
------= -------- - ------ ----·-

Publication Number
GC31-2070-0

4700 Finance
Communication System

Controller Programming
Library

Volume 5
Cryptographic
Programming

File Number
8370/4300/8100/834-30

First Edition (July 1983)

This edition applies to Release 2 of the 4700 Finance Communication System and
to all subsequent releases and modifications until otherwise indicated in new
editions or Technical Newsletters (TNLs). This publication obsoletes the IBM
4700 Finance Communication System Cryptographic Facilities Guide and Reference,
GC31-2045.

Changes occur often to the information herein; before using this publication to
install or operate IBM equipment, consult the latest IBM System/370 Bibliography
of Industry Systems and Application Programs, GC20-0370, for the editions that are
applicable and current.

References in this publication to IBM products, programs, or services do not imply
that IBM intends to make these available in all countries in which IBM operates.
Any reference to an IBM program product in this publication is not intended to
state or imply that only IBM's program product may be used. Any functionally
equivalent program may be used instead.

Publications are not stocked at the address given below; requests for IBM
publications should be made to your IBM representative or to the IBM branch
office serving your locality.

A form for reader's comments is provided at the back of this publication. Address
comments about this manual to IBM Corporation, Information Development,
Department 78C, 1001 W.T. Harris Blvd., Charlotte, NC 28257 USA. IBM may
use or distribute any of the information you supply in any way it believes
appropriate without incurring any obligation to you.

© Copyright International Business Machines Corporation 1983

Preface

This is Volume 5 of the 4700 Controller Programming Library- one of a set of
six volumes for the 4 700 programmer. Figure 0-1 on page iv summarizes the
topics covered in the other volumes. All six volumes are available from your IBM
representative or local branch office under a single order number (GBOF-1387).

Volume 5, Cryptographic Programming, describes the fBM 4700 Finance
Communication System cryptographic facilities, and tells you how to use them.

You need this information if your responsibilities include the following:

Designing, coding, or testing controller application programs that use the 4 700
cryptographic facilities

Establishing procedures for the generation, distribution, and control of
cryptographic keys

Installing a 4700 system that interacts with a cryptographic subsystem at the
central site.

The first section of this manual introduces you to the 4 700 cryptographic
facilities. Subsequent sections tell you how to use the facilities to:

• encipher and decipher text
• generate and manage cryptographic keys
• authenticate messages
• process personal identification numbers (PINs).

This manual can be used both as a guide and as a reference. If you are already
familiar with the concepts explained in this manual and simply want to refer
quickly to a specific instruction, use the alphabetized descriptions in Chapter
10, "4700 Cryptographic Instructions." (There is also a complete alphabetic index
at the back of this book.)

Before you can use the 4 700 cryptographic facilities, you must know how to use
the other 4 700 facilities described in Volume I: General Controller Programming,
GC31-2066. Other related publications that you may need to consult are listed
in the Bibliography at the end of this manual.

Preface iii

VOLUME 5: CRYPTOGRAPHIC PROGRAMMING (GC31-2070)

Figure 0-1. 4700 Controller Programming Library (GBOF-1387)

iv 4700 Controller Programming Library, Volume 5: Cryptographic Programming

Contents

Chapter 1. 4700 Cryptography 1-1
Two Examples of 4700 Cryptography 1-1

An Offline PIN Validation 1-1
Encrypted Message Transmissions 1-2

Who Uses the 4700 Cryptographic Facilities? 1-4
Installing the Supporting Modules of Controller Data 1-5

3600-Level Cryptography 1-6
4700-Level Cryptography 1-7 ·

Cryptography at the Host Computer 1-8

Chapter 2. Fundamentals of Enciphering and Deciphering 2-1
Enciphered Data, Keys, and PINs 2-1
Notation 2-2
Cipher Blocks 2-2
Cipher Block Chaining 2-2
Notes on Using ENCIPHER and DECIPHER 2-4

Chapter 3. Cryptographic Keys 3-1
The Controller Master Key (KM) 3-1

Generating the Master Key 3-2
Generating the Master Key Parts 3-2
Determining the Verification Code 3-3

Master Key Variants 3-4
First Variant (KMl) 3-4
Second Variant (KM2) 3-5
Third Variant (KM3) 3-5
Generating Variants of the Master Key 3-5
Enciphering Under Variants of the Master Key 3-6

Cross-Domain Keys 3-6
Cross-Domain Keys in Cryptographic Storage 3-7
Enciphered Cross-Domain Keys in Program Storage 3-7
Example 1: Exchanging Session Keys (Using Cross-Domain Keys in Cryptographic

Storage) 3-8
Suggestions for Using Cross-Domain Keys 3-9
Generating and Loading Cross-Domain Keys 3-10

Data-Encrypting Keys and PIN-Encrypting Keys 3-11
Generating Data-Encrypting Keys 3-12
Distributing Data-Encrypting Keys 3-12
How Many Data-Encrypting Keys Does a Program Need? 3-12
Generating Keys in a 4700 Program 3-13.

Chapter 4. Exchanging Keys with Programs in Other Domains 4-1
The RFMK Instruction 4-1
The RTMK Instruction 4-2
Three More Communication Examples 4-3

Example 2. Exchanging Session Keys (Using Cross-Domain Keys in Program Storage) 4-4
Example 3. A Key Validation Protocol 4-6
Example 4. Initiating a Cryptographic Session 4-8

Chapter S. Authenticating Messages S-1
MACGEN Conventions that Both Programs Should Observe 5-2
Authenticating Enciphered Data 5-3

Example 5. Authenticating Messages 5-4

Chapter 6. Validating and Translating Personal Identification Numbers 6-1
PIN Validation 6-1

Obtaining the PIN 6-2
PIN Formats 6-3
PINData 6-6
Example 6. Validating a PIN 6-8

PIN Translation 6-11
Example 7. Translating a PIN 6-13

Managing PIN Keys 6-16
Key Storage 6-17
Key Generation and Distribution 6-17

Contents V

Protecting PINs 6-17
Dictionary Attacks 6-18
Exhaustion Attacks 6-18

Chapter 7. Using the Encrypting PIN Keypad 7-1
Entering the Key 7-2

Converting KPl to 24-Key Format 7-3
Verifying the Key 7-6
How the Program and the Keypad Interact 7-7

Chapter 8. Host Support Encryption Routines 8-1
The BDKDPRS Routine 8-1

The 3624 PIN Validation Algorithm 8-1
Generating PINs Without Offset Data 8-2

Calculating Newpin 8-3
Assigning the PIN 8-4
Summary of Institution Responsibilities 8-5

Generating PINs With Offset Data 8-6
Constructing Oldpin 8-7
Calculating the Offset Data 8-8
Summary of Institution Responsibilities 8-9

The BDKDES Subroutine 8-10
BDKDES Input 8-10
BDKDES Output 8-10

The BDKKEYCC Subroutine 8-11

Chapter 9. Maintaining Compatibility Between Different Levels of Cryptography 9-1
Implementing 3600-Level Cryptography in a 4700 Controller 9-1

Migrating 3 600 Instructions 9-1
The 4700 ENCODE and DECODE Instructions 9-2

Implementing 3600-Level Cryptography with the OS/VS Cryptographic Subsystem 9-2
Implementing 4700-Level Cryptography in Host Computers 9-3

4700-Level Cryptography with VSE 9-3
4700-Level Cryptography with System/34 9-3
Cryptography with 8100 Computers 9-4

Chapter 10. 4700 Cryptographic Instructions 10-1
Syntax Notation Key 10-1

DECIPHER--Decipher Text (4700-Level) 10-3
DECODE--Decipher Text (3600-Level) 10-7
ENCIPHER-Encipher Text (4700-Level) 10-9
ENCODE--Encipher Text (3600-Level) 10-13
KEYGEN-Generate Cryptographic Key 10-15
MACGEN-Generate Message Authentication Code (MAC) 10-17
PINTRANS-Translate a Personal Identification Number (PIN) 10-21
PINVERIF--Validate a Personal Identification Number (PIN) 10-25
RFMK--Reencipher From Master Key 10-29
RTMK-Reencipher To Master Key 10-31

Chapter 11. Guidelines for Coordinating 4700 and OS/VS Cryptographic Facilities 11-1
Communication Considerations 1 J -1
Data Encryption with the OS/VS Cryptographic Subsystem 11-2
Selection, Distribution, and Installation of Keys 11-4

Generating Keys with the OS/VS Cryptographic Subsystem 11-5
Enciphering Under Controller Variants with the OS/VS Cryptographic Subsystem 11-6
Generating Data-Encrypting Keys in an OS/VS Cryptographic Subsystem 11-6
The OS/VS Cryptographic Subsystem Key Data Set 11-7

An Example of Generating Data-Encrypting Keys in OS/VS 11-7
Message Encryption Protocols 11-8

Reenciphering Keys with the OS/VS Cryptographic Subsystem 11-9
Message Authentication Based on KMAC 11-11

Emulating the 4700 MACGEN Instruction with the OS/VS Cryptographic
Subsystem 11-13

Host PIN Security 11-1 5
PIN Formats 11-16
Managing PINs with the OS/VS Cryptographic Subsystem 11-16
Emulating the PINTRANS Instruction with the OS/VS Cryptographic Subsystem 11-17

vi 4700 Controller Programming Library, Volume 5: Cryptographic Programming

Appendix A. Machine Instruction Formats A-1
DECIPHER A-1
DECODE A-2
ENCIPHER A-2
ENCODE A-2
KEYGEN A-3
MACGEN A-3
PINTRANS A-4
PINVERIF A-5
RFMK A-6
RTMK A-6

Appendix B. COPY File Fields B-1

Appendix C. Troubleshooting the Cryptographic Facilities C-1
Automatic Testing C-1
Testing With the System Monitor C-1

Appendix D. Program Check Codes D-1

Appendix E. Status Codes E-1
SMSDST = X'0200' (Unit Check) E-1
SMSDST = X'2001' (Data Check) E-1
SMSDST = X'2002' (Data Check) E-1
SMSDST = X'2004' (Data Check) E-1
SMSDST = X'2008' (Data Check) E-1
SMSDST = X'2010' (Data Check) E-2
SMSDST = X'2020' (Data Check) E-2
SMSDST = X'2040' (Data Check) E-2
SMSDST = X'2080' (Data Check) E-2
SMSDST = X'8000' (Intervention Required) E-2

Appendix F. Statistical Counters F -1
Counter I-Machine Check F-1
Counter 2-Intervention Required F-1
Counter 3-Invalid Key Checksum F-1
Counter 4--Unsuccessful Write F-2
Counter 5-8-Reserved F-2
Counter 9-11-Attempted PIN Validation F-2
Counter 12-14--Unsuccessful PIN Validation F-2
Counter 15-17-Successful PIN Translation F-2
Counter 18-32-Reserved F-2

Glossary X-1

Bibliography X-3

Index X-S

Contents vii

viii 4700 Controller Programming Library, Volume 5: Cryptographic Programming

Figures

0-1. 4700 Controller Programming Library (GBOF-1387) iv
1-1. Cryptography in a Banking Environment 1-3
1-2. Levels of Cryptography 1-7
1-3. Cryptographic Facilities for Host Computers 1-9
2-1. Cipher Block Chaining 2-3
3-1. Exchanging Session Keys 3-9
4-1. Exchanging Session Keys (Using Cross-Domain Keys in Program Storage) 4-5
4-2. A Key Validation Protocol 4-7
4-3. Initiating a Cryptographic Session 4-9
5-l. Authenticating Messages 5-5
6-1. Information Required for PIN Validation 6-7
6-2. Validating a PIN 6-9
6-3. Translating a PIN 6-14
7-1. Encrypting PIN Keypad 7-1
7-2. Encrypting PIN Keypad Switch 7-3
7-3. Converting KPl from Hexadecimal to Keystroke Format 7-5
9-1. Maintaining Compatibility between Host and Controller Cryptographic Programs 9 .. 4
10-1. Summary of INPPAR Settings for Each PIN Format 10-26
F-1. Summary of 4700 Cryptographic Keys F0-1
F-2. Summary of 4700 Cryptographic Instructions F0-2

Figures ix

X 4700 Controller Programming Library, Volume 5: Cryptographic Programming

Chapter 1. 4700 Cryptography

Today's financial institutions face a serious challenge: How can data be made
more secure as it moves through the institution's complex data processing system?

Data protection has always been a major concern, but recent trends have
increased its importance:

• Greater use of electronic funds transfer

• More distribution of processing from a central computer site to remote
locations

• Increased complexity of telecommunication networks

• Increased sophistication of electronic surveillance techniques

The hardware devices and programming tools provided by the IBM 4 700 Finance
Communication System can help your institution deal with this problem.

Two Examples of 4700 Cryptography

An Of/line PIN Validation

Consider as a hypothetical example the Suburban-City Bank, shown in
Figure 1-1. This bank has one large downtown office and several branch offices
in outlying parts of the city.

Suburban-City maintains its customer account information at its downtown
central site. At each branch, an IBM 4701 Controller and attached terminals
(IBM 4704 Displays and IBM 4710 Receipt/Validation Printers) aid tellers in
handling transactions. The host computer and the branches are connected by
telecommunication lines.

Suburban-City Bank has given each customer a magnetically-encoded
identification card and a personal identification number (PIN). When a customer
begins a transaction, the teller passes the customer's identification card through
the 4 704 magnetic stripe unit, and then asks the customer to enter their personal
identification number at the 4 704's encrypting PIN keypad.

As the customer enters the PIN, the keypad automatically enciphers it in
accordance with a key that Suburban-City has stored in the keypad. Thus the
PIN, were it to be electronically intercepted before reaching the 4704 or its
controller, would not be intelligible.

The Suburban-City program in the con.troller verifies that the PIN is valid, and
notifies the teller to continue with the transaction.

The program can verify the PIN without communicating with the host computer,
without deciphering the PIN, and without comparing the PIN with a stored list of
PINs.

Chapter 1. 4700 Cryptography 1-1

Encrypted Message Transmissions

Each time a Suburban-City teller processes a transaction that affects customer
account information; Suburban-City sends the transaction to the downtown
office. The branch and the downtown office are connected via public telephone
lines, so sensitive messages are exchanged in enciphered form.

When the Suburban-City program in the 4701 initiates a session with its
counterpart in the host computer, it requests an enciphered session. The host
program can comply with this request because Suburban-City Bank has installed a
cryptographic subsystem at its central site. Suburban-City Bank uses another 4701
controller for this purpose, locally-attached to its host computer. (Other
cryptographic subsystems are available, as described later.)

The 4701 application program at the branch office generates a key and exchanges
it in enciphered form with the host program. Both programs then encipher the
data being transmitted and decipher the data as it is received. The 4 700
encryption facilities enable the resulting session to have these characteristics:

• Although the session keys are related to keys that Suburban-City Bank stores
in the hardware, neither program has access to the hardware keys. The
programs handle even the session keys indirectly, and cannot determine their
values either.

• Each eight-byte block of enciphered data is related to the previous block in a
way that only the two programs can determine.

• The two programs can detect when an alteration has been made to the
enciphered data, or when one enciphered message has been substituted for
another.

• By systematically altering each successive transmission, the two programs can
detect attempts to insert a duplicate message into the session.

By employing these techniques, Suburban-City Bank minimizes the likelihood
that its daily transactions will be intercepted and misused.

1-2 4700 Controller Programming Library, Volume 5: Cryptographic Programming

Host Computer

Cryptographic
Subsystem

Suburban City Bank ©
Main Office

PIN

Telecommunication
Network

Enciphered
Messages

4700
Controller

·~ ::: "

Suburban City Bank ©
Branch Office

4 704 Display

Ftpre, l-1. Cryptography In a Banking Environment

Chapter 1. 4700 Cryptography 1-3

Who Uses the 4700 Cryptographic Facilities?

This book contains information for two kinds of users:

• Programmers who write programs that run in .the operation,al gystem. 1'ypical
programmer tasks include enciphering data. exchanging ke;y$iW-itl! a program
in the host computer, and validating PINs. · ·

• Security specialists who plan, install, and manage the systemiq whi.mthe
operational programs run. Typical security specialist tasks il'l~llde:gen~ating.
enciphering; and loading keys.

The information needed to perform these tasks is extensively i»•e~ecl The
person responsible for generating and enciphering keys can docl(J;with the. saaie
tools available to an operational program_.,. tha:t is, by writing,ami~ecutinga
utility; program in the 4701 controller to ai4 in ip:stalling or aJ.tetil1t.$B: sys~m.
Conversely, the person responsible for writing the. operationalmowam<ne~d~Ho
be aware of the manner in which the cryptographic key datalQ:l$amidefined»·amJ
so forth.

After you have become familiar with the 4700 cryptographic facilities,. you will
see that they are designed so you can largely insulate the securitx·specialist
functions from the programmer functions. Although smaller institutions may elect
to have one person be responsible for both jobs, it is better if you :keep the two
separate. This way the information generated by.the security specialist$ can be
maintained in a confidential manner.

Throughout this book, ''you'' generally means any person installing and using tbe
cryptographic facilities. Where a distinction needs to be made between the person
installing the system and the person writing the program, the latter is simply
referred to as "the program" -- for example, 11You must generate the enciphered
keys and make them available to the program."

In general, programmers will use only the facilities described in Chapter
10, "4700 Cryptographic Instructions."

Security specialists have the additional responsibilities listed below. If you are
new to 4700 cryptography, many of the terms used below will be unfamiliar.
These terms are explained in the next five chapters.

• Install the supporting modules of controller data.

• Generate random master keys for the controller; determine the key's
verification code and its two-part loading sequence. Arrange for these keys
to be distributed to the controller (by courier, for example), loaded, and
verified.

• Generate PIN keys for the encrypting PIN keypads; determine each key's
24-keystroke loading sequence. Arrange for the key to be distributed to the
keypad, loaded, and tested.

• Generate PINs, PIN validation and offset data, PIN protection keys, and PIN
validation keys.

1-4 4700 Controller Programming Library, Volume 5: Cryptographic Programming

• Generate one sending and one receiving cross-domain key (optional) to be
maintained in controller storage. Determine the verification code and the
one-part (ciphertext) or two-part (plaintext) loading sequence for these keys.

Generate variants of the master keys. Encipher cross-domain keys and PIN
protection keys under the variants, and make the resulting cryptograms
available to the using 4 700 program.

When it becomes necessary to change the controller's master key, generate
new variants and encipher the cross-domain keys and PIN protection keys
under them.

The security specialist should always perform these actions in as controlled and
secure an environment as possible.

Installing the Supporting Modules of Controller Data

4 700 controller functions are supported by modules of controller data. These
modules are supplied by IBM on the installation diskette and in the distribution
tape reel that accompanies the 4 700 Host Support program (5668-989).

Two modules support 4 700 cryptographic facilities

P57 -- supports 3600-level cryptography

P28 -- supports 4 700-level cryptography

You specify the module(s) you want during the controller configuration procedure
by including the operand P5 7 and/ or P2 8 on the OPTMOD configuration
statement. (This can be done at the host system, using the 4 700 Host Support
program, or it can be done at the controller site, using the 4700 Local
Configuration Facility.)

Module P57 requires 500 bytes of controller storage for controller data; Module
P28 requires 4000 bytes. If you install either of these modules, an additional 500
bytes is required for configuration data (if you install both, the total is still 500
bytes).

Neither module depends on the other, so you can save controller storage by
omitting the module you don't need. If you want no encryption support, you can
omit both modules. If you omit them, the controller operates normally, but
returns an error response if the program or operator attempts to use a
cryptographic facility.

Chapter 1. 4700 Cryptography 1-5

3 600-Level Cryptography

During program execution, any program can interrogate Segment 15 to determine
if the P57 or P28 modules are present in the controller. The COPY DEFGMS
instruction (described in Volume 1: 4700 General Controller Programming)
provides the displacements and values for the segment 15 indicators:

Field Value Meaning

GMSFTR GMSFDEM P57 Module present (X'OlOO' bit on)

GMSFT2 GMSF28M P28 Module present (X'0800' bit on)

The P57 module supports two controller instructions -- ENCODE and DECODE
-- and emulates the DES cryptographic support available for the 3600 Finance
Communication System. This support is comparable to electronic code book
cryptography, as defined in American National Standards Institute publications.

If you have an existing 3600 controller application program and simply wish to
migrate it for use in 4700 controllers, use 3600-level cryptography (Chapter
9, "Maintaining Compatibility Between Different Levels of Cryptography").

3600-level cryptography lacks several of the advantages of 4700-level
cryptography (Figure 1-2). Among the most significant is the fact that the
program using 3600-level cryptography handles all keys in plaintext. Such
"keys-in-the-clear" cryptography is vulnerable to anyone who can gain access to
program storage.

You need not use 3600-level cryptography to exchange enciphered data with
3600 controllers and host computers that employ this level of cryptography, - in
fact, such use is not recommended. There is also no need to use 3600-level
cryptography to communicate with a 3624 consumer transaction facility.
Although 3600-level cryptography would work in these circumstances, you would
not have access to the enhanced cryptographic functions described below, and
you would have to handle keys in plaintext.

Although use of 3600-level cryptography in an operational environment (that is,
by programs that are implementing your financial applications) is not as secure as
4700-level cryptography, you may wish to use 3600-level cryptography when you
are installing your cryptographic system. In particular, the ENCODE instruction
can be useful in building cryptographic key data sets, because ENCODE allows
you to encipher under any key. Although operational programs should not use
plaintext keys, security personnel can use them in a secure environment.

1-6 4 700 Controller Programming Library, Volume 5: Cryptographic Programming

4 700-Level Cryptography

3600~Level Cryptography (P57)

• Plain keys
• Eight bytes per ENCODE

or DECODE instruction
• Electronic Code Book

cryptography

Figure 1-2. Levels of Cryptography

4700~Level Cryptography (P28)

• Enciphered keys
• Up to 4096 bytes per

instruction, with cipher
block chaining

• Electronic Code Book
cryptography (with en
ciphered keys) available

• Physical keylock
• Master key and two cross

doma in keys in cryptographic
storage

• Operator controlled faci
lities for key management
and testing

• Additional program-controlled
instructions for managing
keys, PINs, and message
authentication codes

The 4 700 system provides the following cryptographic facilities not available on
3600 systems:

• A P28 module of controller data

• A controller with cryptographic storage and a physical encryption keylock
(controls access to the cryptographic storage)

• System monitor and installation diskette procedures that you can use to load,
verify, erase, and test the cryptographic facilities

• An encrypting PIN keypad, an accessory of the IBM 4 704 Display

The P28 module provides support for:

• Enciphering and deciphering text with cipher block chaining

• Generating keys

• Deciphering keys and reenciphering them under a new key, without making
the deciphered key available in plaintext ·

• Validating enciphered PINs, without making the deciphered PIN available in
plain text

• Translating enciphered PIN s from one format to another, without making the
deciphered PIN available in plaintext

Chapter 1. 4700 Cryptography 1-7

• Reenciphering PINs from under one key to under another;, without making the
deciphered PIN available in plaintext

• Generating message authentication codes

These facilities are described in detail in subsequent sections of this book.

Cryptography at the Host Computer

The 4 700 controller application program can perform several cryptographic
functions offline, such as the PIN validation described earlier. Other functions
require a cryptographic facility at the host computer or elsewhere in the data
processing network.

Several facilities that implement the data encryption algorithm are available for
use in or with host computers. These facilities are listed in Figure 1-3. Note that
some use an equivalent of 3600-level cryptography, while others use an equivalent
of 4700-level cryptography.

You can obtain a greater degree of security if you install 4700-level cryptography
at your host computer. The two ways to do this are:

• If your host computer uses OS/VS (OS/VSl or OS/VS2-MVS), install a
3848 Cryptographic Unit, or its software counterpart, the Programmed
Cryptographic Facility. Chapter 11, "Guidelines for Coordinating 4700 and
OS/VS Cryptographic Facilities" tells you how to equate each 4 700
cryptographic facility with its counterpart in these OS/VS subsystems.

• If you can connect a 4700 controller to your host computer in the same room
(where you can control access to them), you can use the 4700 controller itself
as a cryptographic subsystem. Your program in this locally-attached
controller can serve two purposes: you can use it to generate keys and other
sensitive information needed to set up your system, and your operational
programs in the host computer can use it to process cryptographic requests.

The 3848 Cryptographic Unit is a channel-attached device. It requires the
Cryptographic Unit Support program (5740-XY6). This program runs under
OS/VS.

The Programmed Cryptographic Facility (5740-XY5) is a software equivalent of
the 3848. The Programmed Cryptographic Facility also runs under OS/VS.

BDKDES is a 3600-level cryptographic routine that can be ordered with 4700's
Host Support program (5668-989). Host Support runs under both OS/VS and
VSE (DOS/VS). OS/VS users must order feature code 1611 (1600 bpi) or 1612
(6250 bpi) to obtain this feature; VSE users must order feature code 1609 (1600
bpi) or 1610 (1600 bpi). BDKDES is shipped separately from Host Support, and
must be link-edited into Host Support before it can be used. BDKDES is
described further in Chapter 8, "Host Support Encryption Routines."

The System/34 Finance Subsystem runs under the System/34 System Support
program (5726-SSl) and requires the Interactive Communications Feature. The
subsystem provides 3600-level cryptography for its using programs. See IBM
System/34 Interactive Communications Feature Reference Manual, GC21-7751,
for more information.

1-8 4700 Controller Programming Library, Volume 5: Cryptographic Programming

Host

An IBM-supplied program is available that exchanges data between the
System/34 computer and terminals attached to the controller. This program, the
4700 Online Terminal Support for System/34 (5799-BGB) supports encryption,
but only between the controller and attached 3624 consumer transaction
facilities. See IBM 4700 Online Terminal Support for System/34 Programming
Description and Operation, SC31-0023, for more information.

System Cryptographic Faci Ii ty Cryptographic Level*
=========== ====================== ===================

Any system with 4700 4700 Controller 4700
controller in same
(secure) room

OS/VS 3848 Cryptographic Unit 4700

OS/VS Programmed Cryptographic 4700
Faci 1 i ty

OS/VS BDKDES 3600

VSE BDKDES 3600

System/34 Finance Subsystem 3600

*4700-Jevel = cipher block chaining with enciphered keys;
3600 level = plaintext keys, no cipher block chaining

Figure 1-3. Cryptographic Facilities for Host Computers

Chapter 1. 4700 Cryptography 1-9

1-10 4700 Controller Programming Library, Volume 5: Cryptographic Programming

Chapter 2. Fundamentals of Enciphering and Deciphering

4 700 cryptography is based on two fundamental operations -- encipher and
decipher:

ENCIPHER

Key ==> Data
Plaintext ==> Encryption ==> Ciphertext

Algorithm

DECIPHER

Key ==>
Ciphertext ==>

Data
Encryption
Algorithm

==> Plaintext

When the key and the text have been processed by the data encryption algorithm,
the resulting ciphertext (enciphered text) can be returned to its original state only
if the original key is available.

The key is an eight-byte value. The low-order bit of each byte is, in general
ignored; you should choose the remaining bits in as random a manner as possible.
(Key generation is explained further in Chapter 3, "Cryptographic Keys.")

The text can be any data, even another key.

The algorithm used by the 4 700 system is the data encryption algorithm, adopted
by the United States National Bureau of Standards for use by Federal agencies
requiring cryptographic protection of sensitive data. This algorithm is described
in Federal Information Processing Standard 46 (FIPS PUB 46), 15 January 1977,
and in American National Standards Institute (ANSI) Standard X3.92. The 4700
controller implements this algorithm with cipher block chaining, as defined by
Federal Information Processing Standard 81 (FIPS PUB 81) and described further
below.

Enciphered Data, Keys, and PINs

As you use the 4 700 cryptographic facilities, you will often find it necessary to
distinguish among three types of ciphertext: enciphered data, enciphered keys,
and enciphered PINs.

Enciphered data is the enciphered form of the message you want protected.
Enciphered data can be processed in single \>locks as long as 4096 bytes.

Sometimes the text being enciphered is not data in the ordinary sense, but a key.
Because keys are always eight bytes long, enciphered keys are also eight bytes
long. A cryptogram is another term for an enciphered key.

Chapter 2. Fundamentals of Enciphering and Deciphering 2-1

Notation

Cipher Blocks

Cipher Block Chaining

The 4700 program handles each PIN in much the same manner as a key (an
enciphered PIN is always eight bytes long), but the program does not itself
encipher or decipher the PIN.

In this book, enciphered data is represented as

eK(Data)

where K is the key used to encipher the data. For example, eKS(Data) means
"Data, enciphered under session key KS."

Enciphered keys are similarly represented as

eK1 (K2)

where Kl is the key used to encipher K2. For example, eKM(KS) means "session
key KS, enciphered under the master key, KM."

Enciphered PINs are represented as

eKl(PIN)

where Kl is one of the PIN protection keys and PIN is the formatted PIN.

You can encipher or decipher up to 4096 bytes of data with one instruction.
However, it is important to remember that the data encryption algorithm always
processes text in eight-byte blocks.

If you submit a data string for encryption that is not a multiple of eight bytes, the
controller pads the data as specified in your request.

Repetitive patterns in multiple blocks of plaintext (unenciphered text) can result
in -repetitive patterns in the ciphertext. To make the ciphertext more resistant to
analysis, the 4 700 controller uses cipher block chaining.

The cipher block chaining technique works as follows (Figure 2-1).

When the controller has completed the enciphering of a given eight-byte block, it
uses the enciphered data to modify the next block's plaintext. (The modification
is an exclusive-OR operation on the two blocks.) Then the controller enciphers
the next block's modified plaintext.

The controller repeats this process for each successive block.

The process is reversed when data is being deciphered. After the controller has
deciphered a given eight-byte block, it uses the previous eight bytes of ciphertext
to recover the original plaintext.

2-2 4700 Controller Programming Library, Volume 5: Cryptographic Programming

Note that the first block of data presents a special case. Because there is no
previous block for the controll'i.'r to use, you must supply one. You do this by
including an initial chaining value (ICV) with the encipher (or decipher) request.
The initial chaining value can be any eight-byte value.

If a portion of the enciphered data is altered during transmission, cipher block
chaining allows only two blocks of enciphered data to be affected -- the block in
which the error occurred, and the next block.

If you are deciphering data that was enciphered via cipher block chaining, you
must know both the key and the initial chaining value that was used when the
data was enciphered. If you do not have the initial chaining value available, you
cannot recover the first eight bytes correctly.

A technique is described later in this book ("Example 4. Initiating a
Cryptographic Session" on page 4-8) that permits both the sending and the
receiving program (that is, the enciphering and the deciphering program) to keep
track of the proper initial chaining values.

ENCIPHER:
Eight-byte Blocks of Plaintext

Dl D2 D3 1···1 Dn

Initial I
Chaining ==> XOJR > XOJR > XOR r•••~> XOR

Va~::==> Enc;!he' Enc;!he' Enc;!":'J.!• Enc;!he'
t t t t t

El E2 E3 1···1 En

Eight-byte Blocks of Ciphertext

DECIPHER:
Eight-byte blocks of Ciphertext

Dl D2 D3 , •• • 1 Dn

Eight-byte Blocks of Plaintext

Figure 2-1. Cipher Block Chaining

Chapter 2. Fundamentals of Enciphering and Deciphering 2-3

Notes on Using ENCIPHER and DECIPHER

When the enciphered data is to be processed at another location (data exchanged
via communication or diskette), the following must occur:

The data encryption key (in this context, a "session key") must be available at
the other location.

The program at the other location must be capable of 4 700-level cryptography
-- that is, have access to the data encryption algorithm and be able to
implement cipher block chaining. If the program has access only to
3600-level cryptography, the program must emulate cipher block chaining and
provide pad processing.

• The initial chaining value must be known at both locations. You can provide
this by using a fixed initial chaining value, by concatenating the initial
chaining value with the enciphered data, or by using a synchronized sequence
of initial chaining values. These methods are illustrated in Chapter
4, "Exchanging Keys with Programs in Other Domains."

2-4 4700 Controller Programming Library, Volume 5: Cryptographic Programming

Chapter 3. Cryptographic Keys

The 4700 encryption facilities employ a wide range of keys for enciphering data,
exchanging ciphertext with other programs, processing PINs, and authenticating
messages.

The previous section showed that you use a key to encipher and decipher data,
and mentioned that this key is enciphered under a master key. This section takes
a closer look at these keys, and explains how they are structured and how they are
generated and loaded. This section also introduces you to the other keys used by
the 4700 cryptographic facilities.

The Controller Master Key (KM)

Each 4700 controller maintains one master key in cryptographic storage. The key
is not accessible to programs.

You must install the master key (KM) before application programs can generate ,
their own keys. You can use a 11plaintext11 version of the KEYGEN instruction to
install KM; programs can then later use an 11 enciphered 11 version of the same
instruction to obtain their data-encrypting keys.

The master key is never transmitted to the controller (downloaded), but must be
entered manually at the controller. The master key is entered in two parts. This
allows you to divide information about the key between two persons, so that
neither has any awareness of the key -- this is sometimes referred to as a
11 dual-courier technique. 11

Before the master key is brought to the controller, you must:

• Generate the master key and its two parts
• Determine the key's verification code.
• Make the two parts and the verification code available at the 4700 controller.

The person or persons actually loading the key would:

Start the controller.

• Activate the controller's encryption keylock with a physical key.

• Logon to the system monitor.

• Enter the key in two parts, using the 330-2-1 command.

• Use the 330-3-1 command to verify that the key has been correctly loaded
(the command returns the verification code, which should match the code you
generated).

Chapter 3. Cryptographic Keys 3-1

Generating the Master Key

(4701 Controller Operating Procedures tells you how to operate the controller, and
4700 Subsystem Operating Procedures tells you how to use the system monitor.)

The overall process looks like this:

Generate Form Two Parts Load Plaintext Keys
======== ============== ===================

KM --> KHa ==L
l-> KHb >

> 330-2-1

4700 Controller

The 4 700 KEY GEN instruction generates keys that are suitable for use as master
keys. Or, you could use the key-generation facilities of the OS/VS cryptographic
subsystem (described in Chapter 11, "Guidelines for Coordinating 4700 and
OS/VS Cryptographic Facilities"). Like all keys used by the 4700 cryptographic
facilities, a master key must have these characteristics:

• Contain 56 random bits
• Be eight bytes in length

Generating the Master Key Parts

To generate the two parts of the controller master key,

1. First generate KM itself -- using one of the methods noted above.

2. Generate a second key in a similar manner, and treat it as the second key part.

3. Exclusive-OR the two keys (the master key and the second key part), and
treat the result as the first key part.

3-2 4700 Controller Programming Library, Volume 5: Cryptographic Programming

This process is illustrated below, where KM represents the master key, and KMa
and KMb represent the two key parts.

In a secure environment:

==> KEYGEN ==> KM

==> KEYGEN ==> KMb

KM
KMb
==> XOR ==> KMa

Later, at the branch controller:

KMa
KMb
==> 330-2-1 ==>KM (in cryptographic storage)

Determining the Verification Code

After you have loaded a key, the controller never displays that key to anyone. To
verify that the key in the controller is in fact the key you think is there, you can
ask the controller (via the 330-3 command) to display the key's verification code.
This code is a two-byte "shorthand" version of the real key. If this code matches
the one you obtained after you first installed the key, the key in the controller is
probably the correct one.

The controller always displays the verification code when you first load the master
key into the controller. So the easiest way to initially obtain the verification code
is to load the master key and note the resulting verification code.

You do not have to do this using the controller that will actually use the master
key. A master key that is loaded into two different controllers will produce the
same verification code. You can use one central controller to generate keys and
verification codes for all your branch controllers.

If you want to determine a key's verification code without actually loading the
key, you can use this procedure: Encipher the master key with the 3600-level
ENCODE instruction, where the master key serves as both the data and as the
key. The last two bytes of the resulting eight bytes of ciphertext form the
verification code.

You can also use an OS/VS cryptographic subsystem to determine the master
key's verification code. To do this, first use the OS/VS EMK macro instruction
to encipher the controller master key under the host master key (KMH), then use
the OS/VS CIPHER macro instruction to reencipher the controller master key
under itself.

Chapter 3. Cryptographic Keys 3-3

Master Key Variants

First Variant (KMJ)

Variants of the master key allow the controller to act as though several master
keys are in use, when in fact there is only one master key.

As noted above, session keys and message authentication keys are enciphered
under the master key itself. However, other keys are enciphered under master key
variants. This scheme serves to isolate a program's access to a given cryptographic
facility.

A variant results when the controller (or you) modifies the master key in
accordance with a simple algorithm described later in this section.

Before running your operational programs, you encipher the keys that you wish to
protect under the variant. You make the enciphered keys available to your
operational programs -- for example, by placing the enciphered keys in diskette
data sets.

The controller uses three variants of the master key -- KMJ, KM2, and KM3.

(At this point, you may wish to unfold Figure F-1 on page X-6 from the back of
this book and refer to it as we discuss the various keys. This figure summarizes all
the keys used by the 4700 cryptographic facilities.) Each variant is associated
with specific types of keys, as shown in the following table. This table includes
the master key itself for comparison. (The master key can be considered as
variant zero.)

Master Key Variant Used to Encipher

KM0 (Master Key) • Session keys (KS)
• Message authentication keys (KMAC)

KMl (1st Variant) • Sending cross-domain keys (KCDl, KCDs)
• Output PIN protection keys (KP2)

KM2 (2nd Variant) • Receiving cross-domain keys (KCD2, KCDr)

KM3 (3rd Variant) • Input PIN protection keys (KPl)
• PIN validation keys (KPv)

You use KM 1, the first variant of the master key, to encipher sending
cross-domain keys and output PIN protection keys (these keys are explained
below).

One method of loading a sending cross-domain key into the controller requires
that you first encipher the key under the first variant of the master key.

The RFMK instruction (described below) transforms a session key from
encryption under the master key to encryption under a sending cross-domain key.

3-4 4700 Controller Programming Library, Volume 5: Cryptographic Programming

Second Variant (KM2)

Third Variant (KM3)

One form of RFMK requires the program to provide the sending cross-domain
key enciphered under the first variant.

Similarly, one form of the PINTRANS instruction transforms a PIN from
encryption under one key to encryption under an output PIN protection key.
PINTRANS requires the program to provide the output PIN protection key
enciphered under the first variant.

You use KM2, the second variant of the master key, to encipher receiving
cross-domain keys.

If you are loading a receiving cross-domain key into the controller in enciphered
form, you must first encipher that cross-domain key under the second variant of
the master key.

The RTMK instruction transforms a session key from encryption under a
receiving cross-domain key to encryption under a master key. One form of
R TMK requires the program to provide the receiving cross-domain key
enciphered under the second variant.

You use KM3, the third variant of the master key, to encipher input PIN
protection keys and PIN validation keys. The PINTRANS instruction requires the
program to provide the input PIN protection key enciphered under the third
variant. The PINVERIF instruction requires the program to encipher both the
input PIN protection key and the PIN validation key under the third variant.

Generating Variants of the Master Key

The algorithms for converting master keys to master key variants are included in
the controller's P28 module. You must perform the equivalent conversion (by
hand or program) so that you can encipher the keys under the proper variant.

To create a master key variant, invert two bits in each of the key's eight bytes
(you can do this by performing an exclusive-OR operation between each byte of
the key and the value shown below):

Key Bits to be Inverted Value to XOR with Key

KMl Third and seventh bits X'22'

KM2 First and fifth bits X'88'

KM3 Second and sixth bits X'44'

Chapter 3. Cryptographic Keys 3-5

Enciphering Under Variants of the Master Key

Cross-Domain Keys

After you have determined the master key variant, you must encipher each key
under the appropriate variant.

Enciphered Keys Used By
=============== =======

eKMl(KCDs) Sending cross-domain keys RFMK

eKMl (KCDl) Sending cross-domain keys RFMK, 330-1-3 command

eKM1(KP2) Output PIN protection keys PINTRANS

eKM2(KCDr) Receiving cross-domain keys RTMK

eKM2(KCD2) Receiving cross-domain keys RTMK, 330-1-4 command

eKM3(KP1) Input PIN protection keys PINTRANS, PINVERIF

eKM3(KPv) PIN validation keys PINVERIF

One method for enciphering a key under a given variant is to use the 3600-level
ENCODE instruction, where you supply the master key variant as the key and the
key being protected (such as KCDs or KP2) as the data.

Or, you can use OS/VS cryptographic subsystem facilities, as described in
Chapter 11, "Guidelines for Coordinating 4700 and OS/VS Cryptographic
Facilities."

You use cross-domain keys to protect data-encrypting keys being exchanged
between two locations (nodes). Data-encrypting keys include session keys (keys
that programs use to encipher and decipher data) and message authentication
keys. This protection applies to keys that are being stored on some physical
exchange medium (diskettes, for example) as well as keys that are being
transmitted from one location to another.

If all locations possessed the master keys of all other locations, cross-domain keys
would serve no purpose -- the master key would itself suffice. But far greater
security is possible if the keys held in common by two or more locations are not
master keys.

The 4700 cryptographic facilities (as well as OS/VS cryptographic subsystems)
maintain two independent cross-domain keys: one for sending and one for
receiving.

The 4 700 cryptographic facilities maintain these, cross-domain keys in two
different ways, depending on whether you keep the keys in cryptographic storage
or in program storage (unprotected storage).

3-6 4700 Controller Programming Library, Volume 5: Cryptographic Programming

You can maintain two cross-domain keys in the controller's cryptographic storage,
and an unlimited number of enciphered cross-domain keys in program storage or
on diskette data sets.

Cross-Domain Keys in Cryptographic Storage

The controller maintains one sending and one receiving cross-domain key in
cryptographic storage. These keys are designated KCDJ (sending) and KCD2
(receiving). Like the master key itself, KCDl and KCD2 are long-term keys you
load into the controller; these keys remain in storage until you erase them or
replace them with new ones. If the controller application program exchanges
data-encrypting keys with a program in only one other node (typically, the host
computer), and has no need to use additional pairs of cross-domain keys, KCDl
and KCD2 are the only cross-domain keys you need to install.

Enciphered Cross-Domain Keys in Program Storage

If a program must exchange data-encrypting keys with multiple locations, you
must encipher the cross-domain keys under the appropriate variant and provide
the enciphered keys to the using program. We designate the keys that you don't
maintain in cryptographic storage (and must therefore protect under a variant) as
KCDs and KCDr. You must encipher the sending cross-domain key (KCDs)
under KMl, and the receiving cross-domain key (KCDr) under KM2 in the
manner described above.

Sending Receiving
Cross-Domain Cross-Domain
Key Key

As maintained in
Cryptographic KCDl KCD2
Storage

As available in
Program Storage eKMl(KCDs) eKM2(KCDr)

The program uses RFMK and RTMK instructions to reencipher the exchanged
keys. When the program prepares to send a data-encrypting key to another
program (a session key, for example), it uses the RFMK instruction to transform
the key from encryption under the master key to encryption under the appropriate
sending cross-domain key (KCDl or KCDs).

The program at the remote location uses the RTMK instruction (or equivalent) to
reencipher the session key to encryption under its master key. To the receiving
program, this same cross-domain key is a receiving cross-domain key (KCD2 or
KCDr).

Chapter 3. Cryptographic Keys 3-7

Example 1: Exchanging Session Keys (Using Cross .. Domain Keys in Cryptographic Storage)

The following example relates the use of cross-domain keys with the RFMK and
RTMK instructions. In this example (Figure 3-1), a controller.application
program at Installation A is sending an enciphered message to another program at
Installation R The program at B is shown as another controller application
program, although any host program using an OS/VS cryptographic subsystem
would suffice. ,

The program· at A communicates only with the program at B, so the only
cross-domain.keys used are those maintained in cryptographic storage: KCDl
and KCD2. (KCDl and KCD2 would already have been loaded into the
controller, as explained later in this chapter.)

1. Program A first issues a KEYGEN instruction to generate a session key (KS)
that is enciphered under controller A's master key (KMa).

2. KS is already enciphered under A's master key, rendering it useless to
Program B (Program B does .not have access to KMa). Program A invokes an
RFMK instruction, causing eKMa(Ks) to be reenciphered under A's sending
cross-domain key. The cross-domain key is available to both programs, but
neither A nor B can obtain the cross-domain key in plaintext.

3. After A transmits eKCDl(KS), B receivesit and invokes an RTMK
instruction; this causes KS to be reenciphered under B's master key, KMb.

4. Program B now has KS in its proper form for the DECIPHER instruction:
eKMb(KS). As A enciphers data under KS and transmits it to B, B can issue
DECIPHER instructions and obtain the data in plaintext

Note that when Program A reenciphered the session key (Step 2), it reenciphered
it under the key it referred to as A's sending cross-domain key; whereas Program
B reenciphered it under a key it referred to as B's receiving cross-domain key.
Both keys are, however, the same key.

3-8 4700 Controller Programming Library, Volume 5: Cryptographic Programming

Installation A Installation B
============== ==============

1. ==> KEYGEN ==> eKMa(KS}

2. eKMa(KS}
(KCDl in A's cryptographic
storage} 3.

==> RFMK ==> eKCDl(KS} ===========> eKCD2(KS}

Data

(KCD2 in B's cryptographic
storage}

==> RTMK ==> eKMb(KS}

eKMa(KS} 4.
==> ENCIPHER ==> eKS(Data} =======> eKS(Data}

eKMb(KS}
==> DECIPHER==> Data

Note: A Sending B Receiving
KCDl <-same

key-> KCD2

A Receiving B Sending
same-> KCDl

KCD2 <-key

A's sending key is therefore
B's receiving key, and vice-versa

Figure 3-1. Exchanging Session Keys

Suggestions /or Using Cross-Domain Keys

You can define multiple sets of cross-domain keys. The number you define
depends on the type and number of key exchanges you want to perform. This
enables you to exchange keys in a variety of ways. For example, a program that
exchanges keys with multiple programs can use the same sending and receiving
pair for all of the programs, or the program can use a unique pair for each.

Unique cross-domain keys can also be defined for each type of key you are
exchanging. You might define one cross-domain key for the purpose of
exchanging a message authentication key, and a different cross-domain key for
the purpose of exchanging encryption keys for files.

It is not necessary for every program in the network to have the same number of
cross-domain keys. Nor is it required that the cross-domain keys be maintained in
pairs.

A program that only receives keys from one source can have a single receiving
cross-domain key and no sending key. A program that performs more complex
key exchanges might define sending cross-domain keys for the keys it only sends,
receiving cross-domain keys for the keys it only receives, and both sending and
receiving keys for keys that it may have to both send and receive. (However, a
single cross-domain key should not be used both as a sending and as a receiving
cross-domain key.)

This flexibility also provides you with the ability to isolate certain functions within
the network.

Chapter 3. Cryptographic Keys 3-9

For example, suppose two programs communicate through an intermediate
program. The data being sent is enciphered under a session key shared by the two
communicating programs, but not known to the intermediate program. Also
assume that this session key is periodically changed by one of the programs. The
program that changes the key can send a new key to the other program, protected
by a cross-domain key shared by the two programs. If the intermediate program
also had access to the cross-domain key, then it could intercept that session key
and use it to decipher the messages it is relaying.

To eliminate this possibility and ensure that the data and keys are available only
to the appropriate program, do not allow the cross-domain keys to be known by
the intermediate program. If the intermediate program requires a cross-domain
key to exchange keys with either of the two "end" programs, you should define a
separate cross-domain key for that purpose.

Generating and Loading Cross-Domain Keys

You can generate cross-domain keys in the same manner that you generate master
keys -- that is, by using the 4 700 KEYGEN instruction or the key generation
facility of an OS/VS cryptographic subsystem.

If you are installing KCDs and KCDr cross-domain keys, you must encipher the
key under the appropriate variant and make only the result available to the using
program:

• eKMl (KCDs)
• eKM2(KCDr)

If you are installing KCD I and KCD2 cross-domain keys, you must load them
into the controller's cryptographic storage. ihere are two ways you can do this:

• In two parts, using the system monitor's 330-2 command

• In enciphered form, using the system monitor's 330-1 command (in this form,
one person enters the entire key)

When you load a cross-domain key, the controller displays the two-byte
verification code for the key. You can use this verification code in the same
manner that you use master key verification codes (see "Determining the
Verification Code" on page 3-3).

3-10 4700 Controller Programming Library, Volume 5: Cryptographic Programming

You load the sending and receiving cross-domain keys separately.

To load KCD1 or KCD2 in two parts, first generate the two parts in the same
manner described earlier for loading master keys; then load the key parts with the
system monitor's 330-2 command:

Generate Form Two Parts Load Plaintext Keys
======== ============== ===================

KCDl -> KCDla

=t_,
4700 Controller

L> KCDlb
KM

330-2-3 > KCDl
KCD2 -> KCD2a > > 330-2-4 > KCD2

L> KCD2b

To load KCDl or KCD2 in enciphered form, encipher the key under the
appropriate variant, bring or transmit the result to the controller, then load the
enciphered key with the system monitor's 330-1 command:

Generate Encipher Key Load Enciphered Keys
======== ============== ====================

KCDl ~> eKM1(KCD1)1_> 4::0 Controller

330-1-3 ---> KCDl
KCD2 ~> eKM2(KCD2) > 330-1-4 > KCD2

Data-Encrypting Keys and PIN-Encrypting Keys

You use the controller master key, master key variants, and cross-domain keys
discussed above to encipher other keys. These key-encrypting keys are generated
and installed before program execution.

In contrast, data-encrypting keys can be generated dynamically by the program.
The program uses the KEYGEN instruction to generate the data-encrypting keys,
which are always enciphered under the master key.

One of the most common uses for a data-encrypting key is to encipher and
decipher data being exchanged between two programs at different locations. A
data-encrypting key used for this purpose is the session key (KS), to which you
were introduced in "Example 1: Exchanging Session Keys (Using Cross-Domain
Keys in Cryptographic Storage)" on page 3-8.

Chapter 3. Cryptographic Keys 3-11

Another common use for a data-encrypting key is to generate a message
authentication code (MAC) as described in the next chapter. A data-encrypting
key used for this purpose is a message authentication key, represented as KMAC.

In addition to the key-encrypting keys and the data-encrypting keys, the 4700
cryptographic facilities use a third group of keys exclusively for personal
identification numbers (PINs). There are three keys in this group:

• KP 1, an input PIN protection key
• KP2, an output PIN protection key
• KPv, a PIN validation key

You use KPl and KP2 to encipher PINs, and KPv to generate a PIN validation
code. These keys provide the same protection for PINs that key-encrypting keys
provide for keys, and that data-encrypting keys provide for data.

Although these PIN-encrypting keys are similar to data-encrypting keys in some
respects, you generate and install them in much the same manner as the
key-encrypting keys discussed earlier. Because PIN-encrypting keys play a
unique role in a 4 700 cryptographic subsystem, they are described in detail in a
separate chapter (see Chapter 6, "Validating and Translating Personal
Identification Numbers").

Generating Data-Encrypting Keys

Session keys and message authentication keys can be generated dynamically by
the program, or you can define and install them before program execution. Keys
that you define prior to program execution must be stored in enciphered form -
under a remote location's master key or receiving cross-domain key, for example.
Program-generated keys must be enciphered under the controller's master key;
see the description of the KEYGEN instruction below.

Distributing Data-Encrypting Keys

You can distribute enciphered keys to the using controller on a diskette, transmit
(download) them over telecommunication lines, or manually enter them atthe
controller by means of a user-supplied application program. Keys that are
enciphered under cross-domain keys must be reenciphered under the controller's
master key (RTMK instruction) before the program can use them.

You can distribute a dynamically-generated key to other programs in the network
by transmitting the key enciphered under the remote location's receiving
cross-domain key.

How Many Data-Encrypting Keys Does a Program Need?

You can define any number of data-encrypting keys, depending on the types of
functions the program performs.

A program that communicates with only one other program may define a single
session key and a single message authentication key. (Don't use the same key as a
session key and as a message authentication key.)

More complex programs that communicate with, programs in many different
locations could use a unique pair of keys for each of the remote programs.

3-12 4700 Controller Programming Library, Volume 5: Cryptographic Programming

A program should generate a new session key and a new message authentication
key each time it begins a session with another program. If the session extends
longer than a day, then at least daily the program should stop the session, generate
a new key, and then resume the exchange of ciphertext.

Gell!!rating Keys in a 4 700 Program

The security provided by a program-generated key is proportional to the
randomness of the key.

KEYGEN generates keys with a high degree of randomness. KEYGEN achieves
this randomness by using frequently-changed areas of controller storage and by
frequently and unpredictably using the controller clock.

4700 programs should use the KEYGEN instruction to generate their
data-encrypting keys.

Chapter 3. Cryptographic Keys 3-13

3-14 4700 Controller Programming Library, Volume 5: Cryptographic Programming

Chapter 4. Exchanging Keys with Programs in Other Domains

The RFMK Instruction

In the previous chapter, we saw briefly how a program can use two instructions to
exchange a session key with another program:

RFMK

RTMK

Used when sending a data-encrypting key to another domain;
converts the key from encryption under the master key to encryption
under one of the sending cross-domain keys.

Used when receiving a data-encrypting key from another domain;
converts the key from encryption under one of the receiving
cross-domain keys to encryption under the master key.

Both instructions perform this conversion without providing the program access to
its key in plaintext.

In this chapter, we will take a closer look at these instructions. We will also
consider how a program might use them to overcome problems not evident in the
simplified situation of Example 1.

The RFMK (Reencipher From Master Key) instruction takes a key that has been
enciphered under the controller's master key (KM), deciphers it, and reenciphers
it under a different key. The different key can be either of the two types of
sending cross-domain keys:

KCDl (in cryptographic storage)
• eKMl(KCDs) (in program storage)

When you use RFMK to reencipher under KCDJ, RFMK operates like this:

• eKM(K) ==> RFMK ==> • eKCDl(K)

Example 1 in the previous chapter used this version of RFMK.

When you use RFMK to reencipher under KCDs, RFMK operates like this:

• eKM(K)
• eKMl(KCDs) ==> RFMK ==> • eKCDs(K)

The next example in this chapter uses this version of RFMK.

Note that in both cases you start with K enciphered under one key and end up
with the same key, now enciphered under a different key. In typical uses of
RFMK, K is KS, a session key being exchanged between two programs.

Chapter 4. Exchanging Keys with Programs in Other Domains 4-1

The RTMK Instruction

The RTMK (Reencipher To Master Key) instruction takes a key that has been
enciphered under one of the following keys --

• KCD2 (in cryptographic storage)
• eKM2(KCDr) (in program storage)

and reenciphers it under the controller master key, KM. When you use RTMK to
reencipher a key that was enciphered under KCD2, RTMK operates like this:

• eKCD2(K) ==> RTMK ==> • eKM(K)

When you use RTMK to reencipher a key that was enciphered under KCDr,
RTMK operates like this:

• eKCDr(K)
• eKM2(KCDr) ==> RTMK ==> • eKM(K)

Note that RTMK is essentially the inverse of RFMK, but the two instructions use
different variants of the master key.

4-2 4700 Controller Programming Library, Volume 5: Cryptographic Programming

Three More Communication Examples

The following examples should help you answer these questions:

How can a program exchange keys when more than two locations are
involved? (See Example 2 below.)

How can two programs verify that they are using the same session key? (See
"Example 3. A Key Validation Protocol" on page 4-6.)

What steps are involved in a session initiation procedure? (See "Example 4.
Initiating a Cryptographic Session" on page 4-8.)

Chapter 4. Exchanging Keys with Programs in Other Domains 4-3

Example 2. Exchanging Session Keys (UsingCross--Domain Keys in Program Storage)

In Example 1, Program A transmitted a session key to B that was enciphered
under a cross-domain key, KCD1. Because KCD1 is maintained in cryptographic
storage, the program supplied only one input to the RFMK operation: eKM(K).
In effect, the program requested the controller to reenciphcr K under the (only)
sending cross-domain key available.

In Example 2, Program A can send session keys to programs other than Program
B. Because the controller has only one pair of cross-domain keys in cryptographic
storage, Installation A's security specialists have generated and stored additional
pairs of cross-domain keys on a data set available to Program A.

To prevent these· keys from being exposed in plaintext, the security specialists
have enciphered the cross-domain keys under the appropriate master key variant.
Three pairs of enciphered keys have been installed; one for communication with
Installation C, another for communication with Installation D, and a third for
communication with Installation F. (Program A can continue to use KCD1 and
KCD2 to communicate with Program B, as in Example 1.)

Figure 4-1 (top) illustrates the enciphered keys that are available to Program A.

1. Program A issues the KEYGEN instruction and generates a session key, KS,
enciphered under A's master key.

2. The program issues the RFMK instruction to reencipher the session key under
the sending cross-domain key, Kac. (Kac is a specific example of the general
class of sending cross-domain key, KCDs.) Note that the program need not
(and in fact, cannot) access Kac in plaintext.

3. The program transmits the enciphered session key to Installation C.

4. At Installation C, the receiving program issues an RTMK instruction (or
equivalent), using as input (1) the received enciphered session key,
eKac(KS), and (2) the enciphered cross-domain key, eKMc2(Kac). Program
C obtains the enciphered cross-domain key from a data set at Installation C.
Note that Program C, like Program A, cannot obtain Kac in plaintext.

5. After Program C indicates that it is now ready to receive data from A
enciphered under KS (more on this in Example 3, Step 8), Program A begins
enciphering and transmitting the data.

6. Program C issues DECIPHER instructions (or their equivalent) and recovers
the transmitted data in plaintext.

4-4 4700 Controller Programming Library, Volume 5: Cryptographic Programming

Security Personnel at Installation A
====================================

Cross-Domain Keys
for Program A

4700 Controller

===================
A <-> B Sending

Receiving

A <-> c Sending
Receiving

A <-> D Sending
Receiving

A <-> F Sending
Receiving

Generate Key Enciphered Under
============ ================ KMa

KCDl
KCD2

KCDl -> eKMal(KCDl)
KCD2 -> eKMa2(KCD2)

Kac -> eKMal(Kac)
Kea -> eKMa2(Kca}

Kad -> eKMal (Kad)
Kda -> eKMa2(Kda)

Kaf -> eKMa 1 (Kaf)
Kfa -> eKMa2(Kfa)

---->
---->

Diskette Data

-> eKMal(Kac)
-> eKMa2(Kca)

-> •
-> •

-> •
-> •

Security Personnel at Installation C
====================================

Cross-Domain Keys
for Program C Generate Key Enciphered Under
=================== ============ ================

Data Set

c <-> A Sending Kea -> eKMcl(Kca) -> .eKMcl(Kca)
Receiving Kac -> eKMc2(Kac) -> eKMc2(Kac)

c <-> F Sending Kcf -> eKMcl (Kcf) -> •
Receiving Kfc -> eKMc2{Kfc) -> •

Before Program Execution

Set

llllllllllll'llllllllli11llt\I
During Program Execution

1.

2.

5.

Installation A Installation C
============== ==============
==> KEYGEN ==> eKMa{KS)

From A's

eKMa{KS) ~ t eKMa 1(Kac) < J.
==> RFMK ==> eKac{KS)

From C's

> eKac{KS) D~!~I
eKMc2{Kac) <__J

4. ==> RTMK ==> eKMc{KS)
<---- C is ready to receive----

Data
eKMa{KS)
==> ENCIPHER ==> eKS(Data)

6.
---:> eKS(Data)

eKMc{KS)
==> DECIPHER ==> Data

Figure 4-1. Exchanging Session Keys (Using Cross-Domain Keys in Program Storage)

Chapter 4. Exchanging Keys with Programs in Other Domains 4-5

Example 3. A Key Validation Protocol

After accomplishing an exchange of keys, the programs in Examples 1 and 2
could continue sending data enciphered under KS, the session key.

But how can the programs be certain they are operating with the correct session
key? The key might have been deliberately modified during transmission, or there
might be a problem with the cryptographic data sets. Unless some mechanism is
used to ensure correct reception of the session key, the two programs will continue
to exchange unrecoverable data until they switch to a new session key.

To eliminate this problem, the programs should refrain from using KS for
exchanging messages until they have validated the key.

The following example represents one possible key validation protocol.

In this example (Figure 4-2), the program at Installation A is sending an
enciphered message to a program at Installation D. A's cryptographic data set is
the same as that shown in Example 2 (Figure 4-1, top). D's cryptographic data
set contains a pair of cross-domain keys for A, enciphered under D's master key:
eKMd l (Kda) and eKMd2(Kad). (In the interest of simplicity, initial chaining
values are not addressed until the next example.)

1. Program A generates an enciphered session key, eKMa(KS).

2. Using this enciphered key, Program A enciphers an arbitrary value N. The
program at D does not have to know N ahead of time, but A and D must both
share a common procedure for altering N. By limiting N to an eight-byte
value, the programs can avoid cipher block chaining (Program A uses an
initial chaining value of zero).

3. Program A reenciphers the session key under the proper sending cross-domain
key, just as in the previous example.

4. Program A combines the results of the previous two steps, and sends this
combination to Program D.

5. Upon receiving this message, Program D recovers KS by reenciphering KS
from the cross-domain key to D's master key.

6. Program D deciphers the first part of the message, eKS(N), and obtains Nin
plain text.

7. Program D next uses the common procedure for altering N. This procedure
does not have to be complicated; any procedure that alters N in a predictable
fashion is sufficient. For example, N' could be derived simply by
incrementing N, as shown here.

8. Program D enciphers N' under KS and sends the results back to Program A as
an acknowledgment message.

4-6 4700 Controller Programming Library, Volume 5: Cryptographic Programming

9. Program A deciphers the acknowledgment message and obtains N' in
plain text, generates its own version of N', and compares the two. If they
compare, the key exchange has been successful, and Programs A and D can
continue to communicate via KS. If they do not compare, key validation has
failed.

Installation A Installation D
==============

1. ==> KEYGEN ==> eKMa(KS)

2.

3.

eKMa(KS)
N
==> ENCIPHER

eKMa(KS)
eKMal(Kad)
==> RFMK ==>

~~,~l

4
. I From D's

l eKad(KS) I _ 4_· --> eKad(KS) < D~~~ 1
· · eKMd2(Kad) ______J

==> RTMK ==> eKMd(KS)

.> eKMd(KS)
eKS(N)

7.
8.

==> DECIPHER
N + 1 = N'
eKMd(KS)
N'
==> ENCIPHER

==> N

==>

9. eKMa(KS)
eKS(N') <~~~~~~~~~~~~~~~~~~~~~~
===> DECIPHER ==> N' <~~~

Same? Yes: KS validated
N + 1 = N' < No: KS not va 1 i dated

Figure 4-2. A Key Validation Protocol

There are a number of ways to handle a key validation failure.

Program A can attempt to send the key to Program D again, or it can generate a
new key and send it to D. If the key exchange continues to fail, Program A could
end its session with D and alert an operator that the programs cannot validate
their key. In this instance, the operator or security specialist at A could reenter
the cross-domain key at A or at D, and restart the system.

The security specialist may want to look for a potential security exposure that
could have caused the problem. Or, Programs A and D could establish a backup
procedure that allows the two programs to revert to an alternate cross-domain
key. This should only be used as an emergency procedure however, because the
inability to exchange keys in a secure manner adversely affects the overall
security of the system.

Chapter 4. Exchanging Keys with Programs in Other Domains 4-7

Example 4. Initiating a Cryptographic Session

This example combines the key exchange technique described in the previous
example with a technique for exchanging initial chaining values (ICVs). The
result is a comprehensive session initiation protocol.

In this example, Program A initiates a session with a program at Installation F.
The object is to exchange session keys and initial chaining values.

1. Program A builds the elements needed for a session initiation message:

• a session key enciphered under the sending cross-domain key Kaf,

• a check value, N, enciphered under the session key (with ICV=O), and

• an initial chaining value, ICVfa, for use by F when sending to A.

The actual value chosen for ICVfa is not important, but it should be as
random as possible. In this example, A uses KEYGEN to generate ICVfa.

2. Program F receives the session initiation message and

• recovers the enciphered session key, eKMf(KS),

• recovers N, generates N', and enciphers N' under KS (with ICV=O), and

• generates an initial chaining value, ICVaf, for use by A when sending to
F.

Program F combines the enciphered N' and ICVaf into a response to A's
session initiation command, and sends it to A.

3. Program A deciphers the enciphered N', generates its own version of N', and
compares the two. If they match, Program A notifies Program F that the
session has been successfully initiated. Each program now possesses both the
enciphered session keys and initial chaining values needed for subsequent
transmissions.

4-8 4700 Controller Programming Library, Volume 5: Cryptographic Programming

Installation A Installation F

1. ==> KEYGEN ==> eKMa(KS)

2. eKMa(KS)
eKMal(Kaf)
==> RFMK ==> I eKaf (KS) I (-l)-~

3.

eKMa(KS)
N
==> ENCIPHER==> leKS(N)I ->

(2)

==> KEYGEN ==> i 1 CVfa I (-3-) ->

Session Initiation Command <

leKaf(KS)leKS(N)l ICVfal ----->

(1) (2) (3)
eKaf(KS)
eKMf2(Kaf)

2. ==> RTMK ==> eKMf(KS)

eKMf(KS)
eKS(N)
==> DECIPHER ==> N

N + 1 = N'

Session
Initiation
Response

eKMf(KS)
N'
==>ENCIPHER==> jeKS(N')I

N + 1 = N' ==> KEYGEN ==> ~~>1
<- leKS(N')l ICVafl <

eKMa(KS)
eKS(N')
==> DECIPHER ==> N'

lfN'=N',---KeysValidated >
Both programs now have required components for
• eKMa(KS) • eKMf(KS)
• ICVaf • ICVfa
• ICVfa • ICVaf

session:

Figure 4-3. Initiating a Cryptographic Session

Chapter 4. Exchanging Keys with Programs in Other Domains 4-9

4-10 4700 Controller Programming Library, Volume 5: Cryptographic Programming

Chapter 5. Authenticating Messages

A 4 700 controller application program can generate a message authentication code
(MAC) that it uses to authenticate messages. Using this code, the controller
program and a program at a remote location can detect whether a message has
been altered during transmission. The program generates the code by issuing a
MACGEN instruction.

The MACGEN instruction processes a data string (a message, for example) and
returns a four-byte message authentication code. You provide MACGEN a key
and an initial chaining value just as though you were enciphering the data.

Internally, the controller enciphers a copy of the data using cipher block chaining.
Unlike ENCIPHER, however, the controller does not return the entire enciphered
message to you, nor does it disturb the input data string.

MACGEN operates like this:

•Data
• eKM(KMAC) ==> MACGEN ==>MAC
•ICY
• [pad]

After the controller has enciphered the entire data string -- eKMAC(Data) -- it
returns only the final eight bytes to you. You use only the first four bytes as the
message authentication code (MAC).

The message authentication code is a function of the four inputs shown above. If
any of these are changed, the code changes. If you were to generate a MAC at
two different times using the same key, same initial chaining value, and same
padding, yet the two MA Cs were not identical, you would know that the two data
strings were not the same. Thus you can use the MAC to determine that the data
string has been modified (a bogus message substituted for the original, for
example).

You append a MAC to a message that you are going to store or transmit. If you
receive or read a message that has a MAC appended to it, you generate your own
MAC and determine if they match.

Chapter 5. Authenticating Messages 5-1

Record 1 ==>

Record 2 ==>

Record 3 ==>

As noted above, MACGEN returns an eight-byte value, of which the first/our
are the MAC. You use the entire eight bytes in the manner described below when
you wish to authenticate a message that is to be stored or transmitted in multiple
physical records. You do not have to append a separate MAC for each record.
You can instead invoke MACGEN once for each physical record, using the
returned eight bytes as the initial chaining value for the next record's MACGEN.
You would then append the final MAC to the last message of your transmission:

I
Initial chaining value

v
MAC GEN ==> Intermediate chaining value

I
I v

MAC GEN ==> Intermediate chaining value

I
I

v
MAC GEN ==> Use first 4 bytes as MAC

I v

<=== Record 1 I I Record 2 I I Record 3 I MAC

MACGEN Conventions that Both Programs Should Observe

To authenticate data for another program, the following must occur:

• The MAC must be included with, or appended to the data.

• The MACGEN key (KMAC) must be available to both programs.

• If the remote program is not a 4 700 program, the remote program must have
some means of performing an equivalent of MACGEN. A program that has
access only to electronic code book cryptography would have to perform the
same cipher block chaining functions (exclusive-OR, pad processing) as
MACGEN.

• The initial chaining value must be known by both programs. You can do this
by using a fixed initial chaining value, by including the initial chaining value
with the data, or by using a synchronized sequence of initial chaining values
for transmitting and receiving.

If the initial chaining value is fixed or is passed with the data, you may wish to
take additional precautions. For example, you could include variable data within
the data record and verify that the variable data is as expected when received.

5-2 4700 Controller Programming Library, Volume 5: Cryptographic Programming

During extended periods that KMAC remains unchanged, a successful MAC
check does not mean that the message is timely; if the message was intercepted,
delayed, and then replayed, the MAC still checks. To detect replayed messages,
you have to examine the received data for some indication of currency. For
example, you could check for a non-repeating sequence number or time-stamp
that you can compare with a like value in program storage.

Authenticating Enciphered Data

In the above discussion, we assumed that a plaintext message was being
authenticated. Message authentication works equally well, however, on
enciphered messages.

If you are enciphering a message or any part of a message that you are also
authenticating, you must create the ciphertext be[ore you generate the message
authentication code.

If you are using ENCIPHER to pad the data, and then using the same parameter
list to generate an authenication code for the enciphered data; you may want to
reset the pad request flag before issuing the MACGEN. (Remember the
ENCIPHER with PAD incremented the length field to a multiple of eight bytes.)

Chapter 5. Authenticating Messages 5-3

Example 5 . .Authenticating Messages

In this example (Figure 5-1), Program A and Program F have already successfully
initiated a session as shown in the previous example. Both programs possess the
same session key and message authentication key (enciphered under their
respective master key) and each has an initial chaining value to use for
enciphering data being transmitted.

To detect any modification to the data being transmitted, both programs use the
MACGEN (or equivalent) facility described above. Each program maintains a
version of each other's initial chaining value (ICV); for each successive
transmission, the programs modify the ICY in a fixed manner -- in this example,
by incrementing the ICY.

1. Program A increments its sending ICY and enciphers the data.

2. Program A provides the incremented ICY, the message authentication key
(KMAC), and the enciphered data being transmitted to the MACGEN
instruction. Program A then appends the resulting message authentication
code (MAC) to the enciphered data and sends the complete message to F.

3. Program F increments its receiving ICY (ICYaf) so that it remains identical to
the ICY that A used for its MACGEN and ENCIPHER instructions.
Program F separates the MAC from the ciphertext and issues MACGEN,
repeating the MACGBN operation previously performed at A. If the
resulting MAC is the same as the MAC appended to the data, the data has
been authenticated and can be presumed to be unchanged. (If the MACs do
not match, either the data or the MAC has been changed, or the two
programs are not in synchronization. If the MAC check fails, Program F
would request a new session.)

4. Program F deciphers the authenticated ciphertext.

5. Program F now sends a message back to A, by performing steps similar to
those used by Program A (Steps 1 and 2). Program F:

• increments its sending ICY, ICYfa,
• enciphers the data using the session key KS,
• uses KMAC to generate a MAC for the ciphertext
• appends the MAC,
• and sends the message to A.

6. Program A authenticates the message just as Program F did (Steps 3 and 4)
except that A uses its receiving initial chaining value, ICYfa. Program A:

• increments ICFfa,
• generates a MAC,
• verifies that the received MAC and the generated MAC match,
• and deciphers the ciphertext.

Note that as the session continues, each program's version of ICYfa increments in
unison. The same is true for ICYaf.

5-4 4700 Controller Programming Library, Volume 5: Cryptographic Programming

2.

Installation A
==============

• eKMa(KMAC)
• eKMa(KS)
• ICVaf (for sending to F)
• ICVfa (for receiving from F)

Installation F
==============

• eKMf(KMAC)
• eKMf(KS)
• I CVf a (for sending to A)
• ICVaf (for receiving

from A)

JeKS(Data)JMAcJ->save MAC
· I CVaf + 1 ICVaf'

3. ICVaf'
eKMf(KMAC)
eKS(Data)
==> MACGEN ==> MAC

MAC = MAC? If so,
continue session ...

4. ICVaf'
eKMf(KS)
eKS(Data)
==> DECIPHER==> Data

Figure 5-1 (Part 1of2). Authenticating Messages

Chapter S. Authenticating Messages 5-5

5. ICVfa + 1

ICVfa'
eKMf(KS)

ICVfa'

Data ~---
==> ENCIPHER==> leKS(Data

ICVfa'
eKMf(KMAC)
eKS(Data)
==> MACGEN ==> IMACI

Save MAC
ICVfa + 1

<- leKS(Data) :MACI <-----------'<

ICVfa'

6. ICVfa'
eKMa(KMAC)
eKS(Data)
==> MACGEN ==> MAC

MAC= MAC? If so, continue session ...

ICVfa'
eKMa(KS)
eKS(Data)
==> DECIPHER ==> Data

Figure S-1 (Part 2 of 2). Authenticating Messages

5-6 4700 Controller Programming Library, Volume 5: Cryptographic Programming

Chapter 6. Validating and Translating Personal Identification Numbers

PIN Validation

The 4700 controller has two facilities that process personal identification numbers
(PINs). A program using these facilities can:

• validate a PlN, if the program has access to PIN validation data, or

translate a PIN, for use by a program at another location that has access to
PIN validation data.

To invoke these facilities, the program issues a PJNVERJF instruction (for PIN
validation) and a PJNTRANS instruction (for PIN translation). Both instructions
require the P28 module in tile 4700 controller.

PIN validation is the process of comparing a customer-entered PIN with related
data that you have defined and associated with the customer (placed on the
customer's identification card, for example). When performed in the 4700
controller, PIN validation is an offline operation -- that is, no communication with
the host computer is required.

The program uses a PINVERIF instruction to pass both the PIN and the
validation data to the controller:

• PIN Input Check or
•Validation==> PINVERIF ==>•No-Check

Input Indication

PINVERIF determines if the data and the PIN are algorithmically related and
notifies the program. This enables the program to determine with a high degree of
reliability that the entered PIN is valid.

The algorithmic relationship is a complex one, involving both the data that serves
as input to the algorithm, and several program-provided values that control the
algorithm.

The 4700 controller and the 3624 Consumer Transaction Facility use the same
algorithm. However, the PIN does not have to be in 3624 format; PINVERIF
accepts PINs in other formats, as described below.

The 4700 Host Support program (Licensed Program 5668-989) contains a
routine, BDKDPRS, that you can use to.generate PINs and data that have the
correct algorithmic relationship. BDKDPRS is described in detail in Chapter
8, "Host Support Encryption Routines."

Chapter 8, "Host Support Encryption Routines" also describes the PIN validation
algorithm. You can use this description if you do not have access to the Host
Support program and want to write your owll'PIN-generating program.

Chapter 6. Validating and Translating Personal Identification Numbers 6-1

Obtaining the PIN

The program that is validating the customer-entered PIN must have access to the
data and the controlling values. The program cannot derive the data and values
from the PIN alone; generally, the program obtains them from the customer's
identification card or from the operator handling the transaction. At a minimum,
the customer or terminal operator would provide some form of identifier (in
addition to the PIN) that the program can use to find the data and value that you
have installed. Or, at the other extreme, the program could read all the required
data and values from the terminal -- from a magnetically-encoded card, for
example, or from the terminal's keyboard. Typically, however, a procedure part
way between these two extremes is used: the customer's card contains an
identifier, the validation data, and optionally one of the control values; all other
control values are in a user-defined table indexed via the identifier. The examples
later in this chapter illustrate this procedure.

A program can acquire a PIN from any of these sources:

• A 4 704 display station with a nonencrypting PIN keypad accessory

• A 4 704 display station with an encrypting PIN keypad accessory

• A 3624 consumer transaction facility.

In all cases, the program obtains the PIN as the result of issuing an input
instruction. At the completion of the input operation, the PIN is in the program's
segment storage. The delimiters surrounding the PIN differ depending on the
input device and on what you specified during the controller configuration
procedure. See the publications listed below for more information.

Note: In addition to the above, other PIN formats are supported.

PIN Source Instruction Described In
========== =========== ============

'

Nonencrypting LREAD KB 4700 Loop and DCA Device
PIN Keypad Programming

Encrypting PIN LREAD KB Next chapter, and Loop and
Keypad DCA Device Programming

3624 Facility LREAD CT 3624 Programmer's Reference

Note: The 3624 PIN is not delimited; it occupies the sixth through the
thirteenth bytes of the 3624's transaction request.message.

6-2 4700 Controller Programming Library, Volume 5: Cryptographic Programming

PIN Formats

Except for the nonencrypting PIN format, the customer-entered PIN is always
combined with other information (such as a pad character) and enciphered under
KPl -- the PIN input protection key. This is represented as

eKPl(PIN)

where PIN is the entire formatted PIN, as described below. KPl is generally the
key stored in the encrypting terminal. The program requires access to this key
enciphered under the third variant of the master key -- eKM3(KPl).

The diagrams below show how the PIN would look if it were not enciphered.

l<-1 to 16 bytes in plaintext->1

l7FI l7FI Segment storage
------------------~

IPIN... I Formatted PIN

F0 Fl F2 F3 F4 FS I Example (Customer PIN: 0 1 2 3 4 5)

PIN: From one to sixteen EBCDIC characters.

Nonencrypting PIN Keypad Format

I<-- 8 bytes --->I

l7EI l7FI Segment storage

1 LEN l~IN... . .. PADISEQI Formatted PIN

IA0 12 34 56 78 9F FF 00 I Example
(Customer PIN: 0 1 2 3 4 5 6 7 8 9)

I<- enciphered >I
under KPl

LEN: Number of PIN characters entered; a 4-bit value from X'l'
to X 'D'.

PIN ... : From one to thirteen PIN characters; each is a 4-bit value
from X'0' to X'9' .

... PAD: From zero to twelve pad characters (thirteen minus the number
of PIN characters equals the number of pad characters);
each is a 4-bit value, always X'F'.

SEQ: A one-byte sequence number, from X1 00 1 to X1 FF 1 •

Encrypting PIN Keypad Format

Chapter 6. Validating and Translating Personal Identification Numbers 6-3

I<-- 8 bytes -->I

Se9ment storage

IPIN PADI Formatted PIN

101 23 45 6E EE EE EE EEi Example (Customer PIN: 0 1 2 3 4 5 6)

I<-- enciphered -->I
under KPl

PIN ... : From one to sixteen PIN characters; each is a four-bit value
from X1 0 1 to X1 9' .

... PAD: From zero to fifteen pad characters (sixteen minus the number
of PIN characters equals the number of pad characters); each
is a four-bit value from X10' to X1 F1 ; all must be the same.

3624 PIN Format

I<-- 8 bytes -->I

Segment storage

l0ILENIPIN •. PADI Plaintext PIN

l0000IPAN .•.

IXOR ... (PIN XOR PAN)

I<-- enciphered -->I
under KPl

Primary Account Number (PAN)

Formatted PIN

Example -

106 12 34 56 FF FF FF FFI (Customer PIN: 1 2 3 4 5 6)

100 00 22 23 33 44 45 551 (Customer PAN: 111 222 333 444 555)

106 12 16 75 CC BB BA AAI Formatted PIN (PIN XOR PAN)

0: A 4-bit control field; always X1 0'.

LEN: Number of PIN characters entered; a 4-bit value from X1 4'
to x •c 1 •

PIN ... : From four to twelve PIN characters; each is a 4-bit value
from X1 0 1 to X1 9 1 •

.•. PAD: From two to ten pad characters (fourteen minus the number
of PIN characters equals the number of pad characters); each
4-bit character must be set to X1 F1 •

0000: A 2-byte field; always X1 0000 1 •

PAN ... : Twelve 4-bit digits representing the "rightmost" (least
significant) twelve digits of the primary account number.

XOR ... : An exclusive-OR of the plaintext PIN and the PAN yields the
formatted PIN.

ANSI PIN Format

6-4 4700 Controller Programming Library, Volume 5: Cryptographic Programming

I<-- 8 bytes -->I

Segment storage

ISEQIPIN PADI Formatted PIN

100 00 12 34 56 EE EE EEi Example (Customer PIN: 1 2 3 4 5 6)

I<-- enciphered -->I
under KPl

SEQ: A 2-byte sequence number assigned by the 3621 (or originating
terminal ·or node) to each PIN prior to transmitting it to the
controller. (The 3621 assigns the sequence number in ascend
ing order, starting with zero. A program can use a DEVPARM
instruction to change the sequence number.)

PIN ... : From one to twelve PIN characters; each is a 4-bit value
from X'0' to X'9' .

•.. PAD: From zero to eleven pad characters (twelve minus the number
of PIN characters equals the number of pad characters); each
is a four-bit value from X'0' to X'F'; all must be the same.

3621 PIN Format

Chapter 6. Validating and Translating Personal Identification Numbers 6-5

PIN Data

The data accompanying the PIN can be obtained from the 4 704 keyboard or from
the magnetic stripe of a credit or other plastic card. The 4704's magnetic stripe
unit reads cards prerecorded on Track 2 at 75 bpi, in accordance with American
National Standards Institute (ANSI) Standard X4.16-1976.

The 3624 reads cards prerecorded on Tracks 2 and 3 as described in 3624
Programmer's Reference (PR050). The 3624 can perform its own PIN validation
at the time the customer enters the card and PIN.

Figure 6-1 illustrates the principal items of information that the program supplies
when validating a PIN. (The following numbered items correspond to those in
Figure 6-1.)

1. The validation data is the data that the controller compares (in a
much-modified form) with the PIN itself during the validation operation. The
validation data can be the customer's account number or any other identifying
number chosen by the institution. You can run the BDKDPRS routine to
generate a PIN that is correctly related to the validation data. The program
pads the validation data on the right, if necessary, to make the validation data
eight bytes long.

2. If an arbitrarily-specified number is to be read as a customer-assigned PIN, an
additional value must be recorded on the customer's card. This of [set data
reflects the difference between the PIN that is generated from the validation
data, and the PIN actually assigned to the customer. You can use the
BDKDPRS routine to generate the proper offset data.

3. The validation key is the key you select for input to BDKDPRS. You provide
this key (KPv) to BDKDPRS in plaintext, but the program provides the key
enciphered under the third variant of the master key. It is your responsibility
to create eKm3(KPv) and make it available to the validating program.

4. A decimalization table is a string of sixteen packed decimal digits that the
controller uses to modify the enciphered validation data. You supply this
arbitrarily-selected table to BDKDPRS, and to the validating program.

5. The check length indicates how many digits of the customer-entered PIN are
to be processed (compared) by PINVERIF. The minimum is one, and the
maximum is sixteen. The check length also governs how many digits of offset.
data (if present) are to be processed by PINVERIF.

6. The program passes PINVERIF the PIN in the same format as it was received
-- that is, enciphered under the input PIN protection key, KPl (or in plaintext
if the PIN is obtained from a nonencrypting PIN keypad).

7. When the PIN is in a 3624 format, the pad character specifies the digit that
the 3624 uses to pad the PIN.

8. The enciphered protection key is the key KPl enciphered under the third
variant of the controller's master key. You must create eKM3(KP1) and
make it available to the validating program.

6-6 4700 Controller Programming Library, Volume 5: Cryptographic Prograrriming

Identification
Card

Issuer

User-maintained
(not required)

IDJ
table

Validation key
eKMJ(KPv)

Decimalization
table

Pad character for
validation data

Check length

Pad character
for PIN

Protection key
eKM3(KP1)

•
••• ••• ••• •••

<

Validation
Data

I
I

Magnetic Stripe

Offset
Data

I
I

I

L

>

>

>
>

>

>

PINVERIF Verification
Parameter List
(required)

Va 1 id at ion key
eKMJ(KPv)

Decimal i z.at ion
table

Validation data

Check length

Offset data

PINVERIF Input
Parameter List
(required)

0
©

'---: > Pad character
for PIN 0

© > Protection key
eKM3(KP1)

© Enciphered PIN
Encrypting PIN Keypad ----:> eKPl(PIN)

Figure 6-1. Information Required for PIN Validation

Chapter 6. Validating and Translating Personal Identification Numbers 6-7

Example 6. Validating a PIN

The following example shows how a program can use the validation data together
with the 4700 cryptographic facilities to validate a PIN.

In this example, the 4 700 controller application program can validate enciphered
PINs received from any of three encrypting terminals attached to it (Figure 6-2):

• 4 704 display stations X and Y, each equipped with an encrypting PIN keypad
and a magnetic stripe unit.

• 3624 consumer transaction facility Z.

Before program execution, the installation's security specialists have defined and
installed the following:

• KM, the controller's master key. KM is installed manually in the controller.

• KPx, KPy, and KPz, input PIN protection keys for the three encrypting
terminals. KPx and KPy are installed manually in their respective encrypting
keypads (see Chapter 7, "Using the Encrypting PIN Keypad"); KPz is
transmitted to the 3624 in its load image.

• eKM3(KPx), eKM3(KPy), and eKM3(KPz), installed in PIN Table.

• KPva, a PIN validation key for PINs issued by the 4700's bank (A), and
KPvb, a PIN validation key for PINs issued by a second bank, B, whose
customers are permitted to use Bank A's facilities.

• eKM3(KPva) and eKM3(KPvb), installed in Validation Table.

6-8 4700 Controller Programming Library, Volume 5: Cryptographi~ Programming

4701-A

Km J 4 704 - x 4704-Y

~· ~

Device PIN Table ekm3 (KP1)

Address Type Enciphered PIN Key Pad

x 4704e eKM3 (KPx) -

y 4704e eKM3 (KPy) -~
z 3624 eKM3 (KPz) X'OA'

Validation Table

Check Valid. Valid. Offset Decimalization
Bank Length Pad Data Data Table

-

3.
A 4 X'OF' On Card On Card X'0123 .. .'

B 6 X'OA' On Card On Card X'9876 .. .'

I

Summary of PIN Keys
KPx, KPy, KPz-lnput PIN protection keys (KP1) for terminals X, Y, Z.
KPva, KPvb-PIN validation keys (KPv) for Banks A and B.

Figure 6-2. Validating a PIN

(I v o)
PIN

1::1

t1 3624-Z

El

Enciphered PIN
Validation Key

eKM3 (KPv)

~KM3 (KPva)

eKM3 (KPvb)

Chapter 6. Validating and Translating Personal Identification Numbers 6-9

1. The program receives input from terminal Y's operator, requesting a banking
transaction that requires PIN validation. The program:

• Signals the operator to obtain the magnetic stripe data.

• Enables the magnetic stripe unit and the encrypting keypad.

• Reads the magnetic stripe data and the enciphered PIN.

2. The program accesses terminal Y's entry in the PIN Table and obtains the
enciphered protection key. The program now has

• eKPy(PJN)

• eKM3(KPy)

and can set up PINVERIF's input parameter list.

3. The program uses the first of the three fields of magnetic stripe data (the bank
identifier) to find the proper entry in the Validation Table. Jn this example,
·the magnetic stripe data identifies the customer as a customer of Bank A. The
program extracts the check length, decimalization table, and enciphered PIN
validation key from the table and places them into PJNVERJF's verification
parameter list. The program then:

• Determines that the validation data and the validation offset data are to
be taken from the magnetic stripe data.

• Pads the validation data with the table's pad character.

• Places the offset data and the padded validation data into the parameter
list.

The program can now issue the PINVERJF instruction and tell the operator if the
PIN is acceptable.

6-10 4700 Controller Programming Library, Volume 5: Cryptographic Programming

PIN Translation

PIN translation is intended for use by programs that are exchanging PINs with
remote locations.

Using the PINTRANS instruction, your program can reencipher the PIN and/ or
change the PIN from the format in which your program acquired the PIN to a
format usable by the other program.

PINTRANS, like PINVERIF, processes enciphered PINs without revealing the
PIN in plaintext. PINTRANS accepts PINs in any of the following formats:

• nonencrypting PIN keypad format
• encrypting PIN keypad format (enciphered under KPl)
• 3624 PIN format (enciphered under KPl)
• ANSI PIN format (enciphered under KP 1)
• 3621 PIN format (enciphered under KPl)

and can prod11ce the same PIN in any of the following enciphered formats:

• encrypting PIN keypad format
• 3624 PIN format
• ANSI PIN format
• 3621 PIN format

Before transmitting a PIN to another program, you can use PINTRANS to
reencipher the PIN under a key usable to the receiving program. This key is
referred to as the output PIN protection key, KP2, and must be available to the
program enciphered under the first variant of the controller's master key.

Chapter 6. Validating and Translating Personal Identification Numbers 6-11

PINTRANS operates in the following manner when the input PIN is in
nonencrypting PIN keypad format. Note that the PIN is enciphered under an
output PIN protection key (KP2):

• PIN
• eKM1(KP2) ==> PINTRANS ==> • eKP2(PIN)

PINTRANS operates in the following manner when the input PIN is in one of the
encrypting PIN formats. Reenciphering can occur under either the same key
(KPl) or under a new key (KP2). Note that PINs in encrypting PIN format can
be translated without reenciphering under a new key. You could use this form of
PINTRANS to change the format and/or pad character in a formatted PIN.

Reenciphering Under the Same Key:

• eKPl(PIN)
• eKM3(KP1) ==> PINTRANS ==> • eKPl(PIN)

Reenciphering Under a New Key:

• eKPl(PIN)
• eKM3(KP1) ==> PINTRANS ==> • eKP2(PIN)
• eKM1(KP2)

The enciphered PIN must conform to one of the PIN formats described above.

6-12 4700 Controller Programming Library, Volume 5: Cryptographic Programming

Example 7. Translating a PIN

In the previous example, the 4700 controller application program at Rank A could
verify PINs issued by Banks A and B. In Example 7, customers of remote banks
C and D are also permitted to conduct transactions through Bank A's facilities.

The program does not have access to the information necessary to validate these
additional PINs. When a customer of Bank C or D enters a transaction, the
program sends the PIN and its accompanying data to the customer's bank for
validation there.

Bank A's 4 700 controller is attached to a host computer that acts as an
intermediary between Bank A and the remote banks. Although not illustrated in
this example, the host computer could relay validation requests in either direction.
lf Bank A or B customers attempted a transaction at Banks C or D, the host
computer would request the same type of PIN validation operation shown in the
previous example. The 4 700 physical configuration is the same as in the previous
example: Two 4704 display stations (X and Y) and one 3624 consumer
transaction facility (Z) are attached to A's controller.

In addition to the input PIN protection keys and the validation keys already
defined (KPx, KPy, KPz, KPva, and KPvb), Bank A's security specialists have
also defined two additional output PIN protection keys (KP2):

• KPc -- protection key for PINs sent to C
• KPd -- protection key for PINs sent to D

Bank A has enciphered these keys under the first variant of the 4701 's master
key, and made the results available to the program. These enciphered keys must,
of course, be available to C and D.

Bank A has also defined the PIN formats required by C and D -- in this example,
3624 format for both banks. These inputs are shown in Figure 6-3 as a separate
PIN translation table, but note that this information could easily be combined
with the PIN validation table.

Chapter 6. Validating and Translating Personal Identification Numbers 6-13

Host Computer

I--- BankD
Bank B v BankC

~ I
I--

N 4704-X 4704-4 ~
(I 4701-A J ~ IKpyJ

~ 1--
Device PIN Table
Addr Type Enciphered PIN Key Pad ess eKM3 iKP1 I

x 4704e eKM3 IKPxl -

y 4704e eKM3 IKPyJ

X'~A'~ z 3624 eKM3 (KPzJ

Validation -Table

Check Valid. Valid. Offset Decimalization Bank
Length Pad Data Data Table

A 4 X'OF' On Card On Card X'0123 ...

B 6 X'OA' On Card On Card X'9876 .. .'

Translation Table l
Trans

Bank late
?

~ c Yes

D Yes

Summary of PIN Keys
KPx, KPy, KPz - Input PIN protection keys (KP1) for X, V, and Z
KPva, KPvb - PIN validation keys (KPv) for Banks A and B

VO

rt
ti 3624-2

~

Enciphered Pin
Validation Key_
eKM3 (KPv)

eKM3 (KPva)

eKM3 (KPvb)

Enciphered PIN
Key

eKM1 (KP2)

eKM1 (KPcl

eKM1 (KPd)

KPc, KPd - Output PIN protection keys (KP2) for PINs sent to C and D

Figure 6-3. Translating a PIN

6-14 4700 Controller Programming Library, Volume 5: Cryptographic Programming

1. The program receives a transaction request message from the 3624 consumer
transaction facility (terminal Z). The program obtains the customer's PIN
(enciphered under KPz) and the accompanying magnetic stripe data.

2. The program finds terminal Z's entry in the device PIN table and obtains
eKM3(KPz) and the pad character. The program now has all required input
for the INPP AR parameter list (see the PINVERTF instruction for an
explanation of the INPPAR field names):

INPIN = eKPz(PlN) -- the enciphered PIN
INPINKEY = eKM3(KPz) -- the enciphered PIN protection key

• INPINPAD = X'OA' -- the pad character A
• INPINTYP = X'40' -- the input PIN format

3. The program uses the identifier portion of the magnetic stripe data (which
identifies Bank C) to find the proper entry in the translation table. This entry
tells the program that an online PIN validation is required (that is, the
program cannot itself validate the PIN). This entry also provides
eKMl (KPc).

4. The program sets up the PlNTRANS translation parameter list as follows, and
issues PJNTRANS:

• TNPINFLG = X' 40' -- reencipher under new key
• TNPINPAD = X'OA' -- use pad character X'A'
• TNPINKEY = eKMl(KPc) -- reencipher under KPc

5. The program combines the reenciphered formatted PIN with the magnetic
stripe data and prepares to transmit the message to the host computer. This
preparation includes generating a session key, reenciphering from the master
key to the host's cross-domain key, and establishing a session with the host
program -- as shown previously in Example 4.

6. The host computer relays the transaction to Bank C, where a program uses the
message to validate the PIN. Bank C returns a response through the host
computer back to A. The program at Bank A can now tell the 3624 whether
to perform the transaction.

Chapter 6. Validating and Translating Personal Identification Numbers 6-15

Managing PIN Keys

As you have seen from the descriptions of PINTRANS, PINVERlF, and the
previous examples, you maintain PIN keys in three separate classes:

• input PIN protection keys (KP 1)
• output PIN protection keys (KP2)
• PIN validation keys (KPv)

Input PIN protection keys protect PINs that the program receives. Examples
include the keys that are transmitted to a 3624 or that are manually loaded into a
4 704 encrypting PIN keypad.

Output PIN protectiOn keys are used to protect formatted PINs so that they can be
securely transmitted to programs at remote locations, where the PIN can be
validated or matched with a data base of enciphered PINs.

The PIN validation algorithm requires a PIN validation key in order to generate a
PIN check number, as described in Chapter 8, "Host Support Encryption
Routines." The same key that is used for validation is also used when you initially
generate the customer PINs.

The number of PIN protection keys and PIN validation keys needed depends on
the type of PIN operations being performed and the number of institutions and
locations involved in the PIN operations.

If no PIN handling operations are performed at a particular controller, no PIN
keys are required.

PIN protection keys are typically defined on the basis of PIN sources and PIN
destinations. An application might maintain a PIN protection key for each input
device or program from which it receives PINs, and a PIN protection key for each
program to which it transmits PINs.

For example, suppose a controller is supporting several different PIN input
devices or terminals: 3624s, encrypting PIN keypads, and nonencrypting PIN
keypads. Each input device, with the exception of the nonencrypting PIN keypad,
is loaded with a different PIN protection key. All PINs are to be transmitted to a
host application program where they are validated by comparing them against a
data base of PINs enciphered under a single PIN key. In this case, the application
program in the controller would define an input PIN protection key for each
attached 3624 and encrypting PIN keypad, and a single output PIN protection
key for the ho$t application program.

When the controller receives the PIN, it would reformat and translate the PIN
from encryption under one of the input PIN protection keys to encryption under
the output PIN protection key. If, in this same example, each input device were
loaded with the same key, the application would need to.support only a single
input PIN protection key and a single output protection key.

It is not necessary for an application program to support output PIN protection
keys unless it chartges the key under which a PIN is enciphered before forwarding
it to another program. That is, if all PINs are originally enciphered in the same
key and the program merely translates them into a common format without
changing the key, only a single input PIN protection key is needed. The

6-16 4700 Controller Programming Library, Volume 5: Cryptographic Programming

Key Storage

PINTRANS instruction enables you to specify that the same key be used to
encipher the output PIN as was used to protect the input PIN.

PIN validation keys are typically defined by each institution. An institution may
use a single PIN validation key to verify all of it's customers' PINs, or multiple
PIN validation keys to support unique subsets of customers. A program that
performs PIN validation for several institutions would maintain a PIN validation
key or set of PIN validation keys for each institution it supports. When the
program validates the PIN, the program selects the appropriate PIN validation key
on the basis of identification card data or account information.

You maintain PIN keys in enciphered form in storage or on a diskette. In order to
use them in the PINTRANS and PINVERIF instructions, you must store the PIN
keys under the appropriate variant of the controller master key. You store all
input protection keys and PIN validation keys under the third variant of the
master key, and all output PIN protection keys under variant one. If a particular
PIN protection key serves as both input and output (and never as output alone),
you need not maintain two copies of the key enciphered under both variant one
and variant three; the PINTRANS instruction allows the same key to be used as
an input and an output key.

Key Generation and Distribution

Protecting P/Ns

PIN keys are static keys generated by your key generation system. They are
initially generated as plaintext keys and then enciphered by the key generation
system, using the appropriate variant of the destinatidn program's master key.
You can encipher a PIN key using either the ENCODE or ENCIPHER
instruction, depending on how controller master keys are stored in the key
generation system.

Distribute PIN keys only after you have enciphered them under the appropriate
variant of the controller master key. Enciphered,PIN keys may be stored on a
diskette, transmitted (downloaded) from a host system, or manually entered
through a program-provided key entry procedure.

One of the obvious objectives of encryption is to protect a customer's PIN from
unauthorized disclosure. The following section points out some of the problems
that you may face in trying to protect PINs, and suggests some techniques you
might use to overcome these problems. Remember that the problems described
below are samples, and may not be the only ones you will face.

The easiest way for an adversary to obtain a PIN is to intercept the PIN in
plaintext. It is therefore important to limit the places in the system where PINs
appear in plaintext.

Chapter 6. Validating and Translating Personal Identification Numbers 6-17

Dictionary Attacks

Exhaustion Attacks

A PIN entered at an encrypting PIN keypad or at a 3624 always enters the
controller in enciphered form. With the PINVERIF instruction (and its
equivalent function in the 3624), the PIN can be validated without requiring /
transmission or storage of the PIN elsewhere in the system. In instances where
the PIN must be validated at a remote location, PINTRANS should be used to put
the PIN in its final enciphered form before leaving the controller. The PIN need
not be deciphered at the remote location; the enciphered PIN can be matched
against enciphered PINs that reside on the remote location's data base.

Even when using all these techniques, you should take further precautions against
dictionary attacks.

If an adversary knows that his PIN always appears the same when enciphered, he
may watch for other customer accounts whose enciphered PINS match his. (Such
duplicates are not uncommon when institutions assign short PINs.) When he has
identified one, he knows that that customer's plaintext PIN may be the same as
his. This attack can be expanded to build a paired dictionary of plaintext PINs
and enciphered PTNs.

Protection against dictionary attacks generally takes the form of including
variable data with the PIN before enciphering it. This increases the number of
enciphered PIN synonyms per plaintext PIN, proportional to the variability of the
data. This in turn makes the management of the attack dictionary extremely
difficult.

The encrypting PIN keypad automatically includes a one-byte binary sequence
counter with the PIN before enciphering it. This creates 256 enciphered PIN
synonyms for each clear PIN. Note that although this discourages dictionary
attacks, this enciphered PIN format is of little use if enciphered PINS are to be
compared at the bank's data base. All 256 synonyms would need to be stored for
each customer PIN. For host validation of PINS entered this way, use the
PINTRANS instruction to translate all such PINs into 3624 format.

The 3624 PIN format does not include variable data with the PIN. It is useful for
enciphered PIN comparisons at the data base; however, it in itself is not secure
against dictionary attacks. To provide dictionary attack protection during
transmission, include an enciphered PIN in 3624 format within a message that
you then encipher in cipher block chaining mode (ENCIPHER). Note that this is
effective only if the initial chaining value and/ or preceding data in the message
data field are varied with each transmission.

An exhaustion attack is the process of determining a customer PIN through trial
and error. These attacks range from a simple attack at the consumer interface
(trying different PINS with a stolen card) to combined dictionary and exhaustion
attacks. They all have one requirement in common: the need to enter a
transaction with plaintext PIN input.

6-18 4700 Controller Programming Library, Volume 5: Cryptographic Programming

Simple attacks can be defeated rather easily: have the program limit the number
of PIN transaction entries. More complex attacks include using the controller
offline to build a dictionary of enciphered and plaintext P!Ns, and using the
controller offline to validate PTNs. To discourage such attacks, you can
implement a program that detects excessive executions of the PINVERIF and
PINTRANS instructions. ff PINs are validated in the controller, this program
could audit counts of successful and unsuccessful PIN validations and PIN
translations. You could then check these counts to detect abnormally high
proportions of unsuccessful attempts, or your program could maintain a threshold
value of unsuccessful attempts. The controller maintains three statistical counters
to aid you in making such audits:

• Counter 9-11 increments each time a PlNVERlF instruction completes
successfully, up to the point where the PIN is actually validated (SMSCCD =
X'Ol ',or SMSCCD = X'02' and SMSDST = X'2010'). This is the total
number of PIN validations attempted.

• Counter 12-14 increments each time a PINVERJF instruction completes
successfully, but results in a "PIN not valid" status (SMSCCD = X'02' and
SMSDST = X'2010'). This is the number of unsuccessful PIN validations.

• Counter 15-17 increments each time a PINTRANS instruction completes
successfully -- that is, completes with a condition code of 1 (SMSCCD =
X'Ol').

Statistical counters are described further in Appendix F, "Statistical Counters."

You could augment this procedure by keeping track of recently used account
numbers. Excessive use of the same account number for unsuccessful PIN
validations could also be monitored by the program.

If PINs are being checked at the host computer, the program could simply monitor
the number of times that PINTRANS is executed. Auditing this count with
respect to the number of transactions received at the host could disclose
unauthorized use of the controller.

If responses are paired with PIN translations, the program could disable the
PINTRANS function when valid host responses were not present. This active
protection could be used even when PINs are validated in the controller, provided
that all transactions are online.

The expense of developing such a program would likely be small, compared to the
value of the protection it provides.

Chapter 6. Validating and Translating Personal Identification Numbers 6-19

6-20 4700 Controller Programming Library, Volume 5: Cryptographic Programming

Chapter 7. Using the Encrypting PIN Keypad

The encrypting PIN keypad (Figure 7-1, left) is a 4704 display station accessory.
It enciphers a PIN in accordance with the United States National Bureau of
Standards data encryption algorithm, and sends the enciphered PIN to the 4 704
control module.

The encrypting PIN keypad has keys for numbers zero through nine, and two
special keys labeled ERASE and END. The ERASE key clears the entered PIN,
and the END key delimits the end of the entered PIN.

The numeric keys are labeled with alphabetic characters. The keypad can be
ordered with either of two labeling schemes; either with the label QZ next to the 1
key (as shown in Figure 7-1, right) or with the label QZ next to the 0 key.

The QZ-with-1 format conforms to proposed American National Standards
Institute (ANSI) Standard X4.Al 1. However, if your installation already
includes PIN keypads having the QZ-with-0 format, it is important that you
maintain compatibility with that format.

Figure 7-1. Encrypting PIN Keypad

Chapter 7. Using the Encrypting PIN Keypad 7-1

Entering the Key

You load the PIN keypad key (KPl) through the keypad itself, although the
attached 4 704 is also required. The entire process involves the following steps:

• Ensure that the 4704 and the keypad have been set up and checked out in
accordance with 4 704 Setup Instructions.

Apply power to the 4 704 (see 4 704 Operating Instructions if you don't know
how to operate the 4704).

• Activate the keypad switch. The keypad switch is on the right side of the
keypad (Figure 7-2). Insert a small tool (such as a paper clip or small
screwdriver) into the switch opening and slide the switch to the right -- that
is, toward the cable end of the keypad.

Press the 4 704 ALT and TEST keys simultaneously.

• Press the 4 704 ALT and PIN Keypad Test keys simultaneously. The keypad
indicator should light.

• Convert KPl to a 24-key format, as described below. Remember to start with
KPl -- not with eKM3(KP1). You install the latter in the controller for the
benefit of using programs, but you must load KPl into the keypad in
unenciphered form.

• Load KP l. The indicator light should go out after you enter the 24th
keystroke. The keypad automatically replaces the old key after you enter the
24th keystroke.

• Return the switch on the side of the keypad to its original position.

Note: To erase the key, enable the keypad, activate the keypad switch,
and press the END key.

7-2 4700 Controller Programming Library, Volume 5: Cryptographic Programming

Figure 7-2. Encrypting PIN Keypad Switch

The indicator blinks if you make a mistake entering the key. Press the ERASE
key and try again. If the keypad still blinks, the problem may be caused by:

Incorrect conversion from hexadecimal format
• Defective keypad (see 4704 Operating Instructions)

Wrong key (bad parity)

Converting KPJ to 24-Key Format

As described earlier, you initially generate all keys as eight-byte values. In the
case of input PIN protection keys (KP 1) for encrypting PIN keypads, you must
also convert that eight-byte value into 24 keystroke values. To express the key in
the form of keystrokes, write the key in hexadecimal, then use the tables in
Figure 7-3 to convert each pair of hexadecimal digits to three keystroke values.

Chapter 7. Using the Encrypting PIN Keypad 7-3

For example:

173 A0 11 CJ 80 6F CE 221 <--- Key

I I I I I I I I
Convert each pair,
using the following
tables.

3 4!3.!, l
0 4 0 v

6 0 2 v
4 0 0 v

3 3 2 v
6 3 2 v

1 0 3
Enter this sequence
on keypad ==> 3 4 3 5 0 1 0 4 0 6 0 2 4 0 0 3 3 2 6 3 2 1 0 3

7-4 4700 Controller Programming Library, Volume S: Cryptographic Programming

x'00' ==> 0 0 1 x'20' ==> 1 0 0 x'40' ==> 2 0 0 x'60' ==> 3 0 1
x '01' ==> 0 0 1 x' 21' ==> 1 0 0 x '41' ==> 2 0 0 x 161' ==> 3 0 1
x'02' ==> 0 0 2 x'22' ==> 1 0 3 x'42' ==> 2 0 3 x'62' ==> 3 0 2
x'03' ==> 0 0 2 x'23' ==> 1 0 3 X'43' ==> 2 0 3 x'63' ==> 3 0 2
X'04' ==> 0 1 0 X'24' ==> 1 1 1 x'44' ==> 2 1 1 x'64' ==> 3 1 0
x'05' ==> 0 1 0 x'25' ==> 1 1 1 x'4s' ==> 2 1 1 x'6s' ==> 3 1 0
x'06' ==> 0 1 3 x'26' ==> 1 1 2 x'46' ==> 2 1 2 x'66' ==> 3 1 3
x'07' ==> 0 1 3 X'27' ==> 1 1 2 X'47' ==> 2 1 2 X'67' ==> 3 1 3
X'08' ==> 0 2 0 X'28' ==> 1 2 1 X'48' ==> 2 2 1 X'68' ==> 3 2 0
x'09' ==> 0 2 0 x'29' ==> 1 2 1 x'49' ==> 2 2 1 X'69' ==> 3 2 0
X'0A' ==> 0 2 3 X'2A' ==> 1 2 2 X'4A' ==> 2 2 2 X1 6A 1 ==> 3 2 3
X'0B' ==> 0 2 3 X1 2B' ==> 1 2 2 X'4B' ==> 2 2 2 X1 6B 1 ==> 3 2 3
x'0c' ==> 0 3 1 x'2c' ==> 1 3 0 X'4C' ==> 2 3 0 X1 6C 1 ==> 3 3 1
X'0D' ==> 0 3 1 X'2D' ==> 1 3 0 X'4D' ==> 2 3 0 X1 6D 1 ==> 3 3 1
X'0E' ==> 0 3 2 X'2E' ==> 1 3 3 X'4E' ==> 2 3 3 X1 6E 1 ==> 3 3 2
X1 0F 1 ==> 0 3 2 X'2F' ==> 1 3 3 X'4F' ==> 2 3 3 X1 6F 1 ==> 3 3 2

XI 10 I ==> 0 4 0 x'30' ==> 1 4 1 x's0' ==> 2 4 1 X'70' ==> 3 4 0
XI 11 I ==> 0 4 0 x I 31 ' ==> 1 4 1 x I 51 ' ==> 2 4 1 x '71' ==> 3 4 0
XI 12 I ==> 0 4 3 x'32' ==> 1 4 2 x'52' ==> 2 4 2 x 1 72 I ==> 3 4 3
x I 13 1 ==> 0 4 3 x'33' ==> 1 4 2 x'53' ==> 2 4 2 x'73' ==> 3 4 3
XI 14 I ==> 0 5 1 X'34' ==> 1 5 0 X'54' ==> 2 5 0 X'74' ==> 3 5 1
x I 15 I ==> 0 5 1 x'35' ==> 1 5 0 x'ss' ==> 2 5 0 x'75' ==> 3 5 1
x I 16 I ==> 0 5 2 x'36' ==> 1 5 3 X'56' ==> 2 5 3 X'76' ==> 3 5 2
XI 17 I ==> 0 5 2 x'37' ==> 1 5 3 x'57' ==> 2 5 3 x'77' ==> 3 5 2
x I 18 I ==> 0 6 1 x'38' ==> 1 6 0 x'58' ==> 2 6 0 X'78' ==> 3 6 1
XI 19 I ==> 0 6 1 x'39' ==> 1 6 0 x'59' ==> 2 6 0 x'79' ==> 3 6 1
x I lA I ==> 0 6 2 X'3A' ==> 1 6 3 X'SA' ==> 2 6 3 x '7A I ==> 3 6 2
x I 1 BI ==> 0 6 2 X'3B' ==> 1 6 3 X1 SB 1 ==> 2 6 3 X'7B' ==> 3 6 2
x I 1 c I ==> 0 7 0 x'3c' ==> 1 7 1 x'sc' ==> 2 7 1 x'7c' ==> 3 7 0
X 1 10 I ==> 0 7 0 x'30' ==> 1 7 1 x'so' ==> 2 7 1 X'7D' ==> 3 7 0
x I 1 EI ==> 0 7 3 X'3E' ==> 1 7 2 X'5E' ==> 2 7 2 X'7E' ==> 3 7 3
x I 1 FI ==> 0 7 3 X1 3F' ==> 1 7 2 X'SF' ==> 2 7 2 X'7F' ==> 3 7 3

Figure 7-3 (Part 1 of 2). Converting KPl from Hexadecimal to Keystroke Format

Chapter 7. Using the Encrypting PIN Keypad 7 -5

X'80' ==> 4 0 0 X'A0' ==> 5 0 1 X'C0' ==> 6 0 1 X'E0' ==> 7 0 0
x 1 81 1 ==> 4 0 0 x I A 1' ==> 5 0 1 XI c 11 ==> 6 0 1 X' E 1' ==> 7 0 0
X'82' ==> 4 0 3 X'A2' ==> 5 0 2 X'C2' ==> 6 0 2 X'E2' ==> 7 0 3
X'83' ==> 4 0 3 X'A3' ==> 5 0 2 x'c3' ==> 6 0 2 X'E3' ==> 7 0 3
X'84' ==> 4 1 1 X'A4' ==> 5 1 0 X'C4' ==> 6 1 0 X'E4' ==> 7 1 1
X'85' ==> 4 1 1 X'A5' ==> 5 1 0 x'cs' ==> 6 1 0 X'E5' ==> 7 1 1
X1 86 1 ==> 4 1 2 X'A6' ==> 5 1 3 X1 C6 1 ==> 6 1 3 X1 E6 1 ==> 7 1 2
X'87' ==> 4 1 2 X'A7' ==> 5 1 3 X'C7' ==> 6 1 3 X'E7' ==> 7 1 2
X1 88 1 ==> 4 2 1 X1 A8 1 ==> 5 2 0 x'c8' ==> 6 2 0 X1 E8 1 ==> 7 2 1
X'89' ==> 4 2 1 X'A9' ==> 5 2 0 x•c9• ==> 6 2 0 X'E9' ==> 7 2 1
X1 8A 1 ==> 4 2 2 X'AA' ==> 5 2 3 X'CA' ==> 6 2 3 X'EA' ==> 7 2 2
X'8B' ==> 4 2 2 X'AB' ==> 5 2 3 X'CB' ==> 6 2 3 X'EB' ==> 7 2 2
X'8C' ==> 4 3 0 X'AC' ==> 5 3 1 x'cc' ==> 6 3 1 X1 EC 1 ==> 7 3 0
X1 8D 1 ==> 4 3 0 X'AD' ==> 5 3 1 x'co' ==> 6 J 1 X1 ED 1 ==> 7 3 0
X'8E' ==> 4 3 3 X1 AE 1 ==> ·5 3 2 X1 CE 1 ==> 6 3 2 X1 EE 1 ==> 7 3 3
X1 8F 1 ==> 4 3 3 X1 AF 1 ==> 5 3 2 X'CF' ==> 6 3 2 X1 EF 1 ==> 7 3 3

x'90' ==> 4 4 1 X1 80 1 ==> 5 4 0 X1 00 1 ==> 6 4 0 X1 F0 1 ==> 7 4 1
x' 91' ==> 4 4 1 x I B 1' ==> 5 4 0 x ID 11 ==> 6 4 0 x IF l 1 ==> 7 4 1
X'92' ==> 4 4 2 X'B2' ==> 5 4 3 X'D2' ==> 6 4 3 X'F2' ==> 7 4 2
x'93' ==> 4 4 2 X'B3' ==> 5 4 3 X'D3' ==> 6 4 3 X'F3' ==> 7 4 2
X'94' ==> 4 5 0 X'B4' ==> 5 5 1 x'o4' ==> 6 5 1 X'F4' ==> 7 5 0
X'95' ==> 4 5 0 X'B5' ==> 5 5 1 x'os' ==> 6 5 1 X1 F5 1 ==> 7 5 0
x'96' ==> 4 5 3 X'B6' ==> 5 5 2 X1 D6 1 ==> 6 5 2 X1 F6 1 ==> 7 5 3
X'97' ==> 4 5 3 X'B7' ==> 5 5 2 X'D7' ==> 6 5 2 X'F7' ==> 7 5 3
X'98' ==> 4 6 0 X'B8' ==> 5 6 1 X'D8' ==> 6 6 1 X1 F8 1 ==> 7 6 0
x'99' ==> 4 6 0 X'B9' ==> 5 6 1 X'D9' ==> 6 6 1 X1 F9 1 ==> 7 6 0
X'9A' ==> 4 6 3 X'BA' ==> 5 6 2 X'DA' ==> 6 6 2 X'FA' ==> 7 6 3
X'9B' ==> 4 6 3 X'BB' ==> 5 6 2 X'DB' ==> 6 6 2 X1 FB 1 ==> 7 6 3
X'9C' ==> 4 7 1 X'BC' ==> 5 7 0 X1 DC 1 ==> 6 7 0 X'FC' ==> 7 7 1
X'9D' ==> 4 7 1 X1 BD 1 ==> 5 7 0 X'DD' ==> 6 7 0 X1 FD 1 ==> 7 7 1
X'9E' ==> 4 7 2 X1 BE 1 ==> 5 7 3 X'DE' ==> 6 7 3 X'FE' ==> 7 7 2
X'9F' ==> 4 7 2 X'BF' ==> 5 7 3 X1 DF 1 ==> 6 7 3 X1 FF 1 ==> 7 7 2

Figure 7.3 (Part 2 of 2). Converting KPl from Hexadecimal to Keystroke Format

Verifying the Key

After entering a key into the keypad, you may later wish to verify that the key
now in the keypad is the key you loaded. To do this, use the PIN keypad
verification test that is supplied with the 4 700 installation diskette.

You should perform this test in a secure environment.

You initiate the test by selecting option 5 on the installation diskette menu, as
described in detail in 4700 Subsystem Operating Procedures.

7-6 4700 Controller Programming Library, Volume 5: Cryptographic Programming

This test assumes that you have already loaded the protection key KPl as
described above. The test involves these steps, in order:

1. From the 4 704 keyboard, enter KPl in exactly the same format as it was
originally entered in the keypad (24 keystrokes).

2. Enter an arbitrarily-chosen PIN via the 4 704 keyboard. Enter at least one
and not more than thirteen PIN characters. (You may wish to ensure that
personnel who run this test use dummy PINs, not actual customer-assigned
PINs.)

3. Enter the identical PIN via the PIN keypad.

The controller compares the two PINs and tells you whether they match. If they
match, the keypad is operating correctly and the key in the keypad is the one you
think it is. If the PINs do not match, the problem may be caused by any of the
following:

• Your 4704-entered key and the keypad key are not the same.

• You didn't enter the two PINs in an identical manner.

• The keypad is defective (follow the problem reporting procedures described in
4 704 Operating Instructions).

How the Program and the Keypad Interact

The encrypting PIN keypad is a logical extension of the 4704 keyboard. Your
program obtains its input from the keypad by first enabling the keypad and then
issuing LREAD instructions.

The program enables the keypad by issuing a SIGNAL instruction. The SIGNAL
instruction's parameter list must specify that indicator light 3 is to be switched on
(that is, X'21' bits set on). If you are not familiar with the SIGNAL and LREAD
instructions, see Volume 4: Loop and DCA Device Programming.

The customer can enter a PIN as soon as the SIGNAL instruction has turned on
the keypad indicator light. The customer enters a PIN consisting of one to
thirteen keystrokes, then presses the keypad's END key. At any point before
pressing the END key, the customer can press the ERASE key and start over.
Pressing keys on the 4 704 keyboard will not interrupt the operation.

Chapter 7. Using the Encrypting PIN Keypad 7-7

At the completion of the LREAD instruction, the controller places the enciphered
PIN in the program's segment storage. The enciphered PIN -- eKPl (PIN) -- is
delimited with X'7E' and X'7F' characters.

The first four bits indicate how many PIN characters (keypad keystrokes) the
customer entered. This value can range from X' 1' (one-character PIN) to X'D'
(thirteen-character PIN).

Each PIN character is represented in packed decimal form, four bits per character.
The PIN can be as short as one character or as long as ~hirteen characters.

The variable-length PIN is padded with enough X'F' characters to make a
thirteen-character field. The number of pad characters ranges from zero (for a
thirteen-character PIN) to twelve (for a one-character PIN). Note that the total
length of the LEN, PIN, and PAD fields is seven bytes.

When the customer enters a PIN, the encrypting PIN keypad appends a one-byte
sequence number to the above, then enciphers the entire eight bytes. The keypad
increments the sequence number each time a customer enters a PIN (that is,
presses the END key). This makes the enciphered data more resistant to analysis,
because the enciphered data is different each time -- even if the same PIN is
entered several times in succession. The keypad starts at X'OO' the first time
power is applied to the keypad. After an END key has been pressed 256 times,
the sequence number "rolls over" to X'OO' again. If power is interrupted (keypad
disconnected from the 4704, or the 4704 switched off), the sequence number
resets to X'OO' as soon as power is restored.

7-8 4700 Controller Programming Library, Volume 5: Cryptographic Programming

Chapter 8. Host Support Encryption Routines

The BDKDPRS Routine

The 4700 Host Support program (Licensed Program 5668-989) provides two
encryption routines: BDKDPRS and BDKDES. BDKDPRS generates PINs and
related data, while BDKDES is a DES encryption subroutine.

Host Support also contains a dummy routine BDKKEYCC, which you replace
with your own program if you are using 4 700's Host Support program to encipher
a 3624 load image. BDKKEYCC is equivalent to BQKKEYCC, the routine used
by 3600's Host Service programs for enciphering a 3624 load image. (Sections
PR208 and PR209 of your 3624 Programmer's Reference describe this routine.)

See 4700 Host Support User's Guide for information about Host Support.

The BDKDPRS routine generates a PIN in plaintext if given a PIN validation key
(KPv), a decimalization table, and validation data.

The routine can also be used to generate an offset value so that the actual PIN
can be selected by the institution, rather than by BDKDPRS. In this second
method of operation, BDKDPRS generates the proper offset data if given the
same validation key (KPv), the same decimalization table, the same validation
data, and the desired PIN.

If you are a 3624 programmer, you are probably already familiar with BDKDPRS.
This routine is, in fact, the same routine, BQKDPRS, that you use to generate
PINs and offset data for use in a 3624. (BQKDPRS is supplied with the 3600
Host Service programs.) If you are not a 3624 programmer, you may wish to read
Chapter 6 of the 3624 Programmer's Guide. That chapter contains many
illustrations and examples of the PIN validation algorithm that are not duplicated
here.

The 3624 PIN Validation Algorithm

The 4700 PINVERIF instruction and BDKDPRS use the following PIN validation
algorithm. If you are writing your own equivalent of BDKDPRS, these steps
should form the basis of your own program.

1. Obtain KPv, a plaintext PIN validation key. If KPv is enciphered under KM3,
obtain KM, generate KM3, and decipher KPv.

2. Obtain the validation data, pad the data to eight bytes (if necessary), and
encipher the data under KPv.

Chapter 8. Host Support Encryption Routines 8-1

3. Replace each digit of the enciphered validation data with the digit in the
decimalization table whose displacement from the beginning of the table is the
same as the value of the digit of enciphered validation data. For example:

Decimalization table displacement:
Decimalization table data:
Original enciphered validation data:
Modified enciphered validation data:

0 1 2
9 8 7
1 2 2
8 7 7

4. Save the leftmost x digits as the intermediate PIN, where xis the number of
digits in the customer-entered PIN. If your institution is selecting the PIN,
proceed no further; the intermediate PIN is the PIN you assign to the
customer. If your institution is allowing the customer to select the PIN,
proceed to the next step.

5. You must now determine the offset data which, when added to the
customer-selected PIN, yields the intermediate PIN determined in Step 4. To
determine the offset data, subtract (modulo 10) the intermediate PIN from
the customer-selected PIN.

6. Record the offset data where the program can obtain it (generally on the
customees identification card). If you are going to validate only part of the
assigned PIN, record only the rightmost y digits of the offset data, where y is
the number of PIN digits you are going to validate (the PIN check length).

Note: Clear all intermediate PIN values and keys from storage before
returning to the invoking program.

Generating PINs Without Off set Data

You provide BDKDPRS three data items -- pinkey, dectab, and valdata, two
reserved work areas, newpin and workarea, and a parameter list of their addresses.
The parameter list contains seven words, only five of which are used by
BDKDPRSfor new PIN generation. The remaining two (words 4 and 5) are used
when generating offset data, as explained in the next section. However, word 4
must contain F'O' for the PIN generation process. You must ensure that
parameters provided to BDKDPRS match those provided to the operational 4 700
program.

BDKDPRS uses the following subroutine linkage conventions.

Register 1: Points to seven-word parameter list:

Word 0: Address of an eight-byte pinkey (KPv, the PIN validation key)

Word J: Address of an eight-byte dectab (the decimalization table)

Word 2: Address of an eight-byte valdata (the validation data)

8-2 4700 Controller Programming Library, Volume 5: Cryptographic Programming

Calculating Newpin

Word 3: Address of an eight-byte area reserved for newpin

Word 4: F'O'

Word 5: Reserved

Word 6: Address of 60-word work area reserved for workarea

Register 13: Contains address of calling routine's 18-word save area

Register 14: Contains calling routine's return address

Register 15: Contains address of BDKDPRS

valdata must be composed of the institution-defined validation data, padded if
necessary to fill a field of sixteen characters. The validation data is left-justified
in valdata. The padded valdata must be provided to the operational 4 700 program
for use in PINVERIF's validation data field.

BDKDPRS calls BDKDES to encipher the data in valdata, using the eight-byte
key supplied in pinkey. Pinkey must be a PIN validation key, KPv.

BDKDPRS converts the enciphered validation data to decimal using the
decimalization table stored in dectab. The decimalization table must be provided
to the 4 700 program for use in its PINVERIF decimalization table field.
BDKDPRS stores the eight-byte decimalized result in the newpin field.

Because word 4 of the parameter list contains F'O', no offset calculation is
performed.

The PIN check number must be the right-most portion of the PIN assigned to the
customer. If the assigned PIN is longer than the PIN check number, you can
insert any digits as the leading digits of the PIN.

Using the data provided in valdata, BDKDPRS calculates a 16-digit, packed
decimal number and places i! in newpin. BDKDPRS accepts any hexadecimal
digits in valdata. It uses pinkey for enciphering valdata, and dectab for
decimalizing the enciphered valdata.

BDKDPRS calculates newpin by mapping each of the hexadecimal digits of the
enciphered valdata into a decimal digit of dectab. The decimal digit placed in
newpin is that digit whose displacement (0 through 15) in dectab corresponds to
the value (X'O' through X'F') of the hexadecimal digit being mapped.

In the following example:

Validation data = 33333333
Pad character = 2
pinkey = 89B07B35A1B3F47E

Chapter 8. Host Support Encryption Routines 8-3

valdata

Enciphered
valdata

dee tab

Displacement
Decimal digit

newpin

Assigning the PIN

0
8

Using the data in newpin, the institution's program creates a PIN to be assigned to
the customer whose validation data was used to calculate the value in newpin.

newpin is sixteen digits long. However, you need not assign the entire sixteen
digits as the PIN. If you choose to assign fewer than sixteen digits, assign the
leftmost y digits of newpin (where y is the number of digits you choose to assign).

Furthermore, you need not validate the entire PIN that you do assign -- this
means that the customer does not have to enter the entire assigned PIN. You can
select a PIN check length that is smaller, as shown in the next example. The PIN
check length indicates the minimum number of PIN digits that the customer can
enter. If you select a PIN check length that is smaller than the entered PIN, it is
the rightmost portion of the PIN that is validated.

In the following example:

Assigned PIN length = 9
PIN check length = 6
newpin = 3913656466643416
Maximum PIN length = 9

8-4 4700 Controller Programming Library, Volume 5: Cryptographic Programming

newpin

Assigned PIN

PIN check number

3913656466643416

I PIN length I
(maximum)

391365646
I check I

length
365646

The assigned PIN can be xxx365646, where x is any decimal digit, because the
PIN validation algorithm checks only the rightmost six digits (the PIN check
length) of the entered PIN.

You can also allow the customer to enter a variable number of digits of the
assigned PIN. In this case, the assigned PIN must be 391365646. Because the
algorithm checks only the rightmost six digits of the entered PIN, the customer
can enter:

391365
x913656
:xx136564
xxx365646

Summary of Institution Responsibilities

In summary, your responsibilities in programming the generation of new PINs are:

• Supply the PIN validation key, KPv, for enciphering valdata.

• Supply the decimalization table in dectab.

• Supply the customer's validation data, padded if necessary, in valdata.

• Ensure that data supplied to BDKDPRS is provided to the operational 4 700
program (KPv must be supplied enciphered under KM3, however).

• Supply an eight-byte field for newpin and a 60-word work area.

• Call BDKDPRS, using subroutine linkage conventions described above.

• Use the contents of newpin to assign a PIN to the customer.

Chapter 8. Host Support Encryption Routines 8-5

Generating P/Ns With Of /set Data

In general, the institution's program collects data required to make up the
parameter list used when calling the subroutine BDKDPRS, and uses the output
from BDKDPRS for the final steps in generating offset data. It is your
responsibility to ensure that data used in this routine is coordinated with the
operational 4 700 program.

You must provide BDKDPRS four data items, pinkey, dectab, valdata, and oldpin,
three work areas, newpin, offset, and workarea. and a parameter list of their
addresses. BDKDPRS uses the subroutine linkage conventions described above;
only the use of the parameter list differs:

Word 0: Address of an eight-byte pinkey (for KPv, the PIN validation key)

Word I: Address of an eight-byte dectab (the decimalization table)

Word 2: Address of an eight-byte valdata (the validation data)

Word 3: Address of an eight-byte area reserved for newpin (intermediate PIN)

Word 4: Address of an eight-byte oldpin (the desired PIN)

Word 5: Address of an eight-byte area reserved for offset data

Word 6: Address of 60-word area reserved for workarea

BDKDPRS calls BDKDES to encipher the data in valdata, using the eight-byte
key supplied in pin key. This key is the PIN verification key, KPv.

BDKDPRS converts the enciphered validation data to decimal, using the
decimalization table stored in dectab. BDKDPRS stores the result in newpin. You
need not use newpin.

BDKDPRS subtracts (modulo 10) the contents of newpin from the contents of the
16-digit field called oldpin and places the resulting difference in the field reserved
for offset. oldpin must contain the PIN check number that was assigned to the
customer.

The institution's program regains control from BDKDPRS and selects a number,
beginning with the left-most digit of offset, whose length is the same as the length
of the PIN assigned to the customer. Then, beginning with the right-most digit of
the number just selected, and moving right to left, the program selects a number
whose length is determined by the check length (that is, by the length of the PIN
check number). The last number selected is the number that can now be recorded
on the customer's card (or elsewhere) as the offset data.

8-6 4700 Controller Programming Library, Volume 5: Cryptographic Programming

Constructing Oldpin

You are responsible for constructing oldpin so that it contains the customer's PIN
check number in its proper position within oldpin. The PIN check number is
right-justified in the assigned PIN.

In the following example, the entire PIN, including the PIN check number, is
stored left-justified in oldpin.

In this example:

Assigned PIN= 6543210
Check length = 5
PIN check number= 43210

oidpin 6 5 4 3 2

f length of entered PIN

PIN
check
length

0999999999

old pin 004321 0444444444

j length of PIN

PIN
check
length

In the above illustration, the entire PIN is not used. However, the PIN check
number must be used and it must be placed so that it falls in the same location
within oldpin as it would if the entire PIN were used.

Chapter 8. Host Support Encryption Routines 8-7

Calculating the Offset Data

Using the data provided in valdata, BDKDPRS calculates a 16-digit
packed-decimal number and places it in newpin. Then BDKDPRS subtracts,
modulo 10, newpin from oldpin, and places the difference in offset.

For BDKDPRS, any hexadecimal digits are acceptable in valdata. The contents of
pinkey are used for enciphering valdata, and the 16-packed-decimal digits in
dectab are used to decimalize the enciphered valdata.

BDKDPRS calculates newpin by mapping each of the hexadecimal digits of the
enciphered valdata into a decimal digit of dectab. The decimal digit placed in
newpin is that digit whose displacement (0 through 15) in dectab corresponds to
the value (X'O' through X'F') of the hexadecimal digit being mapped.

oldpin must be constructed as described above. BDKDPRS subtracts the contents
of newpin from the contents of oldpin, digit by digit, with no carry. BDKDPRS
places the difference in offset, as a 16-digit, packed-decimal number from which
you select the offset data. In the following example, only the PIN check number
is stored in oldpin:

Validation data = 33333333
Pad character = 2
pinkey = 89B07B35A1B3F47E
Assigned PIN= 361436143
PIN check number= 1436143
Check length = 7
oldpin = 9914361439999999

8-8 4700 Controller Programming Library, Volume 5: Cryptographic Programming

valdata

Enciphered
valdata

dee tab

Displacement

Decimal digit

newpin

old pin

PIN check

length

offset

Summary of Institution Responsibilities

l9l 9j1l4l3l6l 1 l4l3l9l9l9l9l9l9l9l

I 114l3l6l 1l413J
l6loloh'7l 1l5lol1l3l 3l5l6l 5lsbl

I offset data I

You have the following responsibilities when generating PIN offset data:

• Supply the key for enciphering valdata.

• Supply the decimalization table for dectab.

• Supply the customer's validation data, padded if necessary, in valdata.

Chapter 8. Host Support Encryption Routines 8-9

The BDKDES Subroutine

BDKDES Input

BDKDES Output

Supply the customer's assigned PIN check number in oldpin.

Ensure that the data supplied to BDKDPRS is also available to the operational
4700 program (except for KPv, which must be supplied enciphered under
KM3).

• Supply an eight-byte field for newpin, an eight-byte field for offset, and a
60-word workarea.

• Call BDKDPRS, using the linkage conventions described above.

BDKDES is another routine provided as part of the 4700 Host Support program.
BDKDES is called by the BDKDPRS routine described above. BDKDES must
also be present when you use the 4 700 Host Support program to create an
enciphered 3624 load image. (Section PR210 of the 3624 Programmer's
Reference describes BQKDES in this context.) BDKDES is equivalent to the
BQKDES subroutine provided with the 3600 Host Service programs.

Your host program can also invoke this subroutine directly when you need to
encipher or decipher data using plaintext keys. BDKDES performs encryption in
the host computer that is analogous to ENCODE and DECODE encryption in the
4700 controller.

The host program must use the following linkage conventions to call BDKDES:

Register 1: Contains the address of the following parameter list:

Word 0: Request code: 0 indicates that the text is to be enciphered; any other
value indicates that the text is to be deciphered

Word 1: Address of an eight-byte key used to encipher or decipher the data

Word 2: Address of the eight bytes of text to be enciphered or deciphered

Word 3: Address of a 30-word work area.

Register 13: Contains address of calling routine's 18-word save area

Register 14: Contains calling routine's return address

Register 15: Contains address of BDKDES

The subroutine replaces the input text pointed to by Word 2 with the enciphered
or deciphered text.

The subroutine does not return completion codes or issue any messages. It treats
all input values as valid. When the processing is complete, BDKDES restores the
original contents of the registers. BDKDES does not change the four words in the
parameter list.

8-10 4700 Controller Programmii;ig Library, Volume 5: Cryptographic Programming

The BDKKEYCC Subroutine

BDKKEYCC is a program you must write if you are using the Host Support
program to transmit an enciphered 3624 load image. The purpose of the program
is simply to provide Host Support the key under which it enciphers the load image.
Host Support is shipped with a dummy BDKKEYCC subroutine which you
replace.

The 4700 Host Support User's Guide explains how you transmit an enciphered
3624 load image. Sections PR208 and PR209 of the 3 624 Programmer's
Reference explain how you write the BDKKEYCC replacement.

Chapter 8. Host Support Encryption Routines 8-11

8-12 4700 Controller Programming Library, Volume 5: Cryptographic Programming

Chapter 9. Maintaining Compatibility Between Different Levels of Cryptography

Jn the previous chapters, the controller program and the host program were
assumed to be operating at an equivalent level of cryptography -- namely,
4700-level cryptography.

There are, of course, these other possibilities:

1. Your host computer is a System/34, or a System/370 operating with VSE
(and you are therefore restricted to 3600-level cryptography), and you do not
plan to upgrade your host processor or programming. To maintain
compatibility with the 4700 subsystem, you can develop a 4700 program (or
migrate a 3600 program) that uses only 3600-level cryptography. See
"Implementing 3600-Level Cryptography in a 4700 Controller" below:

2. Your host computer uses 4700-level cryptography (OS/VS cryptographic
subsystem), and you plan to implement 3600-level cryptography in the 4700
controller. To maintain compatibility with the 3600-level controller program,
you can write your host program in such a way that it emulates 3600-level
cryptography. See "Implementing 3600-Level Cryptography with the OS/VS
Cryptographic Subsystem" on page 9-2.

3. Your host computer uses 3600-level r;ryptography, and you plan to upgrade
your host programming. You can add instructions to your host programs so
they emulate some of the functions of 4 700-level cryptography. See
"Implementing 4700-Level Cryptography in Host Computers" on page 9-3.

These options are summarized in Figure 9-1 on page 9-4 at the end of this
chapter.

Implementing 3600-Level Cryptography in a 4700 Controller

3600-level cryptography is provided by the 4700 ENCODE and DECODE
instructions. The support for these instructions is contained in the P57 module of
controller data.

With one exception (described below), these instructions are identical to the
ENCODE and DECODE instructions used to support 3600 controllers. These
instructions encipher or decipher data ...

• Using the DES algorithm
• Without cipher block chaining
• In fixed, eight-byte blocks, one block per instruction
• Without any provision for automatic padding
• Using a plaintext key supplied by the program.

You can use the 4700-level ENCIPHER and DECIPHER instructions to emulate
the 3600-level ENCODE and DECODE instructions by enciphering and
deciphering only eight bytes at a time with an initial chaining value of zero. Using
this technique, you can use enciphered keys and still maintain compatibility with
3600-level cryptography.

Chapter 9. Maintaining Compatibility Between Different Levels of Cryptography 9-1

Migrating 3 600 Instructions

The only difference between the 3600 and 4700 versions of ENCODE and
DECODE is that the 4 700 version does not permit the use of the "alternate
encryption technique" -- an algorithm supported by 3600's P56 module that is
different from the DES (the US National Bureau of Standards' name for the data
encryption algorithm).

The 3600 ENCODE and DECODE instructions therefore execute properly on
4 700 controllers only if they specify DES encryption, rather than the alternate
encryption technique. If your 3600 program uses the alternate encryption
technique, you will have to modify your program so that it will operate with DES
encryption. If your 3600 program uses DES encryption, no program changes are
required.

The 4700 ENCODE and DECODE Instructions

The 4 700 ENCODE instruction requires two inputs: the location of an eight-byte
block of (presumed) plaintext, arid an eight-byte, plaintext key. ENCODE
enciphers the data under the key with the DEA and places the result into the same
storage area that held the original plaintext. DECODE deciphers an eight-byte
block of (presumed) ciphertext in a manner complementary to ENCODE.

• Data
• Key ==> ENCODE ==> • eKey(Data)

• eKey(Oata) ==> DECODE ==> • Data
• Key

See Chapter 10, "4700 Cryptographic Instructions" for detailed descriptions of
the ENCODE and DECODE instructions.

Implementing 3600-Level Cryptography with the OS/VS Cryptographic Subsystem

You can cause the CIPHER macro instruction to operate in a manner identical to
the ENCODE or DECODE instructions by limiting the data length to eight and
setting the initial chaining value to zero (which nullifies the effect of cipher block
chaining). The plaintext key used with ENCODE and DECODE must be
enciphered under the host master key, a task that can be accomplished with the
EMKmacro.

You can encipher a data item longer than eight bytes by repeatedly executing the
CIPHER macro while holding the key constant, the ICV equal to zero, and
increasing the CLERTXT and CPHRTXT parameters by eight for each
execution. Unless the length of the data item is divisible by eight, padding must
be performed prior to encryption. Remember that repeated executions of the
CIPHER macro will degrade processor performance.

The syntax of the CIPHER macro instruction along with an explanation of the
return codes can be found in the OS/VS Cryptographic Subsystem publications
identified in the Bibliography.

9-2 4700 Controller Programming Library, Volume 5: Cryptographic Programming

Implementing 4700-Level Cryptography in Host Computers

4700-Level Cryptography with VSE

The 4700 Host Support program (5668-989) can be ordered with the encryption
module, BDKDES. Host Support can be installed in both OS/VS and VSE
operating systems. Host application programs can use BDKDES as a subroutine
to encipher and decipher data. Chapter 8, "Host Support Encryption Routines"
describes BDKDES and explains how to invoke it.

BDKDES enciphers and deciphers fixed, eight-byte blocks of data (cipher block
chaining is not performed) based on a supplied plaintext key; BDKDES operation
is equivalent to ENCODE and DECODE.

You can use BDKDES to emulate the 4700 ENCIPHER and DECIPHER
operations provided you write your program to perform cipher block chaining and
padding as specified by the 4700. This program could then be used as a
subroutine by other programs--for example, to generate authentication codes.

Successful emulation of the 4 700 ENCIPHER operation also provides an
emulation of the 4 700 MACGEN operation. Recall that the 4 700 defines a MAC
as the first four bytes of the last eight bytes of the ciphertext generated on some
plaintext. Therefore, enciphering data also constitutes MAC generation--the
additional task of the program is simply to know where in the ciphertext the MAC
is located.

Again, remember that repeated executions of BDKDES have an adverse effect on
processor performance. Exactly how much depends upon the amount of data
being enciphered.

4700-Level Cryptography with System/34

The Finance Subsystem (feature 6010, 6011) of the System/34 operating system
(program number 5726-SSl with feature 6001 or 6002 and the prerequisite
Interactive Communication Feature) provides several encryption subroutines.
These subroutines are SUBR30 for RPGII, SUBR31 for COBOL, and #SBDE for
assembler. SUBR30 and SUBR31 encipher up to 32 eight-byte blocks of data per
call; #SBDE (like BDKDES) enciphers only one eight-byte block per call. All
three routines use the data encryption algorithm without cipher block chaining
and using plaintext keys.

You can use these subroutines to emulate the 4 700 ENCIPHER and DECIPHER
instructions. Note though that even though SUBR30 and SUBR31 can encipher
more than one eight-byte block at a time, your own cipher block chaining program
has to invoke these routines with only one eight-byte block at a time.

Processor performance is degraded in proportion to the number of times these
routines are executed.

Chapter 9. Maintaining Compatibility Between Different Levels of Cryptography 9-3

Cryptography with 8100 Computers

The IBM 8100 Information Processing System does not offer integrated
:cryptographic facilities.

If you do not install a 4 700 controller at the 8100 site, 8 I 00 application programs
can relay enciphered data from one location to another.

An 8100 application program can also be written to examine data transmitted in
plaintext. In this fashion data secrecy is sacrificed for the convenience of being
able to interpret and take appropriate actions upon the content of the data
without the opportunity to change or replace it.

Note that if the plaintext is protected with a message authentication code,
however, the 8100 program cannot determine the plaintext's authenticity (the
program has no MACGEN equivalent). Without this capability, the program
might not be able to detect altered messages.

To maintain
compatibility ... And your 4700 Controller that implements ...
between your
host facilit} • ENCODE and DECODE • ENCIPHER and DECIPHER
(shown be low ... (3600-level) (4700-level)

Cryptography Cryptography

OS/VS
Use Cryptographic
Subsystem* with cipher

Use Crypto~raphic
Subsystem.

block chaining disabled

. . . or use BDKDES .

Use BOKOES Build a host program
VSE that uses BDKDES as a

subroutine loop.

Use Finance Subsystem Build a host program
System/34 (SUBR30 for RPGI I, that uses SUBR30,

SUBR31 for COBOL, or SUBR31, or #SBOE as a
#SBOE for Assembler). subroutine loop.

Not applicable; relay Not applicable; relay
8100 enciphered data enciphered data

between 4700 and between 4700 and
host computer. host computer.

*Programmed Cryptographic Facility, or combination of IBM 3848
Cryptographic Unit and the Cryptographic Unit Support Program

Figure 9-1. Maintaining Compatibility between Host and Controller Cryptographic Programs.

9-4 4700 Controller Programming Library, Volume 5: Cryptographic Programming

Chapter t 0. 4700 Cryptographic Instructions

Syntax Notation Key

Thi~ chapter tells you how to use each of the 4 700 cryptographic instructions:

DECIPHER Decipher Text (4 700-level)

DECODE Decipher Text (3600-level)

ENCIPHER Encipher Text (4 700-level)

ENCODE Encipher Text (3600-level)

KEYGEN Generate Cryptographic Key

MACGEN Generate Message Authentication Code (MAC)

PINTRANS Translate Personal Identification Number (PIN)

PINVERIF Validate Personal Identification Number (PIN)

RFMK Reencipher From Master Key

RTMK Reencipher To Master Key

Each instruction description tells you:

• what the instruction does
how to set and interpret its parameter lists
how to code the instruction
what program checks and condition codes can result.

All of the instructions except ENCODE and DECODE require that you specify
module P28 in the OPTMOD configuration macro (ENCODE and DECODE
require module P57).

We use a uniform notation to describe the syntax of the controller symbolic
instructions. The notation indicates which operands you must code and which are
optional, the options that are available for expressing values, the values assumed
by the system if you don't code an operand, and the punctuation.

CAPITAL LETTERS
Capital letters indicate values that you must enter exactly as shown.

lowercase letters
Lowercase letters indicate where you are to insert a number, character
string, or keyword in place of the lowercase letters.

punctuation .,='0
The period, comma, equal sign, single quotation mark, and parentheses are
punctuation that you must code exactly as shown. These punctuation
marks separate the operands of the instructions. You need not code a
comma preceding a keyword parameter for the first parameter in the
operand field.

Chapter 10. 4700 Cryptographic Instructions 10-1

brackets[)
Brackets indicate that you can choose not to code the elements and
punctuation they enclose; the operand is optional. ~

braces n
Braces indicate that you must code the elements and punctuation they
enclose; the operand is required.

selecting options
When you choose from more than one operand, the choices appear like this,
with vertical bars separating them:

(11213] or {11213}

or they might appear stacked, like this:

[~] or I i I
In the following examples, the brackets indicate that you can choose not to
code the J, 2, or 3, following TYPE=element.

TYPE=element [11213] or TYPE=element [~ 1
But in the following example the braces indicate that you must code l, 2,
or 3, following TYPE=element.

TYPE=element {11213} or TYPE=element I ;1 I
underscoring

We underscore a value to indicate that if you do not code a value for the
element, the system assumes the underscored value. The value that the
system assumes is called a default. In the following examples, if you do not
code TYPE, the system uses TYPE= 1.

[TYPE={_ll213}] or [TYPE- I i I]
ellipsis ...

Ellipsis points indicate that you can add one or more additional operands or
sets of operands, each having the same format. For example,

CASE=element 1 [,element 2, ... element n)

indicates that you can repeat the syntactical unit (element) preceding the
ellipsis.

10-2 4700 Controller Programming Library, Volume 5: Cryptographic Programming

DECIPHER

DECIPHER--Decipher Text (4700-Level)

DECIPHER deciphers text using an enciphered key.

Program input to the DECIPHER instruction consists of the location of the
ciphertext, the initial chaining value, an optional pad processing request, and the
enciphered key. At the completion of the DECIPHER operation, the controller
places the plaintext in the storage location that previously held the ciphertext.

• eK(Data)
• ICV ==> DECIPHER ==> • Data
• eKM(K)
• pad processing

eK(Data): Place the ciphertext in any part of segment storage except Segment 14.
The length of the ciphertext must be an exact multiple of eight, with a maximum
length of 4096 bytes. Note that this "multiple of eight" requirement is different
than the length requirement for ENCIPHER (where the data length does not
have to be a multiple of eight bytes).

!CV: Provide the same eight-byte initial chaining value that was used to encipher
the data.

Enciphered Key: Provide eKM(K), the same enciphered key that was used to
encipher the data. This key must be enciphered under the controller's master key.

Padding: Indicate whether the controller is to perform pad processing. If you
select this option, the controller verifies the pad count at the end of the
deciphered data (must be from one to eight) and subtracts that number from the
ENCLEN (length) field of the DECIPHER parameter list.

You use the ENCPAR parameter list to supply all input to DECIPHER. The
structure of the parameter list for DECIPHER is the same as for ENCIPHER, and
the same program storage can be used for both.

There are two differences in the way the controller uses ENCPAR for
DECIPHER, however:

• the pad character field (ENCPADC) is ignored.

• if you specify padding, the controller sets the data length field (ENCLEN)
upon completion of the DECIPHER operation.

Chapter 10. 4700 Cryptographic Instructions 10-3

~DE_C_I P_HE_R_I e ,
====>

====>
====>

====>
====>
====>

Parameter List (ENCPAR)

Field I Name I Length

• Flag byte (1) ENCFLG 1
• Pad character(2) ENCPADC 1
• Key: eKM(K) ENCKEY 8
• Initial chaining value ENCIV 8
• Reserved 1
• Segment,(3) ENCSEG 1
• displacement, ENCDISP 2
• and length (4) ENCLEN 2 <==

of Data

(l)Set the X'80' bit on to indicate padding.
(2)Not used for DECIPHER.
(J)Relative to the logical work station's

current space at DECIPHER execution time.
(4)Controller resets length if ENCFLG

indicates pad processing.

Legend:
====> Program sets this field (always).

<==Controller sets this field (optional).

Use the COPY DEFENC instruction to provide addressing for the ENCPAR
parameter list. The assembler labels and corresponding displacements and values
generated by COPY DEFENC are described in Appendix B, "COPY File Fields."

The DECIPHER instruction has the following assembler format.

Name Operation Operand

[label] DECIPHER
{

~:~~~~isp2 }

operand 2

(reg2)
(defrf2)

Is the parameter list for this instruction. The parameter list cannot be in
segment 14. No length is specified because the parameter list has a fixed
length of 24 bytes.

10-4 4700 Controller Programming Library, Volume 5: Cryptographic Programming

Condition Codes: If no program checks occur, DECIPHER returns one of the
following hexadecimal codes in SMSCCD.

X'OJ'

X'02'

The instruction completed successfully; SMSDST has been set to zero.

The instruction did not complete successfully; a status code in SMSDST
explains why.

Program Checks: One of the following hexadecimal codes can be set: 01, 02, 03,
09, or 27.

Chapter 10. 4700 Cryptographic Instructions 10-5

10-6 4700 Controller Programming Library, Volume 5: Cryptographic Programming

DECODE

DECODE--Decipher Text (3600-Level)

Decode uses the DES algorithm to decipher 8 bytes of data to its original form.
The data is deciphered in place under control of a specified key, which you supply
in unenciphered form. After the deciphering occurs, the primary field pointer is
increased by 8; thus, subsequent DECODE instructions can be used to decipher a
field of any length in 8-byte increments.

Name Operation Operand

defcon2
defld2

[label] DECODE seg1, { (defrf2) } , DES
(reg2)
seg2,disp2

operand l
Defines the segment containing the field to be deciphered (do not use
segment 14). The field's location is indicated by the primary field pointer
(PFP) and the length is ignored. Following execution of the instruction, the
PFP is increased by 8, and the field length indicator is set to 0.

operand 2

DES

Defines the key to be used during deciphering. The length associated with
this operand is ignored, and the first 8 bytes are assumed to be the key.

Is a required operand that specifies the decryption algorithm; it must be
specified.

Condition Codes: The code is not changed.

Program Checks: Any of the following hexadecimal codes can be set: 01, 02, 09,
or 27.

Chapter 10. 4700 Cryptographic Instructions 10-7

10-8 4700 Controller Programming Library, Volume 5: Cryptographic Programming

ENCIPHER

ENCIPHER--Encipher Text (4700-Level)

ENCIPHER enciphers text, using a key that the program has enciphered under
the controller master key.

Program input to the ENCIPHER instruction consists of the location and length
of the data to be enciphered, an initial chaining value (for cipher block chaining),
a pad character (optional), and the enciphered key.

At the completion of the ENCIPHER operation, the controller places the
ciphertext, eK(Data), in the storage location that previously held the plaintext.

• Data
• I CV ==> ENCIPHER ==> • eK(Data)
• eKM(K)
• {pad}

Data: Place the data to be enciphered in any part of segment storage except
Segment 14. The length of the data area must be an exact multiple of eight, with
a maximum length of 4096. The length of the data to be enciphered need not be a
multiple of eight bytes if you specify padding.

ICV: Provide an arbitrary eight-byte initial chaining value. Any value can be
used. See Example 4 ("Example 4. Initiating a Cryptographic Session" on page
4-8) for a method of making the ICV available to a remote program.

Enciphered Key: Provide eKM(K), a data-encrypting key that has been
enciphered under the controller master key. You can generate such an enciphered
key with the KEYGEN instruction.

Padding: If you indicate to the ENCIPHER instruction that padding is to occur,
you supply a one-byte pad character via a parameter list (not in the data). The
controller first adds one extra byte to your data for use as a count field. The
controller then determines how many bytes are now needed to make an exact
multiple of eight (this could be from zero to seven), inserts that number of pad
characters between the end of your data and the one-byte count field, and sets
the count field to that number plus one. The count field now reflects the total
number of added bytes, and the data length indicator reflects the length of the
padded data.

Here is an example of how an input data area would appear after padding, but
before the data is enciphered. (This is also how the data would appear following a
DECIPHER operation.)

Chapter 10. 4700 Cryptographic Instructions 10-9

Your data area:

I< 16 bytes >I

Your data (10 bytes)

Ir E s r M s GI x

You specify padding, with a pad character of X'5C' (asterisk):

Ir E s r M s GI x * * * * * 61
X '06' in the count byte -->I I<-

In this padding example, you would supply a length specification of 10. At t!J.e
completion of the ENCIPHER operation, the controller would reset this
specification to 16.

You use the ENCPAR parameter list to supply all input to the ENCIPHER
instruction. The parameter list (whose address is the sole operand of
ENCIPHER) must conform to the following structure .

.__EN_c_1 P_HE_R_l_e ,

====>
==>

====>
====>

====>
====>
====>

Parameter List (ENCPAR)

Field I Name !Length

• Flag byte(1) ENCFLG 1
• Pad character ENCPADC 1
• Key: eKM(K) ENCKEY 8
• Initial chaining value ENCIV 8
• Reserved 1
• Segment,(2) ENCSEG 1
• displacement, ENCDISP 2
• and length (3) ENC LEN 2

of Data to be enciphered

(l)Set the X'80' bit on to indicate padding;
the controller uses the current content
of ENCPADC as the pad character.

(2)Relative to the logical work station's
current space at ENCIPHER execution time.

(3)Controller resets length if ENCFLG
indicates pad processing.

Legend:
====> Program sets this field (always).

==>Program sets this field (optional).
<==Controller sets ~his field (optional).

10-10 4700 Controller Programming Library, Volume S: Cryptographic Programming

<==

The COPY DEFENC instruction provides a table of assembler labels and
corresponding displacements and values (a DSECT) that you can use to build the
parameter list. The "Name" column above matches the names generated by
COPY DEFENC.

The instructions generated by COPY DEFENC are described in Appendix
B, "COPY File Fields."

The ENCIPHER instruction has the following assembler format:

Name Operation Operand

[label] ENCIPHER
{
~~~~~~isp2 } 
(reg2) 
(defrf2) 

operand 2 
Is the parameter list for this instruction. The parameter list cannot be in 
segment 14. No length is specified because the parameter list has a fixed 
length of 24 bytes. 

Condition Codes: If no program checks occur, ENCIPHER returns one of the 
following hexadecimal codes in SMSCCD. 

X'Ol' 

X'02' 

The instruction completed successfully; SMSDST has been set to zero. 

The instruction did not complete successfully; a status code is present in 
SMSDST explaining why. 

Program Checks: One of the following hexadecimal codes can be set: 01, 02, 03, 
09, or 27. 

Chapter 10. 4700 Cryptographic Instructions 10-11 



10-12 4700 Controller Programming Library, Volume 5: Cryptographic Programming 



ENCODE 

ENCODE--Encipher Text (3600-Level) 

ENCODE uses the DES algorithm to encipher 8 bytes of data. The data is 
enciphered in place under control of a key. After the enciphering occurs, the 
primary field pointer is increased by 8; thus, subsequent ENCODE instructions 
can be used to encipher a field of any length in 8-byte increments. 

Name Operation Operand 

defld2 
(label] ENCODE segl, { 

defcon2 

( defrf2) 
(reg2) 
seg2,disp2 

operand 1 
Defines the segment containing the field to be enciphered (do not use 
segment 14). The field's location is indicated by the primary field pointer 
(PPP) and the length is ignored. Following execution of the instruction, the 
PPP is increased by 8, and the field length indicator is set to 0. 

operand 2 

DES 

Defines the key to be used during enciphering. The length associated with 
this operand is ignored, and the first 8 bytes are assumed to be the key. 

Is a required operand specifying the DES encryption algorithm; it must be 
coded. 

Condition Codes: The code is not changed. 

Program Checks: Any of the following hexadecimal codes can be set: 01, 02, 09, 
or27. 

Chapter 10. 4700 Cryptographic Instructions 10-13 



10-14 4700 Controller Programming Library, Volume 5: Cryptographic Programming 



KEY GEN 

KEYGEN--Generate Cryptographic Key 

KEYGEN can be used in two ways: 

• to create keys enciphered under the master key -- eKM(K) -- for use by 
programs during program execution 

• to create plaintext keys -- K -- for use by security specialists 

In both cases, the instruction generates a key that conforms in format with keys 
generated by other IBM cryptographic facilities. The plaintext key is generated 
with odd parity; the ciphertext key's parity bits are not set. 

• eKM(K) 
==> KEYGEN ==> or 

• K 

You use the KYGPAR parameter list to supply all input to the KEYGEN 
instruction. The parameter list (whose address in the sole operand of KEYGEN) 
must conform to the following structure. 

,___KE_v_GE_N __ e ' 
Parameter List (KYGPAR) 

Field I Name !Length 

====> • Flag byte (1) IKYGFLAG 
I 

1 
• Result key KYGBUFF 8 

(l)Set all bits off (X'00') to generate 
a plaintext key, K; set the X'80' bit on 
to generate a ciphertext key, eKM(K). 

Legend: 
Program sets this field (always). ====> 

<=,,,== Controller sets this field (always). 

The parameter list contains the result key (in KYGBUFF) when the instruction 
completes successfully. 

Note: The controller master key must be loaded prior to performing this 
instruction because the master key is used as one of the inputs for generating the 
resulting key. 

<==== 

The COPY DEFKYG instruction provides a table of assembler labels and 
corresponding displacements and values that you can use to build the parameter 
list. The Name column above matches the names generated by COPY DEFKYG. 

The instructions generated by COPY DEFKYG are described in Appendix 
B, "COPY File Fields." 

Chapter 10. 4700 Cryptographic Instructions 10-15 



The KEY GEN instruction has the following assembler format. 

Name Operation Operand 

[label] KEYGEN 
{ 

~:~~~~isp2 } 
(reg2) 
(defrf2) 

operand 2 
Is the parameter list for this instruction. The parameter list cannot be in 
segment 14. No length is specified because the parameter list has a fixed 
length of 9 bytes. 

Condition Codes: If no program checks occur, KEYGEN returns one of the 
following hexadecimal codes in SMSCCD. 

X'Ol' 

X'02' 

The instruction completed successfully; SMSDST has been set to zero. 

The instruction did not complete successfully; a status code in SMSDST 
explains why. 

Program Checks: One of the following hexadecimal codes can be set: 01, 02, 09, 
11, or 27. 

10-16 4700 Controller Programming Library, Volume S: Cryptographic Programming 



MA CG EN 

MACGEN--Generate Message Authentication Code (MAC) 

The MACGEN instruction processes a data string and returns a four-byte 
message authentication code. You supply MACGEN a key and an initial chaining 
value just as though you were enciphering the data. 

Internally, the controller enciphers a copy of the data using cipher block chaining. 
Unlike ENCIPHER, however, the controller does not return the entire enciphered 
message to you, nor does it disturb the input data string. 

MACGEN operates like this: 

• Data 
• eKM(KMAC) 
• I CV 
• {pad} 

• Data (unchanged) 
==> MACGEN ==> • Last 8 bytes of 

eKMAC(Data) - of which 
first 4 are the MAC 

Data: Place the data to be authenticated in any part of segment storage except 
Segment 14. The length of the data cannot exceed 4096 bytes. If you do not 
request padding, the data must be an exact multiple of eight bytes. 

Key: Supply KMAC, a key that has been enciphered under the controller's master 
key (via the KEYGEN instruction, for example). 

/CV: Provide an arbitrary eight-byte initial chaining value; any value can be used. 

Padding: If you indicate that padding is to take place, you must further indicate 
what one-byte pad character is to be used. The controller adds a one-byte count 
character to the end of the input data, inserts enough pad characters (zero to 
seven) between the end of the data and the count character to make an exact 
multiple of eight, and sets the count character to the number of inserted pad 
characters plus one. The controller also resets your data length specification to 
reflect the length of the padded data. (Note that MACGEN's padding is identical 
to ENCIPHER's padding.) 

After the controller has enciphered the entire data string -- eKMAC(Data) -- it 
returns only the final eight bytes to you. Use the first four bytes as the message 
authentication code. 

You provide all MACGEN input via the ENCPAR parameter list - the same 
parameter list you use for the ENCIPHER and DECIPHER instructions. 
However, there is one difference in the way the controller handles the parameter 
list. For MACGEN, the eight-byte initial chaining value field serves as both an 
output and an input field. For multiple executions of MACGEN (as illustrated in 
Chapter 5, "Authenticating Messages"), the entire eight-byte field can serve as 
both an output field for one MACGEN and as an input field for the next. For 
single MACGEN operations (and for the last of a series of MACGEN 
operations), you take the MAC from the first half of this field. 

Chapter 10. 4700 Cryptographic Instructions 10-17 



....__MA_cG_E_N __ e > 

====> 
==> 

====> 

====> 

====> 
====> 
====> 

Parameter List (ENCPAR) 

Field I Name !Length 

• Flag byte(l) ENCFLG 1 
• Pad character ENCPADC 1 
• Key: eKM(KMAC) ENCKEY 8 
• MAC(2) ENCMAC 4 
• Initial chaining value(2) ENCIV 8 
• Reserved 1 
• Segment, ENCSEG 1 
• displacement, ENCDISP 2 
• and length (3) ENCLEN 2 

of Data 

(l)Set the X1 80 1 bit on to indicate padding. 
(2)These two fields begin at the same place. 
(3)Controller resets length if ENCFLG indi-

cates pad processing 

Legend: 
(always). ====> Program sets this field 

==> Program sets this field (optional). 
<==== Controller sets this field (always). 

<== Controller sets this field (optional). 

<==== 
<==== 

<== 

When the instruction completes successfully, the controller places the combination 
four-byte MAC, eight-byte chaining value into the parameter list's 
ENCMAC/ENCIV field. 

Use the COPY DEFENC instruction to provide addressing for the parameter list. 
The assembler labels and corresponding displacements and values generated by 
COPY DBFENC are described in Appendix B, "COPY File Fields." 

The MACGEN instruction has the following assembler format. 

Name Operation Operand 

[label] MACGEN 
{ 

~:~~~~isp2 } 
(reg2) 
( defrf2) 

operand 2 
Is the parameter list for this instruction. The parameter list cannot be in 
segment 14. No length is specified because the parameter list has a fixed 
length of 24 bytes. 

Condition Codes: If no program checks occur, MACGEN returns one of the 
following hexadecimal codes in SMSCCD. 

10-18 4 7 00 Controller Programming Library, Volume 5: Cryptographic Programming 



X'OJ' 

X'02' 

The instruction completed successfully; SMSDST has been set to zero. 

The instruction did not complete successfully; a status code is present in 
SMSDST explaining why. 

Program Checks: One of the following hexadecimal codes can be set: 01, 02, 03, 
09, or 27. 

Chapter 10. 4700 Cryptographic Instructions 10-19 



10-20 4700Conttoller Programming Library, Volume 5: Cryptographic Programming 



PINTRANS 

PINTRANS--Translate a Personal Identification Number (PIN) 

PINTRANS converts a PIN from one format to another and/ or reenciphers the 
PIN under a different PIN protection key. PINTRANS, like PINVERIF, 
processes enciphered PINs without revealing the PIN in plaintext. 

PINTRANS accepts PINs in any of the following formats 

• ANSI Standard PIN format (enciphered under KP 1) 
• Nonencrypting PIN keypad format 
• Encrypting PIN keypad format (enciphered under KP 1) 
• 3624 PIN format (enciphered under KPl) 
• 3621 PIN format (enciphered under KPl) 

and produces the same PIN in any of the following formats: 

• ANSI Standard PIN format 
• Encrypting PIN keypad format 
• 3624 PIN format 
• 3621 PIN format. 

PINTRANS operates in the following manner when the input PIN is in 
nonencrypting PIN keypad format or in 3624 PIN format: 

• PIN 
• eKM1(KP2) ==> PINTRANS ==> • eKP2(PIN) 

PINTRANS operates in the following manner when the input PIN is in one of the 
encrypting PIN keypad formats: 

Reenciphering Under the Same Key-

• eKPl(PIN) 
• eKM3(KP1) ==> PINTRANS ==> • eKPl(PIN) 

Reenciphering Under a New Key--

• eKP 1( PIN) 
• eKM3(KP1) ==> PINTRANS ==> • eKP2(PIN) 
• eKM1(KP2) 

The first operand of PINTRANS points to an input parameter list, INPP AR. This 
parameter list contains information about the input PIN, and must conform to the 
structure shown below. A second parameter list provides information about the 
output PIN. PINTRANS uses the same input parameter list as PINVERIF. 

Chapter 10. 4700 Cryptographic Instructions 10-21 



PINTRANS I •B--> Translation Parameter List 

~-----c> input Parameter ust c 1NPPAR) 

Field I Name I Length 

====> • Flag byte(l) INPINTYP 1 
==> • Pad character(2) INPINPAD 1 
==> • Protection Key(3) INPINKEY 8 
==> • Primary Account Number (4) INPAN 8 
==> • PIN length (5) INPINLEN 1 

====> • Enciphered PIN(6) INPIN 16 <==== 

(l)Set to indicate type of input PIN format: 
X'00' = Nonencrypting PIN keypad 
XI 10 1 = 3621 
X'20' =ANSI 
X'40' = 3624 
X'80' = Encrypting PIN keypad. 

(2)Used only if 3621 or 3624 format; 
low-order 4 bits indicate pad character 

(3)eKM3(KP1); not used if format= X1 00 1 • 

(4)Used only if format = X'20' 
(S)Used only if format= X'00'; indicates 

number of EBCDIC PIN characters. 
(6)eKP1{PIN) {or the PIN, if format= X1 00 1 ) 

must be placed in the high-order end of 
this field; the controller places the 
resulting eKPl(PIN) or eKP2(PIN) in the 
same high-order eight bytes of field. 

Legend: 
====> Program sets this field {always). 

==> Program sets this field (optional). 
<====Controller sets this field {always). 

Use the COPY DEFINP instruction to provide addressing for the INPPAR 
parameter list. The assembler labels and corresponding displacements and values 
generated by COPY DEFINP are described in Appendix B, "COPY File Fields." 

The second operand of PINTRANS must point to a translation parameter list, 
TNPP AR. The translation parameter list contains information about the output 
PIN, and must conform to the following structure. 

10-22 4700 Controller Programming Library, Volume 5: Cryptographic Programming 



PINTRANS I • I ·~ 

Input <_J 
Parameter 
List ====> 

====> 

==> 
==> 

Translation Parameter List (TNPPAR) 

Field I Name I Length 

• Flag byte(!) TNPINFLG 1 
• Pad character(2) TNPINPAD 1 
• Reserved 2 
• Output PIN ke)(3) TNPINKEY 8 
• Output PAN (4 TN PAN 8 

(l}Hi~h order 4 bits set as fol lows: 
x 1' = 3621 PIN format 
X'2' =ANSI Standard PIN format 
X'4' = 3624 PIN format 
X'8' = Encrypting PIN format 

Low order 4 bits set as follows: 
X'0' to reencipher under KP2 
X'l' to reencipher under KPl 

(2)Low order 4 bits indicate 3621 or 3624 
PIN pad character (X'xP'). 

(3)eKM1(KP2) if reenciphering PIN under KP2. 
(4)0utput Primary Account Number 

Legend: 
(always). ====> Program sets this field 

==> Program sets this field (optional). 

The COPY DEFTNP instruction provides a table of assembler labels and 
corresponding displacements and values that you can use to build the translation 
parameter list. The Name column above matches the names generated by COPY 
DEFTNP. 

The assembler instruction format for PINTRANS appears below. The first 
operand refers to the input parameter list (INPP AR) and the second refers to the 
translation parameter list (TNPPAR). 

Name Operation Operand 

[label] PINTRANS { 
defld1 
seg1 ,disp1 
(reg1) 
(defrf1) } { seg2,disp2 

defld2 } 

Operand 1 

(reg2) 
(defrf2) 

Is the input parameter list, INPP AR. The input parameter list cannot be in 
segment 14. The parameter list has a fixed length of 35 bytes. 

Operand 2 
Is the translation parameter list, TNPP AR. The translation parameter list 
has a fixed length of 20 bytes, and cannot reside in segment 14. 

Chapter 10. 4700 Cryptographic Instructions 10-23 



The high-order eight bytes of JNPJN (in the input parameter list} contain the 
enciphered output PIN when PINTRANS completes successful1y. PINTRANS 
also sets statistical counters as described in Appendix F, "Statistical Counters." 

Condition Codes: If no program checks occur; PJNiRANS returns one of the. 
following hexadecimal codes in SMSCCD. 

X'OI' 

X'02' 

The instruction completed successfully; SMSDST has been set to zero. 

The instruction did not complete successfully; a status code in SMSDST 
explains why. 

Program Checks: One of the following codes can be set: 01, 02, 09, 11, or 27. 

10-24 4700 Controller Programming Library, Volume 5: Cryptographic Programming 



PINVERIF 

PINVERIF--Validate a Personal Identification Number (PIN) 

The PINVERJF operation can be summarized as follows: 

• PIN Input Check or 
•Validation==> PINVERIF ==>•No-Check 

Input Indication 

The PIN can be in any of the supported 4 700 formats: nonencrypting PIN 
keypad, encrypting PIN keypad, ANSI, 3621, or 3624. The input parameter list 
(INPPAR) provides PINVERJF with the information related to the input PIN. 
The information related to the validation data is provided by a second parameter 
list. 

PINVERIF I ·~~>Verification Parameter List 

~> loput Pa,amete' Ll•t (INPPAR) 

====> 
==> 
==> 
==> 
==> 

====> 

Field I Name I Length 

• Flag byte(l) INPINTYP 1 
• Pad character(2) INPINPAD 1 
• Protection Key(3) INPINKEY 8 
• Input PAN (4) INPAN 8 
• Check 1ength(5) INPINLEN 1 
• Enciphered PIN(6) INPIN 16 

(l)Set to indicate type of input PIN format: 
X'00' = Nonencrypting PIN keypad 
XI 10 1 = 3621 
X'20' = ANSI Standard PIN 
X'40' = 3624 
X'80' = Encrypting PIN keypad. 

(2)Used only if 3621 or 3624 format; 
low-order 4 bits indicate pad character 

(3)Contains eKM3(KP1); not used if 
format= X'00'. 

(4)1nput Primary Account Number 
(5)Used only if format= X'00'; indicates 

number of EBCDIC PIN characters. 
(6)Contains eKPl(PIN) (or the plaintext PIN, 

if format= X'00') in the high-order end 
of this field. 

Legend: 
(a !ways). ====> Program sets this field 

==> Program sets this field (optional). 

The COPY DEFINP instruction provides a table of assembler labels and 
corresponding displacements and values that you can use to address the parameter 
list. The Name column above matches the names generated by COPY DEFINP. 

The instructions generated by COPY DEFINP are described in Appendix 
B, "COPY File Fields." 

Chapter 10. 4700 Cryptographic Instructions 10-25 



The follo\\lil:i.g table (Figdr~ 10.;.1) sun:t:tn.arizes how you set the input parameter 
list, depending on Jhe format of the PIN .b~ing validated: 

INPMR Nonencrypting Encrypting 3624 PIN ANSI PIN 3621 PIN 
Field PIN Keypad PIN Keypad Format Format Format 
====== ============= ========== ======== ======== ======== 

INPINTYP x'00' X'80' X'40' X'20' XI 10 1 

I NP IN.PAD not used not used X'xP' not used X1 xp 1 

INPINKEY .not used eKM3(KP1) eKM3(KP1) eKM3(KP1) eKM3(KP1) 

INPAN not used not used not used Pri. Act. # not used 

INPINLEN x'01 1 - X' 10l not used not used not used not used 

INPIN PIN eKPl(P IN) eKPl(P IN) eKPl(PIN) eKP l(p IN) 

Figure 10-1. Summary of INPPAR. Settings for Each PIN Format 

For Nonencrypting PIN Keypad 

• INPINTYP must be set to X'OO'. 

• INPINLEN.must contain a value from one to sixteen, representing the number 
of digits in the customer-entered PIN. 

• INPIN must contain the customer-entered PIN in EBCDIC, as described 
above. The value must be left-justified in the field and contain the number of 
characters fudicated by INPINLEN. 

For Encrypting PIN Keypad 

• INPINTYP must be set to X'80'. 

• INPINKEY mustcontain eK.m.3(KPl), the input PIN protection key 
enciphered under the third variant of the controller master key. 

• INPIN must contain the eight-byte enciphered PIN. 

For 3624 PIN Format 

• INPINTYP must be set to X'40'. 

• INPINKEY must contain eKm3(KP1), the input PIN protection key 
enciphered under the third variant of the controller master key. 

• INPIN must contain the eight-byte enciphered PIN. 

• INPINP AD must be set to X'xP' where P is the four-bit hexadecimal digit that 
the 3624 adds to the PIN. (the high-order half of the byte -- x -- is ignored.) 

10-26 4700 Controller Programming Library, Volume 5: Cryptographic Programming 



Usually, you would have configured the 3624 to insert a pad character in the 
range of X' A' to X'F'. If the 3624 is inserting a pad character outside of this 
range (decimal digits 0 - 9, for example), you must ensure that no 
customer-entered PIN contains this digit. Otherwise, the controller considers 
that digit to be a pad character, and ignores all subsequent digits. 

The second operand of the PINVERIF instruction points to a verification 
parameter list. This parameter list (VER3P AR) provides input for the verification 
algorithm. 

PINVERIF I • I ·----. 

Input <_J 
Parameter 
Li st ====> 

====> 
====> 
====> 
====> 
====> 

v 
Verification Parameter List (VER3PAR) 

Field I Name I Length 

• Flag byte(l) V3ALGTYP 1 
Reserved 1 

•Validation key(2) V3PINKEY 8 
•Decimalization table(3) V3DECTAB 8 
•Validation data(4) V3VALDAT 8 
• Check length(S) V3CHKLEN 1 
• Offset data(6) V30FFSET 8 

(l)Must be set to X1 00 1 • 

(2)Must be in enciphered form: eKM3(KPv). 
(3)Contains 16 packed decimal digits. 
(4)Contains 1 to 16 4-bit vaJidation 

characters, padded on right. 
(S)lndicates number of PIN digits to ~e , 

compared with check number; from X 01 
toX'10'. 

(6)Contains 1 to 16 4-bit offset characters, 
X'0' to X'9', left-justified; if there is 
no offset data, set this field to zeros. 

Legend: 
(always). ====> Program sets this field 

The COPY DEFVER3 instruction provides a table of assembler labels and 
corresponding displacements and values that you can use to build the VER3P AR 
parameter list. The Name column above matches the names generated by COPY 
DEFVER3. 

The instructions generated by COPY DEFVER3 are described in Appendix 
B, "COPY File Fields." 

Chapter 10. 4700 Cryptographic Instructions 10-27 



The assembler instruction :format for J>INVERIF is :shown below. The first 
operand refers to the input parameter list (INPPAR) and the second refers to the 
verification parameter list (VER3P AR). 

Name Operation · Operand 

[label] PINVERIE { 
defld1 
seg1,disp1 
(reg1) 
(defrf1) 

} { 
defld2 } 

, . seg2 ,disp2 
(reg2) 
(defrf.2) 

Operand 1 
Is the input parameter list, INPPAR. The input parameterlistcannot.be in 
segment 14. You.specify no length, because thepa,ratnete-tlisthas a.fixed 
length 35 bytes. 

Operand2 
Is the verification parameter list, VER3PAR. The verification. parameter 
list cannot be in segment 14. You specify no length, ·because the parameter 
list has a fixed length of 35 bytes. 

Condition Codes: If no program checks occur; PINVERIF returns one.of' the 
following hexadecimalcodesin SMSCCD. 

X'Ol' 

X'02' 

The instruction completed successfully; the PIN passed.its;Nalidation check. 

Either the PIN failed its validation ·check, or the instruction did not 
complete successfully;· If the instruction did not complete successfully, a 
status code in SMSDST explains why. 

Program Checks: One of the following hexadecimal codes can be set: 01, 02, 09; 
11, or 27. 

10-28 4700 Controller Programming Library, Volume 5: Cryptographic Programming 



RFMK 

RFMK--Reencipher From Master Key 

The RFMK (Reencipher From Master Key) instruction takes a key that has been 
enciphered under the controller's master key (KM), deciphers it, and reenciphers 
it under a different key. The different key can be either KCD1 or eKM 1 (KCDs). 

When you use RFMK to reencipher under KCDJ, RFMK operates like this: 

• eKM(K) ==> RFMK ==> • eKCDl(K) 

When you use RFMK to reencipher under KCDs, RFMK operates like this: 

• eKM(K) 
• eKMl(KCDs) ==> RFMK ==> • eKCDs(K) 

You provide all RFMK input in the form of a parameter list, whose address is the 
sole operand of the instruction. The parameter list must conform to the following 
structure. 

~R_F_MK __ e ' 
====> 
====> 

==> 

Parameter List (RMKPAR) 

Field I Name I Length 

• FI ag byte ( 1) IRMKFLAG I 1 
• Key being reenciphered(2) RMKINKEY 8 
• eKMl (KCDs}(J) RMKXDKEY 8 

(l)Set all bits off (X'00') to reencipher to 
KCDl; set the X'80' bit on to reencipher 
to KCDs. 

(2)As in)ut, you set this field in the form 
eKM(K ; as output, the controller sets the 
field in the form eKCDl(K) or eKCDs(K). 

(J)Set this field only when you are 
reenciphering K using KCDs ~ eKCDs(K). 

Legend: 
Program sets this field (always). ====> 

==> Program sets this field (optional). 
<==== Controller sets this field (always). 

The parameter list's RMKINKEY field contains the reenciphered key when 
RFMK completes successfully. 

<==== 

Chapter 10. 4700 Cryptographic Instructions 10-29 



The COPY DEFRMK instruction provides a table of assembler labels and 
corresponding displacements and values that you can use to build the RMKPAR 
parameter list. The Name column above matches the names generated by COPY 
DEFRMK. 

The instructions generated by COPY DEFRMK are described in Appendix 
B, "COPY File Fields." 

The RFMK instruction has the following assembler format. 

Name Operation Operand 

[label] RFMK { ~:;~~~isp2 } 
(reg2) 
(defrf2) 

operand 2 
Is the parameter list for this instruction. The parameter list cannot be in 
segment 14. You specify no length, because the parameter list has a fixed 
length of 18 bytes. 

Condition Codes: If no program checks occur, RFMK returns one of the following 
hexadecimal codes in SMSCCD. 

X'OJ' 

X'02' 

The instruction completed successfully; SMSDST has been set to zero. 

The instruction did not complete successfully; a status code in SMSDST 
explains why. 

Program Checks: One of the following hexadecimal codes can be set: 01, 02, 09, 
11, or 27. 

10-30 4700 Controller Programming Library, Volume 5: Cryptographic Programming 



RTMK 

RTMK--Reencipher To Master Key 

The RTMK (Reencipher To Master Key) instruction takes a key that has been 
enciphered under one KCD2 or eKM2(KCDr) and reenciphers it under the 
controller master key, KM. When you use RTMK to reencipher a key that was 
enciphered under KCD2, RTMK operates like this: 

• eKCD2(K) ==> RTMK ==> • eKM(K) 

When you use RTMK to reencipher a key that was enciphered under KCDr, 
RTMK operates like this: 

• eKCDr(K) 
• eKM2(KCDr) ==> RTMK ==> • eKM(K) 

The RTMK instruction uses the RMKP AR parameter list - the same parameter 
list used by RFMK. Only the interpretation of the fields is different. 

~R_T_MK __ e , 
====> 
====> 

==> 

Parameter List (RMKPAR) 

Field I Name I Length 

• FI ag byte ( 1) IRMKFLAG I 1 
• Key being reenciphered(2) RHKINKEY 8 
• eKM2(KCDr)(3) RMKXDKEY 8 

(l)Set all bits off (X 1 00 1 ) to reencipher 
from KCD2; set the X'80' bit on to 
reencipher from KCDr. 

(2)As in~ut, you set this field in the form 
eKCD2(K) or eKCDr(K); as output, the 
controller places eKM(K) in this field. 

(3)Set this field only when you are 
reenciphering K using KCDr - eKCDr(K). 

Legend: 
Program sets this field (always). ====> 

==> Program sets this field (optional). 
<==== Controller sets this field (always). 

<==== 

You use the COPY DEFRMK instruction to provide addressing for the parameter 
list. The assembler labels and corresponding displacements and values generated 
by COPY DEFRMK are described in Appendix B, "COPY File Fields." 

Chapter 10. 4700 Cryptographic Instructions 10-31 



The RTMK instruction has the following assembler format. 

Name Operation Operand 

[label] RT~ 
{ 

~=~~~~isp2 } 
(reg2) 
(defrf2) 

operand 2 
Is the parameter list for this instruction. The parameter list cannot be in 
segment 14. You specify no length, because the parameter list has a fixed 
length of 18 bytes. 

Condition Codes: If no program checks occur, RTMK returns one of the following 
hexadecimal codes in SMSCCD. 

X'Ol' 

X'02' 

The instruction completed successfully; SMSDST has been set to zero. 

The instruction did not complete successfully; a status code in SMSDST 
explains why. 

Program Checks: One of the following hexadecimal codes can be set: 01, 02, 09, 
11, or 27. 

10-32 4700 Controller Programming Library, Volume 5: Cryptographic Programming 



Chapter 11. Guidelines for Coordinating 4700 and OS/VS Cryptographic Facilities 

S/370 

S/370 

A high degree of communication security can be attained among application 
programs if they are properly designed to use cryptography. 

Generally speaking, when both a S/370 and a 4700 provide cryptographic 
services for use by their respective programs, data is protected by cryptography 
before leaving the safety of either the S/370 host or the 4700, and remains 
enciphered- regardless of the number of intermediate network nodes through 
which it may pass- until deciphered after arriving at its intended destination. A 
PIN, for example, after being enciphered at an encrypting PIN keypad, remains 
enciphered during all subsequent periods of transmittal or storage until completing 
its role in the PIN validation process. 

The following diagram illustrates two possible network configurations involving 
S/370 hosts and 4700 Finance Communication Systems. 

D 
----Local 

Chan- Communi- I EJ 4 e 
7 v 

nel cation I 0 
Ct l. Unit 0 c 

e 
5 

I<-- cryptographic data protection --->I 

----Local Remote --o- 4 ~ Chan
ne I 

Communi
cation 
Ctl.Unit 

I Commun i- _1__ 4700 _- 07 v 
cation 
Ct l . Unit - 0 c 

e 
5 

The following sections highlight the major concerns you must consider in your 
design of host and 4700 application programs that will use cryptography. 

Communication Considerations 

When the 4701 operates online (that is, in session with a host computer), it uses 
the facilities provided by a communication common carrier to transmit and receive 
data. Data exchanges may be transaction oriented, which is the choice for a 
typical retail banking application (consumer-operated cash issuing terminal, for 
example) or message oriented which is the choice for more conventional data 
processing applications such as the daily posting ot reconciliation of a branch 
bank's records with those of the home office. Because the common carrier 
typically guarantees only delivery of data from source to destination, the use of 
protective measures to defend against possible wiretap attacks is left to the system 
or the appropriate application programs. 

Having selected cryptography as a data security technique to achieve a high 
degree of communication security, you must then determine when, where, and 
how often it is to be used. The answer to these questions depends on the value of 
the data being transmitted, the frequency and volume of the data being 
transmitted, and the processing delays resulting from enciphering and deciphering 

Chapter 11. Guidelines for Coordinating 4700 and OS/VS Cryptographic Facilities 11-1 



operations, Sinillatly, you must determine the.value, if any, of enciphering 
acknowledgments in terms of the protection realized versus the ·Cost in terms of 
additfonalprocessingtime. The answers to these questions ultiJJl;ately depend on 
the general nature of the communication system andthe meam·by which it 
satisfies the business requirements of the institution it supports. 

Data Encryption with the OS/VS Cryptographk Subsystem 

In OS/VS.· (OS/VSl • orOS/VS2 MVS}host systems that ·incorporate 

• PCF ·(Prrigrainmed Cryptographic: Facility, program.number5740""XYS),or 

• CUSP (Cryptographic Unit Support Program, program number 5740-XY6) 
and a 3848 CryptographicUnit, 

data enciphering operations are performed with the CIPHER macro instrttction. 

The OS/VS CIPHER macro instructionenciphers and deciphers data and is the 
functional equivalent of the. 4 700ENCIPHER and DECIPHER instructions. 

You can use the CIPHERmacro to encipher plaintextbeing.sentto a4700 
controller, or to. decipher ciphertext being received from a 4 700 controller'. The 
CIPHER macro can also be used to emulatethe 4700 MACGENinstruction (see 
Chapter 5, "Authenticating Messages"). 

The OS/VS cryptographic irtstructions, including CIPHER, are d.esetibed in 
OS/VSJ OS/VS2 MVS Cryptographic Unit Suppart:lnstallationReferenee 
Manual, SC28-l016, and OS/VSJ OS/VS2 MVSProgrammedCryptographic 
Facility: Installation Reference Manual, SC28~0956. 

Even though a 4 701 application program and a host applicati-0fi:;program encipher 
and decipher data with different instructions, the two programs.can .stillinteract 
and exchange enciphered data. However, to ensure that information is usable 
once deciphered, the two programs must reach agreement on a setofrules or 
protocols to govern the manner in which the data is exchanged. 

For example, the two programs must determine who selects the key and ICVand 
how they are distributed. A key and anJCV may be selected by one program and 
securely transmitted to the other. Alternatively, one program may choose the key 
while the other chooses the ICY. To confirm delivery and instalfati()n of the key 
and I CV and to validate the legitimacy of the correspondent program (within 
some acceptable limit), the two programs should exchange am~riciphered test 
message; During long communication sessions it may be desirable to change the 
data-encrypting key--perhaps several times--on command· by orte·;Of the 
cooperating programs. 

Before the two programs can exchange enciphered data, they must agree· on a 
common method of enciphering short blocks of data (blocks notamultiple ()f 
eight bytes in length}. Typically, short blocks are padded to the'n:ext multiple of 
eight bytes. 

l l-2 4700 Controller Programming Library; Volume 5: Cryptographic Programming 



Note that the 4700 ENCIPHER instruction provides a parameter which, if 
selected, causes data to be automatically padded before encryption. The number 
of added bytes (1-8) are indicated in the last byte, known as the count byte. 
Likewise, the 4700 DECIPHER instruction can be tailored (via an appropriate 
parameter) to automatically remove pad bytes from a message after decryption 
(by reducing the data length by the amount indicated in the count byte). 

The CIPHER macro does not provide automatic padding nor is there a dynamic 
method by which data received can be identified as having been padded. A 
procedure for adding and removing pad bytes to and from messages must be 
agreed to during the design phase of your application program. 

One simple approach is to always pad before enciphering and always remove pad 
bytes after deciphering. The number of bytes to discard depends on the value 
found in the count byte. A count greater than eight should be declared an error. 

A typical macro sequence needed by an ACF /VT AM program designed to 
exchange ciphertext with a 4701 might take the form illustrated below. To 
simplify the example, messages are assumed to be a fixed length of 64 bytes and 
therefore do not require any length adjustment (padding). It is further assumed 
that a key and !CV have previously been exchanged and validated. 

This sample program is intentionally incomplete. It is not intended to represent 
executable code but rather to suggest the proper sequence of events necessary in 
the receipt, manipulation, and transmission of enciphered data. 

Chapter 11. Guidelines for Coordinating 4700 and OS/VS Cryptographic Facilities 11-3 



* * * * * * * * CIPHER Macro - Transmittal of Enciphered Data * * * * 

RPL1 

INAREA 
OUTAREA 
KEYAREA 

ICVAREA 
COUNT 

• 
• 
• 

RECEIVE ... ,RPL=RPL 1,. . • . program obtains enciphered 
message from 4701; data 
placed in OUTAREA 

• 
• 
• 

CIPHER 

• 

CPHRTXT~OUTAREA, . 
LENGTH=COUNT, ... . 
FNC=DECPHR, ..... . 
KEY=KEYAREA, .... . 
ICV=ICVAREA, .... . 
CLERTXT=INAREA, .. 
MF=S 

The ciphertext in OUTAREA, 
whose length is COUNT, 
is deciphered 
using the key in KEYAREA and 
the ICV in ICVAREA 
with the plaintext being placed 
in INAREA. 

• received message interrogated; action taken; 
• response message generated and placed in INAREA 
• 

CIPHER 

• 
• 
• 

SEND 

RPL 

DS 
DS 
DS 
DS 

DS 
DC 

CLERTXT=INAREA .. . 
LENGTH=COUNT, ... . 
FNC=ENCPHR, ..... . 
KEY=KEYAREA, .... . 
ICV=ICVAREA, .... . 
CPHRTEXT=OUTAREA, 
MF=S 

The plaintext in INAREA, 
whose length is COUNT, 
is enciphered 
using the key in KEYAREA 
and the ICV in ICVAREA 
with the resulting ciphertext 
being placed in OUTAREA. 

. .. ,RPL=RPL1, .... enciphered response sent to 4701 

... ,AM=VTAM, 
AREA=OUTAREA, ... . 
OF ............... align on fullword 
CL64 ............. plaintext message 
CL64 ............. ciphertext message 
XLS .............. data-encrypting key enciphered 

under host master key 
XLS .............. initial chaining value (ICV) 
C'64' ............ standard message size, 64 bytes 

* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * 

Selection, Distribution, and Installation of Keys 

Because the ultimate success of a cryptographic application depends upon the 
secrecy afforded its cryptographic keys, the process of key selection, distribution, 
and installation requires careful scrutiny. A high degree of security is realized 
when these processes are automated. The cryptographic services of a S/370 in 
concert with those of the 4 700 system enable user-written application programs to 
automate the tasks of key generation, distribution, and installation in an efficient 
and secure manner. 

At the 4701, automatic key generation is performed by the KEYGEN instruction, 
as previously described. The GENKEY macro instruction provides a similar 
service at a S/370. The 4700 RFMK instruction and the S/370 GENKEY macro 
instruction provide the means to encipher a key so that it can be securely 
transri:titted to another node via the network. The 4700 RTMK instruction and 
the S/370 RETKEY macro instruction provide the means to install a key when it 

11-4 4700 Controller Programming Library, Volume 5: Cryptographic Programming 



is received from another node by reenciphering it to the form needed to encipher 
and decipher data at the receiving node. Throughout the entire process of key 
generation, distribution, and installation, the subject key remains enciphered, 
thereby ensuring the security of subsequent data ciphering operations. 

It is the task of the cooperating application programs to agree on the manner in 
which a key is exchanged. A series of messages is normally needed to exchange 
the key, the associated ICV, and to confirm delivery and correct reception. One 
method was suggested above in Example 3 (see "Example 3. A Key Validation 
Protocol" on page 4-6). Another example is suggested by the protocol specified 
in IBM's Systems Network Architecture (SNA) to exchange and confirm delivery 
of a cryptographic key (or session key) and ICV for a communications session 
(see IBM Cryptographic Subsystem Concepts and Facilities). 

The philosophy of the SNA approach is that one location (node) assumes a 
primary status for the purpose of generating and distributing the key. The 
secondary location is responsible to challenge the primary location's credibility 
insofar as it generates the ICV and controls the handshake protocol designed to 
prove that the primary location is a valid session partner. This protocol makes it 
easy for the program to detect the replay of a previously-recorded communication 
session. A program using this protocol can also avoid establishing a session with a 
"wrong" location -- that is, with a location that has a malfunctioning 
cryptographic subsystem, is ineligible to support an encrypted session, or has 
simply been contacted by mistake. 

This "handshake" protocol requires the session partner to prove its "identity" by 
correctly manipulating a time-variant value (such as the ICV) via a cryptographic 
operation based on the session key. One location can conclude that the other is a 
legitimate location insofar as it has demonstrated its ability to correctly 
manipulate the time-variant ICV via a cryptographic operation. The success of 
the operation demonstrates that each location's cryptographic algorithms are 
operating correctly. Finally, assuming the session key is originally transmitted 
enciphered under a key-encrypting key known by the secondary location, it 
demonstrates that the message which originally transmitted the session key did 
not arrive as the result of a routing error. This is because the session key can be 
recovered only by deciphering it with the specific key-encrypting used for the 
original encryption. 

Generating Keys with the OS I VS Cryptographic Subsystem 

The Programmed Cryptographic Facility (PCP) and the Cryptographic Unit 
Support Program (CUSP) contain key generation capabilities that can be used in 
place of, or to complement, those provided by the 4700 Finance Communication 
System. These facilities are discussed in detail in the OS/VS Cryptographic 
Subsystem installation reference manuals (see the Bibliography). 

You can generate master keys at the System/370 host site using the key generator 
utility program provided by PCF and CUSP. With this program the master keys 
for an installation's entire set of 4 700 controllers can be generated at one time 
and then distributed, under physically secure conditions, to the respective 4701 
sites for installation. Likewise, generation and distribution of cross-domain keys 
may be performed at the central host site, in conjunction with master key 
generation and distribution. 

When a cross-domain key is installed (as described above), one at a host and the 
other at a remote 4701, keys can be subsequently distributed via the 

Chapter 11. Guidelines for Coordinating 4700 and OS/VS Cryptographic Facilities 11-5 



communications network without fear of key exposure. A session key, for 
example, can be generated at either the host or a 4701 and securely transmitted to 
the correspondent location enciphered under the cross-domain key designated for 
such transmissions. While passing through the network the session key is 
protected from disclosure by the cross-domain key. 

To install a host master key on a system supported by PCF, pass the plaintext 
master key as a parameter to PCF's key generator utility program. Note that 
PCP,. being a software product, retains the host master key on the Cryptographic 
Key Data Set (CKDS), a system resource provided for the exclusive use of the 
System/370 key management routines. Conversely, with the 3848 Cryptographic 
Unit, the host master key is installed directly in the hardware via a hand-held 
key-pad device .. A copy of the plaintext host master key is passed as a parameter 
to CUSP's key generator utility program wherein it is used to verify that the host 
master key installed in the 3848 is identical to the one used to' create the on-line 
CKDS. 

Centralized management of key generation and distribution benefits from the 
physical security afforded the host site and tends to simplify recovery operations 
following any loss at remote sites. On the other hand, decentralized control 
provides the opportunity forthe 4700 to perform key generation and distribution 
independent of the host computer. 

Enciphering Under Controller .Variants with the OS IVS Cryptographic Subsystem 

1. Use the EMK (encipher under master key) macro instruction with the 
plaintext variants of the controlllfr master key (KMl, KM2, and KM3) to 
create eK.MH(KMl), eK.MH(KM2), and eK.MH(KM3). 

2. Use the CJPHER (encipher) macro instruction, specifying a result of Step 1 as 
the key input, and the plaintext being enciphered as the data input. 

You should execute these instructions in a secure envirorun.ent because plaintext 
keys are being used. 

Genel*!lting Data-Encrypting Keys in an OS/VS Cryptographic Subsystem 

OS/VS GENKEY and RETKEY macro instructions together provide key 
management functions equivalent to those provided by the 4 700 RFMK and 
R TMK instructions. 

When invoked with the GENERATE option, the GENKEY macro creates a 
64-bit random number by repeatedly executing the data encryption algorithm. 

The randomness of the number is achieved by driving the data encryption 
algorithm with variable data obtained from storage which is recognized as being 
highly volatile and therefore extremely unpredictable. Also used are multiple 
readings of the system clock taken at irregular intervals and residual random data 
saved from a prior execution of the generation process. To ensure the secrecy of 
the derived data-encrypting key, the result of the several iterations of the 
algorithm is defined as the data-encrypting key enciphered under the host master 
key. The point here is that even during the generation process, the program can't 
access the data-encrypting key. 

The syntax of the GENKEY macro with the GENERA TE option is described in 
the OS/VS publications. 

11-6 4700 Controller Programming Library, Volume S: Cryptographic Programming 



The GENKEY macro has the advantage that a single call can produce multiple 
enciphered copies of a generated data-encrypting key thus simplifying subsequent 
key management operations. For example, should a host application program 
determine that cryptography is to be employed on a communications session with 
a designated 4701, the GENKEY macro can be invoked to obtain two copies of 
the generated data-encrypting key; the first copy, enciphered under the host 
master key, can be used directly with the host's CIPHER macro instruction. The 
second copy, enciphered under a specified cross-domain key shared with the 
designated 4701, allows the enciphered data-encrypting key to be sent securely to 
the 4701. Recovery at the 4701 is accomplished with the 4700 RTMK 
instruction. 

The OS/VS Cryptographic Subsystem Key Data Set 

The cryptographic key data set (CKDS) is the repository for key-encrypting keys 
at a host S/370. The CKDS is an exclusive resource of the host key management 
routines embodied in the key generator utility program and the programs 
supporting the GENKEY and RETKEY macro instructions. Collectively, these 
programs are referred to as the host's key manager. 

The key generator utility program is used to create and maintain the CKDS. 
Accordingly, it has read/write access privileges to the CKDS. The routines that 
support the GENKEY and RETKEY macro instructions have read access 
privileges to the CKDS so they can obtain the host's copy of the various 
key-encrypting keys used to satisfy GENKEY and RETKEY requests. Access to 
the CKDS is denied to all other programs. 

Keys are enciphered under one of two variants of the host master key before 
being written to the CKDS. With the exception of the host master key for a 
system supported by PCF, plaintext keys are never stored on the CKDS. Note 
that a S/370 host does not define a master key variant exclusively for PIN 
management as does a 4701. 

An Example of Generating Data-Encrypting Keys in OS/VS 

The following example illustrates the coding of the GENKEY macro by a S/370 
VT AM application program. The example assumes the designated cross-domain 
key has previously been installed on the CKDS and is associated with the label 
K4701001. 

This example is also applicable for the generation and exchange of a key to be 
used for message authentication. The GENKEY macro instruction can also be 
used to generate random 64-bit values which can subsequently be defined (after 
parity is adjusted) as keys for private cryptographic applications -- much like the 
4701 KEYGEN instruction. The 64-bit value generated by GENKEY (or 
KEYGEN) can also be used as an initial chaining value. 

Chapter 11. Guidelines for Coordinating 4700 and OS/VS Cryptographic Facilities 11-7 



* * * * * * GENKEY Macro - Data-Encrypting Key Generation * * * * * * * 

RPL1 

ANSAREA 
KEYNAME 
KEYVALUE 

KEYAREA 

MESSAGE 
FIELD1 
FIELD2 

• 
• 
• 

KEYFIELD 
• 

• 
• 

GENKEY 

• 
• 

GENERATE, ....... . 
OPKEY=KEYAREA, 
LOCKEY=ANSAREA ... 

generate data-encrypting key: 
enciphered under host master key 
enciphered under cross-domain 
key 

LA 1,MESSAGE ........ addressability to MESSAGE 
LA 2,KEYVALUE ....... addressability to data

encrypting key enciphered 
under designated cross
domain key 

MVC KEYFIELD(S,1 ),0(2) copy enciphered key into message 
• 
• 

SEND 
• 
• 

. .. ,RPL=RPL1, .... enciphered key sent to 4701 

CIPHER ... ,KEY=KEYAREA, .. data ciphering with generated 

• 
• 

RPL 

DS 
EQU 
DC 
DS 

DS 

DSECT 
DS 
DS 
• 
• 
• 

DS 
• 

... ,AM=VTAM, 
AREA=MESSAGE, ... 
OF ...•.•.•••••.• 

C'K4701001 I •••••• 

XLS ............. . 

XLS 

data-encrypting key 

align on fullword 
symbolic name of 16-byte area 
cross-domain key label 
data-encrypting key enciphered 
under cross-domain key 
data-encrypting key enciphered 
under host master key 
skeleton of message for 4701 

XLS .............. enciphered key for 4701 

• • 
* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * 

Message Encryption Protocols 

Having accomplished the task of generating, distributing, and installing a 
data-encrypting key (generically referred to as a session key when discussing 
communication security), the question remains of how often to use it and when 
used, for how much data. This decision can best be made by the cooperating 
programs, which can monitor the nature of the data being exchanged. 

It has already been suggested that a decision to "encrypt everything," while it 
certainly provides high security, may result in severe performance degradation in a 
system processing a very high volume of data. This is an unavoidable by-product 
of cryptography--enciphering and deciphering takes time. Therefore, to balance 
security and performance, it is necessary to carefully examine the nature of the 
data being managed by a particular application. 

The IBM 3624 Consumer Transaction Facility serves as an example of a 
cryptographic application designed to achieve data privacy--but only for selected, 
sensitive fields within messages: only the PIN field is enciphered, to protect the 
identity of the PIN. 

11-8 4700 Controller Programming Library, Volume 5: Cryptographic Programming 



A second encryption is performed which involves the sequence number field and 
seven bytes of the PIN field which amounts to a double encryption of the majority 
of the PIN. It is significant to note that the second encryption is performed with a 
key different from that used to encipher the PIN. In this manner, even though a 
message is deciphered (for example, at a 4701 ), the plain text PIN is not revealed. 
(Details of 3624 encryption may be found in 3624 Programmer's Reference.) 

Using the 3624 as an example may over-simplify the answer to the question of 
"how much to encrypt" because the 3624 deals with limited sensitive information 
(that is, the PIN). 

With an application that must manage a wide variety of message types, it may be 
wise to encipher some messages in their entirety, encipher parts of others 
(sensitive fields; for example), and avoid encrypting altogether for the remainder 
(on the grounds that there is no information worth protecting). The nature of the 
decision rests with the purpose of a particular message and the nature of the data 
normally transmitted therein. Likewise, there must be a convenient method 
available to differentiate among message types thereby indicating their relative 
security classifications. When a particular message type is identified, a fixed set 
of encryption rules is enforced. 

Reenciphering Keys with the OS/VS Cryptographic Subsystem 

You can use the OS/VS GENKEY macro instruction with the SUPPLIED 
parameter to reencipher a key from encipherment under the host master key to 
encipherment under a specified key-encrypting key (typically to prepare a 
previously generated key for transmission to a remote 4700 controller). You can 
use the OS/VS RETKEY macro instruction to receive an enciphered key sent 
from a remote location. GENKEY (with the SUPPLIED parameter) and 
RETKEYprovide functions equivalent to the 4701's RFMK and RTMK 
instructions, respectively, and constitute the basis for S/370 key management. 

Using the GENKEY macro instruction with the SUPPLIED parameter has the 
advantage that key-encrypting keys (such as cross-domain keys) can be securely 
transferred between a host S/370 and a 4701 with no dependency on the master 
keys installed at each location. Rather, the initial pair of manually installed 
cross-domain keys shared between a host and a 4701 are used to encipher other 
key-encrypting keys which are subsequently transferred between the two 
locations via the communication network. You can distribute keys rapidly in this 
manner, without relying on manual key delivery methods. Security is also 
enhanced insofar as there is a marked reduction in the dependency on human 
intervention because the process is automated and under the control of the host 
computer and the 4701. 

The syntax of the GENKEY macro instruction with the SUPPLIED parameter is 
described in the OS/VS Cryptographic Subsystem publications. 

Typically, key-encrypting keys, being long-term keys, are generated in plaintext 
form and manually installed in their intended cryptographic devices.. Automated 
key distribution is possible provided these plaintext keys can first be enciphered 
making them eligible to participate with the GENKEY macro instruction. 

The Encipher Under Master Key (EMK) macro instruction can be used to 
encipher a plaintext key under the host master key. A data-encrypting key 
enciphered under the host master key is in the correct form to be used with the 
CIPHER macro instruction or with the GENKEY macro instruction (with the 

Chapter 11. Guidelines for Coordinating 4700 and OS/VS Cryptographic Facilities 11-9 



SUPPLIED parameter). A key-encrypting key enciphered under the host master 
key is in the correct form to be used with the GENKEY macro instruction (with 
the SUPPLIED parameter). It is important to note that there is no inverse 
function for EMK; the cryptographic subsystem provides no means to decipher an 
enciphered key such that a plaintext key is returned to the program. 

The syntax of the EMK macro instruction is illustrated in the OS/VS 
Cryptographic Subsystem publications. 

To illustrate the use of the GENKEY macro instruction with the SUPPLIED 
parameter, consider the task of an installation security specialist who must arrange 
for the exchange of a key between a host S/370 and a 4701 to be used to 
authenticate messages transferred between the two locations (that is, a message 
authentication key, KMAC). And, for this example, KMAC is assumed originally 
generated at the S/370 in plaintext. Therefore, before invoking the GENKEY 
macro instruction, KMAC must first be enciphered under the master key of the 
host. This is a reasonably straightforward task using the EMK macro. The result 
of the EMK macro instruction would be written as eKMO(KMAC), and read as 
"KMAC enciphered under the host master key." 

Several things have been accomplished at this point. Due to the fact that KMAC 
has been enciphered, its identity is protected from disclosure. KMAC is also in 
the correct form for use with the GENKEY macro instruction insofar as it may be 
reenciphered under a cross-domain key and securely transmitted to one or more 
4 700 controllers. In its enciphered form, KMAC may be used with the CIPHER 
macro instruction to generate message authentication codes (MA Cs) discussed in 
Chapter 5, "Authenticating Messages." 

As a result of executing the GENKEY macro (specifying SUPPLIED) with 
eKMO(KMAC) as the OPKEYparameter, and identifying a cross-domain key 
(represented as KCDl and ~ssumed shared between the host and a designated 
4701) via the LOCKEY parameter, the GENKEY macro will produce 
eKCDl(KMAC) which may be transmitted directly to the designated 4701. 
Recovery of KMAC in a usable form at the 4701 is accomplished via the 4700 
RTMK (as described above) instruction using a copy of KCDl stored at the 
4701. 

Although the discussion thus far suggests that key exchanges should be initiated 
by a host S/370, such action can also be initiated by a remote 4701. Therefore, 
the host S/370 must have the capacity to receive an enciphered key from a 4701 
and be able to convert it from the form used for transmission to the form required 
for use with the host's CIPHER macro instruction. 

The RETKEY macro instruction is functionally equivalent to the 4700 RTMK. 
instruction and provides the host S/370 with the ability to transform a key 
enciphered under a key-encrypting key (such as a cross-domain key) to 
encipherment under the host master key. 

T.he syntax of the RETKEY instruction is described in the OS/VS Cryptographic 
Subsystem publications. 

As an additional security option, PCP and CUSP enable an installation to define 
selected key-encrypting keys for use by only privileged programs. During 
execution, the RETKEY macro instruction interrogates the status of the calling 
program and the characteristics of the designated key as recorded on the CKDS 

11-10 4700 Controller Progran;uning Library, Volume S: Cryptographic Programming 



(discussed below), and based upon this information, ends if a non-privileged 
program requests the use of a restricted key-encrypting key. The OS/VS 
Cryptographic Subsystem publications describe this feature in their respective 
treatment of the key generator utility program. 

The following example illustrates the coding of the RETKEY macro instruction by 
a S/370 ACF/VTAM program responsible for receiving a data-encrypting key 
from a remote 4701 and transforming it for use with the CIPHER macro 
instruction. This example assumes the designated cross-domain key has 
previously been installed on the CKDS and is associated with the label 
K4701001. 

* * * * * * * * * RETKEY Macro - Received Key Recovery * * * * * * * * * 

RPL1 

KEYNAME 
INKEY 

OUTKEY 

MESSAGE 
FIELD1 
FIELD2 

• 
• 
• 

RECEIVE ... ,RPL=RPL1, .... program obtains message from 
4701; data placed in INAREA 

LA 
LA 

• 
• 
• 

MVC 

RETKEY 

• 
• 
• 

CIPHER 

• 
• 
• 

RPL 

DS 
DC 
DS 

DS 

DSECT 
DS 
DS 
• 
• 
• 

2,MESSAGE ........ addressability to MESSAGE 
1,INKEY .......... addressability to KEYFIELD in 

work area 
O(S,1 ),KEYFIELD(2) copy enciphered data-encrypting 

key into work area 
OPKEY=OUTKEY, .... transform data-encrypting key 
REMKEY=KEYNAME ... from encipherment under the 

cross-domain key to under the 
host master key 

. .. ,KEY=OUTKEY, ... data ciphering using trans
formed data-encrypting key 

... ,AM=VTAM, 
AREA=INAREA, ... . 
OF ............. . 
X 'K4701001' ..... . 
XLS ............. . 

XLS 

align on fullword 
key-encrypting key name 
data-encrypting key enciphered 
under key-encrypting key 
data-encrypting key enciphered 
under host master key 
received message 

KEYFIELD DS XLS .............. location of enciphered data-en-
crypting key in received message 

* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * 

Message Authentication Based on KMAC 

You use the MACGEN instruction to generate a MAC at a 4700 Finance 
Communication System. To generate a MAC at the.host S/370 with PCF or 
CUSP installed, you use the CIPHER macro instruction and additional user 
programming to locate and retrieve the MAC in the generated ciphertext. 

Chapter 11. Guidelines for Coordinating 4700 and OS/VS Cryptographic Facilities 11-11 



Message authentication and message encryption can be applied independently. 
That is, a message can be authenticated regardless of whether the message is 
transmitted entirely in plaintext, partly in ciphertext (field encryption), or entirely 
in ciphertext (message encryption). 

The purpose of message authentication is to detect message alteration and 
message substitution, typically the result of an active attack against data in transit. 
Message authentication is effective when the method is sufficiently complex to 
discourage even the most determined adversary. A complex algorithm need not 
be designed specifically to satisfy the requirements of authentication. A 
recognized strong cryptographic algorithm suffices for message authentication 
applications. Additional security is attained when the secret key used to 
personalize the algorithm (KMAC) is randomly chosen from a very large set of 
possible keys, is different from one communication session to another, and is 
routinely changed. (Under some circumstances KMAC and KS, the session key, 
may be one in the same with no loss in security.) 

When message authentication and message encryption (for entire messages or 
fields within messages) are used together, you must determine when each event is 
to take. place. When a single key is used for data encryption and authentication, 
the MAC should be generated on the ciphertext. If different keys are used, you 
can generate the MAC on either the ciphertext or the plaintext. Regardless, it is 
necessary to coordinate the input to the message authentication algorithm by both 
message sender and message receiver to ensure their ability to generate equivalent 
message authentication codes (MACs). 

Message authentication provides protection against message alteration and 
message substitution but does not immediately identify the replay of a prior, valid 
message (assuming the authentication key and/or ICV has not changed). Replay 
detection, which normally must be performed by the application program, is a 
relatively simple task when messages contain a nonrepeating sequence number or 
timestamp as part of the data. Following a successful MAC comparison, the 
receiving application program must examine the sequence number or timestamp 
(after deciphering the message if appropriate) to determine if the message is 
current. Current messages are processed while messages that are "stale" (not 
current) are ignored. It is not unusual to also record the event by making an entry 
in an appropriate journal or log. 

A method of selecting, distributing, and installing a key to control the message 
authentication process (KMAC) can be very similar to that described earlier for 
session keys. 

Note: KMAC should not be distributed enciphered under KS if the identity of 
KMAC is to be kept secret. Rather, KMAC should be distributed after it is 
enciphered under an appropriate cross-domain key, as was KS, and recovered 
with either the 4700 RTMK instruction or the OS/VS RETKEY macro. The 
result of either of these instructions is KMAC enciphered under the master key of 
the respective location; this is the correct form for later MAC generation 
operations (4700 MACGEN instruction or OS/VS CJPHER macro). IfKMAC 
is transmitted doubly enciphered under KS -- that is, eKS(eKCDs(KMAC)), 
verifying KMAC is implied after successfully deciphering with KS. The following 
diagram illustrates KMAC.generation, distribution, and recovery between 4700s 
and S/370s. 

11-12 4700 Controller Programming Library, Volume 5: Cryptographic Programming 



* * * * * * KMAC Generation, Distribution, and Recovery * * * * * * * * 

Generation Point Recovery Point 
-------------------------------- ============== 

4700: 

KEYGEN: ===> RN = eKCD2(KMAC) 

RTMK: eKM2(KCD2), eKCD2(KMAC) 
===> eKM(KMAC) 

4700: 

RFMK: eKM1(KCDt) 1 eKM(KMAC) 
===> eKCDl lKMAC) ------> RTMK: eKM2(KCD1), eKCDl(KMAC) 

S/370: 

===> eKM(KMAC) 

S/370: 

RETKEY: eKM2(KCD1), eKCDl(KMAC) 
===> eKM0(KMAC) 

GENKEY: GENERATE, eKMl(KCDl) 
===> eKM0(KMAC), eKCDl(KMAC) 

Legend: 
RN = Random number 

KM0 = Host master key 

4700: 

---> RTMK: eKM2(KCD1), eKCDl(KMAC) 
===> eKM(KMAC) 

S/370: 

'------> RETKEY: eKM2(KCD1), eKCDl (KMAC) 
===> eKM0(KMAC) 

KM Controller master key 
KMl Master key variant 1 of either S/370 or 4700 
KM2 Master key variant 2 of either S/370 or 4700 

KCDl Sending cross-domain key 
KCD2 Receiving cross-domain key 
KMAC MAC aenerating key 

* * * * * * * ~ * * * * * * * * * * * * * * * * * * * * * * * * * * * * 

Emulating the 4700 MACGEN Instruction with the OS/VS Cryptographic Subsystem 

A message authentication code (MAC) can be generated for any number of 
contiguous data bytes at a S/370 using the CIPHER macro instruction. However, 
unlike the 4700's MACGEN instruction, which directly yields a generated MAC 
in an area identified by one of the instruction's parameters (that is, the one used 
to initially locate the ICV), the caller of the CIPHER macro instruction must 
manually identify the MAC at a prescribed location in the resulting ciphertext. 

Note that the authenticated data is actually enciphered under KMAC. If you do 
not want the data enciphered under KMAC, copy the data to a work area prior to 
invoking CIPHER. 

To produce a MAC compatible with that created by the 4700 MACGEN 
instruction, the data item to be authenticated must first be padded (if necessary) 
and enciphered with the same data-encrypting key, ICV, and pad character used 
by the cooperating 4701. 

Chapter 11. Guidelines for Coordinating 4700 and OS/VS Cryptographic Facilities 11-13 



The first 4 bytes of the last s,..byte block of ciphertext represents the MAC. The 
following figure illustrates the location and size of a MAC generated for a data 
item assumed fo l>Q- IOnger than eight bytes. 

·1< ·length divisible by 8 · .· ·· ·· >I 

'

<-·. - .last· 8 bytes··-·.-> 
l.nitial 
text ·~·-.. ·~~~~~~~~~~~~~~~~~~~~~----' 

key parameter 
(KMAC) . 

~~~~~~~~~~~~ 

< 4 bytes >I< 4 byt~s >

·~!~~er~· ! ___________ l_l_l l_l_l_l l_l_l_l l_I_· ___ ___,
L__,~

v
MAC

The h.<>Stprogram containing the CJPHER macro, used to generate a MAC,
requires additionaUnstructions designed to locate that portion of the ciphertext
that represents the MAC. This oode would likely identify the end of the storage
containing the ciphertextby adding the value addressed by the LENGTH
parametertotb,e st~ address of the ciphertext specified by the CPHRTXT
param,et~r. :When the end of the ciphertext has been determined, the program
. then can.subtract eight (bytes) from this address to determine the beginning
address of· the MAC.

Typically, data transmitted in plaintext is subject to alteration and replacement
while in transit. Using a MAC with data transmitted in plaintextoffers a high
degree of protection from active attacks intent on altering or replacing
transmitted data. Enciphered data is not precluded from active attacks intent on
replacing the data with previously transmitted ciphertext. Unless the key and/ or
ICVused to generate a MAC is frequently changed, a MAC check cannot detect
the replay of a prior, valid message. Detection .of such an attack requires a
variable in the message data (such as a sequence number or a time-stam.p) which
must be interrogated by the program after deciphering. A message found to be
. out of sequence or one whose. time stamp is outside an acceptable range, must be
considered suspect and invoke appropriate recovery action.

A program that must contend with a MAC must also be concerned with the
generation, distribution, and verification of the key used to generate the MAC.
For just as it is necessary for two programs to each have a copy of the same
cryptographic key to exchange enciphered data, so must two programs have a
copy of the same key to generate identical MACs.

The method of selection, distribution, and verification of a MAC generating key
(KMAC) is essentially the same as that described for a data-encrypting key (see
Chapter 3) providing that the cooperating programs declare, based upon their
adopted protocol, when a data-encrypting key is being exchanged and/ or when a

11-14 4700 Controller Programming Library, Volume 5: Cryptographic Programming

Host PIN Security

MAC generating key is being exchanged. Clearly, the effect of one program
using one key for one purpose and the other program using a different key for the
same purpose would become rapidly apparent when MAC checks continually fail
and data does not decipher correctly.

When you are using both message encryption and message authentication, it is
essential that the two programs establish the sequence of these operations. When
message encryption precedes MAC generation (that is, a MAC is generated on
ciphertext), the same key can be used for both operations with no loss in security.
But if you generate the MAC be.fore you encipher the data, an opponent could
alter ciphertext with a high degree of confidence that the alteration will not be
detected by a subsequent MAC check. Although not ne<;essarily a practical
method, using different keys for message encryption and MAC generation will
also prevent this attack from being successful.

For example, compromise of a data-encrypting key results in a loss of data secrecy
but does not permit successful data alteration or substitution because a MAC
cannot be generated on arbitrary data without the correct KMAC. A compromise
of KMAC (assuming enciphered data) allows an opponent to replay previously
transmitted data (such as a "deposit" message) without detection, but does not
yield the detailed content of the data being replayed (the amount of the "deposit"
is not visible in ciphertext). If a single key is used for both purposes, and is
compromised, all the security benefits cryptography has to offer are lost.

The most practical method of PIN validation you can perform at a host S/370
(which does not have an equivalent of the 4700 PINVERIF instruction), is to
compare a received PIN against its presumed identical counterpart stored on a
host PIN data base.

A host program that processes PINs in conjunction with a 4701 program must
perform two functions. First, the host program must be capable of receiving a
PIN from its attached communication network, and second, the host program
must manage a data base of stored PINs. The identity of a PIN should be
protected by encryption during all periods of storage or transmission after being
entered into the system by a customer. Typically, the PIN protection key used to
initially encipher the PIN at the system entry point (KP 1) should not be the same
as the key used to encipher the PIN stored on the PIN data base. You should use
an output PIN protection key (KP2, not equal to KP 1) for PIN exchanges
between the 4700 and the host. Ideally, KP2 should not also be the key used to
encipher the PINs residing on the host data base. This being the case, the host,
therefore, must also be capable of reenciphering a PIN from one key (the
transmission key, KP2) to another (the PIN data base key).

Reenciphering a PIN from one key to another is possible by a S/370 host with
PCF or CUSP. With either of these program products, reenciphering a PIN is
performed by executing the RETKEY macro instruction followed by the
GENKEY macro instruction (with the SUPPLIED parameter). When these two
macros are supplied with the correct key parameters, a user-entered PIN is
reenciphered under the PIN data base key. After it is obtained, the transformed
user-entered PIN is compared with the corresponding PIN stored on the PIN data
base for equality. An identical comparison is required to approve the related
transaction requested by the customer.

Chapter 11. Guidelines for Coordinating 4700 and OS/VS Cryptographic Facilities 11-15

PIN Formats

Because a PIN may assume one of several different formats before being initially
encrypted at an entry point into the system, it cannot be used for comparison
purposes against its counterpart stored on a S/370 host PIN data base. Likewise,
the key used to encipher a PIN at a system entry point (KP 1) should not be the
same key used to protect the PIN stored on a host PIN data base. Therefore, the
format and the encipherment of a PIN provided at a system entry point must be
altered before the PIN may be used for comparison against its host counterpart.

The most practical place to perform this task is at the 4 700 controller. The 4 700
PJNTRANS instruction performs the desired reformatting, and simultaneously
reenciphers the PIN from the key used at the system entry point (KP 1) to a key
used to send PINs to a S/370 (for example, an output PIN protection key, KP2).

However, understand that you cannot arbitrarily determine the format of the PIN.
The PINTRANS instruction supports only one output PIN format. In order that
meaningful comparisons are performed at a host, the PINs stored on the host PIN
data base must conform to this single format. This restriction is necessary because
the GENKEY and RETKEY macros (used to reencipher a PIN) do not yield a
plaintext PIN, thereby denying an application program the opportunity to modify
a PIN's format. Therefore, you should format the PIN at the 4 700 controller.

Note: Before the PINs can be formatted, enciphered, and stored on the
host PIN data base, the PINs must be recorded in unformatted, plaintext
form. You will have to securely maintain this record of plaintext PINs so
that you can tell your customers what PIN has been assigned to them. The
unformatted, plaintext PINs must be generated, recorded, and enciphered
under physically secure conditions.

Managing PINs with the OS/VS Cryptographic Subsystem

Unlike host modules BDKDPRS and BQKDPRS, neither PCP nor CUSP provides
explicit services intended to address the specific task of PIN generation.
However, the GENKEY macro instruction, being much like that of the 4700
KEYGEN instruction, generates random 64-bit strings. You can manipulate
these strings (truncate, concatenate) and redefine them as plaintext PINs.

Note though that the generation process that yields a PIN in plaintext (or any
secret value for that matter) must be coupled with some immediate action
designed to conceal the identity of the PIN from other programs. In some cases,
depending upon the method of PIN validation used by a particular installation, the
PIN is placed in some established format, enciphered, and stored on an
appropriate data base. In other cases, the PIN participates in one or more
transformation processes designed to establish nonsecret parameters from which
the PIN may be regenerated at some future time when it is necessary to validate a
PIN entered by a customer. In this latter case, the PIN is recovered through the
use of a secret parameter (for example, a system managed cryptographic key)
known only to the installation that originally issued the PIN.

PIN validation can subsequently be performed in one of two fundamental ways.
Either a calculated PIN of reference is produced ·on demand and compared with
the presumed identical PIN provided by an institution's customer, or a customer's
PIN is enciphered and compared with a similarly enciphered PIN of reference
obtained from an appropriate data base.

11-16 4700 Controller Programming Library, Volume 5: Cryptographic Programming

A PIN can be dynamically validated at a 4701 controller. For those cases where
an institution determines that validation should or may be performed at a host
S/370 rather than at a 4701, a PIN validation design based upon static values is
chosen.

With such a design the central host would manage a data base of PINs enciphered
under a special "pinkey" for all customers of the institution. PINs would be
transmitted to the central host enciphered under one of several output PIN protect
keys (KP2) which, in this case, operate much like a cross-domain key. After it
receives the PIN, the host program could conveniently and securely transform the
PIN from encryption under KP2 to encryption under the special "pinkey" by
sequentially exercising the RETKEY and GENKEY macro instructions (described
in the following section). The enciphered PIN stored on the host's data base
would then be retrieved, via the account number which must accompany the
transmitted PIN. A comparison of the two enciphered quantities for equality
would be performed to determine the correspondence between the PIN entered by
the customer and the stored PIN of reference.

Emulating the PINTRANS Instruction with the OS/VS Cryptographic Subsystem

The 4700 PINTRANS instruction can be emulated at a S/370 insofar as a PIN
can be reenciphered from one key to another without exposing the PIN in
plaintext. However, it is not possible to reformat a PIN, as can be done with the
4700 PINTRANS instruction.

You can reencipher a PIN by executing the RETKEY macro instruction and the
GENKEY macro instruction in series. The key-encrypting keys designated by
each of the macros must have been previously installed on the CKDS (enciphered
under the correct variant of the host master key) to ensure the final result is
meaningful ciphertext and not a useless, random string of bits. The
key-encrypting key used to encipher the PIN during transmission from the 4701
to the S/370 (typically an output PIN protect key, KP2, functioning as a
cross-domain key) must be enciphered under the second variant of the host
master key and identified via the REMKEY parameter of the RETKEY macro
instruction. The key-encrypting key used to encipher the PIN stored on the
S/370 data base must be enciphered under the first variant of the host master key
and identified by the LOCKEY parameter of the GENKEY macro instruction.

Chapter 11. Guidelines for Coordinating 4700 and OS/VS Cryptographic Facilities 11-1 7

The following diagram illustrates how these two macro instructions transform the
PIN. The diagram also shows the additional key parameters needed to accomplish
the PIN translation. Note that the intermediate result, eKMO(PIN) (after
RETKEY completion), being an enciphered PIN, maintains the secrecy of the
PIN during the interval between the RETKEY and GENKEY macro instructions.

eKP2(PIN) -.-> IRETKEYI--> eKM0(PIN) -->
-> l->

GENKEYj-> ePINKEY(PIN)

KP2
KM0
KMl
KM2

PINKEY
PIN

CKDS

• •
• •

output PIN
protect key

eKM2 (KP2) ___. name
• •

pinkey name eKMl{PINKEY)
• •
• •

Output PIN protect key
= Host master key

Host master key variant 1
Host master key variant 2
PIN encryption key
PIN to be verified

The data items addressed by the various parameters of the RETKEY and
GENKEY macro instructions (input and output) are as follows:

RETKEY

GENKEY

OPKEY = eKM0(PIN),
REMKEY = (input) CKDS name of eKM2(KP2)

(input) eKP2(PIN)
SUPPL I ED,
OPKEY (input) eKM0(PIN),
LOCKEY= (input) CKDS name of eKMl(PINKEY)

(output) ePINKEY(PIN}

Note that what has previously been described as key management functions are
also quite effective for the secure management of PINs. And using the key
management functions in this manner does not decrease the security afforded
keys or PINs. This example also demonstrates effective PIN management at a
S/370 host using only the two defined variants of the host master key.

11-18 4700 Controller Programming Library, Volume 5: Cryptographic Programming

Appendix A. Machine Instruction Formats

DECIPHER

The macro instruction formats described in Chapter 10, "4700 Cryptographic
Instructions" are provided by macro definitions within the 4 700 Host Support
program. The instruction functions described throughout this book are provided
by the 4700 controller and its IBM-provided modules of controller data (P28 and
PS7).

This appendix provides the machine instruction formats for the encryption
instructions. Use these formats if you wish to invoke the instruction function but
do not have access to the Host Support program's macro definitions. You may
also find this information useful for debugging.

The basic machine instruction format includes an operation code which may be
followed by one or two addresses. All register and segment references are binary,
and in the range of 0 to 1 S.

Note that the instructions that point to a single parameter list can have any of
three formats, depending on the type of pointer passed to the macro definition.
The instructions that point to two parameter lists (PINTRANS and PINVERIF)
can have any of nine formats.

7B 68 00 I s2 1 0 02

0 8 16 24 28 32 48

7B 78 00 I R2 I 0

0 8 16 24 28 32

7B 88 00 I R2 I 0 02

0 8 16 24 28 32 48

Appendix A. Machine Instruction Formats A-1

DECODE

57 Sl 52 100011 02

0 8 12 16 20 32

7C 33 I 0 I Sl I 52 I 0 02

0 8 16 20 24 28 32 48

7C I 43 I 0 I 5 1 I R2 I 0

0 8 16 20 24 28 32

7C I 53 I 0 I 5 1 I R2 I 0 I 02

0 8 16 20 24 28 32 48

ENCIPHER

7B I 65 I 00 I 52 I 0 02

0 8 16 24 28 32 48

7B 75 I 00 I R2 I 0

0 8 16 24 28 32

7B I 85 I 00 I R2 I 0 02

0 8 16 24 28 32 48

ENCODE

57 Sl 52 j0000I D2

0 8 12 16 20 32

I 7C 35 I 0 1 s 1 I S2 I 0 I D2

0 8 16 20 24 28 32 48

I 7C I 45 I 0 I s 1 I R2 I 0

0 8 16 20 24 28 32

7C 55 I 0 I s 1 I R2 I 0 I 02

0 8 16 20 24 28 32 48

A-2 4700 Controller Programming Library, Volume 5: Cryptographic Programming

KEY GEN

7B 60 00 I S2 I 0 02

0 8 16 24 28 32 48

7B 70 00 I R2 I 0

0 8 16 24 28 32

7B 8D 00 I R2 I 0 02

0 8 16 24 28 32 48

MAC GEN

7B I 6A 00 I S2 I 0 02

0 8 16 24 28 32 48

7B 7A 00 I R2 I 0

0 8 16 24 28 32

7B BA 00 I R2 I 0 02

0 8 16 24 28 32 48

Appendix A. Machine Instruction Formats A-3

PINTRANS

7F I 03 I 00 I S2 I 0 01 02

0 8 16 24 28 32 48 64

7F I 23 I 00 I R2 I Sl 01

0 8 16 24 28 32 48

7F 13 I 00 I R2 I Sl 01 02

0 8 16 24 28 32 48 64

7F I 63 I 00 I S2 I Rl 02

0 8 16 24 28 32 48

7F I 83 I 00 I R2 I Rl

0 8 16 24 28 32

7F 73 I 00 I R2 I Rl 02

0 8 16 24 28 32 48

7F 33 I 00 I S2 I R 1 01 02

0 8 16 24 28 32 48 64

7F I 53 I 00 I R2 I Rl 01

0 8 16 24 28 32 48

7F I 43 I 00 I R2 I Rl 01 02

0 8 16 24 28 32 48 64

A-4 4700 Controller Programming Library, Volume 5: Cryptographic Programming

PINVERIF

7F I 02 I 00 I S2 I 0 01 02

0 8 16 24 28 32 48 64

7F I 22 I 00 I R2 I s 1 I 01 I
0 8 16 24 28 32 48

7F 12 I 00 I R2 I s 1 I 01 02

0 8 16 24 28 32 48 64

7F I 62 I 00 I S2 I R 1 I 02

0 8 16 24 28 32 48

7F I 82 I 00 I R2 I Rl

0 8 16 24 28 32

7F I 72 I 00 I R2 I Rl 02

0 8 16 24 28 32 48

7F I 32 I 00 I S2 I Rl 01 02

0 8 16 24 28 32 48 64

7F I 52 I 00 I R2 I Rl 01

0 8 16 24 28 32 48

7F I 42 I 00 I R2 I Rl 01 02

0 8 16 24 28 32 48 64

Appendix A. Machine Instruction Formats A-5

78 I 68 I 00 1 · S2 I 0 02

0 8 16 24 28 32 48

78 I 78 I 00 I R2 I 0

0 s 16 24 2S 32

78 I SB I 00 I R2 I 0 02

0 s 16 24 2S 32 4S

RTMK

78 I 6C I 00 I S2 I 0 02

0 s 16 24 2S 32 4S

78 I 7C I 00 I R2 I 0

0 s 16 24 2S 32

78 I Sc I 00 I R2 ·I 0 02

0 s 16 24 28 32 4S

A-6 4700 Controller Programming Library, Volume 5: Cryptographic Programming

Appendix B. COPY File Fields

This appendix shows the overlays generated by the COPY DEFxxx instruction.
In these overlays, "DEFxx" means either DEFLD or DEFRF.

DEFENC

ENCPAR
ENCFLG
ENCPADM
ENCPADC
ENCKEY
ENCMAC
ENC IV

ENCSEG
ENCDISP
ENCLEN

DEFINP

I NP PAR
INPINTYP
INPCLEAR
INPEPPAD

INP3624
INPANSI

INPRPQ
INPINPAD
INPINKEY
INPAN
INPANO
I NP ANA
INPINLEN
INPIN

DEFKYG

KYGPAR
KYGFLAG
KYGCLR
KYGENC
KYGBUFF

DEFRM.K

RMKPAR
RMKFLAG
RMKNVM
RMKUSER

RMKINKEY
RMKXDKEY

DEFxx
DEFxx
EQUATE
DEFxx
DEFxx
DEFxx
DEFxx
DEFxx
DEFxx
DEF xx
DEFxx

DEFxx
DEF xx
EQUATE
EQUATE

EQUATE
EQUATE

EQUATE
DEFxx
DEFxx
DEFxx
DEFxx
DEF xx
DEFxx
DEFxx

DEFxx
DEFxx
EQUATE
EQUATE
DEFxx

DEFxx
DEFxx
EQUATE
EQUATE
DEFxx
DEFxx
DEFxx

s,, 24
s,ENCPAR, 1

X'80'
s, , 1
s, ,8
s,, 4
s,ENCMAC,8
s, , 1
s, , 1
s,,2
s,, 2

s,,35
s, INPPAR, 1

X'OO'
X'80'

X'40'
X'20'

X' 10'
s, , 1
s,, 8
s,,8
s,INPAN,2
s, ,6
s,,1
s,,16

s, ,9
s,KYGPAR, 1

X'OO'
X'80'

s, ,8

s,, 18
s,RMKPAR, 1

X'OO'
X'80'

s, , 1
s,, 8
s, ,8

INSTRUCTION PARAMETER LIST
FLAG BYTE:

PAD OPTION
PAD CHARACTER VALUE
KEY (ENCRYPTED UNDER MASTER KEY)
MSG AUTHENTICATION CODE (.MAC)
INITIALIZATION VECTOR
RESERVED
SEGMENT NUMBER OF DATA
DISPLACEMENT TO DATA
LENGTH OF DATA

INSTRUCTION PARAMETER LIST
INPUT PIN FORMAT TYPE

CLEAR PIN FORMAT
ENCRYPTING PIN PAD

FORMAT
3624 PIN FORMAT
ANSI X9.8 STANDARD

FORMAT

PIN

PIN

RESERVED FOR RPQ 7B0570
INPUT PIN PAD CHARACTER
INPUT PIN KEY (ENCRYPTED)
INPUT PRIMARY ACCOUNT NUMBER

4 DIGITS (2 BYTE) OF ZEROES
12 DIGIT (6 BYTE) ACCOUNT NUM

lNPUT CLEAR PIN LENGTH
INPUT PIN

INSTRUCTION PARAMETER LIST
GENERATED KEY TYPE FLAG

PLAINTEXT KEY
ENCIPHERED KEY

BUFFER FOR GENERATED KEY

INSTRUCTION PARAMETER LIST
RE-ENCIPHER KEY FLAG

USE NVM KEY
USER-SUPPLIED KEY

RESERVED
INPUT KEY (TO BE RE-ENCIPHERED)
USER CROSS-DOMAIN KEY

Appendix B. COPY File Fields B-1

DEFTNP

TNPPAR DEFxx s,, 20 INSTRUCTION PARAMETER LIST
TNPINFLG DEF xx s,TNPPAR, 1 TRANSLATE PIN FLAG
TNPEPPAD EQUATE X'80' ENCRYPTING PIN PAD FORMAT
TNP3624 EQUATE X'40' 3624 PIN FORMAT
TNPANSI EQUATE X'20' ANSI PIN FORMAT
TNPRPQ EQUATE x' 10' RESERVED FOR RPQ 7B0570
TNPSAMEK EQUATE XI 01 1 USE INPUT PIN KEY INDiCATO
TNPINPAD DEFxx s, , 1 OUTPUT PIN KEYPAD CHARACTER
TNPINSEQ DEF xx s, ,2 OUTPUT PIN SEQ NO (RPQ 7B0570)

DEF xx s, TNPINSEQ, 1 RESERVED
TNPSEQPP DEF xx s, , 1 OUTPUT PIN SEQUENCE (PIN PAD)
TNPINKEY DEF xx s, ,8 OUTPUT PIN KEY (ENCRYPTED)
TN PAN DEFxx s,,8 OUTPUT PRIMARY ACCOUNT NUMBER
TNPANO DEF xx s,TNPAN,2 $DIGITS (2 BYTES) OF ZEROS
TNPANA DEF xx s,,6 12 DIGIT (6 BYTE) ACCOUNT NUMBER

DEFVER3

VER3PAR DEF xx s,, 35 INSTRUCTION PARAMETER LIST
V3ALGTYP DEFxx s, VER3PAR, 1 VERIFICATION ALGORITHM TYPE
VA3624 EQUATE X'OO' 3624 VERIFICATION

DEFxx s,, 1 RESERVED
V3PINKEY DEFxx s,, 8 PIN VERIFICATION KEY (ENCRYPTED)
V3DECTAB DEFxx s,,8 DECIMALIZATION TABLE
V3VALDAT DEF xx s, ,8 PADDED VALIDATION DATA
V3CHKLEN DEFxx s, , 1 PIN CHECK LENGTH
V30FFSET DEFxx s, ,8 PIN OFFSET DATA

B-2 4700 Controller Programming Library, Volume S: Cryptographic Programming

Appendix C. Troubleshooting the Cryptographic Facilities

Automatic Testing

The controller tests its cryptographic storage in two ways each time you IPL the
controller.

The controller's first test determines whether the storage can have data written
into it and read from it. If there is a problem with the storage, the controller
displays an EOOA error message on its LED indicators. An EOOA error message
generally means that the cryptographic storage must be replaced; follow the
trouble reporting procedures described in 4 7 0 I Controller Operating Instructions.

The controller then tests the storage in another way, by using the controller
master key to encipher data (this test is performed only if the P28 module is
present). If the controller encounters a problem enciphering the data, it turns on
the controller alert light and returns the following log message:

11 HHMM 021 NVM ERROR ENCIPHER STATUS= xxxx

where xxxx is one of the possible SMSDST status bits that can be returned from
ENCIPHER (see Appendix E, "Status Codes").

This log message generally means that the master key isn't present (cleared, or
never loaded) or that the cryptographic storage battery has failed. If you receive
this log message, refer to 4700 Subsystem Problem Determination Guide.

Testing With the System Monitor

The 4700 system monitor features a 320 command that can assist you in
determining whether your cryptographic facilities are working properly.

See 4700 Subsystem Operating Procedures for a detailed description of the 320
command.

The 320 command tests the controller's cryptographic facilities in the following
manner:

• The controller first determines if its 3600-level of cryptographic support (the
P57 module) has been loaded. If it is present, the controller tests the module
and returns a 90092 message if a problem exists, or a 10074 message if no
problem exists. If you receive a 90092 message, follow the problem reporting
procedures described in 4701 Controller Operating Instructions.

• The controller next determines if its 4700-level of cryptographic support (the
P28 module) has been loaded. If it is present, the controller tests the module
and returns a 90093 message if a problem exists, or a 10073 message if no
problem exists. Possible reasons for a 90093 message include a failure of the
cryptographic storage battery, and failure to load a master key into the
controller; refer to 4700 Subsystem Problem Determination Guide.

You can run a key verification procedure to determine if the proper master
key has been loaded. This procedure is summarized earlier in this book; also
see the 330-3 command in the 4700 Subsystem Operating Procedures.

Appendix C. Troubleshooting the Cryptographic Facilities C-1

When you have verified that the controller contains a master key, the 90093
message usually means that the controller is malfunctioning; follow the
problem reporting procedures described in 4701 Controller Operating
Instructions.

If the P28 module is present, the controller makes a further test of its data
encryption algorithm, and returns a 90094 message if a problem exists. This
message means that repair is needed; follow the problem reporting procedures
described in 4701 Controller Operating Instructions.

Note: You should erase all cryptographic keys before submitting a 4700
controller to a local service center for repair.

C-2 4700 Controller Programming Library, Volume 5: Cryptographic Programming

Appendix D. Program Check Codes

If the 4700 controller encounters an execution request that indicates a logic error,
a program check results. The following are the hexadecimal codes and the
explanations for possible program checks:

Code Explanation

01 Invalid segment specification: An operand specifies a segment that
was not defined during controller configuration procedure, or
segment 14 was specified in an instruction that will cause data to be
stored or changed in segment 14.

02 Segment overflow: Completion of the instruction requires more
storage than the specified segment provides.

03 Field length error: An incorrect field was specified. The length is
greater than 2 for an immediate operand; or a SETFPL instruction
attempted to adjust the field length indicator to a negative value; or a
value is specified which, when added to the PFP, would be greater
than the segment length; or the field length was greater than 255 for
a PAKSEG instruction.

04 Return-address stack error: An LRETURN instruction was issued,
but the return-address stack was empty; or a branch instruction was
issued, but the stack was full.

06 Instruction count threshold: The number of instruction executions
allowed per transaction has been exceeded.

08 No overlay name: The overlay name is not in the resident overlay
directory.

09 Invalid operation or segment code: The instruction operation or
segment selection code specified is invalid. Make sure that any
required OPTMOD coding for the instruction was entered and that
any parameter fields are properly coded.

OA No entry point: There is no startup entry point specified.

OB Instruction address error: An addressing error has occurred. In the
case of branch instructions, the program check address field of
segment 1 will contain the address of the branch instruction.

OC Instruction count exceeded: 65,535 instructions have been executed
without a release of control.

OD DEFDEL missing or incorrectly used: Either a delimiter request was
made but no delimiter table was found or the table is not halfword
aligned.

OE EDIT mask error: The mask used with an EDIT instruction contains
an error.

Appendix D. Program Check Codes D-1

OF Invalid link write control field: The link write control field or write
options are invatid.

10 Communication link write length error: Data length exceeds 4095,
data length during an L WRITE in batch mode was too long,
command data length is incorrect; negative-response data length is
incorrect, or there was a negative response to setting or testing
sequence numbers.

11 Invalid parameter list, or parameter space is insufficient.

12 Indexing is not active.

20 Program check in called application program.

21 Called application program not found.

22 APCALL link stack full.

23 Recursive APCALL to an application program defined as
USB=STATIC during configuration.

24 APCALL storage pool defined by MAXSTOR=was exceeded.

25 APCALL segment pool defined by MAXSEG=was exceeded.

26 APRETURN issued with no APCALL link stack entry - no calling
application program.

27 Register address contains invalid segment space ID.

28 No transient pool: a transient pool was not defined for this station.

29 Transient application size error: the target transient application
program will not fit in the largest transient area defined in the pool
for this station.

FF System error.

D-2 4700 Controller Programming Library, Volume 5: Cryptographic Programming

Appendix E. Status Codes

The controller places a status code in SMSDST when an instruction completes
with an exception condition (SMSCCD=2). The following descriptions can help
you determine why the controller encountered the error.

SMSDST = X'0200' (Unit Check)

The controller malfunctioned. Follow the trouble reporting procedures described
in 4701 Controller Operating Instructions.

SMSDST = X'2001' (Data Check)

Parity warning. The key being loaded into cryptographic storage (NVM) does not
conform to the 'odd' parity specification of the U.S. Dept. of Commerce/National
Bureau of Standards (PIPS PUB 46).

Odd parity is not required by any of the controller hardware or by any of the
controller security instruCtions. The key is loaded into cryptographic storage as
requested (unless additional status is present).

Odd parity consists of 0-7 bits in each byte of the key having an odd number of
ones. Bit 7 of each byte (the parity bit) may be set or reset to insure parity.

SMSDST = X'2002' (Data Check)

Either the controller malfunctioned or there is no master key in the controller (the
operator may have cleared the key). Activate the encryption keylock and load a
key as described in 4700 Subsystem Operating Procedures. If the problem persists,
follow the trouble reporting procedures described in 4701 Controller Operating
Instructions.

SMSDST = X'2004' (Data Check)

Read back check failed.

When required to write to cryptographic storage (NVM), the controller writes the
data, reads it, then compares the data written with the data read. If the data does
not match, this status is posted.

SMSDST = X'2008' (Data Check)

Invalid pad length. The parameter list indicates pad processing, but the controller,
upon deciphering the data, found a pad count that was not in the range of one to
eight. Possible causes:

• You used the wrong key.

• You used the wrong initial chaining value.

• The enciphered data was not enciphered with the proper pad processing (that
is, ENCIPHER or an equivalent process was not used).

Appendix E. Status Codes E-1

SMSDST = X'2010' (Data Check)

The input PIN failed the PIN validation test.

SMSDST = X'2020' (Data Check)

The check length (number of PIN digits being checked) was greater than the.
length of the input PIN. This usually means that the customer entered too few
digits of the PIN. Make sure the program is setting the correct check l~ngth in the
verification parameter list (VER3PAR's V3CHKLEN field). This length cannot
be greater than the shortest customer~entered PIN.

SMSDST = X'2040' (Data Check)

Translate length error.

While· performing a translation operation, the controller encountered an invalid
PIN length. The meaning of "invalid PiN length" depends on the output PIN
format:

• Encrypting PIN keypad: PIN length greater than 13
• ANSI: PIN length less than 4 or greater than 12
• 3621: PIN length greater than 12

SMSDST = X'2080' (Data Check)

The input PIN .was not in a valid format. For example, the PIN length may have
been set to zero, or the PIN may contain one or more nondecimal digits.

• If the input PIN is in nonencrypting PIN keypad format, the problem is
probably in the program; check the manner in which the program is building
the parameter lists.

• If the input PIN is in one of the enciphered formats, the problem could also be
caused by a malfunction at the device where the PIN was entered, or by a
lack of key validation. The KPl provided to PINVERIF may not be the same
key installed in the device. You may have loaded eKM3(KP1) into the
keypad, for example, instead of KP 1.

SMSDST = X'8000' (Intervention Required)

The controller received a request to clear or load cryptographic storage (NVM),
but found the physical keylock inactive.

E-2 4700 Controller Programming Library, Volume 5: Cryptographic Programming

Appendix F. Statistical Counters

Counter I-Machine Check

The 4700 controller maintains a set of statistical counters for its cryptographic
facilities. An operator can see the contents of the statistical counters by logging
on to the system monitor and issuing a 010 command that specifies an LSSDD
value of 9006. A program can obtain the contents of the statistical counters by
issuing an ERR LOG or ST A TS instruction that specifies a physical device address
of X'9060'. The controller displays (or returns) a device type of X'06'.

The controller displays the entire set of statistical counters together. In the
following descriptions, the name of the counter is the displacement of the counter
value within the displayed string. For example, Counter 3 occupies the third byte
of the string, and Counter 9-11 is a three-byte binary value occupying the 9th,
10th, and 11th bytes of the string.

Description: The controller increments Counter l each time the controller
encounters a machine check status.

Probable Cause: A hardware malfunction.

Recommended Action: See 4700 Subsystem Problem Determination Guide.

Counter 2-Intervention Required

Description: The controller increments Counter 2 each time it attempts to load or
clear a cryptographic key but finds that the encryption keylock has not been
activated.

Probable Cause: The operator did not activate the encryption keylock, or the
controller malfunctioned.

Recommended Action: Activate the encryption keylock in accordance with your
institution's procedures; if this problem recurs, see 4 700 Subsystem Problem
Determination Guide.

Counter 3-Invalid Key Checksum

Description: Each time the controller places a key in cryptographic storage, it
calculates a checksum value and stores' it with the key. Each time the controller
reads a key from cryptographic storage, it recalculates the value and compares it
with the stored value. The controller increments Counter 3 each time it reads a
key and finds that the two values do not match.

Prol:Jable Cause: This problem can be caused by:

Not loading a master key

• Erasing the master key and not loading a new one

• A controller malfunction (dead cryptographic storage battery, for example).

Recommended Action: Ensure that the controller contains a master key (330
command); if it does, see 4700 Subsystem Problem Determination Guide.

Appendix F. Statistical Counters F-1

Counter 4-Unsuccessful Write

Counter 5-8-Reserved

Description: The controller increments Counter 4 each time it attempts to write
into cryptographic storage and cannot do so.

Probable Cause: Controller malfunction.

Recommended Action: See 4700 Subsystem Problem Determination Guide.

Counter 9-11-Attempted PIN Validation

Description: The controller increments Counter 9-11 each time a PINVERIF
instruction completes successfully, up to the point where the PIN is actually
validated (SMSCCD == X'Ol', or SMSCCD == X'02' and SMSDST = X'2010').
This is the total number of PIN validations attempted. The controller provides
this counter so that an operator or user-written program can audit the number of
PIN validation attempts (see Chapter 6, "Validating and Translating Personal
Identification Numbers").

Counter 12-14-Unsuccessful PIN Validation

Description: The controller increments Counter 12-14 each time a PINVERIF
instruction completes successfully, but results in a "PIN not valid" status
(SMSCCD == X'02' and SMSDST == X'2010'). The controller provides this
counter so that an operator or user-written program can audit the number of
unsuccessful PIN validations (see Chapter 6, "Validating and Translating
Personal Identification Numbers").

Counter 15-17-Successful PIN Translation

Counter 18-32-Reserved

Description: The controller increments Counter 15-17 each time a PINTRANS
instruction completes successfully -- that is, completes with a condition code of 1
(SMSCCD = X'Ol '). The controller provides this counter so that an operator or
user-written program can audit the number of PIN translations (see Chapter
6, "Validating and Translating Personal Identification Numbers").

F-2 4700 Controller Programming Library, Volume S: Cryptographic Programming

Glossary

This glossary defines 4700 Finance Communication System
terms and other data processing and data communication
terms used in this publication. This glossary includes some
terms and definitions from the IBM Vocabulary for Data
Processing, Telecommunications, and Office Systems,GC20-1699.

ciphertext. Data that is intended to be unintelligible to all
except those who legitimately possess the means to reproduce
the plaintext.

configuration procedure. In the 4700 system, the process of
defining the configuration of a specific 4700 system to a
controller. The configuration procedures can be performed
either at the host computer using configuration macro
instructions, or at the controller using the Local Configuration
Facility (LCF).

controller data. Modules of operating information stored in the
4700 library and used to construct load images for controllers.

cross-domain keys. In 4700 systems, a pair of cryptographic
keys used by a program to encipher a session key.

cryptogram. An enciphered key.

cryptographic. Pertaining to the transformation of data to
conceal its meaning.

cryptographic algorithm. A set of rules that specify the
mathematical steps required to encipher and decipher data.

cryptographic communication. To transmit enciphered data
between devices or programs.

cryptographic key. A 56-bit value used by the DES to select one
relationship between plaintext and ciphertext out of the many
possible relationships the DES provides.

cryptography. The process of enciphering and deciphering data
for the purpose of keeping the data secret.

customization data. Modules of operating information stored in
the 4700 library and used to construct load images for the IBM
3624 Consumer Transaction Facility.

data encryption algorithm. See Data Encryption Standard (DES).

Data Encryption Standard (DES). A cryptographic algorithm
designed to encipher and decipher data using a 56-bit key as
specified in the Federal Information Processing Standard #46,
January 15, 1977.

decipher. The process of converting ciphertext into plaintext.

DES. Data Encryption Standard.

encipher. The process of converting plaintext into ciphertext.

dummy control section (DSECT). A control section that an
assembler can use to format an area of storage without
producing any object code.

Host Support. A licensed program that executes in the host
computer to provide services for 4700 controllers.

initial chaining value (ICV). In 4700 systems, an eight-byte
pseudo-random number used for cipher block chaining.

Installation diskette. An IBM-supplied diskette that enables the
4700 controller to perform a variety of installation-related
procedures - for example, creating an operating diskette.

keypad. A small keyboard designed for one-handed use. For
example, a PIN keypad is a small, limited-function keyboard
with which an operator uses one hand to enter a personal
identification number.

load image. A combination of formatted controller data,
configuration data, and application program data that defines
an operating environment for a 4700 controller. Load images
for the IBM 3624 Consumer Transaction Facility contain
customization data rather than configuration data, and include
no application program data.

master key. A key-encrypting key used to encipher operational
keys.

master key variant. A key-encrypting key that is derived from
the master key and used to encipher other cryptographic keys.

operating diskette. The customer-generated diskette containing
the load image relating to the operation of a particular
controller.

operational key. A data-encrypting key used to encipher and
decipher data.

parity bit. A binary digit appended to a group of binary digits
to make the sum of all the digits either always odd (odd parity)
or always even (even parity).

plaintext. The intelligible form of ciphertext.

plaintext keys. Unenciphered keys.

translation table. In the 4700 controller, a customer-selected
relationship between a set of numeric codes and a set of
alphameric characters and special characters. An input
translation table translates input from a keyboard into
alphameric data for the controller. An. output translation table
translates alphameric data into codes understood by the display
monitor or printer.

verification code. A sixteen-bit value that serves as an "alias"
for the controller's 56-bit master key.

Glossary X-1

X .. 2 4700 Controller Programming Library, Volume 5: Cryptographic Programming

Bibliography

The publications listed below contain information that may be
useful to persons installing a 4700 system that includes
cryptographic facilities.

IBM Vocabulary for Data Processing Telecommunication and
Office Systems,OC20-1699

IBM System/370 Bibliography, GC20-0001

IBM System/370 Bibliography of Industry Systems and
Application Programs, GC20-0370

IBM 4700 Finance Communication System:

System Summary, GC31-2016

Subsystem Operating Procedures, GC31-2032

Subsystem Problem Determination Guide, GC31-2033

Host Support User's Guide, SC31-0020

4701 Controller Operating Instructions, GC31-2022

4704 Display Operating Instructions, GC31-2025

Online Terminal Support for System/34, Program
Description and Operation, SC31-0023

IBM 3624 Consumer Transaction Facility, Programmer's
Guide, GC66-0088

IBM 3624 Consumer Transaction Facility, Programmer's
Reference and Component Descriptions, GC66-0009

IBM System/34 Interactive Communication Feature,
Reference Manual, SC21-7751

IBM Cryptographic Subsystem, Concepts and Facilities,
GC22-9063

IBM 3848 Cryptographic Unit Product Description and
Operating Procedures, GA22-7033

OS/VS Cryptographic Unit Support General Information
Manual, GC28-1015

OS/VS Cryptographic Unit Support Installation Reference
Manual, SC28-1016

OS/VS Programmer Cryptographic Facility General
Information Manual, GC28-0942

OS/VS Programmed Cryptographic Facility Installation
Reference Manual, SC28-0956

Systems Network Architecture (SNA) General Information,
GA27-3102

Bibliography X-3

X-4 4700 Controller Programming Library, Volume 5: Cryptographic Programming

Index

A

algorithm for validating 3624 PINs 8-1
algorithm, data encryption 2-1
ANSI PIN format 6-4
attacks, dictionary 6-18
attacks, exhaustion 6-18
attempted PIN validation F-2
authenticating enciphered data 5-3
authenticating messages 5-1
authenticating messages (example) 5-4
automatic testing C-1

B

BDKDES subroutine 8-10
BDKDPRS routine 8-1
BDKKEYCC subroutine 8-11
bibliography X-3
braces 10-2
brackets 10-1

c
check codes D-1
check length 6-6
cipher block chaining 2-2
CIPHER macro instruction 11-2
ciphertext, definition of X-1
CKDS (cryptographic key data set) 11-7
compatibility between levels of cryptography 9-1
configuration procedure, definition of X-1
controller data modules 1-5
controller data, definition of X-1
controller master key (KM) 3-1
coordinating 4700 and OS/VS cryptography 11-1
COPY file fields B-1
counters, statistical F-1
cross-domain keys

in cryptographic storage 3-7
in program storage 3-7
loading 3-10
purpose 3-6
suggestions for using 3-9

cryptogram 2-1
cryptographic key data set (CKDS) 11-7
cryptographic storage 3-7
Cryptographic Unit Support program (5740-XY6). 1-8
cryptography at the host computer 1-8

D

data check E-1
data encryption algorithm 2-1
Data Encryption Standard (DES), definition of X-1
data-encrypting keys 3-11
DEA (data encryption algorithm) 2-1
debugging C-1
decimalization table 6-6
DECIPHER-Decipher Text (4700-Level) 10-3
DECODE-Decipher Text (3600-Level) 10-7
default 10-2

DEFxxx COPY file fields B~l
DES 2-1
DES algorithm 9-1
determining the verification code 3-3
dictionary attacks 6-18
DSECTs B-1
dual-courier technique 3-1

E

electronic code book cryptography 1-6
ellipsis 10-2
EMK macro instruction 11-9
ENCIPHER--Encipher Text (4700-LeveO 10-9
enciphering and deciphering, fundamentals of 2-1
ENCODE-Encipher Text (3600-Level) 10-13
ENCPAR parameter list 10-4, 10-10, 10-18
encrypting PIN keypad 7-1
encrypting PIN keypad format 6-3
entering the PIN keypad key 7-2
exchanging session keys, examples of 3-8
exhaustion attacks 6-18
EOOA error message C-1

F

first variant (KM 1) 3-4

G

generating keys 3-2
generating master key parts 3-2
GENKEY macro instruction 11-4

H

Host Support program 8-1

I

ICY (initial chaining value) 2-3
initial chaining value (ICY) 2-3
initiating a cryptographic session 4-8
INPPAR parameter list 10-22, 10-25
input parameter list (INPP AR) 10-22, I 0-25
input PIN protection key (KPI) 6-3
instructions

DECIPHER 10-3
DECODE 10-7
ENCIPHER 10-9
ENCODE 10-13
KEYGEN 10-15
MACGEN 10-17
PINTRANS 10-21
PINVERIF 10-25
RFMK 10-29
RTMK 10-31

intervention required F-1
invalid key checksum F-1

Index X-5

K

KCDr 3-7
KCDs 3-7
KCDl 3-7
KCD2 3-7
key validation protocol 4-6
KEYGEN-Generate Cryptographic Key 10-15
keypad, encrypting PIN 7-1
keys

generating 3-2
master key (KM) 3-1

keys-in-the-clear cryptography 1-6
KM (master key) 3-1
KMAC (MACGEN key) 5-2
KMO (master key) 3-4
KMl (first master key variant) 3-4
KM2 (second master key variant) 3-5
KM3 (third master key variant) 3-5
KPv (PIN validation key) 6-6
KPl (input PIN protection key) 6-3
KP2 (output PIN protection key) 6-11
KYGPAR parameter list 10-15

L

letters 10-1
loading the PIN keypad key 7-2
log message C-1

M

MAC (message authentication code) 5-1
MACGEN key (KMAC) 5-2
MACGEN-Generate Message Authentication Code

(MAC) 10-17
machine check F-1
machine instruction formats A-1
managing PIN keys 6-16
master key (KM) 3-1
master key variants 3-4
message authentication 5-1
message authentication code (MAC) 5-1
migrating 3600 cryptographic instructions 9-1
modules of controller data 1-5

N

nonencrypting PIN keypad format 6-3
notation 2-2

0

offset data 6-6
operands 10-1
optional modules 1-5
options 10-2
OS/VS cryptographic subsystem 11-2
output PIN protection key (KP2) 6-11

p

parameter lists (COPY expansions) B-1
PIN check length 6-6
PIN decimalization table 6-6
PIN formats

ANSI 6-4
encrypting PIN keypad 6-3
nonencrypting PIN keypad 6-3
3621 6-5
3624 6-4

PIN offset data 6-6
PIN translation 6-11
PIN validation 6-1
PIN validation data 6-6
PIN validation key (KPv) 6-6
PIN-encrypting keys 3-11
PINTRANS-Translate a Personal Identification Number

(PIN) 10-21
PINVERIF-Validate a Personal Identification Number

(PIN) 10-25
program check codes D-1
Programmed Cryptographic Facility 1-8
programmer tasks 1-4
protecting PINs 6-17
protocol for session initiation 4-8
protocol for validating keys 4-6
publications, related X-3
punctuation 10-1
P28 module 1-5
P57 module 1-5

R

receiving cross-domain key 3-7
reencipher from master key 4-1
reencipher to master key 4-2
related publications X-3
responsibilities iii
RETKEY macro instruction 11-9
RFMK-Reencipher From Master Key 10-29
RMKPARparameterlist 10-29, 10-31
RTMK-Reencipher To Master Key 10-31

s
second variant (KMl) 3-5
sending cross-domain key 3-7
session initiation, example of 4-8
SMSDST status codes E-1
statistical counters 6-19, F-1
status codes E-1
successful PIN translation F-2
switch, encrypting PIN keypad 7-2
syntax 10-1
system monitor C-1
System/34 9-3

X-6 4700 Controller Programming Library, Volume 5: Cryptographic Programming

T

testing C-1
testing with the system monitor C-1
third variant (KM3) 3-5
TNPPAR parameter list 10-23
translating a PIN (example) 6-13
translation parameter list (TNPPAR) 10-23
troubleshooting C-1

u
underscoring 10-2
unit check E-1
unsuccessful PIN validation F-2
unsuccessful write F-2
users of 4700 cryptographic facilities 1-4

v
validating a PIN (example) 6-8
validating keys, protocol for 4-6
validation data 6-6
validation key (KPv) 6-6
variant

first (KM!) 3-4
generating a 3-5
second (KM2) 3-5
third (KM3) 3-5

variants, master key 3-4
verification code 3-3
verification parameter list (VER3PAR) 10-27
verifying the PIN keypad key 7-6
VER3PAR parameter list 10-27

0

021 log message C-1

1

1st variant (KM!) 3-4

2

2nd variant (KM!) 3-5
24-key format 7-3

3

3rd variant (KM3) 3-5
320 command C-1
3600-level cryptography 1-6
3621 PIN format 6-5
3624 PIN keypad format 6-4
3624 PIN validation algorithm 8-1
3848 Cryptographic Unit 1-8

4

4700-level cryptography 1-7

8

8100 Information Processing System 9-4

Index X-7

X-8 4700 Controller Programming Library, Volume 5: Cryptographic Programming

Enciphered For Use
Key Symbol Used to Protect Under By
--- ====== =============== ========== =======

ncrypting Keys

ter Key KM KS, KMAC

st Variant KMl KCD 1 , KCDs, KP2

and Variant KM2 KCD2, KC Dr

rd Variant KM3 KP 1 , KPv

1ss-Doma in Keys in Cryptographic Storage)

Sending KCDl KS eKM 1 (KCD 1) RFMK,
330-1-3

Receiving KCD2 KS eKM2(KCD2) RTMK,
330-1-4

1ss-Domai n Keys in Program Storage)

Sending KCDs KS eKMl(KCDs) RFMK

Receiving KC Dr KS eKM2(KCDr) RTMK

·Encrypting Keys

sion Key KS Data eKM(KS) ENCIPHER,
DECIPHER

sage Auth- KMAC Data eKM(KMAC) MAC GEN
tication Key

ncrypting Keys

ut PIN Pro- KPl PINs eKM3(KP1) PINTRANS,
ction Key PINVERIF

put PIN Pro- KP2 PINs eKM1(KP2) PINTRANS
ction Key

Validation KPv PINs eKM3(KPv) PINVERIF
y

-1. Summary of 4700 Cryptographic Keys

Summary of 4700 Cryptographic Keys F0-1

,0 Principal Principal Parameter
uctlon Inputs Outputs List(s)
:====== ========= ========= =========
HER eKM(K) eK(Data) ENC PAR

Data

HER eKM(K) Data ENC PAR
eK(Data)

N K KYGPAR
ntext

N eKM(K) KYGPAR
phered

eKM(K) eKCDl(K) RMKPAR
g KCDl)

eKM(K) eKCDs(K) RMKPAR
g KCDs) eKM l(KCDs)

eKCD2(K) eKM(K) RMKPAR
g KCD2)

eKCDr(K) eKM(K) RMKPAR
g KCDr) eKM2(KCDr)

RIF eKP 1(PIN) Val id or INPPAR
eKM3(KP1) Not-Val id VER3PAR
eKM3(KPv) indication
Data

ANS eKPl(PIN) Reenci- INPPAR
eKM3(KP1) phered and/ TNPPAR
eKM1(KP2) or refor-

matted PIN

N eKM(KMAC) MAC ENC PAR
Data Data

E K eK(Data)
Data

E K Data
eK(Data)

-2. Summary of 4700 Cryptographic Instructions

Summary of 4700 Cryptographic Instructions F0-2

..... E c: ...
Q) 0
E
c. "' ·:; :.c:
C"
Q) ii'i
Cl Q)

c: "' "+:i 0
51 ~
~ J9
E -c

"C Q)

Q) E
.... E
"' :I E ci

s ~
:I~ "' ~ 0

.'!::: ...
3: 0
"' Q)

E ·~
CD ·-"' ..c c:
~ Ill
C. CD
CD ,_

"' :I
:I "' B f!
c: c.
"' Ill ~ :I

.!! Ill
c. "' J9 .!! en o..

I
I
I
l
I
J
t

4 700 Finance Communication System
Controller Programming Library
Volume 5
Cryptographic Programming

Order No. GC31-2070-0

This manual is part of a library that serves as a reference source for systems analysts,
programmers, and operators of IBM systems. You may use this form to conimunicate your
comments about this publication, its organization, or subject matter, with the understanding
that IBM may use or distribute whatever information you supply in any way it believes
appropriate without incurring any obligation to you.

Your comments will be sent to the author's department for whatever review and action, if any,
are deemed appropriate. Comments may be written in your own language; English is not
required.

Note: Copies of IBM publications are not stocked at the location to which this form is
addressed. Please direct any requests for copies of publications, or for assistance in using your
IBM system, to your IBM representative or to the IBM branch office serving your locality.
Possible topics for comment are:

Clarity Accuracy Completeness Organization Coding Retrieval Legibility

If you wish a reply, give your name, company, mailing address, and date:

READER'S
COMMENT
FORM

What is your occupation? ______________________________ _

Number oflatest Newsletter associated with this publication: _________________ _

Thank you for your cooperation. No postage stamp necessary if mailed in the U.S.A.
{Elsewhere, an IBM office or representative will be happy to forward your comments or you
may mail directly to the address in the Edition Notice on the back of the title page.)

GC31-2070-0

Reader's Comment Form _

_____ '.::'._d_:d~':_ _______ ::a:_c~~taple-----------~::..dTap:__J (") .j:>.

<
-s8

111111

BUSINESS REPLY MAIL
FIRST CLASS PERMIT NO. 40 ARMONK, N.Y.

POSTAGE WILL BE PAID BY ADDRESSEE:

International Business Machines Corporation
Department 78C
1001 W.T. Harris Boulevard
Charlotte, NC, USA 28257

NO
POSTAGE

NECESSARY
IF MAILED
INTHE
UNITED
STATES

I
I
I
I
l
l
I
I
I
I
I
I
I
I
I

0 "Tl
IQ -· ..., :I
Ill Ill
"C ::I

=-~ n
~g
0 3
'El 3
Ill c
3 :I
3 c:;·
-· 111 :I

IQ -· _o
"Tl :::i

~~
z~
0 CD . 3
~(") ..,.o
0 :I
~!:t
c.> 2.. oo!!l co.,,
§~
-......111
cn3
~3 c:., :;·
QIQ

--~
-c
.,, O" ..., ...,
-·Ill

~< Fold and Tape Please Do Not Staple Fold and Tape

--- ~ -@ ----- ----- _. --- -. ---- --------------' -

I
I
I

c.. <
-·0
:I -c
c3
Cn CD

~ CJI

I 2 I _.
~

I ~ 6

I
I
I
I
I
I
1

-------= =-= == - ---- - - ------ -----·-

