicit in the data structure for our simple situa-
tion. Reading the datafile sequentially is usually fast and
depends significantly on its blocking factor. If we suppose
a blocking factor of 10, then we can estimate +that this
process will take about 40 minutes (I am using 20 I/O's per
second as an average disc access time). If you are set up
for multi-record access this process should take only
minutes, because multi-record access essentially uses a very
high blocking factor.

The part that makes the performance so poor is the random
reads implied by the access to "auditfile". In general,
each record requires a single disc read, and +the random
access process will take about 7 hours, and there is nothing
multi-record access can do about it. If the linkage is to a
detail file rather than a master, then each record will
probably require two disc I/0Os and will take about 14 hours.

So +the major part of the inefficiency of the processing is
not dependent on any specific fourth generation language,
but rather on the processing methods that are generally
encouraged by fourth generation languages. Specific methods
for improving this performance depends on +the particular
language used, but the general approach is the same. I will
illustrate my methodology using QTP, leaving you to make the
necessary adjustments to achieve similar results in your own
language.

Now that we know why our program takes so long to run, we
can set about making it run faster -~ much faster. Twenty

MAKING QTP RUN EFFICIENTLY 3216 - 2

or thirty percent improvement in efficiency will not be
enough; we need it to run five to ten times faster. For
this phase, we adopt another rule, "Use batch techniques for
batch programs". This shouldn't be anything new. The
"Image Handbook" in +the chapter called "Throw off your
Chains" contains lots of hints for handling database files
in a Ybatch environment. The fact that this is a fourth
generation language rather than a third generation 1language
shouldn't make much difference. 1In our QTP program we
totally ignored the tenet "paths should be reserved for on-
line wusers". The major reason for the poor performance is
the keyed reads that are being carried out to obtain data
from secondary files. How can we avoid this?

We have to avoid the random reads. In fact, we have to go
back a few years to the heyday of mainframes and batch
processing and take a look at how we got our COBOL program
to do the same process in an hour or two.

How did we write our batch COBOL program without random
access? We made extensive use of the sort and merge pro-
grams and our COBOL program did a lot of record matching.
Specifically, we would take our two files, extract the data
we needed and add to each one a "record type" to identify
which file the record came from. Then we would merge them
and sort them by a composite key, made up of the key that we
wanted to match on followed by the record identifier.

We would then have a file in which all the data for a par-
ticular key would be grouped together, with the first record
of a group coming from the first file and the second record
coming from the second file. At this point our COBOL pro-
gram would merge these two records into a single composite
record and write it out to a new file.

This file contains precisely the data that we would have got
from our "access" statement. However, except for the
record matching, we have used only standard record extrac~
tion, sort and merges, all of which have been carefully
developed over the years for optimum efficiency. The COBOL
record matching program is also reading files sequentially
and should therefore be very efficient as well.

How can we do this for our own case, without having %o write
a COBOL program? The first parts of +the processing are
fairly elementary and I don't plan to describe +them in
detail. Use SUPRTOOL or COPYRITE (or write a short program
in QTP) to extract the data and create the new "record-type"
field. The extracts should have identical formats, with
locations for each field that will eventually be needed, and
the second file should be appended to the first. Sorting
these extracts will give us the file described above with
the records grouped by matching key.

MAKING QTP RUN EFFICIENTLY 3216 - 3

From here we have two possibilities. If you have been using
SUPRTOOL then you will also have SUPRLINK which will do the
record matching for you. If you don't have SUPRTOOL, then
we have to use QTP to get the same result, and I will now
describe in detail how you do this.

Actually, I am going to describe a QTP program that does
rather more than this. However, you can use this as a model
and use just the pieces that you need. This program was
written for an "audit" process" in which we were concerned
with changes that were being made manually to a database and
we wanted an independent check on those changes. For +this
purpose, we wrote a simple extract routine in QTP +that
gorted and copied the dataset contents to an MPE flat file
before any changes were made. After the manual changes were
complete, the same extract was run again to produce a second
MPE file. We then compared the two files, to determine the
records that had been added or deleted.

In this case we were interested not in matching records, but
in non-matching records, so the program is more complex than
in the simple case above. Here is the QTP program. The
file "auditnew" is a combination of the two files sorted as
described above.

access auditnew
sorted on terminal-key, map-key, record-type

temporary n-data character¥*26
temporary n-flag integer*1
temporary p-flag integer¥*1
temporary p-data character*26

item p-flag
item p-data
item n-data
item n-flag

n-flag at record-type
n-data at record-type
map-key + terminal-key
record-type

subfile temp2 keep alias delete-file &
if (p-flag = 1 and n-flag = 1) &
or (p~flag = 1 and n-flag = 2 and p-data <> n-data) &
include p~flag, p-data

subfile temp2 alias add-file &
if (p~flag = 2 and n-flag = 2) &
or (p-flag = 1 and n-flag = 2 and p-data <> n-data) &
include n-flag, n-data

subfile temp2 alias last-record at final &

if n-flag = 1 &
include n-flag, n-data

MAKING QTP RUN EFFICIENTLY 3216 - 4

subfile temp?2 alias first-record at initial &
if record-type = 2 &
include record-type, map-<key, terminal-key

What we have done here is to produce the program using QTP
that we would previously have written in COBOL. We have set
up fields in "working storage" to keep track of data from
previous records. Be very careful when using this program.
The order of some of the statements, particularly the "item"
statements, is crucial for proper operation.

Actually, this program won't quite solve the original prob-
lem. It actually finds all the non-matching records, rather
than the matching records, a task which is very tricky to do
in QTP using the conventional "access" statement, and be-
comes impossible in this case where we are comparing two MPE
files. However, the changes needed to get matching records
only are trivial and left as an exercise for the reader.

One final point. A programmer must use judgment in applying
the techniques I have illustrated. On small files the
increased efficiency possible with these techniques will
probably not repay the time you spend doing the additional
analysis. However, if you run a program very frequently,
analysis and reprogramming for greater efficiency may be
very valuable, even if small files are involved. Some
installations run small reports everyday at lunch-time in
preparation for the afternoon's work. In such a case, the
extra effort to increase speed may be easily justified.

Finally, I suggest +that the Fourth Generation Language
Developers consider this problem. Many vendors claim that
their systems run batch programs. This is true -- in a
way. Fourth Generation Language programs can be run in
batch, but as I have demonstrated, they use on-line tech-
niques most of the time. This should be changed. Language
statements used by the fourth generation languages do not
necessarily stipulate the processing actually carried out.
The example that I used from QTP now imply the use of keyed
reads, leading to inefficient batch programs. Why could not
a Fourth Generation Language interpret the same "access"
statements as extracts, sorts, merges and record matching,
similar to the processes that I actually used? A fourth
generation language that could choose its processing method
based on whether it was considered to be batch or on-line
could achieve a substantial improvement in efficiency, and
an increased market acceptance.

So far as I know, the fourth generation language vendors
have not seen this as a problem that they need to address.
However, as mentioned above, there is one group that has
stepped into the breach, namely Robelle. They have a part
of SUPRTOOL called SUPRLINK, which carries out the matching

MAKING QTP RUN EFFICIENTLY 3216 - 5

of records in an efficient manner and which appears to have
all +the capability necessary to solve the problem that I
have described here.

To sum up, if you are having problems with your fourth
generation language efficiency, there are +two steps to
follow. PFirst, wunderstand exactly how your fourth genera-
tion 1language operates and carries out its processing.
Secondly, make use of batch techniques for your batch pro-
grams and not the on-line techniques that you may be seduced
into using by the your fourth generation language. And, of
course, use your judgment as to when it is worth the trouble
and when it is not.

MAKING QTP RUN EFFICIENTLY 3216 - 6

Introduction

Paper # 3217
Turbolmage Logging
By: Larry Boyd
Bradmark Technologies, Inc.
4265 San Felipe, Suite 800
Houston, TX 77027
(713)621-2808

Transaction logging is a feature provided with standard Turbolmage that can save you from losing
hours, days, or even weeks worth of data. This paper will discuss issues such as who should use
transaction logging, what can logging be used for, how do you get started, and some logging tips. But
first we need to talk about some of the myths about logging.

Myths about Image Transaction Logging

There are three major myths about Image Transaction Logging. The first revolves around
implementation, the second around performance, and the third about usage. All will be briefly
discussed now, but covered in greater detail later.

1.

“Logging requires source code changes.”

Logging DOES NOT require source code changes. Once logging has been enabled
on adata base all Physical transactions (DBPUT, DBUPDATE, DBDELETE) will be
logged.

“Logging is a heavy load on the system.”

Although logging does use some resources, most users WILL NOT notice any
degradation in performance. In most on-line applications logging will have no
statistical effect on performance. If this is a question, enable logging for a week and
monitor the performance.

“Logging is for Recovery.”
Many of those who log DO NOT use logging for recovery. There are many additional

usages. Logging records ALL adds, deletes, and updates, so the log file can be a
valuable resource for resolving specific problems and issues.

Turbolmage Logging
3217 -1

Who Should Use Logging?

Insome cases logging can be used as an optional aid to an application. Inother cases, logging should
always be used as protection.

1. Logging should ALWAYS be enabled when using the Output Deferred option
on a database.

Both Turbolmage/V and Turbolmage/XL have the capability to enable
Output Deferred. This can be done using DBCONTROL for the duration of
the current DBOPEN or it can be turned on using DBUTIL for all DBOPENS.

With this option Turbolmage/V will not write Image Buffers to disc until they
are needed by buffer management. On XL, the MPE Transaction Manager
is bypassed and data pages are held in memory until no more memory is
available. Also, on either machine, a DBCLOSE will cause the data to be
written to disc immediately. Since data is not written to disc and no log of
the changes are made by MPE, a system failure is very likely to cause major
structural damage to the data base. The ONLY way to repair this damage
correctly is touse DBRECOV orto restore the data base from a backup tape.

2. Logging should be used if you have a High Volume of transactions
processed between your database backups.

If recovery by hand from a failure would require a large amount of time, then
logging should be used. Since there are two ways, Roll-forward and Roll-
back, to use DBRECOV, if applications are set up properly, recovery can be
done in a matter of minutes instead of hours or even days.

3. Logging should be used if transactions have No Paper Backup.

Often in today’s world customers place orders over the telephone and there
is no paper backup. Here it would be almost impossible to recreate all
transactions if recovery was necessary.

4. Logging should be used if an Audit Trall is required by internal or external
auditors for changes to a database or dataset.

With Image Transaction Logging and a log file reporting system, such as
DBAUDIT, all changes to a database, dataset, or even to a field can be
reported. The log file keeps up with the change and the environment from
which the change was made (i.e. Program, User, Logical Device, etc.)

Turbolmage Logging
3217-2

5. Logging should be used if there are many Remote Users modifying the
database.

Remote users are difficult to communicate with or monitor easily. Since
almost all contact is over the telephone you cannot see the input screen or
data. This makes it much more difficult to recreate data from failures and
give less control of the physical access to data bases, which may increase
the need for an audit trail. With logging enabled you can examine the log file
to see what was exactly entered when they report a problem and to monitor
all accesses to data bases.

6. Logging should be used on databases which require long backup times.

Some databases take quite a while to backup. If logging has been enabled,
your data base will be protected if a failure occurs. Therefore, backups can
be reduced from daily to every other day, for example, or from daily to
weekly.

Remember to consider the volume of changes (see #2). If the volume is not
considered high, meaning recovery would not take too long, you can
increase the time between backups.

7. Logging can also be used as a very good debugging tool.

With all the information given in the log file, you can usually find the smallest
of problems. This information can be used to verify that the data is in the
correct format, or that the IMAGE intrinsics are being called in the correct
order.

8. The information can be used for monitoring performance problems.

When are the high I/O periods for updates? If all of the updates are being
done during a small period of time, can they be spread out over a longer
period to reduce peak time? Which programs do the most updating? Can
these programs be reviewed for performance evaluation?

What Can Logging Be Used For?
Recovery

Theprimary use for logging is recovery. There are three differenttypes of recovery.
They are Intrinsic Level Recovery (ILR), Roll-Forward recovery, and Roll-Back
recovery. Both Roll-Forward and Roll-Back recovery require Image Transaction
Logging, whereas ILR does not.

ILR is a process that is used to ensure the physical integrity of a database. This

keeps broken chains from corrupting the database. Once enabled, the logging and
recovery is done automatically.

Turbolmage Logging
3217-3

“*NOTE** Although ILR is available on the XL machines, it is no longer
required, or recommended, to protect the structural integrity of the data-
base. This is because Turbolmage is integrated with Transaction Manager
(XM). There are other changes to ILR that can be found in the Turbolmage/
XL Database Management System Reference Manual (#30391-80001)
appendix H.

Roll-Forward and Roll-Back recovery are used to ensure the logical integrity of a
database. A logical transaction is defined as a sequence of one or more physical
transactions to a database. To define a logical transaction in a program the
DBBEGIN and the DBEND (or DBXBEGIN/DBXEND can be used on XL) proce-
dures are used to surround all of the DBPUT, DBDELETE, and DBUPDATE calls
(physical transactions) that make up the logical transaction.

If Image Transaction Logging is enabled on a data base, DBRECOV may be used
to recover the data base. In the event of a system or data base failure, when
DBBEGIN and DBEND are used, the completed logical transactions can be
recovered . DBRECOV will not apply the physicaltransactions if a DBBEGIN is found
without a DBEND marking the end of the logical transaction. When a “soft” failure
occurs on the data base, the Roll-Back recovery can be used to “erase” the physical
transactions that were added before the logical transaction failed. When a “hard”
failure occurs, Roll-Forward recovery is used to re-apply all transactions since
logging was started.

Source code changes are required to convert a sequence of physical transactions
into a logicaltransaction by surrounding the physicaltransactions with DBBEGIN and
DBEND. Without the DBBEGIN and DBEND recovery is still possible, but not at the
logical transaction level.)

A very important development of IMAGE has been the expansion of the logical
transaction to more than one data base. Atone time there was no way to tell IMAGE
that a logical transaction included physical transactions to several data bases.
UNTIL NOW! In the current versions of Turbolmage, on both MPE/V and MPE/XL,
there are new DBBEGIN/DBEND modes. These will allow a logical transaction to
include more than one data base, and is called MDBX, or Multiple Data Base
Transaction.

Audit Trail
As stated earlier, there are many additional uses for Image Transaction Logging. It
is a very good process for audit trall reporting. Not only can you report the actual

changes to the data base, but you can also report the specific user, port, or program
information. So, you can monitor changes in complete detail.

Turbolmage Logging
3217-4

With the user and program information you can use logging to see what is actually
happening to adatabase. This canbe great for debugging a program (Did it update
all the data sets correctly? Did it update them in the correct order?).

Testing
In a third-party application you can use logging to verify that the product does
everything correctly. This can greatly reduce the guess work while testing a third-
party application, or even your own.

Tuning
For tuning, logging can be used to see which program, data base, or data setis used

the most. Then you can allocate your time based on where optimizing will help the
most.

How Do You Get Started?

There are several steps that must be completed to initiate transaction logging on a data base. | will
discuss the basic steps necessary to start logging to disc, but for more detail see the Turbolmage
manual (for both V and XL, see chapter 7).

1. Give Logging (LG) capability to the account. First, the system manager
must give the account LG capability.

:altacct account;cap=ia,ba, ..., LG

2. Give all users who will be using logging Logging (LG) capability. This
includes application users and the logging manager.

:altuser mgr;cap=ia,ba, ..., LG
:altuser userl;cap=ia,ba, ..., LG

3. Build the log disc file. When logging to disc you must build the new file and
allocate space for it.

:build discfile;disc=1000,32,1;codc=log
The discfile is a standard MPE file name, assigned by you. If the discfileis
five characters or less, and ends with “001", you can specific AUTO on the

GETLOG command. Then logging will open a new log file when the current
one is full. Otherwise, logging will fail when the log file fills.

Turbolmage Logging
3217-5

4. Log on as a user with logging or operator capability to obtain a log identifier
(logig), and link the logid to a log file.

:Hello mgr.account

:getlog logidtlog=discfile disc
The logidis a variable that is assigned by you.
5. Run DBUTIL to set the data base to the logid.

:run dbutil.pub.sys
>>set DBNAME logid=/ogid

>>enable DBNAME for logging

or
>>enable DBNAME for Roll-back
Enabling a data base for logging sets the Roll-forward switch, and enabling
a database for Roll-back sets the Roll-back switch, along with the Roll-
forward switch.

>>exit
The above steps are one-time operations and do not need to be repeated.
Once the data base has been enabled for logging, no one can open the data base until the logid has

been “activated” by the console operator using the :LOG command (If the :ALLOW command has
been executed, the use must have logging or operator capability).

:log logid,start

There are several concerns that should be considered to protect the data base and log files during
backups and recovery. These are described in detail in Chapter 7 of the Turbolmage manuals.

To turn off logging, the steps are reversed and the commands are a little different:

:log Jogid,stop

:run dbutil.pub.sys

>>disable DBNAME for Roll-Back
>>disable DBNAME for logging
>>exit

:rellog logid

Turbolmage Logging
3217-6

Logging Tips

Since Transaction Logging has very powerful features and many uses, following is a shortlist ofitems
to consider.

With multiple data bases you should use the new MDBX option of DBBEGIN/DBEND. Ifa
failure occurs during the “window" of the DBEND, the logical transaction will still be complete.

Ifyou make any structural changes to a data base then a backup should be done and logging
must be restarted with a new log file. The log file must match the data base structure (same
set and item names and numbers).

On DBUPDATES, Image does not include the Key fields of detail data sets, only the relative
record number.

With DELTA logging, IMAGE logs only the fields from the first item changed to the last item
changed. This reduces the record size necessary of the log record, thereby, reducing the
amount of storage space.

Logging does NOT automatically stop when the :LOG Jogid,stop command is issued. A flag
is setand when the last active user closes the data base, then logging will stop. This means
that if someone fails to log off at the end of the day, you will not be able to stop logging and
do backup.

Conclusion

We have quickly looked at logging and its many advantages. We have covered when you should log,
what you can do with logging, how to get started, and tips on logging.

We did not cover the disadvantages, nor the details on managing the logging process. You should

read Chapter 7 of the Turbolmage manual before starting. But do not be afraid of logging. Ithas very
good uses and should be used in most of your shops.

Turbolmage Logging
3217-7

PAPER # 3218
"THE DATA WAREHOUSE APPROACH
TO DEVELOPING DSS/EIS APPLICATIONS"
KIRK W. BUECHER
HEWLETT-PACKARD GREELEY SITE
700 71ST AVE GREELEY, CO 80634 (303) 350-4291

Intro -~

Imagine that you are back in ancient Rome, you are a slave,
owned by rich and powerful masters, (that's not too hard to
imagine, is it?). You know that someday you may be asked to
fight a strong and resourceful Gladiator known as EIS or
Executive Information Systems, for the entertainment of your
masters. There are several possible outcomes : You may have
been 1lucky up to this point and have not yet been asked to
fight. You may have been unlucky and were called into the
ring to do battle against the mighty EIS, unfortunately you
had little or no training, poor tools or weapons, and limited
support and were beaten. Perhaps you were more talented or
better equipped and managed to win your first battle against
EIS, but are now being asked to go into the ring again to
face a new more complex EIS.

Regardless of what category you or your systems group may
fall into, the purpose of this paper/presentation is to give
you a edge so that your first or current EIS challenge is
successful. That edge is "The Data Warehouse Approach to
Developing DSS/EIS Applications".

Decision Support Systems and Executive Information Systems
have been hot topics in computer trade journals for the last
three or four years. The focus of most of these articles is
on the tools, the user interface, the many pitfalls, or the
amazing advantages to implementing a DSS/EIS application.
What is often over looked or discounted is the importance of
the data source for these applications.

This paper/presentation will focus on the foundation that
often determines the success or failure of these
applications. Sometimes known as a "subject database",
"summary database", or "data warehouse", it is this structure
that is one of the true keys to developing successful DSS/EIS
applications.

3218 - 1

A Quick Refresher -

What is an EIS? A common definition is that an EIS system is
intended to provide easy access, to easy to understand,
primarily graphically displayed, individually specified,
information that can be interrogated and manipulated by
non-technical, often managerial end users.

This type of system on executive's desktops has the potential
to allow them to :

o Simplify - sift through immense quantities of data and
quickly extract relevant information

o Accelerate - eliminate the constraints of time and distance
to the flow of information

o Expand Thinking - widen the horizon of thinking and
understanding of the business

o Motivate - affect people's attention and behavior

Index Group consultants active in this area, have seen EIS's
proven crucial to executives making major changes in business
directions (such as shifting from a product to a market
focus), organizational structure (especially flattening the
organization and the elimination of staff functions) and
organizational communications patterns (as in moving to
global product sourcing).

If taken to its full potential, an EIS system can be the
informational nerve center, the "vital signs" monitoring post
for an organization.

Although the concepts of an EIS have been in existence for
over a decade in academic circles, it wasn't until the 1last
year or two, that the tools and technology were widely
available and affordable enough for most companies to develop
their first application. Five years ago, the only EIS tools
a firm could purchase were from Comshare or Pilot Executive
Software, ran only on large IBM mainframes and cost as much
as $300,000.

3218 - 2

Todays tools are often PC based, priced under $1000, are
easier to develop in, and in many cases have more features.
It is also very 1likely that you already have some of the
pieces needed to build a complete EIS application.

The major components of EIS tools are data
retrieval/extraction and data display/manipulation.

Beginning with data extraction, the tools range in ability to
access data in a single format on a single platform to many
formats on PC's, Mainframes, and Unix machines. Query is one
example of the low end of this range and HP's product,
Information Access an example of the high end.

With data display/manipulation, there is another range of
capabilities. With these tools, the spectrum can be broken
down based on flexibility of the display, "drill down"
features, the ability of playing "what if" games, the ability
to perform more in depth analysis of the data, and ease of
use for the user. Some examples of this range would be
Gallery Collection or Harvard Graphics at the low end, Lotus
123, Excel, Forest & Trees somewhere in the middle, and
PowerPlay, Lightship, and Level V near the high end. All of
these packages have deferent strengths and weakness of
feature sets that make any sort of comparison rough at best.
Newwave and Windows 3.0 can also be powerful supplements to
these tools. It is important at this point to note that most
display tools have some data storage requirement. These
files or databases are simply needed to drive the display
tool. They are not the original source of the data or the
"data warehouse". They are the holding area for data that
the display tools need to provide "drill down" capabilities
for example.

The Data Warehouse - Intro

The Data Warehouse is an emerging technique for information
resource management. To quote William H. Inmon, a noted
database author and lecturer, "If the 1970's were the age of
database, and the 1980's were the age of PC's and
fourth-generation 1languages (4GLs), then surely the 1990's
will be the age of the data warehouse.®

3218 - 3

The premise behind the data warehouse is to deposit and
maintain, on-line, all pertinent information with full
history retention, integrated data along the 1lines of the
major subjects of the corporation. It is important to note
that the data warehouse contains fundamentally different data
from classical operational databases. Operational databases
contain current-value data (data that is accurate at the
moment of usage). Inventory levels, account balances, and
current addresses are all common forms of current-value data.
In contrast, the data warehouse contains data that is
accurate at some particular moment in time (that is, data
over a time perspective).

For example, imagine an airline's decision process when its
current "Summary" style EIS system points out that its
on-time record is poor in comparison to the Industry average.
What can be done? Management can not simply yell at everyone
to "Hurry up!" Someone must 1look at the actual detailed
history and analyze the factors that 1led to those 1late
departures and arrivals. It must be possible to determine why
flight #189 from Denver to San Diego was twenty minutes 1late
on May 6th, 1991.

Using another analogy that points out one of the common short
comings of many EIS applications; Imagine that you are trying
to ford a wide, muddy river. Are you interested in the
average river depth, average current speed, average bottom
composition, highest water 1level this month, and highest
level year to date? These may be interesting data points,
but if that is all the information you have, you may have a
rough crossing. What you really want to know is the shortest,
safest place to cross the river.

It is because the data in the warehouse is historical and
integrated across application boundaries , that it is the
ideal foundation for EIS processing. The data warehouse's
main purpose then becomes to serve as the source of
reconcilability for the EIS. Data integrity and consistency
are key to any data warehouse. The value comes from the
explicit agreement, across systems, on the standard data item
names, representations and meanings. Data items can be
transferred and still have the same meaning regardless of
context.

3218 - 4

A number of leading companies, including Bell Atlantic,
American Airlines, CcCitibank NA, Bankamerica Corp., AT&T,
Liberty Mutual Insurance Co., and K-Mart Corp., have in place
or are implementing systems of this type. Even IBM has
heralded this technology, due to how well it fits with their
"Repository" strategy.

The current EIS headache -

When beginning an EIS project, it quickly becomes apparent
that the data Management wants, is often spread across
several databases, contained in files, and in a spreadsheet
or two. In examining the data sources, it is common to
discover that the update timing, item naming conventions,
formats, and structures, all differ greatly. This makes data
synthesis, analysis, or comparison very difficult. Without
major push-ups by the EIS software and the people developing
the application, the end users are really limited to using
the data in only a slightly different way from the purpose
envisioned when the data was first automated.

If your company is lucky or smart enough to have historical
data available electronically, users generally cannot pull
data from these sources to merge with other sources. This is
because once a data item has been removed from its original
application and the further from that application it moves,
interpreting it correctly is and becomes more and more
difficult.

If a data item cannot be correctly understood, it cannot be
combined with other information to manufacture a new product.
Instead, it is 3just data pollution. Once this type of data
pollution enters your EIS application, it can throw you into
another common EIS trap. One of constant justification,
reconciliation and research into why your EIS's data just
doesn't seem to add up or correlate to some other source that
the users think it should.

To add to these problems, as optical data storage comes down
in price and gains acceptance, we will see an explosion of
new data and applications as increasing amounts of textual,
graphical, audio, and video data is automated and put online.

3218 - 5

The Data Warehouse is the answer. By making connections
between data and its interpretation consistent, a data
warehouse can add this value. It makes different
application's data 1like different nation's currency. The
currency has value where it originates but must be translated
outside its issuing country. The more widely understood the
data is as negotiable information, the more valuable it is.
The data warehouse acts as a filter so systems groups can
accumulate information and develop a way of managing mixed
systems that retain the data's content and make it
consistently available and valuable to the end users.

Data warehouse components -

Data warehouse consists of three functional components, the
data warehouse's database, the warehouse's directory or
dictionary, and the warehouse's filtering or conditioning
system.

The data warehouse's database contains all the company's data
for a given subject area in a relational database management
system. (It would be possible to do in Image, but this is not
recommended. Image vVvs. Relational will covered briefly in a
later section.) It establishes information authority,
superseding that of the production application system's. As
it evolves, production systems will be considered more as
"data in process" systems, while the data warehouse contains
edited and audited data in rationalized and integrated data
structures.

The warehouse's directory/dictionary defines the data stored
in the data warehouse's database. The directory/dictionary
could be implemented as a commercial data dictionary or as
extensions to the DBMS catalog. It would contain data item
names, edit rules, formats for data, name and structure
mapping between various data sources and the data warehouse
database's accepted internal format. Additionally, it
controls the data conditioning process. The mappings are
triggered by the conditioning system when data is entered
into the data warehouse's database.

3218 - 6

The warehouse's filtering/conditioning system is a collection
of procedures and control statements for extracting data from
sources outside the data warehouse. It then restructures,
renames and reformats that data according to the standards
stored in the directory/dictionary. The
filtering/conditioning system is implemented using a
fourth-generation 1language or a data manipulation product.
(Cognos's Powerhouse and HP's Information Access would be
examples of each of those.) Some of the other functions of
the filtering/conditioning system are to validate data
quality while reporting results back to the originating
system and to update the warehouse's dlrectory/dlctlonary
Once this system is in place, it does not eliminate the need
for application (source) systems to edit and audit data. It
is impossible to ensure that edits and audits are performed
or performed properly at the first processing point. Data,
therefore, must be re-examined before being loaded into the
data warehouse.

Issues - -
IMAGE vs. Relational -

When building a data warehouse, it is highly recommended that
a relational database package be used. Reasons for this
recommendation include the outstanding flexibility of
relational (which is very critical in the early stages of the
data warehouse development), the portability across
platforms, and standards that SQL brings with it.

In the non-HP world when a EIS type system is discussed, the
use of a relational package is considered to be simply one of
the basics needed to be successful.

Oon the other hand, if your shop does not have relational
package in house, do not add to your already large challenge,
by trying to learn and implement relational while building a
data warehouse and EIS applications. Stay with IMAGE, it is
where you already have some level of expertise, it is stable,
and there is a wealth of modification/monitoring/performance

tools available. In addition, it is very low cost when
compared to relational and can out perform relational in many
cases. Stay with IMAGE but start making plans to move to

relational. It is the better solution.

3218 - 7

(Note: There are many more global issues to be considered as
well when contrasting IMAGE vs. Relational. Please see the
Bibliography and other proceedings for more information
sources.)

Selecting items and timing of extracts -

In most cases the data needed to populate a data warehouse
will be determined by the wants of the executive first, then
by the natural associations of the key data with secondary
data needed to add meaning and depth of understanding. It is
important that the MIS group ask the right questions of
management and that management understands that they have a
key role in determining what data on what schedule will be
moved into the data warehouse. Once this has been decided,
the extraction process is put in place so that the original
source's data can be routinely transferred through the
filtering/conditioning module and into the data warehouse
data base. For the sake of audit balancing, one strategy
would be to use a common synchronization point, hourly,
daily, weekly or monthly, at which point new data is
transferred.

Another problem area arises when a key data item is
identified and is found to be in two or more sources. Often
the problem is compounded when different formats or values
are discovered. There are no secrets to resolving these type
of problems, it Jjust takes time. Time is needed to
investigate the source systems, interfaces between systenms,
performance issues, and closeness to the real world "thing"
that this data represents. Sometimes even after all the data
about the data is gathered it comes down to a best guess
tempered by how "pure" the data feels or how global the
format appears.

3218 - 8

Getting Started -

Companies that implement a data warehouse do so because their
production applications cannot support the intensive analyses
or top-down management examinations of data that is needed.
In the absence of such an intense, management driven need, it
is unlikely that a data warehouse will be successful. Without
a data warehouse, EIS systems are more difficult to build and
implement.

Too much planning will kill a data warehouse. The reasoning
here is that building a data warehouse often involves a 1lot
of politics, some up-front technical confusion, a data
management learning curve, and a considerable re-education
about an organization's information. If an attempt is made to
answer every objection before moving toward implementation,
the project will be slowed to the point of losing your
executive sponsor's support.

Keep in mind that the complete analysis of an organization's
data normally takes years and is never complete. Do not allow
others to set this as a goal for you or for the data
warehouse. If this happens, rest assured that success will be
very elusive. Instead, meet the EIS driven need behind the
first project. Make that successful, and then build on it.

Pick a project big enough to have a good return on your
companies investment, but small enough to be reasonably
accomplished within six to nine months. If no concrete
results are seen within this time frame, funding and
management's commitment to the project could easily be lost.

Use whatever software is already available for your first
attempt. Image or relational PC based databases, application
generators (4th GL's), report writers, and existing data
dictionaries, should all be used and leveraged from.

3218 - 9

One area not to cut corners on, is the user interface tools.
Here, a small amount of money, less than a $1000, can go a
long way. Look at the many PC based EIS tools with the end
users. Find a package that meets their needs and matches
their skill level. Get the most out of that package by
coupling it with Windows 3.0 or NewWave. With a slick front
end that makes your users happy, it 1is then possible to
develop your data warehouse and it's infrastructure without
heavy time constraints.

Choose current staff members who already have experience with
the existing tools .and are willing to use then in a new way.
Look for people that have a good data management perspective.
Anyone with relational experience or eager to 1learn
relational technology, would be a plus.

Summary -

Your time is coming. That time when your rich and powerful
masters call your name to come and challenge the mighty
Gladiator, EIS. It doesn't matter if this is the first or
fiftieth time, consider building a data warehouse.

It has the ability to capture and maintain, on-line, all
pertinent information with full history retention. A data
warehouse can improve the Executive's access to data for
decision making at all levels. Instead of seeing just summary
data or averages for a year or a month, analysts and
Executives alike can look at the actual data and base their
decisions on more solid ground.

With the data warehouse as a powerful weapon in your hand,

you will be able to defeat todays challenger and be better
prepared to meet the challenges of the future.

3218 - 10

Bibliography -

1. Parvin Rahnavard, "Decision Support System", Interex
Orlando Proceedings, 1988.

2. Terrence O'Brien, Janet Eden-Harris, "Executive
Information Systems"™, Interact June 1989.

3. Terrence O'Brien, Janet Eden-Harris, "How to Build an
Executive Information System Using Today's Technology",
Interex San Franciso Proceedings, 1989.

4. Will McClatchy, "EIS Powers Executives", InformationWeek,
October 9, 1989.

5. Gary Guiden, Douglas Ewers, "The Keys to Successful
Executive Support Systems", Indications 5:5,
September/October 1988.

6. Cort Van Rensselaer, "Real-World Data Managenment",
Computer Decisions, 1988.

7. J.A. Zackman, "A Framework for Information Systems
Architecture", IBM Systems Journal 26:3 1987.

8. John Bongiovanni, "Solving the EIS Puzzle, The Real
Story", Information Center Manager, AT&T Denver, 1990.

9. Mike Phillips, "Future Trends in Data Resource
Management", DAMA, Denver, January 11, 1989.

10. Cecilia Bellomo, "To Go Relational or Not? An
Introductory Guide", Interact 10:2, February 1990.

11. 0.J. Larson, "Strategic Importance of Relational Database
Technology", Interex Nashville Proceedings, 1989.

12. William H. Inmon, "The Cabinet Effect", Database
Programming & Design 4:5, May 1991.

3218 - 11

INTEREX ’91 - Paper #3219

Critical Item Update -
What Will It Do For Me?

M
Steven M. Cooper
Chairman, SIGIMAGE

Allegro Consultants, Inc.
2101 Woodside Road
Redwood City, CA 94062
UUNET: scooper@allegro.com
Voice: (415) 369-2303
FAX: (415) 369-2304

For over a decade now, one enhancement reqtl)lest has been consistently at or
near the top of every list submitted to HP: add the ability to update critical items to
IMAGE. At the Boston Interex conference in 1990, committed to the
implementation of this long-awaited feature. Now that it'’s coming, exactly what is
coming? What will it do for me? This paper attempts to answer these questions.

First, let's make sure that we understand what the problem is today. IMAGE
(aka TurboIMAGE) manages records for us. We add new records by calling
DBPUT and delete old ones by calling DBDELETE. These records are composed of
fields. After we obtain a record by calling DBGET, we can ca.lufdate a value in a field
by changing the value in our copy of the record and then calling DBUPDATE. But
not always. If we attempt to ¢ an]ge the value of a field that IMAGE considers a
"special” field, then the DBUPDATE will fail, returning the exceptional condition
#41, "Attempt to Update a Critical Item".

What does IMAGE consider a "special” field? There are three kinds of fields
that are "special”. Master datasets contain records that are retrieved by a key value.
All records in a master dataset must have unique key values. The field that is
desiinated as the key in a master dataset is the first of the "special" cases and cannot
be changed via a call to DBUPDATE.

Detail datasets contain records that do not have to be unique. They may be
retrieved sequentially, but are more often retrieved through chained access, that is,
records that contain the same value in a search field are chained together by
IMAGE for rapid retrieval. A detail dataset may have 0 to 16 such search fields,
determined by the database administrator (dba). These fields are also "special”;
none of them can be changed (yet) via a call to DBUPDATE.

And lastly, when accessing these detail dataset records by reading up or down
a chain, the dba has a choice of retrieving the records in chronological order (the
order in which they were DBPUT into the dataset) or in sorted order, sorted
according to the value in another field, known as the sort field. Each of the search
fields may have a sort field ;:peciﬁed. These sort fields are also declared to be
B c;jli’all)" ?gsmuch as IMAGE will not allow them to be changed via a call to
ATE.

The IMAGE manual refers to these "special" fields as critical items. Thus, an
attempt to change these fields is commonly known as the critical item update
problem. (Yes, there is a difference between "items" and "fields", and we should be
calling this "the critical field update problem". But as long as it gets solved, I don’t
much care what the manual cafls it.)

Critical Item Update - What Will It Do For Me?
3219- 1

The following is my understanding of the enhancements underway by HP, as
gresented by HP at the March, 1991 Reno SIGIMAGE meeting. As this software
as not yet been released by HP, we must consider this information preliminary and
subject to change prior to its release. Use this information only to start the flow of
creative juices; don't start changing procedures until you receive the updated
software and carefully review the associated documentation. The plans that HP has
shared with us include enhancements to TurboIMAGE/XL only, not its MPE V
counterpart.

By default, IMAGE will continue to function as it always has, rejecting all
attempts to DBUPDATE a change to a critical item. However, the database
administrator will be able to use DBUTIL to enable and disable the new critical
item update feature on a database-by-database basis. When enabled, you will be
able to change two of the three kinds of "special” fields via a call to DBUPDATE:

* If you change the value of a search field in a record of a detail
dataset, then IMAGE will remove the record from the chain that it is
currently on (corresponding to its original search field value) and
place it on another chain. If the record has other search fields that
were not changed, those chains will be unaffected.

* If you change the value of a sort field in a record of a detail dataset,
then IMAGE will reposition the record in that chain, according to its
new sort value. Again, all unchanged chains will remain unaffected.

* IMAGE will continue to reject attempts to change the key value in
master datasets.

Since it is the search and sort fields and not the key fields that are affected,

HP may call this feature SSUPDATE (for Search and Sort). Incidentally, we

hwill continue to set the MODE parameter of DBUPDATE to one, as we always
ave.

Some programs have probably been written that expect the DBUPDATE to
fail if someone attempts to update a-search or a sort field. Of course, these
programs will continue to work as before by default. But, if the database
administrator enables the new feature, these programs may begin performing
updates that would have otherwise been rejected. For this reason, two other
intrinsics have been enhanced: A new mode for DBINFO will inform the program if
critical item updates have been enabled for this database. A new mode for
DBCONTROL will allow the program to turn off the feature for itself, even if other
accessors of the database may be using it.

Now that we understand what we can’t do today and what we will be able to
do soon, let’s examine what this much-requested feature will do for us. First,
consider the unsophisticated user using a tool such as QUERY. Our user knows how
to FIND records and knows that values that have been found can be updated with
the REPLACE command. However, at some point in the past, the user tried to
REPLACE the value in a search field only to have it fail with some mysterious error
message. When brought to the attention of a data processing person, the advice was
to DELETE the record, then ADD it back again, carefully reentering all of the
fields. Even if no mistake was made in the reentry, the new record will be placed at
the end of all of the unsorted chains to which it belongs, thereby destroying the
original chain chronology.

Critical Item Update - What Will It Do For Me?
3219- 2

Once the database had been enabled for critical item update, our user would
have been able to REPLACE without problem, never having to understand the
database’s design, IMAGE internals, or the DELETE{ADD kludge. Programs such
as QUERY will automatically, silently, and efficiently take advantage of this new
feature.

How about more sophisticated users, perhaps the database administrators
themselves? On several occasions, I have considered linking a new automatic
master dataset to an existing detail dataset in order to speed uﬂ;etrieval. Adding
the dataset and the linkage is easy with the very powerful third-party database
utilities. The tough part is trying to determine how many existing programs,
interactive and batch, will now fail attempting to modify the field that has just
become a search item. Most of the time, the difficulty in finding and fixing these
programs is so overwhelming, that we just give up and live without the path. at a
shame.

The same problem Ie_xf)plies in an even simpler case: deciding to sort a path
that is currently unsorted. Here too, the new sort field would become a critical eld,
thereby causing unknown numbers of programs to fail due to IMAGE’s previous
refusal to perform critical item updates.

Of course, once the database is enabled for critical item update, the paths
and the sorts can be added with impunity. This gives the database administrator
new power to tune the database and keep up with changing business needs without a
massive maintenance programming task.

Perhaps an example is in order. Consider an Order Processing system that
keeps invoice data in a detail dataset. This dataset might be linked to a Customer
master, so that we can obtain all of the invoices for a customer quickly. It might also
be linked to a Date master, so that we can obtain all of the invoices produced on a
particular date quickl{j_RWe Irslln'ight also have a status field that indicates whether the
mvoice is "PAID", "CURRENT", "30 days past due", "60 days past due", or "over 90
days past due". Now, since the vast majority of invoices in this dataset are
(hopefully) paid, to find our delinquent invoices, we will have to sequentially read
through the entire dataset. If we decide that we need quicker access to this
information, the logical approach would be to add a Status master, linked through
the status field. However, now when an invoice changes status, say when it is paid
or when it rolls from "current" to "30 days", we will not be able to simply
DBUPDATE it, but will have to DBDELETE it and DBPUT it back. The programs
that make these DBUPDATEs will all have to be identified and changed. The
critical item update enhancement eliminates all of these problems; we can add our
path without adversely affecting existing programs,

Ironically, it will probabg be the report writers and the data extraction
programs that will benefit most from this enhancement request, even though these
programs do no updating at all! Huge amounts of time are typically spent in these
grograms, doing sequential reads of datasets. They would obviously benefit greatly

om the addition of new paths. Indeed, many report generators will automatically
use these new Faths once they are added. But they have not been added, due to the
risk of adversely affecting other programs with the critical item update problem.

All of the improvements mentioned above come for free: no programmin
changes are required. But are there other benefits that would come from recoding?
The answer is yes. Most programs are written to be cognizant of critical ﬁelgs.

ically, when a grogram needs to update a search or sort field, the program will
DBGET the record, DBDELETE it, ¢ ange the value in its buffer, then DBPUT it
back again. With critical item update enabled, the program could instead DBGET

Critical Item Update - What Will It Do For Me?
3219- 3

the record, change the value in its buffer, then do the DBUPDATE. Besides the
elimination of one intrinsic call, there are other performance savings. IMAGE does
not have to add the deleted record to the free chain and then instantly remove it
again for the newly added record. But if the record has other unchanged search
fields, the reduction in overhead can be significant. In the worst case of sixteen
paths, only one of which has its search value changed, the new DBUPDATE will take
around 5% of the CPU time and far fewer disc I/O’s than the DBDELETE/DBPUT
pair would have taken. The improvement could be amazing for programs that do
this often. And, as a bonus, the chronology of the other fifteen chains i1s maintained!

Clever programmers have been anticipating this change for years. In any
case, we can take a clue from them and borrow their technique in anticipation of the
upcoming change. Whenever they want to DBUPDATE a detail dataset record, they
first try by calling DBUPDATE. X this fails with Exception Condition #41, they then
silently do the DBDELETE and DBPUT automatically. These é)ro ams will
automatically begin running faster, without modification, once the databases they
access have been enabled for critical item update.

HP has breathed new life into IMAGE with the critical item update
enhancement. Now that we’ve been given what we’ve been asking for all of these
years, it is up to us to use it to its full advantage. With a little forethought, this
feature will not only make it easier to update databases, but can have a significant,
positive impact on the overall performance of the system as well.

Critical Item Update - What Will It Do For Me?
3219- 4

Paper: 3221
Title: Memory Management
Author: Laurie Facer

Company: FACER System
Performance Division
106 Boldleaf Court,
North Carolina 27513

Phone: 1-800-458-1558

Memory Management On MPEXL

Memory is an intermediary storage area used by active programs (processes) to
store code and data.

It is used because of its speed. It is considerably faster than disc access and is more
accessable by the CPU. Because of cost, however, its availability is limited. It is,
therefore, used as an intermediary storage area and requires the transfer of data
and code to and from disc.

A memory management system has been written to ensure the most efficient use of
the scarce memory resource. Memory management’s function is to ensure that code
and data required for CPU processing is available when needed. The more disc I/O
that can be eliminated by holding code and data in main memory, the more
efficiently will the machine operate.

In doing this, memory manager should function with the least possible amount of
overhead on the system.

Memory Management Architecture

To be able to understand how well memory management is operating, we need to
understand some basic concepts.

Memory manager works with logical pages. Data and code are stored in pages both

Memory Management On MPEXL 3221-1

in memory and on disc. A logical page represents 4096 bytes (KB) of storage area.
(The physical page size is 2048 bytes. The word pages in this paper refers to the
logical page.) A page may be either fully or partially occupied and the data or code
may flow over into one or more further pages.

Because of MPEXL’s virtual memory addressing system, there is no practical
restriction on the number of pages that a process uses. The 64KB limit set by the
MPE Classic 16 bit addressing system has been eliminated. MPEXL'’s 48 bit virtual
addressing system allows an addressable memory space of 280 trillion bytes. The 64
bit addressing found on the 980 allows an even larger addressable memory space.

However, as stated earlier, the amount of main memory available is limited.
Memory manager manages this limitation by ensuring that as many pages as
possible are stored in memory with the least amount of disc I/O.

Intitial Page Allocations

Before a process can obtain access to the CPU it has to have the code and data
(pages) that it needs allocated into main memory. This requires disc 1/O to transfer
pages into memory. As a process performs its processing it will probably require
additional pages to be made available in memory.

The additional allocations for a process once it has been initialized will result from
the need to load new code segments, when the process’s stack is increased or heap
expanded beyond the current page, to perform file reads and writes, or when its
pages need to be swapped from transient memory.

Code and Data Pages

The allocation of code and data pages occurs most frequently at the initiation of a
process or job/session. After that point they should occur infrequently.

Code allocations after initial allocations indicate bad locality of code. That is, code
that is continuously being called by another routine resides in a different page.
MPEXL does, however, have a complex routine to minimise the probability of both
pages not being allocated.

Data pages are allocated after initial allocations due to stack or heap expansion

beyond the current page. A program that is increasing its stack size will cause thes
allocations. :

Memory Management On MPEXL 32212

File Pages

For a process to be able to process a file record, that record must reside in main
memory. The disc I/O system requests the page containing the record required and
memory manager stores it into main memory.

If the page required by the process is not memory resident the process is faulted in
CPU and is placed in the dispatcher queue until the page is made available. By
avoiding page faults, processes complete faster and overhead on the system is
reduced.

One of the main problems with MPE on the classic architecture was the level of disc
I/O faults. This was addressed with the introduction of memory disc caching.
Caching placed the block containing the required record plus additional blocks of
the same file into main memory. There was a strong probability that the next record
required by the process would be in the current or one of the additional blocks
placed in memory. This reduced the fault rate with subsequent reductions in system
overhead.

MPEXL recognises that disc I/O is the slowest part of computer processing and has
implemented a prefetch algorithm that reduces disc I/O. This is done, however, by
placing additional overhead on memory utilization.

Prefetch Algorithm

MPEXL has a prefetch algorithm that replaces the role played by disc caching on
MPE. It is a superior solution to disc caching and has made dramatic improvements
to performance.

The prefetch algorithm utilizes the additional memory available on the MPEXL
machines by loading into memory not only the currently required pages but
additional pages. For serial reads the pages loaded start at the current page
followed by up to eight pages following from that page. Random reads cause the
current page plus pages either side of the required page to be loaded.

The prefetch algorithm works well on MPEXL for three reasons - a) MPEXL has a
lot more memory available than the classic machines and loading additional pages
places less strain on resources; b) memory management under MPEXL is more
efficient than under MPE; and c) the prefetch algorithm is an integral part of
MPEXL and has not been grafted onto the operating system in the same way that
disc caching was.

Memory Management On MPEXL 3221-3

Transient Space

It does not take too many processes to be active before all available memory is
utilized. To reduce the restictions of memory size on the ability to create and run
processes, an overflow area is set aside on disc. This area is called transient space
(virtual memory on MPE).

Memory manager utilizes this area by swapping pages not being referenced by
"active" processes from main memory to transient space. It then uses the page areas
made available in main memory for pages required by "active" processes.

Memory Management On MPEXL 3221-4

Managing Allocated Pages

Once pages are loaded into main memory, memory manager then utilises transient
space as an overflow area. To do this memory manager has to decide which pages
are to be kept in main memory and which pages can be swapped to transient space.

Each page in main memory is flagged as being in one of five states - present, absent,
in motion in, being kicked out, and recoverable overlay candidate. The important
conditions to understand are present, absent and recoverable overlay candidate
(ROC). A present page is one that is being referenced by a currently active process.
An absent page is one that is empty, and a ROC is a present page that has not been
referenced recently by an active process.

Memory manager utilises both absent and ROC pages when allocating pages into
memory. It searches its absent pages first, then searches the pages flagged as ROCs.
ROC pages are a second best option as they contain data and may need to be
swapped to transient space before another page can be allocated. This swapping
process requires disc 1/O.

MPEXL tries to maintain a pool of 32 pages for new page allocations. If the pages
available falls below this level it scans the present pages looking for ROCs. Each
time it scans memory looking for ROCs, it tests to see if a flag is turned "on". If it is,
it then resets the flag to "off". If the flag is already set to "off", it sets the page to
ROC status. If a page has been set to "off" and it is referenced by a process, the flag
is set back to "on".

With more recent releases of MPEXL, memory management has been made more
efficient by flagging prefetched pages from sequential reads as ROCs as soon as
they are loaded into memory. This has had the result of lowering the priority of
prefetched pages staying in main memory. Prefetched pages take a lot of memory
space. At the same time, the need to maintain them in memory is less pressing than
it is for other objects. By flagging prefetched pages as ROCs immediately, the
number of pages available for providing free space is dramatically increased.

MPEXL also maintains a memory pressure flag. This flag is based on the number of
times memory manager needed to cycle memory to find ROCs. As this value
reaches thresholds, the criteria for marking pages as ROCs becomes more severe.

When there is too little memory for the current level of processing, the search for
ROCs becomes urgent and results in system overhead. The system overhead
appears in the form of higher memory manager utilisation of CPU, increased
process wait times as processes wait for pages to be made present, and increased
disc I/O as pages are swapped to and from transient memory.

Memory Management On MPEXL 3221-5

Memory Pressure

Pressure is placed upon memory for three reasons - a) process initiation is high, b)
faults due to absent pages are high, and ¢) memory available is too small.

Process Initiation

When a process is initiated, a high number of allocations are generated due to the
initialisation of code and data pages into memory. Additional page allocations for
active processes depend on new code segments being required, expansion of the
stack pointer beyond the current page, disc 1/O, and transient memory activity.

Absent Page Faults

Absent page faults occur for two main reasons - a) file read or write occurs and
page is not in memory, and 2) page has been allocated to memory but subsequently
swapped to transient memory. An absent page fault initiates a disc I/O to transfer
pages from disc to memory. Memory manager has to find the free pages in main
memory into which to place the new pages. For file activity (excluding mapped files)
this also means utilising the prefetch algorithm and allocating not only the required
page but all associated pages.

High page allocations place a work load on memory manager - even with adequate
amounts of memory space.

Inadequate Memory

When memory becomes fully utilised the memory manager has to more frequently
perform the function of maintaining the "free" page pool and swapping pages to
and from transient space. This activity places an overhead on the system in the form
of disc I/O and CPU utilisation. Even if allocation rates are low, an inadequate
memory size will see page management generate additional workloads.

Memory Management On MPEXL 3221-6

Is Memory A Bottleneck?

To determine if memory is under prressure, that is, memory is becoming or has
become a bottleneck and to determine what to do about the situation, the following
questions must be answered:

1) What indicators show that memory is under pressure?

2) What type of pressure is memory under - lack of memory space or high
allocation rates?

3) What processes are causing memory pressure?

CPU Utilization

The first indicator of memory manager being a bottleneck is the amount of CPU
time it uses to perform its functions. Fortunately memory manager has a low
utilisation of CPU time. However, any CPU time diverted away from user processes
needs to be minimized.

The amount of CPU time that can be tolerably diverted away from processes will
depend on your processing requirements. I would recommend that - over extended
periods - 2 to 5% CPU utilization by memory manager is an indicator of moderate
memory pressure and anything above 5% would indicate high memory pressure.

Process Wait Times

Memory is also a bottleneck if it is causing processes to wait. If a process has to wait
for memory related activities, this extends its processing time and lengthens its
response time. If many processes are continuously waiting for memory, then
memory is a botteneck for those processes.

Memory Management On MPEXL 3221-7

Causes Of Memory Pressure
Lack Of Memory

There are several good indicators of memory manager having trouble maintaining
required pages in memory, that is, memory size is too small to maintain the number
of pages in main memory to allow the machine to function efficiently.

Symptoms
Memory Cycle Rate

The Memory Cycle Rate is a good indicator of the severity of memory pressure. If
this rate is high (more than 25 cycles per hour) then memory manager is
continuously looking for ROCs. This is a good indicator of lack of memory space as
the memory manager is having trouble keeping a pool of 32 "free" pages.

Swapouts

Another good indicator of lack of memory space is the number of Swapouts that are
occuring. It represents the number of times memory manager needed to swap a
page from main memory to transient memory due to memory pressure.

Transient Page Faults

Transient page faults occur when a process is blocked in CPU due to the absence of
an already allocated page in main memory. The required page has been swapped to
transient memory. This is an indicator of memory manager not being able to handle
workloads. :

Solution

There are only two real ways to solve the problem of too little memory - increase
the memory size or reduce the workloads. If memory pressure is accompanied with
high allocation rates and file activity (see below), reducing these workloads may
solve the problem.

High Page Allocations
A high level of memory allocations can place pressure onto the system. This
pressure will in turn effect all of the other memory indicators. It will cause high

CPU usage by memory manager and will place pressure on the need to maintain the
"free" page pool.

Memory Management On MPEXL 3221-8

Symptoms

Allocation Rate

Allocation rates show the number of page allocations being made per second This
figure needs to be correlated with the other memory manager indicators to
determine how the allocations are effecting the system.

Transient Memory Swapouts

If allocations are placing pressure on memory, you will also see high transient
memory swapouts. This occurs as the "free” page pool is reduced and existing pages
need to be swapped from main memory to transient memory to make room for the
new pages.

Process Initiation and Logons

High allocation rates are usually the result of a high level of process initiation and
logons as process data and code segments are initially placed into main memory.

Page Faults

Every time a page fault in the CPU occurs, a disc I/O is performed to load pages
into memory. Reducing I/O activity reduces allocations.

Solution

An increase in memory size will help if there are also symptoms of memory pressure
(see above). If there is no memory pressure, increasing memory size will not help as
the problem lies not with finding additional memory space, but with the overhead in
allocating many pages in a short interval.

Reduced process initiation and logons will reduce the number of allocations. This
can be done through better process scheduling and a good menu system that utilizes
process handling.

The only solution to high I/O activity is to reduce the amount of disc I/O that needs
to be performed. This can be done through improving I/O related algorithms within
programs, better system design, and rescheduling processes that generate a high
level of disc 1/O activity to run at quieter periods during the day.

Memory Management On MPEXL 32219

Detecting The Cause Of Pressure
Global Activity

By looking at the allocation and page fault rates versus the transient memory
activity, it can be determined if memory is under pressure due to lack of memory
space or high allocation rates.

Firstly, look at the memory manager CPU activity. If the percentage of CPU utilised
by memory manager is above 2%, then some pressure may be occuring. If it is above
5%, then this would indicate that there is definitely memory pressure.

To determine the source of the pressure, look at the allocation and page fault rates
in relation to the transient memory activity. If allocations are moderate to low (that
is, not much higher than found during less busy periods on the machine) and
transient memory activity is high, then the pressure is due to a lack of memory
space.

This can be verified by looking at the memory cycle rate. If this indicator is higher
than normal, then lack of memory space is causing excessive memory manager
activity.

If allocations and page faults are high when transient memory activity is not much
higher than normal, then allocations are the source of the pressure. Usually,
however, you will find that when allocation rates increase, this is accompanied by

higher levels of transient memory activity as memory manager needs to make room
for the new pages.

Process Activity

Process Allocations

By looking at process activity we can determine the effects of memory pressure and
the possible sources of that pressure.

If the memory allocation rates are high, we need to look at processes to determine
if the allocations are due to excessive initiations of processes or processes
demanding additional pages during processing.

Memory Walits

The effects of memory management activity can be seen by looking at the memory
related wait times that processes are experiencing.

Memory Management On MPEXL 3221-10

Page Faulting

All file activity results in memory manager having to allocate pages in main
memory. Processes that have high I/O activity will generate extra work for memory
manager. How well memory manager is serving a process’s I/O requests is indicated
by the number of page faults that occur.

A page fault occurs when a process is blocked in the CPU due to the absence of a
page in memory. The p<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>