HEWLETT-PACKARD

HP Vectra MS-DOS

Programmer’s Reference
HP 45962A

(from Microsoft Corporation)

Information in this document is subject to change without
notice and does not represent a commitment on the part of
Microsoft Corporation. The software described 1in this
document is furnished under a license agreement or
nondisclosure agreement. The software may be used or copied
only in accordance with the terms of the agreement. It is
against the law to copy the Programmer's Reference Manual on
magnetic tape, disk, or any other medium for any purpose
other than the purchaser's personal use.

© Copyright Microsoft Corporation, 1981, 1983, 1984
© Hewlett-Packard August 1985
Portions of this manual © Intel Corporation 1980

Comments about this documentation may be sent to:

Hewlett-Packard Company
Personal Office Computer Division
974 E. Arques Avenue
Sunnyvale, CA 94086

Atten: Documentation Dept.

Microsoft is a registered trademark of Microsoft
Corporation.

MS is a registered trademark of Microsoft Corporation.
XENIX is a trademark of Microsoft Corporation.

CP/M is a registered trademark of Digital Research, Inc.
INTEL is a registered trademark of Intel Corporation.

Epson is a registered trademark of Epson Corporation.

System Requirements

Disk drive(s)
One disk drive if and only if output is sent to the
same physical disk from which the input was taken.
None of the programs allows time to swap disks
during operation on a one-drive configuration.
Therefore, two disk drives 1is a more practical
configuration.

For more information about other Microsoft products,
contact:

Microsoft Corporation
10700 Northup Way
Bellevue, WA 98004
(206) 828-8080

Contents

Chapter 1 System Calls

1.1 Introduction 1-1

1.2 Standard Character Device I/O 1-2
1.3 Memory Management 1-4

1.4 Process Management 1-5

1.5 File and Directory Management 1-7
1.6 Microsoft Networks 1-14

1.7 Miscellaneous System Management 1-15
1.8 Old System Calls 1-15

1.9 Using the System Calls 1-19

1.10 Interrupts 1-31

1.11 Function Requests 1-46

Chapter 2 MS-DOS Device Drivers

2.1 Introduction 2-1

2.2 Format of a Device Driver 2-2

2.3 How to Create a Device Driver 2-4
2.4 Installation of Device Drivers 2-5
2.5 Device Headers 2-6

2.6 Request Header 2-9

2.7 Device Driver Functions 2-11

2.8 Media Descriptor Byte 2-23

2.9 Format of a Media Descriptor Table 2-24
2.10 The CLOCK Device 2-26

2.11 Anatomy of a Device Call 2-27
2.12 Example of Device Drivers 2-29

Chapter 3 MS-DOS Technical Information

3.1 MS-DOS Initialization 3-1

3.2 The Command Processor 3-1

3.3 MS-DOS Disk Allocation 3-2

3.4 MS-DOS Disk Directory 3-2

3.5 File Allocation Table (FAT) 3-5

3.6 MS-DOS Standard Disk Formats 3-8

Chapter 4 MS-DOS Control Blocks and Work Areas

4.1 Typical MS-DOS Memory Map 4-1
4.2 MS-DOS Program Segment 4-2

Chapter 5 .EXE File Structure and Loading
Chapter 6 Intel Relocatable Object Module Formats

6.1 Introduction 6-1

6.2 Definition of Terms 6-2

6.3 Module Identification and Attributes 6-4

6.4 Segment Definition 6-4

6.5 Segment Addressing 6-5

6.6 Symbol Definition 6-6

6.7 Indices 6-7

6.8 Conceptual Framework for Fixups 6-8

6.9 Self-Relative Fixups 6-13

6.10 Segment-Relative Fixups 6-14

6.11 Record Order 6-14

6.12 Introduction to the Record Formats 6-16

6.13 Numeric List of Record Types 6-47

6.14 Microsoft Type Representations for Communal
Variables 6-48

Chapter 7 Programming Hints

7.1 Introduction 7-1

7.2 Interrupts 7-1

7.3 System Calls 7-3

7.4 Device Management 7-3

7.5 Memory Management 7-4

7.6 Process Management 7-5

7.7 File and Directory Management 7-5
7.8 Miscellaneous 7-6

Chapter 1
System Calls

1.1 Introduction 1-1
1.1.1 System Calls That Have Been Superseded 1-2

1.2 Standard Character Device [/O 1-2
1.3 Memory Management 1-4

1.4 Process Management 1-5
1.4.1 Loading and Executing A Program 1-6
1.4.2 Loading An Overlay 1-7

1.5 File and Directory Management 1-7
1.5.1 Handles 1-8
1.5.2 File-Related Function Requests 1-8
1.5.3 Device-Related Function Requests 1-11
1.5.4 Directory-Related Function Requests 1-11
1.5.5 Directory Entry 1-12
1.5.6 File Attributes 1-13

1.6 Microsoft Networks 1-14
1.7 Miscellaneous System Management 1-13

1.8 Old System Calls 1-15
1.8.1 File Control Block (FCB) 1-16

1.9 Using the System Calls 1-19
1.9.1 Issuing An Interrupt 1-19
1.9.2 Calling A Function Request 1-20
1.9.3 Using The Calls From A High-Level Language 1-20
1.9.4 Treatment Of Registers 1-21
1.9.5 Handling Errors 1-21
1.9.6 System Call Descriptions 1-23

1.10 Interrupts 1-31
1.11 Function Requests 1-46

CHAPTER 1

SYSTEM CALLS

1.1 INTRODUCTION

The routines that MS-DOS uses to manage system operation and
resources can be called by any application program. Using
these system calls makes it easier to write
machine-independent programs and increases the likelihood
that a program will be compatible with future versions of
MS-DOS. MS-DOS system calls fall into several categories:

Standard character device I/0
Memory management

Process management

File and directory management
Microsoft Network calls
Miscellaneous system functions

MS-DOS services are invoked by an application by software
interrupts. The current range of interrupts used for MS-DOS
is 20H-27H, with 28H-40H reserved. Interrupt 21H 1is the
function request service, and provides access to a wide
variety of MS-DOS services. The selection of the Interrupt
21H function is through a function number placed in the AH
register by the application. In some cases, the full AX
register 1is wused to specify the requested function. Each
interrupt or function request uses values in various

registers to receive or return function-specific
information.

SYSTEM CALLS Page 1-2

1.1.1 System Calls That Have Been Superseded

Many system calls introduced in versions of MS-DOS earlier
than 2.0 have been superseded by function requests that are
simpler to use and make better wuse of system resources.
Although MS-DOS still includes these old system calls, they
should not be used unless it is imperative that a program
maintain backward-compatibility with the pre-2.0 versions of
MS-DOS.

A table of the pre-2.0 system calls and a description of the
File Control Block (required by some of the old calls)
appears in Section 1.8, "0ld System Calls."

The first part of this chapter explains how DOS manages its
resources -— such as memory, files, and processes —- and
briefly describes the purpose of most of the system calls.
The remainder of the chapter describes each interrupt and
function request in detail. The system call descriptions
are in numeric order, interrupts followed by function
requests. These descriptions include further detail on how
MS-DOS manages its resources.

Chapter 2 of this book describes how to write an MS-DOS
device driver. Chapters 3, 4, and 5 contain more detailed
information about MS-DOS, including how it manages disk
space, the control blocks it wuses, and how it loads and
executes relocatable programs (files with an extension of
.EXE) . Chapter 6 describes the 1Intel(R) object module
format. Chapter 7 gives some programming hints.

1.2 STANDARD CHARACTER DEVICE I/0O

The standard character function requests handle all input
and output to and from character devices such as the
console, printer, and serial ports. If a program uses these
function requests, its input and output can be redirected.

Table 1.1 lists the MS-DOS function requests for managing
standard character input and output.

SYSTEM CALLS Page 1-3

Table 1.1 Standard Character I/O Function Requests

01H Read Keyboard Gets a character from standard input
and Echo and echoes it to standard output.

02H Display Character Sends a character to standard
autput.

03H Auxiliary Input Gets a character from standard
auxiliary.

04H Auxiliary Output Sends a character to standard
auxiliary.

05H Print Character Sends a character to the standard
printer.

06H Direct Console I/0 Gets a character from standard input
or sends a character to standard

output.
07H Direct Console Gets a character from standard
Input input.
08H Read Keyboard Gets a character from standard
input.
09H Display String Sends a string to standard output.
0AH Buffered Keyboard Gets a string from standard input.
Input
0BH Check Keyboard Reports on the status of the
Status standard input buffer.
OCH Flush Buffer, Empties the standard input buffer
Read Keyboard and calls one of the other standard

character I/0 function requests.

Although several of these standard character I/0 function
requests seem to do the same thing, they are distinguished
by whether they echo characters from standard input to
standard output or check for control characters. The
detailed descriptions later in this chapter point out the
differences.

SYSTEM CALLS Page 1-4
1.3 MEMORY MANAGEMENT

MS-DOS keeps track of which areas of memory are allocated by
writing a memory control block at the beginning of each area
of memory.” This control block specifies the size of the
memory area; the name of the process, if any, that owns the
memory area; and a pointer to the next area of memory. If
the memory area is not owned, it is available.

Table 1.2 }ists the MS-DOS function requests for managing
memory.

Table 1.2 Memory Management Function Requests

48H Allocate Memory Requests a block of memory.

49H Free Allocated Frees a block of memory previously
Memory allocated with 48H.

4AH Set Block Changes the size of an allocated

memory block.

When a process requests additional memory with Function 48H,
MS-DOS searches for a block of available memory large enough
to satisfy the request. If it finds such a block of memory,
it changes the memory control block to show the owning
process. If the block of memory is larger than the
requested amount, MS-DOS changes the size field of the
memory control block to the requested amount, writes a new
memory control block at the beginning of the unneeded
portion that shows it is available, and updates the pointers
to add this memory to the chain of memory control blocks.
MS-DOS then returns the segment address of the first byte of
the allocated memory to the requesting process.

When a process releases an allocated block of memory with
Function 49H, DOS changes the memory control block to show
that it is available (not owned by any process).

When a process shrinks an allocated block of memory with
Function 4AH, DOS builds a memory control block for the
memory being released and adds it to the chain of memory
control blocks. When a process tries to expand an allocated
block of memory with Function 4AH, MS-DOS treats it as a
request for additional memory; rather than returning the
segment address of the additional memory to the requesting
process, however, MS-DOS simply chains the additional memory
to the existing memory block.

If MS-DOS can't find a block of available memory large
enough to satisfy a request for additional memory -- made
with either Function 48H or Function 4AH -- MS-DOS returns
an error code to the requesting process.

SYSTEM CALLS Page 1-5

When a program receives control, it should call Function 4AH
to shrink its initial memory allocation block (the block
that begins with its Program Segment Prefix) to the minimum
it requires. This frees unneeded memory and makes the best
application design for portability to future multitasking
environments.

When a program, exits, MS-DOS automatically frees its initial
memory allocation block before returning control to the
calling program (COMMAND.COM is usually the calling program
for application programs). The DOS frees any memory owned
by the process exiting.

Any program that changes memory not allocated to it will
most likely destroy at least one memory management control
block. This causes a memory allocation error the next time
MS-DOS tries to use the chain of memory control blocks; the
only cure is to restart the system.

1.4 PROCESS MANAGEMENT

MS-DOS uses several function requests to load, execute, and
terminate programs. Application programs can use these same
function requests to manage other programs.

Table 1.3 lists the MS-DOS function requests for managing
processes.

Table 1.3 Process Management Function Requests

31H Keep Process Terminates a process and returns
control to the invoking process,
but keeps the terminated process
in memory.

4B00H Load and Execute Loads and executes a program.

Program
4B03H Load Overlay Loads a program overlay without
executing it.
4CH End Process Returns control to the invoking
process.
4DH Get Return Code Returns a code passed by a child

of Child Process process when it exits.

62H Get PSP Returns the segment address of the
Program Segment Prefix of the
current process.

SYSTEM CALLS Page 1-6
1.4.1 Loading And Executing A Program

When a program loads and executes another program with
Function 4B00H, MS-DOS allocates memory, writes a Program
Segment Prefix (PSP) for the new program at offset 0 of the
allocated memory, loads the new program, and passes control
to.it. When the invoked program exits, control returns to
the calling program.

COMMAND.COM uses Function 4B00H to load and execute command
files. Application programs have the same degree of control
over process management as COMMAND.COM.

In addition to these common features, there are some
differences in the way MS-DOS loads .COM and .EXE files.

Loading a .COM Program

When COMMAND.COM loads and executes a .COM program, it
allocates all of available memory to the application and
sets the stack pointer 100H bytes from the end of available
memory. A .COM program should set up its own stack before
shrinking its initial memory allocation block with Function
4AH, because the default stack is in the memory to be
released.

If a newly loaded program is allocated all of memory -- as a
.COM program is -- or requests all of available memory with
Function 48H, MS-DOS allocated to it the memory occupied by
the transient part of COMMAND.COM. If the program changes
this memory, MS-DOS must reload the transient portion of
COMMAND.COM before it can continue. If a program exits (via
call 31H, Keep Process) without releasing enough memory, the
system halts and must be reset. To minimize this
possibility, a .COM program should shrink its initial
allocation block with Function 4AH before doing anything
else, and all programs must release all memory they allocate
with Function 48H before exiting.

Loading an .EXE Program

When COMMAND.COM loads and executes an .EXE program, it
allocates the size of the program's memory image plus either
the value in the MAXALLOC field (offset O0OCH) of the file
header, if that much memory is available, or the value in
the MINALLOC field (offset OAH). These fields are set by
the linker. Before passing control to the .EXE file, MS-DOS
calculates the correct relocation addresses, based on the
relocation information in the file header.

For a more detailed description of how MS-DOS loads .COM and
.EXE files, see Chapters 3 and 4.

SYSTEM CALLS Page 1-7

Executing a Program From Within Another Program

Because COMMAND.COM takes care of details such as building
complete pathnames, searching the directory path for
executable files, and relocating .EXE files, the simplest
way to load and execute a program is to load and execute an
additional copy of COMMAND.COM, passing it a command 1line
that includes the /C switch to invoke the .COM or .EXE file.
The description of Function 4B00H (Load and Execute Program)
describes how to do this.

1.4.2 Loading An Overlay

When a program loads an overlay with Function 4B03H, it must
pass to MS-DOS the segment address at which the overlay is
to be loaded. The program then must call the overlay, and
the overlay returns directly to the calling program. The
calling program is in complete control: MS-DOS does not
write a PSP for the overlay or intervene in any other way.

MS-DOS does not check to see if the calling program owns the
memory where the overlay is to be loaded. If the calling
program does not own the memory, loading the overlay will
most 1likely destroy a memory control block, causing an
eventual memory allocation error.

A program that loads an overlay must, therefore, either
allow room for the overlay when it calls Function 4AH to
shrink its initial memory allocation block, or should shrink
its initial memory allocation block to the minimum and then
use Function 48H to allocate memory for the overlay.

1.5 FILE AND DIRECTORY MANAGEMENT

The MS-DOS hierarchical (multilevel) file system is similar
to that of the XENIX operating system. For a description of
the multilevel directory system and how to use it, see the
MS-DOS User's Reference.

SYSTEM CALLS Page 1-8

1.5.1 Handles

To create or open a file, a program passes to MS-DOS a
pathname and the attribute to be assigned to the file.
MS-DOS returns a l6-bit number called a handle. For most
subsequent actions, MS-DOS requires only this handle to
identify the file.

A handle can refer to either a file or a device. MS-DOS
predefines five standard handles. These handles are always
open; you needn't open them before you use them. Table 1.4
lists these predefined handles.

Table 1.4 Predefined Device Handles

Handle Standard device Comment

0 Input Can be redirected from command line
1 Output Can be redirected from command line
2 Error

3 Auxiliary

4 Printer

When MS-DOS creates or opens a file, it assigns the first
available handle. A program can have 20 open handles; this
includes the five predefined handles, so a program can
typically open 15 extra files. Any of the five predefined
handles can be temporarily forced to refer to an alternate
file or device using function request 46H.

1.5.2 File-Related Function Requests

MS-DOS treats a file as a string of bytes; it assumes no
record structure or access technique. An application
program imposes whatever record structure it needs on this
string of bytes. Reading from or writing to a file requires
only pointing to the data buffer and specifying the number
of bytes to read or write.

SYSTEM CALLS

Page 1-9

Table 1.5 lists the MS-DOS function requests for managing
files.

Table 1.5 File-Related Function Requests

3CH
3DH
3EH
3FH
40H

42H

45H

46H

5AH

5BH

Create Handle
Open Handle
Close Handle
Read Handle
Write Handle

Move File
Pointer

Duplicate File
Handle

Force Duplicate
File Handle
Create
Temporary File

Create New File

Creates a file.
Opens a file.
Closes a file.
Reads from a file.
Writes to a file.

Sets the read/write pointer in a
file.

Creates a new handle that refers to
the same file as an existing handle.

Makes an existing handle refer to
the same file as another existing
handle.

Creates a file with a unique name.

Attempts to create a file, but fails
if a file with the same name exists.

SYSTEM CALLS Page 1-10

File Sharing

Version 3.1 of MS-DOS introduces file sharing, which lets
more than one process share access to a file. File sharing
operates only after the Share command has been executed to
load file-sharing support. Table 1.6 1lists the MS-DOS
function requests for sharing files; if file sharing is not
in effect, these function requests cannot be used. Function
3DH, Open Handle, can operate in several modes.
Ccompatibility mode is usable without file sharing in effect.
Here it is referred to in the file-sharing modes, which
require file sharing to be in effect.

Table 1.6 File-Sharing Function Requests

3DH Open Handle Opens a file with one of the
file-sharing modes.

440BH IOCTL Retry Specifies how many times an I/O
operation that fails due to a
file-sharing violation should be
retried before Interrupt 24 is
issued.

5C00H Lock Locks a region of a file.

5C01H Unlock Unlocks a region of a file.

SYSTEM CALLS Page 1-11

1.5.3 Device-Related Function Requests

I/0 Control for Devices is implemented with Function 44H
(IOCTL) ; it includes several action codes to perform
different device-related tasks. Some forms of the IOCTL
function request require that the device driver be written
to support the IOCTL interface. Table 1.7 lists the MS-DOS
function requests for managing devices.

Table 1.7 Device-Related Function Requests

4400H,01H IOCTL Data Gets or sets device’
description.
4402H,03H IOCTL Character Gets or sets character

device control data.

4404H,05H IOCTL Block Gets or sets block device
control data.

4406H,07H IOCTL Status Checks device input or
output status.

4408H IOCTL Is Changeable Checks whether block device
contains removable medium.

Some forms of the IOCTL function request can only be used
with Microsoft(R) Networks; they are listed in Section 1.6,
"Microsoft Networks."

1.5.4 Directory-Related Function Requests

The root directory on a disk has room for a fixed number of
entries: 64 on a standard single-sided disk, 112 on a
standard double-sided disk. For hard disks, the number of
directories is dependent on the DOS partition size. A
subdirectory is simply a file with a wunique attribute;
there can be as many subdirectories on a disk as space
allows. The depth of a directory structure, therefore, is
limited only by the amount of storage on a disk and the
maximum pathname length of 64 characters.

The root directory is identical to the pre-2.0 directory.
Pre-2.0 disks appear to have only a root directory that
contains files but no subdirectories.

SYSTEM CALLS Page 1-12

Table 1.8 lists the MS-DOS function requests for managing
directories.

Table 1.8 Directory-Related Function Requests

39H Create Directory Creates a subdirectory.

3AH Remove Directory Deletes a subdirectory.

3BH Change Current Changes the current directory.
Directory

41H Delete Deletes a file.
Directory Entry
(Unlink)

43H Get/Set File Retrieves or changes the attributes
Attributes of a file.
(Chmod)

47H Get Current Returns current directory for a
Directory given drive.

4EH Find First File Searches a directory for the first

entry that matches a filename.

4FH Find Next File Searches a directory for the next
entry that matches a filename.

56H Change Renames a file.
Directory Entry

57H Get/Set Date/Time Changes the time and date of
of File last change in a directory entry.

1.5.5 Directory Entry

A directory entry is a 32-byte record that includes the
file's name, extension, date and time of last change, and
size. An entry in a subdirectory is identical to an entry
in the root directory. The directory entry is described in
detail in Chapter 3.

PN

SYSTEM CALLS Page 1-13

1.5.6 File Attributes

Table 1.9 describes the file attributes and how they are
represented in the attribute byte of the directory entry
(offset O0BH). The attributes can be inspected or changed
with Function 43H (Get/Set File Attributes).

Table 1.9 File Attributes

Code Description
00H Normal. Can be read or written without restriction.

01H Read-only. Cannot be opened for write; a file with the
same name cannot be created.

02H Hidden. Not found by directory search.
04H System. Not found by directory search.

08H Volume-ID. Only one file can have this attribute; it
must be in the root directory.

10H Subdirectory.

20H Archive. Set whenever the file is changed, cleared
by the Backup command.

The Volume-ID (08H) and Directory (1l0H) attributes cannot be
changed with Function 43H (Get/Set File Attributes).

SYSTEM CALLS Page 1-14
1.6 MICROSOFT NETWORKS

A Microsoft Network consists of a server and one or more
workstations. MS-DOS maintains an assign list that keeps
track of which workstation drives and devices have been
redirected to the server. For a description of operation
and use of the network, see the Microsoft Networks Manager's
Guide, and User's Guide.

Table 1.10 lists the MS-DOS function requests for managing a
Microsoft Networks workstation.

Table 1.10 Microsoft Network Function Requests

4409H IOCTL Is Redirected Checks whether a drive letter
Block refers to a local or redirected
drive.

440AH 1IOCTL Is Redirected Checks whether a device name

Handle refers to a local or redirected
device.
5E00H Get Machine Name Gets the network name of the
workstation.
5E02H Printer Setup Defines a string of control

characters to be added at the
beginning of each file sent to a
network printer.

5F02H Get Assign List Gets an entry from the assign
Entry list that shows the workstation
drive letter or device name and
the net name of the directory or
device on the server to which
it is reassigned.

5F03H Make Assign List Redirects a workstation drive or
Entry device to a server directory or
device.

5F04H Cancel Assign List Cancels the redirection of a
Entry workstation drive or device to a
server directory or device.

SYSTEM CALLS Page 1-15

1.7 MISCELLANEOUS SYSTEM MANAGEMENT

The remaining system calls manage other system functions and
resources such as drives, the clock, and addresses. Table
1.11 1lists the MS-DOS function requests for managing
miscellaneous system resources and operation.

Table 1.11 Miscellaneous System-Management Function Requests

ODH Reset Disk Empties all file buffers.

OEH Select Disk Sets the default drive.

19H Get Current Disk Returns the default drive.

1AH Set Disk Transfer Establishes the disk I/O buffer.
Address

1BH Get Default Drive Returns disk format data.
Data

1CH Get Drive Data Returns disk format data.

25H Set Interrupt Vector Sets interrupt handler address.

29H Parse File Name Checks string for valid filename.

2AH Get Date Returns system date.

2BH Set Date Sets system date.

2CH Get Time Returns system time.

2DH Set Time Sets system time.

2EH Set/Reset Verify Flag Turns disk verify on or off.

2FH Get Disk Transfer Returns system disk I/O buffer
Address address.

30H Get MS-DOS Version Returns MS-DOS version number.
Number

33H Control-C Check Returns Control-C check status.

35H Get Interrupt Vector Returns address of interrupt

handler.

36H Get Disk Free Space Returns disk space data.

38H Get/Set Country Data Sets current country or retrieves
country information.

54H Get Verify State Returns status of disk verify.

1.8 OLD SYSTEM CALLS

Most of the system calls that have been superseded deal with
files. Table 1.12 1lists these o0ld calls and the function
requests that have superseded them.

Although MS-DOS still includes these old system calls, they
should not be wused unless it is imperative that a program
maintain backward-compatibility with the pre-2.0 versions of
MS-DOS.

SYSTEM CALLS Page 1-16

Table 1.12 01d System Calls and Their Replacements

0l1d System Call Has Been Superseded By
Function Requests Function Requests
00H Terminate Program 4CH End Process
OFH Open File 3DH Open Handle
10H Close File 3EH Close Handle

11H Search for First Entry 4EH Find First File
12H Search for Next Entry 4FH Find Next File

13H Delete File 41H Delete Directory Entry
14H Sequential Read 3FH Read Handle

15H Sequential Write 3DH Open Handle

16H Create File 3CH Create Handle

5AH Create Temporary File
5BH Create New File

17H Rename File 56H Change Directory Entry
21H Random Read 3FH Read Handle
22H Random Write 40H Write Handle
23H Get File Size 42H Move File Pointer
24H Set Relative Record 42H Move File Pointer
26H Create New PSP 4B00H Load and Execute Program
27H Random Block Read 3FH Read Handle
28H Random Block Write 40H Write Handle
Interrupts Function Requests
20H Program Terminate 4CH End Process
27H Terminate But Stay 31H Keep Process
Resident

1.8.1 File Control Block (FCB)

The old file-related function requests require that a
program maintain a File Control Block (FCB) for each file;
this control block contains such information as the file's
name, size, record length, and pointer to current record.
MS-DOS does most of this housekeeping for the newer,
handle-oriented function requests.

Some descriptions of the o0ld function requests refer to
unopened and opened FCBs. An unopened FCB contains only a
drive specifier and filename. An opened FCB contains all
fields filled by Function OFH (Open File).

The Program Segment Prefix (PSP) includes room for two FCBs
at offsets 5CH and 6CH. See Chapter 4 for a description of
the PSP and how these FCBs are used. Table 1.13 describes
the fields of the FCB.

SYSTEM CALLS Page 1-17

Table 1.13 Format of the File Control Block (FCB)

Offset
Hex Dec Bytes Name
00H 0 1 Drive number
01H 1 8 Filename
09H 9 3 Extension
0CH 12 2 Current block
OEH 14 2 Record size
10H 16 4 File size
14H 20 2 Date of last write
16H 22 2 Time of last write
18H 24 8 RESERVED
20H 32 1 Current record
21H 33 4 Relative record

Fields of the FCB

Drive Number (offset 00H): Specifies the disk drive; 1
means drive A and 2 means drive B, If the FCB is used to
create or open a file, this field can be set to 0 to specify
the default drive; the Open File system call sets the field
to the number of the default drive.

Filename (offset 01H): Eight characters, left-aligned and
padded (if necessary) with blanks. If you specify a
reserved device name (such as PRN), do not put a colon at
the end.

Extension (offset 09H): Three characters, left-aligned and
padded (if necessary) with blanks. This field can be all
blanks (no extension).

Current Block (offset OCH): Points to the block (group of
128 records) that contains the current record. This field
and the Current Record field (offset 20H) make up the record
pointer. This field 1is set to 0 by the Open File system
call.

Record Size (offset OEH): The size of a logical record, 1in
bytes. Set™ to 128 by the Open File system call. If the
record size is not 128 bytes, you must set this field after
opening the file.

File Size (offset 10H): The size of the file, in bytes.
The first word of this 4-byte field is the low-order part of
the size.

SYSTEM CALLS Page 1-18

Date of Last Write (offset 14H): The date the file was

created or last updated. The year, month, and day are
mapped into two bytes as follows:

Offset 15H Offset 14H
lyly|y|y|y|y|y[M] |M|M|M|D|D|D|D|D|
15 9 8 5 4 0

Time of Last Write (offset 16H): The time the file was
created or last updated. The hour, minutes, and seconds are
mapped into two bytes as follows:

Offset 17H Offset 16H
[H|E|H[H|E|M|M|M] |M[M|M|S|[S|s|S|S]|
15 11 10 5 4 0

Reserved (offset 18H): These fields are reserved for use by
MS-DOS.

Current Record (offset 20H): Points to one of the 128
records iIn the current block. This field and the Current
Block field (offset OCH) make up the record pointer. This
field 1is not initialized by the Open File system call. You
must set it before doing a sequential read or write to the
file.

Relative Record (offset 21H): Points to the currently
selected record, counting from the beginning of the file
(starting with 0). This field is not initialized by the
Open File system call, You must set it before doing a
random read or write to the file. If the record size is
less than 64 bytes, both words of this field are used; if
the record size is 64 bytes or more, only the first three
bytes are used.

Note

If you use the FCB at offset 5CH of the Program Segment
Prefix, the last byte of the Relative Record field is
the first byte of the unformatted parameter area that
starts at offset 80H. This is the default Disk Transfer
Area.

SYSTEM CALLS Page 1-19

Extended FCB

The Extended File Control Block is used to create or search
for directory entries of files with special attributes. It
adds the following 7-byte prefix to the FCB:

Size
Name (bytes) Offset
Flag byte (FFH) 1 -07H
Reserved 5 -06H
Attribute byte 1 -01H

File attributes are described earlier in this chapter in
Section 1.5.6, "File Attributes."

1.9 USING THE SYSTEM CALLS

The remainder of this chapter describes how to use the
system calls in application programs, lists all the calls in
both numeric and alphabetic order, and describes each call
in detail.

1.9.1 1Issuing An Interrupt

MS-DOS reserves Interrupts 20H through 3FH for its own use.
The table of interrupt handler addresses (vector table) is
maintained in locations 80H-FCH. Most of the interrupts
have been superseded by function requests. Descriptions of
three MS-DOS interrupt handlers (Program Terminate,
Control-C, and Critical Error) are included in case you must
write your own routines to handle these interrupts.

To issue an interrupt, move any required data into the
registers and issue the interrupt.

SYSTEM CALLS Page 1-20

1.9.2 Calling A Function Request

The function requests call MS-DOS routines to manage system
resources. Follow this procedure to call a function
request:

1. Move any required data into the registers.
2. Move the function number into AH.

3. Move the action code, if required, into AL.
4. 1Issue Interrupt 21H.

If your program has a standard Program Segment Prefix, an
alternative to issuing Interrupt 21H is to execute a long
call to location 50H in the PSP.

Whenever possible, it is recommended that the Interrupt 21H
method be used.

One other technique supports earlier calling conventions:
move any required data into the registers; move the
function number into CL; and execute an intrasegment call
to location O05H in the current code segment (this location
contains a long call to the MS-DOS function dispatcher).
This method can only be used with functions 00H through 24H,
and always destroys the contents of AX.

1.9.3 Using The Calls From A High-Level Language

The system calls can be executed from any high-level
language whose modules can be linked with assembly language
modules. In addition to this general technique:

® You can use the DOSXQQ function of Pascal-86 to
call a function request directly.

® Use the CALL statement or USER function to execute

the required assembly-language code from the BASIC
interpreter.

SYSTEM CALLS Page 1-21

1.9.4 Treatment Of Registers

When MS-DOS takes control after a function request, it
switches to an internal stack. Registers not used to return

information (except AX) are preserved. The calling
program's stack must be large enough to accommodate the
interrupt system -- at least 128 bytes in addition to other
needs.

1.9.5 Handling Errors

Most of the newer function requests -- those introduced with
version 2.0 or later -- set the Carry flag if there is an
error, and identify the specific error by returning a number
in AX. Table 1.14 1lists these error codes and their
meanings.

Table 1.14 Error Codes Returned in AX

Code Meaning
1 Invalid function code
2 File not found
3 Path not found
4 Too many open files (no open handles left)
5 Access denied
6 Invalid handle
7 Memory control blocks destroyed
8 Insufficient memory
9 Invalid memory block address
10 Invalid environment
11 Invalid format
12 Invalid access code
13 Invalid data
14 RESERVED
15 Invalid drive
16 Attempt to remove the current directory
17 Not same device
18 No more files
19 Disk is write-protected
20 Bad disk unit
21 Drive not ready
22 Invalid disk command
23 CRC error
24 Invalid length (disk operation)
25 Seek error

Not an MS-DOS disk
Sector not found
Out of paper

Write fault

Read fault

WNNDDNDN
OWVWOdO

SYSTEM CALLS Page 1-22

31 General failure

32 Sharing violation

33 Lock violation

34 Wrong disk

35 FCB unavailable

36-49 RESERVED

50 Network request not supported
51 Remote computer not listening
52 Duplicate name on network

53 Network name not found

54 Network busy

55 Network device no longer exists
56 Net BIOS command limit exceeded
57 Network adapter hardware error
58 Incorrect response from network
59 Unexpected network error

60 Incompatible remote adapt

61 Print queue full

62 Queue not full

63 Not enough space for print file
64 Network name was deleted

65 Access denied

66 Network device type incorrect
67 Network name not found

68 Network name limit exceeded

69 Net BIOS session limit exceeded
70 Temporarily paused

71 Network request not accepted

72 Print or disk redirection is paused
73-79 RESERVED

80 File exists

81 RESERVED

82 Cannot make

83 Interrupt 24 failure

84 Out of structures

85 Already assigned

86 Invalid password

87 Invalid parameter

88 Net write fault

To handle error conditions, put the following statement
immediately after each call similar to XENIX calls:

JC <error>

where <error> represents the label of an error-handling
routine that gets the specific error condition by checking
the value in AX and takes appropriate action.

Some of the older system calls return a value in a register
that specifies whether the operation was successful. To
handle such errors, check the error code and take the
appropriate action.

SYSTEM CALLS Page 1-23

Extended Error Codes

Newer versions of MS-DOS have added more detailed error
messages that cannot be used by programs that use the older
system calls. To avoid incompatibility, MS-DOS maps these
new error codes to the o0ld error code that most closely
matches the new one.

To make use of these new calls, Function 59H (Get Extended
Error) has been added. It provides as much detail as
possible on the most recent error code returned by MS-DOS.
The description of Function 59H lists the new, more detailed
error codes and shows how to use this function request.

1.9.6 System Call Descriptions

Most system calls require that information be moved into one
or more registers before the <call is issued and return
information in the registers. The description of each
system call in this chapter includes the following:

e A drawing of the 8088 registers that shows their
contents before and after the system call.

® A more complete description of the register
contents required before the system call.

® A description of the processing performed.

e A more complete description of the register
contents after the system call.

® An example of the system call's use.

SYSTEM CALLS

Figure 1.1 is

an example

Page 1-24

of the drawing of the 8088

registers and how the information is presented.

AX:
BX:
CX:
DX:

Figure 1.1

BH

BL

CH

cL

SP

BP

S|

Di

P

FLAGSH I FLAGSL

cs

ss

ES

Example

Call

Return

of System Call Description

TN

SYSTEM CALLS Page 1-25

Sample Programs

The sample programs show only data declarations and the code
required to use the system calls. Unless stated otherwise,
each example assumes a common skeleton that defines the
segments and returns control to MS-DOS. Each sample program
is intended to be executed as a .COM file. Figure 1.2 shows
a complete sample program. The unshaded portion shows what
appears in this chapter; the shaded portions are the common
skeleton.

v ey w——

code segment

assume ©8: code,ds code,es~ncthing,gsmothing
. Lorg 1000

start: Jmp begin

£ b

filename :db "bi\textfile.asc",0

buffer db..c 129 dup (2)

handle Cdw ? i

Begin: open_handle filename,0 ; Open the file
jc error_open ; Routine not shown
mov handle,ax ; Save handle

read line: read _handle handle,buffer,128 ; Read 128 bytes

- jec error_read ; Routine not shown

cmp ax,0 ; End of file?
je return : Yes, go home
mov bx,ax H No, AX bytes read
mov buffer [bx],"s$" ; To terminate string
display buffer ; See Function 09H
jmp read_line ; Get next 128 bytes

returnz end process 0 Return to M5-DOS

last inst: TO mark next byte

R

code ends : s
end start

Figure 1.2 Sample Program With Common Skeleton

To allow the examples to be more complete programs rather
than 1isolated uses of the system calls, a macro is defined
for each system call; these macros, plus some general
purpose ones, are used in the sample programs. The sample
program in the preceding figure includes four such macros:
open_handle, read_handle, display, and end process. All
macro definitions are listed at the end of this chapter.

SYSTEM CALLS Page 1-26

The macros assume the environment for a .COM program as
described in Chapter 4; in particular, they assume that all
the segment registers contain the same value. To conserve
space, the macros generally do not protect registers and
leave error checking to the main code. This keeps the
macros fairly short, yet useful. You may find such macros a
convenient way to include system calls in your assembly
language programs.

. Error Handling in Sample Programs

Whenever a system call returns an error code, the sample
program shows a test for the error condition and a jump to
an error routine. To conserve space, the error routines
themselves aren't shown. Some error routines might simply
display a message and continue processing; in more serious
cases, the routine might display a message and end the
program (performing any required housekeeping, such as
closing files).

Tables 1.15 through 1.18 list the Interrupts and Function
Requests in numeric and alphabetic order.

Table 1.15 MS-DOS Interrupts, Numeric Order

Interrupt Description

20H Program Terminate

21H Function Request

22H Terminate Process Exit Address

23H Control-C Handler Address

24H Critical Error Handler Address

25H Absolute Disk Read

26H Absolute Disk Write

27H Terminate But Stay Resident
28H-3FH RESERVED

Table 1.16 MS-DOS Interrupts, Alphabetic Order

Description Interrupt
Absolute Disk Read 25H
Absolute Disk Write 26H
Control-C Handler Address 23H
Critical Error Handler Address 24H
Function Request 21H
Program Terminate 20H
RESERVED 28H-3FH

Terminate Process Exit Address 22H
Terminate But Stay Resident 27H

——

SYSTEM CALLS

Table 1.17 MS-DOS Function Requests, Numeric Order

Page 1-27

Function

00H
0lH
02H
03H
04H
05H
06H
07H
08H
09H
OAH
0BH
0CH
ODH
0EH
OFH
10H
11H
12H
13H
14H
15H
16H
17H
18H
19H
1AH
1BH
1CH
1DH-20H
21H
22H
23H
24H
25H
26H
27H
28H
29H
2AH
2BH
2CH
2DH
2EH
2FH
30H
31H
32H
33H
34H

Description

Terminate Program

Read Keyboard And Echo
Display Character
Auxiliary Input
Auxiliary Output

Print Character

Direct Console I/0
Direct Console Input
Read Keyboard

Display String

Buffered Keyboard Input
Check Keyboard Status
Flush Buffer, Read Keyboard
Reset Disk

Select Disk

Open File

Close File

Search For First Entry
Search For Next Entry
Delete File

Sequential Read
Sequential Write
Create File

Rename File

RESERVED

Get Current Disk

Set Disk Transfer Address
Get Default Drive Data
Get Drive Data
RESERVED

Random Read

Random Write

Get File Size

Set Relative Record
Set Interrupt Vector
Create New PSP

Random Block Read
Random Block Write
Parse File Name

Get Date

Set Date

Get Time

Set Time

Set/Reset Verify Flag
Get Disk Transfer Address
Get MS-DOS Version Number
Keep Process

RESERVED

Control-C Check
RESERVED

SYSTEM CALLS

35H

36H

37H

38H

39H

3AH

3BH

3CH

3DH

3EH

3FH

40H

41H

42H

43H

4400H,4401H

4402H,4403H

4404H,4405H

4406H,4407H

4408H

4409H

440AH

440BH

45H

46H

47H

48H

49H

4AH

4BOOH

4B0O3H

4ACH

4DH

AEH

4FH
50H-53H

54H

55H

56H

57H

58H

59H

5AH

S5BH

5C00H

5CO01H

5DH

SE0OH

5E02H

S5F02H

5F03H

5F04H

60H-61H

62H

63H-7FH

Get Interrupt Vector
Get Disk Free Space
RESERVED

Get/Set Country Data
Create Directory

Remove Directory

Change Current Directory
Create Handle

Open Handle

Close Handle

Read Handle

Write Handle

Delete Directory Entry
Move File Pointer
Get/Set File Attributes
IOCTL Data

IOCTL Character

IOCTL Block

IOCTL Status

IOCTL Is Changeable
IOCTL Is Redirected Block

IOCTL Is Redirected Handle

IOCTL Retry
Duplicate File Handle

Force Duplicate File Handle

Get Current Directory
Allocate Memory

Free Allocated Memory
Set Block

Load and Execute Program
Load Overlay

End Process

Get Return Code Child Process

Find First File

Find Next File

RESERVED

Get Verify State

RESERVED

Change Directory Entry
Get/Set Date/Time of File

Get/Set Allocation Strategy

Get Extended Error
Create Temporary File
Create New File

Lock

Unlock

RESERVED

Get Machine Name
Printer Setup

Get Assign List Entry
Make Assign List Entry
Cancel Assign List Entry
RESERVED

Get PSP

RESERVED

Page 1-28

SYSTEM CALLS Page 1-29

Tabl~ 1.18 MS-DOS Function Requests, Alphabetic Order

Function Description
48H Allocate Memory
03H Auxiliary Input
04H Auxiliary Output
OAH Buffered Keyboard Input
5F04H Cancel Assign List Entry
3BH Change Current Directory
56H Change Directory Entry
0BH Check Keyboard Status
10H Close File
3EH Close Handle
33H Control-C Check
39H Create Directory
16H Create File
3CH Create Handle
5BH Create New File
26H Create New PSP
SAH Create Temporary File
41H Delete Directory Entry
13H Delete File
06H Direct Console I/0
07H Direct Console Input
02H Display Character
09H Display String
45H Duplicate File Handle
4CH End Process
4EH Find First File
4FH Find Next File
0CH Flush Buffer, Read Keyboard
46H Force Duplicate File Handle
49H Free Allocated Memory
5F02H Get Assign List Entry
47H Get Current Directory
19H Get Current Disk
2AH Get Date
1BH Get Default Drive Data
36H Get Disk Free Space
2FH Get Disk Transfer Address
1CH Get Drive Data
59H Get Extended Error
23H Get File Size
35H Get Interrupt Vector
S5E01H Get Machine Name
30H Get MS-DOS Version Number
62H Get PSP
4DH Get Return Code Of Child Process
2CH Get Time
54H Get Verify State
58H Get/Set Allocation Strategy
38H Get/Set Country Data

57H Get/Set Date/Time Of File

SYSTEM CALLS

43H
4404H,4405H
4402H,4403H
4400H,4401H
4408H
4409H
440AH
440BH
4406H,4407H
31H
4B0OH
4B03H
5CO00H
5F03H
42H
OFH
3DH
29H
05H
S5E02H
27H
28H
21H
22H
3FH
08H
01H
3AH
17H
18H
1BH-20H
32H
34H
37H
S50H-53H
55H
60H-61H
63H-7FH
ODH
11H
12H
OEH
14H
15H
4AH
2BH
1AH
25H
24H
2DH
2EH
00H
5CO01H
40H

Page 1-30

Get/Set File Attributes
IOCTL Block

IOCTL Character

IOCTL Data

IOCTL Is Changeable
IOCTL Is Redirected Block
IOCTL Is Redirected Handle
IOCTL Retry

IOCTL Status

Keep Process

Load and Execute Program
Load Overlay

Lock

Make Assign List Entry
Move File Pointer

Open File

Open Handle

Parse File Name

Print Character
Printer Setup

Random Block Read
Random Block Write
Random Read

Random Write

Read Handle

Read Keyboard

Read Keyboard And Echo
Remove Directory
Rename File

RESERVED

RESERVED

RESERVED

RESERVED

RESERVED

RESERVED

RESERVED

RESERVED

RESERVED

Reset Disk

Search For First Entry
Search For Next Entry
Select Disk

Sequential Read
Sequential Write

Set Block

Set Date

Set Disk Transfer Address
Set Interrupt Vector
Set Relative Record
Set Time

Set/Reset Verify Flag
Terminate Program
Unlock

Write Handle

SYSTEM CALLS Page 1-31

A de.ailed description of each system call follows. They
are listed in numeric order; the interrupts are described
first, then the function requests.

Note: Unless otherwise stated, all numbers in the system
call descriptions--both text and code--are in hexadecimal.

1.10 INTERRUPTS

The following pages describe Interrupts 20H-27H.

SYSTEM CALLS Interrupt 20H Page 1-32

Program Terminate (Interrupt 20H)

AX: AH. AL Call
BX: BH BL Cs
ox: o oL Segment address of Program Segment
oX: DH oL Prefix
SP
BP Return
s None

P
FLAGSH | FLAGS

Interrupt 20H terminates the current process and returns
control to its parent process. All open file handles are
closed and the disk cache is cleaned. CS must contain the

segment address of the Program Segment Prefix when this
interrupt is issued.

Interrupt 20H is provided only for compatibility with
versions of MS-DOS prior to 2.0. New programs should use
Function Request 4CH, End Process, which permits returning a
completion code to the parent process and does not require
CS to contain the segment address of the Program Segment
prefix.

The following exit addresses are restored from the Program
Segment Prefix:

Offset Exit Address

0AH Program terminate
0EH Control-C

12H Critical error

N

SYSTEM CALLS Interrupt 20H Page 1-33

Note

Close all files that have changed in length before
issuing this interrupt. If a changed file is not
closed, its length is not recorded correctly in the
directory. See Functions 10H and 3EH for a description
of the Close File system calls.

Macro Definition: terminate macro
int 20H
endm

Example

The following program displays a message and returns to
MS-DOS. It uses only the opening portion of the sample
program skeleton shown in Figure 1.2:

message db "displayed by INT20H example". ODH, OAH, "S$"

r
begin: display message ;see Function 09H
terminate ;THIS INTERRUPT
code ends
end start

SYSTEM CALLS Interrupt 21H Page 1-34

Function Request (Interrupt 21H)

AX: AH AL Call
BX: BH BL AH
ox: cH oL Function number
DX: DH DL
Other registers
: As specified in individual function
b Return
o As specified in individual function

[
R E

ES

Interrupt 21H causes MS-DOS to carry out the function
request whose number is in AH. See Section 1.11, "Function
Requests," for a description of the MS-DOS functions.
Example

To call the Get Time function:

mov ah,2CH ;Get Time is Function 2CH
int 21H ;MS-DOS function request

SYSTEM CALLS Interrupt 22H Page 1-35

Terminate Process Exit Address (Interrupt 22H)

When a program terminates, MS-DOS transfers control to the
routine that starts at the address in the Interrupt 22H
entry in the vector table. When MS-DOS creates a program

segment, it copies this address into the PSP starting at
offset OAH.

This interrupt must never be issued by a user program; it
is issued only by MS-DOS. If you must write your own
terminate interrupt handler, use Function Request 35H (Get
Interrupt Vector) to get the address of the standard
routine, save the address, then use Function Request 25H
(Set Interrupt Vector) to change the Interrupt 22H entry in
the vector table to point to your routine.

SYSTEM CALLS Interrupt 23H Page 1-36

Control-C Handler Address (Interrupt 23H)

When a user types Control-C or Control-Break (on
IBM-compatibles), MS-DOS transfers control as soon as
possible to the routine that starts at the address in the
Interrupt 23H entry in the vector table. When MS-DOS
creates a program segment, it copies the address currently
in the interrupt table into the PSP starting at offset OEH.

This interrupt must never be issued by a user program; it
is issued only by MS-DOS. If you must write your own
Control-C interrupt handler, use Function Request 35H (Get
Interrupt Vector) to get the address of the standard
routine, save the address, then use Function Request 25H
(Set Interrupt Vector) to change the Interrupt 23H entry in
the vector table to point to your routine.

If the Control-C routine preserves all registers, it can end
with an IRET instruction (return from interrupt) to continue
program execution. If the wuser-written interrupt program
returns with a long return, the carry flag is used to
determine whether or not the program will abort. If the
carry flag is set, it will be aborted; otherwise, execution
will continue as with a return by IRET. If the user-written
Control-Break interrupt uses function calls 09H or OAH, then
Control-C, Return, and Line Feed are output. If execution
continues with an IRET instruction, I/O continues from the
start of the line.

When the interrupt occurs, all registers are set to the
value they had when the original call to MS-DOS was made.
There are no restrictions on what a Control-C handler can do
-~ including MS-DOS function calls -- as 1long as the
registers are unchanged if IRET is used.

If Function 09H or OAH (Display String or Buffered Keyboard
Input) 1is interrupted by Control-C, the three-byte sequence
03H-0DH-0AH (usually displayed as C followed by a carriage
return) 1is sent to the display and the function resumes at
the beginning of the next line.

If a program creates a second PSP and executes a second
program -- using Function 4B00H (Load and Execute Program),
for example -- and the second program changes the Control-C
address in the vector table, MS-DOS restores the Control-C
vector to its original value before returning control to the
calling program.

SYSTEM CALLS Interrupt 24H Page 1-37

Critical Error Handler Address (Interrupt 24H)

If a critical error occurs during execution of an I/0
function request -- this usually means a fatal disk error --
MS-DOS transfers control to the routine that starts at the
address in the 1Interrupt 24H entry in the vector table.
when MS-DOS creates a program segment, it copies this
address into the PSP starting at offset 12H.

This interrupt must never be issued by a user program; it
is issued only by MS-DOS. If you must write your own
critical error interrupt handler, use Function Request 35H
(Get Interrupt Vector) to get the address of the standard
routine, save the address, then wuse Function Request 25H
(Set Interrupt Vector) to change the Interrupt 24H entry in
the vector table to point to your routine.

Interrupt 24H is not 1issued if a failure occurs during
execution of Interrupt 25H (Absolute Disk Read) or Interrupt
26H (Absolute Disk Write). These errors are handled by the
error routine in COMMAND.COM that retries the disk
operation, then gives the wuser the <choice of aborting,
retrying the operation, or ignoring the error.

The following topics describe the requirements of an
Interrupt 24H routine, the error codes, registers, and
stack.

1.10.1 Conditions Upon Entry

After retrying an I/O error three times, MS-DOS issues
Interrupt 24H. The interrupt handler receives control with
interrupts disabled. AX and DI contain error codes, and BP
contains the offset (to the segment address in SI) of a
Device Header control block that describes the device on
which the error occurred.

1.10.2 Requirements For An Interrupt 24H Handler

To use the MS-DOS critical error handler to issue the
"Abort, Retry, or 1Ignore" prompt and get the user's
response, the first thing a user-written critical error
handler should do is push the flags and execute a far call
to the address of the standard Interrupt 24H handler (the
user program that changed the Interrupt 24H vector should
have saved this address). After the user responds to the
prompt, MS-DOS returns control to the user-written routine.

SYSTEM CALLS Interrupt 24H Page 1-38

NOTE: There are source applications which will have trouble
with this as it changes the stack frame.

The error handler can do its processing now, but before it
does anything else it must preserve BX, CX, DX, DS, ES, SS,
and SP. Only function calls 01-0CH inclusive and 59H may be
used (if it uses any others, the MS-DOS stack is destroyed
and MS-DOS is left in an unpredictable state), nor should it
change the contents of the Device Header.

If an Interrupt 24H routine returns to the user program
(rather than returning to MS-DOS), it must restore the user
program's registers -- removing all but the last three words
from the stack -- and issue an IRET. Control returns to the
statement immediately following the 1I/O function request
that resulted in the error. This leaves MS-DOS in an
unstable state until a function request above OCH is called.

User Stack

The user stack is in effect, and contains the following
(starting with the top of the stack):

IP MS-DOS registers from issuing Interrupt 24H
Cs
FLAGS

AX User registers at time of original
BX INT 21H

CX

DX

SI

DI

BP

DS

ES

Ip From the original INT 21H
Ccs from the user to MS-DOS
FLAGS

The registers are set such that if the user-written error

handler issues an IRET, MS-DOS responds according to the
value in AL:

AL Action

0 Ignore the error.

1 Retry the operation.

2 Abort the program by issuing Interrupt 23H.
3 Fail the system call that is in progress.

Note that the ignore option may cause unexpected results as
it causes MS-DOS to believe that an operation completed
successfully when it didn't.

SYSTEM CALLS Interrupt 24H Page 1-39

pisk Error Code in AX

If bit 7 of AH is 0, the error occurred on a disk drive. AL
contains the failing drive (0=A, 1=B, etc.). Bit 0 of AH
specifies whether the error occurred during a read or write
operation (0O=read, l=write), and bits 1 and 2 of AH identify
the area of the disk where the error occurred:

Bits

2-1 Location of error

00 MS-DOS area

0l File Allocation Table
10 Directory

11 Data area

Bits 3-5 of AH specify valid responses to the error prompt:

Bit Value Response

3 0 Fail not allowed
1 Fail allowed

4 0 Retry not allowed
1 Retry allowed

5 0 Ignore not allowed
1 Ignore allowed

If Retry is specified but not allowed, MS-DOS changes it to
FaiT.” If 1Ignore 1is specified but not allowed, MS-DOS
changes it to Fail. 1If Fail is specified but not allowed,
MS-DOS changes it to Abort. The Abort response is always
allowed.

Other Device Error Code in AX

If bit 7 of AH is 1, either the memory image of the File
Allocation Table (FAT) 1is bad or an error occurred on a
character device. The device header pointed to by BP:SI
contains a word of attribute bits that identify the type of
device and, therefore, the type of error.

The word of attribute bits is at offset 04H of the Device
Header. Bit 15 specifies the type of device (0=block,
l1=character).

If bit 15 is 0 (block device), the error was a bad memory
image of the FAT.

If bit 15 is 1 (character device), the error was on a
character device. DI contains the error code, the contents
of AL are undefined, and bits 0-3 of the attribute word have
the following meaning:

SYSTEM CALLS Interrupt 24H Page 1-40

Bit Meaning If Set

0 Current standard input
1 Current standard output
2 Current null device

3 Current clock device

See Chapter 2 for a complete description of the Device
Header control block.

Error Code in DI

The high byte of DI is undefined. The low byte contains the
following error codes:

Error
Code Description

Attempt to write on write-protected disk
Unknown unit

Drive not ready

Unknown command

CRC error in data

Bad drive request structure length
Seek error

Unknown media type

Sector not found

Printer out of paper

Write fault

Read fault

General failure

QAWPOUOIOUVIBWNH O

A user-written Interrupt 24H handler can use Function 59H
(Get Extended Error) to get detailed information about the
error that caused the interrupt to be issued.

SYSTEM CALLS Interrupt 25H Page 1-41

Absolute Disk Read (Interrupt 25H)

AX: AH AL Call
BX: BH BL AL
ox: cH cL Drive number
DX: DH oL DS:BX
pos Disk Transfer Address
BP Cx
p Number of sectors
DX

Beginning relative sector

P
FLAGSH | FLAGS.

Return
cs AL
s Error code if CF=1
ss FlagsL
s CF 0 if successful

1 if not successful

The registers must contain the following:

AL Drive number (0=A, 1=B, etc.).
BX Offset of Disk Transfer Address
(from segment address in DS).
CcX Number of sectors to read.
DX Beginning relative sector.
Warning

It is strongly recommended that the use of this
function be avoided unless absolutely necessary.
Access to files should be done through the normal
MS-DOS function requests. There is no guarantee of
upward compatibility for the Absolute Disk I/O in
future releases of MS-DOS.

This interrupt transfers control to the device driver. The
number of sectors specified in CX is read from the disk to
the Disk Transfer Address. 1Its requirements and processing
are identical to Interrupt 26H, except data is read rather
than written. Very little checking is done on the user's
input parameters; therefore, care must be used to make sure
they are reasonable. Failure to do this may cause strange
results or a system crash.

SYSTEM CALLS Interrupt 25H Page 1-42

Note

All registers except the segment registers are
destroyed by this call. Be sure to save any registers
your program uses before issuing the interrupt.

The system pushes the flags at the time of the call; they
are still there upon return. Be sure to pop the stack upon
return to prevent uncontrolled growth.

If the disk operation was successful, the Carry Flag (CF) is
0. If the disk operation was not successful, CF is 1 and AL
contains the MS-DOS error code (see Interrupt 24H earlier in
this section for the codes and their meanings).

Macro Definition:
abs_disk_read macro disk,buffer,num _sectors,first_sector

mov al,disk

mov bx,offset buffer
mov Ccx,num_sectors
mov dx,first_sector
int 25H

popf

endm

Example

The following program copies the contents of a single-sided
disk in drive A to the disk in drive B.

prompt db "Source in A, target in B",0DH,0AH

db "Any key to start. $"
first dw 0
buffer db 60 dup (512 dup (?)) ;60 sectors
begin: display prompt ;see Function 09H

read kbd ;see Function 08H

mov cx,6 jcopy 6 groups of

;60 sectors

copy: push cx ;save the loop counter

abs_disk_read O0,buffer,60,first ;THIS INTERRUPT
abs_disk_write 1,buffer,60,first ;see INT 26H
add first,60 ;do the next 60 sectors
pop cCx ;restore the loop counter
loop copy

SYSTEM CALLS Interrupt 26H Page 1-43

Absolute Disk Write (Interrupt 26H)

AX: AH AL Cal l
BX: BH Bl AL
ox: cH oL Drive number
DX: DH oL DS:BX
Disk Transfer Address
SP CX
ki Number of sectors
s Dx
ol Beginning relative sector

P
FLAGSw | FLAGS.

Return
cs AL
08 Error code if CF'= 1
ss FLAGSL
Es CF = 0 if successful
1 if not successful
Warning

It is strongly recommended that the use of this
function be avoided unless absolutely necessary.
Access to files should be done through the normal
MS-DOS function requests. There is no guarantee of
upward compatibility for the Absolute Disk I/O in
future releases of MS-DOS.

The registers must contain the following:

AL Drive number (0=A, 1=B, etc.).

BX Offset of Disk Transfer Address
(from segment address in DS).

CX Number of sectors to write.

DX Beginning relative sector.

This interrupt transfers control to MS-DOS. The number of
sectors specified in CX is written from the Disk Transfer
Address to the disk. 1Its requirements and processing are
identical to 1Interrupt 25H, except data is written to the
disk rather than read from it. Very little checking is done
on the wuser's input parameters; therefore, care must be
used to make sure they are reasonable. Failure to do this
may cause strange results or a system crash.

SYSTEM CALLS Interrupt 26H Page 1-44

Note

All registers except the segment registers are
destroyed by this call. Be sure to save any registers
your program uses before issuing the interrupt.

The system pushes the flags at the time of the call; they
are still there upon return. Be sure to pop the stack upon
return to prevent uncontrolled growth.

If the disk operation was successful, the Carry Flag (CF) is
0. If the disk operation was not successful, CF is 1 and AL
contains the MS-DOS error code (see Interrupt 24H for the
codes and their meanings).

Macro Definition:
abs_disk write macro disk,buffer,num sectors,first sector

mov al,disk

mov bx,offset buffer
mov Cx,num_sectors
mov dx,first_sector
int 26H

popf

endm

Example

The following program copies the contents of a single-sided
disk in drive A to the disk in drive B, verifying each
write. It uses a buffer of 32K bytes.

off equ 0
on equ 1
prompt db "Source in A, target in B",0DH,0AH
db "Any key to start. $"
first dw 0
buffer db 60 dup (512 dup (?)) ;60 sectors
Segin: display prompt ;see Function 09H
read_kbd ;see Function 08H
verify on ;see Function 2EH
mov cx,6 ;jcopy 6 groups of 60 sectors
copy: push cx ;save the loop counter

abs_disk_read 0,buffer,60,first ;see INT 25H
abs disk write 1,buffer,60,first ;THIS INTERRUPT

add first,60 ;do the next 60 sectors
pop cCx srestore the loop counter
loop copy

verify off ;see Function 2EH

SYSTEM CALLS Interrupt 27H Page 1-45

Terminate But Stay Resident (Interrupt 27H)

Ax: AH AL Call
BX: BH BL CS:DX
ox: | cH L Pointer to first byte following
ox: oH oL last byte of code.
SP
8P Return
b None

DI

P
FLAGSH | FLags.

cs
DS
ss
ES

Interrupt 27H makes a program up to 64K in size remain
resident after it terminates. It is often used to install
device-specific interrupt handlers.

This interrupt 1is provided only for compatibility with
versions of MS-DOS prior to 2.0. You should use Function
31H (Keep Process), which 1lets programs larger than 64K
remain resident and allows return information to be passed,
to install a resident program unless it is absolutely
imperative that your program be compatible with pre-2.0
versions of MS-DOS.

DX must contain the offset (from the segment address in CS)
of the first byte following the last byte of code in the
program. When Interrupt 27H 1is executed, the program
terminates and control returns to DOS, but the program is
not overlaid by other programs. Files left open are not
closed. When the interrupt is called, CS must contain the
segment address of the Program Segment Prefix (the value of
DS and ES when execution started).

This interrupt must not be used by .EXE programs that are
loaded into high memory. It restores the Interrupt 22H,
23H, and 24H vectors, so it cannot be used to install new
Control-C or critical error handlers.

SYSTEM CALLS Interrupt 27H Page 1-46

Macro Definition: stay_resident macro last_instruc
mov dx,offset last_instruc

inc dx
int 27H
endm

Example

Because the most common use of this call is to install a
machine-specific routine, an example is not shown. The
macro definition shows the calling syntax.

1.11 FUNCTION REQUESTS

The following pages describe function calls 00H-62H.

SYSTEM CALLS Function 00H Page 1-47

Terminate Program (Function 00H)

AX: AH AL Call

BX: BH BL AH = 00H

cx: CH cL cs

ox | oW oL Segment address of

- Program Segment Prefix

BP
st

Return
None

»
FLAGSH | FLAGS!

ss
ES

Function 00H is called by Interrupt 20H; it performs the
same processing.

The CS register must contain the segment address of the
Program Segment Prefix before you call this interrupt.

The following exit addresses are restored from the specified
offsets in the Program Segment Prefix:

Offset Exit Address

0AH Program terminate
OEH Control-C

12H Critical error

All file buffers are flushed to disk.

Warning

Close all files that have changed in length before
calling this function. If a changed file is not
closed, its length is not recorded correctly in the
directory. See Function 10H for a description of the
Close File system call.

SYSTEM CALLS Function 00H Page 1-48

Macro Definition: terminate_program macro

Xor ah,ah
int 21H
endm

Example

The following program displays a message and returns to
MS-DOS. It uses only the opening portion of the sample
program skeleton shown in Figure 1.2.

message db "Displayed by FUNCOOH example", ODH,0AH,"S$"

5egin: display message ;see Function 09H
terminate_program ;THIS FUNCTION
code ends

end start

SYSTEM CALLS Function 01H Page 1-49

Read Keyboard and Echo (Function 01H)

Ax: AH AL Call
BX: BH BL AH = 0l1lH
ox: CcH oL
DX: DH DL
Return
P AL
BP Character typed

s!
DI

P
FLaGsh | Flags

cs
DS
ss
ES

Function 0lH waits for a character to be read from standard
input, then echoes the character to standard output and
returns it in AL. If the character is Control-C, 1Interrupt
23H is executed.

Macro Definition: read kbd_and_echo macro
mov ah, 0lH
int 21H
endm

Example

The following program displays and prints characters as they
are typed. If Return is pressed, the program sends a Line
Feed-Carriage Return sequence to both the display and the
printer.

begin: read_kbd_and_echo ;THIS FUNCTION
print_char al ;see Function 05H
cmp al,0DH ;is it a CR?
jne begin ;no, print it
print_char OAH ;see Function 05H
display_char OAH ;see Function 02H

jmp begin ;get another character

SYSTEM CALLS Function 02H Page 1-50

Display Character (Function 02H)

Call

DL

None

P
FLAGS | FLAGS.

cs

8S
ES

AH = 02H

Return

Character to be displayed

Function 02H sends the character in DL to standard output.
If Control-C is typed, Interrupt 23H is issued.

Macro Definition: display char macro character

Example

The following program converts

mov
mov
int
endm

uppercase before displaying them.

begin: read_kbd
cmp al,"a"
jl uppercase
cmp al,"z"
jg uppercase
sub al,20H

uppercase: display char al
jmp begin:

dl,character
ah,02H
21H

lowercase characters to

;see Function 08H
;don't convert

;don't convert
;convert to ASCII code
;for uppercase
;THIS FUNCTION
;get another character

SYSTEM CALLS Function 03H Page 1-51

Auxiliary Input (Function 03H)

Ax: AH M Call
BX: BH BL AH = 03H
cX: CH cL
DX: DH DL
- Return
AL

hid Character from auxiliary device

si
DI

3
FLAGSH | FLaGS.

DS
ss
ES

Function 03H waits for a character from standard auxiliary,
then returns the character in AL. This system call does not
return a status or error code.

If a Control-C has been typed at console input, Interrupt
23H is issued.

Macro Definition: aux_input macro
mov ah,03H
int 21H
endm

Example
The following program prints characters as they are received

from the auxiliary device. It stops printing when an
end-of-file character (ASCII 26, or Control-Z) is received.

begin: aux_input ;THIS FUNCTION
cmp al,lAH ;end of file?
je return ;yes, all done

print_char al ;see Function 05H
jmp begin ;get another character

SYSTEM CALLS Function 04H Page 1-52

Auxiliary Output (Function 04H)

AX:

BX:

CX:

2

AH AL Call

BH BL AH = 04H

CH cL DL

oH oL Character for auxiliary device
sp \
s Return
b None

DI

A3

FLAGSH | FLAGS.

cs

Ds

ss

ES

Function 04H sends the character in DL to standard
auxiliary. This system call does not return a status or
error code.

If a Control-C has been typed at console input, Interrupt
23H is issued.

Macro Definition: aux_output macro character

Example

mov dl,character
mov ah,04H \
int 21H

endm

The following program gets a series of strings of up to 80
bytes from the keyboard, sending each to the auxiliary

device.
string

éegin:

send_it:

It stops when a null string (CR only) is typed.

db 81 dup(?) ;see Function 0AH

get_string 80,string ;see Function 0AH

cmp string[l],0 ;null string?

je return ;yes, all done

mov cx, word ptr string[l] ;get string length

mov bx,0 ;set index to 0
aux_output string[bx+2] sTHIS FUNCTION

inc bx sbump index

loop send_it ;send another character
jmp begin ;get another string

SYSTEM CALLS Function 05H Page 1-53

Print Character (Function 05H)

AX: AH AL Call

BX: BH BL AH = 05H

ox: CH cL DL

oX: DH [Character for printer
SP
ks Return
s None

DI

P
FLAGSH | FLAGS.

cs
DS
ss
ES

Function 05H sends the character in DL to the standard
printer. If Control-C has been typed at console input,
Interrupt 23H is issued. This function request does not
return a status or error code.

Macro Definition: print char macro character
- mov dl,character
mov ah,05H
int 21H
endm

Example

The following program prints a walking test pattern on the
printer., It stops if Control-C is pressed.

line_num db 0
Begin: mov cx,60 ;print 60 lines
start_line: mov bl,33 ;first printable ASCII

;character (!)
add bl,line_num ;to offset one character

push cx ;save number-of-lines counter

mov cx,80 ;loop counter for line
print_it: print char bl ;THIS FUNCTION

inc bl ;move to next ASCII character

cmp bl,126 ;last printable ASCII

;character (7)
jl no_reset ;not there yet

SYSTEM CALLS Function 05H Page 1-54

no reset: loop print_ it sprint another character
- print_char ODH ;carriage return
print_char O0AH ;line feed
inc line_num ;to offset 1st char. of line
pop CXx ;jrestore #-of-lines counter

loop start_line ;print another line

SYSTEM CALLS

Function 06H Page 1-55

Direct Console I/0 (Function 06H)

AX:

BX:

Ccx:

DbX:

AN AL Call
BH 8L AH = 06H
cH cL DL
DH oL See text
SP
kad Return
s AL
o If DL = FFH before call,
- then zero flag not set means AL
Fiacss | Furcs. has character from standard input.
Zero flag set means there was not
cs a character to get, and AL = 0
DS
ss
ES

The action of Function 06H depends on the value in DL when
the function is called:

Value in DL

FFH

Not FFH

Action

If a character has been read from standard
input, it is returned in AL and the zero flag
is cleared (0); if a character has not been
read, the zero flag is set (1).

The character in DL is sent to standard
output.

This function does not check for Control-C.

Macro Definition: dir_console_io macro switch

mov dl,switch
mov ah,06H
int 21H

endm

SYSTEM CALLS Function 06H Page 1-56

Example

The following program sets the system clock to 0 and
continuously displays the time. When any character is
typed, the display freezes; when any character is typed
again, the clock is reset to 0 and the display starts again.

time db "00:00:00.00",0DH,0AH,"$" ;see Function 09r
: ;for explanation of §
éegin: set_time 0,0,0,0 ;see Function 2DH
read_clock: get_time ;see Function 2CH
byte_to_dec ch,time ;see end of chapter

byte_to_dec cl,time[3] ;see end of chapter
byte to dec dh,time[6] ;see end of chapter
byte _to _dec dl,time[9] ;see end of chapter

display time ;see Function 09H
dir_console_io FFH ;THIS FUNCTION
cmp al,o ;character typed?
jne stop ;yes, stop timer
Jjmp read_clock ;no, keep timer
srunning
stop: read_kbd ;see Function 08H

jmp begin ;start over

P

SYSTEM CALLS Function 07H Page 1-57

pDirect Console Input (Function 07H)

AX: AH. AL Cal]_
BX: BH BL AH - 07H
CX: CH cL
DX: DH DL
- Return
AL

BP
si
Dt

Character from keyboard

P
FLAGS | FLAGs.

cs
DS
ss
ES

Function 07H waits for a character to be read from standard
input, then returns it in AL. This function does not echo
the character or check for Control-C. (For a keyboard input
function that echoes or checks for Control-C, see Function
01H or 08H.)

Macro Definition: dir_console_input macro
mov ah,07H
int 21H
endm

Example

The following program prompts for a password (8 characters
maximum) and places the characters into a string without
echoing them.

password db 8 dup(?)

prompt db "Password: $" ;see Function 09H for
;explanation of $

begin: display prompt ;Ssee Function 09H
mov cx,8 ;maximum length of password
xor bx,bx ;s0 BL can be used as index

get pass: dir console input ;THIS FUNCTION

- cmp al,0DH ;was it a CR?

je return ;yes, all done
mov password [bx] ,al ;no, put character in string
inc bx sbump index

loop get_pass ;get another character

SYSTEM CALLS Function 08H

Read Keyboard (Function 08H)

Ax: AH AL Call
BX: BH BL AH = 08H
cx: CH cL
DX: DH DL
Return
SP AL
8P Character from keyboard

S|
DI

P
FLAGSH | FLags.

cs
DS
ss
ES

Page 1-58

Function 08H waits for a character to be read from standard

input, then returns it in AL.

If Control-C is pressed,

Interrupt 23H is executed. This function does not echo the
character. (For a keyboard input function that echoes the

character or checks for Control-C,

Macro Definition: read_kbd macro

mov ah,08H
int 21H
endm

Example

The following program prompts for a password
maximum) and places the characters into a string without

echoing them.

password db 8 dup(?)
prompt db "Password: $"

begin: display prompt
mov Cx,8
xor bx,bx
get_pass: read_kbd
cmp al,0DH
je return
mov password[bx],al
inc bx
loop get_pass

see Function 01H.)

(8 characters

;see Function 09H

;for explanation of §

;see Function 09H

;maximum length of password
;BL can be an index

;THIS FUNCTION
;was it a CR?

;yes, all done
;no, put char.
;bump index

in string

;get another character

N

SYSTEM CALLS Function 09H Page 1-59

Display String (Function 09H)

AX: AH AL Call
BX: BH BL AH = 09H
ox: CcH cL DS:DX
ox: [oL Pointer to string to be displayed
SP
= Return
S|
None
DI
P
FLAGSH FLAGSL
cs
08
ss
ES

Function 09H sends to standard output a string that ends
with "$" (the $ 1is not displayed). DX must contain the
offset (from the segment address in DS) of the string.

Macro Definition: display macro string
mov dx,offset string
mov ah,09H
int 21H
endm

Example

The following program displays the hexadecimal code of the
key that is typed.

table db "0123456789ABCDEF"
result db " - OOH",0DH,0AH,"S$" ;see text for
jexplanation of §$
begin: read_kbd_and_echo ;see Function 0lH
Xor ah,ah ;clear upper byte
convert ax,l16,result[3] ;see end of chapter
display result ;THIS FUNCTION

jmp begin ;do it again

SYSTEM CALLS Function 0AH Page 1-60

Buffered Keyboard Input (Function OAH)

ax [an AL Call

e | B BL AH = 0OAH

ox: CH cL DS : DX

ox [oW Pointer to input buffer

sP
BP
si
)

Return
None

P

FLGSH | Flags:

Function OAH gets a string from standard input. DX must
contain the offset (from the segment address in DS) of an
input buffer of the following form:

Byte Contents

1 Maximum number of characters in buffer, including
the carriage return (you must set this value).

2 Actual number of characters typed, not counting
the Carriage Return (the function sets this
value).

3-n Buffer; must be at least as long as the number
in byte 1.

Characters are read from standard input and placed in the
buffer beginning at the third byte until a Return (0ODH) is
read. If the buffer fills to one 1less than the maximum,
additional characters read are ignored and 07H (Bel) is sent
to standard output until a Return is read. If the string is
typed at the console, it can be edited as it is being
entered. If Control-C is typed, Interrupt 23H is issued.

MS-DOS sets the second byte of the buffer to the number of
characters read (not counting the Carriage Return).

SYSTEM CALLS

Macro Definition:

Example

The following program gets a l6-byte (maximum)

Function 0AH

macro
mov
mov
mov
int
endm

get_string

Page 1-61
limit,string
dx,offset string
string,limit
ah,0AH
21H
string from

the keyboard and fills a 24-line by 80-character screen with

it.

buffer
max_length
chars_entered
string
strings_per_ line
crlf

6egin:

display_screen:

display_line:

label byte

db ?

db ?

db 17 dup (?)

dw 0

db 0DH, OAH
get_string 17,buffer
xor bx,bx

mov bl,chars_entered
mov buffer [bx+2],"S"
mov al,50H

cbw

div chars_entered
xor ah,ah

mov

mov cCx,24

push cx

mov

display string

loop display_line
display crlf

pop cx

loop display_screen

;maximum length
;number of chars.
;16 chars + CR
;how many strings
;£it on line

;THIS FUNCTION

;SO0 byte can be
;used as index
;get string length
;see Function 09H
;columns per line

;times string fits
;on line
;clear remainder

strings_per line,ax ;save col. counter

;row counter
;save it

cx,strings_per_line ;get col. counter

;see Function 09H

;see Function 09H
;get line counter

;display 1 more line

SYSTEM CALLS Function OBH Page 1-62

Check Keyboard Status (Function OBH)

Ax: Call

BX: AH = 0BH

CcX:

DX: DH DL

Return
SP AL
& FFH = characters in type-ahead
st buffer
o 0 = no characters in type-ahead
" buffer
FLAGSH | FLAGS.

cs

DS

S8
ES

Function OBH checks whether characters are available from
standard input (if standard input has not been redirected,
the type-ahead buffer). If characters are available, AL
returns FFH; if not, AL returns 0. If Control-C is in the
buffer, Interrupt 23H is executed.

Macro Definition: check_kbd_status macro
mov ah,0BH
int 21H
endm

Example

The following program continuously displays the
any key is pressed.

time until

time db "00:00:00.00",0DH,0AH,"S"

begin: get_time ;see Function 2CH
byte_to_dec ch,time ;see end of chapter
byte to dec cl,time[3] ;see end of chapter
byte_to_dec dh,time[6] ;see end of chapter
byte to_dec dl,time[9] ;jsee end of chapter
display time ;see Function 09H

check_kbd_status ;THIS FUNCTION

cmp al,0FFH ;has a key been typed?
je return ;yes, go home
jmp begin ;no, keep displaying

stime

SYSTEM CALLS Function OCH Page 1-63

Flush Buffer, Read Keyboard (Function OCH)

AX: AH AL Call

BX: BH BL AH = 0CH

cx: CH cL AL

oX: oH oL l, 6, 7, 8, or OAH = the

corresponding function
is called.

Any other value = no
further processing.

SP

BP

SI

DI

14

FLAGSH | Flags. Return
AL
cs 0 = Type-ahead buffer was
s flushed; no other
ss processing performed.

ES

Function OCH empties the standard input buffer (if standard
input has not been redirected, Function OCH empties the
type-ahead buffer). Further processing depends on the value
in AL when the function is called.

1, 6, 7, 8, or OAH -- The corresponding MS-DOS function
is executed.

Any other value -- No further processing; AL returns 0.

Macro Definition: flush and read kbd macro switch
-~ - mov al,switch
mov ah,0CH
int 21H
endm

Example

The following program both displays and prints characters as
they are typed. If Return is pressed, the program sends
Carriage Return-Line Feed to both the display and the
printer.

begin: flush_and_read_kbd 1 ;THIS FUNCTION
print_char al ;see Function 05H
cmp al,ODH ;is it a CR?
jne begin ;no, print it
print_char OAH ;see Function 05H
display_char OAH ;see Function 02H

jmp begin ;get another character

SYSTEM CALLS Function ODH Page 1-64

Reset Disk (Function ODH)

AX: AH AL Call
BX: BH BL | AH = ODH
ox: CH cL
DX: DH DL
Return
i None

BP
si
DI

P
FLaGsk | FLags.

cs
DS
s
ES

Function ODH flushes all file buffers to ensure that the
internal buffer cache matches the disks in the drives. It
writes out buffers that have been modified, and marks all
buffers in the internal cache as free. This function
request is normally used to force a known state of the
system; Control-C interrupt handlers should call this
function.

This function request does not update directory entries;
you must close files that have changed to update their
directory entries (see Function 10H, Close File).

Macro Definition: reset disk macro
mov ah,0ODH
int 21H
endm

Example

The following program flushes all file buffers and selects
disk A.

begin: reset_disk
select_disk "A"

SYSTEM CALLS Function OEH Page 1-65

Select Disk (Function 0EH)

AX: AH AL Call

BX: BH BL AH = OEH

CX: CH cL DL

x: OH oL Drive number

p (0 =A, 1 =B, etc.)

BP

SI
DI

Return
AL

™ Number of logical drives
FLAGSH l FLAGSL

cs
DS
ss
ES

Function OEH selects the drive specified in DL (0=A, 1=B,
etc.) as the current drive. AL returns the number of
drives.

Note

For future compatibility, treat the value returned in
AL with care. For example, if AL returns 5, it is not
safe to assume drives A, B, C, D, and E are all valid
drive designators.

SYSTEM CALLS Function OEH

Macro Definition: select_disk macro disk

mov dl,disk[-64]
mov ah,OEH

int 21H

endm

Example

The following program selects the drive not

selected in a 2-drive system.

begin: current_disk ;see Function 19H
cmp al,00H ;drive A: selected?
je select b iyes, select B
select disk "A" ;THIS FUNCTION
jmp " return

select_b: select disk "B" ;THIS FUNCTION

Page 1-66

currently

SYSTEM CALLS Function OFH Page 1-67

Open File (Function OFH)

AX: AH AL Call
BX: BH BL AH = OFH
CX: CH cL DS +DX
DX: DH oL Pointer to unopened FCB
sP
i Return
st AL
o 0 = Directory entry found
" FFH = No directory entry found
FLAGSH | FLags.
cs
DS
ss
ES

Function OFH opens a file. DX must contain the offset (from
the segment address in DS) of an unopened File Control Block
(FCB) . The disk directory is searched for the named file.

If a directory entry for the file is found, AL returns 0 and
the FCB is filled as follows:

If the drive code was 0 (current drive), it is changed
to the actual drive used (l=A, 2=B, etc.). This lets
you change the current drive without interfering with
subsequent operations on this file.

Current Block (offset OCH) is set to 0.

Record Size (offset OEH) is set to the system default
of 128.

File Size (offset 10H), Date of Last Write (offset
14H), and Time of Last Write (offset 16H) are set from
the directory entry.

Before performing a sequential disk operation on the file,
you must set the Current Record field (offset 20H). Before
performing a random disk operation on the file, you must set
the Relative Record field (offset 21H). If the default
record size (128 bytes) 1is not correct, set it to the
correct length.

If a directory entry for the file is not found, or if the
file has the hidden or system attribute, AL returns FFH,

SYSTEM CALLS Function OFH Page 1-68

Macro Definition: open macro fcb
mov dx,offset fcb
mov ah,OFH
int 21H
endm

Example

The following program prints the file named TEXTFILE.ASC
that is on the disk in drive B. 1If a partial record is in
the buffer at end-of-file, the routine that prints the
partial retord prints characters until it encounters an
end-of-file mark (ASCII 26, or Control-Zz).

fcb db 2,"TEXTFILEASC"

db 26 dup (?)
buffer db 128 dup (?)
’
begin: set_dta buffer ;see Function 1AH

open fcb ;THIS FUNCTION
read_line: read_seq fcb ;see Function 14H

anp al,02H ;end of file?

je all_done ;yes, go home

anp al,00H ;more to come?

jg check_more ;no, check for partial

srecord

mov cx,80H ;yes, print the buffer

Xor si,si ;set index to 0
print_it: print_char buffer[si] ;see Function 05H

inc si ;bump index

loop print_it ;print next character

jmp read line ;read another record
check_more: cmp al,03H ;part. record to print?

jne all_done ;no

mov cx,80H ;yes, print it

X0or si,si ;set index to 0
find_eof: cmp buffer([si],26 ;end-of-file mark?

je all_done syes

print_char buffer[si] ;see Function 05H

inc si ;bump index to next

;character

loop find_eof
all_done: close fcb ;see Function 10H

SYSTEM CALLS Function 10H Page 1-69

Close File (Function 10H)

Ax: ™ AL Call
BX: BH BL AH = 10H
cx: cH cL DS :DX
ox: oH oL Pointer to opened FCB
SP
8P Return
sl AL
o 0 = Directory entry found

FFH = No directory entry found

P
FLAGSH | FLAGSL

cs
08
ss
ES

Function 10H closes a file. DX must contain the offset (to
the segment address in DS) of an opened FCB. The disk
directory is searched for the file named in the FCB. If a
directory entry for the file is found, the location of the
file is compared with the corresponding entries in the FCB.
The directory entry is updated, if necessary, to match the
FCB, and AL returns 0.

This function must be called after a file is changed to
update the directory entry. It is strongly advised that any
FCB (even one for a file that hasn't been changed) be closed
when access to the file is no longer needed.

If a directory entry for the file is not found, AL returns
FFH.

Macro Definition: close macro fcb
mov dx,offset fcb
mov ah,10H
int 21H
endm

SYSTEM CALLS Function 10H Page 1-70

Example

The following program checks the first byte of the file
named MOD1l.BAS in drive B to see if it is FFH, and prints a
message if it is.

message db "Not saved in ASCII format",0DH,O0AH,"$" (
fch db 2,"MOD1 BAS"
db 26 dup (?)
buffer db 128 dup (?)
Begin: set_dta buffer ;see Function 1AH
open fcb ;see Function OFH
read_seq fcb ;see Function 14H
cmp buffer,QFFH ;is first byte FFH?
jne all_done ;no
display message ;see Function 09H
all_done: close fcb ;THIS FUNCTION
/
\

AN

SYSTEM CALLS Function 11H Page 1-71

Search for First Entry (Function 11H)

AX: AH AL Call
BX: BH BL AH = 11H
cx: CcH cL DS :DX
ox: | ou oL Pointer to unopened FCB
sP
8P Return
St AL
oI 0 = Directory entry found

- FFH = No directory entry found

FLAGSH FLAGSL

ss

ES

Function 11H searches the disk directory for the first
matching filename. DX must contain the offset (from the
segment address in DS) of an unopened FCB. The filename in
the FCB can include wildcard characters. To search for
hidden or system files, DX must point to the first byte of
an extended FCB prefix.

If a directory entry for the filename in the FCB 1is not
found, AL returns FFH.

If a directory entry for the filename in the FCB is found,
AL returns 0 and an unopened FCB of the same type (normal or
extended) 1is created at the Disk Transfer Address as
follows:

If the search FCB was normal, the first byte at the Disk
Transfer Address is set to the drive number used (l=A, 2=B,
etc.) and the next 32 bytes contain the directory entry.

If the search FCB was extended, the first byte at the Disk
Transfer Address is set to FFH, the next 5 bytes are set to
00H, and the following byte is set to the value of the
attribute byte in the search FCB. The remaining 33 bytes
are the same as the result of the normal FCB (drive number
and 32 bytes of directory entry).

If Function 12H (Search for Next Entry) is used to continue
searching for matching filenames, the original FCB at DS:DX
must not be altered or opened.

SYSTEM CALLS Function 11H Page 1-72

The attribute field is the last byte of the extended FCB
fields that precede the FCB (see "Extended FCB" in Section
1.8.1 File Control Block (FFCB)). If the attribute field is
zero, only normal file entries are searched. Directory
entries for hidden files, system files, volume label, and
subdirectories are not searched.

If the attribute field 1is hidden file, system file, or
directory entry (02H, O04H, or 10H), or any combination of
those values, all normal file entries are also searched. To
search all directory entries except the volume label, set
the attribute byte to 16H (hidden file and system file and
directory entry).

If the attribute field is volume 1label (08H), only the
volume label entry is searched. :

Macro Definition: search first macro fcb
mov dx,offset fcb
mov ah,11H
int 21H
endm

Example

The following program verifies the existence of a file named
REPORT.ASM on the disk in drive B.

yes db "FILE EXISTS.$"

no db "FILE DOES NOT EXIST.S$"

crlf db ODH,0AH,"S$"

fcb db 2,"REPORT ASM"
db 26 dup (?)

buffer db 128 dup (?)

begin: set_dta buffer ;see Function 1lAH
search_first fcb ;THIS FUNCTION
cmp al,0FFH ;directory entry found?
je not_there ;no
display vyes ;see Function 09H
Jjmp continue

not_there: display no ;see Function 09H

continue: display crlf ;see Function 09H

SYSTEM CALLS Function 12H Page 1-73

Search for Next Entry (Function 12H)

AX: AH AL Call
BX: BH BL AH = 12H
ox: CH cL DS :DX
ox: DM oL Pointer to unopened FCB
sP
sp Return
st AL
ol 0 = Directory entry found
™ FFH = No directory entry found
FLAGSH FLAGSL
cs
oS
ss
ES

Function 12H is used after Function 11H (Search for First
Entry) to find additional directory entries that match a
filename that contains wildcard characters. It searches the
disk directory for the next matching name. DX must contain
the offset (from the segment address in DS) of an FCB
previously specified in a call to Function 11H. To search
for hidden or system files, DX must point to the first byte
of an extended FCB prefix that includes the appropriate
attribute value.

If a directory entry for the filename in the FCB 1is not
found, AL returns FFH.

If a directory entry for the filename in the FCB is found,
AL returns 0 and an unopened FCB of the same type (normal or
extended) is created at the Disk Transfer Address (see
Function 11H for a description of how the unopened FCB is
formed) .

Macro Definition: search next macro fcb
- mov dx,offset fcb
mov ah,12H
int 21H
endm

SYSTEM CALLS Function 12H Page 1-74

Example

The following program displays the number of files on the
disk in drive B.

message db "No files",0DH,0AH,"S$"
files db 0
fcb db 2,"222222222?22"
db 26 dup (?)
buffer db 128 dup (?)
’
begin: set_dta buffer ;See Function 1AH
search_first fcb ;see Function 11H
cmp al,0FFH ;directory entry found?
je all_done ;no, no files on disk
inc files ;yes, increment file
jcounter
search_dir: search_next fcb ;THIS FUNCTION
cmp al,OFFH ;directory entry found?
je done ;no
inc files ;yes, increment file
jcounter
jmp search dir ;check again
done: convert files,10,message ;see end of chapter

all_done: display message ;Ssee Function 09H

SYSTEM CALLS Function 13H Page 1-75

Delete File (Function 13H)

Ax: AH aL Call
BX: BH BL AH = 13H
ox: cH oL DS :DX
ox: on oL Pointer to unopened FCB
SP
8P Return
sl Al
ol 0 = Directory entry found
" FFH = No directory entry found
FLAGSH I FLAGSL
cs
ns
ss
ES

Function 13H deletes a file. DX must contain the offset
(from the segment address in DS) of an unopened FCB. The
directory is searched for a matching filename. The filename
in the FCB can contain wildcard characters.

If no matching directory entry is found, AL returns FFH.

If a matching directory entry is found, AL returns 0 and the
entry is deleted from the directory. If a wildcard
character is used in the filename, all files which match
will be deleted.

Do not delete open files.

Macro Definition: delete macro fcb

mov dx,offset fcb
mov ah,13H
int 21H

endm

SYSTEM CALLS Function 13H Page 1-76

Example

The following program deletes each file on the disk in drive
B that was last written before December 31, 1982.

year dw 1982

month db 12

day db 31

files db 0

message db "NO FILES DELETED.",0DH,0AH,"S$"

fcb db 2,"22222222222"
db 26 dup (?)

buffer db 128 dup (?)

begin: set_dta buffer ;see Function 1AH
search first fcb ;see Function 11H
anp al,0FFH ;directory entry found?
jne compare ;yes
jmp all_done ;no, no files on disk

compare: convert_date buffer ;see end of chapter
anp Cx,year ;next several lines
jg next ;check date in directory
cmp dl,month ;entry against date
jg next ;above & check next file
cnp dh,day ;if date in directory
jge next ;entry isn't earlier.
delete buffer ;THIS FUNCTION
inc files ;bump deleted-files

jcounter

next: search_next fcb ;see Function 12H
anp al,00H ;directory entry found?
je compare ;yes, check date
cnp files,0 ;any files deleted?
je all_done ;no, display NO FILES

;message.

convert files,10,message ;see end of chapter
all_done: display message ;see Function 09H

SYSTEM CALLS Function 14H Page 1-77

Sequential Read (Function 14H)

AX: AH. AL Call

BX: BH BL AH = 14H

cx: CH oL DS:DX

o | on Py Pointer to opened FCB
SP
BP Return
si AL
oI 00H = Read completed successfully

0lH = EOF
® 02H = DTA too small
FLAGS: | FLAGS. 03H = EOF, partial record

cs
D8
sS
ES

Function 14H reads a record from the specified file. DX
must contain the offset (from the segment address in DS) of
an opened FCB. The record pointed to by the Current Block
field (offset OCH) and Current Record (offset 20H) field is
loaded at the Disk Transfer Address, then the Current Block
and Current Record fields are incremented.

The length of the record is taken from the Record Size field
(offset OEH) of the FCB.

AL returns a code that describes the processing:

Code Meaning

0 Read completed successfully.

1 End-of-file; no data in the record.

2 Not enough room at the Disk Transfer Address

to read one record; read canceled.

3 End-of-file; a partial record was read and
padded to the record length with zeros.

Macro Definition: read_seq macro fcb
mov dx,offset fcb
mov ah,14H
int 21H
endm

SYSTEM CALLS Function 14H Page 1-78

Example

The following program displays the file named TEXTFILE.ASC
that 1is on the disk in drive B; its function is similar to
the MS-DOS Type command. If a partial record is 1in the
pbuffer at end of file, the routine that displays the partial
record displays characters until it encounters an
end-of-file mark (ASCII 1AH, or Control-Z).

fcb db 2,"TEXTFILEASC"
db 26 dup (?)
buffer db 128 dup (?),"s"
7
begin: set_dta buffer ;see Function 1AH
open fcb ;see Function OFH
read_line: read_seq fcb ;THIS FUNCTION
- cmp ~ al,02H ;DTA too small?
je all done iyes
cmp al,00H ;end-of-file?
ig check more ;yes
display buffer ;see Function 09H
jmp read_line ;get another record
check_more: cmp al,03H ;partial record in buffer?
jne all_done ;no, go home
Xor si,si ;set index to 0
find_eof: cmp buffer[si],26 ;is character EOF?
je all_done ;yes, no more to display
display char buffer[si] ;see Function 02H
inc si ;bump index
jmp find eof ;check next character

all_done: close fcb ;see Function 10H

SYSTEM CALLS Function 15H Page 1-79

Sequential Write (Function 15H)

AX: AN AL Call
BX: BH BL AH = 1‘5H
cX: CH cL DS : D).(
oxe o o Pointer to opened FCB
SP
BP Return
s AL
oI 00H = Write completed successfully
01H = Disk full
s 02H = DTA too small
FLAGS | FLAGS.
cs
DS
Ss
ES

Function 15H writes a record to the specified file. DX must
contain the offset (from the segment address in DS) of an
opened FCB. The record pointed to by Current Block field
(offset O0CH) and Current Record field (offset 20H) is
written from the Disk Transfer Address, then the Current
Block and Current Record fields are incremented.

The record size is taken from the value of the Record Size
field (offset O0EH) of the FCB. If the Record Size is less
than a sector, the data at the Disk Transfer Address is
written to an MS-DOS buffer; MS-DOS writes the buffer to
disk when it contains a full sector of data, or the file is
closed, or a Reset Disk system call (Function ODH) is
issued.

AL returns a code that describes the processing:

Code Meaning
0 Write completed successfully.
1 Disk full; write canceled.
2 Not enough room at the Disk Transfer Address

to write one record; write canceled.

SYSTEM CALLS Function 15H Page 1-80

Macro Definition: write_seq macro fcb
mov dx,offset fcb
mov ah,15H
int 21H
endm
Example

The following program creates a file named DIR.TMP on the
disk in drive B that contains the disk number (0=A, 1=B,
etc.) and filename from each directory entry on the disk.

record_size equ 0EH ;offset of Record Size
; field in FCB
fcbl db 2,"DIR TMP"
db 26 dup (?)
fcb2 db 2,"?2222222222?2"
db 26 dup (?)
buffer db 128 dup (?)
I
begin: set_dta buffer ;see Function 1AH
search_first fcb2 ;see Function 11H
cmp al,OFFH ;directory entry found?
je all done ;no, no files on disk
create fcbl ;see Function 16H
mov fcbl[record_size],12
;set record size to 12
write_it: write_ seq fcbl ;THIS FUNCTION
cmp al,0 ;write successful?
jne all done ;no, go home
search next fcb2 ;see Function 12H
cmp al,FFH ;directory entry found?
je all _done ;no, go home
jmp write it ;yes, write the record

all done: close febl ;see Function 10H

SYSTEM CALLS Function 16H Page 1-81

Create File (Function 16H)

AX: AH AL Call
BX: BH BL AH = 16H
cx: CcH cL DS :DX
px: o oL Pointer to unopened FCB
sP
e Return
si AL
ol 00H = Empty directory found
= FFH = No empty directory
available
FLAGSH FLAGSL
cs
DS
SS
ES

Function 16H creates a file. DX must contain the offset
(from the segment address in DS) of an unopened FCB. MS-DOS
searches the directory for an entry that matches the
specified filename or, if there is no matching entry, an
empty entry.

If MS-DOS finds a matching entry, it opens the file and sets
the length to zero (in other words, if you try to create a
file that already exists, MS-DOS erases it and creates a
new, empty file). If MS-DOS doesn't find a matching entry
but does find an empty directory entry, it opens the file
and sets its 1length to zero. In either case, the file is
created and AL returns 0. If MS-DOS doesn't find a matching
entry and there is no empty entry, the file is not created
and AL returns FFH.

You can assign an attribute to the file by using an extended
FCB with the attribute byte set to the appropriate value
(see "Extended FCB" in Section 1.8.1).

Macro Definition: create macro fcb
mov dx,offset fcb
mov ah,16H
int 21H
endm

SYSTEM CALLS Function 16H Page 1-82

Example

The following program creates a file named DIR.TMP on the
disk in drive B that contains the disk number (0 = A, 1 = B,
etc.) and filename from each directory entry on the disk.

record_size equ OEH ;joffset of Record Size
; field of FCB
fcbl db 2,"DIR TMP"
db 26 dup (?)
fcb2 db 2,"22222222222"
db 26 dup (?)
buffer db 128 dup (?)
begin: set_dta buffer ;see Function 1AH
search_first fcb2 ;see Function 1l1H
cmp al,0FFH ;directory entry found?
je all done ;no, no files on disk
create fcbl ;s THIS FUNCTION
mov fcbl[record size],12
“;set record size to 12
write_it: write seq fcbl ;see Function 15H
cmp al,o ;write successful
jne all done ;no, go home
search_next Tcb2 ;see Function 12H
cmp al,FFH ;directory entry found?
je all done ;no, go home
jmp write it ;yes, write the record /

all done: close fcbl ;see Function 10H '

SYSTEM CALLS Function 17H Page 1-83

Rename File (Function 17H)

Ax: AN AL Call
BX: BH BL AH = 17H
ox: cH cL DS :DX
ox: [on vy Pointer to modified FCB
SP
8P Return
st AL
oI 00H = Directory entry found

FFH = No directory entry
found or destination already
exists

P
FLAGSH FLAGSL

cs

ss
ES

Function 17H changes the name of an existing file. DX must
contain the offset (from the segment address in DS) of an
FCB with the drive number and filename filled 1in, followed
by a second filename at offset 11H. DOS searches the disk
directory for an entry that matches the first filename,
which can contain wildcard characters.

If MS-DOS finds a matching directory entry and there is no
directory entry that matches the second filename, it changes
the filename in the directory entry to match the second
filename in the modified FCB and AL returns zero. If a
wildcard character is wused in the second filename, the
corresponding characters in the filename of the directory
entry are not changed.

This function request cannot be used to rename a hidden
file, a system file, or a subdirectory. If MS-DOS does not
find a matching directory entry or finds an entry for the
second filename, AL returns FFH.

Macro Definition: rename macro fcb,newname
mov dx,offset fcb
mov ah,17H
int 21H
endm

SYSTEM CALLS Function 17H

Example

The following program prompts for the name of
new name, then renames the file.

fcb db 37 dup (?)

promptl db "Filename: $"

prompt2 db "New name: §$"

reply db 15 dup(?)

crlf db ODH,0AH,"$"

6egin: display promptl ;see
get_string 15,reply ;see
display crlf ;see
parse reply[2],fcb ;see
display prompt2 ;see
get_string 15,reply ;see
display crlf ;see
parse reply([2],fcb[1l6]

;i see

Page 1-84

a file

Function
Function
Function
Function
Function
Function
Function

Function

and

09H
O0AH
09H
29H
09H
0AH
09H

29H

rename fcb sTHIS FUNCTION

a

SYSTEM CALLS

Function 19H Page 1-85
Get Current Disk (Function 19H)
AxX: AH AL Call
BX: BH BL AH = 19H
CX: CH cL
DX: DH DL
Return
SP AL
8P Currently selected drive
hd (0 =A, 1 =B, etc.)
DI
P
FLAGSH FLAGSL
cs
bs
S$S
ES
Function 19H returns the current drive in AL (0=A, 1=B,
etc.).
Macro Definition: current _disk macro
mov ah,19H
int 21H
endm
Example
The following program displays the currently selected

(default) drive in a 2-drive system.

message db "Current disk is $"
crlf db ODH,OAH,"$"
éegin: display message ;see Function 09H

disk_b:
all_done:

current_disk

cmp al,00H
jne disk b
display_char "A"
jmp all done

display_char "B"
display crlf

sTHIS FUNCTION
;is it disk A?
;no, it's disk B:
;see Function 02H

;see Function 02H
;see Function 09H

SYSTEM CALLS Function 1AH Page 1-86

Set Disk Transfer Address (Function 1AH)

AX: AH AL Call
BX: BH BL AH = 1AH
cx: CH cL DS:DX
N e o Disk Transfer Address
SP
8P Return
si None
DI
P
FLAGSH FLAGSL
cs
DS
ss
ES

Function 1AH sets the Disk Transfer Address. DX must
contain the offset (from the segment address in DS) of the
Disk Transfer Address. Disk transfers cannot wrap around
from the end of the segment to the beginning, nor can they
overflow into another segment.

If you do not set the Disk Transfer Address, MS-DOS defaults
to offset 80H in the Program Segment Prefix. You can check
the current Disk Transfer Address with Function 2FH (Get
Data Transfer Address).

Macro Definition: set_dta macro buffer
mov dx,offset buffer
mov ah,1AH
int 21H

SYSTEM CALLS Function 1AH Page 1-87

Example

The following program prompts for a 1letter, converts the
letter to its alphabetic sequence (A=1, B=2, etc.), then
reads and displays the corresponding record from a file
named ALPHABET.DAT on the disk in drive B. The file
contains 26 records; each record is 28 bytes long.

record_size equ OEH ;offset of Record Size
;field of FCB
relative_record equ 21H ;offset of Relative Record
: field of FCB
fcb db 2,"ALPHABETDAT"
db 26 dup (?)
buffer db 28 dup(?),"s"
prompt db "Enter letter: $"
crlf db ODH,0AH,"S$"
’
begin: set_dta buffer ;THIS FUNCTION
open fcb ;see Function OFH
mov fcb[record_size],28 ;set record size
get_char: display prompt ;see Function 09H
read_kbd_and echo ;see Function 01H
cmp al,0DH ;just a CR?
je all_done ;yes, go home
sub al,41H ;convert ASCII
;code to record #
mov fcb[relative_record],al
;set relative record
display crlf ;see Function 09H
read_ran fcb ;see Function 21H
display buffer ;See Function 09H
display crlf ;see Function 09H
jmp get_char ;get another character

all_done: close fcb ;see Function 10H

SYSTEM CALLS Function 1BH Page 1-88

Get Default Drive Data (Function 1BH)

Call

AH = 1BH

Return ‘
sp AL N
BP Sectors per cluster
st X
ol Bytes per sector
14 DX

Clusters per drive
FLAGSH | FLAGS DS :BX

Pointer to FAT ID byte

Function 1BH retrieves data about the disk in the default
drive. The data is returned in the following registers:

AL The number of sectors in a cluster (allocation unit).
CX The number of bytes in a sector.
DX The number of clusters on the disk.

BX returns the offset (to the segment address in DS) of the
first byte of the File Allocation Table (FAT), which
identifies the type of disk in the drive:

Value Type of Drive

FF Double-sided diskette, 8 sectors per track.

FE Single-sided diskette, 8 sectors per track.

FD Double-sided diskette, 9 sectors per track.

FC Single-sided diskette, 9 sectors per track.,

F9 Double-sided diskette, 15 sectors per track.
F8 Fixed disk.

This call is similar to Function 36H (Get Disk Free Space),
except that it returns the address of the FAT ID byte in BX
instead of the number of available clusters, and to Function
ICH (Get Drive Data), except that it returns data on the
disk in the default drive instead of the disk in a specified
drive. For a description of how MS-DOS stores data on a
disk, including a description of the File Allocation Table,
see Chapter 3.

SYSTEM CALLS

Function 1BH

Macro Definition: def drive_data macro

Example

push
mov
int
mov

pop
endm

Page 1-89
ds
ah, 1BH
21H
al,byte ptr[bx]
ds

The following program displays a message that tells whether
the default drive is a diskette or fixed disk drive.

stdout

.
’

msg
remov
fixed
crlf

éegin:

diskette:
all_done:

equ

write handle
jc

def drive da
cmp -
jne
write_handle
jc

jmp short
write handle
write_handle
je

1

"Default drive is "

"diskette."
"fixed."
ODH ,OAH

stdout,msg,17
write_error
ta

;display message
;routine not shown
sTHIS FUNCTION

byte ptr [bx],0F8H ;check FAT ID byte

diskette
stdout,fixed, 6
write error
all_done
stdout,remov,9
stdout,crlf,2
write_error

;it's a diskette
;see Function 40H
;Ssee Function 40H
;clean up & go home
;see Function 40H
;see Function 40H
;routine not shown

SYSTEM CALLS

Function 1CH

Get Drive Data (Function 1CH)

Page 1-90

AX:) AL Call
8X: B 8 AH = 1CH
Ccx: cH oL DL
ox: ron vy Drive (0=default, 1=A, etc.)
hid Return
B8P AL
st OFFH if drive number is invalid,
ol otherwise sectors per cluster
X
" Bytes per sector
FLAGSH FLAGSL DX
o Clusters per drive
s DS:BX
P Pointer to FAT ID byte
ES

Function 1CH retrieves data about the disk in the

drive. DL must
etc.). The data is

AL The number

CX The number of bytes in a sector.
DX The number of clusters on the disk.

BX returns the offset (to the segment address

first byte

Value

FF
FE
FD
FC
F9
F8

I1f the drive number in DL

specified

contain the drive number (0=default, 1l=A,
returned in the following registers:

of sectors in a cluster (allocation unit).

in DS) of the

of the File Allocation Table (FAT), which
identifies the type of disk in the drive:

Type of Drive

Double-sided diskette, 8 sectors per
Single-sided diskette, 8 sectors per
Double-sided diskette, 9 sectors per
Single-sided diskette, 9 sectors per

track.
track.
track.
track.

Double-sided diskette, 15 sectors per track.

Fixed disk.

is invalid, AL returns OFFH.

\

SYSTEM CALLS Function 1lCH Page 1-91

This call is similar to Function 36H (Get Disk Free Space),
except that it returns the address of the FAT ID byte in BX
instead of the number of available clusters, and to Function
1BH (Get Default Drive Data), except that it returns data on
the disk in the drive specified in DL instead of the disk in
the default drive. For a description of how MS-DOS stores
data on a disk, including a description of the File
Allocation Table, see Chapter 3.

Macro Definition: drive_data macro drive

push ds

mov dl,drive

mov ah,1BH

int 21H

mov al, byte ptr[bx]
pop ds

endm

Example

The following program displays a message that tells whether
drive B is a diskette or fixed disk drive.

stdout equ 1

msg db "Drive B is "

remov db "diskette."

fixed db "fixed."

crlf db ODH, OAH

’

begin: write handle stdout,msg,1l ;display message
je write_error ;routine not shown
drive_data 2 ;THIS FUNCTION
cmp byte ptr [bx],0F8H ;check FAT ID byte
jne diskette ;it's a diskette
write_handle stdout,fixed,6 ;see Function 40H
jc write error ;routine not shown
jmp all done ;clean up & go home

diskette: write handle stdout,remov,9 ;see Function 40H

all_done: write:handle stdout,crlf,2 ;see Function 40H

jc write error sroutine not shown

SYSTEM CALLS Function 21H Page 1-92

Random Read (Function 21H)

Call
AH = 21H
DS:DX
Pointer to opened FCB

BX:
cx:
oX:

BP Return
si AL
oI 0 = Read completed successfully
1= End of file, record empty
r 2 = DTA too small
FLAGS: | FLAGS: 3 = End of file, partial record

Function 21H reads the record pointed to by the Relative
Record field (offset 21H) of the FCB to the Disk Transfer
Address. DX must contain the offset (from the segment
address in DS) of an opened FCB. The Current Block field
(offset OCH) and Current Record field (offset 20H) are set
to agree with the Relative Record field (offset 21H), then
the record is loaded at the Disk Transfer Address. The
record 1length is taken from the Record Size field (offset
OEH) of the FCB.

AL returns a code that describes the processing:

Code Meaning
0 Read completed successfully.
1 End-of-file; no data in the record.
2 Not enough room at the Disk Transfer Address

to read one record; read canceled.

3 End-of-file; a partial record was read and
padded to the record length with zeros.

Macro Definition: read_ran macro f£cb

mov dx,offset fcb
mov ah,21H
int 21H

endm

SYSTEM CALLS Function 21H Page 1-93

Example

The following program prompts for a letter, converts the
letter to its alphabetic sequence (A = 1, B = 2, etc.), then
reads and displays the corresponding record from a file
named ALPHABET.DAT on the disk in drive B. The file
contains 26 records; each record is 28 bytes long.

record size equ OEH ;offset of Record Size
- ;field of FCB

relative_record equ 21H ;offset of Relative Record

: field of FCB

fcb db 2,"ALPHABETDAT"
db 26 dup (?)

buffer db 28 dup(?),"s"

prompt db "Enter letter: $"

crlf db ODH,0AH,"S"

’

begin: set_dta buffer ;see Function 1AH
open fcb ;see Function OFH
mov fcblrecord_size],28 ;set record size

get_char: display prompt ;see Function 09H
read_kbd_and_echo ;see Function 01H
cmp al,ODH ;just a CR?
je all done ;yes, go home
sub al,41H ;convert ASCII code

;to record #
mov fcb[relative_record] ,al ;set relative
srecord

display crlf ;see Function 09H
read_ran fcb ;THIS FUNCTION
display buffer ;see Function 09H
display crlf ;see Function 09H
jmp get_char ;get another char.

all_done: close fcb ;see Function 10H

SYSTEM CALLS Function 22H Page 1-94

Random Write (Function 22H)

AX: | AH AL Call
BX: BH BL AH = 22H
ox: cH cL DS:D).(
ox o om ey Pointer to opened FCB
sP
8P Return
SI AL
ol 00H = Write completed successfully
- 01H = Disk full
AR 02H = DTA too small
cs
s
§S
ES

Function 22H writes the record pointed to by the Relative
Record field (offset 21H) of the FCB from the Disk Transfer
Address. DX must contain the offset from the segment
address in DS of an opened FCB. The Current Block (offset
0CH) and Current Record (offset 20H) fields are set to agree
with the Relative Record field (offset 21H), then the record
addressed by these fields is written from the Disk Transfer
Address.

The record length 1is taken from the Record Size field
(offset OEH) of the FCB. If the record size is less than a
sector, the data at the Disk Transfer Address is written to
a buffer; the buffer is written to disk when it contains a
full sector of data, or the file is closed, or a Reset Disk
system call (Function ODH) is issued.

AL returns a code that describes the processing:

Code Meaning
0 Write completed successfully.
1 Disk is full.
2 Not enough room at the Disk Transfer Address

to write one record; write canceled.

SYSTEM CALLS Function 22H Page 1-95

Macro Definition: write ran macro fcb

mov dx,offset fcb
mov ah,22H

int 21H

endm

Example

The following program prompts for a letter, converts the
letter to its alphabetic sequence (A =1, B = 2, etc.), then
reads and displays the corresponding record from a file
named ALPHABET.DAT on the disk in drive B. After displaying
the record, it prompts the user to enter a changed record.
If the user types a new record, it is written to the file;
if the user just presses Return, the record is not replaced.
The file contains 26 records; each record is 28 bytes long.

record size equ OEH ;offset of Record Size
- ;field of FCB
relative_record equ 21H ;offset of Relative Record
: field of FCB
fcb db 2,"ALPHABETDAT"
db 26 dup (?)
buffer db 28 dup(?),0DH,0AH,"S$"
promptl db "Enter letter: $"
prompt2 db "New record (RETURN for no change): $"
crlf db ODH,0AH,"S$"
reply db 28 dup (32)
blanks db 26 dup (32)
begin: set_dta buffer ;Ssee Function 1AH
open fcb ;see Function OFH
mov fcb[record _size],28 ;set record size
get char: display promptl ;see Function 09H
read_kbd_and_echo ;see Function 01H
cmp al,0DH ;just a CR?
je all done ;yes, go home
sub al,41H ;convert ASCII
;jcode to record #
mov fcblrelative record],al
- ;set relative record
display crlf ;see Function 09H
read ran fcbh ;THIS FUNCTION
display buffer ;see Function 09H
display crlf ;see Function 09H
display prompt2 ;see Function 09H
get_string 27,reply ;see Function OAH
display crlf ;see Function 09H
cmp reply(1],0 ;was anything typed
;besides CR?
je get_char ino
;get another char.
Xor bx,bx ;to load a byte
mov bl,reply[1l] juse reply length as

scounter

SYSTEM CALLS Function 22H Page 1-96

all_done:

move_string blanks,buffer,26 ;see chapter end
move_string reply[2],buffer,bx ;see chapter end
write_ran fcb ;THIS FUNCTION

jmp get_char ;get another character
close fcb ;see Function 10H

SYSTEM CALLS Function 23H Page 1-97

Get File Size (Function 23H)

ax [am A Call
BX: BH BL AH = 23H
cx: cH cL DS:DX
ox: - poy Pointer to unopened FCB
SP
BP Return
st AL
oI 00H Directory entry found

FFH = No directory entry found

P

FLAGSH FLAGSL

cs

ss

ES

Function 23H returns the size of the specified file. DX
must contain the offset (from the segment address in DS) of
an unopened FCB.

If there is a directory entry that matches the specified
file, MS-DOS divides the File Size field (offset 1CH) of the
directory entry by the Record Size field (offset OEH) of the
FCB, puts the result in the Relative Record field (offset
21H) of the FCB, and returns 00 in AL.

You must set the Record Size field of the FCB to the correct
value before calling this function. If the Record Size
field is not an even divisor of the File 8Size field, the
value set in the Relative Record field 1is rounded up,
yielding a value larger than the actual number of records.

If no matching directory is found, AL returns FFH.

Macro Definition: file size macro fcb

mov dx,offset fcb
mov ah,23H
int 21H

endm

SYSTEM CALLS Function 23H Page 1-98

Example

The following program prompts for the name of a file, opens
the file to fill in the Record Size field of the FCB, issues
a File Size system call, and displays the record length and
number of records.

fcb db 37 dup (?)

prompt db "File name: $"

msgl db "Record length: ",0DH,0AH,"S$"

msg2 db "Records: ",0DH,0AH,"S"

crlf db ODH,0AH,"$"

reply db 17 dup(?)

begin: display prompt ;see Function 09H
get string 17,reply ;see Function 0AH
anp reply[1],0 ;just a CR?
jne get_length ;no, keep going
jmp all_done ;yes, go home

get_length: display crlf ;see Function 09H
parse reply[2],£fcb ;see Function 29H
open fcb ;see Function OFH
file_size fcb ;THIS FUNCTION
mov ax,word ptr fcb[33] ;get record length
oonvert ax,10,msg2[9] ;see end of chapter
mov ax,word ptr fcb[l4] ; get record number
convert ax,10,msgl[15] ;see end of chapter
display msgl ;see Function 09H
display msg2 ;see Function 09H

all done: close fcb ;see Function 10H

SYSTEM CALLS Function 24H Page 1-99

Set Relative Record (Function 24H)

AX: AH AL Ca].l
BX: BH BL AH = 24H
ox: CH cL DS:DX
ox: on o Pointer to opened FCB
SP
B8P Return
sl None
DI
P
FLAGSH FLAGSL
cs
s
SsS
ES

Function 24H sets the Relative Record field (offset 21H) to
the file address specified by the Current Block field
(offset OCH) and Current Record field (offset 20H). DX must
contain the offset (from the segment address in DS) of an
opened FCB. You use this call to set the file pointer
before a random read or write (Functions 21H, 22H, 27H, or
28H) .

Macro Definition: set relative_record macro f£cb

mov dx,offset fcb
mov ah,24H

int 21H

endm

Example

The following program copies a file using the Random Block
Read and Random Block Write system calls. It speeds the
copy by setting the record length equal to the file size and
the record count to 1, and using a buffer of 32K bytes. It
positions the file pointer by setting the Current Record
field (offset 20H) to 1 and using Set Relative Record to
make the Relative Record field (offset 21H) point to the
same record as the combination of the Current Block field
(offset O0CH) and Current Record field (offset 20H).

SYSTEM CALLS Function 24H Page 1-100

current_record equ 20H ;joffset of Current Record
;field of FCB
fil_size equ 10H ;offset of File Size
; field of FCB
fcb db 37 dup (?)
filename db 17 dup(?)
promptl db "File to copy: $" ;see Function 09H for
prompt2 db "Name of copy: $" ;explanation of §
crlf db ODH,0AH,"s$"
file_length dw ?
buffer db 32767 dup(?)
begin: set_dta Dbuffer ;see Function 1AH
display promptl ;see Function 09H
get_string 15,filename ;see Function 0AH
display crlf ;see Function 09H
parse filename[2] ,fcb ;see Function 29H
open fcb ;see Function OFH
mov fcb[current_record],0 ;set Current Record
;field
set_relative_record fcb ;THIS FUNCTION
mov ax,word ptr fcb[fil size] ;get file size
mov file length,ax ;save it for
;ran_block write
ran_block_read fcb,1,ax ;see Function 27H
display prompt2 ;see Function 09H
get_string 15,filename :see Function O0AH
display crlf ;see Function 09H
parse filename[2],£fcb ;Ssee Function 29H
create fcb ;see Function 16H
mov fcb[current record],0 ;set Current Record
;field
set_relative record fcb ;THIS FUNCTION
mov ax,file length ;get original file
) 7 .length
ran_block_write fcb,1l,ax ;see Function 28H

close fcb ;see Function 10H

SYSTEM CALLS Function 25H Page 1-101

Set Interrupt Vector (Function 25H)

ax: AH AL Call
BX: BH BL AH = 25H
cx: cH cL AL
ox: oH oL Interrupt number
DS:DX
P Pointer to interrupt-handling
8P routine
St
DI
= Return
None
FLAGSH | FLAGS
cs
s
ss
ES

Function 25H sets the address in the interrupt vector table
for the specified interrupt.

AL must contain the number of the interrupt. DX must
contain the offset (to the segment address in DS) of the
interrupt-handling routine.

To avoid compatibility problems, programs should never read
an interrupt vector directly from memory, nor set an
interrupt vector by writing it into memory. Use Function
35H (Get Interrupt Vector) to get a vector and this function
request to set a vector, unless it is absolutely imperative
that your program be compatible with pre-2.0 versions of
MS-DOS.

Macro Definition:

set_vector macro interrupt,handler_start

mov al,interrupt

mov dx,offset handler_start
mov ah,25H

endm

Example

Because interrupts tend to be machine-specific, no example
is shown.

SYSTEM CALLS Function 26H Page 1-102

Create New PSP (Function 26H)

a [] A Call

Bx: | B [e AH = 26H

x [en [o DX

o [on o Segment address of new PSP
SsP
BP Return
sl None

13
FLAGSH | FLaGS.

cs
DS
ss
ES

Function 26H creates a new Program Segment Prefix. DX must
contain the segment address where the new PSP is to -be
created.

This function request has been superseded. Use Function
4BH, Code 0 (Load and Execute Program) to execute a child
process unless it is imperative that your program be
compatible with pre-2.0 versions of MS-DOS.

Macro Definition: create_psp macro seg_addr

mov dx,seg_addr
mov ah,26H
endm

Example

Because Function 4BH, Code 0 (Load and Execute Program) and
Code 3 (Load Overlay) have superseded this function request,
no example is shown.

SYSTEM CALLS Function 27H Page 1-103

Random Block Read (Function 27H)

BX: BH BL AH = 27H
cx: cH cL DS :DX
ox: o oL Pointer to opened FCB
CX
se Number of blocks to read
8P
SI
oI Return
P AL
e | v, 0 = Read coleeted successfully
1 = End of file, empty record
po 2 = DTA too small
o6 3 = End of file, partial record
S$s CX
s Number of blocks read

Function 27H reads one or more records from the specified
file to the Disk Transfer Address. DX must contain the
offset (to the segment address in DS) of an opened FCB. CX
must contain the number of records to read. Reading starts
at the record specified by the Relative Record field (offset
21H) ; you must set this field with Function 24H (Set
Relative Record) before calling this function.

DOS calculates the number of bytes to read by multiplying
the value in CX by the Record Size field (offset OEH) of the
FCB.

CX returns the number of records read. The Current Block
field (offset O0CH), Current Record field (offset 20H), and
Relative Record field (offset 21H) are set to address the
next record.

If you call this function with CX=0, no records are read.

SYSTEM CALLS Function 27H Page 1-104

AL returns a code that describes the processing:

Code Meaning
0 Read completed successfully.
1 End-of-file; no data in the record.
2 Not enough room at the Disk Transfer Address

to read one record; read canceled.

3 End-of-file; a partial record was read
and padded to the record length with zeros.

Macro Definition:

ran_block_read macro fcb,count,rec_size

mov dx,offset fcb

mov cx,count

mov word ptr fcb[l4],rec_size
mov ah,27H

int 21H

endm

Example

The following program copies a file using the Random Block
Read system call. It speeds the copy by specifying a record
count of 1 and a record length equal to the file size, and
using a buffer of 32K bytes; the file is read as a single
record (compare to the sample program for Function 28H that
specifies a record length of 1 and a record count equal to
the file size).

current _record equ 20H ;offset of Current Record field

fil_size equ 10H ;offset of File Size field

fcb db 37 dup (?)

filename db 17 dup(?)

promptl db "File to copy: $" ;see Function 09H for

prompt2 db "Name of copy: $" ;explanation of §$

crlf db ODH,O0AH,"$"

file length dw ?

buffer db 32767 dup(?)

’

begin: set_dta buffer ;see Function 1AH
display promptl ;see Function 09H
get _string 15,filename ;See Function 0AH
display crlf ;see Function 09H
parse filename[2],fcb ;see Function 29H
open fcb ;see Function OFH
mov fcb[current_record],0 ;set Current

;Record field

set_relative_record fcb ;see Function 24H

mov ax, word ptr fcb[fil_size]

SYSTEM CALLS Function 27H Page 1-105

;get file size

mov file length,ax ;save it
ran_block_read fcb,1,ax ;THIS FUNCTION
display prompt2 ;see Function 09H
get_string 15,filename ;see Function O0AH
display crlf ;see Function 09H
parse filename[2] ,fcb ;see Function 29H
create fcb ;see Function 16H
mov fcb[current_record] ,0;set current
;Record field
set relative record fcb ;see Function 24H

ran_block_write fcb,l,ax ;see Function 28H
close fcb ;see Function 10H

SYSTEM CALLS Function 28H Page 1-106

Random Block Write (Function 28H)

AX: AH AL 1 Call

BX: BH BL AH = 28H

ox: o | e ’l DS:DX

ox Foon o | CxPomter to opened FCB
sP Number of blocks to write
8P (0 = set File Size field)
sl
DI

Return
P AL
FLAGSn | FLAGS: 00H = Write completed successfully

s 01H = Disk full
pos 02H = End of segment
ss cx
py Number of blocks written

Function 28H writes one or more records to the specified
file from the Disk Transfer Address. DX must contain the
offset (to the segment address in DS) of an opened FCB; CX
must contain either the number of records to write or 0.

If CX is not 0, the specified number of records is written
to the file starting at the record specified in the Relative
Record field (offset 21H) of the FCB. If CX is 0, no
records are written, but MS-DOS sets the File Size field
(offset 1CH) of the directory entry to the wvalue in the
Relative Record field of the FCB (offset 21H); disk
allocation units are allocated or released, as required, to
satisfy this new file size.

MS-DOS calculates the number of bytes to write by
multiplying the value in CX by the Record Size field (offset
OEH) of the FCB. CX returns the number of records written;
the Current Block field (offset OCH), Current Record field
(offset 20H), and Relative Record (offset 21H) field are set
to address the next record.

SYSTEM CALLS Function 28H Page 1-107

AL returns a code that describes the processing:

Code Meaning
0 Write completed successfully.
1 Disk full. No records written.
2 Not enough room at the Disk Transfer Address

to write one record; write canceled.
Macro Definition:

ran_block write macro fcb,count,rec_size

mov dx,offset fcb

mov cx,count

mov word ptr fcb[l4],rec size
mov ah,28H -

int 21H

endm

Example

The following program copies a file using the Random Block
Read and Random Block Write system calls. It speeds the
copy by specifying a record count equal to the file size and
a record length of 1, and using a buffer of 32K bytes; the
file is copied quickly with one disk access each to read and
write (compare to the sample program of Function 27H, that
specifies a record count of 1 and a record length equal to
file size).

current_record equ 20H ;offset of Current Record field

fil size equ 10H ;offset of File Size field

fcb db 37 dup (?)

filename db 17 dup(?)

promptl db "File to copy: $" ;see Function 09H for

prompt2 db "Name of copy: $" ;explanation of §$

crlf db ODH,0AH,"S$"

num_recs 4w ?

buffer db 32767 dup(?)

begin: set_dta buffer ;see Function 1AH
display promptl ;see Function 09H
get_string 15,filename ;see Function OAH
display crlf ;see Function 09H
parse filename[2],fcb ;see Function 29H
open fcb ;see Function OFH
mov fcb[current_record] ,0;set Current

Record field

set relative_record fcb ;see Function 24H
mov ax, word ptr fcb[fil size]

;get file size
mov num_recs,ax ;save it

SYSTEM CALLS Function 28H Page 1-108

ran_block_read fcb,num _recs,l ;THIS FUNCTION

display prompt2 ;see Function 09H
get_string 15,filename ;See Function 0AH
display crlf ;see Function 09H
parse filename[2] ,fcb ;see Function 29H
create fcb ;see Function 16H
mov fcb[current_record] ,0 ;set Current
;Record field
set relative record fcb ;see Function 24H

raﬁ:block_erte fcb,num_recs,1 ;see Function 28H
close fcb ;see Function 10H

SYSTEM CALLS Function 29H Page 1-109

Parse File Name (Function 29H)

AX: AH AL Call
BX: BH BL AH = 29H
ox: CH cL AL
o | on o Controls parsing (see text)
DS:SI
sp Pointer to string to parse
Bp ES:DI
8 Pointer to buffer for unopened FCB
ot
" Return
AL
FLAGS: | FLAGS. 00H = No wildcard characters
cs 01H = Wildcard characters used
o8 FFH = Drive letter invalid
po" DS:SI
- Pointer to first byte past
string that was parsed
ES:DI

Pointer to unopened FCB

Function 29H parses a string for a filename of the form
drive:filename.extension. SI must contain the offset (to
the segment address in DS) of the string to parse; DI must
contain the offset (to the segment address in ES) of an area
of memory large enough to hold an unopened FCB. If the
string contains a valid filename, a corresponding unopened
FCB is created at ES:DI.

AL controls the parsing. Bits 4-7 must be 0; bits 0-3 have
the following meaning:

Bit Value Meaning

0 0- Stop parsing if a file separator is
encountered.
1 Ignore leading separators.
1 0 Set the drive number in the FCB to 0

(current drive) if the string does not
contain a drive number.

1 Leave the drive number in the FCB unchanged
if the string does not contain a drive
number.

2 0 Set the filename in the FCB to 8 blanks

if the string does not contain a filename.

SYSTEM CALLS Function 29H Page 1-110

Bit Value Meaning

1 Leave the filename in the FCB unchanged if
the string does not contain a filename.

3 1 Leave the extension in the FCB unchanged /
if the string does not contain an extension. \

0 - Set the extension in the FCB to 3 blanks
if the string does not contain an extension.

If the string contains a filename or extension that includes
an asterisk (*), all remaining characters in the name or
extension are set to question mark (?).

Filename separators:
t. 3 4, = +/" 1\ <> | space tab

Filename terminators include all the filename separators
plus any control character. A filename cannot contain a
filename terminator; if one is encountered, parsing stops.

If the string contains a valid filename:

1. AL returns 1 if the filename or extension contains
a wildcard character (* or ?); AL returns 0 if
neither the filename nor extension contains a
wildcard character.

2. DS:SI points to the first character following the
string that was parsed.

ES:DI points to the first byte of the unopened FCB.

If the drive letter is invalid, AL returns FFH. If the

string does not contain a valid filename, ES:DI+1 points to
a blank (20H).

Macro Definition: parse macro string,fcb
mov si,offset string
mov di,offset fcb

push es

push ds

pop es

mov al,0FH ;bits 0-3 on
mov ah, 29H

int 21H

pop es

endm

SYSTEM CALLS

Example

Function 29H Page 1-111

The following program verifies the existence of the file
named in reply to the prompt.

fcb
prompt
reply
yes

no

5egin:

not_there:

db 37 dup (?)

db "Filename: $"

db 17 dup(?)

db "FILE EXISTS",0DH,O0AH,"S$"

db "FILE DOES NOT EXIST",ODH,0AH,"S$"
crlf db ODH,O0AH,"S$"

display prompt ;see Function 09H
get string 15,reply ;see Function OAH
parse reply[2],fcb ;THIS FUNCTION
display crlf ;see Function 09H
search_first fcb ;see Function 11H
cmp al,OFFH ;dir. entry found?
je not_there ;no

display yes ;see Function 09H
jmp return

display no

SYSTEM CALLS

Function 2AH

Get Date (Function 2AH)

AX:
B8x:
cx:
ox:

Function 2AH returns the current date set in

AL

BL

AH
8H
CH
OH

CcL
oL

sP

-1

"»

FLAGSH | FLAGS.

ss

ES

Call
AH = 2AH

Return
CcX
Year (1980-2099)
DH
Month (1-12)
DL
Day (1-31)
AL
Day of week (0=Sun.,

system as binary numbers in CX and DX:

CX Year (1980-2099)
DH Month (l=January, 2=February, etc.)

DL Day (1-31)

Page 1-112

6=Sat.)

the

AL Day of week (0=Sunday, 1l=Monday, etc.)

Macro Definition: get_date macro

mov ah, 2AH
int 21H
endm

operating

SYSTEM CALLS Function 2AH Page 1-113

Example

The following program gets the date, increments the day,
increments the month or year, if necessary, and sets the new
date. '

month db 31,28,31,30,31,30,31,31,30,31,30,31

’

begin: get_date sTHIS FUNCTION
inc dl ;increment day
Xor bx,bx ;0 BL can be used as index
mov bl,dh ;move month to index register
dec bx ;month table starts with 0
cmp dl,month[bx] ;past end of month?
jle month_ ok ;no, set the new date
mov dli,1 ;yes, set day to 1
inc dh ;and increment month
cmp dh,12 ;past end of year?
jle month_ok ;no, set the new date
mov dh,1 syes, set the month to 1
inc cx ;increment year

month_ok: set_date cx,dh,dl ;see Function 2AH

SYSTEM CALLS

Function 2BH

Set Date (Function 2BH)

AX: ‘
BX:
ex: |
DX: k¥

SP

BP

si

DI

L4

FLAGSH | FLAGS

Year (1980-2099)
DH

Month (1-12)
DL

Day (1-31)

Return
AL

cs

[

00H
FFH

Date was valid
Date was invalid

Page 1-114

ss
ES

Function 2BH sets the date in the operating system,
Registers CX and DX must contain a valid date in binary:

CX Year (1980-2099)
DH Month (l=January,
DL Day (1-31)

2=February, etc.)

If the date is valid, the date is set and AL returns 0. If

the date 1is not wvalid, the function is canceled and AL
returns FFH,

Macro Definition: set_date macro year,month,day
mov Ccx,year
mov dh,month
mov dl,day
mov ah, 2BH
int 21H

endm

PN

SYSTEM CALLS Function 2BH Page 1-115

Example

The following program gets the date, increments the day,
increments the month or year, if necessary, and sets the new
date.

month db 31,28,31,30,31,30,31,31,30,31,30,31

’

begin: get_date ;see Function 2AH
inc dl ;increment day
Xor bx,bx ;S0 BL can be used as index
mov bl,dh ;move month to index register
dec bx ;month table starts with 0
cmp dl,month[bx] ;past end of month?
jle month_ok ;sno, set the new date
mov dl,1 ;yes, set day to 1
inc dh ;and increment month
cmp dh,12 ;past end of year?
jle month_ok ;no, set the new date
mov dh,1 ;yes, set the month to 1
inc cx ;increment year

month ok: set_date cx,dh,dl s THIS FUNCTION

SYSTEM CALLS Function 2CH Page 1-116

Get Time (Function 2CH)

AX: AR AL Call
BX: BH BL AH = 2CH
cX: CH o
DX: DH o
Return
sP CH
Bp Hour (0-23)
sl CL
oI Minutes (0-59)
DH
s Seconds (0 - 59)
FLAGSH FLAGSL m‘
o Hundredths (0-99)
DS
SsS
ES

Function 2CH returns the current time set in the operating
system as binary numbers in CX and DX:

CH Hour (0-23)

CL Minutes (0-59)

DH Seconds (0-59)

DL, Hundredths of a second (0-99)

Depending on how your hardware keeps time, some of these
fields may be irrelevant, As an example, many CMOS clock
chips do not resolve more than seconds. 1In such a case the
value in DL will probably always be 0.

Macro Definition: get_time macro
mov ah, 2CH
int 21H
endm

SYSTEM CALLS Function 2CH Page 1-117

Example

The following program continuously displays the time until
any key is pressed.

time db "00:00:00.00",0DH,"S$"
l.:)egin: get_time ;THIS FUNCTION
byte _to_dec ch,time ;see end of chapter

byte_to:dec cl,time[3] ;see end of chapter
byte_to_dec dh,time[6] ;see end of chapter
byte _to_dec dl,time([9] ;see end of chapter

display time ;see Function 09H
check_kbd_status ;see Function OBH

anp al,OFFH shas a key been pressed?
je return ;yes, terminate

jmp begin ;no, display time

SYSTEM CALLS Function 2DH Page 1-118

Set Time (Function 2DH)

AX: Call
BX: AH = 2DH
cX: m
ox: Hour (0-23)
CL
sP Minutes (0-59)
BP DH
si Seconds (0-59)
oI DL

Hundredths (0-99)

P
FLAGSH | FLAGS.

cs Return

DS AL

o5 00H = Time was valid
s FFH = Time was invalid

Function 2DH sets the time in the operating system.
Registers CX and DX must contain a valid time in binary:

CH Hour (0-23)

CL Minutes (0-59)

DH Seconds (0-59)

DL Hundredths of a second (0-99)

Depending on how your hardware keeps time, some of these
fields may be irrelevant. As an example, many CMOS clock
chips do not resolve more than seconds. In such a case the
value in DL will not be relevant.

If the time is valid, the time is set and AL returns 0. If
the time 1is not wvalid, the function is canceled and AL
returns FFH.

Macro Definition:

set_time macro hour,minutes,seconds,hundredths

mov ch,hour

mov cl,minutes
mov dh, seconds
mov dl,hundredths
mov ah, 2DH

int 21H

endm

SYSTEM CALLS Function 2DH Page 1-119

Example

The following program sets the system clock to 0 and
continuously displays the time. When a character is typed,
the display freezes; when another character is typed, the
clock is reset to 0 and the display starts again.

time db "00:00:00.00",0DH,0AH,"S$"

éegin: set_time 0,0,0,0 ;THIS FUNCTION

read_clock: get_time ;see Function 2CH
byte to dec ch,time ;see end of chapter

byte to dec cl,time[3] ;see end of chapter
byte to dec dh,time[6] ;see end of chapter
byte to dec dl,time[9] ;see end of chapter

display time ;see Function 09H
dir_console_io OFFH ;see Function 06H
cmp al,00H ;was a char. typed?
jne stop ;yes, stop the timer
jmp read clock ;no keep timer on
stop: read_kbd - ;see Function 08H

jmp begin ;keep displaying time

SYSTEM CALLS Function 2EH Page 1-120

Set/Reset Verify Flag (Function 2EH)

AX: A AL Call
BX: BH BL AH = 2EH
cx: cH oL AL
ox: oH oL 0 = Do not verify
1 = Verify
sp
B8P
st Return
o None

13
FLagsw | FLags.

cs
DS
ss
ES

Function 2EH tells MS-DOS whether to verify each disk write.
If AL is 1, verify 1is turned on; if AL is 0, verify is
turned off. MS-DOS checks this flag each time it writes to
a disk.

The flag is normally off; you may wish to turn it on when
writing critical data to disk. Because disk errors are rare
and verification slows writing, you will probably want to
leave it off at other times. You can check the setting with
Function 54H (Get Verify State).

Macro Definition: verify macro switch

mov al,switch
mov ah, 2EH
int 21H

endm

SYSTEM CALLS Function 2EH Page 1-121

Example

The following program copies the contents of a single-sided
disk in drive A to the disk in drive B, verifying each
write. It uses a buffer of 32K bytes.

on equ 1

of £ equ 0

’

prompt db "Source in A, target in B",0DH,0AH
db "Any key to start., $"

first dw 0

buffer db 60 dup (512 dup(?)) ;60 sectors

’

begin: display prompt ;see Function 09H
read_kbd ;see Function 08H
verify on sTHIS FUNCTION
mov cx,6 jcopy 60 sectors

;6 times
copy: push (¢34 ;save counter

abs _disk_read O0,buffer,60,first ;see Int 25H
abs disk write 1,buffer,64,first ;see Int 26H

add~ first,60 ;do next 60 sectors
°oP cX ;restore counter
loop copy ;do it again

verify off ;THIS FUNCTION

SYSTEM CALLS Function 2FH Page 1-122

Get Disk Transfer Address (Function 2FH)

AX: AR AL Call
o [88 | B AH = 2FH
CX: CH cL
DX: DH DL Retutn
ES:BX
sP Pointer to Disk Transfer Address

BP
sl

DI

14

FLAGSH FLAGSL

Ds

Function 2FH returns the segment address of the current Disk
Transfer Address in ES and the offset in BX.

Macro Definition: get_dta macro
mov ah,2fH
int 21H
endm

Example

The following program displays the current Disk Transfer
Address in the form segment:offset.

message db "DTA -- : ",0DH,0AH,"$"

sixteen db 10H

temp db 2 dup (?)

’

begin: get_dta s THIS FUNCTION
mov word ptr temp,ex ;To access each byte
convert temp[l],sixteen,message[07H] ;See end of
convert temp,sixteen,message[09H] ;chapter for
convert bh,sixteen,message[0CH] ;description
convert bl,sixteen,message[0EH] ;of CONVERT

display message ;See Function 09H

SYSTEM CALLS Function 30H Page 1-123

Get MS-DOS Version Number (Function 30H)

Call
AH =

AH
BH
CH
DH

AL
BL
oL
DL

BX: 30H
cx

DX:

Return
AL

Major version number
AH
sl Minor version number
oI BH

sP
BP

OEM serial number
BL:CX
24-bit user (serial) number

P

FLAGSH FLAGSL

cs
DS
ss

ES

Function 30H returns the MS-DOS version number. AL returns
the major version number; AH returns the minor version
number. (For example, MS-DOS 3.0 returns 3 in AL and 0 1in
AH.)

If AL returns 0, the version of MS-DOS is earlier than 2.0.

Macro Definition: get_version

Example

The following program displays the version of MS-DOS

macro

mov ah,30H
int 21H
endm

is 1.28 or greater.

message db "MS-DOS Version .
ten db OAH
r
begin: get_version
cmp al,o
jng return
convert al,ten,message[0FH]
convert ah,ten,message[l2H]

display message

if it

",0DH,0AH,“$"
;For CONVERT

sTHIS FUNCTION
31.28 or later?
;No, go home

;See end of chapter
;for description
;See Function 9

SYSTEM CALLS Function 31H Page 1-124

Keep Process (Function 31H)

AX: aMo 1A Call
BX: BH BL AH = 31H
cx: cH cL AL
oX: oH ™ Return code
DX
P Memory size, in paragraphs
B8P
Sl Return
ol None

3
FLAGSH | FLAGS.

cs
DS
ss
ES

Function 31H makes a program remain resident after it
terminates. It is often wused to install device-specific
interrupt handlers. Unlike Interrupt 27H (Terminate But
Stay Resident), this function request allows more than 64K
bytes to remain resident and does not require CS to contain
the segment address of the Program Segment Prefix. You
should use Function 31H to install a resident program unless
it 1is absolutely imperative that your program be compatible
with pre-2.0 versions of MS-DOS.

DX must contain the number of paragraphs of memory required
by the program (one paragraph = 16 bytes). AL contains an
exit code.

Use of this in .EXE programs requires care. The value in DX
must be the total size to remain resident, not just the size
of the code segment which is to remain resident. A typical
error is to forget about the 100H byte program header prefix
and give a value which is 10H in DX which is 10H too small.

MS-DOS terminates the current process and tries to set the
memory allocation to the number of paragraphs in DX. No
other allocation blocks belonging to the process are
released.

The exit code in AL can be retrieved by the parent process
with Function 4DH (Get Return Code of Child Process) and can
be tested with the IF command using ERRORLEVEL.

(

SYSTEM CALLS Function 31H Page 1-125

Macro Definition: keep process macro return code,last_byte
mov al,return_code
mov dx,offset last byte
mov cl,4
shr dx,cl

inc dx
mov ah,31H
int 21H
endm

Example

Because the most common use of this call is to install a
machine-specific routine, an example 1is not shown. The
macro definition shows the calling syntax.

SYSTEM CALLS Function 33H Page 1-126

Control-C Check (Function 33H)

Ax: AH AL Call
BX: BH BL AH = 33H
cx: CH cL AL
ox | on o 0 = Get state
1 = Set state
sp DL (if AL=1)
8P 0 = Off
st 1l = On
>}
= Retu;n
FLAGSH | FLAGS. DL (if AL=0)
0 = Off
cs 1 =0On
DS AL
oy FFH = error (AL was neither 0 nor 1
P when call was made)

Function 33H gets or sets the state of Control-C (or
Control-Break for 1IBM compatibles) checking in MS-DOS. AL
must contain a code that specifies the requested action:

0 Return current state of Control-C checking in DL.
1 Set state of Control-C checking to the value in DL.

If AL is 0, DL returns the current state (0=0ff, l=on). If
AL is 1, the value in DL specifies the state to be set
(0=0ff, 1l=on). If AL is neither 0 nor 1, AL returns FFH and
the state of Control-C checking is not affected.

MS-DOS normally checks for Control-C only when carrying out
certain function requests in the 01H through OCH group (see
the description of specific calls for details). When
Control-C checking .is on, MS-DOS checks for Control-C when
carrying out any function request. For example, if
Control-C checking 1is off, all disk I/0 proceeds without
interruption; if Control-C checking is on, the Control-C
interrupt 1is issued at the function request that initiates
the disk operation.

SYSTEM CALLS Function 33H Page 1-127

Note

Programs that use Function Request 06H or 07H to read
Control-C as data must ensure that the Control-C
checking is off.

Macro Definition: ctrl c_ck macro action,state

mov al,action
mov dl,state
mov ah,33H
int 21H

endm

Example

The following program displays a message that tells whether
Control-C checking is on or off:

message db "Control-C checking ","s$"

on db "on"'“$"'0DH,0AH,"$“

off db "off","$",0DH,0AH,"S"

’

begin: display message ;See Function 09H
ctrl c_ck 0 ;THIS FUNCTION
cmp di,o0 ;Is checking off?
jg ck_on ;No
display off ;See Function 09H
jmp return ;Go home

ck_on: display on ;See Function 09H

SYSTEM CALLS Function 35H Page 1-128

Get Interrupt Vector (Function 35H)

ax: aH AL Call
BX: BH BL. AH = 35H
ox: CH oL AL
px: DH oL Interrupt number
sP Return
BP ES:BX
sl Pointer to interrupt routine

ol

P
FLAGSH | FLAGS.

cs
DS
ss
ES

Function 35H gets the address from the interrupt vector
table for the specified interrupt. AL must contain the
number of an interrupt.

ES returns the segment address of the interrupt handler; BX
returns the offset.

To avoid compatibility problems, programs should never read
an interrupt vector directly from memory, nor set an
interrupt vector by writing it into memory. Use this
function request to get a vector and Function 25H (Set
Interrupt Vector) to set a vector, unless it is absolutely
imperative that your program be compatible with pre-2.0
versions of MS-DOS.

Macro Definition: get_vector macro interrupt

mov al,interrupt
mov ah,35H
int 21H

endm

SYSTEM CALLS Function 35H Page 1-129

Example

The following program displays the segment and offset
(Cs:1P) for the handler for Interrupt 25H (Absolute Disk
Read) .

message db "Interrupt 25H -- CS:0000 IP:0000"
db ODH,OAH,"S"

vec_seg db 2 dup (?)

vec off db 2 dup (?)

’

begin: push es ;save ES
get_vector 25H ;THIS FUNCTION
mov ax,es ;INT25H segment in AX
Pop es ;save ES
convert ax,16,message[20] ;see end of chapter
convert bx,16,message[28] ;see end of chapter

display message ;See Function 9

SYSTEM CALLS Function 36H Page 1-130

Get Disk Free Space (Function 36H)

AX: A A Call
BX: oy o AH = 36H
CX: O L. DL
ox: o - Drive (0=default, 1l=A, etc.)
sP Return
BP AX
sl OFFFFH if drive number is invalid;
DI otherwise sectors per cluster
BX
* Available clusters
FLAGS | FLAGS. cx
o8 Bytes per sector
DS DX
w5 Clusters per drive
ES

Function 36H returns the number of clusters available on the
disk in the specified drive, and sufficient information to
calculate the number of bytes available on the disk. DL
must contain a drive number (0=default, 1=A, etc.). If the
drive number is valid, MD-DOS returns the information in the
following registers:

AX Sectors per cluster
BX Available clusters
CX Bytes per sector
DX Total clusters
If the drive number is invalid, AX returns OFFFFH.

This call supersedes Functions 1BH and 1CH in earlier
versions of MS-DOS.

Macro Definition: get_disk_space macro drive

mov dl,drive
mov ah,36H
int 21H

endm

SYSTEM CALLS Function 36H

Example

Page 1-131

The following program displays the space information for the
disk in drive B.

message

db " clusters on drive B.",0DH,0AH ;DX

do " clusters available.",0DH,0AH ;BX

d " sectors per cluster.",0DH,0AH ;AX

d " bytes per sector,",0DH,0AH,"$" ;CX
get_disk_space 2 ;THIS FUNCTION
oconvert ax,10,message[55] ;see end of chapter
convert bx,10,message[28] ;see end of chapter
convert cx,10,message[83] ;see end of chapter
convert dx,10,message ;see end of chapter

display message

;i See

Function 09H

SYSTEM CALLS Function 38H (Get) Page 1-132

Get Country Data (Function 38H)

AX: Call
BX: AH = 38H
CX: AL
ox: 0 = Current country
1 to OFEH = Country code
sP OFFH = BX contains Country code
B8P BX (if AL=0FFH)
st Country code 255 or higher
DI DS:DX

Pointer to 32~byte memory area

Return
Carry set:
AX
2 = Invalid country code
Carry not set:
BX
Country code

Function 38H gets the country-dependent information that MS-
DOS uses to control the keyboard and display or sets the
currently defined country (to set the country code, see the
next function request description). To get the information,
DX must contain the offset (from the segment address in DS)
of a 32-byte memory area in which the country data is to be
returned. AL specifies the country code:

Value in AL Meaning

0 Retrieve information about the country
currently set.

1 to OFEH Retrieve information about the country
identified by this code.

OFFH Retrieve information about the country
identified by the code in BX.

BX must contain the country code 1if the code 1is 255 or
greater. The country code 1is usually the international
telephone prefix code.

SYSTEM CALLS Function 38H (Get) Page 1-133

The country-dependent information is returned in the
following form:

Offset

Hex Decimal Field Name Length in bytes
00 0 Date format 2 (word)

02 2 Currency symbol 5 (ASCIZ string)
07 7 Thousands separator 2 (ASCIZ string)
09 9 Decimal separator 2 (ASCIZ string)
0B 11 Date separator 2 (ASCIZ string)
0D 13 Time separator 2 (ASCIZ string)
OF 15 Bit field 1

10 16 Currency places 1

11 17 Time format 1

12 18 Case-map call address 4 (dword)

16 22 Data-list separator 2 (ASCIZ string)
18 24 RESERVED 10

Date Format: 0 = USA (m/4/y)
1 = Europe (d/m/y)
2 = Japan (y/m/d)

Bit Field: Bit

o

= 0 Currency symbol precedes amount
1 Currency symbol follows amount

Bit 1 = 0 No space between symbol and amount
1 One space between symbol and amount

All other bits are undefined.

Time format: O
1

12-hour clock
24-hour clock

Currency Places: Specifies the number of places that appear
after the decimal point on currency amounts.

Case-Mapping Call Address: The segment and offset of a FAR
procedure that performs country-specific lowercase-to-
uppercase mapping on character values from 80H to OFFH. You
call it with the character to be mapped in AL. 1If there is
an uppercase code for the character, it is returned in AL;
if there 1is not, or if you call it with a value less than
80H in AL, AL is returned unchanged. AL and the FLAGS are
the only registers altered.

If there is an error, the carry flag (CF) 1is set and the
error code is returned in AX:

Code Meaning

2 Invalid country code (no table for it).

SYSTEM CALLS Function 38H (Get) Page 1-134
Macro Definition: get_country macro country,buffer
local gc 01
mov dx,offset buffer
mov ax,country
cmp ax,OFFH
j1 gc_01
mov al,OFFh
mov bx,country
gc 01: mov ah,38h
- int 21H
endm
Example
The following program displays the time and date in the
format appropriate to the current country code, and the
number 999,999 and 99/100 as a currency amount with the

proper currency symbol and separators.

time db " ¢ : ",5 dup (20H),"S"

date db v/ / ",5 dup (20H),"S"

number db "999?2999?299" ,0DH,0AH,"$"

data_area db 32 dup (?)

begin: get_country 0,data_area s THIS FUNCTION
get time - ;See Function 2CH
byte_to_dec ch,time ;See end of chapter
byte to dec «cl,time[03H] ;for description of
byte to_dec dh,time[06H] ;CONVERT macro
get_date ;See Function 2AH
sub cx,1900 ;Want last 2 digits
byte_to_dec cl,date[06H] ;See end of chapter
cmp word ptr data_area,0 ;Check country code
jne not_usa ;It's not UsA
byte_to_dec dh,date ;See end of chapter
byte to dec dl,date[03H] ;See end of chapter
jmp all_done ;Display data

not _usa: byte_to_dec dl,date ;See end of chapter
byte_to_dec dh,date[03H] :See end of chapter

all_done: mov al,data_area[07H] ;Thousand separator
mov number [03H] ,al ;Put in NUMBER
mov al,data_area[09H] ;Decimal separator
mov number [07H] ,al ;Put in AMOUNT
display time ;See Function 09H
display date ;See Function 09H
display char data_area[02H] ;See Function 02H

display number

;See Function 09H

SYSTEM CALLS Function 38H (Set) Page 1-135

Set Country Data (Function 38H)

w R call

BX: m-“sn -

o [e] DX = -1 (OFFFFH)
DX: “:::..:-

Country code less than 255, or
sP OFFH if the country code is in BX
8P BX (if AL=0FFH)
st Country code 255 or higher
DI
- Return

rocs. [] g;rry set:
os 2 = Invalid country code
s Carry not set:
ss No error
ES

Function 38H sets the country code that MS-DOS uses to
control the keyboard and display, or retrieves the country-
dependent information (to get the country data, see the
previous function request description). To set the
information, DX must contain OFFFFH. AL must contain the
country code if it is less than 255, or 255 to indicate that
the country code is in BX. If AL contains OFFH, BX must
contain the country code.

The country code is wusually the international telephone
prefix code. See the preceding function request description
(Get Country Data) for a description of the.country data and
how it is used.

If there is an error, the carry flag (CF) is set and the
error code is returned in AX:

Code Meaning

2 Invalid country code (no table for it).

SYSTEM CALLS Function 38H (Set) Page 1-136

Macro Definition: set_country macro country
local sc_01

mov dx, OFFFFH

mov ax,country

anp ax,0FFH

j1 sc_01

mov bx,country

mov al,0ffh
sc_01: mov ah,38H

int 21H

endm

Example

The following program sets the country code to the United
Kingdom (44).

uk equ 44
éegin: set_country uk ;sTHIS FUNCTION

jc error ;routine not shown

SYSTEM CALLS Function 39H Page 1-137

Create Directory (Function 39H)

AX: AH AL Call
BX: BH BL AH = 39H
cX: CH cL DS :DX .
ox: on -y Pointer to pathname
sP Return
B8P Carry set:
s AX
DI 3 = Path not found
5 = Access denied

i Carry not set:

No error

FLAGSH FLAGSL

cs
D8
ss

ES

Function 39H creates a new subdirectory. DX must contain
the offset (from the segment address in DS) of an ASCIZ
string that specifies the pathname of the new subdirectory.

If there is an error, the carry flag (CF) 1is set and the
error code is returned in AX:

Code Meaning
3 Path not found.
5 No room in the parent directory, a file with the

same name exists in the current directory, or
the path specifies a device.

Macro Definition: make_dir macro path

mov dx,offset path
mov ah,39H
int 21H

endm

SYSTEM CALLS Function 39H Page 1-138

Example

The following program adds a subdirectory named NEWDIR to
the root directory on the disk in drive B, changes the
current directory to NEWDIR, changes the current directory
back to the original directory, then deletes NEWDIR. It
displays the current directory after each step to confirm/
the changes. '

old path db
new_path db
buffer db

"b:\",0,63 dup (?)
"b:\new_dir",0

"b:\",0,63 dup (?)
éegin: get_dir

2,0ld_path[03H] ;See Function 47H

jc

error_get

sRoutine not shown

display asciz old path ;See end of chapter
make dir new_path ;THIS FUNCTION

je error_make ;Routine not shown
change_dir new_path ;See Function 3BH
jc error_change ;Routine not shown
get_dir 2,buffer [03H] ;See Function 47H
jc error_get ;Routine not shown

display_asciz buffer ;See end of chapter
change_dir old path ;See Function 3BH
jec - error_change ;Routine not shown
rem dir new path ;See Function 3AH
jec error_rem ;Routine not shown
get_dir 2,buffer [03H] ;See Function 47H
jc error get ;Routine not shown

display_asciz

buffer

;See end of chapter

SYSTEM CALLS Function 3AH Page 1-139

Remove Directory (Function 3AH)

AX: AH AL Call
BX: BH BL AH = 3AH
CX: CH CL DS :DX .
oxe - .y Pointer to pathname
sp Return
BP Carry set:
s AX
) 3 = Path not found
5 = Access denied
* 16 = Current directory
FLacsn | Fuacs. Carry not set:
o No error
08
SS
ES

Function 3AH deletes a subdirectory. DX must contain the
offset (from the segment address in DS) of an ASCIZ string

that specifies the pathname of the subdirectory to be
deleted.

The subdirectory must not contain any files. You cannot
erase the current directory. If there is an error, the
carry flag (CF) is set and the error code is returned in AX:

Code Meaning
3 Path not found.

5 The directory isn't empty; or the path doesn't
specify a directory, specifies the root
directory, or is invalid.

16 The path specifies the current directory.

Macro Definition: rem dir macro path
mov dx,offset path
mov ah,3AH
int 21H
endm

SYSTEM CALLS

Example

The following program adds a subdirectory
the root directory on the
current directory to NEWDIR, changes the

back to the

the changes.

Function 3AH

disk

Page 1-140

step to

named NEWDIR to
in drive B, changes the
current directory
original directory, then deletes NEWDIR.

displays the current directory after each confirm :

5

old path db
new_path db
buffer db

"b:\" ,0,63 dup (?)
"b:\new_dir",0
"b:\",0,63 dup (?)

!

begin: get_dir 2,01d_path[03H] ;See Function 47H
jc error_get ;Routine not shown
display asciz o01d path ;See end of chapter
make_dir new_path ;See Function 39H
je error_make ;Routine not shown
change_dir new_path ;See Function 3BH
jc error_change ;Routine not shown
get dir 2,buffer [03H] ;See Function 47H
jc error_get ;Routine not shown

display asciz

buffer

change_dir old_path

;See end of chapter
;See Function 3BH

jec error_change ;Routine not shown
rem_dir new_path ;THIS FUNCTION

jec error_rem ;Routine not shown
get_dir 2,buffer [03H] :See Function 47H
jc error_get ;Routine not shown

display_asciz

buffer

;See end of chapter

SYSTEM CALLS Function 3BH Page 1-141

Change Current Directory (Function 3BH)

AX: aH AL Call

BX: BH BL AH = 3BH

ox: cH cL DS:DX

DX: oH ™ Pointer to pathname
sP Return
BP Carry set:
si AX
oI 3 = Path not found

Carry not set:
* No error
FLAGSH | FLAGSL

cs
bS
ss
ES

Function 3BH changes the current directory. DX must contain
the offset (from the segment address in DS) of an ASCIZ
string that specifies the pathname of the new current
directory.

The directory string is limited to 64 characters.

If any member of the path doesn't exist, the path is not
changed. If there is an error, the carry flag (CF) is set
and the error code is returned in AX:

Code Meaning

3 The pathname either doesn't exist or specifies a
file, not a directory.

Macro Definition: change_dir macro path
mov dx,offset path

mov ah,3BH
int 21H
endm

Example

The following program adds a subdirectory named NEW_DIR to
the root directory on the disk in drive B, changes the
current directory to NEW_DIR, changes the current directory
back to the original directory, then deletes NEW DIR. It
displays the current directory after each step to confirm
the changes.

SYSTEM CALLS

old_path db
new_path db
buffer db

begin: get_dir 2,01d_path[03H]

jc error_get
display_asciz old_path
make_dir new_path

je error_make
change_dir new_path

jc error_change
get_dir 2,buffer[03H]
jc error_get

display_asciz

change_dir
je

rem dir

je

get dir

je

display_ asciz

Function 3BH

Page 1-142

"b:\",0,63 dup (?)

"b:\new dir",0

"b:\",0,63 dup (?)

buffer
old_path
error change
new_path
error_rem
2,buffer [03H]
error_get
buffer

;See Function 47H
;Routine not shown
;See end of chapter
;See Function 39H
;Routine not shown
s THIS FUNCTION

;Routine not shown
;See Function 47H
;Routine not shown
;See end of chapter
;See Function 3BH
;Routine not shown
;See Function 3AH
;Routine not shown
;See Function 47H
;Routine not shown
;See end of chapter

SYSTEM CALLS Function 3CH Page 1-143

Create Handle (Function 3CH)

AX: AH AL Call
BX: BH BL AH = 3CH
CXx: cH oL DS :DX X
ox: p Py x Pointer to pathname
sP File attribute
BP
si Return
[Carry set:
AX
s 3 = Path not found
FLacs. | Puacs. 4 = Too many open files
oS 5 = Access denied
o Carry not set:
ss AX
= Handle

Function 3CH creates a file and assigns it the first
available handle. DX must contain the offset (from the
segment address in DS) of an ASCIZ string that specifies the
pathname of the file to be created. CX must contain the
attribute to be assigned to the file, as described under
"File Attributes" earlier in this chapter.

If the specified file does not exist, it is created. If the
file does exist, it 1is truncated to a length of 0. The
attribute in CX is assigned to the file and the file is
opened for read/write. AX returns the file handle.

If there is an error, the carry flag (CF) 1is set and the
error code is returned in AX:

Code Meaning

3 The path is invalid.
4 Too many open files (no handle available).
5 Directory full, a directory with the same name

exists, or a file with the same name exists
with more restrictive attributes.

SYSTEM CALLS Function 3CH Page 1-144

Macro Definition: create handle macro path,attrib

mov dx,offset path
mov cx,attrib

mov ah, 3CH

int 21H

endm

Example

The following program creates a file named DIR.TMP on the
disk in drive B that contains the name and extension of each
file in the current directory.

srch_file db "bek , *",0

tmp_file db "b:dir.tmp",0

buffer db 43 dup (?)

handle dw ?

begin: set_dta buffer ;See Function 1AH
find first file srch file,16H ;See Function 4EH
cmp = ax,12H - ;Directory empty?
je all done ;Yes, go home
create_handle tmp file,0 ;THIS FUNCTION
jc error ;Routine not shown
mov handle,ax ;Save handle

write_it: write_handle handle,buffer [1EH],12 ;Function 40H
find next_ file ;See Function 4FH
cmp ax,12H ;Another entry?
je all_done ;No, go home
jmp write it ;Yes, write record

all_done: close_handle “handle ;See Function 3EH

SYSTEM CALLS Function 3DH Page 1-145

Open Handle (Function 3DH)

AX: AH AL Call
BX: BH BL AH = 3DH
cX: CH cL AL
ox TR o Access code (see text)
- DS :DX
sp Pointer to pathname
BP
s Return
DI Carry set:
P AX
1 = Invalid function code
FLAGSw 2 = File not found
s 3 = Path not found
P 4 = Too many open files
o 5 = Access denied
= 12 = Invalid access

Carry not set:
No error

Function 3DH opens any file, including hidden and system
files, for input or output. DX contains the offset (from
the segment address in DS) of an ASCIZ string that specifies
the pathname of the file to be opened. AL contains a code
that specifies how the file is to be opened, described later
under "Controlling Access to the File."

If there is no error, AX returns the file handle. MS-DOS
sets the read/write pointer to the first byte of the file.

Controlling Access to the File

The value in AL is made up of three parts that specify
whether the file 1is to be opened for read, write, or both
(access code); what access other processes have to the file
(sharing mode) ; and whether the file is inherited by a
child process (inherit bit).

]
7 6 5 4 3 2 1 0

— = =
AN / \ /

> Access code

Bit

Sharing mode

| Inherit bit

SYSTEM CALLS Function 3DH Page 1-146

Inherit Bit

The high-order bit (bit 7) specifies whether the file is
inherited by a child process created with Function 4BH (Load
and Execute Program). If the bit is 0, the file is
inherited; if the bit is 1, the file is not inherited.

sharing Mode

The sharing mode (bits 4-6) specifies what access, if any,
other processes have to the open file. It can have the
following values:

Bits 4-6 Sharing Mode Description

000 Compatability Any process can open the file any
number of times with this mode.
Fails if the file has been opened
with any of the other sharing
modes.

001 Deny both Fails if the file has been opened
in compatibility mode or for read
or write access, even if by the
current process.

010 Deny write Fails if the file has been opened
in compatibility mode or for write
access by any other process.

011 Deny read Fails if the file has been opened
in compatibility mode or for read
access by any other process.

100 Deny none Fails if the file has been opened
in compatibility mode by any other
process.

Access Code

The access code (bits 0-3) specifies how the file is to be
used. It can have the following values:

Access
Bits 0-3 Allowed Description

0000 Read Fails if the file has been opened in
deny read or deny both sharing mode.

0002 Write Fails if the file has been opened in
deny write or deny both sharing mode.

0010 Both Fails if the file has been opened in
deny read, deny write, or deny both
sharing mode.

SYSTEM CALLS Function 3DH Page 1-147

If there is an error, the carry flag (CF) 1is set and the
error code is returned in AX.

Code Meaning
1 File sharing must be loaded to specify a sharing
mode (bits 4-6 of AL).
2 The file specified is invalid or doesn't exist.
3 The path specified is invalid or doesn't exist.
4 No handles are available in the current process

or the internal system tables are full.

5 The program attempted to open a directory or
Volume-ID, or open a read-only file for writing.

12 The access code (bits 0-3 of AL) is not 0, 1, or

If this system call fails because of a file-sharing error,
MS-DOS 1issues Interrupt 24H with error code 2 (Drive Not
Ready). A subsequent Function 59H (Get Extended Error)
returns the extended error code that specifies a sharing
violation.

When opening a file, it is important to inform MS-DOS of any
operations other processes may perform on this file (sharing
mode). The default (compatibility mode) denies all other
processes access to the file, It may be OK for other
processes to continue to read the file while your process is
operating on it. In this case, you should specify "Deny
Write," which inhibits writing by other processes but allows
reading them,

Similarly, it is important to specify what operations your
process will perform ("Access" mode). The default mode
("Read/write") will cause the open request to fail if
another process has the file opened with any sharing mode
other than "Deny" mode. If you only want to read the file,
your open will succeed unless all other processes have
specified "Deny" mode or "Deny write".

Macro Definition: open_handle macro path,access
mov dx, offset path

mov al, access
mov ah, 3DH
int 21H

endm

SYSTEM CALLS Function 3DH Page 1-148

Example

The following program prints the file named TEXTFILE.ASC on
the disk in drive B.

file db "b:textfile.asc",0

buffer db ?

handle dw ?

’

begin: open_handle file,0 ;THIS FUNCTION
mov handle,ax ;Save handle

read_char: read_handle handle,buffer,1 ;Read 1 character
je error read ;Routine not shown
anp ax,0 ;End of file?
je return ;Yes, go home
print_char buffer ;See Function 05H

jmp read_char ;Read another

SYSTEM CALLS Function 3EH Page 1-149

Close Handle (Function 3EH)

AX: AH AL Call
BX: BH BL AH = 3EH
ox: cH cL BX
DX: DH DL Handle
: Return
- Carry set:
AX
o 6 = Invalid handle
P Carry not set:
FLAGSH I FLAGS:. NO error

cs

DS

ss

ES

Function 3EH closes a file opened with Function 3DH (Open

Handle) or 3CH (Create Handle). BX must contain the handle
of the open file that is to be closed.

If there is no error, MS-DOS closes the file and flushes all
internal buffers. If there is an error, the carry flag (CF)
is set and the error code is returned in AX:

Code Meaning

6 Handle is not open or is invalid.

Macro Definition: close_handle macro handle

mov bx,handle
mov ah,3EH
int 21H

endm

SYSTEM CALLS Function 3EH Page 1-150

Example

The following program creates a file named DIR.TMP in the
current directory on the disk in drive B that contains the
filename and extension of each file in the current
directory.

srch_file db "b:*,*",0
tmp_file db "b:dir.tmp",0

buffer db 43 dup (?)
handle dw ?
’
begin: set_dta buffer ;See Function 1lAH
find first file srch_file,16H ;See Function 4EH
cmp ax,12H ;Directory empty?
je all done ;Yes, go home
create_handle tmp_file,0 ;See Function 3CH
jc error_create ;Routine not shown
mov handle,ax ;Save handle
write_it: write handle handle,buffer[1EH],12 ;See Function
jec error_write ; 40H
find_next_file ;See Function 4FH
cmp ax,12H ;Another entry?
je all_done ;No, go home
jmp write it ;Yes, write record
all done: close_handle handle ;See Function 3EH

jc error_close ;Routine not shown

SYSTEM CALLS Function 3FH Page 1-151

Read Handle (Function 3FH)

AX: AH AL Call
BX: BH BL AH = 3FH
CX: CH cL BX
ox: | oH oL Handle
CX
sP Bytes to read
B8P DS:DX
sl Pointer to buffer
DI
Return
i Carry set:
FLAGSH | FLAGS. AX
oS 5 = Access denied
De 6 = Invalid handle
ss Carry not set:
ES AX
Bytes read

Function 3FH reads from the file or device associated with
the specified handle. BX must contain the handle. CX must
contain the number of bytes to be read. DX must contain the
offset (to the segment address in DS) of the buffer.

If there is no error, AX returns the number of bytes read;
if you attempt to read starting at end of file, AX returns
0. The number of bytes specified in CX is not necessarily
transferred to the Dbuffer; if you use this call to read
from the keyboard, for example, it reads only up to the
first CR.

If you use this function request to read from standard
input, the input can be redirected.

If there is an error, the carry flag (CF) 1is set and the
error code is returned in AX:

Code Meaning
5 Handle is not open for reading.

6 Handle is not open or is invalid.

SYSTEM CALLS Function 3FH

macro
mov
mov
mov
mov
int
endm

Macro Definition: read_handle

Example

The following program displays the file

on the disk in drive B.

filename db "b:\textfile.asc",0

buffer db 129 dup (?)
handle dw ?
éegin: open_handle filename,0

je

mov
read_handle
jc

anp

je

mov

mov

display

jmp

read_file:

error_open
handle,ax

Page 1-152
handle,buffer,bytes
bx,handle
dx,offset buffer
cx,bytes
ah,3FH
21H

named TEXTFILE.ASC

;See Function 3DH
;Routine not shown
;Save handle

buffer,file handle, 128

error_open
ax,0
return
bx,ax

buffer [bx],"$"

buffer
read_file

;Routine not shown
;sEnd of file?
;Yes, go home

;# of bytes read
;Make a string
;See Function 09H
;Read more

SYSTEM CALLS Function 40H Page 1-153

Write Handle (Function 40H)

AX: AR AL Call
ex: | B BL AH = 40H
CX: CH cL BX
ox [om o Handle
CX
sp Bytes to write
BE DS:DX
sl Pointer to buffer
DI
Return
il Carry set:
FLAGSH | FLAGS. AX
s 5 = Access denied
o8 6 = Invalid handle
s Carry not set:
ES AX

Bytes written

Function 40H writes to the file or device associated with
the specified handle. BX must contain the handle. CX must
contain the number of bytes to be written. DX must contain
the offset (to the segment address in DS) of the data to be
written.

If there is no error, AX returns the number of bytes
written. Be sure to check AX after writing to a disk file:
if it contains 0, the disk is full; if its value 1is 1less
than the number in CX when the call was made, it indicates
an error even though the carry flag isn't set.

If you use this function request to write to standard
output, the output can be redirected. If you call this
function request with CX=0, the file size is set to the
value of the read/write pointer. Allocation wunits are
allocated or released, as required, to satisfy the new file
size.

If there is an error, the carry flag (CF) is set and the
error code is returned in AX:

Code Meaning
5 Handle is not open for writing.

6 Handle is not open or is invalid.

SYSTEM CALLS Function 40H Page 1-154

Macro Definition: write_handle macro handle,data,bytes

mov bx,handle

mov dx,offset data
mov cx,bytes

mov ah,40H

int 21H

endm

Example

The following program creates a file named DIR.TMP in the
current directory on the disk in drive B that contains the
filename and extension of each file in the current
directory.

srch file db "b:*.*",0

tmp_file db "b:dir.tmp",0

buffer db 43 dup (?)

handle dw ?

’

begin: set_dta buffer ;See Function 1AH
find first file srch file,16H ;Check directory
cmp = ax,12H - ;Directory empty?
je return ;Yes, go home
create_handle tmp_file,O0 ;See Function 3CH
je " error_create ;Routine not shown
mov handle,ax ;Save handle

write_it: write handle handle,buffer[1EH],12 ;THIS FUNCTION
jec error_write ;Routine not shown
find next_ file ;Check directory
cmp ax,1l2H ;Another entry?
je all_done ;No, go home
jmp write it ;Yes, write record

all_done: close_handle handle ;See Function 3EH

je error_close ;Routine not shown

SYSTEM CALLS Function 41H Page 1-155

Delete Directory Entry (Function 41H)

AX:) AL Call

BX: BH [AH = 41H

ex: | cH cL DS :DX

ox | om o Pointer to pathname
sp Return
BP Carry set:
sI AX
oI 2 = File not found
= 5 = Access denied

Carry not set:
FLAGSH | FLAGS No error

cs
DS
Sss
ES

Function 41H erases a file by deleting its directory entry.
DX must contain the offset (from the segment address in DS)
of an ASCIZ string that specifies the pathname of the file
to be deleted. Wildcard characters cannot be used.

If the file exists and is not read-only, it is deleted. If
there 1is an error, the carry flag (CF) is set and the error
code is returned in AX:

Code Meaning
2 Path is invalid or file doesn't exist.
5 Path specifies a directory or read-only file.

To delete a file with the read-only attribute, first change

its attribute to 0 with Function 43H (Get/Set File
Attribute).

Macro Definition: delete_entry macro path
mov dx,offset path
mov ah,41H
int 21H
endm

SYSTEM CALLS Function 41H Page 1-156

Example

The following program deletes all files on the disk in drive
B whose date is earlier than December 31, 1981.

year db 1981

month db 12

day db 31

files db ?

ten db 0AH

message db "NO FILES DELETED.",0DH,0AH,"S$"

path db "b:* %", 0

buffer db 43 dup (?)

’

begin: set_dta buffer ;See Function 1lAH
select disk "B" ;See Function OEH
find first file path,0 ;See Function 4EH
jec all_done :Go home if empty

compare: convert date buffer ;See end of chapter
cmp cx,year ;After 19817
jg next ;Yes, don't delete
cmp dl,month ;After December?
jg next ;Yes, don't delete
cmp dh,day ;31lst or after?
jge next ;Yes, don't delete
delete_entry buffer[lEH] ;THIS FUNCTION
jc error_delete ;Routine not shown
inc files ;Bump file counter

next: find_next file ;Check directory
jnc compare ;Go home if done

how_many: cmp files,0 ;Was directory empty?
je all_done ;Yes, go home
convert files,ten,message ;See end of chapter

all done: display message ;See Function 09H

select_disk "A" ;See Function OEH

SYSTEM CALLS Function 42H Page 1-157

Move File Pointer (Function 42H)

Ax: A AL Call
BX: BH BL AH = 42H
cX: CH cL AL
ox: o oL Method of moving
BX
sp Handle
5P CX:DX
S| Distance in bytes (offset)
DI
= Return
FLAGSH | FLAGS. Carry set:
AX
cs 1 = Invalid function
s 6 = Invalid handle
ss Carry not set:
s DX:AX

New read/write pointer location

Function 42H moves the read/write pointer of the file
associated with the specified handle. BX must contain the
handle. CX and DX must contain a 32-bit offset (CX contains
the most significant byte). AL must contain a code that
specifies how to move the pointer:

Code Cursor Is Moved To
0 Beginning of file plus the offset.
1 Current pointer location plus the offset.
2 End of file plus the offset.

DX and AX return the new location of the read/write pointer
(a 32-bit integer; DX contains the most significant byte).
You can determine the length of a file by setting CX:DX to
0, AL to 2, and calling this function request; DX:AX return
the offset of the byte after the last byte in the file (size
of the file in bytes).

If there is an error, the carry flag (CF) 1is set and the
error code is returned in AX:

Code Meaning
1 AL isn't 0, 1, or 2.

6 Handle isn't open.

SYSTEM CALLS Function 42H Page 1-158

Macro Definition: move ptr macro handle,high,low,method

mov bx,handle
mov cx,high
mov dx,low
mov al,method
mov ah,42H
int 21H

endm

Example

The following program prompts for a letter, converts the
letter to its alphabetic sequence (A=l, B=2, etc.), then
reads and displays the corresponding record from the file
named ALPHABET.DAT 1in the current directory on the disk in
drive B. The file contains 26 records; each record 1is 28
bytes long.

file db "b:alphabet.dat",0
buffer db 28 dup (?),"s$"
prompt db "Enter letter: $"
crlf db ODH, 0AH,"S$"
handle db ?

record_length dw 28

.

’

begin: open_handle file,0 ;See Function 3DH
jc error_open ;Routine not shown
mov handle, ax ;Save handle

get_char: display prompt ;See Function 09H
read_kbd_and_echo ;See Function 01H
sub al,41lh ;Convert to sequence
mul byte ptr record length ;Calculate offset
move_ ptr handle,0,ax,0 ;THIS FUNCTION
je error_move ;Routine not shown
read_handle handle,buffer,record_length
je error_read ;Routine not shown
cmp ax,0 ;End of file?
je return ;Yes, go home
display crlf ;See Function 09H
display buffer ;See Function 09H
display crlf ;See Function 09H

jmp get_char ;Get another character

SYSTEM CALLS Function 43H Page 1-159

Get/Set File Attributes (Function 43H)

AX: AR AL Ca]_l

BX: BH BL AH - 43H

CX: CH oL AL

X: DH oL 0 = Get attributes
p- 1 = Set attributes
ps CX (if AL=1)

Attributes to be set
hal DS :DX
o Pointer to pathname
P
FLAGSH | FLAGS. Return
Carry set:

cs AX
08 1 Invalid function

ss 3 Path not found
ES 5 Access denied
Carry not set:
CcX
Attribute byte (if AL=0)

Function 43H gets or sets the attributes of a file. DX must
contain the offset (from the segment address in DS) of an
ASCIZ string that specifies the pathname of a file. AL must
specify whether to get or set the attribute (0=get, 1l=set).

If AL is 0 (get the attribute), the attribute byte is
returned in CX. If AL is 1 (set the attribute), CX must
contain the attributes to be set. The attributes are
described under "File Attributes" earlier in this chapter.

You cannot change the volume-ID bit (08H) or the directory
bit (10H) of the attribute byte with this function request.

If there is an error, the carry flag (CF) 1is set and the
error code is returned in AX:

Code Meaning

1 AL isn't 0 or 1.
3 Path is invalid or file doesn't exist.
5 Attribute in CX cannot be changed (directory or

Volume-1ID) .

SYSTEM CALLS Function 43H Page 1-160

Macro Definition: change_attr macro path,action,attrib

mov dx,offset path
mov al,action

mov cx,attrib

mov ah,43H

int 21H

endm

Example

The following program displays the attributes assigned to
the file named REPORT.ASM in the current directory on the
disk in drive B.

header db 15 dup (20h) ,"Read-",0DH,0AH
db "Filename Only Hidden "
db "System Volume Sub-Dir Archive"
db ODH,0AH,0DH,0AH,"S"
path db "b:report.asm",3 dup (0),"$"
attribute dw ?
blanks db 9 dup (20h),"s$"
begin: change_attr path,0,0 ;THIS FUNCTION
jc error_mode ;Routine not shown
mov attribute,cx ;Save attribute byte
display header ;See Function 09H
display path ;See Function 09H
mov cx,6 ;Check 6 bits (0-5)
mov bx,1 ;Start with bit 0
chk_bit: test attribute,bx ;Is the bit set?
jz no_attr :No
display_char "X" ;See Function 02H
jmp short next bit ;Done with this bit
no_attr: display_char 20h ;See Function 02H
next bit: display blanks ;See Function 09H
shl bx,1 ;Move to next bit

loop chk_bit ;Check it

SYSTEM CALLS Function 44H, Codes 0 and 1 Page 1-161

IOCTL Data (Function 44H, Codes 0 and 1)

AX: AW AL Call
BX: B Bl AH = 44H
CX: CH cL AL
ox: = o 0 = Get device data
1 = Set device data
SP BX
8P Handle
S| DX
[Device data (see text)
P
Return
FLAGSH | FLAGS: Carry set:
cs AX
s 1 = Invalid function
s 6 = Invalid handle
TS Carry not set:
DX

Device data

Function 44H, Codes 0 and 1 either gets or sets the data
MS-DOS uses to control the device. AL must contain 0 to get
the data or 1 to set it. BX must contain the handle. If AL
is 1, DH must contain 0.

The device data word is specified or returned in DX. If bit
7 of the data is 1, the handle refers to a device and the
other bits have the following meanings:

Bit Value Meaning

15 RESERVED.

14 1 Device can process control strings sent
with Function 44H, Codes 2 and 3 (IOCTL
Control). This bit can only be read; it
cannot be set.

13-8 RESERVED

End of file on input.

Don't check for control characters.

Check for control characters.

RESERVED.

Clock device.

Null device.

Console output device.

Console input device.

oMW
O O

The control characters referred to in the description of bit
5 are Control-C, Control-P, Control-S, and Control-zZ. To
read these characters as data, rather than having them
interpreted as control characters, bit 5 must be set and

SYSTEM CALLS Function 44H, Codes 0 and 1 Page 1-162
Control-C checking must be turned off, either with Function
33H (Control-C Check) or the MS-DOS Break command.

If bit 7 of DX is 0, the handle refers to a file and the
other bits have the following meanings:

Bit Value Meaning

15-8 RESERVED

6 0 The file has been written.

0-5 Drive number (0=A, 1=B, etc.).

If there is an error, the carry flag (CF) 1is set and the
error code is returned in AX:

Code Meaning
1 AL is not 0 or 1, or AL is 1 but DH is not 0.
6 The handle in BX is not open or invalid.

Macro Definition: ioctl_data macro code,handle

mov bx,handle
mov al,code
mov ah,44H
int 21H

endm

Example

The following program gets the device data for Standard
Output and sets the bit that specifies not to check for
control characters (bit 5), then clears the bit.

get equ 0

set equ 1

stdout equ 1

’

begin: ioctl_data get,stdout ;THIS FUNCTION
jc error ;routine not shown
mov dh,0 ;clear DH
or dl,20H ;set bit 5
ioctl_data set,stdout ;THIS FUNCTION
jc error ;routine not shown

<control characters now treated as data, or "raw mode">

~e Ne ~e

ioctl_data get,stdout ;s THIS FUNCTION

jc error sroutine not shown
mov dh,0 ;clear DH

and dl,0DFH ;clear bit 5
ioctl_data set,stdout ;THIS FUNCTION

<control characters now interpreted, or "cooked mode">

~e ~o we

SYSTEM CALLS Function 44H, Codes 2 and 3 Page 1-163

IOCTL Character (Function 44H, Codes 2 and 3)

AX: Call
Bx. AH = 44H
AL
ox: 2 = Send control data
3 = Receive control data
SP BX
8P Handle
s CX
oI Bytes to read or write
= DS:DX
Poi
— inter to buffer

Return
s

Carry set:
AX

1 = Invalid function
6 = Invalid handle
Carry not set:
AX

Bytes transferred

Function 44H, Codes 2 and 3 send or receive control data to
or from a character device. AL must contain 2 to send data
or 3 to receive. BX must contain the handle of a character
device, such as a printer or serial port. CX must contain
the number of bytes to be read or written. DX must contain
the offset (to the segment address in DS) of the data
buffer.

AX returns the number of bytes transferred. The device
driver must be written to support the IOCTL interface.

If there is an error, the carry flag (CF) 1is set and the
error code is returned in AX:

Code Meaning

1 AL is not 2 or 3, or the device cannot perform the
specified function.

6 The handle in BX isn't open or doesn't exist.

SYSTEM CALLS Function 44H, Codes 2 and 3 Page 1-164

Macro Definition: ioctl _char macro code,handle,buffer

mov bx,handle

mov dx,offset buffer
mov al,code

mov ah,44H

int 21H

endm

Example

Because processing of IOCTL control data depends on the
device and device driver, no example is included.

SYSTEM CALLS Function 44H, Codes 4 and 5 Page 1-165

IOCTL Block (Function 44H, Codes 4 and 5)

w [&) Call
o o [w | AH = 44m

. AL
z: %3 4 = Send control data
5 = Receive control data
sP BL
BP Drive number (O=default, 1=A, etc.)
S| CX
DI Bytes to read or write
DS:DX

Pointer to buffer

FLAGSH FLAGS.

s Return

e Carry set:

ss Ax

= 1 Invalid function

5 = Invalid drive
Carry not set:
AX

Bytes transferred

Function 44H, Codes 4 and 5 send or receive control data to
or from a block device. AL must contain 4 to send data or 5
to receive. BL must contain the drive number (0=default,
1=A, etc.). CX must contain the number of bytes to be read
or written. DX must contain the offset (to the segment
address in DS) of the data buffer.

AX returns the number of bytes transferred. The device
driver must be written to support the IOCTL interface. To
determine this, use Function 44H, Code 0 to get the device
data and test bit 14; if it is set, the driver supports
IOCTL.

If there is an error, the carry flag (CF) 1is set and the
error code is returned in AX:

Code Meaning

1 AL is not 4 or 5, or the device cannot perform the
specified function.

5 The number in BL is not a valid drive number.

SYSTEM CALLS Function 44H, Codes 4 and 5 Page 1-166

Macro Definition: ioctl_block macro code,drive,buffer

mov bl,drive

mov dx,offset buffer
mov al,code

mov ah,44H

int 21H

endm

Example

Because processing of IOCTL control data depends on
device and device driver, no example is included.

the

SYSTEM CALLS Function 44H, Codes 6 and 7 Page 1-167

IOCTL Status (Function 44H, Codes 6 and 7)

w [W] Call

BX: m oL AH = 44H
ox [en [a AL
o | on | o | 6 = Check input status
7 = Check output status
sp BX
BP Handle
Sl
DI Return
Carry set:
| P AX
FLaGS 1 = Invalid function
cs 5 = Access denied
s 6 = Invalid handle
55 13 = Invalid data
oy Carry not set:
AL
00H = Not ready
OFFH = Ready

Function 44H, Codes 6 and 7 check whether the file or device
associated with a handle 1is ready. AL must contain 6 to
check whether the handle is ready for input or 7 to check
whether the handle is ready for output. BX must contain the
handle.

AL returns the status:

Meaning for Meaning for Meaning for
Value Device Input File Output File
00H Not ready Pointer is at EOF Ready
OFFH Ready Ready Ready

An output file always returns ready, even 1if the disk is
full,

If there is an error, the carry flag (CF) is set and the
error code is returned in AX:

Code Meaning

1 AL is not 6 or 7.
5 Access denied.
6 The number in BX isn't a valid, open handle.

13 Invalid data.

SYSTEM CALLS Function 44H, Codes 6 and 7 Page 1-168

Macro Definition: ioctl_status macro code,handle

mov bx,handle
mv al,code
mov ah,44H
int 21H

endm

Example

The following program displays a message that tells whether
the file associated with handle 6 is ready for input or at
end-of-file.

stdout equ 1

ﬁessage db "File is "

ready db "ready."

at_eof db "at EOF."

crlf db ODH, OAH

’

begin: write_handle stdout,message,8 ;display message
jc write_error ;routine not shown
ioctl__status 6 ;THIS FUNCTION
jc ioctl_error ;routine not shown
cmp al,o ;check status code
jne not eof ;file is ready
write _handle stdout,at_eof,7 ;see Function 40H
jc write error ;routine not shown
jmp all done ;clean up & go hom

not_eof: write handle stdout,ready,6 ;see Function 40H

all_done: write_handle stdout,crlf,2 ;see Function 40H

jc write_ error ;routine not shown

SYSTEM CALLS Function 44H, Code 08H Page 1-169

IOCTL Is Changeable (Function 44H, Code 08H)

ax: AH AL Call

BX: BH B AH = 44H
ox: cH cL AL = 08H
DX: DH DL BL

Drive number (0=default, 1=A, etc.)

SP

BP Return
st Carry set:
DI AX
1 = Invalid function
' 15 = Invalid drive
| FLAGSw | FLAGE: Carry not set:
cs AX
o8 0 = Changeable
P 1 = Not changeable

ES

Function 44H, Code 08H checks whether a drive contains a
fixed or removable disk. BL must contain the drive number
(0=default, 1=A, etc.). AX returns 0 if the disk can be
changed, 1 if it cannot.

This call lets a program determine whether to 1issue a
message to change disks.

If there is an error, the carry flag (CF) 1is set and the
error code is returned in AX.

Code Meaning
1 The device does not support this call.
15 The number in BL is not a valid drive number.
In the case where this call returns error 1 because the
device doesn't support the call, the caller should make the

assumption that the driver cannot be changed.

Macro Definition: ioctl change macro drive

mov bl, drive
mov al, 08H
mov ah, 44H
int 21H

endm

SYSTEM CALLS Function 44H, Code 08H Page 1-170

Example

The following program checks whether the current drive
contains a removable disk. If not, processing continues;
if so, it prompts the user to replace the disk in the
current drive.

stdout equ 1

r

message db "please replace disk in drive "

drives db "ABCD"

crlf db ODH, 0AH

’

begin: ioctl_change 0 ;THIS FUNCTION
jc ioctl_error ;routine not shown
cmp ax,0 scurrent drive changeable?
jne continue ;no, continue processing
write_handle stdout,message,29 ;see Function 40H
jc write_error ;routine not shown
current_disk ;see Function 19H
Xor bx,bx ;clear index
mov bl,al ;get current drive

display char drives[bx] ;see Function 02H
write_handle stdout,crlf,2 ;see Function 40H
jc write error ;routine not shown
continue:
; (Further processing here)

SYSTEM CALLS Function 44H, Code 09H Page 1-171

IOCTL Is Redirected Block (Function 44H, Code 09H)

AxX: aH AL Call

BX: BH 8L AH = 44H
[cH cL AL = 09H
DX: oY DL BL

Drive number (0O=default, 1=A, etc.)

sP

B8P Return

sl Carry set:

DI AX

— 1 = Invalid function code
15 = Invalid drive number

FLAGSk | FLAGS:

Carry not set:

cs DX

oS Device attribute bits
sS
ES

Function 44H, Code 09H checks whether a drive letter refers
to a drive on a Microsoft Networks workstation (local) or is
redirected to a server (remote). BL must contain the drive
number (0=default, 1=A, etc.).

If the block device is local, DX returns the attribute word
from the device header. If the block device is remote, only
bit 12 (1000h) is set; the other bits are 0 (reserved).

An application program should not test bit 12. Applications
should make no distinction between local and remote files or
devices.

If there is an error, the carry flag (CF) 1is set and the
error code is returned in AX:

Code Meaning
1 File sharing must be loaded to use this system
call.
15 The number in BL is not a valid drive number.

Macro Definition: ioctl rblock macro drive

mov bl, drive
mov al, 09H
mov ah, 44H
int 21H

endm

SYSTEM CALLS Function 44H, Code 09H Page 1-172

Example

The following program checks whether drive B is 1local or
remote, and displays the appropriate message.

stdout equ 1

’

message db "Drive B: is "

loc db "local."

rem db "remote."

crlf db ODH, 0AH

’

begin: write handle stdout,message,l12 ;display message
jc write_error ;routine not shown
ioctl_rblock 2 ;THIS FUNCTION
jc ioctl error ;routine not shown
test dx,1000h sbit 12 set?
jnz not_loc ;yes, it's remote
write handle stdout,loc,6 ;see Function 40H
je T write error ;routine not shown
jmp done

not_loc: write handle stdout,rem,7 ;see Function 40H
je write_error ;routine not shown

done: write handle stdout,crlf,2 ;see Function 40H

jc write_error ;routine not shown

SYSTEM CALLS Function 44H, Code 0AH Page 1-173

IOCTL Is Redirected Handle (Function 44H, Code O0AH)

—

AX: AH AL Call
BX: B Bl AH = 44H
ox: CH cL AL = OAH
DX: DH oL BX
— Handle
SP
8P Return
st Carry set:
DI Ax
= 1= Inval%d function code
e [6 = Invalid handle
Carry not set:
cs DX
s IOCTL bit field
sS
ES

Function 44H, Code OAH checks whether a handle refers to a
file or device on a Microsoft Networks workstation (local)
or is redirected to a server (remote). BX must contain the
file handle. DX returns the IOCTL bit field; Bit 15 is set
if the handle refers to a remote file or device.

An application program should not test bit 15. Applications
should make no distinction among local and remote files and
devices.

If there is an error, the carry flag (CF) is set and the
error code is returned in AX:

Code Meaning

1 Network must be loaded to use this system call.
6 The handle in BX is not a valid, open handle.
Macro Definition: ioctl_rhandle macro handle
mov bx, handle
mov al, OAH
mov ah, 44H
int 21H

endm

SYSTEM CALLS Function 44H, Code OAH

Example

The following program checks whether handle 5
local or remote file or device, then
appropriate message.

Page 1-174

refers to a
displays the

stdout equ 1

’

message db "Handle 5 is "

loc db "local."

rem db "remote."

crlf db ODH, 0AH

’

begin: write_handle stdout,message,12;display message
je write error ;routine not shown
ioctl_rhandle 5 ;THIS FUNCTION
jc ioctl error ;routine not shown
test dx,1000h ;bit 12 set?
jnz not_loc ;yes, it's remote
write _handle stdout,loc,6 ;see Function 40H
jc write_error ;routine not shown
jmp done

mot_loc: write_handle stdout,rem,7 ;see Function 40H

- je write_error ;routine not shown
done: write_handle stdout,crlf,2 ;see Function 40H

jc write error ;routine not shown

SYSTEM CALLS Function 44H, Code OBH Page 1-175

IOCTL Retry (Function 44H, Code OBH)

ax: [AR ‘ AL Call
BX: BH H AH = 44H

o [en [& AL = OBH
DX: DH DL BX
Number of retries
sp CX
BP Wait time
s
DI Return
— Carry set:
oo] ™ . -
1 = Invalid function code
cs Carry not set:
[No error

ss

ES

Function 44H, Code O0BH specifies how many times MS-DOS
should retry a disk operation that fails because of a
file-sharing violation. BX must contain the number of
retries. CX controls the pause between retries.

MS-DOS retries a disk operation that fails because of a
file-sharing violation three times unless this system call
is used to specify a different number. After the specified
number of retries, MS-DOS issues Interrupt 24 for the
requesting process.

The effect of the delay parameter in CX is machine-dependent
because it specifies how many times MS-DOS should execute an
empty loop. The actual time varies, depending on the
processor and clock speed. You can determine the effect on
your machine by using Debug to set the retries to 1 and time
several values of CX.

If there is an error, the carry flag (CF) is set and the
error code is returned in AX.

Code Meaning

1 File sharing must be loaded to use this system
call.

SYSTEM CALLS Function 44H, Code OBH Page 1-176

Macro Definition: ioctl_retry macro retries, wait

mov bx, retries
mov cx, wait
mov al, OBH
mov ah, 44H

int 21H

endm

Example

The following program sets the number of sharing retries to
10 and specifies a delay of 1000 between retries.

begin: ioctl_retry 10,1000 ;THIS FUNCTION
jec error ;routine not shown

SYSTEM CALLS Function 45H Page 1-177

Duplicate File Handle (Function 45H)

AX: AH AL Call
BX: BH BL AH = 45H
CcX: CH cL BX
DX: DH DL H a nd l e
sp Return
8P Carry set:
st AX
oI 4 Too many open files

6 = Invalid handle

Carry not set:
FLAGSH | FLAGS AX

P

P New ha<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>