
----------- ------- - - ------ -----·-

Publication Number
GC31-2067-1

4700 Finance
Communication System

Controller Programming
Library

Volume 2
Disk and Diskette
Programming

File Number
$370/4300/8100/$34-30

Second Edition- (January 1984)

This edition applies to Release 3 of the 4700 Finance Communication System and
to all subsequent releases and modifications until otherwise indicated in new
editions or Technical Newsletters (TNLs).

Changes occur often to the information herein; before using this publication to
install or operate IBM equipment, consult the latest IBM System/370 Bibliography
of Industry Systems and Application Programs, GC20-0370, for the editions that are
applicable and current.

References in this publication to IBM products, programs, or services do not imply
that IBM intends to make these available in all countries in which IBM operates.
Any reference to an IBM program product in this publication is not intended to
state or imply that only IBM's program product may be used. Any functionally
equivalent program may be used instead.

Publications are not stocked at the address given below; requests for IBM
publications should be made to your IBM representative or to the IBM branch
office serving your locality.

A form for reader's comments is provided at the back of this publication. Address
comments about this manual to IBM Corporation, Information Development,
Department 78C, 1001 W.T. Harris Blvd., Charlotte, NC 28257 USA. IBM may
use or distribute any of the information you supply in any way it believes
appropriate without incurring any obligation to you.

© Copyright International Business Machines Corporation 1983, 1984

Preface

This is Volume 2 of the 4700 Controller Programming Library- one of a set of
six volumes for the 4700 programmer. Figure 0-1 on page v summarizes the
topics covered in the other volumes. All six volumes are available from your IBM
representative or local branch office under a single order number (GBOF-1387).

Volume 2, Disk and Diskette Programming, describes the IBM 4700 Finance
Communication System disk and diskette facilities, and tells you how to use them.

Who Should Read This Book

You need this information if your responsibilities include designing, coding, or
testing controller application programs that use the 4700 disks or diskettes.

How This Book Is Organized

What Else To Read

The first chapter of this manual introduces you to the 4 700 disk and diskette.
Subsequent sections tell you how to use the facilities to:

• create data sets
• read data sets
• write data sets

This manual can be used both as a guide and as a reference. If you are already
familiar with the concepts explained in this manual and simply want to refer
quickly to a specific instruction, use the alphabetized descriptions in Chapter
4, "Instruction Descriptions." (There is also an alphabetic index at the back of
this book.)

Before you can use the 4 700 disks and diskettes, you must know how to use the
other 4700 facilities described in Volume I: General Controller Programming,
GC31-2066. Other related publications that you may need to consult are listed
in the Bibliography at the end of this manual.

Preface iii

iv 4700 Programming Library, Volume 2: Disk and Diskette Programming

VOLUME 2: DISK AND DISKETIE PROGRAMMING (GC31-2067)
• Basic Disk and Diskette Programming
• Extended Disk and Diskette Access Method
• Instruction Descriptions
• Machine Instruction Formats
•Copy Files
• Status Codes

Figure 0-1. 4700 Controller Programming Library (GBOF-1387)

Preface V

vi 4700 Programming Library, Volume 2: Disk and Diskette Programming

Summary of Amendments

Significant changes and additions to this manual are marked with the same change
bar that you see at the left of this summary.

This edition reflects the Release 3 change that adds a new LDKT function called
Reset Data Set Output Pointer. This document also describes improvements for
disk operations when the application programs use LLOAD and APCALL
multiple-sector operations.

The coding rules that were Chapter 4 of the previous edition have been deleted.
Those coding rules are in Volume 1: General Controller Programming.

Summary of Amendments vii

viii 4700 Programming Library, Volume 2: Disk and Diskette Programming

Contents

Chapter 1. Introduction to Disk and Diskette Programming 1-1
Diskette Characteristics 1-1
Disk Characteristics 1-2
Data Set Characteristics 1-2
Accessing Data Sets 1-2

Chapter 2. Basic Disk and Diskette Programming 2-1
Diskette States 2-1

Diskette "Started" State 2-2
Diskette "Stopped" State 2-2

Absolute Addressing 2-3
Programming Disk Absolute Addressing 2-3
Programming Diskette Absolute Addressing 2-4

Converting Diskette Track and Record Addresses to PBNs 2-5
Converting Diskette PBNs to Track and Record Addresses 2-6

Basic Diskette Programming Considerations 2-8
Initialized Diskette Formats 2-8
Diskette Control Records, Volumes, and Data Sets 2-10

Permanent and Temporary Files 2-10
The Permanent File 2-11

Allocating the Permanent File 2-11
Processing Permanent File Blocks 2-11
Permanent File Errors 2-12

The Temporary File 2-12
Allocating the Temporary File 2-12
Initializing the Temporary File 2-13
Protecting the Primary Diskette 2-14
Writing Temporary File Records 2-14
Reading Temporary File Records 2-14
The Optional Read Index Buffer 2-15
Specifying Subfiles 2-16
Composite File Indexing 2-18
The System Log 2-20
Replacing Temporary File Records 2-22
Temporary File Errors 2-22
Storage Requirements 2-23
Data Integrity 2-24
LCHECK DSK Operation 2-24
Obtaining Sequence Numbers 2-25

Available Data Set Space 2-25
Diskette Special Multiple-Sector I/0 Considerations 2-26

Diskette Performance 2-28
Disk Performance 2-29

Chapter 3. Extended Disk and Diskette Access Method 3-1
Data Set Characteristics 3-1

EDAM Data Sets 3-1
Temporary File Data Sets (TEMP) 3-1
Sequential Data Sets (ESDS) 3-2
Direct Data Sets (EDDS) 3-3
Arrival Sequence Data Sets (ASDS) 3-3
Keyed Access Data Sets (RKAP,KSAP) 3-4

Using Basic Disk and Diskette Instructions 3-5
Data Buffers 3-5
EDAM Functions 3-6

Data Set Service Functions 3-6
Record Processing Using PLR Instructions 3-6

Diskette Programming 3-7
Defining Data Sets 3-7
Sector Deletion and Relocation 3-7

Defective Physical Sectors 3-7
Control Records 3-7
Delete Control Records 3-7
Sequential Relocate Control Records 3-8
Alternate Relocate Control Records 3-8
Unrecoverable Write Errors 3-9

Contents ix

Disk Programming 3-10 ,, ,
Disk Space Allocation 3-10
Data Set Labels 3-10
Sector Deletion and Relocation 3-11

Accessing Permanent and Temporary Files 3-11
Available Data Set Space 3-12
Obtaining Disk and Diskette Information 3-12
CPGEN Requirements 3-12

Chapter 4. Instruction Descriptions 4-1
COMPDKT-Compress Diskette Data 4-1
DELETE-Delete Records from Data Sets 4-5
FORMDKT-Format a Diskette 4-7
LCHECK-Check the Status of a Data Set 4-11
LDKT-Disk and Diskette Service Functions 4-13

Allocate a Data Set 4-13
Open a Data Set 4-23
Update Header Label 4-25
Query Data Set Information 4-26

Query Extended Header Label 4-26
Buffer Inquiry 4-28
Query Open Status 4-29
Volume ID Inquiry 4-29
Unallocated Space Inquiry 4-30

Utility Functions 4-31
Buffer Release 4-31
Reset Data Set Input Pointer 4-32
Reset Data Set Output Pointer 4-32
Rename a Data Set 4-33
Reorganize a Data Set 4-33

Control Access to Volumes 4-34
Inhibit Access to Volumes 4-34
Permit Access to Volumes 4-35

Close a Data Set 4-35
Deallocate a Data Set 4-37

LREAD-Read from Disk or Diskette 4-39
LREADA 4-41
LREAD PBN 4-42
LREAD TFn 4-42
LREADC 4-43
LREADL 4-43
LREAD P 4-44
LREAD DSID 4-44
LREAD PLR 4-45

LWRITE-Write to Disk or Diskette 4-49
LWRITE TFn 4-49
LWRITE L 4-50
LWRITE PLR 4-51

REPLACE-Replace Disk or Diskette Data 4-53
REPLACE A 4-56
REPLACE CR 4-56
REPLACE PBN 4-56
REPLACE TFn 4-57
REPLACE C 4-57
REPLACE P 4-58
REPLACE DSID 4-58
REPLACE PLR 4-58

SETDSKT-Reset the Temporary File 4-63

Appendix A. Machine Instruction Formats A-1

Appendix B. 4700 COPY Files B-1
DEFCDK Compress Diskette Parameter List B-2
DEFDKT LDKT Parameter List B-2
DEFFDK Format Diskette Parameter List B-7

Appendix C. Program Check Codes C-1

Appendix D. Status Codes for Disk and Diskette D-1

X 4700 Programming Library, Volume 2: Disk and Diskette Programming

Appendix E. Statistical Counters E· 1
Controller Diskette E-1
Controller Disk E-1

Appendix F. Diskette Initialization F-1

Bibliography X-1

Index X-3

Contents xi

xii 4700 Programming Library, Volume 2: Disk and Diskette Programming

Figures

0-1. 4700 Controller Programming Library (GBOF-1387) v
2-1. Format of Track 0 Sectors 2-8
2-2. Format of Initialized Diskettes 2-9
2-3. Format of the TF Unit 2-13
2-4. Writing a Temporary File Record Using Subfile Numbers 2-17
2-5. Reading Temporary File Records Using Subfile Numbers 2-18
2-6. Temporary File Indexing 2-19
2-7. Reading Composite File Records 2-20
2-8. Reading Temporary File Records Starting with the Latest Record Entered 2-25
4-1. Table of Header Label Values 4-14
4-2. Multiple-Sector LREAD Operation Conditions - Disk and Diskette 4-41
4-3. Multiple-Sector REPLACE Operation Conditions-Disk and Diskette 4-55

Figures xiii

xiv 4700 Programming Library, Volume 2: Disk and Diskette Programming

Chapter 1. Introduction to Disk and Diskette Programming

Diskette Characteristics

This volume of the Programming Library for the IBM 4700 Finance
Communication System describes disk and diskette programming. It contains a
brief introduction to 4700 disks and diskettes, and to general concepts of data
storage and access.

It also contains the detailed information that you will need to write 4 700
Assembler Language application programs using disks and diskettes.

The IBM 4701 Controller Model 1 operates with one-sided diskettes (Diskette 1)
or two-sided diskettes (Diskette 2). It can be configured with a diskette
expansion unit that contains a second diskette drive.

The IBM 4701 Controller Model 2 operates with two-sided double-density
diskette (Diskette 2D) in addition to the one- and two-sided diskettes. The
Model 2 can be configured with an expansion unit that provides:

• A second diskette drive

• A second diskette drive and a disk storage drive

• A single disk storage drive

• Two disk storage drives.

If the expansion unit contains one disk storage drive (alone or in combination
with a diskette), the disk may have an approximate capacity of either 15 or 30 M
bytes. (An M byte equals 1 048 576 bytes.) If the expansion unit contains two
disk storage drives, both must be large capacity drives allowing a maximum online
disk capacity of 60 M bytes.

The diskette drive that contains the operating diskette during initial load is called
the primary drive.

IBM-supplied diskettes are already initialized. Diskettes may also be initialized by
a controller using an installation diskette or the System Monitor.

All diskettes must be standard, labeled diskettes as described in the IBM Diskette
General Information Manual, GA21-9182. More specifically, the 4700 can read
and write standard, labeled diskettes on which tracks other than 0, have either
128-byte or 256-byte sectors. A labeled diskette has:

A volume label sector on track 0, side 0, sector 7.

Header label sectors on track 0, side 0, sectors 8 - 26.

Header label sectors, for a two-sided diskette, on track 0, side 1,
sectors 1 - 26.

Chapter I . .Introduction to Disk and Diskette Programming 1-1

Disk Characteristics

Data Set Characteristics

Accessing Data Sets

The 4 700 disk is a permanently-mounted disk, formatted with 443 cylinders each
having either two or four tracks (for the 15- or 30-M byte model, respectively).
Each track contains 68 sectors, each sector contains 256 bytes.

The 4700 supports either one or two disk drives in 256-byte sector format only.
You can define up to 510 data sets on each disk drive. The header labels for the
data sets are found in the 'SYSDSLBL' data set on the disk drive. The individual
data sets are located through a hash table data set (named 'SYSDSHSH'). All
space allocated on a disk drive is in multiples of sixteen sectors (4096 bytes).

The 4 700 provides configuration specifications that can improve disk
performance when application programs use LLOAD and APCALL
multiple-sector operations. See the FILES and OPTMOD macros in Volume 6:
Control Program Generation for further information.

In general, there are 2 types of data set organizations in the 4700. They are
referred to as:

• Permanent and Temporary Files.

• EDAM (Extended Disk and Diskette Access Method) data sets.

In this book you will see the terms permanent and temporary. These terms relate
to the retention of data between processing sessions. All 4 700 controllers may
have a permanent file called SYSPF and always have a temporary file called
SYSTF. Permanent and temporary system files are described in Chapter 2.

EDAM data sets offer much flexibility in the ways in which they can be written
and read. EDAM also handles exchange data sets that can be processed by
systems other than the 4 700. EDAM data sets and the ways in which you can use
them are described in Chapter 3.

The 4 700 allows you to create and update data sets in 2 ways; sequentially and
directly. In general, data sets will be created sequentially and updated in a direct
fashion, that is; the third record might be replaced, then the eighth record, and so
on.

The word direct simply means that the location of the next record to be accessed
does not depend upon the location of the previously accessed record. Your
program can access records in any order.

The 4 700 provides direct access to data in 2 ways:

1. Relative addressing means that your program can read or replace by record
number relative to the beginning of the data set. Without having the location
of the beginning of the data set, your program can specify the logical record
number to be read or replaced. This means that your program can access the
second, fourth, and sixth records, if necessary.

1-2 4700 Programming Library, Volume 2: Disk and Diskette Programming

2. Accessing by keys means that you can create data sets; for example, a
customer account file; and use the account number or the customer's name as
keys to access the appropriate records. The controller will create
corresponding data sets containing only pointers (locations of records within
your data set) so that your program can access a customer account entry
simply by specifying the account number.

Accessing (writing and reading) can also be done sequentially. Sequential access
starts with the record located at the beginning of the data set then reads the
second, third, fourth, and so on. New records are always written at the end of the
data set.

The 4 700 also provides absolute diskette addressing which means that your
program can access data by diskette side, track, and sector numbers. Another
form of absolute addressing allows your program to access any block of data by
the physical sector number of any block on a diskette or disk.

The 4700 associates special meanings with the following data set names:

DUMP AP

• ERRORSET

• SYSAPnnn - where the last three characters are numeric

• SYSBAS

• SYSCPG

• SYSCTL

• SYSDSHSH

• SYSDSLBL

• SYSDSU

• SYSLCF

SYSOPT

SY SPF

• SYSSM

SYSSTl

• SYSTF

Chapter 1. Introduction to Disk and Diskette Programming 1-3

In this book you will find references to the SMSRPS ·field that ma:y appear to be
similar to the SMSRSN field of earlier books. SMSRSN is a two-byte field that
has now been included in a 4-byte field labeled SMSRPS. This change is brought
about because of the addressing requirements of the disk drives. Existing
application programs that refer to SMSRSN do not need to be modified unless you
wish to take advantage of the additional capacity of SMSRPS. You are
encouraged to use SMSRPS in new application programs so that your programs
will not be limited to diskette addressing.

Coding rules and syntax descriptions are found in Volume 1.

Chapter 4, "Instruction Descriptions" on page 4-1 contains the instruction
descriptions that you will need to write disk and diskette programs.

Throughout this book the term 'hexadecimal' has been shortened to 'hex' for
brevity.

,····

1-4 4700 Programming Library, Volume 2: Disk and Diskette Programming

Chapter 2. Basic Disk and Diskette Programming

Diskette States

This chapter discusses basic programming that you can use to access disk and
diskette data sets. It is not a prerequisite for Chapter 3. You may choose to use
only basic instructions to program disk and diskette functions. You will be
restricted in the access facilities that you can use.

Basic disk and diskette programming allows access to any data, but only by means
of absolute addressing; that is, your program must have track and sector or
Physical Block Number (PBN) information. In general, you should not write
programs so that they depend upon data at a particular physical location.

Basic programming also provides relative access to the system permanent file
(SYSPF) and the system temporary file (SYSTF).

The permanent file on a diskette is retained when you reload the controller's main
storage. The temporary file will not be retained when you reload unless you
specifically request that its contents be saved.

Your system may have a permanent file named SY SPF and always has a
temporary file named SYSTF.

The permanent file might contain data that should be retained from day to
day, such as a branch bank cash position.

The temporary file might contain data that is not normally retained from day
to day, such as a daily audit trail or a teller's cash position.

The permanent file is allocated during the creation of the operating diskette. The
permanent file consists of a number of contiguous 256-byte blocks that are read
by the LREAD instruction and replaced by the REPLACE instruction.

The temporary file is allocated in groups of 16 blocks called temporary file
allocation units (TF Units). Temporary file records are written, read, and
replaced in any length up to 252 bytes.

The "state" of operating or operating/test diskettes and data diskettes determines
the access functions that can be used, as well as the availability of other diskette
functions. The next two sections describe these conditions.

Chapter 2. Basic Disk and Diskette Programming 2-1

Diskette "Started" State

Diskette "Stopped" State

The only diskette that can be "started"; that is, logically connected to a controller
is the operating or diagnostic diskette on the primary drive. It contains the
controller load image that is currently in main storage. As long as the diskette is
in the logically connected state, the controller application program can read and
write temporary and permanent files, load overlay sections, and load transient
application programs. System Monitor functions are available and the controller
can access diagnostic and restart data on the diskette. Any other diskette that is
mounted in place of the current operating or operating/test diskette is logically
disconnected from the controller; that is ("stopped"), and the normal diskette
functions just noted are not available. If, however, application programs and
System Monitor overlays reside on a disk, then transient programs can be called
and overlay sections can be loaded.

Except for an absolute read from an operating or operating/test diskette while it
is logically connected to the controller, all absolute address operations on diskettes
must be done while the diskettes are in the "stopped" state. "Stopped" diskettes
are diskettes that are logically disconnected from the controller - overlay
program sections cannot be loaded, permanent and temporary files cannot be
accessed, and System Monitor functions are not available.

An operating or operating/test diskette, currently mounted on the primary drive,
is placed in the "stopped" state by either of two actions by the control operator:

• Issue the stop diskette command (042 1).

• Open and close the diskette-drive door.

The controller application program can prompt the control operator to perform
either action.

A data diskette, an operating diskette or an operating/test diskette other than the
one used to load the controller, is automatically in the "stopped" state when
mounted (as a result of the diskette drive door being opened and closed).

Only the current operating or operating/test diskette can be logically reconnected
to the controller. To accomplish this, the control operator must issue the start
diskette command (entered as 042 O). An att~mpt to "start" any other diskette is
rejected.

2-2 4700 Programming Library, Volume 2: Disk and Diskette Programming

Absolute Addressing

The controller application program can address 128- or 256-byte sectors on
diskettes 1, 2, or 2D on either the primary or the secondary drive. You can
directly access both operating diskettes (those containing a controller load image)
and data diskettes (diskettes to be used for data entry or storage). You can use
data diskettes for data transfer between controllers or, in the 128-byte version,
between the 4700 and other systems that accept Basic Exchange diskettes.

The controller application program can directly address sectors in either of two
ways. Both of these kinds of addressing are called absolute.

For diskette only, you can specify the track number, the sector number, and,
for two-sided diskettes, the side. In this case, your program would use the
LREAD A, REPLACE A, and REPLACE CR

REPLACE CR instructions to access the diskette.

For disk and diskette, you can specify the PBN of the desired block. In this
case the application program would use the LREAD PBN and REPLACE
PBN instructions to access the data.

For diskette, the PBN is determined by sequentially numbering all blocks starting
with the block at track 1, side 0, block 1 as PBN 1, and continuing through track
74. On two-sided diskettes the first block of a track on side 1 is the next PBN
after the last block of the same track on side 0. For example, on a diskette 2,
PBN 1 is track 1, side 0, sector 1; PBN 15 is track 1, side 0, sector 15; and PBN
16 is track 1, side l, sector 1. Every block on the diskette except those on track 0
can be addressed by a unique PBN.

Maximum PBNs for disk and diskette are as follows:

Diskette 1 (256)
Diskette 1 (128)
Diskette 2 (256)
Diskette 2 (128)
Diskette 2D (256)
Disk (15 Megabyte)
Disk (30 Megabyte)

1 11 0
1 924
2 220
3 848
3 848

60 247
120 495

Programming Disk Absolute Addressing

You can use absolute addressing for disks only by means of the PBN operand of
the LREAD and REPLACE instructions. See Chapter 4, "Instruction
Descriptions" on page 4-1 for further information.

Chapter 2. Basic Disk and Diskette Programming 2-3

Programming Diskette Absolute Addressing

You can use the absolute addressing forms of the LREAD and REPLACE
instructions to access diskettes for reading and replacing records. Track and
sector information or PBN information can be used to access a diskette. You
cannot use the LCHECK and L WRITE instructions in absolute addressing
operations.

Several guidelines and rules apply when programming absolute addressing
functions:

• An absolute read is the only function allowed on an operating or
operating/test diskette that is logically connected to the controller. An
attempt to replace a sector on a "started" diskette using absolute addressing
results in a command reject.

• Diskettes in the "stopped" state may be accessed for both read and replace
operations. Data diskettes and operating or operating/ test diskettes other
than the current diskettes (those used to load the controller for the current
session) are always in the "stopped" state when mounted.

• Application programs can use routines contained in overlay sections to process
data diskettes or to access operating or operating/test diskettes (other than an
absolute read). The overlays must be called into controller storage before the
data diskette is mounted or the operating diskette is placed in the "stopped"
state. This restriction does not apply when application programs reside on
disk.

Most System Monitor facilities may be resident on the operating or
operating/test diskette and not in controller storage. These facilities are not
available when a diskette other than the one used to load the controller is
mounted, or when the operating or operating/test diskette is in "stopped"
state. This restriction does not apply when the System Monitor resides on a
disk.

2-4 4700 Programming Library, Volume 2: Disk and Diskette Programming

Converting Diskette Track and Record Addresses to PBNs

To convert a diskette block address that is given in track, side, sector format, use
the following formula:

PBN = (TT-1) x Fl+ (H x F2) +RR

where:

TT = track number in decimal

H =side number (O =side 0, 1 =side 1)

RR = sector number in decimal

Fl, F2 =value from following table:

Diskette Sector Fl Fl
Type Size Value Value

Diskette 2D 256 52 26

Diskette 2 256 30 15

Diskette 2 128 52 26

Diskette 1 256 15 15

Diskette 1 128 26 26

Examples: Track 24, sector 3 on a Diskette 1, 256-byte sectors.

PBN = (24-1) x 15 + (Ox 15) + 3

PBN • 23 x 15 + 0 + 3

PBN = 348

Track 12, side 1, sector 3 on a Diskette 2, 256-byte sectors.

PBN = (12-1) x30+(1x15) + 3

PBN = 11 x 30 + 15 + 3

PBN == 348

Chapter 2. Basic Disk and Diskette Programming 2-5

Converting Diskette PBNs to Track and Record Addresses

To convert a PBN to a track, side, sector address, use the following algorithms:

• For Diskette 1 (1-sided)

(PBN-1)
T = ------- + 1

MR

Z = (PBN-1) MODULO MR

R = (Z MODULO MR) + 1

where:

T = The track number

Z = A temporary work variable used to calculate R

PBN = The physical block number (1 to n)

MODULO = The remainder resulting from the division of the first integer by
the second integer

R = The block number

MR = Appropriate maximum of sectors on a track from following table:

Example:

Diskette
Type

Diskette 1

Diskette 1

Sector
Size

256

128

PBN = 348

Diskette 1, 256-byte sectors

(348-1)
T ------- + 1 = 24 (the

15

z (348-1) MODULO 15 2

R (2 MODULO 15) + 1 3

PBN 348 track 24, sector 3.

2-6 4700 Programming Library, Volume 2: Disk and Diskette Programming

MR
Value

15

26

track number)

(the sector number)

For Diskette 2 and 2D (2-sided)

(PBN-1)
T ------- +1

MR x 2

Z (PBN-1) MODULO (MR x 2)

z
H

MR

R = (Z MODULO MR) + 1

where:

T = The track number

z = A temporary work variable used in the calculation of H and R

H The side (0 =side 0, 1 =side 1)

R The block number

PBN = The physical block number

MODULO= The remainder resulting from the division of the first integer by
the second integer

MR = Appropriate maximum number of sectors on a track from the
following table:

Diskette Sector MR
Type Size Value

Diskette 2D 256 26

Diskette 2 256 15

Diskette 2 128 26

Example: PBN = 348

Diskette 2, 256-byte sectors

(348-1)
T -------- +1 = 12 (the track number)

15 x 2

z (348-1) MODULO (15 x 2) 17

17
H = 1 (the side)

15

R (17 MODULO 15) + 1 = 3 (the sector number)

PBN 348 Track 12, side 1, sector 3

Chapter 2. Basic Disk and Diskette Programming 2-7

Basic Diskette Programming Considerations

The following two sections describe the general format of diskettes and give
information about special diskette records.

Initialized Diskette Formats

Sector
Number 1 2

IPL IPL
Sector
1 2

The format of track 0 is shown in Figure 2-1 and the formats of initialized one
and two-sided diskettes (128 or 256 byte) are illustrated in Figure 2-2 on page
2-9.

3 4 5 6 7

MCPC Res'vd ERMAP jRes'vd VOL1
(System (Error Label
Scratch Map
Record) Record

8 9

HDR1 HDR1
(Data (Data
Set Set
Label Label
or or
DCR_l* DCRJ_*

..!I
~ .. -

l.

26

HDR1
(Data
Set
Label
or
DCRl*

* DCR Delete Control Record = \ \

A delete record is an unused sector.

Figure 2-1. Format of Track 0 Sectors

2-8 4700 Programming Library, Volume 2: Disk and Diskette Programming

TRACK 0 (LABEL TRACK)
Track 0 contains 26 128-byte records, formatted as follows:

SECTOR 1 (IPL SECTOR 1)

Character
Position

0
80

Label Field
Padding

SECTOR 2 (IPL RECORD 2)

Same as Record 1.

SECTOR 3 (MCPC RECORD)
Same as Record 1 .

SECTOR 4 (RESERVED)
Same as Record 1.

SECTOR 5 (ERROR MAP)

Character
Position

Label Identifier

Field Name

Field Name

0
5

23
24
72
80

Separator, Defective Track, Reserved, Disk Detect Indicator
Error Directory Indicator
Error Di rectory
Reserved
Padding

SECTOR 6 (RESERVED)
Same as Record 1.

SECTOR 7 (VOLUME LABEL)

Character
Positon

0
3
4

10
75
76
79
80

Label Identifier
Label Number
Volume Identifier

Field Name

Accessibility, Reserved, Owner Identifier, Reserved
Physical Record Length
Physical Record Sequence Code, Reserved
Label Standard Version
Padding

SECTORS 8-26 (DATA SET LABELS)

Length

3
1
6

65
1

3

48

Length

80
48

Length

5
18

48
8

48

Contents
for 256-Byte

Diskettes

C'VOL'
C'1'
C'IBMIRD'

X'40's
CT
X'40's
C'W'
X'OO's

Contents

X'40's
X'OO's

Contents

C'ERMAP'
X'40's
C'B'
X'OO's
X'40's
X'OO's

Contents
Basic Exchange

Diskettes

C'VOL'
CT
C'IBMIRD'

X'40's
X'40's
X'40's
C'W'
X'OO's

On a newly reformatted diskette, these labels are unused. They are recorded as "delete" control records; i.e., their address marks
indicate "control record" rather than "data record". The data portion of each record is as follows:

Character
Position

0

80

Deleted Record Flag
Unused
Padding

Field Name Length

1

79
48

Contents

C'D'
X'40's
X'OO's

When these data set labels are used, they have the general format shown in The IBM Diskette General Information Manual.

TRACKS 1-76

All of these blocks are recorded as delete control records or data records.

Figure 2-2. Format of Initialized Diskettes

Chapter 2. Basic Disk and Diskette Programming 2-9

Diskette Control Records, Volumes, and Data Sets

If you are using Basic Diskette facilities, then your application program is
responsible for all aspects of diskette creation, including:

• Establishing and checking volume labels for multi-volume data sets.

• Establishing and checking data set labels and extents.

• Writing control records.

The three types of control records are:

• Delete Records: These control records indicate an unused block and are
indicated by a C'D' (hex C4) as the first character in the data field.

• Sequentially Relocated Records: These control records indicate that the block
contains a permanent error and that the data record has been relocated to the
next sequential block that does not contain an error. These control records
are indicated by a C'F' (hex C6) as the first character of the data field.

Alternate Relocated Records: These control records indicate that the block
contains a permanent error and that the data record has been relocated to an
error data set named ERRORSET. These control records are indicated by a
C'.' (hex 4B) in the first data byte.

Control records are written by placing the appropriate character in the output
segment and issuing the REPLACE instruction with the CR operand. When a
control record is read, the type of record is indicated by status in SMSDST and
the first character that is placed in the input segment.

Detailed information about the labels on track 0, control records, and relocation
of data records is contained in The IBM Diskette General Information Manual.

Permanent and Temporary Files

As noted previously, the operating diskette contains space that can be allocated to
a permanent and a temporary file:

• The permanent file. This file contains data that should be treated as permanent
(retained from day to day), such as a 3624 customization image or branch
cash position.

The temporary file. This file contains data that is not normally retained from
day to day, such as a daily audit trail or teller cash position.

2-10 4700 Programming Library, Volume 2: Disk and Diskette Programming

The Permanent File

Allocating the Permanent File

The temporary and permanent files are allocated during the CPGEN process.

• The size of the permanent file is specified in sectors. The data on this file is
read and replaced by blocks, at a maximum of 256 bytes per block.

• The space allocated for the temporary file is specified in groups of 1 6 sectors
called temporary file allocation units (TF Units). Don't confuse TF Units
with diskette tracks, there is no direct relationship. A TF Unit may begin in
the middle of one track and end on the next track. Fifteen sectors of each TF
Unit are available to the controller application program. The first sector of
each TF Unit is used by the controller for indexes. Temporary file records are
written, read, and replaced in any length up to 252 bytes.

The temporary file and permanent file are shared resources. Application
programs must therefore be written so that records on these files are read,
modified, and replaced by one logical work station at a time.

The permanent file is created during the creation of the operating diskette. It is
never erased or reallocated unless the diskette is used for creating a new operating
diskette. The permanent file consists of a number of contiguous 256-byte sectors
that are read using the LREAD P instruction and replaced using the REPLACE P
instruction. L WRITE and LCHECK are not used for data transmission to the
permanent file.

Permanent file sectors are addressed by relative block number; the first sector in
the file has the number 1. When the controller addresses a sector, the location of
the sector is determined from a known starting location for the file and the
number of sectors on each track.

Whenever data transmission occurs between a logical work station and the
permanent file, the station issuing the instruction is placed in a wait state. When
an LREAD is completed, the wait state ends when the data is available in the
station's segment. When a REPLACE is performed, the wait state ends when the
block has been written on the diskette. If an error condition occurs that prevents
the operation from completing, the wait state ends when status bits are stored in
SMSDST.

The number of sectors in the permanent file is specified during controller
configuration using the PF operand of the FILES macro. For example:

FILES PF=50

specifies that a permanent file consisting of fifty 256-byte sectors is required.
When the operating diskette is created, the specified number of blocks are
allocated and set to binary zeros.

Processing Permanent File Blocks

The information you need to code permanent file read and replace operations is in
Chapter 4, "Instruction Descriptions" on page 4-1 under the LREAD P and
REPLACE P instructions .

. .)

Chapter 2. Basic Disk and Diskette Programming 2-11

Permanent File Errors

The Temporary File

Allocating the Temporary File

If any error, except wrong-length record, is encountered when reading or
replacing permanent file records, the requested operation is not performed. If the
status bits indicate unit exception, the record number set in SMSRPS by the
application program was either less than 1 or greater than the number of records
in the permanent file. The controller sets the highest valid permanent file record
number in SMSRPS before returning control to the logical work station. Refer to
the appropriate appendix for additional information on possible error conditions
and associated status bits.

The temporary file consists of either:

the space remaining on the operating diskette after all other diskette
allocations have been made, or

• the number of 16-sector TF Units specified on the FILES configuration
macro, whichever is less.

The temporary file is reused each processing session; records already on the file
are retained if the control operator specifies a warm start.

The temporary file consists of TF Units that are sixteen 256-byte sectors. The
first sector of each TF Unit is an index and the other 15 sectors are used for data
records. Each sector carries a 'session ID' to identify the session during which the
records in the sector were created. (The session ID increases by 1 whenever a
cold-start controller load is performed.) The temporary file is designed to handle
variable-length records of up to 252 bytes. The controller gathers these records
into a buffer. When the buffer is full or when a record to be written is larger than
the space remaining in the buffer, the entire sector is written to the diskette. As
each record is placed in the buffer, a 2-byte prefix is added. When the record is
read, the prefix is removed before the record is placed in the segment. The TF
Units and data block formats are shown in Figure 2-3 on page 2-13.

The number of temporary file subdivisions to be created is specified during
controller configuration using the TF operand of the FILES macro. You can
specify up to 4 subdivisions: The application program refers to these subdivisions
as TFl, TF2, TF3, and TF4. For example:

FILES TF=(2,10)

specifies that two temporary file subdivisions are used by the controller
application programs; these subdivisions are named TFl and TF2 and are
allocated 10 TF Units. In addition to the major subdivisions, you can specify that
the temporary file have as many as 60 subfiles.

If an application program attemptsto access a temporary file that has not been
created, status (SMSDST) is set to indicate command reject because an invalid
request was made.

2-12 4700 Programming Library, Volume 2: Disk and Diskette Programming

Initializing the Temporary File

The controller maintains sets of counters for each temporary file subdivision and
for each TF Unit. The controller uses these counters to return a sequence number
to the application program when an L WRITE is performed. The sequence
number will be one of the following:

a file sequence number in SMSFSN for TFl through TF4

a subfile sequence number in SMSSFW

a composite sequence number in SMSCSN.

You can retrieve a temporary file data record by specifying the file ID and the file
sequence number; subfile sequence number; or composite file sequence number.
The controller determines the TF Unit that contains the record and uses the TF
Unit counters to determine the exact location of the record.

TF Unit:

Sector 1 Sector 2 Sector 16

-1-ndex ___.__D_ata _.._...../] J....._....._I _Data____.

Data Sector Format
r--------------256 Bytes----------t~

Session
ID
(2 bytes)

Prefix
(2 bytes}

Record 1
(from 1 to 252
bytes)

Figure 2-3. Format of the TF Unit

Record n
Prefix (up to 16 records
(2 bytes) per block)

The temporary file is initialized in one of three ways:

During the controller startup procedure performed by the control operator, the
operator may respond to the startup message (00001) with a 1 or 8 to indicate
that a cold start should be performed.

• The SETDSKT instruction may be issued by the controller application
program. One of the functions of SETDSKT is to initialize the temporary
file.

• The control operator can use the System Monitor command 063 01 to reset
the temporary file.

SETDSKT is normally used after an end-of-file condition has been encountered
during a write to a temporary file. At this time, the temporary file write buffer will
not contain any data, and any read operation will have been completed so that the
temporary file read buffer may be initialized. If SETDSKT is used before an
end-of-file is encountered, the temporary file write buffer may contain data that
has not been written on the diskette. It is the application program's responsibility
to ensure that records in the temporary file write buffer, if those records are
required, are saved before SETDSKT is issued. You may use the LCHECK DSK
instruction for this purpose. Temporary file read operations will always have been
completed before a temporary file is initialized.

Chapter, 2. Basic Disk and Diskette Programming 2-13

Protecting the Primary Diskette

Writing Temporary File Records

Reading Temporary File Records

If the door of the diskette drive is inadvertently opened while data is being written
to the diskette, a write-error may occur. To prevent this kind of error from
occurring during an orderly shutdown of the system, an application program can
issue the SETDSKT instruction (with a value of hex '40'), to inhibit access to the
diskette on the primary drive. The SETDSKT instruction must be issued before
the operator removes the operating diskette. (SETDSKT with a value of hex '20'
restores access to the primary drive.) When the drive has been made inaccessible,
neither the system nor another application program can write to the diskette and
the diskette can be safely removed.

The L WRITE instruction is used to write records to a temporary file. The
instruction specifies the file number and the location of the record to be written.
For example:

LWRITE
BRAN

TFl,3
ST,ERROR

WRITE THE RECORD FROM SEGMENT 3
BRANCH IF STATUS RETURNED

The record defined by the PPP and SFP of Segment 3 is moved to the temporary
file buffer and flagged as a member of temporary file 1. The controller returns the
file sequence number in Segment 1 at SMSFSN. The application program could
transmit this number to the teller so that he or she could retrieve the record at
some later time.

If the field defined by the PFP and SFP of the specified segment is longer than
252 bytes, the first 252 bytes are moved to the temporary file buffer and written
on the diskette. A status code is then returned in SMSDST indicating a
wrong-length condition because the record is too large.

The LREAD instruction is used to read records from a temporary file. Before
issuing an LREAD, the controller application program must set the following
fields:

• SMSRPS: to the file sequence number (a binary number)

the PPP of the segment receiving the data: to the beginning of the input area

• the FLI of the segment receiving the data: to the number of bytes of data to
be read.

2-14 . 4700 Programming Library, Volume 2: Disk and Diskette Programming

The Optional Read Index Buffer

If the FU is 0, the amount of data read is determined by the space between the
PFP and the end of the segment. For example:

INPUTSEG EQUATE 4
RECNO DEFLD KBDSEG,5,4 SEQUENCE NUMBER FROM

KEYBOARD
SETFPL INPUTSEG,0,0 SETS PFP and FLI of INPUT

AREA
LDFLDC WORKREG,RECNO CONVER'l'S SEQ NUMBER TO

BINARY
STFLD WORKREG,SMSRPS SET READ SEQ NO FIELD
LREAD TF2,INPUTSEG READS RECORD FROM TEMP

FILE2
JUMP ST,ERROR BRANCHES IF STATUS STORED

A record of temporary file 2 is read into Segment 4. The file sequence number of
the record was obtained as input from a keyboard. The entire record is read unless
Segment 4 is shorter than the record. If Segment 4 is shorter, as much of the
record as possible is placed in the segment, and a status code is returned in
SMSDST indicating a wrong-length condition because the record is too long.
SMSIML is always set to indicate the amount of data actually read into the
segment.

The controller tables contain a temporary file read buffer as well as the temporary
file write buffer. If the record to be read is located in either of these buffers, the
record is moved from the buffer to the logical work station's segment. If the
diskette must be read, a temporary file block is brought into the temporary file
read buffer, and then the record is moved from the buffer to the logical work
station's segment.

The controller uses the TF Unit index to locate all temporary file records. The TF
index for the current TF Unit is in the controller tables. All indexes for filled TF
Units are on the diskette as the first sector in each unit. The controller tables
normally contain only one temporary file read buffer that is used for TF index
and data records. To read a record not in the current TF Unit, the applicable TF
Unit index is read into the temporary file read buffer, the record is located, and
then the block containing the record is read into the buffer overlaying the index.
Because the data block overlays the index, the index must be reread for each data
record read. This procedure requires that the diskette be accessed twice for each
temporary file read request.

If the temporary file is read sequentially, greater efficiency can be obtained by
speeifying that the optional 256-byte read index buffer be included in the
controller. This buffer allows the controller to read the index into a buffer other
than the one used for data. If a subsequent read requires an index already in
storage, the controller does not read the index from the diskette. The read index
buffer is allocated during controller configuration by specifying the BUF operand
of the FILES configuration macro instruction. For example:

FILES TF=(2,10),BUF=Y

Chapter 2. Basic Disk and Diskette Programming 2-15

Specifying Subfiles

Each record in the temporary file may be flagged as a member of a subfile. You
can do this by placing a 1-byte binary subfile number at SMSSFW before issuing
the L WRITE instruction. The subfile number is stored in the record prefix as the
record is moved to the temporary file buffer. The subfile sequence number
associated with the record is returned in SMSSSN.

For example, temporary file 1 is used to journal transactions when the link to the
host processor is inoperative. Each operator has been assigned a subfile, and the
subfile number is stored in Segment 0 at OPFILE. Refer to Figure 2-4 on page
2-17.

Each temporary file subdivision can have as many as 60 subfiles. When the
LWRITE is issued, the controller examines SMSSFW for a valid subfile number.
A 0 indicates no subfile; a number from l to 60 causes the record to be flagged as
a member of the corresponding subfile. Any other value causes the controller to
return a status code indicating that the L WRITE is rejected because an invalid
request was made; the record is not stored on the file.

Specifying Subfile Indexes: Subfile indexes may be created during controller
configuration so that records can be retrieved by subfile as well as by file. When
a record is written to a subfile, the file sequence number is returned in SMSFSN
and the subfile sequence number is returned in SMSSSN. An additional set of
counters is created for each subfile index specified. For example:

FILES TF=(2,10),INDX1 =(1-5)

specifies that five sets of subfile counters be created for temporary file 1. This
allows subfiles 1 through 5 to be indexed and a subfile sequence number to be
returned when a record is written to a subfile. Records can be written to other
subfiles, but only file sequence numbers are returned for those records. A record
written to temporary file 1, subfile 1, can now be retrieved as either record n of
temporary file 1 or as record m of temporary file 1, subfile 1 (where n is the file
sequence number returned in SMSFSN and m is the subfile sequence number
returned in SMSSSN when the record is written).

This feature might be used if journaling is done on the diskette rather than on a
printer. For example, if all transactions entered are journaled to temporary file 1
and each record is flagged as a member of the subfile that corresponds to the
station number, then all records entered at a station can be retrieved by specifying
the file and subfile and sequentially reading the records. All records written on
temporary file 1 may be retrieved by specifying a subfile number of 0.

2-16 4700 Programming Library, Volume 2: Disk and Diskette Programming

OPFILE DEFLD

MVFXD
LWRITE
BRAN
LCHECK
BRAN

SEGO , REG END, 1

SMSSFW,OPFILE
TF1 ,OUTSEG
ST,DSKERR
DSK
ST,DSKERR

1 Defines the subfile number in Segment 0
2 Moves the subfile number into Segment 1
3 Writes the record to a temporary file
4 Branches to an error routine if status was stored
5 Forces a physical write operation to ensure that the record is in

the file
6 Branches to an error routine if status was stored.

Figure 2-4. Writing a Temporary File Record Using Subfile Numbers

1

2
3
4
5
6

Reading Records in a Subfile: To retrieve a temporary file record by subfile when
the subfile is indexed, the controller application program must first set the
following fields:

• SMSSfR: to the subfile number

• SMSRPS: to the subfile sequence number

• the PPP of the segment receiving the data: to the beginning of the input area

• the FLI of the segment receiving the data: to the number of bytes of data to
be read.

The LREAD instruction, specifying the temporary file and input segment, is then
issued. The controller examines the subfile number and then checks for a
corresponding counter; if the counter does not exist (that is, if indexing of that
subfile was not specified during controller configuration), a status code is returned
in SMSDST indicating that the command is rejected because an invalid request
was made.

For example, temporary file 1 is used to journal all credit transactions. Figure 2-5
on page 2-18 shows how TFl would be read to obtain a listing of these records
for a subfile. (The subfile number is obtained from the station number field in
segment 1.) The subfile number could be converted to printable form and
appended to the record so that the teller who entered the transaction can be
identified.

Chaptei; 2. Basic Disk and Diskette Programming 2-1 7

Composite File Indexing

BIN ONE DEFCON XI 01 I 1
SUBFLNO DEFCON X'03' 2
TRANSFLD DEFLD JOURNSEG, , 252 3

TFREAD LDFLD WORKREG1,BINONE 4
MVFXD SMSSFR,SUBFLNO 5

RTRN STFLD WORKREG 1 , SMSRPS 6
SETFPL TRANSFLD 7
LREAD TF1,JOURNSEG 8
BRANL ST,ERR 9
BRANL PRNTWRT 10
ADDFLD WORKREG1,BINONE 11
BRAN RTRN 12

1 Generates a binary 1
2 Defines the subfile number
3 Defines the field to contain the temporary file record
4 Initializes WORKREGl to a binary 1. WORKREGl is used as the subfile

sequence number, and increases to point to sequential records
5 Sets the read subfile field to 3
6 Stores the subfile sequence number in the read sequence number field
7 Sets the PPP and FLI of the input segment
8 Reads record 1 of temporary file 1, subfile 3
9 Checks for status including no-record-found (The last

record was read.)
10 Branches-and-links to a routine to print the record
11 Increases the subfile sequence number by 1
12 Branches to RTRN to read the next record.

Figure 2-5. Reading Temporary File Records Using Subrlle Numbers

Composite file indexing is a feature that aids in maintaining a journal if records
are written to more than one file. A composite file index is essentially a
composite of the subfile indexes for a set of temporary files. A composite index is
specified during controller configuration using the COMP and INDXC operands
of the FILES configuration macro. For example:

FILES TF=(3,20),COMF=(l,3),INDXC=(l-10)

specifies that TFl, TF2, and TF3 be created, that the composite file consist of
TFl and TF3, and that composite file indexes be created for subfiles 1 through
10.

When an L WRITE instruction is issued for a temporary file that is a member of
the composite file, the controller examines SMSSFW to determine if the subfile is
one of those for which indexing was specified for the composite file. If it is, the
controller returns a composite file sequence number in addition to the file
sequence number. A subfile sequence number is also returned if a subfile index
was specified. The record can later be retrieved as record n of a temporary file or
record x of that subfile of the composite file (where n is the file sequence number
returned in SMSFSN and x is the composite file sequence number returned in
SMSCSN when the record is written). The record can also be retrieved as record
m of a subfile (where mis the subfile sequence number returned in SMSSSN) if
subfile was specified. If SMSSFW is 0, composite file indexing is not done.

2-18 4700 Programming Library, Volume 2: Disk and Diskette Programming

Reading Composite File Records: To read a record written to a file and subfile
that are part of the composite file, the controller application program must first set
the following fields:

SMSSFR: to the subfile number

• SMSRPS: to the composite file sequence number

• the PPP of the segment receiving the data: to the beginning of the input area

• the FLI of the segment receiving the data: to the number of bytes to be read.

When the LREAD instruction is issued that refers to the composite file, the
controller examines the value in SMSSFR for a valid subfile number; if SMSSFR
is 0 or contains a value not specified in the INDXC operand of the FILES macro,
a status code is returned in SMSDST indicating that the cominand is rejected
because an invalid request was made.

The following is an example of temporary file indexing. This FILES macro was
used:

FILES TF=(3,45),INDX1=(1-5),COMF=(l,3),INDXC=(5-10)

Write To: Sequence Numbers Returned:

File Subfile Composite File
Sequence Sequence Sequence

File Subfile Number Number Number

1 0 1 0 0
1 2 2 1 0
1 6 3 1 1
1 1 4 0 1
2 5 1 0 0
2 2 0 0
3 1 0 0
3 2 0 2

Figure 2-6. Temporary File Indexing

The first record may be read only as record 1 of TFl. The subfile was specified as
0, so a subfile sequence number does not exist. The third record may be read as
record 3 of TFl or record 1 of TFl, subfile 5, or as record 1 of subfile 5 in the
composite file. The last record may be read as record 2 of TF3 or as record 2 of
subfile 5 in the composite file. Other records may be read as shown.

Figure 2-7 on page 2-20 is an example of reading a composite file. Temporary file
1 contains records sent to the host processor, temporary file 3 contains records
being saved for transmission after normal business hours, and the composite file is
made up of both these files. This figure shows how the composite file is read to
obtain a journal of all transactions entered by a teller.

Chapter 2. Basic Disk and Diskette Programming 2-19

The System Log

BINONE DEFCON x' 01' 1
TELL ID DEFLD OPSEG I IDDISP, 1 2
TRANSFLD DEFLD JOURNSEG,1,252 3

COMPREAD LDFLD WORKREG1,BINONE 4
MVFXD SMSSFR,TELLID 5

RTRN1 STFLD WORKREG 1 , SMSRPS 6
SETFPL TRANSFLD 7
LREAD C,JOURNSEG 8
BRANL ST,ERR 9
BRANL PRNTWRT 10
ADDFLD WORKREG1,BINONE 11
BRAN RTRN1 12

1 Generates a binary l
2 Defines the field containing the binary teller ID
3 Defines the field to contain the temporary file record
4 Initializes WORKREG 1 to a binary 1. WORK.REG 1 is used as the composite

file sequence number, and increases to point to sequential records
5 Sets the read subfile field with the teller ID (subfile sequence

number)
6 Stores the composite file sequence number in the read sequence

number field
7 Sets the PPP and FLI of the input segment
8 Reads the record
9 Checks for status including no-record-found (The last record was

read.)
10 Branches-and-links to a routine to print the record
11 Increases the composite file sequence number by 1
12 Branches to RTRNl to read the next record.

Figure 2-7. Reading Composite File Records

The system log is a special kind of temporary file. It is used by the controller to
record messages concerning the status of the system. The controller application
program can also write records to the log and may retrieve all records on the log.
Log records share space with other records written to the temporary file. The log
is always present and is not specified during controller configuration. If a
temporary file is not specified, one TF Unit on the operating diskette is
automatically allocated for log records. Both.the System Monitor and your
application program can read the log. The Communications Network
Management/Controller Support (CNM/CS) facility in some versions of the
System Monitor reads log messages and sends alert messages to the Network
Problem Determination Analysis (NPDA) facility at the host system.

Writing Records to the Log: The L WRITE instruction is used to write records to
the log. The instruction specifies the log and the location of the record to be
written; the value in SMSSFW is ignored. Each record written is assigned a file
number that is returned in SMSFSN. Both SMSSSN and SMSCSN are set to 0.

All records written to the log by the controller are time stamped. Records written
to the log by the application program (user) will be time stamped only if specified
during CPGEN (by specifying the LOG TM parameter).

2-20 4700 Programming Library, Volume 2: Disk and Diskette Programming

All log messages have a system byte and an alert byte as the first two bytes. The
system byte for controller log messages will always be a hex Fl. For the
application program that requests time stamps on user log messages, the system
and alert bytes will be a duplication of the first two bytes in the user text;
however, if a hex Fl is in the first byte, a hex FO is used as the system byte and
only the second byte (alert byte) is duplicated. This elimination of the hex Fl will
prevent the application program from writing log messages that resemble
controller log messages.

For the application program that does not request time stamps on user log
messages, the first two bytes of the record just written also represent the system
and alert bytes, but no duplication is required. Again, if a hex Fl is in the first
byte, it is replaced by a hex FO and the alert byte is unaffected.

When any record is written to the log, the controller examines the second byte for
a hex F 1. If the character is hex F 1, the controller sets the flag (bit 7 in the
GMSIND field) on and (if specified during the controller configuration process)
lights the designated CHECK light on the control operator's console. This light is
switched off by any read issued to the log by the System Monitor. The flag must
be switched off by the controller application program. A read by the CNM/ CS
facility switches off both the light and flag.

You can also issue log messages from your program to NPDA by writing messages
with number 101 to the log. CNM/CS recognizes these messages as
NPDA-directed, and issues alerts to NPDA.

The format of the 101 log message that you must provide to the LWRITE
instruction is:

01 101 token data

where: "token" is a 1 to 8-byte field and "data" is up to 240 bytes in length.
(The first 100 bytes of "data" will be sent to NPDA.)

This log message should be time stamped. (Time stamping is an option of the
FILES macro in your configuration specifications.) If you choose to time stamp,
then this message will appear in the log as follows:

01 hhrnm 01 101 token data

where: "hh" = hours and "mm" = minutes.

If you choose not to time stamp, then you must provide an extra 8 bytes, in place
of "01 hhmm ",at the beginning of the message.

All messages written to the log cause the contents of the temporary file buffer to
be written to the diskette. If the buffer is only partially filled, the buffer remains
available for any additional records written to a temporary file.

A user written log record may contain both EBCDIC and hex data. The hex data
must begin with a hex 'FF'. All data after the 'FF' will be considered to be hex.

When the log records are displayed on the terminal using the system monitor
commands, only the EBCDIC data will be displayed unless the 'X' option is
chosen; then the entire log record will be displayed in hex.

Chapter 2. Basic Disk and Diskette Programming 2-21

Reading Records from the Log: The LREAD instruction is used to read records
from the log. Before issuing the LREAD, the controller application program must
place the file sequence number in Segment 1 at SMSRPS. SMSSFR is not used.

The CNM/ CS facility reads the log periodically and records any messages that
have set the CHECK indicator. The CNM/CS reformats these messages, and
passes them to the Network Problem Determination Facility (NPDA) at the host.
To prevent duplication of the messages transmitted, CNM/ CS maintains an index
of messages already read. A cold start or issuing of the SETDSKT instruction
resets the index, causing log messages to be lost and may cause them not to be
reported to the host as alert messages.

Replacing Temporary File Records

Temporary File Errors

The REPLACE instruction is used to replace records written to a temporary file.
Before the REPLACE instruction is issued, the controller application program
must set SMSSFR and SMSRPS. The record to be replaced can be identified, as
with LREAD, by file and file sequence number; by file, subfile and subfile
sequence number; or by composite index, subfile and composite file sequence
number. If the record is not exactly the same length as the original record, a status
code is returned in SMSDST, and the replacement takes place as follows:

If the new record is shorter than the old record, the leftmost part of the
original record is replaced, a status code is returned to indicate a
wrong-length record, and the residual length (how much of the original record
was not modified) is returned in SMSIML.

If the new record is longer than the original record, the leftmost portion of the
new record replaces the original record, a status code is returned indicating a
wrong-length record and the excess length of the new record is stored in
SMSIML. For example, to replace the eighth record in temporary file 1 with
the record defined by the secondary and primary field pointers of Segment 3,
the following instructions could be used (assuming that register 1 contains a
binary value of 8):

STFLD
SUBREG
STFLD
REPLACE
JUMP

1,SMSRPS
1 I 1
1,SMSSFR
TF1I3
ST,ERROR

STORE RECORD NUMBER
CLEAR REGISTER TO ZERO
ZERO SUBFILE, USE FILE SEQ NO
REPLACE RECORD FROM SEGMENT 3
JUMP IF ANY STATUS REPORTED

For LWRITE, LREAD, and REPLACE, if status returned is for errors other than
incorrect length, the requested operation is not performed.

For L WRITE and LCHECK, if the status is unit exception, the last block written
filled the diskette's temporary file area (this status is always presented with prior
operation). Records cannot be written to a temporary file of a diskette with a full
temporary file area until a cold start is performed with the diskette. Records may
still be read and replaced. Before the cold start is performed, any data on a
temporary file that is required by the financial institution should be journaled or
transmitted to the central processor. If data cannot be immediately journaled or
transmitted, another diskette may be loaded and operations restarted. Loading
the second diskette requires a controller loading operation which destroys any
information in controller storage.

2-22 4700 Programming Library, Volume 2: Disk and Diskette Programming

Storage Requirements

For LREAD and REPLACE, if unit exception is indicated, the sequence number
that was present in SMSRPS was either less than 1 or greater than the highest
record sequence number assigned from the index just searched. In this case, the
controller replaces the original value of SMSRPS with the last sequence number
assigned from that index.

The application program can use this information. For example, to read the last
record written to the log when its sequence number is unknown, the following
instructions could be used:

SETFPL
SUBREG
STFLD
LREAD
LREAD
JUMP·

3,0,0
1 I 1
1 ,SMSRPS
L,3
L,3
ST,ERROR

INITIALIZE PFP AND FLI OF INPUT SEG
GE'l' ZERO VALUE
STORE ZERO SEQUENCE NUMBER
REPLACE SMSRPS WI'I'H LAS'I' LOG SEQ NO
READ LAST LOG RECORD INTO SEG 3
JUMP IF ANY STATUS REPORTED

Refer to the Appendix D, "Status Codes for Disk and Diskette" on page D-1 for
more detailed status information.

The TF Unit counters used in retrieving records of a temporary file occupy
storage in the controller table. The amount of space depends on the number of TF
Units used for the temporary file and the number of different indexes requested.
One set of counters is always created for the log and for each temporary file
subdivision specified in the TF operand of the FILES macro. One additional set
of counters is created for each subfile specified in any of the INDXn or INDXC
operands.

The number of TF Units to be used for the temporary file can be limited by your
institution if it does not need the maximum number available and if it wishes to
minimize the storage required by the index counters. You can accomplish this by
specifying the number of TF Units to be used as the second element of the TF
operand. For example:

FILES STF=(2,20),INDX1 =(1-5),INDX2=(1-5)
COMF=(l,2),INDXC(l-5)

This FILES macro creates two sets of file counters and 15 sets of subfile counters,
each capable of accounting for the records written in a 20-TF Unit area. When
the controller is started up using the operating diskette created from the controller
configuration procedure containing this specification, only the first 20 TF Units of
the available temporary file space are allocated. An attempt by the application
program to write more records than can be stored on this number of TF Units
results in an error condition, with unit exception returned in SMSDST.

If a greater number of TF Units is specified at controller configuration than is
available on the diskette, counters will occupy controller storage, but will be
unused. In this instance, unit exception status will result when all of the available
TF Units have been used on a diskette.

Chapter 2. Basic Disk and Diskette Programming 2-23

Data Integrity

LCHECK OSK Operation

Because temporary file records are held in controller storage until a full buffer has
been accumulated, some data can be lost when a session is abnormally terminated.
When the system is restarted following such an occurrence, a warm start can be
requested by the control operator. This will cause the temporary file counters in
storage to be reconstructed, but any records in the buffer that had not been
written to the diskette are lost.

To minimize the risk of loss, the application program can write a partially filled
buffer at periodic intervals by using the LCHECK DSK instruction. To cause a
write each time a record is placed in the buffer, however, could seriously degrade
performance. This function should be requested only when necessary, and should
be designed to minimize, rather than to prevent, loss.

At the end of an operating session, the controller's temporary file buffer should be
caused to be written out, so that if a warm start is later required to retrieve
records from the current session, all records will be available on the diskette. This
can be done by the application program by using either the LCHECK DSK
instruction or an L WRITE instruction addressing the log. Also, the control
operator can log on and cause a log record to be written.

The controller keeps track of whether its temporary file buffer has been changed
since the last time it was written to the diskette. The buffer can be changed either
by the addition of a new record using L WRITE or by the replacement of a
previously written record using REPLACE.

When the LCHECK DSK instruction is issued, the controller notes whether the
buffer has been changed since the last physical write. If so, the current contents of
the buffer are written out and the status of the operation is returned to the station
issuing the LCHECK. The partially filled buffer remains available for the addition
of further records from subsequent L WRITE instructions. If the buffer has not
been changed, the write operation does not occur.

The controller maintains a count of blocks written in the temporary file area. This
count is available to the application program in Segment 15 at GMSBSN. It is
updated each time a full block is written out. The count can be used by the
application to determine whether to issue an LCHECK instruction. For example,
to ensure that not more than one record per station is lost in the event of an
abnormal termination, the application program can save the block number after
each L WRITE in an area of station storage. Following the next L WRITE, it can
compare the saved block number to the current block number and determine
whether it has two data records in the same block. If so, it can issue LCHECK
DSK to guarantee that the block is written. The following application instructions
could be used for this purpose:

SAVE

SKIP
NEXT

DEFLD

LWRITE
JUMP
CCFXD
JUMP
LCHECK
JUMP
JUMP
MVFXD

WORK,, 2

TF1,3
ST,ERROR
GMSBSN,SAVE
NE,SKIP
DSK
ST,ERROR
NEXT
SAVE,GMSBSN

DEFINE A SAVE AREA

WRITE A RECORD FROM SEGMENT 3
JUMP IF ANY STATUS REPORTED
CURRENT BLOCK VERSUS LAST
JUMP IF DIFFERENT
SAME,WRITE CURRENT BLOCK
JUMP IF ANY STATUS REPORTED
CONTINUE PROCESSING
SAVE LATEST BLOCK NUMBER

2-24 4700 Programming Library, Volume 2: Disk and Diskette Programming

Obtaining Sequence Numbers

Available Data Set Space

You can obtain the highest sequence number for any of the temporary file
subdivisions; the composite file; or any of the subfiles by setting SMSRPS to 0
and issuing an LREAD for the file.

The highest sequence number for any of the temporary file subdivisions the
composite file, or any of the subfiles can be obtained by setting SMSRPS to 0 and
issuing an LREAD for the file in question. This technique causes status to be
stored and the highest sequence number to be placed in SMSRPS.

This procedure can be used when you wish to read all records in a file or subfile.
For example, the teller may wish to retrieve all records from a subfile to check a
previously processed transaction. Figure 2-8 shows the routine used to read a
temporary file and write the records to the central processor. REG 1 contains a
binary 1; the subfile sequence number is set to 0. The input area has already been
defined; the input segment is named DISKIN.

READDSK EXOR SMSRPS,SMSRPS 1
LREAD TF1 ,DISKIN 2
LDFLD REG3,SMSRPS 3

RTRN BRAN ZO,FINISH 4
LREAD TF1 ,DISKIN 5
BRAN ST,DSKERR 6
BRANL PRNTWRT 7
SUBREG REG3,REG1 8
STFLD REG3,SMSRPS 9
JUMP RTRN 10

1 Sets the subfile sequence number to 0
2 Obtains the highest sequence number. Status is ignored
3 Loads the subfile sequence number into register 3
4 If 0, indicating that there are no records in the file, branches

to a clean-up routine (including transmission of the last record)
5 Reads the record
6 Checks for status information
7 Branches-and-links to a routine that prints or displays the record

for the teller
8 Subtracts 1 from the subfile sequence number
9 Stores the result of the subtraction in SMSRPS
10 Branches to step 4 to process the next record.

Figure 2-8. Reading Temporary File Records Starting with the Latest Record Entered

The number of available (unwritten) sectors (SMSADS) in the temporary file is
updated after each L WRITE, LREAD, REPLACE, and LCHECK instruction. If
the operation is unsuccessful, then the data in the SMSADS field is meaningless.

Chapter 2. Basic Disk and Diskette Programming 2-25

Diskette Special Multiple-Sector II 0 Considerations

When READ and REPLACE instructions are used for multiple-sector operations
on diskette, there are no restrictions against crossing track boundaries. However,
the controller performs all required operations on one track before initiating a
seek to the next track. There are some efficiency implications in this, as discussed
below.

When performing a multiple-sector replace operation, the controller writes blocks
to the diskette in nonsequential order, using a "skip factor" of 4. If block
numbers 1-15 are to be replaced, four diskette revolutions are required, as
follows:

Revolution

1 1,5,9, '13, ...

2 2,6,10,14, ...

3 3,7,'11,15, ...

4 4,8,12, ...

When performing a multiple-sector read operation, the controller reads blocks
from the diskette in nonsequential order, using a skip factor of 3. If block
numbers 1-15 are to be read, three diskette revolutions are required, as follows:

Revolution Blocks Read

1 1,4,7,10,13, ...

2 2,5,8,11,14, ...

3 3,6,9, 12, 15, ...

Thus, a full track can be read in three diskette revolutions, or written in seven
revolutions (four for writing, three for read-back checking).

A "skip factor" is used in conjunction with the physical record sequence code
described under the FORMDKT instruction in Chapter 4, "Instruction
Descriptions" on page 4-1. If a 2D diskette is formatted with a hex 0 or 1 value
specified for the physical record sequence number, then the multiple-sector
operation uses a skip factor as described above. If the 2D diskette is formatted
with any physical record sequence number between hex 2 and hex D, the
multiple-sector operation uses a skip factor of 1 and the physical sequence of
sector assignments on the diskette determines the number of rotations needed to
complete the operation.

2-26 4700 Programming Library, Volume 2: Disk and Diskette Programming

If more than a full track of data is to be written, an advantage may be gained by
synchronizing output with track boundaries. The following example applies to a
Diskette 1 or 2, but you can use the same programming technique on a Diskette
2D. If 22 blocks of 256 bytes are to be written starting at block number 9 of one
track and continuing through block number 15 of the next track, this can be
accomplished in several ways:

• With a 5632-byte buffer, the operation can be performed by the issuing of a
single REPLACE instruction. The controller completes the request in 14
diskette revolutions, seven per track.

With a 3840-byte buffer, the operation can be performed by the issuing of
two REPLACE instructions, one for 3840 bytes and one for 1792 bytes. If
the I/ 0 requests are made in this sequence, however, the controller requires
14 revolutions to complete the first instruction (seven to write blocks 9
through 15 on the first track, and seven to write blocks 1 through 8 on the
second track) plus seven more to complete the second instruction (for blocks
9 through 15 on the second track) - a total of 21 revolutions.

Reversing the sequence permits the controller to complete the requests in 14
revolutions: seven to write blocks 9 through 15 on the first track, and seven
more to write blocks l through 15 on the second track.

Note: The preceding discussion refers only to revolutions spent in actual data
transfer and to theoretical "best" cases. Additional revolutions may be required
for initiating a seek to the next track, for filling dispatch time between requests, or
for servicing other I/ 0 requests.

When dealing with the permanent file, your program can refer to blocks by their
relative block number in the file, rather than by their absolute block number. By
use of a zero-length REPLACE, the program can determine the number of bytes
to write on the first request (returned in SMSIML) so that subsequent requests
will be track-aligned.

If an 1/0 error prevents successful completion of the request, the controller
attempts to execute the request sequentially before reporting the error. This
guarantees that all blocks up to the one for which the error is reported have been
processed. It should be noted, however, that blocks on the diskette (REPLACE)
or in the input data area (LREAD) may have been modified beyond the point of
failure. Make no assumptions about the validity of such modifications, because
multiple errors may have occurred. The first error encountered during sequential
retry is the one reported.

If your application program does multiple-sector I/ 0 write operations from a
shared segment, your program must ensure that the data is not changed by
another station while the multiple-sector I/ 0 write is in progress. If some type of
interlocking is not implemented by the program, it is possible for incorrect data to
be written on the diskette. The CRC error statistical counter might increase when
this happens.

Chapter 2. Basic Disk and Diskette Programming 2-27

Diskette Performance

Factors affecting diskette performance include the amount of arm movement and
whether the operation is a read, write, or replace. The time required to read or
replace temporary file records is affected by: the existence of a read index buffer;
and the presence of the track index or the temporary file block in a buffer. The
following are indicative timings for diskette functions:

• The track-to-track access time is approximately 0.006 second for 4701
diskette drives.

• The average physical diskette read time is approximately 0.2 second (assuming
an average rotational delay).

The average physical diskette write time is approximately 0.4 second
(assuming an average rotational delay).

The approximate time to read, write, or replace a diskette record (not
including track access time) is:

Permanent file read operation: 0.2 second per block.

Overlay section read operation: 0.2 second multiplied by the number of
blocks read. (To approximate the number of blocks read, divide the size
of the overlay section by 256 and round to the next integer.)

Temporary file read operation: 0.2 second when the track index, but not
the record, is in a controller buffer or 0.4 second when neither the track
index nor the record is in a controller buffer (0.2 second to read the track
index and 0.2 second to read the record).

Permanent file replace operation: 0.4 second.

Temporary file write operation: 0.4 second when the write buffer is full,
or 0.8 second for the last block on a track (0.4 second to write the track
index and 0.4 second to write the record).

Temporary file replace operations: 0.4 second when the record and index
are in controller buffers, 0.6 second when the index, but not the record, is
in a controller buffer (0.2 second to read the record and 0.4 second to
write the record), or 0.8 second when neither the record nor the index is
in a controller buffer (0.2 second to read the index, 0.2 second to read the
record, and 0.4 second to write the record).

The controller diskette drive uses a contact read/write head. The read/write
head is physically in contact with the recording surface while data is being read or
written. As a result, there is some wear effect on the diskette surface which, over
a period of time, will require replacement of the diskette. You can maximize the
useful life of a diskette by distributing data so that most tracks are accessed with
about the same frequency.

2-28 4700 Programming Library, Volume 2: Disk and Diskette Programming

I Disk Performance

All of the factors affecting diskette performance also affect disk performance.
The following are indicative timing of disk functions:

The track-to-track access time is approximately 0.007 second for 4701 disk
drives.

The average seek time is approximately 0.035 second.

• The average rotational delay is approximately 0.0095 second.

• The average physical disk read time is approximately 0.01 second (assuming
on average rotational delay).

• The average physical disk write time is approximately 0.03 second (assuming
on average rotational delay).

Chapter 2. Basic Disk and Diskette Programming 2-29

2-30 4700 Programming Library, Volume 2: Disk and Diskette Programming

Chapter 3. Extended Disk and Diskette Access Method

Data Set Characteristics

EDAM Data Sets

The Extended Disk and Diskette Access Method (EDAM) is a set of optional
modules that you may include in your CPGEN. It allows application programs to
define, create, process, and delete data sets on the primary and secondary
diskettes, and on the disks.

Data sets are named collections of data stored on a disk or diskette.

EDAM allows you to write application programs that can process data sets in 2
major ways:

• process EDAM data sets; that is, keyed and unkeyed data sets, and take
advantage of EDAM functions

process data sets using basic disk and diskette instructions.

This chapter is a description of EDAM and EDAM data sets.

The following paragraphs briefly describe the characteristics of data sets. We use
the four-letter abbreviations to refer to the various types of data sets.

TEMP

ESDS

EDDS

ASDS

RKAP

KSAP

(Temporary File Data Set) - is a data set that can be created by
EDAM and processed using basic temporary file instructions. It
should not be confused with the system Temporary File (SYSTF).

(EDAM Sequential Data Set) - is sequential and includes exchange
data sets on diskette only; has fixed length records up to sector size.

(EDAM Direct Data Set) - allows direct access through relative
record numbers; has fixed length records up to sector size.

(Arrival Sequence Data Set) - is a direct data set that provides either
fixed or variable length records and allows record lengths up to 1024
bytes. This data set organization also allows records to be deleted.

(Random Keyed Access Path) - is a data set that contains only
pointers to user data and allows random access to records contained
in an EDDS or ASDS.

(Keyed Sequence Access Path) - is also a data set that contains
pointers. It allows access to records in either sequential or random
order. Like the RKAP it does not contain user data.

Temporary File Data Sets (TEMP)

A TEMP data set is one that has the indexing characteristics of a temporary file;
is opened with the temporary file option; and is accessed using temporary file
instructions. (There is more information later in this chapter and Chapter
4, "Instruction Descriptions" on page 4-1 has the instruction descriptions.)

Chapter 3. Extended Disk and Diskette Access Method 3-1

Sequential Data Sets (ESDS)

An ESDS is a data set that is always processed sequentially, beginning with the
first record, no matter how many stations access the data set. Records are always
written at the end; that is after the last record in the data set. Records are always
read from a position indicated by a current input pointer maintained by the
controller. Asingle input pointer is maintained for each sequential data set, and
initially points to the beginning of the data set. As any station reads a record, this
input pointer is moved to the beginning of the next record. The next station to
issue a read gets the next record.

The controller also maintains a current output pointer for each sequential data set.
The output pointer position is based initially on the values of the End-of-Data
address and the Offset-to-Next-Record-Space indicator in the data set label.
When any station writes to the data set, the data is stored at the location of this
current output pointer, and the pointer increases to the next location. New
records can be added until space in the data set is exhausted.

Using this sequential organization, a record once read cannot be reread until
either the current input pointer is reset to the beginning of the data set, or until
the data set is closed and reopened. A station can request exclusive use of a data
set (via LDKT) to read and process an entire sequential data set without
interruption.

ESDS characteristics are:

Sequential

Blocked or unblocked

Sector length of 128 or 256 bytes

Fixed length records up to sector length.

EDAM processes several sequential data set organizations, including Basic
Exchange and H Exchange data sets. Exchange data sets can be used for
exchanging data with other systems. They are described in the IBM Diskette
General Information Manual, GA21-9182.

The following sections describe the characteristics of each of the exchange data
sets.

Basic Exchange Data Sets: A Basic Exchange data set is identified by a hex (40) in
the Exchange Type indicator of the header label. EDAM ignores certain fields in
the header label, and uses these default characteristics:

• Sequential organization

• Unblocked logical records

Sector length: 128 bytes

• Fixed length records, l. - 128 bytes per record.

3-2 4700 Programming Library, Volume 2: Disk and Diskette Programming

Direct Data Sets (EDDS)

Type H Exchange Data Sets: An H Exchange data set has the character H in the
header label's exchange type indicator, and is valid only on a Type 2D diskette.
When EDAM detects an H Exchange data set, it ignores selected header label
fields and uses the following default characteristics:

• Sequential organization

• Unblocked logical records

• Sector length: 256 bytes

Fixed length records ranging from 1 to 256 bytes per record.

Records in a direct data set are assigned relative record numbers. Although
records are always written to the end of a direct data set, records can be read and
replaced using the relative record numbers. As each record is added to the data
set, the controller assigns it a record number relative to the beginning of the data
set (1 is the first). Later, records can be read and replaced in any order.

Write requests to a direct data set use an output pointer as used for a sequential
data set. Thus, writes by several stations to the same data set can result in
interleaved records. Reads and replaces in a direct data set by one station are
independent of those by other stations, except that reads and replaces of the same
record by 2 or more logical work stations must be synchronized by the application
programs to avoid loss of an updated record.

EDDS characteristics are:

• Direct

• Blocked or unblocked

• Sector length of 128 or 256 bytes

• Fixed record length up to sector length.

Arrival Sequence Data Sets (ASDS)

An Arrival Sequence Data Set allows fixed or variable length records that can
span physical sectors on the storage medium. You can create an ASDS
sequentially and records can be read, updated, or deleted either sequentially or
directly by specifying the record sector number and the byte offset of the
beginning of the record.

ASDS characteristics are:

• Direct

• Blocked and spanned

• Sector length of 256 bytes

• Fixed and variable record lengths up to 1024 bytes.

Chapter 3. Extended Disk and Diskette Access Method 3-3

Keyed Access Data Sets (RKAP,KSAP)

Keyed record access provides a way to access records based on specified key
fields in those records. Two distinct types of keyed access are provided. One
type, RKAP, emphasizes performance and provides only for direct access to
records through their keys. The other type of keyed access, KSAP, emphasizes
function and, in addition to direct access to keyed records, provides for access to
keyed records in logical sequential order based on the values of their keys.

For each type of keyed access, the user processes a keyed data set as though it
contains the data records. However, the keyed data set merely points to the data
records within the associated unkeyed data set. Updates applied to an unkeyed
data set cause it to appear as if those updates were also applied to all keyed data
sets that refer to records in the updated unkeyed data set. These data set
relationships are illustrated in the following diagram:

r-----, r-----1 r-:----:-1 r-----, No user data here.
I K EIY EID DIA TIA SIE TIS I
L _____ J L _____ J L _____ J L _____ J

- - J

I
(Keyed data sets refer to

records in unkeyed data sets)
I

r-- --,
r-----1 r-----, r-----, r-----,
IU N KIE YIE D ID AIT A IS EIT S I
L _____ J L _____ J L _____ J L _____ J

All user data here.
Updates reflected in
keyed data sets, as
appropriate.

When you define a keyed access data set, the location ana 1engtn or Key ne10s
within the unkeyed data set records must be specified. Up to seven keyed data
sets, each having its own key field definition, may be defined to access records
from one unkeyed data set. Also, one keyed data set can provide for merged,
keyed retrieval of records from up to seven unkeyed data sets. The unkeyed data
set containing the records referenced through a keyed data set may be either an
EDDS or ASDS, but may not be an ESDS or TEMP.

The content of the keyed data sets is defined and maintained entirely by the
system; no user data is contained in a keyed data set. From an external view, the
keyed data sets appear to be fixed record length data sets with a record length of
256 bytes. Sector length of 256 bytes is required.

For an RKAP, one record in the keyed data set is required for approximately
every twenty-five records accessed through it.

For a KSAP, one record in the keyed data set is required for approximately every
twenty records accessed through it.

3-4 4700 Programming Library, Volume 2: Disk and Diskette Programming

The characteristics of RKAP and KSAP data sets are:

• Direct

• Unblocked

• Sector length of 256 bytes

• Fixed record length of 256 bytes.

Using Basic Disk and Diskette Instructions

Data Buffers

EDAM allows use of permanent and temporary file instructions for data sets
located on both disk and diskette. Later in this chapter you will find some general
discussion of using permanent and temporary file instructions with EDAM data
sets.

All EDAM input and output operations require the use of a buffer to hold the
data while it is being read from or written to the device. EDAM uses a single pool
of buffers for all drives.

You specify the number of buffers generated for use with EDAM data sets in the
EDAM operand of the CPGEN FILES macro. The total number of buffers
generated is determined by adding the number of buffers specified in each FILES
statement. Each buffer holds data from one physical sector on the storage media
and occupies 256 bytes of controller storage.

During system operation, the controller assigns these data buffers to physical
sectors as needed, keeping track of the device address associated with the
contents of each buffer. It notes each time the contents of a buffer are changed.

When an operation requires access to a particular sector, the controller checks the
buffers first to see if the sector is already in storage. If so, a physical read can be
avoided; if not, a buffer must be assigned to the sector by the controller.

Buffers are selected for re-assignment according to the following priority:

1. Unreferenced and unchanged

2. Referenced, but unchanged

3. Changed.

If you have changed all buffers, one is chosen and written to the device by the
controller before the buffer is reassigned.

Chapter 3. Extended Disk and Diskette Access Method 3-5

EDAM Functions

Data Set Service Functions

EDAM provides the ability to define, allocate, and process data sets on disk or
diskette. The various service functions for data sets are provided through the
LDKT instruction. The primary means for processing data sets is through the
LREAD PLR, LWRITE PLR, LCHECK PLR, REPLACE PLR, and DELETE
PLR instructions. Alternatively, the application program may process a data set
using temporary file instructions (LREAD TFn, L WRITE TFn, REPLACE TFn,
LCHECK DSK, LREAD C, L WRITE C, and REPLACE C) or permanent file
instructions (LREAD P and REPLACE P). Two additional instructions
(LREAD DSID and REPLACE DSID) enable permanent file type of processing
for data sets on an unstopped operating diskette.

The basic service functions relating to data sets concern the existence of the data
set. EDAM allows the definition of the data set attributes and the allocation of
space for the data set as independent, but combinable functions of the LDKT
Allocate instruction. Other LDKT functions include deallocating a data set and
its definition, managing data set buffers used in processing data sets, renaming
data sets, and querying various data set and device information.

The attributes of a data set include the type of data set, the amount of space the
data set may occupy, and the length of records in the data set. For keyed data
sets, the attributes include the position and length of the key field in the unkeyed
data set records and the names of unkeyed data sets whose records are to be
accessed through the keyed data set.

Prior to processing records in a data set, you must open the data set by means of
the LDKT Open instruction. A value returned in SMSDID is used to refer to this
data set in subsequent instructions. When processing is completed for a data set,
you must close the data set by means of the LDKT Close instruction.

Record Processing Using PLR Instructions

The LREAD PLR, LWRITE PLR, LCHECK PLR, REPLACE PLR, and
DELETE PLR instructions enable the processing of logical records contained
within data sets. Multiple records may be blocked within a physical sector on the
disk or diskette or may even span sectors. The PLR instructions provide for
accessing the logical records, as appropriate, so that the application program need
not be concerned about the physical layout of the records within the device
sectors.

The record to be accessed may be identified by its relative location within the data
set or, for keyed data sets, by the value of the key within the record.
Alternatively, data sets may be accessed sequentially; that is, in the order records
were written for unkeyed data sets or in the order defined by the entries in the
keyed data sets.

Note: The record processing instructions generally require a buffer supplied by
the application program to contain the record. For record processing instructions
involving keyed data sets, a second buffer immediately following the first buffer
and the same size as the first buffer is used as a work area for keyed data set
processing. Therefore segment 14 cannot be issued for keyed record processing.

3-6 4700 Programming Library, Volume 2: Disk and Diskette Programming

•

Diskette Programming

Defining Data Sets

The preceding sections of this chapter have described some of the aspects of disk
and diskette programming that are provided by EDAM. The succeeding sections
describe the EDAM functions and programming considerations that are unique to
diskette usage.

You must allocate a SYSDSLBL direct data set on any diskette on which EDAM
data sets will be defined. The 'SYSDSLBL' data set should be created using the
4 700 Installation Diskette, or the user data set option of the Host Transmission
Facility. This 'SYSDSLBL' data set must contain one 256-byte record for each
data set. The number of records must equal the maximum number of data sets
that will exist on the diskette. The controller maintains this data set for you. It
contains parameters relating to keyed access; parameters used in the allocation of
space for the data set; and a copy of the standard diskette header label.

Sector Deletion and Relocation

Defective Physical Sectors

Control Records

Delete Control Records

A diskette qualifies for Alternate Sector Relocation (described later) if it contains
an ERMAP record (in discontinuous binary format, that is, the character B in
position 23 of the ERMAP record) on track 0, sector 5, and if a data set named
ERRORSET is found during initialization.

A defective physical sector is one from which data cannot be successfully read
because of defects in the diskette recording surface. Such defects may occur
because of physical damage to the diskette, or they may be caused by wear that
occurs in normal use. They may be detected on either read or write operations,
because all writes are followed by a read-back check to confirm the success of the
write.

If a defective sector is detected on a read, there is no possible recovery. The
application program request that initiated the read is ended with status indicating
a data check.

If a defective sector is detected on a write, the recovery attempted, if any,
depends on the organization of the data set that contains the defective sector.

Each sector on a diskette has an associated field called an address mark. The
address mark identifies the sector, and indicates whether the sector contains a
data record or a control record.

Three types of control records can be written on a diskette: the Delete control
record, the Sequential Relocate control record, and the Alternate Relocate control
record.

A delete control record is identified by C'D' in its first data byte, and signifies
that the sector in which it appears is not currently in use. New and reformatted
diskettes may have delete control records in all sectors on tracks 1-74. These
records are also used on track 0 to indicate inactive header label sectors.

Chapter 3. Extended Disk and Diskette Access Method 3-7

The controller does not write such records in sectors assigned to a data set, and
does not expect to encounter any. However, if a data set is allocated with some
blocks preassigned and not initialized, such records may be encountered if those
blocks are referred to by the application program. If the application program
preassigns blocks without initializing them, it must be prepared to handle the
status returned when these control records are encountered.

Sequential Relocate Control Records

A sequential relocate control record is identified by a C'F' in its first data byte,
and signifies that the sector in which it appears is defective. The data intended for
that sector can be found in the next sequential nondefective sector.

The controller will write such records if it encounters a diskette surface defect
while attempting to write to a sequential data set. In reading a sequential data set,
a Sequential Relocate control record is skipped and the next sector is read.

When the controller attempts to write a buffer to a sequential data set and cannot
successfully read it back, the controller writes a Sequential Relocate control
record at the point of failure, unless the point of failure is in the last physical
sector of the data set. This write is considered successful if at least the first byte
can be read back to permit identification of the control record type.

If the control record is successfully written, the original data block write is retried
in the next physical sector.

If the defective sector is the last physical sector in the data set, or if the first byte
of the control record cannot be read back successfully, recovery ends and status
indicating Data Check is reported to the application program.

Alternate Relocate Control Records

An alternate relocate control record is identified by a period C'.' in its first data
byte, and signifies that the sector in which it appears is defective. The data
intended for that sector can be found in a data set named ERRORSET.

The controller will write such records if it encounters a diskette surface defect
while attempting to write to a direct data set, and if the diskette qualifies for the
alternate relocation method of processing defective physical sectors. In reading a
direct data set, alternate relocation control records are not normally encountered.

Because the controller keeps the ERMAP directory in storage, and because the
alternate relocation method of processing defective sectors requires
synchronization between the ERMAP record and the ERRORSET data set, you
should not write alternate relocate control records in any sectors on diskettes that
meet these criteria. If you do, they will not be processed by the controller.

The application program makes direct data set READ and REPLACE references
by giving the number of the record or sector to be accessed relative to the start of
the data set. This form of addressing permits accessing a data set in any
sequence.

3-8 4700 Programming Library, Volume 2: Disk and Diskette Programming

Unrecoverable Write Errors

To the controller, each such access is independent of any that preceded it. All
requests are handled by converting the given relative number to a specific diskette
address by means of a computation based on the Beginning-of-Extent address
and, for record level access, the record length and the Block Length obtained
from the header label. Obviously, if a data set contained Sequential Relocate
control records, this computation would yield incorrect results for any records or
sectors beyond the location of the first Sequential Relocate control record.
Therefore, the sequential relocation method of handling defective physical sectors
is not used in direct data sets.

If you access any sector of a direct data set (including LWRITE, LREAD,
REPLACE, and DELETE operations), and the diskette meets the criteria for the
alternate relocation method of processing defective physical sectors, the controller
will look first for the sector address in the ERMAP directory. If the address is
found in the directory, the access is directed to the corresponding sector in the
ERRORSET data set rather than to the original address.

If the diskette does not meet the criteria for alternate relocation support, or if the
address is not found in the ERMAP directory, the access is directed to the original
address.

If a control record is encountered on a read, the request ends with status
indicating Control Record Read.

If a write fails because of a diskette surface defect, and if the diskette meets the
criteria for alternate relocation support, the controller searches the ERMAP
directory for an unused sector in the ERRORSET data set. If one is found, the
data intended for the original sector is written to the ERRORSET sector, the
ERMAP directory is updated and written to the ERMAP sector on track 0, and an
Alternate Relocate control record is written at the location of the defective sector.

A write to the ERRORSET sector; to the updated ERMAP sector; or to the
Alternate Relocate control record might fail. This can occur if the diskette does
not qualify for alternate relocation support, or if no unused sectors remain in the
ERRORSET data set. The operation will be ended with status indicating the
cause of the failure.

If a write error occurs on any data set and either no recovery is possible or any
attempted_ recovery fails, status is returned indicating that the buffer contains an
unwritable record.

The unwritable buffer is detected by the application program when a REPLACE
operation ends with Data Check status, or when any operation ends with status
that either includes the Prior Operation bit or that consists of the Prior Operation
bit by itself.

Status consisting of the Prior Operation bit by itself occurs when:

• A data set Close is attempted and one or more blocks of the data set is
contained in a buffer flagged unwritable.

• Any EDAM operation requires the assignment of one or more buffers and
sufficient buffers are not available because some are flagged as unwritable.

Chapter 3. Extended Disk and Diskette Access Method 3-9

Disk Programming

Disk Space Allocation

Data Set Labels

Volume initialization is attempted and one or more buffers belonging to the
drive contains any block that is flagged as changed, even though it is also
flagged as unwritable. (This could occur if the drive had previously been
made not ready while any of its buffers held blocks that had been changed,
but had not been written.)

EDAM provides several facilities by which the application program can attempt
its own recovery. These include the Buffer Inquiry and Buffer Release functions
and the Ignore Errors option of the Close function. See the LDKT instruction in
Chapter 4, "Instruction Descriptions" on page 4-1 for more information.

For a sequential data set, where relative numbers are not used, the method of
recovery is as follows. The station can reset the current input pointer, and request
exclusive use of the volume (using LDKT). It can then reread the entire data set.
The data can be printed, transmitted to the host, or written to another diskette
drive. Finally, LDKT can be used to release all buffers. Alternatively, the data
set could be closed with the Ignore Errors option, in which case all unwritable
buffers are freed but not written to the diskette.

The following sections of this chapter describe the aspects of EDAM that are
unique to disk usage.

In keeping with support available in other systems, EDAM supports multiple
extents for all except TEMP data sets. If you use multiple extents, you must
specify, in the data set definition, the number allowed and the size of each extent.
By supporting multiple extents, initial allocations need not be extravagantly large
and yet the space requirements for a data set can grow with the needs of the data
set. You may specify that all sectors are to be assigned when an EDAM data set
is allocated (DKTlNA = X'FFFF'). If so, all secondary extents will be allocated
initially. All sectors of an RKAP data set are initially assigned, resulting in all
secondary extents being allocated initially.

For purposes of space allocation on the disk device, a "page" of space equivalent
to sixteen sectors is the unit of space allocation. This is large enough to be a
significant amount of space yet small enough that a significant percentage of the
total space is not involved. A page thus contains 4096 bytes of usable storage.
There are 7531 pages on a large disk drive and 3765 on a small disk drive.

The need for compatibility and for logical growth from the diskette to the disk
device require that there be a degree of similarity in the way data set header labels
are stored by the controller.

For the disk device, the data set header labels are stored in a header label data set
(SYSDSLBL) rather than in a reserved area of the drive. Each of sixteen possible
extents for the SYSDSLBL occupies two pages of storage and accommodates
labels for thirty-two data sets.

The first half of each data set label contains a header label in a format similar to
that supported on diskette track 0. The last half of the record contains the
attributes for allocating space using a definition; for indexed access; and for
multiple extents.

3-10 4700 Programming Library, Volume 2: Disk and Diskette Programming

To locate the appropriate header record in SYSDSLBL, an RKAP data set
(named SYSDSHSH) is maintained to provide keyed access to the SYSDSLBL
records. The SYSDSHSH data set occupies one page of space. Both SYSDSLBL
and SYSDSHSH are created when a disk is initialized for EDAM using the 4700
Installation diskette.

Up to 510 user data sets may be defined.

Sector Deletion and Relocation

Defective disk sector relocation is handled automatically. Sequential or alternate
relocate control records will not be encountered when processing the disk.
Unrecoverable write errors will rarely be encountered when writing to a disk data
set because an alternate sector will have been dynamically assigned. When it is
not possible to automatically assign an alternate sector, no recovery by the
application program is possible.

Accessing Permanent and Temporary Files

I When a temporary or permanent file instruction is issued, the controller tests flags
to determine if the primary diskette drive is to be accessed (both flags are off). If
the primary diskette drive is selected and is not stopped, the temporary or
permanent file on the IPL diskette is accessed. If the primary diskette drive is
selected and is stopped, no temporary (SYSTF) file processing is allowed.

If the primary diskette drive is not selected, the controller uses the value in
SMSDID to identify the data set, device, and drive to be accessed. U the data set
has been opened as a temporary file, only the temporary file instructions are
allowed. If the data set has been opened as a non-temporary file, permanent file
instructions are allowed. If an instruction is issued that is not allowed, it is
rejected with appropriate status.

You can create a TEMP data set on a disk or on a diskette in the secondary drive
using EDAM. The data set is opened, using LDKT with the temporary file option
and can be processed using the basic temporary file instructions.

Any data set opened as a temporary file can be opened with either the warm-start
or cold-start option. During a cold start, all previously stored records in the data
set are made unavailable; the next L WRITE places data in the first location.
During a warm start, all previously stored records are available.

Note: If SYSPF or SYSTF are deallocated and later allocated on the primary
drive, problems will occur if data is to be accessed in either of these data sets.

Temporary File Characteristics: A data set accessed using the temporary file
instructions, must have these characteristics:

• Sector length 25 6 bytes

• Logical records defined as unblocked, fixed-length, 256-byte records

• Exchange Type E

Chapter 3. ·Extended Disk and Diskette Access Method 3-11

Available Data Set Space

• Direct organization

• All sectors assigned

No secondary extents.

When a station has opened a data set with the temporary file option, all basic
temporary file instructions may be used (except those that refer to the system log)
to process the data set:

LWRITETFn
LCHECKDSK
LREADTFn
LREADC
REPLACETFn
REPLACEC

Using Permanent File Instructions: When a station has opened a direct data set
without the temporary file option, the station can use either the basic permanent
file instructions:

LREADP
REPLACEP

or the EDAM instructions:

LREADDSID
REPLACE DSID

to access whole sectors of data by relative sector numbers.

The number of available (unwritten and unassigned) sectors (SMSADS) in the
current extent of any EDAM data set is updated during L WRITE, LREAD,
REPLACE, DELETE, LCHECK, LDKT Open, and LDKT Close operations. If
the operation is not successful, the value in SMSADS is meaningless. If the data
set is keyed, SMSADS reflects the data set described by SMSUNK. Both
SMSADS and SMSUNK are meaningless after an LCHEC:K for a keyed data set.

Obtaining Disk and Diskette Information

CPGEN Requirements

The Global Machine Segment (GMS), described in Volume I: General Controller
Programming, Appendix B, contains information that your program might need.
Fields within the GMS will contain information such as diskette characteristics
(I-sided or 2-:sided).

In order to access the secondary diskette or disk drive, the controller requires an
area of storage (for control information) as defined by the FILES macro during
configuration. The FILES macro also specifies, for each drive, whether EDAM
will be used; the EDAM options that will be included; the number of data sets to
be opened concurrently; and the number of buffers required for EDAM
processing.

3-12 4700 Programming Library, Volume 2: Disk and Diskette Programming

COMPDKT

Chapter 4. Instruction Descriptions

COMPDKT--Compress Diskette Data

This instruction makes unused diskette space available. COMPDKT groups data
sets on a diskette so that unallocated space between data sets becomes contiguous.
COMPDKT can also extend, truncate, or delete as many as three data sets on the
compressed diskette according to a parameter list you create and specify by
Operand 2.

To prevent data from being lost, the recommended procedure for using
COMPDKT is first to copy the diskette to be compressed, and then compress the
copy. The original diskette would be useful if COMPDKT ends in an error
condition. For example, a power failure occurs; you remove the diskette during
compression; or a diskette read or write error occurs.

Before you issue COMPDKT, use SMSDT2M to set the bit that selects the
appropriate diskette drive.

To use this instruction, you must code the P41 operand on the OPTMOD
configuration macro.

The installation diskette and system monitor also provide diskette compression, as
described in the IBM 4700 Subsystem Operating Procedures: GC31-2032.

There is no corresponding function for disks.

Do not compress a 3600 operating diskette.

If a 4700 operating diskette is compressed you cannot ''start" it without first
performing an IPL with the diskette.

The COMPDKT instruction format is:

Name Operation Operand

(defrf2)
[label) COMPDKT {

defld2 }

(reg2)
seg2,disp2

Operand 2
This operand specifies the location of the COMPDKT parameter list. To
compress without changes, define a parameter list, 1 byte long, containing
hex FF. To compress with changes, you must begin the parameter list with
a I -byte count field that has the number of data sets (1 to 3) to be
changed. The appropriate parameter list entries must follow this count.
You may use DEFCDK (Appendix B, "4 700 COPY Files" on page B-1) to
describe the parameter list entries.

Chapter 4. Instruction Descriptions 4-1

In the following discussion: BOD = End-of-Data; EOE = End-of-Extent; and
BOE = Beginning-of-Extent. Refer to the IBM Diskette General Information
Manual, GA21-9182, for further information.

Byte Meaning

0-16 Data set name

17 Flag byte:

18-21

Bit Meaning

0 Truncate data set
1 Set EOD = EOE + 1
2 Track boundary request
3 Delete data set

4-7 Must be zero

Following are the valid
combinations of bits 0 and 1 in byte 17:

00 -- Extend the data set extent by n sectors.
The sector count, n, may be between 0 and
the number of available sectors on the diskette.

01 -- Extend the data to the extent size (that is,
extend EOD to EOE+l). The sector count must be zero.

10 -- Truncate the extent by n sectors. The sector
count, n, may be between 0 and the current
size of the data set.
If the sector count equals the extent
size, the data set is deleted.

11 -- Truncate the extent size to the data size
(truncate EOE to EOD-1). The sector count
must be zero. If EOD=BOE, EOE=EOD.

If bit 2 is on, the data set should be aligned
on track boundaries before and after being moved
(including any size adjustments specified by bits 0
and 1).

If bit 3 of byte 17 is on, the data set is deleted.
No other bits can be on with bit 3.
The sector count must be zero.

The request is rejected if a conflict results
such as bits 0 and 1 or bit 3 on with a nonzero value
in the sector count, or any bit on with bit 3.

Binary count of sectors of change in the existing
extent. The high-order 2 bytes of the sector count
must be zero, or the parameter list is rejected.

Note: COMPDKT does not guarantee that track alignment can be maintained on
sequential data sets. Therefore, track boundary requests on data sets having
sequential organization will be ignored.

After you compress data on a diskette, you must open a diskette data set before
you access that data set. When you expand or reduce a temporary file, specify a
sector count that is a multiple of 16.

Diskette compression can cause extensive movement of the diskette head, which
can be heard by anyone standing near the controller. Do not be concerned.

4-2 4700 Programming Library, Volume 2: Disk and Diskette Programming

Condition Code: COMPDKT returns condition codes indicating the status of the
operation, as follows:

Hex Code

01
02

Explanation

The instruction executed successfully.
Status is returned in SMSDST.

Program Checks (hex): 01, 02, 09, or 27 can be set.

Chapter 4. Instruction Descriptions 4-3

4-4 4700 Programming Library, Volume 2: Disk and Diskette Programming

DELETE

DELETE--Delete Records from Data Sets

The DELETE instruction is provided to delete a record contained in an ASDS
and to delete references from keyed access data sets to records contained in
unkeyed data sets.

DELETE PLR deletes a record from an ASDS data set and deletes references to
an ASDS or EDDS record from RKAP or KSAP data sets. Before issuing
DELETE PLR, set:

SMSDID
To contain the data set ID of a data set opened without the temporary file
option.

SMSRPS
To contain the relative position, in binary, of the record to be deleted for
EDDS and ASDS data sets. For an RKAP or a KSAP data set, this field
should contain zero to indicate that the key for the record to be deleted is
found within the buffer pointed to by operand 2 of the instruction.

When a record within an ASDS is deleted, the space occupied by that record is
not reused until the data set is reorganized (see "Reorganize a Data Set" on page
4-33). The space remains assigned to the deleted record, and the data remains on
the record even though the record cannot be retrieved. When an ASDS is read
sequentially, deleted records are skipped. Entries in a KSAP or RKAP that would
refer to a deleted record are removed from the KSAP or RKAP. Space occupied
by those KSAP or RKAP entries will be reused, as necessary, for newly added
entries.

A delete request for a record that exists in an EDDS having one or more
associated keyed data sets, either directly to the EDDS or through a KSAP or
RKAP, causes all references to that record to be deleted from the keyed data set.
A portion or all of the EDDS record may be reinitialized by the controller to
indicate that the record has been logically deleted. (See the Allocate function of
the LDKT instruction.) A delete request directly to a TEMP, an ESDS, or an
EDDS having no associated keyed data sets is invalid.

You may use either segment-header, segment-displacement, register, or modified
register addressing to specify a buffer for a keyed data set delete. If
segment-header addressing is used, the data buffer must be in the segment
specified in the instruction. The data must start at the location pointed to by the
secondary field pointer (SFP), and continue up to, but not including, the location
pointed to by the primary field pointer (PFP). If segment-displacement
addressing is used, the displacement to the data and the length of the data are as
specified in the instruction.

Chapter 4. Instruction Descriptions 4-5

Name Operation Operand

[label] DELETE

PLR

{
defld2 }
(defrf2)

PLR , (reg2)

. seg2,disp2,len2
seg2

Specifies that a logical record is to be deleted.

operand 2
Specifies the location of the data buffer.

Condition Codes: One of the following is set:

Hex Code

01
02

Explanation

The operation was successful.
Status is stored. The status code is contained in
SMSDST.

Program Checks (hex): 01, 02, or 27 can be set.

4-6 4700 Programming Library, Volume 2: Disk and Diskette Programming

FORMDKT

FORMDKT--Format a Diskette

Use this instruction to format Diskettes 1, Diskettes 2, and Diskettes 2D into 128-
or 256-byte sectors according to a 9-byte parameter list you specify with Operand
2. See the "DEFFDK" copy file in Appendix B, "4 700 COPY Files" on page B-1.

Before issuing FORMDKT, use SMSDT2M to set the bit to select the appropriate
diskette drive. The Installation Diskette and System Monitor also provide diskette
formatting.

To use this instruction, you must code the P40 operand on the OPTMOD
configuration macro.

There is no corresponding instruction for disk, however the function is provided
via the 4700 installation facilities. See the IBM 4700 Subsystem Operating
Procedures: GC31-2032.

The format of the FORMDKT instruction is:

Name Operation Operand

[label] FORMDKT (defrf2) {
defld2 }

Operand 2

(reg2)
seg2,disp2,

This operand specifies the location of the parameter list containing the data
record length, the diskette type, the data record request, the physical record
sequence code, and volume identifier (ID) to be used when formatting.

Chapter 4. Instruction Descriptions 4-7

Byte Meaning

0 The data record length to be formatted

hex 00
hex 01
hex FF

128 bytes per data record
256 bytes per data record
Default to record length of mounted diskette

The diskette type

hex 01
hex 02
hex 03
hex FF

Diskette 1
Diskette 2
Diskette 2D
Default to type of mounted diskette

2 Record Request and Sequence Code

Bit 0 - Data record request

0 format with Delete Control Records
1 format with data records

B.its 1 - 7 Physical record sequence code

A hexadecimal value from 0 to D.

A value of 0 or 1 indicates
that records are physically sequential.

When formatting type 2D diskettes,
this code can be 0 to D.
A value greater than 1 may improve performance.

For other diskette types this code must be 0.

The physical record sequence code modifies the normal
sequence numbering of the records on the diskette.
For example, assume a physical record sequence code of 5.
The records would be numbered: 1, 6, 11, ... 21, 26,
2, 7, ... 20, 25.

3-8 New volume ID

Blanks

Other

Notes:

Default to the volume ID of the mounted
diskette.

The specified value is used as the volume ID.
(The ID consists of one to six digits or letters.
The first character must be in position 1 of the
field; any unused positions in the field to the
right of the ID data must be blank. No blanks
are allowed between digits or letters
in this field.)

l. Because of the nature of the format utility, host link and loop error counters
increase when you format a diskette. The error counters increase because of
overruns while the system is disabled.

2. While you are formatting diskettes, the 4 700 cannot communicate with the
host system.

3. In order to format a blank (unformatted) diskette, do not provide default
values in the parameter list.

4-8 4700 Programming Library, Volume 2: Disk, and Diskette Programming

Condition Code: A condition code is returned indicating the outcome of execution.
The condition codes are as follows:

Hex Code

01
02

Explanation

The instruction executed successfully.
Status was returned in SMSDST.

Program Checks (hex): 01, 02, 09, or 27 can be set.

Chapter 4. Instruction Descriptions 4-9

I

4-10 4700 Programming Library, Volume 2: Disk and Diskette Programming

LCHECK

LCHECK--Check the Status of a Data Set

The LCHECK instruction allows you to assure that data for a data set is written
from internal buffers to the disk or diskette containing that data set.

LCHECK PLR causes partially-filled buffers associated with the specified data
set to be written to the disk or diskette.

Before issuing LCHECK PLR, set:

SMSDID
To contain the data set ID of a data set opened without the temporary file
option.

An LCHECK PLR instruction refers only to data set operations initiated by
L WRITE PLR instructions or other instructions referring to keyed data sets. The
L WRITE PLR instruction causes data to be placed in a buffer that is written to
the disk or diskette when the buffer is full. If the buffer is not yet full, LCHECK
PLR causes the partially-filled buffer to be written to the data set. When the
write operation is complete, the controller stores status in SMSDST, sets the
condition code, and proceeds to the next sequential instruction.

Note: A subsequent L WRITE PLR to the data set may fill the buffer, and cause
the data in the buffer to be rewritten.

If the SMSDID field refers to an ESDS, EDDS, or ASDS data set, one unwritten
buffer (if any) associated with that data set is written to the device and the status
of that operation is returned. If the SMSDID field refers to an RKAP or KSAP
data set, all unwritten buffers for the device that contains the data set are written.
The cumulative status of those operations are returned. If the SMSDID field
refers to a TEMP data set, no buffer is written and no status is returned
(LCHECK DSK is provided for TEMP data sets).

LCHECK DSK causes a partially-filled buffer for the temporary file on the
specified drive to be written to the disk or diskette. Before issuing LCHECK
DSK, set:

SMSFGl
To identify the type of device and drive containing the temporary file

Note: A subsequent L WRITE to the temporary file may fill the buffer, and cause
the data in the buffer to be rewritten.

Chapter 4. Instruction Descriptions 4-11

Name Operation Operand

[label] LCHECK { PLR }

DSK

PLR

DSK

Specifies that write operations to a temporary file are to be checked.

Specifies that write operations to a data set opened without the temporary
file option are to be checked.

Condition Codes: One of the following is set:

Hex Code

01
02

Explanation

No status is returned.
Status is returned in SMSDST.

Program Checks: None are set.

4-12 4700 Programming Library, Volume 2: Disk and Diskette Programming

LDKT

LDKT--Disk and Diskette Service Functions

Allocate a Data Set

The LDKT instruction provides disk and diskette service functions, including:

• Allocating data sets

• Opening data sets for processing

Updating data set header labels

• Querying data set information

Querying volume information

Utility functions: Renaming and reorganizing data sets; Releasing Buffers;
and Resetting input pointers

Controlling access to a volume

Closing data sets to further processing

• Deallocating data sets.

The LDKT instruction points to a parameter list (see DEFDKT in Appendix
B, "4700 COPY Files" on page B-1) that contains a request code defining the
function to be performed and any parameters required for the function. The
beginning of the parameter list is defined by the Secondary Field Pointer (SFP) of
the segment that contains the list, or by a DEFLD or DEFCON instruction. The
length of the parameter list is defined by the request code. If the length from the
beginning of the list to the end of the segment is too short to contain all of the
parameters required for the particular function requested, a program check occurs
when the instruction is executed.

LDKT defines the attributes of a data set and optionally allocates space for the
data set. If space is allocated, it assigns an initial contiguous set of sectors to the
data set; fills in the header label record and extension and writes them; and,
optionally for an EDDS data set, assigns some or all of the sectors occupied by the
data set and initializes them to any specified value. All sectors are assigned for
TEMP and RKAP data sets.

The following table summarizes the allowable values for certain fields of the
header label. For ASDS, RKAP, and KSAP data sets, these fields are properly
filled in by the controller on the basis of the type of data set being created.

Chapter 4. Instruction Descriptions 4- 1 3

TEMP ESDS EDDS ASDS

Record Attribute (RCA) ' , note 1 note 1 'R'
Record/Block Format (RBF) 'F' 'F/b' 'F/b' 'M'
Exchange Type Indicator (ETI) 'E' note 2 'E' 'E'
Logical Record Length (LRL) 256 user user user
Data Set Organization (DSO) 'D' 'S/b' 'D' 'D'
Block Length (BLL) 256 note 3 note 3 256
Physical Record Length (PRL) 'l' user user 'l'

Notes:

1. The record attribute must be set by the user. The valid values are 'B' for
blocked records, or blank for unblocked records. Unblocked format for
records less than or equal to half the sector size are not provided for an
EDDS.

RKAP

' '
'F'
'E'
256
'D'
256
'l'

2. The exchange type indicator, for disk only, is set by the controller to 'E'. For
diskette, the user must specify a blank, 'E', or 'H'. A blank may be specified
for a data set created on a diskette formatted with 128-byte sectors or an 'H'
for a data set created on a type 2D diskette formatted with 256-byte sectors.
If blank or 'H' is specified, the controller also sets the record attribute,
record/block format, and data set organization to blanks. If 'E' is specified
(diskette) or controller-set (disk), the controller sets record/block format to
'F' and data set organization to 'S'.

3. Set by the controller.

Figure 4-1. Table of Header Label Values

4-14 4700 Programming Library, Volume 2: Disk and Diskette Programming

KSAP

' '
'F'
'E'
256
'D'
256
'1'

Before LDKT is issued, you must set SMSFG 1 to select the appropriate drive and
to designate whether the data set is to be defined or allocated on a diskette or on
a disk.

When an RKAP or KSAP data set is allocated that references an allocated
unkeyed data set, a work space following the parameter list must exist. This work
space is used to read the unkeyed data set records to be accessed through the
RKAP or KSAP being allocated. Allocation of a keyed data set will take as much
time as is necessary to read all associated unkeyed data sets and to add an entry to
the keyed data set for each existing unkeyed data set record. The characteristics
of the data set are specified in the LDKT parameter list. The parameter list used
when allocating a data set is 32 to 218 bytes long and contains the following
fields:

Byte Value or Meaning

0

2-3

4-5
6-7
8
9

Bit

0

1-2

3-7

Bit

0
1-3

4-5

6-7

10-89
90-267
10-137

Request Code: hex 01 Allocate

Flag byte

Meaning

Boundary Requirement
0 = No alignment required.
1 =Allocate on track boundary.

Allocation Units
00 Extent size is given in sectors.
01 =Extent size is given in K (1024) bytes.
10 = Extent size is given in tracks.

Reserved, must be 0.

Number of tracks, sectors, or K bytes to allocate
(in binary) .
Number of sectors to assign (in binary).
Number of sectors to initialize (in binary).
Initialization value (hex).
Secondary flag byte.

Meaning

Reserved, must be zero.
Type of Data Set

000 Type undefined
001 TEMP data set
010 ESDS data set
100 EDDS data set
101 ASDS data set
110 RKAP data set
111 KSAP data set

Allocation Flag
00 = Allocate using parameters provided
(no definition).
01 Allocate using stored definition.
10 = Do not allocate; only store definition provided.
11 =Store definition and allocate from stored

definition.
Reserved, must be zero.

Header label area
Extended parameter area
Header label return area

Chapter 4. Instruction Descriptions 4-15

The header label area is used to pass label parameters to the Allocate function,
and contains the following EBCDIC fields:

10-12
13
14
15-31
32-36
37

38-42
43
44-48
49
50
51
52
53
54
55-56
57-62
63-66

67-71
72-75
76-81
82
83
84-88
89

C'HDR' (set by the controller)
C'l' (set by the controller)
Blank (set by the controller)
Data Set Name
Block Length (set by controller)
Record Attribute
(set by controller for TEMP, ASDS, RK.AP, and KSAP)
Beginning-of-Extent Address (usually set by controller)
Physical Sector Length
End of Extent Address (usually set by controller)
Record/Block Format
Bypass Indicator
Data Set Security
Write Protect Indicator
Exchange Type Indicator
Multi-Volume Data Set Indicator
Volume Sequence Number
Creation Date
Logical Record Length
(set by the controller for TEMP, RKAP and KSAP)
Offset to Next Record Space (set by the controller)
Blanks (set by the controller)
Expiration Date
Verify/Copy Indicator (set by the controller)
Data Set Organization
End of Data Address (set by the controller)
Blank (set by the controller)

The extended parameter area must be used when a data set definition is stored.
The length of the extended parameter area must include through byte number 98.
For RKAP or KSAP data sets, the length must include the number of associated
data set names described by byte number 98. Only the portion of this area that is
actually used is required.

90-91 Key Offset from beginning of record
(binary 0 if not RK.AP or KSAP)

92 Key Length (binary 0 if not RKAP or KSAP)
93 Extension Flag Byte

Bit Meaning
0-3 User flags
4-6 Reserved
7 Duplicate key exclusion flag (RK.AP and KSAP only)

94

95
96-97
98
99-217

0 Duplicate keys not allowed
1 = Duplicate keys allowed

Number of bytes to reinitialize upon EDDS logical record
deletion (binary)
Number of secondary extents (binary 0 if not disk)
Size of each secondary extent (K-bytes in binary - disk only)
Number of associated data sets (binary 0 if not RK.AP or KSAP)
Names of associated data sets (17 characters each)

The parameter list must be at least 32 bytes long when allocating from a stored
definition and must be at least 90 bytes long when a stored definition does not
exist or is not being created. The parameter list must not be in Segment 14,
otherwise the LDKT instruction will cause a program check.

4-16 4700 Programming Library, Volume 2: Disk and Diskette Programming

When allocating a keyed data set, the segment following the parameter list and
the header label return area must be large enough to contain two data set records.
This space is used as a work area when inserting entries for existing unkeyed data
set records into the keyed data set.

The fields indicated as "set by the controller" need not be initialized by the
application program. In addition, if the data set type is specified in byte 9, then
the fields described in Figure 4-1 on page 4-14 will also be set by the controller.

The Type of Data Set and Allocation Flag fields in the secondary flag byte are
self-explanatory. The settings for the Allocation Flag allow allocation from a
saved definition or definition without allocation. The Type of Data Set may not
be undefined if the definition is to be saved. If a definition having the same name
already exists on the drive, a request to store a new definition or to allocate space
using the provided parameters is invalid. You much first purge the old definition
(see Deallocate) before such requests are valid.

The number of tracks, sectors, or K-bytes to allocate is given as a 2-byte binary
number. The maximum extent size that can be specified for a disk drive is 2048 K
bytes (2 097 152 bytes), 512 tracks, or 8192 sectors. If the flag field indicates
that this value is given in tracks, the controller multiplies the given value by the
number of sectors per track (on the currently mounted diskette) to obtain the
number of sectors to allocate. For disk, the number of tracks is always multiplied
by 16, which is the number of sectors in a TF Unit and in a page of disk space.
All disk allocations are multiples of 16 sectors.

For diskette, this value is used by the controller in conjunction with the
Beginning-of-Extent address (whether that address is given in the parameter list
or selected by the controller), to determine the End-of-Extent address. If both
the Beginning-of-Extent and End-of-Extent addresses are given in the parameter
list, the value in this field is ignored. If either the Beginning-of-Extent address or
the End-of-Extent address is all zeros or blanks, this field must contain a
non-zero value or the request will end with appropriate status.

For purposes of determining the necessary size for data sets, you should consider
the following facts:

Records in ESDS and EDDS data sets do not span sectors. Therefore, an
integral number of records will reside in each sector. The amount of unused
space will depend on the length of the records in the data set.

A four-byte descriptor precedes each ASDS record and each portion thereof
residing in a sector.

Each sector of a KSAP provides access to approximately 20 records.

Each sector of an RKAP provides access to approximately 25 records.

Chapter 4. Instruction Descriptions 4-17

The number of sectors to assign applies only to EDDS, and is given as a 2-byte
binary number. All TEMP data set sectors are assigned automatically. If the data
set being allocated is sequentially organized, the value in this field is ignored. This
value specifies how many sectors, if any, should be considered to be in use (that
are, available to LREAD, REPLACE or DELETE operations). If specified as 0,
no sectors are assigned. If specified as hex FFFF, all sectors are assigned. Any
other value causes that specific number of sectors to be assigned, starting with the
first sector. The controller uses this value in conjunction with the
Beginning-of-Extent addres~ to determine the initial value of the End-of-Data
address. Any sectors not assigned in this manner are available for sequential
assignment at a later time. Such sectors are assigned by using the L WRITE
instruction. Until a sector has been assigned, any attempt to refer to it is rejected
with unit exception status.

All sectors of an RKAP data set are assigned when it is allocated. This includes
any secondary extents defined for an RKAP on a disk drive. Similarly, if all
sectors are to be assigned for an EDDS data set defined on a disk drive, all
secondary extents will be allocated and assigned when the data set is initially
allocated.

The number of sectors to initialize applies to EDDS or TEMP data sets only and is
given as a 2-byte binary number. If the data set being allocated has the sequential
organization, the value in this field is ignored. It specifies how many of the sectors
occupied by the data set are to be written from a buffer initialized to a specified
value. If the value given in this field is zero, no sectors are initialized. If the value
is hex FFFF, all initially allocated sectors are initialized. Sectors in secondary
extents that are subsequently allocated are not initialized. Any other value causes
that number of sectors to be initialized. All sectors of an RKAP are initialized to
binary zeros.

The initialization value specifies the value to be used for initialization of data
blocks. It applies only to EDDS and TEMP data sets. If the block length is less
than the sector length, the sector is padded with trailing binary zeros. If any
sectors are preassigned during allocation, but are not initi.alized, those sectors may
be accessed with LREAD and REPLACE instructions, but with unpredictable
results. If the data set being allocated has the sequential organization, the value
in this field is ignored. To avoid unexpected results, a TEMP data set or a data set
of an undefined type to be used as a temporary file data set, should have all
sectors assigned and initialized to hex 00.

The Data Set Name is a 1-to-17 byte alphameric identifier that uniquely identifies
each data set on a volume. The name is left-justified in the field and padded with
trailing blank characters. The checks performed by the controller on the value
given in this field are to confirm:

That no existing header label on the diskette has the same name

That the data set name does not begin with 'SYS'

That the given name does not begin with a blank character.

4-· 18 4700 Programming Library, Volume 2: Disk and Diskette Programming

If a diskette has a data set named ERRORSET, then the diskette is qualified for
the Alternate Relocation method of processing defective physical sectors. This is
not recognized when the data set is allocated, but will be recognized the next time
the diskette is referred to following a not-ready to ready transition.

Block length is determined by the controller, based on the Logical Record Length
and Record Attribute fields. If records are to b~ unblocked, this field is set equal
to the Logical Record Length. If records are to be blocked, this field is set to the
highest multiple of the Logical Record Length that is not greater than the Physical
Sector Length. If sectors are spanned then block length must be 256 bytes.

Block Length is set by the controller for ASDS, RKAP, and KSAP. If the
allocation is being made on a diskette, it must be a diskette formatted to a
256-byte block length.

The Record Attribute specifies whether logical records are to be blocked or
unblocked. When a Basic Exchange data set is allocated, the controller sets this
field to a blank. If not basic exchange, the record attribute must be specified
either as a blank (records are unblocked), a C'B' (records are blocked), or a C'R'
(records are spanned). If any other value is specified, the request is ended with
appropriate status. If a value of C'B' is specified, and the logical record length is
such that only one record can be written in each sector, the controller changes this
field to a value of blank and no error is indicated. The controller sets this field
when ASDS, RKAP, or KSAP data set types are defined.

The Beginning-of-Extent parameter is ignored for disk data sets. For diskette, the
Beginning-of-Extent address can either be specified by the user or left to the
controller to determine. The value given is the EBCDIC address of the first sector
of the extent, in the form C'CCHRR', where:

CC= Track address (01-74)
H = Head Number:

(O for side 1, 1 for side 2)
RR = Sector address:

(01-26 for 128-byte sectors on Diskettes 1 and 2)
(01-15 for 256-byte sectors on Diskettes 1and2)
(01-26 for 256-byte sectors on Diskette 2D)

Note: On an operating diskette, track address can be from 01-73.

If the value given is all zeros (or blanks), the controller will search for an unused
extent of the specified number of sectors at the lowest available address, starting
with CC = 0 l, H = 0, and RR = 01. The controller will recognize the track
boundary alignment option, if specified. If sufficient space cannot be found, the
request is ended with appropriate status. If space is found, it is allocated to this
data set and this field is replaced with the address of the first sector. For disk, the
value returned is the binary PBN of the first sector of the data set.

If the Beginning-of-Extent field is not all zeros or blanks, the controller
determines whether an extent of the specified number of sectors can be allocated
starting at the given address without overlapping any existing extents. If so, the
space is allocated. If not, the request is ended with appropriate status.

Chapter 4. Instruction: Descriptions 4-19

The Physical Sector Length indicates whether this data set is to reside on a 128-
or 256-byte formatted diskette. When a Basic Exchange data set is allocated, the
controller sets this field to a blank. The physical sector length must be specified
as blank if the data set is to reside on a 128-byte diskette or a C' 1' if the data set
is to reside on a 256-byte diskette. If the currently mounted diskette does not
match the requirement specified by this field, the request is ended with
appropriate status.

The End-of-Extent parameter is ignored for disk data sets. For diskette, the
End-of-Extent can either be specified by the user or left to the controller to
determine. It is used only if Beginning-of-Extent is also specified. The value
specified is the EBCDIC address of the last sector of the extent in the same
format as described for Beginning-of-Extent. If Beginning-of-Extent is given as
zeros or blanks, or if this field is given as zeros or blanks, the End-of-Extent is set
by the controller. For disk, the value returned is the binary number of sectors in
the primary extent.

Record/Block format specifies how records are formatted within the block.
Record/Block format may be given as either a blank or C'F', both of which mean
fixed-length records, or C'M' for spanned records which may be fixed or variable
length. If any other value is specified, the request is ended with appropriate
status. When a Basic Exchange data set is allocated, the controller sets this field
to a blank. If a definition is being stored, this field is set by the controller for
some types of data sets. See Figure 4-1 on page 4-14.

The Bypass indicator has no meaning to the controller and any value will be
accepted in this field. It should be a blank if the data set will be allocated on a

I Basic Exchange diskette. The value of this field may be altered any time LDKT
updates the header label instruction.

The Data Set Security indicator has no meaning for the controller and any value
will be accepted in this field. It should be a blank if the data set will be read on an

I exchange diskette. The value of this field may be altered any time LDKT updates
the header label instruction.

The Write Protect indicator is not checked at allocation. When a data set is
opened for processing and the indicator contains a C'P', the data set is considered
write-protected and no data can be written to it. The value of this field may be
altered any time LDKT is used to update the header label instruction.

The Exchange Type Indicator is set by the controller when a data set is defined.
See Figure 4-1 on page 4-14 for a description of the Exchange Type Indicator.

The Multi-Volume Data Set indicator and Volume Sequence Number have no
meaning to the controller. Multi-Volume data sets are not supported.

The Creation Date should contain the date in EBCDIC, in YYMMDD format. If
the field is set to blanks, the current date is set by the controller using the system
timer value.

4-20 4700 Programming Library, Volume 2: Dis.k and Diskette Programming

The Logical Record Length is a required field given as a 4-byte, EBCDIC
number. For data sets having record format C'F' or C' ',the valid range is from 1
to the physical sector length. It is right-justified and padded with leading zeros or
blanks. If the value given for an ASDS is all zeros or blanks, variable record
length is inferred. If a number is specified for an ASDS data set, the valid range is
1 - 1024 bytes, which results in fixed-length spanned records. If the value given,
for other types of data sets, is all zeros or blanks, or is greater than the physical
sector length the request is ended with appropriate status. When a data set is
defined, the Logical Record Length is set by the controller for TEMP, RKAP, and
KSAP types of data sets. See Figure 4-1 on page 4-14.

The Offset-to-Next-Record-Space is provided and maintained by the controller.
It indicates the starting output position of the next sequential record relative to
the last block preceding the End-of-Data address. It contains a decimal value
used as a negative displacement into the block, and is set to an initial value of
zero.

The Expiration Date is a 6-byte EBCDIC value in YYMMDD format. This field
is used when requesting deallocation. If the date is less than or equal to the
current date, it is considered to be expired. Any other value is considered to be
the date on which the data set expires.

If the field is blank, the controller sets the current date. If the field is set to
'+ NNNN +' where NNNN is the number of days after the current date when the
data set is to expire, the controller determines the expiration date when the data
set is allocated.

The controller sets the Verify I Copy indicator to an initial value of blank. It has
no significance to the controller and can be changed at any time by the LDKT
Update Header Label instruction. Other valid values are C'V', meaning that the
data set has been verified, or C'C', meaning that the data set has been copied to
another medium. ·

The Data Set Organization value indicates whether access to the data set is
limited to strictly sequential operations, or whether read and replace operations by
location are allowed. It also determines what error recovery may be attempted in
the event of write errors because of a defective diskette surface. When a Basic
Exchange data set is allocated, the controller sets this field to a blank. Data Set
Organization must be given as one of the following:

hex 40 (blank) or C'S' (sequential organization)

• C'D' (direct organization).

If any other value is given for the Data Set Organization, the request is ended
with appropriate status. When a data set is defined, this field is set by the
controller. See Figure 4-1 on page 4-14.

The End-of-Data address is provided by the controller. It is determined from the
Beginning-of-Extent address and the number of sectors assigned. If no sectors are
preassigned, the End-of-Data Address is set equal to the Beginning-of-Extent
address. If any sectors are preassigned, this field is set to the address of the first
unassigned sector. If all sectors are preassigned, this field is set to the address of
the next sector following End-of-Extent.

Chapter 4. Instruction Descriptions 4-21

All remaining fields in the header label area are set by the controller to blanks.

Each of the last 48 bytes of the diskette header label are set to blanks unless the
diskette is 1-sided and the data set has an Exchange-Type indicator set to blank
(Basic Exchange Standards apply). In this case, the last 48 bytes of the label are
set to binary zeros.

For diskette, if the store definition flag bit is set, and no invalid values are
detected in the parameter list, the extended header label is written to the
SYSDSLBL data set. When the requested space is allocated, the standard HDRl
formatted label is written to track zero. The 'SYSDSLBL' data set must exist on
diskette before a store definition allocation request is processed. The
'SYSDSLBL' data set should be created using the 4 700 Installation Diskette, or
the user data set option of the Host Transmission Facility.

The extended parameter area is used while defining a data set. If the secondary
flag byte (byte 9) specifies "store definition," then parameters through byte 98
must be specified, otherwise the extended parameter area is ignored.

The key offset from the beginning of the record is specified as a 2-byte binary
value. It must be less than or equal to 1024 and must be specified for a KSAP or
an RKAP. It is ignored for other types of data sets.

The key length field is a one-byte binary value that indicates the length of the key
for a KSAP or an RKAP. It must be less than or equal to 255. This field must be
zero for other types of data sets.

The extension flag byte specifies whether duplicate keys are allowed within a
keyed data set. The first 4 bits of this flag byte are available to the user
application. Any values are stored, not validated, and can be returned to the
application via the LDKT Query Extended Header Label function.

When you logically delete a record from an EDDS data set the record can be reset
to the initialization character value. The number of bytes to be reinitialized is a
one-byte binary number specified at the time the data set is defined. This
function is supported only if the EDDS data set is associated with any keyed data
sets. Reinitialization starts from the beginning of the logical record. A value of
hex 00 means no bytes will be reinitialized, and a value of hex FF means the
entire logical record will be reinitialized.

The number of secondary extents is a one-byte binary number that specifies the
maximum number of secondary extents to allocate. This parameter is valid only if
the definition is for an ESDS, EDDS, ASDS, RKAP, or KSAP on a disk drive.
The maximum value that can be specified is fifteen. Any value that is not in the
range hex 00 - OF is invalid and will cause the allocation request to be ended with
an error status.

The size of secondary extents may be used only for an ESDS, EDDS, ASDS,
RKAP, or KSAP allocated on the disk drive. It is a 2-byte binary number that
specifies the size of each secondary extent that may be allocated, expressed in
multiples of 1024 bytes. Because space allocations are in multiples of 4096 bytes,
any size specification will be rounded up to the 4K boundary, if necessary. The
maximum extent size that can be specified for a disk drive is 2048 K bytes (2 097
152 bytes).

4-22 4700 Programming Library, Volume 2: Disk and Diskette Programming

Open a Data Set

The number of associated data sets is a one-byte binary number. It indicates, for
a KSAP or RKAP, the number of ASDS or EDDS data sets that are to be
accessed. The names of the data sets follow in the succeeding field. The
maximum value that can be specified is seven and any value larger than that is
considered an error and will cause the definition request to be ended with an:
appropriate error indication. This field may not be zero if a KSAP or an RKAP is
being allocated, and must be zero for other types of data sets.

The indicated number of data set names must be specified. Each name should be
left-justified (with trailing blanks) in a seventeen-character portion of this field.
Each named data set must be an existing ASDS or EDDS defined on the same
drive as the KSAP or the RKAP being defined. Any associated data set name
fields beyond the number specified above will be ignored and do not have to be
included in the total parameter length.

If the required space is successfully allocated and no invalid values are detected in
the parameter list, the header label is written. A copy of the header label as it is
recorded is returned in the parameter list starting at byte 10. As many as 128
bytes are returned, space permitting. The operation completes with zero status
and a condition code of hex 01.

The LDKT Open function assigns an area of controller storage for the named
data set (if an area is not already assigned) and initializes it with data from the
header label (and extension). The value assigned to the opened data set is
returned to the application, in SMSDID, for future references to the data set.

Before this LDKT is issued, you must allocate the data set. You must set SMSFGl
to indicate which device is to be used and which is the appropriate drive. The full
17-byte name of the data set to be opened is given in the parameter list exactly as
it appears in the data set header label.

When a keyed data set is opened, any associated unkeyed data sets are also
implicitly opened by the controller. A specific LDKT Open is not required for
each associated data set if keyed access is used.

Chapter 4. Instruction Descriptions 4-23

If the write-protect indicator is set in the data set label, the data set is opened with
read-only access. The parameter list used when opening a data set is 19 to 138

· bytes long and contains the following fields:

Byte Meaning

0 Request Code: hex 03 Open

Flag byte

Bit Meaning

0 Temporary File
0 = Do not open as temporary file.
1 = Open as temporary file.

Cold/Warm Start
0 = Cold start
1 = Warm start

2 Exclusive Use
0 = Open for general use.
1 = Open for exclusive use.

3-6 Reserved, must be 0.
7 Return header label in input area

0 Do not return header label.
1 = Return header label.

2-18 Data Set Name

10-137 Header label return area

The parameter list must be at least 19 bytes long whether or not the label is to be
returned, and it must not be in Segment 14. Otherwise, a program check will
occur when the instruction is executed. Note that the label return area overlaps
the data set name parameter. If return of the header label is requested, as many
bytes of the label will be stored as there is room for in the list, with a maximum of
128 bytes.

Note: The value returned in SMSDID may vary from one open to the next open
of the same data set. You should not code your program assuming the same value
is always returned by the open function for any particular data set.

If the open function completes successfully, SMSDID contains a data set ID value.
This value uniquely indicates the data set and the disk or diskette drive on which
it resides. If a data set is already open by at least one other station, the SMSDID
value returned is the same as when the data set was first opened. In addition, the
fields SMSADS, SMSCCD, and SMSDST are returned as appropriate. See the
DEFSMS copy file in Appendix B, "4700 COPY Files" on page B-1 for definition
of these fields.

If the temporary file option is set, and this is the first open of the data set, the
characteristics of the data set are checked against those required of a temporary
file data set. If they do not match, the request is ended with appropriate status. If
the temporary file option is set, and the data set is already open by at least one
other station, the previous open must also have specified the temporary file
option. If not, the current request is ended with appropriate status.

4-24 4700 Programming Library, Volume 2: Disk and Diskette Programming

Update Header Label

If the temporary file option is set, and this is the first open of the data set, and the
Warm Start flag is not set, the index counters are set to zero. If the temporary file
option is set, and this is the first open of the data set, and the Warm Start flag is
set, the index counters are initialized to reflect any existing logical records in the
data set.

The index counters for a temporary file data set are organized according to the
number of TF Units in the data set. The number of counters available depends on
the TF operand that was coded on the FILES macro in the configuration
specifications. If a data set having more than this number of TF Units in its
extent is opened as a temporary file, only the number of TF Units for which there
are counters are accessible. The data set is opened, but the request completes
with status indicating "Temporary File Data Set Too Large."

If the temporary file option is not set, or if the data set is already open by at least
one other station, the Warm Start flag is ignored. Only one temporary file data
set can be opened at a given time on each disk or diskette.

If the Exclusive Use flag is set and this is the first open of the data set, a flag is set
noting that the data set is open for exclusive use by this station. Subsequent
accesses to the data set by this station are permitted, while attempted accesses by
other stations are rejected with appropriate status. An open request is ended with
appropriate status if the Exclusive Use flag is set and the data set is already open
by at least one other station.

If an open of a keyed data set or any of its associated unkeyed data sets fails, then
status is returned; none of the data sets are opened; and controller storage for
each is reset to zeros. If any of the associated unkeyed data sets were already
open from a previous operation, they will not be affected by the request that fails.

If an open request for a keyed data set is processed, the SMSICT field is returned
containing a count of the implied-associated data sets that were opened by the
keyed data set. If this count is zero, appropriate status is returned. If some of the
implied data sets did not open because they were defined but not allocated, zero
status is returned and SMSICT is meaningful. The keyed data set is not included
in the count. If the keyed data set is already open, then the status and count are
both zero.

There are occasions when you may wish to modify the values of certain fields in a
data set header label. The Update Header Label function of the LDKT
instruction is provided for this purpose.

Before this LDKT is issued, the data set must be open; the value returned in
SMSDID when the data set was opened must be placed in SMSDID. The
controller will use the value in SMSDID to determine the data set, device, and
drive to be accessed. You should periodically issue the LDKT Update Header
Label instruction to allow the system to preserve its End-of-Date pointer.

The corresponding fields of the data set header label are updated with the values
supplied in the parameter list along with the current values of the End-of-Data
address and Offset-to-Next-Record-Space from the area of user storage
associated with the open data set. Optionally, a copy of the updated label may be
returned in the parameter list.

Chapter 4. Instruction Descriptions 4-25

The parameter list used when updating a header label is 6 to 138 bytes long and
contains the following fields:

Byte Value or Meaning

0
1

2
3
4
5
6-9

Bit

0

2

3

4-6
7

10-137

Request Code: hex 02
Flag byte

Meaning

Bypass Indicator

Update Header Label

O = Do not update Bypass Indicator.
1 = Update Bypass Indicator.

Data Set Security
0 = Do not update Data Set Security.
1 = Update Data Set Security.

Write-Protect Indicator
0 = Do not update Write-Protect Indicator.
l = Update Write-Protect Indicator.

Verify/Copy Indicator
0 =Do not update'Verify/Copy Indicator.
1 = Update Verify/Copy Indicator.

Reserved, must be 0
Return header label in input area

0 = Do not return header label.
1 = Return header label.

New value for Bypass Indicator
New value for Data Set Security
New value for Write-Protect Indicator
New value for Verify/Copy Indicator
Reserved, must be binary zeros.
Header label return area

The parameter list must be at least 6 bytes long and must not be in Segment 14.
Otherwise, a program check will occur when the instruction is executed. If return
of the header label is requested and the list is at least 11 bytes long, as much of
the label as will fit in the list will be returned.

Query Data Set Information

Query Extended Header Label

LDKT allows a station to request the extended header label parameters for a data
set.

Before this LDKT is issued, SMSFG 1 must be set to the drive and device to be
accessed.

The parameter list that your application must set may be 4 or 22 bytes long. Bytes
2 and 3, and bytes 5 through 21 may be changed during LDKT operation
depending upon the code that your program places in the flag byte (byte 1).

The parameters returned to your application may be from 101 bytes to 220 bytes
long (including the first 22 bytes) depending on the number of associated data
sets described in byte 100. The format is as described below. If the value in byte
100 is hex 00, then only bytes 0 - 100 will be returned.

4-26 4700 Programming Library, Volume 2: Disk and Diskette Programming

Byte Value or Meaning

Parameter List

0 Request Code: hex OF Query Extended Header Label

Flag byte

Bit Meaning

0-1 00 Query the Data Set Name that is in
bytes 5 - 21.

10 Query the Data Set Label that is at the
relative position given in bytes 2 - 3.

11 Query the next valid label that is after the
relative position given in bytes 2 - 3.

2-6 Reserved, must be zeros.
7 1 =Return the diskette data set size (displacement 80)

in sectors or K-bytes, depending on the setting
of flag-byte 82 that coincides with flag-byte 1
of Allocate. If the flag byte indicates tracks, the
size is returned in sectors.

2-3 Relative position of the data set label (binary)
4 Blank
5-21 Data Set Name

Returned Parameters

0
1
2-3
4
5-21
22-78

79
80-81

82-90

91-98

99
100
101-219

82-100

Request Code: hex OF
Flag byte
Relative position of the data set label (binary)
Blank
Data Set Name
Remaining "HDR1" fields in the same format as the HDR1
label through and including end of data.
Note:
For disk, the BOE, EOE, and EOD fields will be
binary values (5 bytes each); for diskette these fields
will be character fields (TTHRR).
Blank
Current data set size in K-bytes (in binary) if bit 7
of the flag byte = 0.
For diskette allocations in sectors, the size is
rounded down to the next multiple of 1024 bytes.
For diskette only, the size may be set to sectors
if bit 7 of the flag byte is set.
Coincide with bytes 1 - 9 of the LDKT Allocate
parameter list
Coincide with bytes 90-97 of the LDKT Allocate
parameter list
Number of secondary extents allocated (hex 00 - OF)
Number of associated data sets defined (hex 00 - 07)
Names of associated data sets (17 characters each padded
to the right with blanks).

If the data set was not previously defined then these
bytes will each contain hex 00.

The parameter list must be at least 4 or 22 bytes long depending on the value of
the flag byte, otherwise a program check will occur when the instruction is
executed. If not enough bytes exist through the end of the data segment to hold
all of the query reply, then the reply will be truncated at the end of the data
segment and error status hex 0101 is returned.

Chapter 4. Instruction Descriptions 4-27

Buffer Inquiry

An attempt to query a specific data set (that is, Byte 1 Bit 0 set off) which does
not exist causes the request to be rejected with error status hex 4004 (data set
name unknown). If a data set cannot be found using the relative label position or
the next relative position, error status is hex 4000 (End of Data).

For an ASDS or EDDS, the associated data sets are those KSAP and RKAP that
access the data set being queried. For a KSAP or RKAP, the associated data sets
are those ASDS or EDDS that are accessed by the KSAP or RKAP data set.

The current size of a TEMP or RKAP is always the size of its initial allocation.
The current size of an ASDS, ESDS, EDDS, or KSAP is the total current size
which includes any secondary extents that have been allocated. For diskette, if
the user flag-bit 7 is set, the current size returned is in the same unit of
measurement as the initial extent. An exception is if the initial extent is tracks; in
this case, the current size units returned is sectors.

This LDKT function allows a station to obtain the identity of unwritable blocks
that occupy EDAM buffers. This function, in combination with the LREAD
DSID and LDKT Buffer Release functions, can be used in a write-error-recovery
procedure.

When the buffer inquiry function is requested, SMSFG 1 must be set to identify
the drive for which unwritable buffers are to be identified and the SMSDID and
SMSRPS fields must be set as the starting point for the unwritable buffer search.
The SMSDID value is logically prefixed to the SMSRPS value to produce a
combined field, that is the starting point for the unwritable buffer search. All
unwritable buffers for the specified drive are searched to find the buffer having
the next higher combined SMSDID and SMSRPS value. If any such unwritable
buffer is found, the values identifying that buffer are returned in SMSDID and
SMSRPS and the request is completed with a zero status. If no such unwritable
buffers are found, the request is ended with appropriate status.

If the value returned in SMSDID identifies a keyed data set (RKAP or KSAP),
then the relative position of the keyed data set label is returned in the parameter
list. If an unwritable buffer for a keyed data set is encountered and the parameter
list is too short to contain the relative position, appropriate status is returned. If
the parameter list is long enough to contain the relative position field but the
returned SMSDID value does not identify a keyed data set, the relative position
field will be set to binary zero.

The relative position returned for a keyed data set can be used with the LDKT
Query Extended Header Label function to determine the name of the keyed data
set having unwritable buffers. After unwritable buffers associated with unkeyed
data sets have been reconciled and released, a keyed data set can be recovered by
first closing it using the "ignore errors" specification (to get rid of the unwritable
buffer). The data set can then be deallocated and reallocated from its stored
definition, causing it to be rebuilt to properly reflect existing unkeyed data set
records.

4-28 4700 Programming Library, Volume 2: Disk and Diskette Programming

Query Open Status

Volume ID Inquiry

The parameter list for buffer inquiry must contain at least one byte, but if keyed
data sets are used, should contain three bytes, as follows:

Byte Value or Meaning

0 Request Code: hex 08 = Buffer Inquiry
1 - 2 Relative position of keyed data set label.

The system handles alternate sector assignment for any write errors on disk;
therefore, there should be no unwritable buffers associated with a disk drive.
However, the instruction can be issued for a disk drive and will appear to be
processed the same as for diskette.

For any given data set, LDKT allows any station to determine which stations have
the data set open by means of a bit map returned in the parameter list.

Before this LDKT is issued, the data set must be open and the value returned in
SMSDID when the data set was opened must be placed in SMSDID. The
controller will use the value in SMSDID to determine the data set, device, and
drive to be accessed.

The bit map is a 64-bit (8-byte) field. Bit 0 is used for data sets opened by the
controller; bits l - 60 correspond to station IDs 1 - 60; bits 61 - 62 are unused;
and bit 63 indicates one or more implied open. For each nonzero bit in the map,
the corresponding station has the data set open.

The parameter list used for querying open status is 10 bytes long, and contains the
following fields:

Byte Value or Meaning

0 Request Code: hex OB = Query Open Status
1 Reserved, must be zero
2-9 Open bit map return area

The parameter list must be at least 10 bytes long and must not be in Segment 14.
Otherwise, a program check will occur when the instruction is executed.

LDKT allows any station to determine the volume ID of the disk or diskette
volume without having to read the volume label.

Before issuing the LDKT, set SMSFGl to select the appropriate drive.

Chapter 4. Instruction Descriptions 4-29

Unallocated Space Inquiry

The parameter list used for the volume ID inquiry is eight bytes in length and
contains the following fields:

Byte Value or Meaning

0 Request Code: hex OA = Volume ID Inquiry
1 Reserved, must be zero
2-7 Volume ID return area

The parameter list must be at least eight bytes long and must not be in Segment
14, or else a program check will occur when the instruction is performed.

Because the disk media is not removable, it does not have a volume ID. The
LDKT Query Volume ID function for the disk device will always return
'SYSDKx' where xis the drive identifier.

LDKT allows any station to determine the amount of unallocated space on a
diskette or a disk. In addition, a summary of the number of contiguous blocks of
various sizes is provided.

Before issuing LDKT, you must set SMSFGl to identify the device involved and
to select the appropriate drive.

If a volume is currently mounted on the selected drive when this request is issued,
binary numbers representing the space that is not allocated to any data set, are
returned in the parameter list. If no volume is mounted on the selected drive or
the selected drive is not included in the configuration, the request is ended with
appropriate status.

For disk, the flag byte returned and the total unallocated space always indicates
K-byte units regardless of the request flag values set by the application. For
diskette, when K-bytes are requested, any contiguous blocks that are less than one
K-byte in length are not included in the total count.

4-30 4700 Programming Library, Volume 2: Disk and Diskette Programming

Utility Functions

Buffer Release

The parameter list used for unallocated space inquiry is 22 bytes long and
contains the following fields (all fields returned by this instruction are in binary):

Byte Value or Meaning

0

2-5
6-7
8-9
1 0-1'1
12-13
14-15
16-17
18-21

Request Code: hex OD Unallocated Space Inquiry

Flag byte

Bit Meaning
0 Units for unallocated space

0 = Return space in sector units
1 = Return space in K-byte units

Return largest contiguous diskette block in units
indicated by bit 0

2-7 Reserved, must be 0

Unallocated space return area
Number of blocks <4 K-bytes
Number of blocks >=4 K-bytes and <16 K-bytes
Number of blocks >=16 K-bytes and <64 K-bytes
Number of blocks >=64 K-bytes and <256 K-bytes
Number of blocks >=256 K-bytes and <1024 K-bytes
Number of blocks >=1024 K-bytes
Largest contiguous diskette block (in sectors or
K-bytes)

If the parameter area provided is less than 22 bytes, only as much data as will fit
will be returned.

LDKT allows any station to release EDAM buffers that contain unwritable blocks
belonging to any EDAM data sets, other than temporary file data sets. It can be
used to release a specific buffer, all buffers that contain unwritable blocks
belonging to a given data set, or all buffers associated with the selected drive.

This function permits EDAM to reuse the buffer, and should be requested only
after any pertinent recovery procedures have been completed. Once a buffer has
been released, the unwritable block is no longer retrievable.

This release function requires a data set ID in SMSDID, a block number in
SMSRPS, and SMSFGl to select the drive. If the value passed in SMSDID is
zero, all unwritable buffers associated with the selected drive (SMSFG 1) are
released. If the value passed in SMSRPS is zero. all unwritable buffers belonging
to the specified data set are released. If neither SMSDID nor SMSRPS contains a
zero value, only the buffer containing the specified block for the specified data set
is released.

The release request always completes with zero status. Buffer error status is reset
for any data set that has an unwritable buffer released.

Chapter 4. Instruction Descriptions 4-31

Reset Data Set Input Pointer

Reset Data Set Output Pointer

The parameter list used for the buffer release is one byte long and contains only
the request code, as follows:

Byte Value or Meaning

0 Request Code: hex 09 = Buffer Release

LDKT allows any station to reset the current input pointer for a sequential data
set to its initial value. This permits rereading of records that have been read
previously without the necessity for closing and reopening the data set. In order
for a station to request this function, the station must have the data set currently
open.

Before this LDKT is issued, the data set must be open and the value returned in
SMSDID when the data set was opened must be placed in SMSDID. The
controller will use the value in SMSDID to determine the data set, device, and
drive to be accessed.

This function can be requested at any time, regardless of the value of the current
input pointer. Its effect is to cause the first record of the data set to be returned in
response to the next LREAD issued to that data set by any station. If the
specified data set does not have sequential organization, no error is reported and
the operation has no effect on processing of the data set.

This function is useful in recovering from a permanent write error in the data set.
A station receiving status indicating that a permanent write error has occurred can
inhibit access to the volume by other stations; reset the input pointer for the data
set having the error; and then read the data set in its entirety (either copying the
records to a new data set, or handling them in some other appropriate way). After
recovery is complete, the station can release the buffer containing the block that
was unwritable; close the failed data set for all stations (using the Ignore Errors
option); deallocate the data set; and permit other stations to access the volume
again.

The parameter list used for resetting a data set input pointer is one byte long and
contains only the request code, as follows:

Byte Value or Meaning

0 Request Code: hex OC Reset Data Set Input Pointer

I LDKT allows any station to reset the current output pointer for the open data set
to the start of a data set. This permits re-using the data set as if it had just been
allocated. It allows different stations to journal entries to a data set. One station
might process the entries periodically and reset the output pointer without forcing

I journaling stations to reopen the data set. The data set must be an ESDS, EDDS,
or an ASDS and cannot have any associated keyed data sets.

4-32 · 4700 Programming Library, Volume 2: Disk and Diskette Programming

Rename a Data Set

Reorganize a Data Set

When multiple stations are accessing the same data set, the controlling station
should issue LDKT Inhibit Access before Reset Output Pointer to temporarily
prevent accesses to the common data set. After the data is processed, issue LDKT
Permit Access to allow other stations to access the data set again. The MBB
option module must be present in order to use the reset data-set output pointer
instruction.

Before this LDKT is issued, the data set must be open and the value returned in
SMSDID when the data set was opened must be placed in SMSDID.

Byte Value or Meaning

0 Request Code: hex 11 =Reset Data Set Input Pointer
1 User flag byte: Reserved

I This LDKT function allows a data set to be renamed. Before issuing this LDKT,
you must set SMSFG 1 to identify the device type and to identify the drive on
which the data set to be renamed resides. If the data set to be renamed is open to
any station, the instruction is rejected.

The parameter list used by this function must be 35 bytes long and contains the
following fields:

Byte Value or Meaning

0
1

Request Code: hex 10
Flag byte

Bit Meaning

Rename Data Set

0-7 Reserved, must be 0

2-18 Current Data Set Name
19-35 New Data Set Name

If the parameter list is less than 35 bytes long, a program check will occur when
the instruction is executed.

Both the current and the new data set names must be the full 17-byte name for
the data set. A data set having the same name as the new name. must not already
exist on the specified volume. If such a named data set already exists, the
instruction will be rejected with appropriate status. Data set names must not
begin with 'SYS'.

LDKT reorganizes an ASDS or a KSAP that has become inefficiently structured
through extensive delete/add activity. For an ASDS, the reorganize function
compresses the data set to eliminate the space occupied by deleted records. For a
KSAP, the reorganize function reorders the entries so that the data set can be
searched more efficiently.

I Before issuing LDKT, you must set SMSFG 1 to identify the device involved and
to select the appropriate drive.

Chapter 4. Instruction Descriptions 4-33

Control Access to Volumes

Inhibit Access to Volumes

The data set must not be open to any station; otherwise, the request is rejected
with appropriate status.

The parameter list used when reorganizing a data set is 18 bytes long and contains
the following fields:

Byte Value or Meaning

0 Request Code: hex OE = Reorganize
1 Flag byte

Bit Meaning

0-7 Reserved, must be 0
2-18 Data Set Name

The parameter list must be at least 18 bytes long, otherwise, a program check will
occur when the instruction is executed.

The data set name is the full 17-byte name of the data set to be reorganized and
must be given exactly as it appears in the data set header label.

An attempt to reorganize any other type of data set will cause the request to be
rejected with appropriate status.

Reorganization Recovery: When an ASDS is reorganized, any associated KSAP or
RKAP data sets are implicitly deallocated (but their definitions not purged) and
must again be allocated from the stored definition before they can be used.
Should the ASDS reorganize function be interrupted by a power failure or
controller malfunction, the ASDS is unusable. For this reason and if sufficient
space is available, the ASDS reorganize function may be accomplished with less
risk by copying the records from one ASDS data set to another ASDS data set
using an LREAD PLR-LWRITE PLR loop. Deleted records will be ignored when
the input data set is read. However, any keyed data sets associated with the old
ASDS will have to be redefined and associated with the new ASDS data set.

When a KSAP is reorganized, sufficient free space must be available on the
device to build a new KSAP from the existing KSAP. The allocation of the space
for the new KSAP and the deallocation of the space occupied by the existing
KSAP are implicitly handled by the controller. Should the KSAP reorganize
function be interrupted, the new KSAP should be deallocated by the user and the
reorganize request should be resubmitted. When this interruption occurs, the data
set name of the new KSAP data set is the name of the one being reorganized with
a $ (dollar sign) substituted for the first character of the name.

This LDKT request allows a station to request exclusive use of a volume. When
this request is issued, EDAM stores the ID of the requesting station.
Subsequently, until a Permit Access request is issued, EDAM accesses to the
volume (by the station that requested inhibit) are allowed, but attempted accesses
by other stations are rejected with appropriate status.

I Before issuing LDKT, set SMSFGl to select the appropriate drive.

4-34 4700 Programming Library, Volume 2: Disk and Diskette Programming

Permit Access to Volumes

Close a Data Set

The status of the EDAM buffers and the open status of any data sets on the
mounted volume are not affected by the Inhibit function. EDAM monitoring of
buffer usage continues normally while access is inhibited. If an operation
requested by the inhibiting station requires reassignment of a buffer, and if the
buffer assigned had been changed before the inhibit request, the changed sector
will be written to the diskette before the buffer is reassigned.

Control operator functions and absolute requests are not affected by the Inhibit
Access function.

The parameter list used for inhibiting access is one byte long and contains only
the request code, as follows:

Byte Value or Meaning

0 Request Code: hex 06 = Inhibit Access

This LDKT request allows a station that had previously requested an Inhibit
Access function to relinquish exclusive access. When this request is issued,
EDAM clears the station ID save area, thus enabling all stations to access the
volume.

I Before issuing LDKT, set SMSFGl to select the appropriate drive.

If access to the volume is not inhibited when this request is issued, the request has
no effect and completes with zero status. If access to the volume is inhibited when
this request is issued, this request must be issued by the same station that had
previously requested the Inhibit. Otherwise, the request is rejected with
appropriate status.

The Permit function does not affect the status of the EDAM buffers and the open
status of any data sets on the currently mounted volume.

The parameter list used for permitting access is one byte long and contains only
the request code, as follows:

Byte Value or Meaning

0 Request Code: hex 07 = Permit Access

LDKT closes a data set from further processing by the station that requested the
close. LDKT close for a keyed data set closes the keyed data set as well as
implied opens for the associated unkeyed data sets.

Before this LDKT is issued, the data set must be open and the value returned in
SMSDID when the data set was opened must be placed in SMSDID. The
controller will use the value in SMSDID to determine the data set, device, and
drive to be accessed.

Chapter 4. Instruction, Descriptions 4-35

..

If no other stations have the data set open when the close is requested and if any
changed sectors of the data set are in EDAM buffers, they are written to the
diskette. If the data set had been extended, the controller reads the label, updates
the End-of-Data address and Offset-to-Next-Record-Space fields, and rewrites
the label.

When a keyed data set is closed the average number of sector accesses required to
find a record using that keyed data set is returned in SMSKEY. This value gives
the application an indication of the current performance level. If the number
increases significantly it may be advantageous to reorganize the keyed data set if
it is a KSAP or reallocate a larger keyed data set if it is an RKAP. This may
facilitate fewer accesses. It is returned as a binary integer in the high-order two
bytes with a fractional value in the low-order two bytes.

The parameter list used when closing a data set is two bytes long and contains the
following fields:

Byte Value or Meaning

0
1

Request Code: hex 05
Flag byte

Bit Meaning

Close

0 Limited/General Close
0 = Close for requesting station only
1 = Close for All Stations

Error Option
0 = Report Errors
1 = Ignore Errors

2-7 Reserved, must be 0

The parameter list must be at least two bytes long, otherwise, a program check will
occur when the instruction is executed.

If the Close-for-All-Stations flag is set, EDAM zeros the entire bit map for the
data set. No other stations that may have had the data set open are then allowed
to access the data set unless they reopen it. If a station closes a data set to all
stations, the requesting station need not have the data set open. If an explicit
close-for-all stations request is issued to an unkeyed data set that also has existing
implied opens, then all explicit opens are ended. The implied opens in this case
remain in effect and keep the data set open.

If the Close-for-All-Stations flag is set and the close request is for a keyed data
set that has associated unkeyed data sets then the keyed data set is closed for all
stations. The associated unkeyed data sets are also closed. However, if any of the
unkeyed data sets were explicitly opened because of other requests then they will
remain open.

The Error Option is ignored if this is not the final close of a data set. If Report
Errors is specified and if a data buffer write error occurs during close, or if an
EDAM buffer contains an unwritable block, the request is ended with appropriate
status and the data set is left open.

4-36 4700 Programming Library, Volume 2: Disk and Diskette Programming

Deallocate a Data Set

If the Ignore Errors flag is set and if a data buffer write error occurs during close,
or if any EDAM buffers contain blocks of the data set that had previously been
flagged as unwritable, the close completes with zero status. Any buffers that
contain unwritable blocks of the data set are freed for other use.

This LDKT function deallocates a data set by freeing the space the data set
occupied. Optionally, the data set definition may also be purged. For diskette,
deallocation involves replacing its diskette header label with a delete control
record, and optionally deleting the record in the 'SYSDSLBL' data set that
contains the defined parameters for the data set.

I Before issuing this LDKT, SMSFGl must be set to select the appropriate drive.

The data set must not be open to any station when deallocation is requested,
otherwise the request is rejected with appropriate status. When an ASDS or an
EDDS is deallocated, all associated keyed data sets are implicitly deallocated but
their definitions are retained. If your data is sensitive, you should remember that
deallocating a data set doe2 not reinitialize any of the sectors containing records
of the data set.

The parameter list used when deallocating a data set contains the following fields:

Byte Value or Meaning

0
1

Request Code: hex 04
Flag byte

Deallocate

Bit Meaning

I 2-18
19-24

0 Definition Retention Flag
0 = Purge data set definition
1 = Retain data set definition

1-7 Reserved, must be 0

Data Set Name
Current date

The parameter list must be at least 25 bytes long, otherwise a program check will
occur when the instruction is executed.

The Definition Retention Flag provides for the retention of the data set definition
parameters in the SYSDSLBL data set, allowing subsequent allocation from the
stored definition. The request to retain a data set definition that had not been
previously defined, is not valid. The Deallocate will be done, a definition will not
be retained, and attention status (hex 0889) will be returned upon completion.

The Data Set name is the full 17-byte name of the data set to be deallocated, and
must be given exactly as it appears in the data set header label.

Chapter 4. Instruction Descriptions 4-3 7

r: ··-.;} .",.<i\ili'.,,

The Current Date is used to check whether the data set is expired. It is giv.en as a
6-byte EBCDIC value in YYMMDD format and is compared with the Expiration
Date field in the header label. If the current date is greater than or equal to the
Expiration Date, the deallocate is permitted. If the current date is less than the
Expiration Date, the request is ended with appropriate status. If your facility
maintains the timer function, you can obtain the current date using the L TIME or
L TIMBV instruction. Refer to Volume 1 of the 4 700 Controller Programming
Library for additional information.

The LDKT instruction and its operands are as follows.

Name Operation Operand

defld2
[label] LDKT

\

defcon2)

(defrf2)
(reg2)
seg2
seg2,disp2

operand 2
Specifies the DEFDKT parameter list to be used. If seg2 is specified, the
controller uses the SFP of the segment to determine the location of the
parameter list.

Note: In all cases, the length of the parameter list is determined by the request
code set in the first byte of the parameter list (field DKTRCD).

Condition Code: One of the following is set:

Hex Code

01
02

Explanation

No status is set
Status is set in SMSDST

Program Checks (hex): 01, 02, or 27 can be set.

4-38 4700 Programming Library, Volume 2: Disk and Diskette Programming

LREAD

LREAD--Read from Disk or Diskette

LREAD reads either a single logical record or the contents of one or more sectors
from a disk or diskette data set. LREAD can retrieve (depending on the first
operand of the LREAD instruction):

• The contents of one or more sectors from either diskette drive using absolute
(track, head, and sector) addressing (A operand).

The contents of one or more sectors from disk or diskette using physical block
number addressing (PBN operand).

• A logical record from the temporary file or System Log on the operating
diskette mounted on the primary drive (TFn, C or L operand).

• A logical record from a data set on the secondary diskette drive or a disk drive
opened with the temporary file option (TFn or C operand).

• One or more sectors from the permanent file on the operating diskette (P
operand).

• One or more sectors from a data set opened without the temporary file option
(P or DSID operand).

• A logical record from a data set on disk or diskette opened without the
temporary file option (PLR operand).

A read operation forces the station to wait until the data transmission is
completed and status is stored before execution continues with the next sequential
instruction. You may use either segment-header or segment-displacement
addressing. If you use segment-header addressing the data is read into the
specified segment starting at the primary field pointer (PFP). The read operation
ends:

• when the end of the message is reached

• when the end of the input field is reached (if the FLI is not zero and less than .
or equal to the length between the PFP and the end of the segment)

• when the end of the segment is reached (if the FLI is zero or greater than the
length between the PFP and the end of the segment).

At the end of the operation, the PPP is unchanged, the length of the data is stored
in binary in SMSIML, and the status is stored in SMSDST. If you use
segment-displacement addressing, the displacement and length of the data are
specified in the instruction. A condition code of hex 01 is set if status is 0. The
controller sets a condition code of hex 02 if the status is not 0. If bit 3 of
SMSDST is on, the status code pertains to some condition that is not related to
the current LREAD. The condition prevents further data transmission, and

I therefore the current LREAD is not initiated. If bit 3 is not on, status pertains to
the current LREAD.

Chapter 4. Instruction Descriptions 4-39

If an invalid value is specified in SMSRPS, the highest valid value (in units
consistent with the type of LREAD)·isreturned in SMSRPS and a unit exception
status (hex 4000) is returned in SMSDST. The highest ;valid value is returned for ·
all types of LREAD except LREAD PLR. For LREAD PLR, the highest valid
value is returned for an EDDS only. For LREAD A if the track number is valid
but the record number is not, then the highest valid record number for the
specified track is returned.

Following an LREAD TFN, LREAD C, or LREAD PLR instruction, SMSUNK
contains an identifier of the data set containing the record. SMSUNK together
with SMSRPS provide a unique identifier for the record read. If the high-order . I four bits of SMSUNK are set to zero, the resulting SMSUNK value from LREAD
PLR can be used as a relative position of the unkeyed data set label. You can use
this relative position value with theLDKT Query Extended Header Label
function to determine the identity of the unkeyed data set from which the record
was read.

For LREAD instructions, using the A, PBN, P, or DSID operand; you can transfer
multiple sectors of data if SMSMBT is set to one. SMSRPS specifies the first
sector to be transferred. The specified data area length determines how many data
bytes and how many sectors are read. The length also determines if the last data
byte ends on a sector boundary, within a sector, beyond the end of the data set, or
beyond the last sector on the disk or diskette.

For multiple-sector LREAD operation:

• If the data area ends on a sector boundary, SMSDST is set to hex 0000, and
the operation completes as requested.

If the data area is equal to 0, SMSDST is set to hex 0000, and no data
transfers. SMSIML is set to the number of bytes remaining from the
beginning sector through the last sector in the data set, on the disk, or on the
diskette. The maximum value for SMSIML on disk is equal to FFOO.

If the data area ends within a sector, SMSDST is set to the wrong length
record (hex 0101). The number of bytes transferred is equal to the length of
the data area, and SMSRPS is set to the last RBN/PBN/ A read.

If the data area ends beyond the last sector of the data set or device, SMSDST
is set to unit exception (hex 4000). Data bytes transfer until the last sector of
the data set or device is full. SMSIML is set to the number of bytes
transferred, and SMSRPS is set to the last RBN/PBN/ A read.

• If the request value is 0 or invalid, SMSDST is set to unit exception (hex
4000), and no data transfers. SMSIML is set to 0 and SMSRPS is set to the
maximum valid RBN/PBN/ A for the data set or the last sector on the disk or
diskette.

If an error occurs during the operation, SMSDST is set to the error status (hex
0200/0204), and data transfers until the system encounters an error.
SMSRPS is set to the RBN/PBN/ A of the failing sector. SMSIML has no
significance.

Figure 4-2 provides a summary of the input conditions and results.

4-40 4700 Programming Library, Volume 2: Disk and Diskette Programming

Input SMSDST SMSIML SMSRPS Data
Returned Returned Returned Processed

Length is multiple 0000 number of RBN/PBN/A number of
of sector length bytes last read bytes

requested requested

Length is not 0101 number of RBN/PBN/A number of
multiple of sector bytes last read bytes
length requested requested

Length is 0 0000 number of no change 0 bytes
bytes to end
of device or
data set

Too long for 4000 number of RBN/PBN/A number of
device or data set bytes last read bytes to end of

processed data set or
device

SMSPRS equal 0 4000 zero maximum zero bytes
or invalid valid

RBN/PBN/A

I/ 0 error while 0200 number of failing number of
processing 0204 bytes to RBN/PBN/A bytes to error

error

Figure 4-2. Multiple-Sector LREAD Operation Conditions • Disk and Diskette

LREADA.

LREAD A retrieves the contents of one or more sectors from either the primary
or secondary diskette drive. The first (or only) sector is located by its absolute
diskette address (track, head, and sector). Before issuing LREAD A, set:

SMSRPS
To contain the absolute address of the first or only sector to be read. The
track number, in binary, is placed in the third byte; the sector number, in
binary, is placed in the fourth byte. For a 2-sided diskette, set the
high-order bit in the sector number to zero for the primary side and to one
for the secondary side.

I SMSFG1 Bit 6
To indicate which diskette drive to access.

Chapter 4. Instruction Descriptions 4-41

LREADPBN

LREADTFn

SMSMBT
To indicate whether to read one sector, or enough sectors to fill the data
area.

LREAD PBN retrieves the contents of one or more sectors from either disk or
diskette. The first (or only) sector is located by its physical block number (the
relative number of the sector on the device, beginning with 1). Before issuing
LREAD PBN, set:

SMSRPS
To contain the physical block number (PBN) of the first or only sector to
be read.

I SMSFG1
To indicate which device type and drive to access (disk.or diskette).

SMSMBT
To indicate whether to read one sector, or enough sectors to fill the data
area.

The LREAD TFn instruction retrieves a single logical record from the specified
(by n) file of a temporary file, and places the record in the area indicated by the

I second operand. LREAD TFn can read records either from the temporary file on
the operating diskette, or from a direct data set on another drive opened with the
temporary file option. On the operating diskette, the temporary file is implicitly
opened at lPL, and continues to be accessed as the temporary file whenever the
primary drive is selected and is not stopped. A temporary file data set on any

I other drive must be opened explicitly by the LDKT instruction, and is then
accessed whenever the bits of SMSFG 1 are not zero and the data set ID returned
by LDKT (Open) is set in SMSDID. Before issuing LREAD TFn, set these
fields:

SMSRPS
To contain the file or subfile sequence number of the record to be read, in
binary.

SMSSFR
To contain the subfile ID if SMSRPS contains a subfile sequence number,
or zero if SMSRPS contains a file sequence number.

SMSFG1
To indicate which temporary file is to be accessed. If you specify the
primary diskette, the temporary file on the primary drive is accessed.
Otherwise, the temporary file data set that is identified through the value in
SMSDID is accessed. If the primary drive is stopped, the request is
rejected.

SMSDID
To indicate the data set ID of a temporary file data set on any drive other
than the primary diskette drive. If SMSFG 1 specifies the primary diskette,
this field is ignored and the temporary file on the primary drive is accessed.

4-42 4700 Programming Library, Volume 2: Disk and Diskette Programming

LREADC

LREADL

LREAD C retrieves a single logical record from a temporary file data set using a
composite subfile index, and places the record in the area specified by the second
operand. LREAD C can read records from both the temporary file on the
operating diskette, or a data set on another drive opened with the temporary file
option. On the operating diskette, the temporary file is implicitly opened at IPL,
and continues to be accessed as the temporary file whenever the primary drive is
selected and is not stopped. A data set on any other drive must be opened (with

I the temporary file option) explicitly by the LDKT instruction, and is then
accessed whenever the bits of SMSFG 1 are not zero and the data set ID returned
by LDKT (Open) is set in SMSDID. Before issuing LREAD C, set:

SMSRPS
To contain the composite subfile sequence number of the record to be read,
in binary.

SMSSFR
To contain the subfile ID.

SMSFGl
To indicate which temporary file is to be accessed. If you specify the
primary diskette, the temporary file on the primary drive is accessed.
Otherwise, the temporary file data set that is identified through the value in
SMSDID is accessed. If the primary drive is stopped, the request is
rejected.

SMSDID
To indicate the data set ID of a temporary file data set on any drive other
than the primary diskette drive. If SMSFG 1 specifies the primary diskette,
this field is ignored and the temporary file on the primary drive is accessed.

LREAD L retrieves a single logical record from the system log on the operating
diskette. There is only one system log on the operating diskette. Before issuing
LREAD L, set:

SMSRPS
To contain the log record number in binary.

Chapter 4. Instruction Descriptions 4-43

LREADP

LREADDSID

LREAD P retrieves the contents of one or more sectors from either the
permanent file on the operating diskette, or from a direct data set opened on any
other drive without the temporary file option. The first or only sector to be read is
located by its number relative to the start (sector 1) of the permanent file or data
set. Before issuing LREAD P, set:

SMSRPS
To contain the sector number of the first or only sector to be read, relative
to the beginning of the permanent file or data set.

SMSFGl
To indicate whether the permanent file on the primary drive or another
data set is to be accessed. If you specify the primary diskette, the
permanent file on the primary drive is accessed. Otherwise, the data set
that is identified through the value in SMSDID is accessed. If the primary
drive is stopped, the request is rejected.

SMSDID
To indicate the data set ID of a data set on any drive. If SMSFGl specifies
the primary diskette, this field is ignored and the permanent file on the
primary drive is accessed.

SMSMBT
To indicate whether to read one sector, or enough sectors to fill the data
area.

LREAD DSID retrieves the contents of one or niore sectors from a data set
opened on any drive without the temporary file option. The first or only sector to
be read is located by its number relative to the start (sector 1) of the data set.
Before issuing LREAD DSID, set:

SMSRPS
To contain the sector number of the first or only sector to be read, relative
to the beginning of the data set.

SMSDID
To contain the data set ID of a data set opened without the temporary file
option.

SMSMBT
To indicate whether to read one sector, or enough sectors to fill the data
area ..

4-44 4700 Programming Library, Volume 2: Disk and Diskette Programming

LREA.DPLR

LREAD PLR retrieves a single logical record from data sets on any drive. For a
sequential data set, LREAD PLR reads the record pointed to by the current input
pointer. For a direct data set, LREAD PLR reads the record identified by
SMSRPS. For a keyed data set, LREAD PLR reads the direct data set record
found through the keyed data set as specified in SMSRPS, SMSKEY, and the
application program data area.

LREAD PLR ESDS: Before issuing LREAD PLR for a sequential (ESDS) data
set, set:

SMSDID
To contain the data set ID.

LREAD PLR EDDS or ASDS: Before issuing LREAD PLR for a direct (EDDS or
ASDS) data set, set:

SMSRPS
To contain the record sequence number, in binary, for an EDDS data set or
the record sector number and offset, in binary, for an ASDS data set.

A value of + 1 causes the first available record in the data set to be read
(deleted records in an ASDS data set are not available). If the high-order
bit (bit 0) of SMSRPS is on, the record following the record identified
through the remainder of SMSRPS is read.

For an EDDS data set, if the third bit (bit 2) of SMSRPS is on, the last
record in the data set is read. If the second bit (bit 1) of SMSRPS is on, the
record preceding the record identified through the remainder of SMSRPS is
read.

If the value is zero or is beyond the end of the data set for an EDDS data
set, SMSRPS is set to the last record in the data set. For either an EDDS or
an ASDS, if the value is not within the data set, an end-of-data-set status is
returned in SMSDST.

SMSDID
To contain the data set ID.

LREAD PLR RKAP or KSAP: Before issuing LREAD PLR for a keyed (RKAP or
KSAP) data set, set:

SMSRPS
To zero to cause the unkeyed data set record corresponding to the key
residing at the proper offset in the application program data area to be read.
If no such record is referenced through the keyed data set, a
record-not-found status is returned in SMSDST. The position within the
keyed data set is returned in SMSKEY such that (primarily for a KSAP
data set) the data set may be processed sequentially from that position. For
a KSAP data set only, a duplicate-key-follows status is returned in
SMSDST if one or more subsequent records having the same key can be
accessed through the data set.

Chapter 4. Instruction Descriptions 4-45

A value of + 1 causes the first record in the data set to be read. If the
high-order bit (bit O) of SMSRPS is on, the next record following the
record identified through SMSKEY is read.

For a. KSAP data set, if the third bit (bit 2) of SMSRPS is on, the last
record in the data set is read. If the second bit (bit 1) of SMSRPS is on, the
record preceding the record identified through SMSKEY is read. When a
KSAP is read sequentially ((orward or backward), the records are
presented in logical sequential order based on the value or their keys.
Records containing duplicate key values are presented in first-in-first-out
order when the data set is read in the forward direction. They are
presented in last-in-first-out order when the data set is read in the
backward direction. When the data set is read in the forward direction
only, a duplicate key status is returned if one or more subsequent records
has the same key as the current record.

When an RKAP data set is read sequentially (forward only), the records
are presented in the order they happen to reside in the hash table index (no
logical order).

SMSDID
To contain the data set ID.

SMSKEY

Name

To contain the value returned by a prior LREAD PLR operation, for
processing sequentially through the RKAP or KSAP data set (ignored if
SMSRPS contains zero or + 1, for keyed access).

Operation Operand

TFn
c
p (defrf2)

[label] LREAD PLR
L

(reg2) {
defld2 }

A

PBN

TFn

c

L

A
DSID
PBN

seg2
seg2,disp2,len2

Indicates absolute (track and sector) addressing (diskette only).

Indicates physical block number addressing.

Indicates one of the temporary files, where n is the number of the file (from
1to4).

Indicates the composite file.

Indicates the System Log.

4-46 4700 Programming Library, Volume 2: Disk and Diskette Programming

p
Indicates the permanent file or sectors from a data set.

DSID
Permits access to sectors of a data set on any drive.

PLR
Indicates logical records are to be read from a data set.

operand 2
Is the operand to contain the data to be read. Do not specify Segment 14.

Condition Codes: One of the following is set:

Hex Code

01
02

Explanation

The instruction was executed successfully.
Status is returned in SMSDST.

Program Checks (hex): 01, 02, or 27 can be set.

Chapter 4. Instruction Descriptions 4-4 7

4-48 4700 Program.ming Library, Volume 2: Disk and Diskette Programming

I

LWRITE
I

LWRITE--Write to Disk or Diskette

LWRITETFn

L WRITE writes a single record to a disk or diskette. L WRITE can write
(depending on the first operand of the LWRITE instruction):

• A logical record to the temporary file on the_ operating diskette mounted on
the primary drive (TFn operand)

• A logical record to a direct data set on the secondary diskette drive or a disk
drive opened with the temporary file option (TFn operand)

• A logical record to the System Log on the operating diskette mounted on the
primary drive (L operand)

• A logical record to a data set on disk or diskette opened without the
temporary file option (PLR operand).

You may use either segment-header or segment-displacement addressing. If you
use segment-header addressing, the data is written from the segment specified in
the instruction, starting at the location pointed to by the secondary field pointer
(SFP) up to, but not including, the location pointed to by the primary field pointer
(PPP). If you use segment-displacement addressing, the displacement to the data
and the length of the data are as specified in the instruction.

A write operation does not, in general, cause the data to be written to the device.
The data may remain in a buffer in controller storage until the buffer is full; until
an LCHECK instruction is issued; or until the data set is closed for all stations
having it open. Note than an implied LCHECK is always performed for System
Log records, causing an immediate write of the diskette buffer.

At the completion of an L WRITE instruction, SMSDST contains a status code. A
condition code of hex 01 is set if status is zero. A condition code of hex 02 is set
if the status is nonzero. If bit 3 of SMSDST is on, the status code pertains to
some condition that is not related to the current L WRITE. The condition
prevents further data transmission, and therefore the current L WRITE is not
initiated. If this bit is not on, the status bits pertain to the current L WRITE.

At the completion of an L WRITE instruction, SMSIML contains the absolute
value of the difference between the amount of data written and the record length.

L WRITE TFn writes a single logical record either to the temporary file on the
operating diskette, or to a data set on another drive opened with the temporary
file option. Before issuing L WRITE TFn, set:

SMSSFW
To contain the subfile ID. Set this field to 0 if the record is not to be
treated as part of a subfile.

Chapter 4. Instruction Descriptions 4-49

LWRITEL

SMSFGt
To indicate the temporary file data set to contain the record. If you specify
the primary diskette, the temporary file on the primary drive is selected. If
the primary drive is selected, it must not be in the stopped state (a write to
the primary drive in the stopped state is rejected). If the bits of SMSFG 1
are not zero, the temporary file data set that is identified through the value
in SMSDID is selected.

SMSDID
To contain the ID of a data set opened with the temporary file option. If
SMSFG 1 specifies the primary diskette, this field is ignored.

On completion of L WRITE TFn, these fields are set:

SMSFSN
Contains the file sequence number of the stored record if the write is
accepted.

SMSSSN
Contains the subfile sequence number of the stored record, if:

• The write was accepted.

• SMSSFW was not 0.

• Subfile indexing was requested during configuration for the subfile ID
inSMSSFW.

SMSCSN
Contains the composite subfile sequence number, if:

• The write was accepted.

• SMSSFW was not zero.

• The specified file was defined as part of a composite file and composite
subfile indexing for the subfile ID in SMSSFW was requested during
configuration.

If the length of the record to be written is zero, a two-byte null record is written
with no following text. No status is returned. Sequence numbers are returned,
and SMSIML is set to zero.

The maximum record length is 252 bytes. If an attempt is made to write a longer
record, only the first 252 bytes are written. A condition code of hex 02 is set and
a status code indicating that the record is too long is returned in SMSDST. The
difference between the record length and 252 is returned in SMSIML.

L WRITE L always writes a single logical record to the system log on the operating
diskette mounted on the primary drive. SMSSFW, SMSFG 1, and SMSDID are
ignored; SMSFSN is updated; SMSSSN and SMSCSN are set to zero.

4-50 4700 Programming Library, Volume 2: Disk and Diskette Programming

LWRITE PLR

If the length of the record to be written is zero, a two-byte null record is written
with no following text. No status is returned. A file sequence number is returned,
and SMSIML is set to zero.

The maximum record length is 252 bytes. If an attempt is made to write a longer
record, only the first 252 bytes are written; but a condition code of hex 02 is set
and a status code indicating that the record is too long is returned in SMSDST.
The difference between the record length and 252 is returned in SMSIML.

Note: If the second byte of the data written to the System Log contains a hex Fl,
the CHECK light on the control operator's 4 704 is turned on.

L WRITE PLR writes a single logical record to a data set opened, without the
temporary file option, on any drive. If required, L WRITE PLR assigns the next
unused sector in the data set. If necessary on disk, and if a secondary extent is
allowed and available, it will be allocated to the data set. For a sequential or
direct data set, L WRITE PLR writes the record at the end of the data set. For a
keyed data set, L WRITE PLR writes the record at the end of the last allocated
unkeyed data set associated with the keyed data set.

If a keyed data set excludes duplicate keys, an attempt to add a record through
that keyed data set (having the same key as a record already existing in the data
set) ends without adding the record, but with a duplicate key status. An attempt
to update a keyed data set that excludes duplicate keys by writing a duplicate key
record to an unkeyed data set to which it refers, results in the record not being
referred to through the keyed data set. A secondary index exception status is
returned in this case.

If the record is added to an EDDS data set, the relative number of the new record
(relative to the start of the data set) is returned in SMSRPS. Similarly, if the
record is added to an ASDS data set, a binary value indicating the relative sector
number where the record starts and the byte offset of the record within that
sector is returned in SMSRPS. This value can later be used with an LREAD PLR
or REPLACE PLR instruction to retrieve or modify the record. Reorganizing an
ASDS would invalidate any SMSRPS value saved for records in the ASDS. For a
sequential data set, SMSRPS is set to zero.

Before issuing L WRITE PLR, set:

SMSDID
To contain the ID of a data set opened without the temporary file option.

If the data length is less than the defined record length, the data to be written is
padded with trailing binary zeros, status is returned indicating wrong-length
record, and SMSIML contains the difference between the record length and the
data length. If the data length is greater than the record length, the leading
portion of the data is written, status is returned indicating wrong-length and
over-sized record, and SMSIML contains the difference between the data length
and the record length. If the data length equals the record length, no status is
returned and SMSIML is set to zero.

Chapter 4. Instruction Descriptions 4-51

After L WRITE PLR or L WRITE TFn:is issued, SMSUNK contains a unique ·
identifier for the unkeyed data set containing the record. If the record is accessed
through a keyed data set, SMSKEY contains the position in the keyed data set of
the entry for the record that was added. These fields are generally not used by an
application program after issuing an L WRITE PLR instruction.

Name Operation Operand

[label 1 LWRITE {
TFn } defld2
L · , (defrf2) I defcon2)

TFn

L

PLR

PLR (reg2)
seg2,disp2,len2

. seg2

Specifies a write to one of the temporary files, where n is the number of the
file (from 1 to 4).

Specifies a write to the System Log.

Specifies that a logical record be written to a data set.

operand 2
Refers to the data to be written. When you specify seg2, the SFP must
point to the start of the field, and the PPP must point 1 byte past the end of
the field.

When you code seg2 as the second operand, a 2-byte machine instruction is
generated; but when you code defld2 or seg2,disp2,len2, the machine
instruction is 6 bytes long.

Condition Codes: One of the following is set:

Hex Code

01
02

Explanation .

The write operation was successful.
Status is returned. Status is stored in SMSDST.

Program Checks (hex): 01, 02, 03 or 27 can be set.

4-52 4700 Programming Library, Volume 2: Disk and Diskette Programming

REPLACE

REPLACE--Replace Disk or Diskette Data

REPLACE replaces either a single logical record or the contents of one or more
sectors on a disk or diskette data set. Depending on the first operand of the
REPLACE instruction, REPLACE can replace:

• The contents of one or more sectors on either diskette drive using absolute
addressing (track, head, and sector). Single sectors replaced this way can be
written as either data records or control records (A or CR operand).

• The contents of one or more sectors on disk or diskette using physical block
number addressing (PBN operand).

• A logical record in the temporary file on the operating diskette mounted on
the primary drive (TFn or C operand).

• A logical record in a data set opened with the temporary file option on the
secondary diskette drive or disk (TFn or C operand).

• The contents of one or more sectors in the permanent file on the operating
diskette mounted on the primary drive (P operandf

• The contents of one or more sectors of a data set opened without the
temporary file option (P or DSID operand).

• The contents of a logical record of a data set opened without the temporary
file option (PLR operand).

You may use either segment-header or segment-displacement addressing. If you
use segment-header addressing, the data is written from the segment specified in
the instruction, starting at the location pointed to by the secondary field pointer
(SFP) up to, but not including, the location pointed to by the primary field pointer
(PPP). If you use segment-displacement addressing the displacement to the data
and the length of the data are as specified in the instruction.

A replace operation forces the station to wait until the data transmission is

I ~omplet.ed and status is stored before execution continues with the next sequential
mstruction.

On completion of a REPLACE instruction for a single record (TFn, C, or PLR
operand), SMSIML contains the absolute difference between the record length
and the data length. If the replacement record is shorter than the original record,
only the leftmost portion of the original record is replaced, and a status code
indicating an incorrect-length record is returned. If the replacement record is
longer than the original record, the rightmost portion of the replacement record is
truncated and both the incorrect-length and over-sized record indicators are
returned. If the replacement length is the same as the length of the original
record, SMSIML is set to zero.

Chapter 4. Instruction Descriptions 4-53

If you specify an invalid value in SMSRPS, the highest valid value (in units
consistent with the type of REPLACE) is returned in SMSRPS and a unit
exception status (hex 4000) is returned in SMSDST. The highest valid value is
returned for all types of REPLACE except REPLACE PLR. For REPLACE
PLR, the highest valid value is returned for an EDDS only. For REPLACEAif
the track number is valid but the record number is not, then the highest valid
record number for the specified track is returned.

For REPLACE instructions, using the A, PBN, P, or DSID operand, you can
transfer multiple sectors of data if SMSMBT is set to one. SMSRPS specifies the
first sector to be transferred. The specified data area length determines how many
data bytes and how many sectors are written. The length also determines if the
last data byte ends on a sector boundary, within a sector, beyond the end of the
data set, or beyond the last sector on the disk or diskette.

For multiple-sector REPLACE operation:

If the data area ends on a sector boundary, SMSDST is set to hex 0000, and
the operation completes as requested.

• If the data area is equal to 0, SMSDST is set to hex 0000 and no data
transfers. SMSIML is set to the number of bytes remaining from the
beginning sector through the last sector in the data set, on the disk, or on the
diskette. The maximum value for SMSIML on disk is equal to FFOO.

If the data area ends within a sector, SMSDST is set to the wrong length
record (hex 0100). Binary zeros pad the remaining bytes in the last sector.

If the data area ends beyond the last sector of the data set or device, SMSDST
is set to unit exception (hex 4000). Data bytes transfer until the last sector of
the data set or device is full. SMSIML is set to the number of bytes
transferred, and SMSRPS is set to the last RBN/PBN/ A written.

• If the requested SMSRPS value is 0 or invalid, SMSDST is set to unit
exception (hex 4000), and no data transfers. SMSIML is set to 0 and
SMSRPS is set to the maximum valid RBN /PBN I A for the data set or the last
sector on the disk or diskette.

• If an error occurs during the operation, SMSDST is set to the error status (hex
0200), and data transfers until the system encounters an error. SMSRPS is
set to the RBN/PBN/ A of the failing sector. SMSIML has no significance.

• If an error occurred previously, bit 3 of the SMSDST is set on (prior op hex
lxxx). The operation does not begin.

Figure 4-3 on page 4-55 provides a summary of the input conditions and results.

4-54 4700 Programming Library, Volume 2: Disk and Diskette Programming

Input SMSDST SMSIML SMSRPS Data
Returned Returned Returned Processed

Length is multiple 0000 zero RBN/PBN/A number of
of sector length last written bytes

requested

Length is not 0100 padding RBN/PBN/A number of
multiple of sector length in last written bytes
length last sector requested

Length is 0 0000 number of no change 0 bytes
bytes to end
of device or
data set

Too long for 4000 number of RBN/PBN/A number of
device or data set bytes to end last written bytes to end of

of device or data set or
data set device

SMSPRS equal 0 4000 zero maximum zero bytes
or invalid valid

RBN/PBN/A

I/0 error while 0200 number of failing number of
processing 0204 bytes to RBN/PBN/A bytes to error

error

Prior I/ 0 error lxxx zero no change zero

Figure 4-3. Multiple-Sector REPLACE Operation Conditions - Disk and Diskette

Chapter 4. Instruction Descriptions 4-55

REPLACE A

REPLACE CR

REPLACE PBN

REPLACE A replaces the contents of one or more sectors on either diskette drive
using absolute (track, head, and sector) addressing. Before issuing REPLACE A,
set:

SMSRPS
To contain the absolute track, head, and sector numbers. The track
number, in binary, is placed in the third byte; the sector number, in binary,
is placed in the fourth byte. For a 2-sided diskette, set the high-order bit in
the sector number to zero for the primary side and to one for the secondary
side.

SMSFGt Bit 6
To indicate the primary drive (0) or the secondary drive (1). If.you select
the primary drive, it must be in the stopped state.

SMSMBT
To indicate whether to replace one or more sectors.

REPLACE CR replaces the contents of a single diskette sector with a control
record, using absolute addressing. Before issuing REPLACE CR, set:

SMSRPS
To contain the absolute track, head, and sector numbers. The track
number, in binary, is placed in the third byte; the sector number, in binary,
is placed in the fourth byte. For a 2-sided diskette, set the high-order bit in
the sector number to zero for the primary side and to one for the secondary
side.

SMSFGt Bit6
To indicate the primary drive (O) or the secondary drive (1). If you select
the primary drive, it must be in the stopped state.

REPLACE PBN replaces the contents of one or more sectors on any disk or
diskette. The first (or only) sector is located by its physical block number. Before
issuing REPLACE PBN, set:

SMSRPS
To contain the physical block number of the first or only sector to be
replaced.

I SMSFGt
To indicate the device type and drive (disk or diskette).

SMSMBT
To indicate whether to replace one or more sectors.

4-56 4700 Programming Library, Volume 2: Disk and Diskette Programming

REPLACE TFn

REPLACEC

REPLACE TFn replaces a single logical record in the specified file of the
temporary file on the operating diskette, or in a data set opened on another drive
with the temporary file option. On the operating diskette, the temporary file is
implicitly opened at IPL and continues to be accessed as the temporary file
whenever the nonstopped primary device is selected. A data set on another drive
must be opened with the temporary file option and is selected when the data set
ID is set in SMSDID. Before issuing REPLACE TFn, set:

SMSRPS
To contain the file or subfile sequence number of the record to be replaced.

SMSSFR
To contain the subfile ID if SMSRPS contains a subfile sequence number,
or zero if SMSRPS contains a file sequence number.

SMSFGl
To indicate which temporary file is involved. If you specify the primary
diskette, the record is in the temporary file on the primary diskette drive.
In this case, the primary diskette 'drive must be in a stopped state. If the
bits of SMSFG 1 are not zero, the record is in the data set that is identified .
through the value contained in SMSDID.

SMSDID
To contain the ID of a data set opened with the temporary file option. If
SMSFG 1 specifies the primary diskette, this field is ignored.

REPLACE C replaces the contents of a temporary file record using a composite
subfile index. It can access either the temporary file on the operating diskette, or
a data set on another drive opened with the temporary file option. Before issuing
REPLACE C, set:

SMSRPS
To contain the composite subfile sequence number, in binary, of the record
to be replaced.

SMSSFR
To contain the subfile ID.

SMSFGl
To indicate which temporary file is involved. If you specify the primary
diskette, the record is in the temporary file on the primary diskette drive.
In this case, the primary diskette drive must be in the stopped state. If the
bits of SMSFG 1 are not zero, the record is in the data set that is identified
through the value contained in SMSDID.

SMSDID
To contain the ID of a data set opened with the temporary file optiOn. If
SMSFG 1 specifies the primary drive, this field is ignored.

Chapter 4. Iruitruction Descriptions 4-57

REPLACEP

REPLACE DSID

REPLACEPLR

REPLACE P replaces the contents of one or more sectors in either the permanent
file on the operating diskette mounted on the primary diskette drive, or in a direct
data set opened without the temporary file option. Before issuing REPLACE P,
set:

SMSRPS
To contain the sector number of the first or only sector to be replaced,
relative to the beginning of the file or data set (relative numbers begin with
1).

SMSFG1
To indicate which data set is involved. If you specify the primary diskette,
one or more sectors in the permanent file on the primary diskette drive are
replaced. In this case, the primary diskette may not be in the stopped state.
If the bits of SMSFG 1 are not zero, the data set is identified through the
value in SMSDID.

SMSDID
To contain the data set ID of a data set opened without the temporary file
option.

SMSMBT
Indicates whether to replace a single sector, or several sectors.

REPLACE DSID replaces the contents of one or more sectors in a direct data set
opened without the temporary file option. Before issuing REPLACE DSID, set:

SMSRPS
Tc r;ontain the sector number of the first or only sector to be replaced,
: -;;iative to the beginning of the file or data set (relative numbers begin with
1).

SMSDID
To contain the data set ID of a data set opened without the temporary file
option.

I SMSMBT
Indicates whether to replace a single sector, or several sectors.

REPLACE PLR replaces a logical record in a data set opened without the
temporary file option. An unkeyed data set record may be replaced directly (by
specifying the data set ID of an unkeyed data set in SMSDID) or indirectly (by
specifying the data set ID of a keyed data set in SMSDID). The unkeyed record
may reside in either an ASDS or an EDDS data set. The keyed data set may be
either an RKAP or a KSAP data set. If the record is replaced indirectly, the
keyed data set specified through SMSDID is referred to as the primary index.
Other keyed data sets that are associated with the data set containing the record
being replaced are referred to as secondary indexes.

4-58 4700 Programming Library, Volume 2: Disk and Diskette Programming

If an unkeyed record is replaced for which one or more secondary indexes exist
and if the key fields for those indexes are changed, the operation is equivalent to a
delete and a write as far as the secondary indexes are concerned (although the
record is replaced within the unkeyed data set). In this way, replacing a record
with a changed key field will be properly reflected for future access to the record
through a secondary index.

If duplicate keys result from the update and they are allowed within the keyed
data set, the updated record will become the last record having that key. If
duplicate keys are not allowed, the record would be deleted from the secondary
index data set but would not be written to it. The result is that the keyed data set
no longer refers to the replaced record. A secondary index exception status is
returned in this case. The key field for a primary index data set may not change
when replacing a record indirectly through a keyed data set (the key field is the
means by which the record to be replaced is located).

Before issuing REPLACE PLR for a direct (unkeyed) data set, set:

SMSRPS
To contain the binary value returned by L WRITE PLR or LREAD PLR for
the record to be replaced.

SMSDID
To contain the data set ID of a unkeyed data set opened without the
temporary file option.

Before issuing REPLACE PLR for a keyed data set, set:

SMSRPS
To contain zero, to indicate keyed reference.

SMSDID
To contain the data set ID of a keyed data set opened without the
temporary file option.

Chapter 4. Instruction Descriptions 4-59

Name Operation Operand

A

[l,abel] REPLACE

CR
PBN
TFn
c

, (defrf2) 1 ~:~~~~2 l

A

CR

PBN

TFn

c

p

DSID

PLR

p
DSID
PLR

(reg2) J
seg2,disp2,len2
seg2

Specifies that a sector is to be addressed using the absolute track address.
This operand can be used only on stopped diskettes.

Specifies that a control sector is to be written using the absolute track
address. This operand can be used only on stopped diskettes.

Replaces contents of one or more disk or diskette sectors using PBN
addressing. For diskette processing, the diskette must be stopped.

Specifies that a record in one of the temporary files is to be replaced, where
n is the number of the file (from 1to4).

Specifies that a record in the composite file is to be replaced.

Replaces one or more sectors of the permanent file on the operating
diskette or of a data set on another drive opened without the temporary file
option.

Replaces one or more sectors of a data set opened without the temporary
file option.

Specifies that a logical record is to be replaced in a direct data set opened
without the temporary file option. The data set may be referred to either
directly or indirectly through a keyed data set.

operand 2
Refers to the data that is to replace the record. When you specify seg2, the
SFP must point to the start of the field, and the PPP must point 1 byte past
the end of the field.

When you code seg2 as the second operand, a 2··byte machine instruction is
generated; when defld2 or seg2,disp2,len2 is coded, the machine instruction
is 6 bytes long.

4-60 4700 Programming Library, Volume 2: Disk and Diskette Programming

Condition Codes: One of the following is set:

Hex Code

01
02

Explanation

The replacement operation was successful. .
Status is stored. Status is stored in SMSDST. (See
Appendix D. "Status Codes for Disk and Diskette" on
page D-1 for an explanation of status codes.)

Program Checks (hex): 01, 02, or 27 can be set.

Chapter 4. Instruction Descriptions 4-61

4-62 4700 Programming Library, Volume 2: Disk and Diskette Programming

SETDSKT

SETDSKT--Reset the Temporary File

The SETDSKT instruction allows the controller application program to reset the
temporary file on the operating diskette to zero records, at the same time updating
the session identifier by one. It also allows the application program. to IPL the
controller, and to specify the type of start that should take place on the next or on
all subsequent automatic starts, or to specify a dump instead of IPL if the system
fails. An automatic start occurs when the time-out value has been exceeded (see
the TIMEOUT operand of the STARTGEN configuration macro, in Volume 6 of
the 4700 Controller Programming Library).

SETDSKT sets any disk or diskette drive to the not-ready condition (for example,
to prevent access to the primary diskette's temporary file during a controlled
shutdown). SETDSKT can also reset any drive to the ready condition. When the
drive is in the not-ready condition, neither the controller nor any application
program can access the drive.

SETDSKT requires optional module PSE to be included in the controller
configuration in order to use the instruction. SETDSKT points to a 2-byte
parameter list that describes the action the controller program is to take.

Note: Resetting a temporary file containing log messages may cause messages
that would be reported by CNM/ CS to the host to be lost.

Name Operation Operand

[label l SETDSKT { f i!~~~~) }
(reg2)
seg2,disp2

operand 2
Defines the start of the parameter list. The length associated with this
operand is ignored, and the first 2 bytes are assumed to be the parameter
list.

Chapter 4. Instruction Descriptions 4-63

Byte . Meaning

0 Is a 1-byte hexadecimal value that indicates the type
of request:

01

o2

04

08

10

20

40

80

Notes:

Reset the temporary file and update the
session identifier.
The. value byte is ignore<;!.
.use the prompt value specified in the value field on
the next auto-IPL only. No time-out occurs
and no 6perator response is permitted.
Use the prompt value specified in the value field on
all subsequent automatic starts.
Automatic start occurs after the time-out value
is exceeded.
Perform a dump if a system failure occurs.
The value field is ignored.
Reload the system after a system failure occurs.
The value field is ignored.
Set the drive to the ready condition.

Set the drive to the not-ready condition.

IPL the controller immediately.
This is the same as pressing the Reset button
on the controller.

1. Status (hex 0440) will be returned if the diskette is in stopped state when you
use the following codes: hex 01, 02, 04, 08 and 10. If the drive select bits are
not valid, status (hex 0440) is returned. If you use more than one code, the
order of execution is from the lowest to the highest code. For example, if you
were to code hex 83, the hex 01 request would be processed first, followed by
the hex 02 request, and the hex 80 request last.

2. Drive select bits (SMSFG 1) need only be set for parameters 20 (Ready
condition) and 40 (Not-ready-condition). All other parameters will go to
primary drive. In addition, if parameter 20 or 40 is used in combination with
other SETDSKT parameters, the drive select bits will be ignored and the
operation will go to the primary drive.

Byte Meaning

Is a 1-byte EBCDIC value the system is to use for the
response to the 00001 startup message on an automatic start.
See IBM 4700 Subsystem Operating Procedures:
GC31-2032 for all valid responses
to the 00001 message and their functions.

This field is not validated at the time a SETDSKT instruction is issued; therefore,
if an invalid value is specified, a 90050 message is issued to the control operator
during the next startup. The prompt value, for either hex 02 or hex 04 code, may
be reset by issuing another hex 02 or hex 04 SETDSKT instruction with a prompt
value of hex 00.

4-64 4700 Programming Library, Voh1me 2: Disk and Diskette Programming

Condition Codes: One of the following is set:

Hex Code

01
02

Explanation

Request was completed successfully.
Request was not completed because of
an error on the diskette.
Status is stored in SMSDST.

Program Checks (hex): 01, 02, 09, or 27 can be set.

Chapter 4. Instruction Descriptions 4-65

4-66 4700 Programming Librlj.ty, Volume 2: Disk and Diskette Programming

Appendix A. Machine Instruction Formats

This appendix describes the machine formats for the 4 700 assembler instructions
included in this volume. See Volume I: General Controller Programming, for an
explanation of the symbols used in this appendix.

COMPDKT

0 16 24 28 31

COMPDKT

00

0 16 24 28 32 47

COMPDKT

00

0 16 24 28 32 47

DELETE

0 8 12 IS

DELETE

0 16 24 28 32 48 63

DELETE

I 08

0 16 24 28 31

DELETE

178 159
0 8 16 24 28 32 48 63

Appendix A. Machine Instruction Formats A-1

FORMDKT

I 7B 176 I oo I Rz I 0 I
0 8 16 Z4 ZS 31

FORMDKT

I 7B 166 I oo I Sz I o I Dz
0 8 16 Z4 Z8 32 47

FORMDKT

I 1a 186 I oo I Rz I 0 I Dz
0 8 16 24 28 32, 47

LCHECK (DSK)

136 I oo

0 8 15

LCHECK (PLR)

136 150
0 8 15

LDKT

135 I A I s 2 I
0 8 12 15

LDKT

137 I A I s2 I oo I Dz I oo

0 8 12 16 28 40 47

LDKT

l 7B I 02 I oo I s2 I o I Dz
0 8 16 Z4 Z8 3Z 47

A-2 4700 Programming Library, Volume 2: Disk ~nd Diskette Programming

LDKT

I 1s 12 I oo I R2 I 0 I
0 8 16 24 28 31

LDKT

l1s I 22 I oo I R2 I 0 I D2
0 8 16 24 28 32 47

LREAD

134 I y I 82 I
0 8 12 IS

LREAD

178 I 02 lo I Y I s2 I o I D2 I L2
0 8 16 20 24 28 32 48 63

LREAD

178 12 lo I y I R2 I 0 I
0 8 16 20 24 28 31

LREAD

178 I 22 lo I y I R2 I 0 I D2 I L2
0 8 16 20 24 28 32 48 63

LWRITE

135 I y I 82 I
0 8 12 15

LWRITE

137 ly ls2 IL2 I D2 I oo

0 8 12 16 28 40 47

Appendix A; Machine Instruction Formats A~3

LWRITE

178 136 lo I y I 82 I 0 I D2 I L2

0 8 16 20 24 28 32 48 63

LWRITE

178 146 lo I y I R2 I 0 I
0 8 16 20 24 28 31

LWRITE

178 156 lo I y I R 2 I 0 I D2 I L2

0 8 16 20 24 28 32. 48 63

REPLACE

145 I y I 82 I
0 8 12 1S

REPLACE

178 139 lo I y I 82 I 0 I D2 I L2

0 8 16 20 24 28 32 48 63

REPLACE

178 149 lo I y I R2 I 0 I
0 8 16 20 24 28 31

REPLACE

178 159 lo I y I R2 I 0 I D2 I L2

0 8 16 20 24 28 32 48 63

SETDSKT

I 5E lo I s2 I D2

0 8 12 16 31

A-4 4700 Programming Library, Volume 2: Disk and Diskette Programming

SETDSKT

17A I 22 I oo I R2.10 I
0 8 16 24 28 31

SETDSKT

17A 132 I oo I R2 I 0 I D2
0 8 16 24 28 32 47

Appendix A. Machine Instruction Formats A-5

A-6 4700 Programming Library, Volume 2: Disk and Diskette Programming

Appendix B. 4700 COPY Files

This appendix gives detailed listings of the system definitions that are appropriate
for this book.

Copy files may be included in your program by coding a COPY instruction
specifying one of the copy file names in this appendix. For example:

COPY DEFCDK

You must code either an EQUATE or an LDSECT instruction be/ ore the COPY
instruction to define a segment or register number for the following copy files:

• DEFCDK

• DEFDKT

• DEFESP

• DEFFDK

If you code an EQUATE instruction, for example:

DEFCDKS EQUATE n

then the copy file will contain a series of DEFLD instructions. The number that
you specify in the EQUATE instruction will become the segment number (the
first operand) of each DEFLD.

Note: The segment number must be equated to a specific label; these labels are
identified for each copy file.

If you code an LDSECT instruction and specify the BASE= operand, for
example:

LDSECT BASE=n
COPY DEFCDK
LEND

then the copy file will contain a series of DEFRF instructions. The number that
you specify in the BASE= operand of the LDSECT instruction will become the
register number (the first operand) of each DEFRF.

If you code an LDSECT and the BASE= operand before the COPY DEF APB
instruction, then the DEF APB copy file will contain DEFRF instructions and the
register number will be as specified by the BASE= operand. Otherwise the
DEFAPB copy file will contain DEFLD instructions and the segment number will
be 14.

The following copy files always become part of the segment specified:

Copy File Segment

DEFAPB 14
DEFGMS 15
DEFSMS 1

Appendix B. 4700. COPY Files B-1

DEFCDK Compress Diskette Parameter List

Equate DEFCDKS to a segment number.

DEFCDK

* * * 'COMPDKT' INSTRUCTION DATA SET MODIFICATION ENTRY

CDKENT
CDKDSN
CDKFLG
CDKFLOM
CDKFL1M
CDKFL2M
CDKFL3M
CDKNUM

DEFxx
DEFxx
DEFxx
EQUATE
EQUATE
EQUATE
EQUATE
DEFxx

s,22
CDKENT, 17

SI 1
X'BO'
X'40'
X'20'
X' 10 I

s,4

DEFDKT LDKT Parameter List

COMPRESS DISKETTE REQUEST ENTRY
DATA SET NAME
FLAG BYTE:

TRUNCATE DATA SET
SET EOD EQUAL TO EOE
MAINTAIN TRACK ALIGNMENT
DELETE DATA SET

BINARY SECTOR COUNT

Equate DEFDKTS to a segment number.

DEFDKT

*
*
*

STANDARD FIELD DEFINITIONS FOR THE 'LDKT' PARAMETER LISTS *
*
* ***

DKTRCD
DKTRADM
DKTRUDM
DKTRODM
DKTRDDM
DKTRCDM
DKTRIAM
DKTRPAM
DKTRBQM
DKTRBRM
DKTRVQM
DKTROQM
DKTRRSM
DKTRQSM
DKTRRGM
DKTRQLM
DKTRRNM
DKTRROM
DKTLST

BQKLDS
DEFXX
EQUATE
EQUATE
EQUATE
EQUATE
EQUATE
EQUATE
EQUATE
EQUATE
EQUATE
EQUATE
EQUATE
EQUATE
EQUATE
EQUATE
EQUATE
EQUATE
EQUATE
DEF XX
LSPACE

* ALLOCATE DATA
LS PACE

DEFDKTS,TYPE=START
,1 REQUEST
X'01 I

X'02'
X'03 I
X'04'
X'OS'
X'06'
X'07'
X'OB'
X'09'
X'OA'
X'OB'
X'OC'
X'OD'
X'OE'
X'OF'
X' 10 I
XI 11 I

CODE
ALLOCATE DATA SET
UPDATE HEADER LABEL
OPEN DATA SET
DEALLOCATE DATA SET
CLOSE DATA SET
INHIBIT ACCESS TO VOLUME
PERMIT ACCESS TO VOLUME
BUFFER INQUIRY
BUFFER RELEASE
VOLUME ID INQUIRY
OPEN STATUS INQUIRY
RESET DATA SET INPUT POINTER
UNALLOCATED SPACE INQUIRY
REORGANIZE ASDS OR KSAP
QUERY EXTENDED LABEL INFO
RENAME DATA SET
RESET OUTPUT POINTER

,O BEGINNING OF PARAMETER LIST

SET (REQUEST CODE: DKTRADM)

B~2 4700 Programming Library, Volume 2: Disk and Diskette Programming

DKT1F1 DEFXX
DKT1FBM EQUATE
DKT1FTM EQUATE
DKT1FKM EQUATE
DKT1ES DEFXX
DKT1NA DEFXX
DKT1NI DEFXX
DKT1IV DEFXX
DKT1F2 DEFXX
DKT1FTPM EQUATE
DKT1FESM EQUATE
DKT1FEDM EQUATE
DKT1FASM EQUATE
DKT1FRKM EQUATE
DKT1FKSM EQUATE
DKT1FCM EQUATE
DKT1FDM EQUATE
DKT1FOM EQUATE
DKT 1HD DEFXX
DKT1SP DEFXX

LS PACE

DKTLST, 1
X'80'
X'40'
X'20'

,2
,2
,2

' 1
' 1
X' 10.'
X'20'
X'40'
X'50'
X'60'
X'70'
X'04'
X'08'
X'OC'

'128
DKTlHD,80

FLAG BYTE
ALLOCATE ON TRACK BOUNDARY.
EXTENT SIZE GIVEN IN TRACKS
EXTENT SIZE GIVEN IN K BYTES

EXTENT SIZE (TRKS, SCTS, KBYTS)
NUMBER OF SECTORS TO ASSIGN
NUMBER OF SECTORS TO INITIALIZE
INITIALIZATION VALUE
SECONDARY FLAG BYTE

TEMP TYPE OF DATA SET
ESDS TYPE OF DATA SET
EDDS TYPE OF DATA SET
ASDS TYPE OF DATA SET
RKAP TYPE OF DATA SET
KSAP TYPE OF DATA SET
ALLOCATE USING STORED DEF'N
STORE DEF'N; DO NOT ALLOCATE
STORE DEF'N; AND ALLOCATE

HEADER LABEL (DEFINED BELOW)
ALLOCATE DATA SET HEADER

* EXTENDED ALLOCATE DATA SET PARAMETER LIST (REQUEST CODE: DKTRADM

DKT1XP
DKT1KS
DKT1KL
DKT1DK
DKT1DKAM
DKT1NBI
DKT1XC
DKT1XS
DKT1AC
DKT1AN

LS PACE
DEFXX
DEFXX
DEFXX
DEFXX
EQUATE
DEFXX
DEFXX
DEFXX
DEFXX
DEFXX
LSPACE

,9
DKT1XP,2
' 1
' 1
X' 01'

' 1
' 1
,2

' 1
'119

EXTENDED ALLOCATE PARAMETER LIST
KEY STARTING OFFSET
KEY LENGTH
EXTENSION FLAG BYTE

DUPLICATE KEYS ALLOWED
NUMBER OF BYTES TO INITIALIZE
NUMBER OF SECONDARY EXTENTS
SEC EXTENT SIZE IN K BYTES
NUMBER OF ASSOCIATED DATA SETS
ASSOCIATED DATA SET NAMES

* UPDATE HEADER LABEL (REQUEST CODE: DKTRUDM)

DKT2F1
DKT2FBM
DKT2FSM
DKT2FWM
DKT2FVM
DKT2FRM
DKT2BI
DKT2DS
DKT2WP
DKT2VC

LS PACE
DEFXX
EQUATE
EQUATE
EQUATE
EQUATE
EQUATE
DEFXX
DEFXX
DEFXX
DEFXX
LS PACE

* OPEN DATA SET

DKT3F1
DKT3FTM
DKT3FWM
DKT3FXM
DKT3FRM
DKT3DN

LS PACE
DEFXX
EQUATE
EQUATE
EQUATE
EQUATE
DEFXX
LS PACE

DKTLST, 1
X'80'
X'40'
X'20'
X' 10'
X'Ol'

' 1
' 1
' 1
' 1

FLAG BYTE
UPDATE BYPASS INDICATOR
UPDATE DATA SET SECURITY
UPDATE WRITE PROTECT INDICATOR
UPDATE VERIFY/COPY INDICATOR
RETURN HEADER LABEL

NEW BYPASS INDICATOR
NEW DATA SET SECURITY VALUE
NEW WRITE PROTECT INDICATOR
NEW VERIFY/COPY INDICATOR

REQUEST CODE: DKTRODM

DKTLST, 1
X'80'
X'40'
X'20'
X'01'

, 17

FLAG BYTE
TEMPORARY FILE DATA
WARM START
EXCLUSIVE USE
RETURN HEADER LABEL

DATA SET NAME

SET

Appendix B. 4700 COPY Files B-3

* DEALLOCATE DATA

DKT4F1
DKT4FPM
DKT4DN
DKT4TD

LS PACE
DEFXX
EQUATE
DEFXX
DEFXX
LS PACE

* CLOSE DATA SET
LS PACE

DKT5F1 DEFXX
DKTSFAM EQUATE
DKTSFIM EQUATE

LSPACE
* BUFFER INQUIRY

LS PACE
DKTBLID DEFXX
* LSPACE.

SET (REQUEST CODE: DKTRDDM)

DKTLST, 1
X'80'

, 17
,6

FLAG BYTE
RETAIN DATA SET DEFINITION

DATA SET NAME
TODAY'S DATE

(REQUEST CODE: DKTRCDM)

DKTLST, 1
X'BO'
X'40'

FLAG BYTE
CLOSE.FOR ALL STATIONS
IGNORE BUFFER ERRORS

(REQUEST CODE: DKTRBQM)

DKTLST,2 RELATIVE POSITION OF KEYED DATA SET
LABEL

* VOLUME ID INQUIRY (REQUEST CODE: DKTRVQM)
LS PACE

DKTAF 1 DEFXX
DKTAVI DEFXX ,6

LS PACE

DKTLST, 1 FLAG BYTE
VOLUME ID RETURN AREA

* OPEN STATUS INQUIRY (REQUEST CODE: DKTROQM)

DKTBF1
DKTBOM
DKTBSM

LS PACE
DEFXX
DEFXX
DEFXX
LS PACE

DKTLST, 1
,4
DKTBOM,8

FLAG BYTE
OPEN BIT MAP RETURN AREA
OPEN BIT MAP, 60 STATIONS

B-4 4700 Programming Library, Volume 2: Disk and Diskette Programming

DKTHDR DEFXX
DKTHID DEFXX

DKTHDN
DKTHBL
DKTHRA
DKTHBE
DKTHPL
DK THEE
DKTHRB
DKTHBI
DKTHDS
DKTHWP
DKTHET
DKTHBTM
DKTHETM
DKTHMV
DKTHVS
DK TH CD
DKTHRL
DKTHON

DKTHXD
DKTHVC
DKTHDO
DKTHDDM
DKTHDSM
DKTHED

DEFXX
DEFXX
DEFXX
DEFXX
DEFXX
DEFXX
DEFXX
DEFXX
DEFXX
DEFXX
DEFXX
DEFXX
EQUATE
EQUATE
DEFXX
DEFXX
DEFXX
DEFXX
DEFXX
DEFXX
DEFXX
DEFXX
DEFXX
EQUATE
EQUATE
DEFXX
DEFXX

DKTHPD DEFXX
LSPACE

DKT1HD, 128
DKTHDR,4
, 1
I 1 7
,5
I 1
,5
, 1
,5
, 1
I 1
I 1
f 1
I 1
X'40'
C'E'

f 1
,2
,6
,4
,5
,4
,6
, 1
I 1
C'D'
C'S'

,5
I 1
,48

HEADER LABEL AREA
HEADER LABEL IDENTIFIER
RESERVED
DATA SET NAME
BLOCK LENGTH
RECORD ATTRIBUTE
BEGINNING OF EXTENT ADDRESS
PHYSICAL SECTOR LENGTH
END OF EXTENT ADDRESS
RECORD/BLOCK FORMAT
BYPASS INDICATOR
DATA SET SECURITY
WRITE PROTECT INDICATOR
EXCHANGE TYPE INDICATOR

BASIC EXCHANGE TYPE
FULL EXCHANGE TYPE

MULTI-VOLUME INDICATOR
VOLUME SEQUENCE NUMBER
CREATION DATE
LOGICAL RECORD LENGTH
OFFSET TO NEXT RECORD SPACE
RESERVED
EXPIRATION DATE
VERIFY/COPY INDICATOR
DATA SET ORGANIZATION

DIRECT ORGANIZATION
SEQUENTIAL ORGANIZATION

END OF DATA ADDRESS
RESERVED
PADDING ZEROS OR SPACES

* UNALLOCATED SPACE INQUIRY REQUEST CODE: DKTRQSM)
LS PACE

DKTDF1 DEFXX DKTLST,1 FLAG BYTE
* IF FLAG BIT 0 = 0 RETURN UNALLOCATED SPACE IN SECTORS
* (DISKETTE ONLY)
DKTQUFM EQUATE
DKTQMAX EQUATE
DKTDUDS DEFXX
DKTDUDO DEFXX
DKTDUD2 DEFXX
DKTDU1 DEFXX
DKTDU2 DEF XX
DKTDU3 DEFXX
DKTDU4 DEFXX
DKTDU5 DEFXX
DKTDU6 DEFXX
DKTDU7 DEFXX
DKTDU8 DEFXX

LS PACE

X'80'
X'40'
,4
DKTDUDS,2
,2
,2
,2
,2
,2
,2
,2
,2
,2

RETURN UNALLOCATED SPACE IN K-BYTES
RETURN LARGEST CONTIGUOUS DISKETTE SLOT
UNALLOCATED SPACE RETURN AREA
FIRST TWO BYTES OF RETURN AREA
SECOND TWO BYTES OF RETURN AREA
BLOCKS <4K
BLOCKS >=4K AND <16K
BLOCKS >=16K AND <64K
BLOCKS >=64K AND <256K
BLOCKS >=256K AND <1024K
BLOCKS >=1024K
LARGEST CONTIGUOUS DISKETTE SLOT(HI ORDER)
LARGEST CONTIGUOUS DISKETTE SLOT(LO ORDER)

* REORGANIZE DATA SET REQUEST (REQUEST CODE: DKTRRGM)
LS PACE

DKTGF1 DEFXX
DKTGDN DEFXX

LS PACE

DKTLST, 1
, 17

FLAG BYTE
DATA SET NAME

Appendix B. 4700 COPY Files B-5

* HEADER LABEL EXTENSION INQUIRY (REQUEST CODE: DKTRQLM)
LS PACE

DKTQF1 DEFXX DKTLST, 1 FLAG BYTE
DKTQRPM EQUATE X'80' QUERY BY RELATIVE POSITION
DKTQNPM EQUATE X'CO' QUERY TO NEXT RELATIVE POS'N
DKTQSZM EQUATE X'01 I RETURN CURRENT DATA SET SIZE IN K-BYTES
* OR SECTORS(DISKETTE ONLY)
DKTQPRL DEF XX ,2 RELATIVE POS'N OF LABEL

DEFXX , 1 UNUSED POSITION (BLANK)'
DKTQDN DEFXX , 17 DATA SET NAME
DKTQBL DEFXX ,5 BLOCK LENGTH
DKTQRA DEFXX , 1 RECORD ATTRIBUTE
DKTQBE DEF XX ,5 BEGINNING OF EXTENT ADDRESS
DKTQPL DEFXX , 1 PHYSICAL SECTOR LENGTH
DKTQEE DEFXX ,5 END OF EXTENT ADDRESS
DKTQRB DEFXX , 1 RECORD/BLOCK FORMAT
DKTQBI DEFXX , 1 BYPASS INDICATOR
DKTQDS DEFXX , 1 DATA SET SECURITY
DKTQWP DEFXX I 1 WRITE PROTECT INDICATOR
DKTQET DEFXX , 1 EXCHANGE TYPE INDICATOR
DKTQBTM EQUATE X'40' BASIC EXCHANGE TYPE
DKTQETM EQUATE C'E' FULL EXCHANGE TYPE
DKTQMV DEFXX I 1 MULTI-VOLUME INDICATOR ."\

DKTQVS DEFXX ,2 VOLUME SEQUENCE NUMBER
DKTQCD DEFXX ,6 CREATION DATE
DKTQRL DEFXX ,4 LOGICAL RECORD LENGTH
DKTQON DEFXX ,5 OFFSET TO NEXT RECORD SPACE

DEFXX ,4 RESERVED
DKTQXD DEFXX ,6 EXPIRATION DATE
DKTQVC DEFXX I 1 VERIFY/COPY INDICATOR
DKTQDO DEFXX , 1 DATA SET ORGANIZATION
DKTQDDM EQUATE C'D' DIRECT ORGANIZATION
DKTQDSM EQUATE C'S' SEQUENTIAL ORGANIZATION
DKTQED DEFXX ,5 END OF DATA ADDRESS

DEFXX I 1 RESERVED
DKTQCSZ DEFXX ,2 CURRENT DATASET SIZE (K-BYTES)
DKTQFG1 DEFXX I 1 FLAG BYTE
DKTQFBM EQUATE X'80' ALLOCATE ON TRACK BOUNDARY
DKTQFTM EQUATE X'40' EXTENT SIZE GIVEN IN TRACKS
DKTQFKM EQUATE X'20' EXTENT SIZE GIVEN IN K BYTES
DKTQES DEFXX ,2 EXTENT SIZE (TRKS/SCTS/KBYTES)
DKTQNA DEFXX ,2 NUMBER OF SECTORS TO ASSIGN
DKTQNI DEFXX ,2 NUMBER OF SECTORS TO INITIALIZE
DKTQIV DEF XX , 1 INITIALIZATION VALUE
DKTQF2 DEFXX , 1 SECONDARY FLAG BYTE
DKTQFTPM EQUATE X' 10 I TEMP TYPE OF DATA SET
DKTQFESM EQUATE X'20' ESDS TYPE OF DATA SET
DKTQFEDM EQUATE X'40' EDDS TYPE OF DATA SET
DKTQFASM EQUATE X'50' ASDS TYPE OF DATA SET
DKTQFRKM EQUATE X'60' RKAP TYPE OF DATA SET
DKTQFKSM EQUATE X'70' KSAP TYPE OF DATA SET
DKTQFCM EQUATE X'04' ALLOCATE USING STORED DEF'N
DKTQFDM EQUATE X'08' STORE DEF'N; DO NOT ALLOCATE
DKTQFOM EQUATE X'OC' STORE DEF'N; AND ALLOCATE

B-6 4700 Programming Library, Volume 2: Disk and Diskette Programming

DKTQKS DEFXX
DKTQKL DEFXX
DKTQDK DEFXX
DKTQDKAM EQUATE
DKTQNBI DEFXX
DKTQXC DEFXX
DKTQXS DEFXX
DKTQXA DEFXX
DKTQAC DEFXX
DKTQAN DEFXX

LSPACE

,2
, 1
, 1
X'01'

, 1
, 1
,2
, 1
, 1
, 119

KEY STARTING OFFSET
KEY LENGTH
EXTENSION FLAG BYTE

DUPLICATE KEYS NOT ALLOWED
NUMBER OF BYTES TO INITIALIZE
NUMBER OF SECONDARY EXTENTS
SEC EXTENT SIZE IN K BYTES
NUMBER OF SEC'Y EXTENTS ALLOC
NUMBER OF ASSOCIATED DATA SETS
ASSOCIATED DATA SET NAMES

* RENAME DATA SET REQUEST REQUEST CODE: DKTRRNM)

DKTRF1
DKTRDN
DKTRRN
DKTEND

LSPACE
DEFXX
DEFXX
DEFXX
DEFXX
BQKLDS

DKTLST,1 FLAG BYTE
,17 CURRENT DATA SET NAME
,17 NEW DATA SET NAME
DKTRCD,(D:DKTQAN+L:DKTQAN-D:DKTRCD) MAX SIZE

TYPE= END

DEFFDK Format Diskette Parameter List

Equate DEFFDKS to a segment number.

DEFFDK

* * * 'FORMDKT' INSTRUCTION PARAMETER LIST DEFINITION

FD KP AR DEF xx s,9 'FORMDKT' PARAMETER LIST

FDKLNG DEFxx FDKPAR, 1 DISKETTE RECORD LENGTH :
FDKLNO EQUATE X'OO' 128 BYTE RECORD LENGTH VALUE
FDKLN1 EQUATE X'01 I 256 BYTE RECORD LENGTH VALUE
FDKLNF EQUATE X'FF' DEFAULT TO MOUNTED DSK REC LEN

FDKTYP DEFxx s, 1 DISKETTE TYPE :
FDKTY1 EQUATE X'01 I DISKETTE 1 VALUE
FDKTY2 EQUATE X'02' DISKETTE 2 VALUE
FDKTY2D EQUATE X'03' RESERVED
FDKTYF EQUATE X'FF' DEFAULT TO MOUNTED DSK TYPE

FDKRES DEFxx s, 1 RESERVED

FD KV ID DEFxx s 1 6 DISKETTE VOLUME IDENTIFIER

Appendix B. 4700 COPY Files B-7

B•8 4700 Program.ming Library, Volume 2: Disk and Diskette Programming

Appendix C. Program Check Codes

If the 4700 controller encounters an execution request that indicates a logic error,
a program check results. The following are the hexadecimal codes and the
explanations for possible program checks:

Code Explanation

01 Invalid segment specification: An operand specifies a segment that
was not defined during controller configuration procedure, or
segment 14 was specified in an instruction that will cause data to be
stored or changed in segment 14.

02 Segment overflow: Completion of the instruction requires more
storage than the specified segment provides.

03 Field length error: An incorrect field was specified. The length is
greater than 2 for an immediate operand; or a SETFPL instruction
attempted to adjust the field length indicator to a negative value; or a
value is specified which, when added to the PFP, would be greater
than the segment length; or The field length was greater than 255 for
a P AKSEG instruction.

04 Return-address stack error: An LRETURN instruction was issued,
but the return-address stack was empty; or a branch instruction was
issued, but the stack was full.

06 Instruction count threshold: The number of instruction executions
allowed per transaction has been exceeded.

08 No overlay name: The overlay name is not in the resident overlay
directory.

09 Invalid operation or segment code: The instruction operation or
segment selection code specified is invalid. Make sure that any
required OPTMOD coding for the instruction was entered and that
any parameter fields are properly coded.

OA No entry point: There is no startup entry point specified.

OB Instruction address error: An addressing error has occurred. In the
case of branch instructions, the program check address field of
segment 1 will contain the address of the branch instruction.

OC Instruction count exceeded: 65,535 instructions have been executed
without a release of control.

OD DEFDEL missing or incorrectly used: Either a delimiter request was
made but no delimiter table was found or the table is not halfword
aligned.

OE EDIT mask error: The mask used with an EDIT instruction contains
an error.

Appendix C. Program Check Codes C-1

OF Invalid link write control field: The link write control field or write
options are invalid.

10 Communication link write length error: Data length exceeds 4095,
data length during an L WRITE in batch mode was too long,
command data length is incorrect; negative-response data length is
incorrect, or there was a negative response to setting or testing
sequence numbers.

11 Invalid parameter list, or parameter space is insufficient.

12 Indexing is not active.

20 Program check in called application program.

21 Called application program not found.

22 APCALL link stack full.

23 Recursive APCALL to an application program defined as
USE•STATIC during configuration.

24 APCALL storage pool defined by MAXSTOR=was exceeded.

25 APCALL segment pool defined by MAXSEG=was exceeded.

26 APRETURN issued with no APCALL link stack entry - no calling
application program.

27 Register address contains invalid segment space ID.

28 No transient pool: a transient pool was not defined for this station.

29 Transient application size error: the target transient application
program will not fit in the largest transient area defined in the pool
for this station.

FF System error.

C-2 4700 Program.ming Library, Volume 2: Disk and Diskette Programming

Appendix D. Status Codes for Disk and Diskette

The list below and tables that follow contain information about the two bytes of
status bits that are set in SMSDST when an exceptional condition occurs
(condition code= hex 02). The status bits in the first byte (SMSDSl) indicate the
general condition:

Bits in SMSDSJ Condition
-------1 (hex 01) Incorrect length
------1- (hex 02) Unit check
-----1-- (hex 04) Command reject
----1--- (hex 08) Attention
---1---- (hex 10) Prior operation
--1----- (hex 20) Data check
-1------ (hex 40) Unit exception
1------- (hex 80) Intervention required

The status bits in the second byte (together with those in the first) indicate the
specific condition, as shown in the tables. The list is comm.on to all tables. To use
the tables and list, find the status bits in the leftmost column of the appropriate
table, the applicable instruction in the third column; read the explanation of the
corresponding condition in the second column of the table.

A status value not in the tables may be a combination of status codes. When such
status values occur, review the appropriate table and search for the highest value
first, then the next ,highest value. Remember that a status bit can be shared by
more than one status code.

Appendix D. Status Codes for Disk and Diskette D-1

Status Bits

-------- --1-.,----
(hex 0020)

-------1 --------
(hex 0100)

Condition

Duplicate keys:

This status is generated for keyed or 'NEXT' LREAD
through a KSAP if one or more subsequent records
having the same key exist.

Action: Defined by controller application program.

Wrong Length Record:

LWRITEPLR:

The data to be output was shorter than the logical record
length specified in the data-set header label.

REPLACE TFn, C or PLR:

The data to be output was shorter than the original record.

REPLACE P, Single Sector:

The data to be output was shorter than the sector length
on the device.

REPLACE P, Multi-Sector:

The length of the data to be output was not sufficient to
completely fill the final sector.

Action: Defined by controller application program.

1)-2 4700 Programming Library, Volume 2: Disk and Diskette Programming

Instruction

LREADPLR

LWRlTEPLR
REPLACE

Status Bits

-------1 -------1
(hex 0101)

Condition

Wrong Length, Oversized Record:

LREAD:
If this is not a multi-sector read,
the input area was shorter
than the record or sector to be read.
If this is a multi-sector read,
the input area was not long enough
to fully contain the final sector.

LWRITE TFn or L:

The data to be output was longer than 252 bytes.

LWRITEPLR:

The data to be output was longer than the logical record
length specified in the header label.

REPLACE PLR:

The data to be output was longer than the original record
length.

REPLACE P, Single Sector:

The data to be output was longer than a sector on the
device.

LDKT (Buffer Inquiry, Query Extended Header Label):

User data truncated. The user return area was not long
enough to return all the requested data.

Action: Defined by the controller application program.

Instruction

LREAD
LWRITE
REPLACE
LDKT

Appendix D. Status Codes for Disk and Diskette D-3

Status Bits

-------1 ------ l -
(hex 0102)

-------1 -1----1-
(hex 0142)

------1- --------
(hex 0200)

------1- -------1
(hex 0201)

Condition

Wrong Length, Record too Long:

A 512-byte diskette was loaded, but the controller
is not configured for 512-byte buffers.

Secondary Index Exception:

Record too short for secondary index key;
duplicate keys not allowedfor secondary index update;
index EOF for secondary index update;
index update exception during KSAP 'Next' or 'Previous'
LREAD through a KSAP (index has been updated
since last read, sequence may have been impacted).

Unit Check:

Any function:
A hardware malfunction was detected.

Action: Check the statistical error counters.
See the IBM 4700 Finance Communication System,
Problem Determination Guide: GC31-2033.

Unit Check, Wrong Length Temporary Record:

LREAD or REPLACE TFn, C or L:
An invalid logical record length was encountered in a tempo
rary file data block while searching for the target record.
(For example, the record length was either zero or greater
than the number of bytes from the start of the record to the
end of the sector.)

LDKT (Open):

An invalid logical record length was encountered while
attempting a warm start open of a temporary file data set.
(For example, the record length was either zero
or greater than the number of bytes from the start
of the record to the end of the sector.)

Action: (1) If this occurs on the operating
diskette or on a data set opened as a temporary file,
see the IBM 4700 Finance Communication System,
Problem Determination Guide: GC31-2033.

(2) If the wrong data set was
opened with the temporary file option,
recovery depends on the controller application program.

D.,4 4700 Programming Library, Volume 2: Disk and Diskette Programming

lnstructiqn

READ
LWRITE

LREAD
LWRITE
LDKT
REPLACE
DELETE

Any
Diskette/Disk
Function

LREAD
REPLACE
LDKT

Status Bits

------1- ------1-
(hex 0202)

------1- ------11
(hex0203)

------1- -----1--
(hex 0204)

------1- ----1---
(hex 0208)

Condition

Unit Check, Session ID Error:

LREAD or REPLACE TFn, C or L:
A temporary file index block or data block
read while searching for the target record
did not contain the current session ID.

Action: If this occurs on the operating diskette,
or on a data set opened with the temporary file option,
see the IBM 4 700 Finance Communication System,
Problem Determination Guide: GC31-2033.

Otherwise, recovery depends on the application program.

Unit Check, Bad Diskette:

Diskette has more than two bad tracks,
or track 0 has a bad sector.

Action: Discard the diskette and use a new one.

Unit Check, Control Record Read:

Any function:
A sector having a control address mark, rather than a
data address mark, was read unexpectedly.

Action: Defined by the controller application program.

Unit Check, Unreadable Sectors Logged:

Diskette compression was completed although one
or more data-set sectors were not readable.
The Compress Utility Error Log contains
information concerning these errors.
The Compress Utility Error Log is located
in the last sector of track 7 4, side 0 for Diskette 1
and the last sector on track 74, side 1 for Diskette 2.

Action: Examine the Compress Utility Error Log
that contains the data-set name, the beginning of the
extent, and the address of the unreadable sector.
The sector addresses listed on sequential data-set
read errors correspond to the original data-set locations.
The contents of any unreadable sequential sectors are
omitted from the compressed diskette.

Instruction

LREAD
REPLACE

FORMDKT

Any
Diskette
Function

COMPDKT

Appendix D. Status Codes for Disk and Diskette D-5

· ·Status Bits

--"'---1- . ---1----
(hex 0210)

------1- -1------
(hex 0240)

Condition

Unit Check, Read Error Count Exceeded:

The number of unreadable sectors ih sequential data sets
exceeded the maximum allowed.

Action: This diskette cannot be compressed.
Retry your copy diskette procedure. The Compresi;
Utility Error Log may be examined. See Status· hex 0208
for an explanation of the Compress Error Log.

Unit Check, Wrong Temporary File Redord ID:

LREAD or REPLACE TFn, C or L:

The temporary file record found by an index search did not
meet the search criteria:

• If a composite file search was done, the retrieved record
subfile ID did not match SMSSFR, or

• If a· TFn search was done, either the retrieved record did
not have the correct file ID, or, if SMSSFRwas nonzero
the retrieved sub-file ID did not match it.

Action: If this occurs on the operating diskette,
or on a data set opened with the temporary file option,
see the IBM 4700 Finance Communication System,
Problem Determination GUide: GC31-2033.

If the wrong data set was opened with the temporary
file option, then recovery depends on the controller
application program.

D-6 ·4700 Programming Library, Volume 2: Disk and Diskette Programming

· Iiistruction

COMPDKT

LREAD
REPLACE

Status Bits

-----1-- -------1
(hex 0401)

-----1-- ------1-
(hex 0402)

Condition

Command Reject, Buffer Alignment or Overlay Length
Error:

LREAD or REPLACE, Multi-Sector:

The buffer specified for the option did not begin
at a displacement that is an integral multiple of two.

LLOAD:

The length of the application program overlay section to be
loaded is too large. (For example, the length plus the load
address exceeds the end of the section of Segment 14 to be
overlayed.)

Action: Depends on the controller application program.

Command Reject, Invalid Side Request:

LREAD or REPLACE A, Single Sector or Multi-Sector:

The absolute diskette address passed in SMSRSN had the side
1 bit set, but the currently inserted diskette is one-sided.

Action: Depends on the controller application program. If a two
sided diskette is to be accessed, a two-sided diskette must be
inserted.

Command Reject, Session ID Error:

LREAD TFn, C :

The current session ID did not match the session ID in the
temporary file record when the LREAD was attempted.
This may be caused by an action or operation that damages
the temporary file on the diskette such as inserting the wrong
diskette or through EDAM by opening the wrong data set.

Action: If the temporary file on the operating
diskette has been damaged, see the IBM 4700 Finance
Communication System, Problem Determination Guide:
GC31-2033.

If the wrong diskette was inserted or
the wrong data set was opened, recovery depends
on the controller application program.

Instruction

LREAD
REPLACE
LLOAD

LREAD
REPLACE

Append~ D. Status Codes for Disk and Diskette D-7

Status Bits

-----1-- ------11
(hex 0403)

-----1-- -----1--
(hex0404)

Condition

Command Reject, Volume Access Inhibited:

Access to the volume is inhibited by another station.

Action: The inhibiting station must give up control.

Command keject, Access Inhibited on Drive:

A station issued LDKT (Inhibit Access to Volume).
No other operation can be initiated by any other station
(except for· absolute requests) until the inhibiting
station issues an LDKT (Permit Access to Volume).

Command Reject, Drive not supported:

The disk or diskette drive selected is either not attached
or is not defined by the CPGEN FILES macro.

Any EDAM function:

EDAM= Y was specified on a CPGEN FILES macro, but not on
the one for the currently selected drive.

Action: Correct the configuration by supplying the appropriate
FILES macro, or use the primary drive.

D-8 4700 Programming Library, Volume 2: Disk and Diskette Programming

Instruction

FORMDKT
COMPDKT

Any
Disk/Diskette
Function

Any
Disk/Diskette
Function

Status Bits

-----1-- ----1---
(hex 0408)

Condition

Command Reject, Invalid Extent Parameter:

LDKT (Allocate):

The Beginning-of-Extent address or the End-of-Extent address
is not all zeros or spaces, and its:

•Track number is either zero or greater than 74, or

• Sector number is either zero or greater than the number of
sector on a track of the currently mounted diskette, or

• Head number is 1 and the currently mounted diskette is
1-sided.

The requested primary or secondary extent size for a disk
data set is either 0 or greater than the maximum
(hex 0800K bytes, hex 2000 sectors, or hex 0200 tracks).

Either the Beginning- or End-of-Extent address is all zeros
or spaces, and the number of sectors or tracks
to allocate is zero.

The End-of-Extent address is less than the Beginning-of-Extent
address, and neither is all zeros or spaces.

Action: Defined by the controller application program.

Instruction

LDKT

Appendix D. Status Codes for Disk and Diskette D-9

Sta~Bits

-----1-- ---1----
(hex 0410)

-----1-· --1-----
(hex0420)

Condition

Command Reject, Data Set Not Open:

LWRITE, LCHECK, LREAD or REPLACE, Exchange Data
Set, or LDKT (Update Header Label):

The data-set ID given in SMSDID is invalid (it is either zero
or greater than the number of header labels on the diskette),
or the data set has not been opened by the current station.

Action: If the data-set ID is 0 or invalid, correct the data-set ID.
Otherwise, open the data set.

LDKT Disk (Allocate, Open, Deallocate,
Rename, Reorganize, Query Extended Header Label,
Query Unallocated Space, or Query Volume ID)

The selected disk drive has not been initialized
for EDAM operations;

Action: Use the EDAM Disk Initialization function
of the Installation Diskette to initialize the disk drive.

Command Reject, Data Set Write Protected or Unexpired:

The specified data set is write protected.

Action: Defined by controller application program.
Use LDKT to update the header label,
changing the Write-Protect indicator to a space.

LDKT (Open, Allocate, Deallocate, Rename, Reorganize):

The controller tried to open, allocate, deallocate, rename,
or reorganize a data set with name beginning SYS.
SYS data sets are protected.

Action: Use another data-set name.

LDKT (Deallocate):

The current date in the parameter list is less than the
expiration date in the header label.

Action: Defined by controller application program; set the
current date in the parameter list to all 9s.

D-10 4700 Programming Library, Volume 2: Disk and Diskette Programming

Instruction

DELETE
LWRITE
LREAD
LCHECK
REPLACE
LDKT

DELETE
LWRITE
REPLACE
LDKT

Status Bits

-----1-- -1------
(hex 0440)

-----1-- -1-----1
(hex 0441)

-----1-- -1----1-
(hex 0442)

-----1-- -1---1--
(hex 0444)

Condition

Command Reject, Diskette Stopped:

Any temporary file function, or LLOAD:

A temporary file operation or an LLOAD instruction was
attempted with the primary drive selected, but the drive
is in a logically stopped state.

Note: LLOAD is described in Volume 1
of the 4700 Controller Programming Library.

LREAD or REPLACE P:

A permanent file operation was attempted with the primary
drive selected and SMSDID set to zero, but the drive is in a
logically stopped state.

SETDSKT:

A SETDSKT code hex 01, 02, 04, 08, or 10
was issued while the diskette was in a stopped state.

Action: Defined by controller application program. The control
operator can be notified to start the diskette drive.

Command Reject, Keyed Record too Short:

The buffer space provided for
the unkeyed data set was shorter
than the sum of the key offset and the key length.

Command Reject, Duplicate Keys:

Duplicate keys not allowed in primary index.

Command Reject, Insufficient Buffer Space:

When duplicate keys are not allowed,
the user data segment must have enough space
to·hold an additional logical record.
The space must be available between the end of the logical
record and the end of the data segment. For ASDS variable
length records, the maximum size logical record
should be provided.

Instruction

LLOAD
LREAD
REPLACE
SETDSKT

DELETE
LREAD
LWRITE
REPLACE

LWRITE

DELETE
LREAD
LWRITE
REPLACE

Appendix D. Status Codes for Disk and Diskette D-11

Status Bits

-----1-- 1-------
(hex0480)

Condition

Command Reject, Invalid Request:

Any function:

The file code in the instruction is incompatible with
the operation code (for example,
the LOG file code in a REPLACE instruction).

LWRITETFn:

The file code in the instruction was greater than the number of
files specified in the TF operand of the Fll..ES macro for the
selected drive, or the subfile given in SMSSFW was greater
than 60.

LREAD or REPLACE TFn or C:

No indexing was requested in the CPGEN for either the file
specified in the instruction or the subfile specified in SMSSFR.

LREAD or REPLACE C:

SMSSFR contained a value of zero .

.Action: Correct either the configuration or the controller applica
tion program.

Any EDAM function:

The primary drive is selected and is not logically stopped.

LREAD or REPLACE P, REPLACE PLR, ALLOCATE:

The selected EDAM data set has sequential organization .

.Action: Defined by controller application program.

COMPDKT:

Command Reject, Invalid Parameter List:
The parameter list contained an invalid data-set count,
an invalid combination in the flag byte, or an invalid
flag byte and data-set sector count combination .

.Action: Correct the parameter list and retry.

D-12 4700 Programming Library, Volume 2: Disk and Diskette Programming

Instruction

COMPDKT
FORMDKT
DELETE
LREAD
LWRITE
REPLACE

Status Bits Condition

FORMDKT:
The parameter list contained an invalid record length,
diskette type, volume ID, physical record sequence code, or
specified an invalid record length for the specified
diskette type.

Action: Correct the parameter list and retry.

Instruction

Appendix D. Status Codes for Disk and Diskette D-13

Status Bits

-----1-- 1------1
(hex 0481)

Condition

Command Reject, Optional Support Module Missing:

Any EDAM function:

EDAM was not specified on any FILES macro in the CPGEN,
or loading of the EDAM support module was suppressed by
the control operator.

Extended record format (XRCD) for ASDS
was not specified on any FILES macro in the CPGEN.

KEYED was not specified on any
FILES macro in the CPGEN.

LDKT (Allocate or Deallocate):

ALLOC was not specified in the EDAM parameter of any
FILES macro in the CPGEN, or loading of the EDAM Allocate/
Deallocate support module was suppressed by the control
operator.

LDKT (Open):

The temporary file option was specified but the TF operand
was omitted from the FILES macro for the secondary drive, or
loading of the EDAM temporary file support module was
suppressed by the control operator.

LREAD or REPLACE, Multi-Sector:

Optional modules M06 or MB7 for multi-sector support,
were not specified during CPGEN, or the
loading of the multi-sector support modules was
suppressed by the control operator.

Action: Be sure that EDAM is specified, and that the appropriate
modules are selected and loaded.

D-14 4700 Programming Library, Volume 2: Disk and Diskette Programming

Instruction

LDKT
LREAD
REPLACE
DELETE
LWRITE

Status Bits

-----1-- 1-----1-
(hex 0482)

-----1-- 1----1--
(hex 0484)

Condition

Comm.and Reject, Data Set Size Conflict:

LDKT (Allocate):

The number of sectors to assign or initialize is greater than
the number of sectors in the primary extent. These parameters
must be specified in sectors. Extent size can be specified
in K-bytes, sectors, or tracks.

Action: Defined by the controller application program.

Command Reject, Open Conflict:

LDKT (Open):

The temporary file option was specified and
the data set is presently open by one or more stations,
but not as a temporary file.

The temporary file option was not specified, but the data set
is presently open by one or more stations as a temporary
file.

L WRITE, LCHECK, LREAD or REPLACE, Temporary File,
Exchange Data Set:

The specified data set was not opened as a temporary file.

L WRITE, LCHECK PLR, DELETE PLR, REPLACE PLR,
LREAD P, or REPLACE P:

The specified data set was opened as a temporary file.

Action: Defined by the controller application program.

LDKT (Rename):

The data set is currently open and must be closed before
rename can be performed.

Action: Close the data set.

Instruction

LDKT

DELETE
LDKT
LWRITE
LCHECK
LREAD
REPLACE

Appendix D. Status Codes for Disk and Diskette D-15

: Status Bits

-----1-- 1----1-1
(hex 0485)

Condition

Command Reject, Data Set Type Conflict:

LDKT (Open):

The temporary file option was specified, but the data set
does not meet the criteria for a temporary file for one of
the following reasons:

• Physical sector length is not 256.

• Block length is not 256.

•Logical record length is not 256.

•Not all blocks are assigned.

• The data set is organized sequentially.

• The primary diskette was specified.

Action: Defined by the controller application program.

Attention, Unit Check, Data Set Defined but
Not Allocated.

An attempt was made to open a data set that is only defined.
You must allocate the data set before opening it.

D-16 4700 Programming Library, Volume 2: Disk and Diskette Programming

Instruction

LDKT

LDKT

Status Bits

-----1-- 1---1---
(hex 0488)

Condition

Command Reject, Invalid Data Set Specification:

LDKT (Allocate):

One of the following errors was detected in the parameter list:

•Exchange type indicator is not blank or C'E'.

• Data set name begins with a blank.

•Record attribute is not blank or C'B'.

• Physical record length is not blank or C' 1 '.

• Record/Block format is not blank or C'F'.

• Data set organization is not blank, C'S' or C'D'.

• Logical Record Length is all zeros or blanks, or is greater
than the physical sector length on the currently mounted diskette.

• Secondary extents were requested on a diskette.

•The number of secondary extents requested was greater than 15.

• The number of secondary extents requested is zero
and the secondary extent size is not zero.

•Allocation units of both tracks and K-bytes were specified
in the same parameter list.

Action: Defined by the application. Correct parameter
list. If the logical record length is greater than the sector length,
mount a diskette with 256-byte sectors.

Command Reject; Invalid user request:

LDKT (Query Extended Header Label and Query Available Space):

The user request flag is set to an invalid value.

Command Reject; Invalid Data Set Type;

LDKT reorganize:

You specified a data-set type that is not a KSAP or ASDS.

LDKT reset input:

Data type is RKAP, KSAP, or TEMP.

Instruction

LDKT

Appendix D. Status Codes for Disk and Diskette D-1 7

. . StQtus 8its

-----1--1---l--l
(hex0489)

-----1-- 11----1-
(hex 04C2)

Condition

Command Reject, Invalid Keyed Access Definition:

•No associated data sets were specified for an RKAP or a KSAP.

• One or more associate9 data sets were specified for a
data-set type other thanRKAP or KSAP.

• The number of associated data sets is greater than 7.

• An RKAP or a KSAP data set did not specify a valid key length.

• A key length is specified for a data-set type other than
RKAP or KSAP.

An unkeyed data set .must specify a key length of hex 00.

Command Reject, Invalid Address:

LREAD or REPLACE A; LREAD or REPLACE PBN:

The absolute address (TTRR) or Physical Block Number (PBN)
was invalid for the disk or diskette.

Record not found (KSAP, RKAP, or ASDS).

Action: Defined by the controller application program.

Command Reject, Data Set is Associated:

LDKT Reset Output Pointer was issued for an ASDS or EDDS data
set that is associated with a RKAP or KSAP.

Actiom Defined by the controller application program.

D-18 4700 Programming Library, Volume 2: Disk and Diskette Programming

· Instruction

LDKT

DELETE
REPLACE
LDKT

LDKT
(Reset
Output
Pointer)

Status Bits

----1--- --------
(hex 0800)

----1--- 1----111
(hex 0887)

----1--- 1---1---
(hex0888)

Condition

Attention:

Presented in conjunction with other status:

The coincident status resulted while reading the volume label
(LDKT Allocate, Deallocate, or Open), while reading or writing
a data header label (LDKT Allocate, Deallocate, Open, or
Close), while reading or writing the ERMAP sector (LDKT
Allocate), or while reading or writing a temporary file index
block or data block (LDKT Open).

Note: If this status occurs on a Close function, the data set
has been closed but, the label is of dubious integrity. If it
occurs on any other function, the function was not completed.

Action: Defined by the controller application program and by the
other status presented.

Attention, Data Set Allocation Not Fully Complete:

For disk, all secondary extents are requested to be assigned
and allocated immediately; but there is not enough
contiguous space available for each of the secondary extents.
The primary extent and as many secondary extents as possible
have been allocated.

For diskette, a keyed data set was allocated but the
optional module required for keyed data sets is not
present in controller storage. The pointers to the
associated records could not be generated.

Action: Verify the attributes of the data set
using the Disk/Diskette File Utility program or
the LDKT Query Extended Header Label function.
If the attributes are not acceptable, then deallocate
the data set and reallocate it when the problem has
been corrected.

Attention, Data Set Definition Nonexistent:

Deallocation and definition retention is requested
for a definition that does not exist.

Instruction

LDKT

LDKT

LDKT

Appendix D. Status Codes for Disk and Diskette D-19

Status Bits

----1--- 1---1--1
(hex 0889)

----1-1- --------
(hex OAOO)

----1-1- ----1---
(hex OA08)

Condition

Attention, Invalid Associated Data Set Specification:

• When defining a keyed data set, 1 or more
of its associated data sets had previously been
associated with 7 other data sets.

• A specified associated data set has not been
previously defined as an EDDS or ASDS.

This association has not been made.

Attention, Bad Disk or Diskette:

A permanent error occurred while reading or writing
the volume label (diskette); the BAM sector (disk); or
a data-set label (disk or diskette).

Action: Insert another diskette and/ or
see the IBM 4700 Finance Communication System,
Problem Determination Guide: GC31-2033.

Attention, Unit Check, Invalid Extent:

Allocate, Deallocate, Open,
Query Extended Header Label (Diskettes),
Query Volume ID, Rename, Reorganize:

COMPDKT:

During volume initialization, an existing data-set header
label was read in which the Beginning-of-Extent address
or End-of-Extent address was invalid because:

• It was all zeros.

•Track number is either zero or greater than 74.

• Sector number is either zero or greater than the number
of sectors on a track of the currently mounted diskette,

• Head number is 1 and the currently mounted diskette
is one:-sided.

• The End-of-Extent address is less than the Beginning-of
Extent address.

Action: Release or recreate the disk or diskette data set.

D-20 4700 Programming Library, Volume 2: Disk and Diskette Programming

Instruction

LDKT

COMPDKT
LDKT

COMPDKT
LDKT

Status Bits

----1-1- --1----
(hex OA20)

Condition

LDKT (Open):

The End-of-Data address in the header label for the data set
is invalid because:

• It is all zeros or spaces.

• It is less than the Beginning-of-Extent address.

• It is more than 1 sector greater than the End-of-Extent
address.

• Diskette track number is either zero or greater than 7 4
(except for the valid case of a data set extending
to the end of track 74, in which case End-of-Data
address can be 75001).

• Sector number is either zero or greater than the number
of sectors on a track of the currently mounted diskette.

• Head number is 1 and the currently mounted diskette is
one-sided.

Action: Recreate the data set.

Attention, Unit Check, Invalid Volume Label:

LDKT (Allocate, Deallocate, Open,
Rename, Query Volume ID, Reorganize,
Query Extended Header Label):

The volume label sector does not contain C'VOLl' in bytes
0- 3.

Action: Format the diskette correctly.

FORMDKT:

The volume ID in the parameter list or on the mounted
diskette is invalid.

Action: Specify valid volume ID in parameter list and retry.
Valid volume IDs contain no leading or imbedded blanks and are
made up of EBCDIC alphameric characters.

COMPDKT:

The volume label sector does not contain C'VOLl' in
bytes 0-3.

Action: Format the diskette correctly.

Instruction

LDKT
FORMDKT
COMPDKT

COMPDKT

Appendix D. Status Codes for Disk and Diskette D-21

Stat1,1s Bits

----1-1- -1------
(hexOA40)

----1-1- 1-------
(hexOA80)

Condition

Attention, Unit Check, Unrecoverable BAM Error:

A disk is out of synchronization.

Action: Copy data sets from disk,
reinitialize using Installation Diskette,
and copy data sets back to disk.

LDKT (Allocate, Deallocate or Open):

A request was made to allocate an H-Exchange data set
on other than a Diskette 2D.

Action: Mount a Diskette 2D.

Attention, Unit Check, Extent Overlap:

LDKT (Allocate, Deallocate, Open
Rename, Query Volume ID, Reorganize,
Query Extended Header Label):

During volume initialization, an existing data-set header label
was read, in which the defined extent overlapped the extent(s)
defined by one or more previously processed header labels.

Action: Recreate the data set.

D-22 4700 Programming Library, Volume 2: Disk and Diskette ProgralllJlling

&stru~on

LDKT

COMPDKT
LDKT

Status Bits

----1-l- 1---1--
(hex OA88)

----1-1- 1---1--1

(hex OA89)

Condition

Attention, Unit Check, Invalid Data Set:

LDKT (Open):

One of the following errors was detected in the header label
of the data set being opened:

• Block length field is zero or greater than the sector length.

• Logical record length field is zero or greater than the block
length.

• The block length is not an even multiple of the logical
record length.

• Offset-to-Next-Record is not zeros or spaces, and it is
greater than the block length, it is not an even multiple
of the logical record length, or the data set does not contain
blocked records.

The temporary file and warm start options were specified and
a logical record was encountered in which the subfile ID was
invalid (greater than 60).

Action: Recreate the data set.

Attention, Unit Check, Invalid Associated
Data Set Specification:

The associated data sets could not be opened because the keyed
data-set definition is invalid or the associated data sets are
defined but not allocated.

Instruction

LDKT

LDKT

Appendix D. Status Codes for Disk and Diskette D-23

StamsBits

---1---- --------
(hex 1000)

Condition

Prior Operation:

If presented by itself:

The requested Data Set operation was not begun because one
or more sectors had to be output first and had previo~ly been
·flagged as unwritable.

LREAD or REPLACE, Data Set, Multi-Sector:

One of the blocks involved in the current request was found to
be in one of the controller buffers, and had previously been
flagged as unwritable.

REPLACE, Exchange Data Set, Logical Record or Single Sector:

The sector involved in the current request was found to be in
one of the controller buffers, and had previously been flagged
as unwritable.

L WRITE, LREAD or REPLACE, Exchange Data Set:

A buffer was needed for the current operation, but all buffers
presently contain sectors that had previously been flagged
as unwritable.

Instruction

LDKT
LWRITE
LREAD
REPLACE

LDKT (Allocate, Deallocate, Open, Rename, Query Extended Header Label,
Reorganize, or Update Header Label):

Prior Operation:

A sector was marked unwritable on a previous operation
and the number of buffers specified in the CPGEN
is not sufficient to complete the current operation.

LDKT (Close):

One or more of the sectors belonging to the data set being
closed was found in a controller buffer that had previously
been flagged as unwritable.

Action: Recover unwritable data; release unwritable buffers.

D-24 4700 Programming Library, Volume 2: Disk and Diskette Programming

Status Bits Condition

If presented with other status:
L WRITE TFn or L, or LCHECK DSK:

The indicated status resulted from a previous attempt to
write the current temporary file output buffer.

LWRITE or LCHECK PLR, or LDKT (Close):

The current output buffer for the data set was flagged as
unwritable as a result of a previous asynchronous write attempt
that failed for the indicated reason.

LREAD or REPLACE, Exchange Data Set, Multi-Sector:

Before beginning the requested operation, the controller
attempted to output one of the involved sectors from a
buffer that had been flagged as changed and the write failed
for the indicated reason.

Action: No recovery possible; reread temporary file from
beginning.

Instruction

Appendix D. Status Codes for Disk and Diskette D-25

Status Bits

---11--- --------
(hex 1800)

--1----- --------
(hex 2000)

--1----- -------1
(hex 2001)

--1---1- -----1--
(hex 2204)

Condition

Attention, Prior Operation:

LDKT (Allocate, Deallocate or Open,
Query Volume ID, Rename, Reorganize,
Query Extended Header Label):

In attempting to initialize the volume for processing, one
or more buffers associated with the drive were found to con
tain a sector previously flagged as unwritable.

Action: Defined by controller application program. Records
can be retrieved from unwritable buffers using LDKT buffer
inquiry and LREAD P.

Data Check:

Any function:

A cyclic redundancy check (CRC) error occurred on a read
operation, or a read after write comparison failed on a write
operation.

Action: Defined by controller application program; recover
data and reconstruct file.

Data Check, Incorrect Record Type:

The data set is not an ASDS M-format.

Data Check, Control Record Read:

Any function:

A sector having a control address mark, rather than a data
address mark, was read unexpectedly and, in addition, its
data area CRC did not match the computed CRC.

Action: Defined by controller application program.

D-26 4700 Programming Library, Volume 2: Disk and Diskette Programming

Instruction

LDKT

Any
Disk/Diskette
Function

LREAD
LWRITE
REPLACE
DELETEPLR

Any
Diskette
Function

Status Bits

-1------ --------
(hex 4000)

Condition

Unit Exception:

L WRITE TFn or L:

A previous L WRITE filled the temporary file data set.

LREAD or REPLACE, Temporary File, Logical Record or Single
Sector:

The record number given in SMSRSN was zero or greater
than the number of records presently contained in the data
set, the permanent file, or the temporary file or subfile.

LREAD or REPLACE, Multi-Sector:

The absolute address passed in SMSRSN specified a track
number greater than 74, or a sector number of zero, or a
sector number greater than the number of sectors on the
specified track.

During the multi-sector operation, the end of the diskette,
permanent file or exchange data set was reached before the
request had been fully satisfied.

LWRITEPLR:

The data set already contains 65 535 logical records, or there
are no unassigned blocks left in the data-set extent.

The primary keyed data set is full.

Unit Exception:

Keyed processing:

End-of-File during LREAD or L WRITE.

No allocated unkeyed data set to contain record for keyed L WRITE.

LDKT (Buffer Inquiry):

No buffers were found that matched the search criteria and
contained unwritable records.

Unit Exception; LDKT (Query Extended Header Label):

End-of-File reached during query next valid label by
relative position.

Invalid SMSRSN specified on query label by relative position.

Action: Defined by controller application program.

Instruction

LWRITE
LREAD
REPLACE
LDKT

Appendix D. Status Codes for Disk and Diskette D-27

Status· Bits

-1------ -------1
(hex 4001)

-1------ ------1-
(hex 4002)

Condition

Unit Exception, Temporary File Data Set Too Large:·.

LDKT (Open):

The data set to be opened as a temporary file has more TF Units
in its extent than were specified in the TF operand of the
FILES macro for the currently selected drive. The data set
was opened, but access is limited to the number of tracks
specified.

Action: If more tracks are to be processed, correct the FILES
macro. Otherwise, ignore this status.

Unit Exception, Exclusive Use Conflict:

A data set is currently open by one or more stations.

LDKT (Open):

The Exclusive Use option was specified, but the data set is
already open by one or more stations.

Action: Close the data set before issuing the instruction.

The data set is presently open for the exclusive use of another station.

LDKT (Deallocate):

The data set to be deallocated is presently open by one or
more stations.

Action: Either pause and retry this instruction, or close the data
set to all stations and then retry.

D-28 4700 Programming Library, Volume 2: Disk and Diskette Programming

Instruction

LDKT

COMPDKT
FORMDKT
LDKT

Status Bits

-1------ -----1--
(hex 4004)

Condition

Unit Exception, Data Set Name Unknown:

COMPDKT:

A parameter list name has no corresponding data set on the
installed diskette, or duplicate data-set names
are specified in the parameter list.

LDKT (Open, Deallocate, Rename, Query Extended Header
Label, or Reorganize):

There is no data set with the given data-set name on the
currently mounted volume.

Unit Exception, Data Set Unknown, LDKT (Allocate):

An Allocate-from-Definition was attempted but an existing
data-set definition was not found.

On diskette, a definition was attempted but the SYSDSLBL
data set was not previously allocated.

LDKT (Deallocate):

A deallocate function was attempted when an existing data-set
label containing either a data-set definition or describing
allocated space, was not found.

Action: Either mount the correct diskette,
correct the data-set name, or correct the parameter list.

Instruction

COMPDKT
LDKT

Appendix D. Status Codes for Disk and Diskette D-29

Status Bits

-1------ ----1---
(hex 4008)

-1------ ---1----
(hex 4010)

Condition

Unit Exception, Incompatible Diskette:

The volume label indicates the volume has labels in the
extended system area, or the volume has.a special extent
arrangement.

Action: Mount another diskette.

Unit Exception, Incompatible Diskette:

LDKT (Allocate or Deallocate):

• The volume label of the currently mounted volume indicates
that the volume has a special extent arrangement (that is,
the byte 72 contains a nonblank).

• The volume label of the currently mounted diskette indicates
that it has more than cylinder 0 allocated for data-set labels.
Allocation and deallocation are not allowed on this diskette.

Action: Mount another diskette; this diskette cannot be pro
cessed by the system.

Unit Exception, Incompatible Disk or Diskette:

LDKT (Allocate or Deallocate):

The disk has not been properly formatted for use by EDAM.

Unit Exception, Too Many Open Requests:

LDKT (Open):

There are already as many data sets open as the maximum
number allowed to be open at any one time, as specified in the
EDAM operand of the FILES macro.

Action: (I) Pause and retry the instruction, (2) Change the
FILES macro, or (3) close one of the data sets and retry.

D-30 4700 Programming Library,Volume 2: Disk and Diskette Programming

Instruction

COMPDKT
FORMDKT
LDKT

LDKT

Status Bits

-1------ ---1---1.
(hex 4011)

-1------ --1-----
(hex 4020)

Condition

Unit Exception, Multiple Temporary File Opens:

LDKT (Open):

The temporary file option was specified and another data set
is presently open as a temporary file.

Action: (1) Open the current temporary file data set, (2) wait
until this data set is closed, or (3) close the current temporary
file data set and open the new data set.

Unit Exception, Data Set Name Not Unique:

LDKT (Allocate):

A data set with the proposed data-set name is already allocated
with or without having a definition.

A definition with the proposed data-set name already exists.

Action: Change the data-set name, m.ount a new volume, or
deallocai;e the existing data set.

LDKT (Reorganize):

A data set already exists having the same name
as the new KSAP, that is the first character is'$'.

Action: Deallocate the 'old' data set or rename the KSAP data set.

LDKT (Rename):

The proposed data-set name is already that of an existing
data set or definition.

Action: Choose a different data-set name.

Instruction

LDKT

LDKT

Appendix D. Status Codes for Disk an.d Diskette D-31

Status Bits

-1------ -1------
(hex 4040)

Condition

Unit Exception, No Unused Extents:

LDKT (Allocate):

For diskette, no label position is available in SYSDSLBL
to hold the data-set definition.

For diskette, there is no position available on Track 0
to hold another header label.

Note: A header label position is used when a data set is defined but
not allocated; allocated but not defined; or allocated and defined.

For disk, the maximum of 510 user specified data sets already
exists. This limit includes data sets defined, allocated, or
defined and allocated.

Action: Either mount another diskette or deallocate any data
set on the current volume.

D-32 4700 Programming Library, Volume 2: Disk and Diskette Programming

Instruction

LDKT

Status Bits

-1------ 1-------
(hex 4080)

-1------ 1--1----
(hex 4090)

Condition

Unit Exception, Insufficient Diskette Space:

The sectors required for the data-set expansion will not be
available after compression or sufficient sectors are not
available to complete the compress process due to track alignment.

Unit Exception, Space Unavailable, LREAD,REPLACE:

No space left for implicit secondary
extent needed.

Action: Either mount a new volume, or deallocate
the current data set(s) at the desired location
containing the needed sectors.

Unit Exception, Space Unavailable:

LDKT (Allocate):

A specific extent location was given and it overlaps one or
more existing data-set extents.

No specific extent location was given, but the required num
ber of contiguous sectors was not available anywhere on the
diskette.

Action: Either mount a new volume, or deallocate the current
data set(s) at the desired location containing the needed
sectors.

Unit Exception, Space Unavailable:

For disk, the amount of contiguous space requested does
not exist.

For disk, another secondary extent is needed to hold a new
data-set label in SYSDSLBL but is not available.

Action: Truncate or deallocate a data set to provide the needed
sectors.

Unit Exception, Too Many Defaults:

An attempt was made to format a blank (unformatted)
diskette with one or more default values in the
parameter list.

Action: In order to format a blank diskette, no
default values can appear in the parameter list.

Instructions

COMPDKT
LDKT
LWRITE
REPLACE

FORMDKT

AppendiX D. Status Codes for Disk and Diskette D~33

Status Bits

-1------1--1 .. -1-
(hex 4092)

-1------ 1--1--11
(hex 4093)

-1------ 1--1-1-
(hex4094)

-1------ 1--1-1-1
(hex 4095)

-1-----1 --------
(hex 4100)

Condition

Unit Exception, Invalid Diskette Type:

Diskette type in parameter Ust is invalid for the
diskette drive.

Action: Attempt the operation on a drive that is
compatible with the specified diskette type, or correct
the parameter list and retry.

Unit Exception, Wrong Diskette Type:

Diskette type in parameter list is not compatible with
the mounted diskette.

Action: Mount the correct diskette or correct the
diskette type in the parameter list and retry.

Unit Exception, Invalid Sector Count:

The sectors to truncate from a specified data set
(parameter list value) was greater than the current
defined extent size.

Action: Correct the parameter list.

Unit Exception, Invalid Record Length:

The data record length in the parameter list is
invalid for the mounted diskette, or the default
record length from the diskette is invalid.

Action: Correct the record length in the parameter
list and retry.

Unit Exception, Invalid Record Length:

LDKT (Allocate)

For RKAP, KSAP, TEMP, or ASDS data-set types, the diskette
must be formatted in 256-byte sectors.

Action: Correct the parameter list and retry.

Unit Exception, Incorrect Length:

LDKT (Allocate):

The physical sector length specified for a data set does not
match the sector length on the currently mounted diskette.

· Action: Change either the volume or the parameter list.

D-34 4700 Programming Library, Volume 2: Disk and Diskette Programming

lnstructioll

FORMDKT

FORMDKT

COMPDKT

FORMDKT

LDKT

Status Bits

1------- --------
(hex 8000)

1------- -------1
(hex 8001)

1------- ------1-
(hex 8002)

1------1 -------1
(hex 8101)

1-----1- --------
(hex 8200)

Condition

Intervention Required:

Any function:

The door of the diskette drive is open
or the disk/ diskette
is not ready or not rotating at operational speed.

Action: Ensure that the diskette
is in the correct drive, then
close the diskette door and retry the instruction.
If the status still occurs,
consult your service representative.

Intervention Required, User-Declared:

Any function:

A station has executed a SETDSKT instruction, declaring
the diskette drive to be not ready.

Action: Defined by the controller application program.
SETDSKT could be issued to declare the drive ready.

Intervention Required, Diskette Not Stopped:

FORMDKT or COMPDKT was requested on the primary drive
and the primary drive was not logically stopped.

Action: Remove the diskette currently loaded, then
insert the diskette to be formatted or compressed
into the primary drive and try again.

Intervention Required, Wrong Length Sectors:

Any function:

The currently mounted diskette is not formatted with
either 128- or 256-byte sectors.

Action: Mount another diskette.

Intervention Required, Unit Check:

The first attempt to access the disk or diskette failed.

Action: Check that the diskette type is compatible
with the diskette drive.
Retry the operation; if the problem persists,
inform your service representative.

Instruction

Any
Disk/Diskette
Function

Any
Diskette
Function

FORMDKT
COMPDKT

Any
Diskette
Function

Any
Disk/Diskette
Function

AppencliX D. Status Codes for Disk.and Diskette D-35

D~36 4700 Programming Library, Volume 2: Disk and Diskette Programming

Appendix E. Statistical Counters

Controller Diskette

Controller Disk

Counter
1
2
3
4
5
6
7
8
9

Counter
1
2
3
4
5
6
7
8
9
10
11

Explanation
Intervention required
Command reject
Record not found
Cyclic redundancy check (CRC) errors
Disk format error
Machine check
Seek failure
Overrun
Permanent write errors in the temporary file

Explanation
CRC Error
Not Ready
No Alternate Sectors Available
Machine Check
Data Unsafe
Alternate Assignment Failed
Seek failure
Equipment Check
Record Not Found
Successful ECC Correction
Alternate Sector Assigned

Appendix E. Statistical Counters E~ 1

E-2 4700 Programming Library, Volume 2: Disk and Diskette Programming

Appendix F. Diskette Initialization

Although the following description is specifically about diskette initialization and
use by a controller, the description of an initialized diskette also applies to new
diskettes received from the manufacturer except that a new diskette will not
contain defective areas.

One-sided diskettes contain 77 tracks. When these tracks are initialized by the
controller, they are numbered sequentially beginning with 0. If a defective track
is encountered, that track is not numbered and the numbering continues on the
next non-defective track. (Up to two defective tracks can be skipped in this
manner.) If more than two defective tracks are found, you cannot use the
diskette. An initialized diskette will therefore contain tracks numbered 0-7 4 (if
two defective tracks), 0-75 (if one defective track), or 0-76 (no defective
tracks). Track 0 is always the label track.

Two-sided diskettes contain 77 tracks on each recording surface. The
initialization process for two-sided diskettes is similar to that for one-sided
diskettes. All of the physical track locations are initialized, only nondefective
tracks are numbered. If a defective track is encountered, that track and the
corresponding track on the other side are not numbered. A two-sided diskette
will therefore have a minimum of 75 numbered tracks (0 through 74 on each side)
and a maximum of 77 numbered tracks (0 through 76 on each side).

Track 0, side 0 is a label track for all diskettes. On a two-sided diskette, track 0,
side 1 is also a label track. On data diskettes, tracks 1 through 7 4 are usable for
data on both sides. Tracks 75 and 76 (if present) are reserved on either a one- or
two-sided diskette.

Two-sided diskettes are recorded and read by the controller in "cylinder mode".
For example, on a Diskette 2 with 256-byte sectors, track 5, sector 15, side 0, is
followed by track 5, sector 1, side 1. The label tracks on both Diskettes 1 and 2
always contain twenty six 128-byte sectors.

A Diskette 2D contains twenty-six 128-byte sectors on track 0, side 0, and
twenty-six 256-byte sectors on track 0, side l. These sectors are used for error
mapping and for volume and data-set labels.

All tracks other than track 0 on Diskettes 1 and 2 are initialized to contain either
fifteen 256-byte sectors per track or twenty-six 128-byte sectors per track (only
one sector size is permitted on each diskette); Diskettes 2D contain twenty six
256-byte sectors per track. 4700 installation and operating diskettes are
initialized with 256-byte sectors. You can use either 128- or 256-byte sector
diskettes for data storage. The actual number of tracks available for files depends
on the options specified during the controller configuration procedure and the
number and size of the controller application programs. Sector sizes are
established when the diskette is initialized and cannot be changed by the
controller. the installation diskette supplied by IBM that can be used to initialize
diskettes to the one- or two-sided formats.

Appendix F. Diskette Initialization F-1

Data sets are allocated, and controller data and application programs are. placed. ,
on the operating diskette using system monitor facilities provided with the · ·
installation diskette. During operatiort, the controller maintains the diskette, as
necessary, by relocating data records from defective locations to an error data set.

F-2 4700 Programming Library, Volume 2: Disk and Diskette Programming

Bibliography

The publications listed below contain information that may be
useful to persons programming a 4700 system that includes
disks and diskettes.

IBM Vocabulary for Data Processing Telecommunication and
Of /ice Systems, GC20-1699

IBM System/370 Bibliography, GC20-0001

IBM System/370 Bibliography of Industry Systems and
Application Programs, GC20-0370

IBM 4700 Finance Communication System:

System Summary, GC31-2016

Subsystem Operating Procedures, GC31-2032

Subsystem Problem Determination Guide, GC31-2033

Host Support User's Guide, SC31-0020

4701 Controller Operating Instructions, GC31-2022

Bibliography X-1

X-2 4700 Programming Library, Volume 2: Disk and Diskette Programming

Index

A

absolute address operations 2-2
absolute addressing 1-3, 2-1, 2-3, 4-46
absolute addressing, diskette 1-3, 2-4
absolute addressing, disks 2-3
access inhibit 4·34
access method, extended disk and diskette 3-1
Access Path, Keyed Sequence 3-1
Access Path, Random Keyed 3-1
access permitted 4-35
accessing permanent files 3-11
accessing temporary files 3-11
allocate 4-13, 4-15
allocate data set 3-6
allocate disk space 3-10
Allocate, LDKT 3-6, 4-13
alternate relocate control records 2-10, 3-8
arrival sequence data set 3-1, 3-3
ASDS 3-1, 3-3, 4-14
ASDS characteristics 3-3
ASDS referencing 3-4
associated data set number 4-23
associated data sets 4-16, 4-27
available sectors 2-25

B

basic exchange 3-2
basic exchange data set 3-2
basic exchange diskettes 2-3
basic programming, disk and diskette 2-1
bibliography X-1
buffer inquiry 4-28
buffer release 4-31
buffer selection 3-5
buffers, data 3-5
buffers, specifying 3-5

c
characteristics ASDS 3-3
characteristics EDDS 3-3
characteristics ESDS 3-2
characteristics KSAP 3-5
characteristics RKAP 3-5
characteristics temporary file 3-11
characteristics, data set 3-1
check codes C-1
check status 4-11
Close, LDKT 3-6, 4-35
closing data set 4-36
closing keyed data set 4-36
coding rules 1-4
COMF 2-18
Communications Network Management/Controller Support

(CNM/CS) 2-20
COMPDKT 4-1
composite file 2-18, 4-43, 4-46, 4-57
composite file sequence numbers 2-25
composite file, LREAD 2-19
configuration specifications 1-2
control records 2-10, 3-7
control records, alternate relocate 3-8

control records, delete 3-7
control recdrds, sequential relocate 3-8
counter, Jog 2-23
counter, temporary file 2-23
counters, statistical E-1
CPGEN 2-11, 3-12

D

data buffers 3-5
data integrity, L WRITE 2-24
data integrity, temporary file 2-24
data set allocation 4-13
data set capacity 3-11
data set characteristics 3-1
data set error recovery 3-10
data set labels 3-10
data set logical records 3-6
data set names 4-33
data set space 2-25
data set space available 3-12
data set status 4-11
data set write errors 3-9
data set, allocate 3-6
data set, arrival sequence 3-1, 3-3
data set, associated 4-16
data set, basic exchange 3-2
data set, close 4-35
data set, deallocate 4-37
data set, defining 3·6, 3-7
data set, direct 3-3, 3-7
Data Set, EDAM Direct 3-1
Data Set, EDAM Sequential 3-1
data set, ERRORSET 3-8
data set, field 3-4
data set, H exchange 3-3
data set, host transmission facility 3-7
Data Set, Keyed Access 3-4
data set, open 4-23
data set, opening direct 3-12
data set, processing 3-6
data set, query 4-26
data set, rename 4-33
data set, reorganize 4-33
data set, TEMP 3-11
data set, temporary file 3· 1
data set, unkeyed 3-4
data sets, associated 4-27
data sets, exchange 3-2
data sets, sequential 3-2
data, compress diskette 4-1
deallocate 4-37
DEFAPB B-2
DEFCDK 4-1, B·2
DEFDKT 4-13, 4-38, B-2
defective sectors 3·7
DEFESP B-7
DEFFDK 4-7, B-7
DEFGMS B-7
defining data set 3-6, 3-7
DEFSMS B-7
DELETE 3-6, 4-5
delete control records 3-7
DELETE PLR 4-5

Index X-3

delete records 2-10, 4-5
delete sector 3-7, 3-11
diagnostic diskette 2-2
direct 1-2
direct data set 3-1, 3-3, 3-7
direct data set, opening 3-12
disk 1-2
disk information 3-12
disk instructions, using 3-5
disk performance 2-29
disk programming 3-10
disk space allocation 3-10
disk storage 1-1
diskette command, start 2-2
diskette command, stop 2-2
diskette format 4-7
diskette information 3-12
diskette instructions, using 3-5
diskette multiple-sector 2-26
diskette performance 2-28
diskette programming 3-7
diskette states 2-1
diskette 1 1-1
diskette 2 1-1
diskette 2D 1-1
diskette, absolute addressing 2-4
diskette, diagnostic 2-2
diskette, initialized 2-8
diskette, operating 2-2
disks, absolute addressing 2-3
drive, primary 2-14
DSID operand 3-6
DSL operand 4-11
DUMPAP 1-3

E

EDAM 1-2, 3-1
EDAM Direct Data Set 3-1
EDAM functions 3-6
EDAM programming 3-7
EDAM Sequential Data Set 3-1
EDDS 3-1, 3-3, 4-14
EDDS characteristics 3-3
EDDS record deleted 4-22
EDDS referencing 3-4
ERMAP 3-7, 3-8
error recovery 3-10
error status 2-22
error, LREAD 2-22
error, LWRITE 2-22
error, REPLACE 2-22
errors, permanent file 2-12
errors, temporary file 2-22
errors, unrecoverable write 3-9
ERRORSET 1-3, 3-7, 3-8
ESDS 3-1, 3-2, 4-14
ESDS characteristics 3-2
ESDS referencing 3-4
exchange data sets 1-2, 3-2
exchange, basic 3-2
exchange, H 3-2
expansion unit 1 "1
Extended Disk and Diskette Access Method 3-1
extended header label query 4-26

extended parameter area 4-16

F

field, unkeyed data set 3-4
file errors, temporary 2-22
file instructions 3-5
file records, replacing temporary 2-22
file, allocating permanent 2-11
file, allocating temporary 2-12
file, characteristics temporary 3-11
file, data set temporary 3-1
file, initializing temporary 2-13
file, permanent 2-10, 2-11
file, reading temporary 2-14, 2-17
file, temporary 2-10, 2-12
file, writing temporary 2-14·
FILES 1-2, 2-11, 2-12, 2-18, 2-19, 3-5, 3-12
files, accessing 3-11
FILES, counters 2-23
FILES, TF operand 2-12
format diskette 4-7
FORMDKT 2-26, 4-7

G

Global Machine Segment 3-12
GMS 3-12

H

H exchange 3-2
H exchange data set 3-3
header label update 4-25
hexadecimal 1-4
host transmission facility 3-7

I

1/0 consideration, diskette multiple-sector 2-26
index counters 2-23
index, primary 4-58
index, reset log 2-22
index, secondary 4-58
index, TF unit 2-15
indexes, specifying subfile .2-16
indexing, composite file 2-18
INDXC 2-18
inhibit access 4-34
initialized diskette 2-8
initializing file, temporary 2-13
inquiry, unallocated space 4-30
inquiry, volume id 4-29
installation diskette 1-1, 3-7, 3-11, 4-22
instructions, EDAM 3-5
instructions, permanent file 3-5
instructions, temporary file 3-5
instructions, using disk 3-5
instructions, using diskette 3-5

X-4 4700 Programming Library, Volume 2: Disk and Diskette Programming

' '

Keyed Access Data Set 3-4
keyed data set 3-4, 4-36
Keyed Sequence Access Path 3-1
KSAP 3-1, 3-4, 4-14, 4-34
KSAP characteristics 3-5

L

label capacity 3-11
labeled diskette 1-1
labels, data set 3-10
LCHECK 2-4, 4-11
LCHECK OSK 2-13, 2-24, 4-11
LCHECK PLR 4-11
LDKT 3-2, 4-13
LDKT Allocate 3-6, 4-13
LDKT buffer inquiry 4-28
LDKT buffer release 4-31
LDKT Close 3-6
LDKT error recovery 3-10
LDKT inhibit access 4-34
LDKT Open 3-6, 3-11, 4-23
LDKT permit access 4-35
LPKT query 4-26
LDKT query extended header label 4-26
LDKT query open status 4-29
LDKT rename 4-33 ·
LDKT reorganize 4-33
LDKT reset input pointer 4-32
LDKT reset output pointer 4-32
LDK'f unallocated space inquiry 4-30
LDKT update 4-25
LDKT volume id inquiry 4-29
limits, reorganization 4-34
log counter 2-23
log index, reset 2-22
log, system 2-20
logical record 4-47, 4-52
logical record number 1-2
logical records processing 3-6
LREAD 2"1, 2-14, 2-17, 2-19, 2-22, 4-39
LREAD A 2-3, 4-41
LREADC 4-43
LREAD DSID 4-44
LREAD error 2-22
LREAD L 4-43
LREAD 1> 2-11, 4-44
LREAD PBN 2-3, 4-42
LREAD PLR 4-45
LREAD TFn 4-42
LWRITE 2-4, 2-14, 2-16, 2-20, 2-24, 3-11, 4-49
LWRITE error 2-22
LWRITE L 4-50
LWRITE PLR 4-11, 4-51
L WRITE TFn 4-49

M

maximum PBN 2-3
multiple extents 3-10
multiple-sector 2-26
multiple-sector READ 2-26
multiple-sector REPLACE 2-26, 2-27
multiple-sector skip factor 2-26

N

names 4-33
Network Problem Determination Analysis (NPDA) 2-20
number, associated data sets 4-23
number, secondary extents 4-22

0

Open 4-24
open data set 3-11
open status 4-29
open temporary file 3-11
Open, LDKT 3-6, 4-23
operand COMP 2-18
operand DSID 3-6
operand DSL 4-11
operand INDXC 2-18, 2-19
operand PLR 3-6
operand 2 4-1
operating diskette 2-2
operation, LCHECK OSK 2-24
option, temporary file 4-24
optional modules 3-1
OPTMOD 1-2, 4-1, 4-7
overlay sections 2-2

p

page 3-10
parameter, extended 4-16
PBN 2-1, 2-3
PBN, maximum 2-3
performance, disk 2-29
performance, diskette 2-28
permanent file 1-2, 2-1, 2-10, 2-11, 4-47
permanent file access 3-11
permanent file instructions 3-5, 3-12
permanent file, allocating 2-11
permanent file, errors 2-12
permanent files 2-2
permit access 4-35
physical block number 2-1, 2-3, 4-46
physical record sequence code 2-26
PLR record processing 3-6
pointer, reset input 4-32
pointer, reset output 4-32
·primary diskette, protecting 2-14
primary drive 1-1, 2-2, 2-14
primary index 4-58
processing data set 3-6
processing logical records 3-6
program check codes C-1
pmgramming, disk 3-10
programming, diskette 3-7
protecting primary diskette 2-14
publications, related X-1

Index X-5

Q

query data set 4-26
query extended header label, LDKT 4-26
query open status 4-29
query, LDKT 4-26

R

Random Keyed Access Path 3-1
read index buffer 2-15
READ multiple-sector 2-26
reading records, composite file 2-19
reading records, !iUbfile 2-17
record processing using PLR 3-6
record, subfile member 2-16
records referenced 3-4
records, alternate relocate control 3-8
records, control 3-7
records, delete control 3-7
records, keyed access 3-4
records, reading 2-14
records, reading composite file 2-19
records, replacing temporary file 2-22
records, sequential relocate control 3-8
records, temporary file 2-14, 2•17
records, unkeyed data set 3-4
recovery, reorganization 4-34
referencing ASDS 3-4
referencing EDDS 3-4
referencing ESDS 3-4
referencing TEMP 3-4
related publications X-1
relative addressing 1-2
release buffer 4-31
relocate sector 3-7, 3-11
rename data set 4-33
reorganization limits 4-34
reorganization recovery 4-34
reorganize data set 4-3 3
REPLACE 2-1, 2-22, 4-53
REPLACE A 2-3, 4-56
REPLACE C 4-57
REPLACE CR 4-56
REPLACE DSID 4-58
REPLACE error 2-22
REPLACE P 2-11, 4-58
REPLACE PBN 2-3, 4-56
REPLACE PLR 4-58
REPLACE TFn 4-57
REPLACE, multiple-sector 2•26, 2-27
requirements CPGEN 3-12
reset input pointer 4-32
reset output pointer 4-32
reset record 4-22
reset temporary file 4-63
retrieve, record 2-17
RKAP 3-1, 3-4, 4-14
RKAP characteristics 3-5
RKAP data set, SYSDSHSH 3-11
RKAP secondary extents 3-10

s
secondary extent 4-51
secondary extents 3-10, 4-16, 4-27
secondary extents allocation 4-18
secondary extents number 4-22
secondary index 4-58
sector assignment 4-18
sector deletion 3-7, 3-11
sector relocation 3-7, 3-11
sectors, available 2-25
sectors, defective 3-7
sectors, page equivalent 3-10
Sectors, unwritten 2-25
Segment 0 2-16
Segment 1 2-14
Sequence Access Path, Keyed 3-1
sequence code physical record 2-26
sequence numbers 2-25
sequential 1-2, 1-3
sequential data set 3-2
Sequential Data Set, EDAM 3-1
sequential relocate control records 3-8
sequentially relocated records 2-10
service function LDKT 4-13
session ID 2·12
SETDSKT 2-13, 2-22, 4-63
skip factor 2-26
SMSADS 3-12
SMSDID 3-6, 3-11, 4-5, 4-11, 4-24, 4-25, 4-28 .• 4-29, 4-31, 4-32,

4-35
SMSDST 2-10
SMSIML 2-15
SMSKEY 4-45, 4-52
SMSRPS 1-4, 2-12, 2-23, 2-25, 4-5
SMSRSN 1-4
SMSUNK 4-40, 4-52
space allocation, page 3-10
space inquiry, unallocated 4-30
specifying buffers 3·5
start diskette command 2-2
started state 2-2
startup 2-13
statistic.al counters E-1
status, data set 4-11
status, error 2·22
stop diskette command 2-2
stopped state 2-2
storage requirements, temporary file 2-23
subfile 2-16
subfile counter 2-23
subfile index 2-16
subfile records, reading 2-17
subfile sequence numbers 2-25
subfiles 2-12
subfiles, specifying 2·16
syntax 1-4
SYSAPnnn 1-3
SYSBAS 1-3
SYSCPG 1-3
SYSCTL 1·3
SYSDSHSH 1-2, 1-3, 3·11
SYSDSLBL 1-2, 1-3, 3-7, 3-10
SYSDSU 1-3 .
SYSLCF 1-3
SYSOPT 1-3
SYSPF 1-2, l-3, 2-1
SYSPF allocate 3-11
SYSPF deallocate 3· 11
SYSSM 1-3

X*6 47-00 Programming Library, Volume 2: Disk and Diskette Programming

SYSSTl 1-3
system log 2-20, 4-43, 4-46, 4-50, 4-52
system log, LREAD 2-22
system log, L WRITE 2-20
system log, reading 2-22
system log, writing 2-20
system monitor 1-1, 2-2, 2-4, 2-13, 2-20
SYSTF 1-2, 1-3, 2-1

T

TEMP 3-1, 4-14
TEMP data set 3-11
TEMP multiple extents 3-10
TEMP referencing 3-4
temporary file 1-2, 2-10, 2-12, 4-46, 4-52
temporary file access 3-11
temporary file allocation units 2-11
temporary file characteristics 3-11
temporary file counter 2-23
temporary file data integrity 2-24
temporary file data set 3-1
temporary file errors 2-22
temporary file instructions 3-5
temporary file option 4-24
temporary file records 2-14
temporary file records, locate 2-15
temporary file records, replacing 2-22
temporary file sequence numbers 2-25
temporary file, allocating 2-12
temporary file, initializing 2-13
temporary file, open 3-11
temporary file, reading 2-14
temporary file, reset 2-13, 4-63

temporary file, system log 2-20
temporary files 2-2
TF operand 2-12
TF Unit counters 2-23
TF unit format 2-13
TF Units 2-11, 2-12, 4-25
track 0 1-1, 2-10
transient programs 2-2

u
unkeyed data set 3-4
unkeyed example 3-4
unrecoverable write errors 3-9
unwritten sectors 2-25
update, LDKT 4-25
using basic disk instructions 3-5
using basic diskette instructions 3-5
using permanent file instructions 3-12
utility functions 4-31

v
volume control access 4-34
volume id inquiry 4-29

w

write errors 3-9
writing records, temporary file 2-14

Index X-7

X-8 4700 Programming Library, Volume 2: Disk and Diskette Programming

I
l
I
I
I

4700 Finance Communication System
Controller Programming Library
Volume 2
Disk and Diskette Programming

Order No. GC31-2067-l

This manual is part of a library that serves as a reference source for systems analysts,
programmers, and operators of IBM systems. You may use this form to communicate your
comments about this publication, its organization, or subject matter, with the understanding
that IBM may use or distribute whatever information you supply in any way it believes
appropriate without incurring any obligation to you.

Your comments will be sent to the author's department for whatever review and action, if any,
are deemed appropriate. Comments may be written in your own language; English is not
required.

Note: Copies of IBM publications are not stocked at the location to which this form is
addressed. Pfoase direct any requests for copies of publications, or for assistance in using your
IBM system, to your IBM representative or to the IBM branch ofFzce serving your locality.
Possible topics for comment are:

Clarity Accuracy Completeness Organization Coding Retrieval Legibility

If you wish a reply, give your name, company, mailing address, and date:

READER'S
COMMENT
FORM

What is your occupation? ______________________________ _

Number of latest Newsletter associated with this publication: _________________ _

Thank you for your cooperation. No postage stamp necessary if mailed in the U.S.A.
(Elsewhere, an IBM office or representative will be happy to forward your comments or you
may mail directly to the address in the Edition Notice on the back of the title page.)

GC31-2067-1

Reader's Comment Form

_____ Fold.:d~':_-______ Plea~~ot Staple __________ Fold and Tap~_~

111111

BUSINESS REPLY MAIL
FIRST CLASS PERMIT NO. 40 ARMONK, N.Y.

POSTAGE WILL BE PAID BY ADDRESSEE:

International Business Machines Corporation
Department 78C
1001 W.T. Harris Boulevard
Charlotte, NC, USA 28257

NO
POSTAGE

NECESSARY
IF MAILED

IN THE
UNITED
STATES

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

~---~
Fold and Tape Please Do Not Staple Fold and Tape I

--- - -®
--~-- - ---- ---- -.. ---- - - ------ --....... _. _' -

C·
en· ;
7" I
Cl)

5. :
c' en·;
7" '
~I
S'

" 0
<.C
Cl) .

3 :
3 : :;· .

<.C I

en ~
w' '
0: ""I w,
0
0' co
0
0

~· "" (

~

-------= -------- - - ---------~-

