HP Users

& Conference

August

¥ 5-8, 1991

San Diego

s — e T\

RETURN TO:

HPL/RESEARCH LIBRARY
BUILDING #2L
P.0. BOX 10490

PALO ALTO, CA. 94303-0971
PHONE # 415-857-3092

Sponsored by

INTEREX

The International

Association of

Hewlett-Packard

Computer Users

PROCEEDINGS

RTE, HP-UX,
Workstations

INTEREX

The International Association of Hewlett-Packard Computer Users

IPROCEEDINGS

of the

1991 INTEREX HP Users Conference

RTE, HP-UX, Workstations

HPL/DT BRARY
e

[398

Ea

Pii , CASHIU5-857

San Diego, California
August 5-8, 1991

Introduction

This volume of the Proceedings of the INTEREX 1991 North American
Conference was printed from camera-ready copy prepared by the authors. It
contains papers dealing with RTE and with the HP1000 in general and all papers
dealing with HP-UX and the HP9000 computers. It also contains papers dealing
with the migration of applications from one type of computer or operating system
to another.

Because HP-UX has been growing in popularity amongst business users, there
are many papers reflecting such use. All papers related to HP-UX have been
included here for convenient reference by the reader. This system may not be
followed in the future. Papers relating to workstations are included here, since
these are small Unix-based systems. At the time of this conference HP’s Apollo
division produced the Apollo line of workstations and papers relating to those
systems are also included in this volume.

Papers were numbered as they were received and in order to present them at
the conference in logical groupings the numbers are not necessarily consecutive.
The numbers should be considered to be simply reference numbers.

Because the tutorials represent up-to-the-minute information and require much
more work than a paper to prepare, it is not always possible for them to be included
in the Proceedings.

Thanks go to the authors who met the submission requirements and had their
papers in by the deadlines. Thanks also to the members of the paper review
committee who read the abstracts and offered criticism and advice to both the
authors and the editor.

F. Stephen Gauss R Arthur Gentry
U. S. Naval Observatory Gentry and Associates
Washington, D.C. Excelsior Springs, Missouri

10 June 1991

Index by Paper Number

1003 T: A Package For Programming Across Systems
J. Sansdrap, J. Matton - Universite Catholique de Louvain

1007 Adding an X-window User Interface to an HP 1000 Application
Robert Combs - Combs International

1008 Using RTE System Library Routines To Control A d Program E:
Wendy King - US Naval Observatory

1009 HP 1000 DS and NS Over MUX Ports
Don Wright - Interactive Computer Technology

1010 DownLoading From The HP 1000 To Factory Floor Machines
Bill Donze - Reliance Electric

1011 DISKMAIL Interprocess Message System
Don Wright - Interactive Computer Technology

1012 HP Softbench-Link/1000: A State of the Art CASE Environment For The HP 1000
Hilary Feier - Hewlett-Packard Co.

1013 The A990 Virtual Control Panel "VCP", Why and What
Alan Tibbetts - Hewlett-Packard Co.\Consultant

1014 Using and Controlling Dialup Modems for Remote Data Acquisition
Wendy King - US Naval Observatory

1021 HP 1000 Networking Strategy and Future Directions
Lynn Rodoni - Hewlett-Packard Co.

1022 BSD IPC on the HP 1000
Ramesh Radhakrishnan - Hewlett-Packard Co.

2001 Distributed Computing GUI's and the OSF/MOTIF
Mark Brown - Workstation Systems Group

2003 Identifying CIM Opportunities Using Str d Analysis Model
Wayne Asp - Hewlett-Packard Co.
2004 Beyond Interprocess C ications: Strategies for Linking MPE-XL and HP-UX
Frank Leong - Hewlett-Packard Co. Applications
2005 SCSI: The Disk Interface of Choice on HP Workstations
Scott May - Hewlett-Packard Co.

2007 Referential Integrity in ALLBASE/SQL
Amelia Carlson - Hewlett-Packard Co.

2009 LAN Manag t: New Challenges and Choices
Russ McBrien - Hewlett-Packard Co.

2010 Troubleshooting LANs
Sam Sudaranam - Hewlett-Packard Co.

2011 Overview of Capacity Planning UX/VE/XL Systems
Rick Bowers, et al - Hewlett-Packard Co.
2014 The Impact of Emerging Fast Networking Standards on Dc Image Management
Maura McNulty - Hewlett-Packard Co. & Distribution
2015 Enterprise-Wide Messaging in Open Systems
Debra Thompson -

2016 HP VUE, Intellig in a Graphical User Interface
Charlie Fernandez - Hewlett-Packard Co.

2017 Core Dump Analysis
Mark DiPasquale - Hewlett-Packard Co.

2018 Network and System Management Effectiveness: The Graphical Edge

Reid Shay - Hewlett-Packard Co.

In Paper Number

2019 FORTRAN 90: The New Standard
Maureen Hoffert - Hewlett-Packard Co.

2020 Multivendor Terminal Connectivity with HP's Family of DTCs
Jean-Luc Meyer - Hewlett-Packard Co.

2022 SNMP, Open Systems, and Open Networks: The State of the Union
Joe Grim - Hewlett-Packard Co.

2024 Business Intelligence
Garry Orsolini - Hewlett-Packard

2026 Using a RDBMS To Represent Engineering Designs
Phil Walden - Hewlett-Packard Co.

2027 Making Data Integration Easy
John Hall - Hewlett-Packard Co.

2028 Backup Strategy For HP-UX Systems
Reiner Lomb - Hewlett-Packard Co.

2029 Open Systems Customer Projects
Wolfram Fischer - Hewlett-Packard Co.

2030 Providing Low-Priced X-Windows Networking Environments
Mark Teter - Hewlett-Packard Co.

2031 Developing Client-Server Applications
Scott Safe - Hewlett-Packard Co.

2032 Integrating NetWare and HP Systems
Dan Williams - Hewlett-Packard Co.

2033 Distributed Fault Tolerance
Joe Eyre, Dave Bromley - Hewlett-Packard Co.

2034 Tutorial Structured Software Project Management
Gottfried Bertram - Hewlett-Packard Co.

2035 Improving HP-UX for OLTP
Roland Luk - Hewlett-Packard Co.

2036 Troubleshooting FORTRAN on Multiple Platforms
Helen Morimoto - Hewlett-Packard Co.

2037 Integration and Analysis of Manufacturing Data
John Williams, Jerry Akers - Hewlett-Packard Co.

2038 Tutorial Publishing For Paper and OnLine
Wesley Cheng - Hewlett-Packard Co.

2040 OSF: Open Systems Through an Open Process
Rod Johnson - OSF

2041 OSF/1: The HP Perspective
To be announced -

2043 OSF: Distributed Computing Environment "DCE": The HP Perspective
To be announced -

2044 OSF: Distributed Management Environment "DME": The HP Perspective
To be announced -

2045 OSF's/Architecture Neutral Distribution Format
Rod Johnson - OSF

2053 What is a Systems Administrator, Anyway?
James Langan, Kathleen Sagunsky - J.B. Langan & Associates, Inc.

2055 A Novel Client/Server Network Service Developed Using NetIPC HP 3000/9000

Dennis Harvey - Applied Biosystems, Inc.

Index Paper Number

2057 Rapid Development of Client/Server Applications
Stephan Stephansen - GenGold

2059 Magnetic Media Certification System-MMCS
Warren Webber, Cheteyl Dodd - AGS Genasys Corp.
2062 The Integrated Workstation, A Real Time Data Aquisition, Analysis and Display
Thomas Treadway - Lawrence Livermore National Labs System
2067 Pollit: System’s Administrator Tool to Monitor a Heterogeneous Network
Najib Nadi, Thomas Savarese - Department of Mathematical Sciences

2068 ENGINFO - The Data Management Solution
K. Kannikeswaran, et al - College of Engineering

2070 Introduction to Unix Part 1
To be announced -

2071 Introduction to Unix Part 2
To be announced -

2072 WA-6 The Multi-Language Approach to UNIX Cc ial Application Develop
Colin Bodell - Micro Focus

2074 Performance Management in a Distributed Computing Environment
Dave Glover - Hewlett-Packard

2075 A Talking Computer That Monitors Remote Comp
Tony Jones - Hewlett-Packard Co.

2077 Client/Server Cookbook: A Recipe For Success
Debra Thompson - Hewlett-Packard Co.

2078 Integration of the Telephony and Data Processing Industries
John Pickett - Hewlett-Packard Co.

2079 Tutorial Open Systems Networking In a Multi-Vendor Environment
Steve Oppenheim - Hewlett-Packard Co.
2080 UNIX Productivity Software and Support for Business Teams: Using the Power of
Robert Brosseau - Applix, Inc. Groupware
2082 Networking LaserROM fcr Multiple Users
Bill Hassell - Hewlett-Packard Co.

2083 The Real Story About HP PowerPatch!
To be announced -

8021 Migrating To Client/Server
George Ferguson - Hewlett-Packard Co.
8052 Migrating A Tumn-Key, Real-Time Test System From An HP 1000 (RTE) To An
James Langan, Kathleen Sagunsky - J.B. Langan & Associates, Inc. HP 9000 (HP-UX) Platform
8058 Making A Square Peg Fit Into A Round Hole
Robert Hersh, Warren Weber - AGS Genasys Corp.

8064 UNIX For The MPE Programmer
Michael Barrat - Eldec Corp.

8065 Migrating From HP 260 to HP 9000 Migraine or Not?
Pasi Riihilahti, Olli Lammi - Raha-automaathyhdistys (Ray)

8066 MPE to UNIX - Will I Need an RDBMS
Gloria Weld - Software Explained

8073 From MPE to UNIX and Back Again: Life with Open Systems
Gary Lowell - Allegro Consultants, Inc.

8081 Applications Migration Between UNIX Platforms

Andy Feibus - need company & address info. for Art

iii

Asp, Wayne

2003, Hewlett-Packard Co
Barrat, Michael

8064, Eldec Corp.
Bertram, Gottfried

2034, Hewlett-Packard Co.
Bodell, Colin

2072, Micro Focus
Bowers, Rick, et al

2011, Hewlett-Packard Co
Brosseau, Robert

2080, Applix, Inc.
Brown, Mark

WA-6 The Multi-Language Approach to UNIX Cc

Index by Author

Identifying CIM Opportunities Using Structured Analysis Models

UNIX For The MPE Programmer

Tutorial Structured Software Project Management

ial Ap

ion Devel

(

Overview of Capacity Planning UX/VE/XL Systems

UNIX Productivity Software and Support for Business Teams: Using the Power of
Groupware
Distributed Computing GUI’s and the OSF/MOTIF

2001, Workstation Systems Group

Carlson, Amelia

Referential Integrity in ALLBASE/SQL

2007, Hewlett-Packard Co.

Cheng, Wesley

Tutorial Publishing For Paper and OnLine

2038, Hewlett-Packard Co.

Combs, Robert
1007, Combs International
DiPasquale, Mark

Adding an X-window User Interface to an HP 1000 Application

Core Dump Analysis

2017, Hewlett-Packard Co.

Donze, Bill
1010, Reliance Electric
Eyre, Joe, Bromley, Dave

DownLoading From The HP 1000 To Factory Floor Machines

Distributed Fault Tolerance

2033, Hewlett-Packard Co.

Feibus, Andy
8081
Feier, Hilary

1012, Hewlett-Packard Co.

Ferguson, George

Applications Migration Between UNIX Platforms

HP Softbench-Link/1000: A State of the Art CASE Environment For
The HP 1000
Migrating To Client/Server

8021, Hewlett-Packard Co.

Fernandez, Charlie

..

HP VUE, Int | User Interface

in a Grap

2016, Hewlett-Packard Co.

Fischer, Wolfram

Open Systems Customer Projects

2029, Hewlett-Packard Co.

Glover, Dave
2074, Hewlett-Packard
Grim, Joe

Performance Management in a Distributed Computing Environment

SNMP, Open Systems, and Open Networks: The State of the Union

2022, Hewlett-Packard Co.

Hall, John
2027, Hewlett-Packard Co.
Harvey, Dennis

Making Data Integration Easy

A Novel Client/Server Network Service Developed Using NetIPC HP 3000/9000

2055, Applied Biosystems, Inc.

Hassell, Bill
2076, Hewlett-Packard Co

Hersh, Robert, Weber, Warren

8058, AGS Genasys Corp.

Getting The Most Out Of LaserRom

Making A Square Peg Fit Into A Round Hole

Index by Author

Hoffert, Maureen FORTRAN 90: The New Standard
2019, Hewlett-Packard Co.

Johnson, Rod OSF’s/Architecture Neutral Distribution Format
2045, OSF

Johnson, Rod OSF: Open Systems Through an Open Process
2040, OSF

Jones, Tony A Talking Comp That Moni Remote Comp
2075, Hewlett-Packard Co.

Kannikeswaran, K., et al ENGINFO - The Data Management Solution
2068, College of Engineering

King, Weady Using RTE System Library Routines To Control A d Program E
1008, US Naval Observatory

King, Wendy Using and Controlling Dialup Modems for Remote Data Acquisition

1014, US Naval Observatory
Langan, James, Sagunsky, Kathleen Migrating A Turn-Key, Real-Time Test System From An HP 1000 To An

8052, J.B. Langan & Associates, Inc. HP 9000 Platform
Langan, James, Sagunsky, Kathleen What is a8 Systems Administrator, Anyway?
2053, J.B. Langan & Associates, Inc.
Leong, Frank Beyond Interprocess C: ications: Strategies for Linking MPE-XL and HP-UX
2004, Hewlett-Packard Co. Applications
Lomb, Reiner Backup Strategy For HP-UX Systems
2028, Hewlett-Packard Co.

Lowell, Gary From MPE to UNIX and Back Again: Life with Open Systems
8073, Allegro Consultants, Inc.

Luk, Roland Improving HP-UX for OLTP
2035, Hewlett-Packard Co.

May, Scott SCSI: The Disk Interface of Choice on HP Workstations
2005, Hewlett-Packard Co.

McBrien, Russ LAN Manag New Challenges and Choices
2009, Hewlett-Packard Co.
McNulty, Maura The Impact of Emerging Fast Networking Standards on Document Image Management
2014, Hewlett-Packard Co. & Distribution
Meyer, Jean-Luc Multivendor Terminal Connectivity with HP’s Family of DTCs
2020, Hewlett-Packard Co.

Morimoto, Helen Troubleshooting FORTRAN on Multiple Platforms
2036, Hewlett-Packard Co.

Nadi, Najib, Savarese, Thomas Pollit: System’s Administrator Tool to Monitor a Heterogeneous Network
2067, Department of Mathematical Sciences

Oppenheim, Steve Tutorial Open Systems Networking In a Multi-Vendor Environment
2079, Hewlett-Packard Co.

Orsolini, Garry Business Intelligence
2024, Hewlett-Packard

Pickett, John Integration of the Telephony and Data Processing Industries
2078, Hewlett-Packard Co.

Radhakrishnan, Ramesh BSD IPC on the HP 1000
1022, Hewlett-Packard Co.

Riihilahti, Pasi, Lammi, Olli Migrating From HP 260 to HP 9000 Migraine or Not?

8065, Raha-automaathyhdistys (Ray)

n hor

Rodoni, Lynn HP 1000 Networking Strategy and Future Directions
1021, Hewlett-Packard Co.

Safe, Scott Developing Client-Server Applications
2031, Hewlett-Packard Co.

Sansdrap, J., Matton, J. T: A Package For Programming Across Systems
1003, Universite Catholique de Louvain

Shay, Reid Network and System Management Effectiveness: The Graphical Edge
2018, Hewlett-Packard Co.

Stephansen, Stephan Rapid Development of Client/Server Applications
2057, GenGold

Sudaranam, Sam Troubleshooting LANs
2010, Hewlett-Packard Co.

Teter, Mark Providing Low-Priced X-Windows Networking Environmeats
2030, Hewlett-Packard Co.

Thompson, Debra Enterprise-Wide Messaging in Open Systems
2015, Hewlett-Packard Co.

Thompson, Debra Client/Server Cookbook: A Recipe For Success
2077, Hewlett-Packard Co.

Tibbetts, Alan The A990 Virtual Control Panel "VCP", Why and What
1013, Hewlett-Packard Co.\Consultant

Treadway, Thomas The Integrated Workstation, A Real Time Data Aquisition, Analysis and Display
2062, Lawrence Livermore National Labs System

Walden, Phil Using a RDBMS To Rep Engineering Desig
2026, Hewlett-Packard Co.

Webber, Warren, Dodd, Cheteyl Magnetic Media Certification System-MMCS
2059, AGS Genasys Corp.

Weld, Gloria MPE to UNIX - Will I Need an RDBMS
8066, Software Explained

Williams, Dan Integrating NetWare and HP Systems
2032, Hewlett-Packard Co.

Williams, John, Akers, Jerry Integration and Analysis of Manufacturing Data
2037, Hewlett-Packard Co.

Wright, Don HP 1000 DS and NS Over MUX Ports
1009, Interactive Computer Technology

Wright, Don DISKMAIL Interprocess Message System
1011, Interactive Computer Technology

announced, To be Introduction to Unix Part 1
2070

announced, To be Introduction to Unix Part 2
2071

announced, To be OSF/1: The HP Perspective
2041

announced, To be OSF: Distributed Computing Environment "DCE": The HP Perspective
2043

announced, To be OSF: Distributed Management Environment "DME": The HP Perspective
2044

announced, To be The Real Story About HP PowerPatch!

2083

vi

Index by Category

RTE

1003 T: A Package For Programming Across Systems
J. Sansdrap, J. Matton - Universite Catholique de Louvain

1007 Adding an X-window User Interface to an HP 1000 Application
Robert Combs - Combs International

1008 Using RTE System Library Routines To Control Automated Program Execution
‘Weandy King - US Naval Observatory

1009 HP 1000 DS and NS Over MUX Ports
Don Wright - Interactive Computer Technology

1010 DownLoading From The HP 1000 To Factory Floor Machines
Bill Donze - Reliance Electric

1011 DISKMAIL Interprocess Message System
Don Wright - Interactive Computer Technology

1012 HP Softbench-Link/1000: A State of the Art CASE Environment For The HP 1000
Hilary Feier - Hewlett-Packard Co.

1013 The A990 Virtual Control Panel "VCP*®, Why and What
Alan Tibbetts - Hewlett-Packard Co.\Consultant

1014 Using and Controlling Dialup Modems for Remote Data Acquisition
Weady King - US Naval Observatory

1021 HP 1000 Networking Strategy and Future Directions
Lynn Rodoni - Hewlett-Packard Co.

1022 BSD IPC on the HP 1000
Ramesh Radhakrishnan - Hewlett-Packard Co.

HP-UX

2001 Distributed Computing GUI's and the OSF/MOTIF
Mark Brown - Workstation Systems Group

2003 Identifying CIM Opportunities Using Str d Analysis Model
Wayne Asp - Hewlett-Packard Co.

2004 Beyond Interprocess Cc ications: St ies for Linking MPE-XL and HP-UX
Frank Leong - Hewlett-Packard Co. Applications

2005 SCSI: The Disk Interface of Choice on HP Workstations
Scott May - Hewlett-Packard Co.

2007 Referential Integrity in ALLBASE/SQL
Amelia Carlson - Hewlett-Packard Co.

2009 LAN Manag : New Challenges and Choices
Russ McBrien - Hewlett-Packard Co.

2010 Troubleshooting LANs
Sam Sudaranam - Hewlett-Packard Co.

2011 Overview of Capacity Planning UX/VE/XL Systems
Rick Bowers, et al - Hewlett-Packard Co.

2014 The Impact of Emerging Fast Networking Standards on Document Image Management
Maura McNulty - Hewlett-Packard Co. & Distribution

2015 Enterprise-Wide Messaging in Open Systems

Debra Thompson - Hewlett-Packard Co.

Index by Category

2016 HP VUE, Intellig in a Graphical User Interface
Charlie Fernandez - Hewlett-Packard Co.

2017 Core Dump Analysis
Mark DiPasquale - Hewlett-Packard Co.

2018 Network and System M. Effecti The Graphical Edge
Reid Shay - Hewlett-Packard Co.

2019 FORTRAN 90: The New Standard
Maureen Hoffert - Hewlett-Packard Co.

2020 Multivendor Terminal Connectivity with HP’s Family of DTCs
Jean-Luc Meyer - Hewlett-Packard Co.

2022 SNMP, Open Systems, and Open Networks: The State of the Union
Joe Grim - Hewlett-Packard Co.

2024 Business Intelligence
Garry Orsolini - Hewlett-Packard

2026 Using a RDBMS To Represent Engineering Designs
Phil Walden - Hewlett-Packard Co.

2027 Making Data Integration Easy
John Hall - Hewlett-Packard Co.

2028 Backup Strategy For HP-UX Systems
Reiner Lomb - Hewlett-Packard Co.

2029 Open Systems Customer Projects
Wolfram Fischer - Hewlett-Packard Co.

2030 Providing Low-Priced X-Windows Networking Environments
Mark Teter - Hewlett-Packard Co.

2031 Developing Client-Server Applications
Scott Safe - Hewlett-Packard Co.

2032 Integrating NetWare and HP Systems
Dan Williams - Hewlett-Packard Co.

2033 Distributed Fault Tolerance
Joe Eyre, Dave Bromley - Hewlett-Packard Co.

2035 . Improving HP-UX for OLTP
Roland Luk - Hewlett-Packard Co.

2036 Troubleshooting FORTRAN on Multiple Platforms
Helen Morimoto - Hewlett-Packard Co.

2037 Integration and Analysis of Manufacturing Data
John Williams, Jerry Akers - Hewlett-Packard Co.

2040 OSF: Open Systems Through an Open Process
Rod Johnson - OSF

2041 OSF/1: The HP Perspective
To be announced

2043 OSF: Distributed Computing Environment "DCE": The HP Perspective
To be announced

2044 OSF: Distributed Management Environment "DME®: The HP Perspective
To be announced

2045 OSF's/Architecture Neutral Distribution Format
Rod Johnson - OSF

2053 What is a Systems Administrator, Anyway?

James Langan, Kathleen Sagunsky - J.B. Langan & Associates, Inc.

viii

Index by Category

2055 A Novel Client/Server Network Service Developed Using NetIPC HP 3000/9000
Dennis Harvey - Applied Biosystems, Inc.

2057 Rapid Development of Client/Server Applications
Stephan Stephansen - GenGold

2059 Magnetic Media Certification System-MMCS
Warren Webber, Cheteyl Dodd - AGS Genasys Corp.

2062 The Integrated Workstation, A Real Time Data Aquisition, Analysis and Display
Thomas Treadway - Lawrence Livermore National Labs System

2067 Pollit: System’s Administrator Tool to Monitor a Heterogeneous Network
Najib Nadi, Thomas Savarese - Department of Mathematical Sciences

2068 ENGINFO - The Data Management Solution
K. Kannikeswaran, et al - College of Engineering

2072 WA-6 The Multi-Language Approach to UNIX C ial Application Develop
Colin Bodell - Micro Focus

2074 Performance Management in a Distributed Computing Environment
Dave Glover - Hewlett-Packard

2075 A Talking Computer That Monitors Remote Computers
Tony Jones - Hewlett-Packard Co.

2076 Getting The Most Out Of LaserRom
Bill Hassell - Hewlett-Packard Co.

2077 Client/Server Cookbook: A Recipe For Success
Debra Thompson - Hewlett-Packard Co.

2078 Integration of the Telephony and Data Processing Industries
John Pickett - Hewlett-Packard Co.

2080 UNIX Productivity Software and Support for Business Teams: Using the Power of
Robert Brosseau - Applix, Inc. Groupware
2082 Networking LaserROM for Multiple Users

Bill Hassell - Hewlett-Packard Co.
2083 The Real Story About HP PowerPatch!
To be announced
MIGRATION
8021 Migrating To Client/Server
George Ferguson - Hewlett-Packard Co.
8052 Migrating A Tum-Key, Real-Time Test System From An HP 1000 (RTE) To An
James Langan, Kathleen Sagunsky - J.B. Langan & Associates, Inc. HP 9000 (HP-UX) Platform
8058 Making A Square Peg Fit Into A Round Hole
Robert Hersh, Warren Weber - AGS Genasys Corp.

8064 UNIX For The MPE Programmer
Michael Barrat - Eldec Corp.

8065 Migrating From HP 260 to HP 9000 Migraine or Not?
Pasi Riihilahti, Olli Lammi - Raha-automaathyhdistys (Ray)

8066 MPE to UNIX - Will I Need an RDBMS
Gloria Weld - Software Explained

8073 From MPE to UNIX and Back Again: Life with Open Systems
Gary Lowell - Allegro Consultants, Inc.

8081 Applications Migration Between UNIX Platforms

Andy Feibus - need company & address info. for Art

2034

Gottfried Bertram - Hewlett-Packard Co.

2038
Wesley Cheng - Hewlett-Packard Co.
2070
To be announced -
2071
To be announced -
2079

Steve Oppenheim - Hewlett-Packard Co.

Index by Category

TUTORIALS
Tutorial Structured Software Project Management
Tutorial Publishing For Paper and OnLine
Introduction to Unix Part 1
Introduction to Unix Part 2

Tutorial Open Systems Networking In a Multi-Vendor Environment

Paper Number : 1003
T : A PACKAGE FOR PROGRAMMING ACROSS SYSTEMS
Jacques Sansdrap, Jean-Louis Matton

University of Louvain, Avenue Hippocrate 55/5560, 1200 Brussels, Belgium
Phone: 32/2/7645561 Fax: 32/27645569

ABSTRACT

"T" is an original package allowing the easy writing and running of "super programs"
composed of several programs distributed on a networked system. Thanks to the "T"
package, each of these programs, which may provide high level function (such as editing
the content of a data base, conducting a dialogue with a user, producing a report,
managing a graphic system, etc...) can be seen as equivalent to subroutines of a classical
program. These programs, working on different computers, are linked through
parameters given to the "T" package and thus could be relocated from a system to
another as required for efficiency with local availability of data and resources.

Another key feature of T is its implementation on the RTE-A and on HP-UX. Other
systems (MS-DOS, ...) could also be involved. The modularity of these programs
promotes the team working. The T package will be available as contributed software.

INTRODUCTION

The hardware that money can buy is now a hundred times more powerful than 20 years
ago. By contrast there as been at most a tenfold bettering of the productivity of the
software building people and the cost of manpower has increased.

Of course a lot of computer cycles and "core" memory words can now be wasted without
any appreciable degradation for the user.

Of course there are now a lot of "off the shelf" software for many common use like text
editing or spreadsheet computation.

But often this is not the best fit possible and often it means that the users have to learn
the computer ways rather than do their primary job. It also means that often a computer

T: A Package For Programming Across Systems
1003-1

“"just happens" to be there without any plan for the future and much work is needed later
to integrate this system in a more general and more efficient system. Thus there is a
need to augment the productivity of the programmers to cope with new fields of
application and to have a faster response to the user’s requests and to the evolving
technology. It is also important to avoid being drowned in the maintenance of mature
applications.

These goals could be achieved by merging the works of several programmers in a tool-
kit of re-usable software modules.

Most components of a new application would be found already made in the tool-kit. If
a tool is updated the effect of this update is immediately applicable to all applications
using it.

This type of method already exists: it is implemented in the fourth-generation languages
(4GL) and in the applications of the software engineering (SE).

The 4GL however lacks some flexibility: basically it always produce the same program
with varying options. The SE products are probably efficient in the context of a
software house where the job environment of the programmers can be controlled.

The environment in a medical research institution coupled to an university hospital is
quite different. There, you will find a number of small highly independent teams.
Nearly all teams have at least one PC but there are also powerful computer systems.
Often there is only a small number of persons that are programming as a professional
activity or as a side activity. The need to integrate all these installations is easy enough
to understand, but the means and ways are hard to come by.

This is why we have devised the T package to be able to mix the work of different
programmers on different machines.

EXAMPLE
Here follows an example to help to understand what T really is. To fully develop this

example we have to use some terms that are going to be defined later: so you may wish
to come back here after reading the end of the paper.

T: A Package For Programming Across Systems
1003-2

An application running on a RTE-A let a user select from a file directory some file
containing digitized signals. The terminal could show alternatively a list of file name or
a graphic representation of the signals in a selected file. The user could ask for a
printout of the graphics if a peculiarity of the signals is observed.

Once the user has make his/her choice, some computation is done on the file and the
results are displayed on the terminal.

The user accepts or rejects these results. If they are accepted, they are stored in a data-
base for later statistical analysis.

The following programs are used on the RTE-A for this application:

- the T server,

- the main client (APPLIC) that implements this application by scheduling all other
clients and performing the computation,

- the terminal manager subcontractor (TERM),

- a client (DIR) that scans a directory for files matching some mask and reports the
file names through a window of the terminal by TERM,

- a client (VSIG) that draws the signals contained in a file with a graphic library
which end point is usually TERM; the set-up of the graphic could be modified
through parameters entered in windows managed by the alphanumeric side of
TERM,

- a subcontractor client (PLOT) that could temporarily replace the graphic side of
TERM so that the output of VSIG is on a plotter,

- a data-base manager client (DB) that is an interface to an IMAGE-II data-base,

- a storage subcontractor client (STORE) that adapts the results produced by
APPLIC to the structure requested by DB.

The user does not perceive that this number of programs are at work for him/her.

Only APPLIC is specific to this application (it is a rather small program); all other

programs have some use in other applications.

Now there is a second RTE-A system used for data acquisition. Let us name the first
system HARYV and the new one LUC. There is a NS-1000 connection between the two
systems.

A user of HARV could need the same application for signals stored on LUC. A simple
change of configuration is needed and no new software:

T: A Package For Programming Across Systems
1003-3

- on HARV (where the user is):
- T server,
- TERM,
- PLOT,
- DB,
- STORE;
- on LUC (where the data is):
- T server (used in slave mode),
- APPLIC,
- DIR,
- VSIG.

Later an HP-UX (9000/835) system named CARD is connected to the LAN. The SQL
data-base and a statistical package on this system are preferred to the IMAGE-II data-
base and to home-made statistical programs.
There is also a new LaserJet-III on this system that is faster for graphic production than
the old plotter on HARV.
The configuration is then:
- on HARYV (where the user still is):

- T server,

- TERM,

- STORE;
- on LUC (where the data is):

- APPLIC,

- DIR,

- VSIG;
- on CARD (all programs are new):

- T server (used in slave mode),

- DB (to SQL),

- PLOT (to LaserJet).

Now the user is tired of the graphic terminal and wants a PC as everybody else. There
is a LAN card on this PC and it runs with MS-DOS and WINDOWS 3.0. It is
connected to the LAN. More users are now fluent in UNIX than in RTE: CARD

T: A Package For Programming Across Systems
1003-4

becomes the usual logon machine.
The configuration is then:
- HARYV is only used when the data is stored there;
- on LUC (where the data is in this case):
- T server (used in slave mode),
- APPLIC,
- DIR,
- VSIG,
- STORE;
- on CARD (no new program):
- T server,
- DB,
- PLOT,
on the PC (new program):
- TERM (alphanumeric and graphic interface to WINDOWS).

How would it be realized without T? That is difficult to say. The current RTE-A user
is more knowledgeable that the user of another system so the "point and click” interface
implemented by DIR and TERM would not initially be seen as required. This would
have discouraged some potential users.

When the data from LUC would need to be accessed one would have to use one of the
tools offered by the network system: TELNET for remote terminal connection, TRFAS
for remote access to data files or RDBA for remote data-base access. All these tools
suffer from a discouraging slow performance and from other limitations as well (no
block mode for TELNET in the current software release). One would probably have to
re-write the application to circumvent these problems. This application would probably
be implemented as a monolithic program designed by one programmer with few parts
easily re-usable for other applications. The user could probably not be isolated from the
idiosyncrasies of each system and of the tools that move the data from place to place.
The arrival of the HP-UX system would probably mean a complete porting of the
application to the HP-9000, the RTE-A would be discarded and the users would have to
be re-trained.

The application would once more have to be re-designed to use a GUI (PC or
workstation) rather than a graphic terminal.

T: A Package For Programming Across Systems
1003-5

A programmer would have to spend most of his/her work time to follow the evolution
for this application in this short time. Any change that the user should ask would be
hard to accommodate. A new application, even looking very similar to the previous one,
would benefit only from the experience accumulated by the programmer and not from
modules shared with the programmer’s colleagues.

The user should have to learn as many ways to interact with the system as there are
applications.

GUIDELINES

Data and the modules that process it should preferably be encapsulated together so that
a change in the structure of the data only needs a localized software modification.

An application written with this tool-kit should be able to get the data or other resources
on several systems if needs be.

The access, low-level processing and management of resources like data files or
peripherals

should be done by local modules on its system of origin.

An application should need a minimum of modification if one of the computer is replaced
by another type of machine or if the data is moved.

The communication between processors should not be fixed on one defined standard: at
the present time there are so many standards and variations of them that it would not
have been possible to find a common ground for all computers of various make, age and
size we have.

The protocol of communication should be simple to implement over any networking
standard available between each pair of machines.

The amount of data that has to transit through the networks should be minimized so that
the time penalty should not be too visible to the user.

The modules should be independent programs rather than relocatable libraries. It is
easier to assure that any required housekeeping is performed. The program could be
more easily debugged than a relocatable module that has to be embedded in a program.
When some maintenance has been done on a relocatable module all the programs using
it have to be re-compiled or at least re-linked; there are tools to automate this task but

T: A Package For Programming Across Systems
1003-6

it could not be convenient to disturb too many applications at the same time.
A module under the form of an independent program could be easier to replace. It also
give more freedom to its designer.

T: A SOCIETY OF PROGRAMS

A working T society is composed of several client programs distributed over various
systems and of a "go-between" T server program. A client politely waits for the answer
when it has sent a query to another client. Thus the T server listens only to one client
at a time and there is a stack of dialogues.

The messages are strings of up to 200 ASCII characters. Each client designer has to
define and publish the form and content of messages that his/her program accept and
send back. There is no problem of variable data representation with this type of
transmission. There are other mechanisms to send greater amounts of structured data
to some special clients (explained later): the subcontractors.

A client program can send to T requests other than the transmission of messages. Each
client of T is usually scheduled on request from another client. A client to schedule is
referred to by a symbolic name. T finds in its environment (following some search path)
a client description file for this name. This file supplies the method of communication
to use with the new client and its localization.

The nature of a request that a client sends to T is identified by the first 16 bits word of
the request (each request has a minimum length of two 16 bits words).

There are some number of categories of request: a category is identified by the quotient
of the code word divided by 100. The requests in the category O concern the basic
working of T and of its link with the client: closing, scheduling another client, sending
a query or an answer to another client...

The other categories are of a more general nature and very few of them are actually
implemented by T (writing or reading on the terminal,...). A client can elect to be a
subcontractor for one or more of these categories of request: it stops then to be
addressed like an ordinary client but receives from T all requests of these categories
coming from any client. A subcontract for a category can be overlaid by a later

T: A Package For Programming Across Systems
1003-7

subcontract from another client: the first subcontract will be re-instated at the closing of
the last subcontractor.

T LINKS

The links between T and its clients could all be of a different type: the routing and
translation are done by T. When a client and T are on the same machine, a local method
of program-to-program communication is used (class I/O on RTE; bidirectional pipe on
HP-UX). Any applicable networking method could be used when a client is on another
machine than its T server (TCP/IP, NS-1000, BSD sockets). It would even be possible
to link two computers by their serial ports if no other means were available.

Each link is a stream of 16 bits words: this is easily supported on the byte stream that
is transmitted by network protocols and is more efficient on machines (like HP-1000)
that have a penalty for byte addressing.

There are subroutines to put or get any type of data on this stream. The communication
is of the half-duplex type with buffered or immediate transmission at the choice of the
sender: a message of any length could be build element by element in the communication
buffer before it is sent. There are subroutines to transmit to T any of the requests it
accepts so that the programmer has not to care for the protocol. Some of theses
subroutines are in a library that could be adapted as fit for the language and the
processor but does not depend on the type of the link. In contrast, the other subroutines
are specific to some link. This last group does not represent an extensive programming
effort: the subroutines needed to implement the link by bidirectional pipes for HP-UX
is contained in a C source module of 400 lines; for the class I/O link of RTE-A it is a
500 lines FORTRAN module.

CLIENT-TO-CLIENT DIALOGUE

At the very beginning of the life of each client there should be an "Open T" call to
initialize the communication link. This returns also a run-string received from T: it is
the first message. A client should never try to retrieve its arguments in another way.

Just before ending its life the client should call a "Close T" subroutine that sends a
parting message to whoever launched it and close the communication link. These two

T: A Package For Programming Across Systems
1003-8

calls in the program and the presence of a client descriptor file pointing to this program
are all that is needed to qualify a program as a T client. A set of subroutines will have
to be selected at the link-editing time as appropriate for the method of communication
with T.

If a client program is aborted, T detects that its link is down and abort itself ; each client
detecting that its server has disappeared has the opportunity to do an orderly shut-down.

A client that is open for T is referred to by a client number. One could ask to T the
number of a client with a known name, if it is open and free for a dialogue (not in the
client stack or a subcontractor).

T-TO-SUBCONTRACTOR DIALOGUE

A subcontractor client starts its life as any other client and could take part in a dialogue
while setting-up its environment.

When it is ready to enter its role, it sends to T an array containing the number of the
categories of request it is ready to take charge of and an answer message to send back
to its scheduler. Its life as client able to take part in a dialogue is then ended.

What the subcontractor receives then from T are no more messages but the raw request
codes sent by some client. T is just a relay and does not knows anything about the
structure of the request. The subcontractor has to compute the length of the data
associated with the request and asks to T for this amount of data. This could be as long
as needed and could be buffered by the transmission mechanism. The structure of the
data is specific to the request and is known to the requester and to the subcontractor.
There could be in the request an indication of the data representation in use where the
client is: the subcontractor could have to do some translation.

The subcontractor could send back as much data as needed to the client but first the
amount of data has to be indicated to T.

When a request has been fully processed, the subcontractor send a "cut” command to T
to let it take back the control of the communication with the client.

T: A Package For Programming Across Systems
1003-9

There is some specific request type that has to be reserved to mean an order for the
subcontractor to leave the scene.

The subcontractor then performs its last duties and sends T a request to close the link
before termination.

This re-instate any subcontractor previously defined for the affected categories.

An ordinary client could ask T the name of the client (if any) that is registered as
subcontractor for a request type.

LIBRARY IMPLEMENTATION THROUGH T

A subcontractor usually manages some complex functions like driving a display or
accessing a data-base. The designer of the subcontractor writes a library of stub routines
that package the parameters they are called with into requests to T and indirectly to the
subcontractor. Several subcontractors could be prepared for the same stub routines. A
client may select some working mode by scheduling one or the other subcontractor.
This is typically how a graphic workstation system is configured.

T is still in development and at the moment this paper is written (April 1991) only 3
subcontracting client programs with the matching stub libraries have been written: a
printout manager, a terminal manager with form library and graphics library and a
storage manager.

The printout manager is implemented for the RTE-A in FORTRAN and for the HP-UX
in C. Itis elementary because it has been mainly used for tests but is routinely used for
remote printing.

The terminal manager is written in FORTRAN for the RTE-A only and put the terminal
in block mode. The question is still open if it will be implemented for HP-UX by using
curses(3x) or blmode(3c).

The form library is nearly identical to the X-FORM package (IUG meeting, Brussels
1989).

The graphic library is modeled on the DGL of Graphics/1000-II. This is sufficient for
the type of applications we are developing and should be simple to emulate with Starbase

T: A Package For Programming Across Systems
1003-10

graphics on HP-UX and with any graphic library on a PC under MS-DOS.

The storage manager implements a structured billboard where a client could store some

data that could be retrieved in full or by extract by other clients.

The main use will be for data-base access:

- a client is responsible for any access to a data-base. It does any referential
constraint check that is needed and perform any processing attached to some data.
It gives a declaration of the structure of its data to the storage manager and
updates the content of this structure.

- all other clients that need this data gets it from the storage manager. Some
clients could ask to the data-base client to update this data before getting it.
Others clients could be designed to process simply what is currently in storage.

- a client could put a mask or model of data in the structure before sending a
selection request message to the data-base client.

The stub library sends to the storage manager an indication of the data coding in usage

where the client is. The storage manager translates data as required.

The storage manager is currently implemented on the RTE-A, converts the floating point

data between HP-1000 representation and IEEE representation and takes care of the word

alignment limitations of HP-PA. Its stub library exists for RTE-A and HP-UX.

ENSLAVED T

If several clients of T are on the same remote system it could be wasteful to open several
communication links through a network. T could then be configured to schedule an
enslaved copy of itself on the remote system. The remote clients would then in fact be
local clients of the enslaved T.

The enslaved T and its clients would be running in a session and with an environment
appropriate to the user.

Here is how it is done:

- A T program could schedule another remote T as another client with the
appropriate link method. Currently this method is through an Ethernet LAN and
the Internet daemon INETD that is available with HP-UX and NS-1000 on the
RTE-A.

T: A Package For Programming Across Systems
1003-11

- The remote T starts a session on the logon account and with the password
specified by the master T. An appropriate environment is built from the
indications in a special session initialization file.

- The master T gives then a slaving request to the remote T.

- Thereafter the slave T receives only requests to open and close local links to
clients, to relay the transmission of data to/from these clients and to stop to be
a slave (immediately followed by an order to close the link with the master which
terminates the session).

When T has a slave T, any scheduling of a client using the enslaved T type of link to
a host with the same name is transformed into a request to the slave for scheduling a
local client.

The enslaved T is released when the last of its clients is closed. T could have several
simultaneously active slaves.

IMPLEMENTATION

The first implementation of T has been done on RTE-A in FORTRAN and has been used
for a few applications on a single system or on two systems linked by a LAN and
NS-1000.

The basic client library and the link subroutines for NS-9000 (NetIPC) have then been

written in FORTRAN for HP-UX. There has been two uses of this software:

- an HP-UX client to test the access to an RTE-A data-base through the storage
manager;

- an HP-UX client for printing on a LaserJet connected to an HP-1000.

A two man-week work has been needed for these tasks.

Then the link subroutines for bidirectional pipes and the T server have been written in
C for HP-UX. The T server uses the BSD socket for LAN access rather than NetIPC
so it should be directly portable to other UNIX machines. About one man-month has
been needed.

T: A Package For Programming Across Systems
1003-12

The client link subroutines are currently developed for a PC under MS-DOS. This
software is written in C with the NetIPC subroutines of HP OfficeShare. As MS-DOS
does not do multi-tasking there will never be a T server for this type of machine
(excepted with add-on software like MS-WINDOWS).

As a client can use a remote T server to talk with remote clients, there is no need to wait
until the whole of the T package is implemented on a machine to start developing
software using T on this machine. In some cases a T client could also be used as an
interface to commercial software.

So we are confident that T could be quickly ported to other machines as needed if the
tools for software development and some connection hardware are available.

CONCLUSION

At the moment this paper is written, we do not yet know if T will be successful in its
function of teaming the work of the programmers. But we have received some
encouraging support.

There is a general trend in the computer world toward standards and heavy systems.
At some time in the future, all computers should use the same operating system (UNIX-
like), any program could communicate with any other thanks to systems like HP’s
NewWave or HP Sockets, each programming language would have compatible extensions
for object oriented programming (OOP), all data-base management systems (DBMS)
would be SQL compatible with OOP extensions, each user would be able to use a
graphical user interface (GUI) and distributed computing would be the norm. While
waiting for all theses promises to be realized, T is a light, viable, alternative.

T: A Package For Programming Across Systems
1003-13

A REANI I

i

i

Paper # 1007
Adding an X-window User Interface to an HP1000 Application

Bob Combs
Combs International, Inc.
886 Belmont Avenue, Suite 3
North Haledon, NJ 07508
(201) 427-9292

Abstract

Users are now expecting applications to be run from X servers. A windowed
terminal does provide some nice benefits, but what about true real-time
applications? They can’t just be ported to UNIX. There is a reason why RTE is still
around! This paper reviews the design of a real-time application and how it has
been restructured to take advantage of networks and an X interface, while still
retaining its real-time (RTE) components.

1. Intreduction

We have a package which performs data acquisition and control named MAXS+.
This product has been around for about seven years, running exclusively on the
HP1000 series of computers. MAXS + is a real-time software package which is used
in factory automation, facility management, laboratory automation, and pilot plant
control.

The typical system scans analog and digital points using various data acquisition
boxes, and processes this data each scan. The scan processing must take priority
over background functions such as reports and user requests. This real-time
demand is what the HP1000 was designed to handle.

The draw back of using the HP1000 is that it lacks windows and has a limited
graphical capability by today’s standards. Enter UNIX and X-windows. Fortunately
the HP1000 does have an Ethernet interface and can communicate with a UNIX
system.

UNIX does not currently have true real-time response. After several years of
propaganda to the contrary, HP is finally willing to sheepishly admit that HP-UX
isn’t really real-time. X’'s priority scheduling algorithm, lack of a preemptable
kernel, and non-deterministic context switching leave it quite lacking in the real-
time department.

Keeping these points in mind, how do provide a system with a Graphical User
Interface (GUI) (i.e. X-windows) and still be able to process data in real-time? The
answer we came up with was a hybrid a}()f)roach. That is, keep the real-time
scanning and processing on the HP1000, and connect a UNIX box via Ethernet to
provide the X-window user interface.

Adding an X-window User Interface to an HP1000 Application 1007-1

2. Original HP1000 System Layout

The standard version of MAXS+ uses an HP1000 for all tasks: real-time scan
processing and user interface. The real-time scan processing consists of modules
which perform input/output with the data acquisition box (often called the front
end), a master scan processor, and a trend buffer management module. Refer to
figure 1. for the original module layout.

The user interface consists of many modules, each of which is a screen application
command. The screen modules are called from a command shell module which
regulates the CRT screen.

The heart of all information in the MAXS+ system is a collection of tables which
are memory resident in Shared Extended Memory Array (SHEMA). The SHEMA
tables contain all of the current real-time values of the various variables in the
system, and all configuration information. Memory resident tables allow the system
to be much faster than if this information were kept on disc or other secondary
storage.

One of the great benefits MAXS+ has is the ability to change virtually any portion
of its configuration while on-line, having no effect on the other portions of the
MAXS+ system. This flexibility allows real-time processes to continue while
portions are being configured "on the fly".

USER
FITTINIY
User Modul
!
Table to file ——@
Backup Module Shared
Memory
(SHEMA) ﬁl Long-term |
Tables
SHEMA AN
Backup File
History
Log Files
Process Front End
vo >| Data Acquisition RealTime
Signals Module Scan
Processor

figure 1. Stand-alone system module layout

Adding an X-window User Interface to an HP1000 Application 1007-2

2.1. Real-Time Modules

There may be multiple front end modules on the system which gather input
readings, placing them in SHEMA tables, and take outputs from the tables and
send them to the front end. Many front end devices work directly in engineering
units these days. Either way, the front ends are responsible for all analog/digital
input/out%ut with the real world. The communication with the various front
ends may be RS-232, HP-IB, or even LAN.

The master scan processor processes the signals after all front ends have
performed their I/ (g There are nine different variable types, but each signal has
certain stages it must go through: conversion, type dependent processing,
discrimination, clamping, and alarm checking. After the processing is complete,
trend updating is initiated, and finally data logging.

2.2. History Logging

The data logging is kept in three file types; short-term, hourly, and daily results.
The short-term is perhaps a misnomer since it really means all data and events;
which may or may not be wanted for long term archiving. The prime reason for
keeping the data in these three file types is to allow users to quickly access
different picture sizes of data. For example, a user may look at short-term data
to see the last 8 hours worth of data, but may access the daily file to get a picture
of the last year’s worth of values. A year’s worth of short-term data would take a
much longer time to scan, even with today’s faster discs, than daily values.
Therefore these three history file types allow a user to select the detail level
desired and spent less time waiting for results.

The short-term data is written to disc by SHLOG. Both the hourly and daily
results are written by LOLOG.

2.3. User Interface

The user interface utilizes the HP1000 CRT screen as if it were three separate
windows. They aren’t true windows, but are treated as separate areas by the
various user modules. As you can imagine, this was quite a trick since the
HP1000 is really only a half-duplex connection.

The top line of the screen is reserved for the exclusive use of an alarm banner
module which displays various status states of different components of the
system, such as alarms or stalled front ends. The alarm banner line (top line) is
written to the terminal’s graphic plane to alleviate some screen interactions.

The bottorn two lines of the screen are reserved for the command window. All
command prompts and error messages are displayed in this window.

The middle screen area (lines 2-22) is utilized for forms with unprotected fields,
periodically refreshing data displays, or graphic displays. All of the screen form
displays were created with our own screen prodll)xct, QFORM. We tailored
certain aspects of QFORM to allow easier integration into this window-like
environment.

The segregation of these three areas has resulted in a very usable interface, but
was somewhat difficult to program.

Adding an X-window User Interface to an HP1000 Application 1007-3

3. Identification of Areas of Change

There were several pieces of information that lead to the decision to distribute
MAXS+. One of the critical ones was that HP had begun to remove the preemption
points in HP-UX and would be eliminating all of them by HP-UX 8.0. Add this to
the fact that HP was no longer touting 9 (800’5 as a real-time replacement for
RTE. It was obvious to everyone that was not an RTE system. If MAXS+
were to have a X user interface, the solution would have to be a hybrid one, with
both an RTE and a UNIX system.

Once the decision had been made to break apart the functions of MAXS +, we had
to determine how to do it easily yet retain the features we wanted. The HP1000
should remain virtually hidden from the user, and require minimal support to keep
it running. We had decided the end goal system should have the following features:
s Real-time scanning should remain on the RTE system.

All user interactions should be moved to the UNIX X terminal.

History log files should be written to the UNIX system.

Real-time conﬁﬁuration information should remain on RTE.

Report setups should be moved to UNIX.

An X terminal should be able to redirect to different RTE systems.

An RTE system should be capable of handling multiple X users from different
UNIX systems.

Therefore, all user interface modules were moved to UNIX, and given an X look
and feel. A linkage between the RTE SHEMA tables and programs, to the X
programs was developed. The table backup and real-time scan processing would
remain untouched. History logging (SHL(gG and LOLOG) must transmit their
records to a UNIX system designated for history storage.

Note that while it was useful to allow multiple MAXS+ /RTE systems to talk to
multiple MAXS+ /UNIX X users, each RTE would have to send its history to a
specitic UNIX system. Also, the history system should eventually allow multiple
MAXS+ /RTE systems to send their history data to the same MAXS+/UNIX
system.

USER
= [O]
SEEEEIIIIE

HP1000 e
RTE

Process Data

110 —)| Acquisition

Signals Unit

figure 2. Stand-alone system

Adding an X-window User Interface to an HP1000 Application 1007-4

4. Distributed System Layout

Fortunately, MAXS+ had been written using a high degree of subroutines, with
lower level functions focused into few routines. While there were a few exceptions
to this, for the most part it allowed functions such as table data access, variable
searching, and history writing to be broken and "piped" over to the HP-UX system.
Refer to figure 3. for the new system layout.

X
USER X Clients
333333b0w / History
H MAXS_COM Log Files
————————————— lan —— —
RTE I COM
) X
Table to file
Backup Module
Shared
Memory
{SHEMA)
Tables
Backup File 9
Process Front End
110 i Data Acquisition Real-Time
Signals Module Scan
Processor

figure 3. Distributed system module layout

4.1. Overview of Distributed System

As figure 3. shows, the SHEMA tables and real-time functions were left
untouched on the RTE system. The user interface and history logging functions
were moved to the HP-UX system by writing communication modules that
carried requests from one system to the other and returned with the data or a
response check. The conﬁfuration is based upon NS/ARPA services on TCP/IP
using Ethernet for the local area network (LAN).

Im'tiallﬁ the communication functions were written using NetIPC calls, which
locks the UNIX system into being an HP-UX system only. However, we were
able to obtain a Beta Release copy of Berkeley (BSD) Sockets for the HP1000
and have since upgraded the communications programs on the two ends to BSD.
This means that a user can now use any standard%NIX system that supports X,
Motif, and BSD Sockets.

There are two sets of communications I_Igl)srograms due to the directions of initial
requests between the two machines. tory is sent to the UNIX machine, but
user module data requests are sent to RTE.

Adding an X-window User Interface to an HP1000 Application 1007-5

User interface programs initiate requests to read tables and place records back
in them from the UNIX system to the RTE system. The RTE user
communications module (COM) is the receiver who waits on the socket for a
connection request from an X user UNIX system. Requests from the UNIX user
interface modules are sent via messages to the UNIX communication module
(MAXS_COM) which connects with COM on the RTE system and then honors
the requests, sending the responses back to the calling module, again via
messages. Each request opens a connection, performs its business, and then
closes the connection so that another module or system can access the RTE
COM module.

History is written from the RTE system to a _sipeciﬁc UNIX system which is
waiting for the connection requests. The HIST COM module on the UNIX
system waits on a socket looking for history records to relay to the history
modules. The RTE module (HSEND) transfers the short-term or long file
requests to HIST COM. Again each rgﬂluest opens the connection, performs its
business, and then closes the request. The history functions did not break quite
as easily as the user interface modules did; some of the processing must remain
on the RTE system, while the file writing functions had to transfer to the UNIX
system. The RTE side of the short-term and long-term history modules had to
account for possible link trouble. Therefore a certain amount of buffering or
spooling was designed into HSEND. However, the amount of spooling is limited
and is only intended to give the operator time to correct the problem.

4.2, Interoperability

Interoperability is a buzz word these days for an application that is distributed
over multiple computers on the same network. The user is able to perform any
of the functions from virtually any point in the network. This is basically what
the X window system has provided the MAXS+ application. There are a few
points that need to be underscored here, to understand how this was achieved.

First, the RTE node name the X window user interface talks to is set in an
environment variable. Commands are available to reset the environment
variable to another RTE node. This directs all user communication to a specific
MAXS+ /1000 node. Also, since the node is in an environment variable, each
user on a UNIX system may direct their command requests to different MAXS +
nodes. Record locking is handled at the RTE node so that full resource sharing
between multiple X users may take place.

Second, history archiving is directed to a UNIX node by setting that node’s name
on the RTE system side. X users may access the history files on the UNIX
system using the X client/server arrangement. That is, the history clients are run
on the UNIX sgstem that actually contains the history files. It isn’t just
interoperability that we gain here; its speed of execution too, since history access
is generally disc intensive. Note that an added benefit is that UNIX, with its disc
caching, is inherently designed to efficiently process transactions like history
access.

Finally, the X user interface module COM has been added to the system in such
a way that it does not preclude using the stand-alone RTE MAXS+ user
intertace. A user may still work from an RTE RS-232 terminal if they desire.
One interesting item here is that with HP’s new 2627 emulator window, GFoX,
one could open a telnet window under GFoX onto the RTE system and run the

Adding an X-window User Interface to an HP1000 Application 1007-6

MAXS+ interface, if desired. While this would limit some of the X user
interface features, such as multiple windows simultaneously, it would allow a
user to open a window onto older MAXS+ systems that have not yet been
upgraded to handle the X user interface communications.

The target system is represented simply in figure 4. and a more typical extended

system in figure 5.

HP-UX i History
33333333% Files
LAN
Process Data
HP1000
0 —)| Acquisition e
Signals Unit
figure 4. A simple X system
) [f |
Files
p}3333331Y 2232243
® HP-UX HP-UX
333IIINNYE /
LAN
Process Data Data
40 =) Acquisition HF;#IEBIJ)| Acquisition HF;II_JSIJ
Signals Unit Unit

figure 5. A typical X system

Adding an X-window User Interface to an HP1000 Application

1007-7

4.3. User X forms

The MAXS+ application has a user interface with several dozen screen form
programs. This code accounts for at least 70% of the code written for MAXS +.
It would have been unrealistic to rewrite all of that code in X calls; not to
mention that X is much more complex to program than serial HP-CRT calls
require. Recall that we used our own screen forms library subroutines, QFORM,
for the screen form manipulation. We developed a new product which has
exactly the same subroutines and calling sequences, but performs these functions
in X. We call this new product Xfrm (X-form). Xfrm allowed us to quickly and
easily move the RTE screen application modules to UNIX with virtually no
modifications. This saved many man-months of coding and debugging. Plus, we
had a new software tool to offer for sale.

5. Communications Modules

While the communications modules were initially written using HP’s NetIPC calls,
we quickly converted the communications modules to using Berkeley (BSD) sockets.
The prime benefit to using BSD sockets is that the X user interface could reside on
virtually any UNIX platform, whereas using NetIPC calls would limit the interface
to using only an HP platform. We felt that our customers would be happier knowing
they could connect their non-HP systems into their HP systems and still access the
MAXS+ functionality on the HP1000. Note that they would still be restricted to
using the RTE system for their real-time functions, but this is not so much a
restriction as it is a feature set they are provided.

The communication modules were written in FORTRAN on the RTE system and in
C on the HP-UX system. These are, of course, the natural languages used on the
two machines by most of us. The BSD socket routines were written for C
programmers originally, and HP kept their call seguences on the HP1000 identical
to the call sequences in UNIX. This was a good decision, but it does create some
interesting stumbling blocks for the FOR’ rogrammer, particularly on the
HP1000. The basic problems arise out of FOR attempting to address C
structures in BSD utility routines.

5.1. A FORTRAN BSD socket module.
The Ivfollowing FORTRAN excerpt is from the HP1000 BSD socket program
COM:

FIN77

$CDS ON

PROGRAM COM(3,60)

],C11 MAXs+ <910531,2030>

tom - process received LAN requests from UNIX

This program processes requests from the X user interface
modules. Requests come across the LAN with the 1st word
indicating the command type. Additional words are data
for the specific r st. The 1st word of each returned
buffer is reserved for error returns.
910514 - switch from HP sockets to BSD sockets
startup sequence:

RP,COM

XQ,COoM

IEEEEREERERENRJE:ES:]

IMPLICIT NONE
INCLUDE /NS1000/INCLUDE/SOCKET.FTNI

INTEGER*2 BUFLEN
PARAMETER (BUFLEN=512)

Adding an X-window User Interface to an HP1000 Application 1007-8

INTEGER*2 ADDRLEN
AF

INTEGER*2
INTEGER*2 BACKLOG
CHARACTER*80 CERRMSG
INTEGER*2 DLEN
INTEGER*4 FLAGS
INTEGER*2 IBUFR(BUFLEN)
INTEGER*2 1ERR
INTEGER*2 1ERRMSG(40)
INTEGER*2 INDEX
INTEGER*4 10 _RESULT
INTEGER*2 IRESULT(2)
INTEGER*4 JLEN
INTEGER*2
INTEGER*2 LEN
INTEGER*2 MAXS_COM(5)
INTEGER*2 MSG
INTEGER*2 OFFSET
INTEGER*2 PROTO
INTEGER*2 R
INTEGER*2 REQUEST
INTEGER*4 RTN_LENGTH
INTEGER*2 S
INTEGER*2 SO
INTEGER*2 SERVPTR
INTEGER*2 SH
INTEGER*2
INTEGER*2 SO_TYPE
INTEGER*2 TRTMLEN

* -- functions
INTEGER*2 1FBRK

‘ -- tr!ck buffer for indirect resolution of pointers
(since the BSD socket routines are C compatible)
$ALlAS /HEH/ =0
COMMON /HEH/HEM(O 1)
INTEGER*2

EQUIVALENCE (CERRMSG, IERRMSG)
EQUIVALENCE (RESULT, IRESULT)

EQUIVALENCE (IBUFR(1),REQUEST)

* -- service name (note termination by NULL byte)
DATA MAXS_COM/'maxs_com',0/

CALL DTACH

* .- c;gate a cal% socket
SO_TYPE = SOCK smm
PROTO = IPPROTD_T
SD = SOCKET(AF §o TYPE ,PROTO)
IF (SD .EQ. -1) THEN

CERRMSG='COM: Unable to create a call socket.'

GOTO
ENDIF

*-- bind the socket to the service name
SERVPIR=GetServﬂEHame(ByteAdrOf(NAXS_COH,O),0)
IF(SERVPTR .EQ. U) THEN

CERRMSG='COM: service name not found'

ENDIF
SIN_FAMILY = AF_INET
SIN"PORT = MEM(SERVPTR+2)

ADDRLEN = 16 | note: IP adrs is ignored

B = BIND(SD, AddressOf(SOCKADDR_IN), ADDRLEN)
IF(B .EQ. -1) THE

CERRMSG='COM: Unable to bind socket!
T0 999

GO
ENDIF

* -- set up listen queue
BACK LOG =
= LISTEN(SD,BACKLOG)
IF(L LEQ. -1) ' THEN
CERRMSG = 'COM: listen rejected'
TO 999

Adding an X-window User Interface to an HP1000 Application

1007-9

* -- await remote connection request
100 CONTINUE
ADDRLEN = 16
A = ACCEPT(SD, AddressOf(SOCKADDR_IN), AddressOf(ADDRLEN))
IFC(A .EQ. -1) THEN
SH = SHUTDOWN(SD, 2)
CERRMSG='COM: accept failed'

* -- fetch input message
200 IF(IFBRK().NE.O) THEN
SH = SHUTDOWN(A, 2)
SH = SHUTDOWN(SD, 2)
CERRMSG='COM: break detected, shutdown'

GO TO
ENDIF

LEN = BUFLEN * 2
FLAGS = 0
R = RECV(A, ByteAdrOf(1BUFR,0), LEN, FLAGS)
IF(R .EQ. -1) THEN
SH = SHUTDOWN(A, 2)
0 100

* -- Now ?rocess the command request
GO T0(1000, 1100, 1200, 1300, 1400, 1500, 1600, 1700, 1800, 1900,
2000,2100,2200,2300,2400,2500,2600,2700,2800,2900,
3000,3100,3200,33005, 1BUFR(1)

*--1llegal request code
IBUFR(1) = -1_
RTN_LENGTH. = 2]
GO To 9000

* -- 1st R st
1000 CONTINUE
60 10 9000
* -- 2nd Request
1100 “CONTINUE
60 10 9000

* -- etc.

* -- Send reply to caller
* -- RTN_LENGTH is number of return bytes
9000 CONTINUE
DLEN = RTN_LENGTH
FLAGS = 0
OFFSET = 0
S = SEND(A, ByteAdrOf(I1BUFR,OFFSET), DLEN, FLAGS)
IF(S .EQ. -1) THEN
CERRMSG = 'COM: Unable to send packet to 9000’
GO TO 999

ENDIF

*--go await_another request
GOTO 200

*--ERROR TERMINATION
999 IF(CERRMSG.NE.' ') THEN
ENDI(F:ALL SYCON(IERRMSG, - TRIMLEN(CERRMSG))

CERRMSG = 'COM terminated'
CALL SYCON(IERRMSG,-11)
D

Note that the common buffer MEM, in the above listing, is referenced against
address 0, and starts with index zero. This is because its sole purpose is to allow
the resolution of addresses from pointers. FORTRAN programmers aren’t used
to dealing with the concept of pointers; its a C concept. But since BSD socket
routines are C compatible, they include pointers.

Adding an X-window User Interface to an HP1000 Application 1007-10

Resolving pointers is further complicated by the fact that the HP1000 is a word
addressing machine, whereas C is generally used on byte addressing machines.
The C on the HP1000 uses word addresses, except for character variables for
which it uses character addressing. Character addresses must be divided by 2
before using as a word address in memory. Fortunately, we can assume that C
aligns character strings on a word boundary.

Examine these pieces of HP’s BSD include files:
/* excerpt from HP's /NS1000/INCLUDE/NETDB.H file */

struct servent (

char *s_name; /* official service name */
char **5_aliases; /* alias list */

int s_port; /* port # */

char *S_proto; /* protocol to use */

C excerpt from HP's /NS1000/INCLUDE/SOCKET.FTNI file

INTEGER SERVENT(4)

INTEGER S_NAME,S ALIASES,S PORT,S_PROTO
EQUIVALENCE (SERVENT(1),S_NANE)
EQUIVALENCE (SERVENT(2),S”ALIASES)
EQUIVALENCE (SERVENT(3),S_PORT)
EQUIVALENCE (SERVENT(4),S_PROTO)

These are both definitions of the same service structure; one for C and one for
FORTRAN. The service pointer and the contents of its array are all integers.
Some of the values are pointers to character arrays or arrays of character
pointers. However, to see this, you must compare the C version of the structure
to the FORTRAN array.

A pointer to an integer value, such as the port number, is resolved by

I = MEM (SERVPTR + k)
where ’k’ is some constant offset beyond the pointer, where the value is sitting.
Therefore, fetching SIN PORT becomes

PORT = MEM (SERVPTR + 2)

If we use the service pointer to fetch the first two characters of the protocol
name,

PROTO = MEM (MEM (SERVPTR + 3) / 2)
This is because the pointer plus 3 points to the S PROTO value, which is a
character address of the protocol name.

Fetching the first two characters of the first alias name,
NAME = MEM (MEM (MEM (SERVPTR + 1)) / 2)

6. Summary

The project to distribute the MAXS+ application between RTE systems and UNIX
systems provided our customers with the X interface they desired, and with the level
of distribution that all the industry is talking about. Tge salient features provided
are:

= Standard X-Window user interface

w Full interoperability (multiple hardware platform)
= BSD Sockets

= History on UNIX

w Xfrm product

Adding an X-window User Interface to an HP1000 Application 1007-11

The standard X interface allows users to open multiple windows for greater
functionality. Interoperability means a wider access to real-time information. Due
to the Berkeley sockets, intercommunication is able to span multiple vendors’
platforms.

Placing the history files on a UNIX system opens up history access for some easy
data pipelines into current data bases available under UNIX.

The Xfrm product didn’t just make the project easier, it provides a tool to allow

users to create their own custom application programs and incorporate them into
the total environment, as if they were an original part of the system.

Adding an X-window User Interface to an HP1000 Application 1007-12

1008
USING RTE SYSTEM LIBRARY ROUTINES TO
CONTROL AUTOMATED PROGRAM EXECUTION

Wendy King

U.S. Naval Observatory
Time Service Department
34th & Massachusetts Avenue, NW
Washington, DC 20392-5100
(202) 653-0486

INTRODUCTION

The U.S. Naval Observatory (USNO) Time Service generates, maintains, and
improves the USNO reference time scale which is used to monitor and
control U.S. Air Force, Coast Guard, and Navy time-based navigation and
communication systems. It is also used by scientific personnel in
laboratories world-wide for time synchronization.

To accomplish this mission, two HP1000 A900s continuously collect data
from directly connected satellite receivers; take hourly time interval
measurements from 20 to 30 atomic clocks; collect timing data from 20
remote USNO data acquisition systems installed in Hawaii, Alaska, Norway,
and various points in between; and acquire data from several Earth
Stations. These data are processed and transferred to other systems on
the USNO LAN which either process the data further or disseminate it to
other users, outside agencies and organizations.

THE PROBLEM

For 11 years, we used an HP1000 F system running RTE IVB to collect and
process the data. Eventually, the application requirements exceeded the
capabilities of the F, and, in 1988, we installed the first HP1000 A900
and began the process of migration.

In the beginning, the new A900 ran quietly, doing what was asked with a
minimum of fuss. The collection and processing programs were slowly
migrated from the HP1000 F (RTE IVB) to the A900. Programs which needed
to be run automatically were scheduled at boot up from the welcome file
by a program which calculated their next run time based on the required
start and interval time. This was necessary to enable programs which ran
more often than once a day to survive an unscheduled re-boot. All the
programs ran in system session. However, as the list of automatic, time-
scheduled events grew, this strategy began to disintegrate. Six specific
problems emerged.

Using RTE Sys Lib Routines to Control Program Execution
1008 - 1

First, there were silent, unobtrusive, and mysterious failures. A
scheduled printout did not appear. There was no indication of problems
with the process which produced it; it simply did not get to the printer.
Then, an automatic taping process failed. There were no clues as to why
TF hadn’'t run; it just did not make the tape. This was getting more
serious because that was a critical automated archive which was very
difficult to recover. Several weeks passed, during which users complained
that random pieces of time scheduled processes were mysteriously failing
to run. I was scrolling back the system console buffer one morning and
saw the following message:

Program already exists in another session: PRIN1

I called the Response Center. "This is the way it is supposed to be. The
system will not execute a program in system session if the same program
is already running in another session." The mystery was solved but the
failures were increasing as system usage increased:

Program already exists in another session: CIX
Program already exists in another session: TF
Program already exists in another session: EDIT

Clearly, I needed to revise the strategy for running time-scheduled
processes if I wanted automated processes to co-exist with users on the
system.

Second, as more hourly automatic processes were added, some began to
overlap each other. When program #2 kicked in before program #1 was
finished, and program #2 changed the current working directory, program
#1 failed to find its files. Many of our automatic processes ran a copy
of CI and executed a command file. I did not want to begin a list of
things users could not use in their processes, such as the WD command.
Also, maintenance would be more complicated if the full path name for
every program and every file had to be used instead of switching the
working directory.

Third, the application programs themselves were in the system time list.
When users modified their automatic programs, they had to "off" them
before recompiling and relinking. General users do not have write
privilege to the /PROGRAMS directory. Therefore, they also had to ask the
system manager to install the revised program(s) in the /PROGRAMS
directory. The system manager had to re-schedule the program(s) to be
sure it was done correctly. During this software development stage, users
revised the code almost daily.

Fourth, if one application failed and went interactive to the system
console, the pending read could cause a pile-up of programs that were 1/0
suspended. One such failure could multiply into many, and recovery could
take hours to accomplish. Even though running in batch mode, some RTE
utilities (including CI) insist on issuing a pending read to the log lu
when they fail to find a file or encounter some other problem. Setting
a short time out on the log terminal did not solve this problem
sufficiently.

Using RTE Sys Lib Routines to Control Program Execution
1008 - 2

Fifth, after installing NS/ARPA, the "WH" output for system session
contained so many programs it was very difficult to find the user
applications to do a status check when there was a problem.

Sixth, the volume of output from the automatic applications filled the
system console buffer very quickly. Significant error messages mixed in
with normal application status messages disappeared from the terminal
before I knew there was a problem.

I needed to develop a strategy that would control and monitor the
automatic execution of application programs and processes in the following
way:

1) remove the automatic applications from the system session

2) separate automatic applications from each other

3) allow application programs to be run automatically without putting
the application programs themselves in the time list

4) redirect application output away from the system console

5) provide the capability to automatically kill them when necessary

6) provide control and maintenance tools that anyone could use to alter
the schedule in the absence of the system manager.

THE SOLUTION

The strategy which solves all the above problems includes the following
tools:

1) An ASCII file with the list of programs, start times, and intervals.

2) The programs in the list which schedule the actual applications.

3) A program which uses the list to schedule the programs.

4) A program which uses the list to re-schedule one or all of the
programs.

5) A program which uses the list to "off" one or all the of programs.

6) A command file which compiles, links, and schedules a "list"
program.

1) - The List of What and When

The starting point is an ASCII (type 4) file called /SYSTEM/TIMLST.CMD
which contains the list of what should be run, how often and when. To
change the schedule, all that’s needed is to edit the file and run the
program which re-schedules the specified program. An example of the file
appears in Appendix A. I kept the RTE format for the AT command for the
sake of user friendliness and simplicity. The file also includes editing

instructions to maintain the required format accepted by the programs
which use it.

2) - The Application Scheduler Programs

These are the programs specified in the What-When list. They are all
cloned from the template program in Appendix B. They all run in
programmatic session 260 with the system console as their log lu. When
executed, each one does the following:

Using RTE Sys Lib Routines to Control Program Execution
1008 - 3

- gets a unique session number from the system

- logs on a new programmatic session

- attaches itself to that session

- switches the log lu from the system console to another terminal

- schedules its application program without wait (XQ)

- attaches back to the main scheduler session 260

- switches the log lu back to the system console

- monitors the session it just created to log it off when all active
programs have completed, or when the time limit defined for that
process has been exceeded.

- returns the application’s session number to the system.

These are the programs which actually schedule the applications to runm,
and monitor their sessions to be sure they are terminated and logged off
in a timely manner. This ensures that problems with one application do
not interfere with applications which follow.

3) - The Time List Controller/Monitor Program

The third part of the strategy is a program called SCHED. This program
is executed in background at boot-up from the welcome file. The source
listing for this program appears in Appendix C. SCHED logs on session 260
(I selected this number arbitrarily) if it does not already exist, then
attaches itself to session 260 and reads the What-When list. For each
program in the What-When list, SCHED checks for an ID segment.

If there is no ID segment, SCHED RP’s the program, calculates the next run
time based on the start and interval time specified, and schedules the
program to run at the correct time.

If there is an ID segment for the program, SCHED checks the ID segment
time list bit. If it is set, the program is in the system time list and
nothing is done. If not, SCHED calculates the next run time for this
program based on the start and interval time, and restores the program to
the system time list by scheduling it to run at the correct time.

SCHED repeats the process hourly, restoring any programs which may have
accidentally been "off’d" or re-scheduling any programs which have been
removed from the system time list.

4 - The Re-scheduler: RESCHED

RESCHED, which re-schedules one specific program, is a clone of SCHED
which has been modified to accept a program name in the runstring, read
through the What-When list until that program is found, remove it from the
time list, re-calculate the next run time, and schedule it to run at the
new time. This program is used to change the time a process should be
run, or to add a new one to the system time list. The What-When list must
first be edited to include the new time or to add the new process. The
only routine used by RESCHED not used by the other programs is the Exec
12 call to remove a program from the time list by setting the time
interval parameter to zero. For example, "call exec(12,IRpName,0)".
This is used before re-scheduling the program at its new time.

Using RTE Sys Lib Routines to Control Program Execution
1008 - 4

5 - The Time List Killer: OFSCHED

When the equipment delivering data to the A900 fails or is shutdown, it
is necessary to "turn off" either the automatic collection and/or
processing of that data until it is restored. OFSCHED is a clone of
RESCHED which removes a program from the time list. OFSCHED accepts from
the runstring a specific program name or the key word "ALL". It uses Exec
12 to remove a program from the timelist, leaving it dormant in session
260. When this is done, the What-When list must be edited to put a "*"
in column 1 of the line for that program to prevent SCHED from restoring
the program on its next hourly time list check. If turning off all the
programs, it is easier to "OF SCHED" rather than edit every line in the
What-When file to prevent premature re-instatement of the time list.

For emergency termination, the easiest way to stop the execution of the
time list completely is to kill session 260. I created a command file
called "KillTimeList.cmd" which simply issues the KILLSES command. This
makes it easier for users to use as they almost never have to use the
KILLSES command and are unlikely to remember it. The file contains the
session 260 number so they don't even have to remember that. This file
also issues the "OF SCHED ID" command.

6 - The Scheduler Program Installer: INSTALL.CMD

This command file ensures that each scheduler program is linked as a
system utility and resides in the /PROGRAMS directory. It takes care of

removing the current version if this is not a new program. The file looks
like this:

if ftn7x $1.ftn O -
then
link $1.rel +su
of $1/260 id
co $l.run /programs/ DP
pu $l.rel
resched $1
fi

All scheduler programs are linked as system utilities so they can not

be cloned. This ensures that there can never be two copies running
at the same time.

THE RTE ROUTINES

All the routines are listed in Appendix D along with the location of their
manual documentation.

Solution requirements 1, 2, and 3:

- remove the automatic applications from the system session

- separate automatic applications from each other

- allow application programs to be run automatically without putting
the application programs themselves in the time list

W =

Using RTE Sys Lib Routines to Control Program Execution
1008 - 5

These three requirements are met by the application scheduler programs
(Appendix B) using the following routines:

GetSn - allocates a unique session number

Clgon - logs on a programmatic session

Atach - attaches the caller to the specified session
Dtach - attaches the caller to system session

IdClr - sets a flag to kill the id segment on termination

To logon a programmatic session requires a valid account. I created an
account specifically for the automatic programs. The main time list
session 260 and all the temporary sessions for the applications use this
account.

The first three functions, GetSn, Clgon, and Atach, are simple and have
never failed me. If you look at how these routines are used in Appendix
B, you will note that I included provision to display the error if one
should occur, but do not terminate the process of scheduling the
application. The error display will allow me to trouble shoot if
necessary but the occurrence of an error with these routines should not
be allowed to prevent the execution of the automatic application.

Each separate application has its own scheduler. This allows each
application to run in its own unique session number, thus satisfying the
requirement that the applications be separated from each other.

The application scheduler first gets a unique session number with GetSn,
uses Clgon to log on a session using this number, then uses the Atach
routine to move itself into the new session just created. Neither
FmpRpProgram nor FmpRunProgram allow you to specify a session other than
the one in which you are currently executing. To get the application to
run in its own separate and unique session, the scheduler itself must be
running in the new session when it schedules the application. Once the
scheduler has kicked off the application(s), it uses Atach to move back
to its original session, leaving the application running by itself in the
new programmatic session. It then monitors the new session to log it off
as soon as the application is finished. This requires that the scheduler
always use "XQ" to run the application in the background.

Sometimes, while the scheduler program is running in the application
session, the time list monitor runs its hourly check of the time list, and
finding the scheduler missing from session 260, re-schedules it in 260.
To accommodate this occurrence, the scheduler checks the error after
attempting to attach back to session 260, and if an error has occurred,
it will use Dtach to move to system session, Exec 12 to remove itself from
the system time list, then IdClr to set a flag to kill its id segment when
it terminates. This enables the scheduler to remove itself from the
application session so it can still monitor and kill it appropriately
while avoiding the possibility that two scheduled copies of itself will
continue to exist. The fact that these programs are linked as system
utilities should prevent this, but I did not want to leave anything to
chance!

Using RTE Sys Lib Routines to Control Program Execution
1008 - 6

Solution Requirements 4 and 5:

4 - redirect application output away from the system console
5 - provide the capability to automatically kill them when necessary

These requirements are met by the following routines:

AtCrt - attaches a crt to a session

LuSes - returns the user table address
IxGet - returns the contents of an address
Clgof - logs off a session

RtnSn - deallocates a session number

The AtCrt routine puts the lu of a crt into word 29 of the caller's ID
segment. The manual implies that the program must first use the Atach
routine and must be a system utility. I did not find this to be true as
it worked for all my programs regardless of whether they were system
utilities or had used the Atach call. Anyway, the effect of using AtCrt
is that all output directed to "1" now goes to the system lu specified in
the AtCrt call. This satisfies the requirement to redirect all
application output to a terminal other than the system console. All
application programs scheduled with FmpRunProgram inherit the father's
output lu, so the AtCrt is called before scheduling the application
program. The application program then uses the new lu for all its output.
The scheduler then resets its own output lu with a second call to AtCrt
so that any subsequent output from the scheduler program will appear on
the system console. This allows all users to write their status messages
to "1", and enables the system manager to control the actual location for
the output. Because each application has its own scheduler, different
applications can have their output directed to different locations.

LuSes, IxGet and Clgof satisfy the 5th solution requirement to be able to
kill the application session. Although the documentation for Clgof
implied that if I used the Option 0, it would logoff the session when
there were no "active" programs, I found that in this case the term
"active" really meant RP'd. Any program used by the application which
terminates but remains dormant in the session is considered an "active"
program. So if you use Clgof with option 0, the logoff fails if any
program’s ID segment is not released when the program is finished.

LuSes and IxGet allows the scheduler to determine when no programs are
running so the log off can be accomplished as soon as the application has
truly finished. LuSes returns the address of the User Table for that
session, and IxGet returns the contents of an address, in this case word
13. Word 13 of the User Table contains a "Number of User Programs
Counter" which is incremented when programs are scheduled, and decremented
when they become dormant. Bit 15 is set only if there is a logoff program
or command file defined for this user. As this is not the case for the
automatic application account, I need only check for the value of this
word to be 0. As soon as this occurs, the scheduler logs off the session.

Using RTE Sys Lib Routines to Control Program Execution
1008 - 7

Each of the applications can be expected to terminate within a specified
time limit. The MaxTime variable in the scheduler program represents the
maximum number of minutes allowed for the application. The scheduler uses
this predefined time limit to determine when to log off the session even
though programs are still running. In this way, an interactive CI prompt,
or a user program which has entered an infinite loop, can be terminated
so that subsequent programs can not get "piled" up behind it. If the
session does exceed the time limit, a message is displayed to the system
console so that corrective action can be taken. The application scheduler
ends with the RtnSn routine which releases the session number back to the
system.

Solution requirement 6:

6 - provide control and maintenance tools that anyone can use to alter
the schedule in the absence of the system manager.

This last requirement is met by the SCHED, RESCHED, and OFSCHED programs
using Clgon, Atach, Dtach, IdGet, IxGet, FmpRpProgram, Exec 12 and ChngPr
(See Appendix C).

The first three have already been described as they are used in the
application scheduler programs. IdGet returns the address of the Id
segment of a specified program in a specified session. To verify the
existence of an Id segment for a scheduler program, SCHED uses IdGet with
the program name and the session number 260. If IdGet returns a 0, there
is no Id Segment for. the program and it must be RP'd and re-scheduled.
If IdGet returns an address (anything other than 0), then I need to verify
that the program is actually in the system time list.

IdGet has a companion routine called IdInfo which returns information from
the Id Segment. However, on the A900, IdInfo does not differentiate
between the three possible dormant states. Therefore, SCHED uses IxGet
to return the contents of word 18 of the Id segment. Bit 12 of word 18
is the timelist bit. If it is set, the program is in the time list. If
not, SCHED re-schedules the program after calculating the next run time.

RESCHED is a clone of SCHED which accepts a program name from the
runstring, and after removing the specified program from the time list
with an EXEC 12, calculates the next run time and re-schedules the
program. This is used to change. the time when something should be run.
Because it is run manually, and the system could be very busy, this
program increases its priority with a call to ChnPr. This ensures that
the re-scheduling of the program is done immediately. The Exec 12 routine
removes a program from the time list if the time interval parameter is set
to 0 (e.g., call Exec(12,ProgName,0). ProgName must be the Rp name in a
3-word integer array.

Using RTE Sys Lib Routines to Control Program Execution
1008 - 8

OFSCHED is the last of the three controller programs. This program
removes one or all the programs from the time list. This also uses the
Exec 12 to remove the program(s) from the time list. This has been very
useful during system restoration after a re-gen, when I needed to inhibit
the automatic processes. I can run it manually after boot-up, or put it
in the welcome file. To re-start everything, I just "XQ SCHED" to restore
the What-When programs to the system time list.

PITFALLS

System release 5.1 and 5.2.both have problems relating to what happens
when a CI command file terminates with "EX" if it was originally scheduled
with "XQ". When running in background, the EX command to CI results in
the total destruction of the session, even if other programs are still
running. Thus, a command file which issues a PRINT command and followed
by an EX will result in the session being terminated before the file
completes printing. The rule I use for ending CI command files is to
always specify "EX,B". The application scheduler always takes care of
logging off the session.

CONCLUSIONS

In the beginning, I wrote status messages from the scheduler programs to
the system console. I could see at a glance what had been run, at what
time, for how long, and in what sequence for the past several hours. Once
I was confident that the strategy and the code were working as intended,
I turned off the system console status displays. Now, the only output
sent to the system console is error messages. All the ongoing application
status messages are displayed on a second terminal reserved for that
purpose. Now, all system errors are immediately obvious. Output to the
system console is controlled by a logical flag in the scheduler programs.
If I need to turn it on again, I just edit the source file, changing the

flag to TRUE, and use the INSTALL.CMD file to install the new version in
the time list.

Now that our system is in place, and has been tested numerous times in
different situations, I can not imagine keeping this pair of A900s under
control without it. It is just one more example of the HP1000 RTE
flexibility and easy adaptability to user control requirements. I am sure
that I will continue to refine the system as new requirements occur. Any
new discoveries will be included in the paper presentation.

Using RTE Sys Lib Routines to Control Program Execution
1008 - 9

APPENDIX A

THE WHAT-WHEN LIST: /SYSTEM/TIMLST.CMD

*

This file
The first

is used by SCHED, RESCHED & OFSCHED to control the time list
four fields must conform to a specific format. Everything

to the right of the 4th field is ignored so you can put anything there
Specific format instructions are at the end of this file.

AT 00:00:01

% % % % ok % % % % % % % % % % ok % % Ok % ¥ *

24H SCSAT ru cicopy /gps/gpsat.cmd MORE GPS PROCES
24H SCXPT ru cicopy /export/export.cmd FTP ->MATSAKIS

Int What Run String executed: Application:
1H SCCLD ! ru /timesc/cldat.run CLOCK SCAN
1H SCDAS ! ru cicopy /das/calldas.cmd DIALOUT CALLS
1H SCMIR ! ru cicopy /dey/monitor.cmd FTP DATA TO 835
1H SCWDG ! ru /timesc/wchdg.run CLOCK WATCH DOG
24H SCCYR ! ru /sysprogs/chkyr.run CHECK YEAR
24H SCGPM ! ru cicopy /gps/gps_midnite.cmd MIDNITE GPS
24H SCHKP ! ru cicopy /hskp/hskp.cmd HOUSEKEEPING
24H SCBKP ! ru /mgr/backup/backup.run BACKUP
24H SCHLT ! ru /sysprogs/rboot.run BOOT SYSTEM
24H SCWMS ! ru cicopy /snoopy/ms.cmd PREPARE DATA
12H SCGPS ! ru cicopy /gps/gps_process.cmd PROCESS GPS
24H SCMCS ! ru cicopy /cksteer/ckstr.cmd CLOCK STEER
24H SCDAM ! ru cicopy /scham/scdam.cmd PROCESS DAS
24H SCLOP ! ru cicopy /hc/rdctn.cmd REDUCE LORAN
24H SCITG ! ru cicopy /hc/wttg/udtv.cmd TV TIME UPDT
12H SCGPS ! ru cicopy /gps/gps_process.cmd PROCESS GPS
24H SCSID ! ru /sysprogs/iontr.run BREAK SID FILES
!
!

Required format: **THERE MUST BE AT LEAST ONE SPACE BETWEEN FIELDS**

column 1:

First
field

Second
field

Third
field
Fourth
field

* for comment lines OR

blank if the whole line is blank OR

blank if the next four fields are correct (accidental
whole line shift to the right will be tolerated) OR
first character of the first field.

MUST be at least 1 ascii character; this is really a place
holder since the "AT" is used for user friendliness so the
line makes sense. You could put ZZ there and the program
will not care. The character must be printable.

NO spaces; the hour, minute, and second values MUST be
separated (delimited) by a ":"; the first number will be
interpreted as hour, the second as minute, the third as
second. Leading Os are not necessary for the program to
work. There must be at least one numeric digit; Omitted
fields default to O but do not omit minute if seconds is
not also 0.

NO SPACE BETWEEN THE INTERVAL NUMBER AND UNIT CHARACTER!
Lower case will be accepted

The name of the program; if no directory path is specified,
it will default to the /programs directory. The .RUN
extension is also not required.

Using RTE Sys Lib Routines to Control Program Execution

1008 - Appendix A

APPENDIX B

APPLICATION SCHEDULER PROGRAM TEMPLATE

FIN7X,L
PROGRAM SC<prog name>(), schedule <application description>
Ko m i mm i mmm i m e m e m e e e e e e eeeeeeeeeeeeee—mem—eeee—eeemonoaa-
* Programmer: Wendy King
* Created: August 31,1990
* Revised: <910528.1758>
* Purpose: Template program; customize to fit application
* Create a unique programmatic session, attach to that
* session and run a program, then return to original
* session and log off the auto programmatic session when
* all active programs have completed.
K e m e m e e e e e e e e e e e e e e e eeeeem e meemmme—eon
implicit none
character*5 Progld ! name of this program
character*72 msg0(0:2) ! getsn errors
character*72 msgl(0:7) ! clgon errors
character*72 msg2(0:5) ! atach errors
character*72 msg3(0:2) ! clgof errors
character*5 RpName ! true program name
character*80 RunString(l) ! to schedule program
integer#*2 StdOut, StartLu, SystemConsole,NProgs, I
integer*2 ITime(15),SesNum,error,Opt,Count,MaxTime
integer*2 BufLen,buffer(4),Parms(5), FmpRunProgram, StrLen
integer*2 Clgon,Clgof,GetSn,Atach,RtnSn,UsNum, TrimLen
integer#*2 LuSes, IXGet,Active Progs,UsrIdTblAddr
logical Continue,ConsoleDisplay
K e m i mmmm e mmm e e e e e e e e meemeeeae o mmem—mmem—men

* CUSTOMIZE THIS SECTION
* Replace the 5 x's with the 5-char name of this program

data Progld /'XxXxxx'/

Replace "prog.run::dir" with the full path and program name to be run
Duplicate this line for each program to be scheduled; for run w/wait
use RU instead of XQ. Set NProgs to the number of programs to be run.
For additional runstrings, increase the array value in the declaration
and increment the aray value for each data statement.

* % % % %

data RunString(l) /'XQ,prog.run::dir,parameters if any'’/
data NProgs / 1/

* Replace n with a number which represents the Maximum number of
* minutes the process should take.
data MaxTime /n/

* replace n with the lu of the terminal where you want the
* application program output(s) to be displayed.

data StdOut /n/

Using RTE Sys Lib Routines to Control Program Execution
1008 Appendix B-1

* set ConsoleDisplay to false if you want only error messages on the

* *

data

ConsoleDisplay /.false./

*
8
=
5]
H
:
8
£
E
2
a
=
2
=
(<2}
&
e
=

data
data
data
data
data
data

buffer /
BufLen /
opt /
Count /
SystemConsole /
Continue /.true./

* Error messages for getsn

data
data
data

msg0(0)(1:)/’ 0, No error.'/

system console; set it to true if you want progress/status messages
on the system console.

account & password
chars in buffer
clgof option

count log off trys
System Console lu
flag for logoff loop

msg0(1)(1:)/’'-1, Cannot get a session number.’/
msg0(2)(1:)/’'-2, No more session numbers available.'’/

* Error messages for clgon

data
data

data
data
data
data
data
data

msgl(0)(1:)/’ 0, No error.'/

msgl(l)(l:)/'-1, Internal error, such as no class numbers,
> or logon not performed.’/
msgl(2)(1:)/'-2, No -2 error documented in the manual.'/
msgl(3)(1:)/’'-3, Too many sessions active.’/

msgl(4)(1:)/'-4, No such user.'/

msgl(5)(1:)/'-5, Bad or missing password.'/
msgl(6)(1:)/’'-6, File is not valid user file.'/
msgl(7)(1:)/'-7, User configuration file already open.'/

* Error messages for atach

data
data
data
data
data
data

msg2(0)/' 0, No error.'/

msg2(1)/'-1, session number does not exist.’'/
msg2(2)/'-2, specified program does not exist.’/
msg2(3)/'-3, current session number coes not exist.'/
msg2(4)/' -4, must be superuser for action requested.’/
msg2(5)/'-5, program with same name already exists.’/

* Error messages for clgof
data msg3(0)(1:)/’ (0) Log off completed: no error.'/
data msg3(1)(1:)/' (-1) There are active programs; Option was 0.'/
data msg3(2)(1:)/' (-2) Session already logged off.’/

% Identify program and revision number; display time.

if(ConsoleDisplay) then

write(l,’(/a)’)’

call Ftime(ITime)
write(l,’(a5,1x,15a2)')Progld,ITime
endif

Using RTE Sys Lib Routines to Control Program Execution

1008 - Appendix B-2

save the initial output log lu
call loglu(StartLu)

get a unique session #
error = GetSN(SesNum)
if(error.1t.0) then
Strlen = trimlen(msg0(-(error)))
write(l,*)Progld,’ GetSn: ',msg0(-(error))(l:StrLen)
sesnum = 999
endif

logon TS/AUTO programmatic session to new session number

error = clgon(buffer,Buflen,SesNum,error)
if(error.1t.0) then

StrLen = trimlen(msgl(-(error)))

write(l,*)Progld,’ Clgon: ’‘,msgl(-(error))(l:StrLen)
endif

atach to new AT/TIME session
error = atach(sesnum,error)
if(error.1t.0) then
StrLlen = trimlen(msg2(-(error)))
write(l,*)Progld,’ Atach: ’',msg2(-(error))(l:StrLen)
endif

announce output destination

if(ConsoleDisplay) then
write(l,*)Proglid,’ Running in session number ’,UsNum()
do i = 1,NProgs
StrLen = trimlen(RunString(i))
write(l,*)Progld,’ ',RunString(i)(l:StrLen)
enddo
write(l,*)Progld,’ Look for output on lu ’,StdOut
endif

change the output lu to stdout
call AtCrt(StdOut)

display status message if standard output device is to be the
system console for this application and console display is turned
off, or if the standard output device is not the system console.

do i = 1,NProgs
StrLen = TrimLen(RunString(i))
if((StdOut.ne.SystemConsole).or.
> (StdOut.eq.SystemConsole).and. (.not. ConsoleDisplay)) then

write(l, (/@) ') cccccmc e eceiiecaaeaas
call FTime(ITime)
write(l,’(a5,1x,15a2)')Progld,ITime
write(l,*)Progld,’ ',RunString(i)(l:StrLen)

endif

Using RTE Sys Lib Routines to Control Program Execution
1008 - Appendix B-3

error = FmpRunProgram(RunString(i)(1l:StrLen),Parms,RpName)
if(error.1t.0) then
write(l,*)Progld,’ FmpRunProgram ’',RunString(i)(l:StrLen)
write(l,*)Progld,’ FmpRunProgram Error: ', Error

write(l,*)Progld,’ FmpRunProgram Errors: ', Parms
endif

enddo

* re-atach (return) to AT/TIME session 260

error = atach(260,error) ! try to Atach back to 260
call AtCrt(StartLu) ! switch output back to original
if(error.1t.0) then ! if error dtach to system session

Strlen = trimlen(msg2(-(error)))

write(l,*)Progld,’ atach: ’,msg2(-(error))(l:StrLen)
call Dtach(error)

if(error.1t.0)write(1,*)Progld,’ Dtach Error: ’,error

call exec(12,0,0) ! remove me from the time list
call IdClr() ! set flag to kill my ID seg
else

if(ConsoleDisplay) then
write(l,*)Progld,’ Returned to session ’',UsNum()

write(l,*)Progld,’ Waiting to logoff session ’,sesnum
endif

endif

* terminate the session after active programs have completed;
* if programs remain active past the Max time expected, logoff and

% kill all active programs (assume there is a problem with the
* application).

do while(continue)

UsrIdTblAddr = LuSes(SesNum) 1Get User Table address

if(UsrIdTblAddr.le.0) then 1Session already logged off
continue = .false. Iset flag to quit

else

Active_Progs = IXGet(UsrIdTblAddr + 12)! active progs count

if(Active_Progs.eq.0) then 1Progs finished; logoff now
continue = .false. tset flag to quit

else |Programs not finished;

if(count.eq.MaxTime) then
write(l,*)Progld,’' Exceeded ',MaxTime,’ minute time limit.’
write(1l,*)Progld,’ Killing session ', SesNum
write(1l,*)Progld,’ Check for errors or adjust time limit.’

ConsoleDisplay = .true. ! I do want the console to
continue = .false. ! display clgof result

else
count = count + 1 ! increment counter;
call exec(12,0,3,0,-1) ! wait 1 minute; try again.

endif

endif
endif

enddo

Using RTE Sys Lib Routines to Control Program Execution
1008 - Appendix B-4

error = clgof(SesNum,Opt,error) ! log off session

if(ConsoleDisplay) then
Strlen = trimlen(msg3(-(error)))
write(l,*)Progld,msg3(-(error))(l:StrLen)
call FTime(ITime)
write(1l,'(a5,1x,15a2)’)Progld,ITime
endif

* return the session number to the system

error = RtnSn(SesNum)
if(error.eq.-1)write(l,*)Progld,’ RtnSn: -1’

end

Using RTE Sys Lib Routines to Control Program Execution
1008 - Appendix B-5

APPENDIX C

TIMELIST MONITOR/CONTROLLER PROGRAM - SCHED

FIN7X,L

$FILES(0,1,25)

K e m e e e e e e e e e e ececmmesmeeesmemeeeeeeeeeeeememmem—a——a-o
* Programmer: Wendy King

* Site: US Naval Observatory, Washington DC

* System: HP1000 A900 RTE 5.2

* Externals: RTE System and Fortran 77 intrinsics

* Purpose: Schedule and/or re-schedule Time Service programs

* which must be run automatically at certain intervals

* Last Revision <910530.1949>

PROGRAM SCHED(3,30), Restore programs to time list
implicit none

integer*2 NextHr,NextMin,NextSec,TmUnit,TmInt

integer*2 time(5),parms(5),IRpName(3),IMyName(3),TSLogon(4)
integer*2 IdSegAddr,TimeListBit,Mask,IdSegWordl8,IXGet,IdGet
integer*2 TrimLen,Session,Error,FileLu,BufLen,ios

integer*2 FmpRpProgram,UsNum,LogonLen,Clgon,SuperUser

character At*2,Frequency*4,CRpName*5,CMyName*6,Start+*8
character ProgramName*64,InputFile*64
character CBuffer*80

equivalence (IMyName,CMyName)
equivalence (ProgramName(1l:5),IRpName,CRpName)

data parms / 5%0 /
data mask / 010000B /
data Session / 260 /
data TSLogon / 'AT','/T','IM','E ' /
data LogonLen /7 /
data InputFile / '/SYSTEM/TIMLST.CMD' /
data FileLu / 101 /
data BufLlen / 80 /
if (SuperUser(UsNum()).eq.0) then
Write(l,*)'Sorry; You MUST be Super User.'’
call exec(6,0,3)
endif
DO WHILE (.TRUE.) fcontinue indefinitely

*%% if not running in system session, go there;
**% atach to TS session; create session first if necessary

Using RTE Sys Lib Routines to Control Program Execution
1008 - Appendix C-1

if(UsNum() .ne.0)Call dtach() ! sets loglu to system console
Call atach(Session,error) ! try attach to 260
if (error.ne.0) then !t if it fails, logon 260

error = clgon(TSLogon,LogonlLen,Session,error)

if (error.eq.0) call atach(Session,error) ! attach to 260
endif

*%% Open the list of time scheduled programs
ios = -1 file could be in

!

do while (ios.ne.0) ! use; keep trying

Open(FileLu,File=InputFile,Iostat=ios,Err=1) ! to open the file
!

1 if(ios.ne.0) call exec(12,0,2,0,-30) every 30 seconds
enddo
DO WHILE (Ios.ne.-1) ! while not EOF
Read(FileLu,Fmt='(a)’,lostat=Ilos,Err=998,End=20)
> CBuffer(l:)
if(trimlen(CBuffer).eq.0) goto 20 { if blank read again
If(CBuffer(l:1).eq.’'*’) goto 20 ! comment; read again
READ(CBuffer(1l:),Fmt=%, 6 Err=20,End=20) !
> At,Start,Frequency, ProgramName
. S S
* Check for current ID segment; if none, RpProgram and put in timelist;
* if RP fails, write error msg and go to next program; if there is an
* ID segment, check that it is in the timelist; if not, put it there,
* if it is, go do next program.
S
IdSegAddr = IdGet(IRpName,Session) ! get ID Seg
if(IdSegAddr.eq.0) then ! if no ID seg
Error=FmpRpProgram(ProgramName,CRpName, ‘P’ ,Exror) ! try RP
if(Error.ne.0) then ! if error
Write(l,*)’'Sched: RP ',ProgramName(l:5) ! write msg
Write(l,%*)’Sched: Error returned was ',Error
goto 20 ! do next prog
endif
else
IdSegWordl8 = IXGet(IdSegAddr + 17) ! get Id Seg Word 18
TimeListBit = iand(mask,IdSegWordl8) ! mask off bit 12
if(TimeListBit.ne.0) goto 20 ! if bit 12 set ok
endif ! if not re-schedule
*kk Calculate the next runtime based on the interval (how often)
*kk and start time.

Using RTE Sys Lib Routines to Control Program Execution
1008 - Appendix C-2

*%

20

998
999

Time schedule the program.
call exec(12,IRpName,TmUnit,TmInt,NextHr,NextMin,NextSec,0)

ENDDO
goto 999

Write(l,*)'SCHED: TIMLST.CMD::SYSTEM READ FAILURE!!!’
close(FileLu)
call PName (IMyName)

if (CMyName(1:5).ne.'SCHED') then ! if true I am a clone;
call exec(6,0,3) ! kill me completely

endif

call dtach(error) ! move to system session

if(error.eq.-5) then ! if already exists in system
call exec(6,0,3) ! session, kill me completely

else

call exec(1ll,time) ! get time now

if(Time(3).gt.40)Time(4)=Time(4)+1 ! if min>40 inc hour
Time(4) = mod(Time(4),HpD) ! mod hour/24
!

call exec(12,0,4,1,Time(4),45,0,0) sched next run
endif
ENDDO
END

Using RTE Sys Lib Routines to Control Program Execution
1008 - Appendix C-3

APPENDIX D

REFERENCE MANUAL DOCUMENTATION FOR RTE ROUTINES

HP1000 RELOCATABLE LIBRARIES MANUAL:

CHAPTER 5

IxGet returns the contents of an address
CHAPTER 6

UsNum returns the session number
SuperUser checks if user is super user
GetSn returns a unique session number
RtnSn releases a session number

Dtach moves caller into system session
AtCrt attaches a crt

Atach moves caller into a session
Clgon logs on a session

Clgof logs off a session

LuSes returns the user table address

HP1000 PROGRAMMERS REFERENCE MANUAL:

CHAPTER 5

IdClr sets flag to kill callers ID segment
ChngPr change the priority of a program
Exec 6 terminate a program

CHAPTER 6

Exec 11 returns the system time

Exec 12 schedules a program now or later
CHAPTER 7

IdGet returns the caller’s id segment address
PName returns the caller’s actual name
LogLu returns the lu of invoking terminal
CHAPTER 8

FmpRunProgram schedules a program (no RP needed)
FmpRpProgram restores a program ID segment

Using RTE Sys Lib Routines to Control Program Execution

1008 - Appendix D

HP 1000 DS and NS
over
MUX Ports

Donald A. Wright
Interactive Computer Technolo
2069 Lake EImo Avenue No
Lake Elmo, MN 55042 USA
612/770-3728

Abstract:

DS and NS on the HP 1000 are excellent network services. Many people do
not realize how robust these services are. They provide far more than NS
services on other systems, with such functions as transparent remote image
Data Base access, and complete file transparency. But they can be
expensive.

In many applications, the cost of HP’s networking hardware is higher than the
cost of the DS or NS software to go with it. But every HP 1000 has MUXes,
and most have a sa‘:are port or two. MUXLINK is a collection of software
components which allow full DS and NS services between HP 1000’s, using a
single MUX port on each computer in a connected pair.

The software emulates the HP HDLC cards and their drivers, so nearly all of the
functionality of DS and NS is supportable. Data transfer speeds are limited to
the speed of the MUX, so this mechanism is of value where DS/NS functions
are desirable but the highest performance is not required. MUXLINK is a
commercial product, but the author provides detailed design and internals
information. The paper discusses pseudo drivers working in close cooperation
wilth %rotoool programs, the protocol itself, integration with HP’s DS/NS, and
related issues.

Requirements:

The need is for a software mechanism providin_tr;E DS/1000 and NS/1000
services over B, C, and D-MUX ports on both RTE-A and RTE-6/VM. The
drivers must appear to HP's software to be HDLC drivers, so that DS/NS will
allow the full range of services supported by the HDLC: cards. The system
should support all normal ND/DS re% ests, including those from the utili

programs DINIT, NSINIT, DSINF, NSINF, and DSMOD. A communications lin

should require only one MUX or OBIO port at each end, and network traffic
should not interfere with the use of other ports on the MUX. It should include a

HP 1000 DS and NS over MUX ports
Page 1009-1

complete error-detection and retry protocol.

The software should, if possible, include data compression. It would be
desirable to allow the use of the MUX ports as terminal ports when not in use
for DS/NS, and it will be helpful if normal DSINF and NSINF reports show
coherent information when used to query these special links.

Eventually, the software should support all of the special features of the HDLC
cards, such as Remote VCP, Remote Program Download, and Forced Cold
Load. Autodial and inactivity disconnect will also be useful features.

Design Approaches:
Two different approaches to this problem were considered:

1) Write a special device driver for each type of MUX in both RTE-A and
RTE-6/VM, for a total of four drivers.

2) Write a pseudo driver for each operating system, closely linked with a
protocol program which communicates through normal MUX ports.

These approaches have very different sets of problems to face:
Four Drivers:

a; Large drivers are required, with lots of programmln? at the driver level.

b) There is a danger of being privieged too long while doing protocol

manipulations.

c) Data buffers must be outside the driver while the protocol work is done,
and there is no convenient place to put it.

Pseudo Driver and Protocol Program:

a; This approach cannot be as efficient as the other.
b aI.I!tr;sohcited remote messages and message collisions are harder to
itrate.

Design Choice:

The pseudo driver approach was chosen. While efficiency will be somewhat
reduced, it was felt that this will not affect DS/NS speed at the relatively low
MUX data rates. It was also thought that this approach might actually be less
intrusive and have less impact on other applications, because most of the
protocol work can be done in a normal interruhrtiblvrogram. The drivers will
definitely be much smaller, and in RTE-6/VM it will normally be installable
without a system generation, using driver replacement. But the biggest
advantage is that most of the code can be written and debugged at the
program level rather than the driver level. This also improves the liklihood that
patch:z and updates can be installed at the program level without a system
generation.

HP 1000 DS and NS over MUX ports
Page 1009-2

This is a schematic diagram of the resulting design:

Schedule
MUXLINK —— MUXQUEUE
Pseudo I
Driver
Write LU Protocol
MUXIO Remote
— 66 T System
DS/NS LU 1 1 U=
MUX MUX
LU -/ / LU
LU 2 HP
Read LU Driver

tocol i

The protocol used between HP 1000 systems cannot actually be HDLC,
because that protocol is very compute intensive, requiring a dedicated
microprocessor. Instead, we must design a protocol which is much less
compute intensive but allows use of a wide variety of connections, at least
including direct connection or any lookalike (e.g. shorthaul modems), dialup
modems, commercial services such as DunsNet, Tymnet, and Telenet, plus
data switches and LANSs.

It should support all baud rates available on the MUXes, and must allow for
XON/XOFF data pacing. It need not support ENQ/ACK. It must be able to
use a 7-bit channel if necessary, and should provide at least run-length
encoding as a method of data compression. It must allow for the translation of
special characters which may be disallowed by one connection or another.

Norm n f

When the link is idle, the four major components of the system are in the
following states: The Type-66 LU’s are idle, MUXIO is waiting on a class GET,
MUXQUEUE is dormant saving resources, and the MUX LU is in typeahead
mode with a class read on it (B, C-MUX) or enabled to schedule MUXQUEUE
when a character comes in (D-MUX).

Here is the sequence of events for a normal write:

1) The driver is entered by RTE with the directive to initiate a DS/NS write
to the remote system.

2) The driver makes some cursory checks on the request and then
schedules MUXQUEUE, setting a retry if MUXQUEUE is busy, and passes
an initiation sequence number along with its own DVT/EQT address.

3) MUXQUEUE determines where the schedule came from, validates it,

HP 1000 DS and NS over MUX ports
Page 1009-3

and passes it to MUXIO in a class write.

4) MUXIO wakes up from its GET, examines the re$uest for Iegalit&, and
tells the driver it is complete by setting bits in the Type-66 LU’'s EQT/IFT
and forcing an immediate driver timeout.

5) The driver is entered with a timeout directive, determines that the

request is complete, and takes a completion exit.
Note: In this case the driver actually completes the request before the data
is transmitted to the remote system. is is unusual, but higher-level
DS/NS protocols protect against a lost message, and in fact this is exactly
how the HDLC drivers work as well.

6) MUXIO then converts the message's raw data into one or more
encoded ‘frames’, complete with headers and checksums and in-stream
special characters to implement the protocol.

7) MUXIO flushes the pending read on the MUX port and begins writing the
messagle to the remote computer, handshaking it over according to the
protocol.

A read follows this sequence:
1) The first incoming frame completes MUXIO’s pending read on the MUX

port.

2) MUXIO wakes up from its GET and handshakes the rest of the message
across. :

3; MUXIO converts the incoming frames back into a DS/NS message.

4) MUXIO schedules QUEUE (HP's DS/NS incoming-message program) with
detaitl)s about the incoming message, giving it the Type-66 Pseudo LU
number. :

5) QUEUE places a class read on the Type-66 LU.

6) The Type-66.driver schedules MUXQUEUE.

7) MUXQUEUE informs MUXIO by way of a class write.

8) MUXIO goes privileged, finds the location of QUEUE’s class buffer in
SAM, and cross-stores it right in. Then MUXIO sets flag bits in the LU’s
IFT/EQT and forces an immediate driver timeout.

9) The driver detects the completion by MUXIO and takes a completion
exit.

The sequences described above apply to all normal DS/NS requests.
However, there are some unusual requests that must be handled as well. The
most difficult of these is the Special Status Read. In this case, a program such
as DSINF issues a normal I/O request (not class 1/O) to the driver, and
exp%cts to get 10 or 12 words of status or statistics information back from the
“card".

The drivers pass this request to MUXIO in the same fashion as all other
requests. MUXIO then locks itself in memory, sets status bits in the IFT/EQT
to tell the driver that special action is required, and also places there the
absolute page address and the relative word offset of the gﬁecial Data in its
local map. The driver then mags the data directly into an alternate map and
cross-stores it to the requester’s buffer.

HP 1000 DS and NS over MUX ports
Page 1009-4

Efficiency:

While the sequences described above do seem complex compared with the
notion of performing all of the protocol and 1/O directly in the driver, they take
advantage of the very facilities that the HP 1000 was designed to do well. In an
actual test, the Special Status Read, described above, was executed
repeatedly on a Type-66 Pseudo Driver LU from a test program, with a
1024-word buffer rather than 10 or 12 words. In both RTE-A and RTE-6/VM,
the test program was able to perform 100 reads per second, which is the
maximum possible number when timeouts are u to pace an event in the
sequence.

Protocol:

The following is an overview of the lgro'tm:ol which MUXLINK uses to encode
data, form packets, and transmit it on RS-232 circuits.

Port-to-Port:

1) An initialization negotiation tells each side the important properties of the
other, e.9. max read size.

2) When a channel is idle, C-MUX ports have a read posted and D-MUX
ports have program scheduling enabled. When one side wishes to initiate
transmission it just sends a packet to the other side.

3) Channel contention is always resolved in favor of the same side,
determined by the initialization negotiation.

4) A single message may be broken into two or more frames.

5) After the first frame, channel contention is resolved before additional
frames are sent.

6) Errors are detected by checksums and other protocol checks, and are
corrected by retries.

7) DS/NS messages are currently limited to 4086 words. The programs
written to implement this protocol may have such a limitation, but the
protocol itself can handle at least 1 megabyte in a single frame.

8) Multiple unacknowledged frames are also supported by the protocol,
though not necessarily by program implementations.
Encoding/Decoding:

1) Run-length data compression for 8-bit data is performed as an integral
part of encoding, if enabled.

HP 1000 DS and NS over MUX ports
Page 1009-5

2) For transmission on the maximum number of possible services, the
allowable encoded character set is configurable at startup. At the
minimum, it may be reduced to the 64 most common characters plus up to
8 reserved management ("special”) characters plus the carriage-return or
other EOL character.

3) The encoded data must fit on a 7-bit channel if necessary. This will be
indicated in the initialization negotiation.

4) Message frames are sent as variable-length character strings terminated
by a hardware-recognizable EOL such as CR.

Initialization:

1) There are four message frames exchanged in the channel initialization
process, in this order:

1) Initialization Request

J) Initialization Response Data

K) Initialization Request Data

L) Round-Trip Time Interval message

2) Basic assumption: it doesn't matter which side is prim: and which is
se<“>_opdary. That distinction is used later only to itrate channel
collisions.

3) When | start up | declare my side to be in an uninitialized state and begin
sending primary initialization request messages or invalid frames to the
other side at predetermined intervals.

4) When in the uninitialized state, | can recognize only two things: 1) Prcéf)er
responses to my initialization sequence messages, or 2) The other side’s
primary initialization request. If an unexpected message is received before
the full 4-message exchange is complete, | will execute a random delay
and then read to see if a primary initialization request is present from the
other side. If so | will respond to that request; if not | will send another
primary initialization request myself.

5) Reception of a primary initialization request at any time will invalidate

%rfvious initializations and will cause an initialization response to be sent.

e only exception is the first message received after sending my own
initialization request.

6) | keep track of the time | sent an initialization response and the time |

received the acknowledgement. The length of that interval is sent back to
the grimary side in the round-trip time interval message. This information
will be used later to appropriately adjust timeout and retry intervals and
may be sanity checked in actual channel use.

7) The side which sends the primary initialization request which actually
succeeds is called the primary side.

HP 1000 DS and NS over MUX ports
Page 1009-6

Encoding Method 1:

This method employs bytewise run-length encoding, high-bit prefixing,
translation-table prefixing, and special-character translation. Except for special
handling of the high bit, it does not do any bitwise manipulation of the data. It
is used to encode the data in C or D frames.

Reserved ‘special) characters are defined in the startup file. If they appear in
the original data with or without the high bit set they are translated to different
characters, so they never appear in the encoded output unless they really are
special characters. Allowable special characters are as follows: (mnemonics
represent single ASCII characters):

TTE - Translation Table Escape (single byte state change).

TTT - Translation Table Toggle. Change state and remain until another
TTTor TTE.

RLO - Precedes the data character for a run of minimum length.
RL1 - Precedes the data character for a run of minimum length +1.
RL2 - Precedes the data character for a run of minimum length +2.

RLC - Precedes the count character(s) for a counted run. The count
character(s) are Basic Digits, where the 4 LSB’s of each digit indicate
the count (0-15) and the MSB indicates whether additional count digits
follow. The data character follows the last count character. There is
no limit to the number of count characters, so the length of a run is
limited only by the message or frame size.

HBE - High Bit Escape (single byte state change).

HBT - High bit Toggle. Change state and remain until another HBT or
HBE. If HBT and HBE are not defined, an 8-bit channel must exist and
the high bit will never be prefixed but will be sent along with the data,
whether translated or not.

EOL - Reserved hardware-recognizable End of Line character, such as
Carriage Return. Must be translated to another character so that it
never appears in the data stream either with or without High Bit set.
Must be the same for both sides.

A minimum length run is defined as a run of three identical characters if any of
RLO - RL2 are specified, otherwise four characters.

In addition to EOL, at least ONE special character must be specified, either
TTE or TTT. All others are optional, but their use may improve encoding
efficiency. HBE and/or HBT are required for transmitting data over a 7-bit
cfhfaljnel, and should not be used otherwise because they will reduce
efficiency.

HP 1000 DS and NS over MUX ports
Page 1009-7

Encoding/D ing M :

7-BIT MODE: If either HBE or HBT is defined in the initialization data from the
transmitting side, the receiver uses the channel as if it were a 7-bit channel.
The high bit of all received characters is set to the current value of the High Bit
Mode, and changes in that mode will be allowed when HBE or HBT is seen.

8-BIT MODE: Neither HBE nor HBT has been defined. The 8th bit (bit 7) in
each character is taken literally. If the received character with high bit forced to
0 is a translated one of any kind, its actual received high bit is merged in with
the character resulting from the translation.

The transmitted byte stream is encoded so that the following two modes are
switched on and off in the receiver (decoder) by special characters found in the
pyée streag\. Both modes are initialized OFF before the first byte of each frame
is decoded:

TRANSLATION TABLE MODE: When off, received characters (except special
characters) are taken literally. When on, received characters are translated via
a 128-character lookup table provided by the neighbor side as part of
initialization. As an example, that table may translate ASCIl control characters,
the EOL, and all special characters to something else. Translation Table Mode
is toggled by TTT and switched for one character only by TTE.

HIGH BIT MODE: If High Bit Mode is on, the 8th bit is ignored in received
characters and set true on all resulting characters whether translated or not.
High Bit Mode is toggled by HBT and switched for one character only by HBE.

Frames:

DS/NS messages are wrapped into one or more Protocol Frames, which
contain checksums and other protocol validation mechanisms. The design of
the frames themselves is beyond the scope of this paper.

Frame Types:

A = Ack

C = Continuation (preceded by D or C)
D = Data frame

H = Hang-up (disconnect physical line)
| = Initialization request

J = Initialization response data

K = Initialization request data

L = Round-Trip time interval

N = Nak
P = Poll message
S = Stop

HP 1000 DS and NS over MUX ports
Page 1009-8

Pseudo Drivers:

The Type-66 Pseudo Drivers IDI66 and DVP66 are the key to the process.
Type-66 LU’'s are generated in pairs, exactly as HP's 1D*66 and DVAG6 drivers
are used. The first LU is normally used for writes, and the second for reads,
although there are some exceptions.

In RTE-A there is one IFT for each DVT pair, with a 20-word extension, and the
key information for both LU’s is kept in that IFT extension. In RTE-6/VM, one
EQT is generated with a 12-word extension and the other with none. The key
information for both is kept in the first EQT's extension. This is important
because some DS/NS programs actually check the IFT/EQT extension length
of the drivers in order to confirm that the LU’s are DS/NS LU’s.

As described above, most normal driver entry directives are handled by
ga_ssing the request on to MUXIO. These directives are handies right in the
river:

1) Abort. Several situations are handled. In RTE-6 this is important, but in
RTE-A the driver is unlikely to be entered with an abort directive because it
always exits with the HOLD bit set unless it completes the request.

2) CN 22B. Set timeout. This is the only user request that the driver
handles directly.

33 Continue. lllegal, treated the same as a timeout.

4) Timeout. This is handled differently depending upon the state of affairs.
In one case we may be retrying the schedule of MUXQUEUE. In another
MUXIO may have set completion bits and forced an immediate timeout. In
a third case, an actual timeout may have occurred and a timeout status is
reported by the driver.

5) Power Fail. The driver treats this the same as a timeout.

MUXQUEUE Program Design:

MUXQUEUE is a 3-page program which has a normal state of dormant, saving
resources. It has no need for and no access to the formatter or the file system.
It operates at a reasonably high priority (29) and performs all tasks
immediately, so it spends very little time executing. Its job is to sit and wait to
be scheduled by one of the following:

1) MUXQUEUE, which initially passes its own class number by way of a
schedule. In some circumstances MUXIO may also ask MUXQUEUE to be
its alarm clock to wake up MUXIO at a particular time.

2) MUXLINK, a management program, which may request MUXIO’s class
number or tell MUXQUEUE to shut down.

3; A Type-66 LU driver with a new request initiation.

4) A D-MUX driver with an unsolicited incoming message.

HP 1000 DS and NS over MUX ports
Page 10099

MUXIO Program Design:

MUXIO communicates almost exclusively through class 1/O, with no need for
or access to the file system. It operates at a modest priority of 50 and does all
of the protocol conversion. MUXIO rarely puts itself in the timelist. While it can
spend significant time executing, it still spends most of its time waiting on a
class GET. It canreceive class | 70 messages from the following sources:

1) MUXLINK initializes MUXIO’s table of LU’s and protocol specifications
through class writes.

2) MUXQUEUE reflects its schedule requests from MUX LU's and from
Type-66 Pseudo Driver LU’s.

3) MUX LU’s complete 1/O requests.

HP 1000 DS and NS over MUX ports
Page 1009-10

MUXLINK Program Design:

MUXLINK is used to control the MUXLINK system. It issues startup messages
to MUXIO based upon a startup command file, and allows other manipulations
of the system including shutdown. Here is a list of its commands:

MUXLINK Action Commands:

? keéword] Request help for keyword

CN u CW [pram] Issue control request to specified lu

DI Display local LU66 and TABL tables

ECHO on/off TRansfer-file echo on or off

EX Exit MUXLINK program

HE [keyword] HEIp, same as ?

LUBE Iue6 * Becr;in Defining Type-66 MUXLINK LU

MAXR maxwords * Define maximum MUXIO class-read size
* Shut Down MUXIO and MUXQUEUE now
*

SD
SEND [LU/TA/MR/AL] [#/AL] * Send LUE6, TABL, or MAXR to MUXIO
SHOW [LU/TA/ST/AL] [#/AL] Display MUXIO's internal tables

SS Suspend Self (use GO to resume)

ST Display current STatus (brief)

SuU * Start Up MUXLINK progs & send tables
TABL tbl * Begin Defining Encode Table

TR [flename/1] TRansfer to command file

TABLES

LU66 Table Commands (need at least LU66, MUX, and TBL):

LU66 |u66 * Begin Defining Type-66 MUXLINK LU
BAUD baudrate MUX port baudrate

BRG 0/1 C-MUX port baud rate gen

MUX lu MUX LU for pending LUBE

PORT 0-7 MUX Port number

TBL 14 Encode TABL used with pending LUG6
TOM ticks Reset timeout for specified MUX port
XON on/off Specify XON/XOFF for pending MUX
TABL Encode Table Commands:

TABL tbl * Begin Defining Encode Table

Ival itran #pairs Numeric Translation (? Numeric)

EOL ival itran EOL Character (default CR)

HBE ival itran High-Bit Escape character

HBT ival itran High-Bit Toggle character

RLO ival itran Runlength char, minimum runlength

RLA1 ival itran Runlength char, minimum runlength + 1
RL2 ival itran Runlength char, minimum runlength + 2
RLC ival itran Runlength char, counted length

TTE ival itran Translation Table Escape character
TIT ival itran Translation Table Toggle character

HP 1000 DS and NS over MUX ports
Page 1009-11

All numeric values entered in MUXLINK commands are interpreted as octal
values if they have a trailing 'B’, otherwise they are assumed to be decimal in all
cases.

Commands with an asterisk (*) before the description require superuser
capability. This includes any commands which are capable of modifying
MUXIO’s operating parameters.

Performance:

Extensive testing was done between an A400 running RTE-A 5.2 with DS/1000

and an E-Series running RTE-6/VM 5.2, also with DS/1000. Both systems had

C-MUXes, D-MUXes, and HDLC cards. In all tests there was no significant

gifflerence between Cand D-MUX test results, so those have been combined
elow.

9600 Baud: Effective rate in characters per second:

MUX HDIC
Uncompressible file 427
Type-6 file 648
Large relocatable ($BIGLB.LIB) 736
Large text file (CONNECT Manual) 770
19,200 Baud: Effective rate in characters per second:
MUX HDLC
Uncompressible file 585 725
Type-6 file 795 718
Large relocatable ($BIGLB.LIB) 1213 1823
Large text file (CONNECT Manual) 1252 1471
38,400 Baud: Effective rate in characters per second:
MUX HDLC
Uncompressible file 641
Type-6 file 846
Large relocatable ($BIGLB.LIB) 1347
Large text file (CONNECT Manual) 1400
230,000 Baud: Effective rate in characters per second:
_MUX HDLC
Uncompressible file 1823
Type-6 file 1737
Large relocatable ($BIGLB.LIB) 8442
Large text file (CONNECT Manual) 7930

Summary:

The system described can handle DS/NS messages over MUX ports,
providing most DS/NS services at the full speed of the MUX.

HP 1000 DS and NS over MUX ports
Page 1009-12

DOWNLOADING FROM THE HP-1000
TO FACTORY FLOOR MACHINES

PAPER# 1010

Bill Donze
Reliance Electric Company
6065 Parkland Boulevard
Cleveland, Ohio 44124-8020
(216) 266-7619

1. ABSTRACT

The automated machine tools of today's factory are directed
by Computer Numerical Controls (CNC's) which accept ASCII
instructions to produce the desired machine motion. In the
past, most CNC's were equipped with punched paper tape read-
ers to input these instructions. The instructions were
generated by a remote computer connected via a modem to a
terminal and a tape punch located in the programmer's of-
fice. Although this method worked, it was subject to tele-
phone transmission problems, mechanical failures, and was
very time consuming. Reliance is installing HP-1000 A-Series
Systems and custom software at its plants to implement local
control of the shop. This paper describes the MACRO program
that downloads machine instructions from the local HP-1000
to the shop floor CNC's. Although this software is propri-
etary, the paper's in-depth discussion of the process will
provide sufficient information for implementation.

2. BACKGROUND

The instructions for a CNC must be created by a Parts
Programmer based on an engineering drawing of the part to be
produced. The task of conveying these instructions to the
CNC has evolved from a manual operation, through a remote
computer-assisted solution, to an efficient local computer-
assisted process.

In the original manual process, a Parts Programmer would
interpret an engineering drawing and write the needed CNC
instructions on paper. This can be likened to programming in
assembly language without the aid of a computer. The
instructions from the hand-written paper would then be typed
into a Tape Preparation machine producing a listing and a
punched paper tape. The paper tape and the listing then had
to be hand-carried to the CNC on the shop floor where the
paper tape would be read into the CNC's memory by a
mechanical tape reader. This process could take anywhere

Downloading From The HP-1000 To Factory Floor Machines
1010-1

from 4 to 40 hours for one part! Any problems such as human
error, tape punch failure, or tape reader failure could even
lengthen the process. Notice also that the Parts Programmer
had to walk to three different locations to complete the job
and considerable storage facilities were required to
maintain the 1listings and paper tapes for possible future
use.

In the next step in the evolution, several major changes
were introduced to the process in an effort to ease the
programming task. The addition of a mainframe computer, the
APT Processor (Automatically Programmed Tools) program and
machine-dependent Post Processor programs provide valuable
tools for the Parts Programmer. The APT Processor can be
thought of as a compiler which accepts a high level language
from the Parts Programmer to produce an intermediate meta-
language. The Post Processor then converts the meta-language
to CNC instructions. With this approach a part could be
programmed in 30 minutes to 8 hours. However, the problems
of tape storage, listing storage, and reader/punch failure
are still present. Furthermore, with the addition of a 300
baud modem and telephone 1line transmission, some new
problems have been added.

Note that in this approach there is a single host computer
which supports, in addition to factory floor operations,
other tasks such as payroll, work-in-process, inventory,
etc. The parts programmers from many plants must compete for
execution time as well as for modem access in some cases.

In the present process, the single remote computer has been
replaced by a local HP-1000 A-Series System at each plant,
removing the contention and modem/telephone transmission
problems. The APT and Post Processors from the remote
mainframe computer have been ported to the HP-1000. NCMGR (a
user interface and job management program) has been added to
maintain 1listings, punched tape images, and all other
pertinent information in database-managed disc files so
that the listing and tape storage problems are eliminated.
Finally, the tape punch and tape reader mechanical and
environmental problems have been eliminated with the
addition of the electronic transmission of the tape image
data. The data is moved directly from the HP-1000 computer
to the CNC by the program DLOAD, a process Kknown as
downloading.

Part program creation is now possible in 10 minutes to 2
hours which translates to an annual savings of $80,000 to
$125,000 at each Reliance plant where this system is
installed. In addition, the parts programmer can now create
or modify a part entirely at his or her desk; the only
reason to go to the shop would be to observe the first run
of a new part if it was warranted. Any problems uncovered
during a test run can be corrected by the parts programmer
Downloading From The HP-1000 To Factory Floor Machines
1010-2

at the shop terminal since the same capabilities available
at an office terminal are also available in the shop.

3. THE HP-1000 HOST OPERATING SYSTEM

At present, HP-1000 Systems with downloading capabilities
are installed at eleven of Reliance's manufacturing plants
throughout the Eastern United States. The hardware and soft-
ware requirements of these systems are described in the
following sections.

3.1 Hardware Components

A typical HP-1000 A900 System which provides the platform
for downloading is shown in Figure-1.

HP-1000 A-900 P
Lu: 6,51-57
2390A i1 120058 120400 #1 @
(&2] e b
PCH
Lu: 60-70
12009A 12040D #2 @
HPIB IIF 8-Chan Mux I/F ﬁ
Lu: 70-77
wee | 12000A 12040C #3
A E"——[HPIB IIF 8-Chan Mux I/F NG
B |
To Hp-3000 ‘—l CNC

[120078
Modem 1=/ o 69| DS/K-1K

j_|—E4300/9600
RJ
1C 3to 6 Mb

Figure-1. Typical HP-1000 A900 System

PHONE

All systems are very similar in configuration. Each has the
System Console on an ASIC card, the disc and mag tape on
separate HPIB cards, a DS/1000-IV dial-up modem link to the

Downloading From The HP-1000 To Factory Floor Machines
1010-3

Corporate HP-1000 System, and two or more 8-channel
multiplexer cards for the printer, punch, office terminals,
shop terminals, shop printers, and machine CNC's. Disc
capacities range from 404 Mb to 1212 Mb and additional disc
drives are interfaced using separate HPIB cards for improved
performance. A 7978B mag tape is used for faster system
backup time and is shared with the HP-3000 to offset the
cost. The DS/1000-IV modem link provides a cost effective
means of system maintenance and software upgrades from the
Corporate A900 System in Cleveland, Ohio.

The office terminals, system printer, backup tape punch for
the Parts Programmers, and the shop terminals for the
machine operators are interfaced using one or more Rev-D
8-channel multiplexers. The D revision is used to reduce the
table space in the system generation and to take advantage
of the more reliable operation. One or more Rev-C 8-channel
multiplexers are used to interface the machine-tool CNC's.
The Rev-D mux would be more desirable for the CNC's, but the
DLOAD program has not yet been upgraded for D-mux support.
The main obstacle is the difference in Xon/Xoff handling
between the Rev-C and Rev-D multiplexers. The Rev-C mux has
uni-directional Xon/Xoff protocol with the ability to force
an Xon state while the Rev-D mux has only bi-directional
Xon/Xoff control. Each of the 16 different supported
downloading protocols will have to be tested on-site with
the Rev-D mux to determine the effect of the Xon character
sent to the CNC when Xon/Xoff is enabled.

3.2 Software Components

The typical HP-1000 A900 System for downloading support
includes the standard HP software products: RTE-A, VC+,
IMAGE/1000-II, and DS/1000-IV. The only non-HP module
included in the system generation is the named common block
D_RVT, located in System Common, which is explained in more
detail below.

3.3 MUX Port Configuration

Each machine tool CNC controlled by DLOAD is interfaced to
the HP-1000 via a port on the 12040C 8-channel multiplexer.
The Mux is included in the system generation just as if it
were being used for interactive terminals as shown in
Figure-2.

Downloading From The HP-1000 To Factory Floor Machines
10104

* 12040C: 8-Channel Mux for Shop Machines. #2

IFT, /SOFTWARE /A92077/%IDM00,SC:33B,TX:20
*

DVT, /SOFTWARRE /A92077/%DD*00,M26XX,LU:60,TX:57,DP:1:20004B, -
DP:5:PR:OM:TX

DVT, /SOFTWARE /A92077/%$DD*00,M26XX,LU:61,TX:57,DP:1:20004B, -
DP:5:PR:OM:TX

DVT, /SOFTWARE /A92077/%DD*00,M26XX,LU:62,TX:57,DP:1:20004B, -
DP:5:PR:OM:TX

DVT, /SOFTWARE /A92077/%DD*00,M26XX,LU:63,TX:57,DP:1:20004B, ~
DP:5:PR:OM:TX

DVT, /SOFTWARE /A92077/%DD*00,M26XX,LU:64,TX:57,DP:1:20004B, -
DP:5:PR:OM:TX

DVT, /SOFTWARE /A92077/%DD*00,M26XX,LU:65,TX:57,DP:1:20004B, -
DP:5:PR:OM:TX

DVT, /SOFTWARE /A92077/%DD*00,M26XX,LU:66,TX:57,DP:1:20004B, -
DP:5:PR:OM:TX

DVT, /SOFTWARE/A92077/%DD*00,M26XX,LU:67,TX:57,DP:1:20004B, -
DP:5:PR:OM:TX

Figure-2. System Generation for CNC Machine Ports

Each CNC machine tool port is further configured at bootup
time by a command file similar to the one shown in Figure-3.
This sets the port attributes which do not change during a
download such as the baud rate, stop bits, parity, etc.

* /CmdFiles/Mux2C_On.Cmd <910219.1523>
*

* Enable Mux #2: Shop Machines

*

* BULLRD Bracket Cell 7-bits, No Modem, BrgO, 1 Stop,

* Even Parity, No Eng/Ack, 2400 Baud
* No Dcl Trigger

CN 60 30B 043510B

CN 60 23B

CN 60 45B

0
CN 60 27B O

* CSTEP DRILL Cell 7-bits, No Modem, Brgl, 1 Stop,

* Even Parity, No Eng/Ack, 2400 Baud
* No Dcl Trigger

CN 67 30B 053517B

CN 67 23B

CN 67 45B 0

CN 67 27B 0

*

Echo ~ Mux-2 Ready. ~
Return

Figure-3. CNC Port Initialization at Bootup

Downloading From The HP-1000 To Factory Floor Machines
1010-5

3.4 HP-1000 To CNC Wiring

The distance from the HP-1000 to the shop is always greater
than the RS-232C limitation of 50 feet. In some cases, small
line powered short-haul modems are used. These devices are
available in male or female 25-pin configurations with a
switch to swap pins 2 and 3, but they require +12V on pin
4,5,6 or 20. The short-hauls are connected by a shielded
cable with two twisted pairs for transmit and receive. In
other cases, 8,16 or 20 channel multiplexers are used which
require one cable with two twisted pairs from the HP-1000 to
the shop for each multiplexer pair. Since the distance from
the multiplexer to the CNC is also limited, some shop
layouts do not lend themselves to this approach.

Most modern CNC's have an RS-232C interface option which is
plug-compatible with the HP-1000 and no additional hardware
is needed. However, older CNC's may not have this interface
option or the cost of retro-fitting the CNC with the option
is prohibitive. For these CNC's, a small shop floor computer
such as the NUMERITRONIX 1501 is added between the HP-1000
and the CNC. This device has 1local edit, storage
capabilities, and a full keyboard with display. It functions
as a solid-state tape reader, but is rather expensive if the
edit and storage features are not needed. When only the
RS-232C interface is required, the much simpler and less
expensive RYBETT CAMSTORE unit is used.

4. THE DOWNLOAD PROCESS

A typical download operation is illustrated in Figure-4
using sequence numbers adjacent to the arrows to show the
sequential steps of a download.

The download process begins when the machine operator enters
a command on his CRT (1) which requests a download of a
certain part to a specific machine in his cell via the NCMGR
program. NCMGR allocates a class# (2) for the completion
response from DLOAD and then writes a start download request
on DLOAD's class# (3). DLOAD retrieves the start request
using a class get (4) and sends a 'Download Initiated'
message to the operator's CRT (5). A similar message is
written to the System Console (6) if DLOAD's logging feature
has been enabled. Next, DLOAD reads the tape image file
specified in the start request and sends each record to the
operator's CRT (7) and to the CNC (8). Steps (7) and (8) are
repeated until all of the tape data has been transmitted at
which point a 'Download Completed' message is sent to the
System Console (9), again if 1logging has been enabled.
Finally, DLOAD finishes the download by writing the download
completion status (10) to NCMGR's class#. All the time DLOAD
has been performing the download, NCMGR has been waiting for

Downloading From The HP-1000 To Factory Floor Machines
1010-6

a completion response from DLOAD via NCMGR's class# which
now completes (11). NCMGR finishes the download process by
reporting the success/failure result to the operator (12).

1
CL#1

MACH.
TOOL

N/C
MACH.
TOOL
DLOAD 456789 [DLOAD's W T TTTTTTTT
PROGRAM [7\ CLASS#

'
1
1
1
!
1
1
\
!
!
:
!
N/C '
'
1
!
1
i
1
!
1
1
!
)
l

N/C
MACH.
TOOL

©
=il

Figure-4. DLOAD Class I/O Communications

A keypoint in the above process is that DLOAD receives all
download requests and performs all of its I/O operations
using class I/O via a single class#. This technique provides
I/0 without wait and thereby enables DLOAD to perform
asynchronous downloads to multiple CNC's at the same time.

Downloading From The HP-1000 To Factory Floor Machines
1010-7

5. THE DLOAD PROGRAM

5.1 Features

The DLOAD program is configured at assembly time to handle
up to 5 concurrent downloads and an additional 15 pending
downloads in a wait queue. These two limits can be adjusted
by parameters in the source code.

DLOAD is designed to handle only Tape Image files which are
standard ASCII source files of type-3 or type-4. The tape
image records are not modified in any way and are merely
transmitted to the CNC with one exception. If the first
record in the tape image file begins with "PARTNO", then the
record is ignored and is not transmitted to the CNC. The
PARTNO record is required by NCMGR, but would be rejected by
the CNC.

During the download process, DLOAD will echo each Tape Image
file record to the machine operator's terminal as a visual
indication of progress. This echo is done such that each
line displayed overlays the previous one, i.e., the display
does not scroll.

The DLOAD program is a non-CDS program which is loaded with
access to System Labelled Common (LC) and as a System
Utility (SU) to prevent cloning. It is initiated at system
bootup in the WELCOME1l.CMD file by the following command:

XQ,DLOAD [LogLu, ErrLu, DE, DebugLu]

LogLu specifies the device where download initiation,
completion, failure and abort messages will be printed.
LogLu may be in the range of 1 to 100. If not specified,
LogLu defaults to the System Console. Logging can be dis-
abled by specifying LogLu as -1.

ErrLu specifies the device where error messages will be
printed. ErrLu may be in the range of 1 to 100. The default
is LogLu or the System Console if LogLu was specified as -1.
These messages can not be suppressed.

If the characters DE are specified, then the Debug Trace
feature will be enabled. This option will display the I/O
status, buffer length, lu# and mode variables returned when
the class Get in DLOAD's Control Section completes. If a
start download request was received, the contents of the
request are displayed. If a CNC read request has completed,
the input data buffer is displayed in octal bytes and ASCII.
For any CNC I/O completion, the CNC Lu# and the continuation
address are displayed.

Downloading From The HP-1000 To Factory Floor Machines
1010-8

DebugLu specifies the device where Debug and Trace messages
will be printed. DebugLu may be in the range of 1 to 100.
The default is LogLu or the System Console if LogLu was
specified as -1.

5.2 Control Structures

To implement the asynchronous, multiple CNC downloads
described previously, DLOAD utilizes three controi
structures. An external table in System Common is used to
make its class# available to application programs which
desire to initiate a download and two internal tables are
used to manage all active downloads and all queued download
requests.

5.2.1 Named System Common

Figure-5 shows the System Common table D_RVT used by DLOAD
to hold the global class# (word-2) that the user interface
program NCMGR uses to send download requests to DLOAD. This
table must be included in the system generation so that it
is global to the system.

MACRO,L
HED * RELIANCE VARIABLE TABLE * <910415.1509>
NAM D_RVT,30 Reliance Variable Tbl ([MAC] *

ENT D_RVT
*
D_RVT NOP = 1: Spooler Class# (SPOLA).
NOP = 2: DLOAD'S Class# (NCMGR).
NOP = 3: ULOAD'S Class# (NCMGR).
BYT 0,0 = 4: Upper: Formats (1=A,2=E,3=AE)

* Lower: System Punch Lu#.

DEC 56 = 5: Lu#: System Plotter.
NOP = 6: Ds/1K-3K Class# (D3Mst).
NOP = 7: Ds/1K-3K Resource# (D3Mst).
NOP = 8: NCACS's Class#.
NOP = :
NOP = 10:
*
END

Figure-5. Named System Common Block D_RVT
5.2.2 The Active Table

This table contains an entry for each active download. The
number of downloads that can be active at any one time is
limited only by System Available Memory (SAM) and the number
of entries in the table which is set by an assembly time
parameter. The first two words of the Active Table contain
the negative number of entries in the table and the length
of each entry in words. The rest of the table consists of

Downloading From The HP-1000 To Factory Floor Machines
1010-9

repeated entries, each consisting of 182 words as shown in
Table-1.

WORD# CONTENTS POINTER
1 CNC System Lu# CURAD
2 User CRT System Lu# CRTLU
3 Requestor's Class# CLAS2
4 Control Flag Bits CNTRL
5-36 Tape File Descriptor (32) FNAME
37 Continuation Address PHASE
38 Current Record# RECNO
39-182 | Fmp DCB (144) DCBAD

Table-1. Active Table Entry Format

A new entry in the Active Table is created when a start
download request is received, and removed when the download
completes.

The CNC System Lu# defines the machine CNC to be downloaded
and is also the key to finding the table entry. The User CRT
System Lu# defines the terminal from which this download was
initiated; it is used by DLOAD to send status and error
messages to the user. The Requestor's Class# is allocated by
the user interface program NCMGR and is used by DLOAD to
send the download completion status back to NCMGR. The Tape
File Descriptor provides the full filedescriptor of the disc
file containing the tape image data that is to be
downloaded. The Continuation Address is set initially to
the starting address of the specified protocol processor and
thereafter maintains the location where execution is to
resume when the current Class I/O operation completes. The
Current Record# field keeps track of the number of records
that have been downloaded. The last 144 words of the entry
comprise an FMP Data Control Block (DCB) for reading the
tape image file. And finally, the Control Flag Bits are used
to control various internal conditions as shown in Table-2.

BIT# USAGE
0] PARTNO Skip Flag

1-12 unassigned
13 EOF "$" Record Detected
14 Abort-In-Progress Flag
15 Xon/Xoff Flag

Table-2. Control Flag Meanings

The first record in the tape image file is expected to begin
with the word PARTNO and the PARTNO Skip Flag enables
testing for this so that the record is not sent to the CNC.
After the first record, the flag is set to disable further
testing.

The "%" character is found in some tape image files and
represents a rewind stop code to the CNC. There may be a "%"
preceding the tape data, terminating the tape data, or both.

Downloading From The HP-1000 To Factory Floor Machines
1010-10

DLOAD is only concerned with the terminating "%" and only
for certain protocols. The EOF "%" Flag is set when a
terminating "%" is detected and depending on the protocol,
the record may be ignored, sent to the CNC, or indicate an
end-of-file condition.

The Abort-In-Progress Flag is set when a download is aborted
and is used to ignore I/0O errors that may result.

The Xon/Xoff Flag is set whenever a protocol processor
enables the Xon/Xoff feature of the mux port. If a download
terminates abnormally, this flag is used to force the mux
port to a known initial condition of Xoff in preparation for
the next download.

5.2.3 The Wait Queue

Requests to start a new download which are received when the
Active Table is full are placed in the Wait Queue to be
activated as soon as an entry in the Active Table becomes
available. The number of entries in the Wait Queue is also
set by an assembly time parameter. The first two words of
the Wait Queue contain the negative number of entries in the
table and the length of each entry in words. The rest of the
table consists of repeated entries, each consisting of 36
words as shown in Table-3.

WORD# CONTENTS
1 CNC System Lu#
2 User CRT System Lu#
3 Requestor's Class#
4 Protocol Type Code
5-36 Tape File Descriptor (32)

Table-3. Wait Queue Entry Format

Notice that the CNC System Lu# is stored in word-1 of both
the Wait Queue and the Active Table entries. In conjunction
with the number of entries and entry length, a single search
routine can be used to search either table. The search
routine is called at the beginning of each of the major
processing sections (START STOP and IOCOM) to set up the
eight pointers shown in Table-1. These pointers are then
used throughout all processors to reference the variables
for the specific download being handled.

The contents of a Wait Queue entry is simply a copy of all
of the information from the start download request. The
entry is created by a start download request from NCMGR when
the Active Table is full and is removed when a download
completes, moving the Wait Queue entry to the Active Table.

Downloading From The HP-1000 To Factory Floor Machines
1010-11

5.3 Program Overview

A simplified state diagram of DLOAD is shown in Figure-6.
With the exception of the ERRx state, each state is
explained in more detail in the following sections.

Figure-6. DLOAD State Diagram

The state names are also labels in the various sections and
are referenced in the text and flowcharts of each section to
explain how DLOAD moves from state to state. Notice that
once DLOAD is invoked, it never terminates; it is either in
a Class Get suspension at PGET or executing one of the other
states.

Downloading From The HP-1000 To Factory Floor Machines
1010-12

5.4 Initialization Section

This section of DLOAD is executed only once when DLOAD is
first started and performs several initialization tasks.

First, the routine RMPAR is used to retrieve the runstring
arguments which are range-checked or defaulted and then used
to setup device 1lu#'s for 1logging, error reporting, and
debug displays.

Next, the routine DTACH is called to detach from any user
session in which DLOAD may have been invoked. When debugging
a new CNC protocol, it is often necessary to abort, modify,
and restart DLOAD several times and the DTACH call insures
the proper system environment without having to re-boot the
system.

The next task is to setup the global class# in the System
Common table D_RVT. If word-2 of D_RVT is non-zero, it means
that DLOAD has been re-started without a system re-boot, so
a call to CLRQ is made to flush and deallocate the old
class# from D _RVT. Another call to CLRQ allocates a fresh
class# for DLOAD which is then saved in D_RVT.

Word-1 of each entry in the two internal tables, the Active
Table and the Wait Queue, is now set to zero to indicate
that all of the entries are empty.

The last task of the initialization section is to display
the message:

/DLOAD: Rev-2.30 Ready on 4-23-91 16:30:02 PM

on the Log Device or the System Console.

5.5 Control Section

The Control Section begins at label PGET with a Class Get on
DLOAD's class# as shown in Figure-7. When DLOAD is not
executing, it is suspended on this Class Get waiting for an
entry to be placed on the class queue for its class#.
Entries are placed on this queue by NCMGR (start or stop
download reguest) or by the completion of a previous class
I/0 by DLOAD (CNC read, CNC write, CNC control, user CRT
write, or log/error write).

The purpose of the Control Section is to determine which one
of the above 7 request types has been received and to branch
to the section meant to handle that request.

Downloading From The HP-1000 To Factory Floor Machines
1010-13

N

‘ PGET ’

EXEC(21+100000B,CLASS#,
RQBUF,-80,LU,MODE,
RTN3,uV

EXEC

y . START

Start Download

Class Get

LU=uv
MODE = 5

Stop Download

CNC Write Completion

WRITELOG
DSTAT, RQLEN
LU, MODE

:

CNC Read Completion

WRITELOG
Class#, FileDesc,
Protocol Flag

Y
I0COM

CNC Cntrl Completion

DUMPREC
Display
Input Buffer

* MODE = 6: User Crt Write Completion

@ MODE = 7: Log Dev Write Completion

Figure-7. Control Section Flowchart

Downloading From The HP-1000 To Factory Floor Machines
1010-14

Pget Jsb Exec Get w/suspend.
Def *+9
Def Rc2ln = No Abort.
Def DClasGet = Our Class#.
XRgBuf Def RgBuf = Buffer.
Def Mn80 = Buffer Len.
Def Lu = Rtnl.
Def Mode = Rtn2.
Def Rtn3 = Rtn3.
Def Uv = Uv.
Hlt 77B Fatal Error!
Sta Dstat Save Dvr Stats
Stb RglLen Save + #chars.

Figure-8. DLOAD's Class Get

Figure-8 shows the source code of the Class Get call from
which the returned variables LU, MODE, RTN3 and UV provide
the means of identifying the request. RTN3 is set by RTE and
identifies the original class call as a read or write/read
(1), a write (2), or a control (3) call. The LU, MODE, and
UV variables return the PRAM3, PRAM4 and UV arguments from
the original class read, write or write/read call shown
below.

CALL EXEC (ECODE,CNTWD,BUFR, BUFLN, PRAM3, PRAM4,CLASS([,UV])

For each of these requests, PRAM3 is set to the Lu# and
PRAM4 is set to a number which identifies the type of
operation as shown in Table-4. The UV argument is not used
in this case.

Operation Ecode | Buffer Contents Bufr Len PRAM3 PRAM4
Start Download 20 1: User CRT Lu# 35 CNC Lu# 1
2: Class#

3: Protocol Flag
4-35: FileDesc

Stop Download 20 1l: User CRT Lu# 1 CNC Lu# 2
CNC Write 18 1-n: Data n CNC Lu# 3
CNC Read 17 1-n: Data n CNC Lu# 4
User CRT Write 18 1-n: Message n CRT Lu# 6
Log/Err Write 18 1-n: Message n CRT Lu# 7

Table-4. DLOAD Class I/O Request Formats

This provides enough information to identify all requests
except the control request which has a format different from
all of the other class calls. The format of a class control
request is shown below in which DLOAD passes the CNC Lu# via
the UV argument.

CALL EXEC(19,CNTWD,PRAM1,CLASS[,PRAM2,PRAM3,PRAM4,UV])

When DLOAD receives a class control completion, RTN3 will
have a value of 3. DLOAD detects this special case and
stores UV into LU and sets MODE to 5. At this point, LU and
MODE have been set correctly for all received requests.

Downloading From The HP-1000 To Factory Floor Machines
1010-15

If the Debug/Trace feature is enabled, DLOAD will display
DSTAT, RQLEN, LU, and MODE from the Class Get. DSTAT and
RQLEN were set from the A and B registers when the Class Get
completed and contain the Driver Status and the length of
the data received, respectively. If this is a Start Download
Request, then the contents of NCMGR's request are displayed;
if this is a Class Read completion, then the input buffer is
displayed.

Finally, the Control Section branches to the START Section
(MODE=1), the STOP Section (MODE=2) or the IOCOM Section
(MODE=3,4,5). For User CRT, Log or Error write completions
(MODE=6,7), no processing is necessary so control goes back
to PGET.

5.6 Start Download Section

This section is entered at the label START (Figure-9) when a
Start Download Request (MODE=1) is received from NCMGR. The
CNC Lu# (LU) from the request is used to search the Active
Table for an entry with a matching lu#. If an entry is
found, then this is a restart and the message "Download
Aborted..." is logged, the previous tape file is closed, and
at label START1, the new request is moved to the Active
Table overlaying the previous entry.

If an entry was not found in the Active Table for LU, then
DLOAD checks if the Active Table is full. If it is not full,
then the request is moved to the Active Table entry at
START1.

If the Active Table is full, then DLOAD searches the Wait
Queue for LU. If an entry is found in the Wait Queue, then a
waiting download is being restarted; the new request is
moved to the Wait Queue entry overlaying the previous entry,
the message "Busy, Request Queued" is sent to the user, and
program control returns to PGET and awaits the next class
completion.

If the request LU is not found in the Wait Queue, then DLOAD
checks if the Wait Queue is full. If it is not full, the new
request is moved to the Wait Queue entry, the busy message
is sent to the user, and control returns to PGET. If the
Wait Queue is full, then the ERR1 processor sets the
completion status to 1 for a busy condition and goes to the
Termination Section (TERMS) where the status is sent back to
NCMGR.

Downloading From The HP-1000 To Factory Floor Machines
1010-16

START

:

SEARCH
Active Table

Found

PRINT
"Download
Aborted”

bl []
a

Not Found

lN

FILECLOSE

—
£

Setup move

CURAD,| = LU

from RQBUF

Oy

START1

Move 35 words

to Acitve Entry

CVTPROTO

-

Get Protocol

ERR1)

PHASE,| =

Processor Addr
Using Protocol #

Protocol Procsr
Start Address

©

Wait Queue

Not Found

CURAD,| =
LU

SEARCH Found

O

l

CNTRLI =0

RECNO,I =0

USERWRIT
"Download

Initiated”

PRINT
*Download

Started..”

Clear 16 words
of FMP DCB
starting at DCBAD

Move 35 words
from RQBUF to
CRTLU,I

USERWRIT
"Busy, Request
Queued”

FMPOPEN
Tape File

IOCOM1

Figure-9. Start Download Section Flowchart

Downloading From The HP-1000 To Factory Floor Machines
1010-17

The processing of a new download or a restarted download
request continues at label START1 where the request is moved
to an Active Table entry. The desired protocol is specified
in the request as a two digit ASCII string, so the routine
CVTPROTO is called to convert the string to an integer. This
integer number is then used as an index into the Protocol
Processor Table shown in Figure-10.

XProTbl Def *+1 Protocol Start Addresses.
Def P00.00 00: No Protocol.
Def P01.00 01: AB7360 Protocol.
Def P02.00 02: GN & FANUC Protocol.
Def P03.00 03: NUMERITRONICS "L" Protocol.
Def P04.00 04: CINCINNATI 850 Protocol.
Def P05.00 05: GE 1050 Protocol.
Def P06.00 06: NUMERITRONICS NB/NC-ASCII
Def P07.00 07: NUMERITRONICS "LE.
Def P08.00 08: K&T CNC Series D Cntl-RDC3.
Def P09.00 09: Cimpoint Fd1-500 Btr I/F.
Def P10.00 10: Dgv Rs-232 Btr I/F.
Def P11.00 11: Okuma OSP-5000L-G Proto.
Def P12.00 12: Cincy Grinder Protocol.
Def P13.00 13: NUMERITRONICS NB/NC-EIA
Def P14.00 14: Rybett Camstore 2 Proto.
Def P15.00 15: G&L 8000B Proto. "D" Mux
MaxPro Abs XProTbl-*+1 = (-) Max Proto #.

Figure-10. Protocol Processor Table

The starting address of the selected protocol processor is
extracted from the table and stored in the Active Table
entry at word-37 (PHASE,I). Next, the entry's Control Flags
in word-4 (CNTRL,I) and the Current Record# in word-38
(RECNO,I) are cleared. A download initiated message is now
sent to the user and to the log device. Finally, the first
16 words of the FMP Data Control Block (DCBAD,I) in the
entry are cleared, FMPOPEN is called to open the Tape Image
file, and program control passes to the I/O Completion
Section at label IOCOM1 to initiate the selected protocol
processor.

5.7 Stop Download Section

This section is entered at the label STOP (Figure-11) when a
Stop Download Request (MODE=2) is received from NCMGR. The
CNC Lu# (LU) from the request is used to search the Active
Table for an entry with a matching lu#. If an entry is not
found in the Active Table, then the Wait Queue is searched
in the same manner. If a Wait Queue entry is not found, then
the download to be stopped has already terminated, no action
is needed and the program returns to PGET in the Control
Section. If a Wait Queue entry is found, then the waiting
download request is aborted by setting word-1 of the entry
to zero to make the entry available. No messages are
displayed in this case since the download had not yet
started.
Downloading From The HP-1000 To Factory Floor Machines
1010-18

(STOP)

y PRINT
SEARCH ‘Download
aborted..” Xon/Xoff
Active Table Enabled?
Not Found {
FILECLOSE
SEARCH Not Found XONXOFF
Wait Queue Force Xon
State
Found
Set Abort-in-
Clear Entry Progress Flag XONXOFF
CURAD,I = 0 Disable Xon/Xoff

(PGET) e ABORTIO TERMO

Figure-11. Stop Download Section Flowchart

If an entry was found in the Active Table, then an active
download is to be aborted. The message "Download Aborted..."
is printed on the log device and the tape file is closed.
Next, the Abort-In-Progress flag is set in the Active Entry
and the routine ABORTIO is called to cleanup all the pending
I/0 for this Lu. If Xon/Xoff had been enabled for this
download, then the routine XONXOFF is called to force an Xon
state to clear the Mux buffers and then a second call
disables Xon/Xoff for the CNC's port. Finally, the program
proceeds to the Termination Section (TERMO) to release the
Active Table entry for this download.

5.8 1/0 Completion Section

When the Class Get in the Control Section receives a CNC I/O
completion (MODE=3,4 or 5), execution is directed to this
section at the label IOCOM to continue an on-going download.
Also, the Start Download Section will come here to initiate
a new download by entering at the label IOCOM1.

As illustrated in Figure-12, the first task is to search the
Active Table for an entry matching the current CNC Lu# (LU).
If an Active Table entry is not found, it means that this is
an I/O completion for a download which has been aborted so

Downloading From The HP-1000 To Factory Floor Machines
1010-19

it can be ignored by returning to the Control Section
(PGET) .

(10COM) —{ 10COM1

SEARCH Not Found DEBUG

Active Table

WRITELOG
Display CNC Lu,

Contin Address

Abort in Y
Progress? A

N Get Continuation
Address in A-Reg
A = PHASE,|

!

Figure-12. I/O Completion Section Flowchart

Device
Errors?

If an Active Table entry is found, then the Control Flags
are checked to see if this download is being aborted. When a
download abort is initiated, there may be one or more class
I/0 operations to the CNC still pending. When these pending
I/0 requests eventually complete, they may have device
errors due to the abort. The Abort-In-Progress test will
bypass device error checking so that the abort operation is
guaranteed to finish successfully. During a normal download,
the Abort-In-Progress flag will be off and any device errors
will produce an error message and stop the download.

A successful CNC I/O completion continues or a new download
start request enters at label IOCOM1. If the Debug/Trace
feature is enabled, the CNC ©Lu# (CURAD,I) and the
continuation address (PHASE,I) from the Active Table entry
are displayed.

The final task of this section is to branch to the
continuation address specified in the Active Table entry
which will transfer program control to either the beginning
or somewhere in the middle of the selected protocol
processor. The continuation address is extracted from the
Active Table entry and put into the A-Register by the

Downloading From The HP-1000 To Factory Floor Machines
1010-20

instruction LDA PHASE,I. The branch is achieved by the
instruction JMP A,I which transfers control to the address
in the A-Register. This operation and the way the Protocol
Processor Section stores the continuation address in the
Active Table entry (see below) are the reasons DLOAD is
written in MACRO assembly language.

5.9 Protocol Processor Section

This section is different than the other sections in that it
consists of many separate routines which can be divided into
two groups. The first group consists of 16 routines which
implement the 16 currently supported protocols. The second
group is comprised of the support subroutines which the
protocol routines reference. The subroutines are explained
first to establish an understanding of the building blocks
for the protocol routines.

5.9.1 Subroutines

These subroutines can be separated into the categories of
CNC I/O and Support. The CNC I/O subroutine functions and
names are shown in Table-5.

Subroutine Name Subroutine Function

CncRead Read from CNC (EXEC 17)
CnCWrite Write to CNC (EXEC 18)
XonXoff Enable/Disable Xon/Xoff (EXEC 19)
Readl Read 1 character from CNC

ReadAck Read 1 character; test for ACK
ReadDcl Read 1 character; test for DC1l
SendAck Send ACK character to CNC

SendDc2 Send DC2 character to CNC

SendDc3 Send DC3 character to CNC

SendDle Send DLE character to CNC

SendEot Send EOT character to CNC

SendRec Send data record to CNC

Sendsrt Send "S" character to CNC

Table-5. CNC I/O Subroutines

The first three subroutines (CNCREAD, CNCWRITE and XONXOFF)
in the table are the only routines which issue class read,
write or control calls to the CNC. They are also unique in
that they are called by the standard JSB instruction, but
they never return to the caller via the standard JMP <sub>,I
instruction. Instead, these routines get the return address
from the subroutine entry point and save it in Active Table
entry in word-37 (PHASE,I) thus providing the continuation
address which is used by the I/O Completion Section to
resume the download when this class request completes. To
illustrate, the code for the CNCWRITE routine is shown in
Figure-13.

Downloading From The HP-1000 To Factory Floor Machines
1010-21

SUBROUTINE TO WRITE A RECORD TO THE CNC.

Call: (P-3) Cle/Cce Std Cr-Lf/NO Cr-Lf
(P-2) Lda <+ # chars to write>
(P-1) Ldb <Buffer Address>
(P) Jsb CncWrite
(P+1) **** DOES NOT RETURN ***x*

This routine saves its return address in PHASE,
initiates the desired operation, and then goes
to PGET to wait for completion. When the request
completes, control will be directed to (P+1)
using PHASE.

* O % R X % % % ¥ F ¥ ¥ X ¥

CncWrite Nop
Stb CncWriteO Save buffer address.

Clb, Sez Suppress Cr/Lf?
Ldb M2100 -Yes: Get Suppress bits.
Stb Cnc_Cwl+l Set Control Bits.
Cma, Ina Make # chars negative
Sta WriteLen and save.
Lda CncWrite Get return addr and
Sta Phase,I save in Tbl entry.
Lda Lu Get Cnc's Lu, set
Ior Bitl5 No Sst Map bit,
Sta Cnc_Cwl and save.
Jsb Xluex Class Write to CNC.
Def *+8
Def Rcl8n Class Write, No-Abort.

Def Cnc_Cwl
CncWriteO Def *
Def WriteLen

A(Lu/Control Wd).
A(Data Buffer).
A(Buffer Length).

Def Lu

Def .3 = Mode (Cnc Write).
Def DClas = A(Our Class#).

Jmp Err2 -Rtn: Class I/O Error!
Jmp Pget -0k: Go wait.

Figure-13. CNCWRITE Subroutine

The balance of the subroutines in this category are short,
simple subroutines which read or write a single character
using the CNCREAD and CNCWRITE routines. An example is the
SENDEOT subroutine shown in Figure-14.

* SUBROUTINE TO SEND AN 'EOT' TO THE CNC.

*

* Call: (P-1) Cle/Cce Do/Don't append Cr/Lf.
* (P) Jsb SendEot

* (P+1) -Return-

*

SendEot Nop

Cla,Ina Set for 1 char.
Ldb XEot Get bufr addr of char.
Jsb CncWrite Send EOT char to Cnc.
Jmp SendEot, I -Return-

*

XEot Def *+1
Byt 4,0

Figure-14. SENDEOT Subroutine

Downloading From The HP-1000 To Factory Floor Machines
1010-22

The subroutines in the support category are shown below in
Table-6.

Subroutine Name Subroutine Function

EofTest Test if EOF "%" Flag Set
FileRead Read File Record/Echo to User
PctTest Test if Record is "%$" Record
Pct2Test Test if Record is "$" or "%%"
Sleep Time Suspend for 'n' seconds

Table-6 Support Subroutines

These routines are rather straight-forward except for the
PCTTEST and EOFTEST routines. Because of the re-entrant
nature of the protocol processors, two routines are
necessary to check for and act upon the "%" record. The
first routine PCTTEST (or PCT2TEST) checks the current tape
file record for the "%" record and if found, sets the EOF
"$" Flag in the Active Table entry. Later, the EOFTEST
routine tests the flag since the "%" record is no longer in
the record buffer.

5.9.2 Protocol Processors

Since there is no standard in the industry for CNC to host
computer communications, a special handler usually must be
implemented for each CNC vendor. Sometimes even different
models from the same vendor require separate protocol
processors. Protocol Processor #0 is shown in Figure-15 and
illustrates the simplest protocol.

* AARAKRARRRRKRARRRRNRRRRRARRRA AR AR AR AR AR AR h
* * NO PROTOCOL PROCESSOR *
* ARRRARRRRRRRRR R AR R RNRRR AR RRARNRRRA R AN AR RN AR
*
P00.00 Jsb FileRead Read Rec/Echo to user.

Jmp EoFnd -Rtn: Eof detected.

Cle Set for Std Cr-Lf.

Jsb SendRec Write Rec to Cnc.

Jmp P00.00 -Go get next record.

Figure-15. Protocol #0 Processor

This processor reads the next record from the Tape Image
file and echoes it to the operator's CRT using the FILEREAD
routine. It then sends the data record to the CNC using the
SENDREC routine. This read/write process continues until the
FILEREAD routine detects a physical end of file condition at
which time program control transfers to the Termination
Section (EOFND) to send the completion status back to NCMGR
and to release the Active Table entry. The SENDREC routine
sends the data to the CNC using the CNCWRITE routine which
does not return. After CNCWRITE has issued the class write
call, it goes to PGET and DLOAD suspends until the class
wrlte completes. When the write completion occurs, the

Downloading From The HP-1000 To Factory Floor Machines
1010-23

Control Section branches to IOCOM which in turn branches
into the SENDREC routine using the continuation address
(PHASE,I) from the Active Table entry.

All protocol processors have Protocol #0 as their core and
differ only in what is necessary before and after the data
records have been transmitted. This is illustrated by
Protocol #8 which is shown in Figure-16.

Before the data is transmitted, the READDC1 routine is used
to read characters from the CNC until a DCl1l is received.
Then the XONXOFF routine is called to enable Xon/Xoff pacing
by the MUX port. Next, the tape image records are sent to
the CNC by SENDREC until a physical end of file or a
terminating "%" record is detected.

* L2222 2222222223222 22222222222 2222 22 22 222
* * PROTOCOL #8: KT-CNC-Series D With RDC-3 *
* E2 2222222222222 2322222222222 2222222222222
*
P08.00 Jsb ReadDcl Go read DCl1 char & verify.
Jmp P08.00 -No: Go read again.
Clb,Inb Set for Enable.
Jsb XonXoff Go Enable Xon/Xoff.
*
P08.01 Jsb FileRead Read Rec/Echo to user.
Jmp P08.02 -Rtn: Eof detected.
Jsb PctTest Test for Eof "%" Record
Cle Set for Std Cr-Lf.
Jsb SendRec Write Rec to Cnc.
Jsb EofTest Was Eof "%" found?
Jmp P08.01 -No: Go get next record.
*
P08.02 Cce Set for NO Cr-Lf.
Jsb SendEot Send Eot to Cnc.
Jsb Readl Go read Eot char, binary.
Clb set for Disable.
Jsb XonXoff Go turn off Xon/Xoff.
Jmp EoFnd -Go to common Eof rtn.

Figure-16. Protocol #8 Processor

Lastly, an EOT character is sent to the CNC to signal end of
data, the CNC responds with an EOT as an acknowledgement,
and the Xon/Xoff pacing by the MUX port is disabled. Program
control then passes to EOFND in the Termination Section to
conclude the download.

5.10 End Of File/Termination Section

The purpose of this section is to terminate a completed or
an aborted download by closing the Tape Image file, sending
a completion status to NCMGR, and releasing the Active Table
entry as illustrated in Figure-17.

Downloading From The HP-1000.To Factory Floor Machines
1010-24

/. Clear Active Entry
EXEC
FILECLOSE Send Status CURAD,I =0
to NCMGR
Not Found Search Wait
PRINT Queue
“Download STATUS N for Entry
Completed...” =17
> Found
4 Y J
Copy CNC Lu

Ready Status to Active Entry
PGET .
= Clear Wait Word-1
A=0
Y
Setup move from
(TERMS > Wait Queue
Entry
Set Status l
START1
STATUS = A

Figure-17. End-Of-File/Termination Section Flowchart

All protocol processors conclude by branching to the 1label
EOFND in this section to complete a successful download. The
routine FILECLOSE is called to close the Tape Image file and
then the message "Download Completed..." is displayed on the
log device by PRINT. The A-Register is set to zero to
represent a success condition which will be sent to NCMGR at
TERM.

TERMS is also entered from the Start Download Section via
the ERR1 processor with the A-Register set to 1 when both
the Active Table and the Wait Queue are full. The A-Register
is simply stored in the variable STATUS to be sent to NCMGR.

The label TERM is entered from above or from the other error
processors which have already set STATUS to an appropriate
failure code. Next, the download completion status in the
variable STATUS is sent to the application program NCMGR
using a class write/read on NCMGR's class# contained in
word-3 (CLAS2,I) of the Active Table.

Downloading From The HP-1000 To Factory Floor Machines
1010-25

The possible completion status values and meanings are shown
below in Table-7. When NCMGR receives the status, it
displays a success, failure or busy message to the operator.

Condition STATUS
Success (EOFND) 0
Busy (ERR1) 1

Driver Error (ERR3) 2
Device Down (ERR2) 3
I/0 Error (ERR2) 4

Fmp Error (ERR4,ERRS) -Ierr

Table-7. DLOAD Completion Status

If the STATUS just sent to NCMGR was 1, it means that the
Active Table and the Wait Queue were full. In this case,
there is no Active Table entry to be released so control
branches to PGET and awaits the next request; otherwise,
DLOAD continues at label TERMO.

TERMO is also entered from the Stop Download Section when
NCMGR has requested a download to be aborted. This part
releases the Active Table entry by setting the first word of
the entry to zero. Next, the Wait Queue is searched for any
waiting requests. If none are found, control returns to PGET
in the Control Section. If a Wait Queue entry is found, the
CNC Lu# from word-1 is copied to word-1 of the Active Table
entry just released. Finally, the balance of the Wait Queue
entry is setup to be moved to the Active Table entry and
control passes to the Start Download Section at label START1
to activate this waiting download.

6. FUTURE ENHANCEMENTS

The most pressing problem confronting the HP-1000 Systems at
Reliance's manufacturing facilities is the size of the RTE
Operating System caused by the use of Rev-C multiplexers for
CNC interfacing. One such plant has the hardware for 9 mux's
but only 8 of them can be included in the system generation.
Therefore, the first enhancement will be to modify all of
the protocol processors for Rev-D multiplexer compatibility.
A different solution to this problem could be to use a LAN
for CNC interfacing.

Another enhancement will be the use of the new Signal/Timer
facility of RTE to replace the timed suspension used in the
SLEEP routine to achieve delays. Some protocols require up
to 5 second delays during which all concurrent downloads are
suspended.

And finally, the distributed nature of today's computing
power will probably result in DLOAD being ported to a PC to
implement a Cell Controller concept with the HP-1000 or a
workstation as a file server.
Downloading From The HP-1000 To Factory Floor Machines
1010-26

7. CONCLUSION

DLOAD was originally written in May of 1983 and has changed
very little over the years with the exception of new
protocol handlers. It is a small part of the overall system,
but has been a key component in achieving a more automated
and efficient shop floor operation.

Downloading From The HP-1000 To Factory Floor Machines
1010-27

DISKMAIL INTERPROCESS MESSAGE SYSTEM

Donald A. Wright
Interactive Computer Technolo.
2069 Lake EImo Avenue No
Lake Elmo, MN 55042 USA
Tel: 612/770-3728

DISKMAIL is a memory- and disk-buffered interprocess message system for
the HP1000. It represents a substantial improvement over normal class 1/0O in
both functionality and ease of use, providing an elegant way for programs to
send data to each other.

Each mailbox has a pre-established ASCIl name, and may emplot{| ang' combin-
ation of memory buffering and disk buffering. If both are used, the disk buffer
will begin to fill only when a preset memory queue limit is exceeded. All
message queues are FIFO, with any memory portion logically nearer the destin-
ation than any disk portion. Requests are also provided for priority messages,
purging a queue, changing bufter limits, examining limits and queue depths,
and many more functions.

Class 1/0 is used internally for memory buffering, and variable-record-length
circular files of fixed size are used for disk buffering. Disk-buffered messages
are nonvolatile.

DISKMAIL was developed as part of a warehouse management system and is
not a commercial product, nor has it been contributed to the INTEREX CSL.
This paper is offered as an example of a way of enhancing program-to-
program communications on the HP 1000 and other systems.

System Requirements:

These are some of the overall requirements for the message system:

1) The "Named" mailboxes are described by character variables up to 22 charac-
ters in length.

2) Messages may be both Memory and Disk buffered.

3) Configurable limits on both memory and disk, including zero space for
either or both.

4) Disk-buffered messages are non-volatile and automatically recovered.
5) Efficient disk usage:

a) Speed
b; Space

DiskMail Interprocess Message System
Page 1011-1

6) Messages always FIFO:
Sender —=> Disk —=> Memory =—> Destination.

7) Exception: Priority messages always go to the front and are not subject
to memory limits.

8) Tf;IJ'}Ie Disk buffer is not to be used unless the allocated memory space is

9) The Disk buffer will not be used if it is currently empty, there is no allocat-
ed memory space, but the destination program is waiting to read.

10) Memory messages may be forced back to disk by a special request.

11) The entire FIFO (queue) may be purged with a single request.

12) Any program may write to any mailbox.

13) Any program may read from more than one mailbox.

14) Only one program may read from any one mailbox.

15) Use of the package will not attach FMP routines, or the Fortran format-
ter, or Image routines to the calling application.

16) There are no limitations on the nature of the data in a message. It must
be in an integer array when passed to the DiskMail subroutines.

17) The package does not distingush between message types, number the
messages, or perform any other type of message management. These
things are done at the application level.

Design:

The system consists of four primary components: 1) A library of DiskMail

Application Subroutines callable by application programs; 2) A central

message management program (DQMGR); 3) an operator control program

mrough which system management is done; and 4) Disk buffer files created for
is system.

The schematic drawing on the following page illustrates the software
implementation:

DiskMalil Interprocess Message System
Page 1011-2

Schematic Drawing of Software System:

Application Disk
Program
#1 Buffer
Mail Library Files
DCONTROL
DQMGR
Operator
Control
Application Application
Program Program
#2 #3
Mail Library Mail Library

Library of Application Subroutines:

The SENDMAIL and GETMAIL subroutines are described below to show just
how data is sent and received, and to show the options available to the caller:

E AIL:
CALL SENDMAIL (CMDS, IBUF, LENGTH, MAILBOX [, QDEPTH])
(Optional QDEPTH)
FUNCTION: Send Class Mail to a named Mailbox.

SENDMAIL passes a specified number of bytes in an integer array from the
calling rol?ram to a mailbox. The message is sent directly to the mailbox via
class I/O it a program is waiting for mail there. Otherwise it is sent to DQMGR
via EXEC 14, and that program decides whether to put it in the mailbox’s class
queue or buffer it out on disk. If no disk buffer file has been created for the
mailbox, and the memory queue depth limit would be exceeded by this
message, DQMGR will optionally instruct SENDMAIL to wait on a resource
-number until the memory queue is reduced.

If the queue-depth limit for the specified MAILBOX is zero and there is no disk
buffer for the mailbox, then the actual queue depth is measured but not

DiskMalil Interprocess Message System
Page 1011-3

compared with the limit, and locking is not done.
INPUTS - Formal parameters:

CMD - a character variable containing option characters. If neither is
supplied, a string containing at least one blank character is required:

N’ - No-wait: SENDMAIL will not wait on the resource-number lock if there
is no disk buffer file and the class queue depth has been exceeded, but will
instead return with the QDEPTH parameter set to the 2's-complement
(negative) value of the current actual queue depth.

Note: 'N’ has no effect if the mailbox does have a disk buffer file. If the file
becomes full an error is returned.

P’ - Priority: The message is immediately sent to the FRONT of the
mailbox’s class ?memory) queue. No queue-depth-limit checking is done.
This facility should be used with extreme care, as it puts messages out of
sequence and has the potential to flood SAM.

IBUF - an integer array containing the data to be sent.

GETMAIL:

CALL GETMAIL (CMDS, IBUF, LENMAX, LENACT [, TYPE [, STAT
[, MAILBOX]]])

(Optional TYPE, STAT, MAILBOX)
FUNCTION: Get a Mail Message from a Mailbox.

GETMAIL performs a Class GET to obtain one class message either from
the mailbox assigned to the calling program or from another specified mail-
box. If there is no message in memory, GETMAIL will request it from
DQMGR and optionally wait on a class GET for it.

INPUTS = Three formal parameters:

CMDef} adcharacter variable containing option characters. Two are currently
ned:

"N’ - No-wait: If supplied, GETMAIL will not wait on the class GET if there is
no mail, but will always return immediately with or without mail. If N’ is not
supplied, GETMAIL will return immediately with mail if at least one message
is there, else it will wait on the class GET until mail appears.

'S’ - Save-data: If supplied, an exact copy of the mail message will be
returned, but the ori%inal message will remain in the class queue so that a
subsequent GETMAIL request will return the same data. If not supplied,
the message is returned to the caller and deleted from the class queue.

DiskMail Interprocess Message System
Page 1011-4

LENMAX - An integer*2 value specifying the maximum number of
CHARACTERS that IBUF can accept.

MAILBOX - An optional character variable specifying the name of the
mailbox in which to look for a message. If MAILBOX is blank or not
supglied, the program’s own mailbox name (i.e. MAILBOX-PNAME) will be
used.

OQUTPUTS = Four formal parameters:

IBUF - an INTEGER array which will receive the data. IBUF may be
equivalenced to a character variable.

LENACT - Integer*2. The actual number of CHARACTERS returned to
IBUF. The remainder of IBUF is undefined. If the 'N’ option is set and
there is no mail, or if an error occurs, LENACT = 0. When a valid message
is received LENACT will always be greater than 0.

TYPE - an OPTIONAL integer*2 variable which returns the message type,
as follows:

0 = Standard mail from another program.
1 = Job Control Message.
2 = Data received from a device (logical unit).

STAT - an OPTIONAL integer*2 variable containing the A-register (status)
rettfxr“ from the class GET. The value depends upon the TYPE parameter,
as follows:

0 or 1: Not significant if a valid message was returned. If the 'No-wait’
CMDS character was supplied, the actual A-register return is converted so
that STAT contains the positive number of still-pending device reads on all
LU’s for this mailbox (class) number.

2: Device status word (DVT word 6) of the device after the read completed.
Can be tested for such information as timeout, EOT found (ctl-D), device
errors, etc. Driver dependent.

The following is a complete list of the subroutine calls available to an applica-
tion program:

GUTFORCEMAIL Force a Memory Queue to Disk
GUTGETMAIL Get a Message from Mailbox
GUTINQUIREMAIL Inquire About a Mailbox
GUTPURGEMAIL Purge Mail in a Mailbox
GUTRESETQLIM Reset Mailbox's Memory-Queue Limit
GUTSENDMAIL Send a Message to a Mailbox

DiskMail Interprocess Message SVstem
Page 1011-5

DQMGR:

The bulk of the work in the DiskMail system is done by the DQMGR
(disk-queue manager) program. Most messages go through it, and it knows
about all messages.

DQMGR is normally dormant. Application programs sending or receiving disk
mail schedule DQMGR (queue schedule with or without wait), and receive back
a response via DQMGR's termination PRTN parameters and/or class 1/O.
DQMGR receives the mail messages via EXEC 14 and writes them either to
memory or disk, depending on the particular mailbox. A program requesting

mail checks its memory mailbox first and schedules DQMGR if there is none.

It accepts no run string and requests no operator input. Some control
functions are available using the DCONTROL program.

At startup it inventories /DISKMAIL/BUFFERS looking for buffer files (type
3434) and keeps the results of that inventory in its own memory. There is no
other startup file. DQMGR always terminates saving resources except at shut-
down. Before terminating it always checks first for advisory messages in its
own class queue.

DQMGR maintains a push-down log file called /DISKMAIL/DQMGR.LOG. All
startups, shutdowns, and other significant events including disk buffer errors
are logged there.

DCONTROL.:

The DCONTROL program provides both diagnostic and maintenance func-
tions. It is used to analyze problems during installation or operation, and to set
or change DQMGR operational parameters while DQMGR is running.

Within its command list, DCONTROL allows use of every one of the GUTMAIL
subroutines. These permit sending and getting mail, opening and closing
buffer files, inquiring about a mailbox, and resetting its memory queue depth
limit. None of these operations require shutting down the DiskMail system.

DiskMall Interprocess Message System
Page 1011-6

This is the list of available DCONTROL commands:

CL [mbox] * Close Buffer File (prompt OK?)
CR mbox [size] CReate a new Bulfer File

ER integer Describe Integer Error Code

FO [mbox * FOrce Memory Queue to Disk
GM [mbox] [opts] * Get Mail from Mailbox

HE [pram] Interactive HEIp

IQ [mbox] * InQuire About Mailbox Params

Ll [mbox] [file] [word] List the Buffer File

MF file * Specify Monitor Mode File

MM on/off * Switch Monitor Mode on/off

OP [m x] * OPen Buffer File

PU [mbox [0F1s] * PUrge Data in a Mailbox

RQ [mbox] [qglim] * Reset Memory Queue-Depth Limit
RS [mbox * Reset a Mailbox’s Statistics

SD * Shut Down DQMGR (prompt OK?)
SE mailbox Set Default Mailbox Name

SH [mbox] ([file] * SHow DQMGR Statistics

SM [mbox] [opts] [data] * Send Mail to Mailbox

SS SuSpend Self

ST [mbox] * Send STop Message to Mailbox

An asterisk (*) denotes a command which will usually require processsing
through DQMGR.

Where [mbox] is specified as an optional parameter, the default mailbox name
set previgusly by the SE command will used if none is supplied in this
command.

DISK BUFFER FILES:

Each named mailbox having a disk buffering capability has an associated
buffer file. These files are in the directory /DISKMAIL/BUFFERS/ and they
have the same names as the names of their associated mailboxes. They are
created using the DCONTROL program.

Buffer files are organized as circular fifos with variable-length records. The
records are in the same format as standard FMP files with minor additions.
The files are type-3434 to distinguish them from normal linear files. They are
not ‘open’ to the FMP system while DQMGR uses them - DQMGR ?ens them
once to determine necessary parameters and then closes them and accesses
them directly with EXEC. They are fixed in size and never extended.

The idea is to build a circular file with intrinsic pointers to the beginning and end
of valid data. The pointers are essentially the records themselves, with the
expected result that access will be faster than it would be if separate pointers
were kept on disk in another location. This file survives a system shutdown
with data and pointers intact. It is always possible to inventory the file by read-
ing contiguous records from both ends.

DiskMali Interprocess Message System
Page 1011-7

Variable-Record-Length Circular Files (see figure on following page):

1) Each record is bounded by length words, exactly like FMP records. The
length words are a character count rotated right 1 bit, the same as FMP
length words.

2) Message Flag. The first word of each record (what would be the first
data word for FMP records) is a flag. ASCHl 'OK’ means the record is still
valid, ASCIl 'PU’ means it is part of the ‘purged zone’, and ASCIl -’ means
it is empty but may have valid records on either side of it. The flag word
adds two more characters to the record size, beyond the actual length of
the message data.

3) A Message Attribute word. Word 2 of each message contains data
equivalent to class-buffer parameter UV. This is passed through trans-
parently in case it is needed at a later time for purposes of identifying a
message'’s priority, or the sender’s mailbox, or whatever. It adds 2 more
characters to the record size.

4) The first word of the file éword 0) is always the first length word of a
record, or EOF. This provides a guaranteed starting point for inventorying
the file at startup.

5) As records are written to the file they are added linearly exactly as they
would be added to a standard FMP file. A standard FMP 'EOF’ mark (-1) is
always written after each successive record. A forward search from word 0
will always find an EOF mark.

6) As these records are used (read), they are marked ‘purged’ by changing
the flag word to 'PU’, but are not actually deleted. The purged records
together form a contiguous 'purged zone’.

7) When the file size would be exceeded by the addition of the next record,
a 'splice-record’ is created and the next data record is written in the purge
. zone at word 0 of the file.
8) The splice-record is a dummy with these characteristics:
a. lts last length word is the last word of the file.
b. The flag word is ASCII *--’.

9) Records are written into the purge zone until a new splice record is again
required.

10) A record with the '’ flag can exist anywhere in the file as a placeholder
record. It is included in queue-depth calculations because it reduces the
space available in the file.

11) A record is kept of the amount of data in this buffer's memory queue.
When a new record written to disk plus all of the records in memory might
overwrite the trailing OK (unpurged) record, the write is not allowed and an

DiskMail Interprocess Message System
Page 1011-8

error is reported. Thus a flush of the memory queue to disk will always
succeed.

12) Startup inventory: When DQMGR starts up, it searches for all files on
éDlSKMAIL BUFFERS with a type of 3434 and examines each one for the
ounds of the non-PU messages:
a. Beginning at word 0, scan forward until the EOF is found.

b. If the record at word 0 is non-PU, search backward until a 'PU’ record
or an illegal record length is found.

13) A new (empty) file is created by DCONTROL with the size specified by
the operator, an EOF mark (-1) in word 0 and in the last word of the file,
and directory information specifying that the EOF is in the last word of the
file (file is full).

Word New, empty file:

0
l EOF | Empty EOF

Word File with one valid record:

0
l W | OK | AW | Data | LW I EOF | EOF
Word File with one purged record:

0
ILW[PUIAWIData'LWIEOFI |EOF|

Word File with one purged and one valid record:

0
|Lw|pu|im| Data |Lw|Lw|ox|Aw| Data |LW|EOF| lEOFl

Circular files are normally designed with fixed-length records and with pointers
to the first and last valid records kept within the file somewhere, or even within
a management file somewhere else. Access to a record usually consists of a
read or write of the information itself, and then another write to update the
pointers.

The variable-length record files described above have some advantages over
those conventional files, and no disadvantages. Advantages are:

1) Variable-record-length files can be significantly smaller for the same
number of records if the record size does vary significantly.

DiskMall Interprocess Message System
Page 1011-9

2) Access is actually faster, because the management information regard-
ing valid records is kept with the records themselves and not in a separate
location, thus reducing access time.

In all cases except the splice, access to the variable-record-length circular file
consists of one read followed by one write.

Tricky Parts:

Development of the DiskMail system was relatively straightforward. The design
employs normal, documented RTE functionality except in the one case where
DQMGR must determine the current depth of an existing class queue. In this
case some privileged code is required, to chase the class queue and count the
number of outstanding buffers and the total number of words of SAM required.
This is the subroutine which returns that information:

MACRO
NAM COMPLQUEUE 880107 ICT Scan Completed Class Queue

COMPLQUEUE finds the class number in the class table, then searches
that class number’s completed-class queue, counting any completed
buffers and the amount of SAM they use. It is called from Fortran
as follows:

* % % %

*

CALL COMPLQUEUE (CLASS, NUMBFS [, NUMWDS [, MAXBUF]])

* Where both parameters are INTEGER*2 values:

* CLASS is the class number in question.

* NUMBFS is the current number of completed class buffers (zero or

* positive). INTEGER*2., If the class number is not in use or

* the queue is corrupt, NUMBUF returns -1.

* NUMWDS is the total number of SAM words used by all completed

* buffers in the queue, including header overhead. INTEGER*2.

* If there are no completed buffers, NUMWDS = 0. This parameter

* is optional.

* MAXBUF is the largest single buffer in the queue, including header
* overhead. INTEGER*2, If NUMBFS = 0, MAXBUF returns Word 1 of

* the requested class entry. If bit 14 of that word is set, then
* a program is waiting on a GET on the class number.

* Note that this subroutine is for RTE-A only. It first finds the

* class number in the system map and, if the queue is not empty, it

* chases the list in the SAM map.

* COMPLQUEUE goes privileged while it executes so that the operating

DiskMail Interprocess Message System

Page 1011-10

* system will not change the queue while COMPLQUEUE is chasing it.
* It temporarily sets the DATA2 map to the SAM map while privileged.

EXT $CLTA,SLIBR, .ENTP,$LIBX, .SWMP, .LWD2
EXT .XLB1, .XLA2, .XLB2

ENT COMPLQUEUE

CLASSA NOP Entry parameter addresses
NUMBFA NOP
NUMWDA NOP
MAXBFA NOP

COMPLQUEUE NOP Entry to COMPLQUEUE
JSB $LIBR Shut down the op sys (go privileged)
NOP
JSB .ENTP Recover caller’s pram addresses
DEF CLASSA beginning here

* Save the current working map (WMAP), set the DATA2 map to 4 (SAM):

JSB .SWMP Save WMAP

DEF SAVEMAP Keep it here

JSB .LWD2 Reset DATA2 map

DEF =D4 to SAM Map, number 4

* Preset all return variables (note: the optional ones point back to
* the A-register if not supplied):

CLB

STB @NUMBFA Set NUMBFS = 0, default
STB @NUMWDA Set NUMWDS = 0, default
STB @MAXBFA Set MAXBUF = 0, default

* Find the class number in the table, error it it’s zero (not in use):

JSB .XLB1

DEF $CLTA B = address of class table

LDA @CLASSA A = class number from caller
AND =B377 Strip off just the classf index

ADB A B = address of our class number
JSB .XLB1

DEF @B B = Word 1 of requested class entry
SZB,RSS If that word is zero,

JMP ERROR we have an error to report

SSB,RSS If the queue isn’t empty,

JMP FIRST go chase it
STB @MAXBFA Else make it the MAXBUF return value
JMP EXIT And leave

DiskMail Interprocess Message System

Page 1011-11

* Now chase the list, incrementing both variables for each buffer and
* testing for lost (something wrong with SAM linked list):

FIRST STB NEXLINK Save initial pointer into SAM

CHASE SSB If pending list word is negative, we
JMP EXIT are at the end of the list
ADB =D7 B = address of next buffer word 8
JSB .XLB2 B = buffer length including header
DEF @B
LDA B A=B

ADA @NUMWDA A = cumulative SAM utilization
STA @NUMWDA NUMWDS = cumulative SAM

LDA B A = buffer length again

CMA,INA A = - buffer length

ADA @MAXBFA A = largest so far - pending length
SSA If A is negative, this one’s larger,

STB @MAXBFA so make it the largest

JSB .XLB2 B = next buffer’s list linkage wd
NEXLINK NOP Next becomes pending, B = new next

STB NEXLINK Save the link word

ISZ @NUMBFA Incrm NUMBFS counter & test for lost

JMP CHASE Not lost, go see if we’re done

* Error exit for unused class number or corrupted linked list:

ERROR CCA
STA @NUMBFA NUMBFS = -1, error flag

* Exit here after restoring the original DATA2 map:

EXIT LDA SAVEMAP A = original value of WMAP
RRR 10 Move DATA2 map number down 10 bits
AND =B37 Select just the 5 DATA2 map bits
JSB .LWD2 Load the DATA2 register
DEF A from the A-register

* Scram, using $LIBX:

LDA @NUMBFA A = NUMBFS on return

CLB

STB NUMWDA Reset optional pram pointers
STB MAXBFA for next call

JSB $LIBX

DEF COMPLQUEUE

* Local variable:

SAVEMAP NOP Value of WMAP upon entry
END

DiskMail Interprocess Message System

Page 1011-12

SoftBench Link/1000 Encapsulation
A State of the At CASE Environment for the HP1000

Hilary Feier
Hewlett-Packard
11000 Wolfe Road
Cupertino, Ca. 95014 M/S 42UN

Overview

SoftBench Link/1000 is an encapsulated tool that runs on SoftBench, therefore this paper will
first outline the components of SoftBench and the significance of SoftBench as a CASE
(Computer Aided Software Engineering) tool. It will then present a simple tour of SoftBench
Link/1000 Encapsulation from a user-level perspective. Finally, the components of
SoftBench Link/1000 Encapsulation will be discussed in further detail.

1. Introduction

In the past several years CASE has grown from a concept to an industry. Integration of tools,
such as the editor, compiler, and debugger, into a homogeneous, window-oriented
environment lead to a more productive and better quality software development
environment. With SoftBench, Hewlett-Packard provides HP-UX developers a software
development environment consisting of both an integrated set of program development tools
and a tool integration platform. SoftBench is embedded in a window-oriented environment,
based on the industry-standard X11 Window System with OSF/Motif appearance and
behavior. SoftBench consists of five tools which cover the construction, test, and maintenance
phases of software development (see Figure 1):

1. Development Manager manages all file oriented tasks (e.g. version control).
Execution of all other tools can be initiated from the DM as well.

2. Program Editor edits source files, load files, etc.

3. Program Builder activates compiler and linker using automatically generated
makefiles.

4. Program Debugger tests the execution behavior of a program.

5. Static Analyzer provides information regarding the structure of a program. (for
HP-UX only)

These tools communicate with each other via a Broadcast Message Server (BMS). This
allows for a task oriented and partly automated working environment in the
edit-compile-link-debug cycle.

1012-1 SoftBench Link/1000

Besides being a software development environment SoftBench is also a tool integration
platform. Due to the Broadcast Message Server, SoftBench is designed to integrate other
available software packages. For example, software analysis packages or documentation
packages could be integrated into SoftBench. Additionally, user written tools can be
integrated via the HP Encapsulator package.

SoftBench Link/1000 Encapsulation transparently integrates the HP1000 A-Series into the
SoftBench environment. SoftBench Link/1000 Encapsulation, in conjunction with
SoftBench, provides a core set of tools for RTE-A application construction, testing, and
maintenance. The programmer edits and administrates HP1000 source code on an HPS000
HP-UX platform with the standard SoftBench functionality. SoftBench Link/1000
Encapsulation provides the link to the HP1000 so that the architectural dependent tasks (such
as compile, link, and debug) are executed transparent to the user. For the first time the
HP1000 user can utilize standard techniques in software development such as revision
control, automatic generation and usage of makefiles, as well as tool communication
functions to automate tasks in the edit-compile-link-test cycle. With improved windowing
capability and a simple user interface, SoftBench Link/1000 Encapsulation results in
increased productivity and quality in the software development environment for the HP 1000
A-Series system.

SoftBench Link/1000 1012-2

Integration of RTE-A Systems into
a SoftBench Environment

User

Development
Manager

A
v

RCS

' 3

I’y

A4

Static
Analyzer

A 4 v

Debugger

Builder Editor
l HP9000
‘make’ HP-UX
network services
v
Compiler HP1000
Debug/1000 RTE-A
Linker :
Figure 1

1012-3 SoftBench Link/1000

I1. Using SoftBench Link/1000 Encapsulation

After SoftBench has already been installed on your HP9000 workstation, SoftBench
Link/1000 is ready to be installed. Installation of SoftBench Link/1000 software on your
HP-UX system fully integrates HP1000 RTE-A development tools into SoftBench.
Therefore, simply running SoftBench, after installing SoftBench Link/1000, allows the user to
access all HP1000 RTE-A utilities while maintaining the full functionality of SoftBench.

Connecting to the HP1000

As soon as a user starts a SoftBench session, the C_1k utility is started. The C_1k utility
transparently connects to the HP1000. RTE-A system configuration information is defined by
the user in the configuration file, SBHOME/.SBL _conf. If this configuration file has not yet
been defined, for example the user is a first time SoftBench Link/1000 user, then a window
pops up and the SBL_config tool runs automatically, prompting the user for configuration
information. The required configuration information is:

» nodename of the RTE-A system

* account information for the user on the RTE-A system
(user-id,password)

* base directory on the HP-UX system

After this information is entered and the SBL_config tool is closed by the user, C_lk will
automatically try to make a connection to the specified nodename. C_1k pops up a window
that displays all messages being passed back and forth between the HP9000 and the HP1000.
This connection is maintained the entire time SoftBench Link/1000 runs, allowing the user to
constantly monitor input and output activity on the HP1000.

Moving Software from the HP1000 to the HP9000

Once the user has successfully connected to the HP1000 RTE-A machine, he is ready to set up
the development environment on the HP 9000 HP-UX machine. For already existing
development environments on the HP1000, SoftBench Link/1000 provides an update utility
(UPDATE) to transfer all the source and load files from the HP1000 RTE-A platform to the
HP9000 HP-UX platform while maintaining the directory structure. This window driven
utility offers a simple user interface to start the environment transfer.

SoftBench Link/1000 1012-4

Building RTE-A Software

After moving all the software over to the HP-UX platform the user can now take advantage of
the SoftBench application constructing environment. The build utility (BUILD) can be used
to build RTE-A software. Software builds take source code, include files, and any other
application specific information and compiles and links them to create executables. BUILD
will look for a makefile in the current directory and use that makefile to build the software. If
no makefile exists, a makefile can be automatically generated by holding down the
MAKEFILE menu button and choosing “create program” or “create library”, appropriately.
An additional window will pop up prompting the user to enter further information, such as the
desired executable name, compiler options, load flags, etc. Once this information is entered
the makefile will be generated and the builder can be run to build the program or library.

If the library or program encountered errors during the build, the BUILD window will list all
of the error messages. By simply clicking on the error message, the file containing that error
will be opened by the SoftBench editor and the cursor will be positioned on the line
generating the error. The user can quickly fix the problem, save the file, and rebuild.

Debugging RTE-A Software Using SoftBench Link/1000

A successful build doesn’t always mean functional code. Logical errors and runtime errors
often occur in a program development environment. SoftBench Link/1000 provides window
driven functionality to remotely run Debug/1000 on a telnet window connected to the
HP1000. By pulling down the UTILITIES menu from the DM and clicking on one of the two
DEBUG options, “debugl” or “debug2”, the user can start the debugger.

Using Revision Control

Once the user’s software has been transferred to the HP9000 and makefiles have been
created, the user can check his source code into source control. SoftBench integrates the
standard HP-UX revision control utility, RCS, into a menu driven utility. From the
Development Manager the user can pull down the VERSION menu and “create initial
versions” for the software. Additional editing of these source files will require that these
modules be “checked out” of Source control. This will help maintain file integrity and
revision control by allowing only one user to have one version of the software checked out at
any one time. (For more information on revision control, RCS, see the RCS man page).

1012-5 SoftBench Link/1000

III. Components of SoftBench Link/1000 Encapsulation
Tool Communication
Broadcast Message Server (BMS)

The Broadcast Message Server is the heart of SoftBench. On the HP9000 the SoftBench tools
communicate in a networked, heterogeneous environment via a broadcast communication
facility designed to support close communication of independent tools. Message requests
allow one tool to invoke the functionality of another tool. For example, when C_1k was
unable to connect to a remote HP1000 RTE-A host because no configuration information
had been set, a trigger was initiated to start the SBL_config utility. Notification messages
allow tools to define triggers which respond to events and initiate other actions. Triggers are
cause/effect relationships. They can be caused by system events, and in turn cause a
user-defined action to occur. In this manner, triggers link one or more tools together to
support a task or process.

RTE-A Remote Execution and File Transfer Daemons for HP1000 Communication

Using the SoftBench platform for RTE-A program development requires that some tasks be
activated on the RTE-A system (compiler, linker, debugger). These actions are initiated
through appropriate statements in the makefiles which are handled by the SoftBench Builder.
Remote command execution of RTE-A tools is implemented with a client-monitor concept
based on the telnet protocol. Results produced by RTE-A tasks will be copied to the local
SoftBench environment and output to the builder’s window. All HP1000 functions appear
completely transparent to the user. The necessary file transfer between HP-UX and RTE-A
systems is handled by a file transfer daemon based on the NS dscopy tool. From the users
point of view all architectural dependent actions are performed transparently and efficiently.

SoftBench Link/1000 1012-6

Development Manager (DM)

The Development Manager is the responsible tool for all file management actions as well as
for the activation of other SoftBench tools. The Development Manger has been enhanced by
SoftBench Link/1000 Encapsulation to include a Utilities menu that contains all HP1000
specific RTE-A programming tools, such as:

* programming language compilers (FTN7x, Macro/1000, C/1000),
o link,

¢ Debug/1000, and

o library utilities (merge, lindx)

These tools, when invoked, will set up a connection to the HP1000 system and run the tools
remotely.

Additionally, the DM automatically alters the actions menu to list only possible actions on a
given RTE-A specific file type extension. For example an xoc.ftn can only be edited and
compiled whereas an xcx.run can only be executed or debugged.

One of the most important tasks of the DM is the handling of the revision control system.
Revision control provides features like multiple revisions, audit trail, access control, efficient
storage, and flexible retrieval. RTE-A files, in addition to HP-UX files, can be checked in and
checked out from the DM, and then can be operated on by other SoftBench tools. This is an
important feature to the RTE-A developer since there is no Revision control on the HP1000.

Program Editor

The Program Editor is an easy-to-learn, programming language sensitive, mouse/menu based
standard SoftBench file editor. It automatically synchronizes file views. If a file is modified
by a tool in one window, the file is updated in the other windows where it is also being viewed.
It will automatically adjust for programming language specific indentation requirements. The
editor is highly customizable (For example, different keyboard accelerators can be specified).

1012-7 SoftBench Link/1000

Program Builder

The Program Builder, based on the HP-UX utilities mkmf and make, automates the process
of compiling and linking an RTE-A program composed of many different source files. This
leads to efficient builds: only the source files that have been modified are recompiled. The
dependency information required for efficient builds can be automatically generated with the
make makefile generator. SoftBench Link/1000 enhances the SoftBench make makefile
routine by providing an RTE-A makefile template that recognizes RTE-A specific suffixes,
compiler options, etc, therefore allowing for automatic makefile generation for HP1000
RTE-A applications. The resulting makefile contains all commands to either create a
program or a library for an HP1000 system. All architectural dependent actions (such as,
recognizing that a Fortran program must be compiled on the HP1000) are integrated into the
makefile and are performed transparently to the user.

When the makefile is executed all tasks for the program or library development are
performed automatically (compile/link or compile/merge/lindx). First, the source file is
transferred to the RTE-A system. Then the compiler (e.g. FTN7x) is started remotely from
the HP9000 on the HP1000 system. (All required file transfers and subsequent RTE-A tool
invocation are handled by the SoftBench Link/1000 daemons.) The resulting relocatable
remains physically on the HP1000 RTE-A system.

When creating a library, the compiled modules are merged into a library which is lindxd
afterwards. For the creation of a program the linker is invoked. The resulting executable is
also kept on the RTE-A system whereas on the HP9000 system a dummy executable and a
dummy relocatable are created in the user’s working directory to satisfy the HP-UX ‘make’
mechanism. This dummy executable can be invoked which then triggers the actual executable
on the HP1000 to either be run or debugged remotely, depending on how it was invoked.

Additionally, the program builder allows browsing on compiler errors and warning messages

in the related RTE-A source code files. This resultsin automated invocation of the SoftBench
editor which is positioned on the relevant line in the source file.

SoftBench Link/1000 1012-8

Program Debugger

The Debugger is invoked from the HP9000 but executed directly on the RTE-A system. This
utility can be run from the UTILITIES menu in the DM or by clicking on “debugl” or
“debug2” from the actions menu. When invoked, this utility automatically sets up a telnet
connection to the HP1000 RTE-A system and runs Debug/1000 on the specified executable.
(For more information on how Debug/1000 works, see the Symbolic Debug/1000 Reference
Manual, part no. 92860-90001.) Optionally, the user can choose the “debug2” menu option.
This allows for debugging in two windows. Two telnet connections are made to the HP1000
RTE-A system and output is redirected to the second window. In other words, one window will
display debug information while the other will display the output of the program. This is very
useful for debugging Graphics programs. These windows are configurable, therefore
allowing a GFoX! window to be used for Graphical display.

Static Analyzer

The Static Analyzer provides information regarding the structure of a program. It provides
cross-reference queries such as: “where declared,” ,“where defined,” “where used,” or
“where modified”. This tool is particularly valuable while maintaining code or porting
code. However, the generation of static information is a function of the HP-UX compiler.
Therefore, only HP1000 source code which can be compiled on an HP-UX system can be used
for static analysis.

1. GFoX is HP’s Graphics and Forms Terminal Emulator for X11.

1012-9 SoftBench Link/1000

Additional SoftBench Link/1000 Encapsulation Tools

To allow trouble-free interaction between the SoftBench development system on HP-UX and
the RTE-A target system, additional tools are provided which can be started from the
development manager.

RTE-A-Configuration (sbl_config)

The configuration file, SHOME/.SBL _conf, contains information necessary for command
and data exchange between the HP-UX and RTE-A systems. This information includes:

* HP1000 nodename, login, and password,
* base directory for the HP-UX system, and
« directory name for “make” template files.

These fields can be configured using the SBL_config utility. In addition to the above
information, DSCOPY and C_1k pipe information is contained in this file. (This information
is not configurable.)

C_1k Communication Server

The C_lk communication server controls all SoftBench Link/1000 communications
processes. It checks the configuration file, links the HP-UX system to the HP1000 by initiating
the dscopy daemon, and establishes a session on the HP1000. The connection must be
maintained throughout the development process since the dscopy daemon is started and
maintained by the C_1k utility. If this connection is closed then the pipe will be closed and all
subsequent file transfers will fail.

SoftBench Link/1000 1012-10

Environment Transfer and Source File Consistency Check (sbl_update)

If a user has an existing software project on the RTE-A system which he wants to maintain
under SoftBench Link/1000 Encapsulation, Y'PDATE (sbl_update) creates the necessary
directory hierarchy on the HP-UX system and copies all source and load files to their related
HP-UX directories. UPDATE will copy all files and subdirectories under a specified global
RTE-A directory, as defined by the context and base directories, to the HP-UX system.

The HP-UX Base Directory and the Context Directory

The base directory is set by the user using the SBL_config utility when he sets up his
development environment. All directories and files that correspond to the RTE-A system
must reside below the HP-UX base directory. The corresponding RTE-A directory is then
defined by the context directory. If the context directory is NOT set below the HP-UX base
directory then subsequent file transfers will fail.

When the context is correctly set below the HP-UX base directory, SoftBench Link/1000
interprets the context in the following manner:

It parses off the HP-UX base directory and sets the corresponding RTE-A global directory to
the next directory in the path.

For example, if the HP-UX base directory is set to /users/basedir and the context directory is

set to /users/basedir/global, then the UPDATE utility will transfer all source and load files from
Iglobal/@.@.s on the HP1000 to /users/basediriglobal/ on the HP9000. (See Figure 2)

1012-11 SoftBench Link/1000

HP-UX Base Directory: /users/basedir

Context: /users/basedir/global
BEFORE
HP-UX RTE-A
lusers /global
/basedir Jother /sources /incl Nib !
/mo ftn xx.finc ab.ftn
Iglobal e oy yyfinc cdfin
zzfinc lb.mrg
AFTER
HP-UX RTE-A
lusers /global
/ /incl Nlib
/basedir /other sources /inc ' ’
’ /more xx.finc ab.ftn
/global xm yyfinc cdftn
zzfinc lb.mrg
/sources /incl Nlib
oo ftn xx.finc ab.ftn
wxlod Wfinc cdftn
zzfinc Ib.mrg
Figure 2
SoftBench Link/1000 1012-12

A second major function of UPDATE is the possibility to perform a source file consistency
check. As the user is working in two different file systems (HP-UX and RTE-A) it is useful to
check the consistency of all related directory information; this tool checks the availability as
well as the content of related files in the two file systems. For example, this could be used ona
nightly basis to check that all files are consistent on both machines. If the files aren’t
consistent, it is likely that a file has been changed but the software hasn’t been rebuilt. Note
that if the developer makes changes directly on the RTE-A system and then rebuilds, the
changes will be overwritten. Therefore, it is recommended that all development take place on
your HP-UX system so as to not run into file consistency problems.

IV. SoftBench Link/1000 Encapsulation Configurability

In addition to the flexibility and functionality that SoftBench already provides, SoftBench
Link/1000 specific functionality is configurable as well. SoftBench Link/1000 has been
designed to be configurable to every individual program environment’s needs.

¢ All RTE-A specific utilities running on the HP1000 have configurable window
options. Beyond color schemes, this allows a user to substitute GFoX for an
HPTERM window if so desired.

* Accepted include file type extensions are configurable such that SoftBench
Link/1000 recognizes any RTE-A include file.

* RTE-A makefile templates are customizable. (Full understanding of make is
required, therefore this is recommended for advanced users only.)

* Alternate configuration files can be specified when running individual tools
allowing a user to access another development environment on the same
HP1000 (not under the local base directory) without reconfiguring.

For more information on how to customize the SoftBench Link/1000 Dev=lopment
Environment, see the SoftBench Link/1000 Encapsulation Reference Manual.

1012-13 SoftBench Link/1000

V. Summary

SoftBench Link/1000 Encapsulation integrates the HP1000 programming tools into the
SoftBench environment. In summary the following features are implemented:

integration of HP1000 systems via LAN into the standard SoftBench
environment.

source code administration under revision control resulting in safe
development and modification of source code and the possibility of restoring
previous software revisions.

automatic generation and usage of makefiles for the HP1000.
transparent use of RTE-A tools (FTN7x compiler, linker, Debug/1000 etc.)

debugging of blockmode applications (e.g. Graphics/1000) over the network in
a window oriented programming environment (in conjunction with GFoX).

automation of tasks during software development and testing.

common window-oriented user interface, based on the X11-standard, for all
tools in the software development system.

ease of extension and integration of other tools using the HP-Encapsulator

possibility to integrate software documentation tasks (e.g. integration of
HP-FrameMaker).

multi-window graphical user interface and integrated on-line help functions for
ease of learning.

highly configurable development environment.

These features optimize software development time and improve the quality of the software
development process.

Acknowledgements

I would like to thank the following people for their support and their help on this paper: Wolfgang Oskierski,
Scott Glover, Kristin Anderson, Doug Fisher, and Carolyn Krieg.

SoftBench Link/1000 1012-14

TITLE: How DSO Develops Software and Hardware

AUTHOR: Alan Tibbetts

Hewlett-Packard Co./Consultant

3498 Gibson Avenue

Santa Clara, CA 95051

FINAL PAPER WAS NOT AVAILABLE AT TIME OF PRINTING.

PAPERNO._ 1013

TITLE: Using and Controlling Dialup Modems for Remote

Data Acquisition

AUTHOR: Wendy King

US Naval Observatory; Time Service, Bldg. 78

34th & Massachusetts Avenue, NW

Washington, DC 20392-5100

202-653-0486

FINAL PAPER WAS NOT AVAILABLE AT TIME OF PRINTING.

PAPERNO. 1014

TITLE: HP 1000 Networking Strategy and Future Directions

AUTHOR: Lynn Rodoni

Hewlett-Packard Co.

Cupertino, CA 95014

FINAL PAPER WAS NOT AVAILABLE AT TIME OF PRINTING.

PAPERNO. 1021

BSD IPC ON THE HP1000
Ramesh Radhakrishnan
Hewlett-Packard Company
11000 Wolfe Road
Cupertino, California 95014

INTRODUCTION

In the early 1980s, DARPA (Defense Advanced Research Projects Agency) funded the
implementation of a protocol suite to interconnect heterogeneous networks. This protocol suite Is
now widely known as the TCP/IP protocol suite. One of the first implementations of the TCP/IP
protocol suite appeared in the 4.1 BSD UNIX release. Network Interprocess communication
(often referred to as IPC) was made possible by providing a programmatic interface called
sockets. The concept of sockets not only defines the data structure of a communication
endpoint but also the various operations that can be performed on it. The type of
communication endpoint provided is generically known as the application programmer interface
(API). Several APls exist today, such as Berkeley Sockets (defined by the Berkeley Software
Distribution), TU (defined by AT&T) and XT! (defined by XOpen). In addition, there are several
proprietary APls such as NetiPC provided by HP on all its platforms. Despite this plethora of
APls, the Berkeley Sockets (henceforth used interchangeably with BSD sockets and BSD IPC)
interface dominates the TCP/IP world as the interface of choice and is generally regarded as the
de facto standard API for UNIX interprocess communication.

NS-ARPA/1000 release 5.24 now offers BSD sockets along with NetlPC, as a network
interprocess communication interface on the HP1000. This not only reiterates HP’s committment
to standards (open or de facto), but with the imminent release of the C compiler on the HP1000,
network portability across HP platforms is a distinct possibility. With the addition of the BSD
socket interface to NS-ARPA/1000, interprocess communication among the HP9000, HP3000
and HP1000 using Berkeley sockets is now avallable. In general, BSD sockets on the HP1000
exhibit the same behaviour as that of BSD sockets on HP-UX 8.0. This paper will attempt to
clarify the differences wherever they arise. However, note that there may exist operating system
dependencies, such as the fork() call, that makes complete portablity a trifle more difficuit.

This paper describes the use of the Berkeley socket interface and the associated utility routines
on the HP1000. The next section of the paper will deal with the Berkeley Interprocess
Communication paradigm in detail. This Is followed by a section devoted to Berkeley socket and
Pascal/FORTRAN interface design issues that are specific to HP1000. It is advisable that
Pascal/FORTRAN users skim over this section before perusing the next section. The
descriptions of the function calls are based on C language semantics. It is assumed that the
reader Is familiar with the syntax of the C language, especially that dealing with pointers.

BSD INTERPROCESS COMMUNICATION

BSD IPC on the HP1000 1022-1

Overview

The Berkeley Interprocess communication model (henceforth, used interchangeably with
Berkeley IPC) is based on a client/server paradigm. The accompanying figure shows a typical
scenario for a connection oriented communication between two processes.

Client

Server

socket()

connect()

send()
recv()

shutdown()

Client and Server
establish communication
end-points

Server binds to a
well-known port address

Server indicates readiness
to accept connection
requests

Server waits for
connection requset

Client sends
connection request to
server

Close communication
endpoints

socket()

bind()

listen()

accept()

recv()
send()

shutdown()

Creating a communication endpoint

The basic entity for communication Is a socket. A socket is a data structure that Is assoclated
with a given process. Two processes may communicate by each creating a socket data
structure and then performing the necessary actions to establish a connection between the two
sockets. As a further level of abstraction, users will only deal with socket descriptors, which can
be regarded as a reference to a specific socket data structure. A socket is created and
assoclated with the calling process by the following call:

BSD IPC on the HP1000

1022-2

sd = socket(int domain,int type,int protocol);
int sd;

Domains: sd is the socket descriptor that should be used in all subsequent calls to reference
the socket that was created by the above call. Note that once a socket has been created with
the socket() call, only BSD socket routines can be used on the socket created by this call. By
the same token, NetlPC routines can only be used on sockets created with the /PCCreate() call.

Now, in order for sockets created by two independent processes, perhaps on different machines,
to communicate with each other, a connection needs to be set up between them. To set up a
connection, there needs to be a way to name the sockets so that each one can refer to the
other. Again, names are generally translated into addresses. The space from which an address is
drawn Is called the domain and this is the first parameter to the socket() call. There are several
address domains (those with the AF_ prefix) defined in the include file <socketh> file.
However, the only ones supported for NS_ARPA/1000 are:

AF_UNSPEC
AF_INET

Internally, AF_UNSPEC defaults to AF_INET domain. The AF_INET domalin is also known as the
Internet domain. In this domain, a socket address consists of an Internet address of 32 bits and
another 16 bit address called the port address. We will delve into this further when we talk about
binding a socket to a specific address.

Types: The second parameter specifies the type of socket created in the domain referred to by
the first parameter. This type really refers to the communication style. Although several
communication styles have been defined in the <socket.h> header file (constants with the
SOCK_ prefix), the only one supported by NS-ARPA/1000 Is the “stream” style represented by
the constant SOCK_STREAM. Stream communication implies that communication takes place
between two sockets who have already established a connection between themselves. It also
means that the communication is full-duplex, and reliable. The data is recelved in sequence and
that no message boundaries are maintained. Thus, a recv() call at one end of the connection
may return data due to several send() calls at the other end of the connection, or only part of
the data from a single send() call because all the data has not yet been received or If there isn't
enough buffer space on the receiving side for all the data. The protocol implementing such a
style is responsible for retransmitting lost or error data, ensuring sequenced delivery of data and
returning error messages when a connection has been broken.

Protocols: The third parameter is the protocol family. Usually, there Is one protocol for each
socket type in each domain. A protocol is simply a set of rules that controls the transfer of data
between two sockets. In addition, it also keeps track of the socket names or addresses, sets up
connections between sockets and cleans up resources after a connection Is shut down. All the
constants starting with PF_ in the <socket.h> header file represent protocols. However, the
only ones supported by NS-ARPA/1000 are:

BSD IPC on the HP1000 1022-3

PF_UNSPEC
PF_INET

Usually, It is sufficient to specify the default protocol or PF_UNSPEC. The domain and type
parameters should be sufficient to provide the right protocol. For NS-ARPA/1000, since the only
acceptable values for domain and type are AF_INET and SOCK_STREAM respectively, the
underlying protocol provided by the system for interprocess communication Is always TCP.

Binding a socket to an address

A socket is created without being bound to any specific port address. Until an address Is bound
to a socket, other processes have no way of referencing it and hence no connection can be set
up between it and any other socket. A connection in the Internet domain Is identified by the
following quintuple:

<protocol,local IP address, local port address, remote IP address, remote port address>

This quintuple is unique over the entire Intemet domain for all connections. The bind() call
allows a process to specify one half of this association, <protocol, local IP address, local port
address>. The connect() and accept() calls will complete the quintuple when a connection is
established.

In the client/server paradigm of communication, it is essential that the server bind its socket to a
specific port address. It is usually not necessary for the client to bind its socket to a specific port
address since the connect() call will automatically bind an address to the socket if used on an
unbound socket.

The bind system call is used as follows:

int bind (int sd, struct sockaddr_in *addr, int addrlen);

The bind() call binds the socket, sd, to an address that Is provided in the sockaddr_in structure.
addrien is the length in bytes of the relevant information in the sockaddr_in structure. This
structure is declared in <in.h> and has the following fields:

struct sockaddr_in {

short sin_family; /* address family */
u_short sin_port; /* port address */
struct in_addr sin_addr; /* host IP address */
char sin_zero[8]; /* unused */

}

sin_family should always be set to AF_INET. The sin_port field is filled with the port address that
the socket Is going to be bound to. This port address can either be hard coded into the program
or can be obtained by programmatically accessing a network database file called /etc/services.

BSD IPC on the HP1000 10224

For ease of use and HP-UX compatibility, BSD IPC provides four network databases and a set of
utility routines to extract information from them. These databases and routines are discussed
below.

Berkeley network utility routines and databases : There are four BSD network database files
maintained by the network administrator. They are :

/etc/hosts
/etc/networks
/etc/protocols
/etc/services

/etc/hosts Is an ASCII file that contains information about the mapping of a hostname and its
allases to its IP address. The IP address Is in dotted decimal format. /etc/networks is an ASCII
file that maps the name of a network and its allases to the IP network address. /etc/protocols is
an ASCII file that maps the name of a protoccl and its aliases to its official Internet number.
/etc/services Is an ASCI file that maps the name of a service and its allases to the port that this
service is going to be listening on. There is also a provision to specify the protocol that this
service uses.

Note that these are all static files. The NS-ARPA/1000 library now contalns several routines that
access the information in these files. All these functions return a pointer to a static structure
containing the requested information or a NULL on error. The memory for the structure is
allocated from the "C heap” via malloc(). C/Pascal/FORTRAN users will have to use the free()
routine (part of the C library) in order to reuse this memory.

The library routines do not attempt to contact any name servers. The lookup is purely static. The
file <netdb.h> contains the definitions of the structures retumed by the routines and must be
included when using any of these routines.

Host name mapping: The Internet name to IP address mapping is done by the routine
gethostbyname() while the reverse mapping is done by gethostbyaddr(). The database file for
these calls is /etc/hosts. The hostent structure returned is described below:

struct hostent {
char *h_name;
char **h_allases;
int h_addrtype;
int h_length;
char **h_addr_list;
}

h_name is a pointer to an ASCII string (terminated by a NULL character) that is the official name
of the host. h_aliases Is a pointer to an array of pointers, each of which points to a character
string, that is an alias of this particular host. The last entry in the array of pointers is a NULL
pointer. This serves to Indicate the number of valid alias pointers. h_addrype is always
AF_INET, since NS-ARPA/1000 deals only with the Internet domain. h_length is always 4. This
represents the number of bytes needed to represent a host address in the Internet domain.

BSD IPC on the HP1000 1022-5

h_addr_Jist is a pointer to an array of pointers, each of which points to a 32 bit IP address. As in
h_aliases, this array Is ended by a NULL pointer to indicate the end of valid pointers to IP
addresses. There Is a cruclal point to note here. Although the declaration indicates that the
array of pointers that h_addr_list points to is an array of pointers to type char, they are really
pointers to type u_long on the HP1000. The 32 bit IP addresses themselves are guaranteed to
be word (16 bit) aligned. On most UNIX machines, this is not significant. However, because the
HP1000 is a word addressable machine, special care must be taken to extricate the 32 bit IP
address from this structure. As an example, if h is the pointer to a hostent structure returned by
one of the calls above,then the code in C may be as follows:

u_long ipaddr;

/* First get the array pointer,

* h->h_addr_list

* Then dereference |t to get the first char pointer.

* *h->h_addr_list

* Assuming this is not NULL, cast it to a unsigned long
* Integer, which is what the IP address really is !

* (u_long) *h->h_addr_list

* Then, dereference this pointer to get the 32 bit IP address
* * (u_long) *h_addr_list

*/

ipaddr = * (u_long) *h->h_addr_list;

Pascal/FORTRAN users will have to resort to similar machinations to obtain the 32 bit IP
address. In Pascal, it is as follows:

cptr := h™.h_addr_list"; { get the char pointer }
i32ptr := cptr DIV 2 ; { The IP address is guaranteed to be word aligned }
Ipaddr := i32ptr"; { derefernce pointer }

Similar routines exist called getnetbyname() and getnetbyaddr() to extract information from the
networks database file called /etc/networks. The information is returned in a structure called
netent, described below:

struct netent {
char *n_name; /* officlal name of net */
char **n_allases; /* allas list */
int n_addrtype; /* network address type */
u_long n_net; /* network address */

The only notable item here Is that the n_net field is defined as u_long on the HP1000 while it is
an int on the HP9000 machines.

Protocol names: For protocols, getprotobyname() and getprotobynumber() extract information
from the protocols database file called /etc/protocols. The information is returned in a structure

BSD IPC on the HP1000 1022-6

called protoent, described below:

struct protoent {
char *p_name; /* official protocol name */
char **p_aliases; /* allas list */
int p_proto; /* protocol number */

Service names: In the Intemet domain, a service (or a server process) is expected to walt on a
specific port address and employ a specific communication protocol. The only protocol NS-
ARPA/1000 supports currently is TCP. The database file for service name lookups is called
/etc/services and the routines that operate on it are getservbyname(), getservbyport. The
information is returned In a servent structure described below:

struct servent {
char *s_name; /* official service name */
char **s_aliases; /* alias list */
int s_port; /* port address */

) char *s_proto; /* protocol to use */

The port address that the server needs to bind itself to could be obtained by using the

getservbyname() call and extracting the information from the s_port field of the servent structure
that is returned.

There are two restrictions in the use of port addresses. Only a superuser can bind a socket to a
port address in the range 1-1023. Also, no two sockets may be bound to the same local port
address unless a setsockopt() with the SO_REUSEADDR option has been issued to the socket
prior to the bind() call.

Establishing a connection

Connection establishment in a client/server mode! is assymmetrical. Both processes need to
follow a standard set of conventions before service may be rendered.

Server side: The server process first creates a socket and binds itself to a well known (or at
least one that is known to the client) port address. Then, it issues the /isten() call to enable a
queue on the socket for incoming connections. If this were not done, then all connection
requests made to the server would be summarily rejected by TCP. Now, the server can walit for
connection requests via an accept() call or a select() call. The select() call is covered in a later
section on multiplexing. The accept() call is defined below:

int accept(int sd, struct sockaddr_in *addr, int *addrien);

When an incoming connection request Is accepted, a new socket descriptor is returned from the

BSD IPC on the HP1000 1022-7

call. This new socket descriptor is the one that the server should use for subsequent
communication with the client. A maximum of addrien bytes of the client's socket address is
retumned in the ublquitous sockaddr_jn structure pointed to by addr.

If the socket is in blocking mode, the accept() call will not return until a connection is avallable.
There is no way for NS-ARPA/1000 to screen incoming connections. It is entirely upto the
server process to consider who the connection is from and to close the connection if it's an
undesirable one. Using the select() call, the server process can wait on more than one socket
for incoming connection requests.

Client side: The client process first creates a socket using the socket() call. It is not necessary
that it bind itself to a specific port address. Once assured that the server process Is listening for
connection requests, the client process can initiate a connection using the connect() call
described below:

int connect(int sd, struct sockaddr_in *addr, int addrlen);

On input, the sockaddr_in structure should contain information about the server socket with
whom the client wants to establish communication. Referring to the sockaddr_in structure
described earlier, the sin_port field should contain the port address that the server Is listening on.
As for the server, this may be hard coded into the program or may be obtained by a call to
getservbyname(). In the latter case, It is essential that the /etc/services file on both the client
and the server contain commensurate information. The sin_addr field should contain the 32 bit IP
address of the server machine. Again, this IP address can be obtained via the gethostbyname()
call or can be hard coded into the program. In addition, there are many utility routines for
manipulating dotted decimal IP addresses. They are:

struct in_addr inet_addr(char *c);

char *inet_ntoa(struct in_addr jpadadr);
u_long Inet_network(char *c);

struct in_addr /net_makeaddr(u_long net, u_long host);
u_long inet_netof(struct in_addr jpaddr);
u_long inet_naof(struct in_addr ipaddr);

The In_addr structure Is defined In <in.h> and Is the structure to use when dealing with Internet
IP addresses. The inet_addr() function takes a character string in dotted decimal notation and
returns the 32 bit IP address. /net_ntoa returns the complement. The other functions manipulate
the 32 bit IP address and return some portion of it such as the network portion, the host
portion,etc.

BSD IPC on the HP1000 10228

The connect() call normally blocks until a connection Is established or it times out. However, by
setting the socket to be non-blocking with a fcntl() call, connect will return immediately with a
EINPROGRESS error. The client can proceed to do other things before waiting on a select() call
for the connection to be completely established.

Data Transfer

Once a connection has been established, data can be exchanged between the two processes.
The connection Is full duplex and hence either side can send or receive at the same time. Calls
are avallable for sending and receiving scalar as well as vectored data. Vectored data operations
are also known as scatter/gather operations. In order to send scalar data, the send() call is
used:

int send(int sd, char *buf, int buflen, u_long flags);

buf is the character pointer to the beginning of the data that Is to be sent. bufien Is the amount
of data, in bytes, to be sent starting from where buf points to. flags is a 32 bit parameter that
does not have any options supported currently. The amount of data (indicated by buflen) to be
sent is Independent of the socket buffer sizes. Each socket has a send buffer and a recelve
buffer. These represent the maximum amount of data that can be outstanding on the socket.
These buffers are intermediate repositories for data whose ultimate source and destination are
the user data space on the sending and recelving side respectively. Before a connection can be
established, the socket’s send and receive buffers can be modified by using the setsockopt()
call. Once a connection is established, however, the socket’s buffer sizes can only be examined
with the getsockopt() call, and cannot be modified. If the socket is in a blocking mode, the
send() call will block until all the data can be transferred from the user space into the socket
buffer space. By setting the socket in a non-blocking mode , via the fcntl() call, the send() call
will retum as soon as It transfers as much data into the socket buffer as is currently possible.
Note that simply retumning from the send call does not imply that the data has already been
tranferred to the receiving side. it is merely in the socket buffer for now and it is the responsibility
of the undertying protocol (in this case, TCP) to ensure the smooth transfer of data to the other
side of the connection.

Scalar data is received using the recv call :

int recv(int sd, char *buf, int buflen, u_long flags);

buf Is the starting user space address where data will be received. bufien indicates the
maximium amount of data that the process wants to receive right now. The following flag is
supported currently:

BSD IPC on the HP1000 1022-9

MSG_PEEK

Normally, once data has been transferred to the user space as in the recv() call above, the
socket’s receive buffer is freed up by the amount received so that it can accept more data from
the sender. However, setting this flag enables the recv() call to transfer data to the user space
and yet retain the same data in the socket’s receive buffer. Thus, the next recv() call would
return the same data. The recv() function itself returns the amount of data that has been
transferred to the user space from a minimum of one byte to a maximum of buflen bytes. Note
that unlike NetiPC, there is no way to force the recv() call to wait for a specific amount of data
before returning.

Vectored data is sent and received using the following two calls:

int sendmsg(int sd, struct msghdr *msg, u_long flags);
int recvmsg(int sd, struct msghdr *msg, u_long flags);

The msghdr structure defines the startlrig addresses of where the data received on the socket
will be disbursed.

Blocking / Non-blocking

At any time of its existence, a socket can be set in blocking or non-blocking mode with the
fentl() call.

u_long fcntl(int sd, int cmd, u_long flags);

The cmd parameter can be either F_SETFL or F_GETFL. All these constants are defined in
<fentl.h>. The only flags parameter supported currently is O_NONBLOCK. F_GETFL can be
used to obtain the current values of the specified flag bits set in the flags parameter. The font!
call itself returns the value of the flag bits in a 32 bit entity. If the option corresponding to tie flag
bit is currently tumed on for the socket, then this bit is set in the return value. The F_SETFL cmd
is similarly used to control the setting of the socket options. By setting the socket in a non-
blocking mode, subsequent BSD socket calls will retum a -1 with errno set to EAGAIN If the
socket cannot service the call immediately. For example, assume the socket is set in a non-
blocking mode and the process does a recv() call. If there is no data on the socket’s receive
buffer, then a -1 is returned with errno set to EAGAIN Indicating that the socket could not service
the request right away.

BSD IPC on the HP1000 1022-10

1/0 Multiplexing

One another important function provided enables the process to wait for events on muitiple
sockets. This function is the select() call. Thus, if a process has many connections open, it can
wait for data on any of these sockets by using the select() call. It is used as follows

Int select(int nfds, fd_set *rmap, td_set *wmap, {d_set *emap, struct timeval *timeout);

fd_set and timeval are datatypes defined in <types.h>. fd_set Is a bitmask that represents the
socket descriptors that the select() call should walt for events on. The following utilities are
provided for manipulating the bitmasks:

FD_ZERO(fd_set *bitmask) /* clear the bitmask */

FD_SET (int sd, fd_set *bitmask) /* set the bit for sd in bitmask */
FD_CLR (int sd, fd_set *bitmask) /* clear the bit for sd in bitmask*/
FD_ISSET(int sd, fd_set *bitmask) /* test the bit for sd in bitmask*/

These utllities are implemented as macros In C and as procedures for Pascal/FORTRAN. Use of
these is highly recommended for manipulating the bitmasks.

Let's step through an example here. sd1, sd2 and sd3 are three socket descriptors. sd7 is a
socket that is connected to a remote socket and is walting for data. sd2 is a socket on which
we have initiated a non-blocking connect() and want to await confirmation of the connection
establishment. sd3 Is a socket on which we want to accept incoming connection requests. So,
we want to walt for the following three events :

READABLE signal on socket sd1
WRITABLE signal on socket sd2
READABLE signal on socket sd3

Let rmap, wmap and emap be the bitmask structures for reading, writing and exceptional
respectively. They would be declared as:

fd_set rmap, wmap, emap
First, clear all the bitmaps.
FD_ZERO(&rmap);
FD_ZERO(&wmap);
FD_ZERO(&emap);
Set the readable signal for sd'1 and sd3.

FD_SET(sd1,&rmap);

BSD IPC on the HP1000 1022-11

FD_SET(sd3,&rmap);
Set the writeable signal for sd2.
FD_SET(sd2,&wmap);

It Is always advisable to set the exceptional signal on all the sockets just to be notified of
catastrophic events.

FD_SET(sd1,&emap);
FD_SET(sd2,&emap);
FD_SET(sd3,&emap);

Now, if the select() call is issued, it will wailt until one of the events that we have selected on
occurs.

ns = select(nfds,&rmap,&wmap,&emap,(struct timeval *) NULL)

nfds should be set to the maximum socket descriptor value that the select call should check for
events on. Thus, in our example, it should be set to the maximum of sd1, sd2 and sd3 before
the select() call. Notice that the timeval parameter is set to a NULL pointer. This requests the
select() call to block until an event has occured. Fields in the timeval structure can be set to
indicate a maximum time limit that the select() call would block while waiting for any of the
specified events to occur.

On a successful return, the three bitmasks will be modified to indicate which socket descriptors
have events recorded against them. The FD_ISSET call can be used to determine whether a
particular socket descriptor was selected.

Signals on an HP-UX system are slightly different in the sense that a process may "catch a
signal” In several different ways. With NS-ARPA/1000, the only way to be notified of events is to
indicate through tha select() call above that a process is interested in a particular set of events.
Also, on the HP-UX system, the exceptional signal Is not set by the socket routines. Instead
when a broken connection Is detected the HP-UX kernel sends a signal to the user process that
causes the process to die If it hasn't set up a signal handler. For NS-ARPA/1000, however,
exceptional signals are the only way to detect broken connections from a select() call.

Terminating the connection

A connection may be terminated by the shutdown() call. Since, TCP connections are full-duplex
in nature, shutdown() may be used to terminate the receiving and sending sides of the
connection independently. Once a socket Is shutdown for receive, then it cannot receive any
more data from the peer socket. Similarly, if a socket has been shutdown for sends, then it
cannot send any more data to the peer. A socket can be completely shutdown by setting how
to 2 in the shutdown() call described below:

BSD IPC on the HP1000 1022-12

int shutdown(int sd, int how);

With how set to 2, the socket can neither send nor receive data. In addition, the socket
descriptor sd Is rendered invalid and liable to be assoclated with another socket with a
subsequent socket() call. On the HP-UX system however, a shutdown() call does not release
the socket descriptor. Although nothing useful can be done with the socket descriptor once a
shutdown() with how = 2 is done on it, the HP-UX process will still possess a valid descriptor
untll a close() Is performed on the socket descriptor.

Irespective of the difference noted above, both NS-ARPA/1000 and the HPS000 provide the
graceful release mechanism when the shutdown() call is used on a socket descriptor. This
means that TCP will try its best to ensure that all outstanding data in the pipeline between the
two peer sockets reach their respective destinations before the socket resources are released.
Thus, if a local socket does a send() and immediately follows it with a shutdown(), the TCP at
both the local and remote ends co-operate to deliver all the data to the remote peer before
indicating to the remote peer process that the local process has done a shutdown() and that
there won't be any more data.

Socket options

The setsockopt() and getsockopt()) functions enables setting and examining the socket's
characteristics (also known as options) respectively. These options may exist either at the socket
level or the protocol level. The functions are called as follows:

int setsockopt(int sd, int level, int optname, char *optval, int optlen);
int getsockopt(int sd, int Jevel, int optname, char *optval, int *optien);

Although optval is of type (char *), in reality, it is a pointer to a character array that contains the
value of the option but is not terminated by the conventional "\0" character that terminates C-
style strings. optval needs to be appropriately recast (in most cases, to an int) in order to obtain
the value of the option.

There are two kinds of options: boolean and non-boolean. To set a boclean option, any non-zero
value in optval will suffice. To examine a boolean option, the getsockopt() call returns with a zero
value (the convenetional successful return) if the option Is set and -1 if it Is not set. The most
important boclean option is the SO_REUSEADDR option. The use of this option enables a socket
to be bound to the same local port address as another socket. However, the underlying protocol
(TCP in this case) will ensure that. only one of these sockets will be allowed to call listen()
successfully and this Is enforced on a first-come first served basis. TCP will also ensure that
before a connection is set up, the quintuple of <protocol,local port address, local IP address,
remote port address, remote IP address> is unique for each socket on the system.

BSD IPC on the HP1000 1022-13

For example, let sd7 be a socket that is bound to local port address 10000. The
SO_REUSEADDR option must be set individually for sockets sd2 and sd3 to be bound to the
same local port address, 10000. If sd7 has already done a listen(), then the listen() call
performed on sd2 and sd3 will retum unsuccessfully. Now, let's say sd2 establishes a
connection with peer process whose IP address and port address are 15.1.13.208 and 15000
respectively. If, sd3, does a connect() call specifying the remote IP address as 15.1.13.208 and
the remote port address as 15000, then the connect call will return unsuccessfully with ermo set
to EADDRINUSE.

The most important non-boolean options are the SO_SNDBUF and SO_RCVBUF. The use of
these options controls the sizes of the send and receive buffer sizes of the socket. Although
these buffer sizes may be examined at any point, the setsockopt() call to change buffer sizes
may only be used prior to establishing a connection on the socket.

Miscellaneous

In addition to the functions described above there are several other calls such as the ntohs,
htons,etc. the use of which will ensure network porability across different platforms. Also,
getsockname() and getpeername() can be used to obtain the local and peer socket address in
the sockaddr_in structure .

HP1000 CONSIDERATIONS

The BSD socket interface is supported only on the RTE-A systems and the programs using this
interface will have to be CDS. This section describes issues that a programmer has to contend
with on the HP1000 platiorm and the differences between using this Interface in a
Pascal/FORTRAN environment and the C environment. The BSD socket interface has been
designed to conform to HP-UX usage and be as natural as possible for C users. Hence, users
of BSD sockets and its associated utllities should be aware of the following points when
programming in a non-C environment.

Byte and Word addressing: The HP1000 is a word oriented machine. Most UNIX machines,
including the HP9000 series, are byte oriented. An example will [llustrate the difference.
Consider the following C declarations:

char *c;
int *x

Let us assume that c Is pointing to a character stored at address 2300 (decimal). Thus the value
of ¢ is 2300. Now, let’s say we want to store this value in x also. One simple way might be,

x = (int*) c;
The (int *) casting operator converts a character pointer ¢ to an Integer pointer x. On UNIX
systems, we would expect the value stored in x to be 2300 also. However, on the HP1000, the

casting has the effect of storing the word aligned, word address of 2300 in x. In simple terms, the
value stored in x is (2300 DIV 2), since a word on the HP1000 is 2 bytes long. Thus, x would

BSD IPC on the HP1000 1022-14

contain the value, 1150. Even if ¢ were to contain the value 2301, the casting operation would
render x to contain 1150 (because of word alignment !). For C programmers, the casting
operator makes the transformation from byte to word addresses and vice-versa extremely simple
and transparent. Pascal/FORTRAN users have to use the following functions in order to obtain
the same effect.

AddressOf(parm : int) , which returns the word address of parm.
ByteAdrOf(parm,offset : int) , which retums the byte address of parm
modified by adding the value of offset to it.

The relevance of all this is that in a C environment, the equivalent to passing a parameter "by
reference" is to pass the address of the parameter. Since several BSD socket functions expect to
receive pointers and were implemented trying to maintain the portability of C programs,
Pascal/FORTRAN users will have to make use of the above mentioned functions in order to
generate the appropriate pointers. In addition, programmers have to be extra careful in passing
the right kind of pointer to the BSD socket library routines, viz. byte or word pointers. In general,
when a parameter is typed as (char *) in the C declaration of a function, then Pascal/FORTRAN
users must use the ByteAdrOf() function. Other pointer types would use the AddressOf()
function.

Header files: All the Berkeley socket type declarations and constant definitions are provided in
separate header (also known as include files) files for Pascal, FORTRAN and C users. The table
below lists the include files for the different languages. The contents of the C header files mirror
that found on the HP-UX systems. Note that Pascal needs an additional include file,
ext_calls.pasi, for the external function declarations because of the Pascal syntax.

C Pascal FORTRAN
types.h socket.pasi socket.ftni
socket.h ext_calls.pasi
fentl.h
inh
netdb.h

All the Berkeley socket structures in Pascal are declared as variant records. One of the variant
records is a simple 16 bit type. This comes in handy when obtaining the word or character
address of the structure itself. This Is necessary since the AddressOf() function is declared as
accepting only an int parameter. For example, consider the sockaddr_jn structure:

TYPE
sockaddr_in = RECORD
CASE INTEGER OF

1: (int1 : int);
2: (sin_family : int;
sin_port : Int;

sin_addr : in_addr;
sin_zero : PACKED ARRAY [1..8] of CHAR);
END;

BSD IPC on the HP1000 1022-15

For getting the word address of the structure, the following function call is used. Let saddr be of
type sockaddr_in.

AddressOf (saddr.int1);

errno and errno return values: ermo is a global variable that is declared in the C library. It is
referenced by including the header file <ermo.h>. On UNIX/C systems, any BSD socket system
call that returns an error puts the value of the error into errno and programs generally check the
value of this variable when trying to determine the type of error encountered. For NS-
ARPA/1000, the symbolic errno values returned by the BSD socket routines conform to those
defined in the include file, <ermo.h>, on the HP-UX systems.

String pointers: String pointers in C are pointers typed as (char *) which point to a character
string ended by a NULL character , which is "\0". Pascal/FORTRAN users must note that C-style
strings are different in character (pun intended) than the ones in their respective languages. BSD
socket routines on the HP1000 expect and retum character pointers to C-style strings only, viz.
character arrays that are terminated by a "\0".

int / longint / u_long: The size of int on the HP1000 is 16 bits, while on the HP9000 systems, it
is 32 bits. Parameters that are typed as int on the HPS000 systems, but which need to be 32 bits
long, such as the flags parameter on some BSD socket routines, are typed as /ongint or u_long.

malloc / free : Several of the BSD socket utility routines on the HP1000, such as
gethostbyname(), gethostbyaddr(), etc. retum pointers to structures that are dynamically
allocated using a C library call, malloc(). In order to reclaim this space, use the free() call In the
C library.

SUMMARY

The Berkeley socket interface Is provided on the HP1000 as part of NS-ARPA/1000 at release
5.24. It is intended to be functionally equivalent to the one offered on the HP-UX platform release
8.0. By providing this functionality, network portability of programs across the different HP
platforms in now possible. In addition, use of this standardised interface promotes intervendor
connectivity to other systems using the same mode! for network interprocess communication.

REFERENCES
1. UNIX Network Programming, W. Richard Stevens
2. 4.3 BSD UNIX Operating System, Leffler et al.
3. An Introductory 4.3 BSD Interprocess Communication Tutorial, Stuart Sechrest
4

. An Advanced 4.3BSD Interprocess Communication Tutorial, Leffler, Fabry, Joy, Lapsley,
Miller, Torek

BSD IPC on the HP1000 1022-16

TITLE: Distributed Computing GUI's and the OSF/MOTIF

AUTHOR: Mark Brown

Workstation Systems Group

SAS Campus Drive

Cary, NC 27512

(919) 677-8000

FINAL PAPER WAS NOT AVAILABLE AT TIME OF PRINTING.

PAPERNO. 2001

Paper#: 2003

Identifying CIM Opportunities
Using Structured Analysis Models.

Wayne R. Asp
Hewlett-Packard Company
2025 West Larpenteur Avenue
St. Paul, Minnesota 55113

(612) 641-9601

Computer Integrated Manufacturing (CIM) is a term which has been grossly overused within
the manufacturing industries to generally indicate the application of information technologies
to some manufacturing problem(s). In most instances, these CIM automation opportunities
were evolved into point solutions, or islands of automation. These islands were, in many cases,
totally ignorant of other islands of automation which existed within the same manufacturing
facility - sometimes within mere yards of one another. At best, these islands were able to
ghare only the most rudimentary information. The islands were designed independently,
implemented independently, operated independently, and unfortunately, processed their
information independently. Most of these islands of automation have paid for themselves over
and over again, since they were installed in manufacturing areas which were ripe for
automation.

Now we are in the 1990’s. Most of those high payback CIM automation opportunities have
already been addressed with many islands of automation. The next obvious step is to tie the
islands of automation together. But why? What will tying the islands together do for the
manufacturing processes? How will it affect product quality? Profits? What should be tied
together first?

Of course. we should never automate just for the sake of automating. The application of
information technology should always be closely and clearly tied to the goals, objectives, and
plans of the organization. If not, why do it in the first place? The direction of the organization
must dictate the identification and prioritization of any CIM opportunities, and any
subsequent information technology solutions.

An Enterprise Wide CIM Framework

The best method to achieve this high level of CIM integration is to develop an enterprise wide
CIM framework. This framework serves two purposes. First, it provides the framework, or
blueprint, across the entire manufacturing enterprise for current and future technology
applications. This is important in that a comprehensive plan must be developed to integrate
not only current islands of automation, but also how future products, manufacturing systems,
and technologies will interact within the framework. Second, the framework must correlate
directly to the business practices and objectives of the organization. As such, the framework
must be flexible and easily adapted to the ever changing business environment.

Identifying CIM Opportunities
Using Structured Analysis Models.
2003-1

When setting long range CIM goals, strategies, and planning implementations, it is often very
difficult to identify, much less implement, a workable enterprise wide CIM framework.
However without such a framework, any solution implementation continues to be an island of
automation, unable to tie directly into the CIM infrastructure and ultimately to the
organization’s goals and objectives.

It often puzzles me why an organization would forge ahead with some CIM automation project
not directly tied to their long range goals and objectives. But it has happened time and time
again. Perhaps it is that the planning process in building this type of framework is too painful
or time consuming. However, thorough planning cannot be effectively accomplished after the
fact. Perhaps it is that the planning process is too expensive. However it is generally more
expensive to retrofit something after it has been built poorly. There is an aphorism which
states that "Plans may be useless, but the planning process is always indispensable”.
Planning is indeed the key to long term success.

Using Structured Analysis

Structured Analysis (SA) techniques can be used successfully to build and create an abstract
representation of the CIM framework. This representation can then be manipulated and
expanded to include existing islands of automation, and proposed information technology
solutions as the business goals and objectives change.

SA methodologies allow one to methodically decompose a system (in this case, a manufacturing
system) into many less complex component parts. Because these component parts are easier
for the human to comprehend, SA is ideal for describing most complex manufacturing systems.
One can easily examine the descriptions of the component parts to quickly ascertain the effects
of proposed changes within the system(s). The collection of these descriptions is called the
model, and consists of both textual and graphical representations of the part, or activities
within the system.

The easiest way to understand the role which SA techniques can play within a manufacturing
organization is to draw upon the analogy of constructing an office building. A construction
company would never dream of constructing a building until the architect provided finalized
plans and drawings. Yet, in the business world, material handling systems, manufacturing
systems, information systems, etc. are regularly constructed and installed with the barest
minimum of in depth planning. In fact, many new installations are designed not on the
drawing board, but in real life trials and failures.

There are many SA techniques being practiced today. Among them are Structured Analysis
Design Technique (SADT), IDEF0, Yourdon Structured Design, Hierarchical Process Modeling
(HPM) and many, many others. Each technique has its own strengths, weaknesses, and
followers. Since the purpose of this paper is to describe the benefits of using SA, the analysis
of the applicability of a given technique for a given purpose is left as an exercise for the reader.
HPM will be used within this paper for purposes of discussion.

A major contribution of SA technique applications is their ability to build consensus within the
organization regarding the actions or proposed actions of the model (system) under study. Most
techniques use an iterative process. First, initial data is gathered regarding plans and desires.
An initial model is then drafted and reviewed by a core committee of previously trained
personnel. Modifications are then made to the model and a new version is then published to a
wider review committee. This build/review/modify/publish cycle continues until all committee
members agree that the model is accurate. A final model is then published and distributed.
Although many opportunities might exist within the manufacturing organization for
automation, sometimes we are more limited by people’s attitudes than by opportunities. SA
model consensus building helps to address and change attitudes toward the implications of a
enterprise wide CIM framework.

HPM - A Structured Analysis Methodology

Hierarchical Process Modeling, or HPM for short, is a structured analysis methodology which
was developed by Hewlett Packard and is used both internally within the company and with
HP customers. HPM provides a graphical and textual notation for breaking down and
analyzing both simple and complex real world situations. An HPM model can easily be read
and understood by anyone, with a minimum of training. This means that an HPM model can
serve as the focal point for discussions as situations change or support systems are put into
place.

HPM was developed by the HP Corporate Manufacturing group to help document HP
manufacturing techniques and help leverage technologies throughout the company. In the mid
1980’s, HP investigated several structured analysis techniques and packages, but found none
that were flexible or thorough enough to meet the requirements. Combining several existing
techniques, such as DeMarko Structured Analysis and IDEFQ, along with other ideas,
including TQC methodologies, HPM was developed by HP. HPM is still unique in the
marketplace, gathering the best of structured analysis techniques within one methodology.

HPM is a formal specification language and methodology for describing systems in terms of
integrated collections of processes. Processes are defined in terms of other processes
hierarchically. The methodology provides a structure which allows rapid breakdown of a
system into its component parts, each of which can in turn be analyzed and broken down
further, if required. It is these component parts (processes) which make the model extremely
readable and easy to comprehend at any level. The processes represent the fundamental
activities within the model. They are a controlled collection of actions which transform inputs
into outputs, using resources. Processes are related to other processes in three ways: by
Control, by Exchange, and by sharing Resource(s). One process may: command another
process to perform some action or assist some other process in performing its action (a Control
relationship); produce something which another process consumes (an Exchange relationship);
or provide some resource or service, such as access to a database or machine, which another
process requires (a Resource relationship). Ports are used to define the interfaces of processes.
Flows transfer entities, such as materials and information, between ports.

What is an HPM Model?

An HPM model can provide the in depth plans necessary to support both new and existing
manufacturing functions. The model can be tailored to any level of detail, from general
overview to extreme detail.

Identifying CIM Opportunities
Using Structured Analysis Models.
2003-3

Architectural plans are structured much the same as an HPM model. Many pages of drawings
are provided, but each one serves to identify different areas or features. The first page of the
plans show the overall building, the facade, the roof lines, etc. There are no design details
here, only a flavor of what the building will look like. This drawing is of use to anybody who
wants to know what the building will look like.

The next several pages of the plans show the floor layouts floor by floor. This includes where
the various rooms are located, how large they are, where the mechanical and electrical closets
are located, etc. These pages are of interest to prospective tenants, and also the construction
workers who must install the walls and doorways.

Following the floor layouts are the detailed room plans, one for each room. These plans show
where electrical and mechanical fixtures should be placed, what special features need to be
built or installed (like a water fountain or planter), and the finishing details of the room, like
trim work. The room plans are used by the tenants for specifying special finish details, and by
the construction workers who will complete the room.

The last part of an architectural plan set are the mechanical and electrical plans. These plans
rough out the heating and air conditioning duct work, the heating plant locations, and
electrical service locations and sizing. Generally, these plans do not contain all the detail
necessary to complete the installation. Some of the extreme detail work is planned and
executed by the construction workers themselves, working within the specification given in the
plans,

An HPM model is structured much like an architectural plan. The most basic component of a
model is called a process. A process performs some activity. A process takes inputs, processes
them, and creates some outputs. A process can contain other processes which define how it
works, much the same as the room plans, taken all together, make up a floor plan, and the
floor plans taken all together make up the building plan. It is processes that make the model
extremely readable and easy to comprehend at any level. The processes represent
fundamental actions within the model.

Synonymous with the mechanical/electrical plans are HPM flows, which model how entities
(like materials, orders, products, information, etc) move between processes. One process may
command another process to perform some action. This is called a control flow. A process may
produce some output which another process consumes as input. This is an exchange flow. Or a
process may provide a service, like a tool crib or a database. This is a resource flow. HPM
flows then can transfer control, exchange, and resource entities between processes.

Pages 5 and 6 present the highest level of an HPM factory model.

The final part of an HPM model is the term glossary. This is much like the material list for a
new building. It describes all the processes, flows, and other constructs used within the HPM
model.

Identifying CIM Opportunities
Using Structured Analysis Models.
2003-4

factory v1.0

sanyyunyoddQ IO Burdyruspy

Canstrustion of Produco Product v1.1

Raw Materia!

Customer Order Order Status Material Purchasa
Ordor Knn
|-Customer Order Matortal F.m-
I XL Requost
M Veidato &
}Enter Order Ack
Z-1_11.0 Material Roquost
L e |
Raw Material Inventory Position
VL
|—2-2_]1.0
ol Materiai—] Jfschoduo F » Bchedulo
ping roduc)
Production :
1
Order Status - 1.0f,
S ')

teomaat

)
Pricghgeis [¢3 Pesriid

factory v1.0 E-J

Produce Product
Produce Product reprasants the high lavel viewpoint of fifiling an order within the WIDGET
manufacturing facllity. The order Is actually racelvad by the manufacturing faciity via FAX
machine, the product is scheduled, manufactured, and shipped to the distributor, Resources used to
manufacture the product are explored in more detall within the Manufacture Product process.

Produce Product v1
Two spacific connections to functlons cutside this mode's 3cope are shown.

The distributor 3ands an order to the manufacturing fackity, and raceives the proguct onca Is has
been produced and shipped. Tha distridutor is lso sent an Order Status whan the order Is raceived
by the WIDGET faciity.

The raw material suppHer raceives a materials purchase raquast from the lventory managemant
group based upon current matarlal raquasts and usages. The suppliar than ships the materiats
diractly to the manufacturing facility warahouse.

Produce Product v
Ordars ara received by the manufacturing faclity and entered into the system. Production is then
Informed of the order, and adds it to the production schedule, taking inta account raw material
availabitity and equipmont status. The production schedule is sent to manufacturing, along with &
materials raquest to the aticcate the appropriate raw materials to manufacturing at the appropriate
time. The WIDGET s than manufactured and tha product is moved to the packaging area for
packing. A shipment is then made to the distridutor basad on the shipping information from the
original ordar. The ordar status is then updated with tho naw shipment information.

Copyright (c) MEWLETY
May 3, 1991 m:uum

Context of Produoce Product v1.1

Without an architectural plan, a building site would be total chaos. 2x4’s might be used were
2x6’s should be for structural integrity. Roof supports might be constructed inadequately.
Electrical outlets and heating ducts are retrofitted, rather than built in. The electrical service
is underrated and must be beefed up later. A reputable contractor would never even dream of
building anything more complex than a shed without a complete set of building plans and
drawings.

Yet within the business world, literally billions of dollars are spent annually for business
ventures without more than a rough idea of what the facade and the roof lines look like. Time
and time again, projects grossly exceed their budgets and reduce their scopes because
inadequate planning was done up front. Many times, businesses simply do not want to spend
the money necessary up front to provide a complete plan. It matters not. They will spend the
money anyway after the project is "complete” to clean things up. Another common downfall is
that "we have done that before” so "we do not have to plan so much this time”. However,
oftentimes the documentation for the previous project is missing, inadequate, or out of date.
HPM can help bridge the gap in all these instances by providing an analysis framework within
which the planning can successfully be accomplished and documented.

Constructing a CIM framework

A Structured Analysis methodology such as HPM can be used as a technique to build the
enterprise wide CIM framework. Through examination of this framework, the organization
can efficiently and effectively analyze the effects of future information automation projects and
identify CIM opportunities across the entire manufacturing enterprise. As such, the
framework serves as a highly effective communications tool, serving not to directly identify
and solve problems, but providing a focal point for discussions and decisions pertaining to CIM
automation issues.

As an example, walk into any manufacturing facility and agk for complete documentation on
their manufacturing process. In most instances, you will be provided with many binders of
printed, or formal documentation. However, if you were to walk out onto the manufacturing
floor and talk to the supervisor, you would find many informal mechanism at work which are
not documented. This presents two problems; first, in all likelihood these informal
mechanisms are not very efficient. How can they be improved if they are not documented? SA
techniques can be used to document them. Second, if they are not documented, how can any
CIM implementation or framework possibly succeed to the level expected. Again, SA
techniques can be used to capture the informal mechanism at work within the manufacturing
processes.

The Four Step Approach

Since each manufacturing enterprise is different, it is next to impossible to make specific
recommendations within this context. However, there is a basic four step approach to building
the CIM framework which can be presented. Naturally, these steps can be combined, modified,
or customized based upon the needs and timeframes of the manufacturing organization.

The four step approach to putting together a CIM framework:

Benefits Analysis
Business Modeling
Solution Modeling
Implementation

* * %

This four step approach reflects HP’s broad experience in tailoring advanced technology to the
individual needs of an organization. This has proven successful for a wide variety of industries
and applications.

Benefits Analysis

Benefits Analysis is a technique used to identify and prioritize high payoff opportunities that
are strategic to your organization. The process measures the benefits of implementing
information technology in these areas. Interviews are conducted with key personnel in the
organization to identify the “critical success factors” facing the enterprise. These factors are
then discussed with focus groups made up of the personnel within the organization who really
understand the area of concern. As the process continues, people within the organization
understand the obstacles that stand in the way of achieving these critical success factors and
what the enterprise must do to overcome these obstacles.

The outcome of the Benefits Analysis is sometimes referred to as breakthrough objectives. The
objectives, or "critical success factors" provide a very high level map for the next steps in the
approach. This (hopefully) avoids the pitfall of addressing one aspect of the process, when the
real obstacles exist elsewhere within the process.

Business Modeling

The Benefits Analysis step identified the strategic areas to implement information technology.
The Business Modeling step documents and simplifies current business practices, both formal
and informal, to provide the most functional framework for information technology
application.

Business Modeling is an iterative process. First initial data is gathered regarding business
and manufacturing practices, desires, and system requirements. An initial model is then
drafted and reviewed by a core committee of previously trained personnel in the enterprise.
Modifications are made to the model and a new version is then published to a wider review
committee. This review/modify/publish cycle continues until all committee members agree
that the model is accurate. A final model is then published and becomes the basis for all
future requirements definitions and activities.

Using a SA technique such as HPM, which is predominantly graphical in nature, provides a
description of the plants processes, which is easy to understand by people not normally
familiar with structured analysis processes. It functions as the tool to bring all departments
into fundamental agreement with the overall CIM framework.

In many instances, a significant portion of the current business practices and requirements
may have already been done and documented using other techniques. This existing
documentation can generally be used and leveraged within the Business Modeling step.

Identifying CIM Opportunities
Using Structured Analysis Models.
20038

During the Business Modeling step, the ohjectives can be accomplished in two phases. Phase I
will create a high level business practices model which will document current manufacturing
processes and practices. This high level model, combined with the strategic ohjectives from the
Benefits Analysis, will provide strategic guidance for possible information technology
implementations.

Phase II of Business Modeling will simplify and add a deeper level of detail to specifically
targeted processes within the Phase I High Level model. This model provides a more detailed
understanding of the processes that make up the areas identified and forms the foundation of
any successful project. It describes WHAT a particular system must do to address specific
functionality. This phase is typically executed over a two to four month timeframe, and
requires much more interaction and time commitment from key personnel.

Solution Modeling

Once the Business Modeling step has provided the "road map" toward a successful CIM
framework and technology project, the elements of integrated software, hardware, and
“peopleware” solutions can be identified. The Business model(s) will distinctly show the "tie
in" requirements necessary to integrate a particular technology solution in the overall
manufacturing framework.

Essentially, one can visually this process the same as using tracing paper. The original model
serves as the template to match. Each solution has it’s own trace, and is sequentially layered
over the original template. The "goodness of fit" of the trace determines the applicability of
the solution proposed to the model. This process helps to quickly pare down the number of
solutions under consideration to those which can match easily with the requirements
documented by the SA model.

While the actual process of identifying manufacturing solutions is certainly more difficult than
using tracing paper, the model framework does help to focus attention on the specific areas of
concern in a very structured and logical way that is easy to comprehend and evaluate.

Implementation

A formal project plan document is generally produced during the Implementation step which
incorporates the information developed during the first three steps outlined above along with
the specifics for implementing all elements of the framework. The project plan is the
controlling document which defines the technical and managerial project functions, activities
and tasks necessary to satisfy the requirements of the project. This plan requires detailed
involvement in the development, review, and approval process. The project plan is a living
document that requires modification as the project itself changes, but at the same time is
closely monitored and reviewed for adherence to targeted objectives.

After completion of the project plan, the projects and solutions identified begin to follow the
more traditional project implementation phases. Typically, these phases are practiced by the
engineering and/or MIS organizations, and generally consist of as many as eight sub-phases.

Identifying CIM Opportunities
Using Structured Analysis Models.
20039

The eight sub-phases that typically occur during project implementation are as follows:

Detailed Design
System Development
Integration and Test
Documentation
Training

Site Installation

Warranty
Support

PRA AN

Most certainly, the Implementation step is where the benefits of building the enterprise wide
CIM framework are realized. The implementation must insure that each major functional
area of the Business model and Solutions model are properly addressed. This is best
accomplished by contracting professional project management services, effectively managing
subcontractors, and providing appropriate review meetings of the overall project status at
appropriate times.

Conclusion

It has been our experience that the Structured Analysis techniques and four step approach
presented herein provide a workable method for developing an enterprise wide CIM
framework. This is the key to successful integrated CIM projects. Only by utilizing an overall
methodology such as this for implementing and achieving long term goals and objectives can
an organization effectively combine the islands of automation into a single, workable
manufacturing entity.

No manufacturing process is stable. Continual improvements and changes are constantly
being made. SA models, therefore, become living entities. They are constantly being
improved and provide continual feedback into the methodology for continual improvements
within the manufacturing processes and CIM framework. Thus, CIM opportunities are
constantly being identified, evaluated, and implemented as the manufacturing processes
change, tying directly back into the CIM infrastructure and framework.

* The author wishes to thank Dan Lee, Allen Otte and George Subiti for their
contributions to this paper.

Beyond IPC: Strategies for Linking MPE-XL and HP-UX Applications

Paper #2004
Beyond Interprocess Communications:
Strategies for Linking MPE XL and HP-UX Applications

By

Frank Leong, Jr.

Software Engineering Systems Division
Hewlett-Packard Company
1266 Kifer road
Sunnyvale, California 94086
(408-746-5368)

Abstract

Increasingly, today’s corporate and manufacturing computing environments
require the integration of multiple applications running on heterogeneous plat-
forms in a distributed environment. Such an integration problem is complicat-
ed by the existence of previously written or purchased software which
cannot be easily modified. To fully address application integration, a strate-
gy for linking new and existing applications is needed.

This paper will first examine the current strategies available for linking appli-
cations on MPE XL and HP-UX systems, including file transfer, program to
program communications, remote process control, and remote procedure
calls. Next, a new strategy that goes beyond the breadth and depth of tradi-
tional interprocess communications elements is examined. This new strategy
involves the use of HP Software Integration Sockets.

2004-1

1.0 introduction

Information access, once considered a luxury, is now a key factor in the success of
any company. As the size of a company grows, so does the quantity, complexity,
and importance of the information flow. The ability to manage the quality and timeli-
ness of intra-company and inter-company information access ultimately translates di-
rectly into the ability to meet customer needs and therefore greatly affects the
bottom line.

At the center of information access are the computer and communications technolo-
gies that drive it. During this past decade, explosive growth has been seen in the
use of both Local Area and Wide Area Networks (LANs and WANs). No longer
are computers providing single point solutions within "islands of automation". In-
stead, computers are linked together providing the POTENTIAL for global access
and control of information. Yet, in spite of the advances made in networking, this po-
tential remains largely untapped by many companies. Why is this so?

Much of the problem can be attributed to issues faced when trying to integrate soft-
ware applications. These applications can be viewed as the embodiment of the infor-
mation we are trying to access. The success or failure in dealing with application
integration issues will decide the degree to which global information access can be
achieved. This paper explores some of those issues, especially as it pertains to inte-
grating applications on HP-UX and MPE XL systems. Past and present strategies
for application integration are illustrated, and integration technologies reviewed. Fi-
nally, a solution involving the combined use of good methodologies and a new tool is
proposed.

2.0 Integration Strategies Vs. Technologies

In this paper, the term integration strategy will be used to refer to a particular plan
for attacking the software integration problem. This can involve the use of one or
more integration technologies, which are implementations of software and typically
available as products. Integration strategies can also involve stated methodologies,
best practices, and company standards in developing integrated software systems.

3.0 A Review of Integration Strategies

To gain a better understanding of the integration dilemma, we need to examine its
origin and evolution. The following scenario is typical of what companies have en-
dured through in computerizing their information systems. It might not apply to
your particular situation, especially if your company is relatively new and has a
much shorter history of application development, but it does serve to expose some
common issues in application integration.

3.1 A Distribution System Scenario

The Ace Widget Company has been producing world class widgets for over 25
years. A key to their success has been the ability to respond quickly to customer or-
ders. Not only are their products superior, but Ace can fill an order faster than any

Beyond IPC: Strategies for Linking MPE-XL and HP-UX Applications 2004 -2

of their competitors. Many people think Ace Widget’s success has been due to inno-
vative designs and a manufacturing capability second to none. But George
Howard, the President of Ace, knows the real reason for their success can be attrib-
uted to a distribution system comprised of order-entry, shipping, and inventory sub-
systems. Things were not always this smooth, however, and a lot of obstacles had to
be overcome by the MIS department to reach this pinnacle. John Kramer, head of
MIS, remembers those dark days.

3.1.1 Stage 1: One Computer, One Company

It all began in 1974. John, fresh out of college, was assigned to tackle the problem of
tying the order-entry and shipping systems back into the inventory control system
resident on the company’s mainframe. John worked with a team of analysts and soft-
ware developers. The solution they came up with was hardly innovative, but it was
adequate and in keeping with other information system projects completed in the
past. Ace had only one computer, an old IBM workhorse. But that seemed adequate
for this small, but growing company. All operations were located in one large build-
ing. The software John’s team developed ran on the company’s sole computer. It re-
lied on two principle kinds of input --- punched cards and magtape. As orders came
in, they were manually entered on magtape or punched cards, one transaction at a
time. These inputs were then hand delivered and fed into the mainframe, which in
turn generated a shipping list and tracked the order. Once the shipping department
successfully shipped the product, another manual entry occurred on punched cards
or magtape. Finally, the company’s computer was updated with these hand deliv-
ered inputs to reflect the shipped products.

3.1.2 Stage 2: Islands of Automation

By 1978, Ace had outgrown its single computer approach. Customers were begin-
ning to complain about the long lead time between ordering the product they wanted
and the time it took to actually receive the produ... Even worse, some orders were
simply lost --- the result of mangled cards or bad spots on tape. None of this es-
caped the attention of George, who promptly sent a memo to the head of MIS urging
him to do something. Again, John was assigned to the project. His recommendation
was to distribute the computing among 3 systems. Hewlett Packard, a pioneer of dis-
tributed computing systems, was the logical choice. Two new HP3000 minicomput-
ers would be used: one dedicated to order entry and another to shipping. (See
Figure 1.) The company’s central computer would still handle inventory, but the
new minicomputers would off-load much of the record validation and other prepro-
cessing. The minicomputers were tied to the mainframe using modem lines. At the
end of each day, the order entry computer uploaded transactions to the mainframe.
Once the orders were processed, the shipping system received a download of trans-
actions from the central computer. The shipping system also uploaded shipping sta-
tus to the central computer. During the day, the three computers functioned
independently. The order entry manager and the shipping department manager
were ecstatic over the new system because of its ability to produce departmental re-
ports and provide information on demand.

Beyond IPC: Strategies for Linking MPE-XL and HP-UX Applications 2004 -3

IBM
Inventory Sys

Shipping System

Order _Entry Sys
- >

Figure 1: Islands of Automation

3.1.3 Stage 3: Networks Have Arrived: No Computer is an Island

By 1983, Ace had expanded its operations to include 5 sites scattered throughout
the country. The idea of departmental computing had propagated throughout the
company and there were at least two dozen such computer systems. The strategy
of each department having their own computer and using nightly modem uploads and
downloads to synchronize and share data had worked well. But now, everyone on
the information chain from top management, to department managers, and even op-
erators, wanted consolidated information to be more accessible and on a more timely
basis. Nightly updates were no longer sufficient to keep pace with the fleet footed
competition. Customers inquiring about their orders wanted up-to-date status. John
now managed a project to provide a networking backbone for the company’s two
dozen computers. They standardized on an IEEE802.3 network, with bridges and
routers to gain access to LANSs in other cities. Now, instead of one day turn-around
times, information could be shared and accessed in a matter of seconds and minutes.

3.1.4 Stage 4: Honeymoon’s Over, Where's the Info?

It was now 1988 and five years had elapsed since Ace first installed its computer net-
work. Ace was now a multi-national corporation with hundreds of computers, includ-
ing mainframes, minicomputers, workstations and PCs. Although networking had

Beyond IPC: Strategies for Linking MPE-XL and HP-UX Applications 2004-4

provided such innovations as e-mail, network file access and file transfer, and graphi-
cal user interfaces like the X Window System, George’s dream of global informa-
tion utopia had not been realized. After spending a fortune on building and
maintaining a sophisticated networking system, the distribution system which had
begun years ago was still having difficulties expanding with the company. George
knew that without a responsive distribution system to keep his customers happy, his
company’s dominance in the marketplace would eventually evaporate. Acknowledg-
ing this possibility, George issued an ultimatum to the MIS department. John was
the logical choice to head up a task force to investigate what went wrong. He had
set up the distribution system 10 years ago, but had since moved on to managing the
networks group. He was eager to find out what had gone awry with his pet project.

John launched his investigation by interrogating employees from the order entry
and shipping departments. It was clear their workload and sophistication had in-
creased substantially and the system they were using had not kept pace with their
escalating needs. Shipping had updated their single HP3000 with a distributed sys-
tem involving several HP9000 workstations running HP-UX. (See figure 2.) Bar-
code scanners, weighing stations, and label printers were connected up to these
workstations. As boxes of widgets came through the shipping department, they
were identified using the barcode scanners. A workstation would then show the par-
cel’s shipping information on an X Window display. The weight of the parcel was au-
tomatically recorded and its postage computed. An operator viewing the shipping
information could override any of the defaults shown. Once correct, a shipping label
and postage were generated.

Next, John talked with the MIS group in charge of maintaining the distribution sys-
tem. In spite of all this new hardware, John found very little had been done to inte-
grate the order entry, shipping, and inventory control subsystems together beyond
what he had done 10 years ago! They were still using files to upload and download
information, only now the updates occurred twice a day instead of once. Part of the
problem was attributed to the complexity of maintaining existing software. Al-
though source code was available, the original developers had left long ago. No one
wanted to touch that code for fear it would bring everything to a grinding halt.

John’s recommendation was to completely revamp the system. He knew this would
be disruptive, but he saw little choice. The team assigned to perform the renovation
proceeded with caution, trying not to change existing software unless it was abso-
lutely deemed necessary. Various network access software, such as network inter-
process communications, remote proce-ire calls, network file access and transfer,
were examined and used where appropi.ate. After an exhaustive two year effort,
the renovation was complete. John was congratulated on his work and was ultimate-
ly promoted to head up all of MIS.

(Note: all names used in this story are strictly fictional. Only the resulting lessons
are real.)

Beyond IPC: Strategies for Linking MPE-XL and HP-UX Applications 2004-5

Phones

IBM Inventory m
System ﬁ’_’__f——r]

HP Terminal
Order Entry
System

HP9000 HP9000

Shipping Shipping

Station Station

Figure 2: A Distributed System

3.2 Issues in Integrating Application Software

Some of the problems encountered by the Ace Widgets Company might sound more
than vaguely familiar. Although this scenario involved an MIS system, it could easi-
ly have involved software integration in manufacturing, engineering, or other ar-
eas. Let us examine some of these issues:

3.2.1 Integration and Maintenance of Existing Software

When a typewriter or other piece of business equipment becomes obsolete and diffi-
cult to maintain, it can simply be replaced with new capital equipment. This is true
even for most computer hardware. But with existing software, it might not be desir-
able or even possible to replace it with new software. Software is more evolution-
ary than revolutionary in nature. A piece of software placed in service is likely to
remain in operation, untouched, or evolve through incremental changes. As in the
case of Ace Widgets, a company’s operations might be so highly dependent on a
piece of software that it can ill afford to change or replace it. The cost of retraining
personnel, along with the risk of disrupting operations, makes companies very wary
of change even when much superior software technology is available.

Beyond IPC: Strategies for Linking MPE-XL and HP-UX Applications 2004 -6

Rather than change or replace software, a decision is usually made to build systems
around existing software components. Now the problem becomes one of integrating
existing applications with newly written software. To complicate matters, the origi-
nal authors of the current software might have left the company long ago and the
new staff might be very resistant to making changes in the old code in order to inte-
grate new software. If the existing software had been developed by an outside third
party, source code might not even be available and the third party might no longer
be in business to make necessary changes . A company might overcome these ob-
stacles and have some success in developing an "integrated” system. However, as
in the case of Ace Widgets, this could result in a poorly or partially integrated sys-
tem. Despite the new technologies at Ace’s disposal, their Stage 3 solution amount-
ed to nothing more than simple, infrequent file transfer. It did not take advantage of
the potential provided by the new technologies because the staff was reluctant to
take on the task of revamping portions of the distribution system and learning new
technologies.

3.22 Obtaining and Maintaining Expertise

Expertise is required to maintain software as well as track ever changing software
technologies. The former determines to what extent a company’s base of existing
software can evolve. The latter provides the basis for incorporating new software
technologies and methodologies. Recruiting and keeping a qualified staff to deal
with software integration problems poses a challenge. In some cases, you might find
a staff exuberant about new technology but shuns even the thought of dealing with
old application software, also known as legacy software. In other cases, the staff
might be comprised of people who were the original developers of a software appli-
cation and are reluctant to change because they are unaware of or uncomfortable
with new technologies.

To lessen the impact of inevitable personnel changes, companies must find ways to
maintain expertise, and to acquire new expertise when new technology arises. Lat-
er in this paper, we will see how software tools, which encapsulate new integration
technology and promote the use of good methodologies, can be used to solve part of
the problem.

3.2.3 Changing Requirements and Growth

Application software is usually intimately tied to processes --- the way a company
does business. In the Ace Widgets example, software for the distribution system
embodied the processes used in the physical distribution system. Indeed, as a compa-
ny’s operations change and grow, so too must the underlying application software
systems that support it. The inability for application software to evolve can serious-
ly jeopardize the expansion of a company. Ace’s distribution system could not keep
pace with the increased demands placed upon it by a growing customer base. The
obstacle was inflexible legacy software components never designed for interopera-
bility with new software components.

Today, the availability of networking technology makes it attractive for companies
to adopt a strategy of incremental growth using a distributed architecture. Newly
developed applications can be distributed anywhere on the network, and new com-
puter nodes can be added whenever a company exceeds its computing capacity. Ac-

Beyond IPC: Strategies for Linking MPE-XL and HP-UX Applications 2004 -7

companying this incremental growth strategy should be an equally important soft-
ware integration strategy. Without such a gameplan, incremental growth can go
out of control, hampering the flow of information and the ultimate objective of global
information access.

3.2.4 Custom Solutions Vs. Standard Products

Custom solutions for software application integration can be a mixed blessing. On
one hand, you get exactly what you want. On the other hand, you might not really
know what you want. It could take several iterations of trial and error before you
converge on the right integration strategy for your company. It takes a keen under-
standing of your particular needs, both current and future, and an understanding of
technology and its application to those needs.

Custom solutions require significant investments of time and resources. (Ace Wid-
gets took two years to come up with an integrated software solution.) Not only are
there up front costs, but ongoing support costs. "Is what we developed adequate for
future needs?" "Is there adequate documentation?" "Who is supporting the integra-
tion software?" "Will it break with a new operating system release?" These are just
some of the questions company’s must face when dealing with custom solutions.

The alternative to building your own solution is using standard products. Unfortu-
nately, few standard products exist for integrating software applications. Those
that do exist do not address all the issues associated with integrating software. Giv-
en these realities, what is the right solution? The next section of this paper will look
at some emerging technologies that show promise.

3.2.5 Technology Alone Is Not Sufficient

Perhaps someday, linking together software applications will be as easy as linking to-
gether computer hardware in a LAN or WAN environment. Software will have
standard interfaces just as hardware currently does with ICs, backplanes, and net-
work access. Software purchased from one vendor will be able to easily be integrat-
ed with software from another vendor. Software integration tools and standards will
exist for developers wishing to create software with standard interfaces. For now,
those standard interfaces do not exist. A company can, however, adopt corporate
wide integration strategies that formalize software interfaces for the company,
make use of good methodologies, and use software integration tools as they become
available.

33 Linking HP-UX and MPE XL Applications

Part of the fictional Ace Widgets example was based on an actual order entry and
shipping system being implemented by a group within Hewlett Packard. The design
team investigated various ways of linking their shipping system, running on HP9000
workstations, to their ordering system which ran on an HP3000. They narrowed
their choices down. to two alternatives: (1) develop custom software using NetIPC
and Network File Transfer (NFT), (2) make use of a tool designed to help integrate
software applications. They chose the second alternative because of the following
reasons:

s Development effort and time required for a custom solution

Beyond IPC: Strategies for Linking MPE-XL and HP-UX Applications 2004 - 8

s Resources required to support a custom solution

Developing a custom integration tool detracted from their mainstream
activity

s Using an appropriate tool would encapsulate expertise and make im-
plementation easier

The integration tool they used, HP Software Integration Sockets, will be described
in the next section of this paper.

4.0 Emerging Integration Technologies

The previous section served to illustrate some past and present integration strate-
gies. These strategies evolved as newer technologies became available. In the ear-
ly days, integration involved hand delivered punched cards and magnetic tape.
Then modems became available to eliminate the inherent lack of reliability that hand
delivered media carried with it. Data communications technology culminated in the
development of LAN and WAN network technology. This naturally led to software
which provided access to network services, such as network file transfer and ac-
cess, network interprocess communications such as BSD Sockets and NetIPC, and
Remote Procedure Calls (RPC). (Please see Figure 3, "Evolution of Application In-
tegration Technologies".)

The push for Open Systems and the pervasiveness of applications running in distribut-
ed environments with computers from multiple vendors has led to a need for newer
technologies that promote the integration of software applications. Not only do re-
motely located applications need to communicate, but often they reside on different
machine architectures and were written in different languages. The following repre-
sents some of the technologies helping to solve these integration problems.

Beyond IPC: Strategies for Linking MPE-XL and HP-UX Applications 2004 -9

Ancient History

Hand carried tape, punched cards
Use of Modems

Advent of LAN Technology

Network File Transfer and Access
Program-to-Program Communications
Remote Procedure Calls

Integration Technologies
OSLLMAP/MMS,EDI
X
Network Message Queues
HP Sockets

Time

Figure 3: Evolution of Application Integration Technologies

41 Open Systems Interconnect

The International Standards Organization (ISO) has developed a seven layer Open
Systems Interconnect (OSI) protocol reference model to serve as a framework for
defining standards for linking together heterogeneous computers. Although ISO has
made great strides in defining standard protocols in layers 1 through 4, protocols in
layers 5 through 7 have progressed at a much slower pace. The complexity of un-
derstanding the upper layers of OSI has slowed its development as a pervasive tech-
nology. Few standards and products are actually based on a full ISO protocol
stack. Also, few people know how to create or interface to layer 7, the Application
Layer, of OSL. The OSI protocol stack serves as a good framework for defining
standards, hence spurring on the development of products which conform to OSI
standards. But it does not, in its current form, fully address application integration is-
sues. (For instance, how would someone use OSI to integrate the different software
pieces of the distribution system discussed in the Ace Widgets example?) Despite
its shortcomings, anyone involved in application integration should be aware of ISO
standards and monitor its progress. Two of the more relevant OSI standards are dis-
cussed below.

Beyond IPC: Strategies for Linking MPE-XL and HP-UX Applications 2004 - 10

411 MAP/MMS

The Manufacturing Automation Protocol (MAP) is an implementation specification
that makes use of a subset of OSI standards. The Manufacturing Message Specifica-
tion (MMS) is an application layer service in an OSI/MAP stack. Together, these
protocols allow manufacturing application software to communicate with factory
floor devices such as PLCs, robots, and vision systems. It also allows some limited
communications among different computer nodes in a CIM (Computer Integrated
Manufacturing) hierarchy.

MAP and MMS are specifically peaked for manufacturing applications. It might not
be appropriate nor cost effective in other application integration situations. It also
does not solve the problem of integrating existing software not compliant with the
MAP/MMS protocol.

4.1.2 Electronic Data interchange

Electronic Data Interchange (EDI) is an OSI application layer (layer 7) protocol
standard used for the electronic exchange of information between business part-
ners. Documents, which were once physically created for business transactions
such as purchase orders and billing, can be electronically transacted using EDI.
This results in faster, more reliable, and less costly transactions among business part-
ners.

EDI is used in inter-company communications. In a sense, it defines standard inter-
faces from which companies conforming to the standard can productively conduct
business with one another. It is not typically used for intra-company communica-
tions. In fact, EDI vendors do not recommend its use for intra-company communica-
tions because of its inherent store-and-forward/batch operation. EDI does not solve
the problem of integrating application software because it lacks the facility for real-
time communications between software and it requires adherence to the EDI for-
mats.

4.2 X Windows

X Windows was originally conceived of as part of a distributed computing project at
MIT. Since its commercial inception in 1986, it is quickly becoming a pervasive tech-
nology. X Windows is based on a client-server model, where the server provides a
windowed user interface display service to a locally or remotely located client appli-
cation. By making this logical separation between user interface and the main body
of the software application, clients scattered throughout a network can be accessed
by any vendor’s X display server with the right permission.

X Windows provides global access to information for users by allowing applications
running on multi-vendor platforms to be accessed from any display server. From an
X display server, a user could have multiple windows, each mapped to a different, re-
motely located client (e.g. one window for a spreadsheet application, one for a termi-
nal emulator, one for a database application, etc.). X Windows does not, however,
provide information access to software applications that need to share data.

Beyond IPC: Strategies for Linking MPE-XL and HP-UX Applications 2004 - 11

4.3 Network Message Queues

A relatively new entry in integration technology is network message queues. This
takes the notion of UNIX message queues, which work on a single node, and ex-
pands upon it to operate in a distributed environment on many nodes. Network mes-
sage queues provide a robust messaging system among cooperating applications.
Communications can occur synchronously or asynchronously, as client-server, or as
peers.

Network message queues address some of the problems posed by software applica-
tion integration. It can be viewed as a basic building block for creating communica-
tion links between applications.

4.4 HP Software Integration Sockets

Introduced in 1990, HP Software Integration Sockets was specifically designed to
meet many of the needs faced in integrating application software. It includes the fol-
lowing design objectives:

= A solution to the problem of integrating existing, legacy applications

= A network message queue implementation that supports multiple kinds
of communication links among applications

= Support of incremental growth

= Support of Open Systems, making use of available standards and com-
mitted to evolving with emerging standards

s Heterogeneous operation, including support for multiple platforms and
multiple languages

= An easy to use, easy to learn interface which protects a company’s in-
vestment by encapsulating technologies, standards, and promotes the
use of good methodologies

s Data translation and manipulation capabilities to help integrate appli-
cations that were not written to communicate with each other

s Centralized administration of the integrated environment

The latest release of HP Sockets supports MPE XL as well as HP-UX. Experiences
by several internal HP sites have been extremely positive. Many have pointed out
that if a tool like HP Sockets had not been available, they would have had to develop
one themselves. One group estimated 8 months to develop an equivalent tool that
would have been much more narrowly focused, without HP Sockets’ data translation
and manipulation capability. With HP Sockets, they were able to reduce their inte-
gration time by a factor of 5.

5.0 Criteria For Robust Software Integration
There are many levels or stages to integrating software applications. If application

software is evolutionary in nature, then so is the process of integrating software ap-
plications. The level at which application software is integrated determines the de-

Beyond IPC: Strategies for Linking MPE-XL and HP-UX Applications 2004 - 12

gree to which they can share access to information and function more effectively as
a whole than as separate parts. Figure 4 attempts to illustrate these stages of inte-
gration as concentric circles. The innermost circle represents the fundamental be-
ginnings of software integration. As we move outward, attributes of a more fully
integrated system of applications are seen. Each successive stage adds functional-
ity to the previous stage. A fully integrated system is represented by the outermost
circle.

Data Transport
Mechanisms

ystem Administration & Control O
Integrated Domain

Common Ul

Figure 4: Stages of Software Integration

The emerging integration technologies surveyed in the last section provides us with
a glimpse at the direction software application integration is headed. Currently, no
single technology can solve all the problems. However, a set of criteria can be dis-
tilled from the strategies and technologies examined in this paper. Compare this to
your own integration needs when evaluating a particular integration tool or method-
ology to adopt for your company.

= Ability to integrate existing as well as new applications
= Ability to meet future as well as present needs

a Support of incremental growth

a Adequate capacity for handling volume of data

Beyond IPC: Strategies for Linking MPE-XL and HP-UX Applications 2004 - 13

o Adequate response time

= Promotes Open Systems
= Support of multiple, heterogeneous platforms
s Support of standards: OSI, OSF, XOPEN, etc.

s Enforcement or promotion of standard interfaces, using consis-
tent methodology throughout the integration domain

= Quick learning curve and ease of use, especially considering the lev-
el of expertise in your development environment

s Highly maintainable, even considering staff turnover
s High level of reliability
s Robust support of different topologies:

s client/server

m master/slave

@ peer-to-peer

s Centralized administration and control

6.0 Conclusions

Software application integration will continue to be a challenge for many compa-
nies. Currently, no single technology can completely solve the problem. Even if
something works today, it may not be sufficient for future integration needs. The so-
lution lies in developing comprehensive software integration strategies, incorporat-
ing sound methodologies and integration tools which promote use of those
methodologies. This paper has examined the progress of software application inte-
gration strategies and technologies, including the use of HP Software Integration
Sockets for linking HP-UX and MPE XL applications. It suggests software integra-
tion is an evolutionary process with various stages or levels of integration. Finally,
a set of criteria for developing and evaluating integration systems was presented.

Beyond IPC: Strategies for Linking MPE-XL and HP-UX Applications 2004 - 14

SCSI: DISK INTERFACE OF CHOICE ON HP WORKSTATIONS
Scott B. Ma
Hewl:tt—Packzrd
19019 Pruneridge Ave.
Cupertino, CA 95014

Why SCSI?

The computer industry in general, and the workstation-and PC markets in particular, has
been moving rapidly to standards-based systems. Open systems have many advantages. A
computer user who invests in standards-based hardware is not limited to the product
offerings or pricing policy of a single company, and assuers that his or her investment is
protected. Standards-based products are predicted to make up much of the workstation
market in the next few years. Microprocessors, graphical user interfaces, operating systems,
networks, disk interfaces, and graphics are all seeing significant standards-based
development. As standards in these areas become more defined, shrink-wrapped workstation
software will become closer to a reality.

Standards-based hardware is getting much attention, especially in the area of peripherals.
Users in the PC market have had plug-and-play hardware compatibility. The standards in the
PC arena have been set not by an ANSI committee, but by recognition of de-facto standards.
The IBM PC set the standard because it had such a large share of the market. Other
computer manufacturers utilized the bus architecture making the PC-XT bus the industry
standard architecture (ISA) bus. Many bought disks from Seagate, and soon ST-506 became
the de-facto standard interface for disk drives. Microsoft licensed MS-DOS, and it soon
became another de-facto standard.

The workstation market has evolved standards in quite a different way. Much of the
development of UNIX workstation standards has happened in committees of the American
National Standards Institute (ANSI), and in industry-wide committees like X-Open and Open
Software Foundation (OSF). The subject of this article, the Small Computer System
Interface (SCSI-1) was developed by an ANSI committe, and is defined by ANSI standard
X3.T31-1986. SCSI was developed using principles from Shugart Associates System
Interface (SASI), which was developed in the mid-seventies.

Hewlett-Packard has been a leader in the formulation and adoption of UNIX workstation
standards. This is one of the reasons that the SCSI interface is now standard on the HP 9000
Series 300 workstations. In addition, the HP-IB interface was perceived as a performance
limiter though in most cases it was not. Yet another reason for the adoptions of SCSI is that
it is well adapted to connect a variety of peripherals, like Rewritable Optical, Digital Audio
Tape, CD-ROM, and printers. The ability to connect all of the peripherals onto one
interface eliminates the need for multiple interfaces, thus saving slots for other uses and
minimizing cost. With SCSI, users can connect devices that HP currently chooses not to
offer, like Write Once, Read Many (WORM) optical and 8 MM tape.

2005-1

The SCSI interface is a high-level interface, as opposed to other interfaces like ST-506,
enhanced small disk interface (ESDI), IPI-2, and SMD, which are device-level interfaces.
Other high-level interfaces include Hewlett-Packard Interface Bus (HP-IB) and Hewlett-
Packard Fiber Link (HP-FL), and Intellegent Peripheral Interface-3 (IPI-3). The major
conceptual difference is that the disk controller hides many of the detailbads of disk operation
from the host computer. The computer does not have to manage the details of where the file
is physically located, and does not have to seperate header and trailer information from the
data. In addition, the controller presents the disk as one long string of logical blocks, hiding
bad tracks. A device-level interface forces the CPU to keep track of bad sectors.

The effect of a high level interface is that the computer is free to do other tasks because the
controller handles many details of disk I/O. Single-user, single-tasking machines cannot take
advantage of this feature because the computer is not able to go on until the data from the
disk arrives. However, a multi-tasking or multi-user computer can take advantage of the
higher availability of the CPU, leading to a significant performance improvement.

Time To Market

One of the features that makes SCSI so attractive to peripheral manufacturers is that an
embedded SCSI interface lets them bring a new product to market very quickly. For
instance, immagine that XYZ Company brings out a new WORM drive. If they do not use
an industry standard interface they are caught in a catch 22 situation: nobody will build the
host adapter because the volumes are so

low. There are no sales because there is no Table I

way to use the product. XYZ Company
must convince another company to develop
host adapters for a variety of computers or

SCSI Bus Signals

do it themselves. Instead, if XYZ company Sig(nl Deacriplinn(Cooviedee) Det onb

. . Al (Ac! ledge) on bus.
designs their own embedded SCSI controller py (Atcation) Request for
and puts it on the mechanism, significantly meessage out phase. Initiator
less work is needed to integrate the new has message for target.

. BSY (Bsy) Target is Busy.
product into a computer system. Of course, oD (Control/Data) Indicates
the computer would also require a SCSI whether b";‘ carries control

. . . . messages or data.
dnver.compauble with the drive and vo (InputOuput) Indicates
operating system as well. Therefore, direction of data flow on the
peripheral manufacturers can speed their ::; f::;:x:“l: vhen data
time to market by using the SCSI interface. MSG (Message) Signals on the bus

are a message when this signal
is asserted.
. . REQ (Request) Requests data on the
SCSI Bus Functionality bus.
RST (Reset) Hard reset of all
devices on the bus.

In order to understand the complexities of
the SCSI bus, including the differences

2005-2

between synchronous and asynchronous data transfer, it is important to have some
understanding of the different bus states, signals, and commands. Table I lists SCSI bus
signals. Table II lists SCSI bus states.

The commands listed in Appendix 1. are those supported by the HP 9754xS disk that is sold
on an OEM basis to other manufacturers. Note that many of the commands are described as
“vendor-unique”. All SCSI drives support many such commands. The vendor-unique
commands are mainly used for diagnostic purposes. Just because a drive uses vendor-unique
commands does not mean that it is incompatible with another vendor’s hardware. The fact is
that the implementation of the SCSI commands of the 9754xS were designed with vendor-
independence in mind. In most instances the operating system will never issue a vendor-
unique command.

Table II

Disk Transaction

SCSI Bus States
The basic unit of disk operation is an I/O. State Description
What follows is a description of 2a typical ;;'F i N ior negotis ‘:"bmﬂlvl of 'h;'m-
disk I/0. This example holds true for any e e e e
SCSI device, not just disks. The I/0 reselect.]
operation is initiated by the operating Command Initator tesucs @ command like. read,
system of the computer, which for this Message In Target will disconnect and then the bus
example happens to be HP-UX. Note will be free.

Message Out Initiator identifies itself to the target.

however, that many different operating
systems support SCSI peripherals, including
MS-DOS. The disk transaction begins with
a request

from the computer. The request may be for a file system block or for a virtual memory
page. This request is passed to the SCSI driver, along with data that the driver will use to
locate the data, including the device identifier. Then the driver goes through the
ARBITRATION and SELECTION process to gain control of the bus.

The disk responds with a MESSAGE OUT, and then receives an IDENTIFY message from
the host. The disk’s response to the IDENTIFY message indicates to the host whether the
disk supports disconnect/reconnect during the data phases, and also whether the disk supports
command queuing (Part of SCSI-2). The host driver then asserts the ATN signal to maintain
the MESSAGE OUT phase and determines whether the disk can support synchronous
transfer. Then the driver issues a command indicating whether it wants a read or a write.
Upon receiving this command, the disk sends disconnect and save data pointers to the host,
and then disconnects if it supports that option. At this point the bus is free to service other
devices. During this time the controller decodes the request and carries it out. When the
disk is finished or nearly finished loading data into the buffer, it asserts the RESELECT
signal, and transmits data from its buffer. Depending on the size of the disk buffer and the
amount of data requested, the disconnect/reconnect cycle may happen several times during an

2005-3

1/0. When the transaction is complete, the STATUS message is sent to the host, and the

transfer is complete.
Comparisons

Single Ended vs. Differential

The
difference
between
single-ende
d and
differential
SCSl is in
the

OC Signal cont

= T

NN\ AN\ A\

Single Ended vs Differential SCSI

DC Signe! received

7

electrical
definition
of the
signal
drivers.
Differential
SCSI uses
twice as

v A\ VA YA VAR v/
Single Ended

Semktive %0: Speed of tranefer
Length of wire

w“m

many wires
as
single-ende
d SCSL. In
single-ende -
d, one wire
of a pair is
used for
grounding

Differential

Lese soneltive & Opeed of Yensler
Leagth of wire

I

&

OC Signal sent

L

Signel received

only, Figure 1

whereas

differential SCSI uses the second wire to send the complement of the signal in the first wire.
In other words, as the first line goes high, the second line goes low. This has the effect of
decreasing electromagnetic emissions because the fields generated by the two wires tend to
cancel each other out, like a coaxial cable does. This gives a higher signal to noise ratio,
which allows faster clock speeds and longer cable lengths. Figure NNN

Synchronous vs. Asynchronous

Synchronous SCSI-1 is rated at 5 megabytes per second, whereas asynchronous is rated at
only about 1.5 to 3 Mbytes per second. Note that all commands and messages are

2005-4

transmitted at the asynchronous rate. Only
data can be processed in synchronous mode.
When a transfer is initiated by the host
computer, either device can issue a Target Initiator
"synchronous data transfer request” (SDTR)
message. If either the initiator or target —REQ........REQ—> —REQ------REQ— —REQ - REQ—P
fails to issue the message, the transfer DATA DATA DATA

defaults to asynchronous. Asynchronous - — -
means that for each 1 byte transfer, the hoK— Ack— “Ack—

Asynchronous SCSI

target sends an ACK signal and then waits ~ Figure 2
for an REQ signal from the initiator before
more data is sent.

Thus, the ACK/REQ handshake must happen for each byte of data transferred in
asynchronous mode. During a synchronous transmission, the target device does not wait for
the REQ signal between data transmissions. Instead, data is sent until a number of bytes,
determined by the REQ/ACK offset agreed upon at the initiation of synchronous transfer, has
been sent. During the transmission, the initiator continues to send ACK’s back to the target.
The target keeps track of them and knows that when the number of REQ’s matches the
number of ACK’s the transfer is complete. See Figures 2. and 3. for a graphical
description.

SCSI-1 vs. SCSI-2

The SCSI-1 interface is rated at up to 5 Synchronous SCSI

Mbytes per second for synchronous data

transmissions. The SCSI-2 definition Target Initiator
allows for data transmission at up to ten

megatransfers' per second (differential —REQ— ~REQ—p ~REQ—H —REQ-—P—REC— —REQ—H
cables only), giving differential SCSI-2 DATA DATA DATA DATA DATA DATA
transfer rates up to 320 megabits, or 40

Mbytes per second. There are two different d-ack—
kinds of modifications to the SCSI-1 Figure 3

standard that allow the higher data rate.

The first modification is called "fast". Fast SCSI-2 requires differential electronic drivers.
Single-ended electonics are not capable of the signal to noise ratio necessary to implement
fast SCSI-2. The clock speed of fast SCSI-2 is twice that of SCSI-1. Using the same eight
bit data path, fast SCSI-2 is capable of ten Mbytes per second. The cable length limit of
differential SCSI is 15 meters compared to 6 for single-ended.

' As will be explained, each transfer can be eight, sixteen, or thiryt-two bits wide.

2005-5

The second modification affecting transfer rate is "wide" SCSI. Wide SCSI-2 gives a data
path of either sixteen or thirty-two bits as opposed to the 8-bit path of SCSI-1. The space
required to connect the cable may preclude the use of wide SCSI on 2.5" and 3.5" disks.
By combining wide and fast, SCSI-2 can achieve a synchronous data transfer rate of 40
Mbytes per second.

Implications of SCSI-2

Most applications will not need a wide and fast SCSI-2 bus. Doubling the transfer rate of
the bus will not double the throughput of the I/O system. In a random disk transfer, the seek
and latency constitute a far larger chunk of time than the channel time. An average 5.25"
disk has an average seek plus latency of 24 milliseconds compared to less than four
milliseconds for an 8 KByte transfer. Even a 40 Mbyte per second chanel would not
necessarily decrease the four millisecond figure because it takes a substantial amount of time
to get the data from the disk surface once the heads are over the data.

For a standalone workstation, fast SCSI or even synchronous SCSI-1 provides more
bandwidth than a single or dual disk drive configuration can utilize. Very few 5.25" disks
used on workstations have a sustained UNIX file system transfer rate of greater than 2.0
Mbyte per second, even for large files.

Certain applications, however, could certainly benefit fron a wide and fast SCSI bus.
Examples include file servers with multiple disks, transaction processing again with multiple
disks, solid state disks, disk arrays, and processor-to-processor communication.

SCSI-2 has other features that differentiate it from SCSI-1 besides transfer rates. SCSI-1
allows only one outstanding command from an initiator to a target. Command queuing IN
SCSI-2 allows the host I/O driver to handle multiple requests. Command queuing allows up
_to 256 requests to be outstanding from each initiator to each target. SCSI-2 has much more
tightly defined electrical specifications. SCSI-1 electrical specifications are loose enough that
two devices that both meet the spec could not work together. SCSI-2 closes the gaps.

SCSI-1 vs. HP-IB

The two interfaces currently available on The HP 9000 Series 300 and 400 workstations are
HP-IB and SCSI-1. HP-IB is an interface based on IEEE-488 and is rated at a transfer rate
on 1 Mbyte per second. The Hewlett-Packard disks available for Series 300 workstations
include the Series 6000 Model 670H and Model 660S. The 670H uses HP-IB, while the
660S uses SCSI-1. In order to characterize ther performance differences between these two
disk drives, a series of benchmarks were executed.

The Khomerstone benchmark is owned by Workstation Labs, Inc, and the disk portion of the
test includes disk intensive tasks, such as reading and writing files both randomly and

2005-6

sequentially. As can be seen in Figure NNN, the Model 660S has a disk Khornerstone score
about twice that of the Model 670H. Figure NNN+1 shows the throughput of these two
disks for files of various sizes, both reading and copying (reading and writing).

The Model 660S and the Model 670H share the same disk mechanism and ESDI device-level
interface. The differences are:

- The firmware of the Model 660S has been tuned for HP-UX.
- The SCSI channel is much faster than HP-IB.

The net effect of these two changes is dramatic. Whether the tuning of the Model 660S’
firmware or the faster channel makes the biggest difference, the performance choice for HP
Series 300 workstations is clearly SCSI.

SCSI vs. ESDI

As previously stated, ESDI is a dev<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>