GC30-3084-2

Systems
Network
Architecture

Transaction Programmer’s
Reference Manual For
LU Type 6.2

GC30-3084-2
File No. 370/4300/8100-30

Third Edition (November 1985)

This edition, 6C30-3084-2, is & major revision of the previous edition, GC30-3084-1,
and obsoletes that edition.

Changes are periodically made to the information in IBM systems publications. Before
using this publication in connection with the operation of IBM systems, consult your
IBM representative to find out which editions are applicable and current. For a sum-
mary of the changes in this book, see page v.

Any reference to an IBM program product in this document is not intended to state or
imply that only IBM's program product may be used. Any functionally equivalent pro-
gram may be used instead.

It is possible that this material may contain references to, or information about, IBM
products (machines and programs), programming, or services that are not announced in
your country. Such references or information must not be construed to mean that IBM
intends to announce such products, programming, or services in your country.

This book is not intended for production use and is furnished as is. IBM assumes no
aesggnsibility for the use of the functions as described in this book in any pro-
uction manner.

Publications are not stocked at the address below; requests for 1IBM publications

?houigtbe made to your IBM representative or to the IBM branch office serving your
ocality.

A form for reader's comments is provided at the back of this publication. If the form
has been removed, comments may be addressed to IBM Corporation, Information Develop-
ment, Department E02, P.0. Box 12195, Research Triangle Park, North Carolina 27709,
U.S.A. 1IBM may use or distribute any of the information you supply in any way it
believes appropriate without incurring any obligation whatever. You may, of course,
continue to use the information you supply.

(:) Copyright International Business Machines Corporation 1982, 1983, 1985

ii SNA Transaction Programmer's Reference Manual for LU Type 6.2

CHAPTERS

This book presents detailed information on the functions that Systems
Network Architecture (SNA) logical unit type 6.2 (LU 6.2) provides to
system and application programs. This book is written for individuals
that design system or application programs for use on an implementa-
tion of LU 6.2. The information in this book applies to all IBM pro-
ducts that implement LU 6.2, not to any specific IBM product.!® This
book should be used with the applicable product publications for the
IBM products that implement LU 6.2.

LU 6.2 provides for interprogram communication between two or more
programs, such that:

U The programs can be distributed among multiple SNA nodes within an
SNA netuwork.

U The SNA products that make up the network can be different from
one another.

. The programs c»r. be designed independently of where in the netuwork
they are located and of the SNA products on which they are run.

This book describes the functions that allow programs to communica‘e
zjth each other independent of the underlvying SNA network configura-
ion.

The processing of transactions typically involves several programs
distributec. over a network communicating with each other. When used
in conjunction with applicable IBM product publications, this book is
especially useful to those who design transactions and the programs
that process the transactions.

This book assumes that the reader is familiar with the SNA concepts
presented in Systems_ Netwo chitecture Conce Products,
GC30-3072. The related publications, listed at the end of the pre-
face, are also helpful in understanding the material in this book.

The material in the first three chapters of this book is organized so
that one may read the material straight through. Successive sections
in these chapters build on the material presented in preceding
sections. The material in the remaining chapters is organized for
ease of reference. These chapters contain the detailed descriptions
of the functions, called verbs, used to invoke LU 6.2 services.

The chapters of this book are:

"Chapter 1. Introduction™ provides an introduction to LU type 6.2 and
its services.

"Chapter 2. LU 6.2 Protocol Boundary™ presents a general description
of the LU 6.2 protocol boundary.

"Chapter 3. Transaction Program Verbs™ gives an overview of the func-
tions available to the programmer for interacting with resources.

1 This book provides a general description of LU 6.2 functions.
Implementation of some of the functions is optional. Optional
functions may not be available on all IBM products that implement
LU 6.2. All IBM products implementing a particular LU 6.2 func-
tion provide that function as described in this book; however, the
programming interface that a product provides to invoke that
;unﬁtion may differ in syntax from the syntax represented in this

ook.

-to
-t
-t

Preface

"Chapter 4. Conversation Verbs"™ contains a detailed description of
the conversation verbs.

"Chapter 5. Control-Operator Verbs"™ contains a detailed description
of the control operator verbs.

APPENDIXES
The appendixes to this book are:
"Appendix A. Base and Option Sets for Product Support™ gives a break-
down of the product-support requirements for implementing the verbs.
"Appendix B. Examples Using Basic Conversation Verbs"™ provides exam-
ples of the use of some of the basic conversation verbs. These are
examples only; they represent no specific application.
"Appendix C. Symbol String Conventions" defines the symbol strings
referred to throughout the manual.
"Appendix D. List of SNA Service Transaction Programs™ contains a list
of SNA service transaction programs.
"Appendix E. Conversation State Matrices" provides matrix represent-
ations of the state transitions and state-check conditions that occur
at the conversation protocol boundary for programs using the basic and
type-independent conversation verbs.

PREREQUISITE PUBLICATION

Systems Network Architecture Concepts and Products, GC30-3072

RELATED PUBLICATIONS

Svstems Network Architecture Referenge Summary, GAZ7-3136
Systems Network Archiltucture Technical Overview, GC30-3073
Svstams Network Architecture E mat_and Protocol Reference Manual:
Architecture Logic for LU Type 6 ,g. S$C30-3269.
Systems Netwo Architectu at a t e :
Distribution Services, SC30- 3098.
Systems etwork Architectu ma 0co al:
Architectural lLogic, SC30-3112.
S ems tuwor chitectu S ion. Betuee oqi its,
6020 1868.
Document Interchange Architecture: Technical Reference, SC23-0781.
nterchange Architecture: change Document P i -

thﬂ_ér 5C23- 076‘)

cument Inte a itecture: nsaction Programmer's Guida,
§C23-0763.

iv SNA Transaction Programmer's Reference Manual for LU Type 6.2

MA

This edition includes the following new functions, technical changes,
and editorial changes:

New Functions:
U 2ession-leve1 LU-LU verification has been added to LU 6.2 securi-
V.

* The SECURITY_USER_ID and SECURITY_PROFILE parameters have been
added to the MC_GET_ATTRIBUTES and GET_ATTRIBUTES verbs.

The MC_RECEIVE_IMMEDIATE and MC_TEST mapped conversation verbs
have added.

ng §ECEIVE_IMMEDIATE and TEST basic conversation verbs have been
added.

. The CONFIRM argument has been added to the TYPE parameter of the
MC_DEALLOCATE, MC_PREPARE_TO_RECEIVE, DEALLOCATE, and PRE-
PARE_TO_RECEIVE verbs.

The DATA_TRUNCATED and FMH_DATA_TRUNCATED indications have been
added to the WHAT_RECEIVED parameter of the MC_RECEIVE_AND_WAIT
and MC_RECEIVE_IMMEDIATE verbs.

J Theb FORCE parameter has been added to the RESET_SESSION_LIMIT
verb.

Technical Changes:

] gonversation-level security has been enhanced for LU 6.2 securi-
V.

. The definition of the base and option sets for product support of
the verbs, parameter, return codes, and what-received indications
has been changed.

] The character set used for SNA-defined transaction program names
has been changed.

. The list of return codes for the MC_TEST, TEST, and WAIT verbs has
been expanded.

L The way in which the (LU,mode) session limit for single-session
connections is specified on the INITIALIZE_SESSION_LIMIT verb has
been changed.

J The DEFINE and DISPLAY verbs have been expanded into a set of four
DESIgE verbs and four DISPLAY verbs, and a DELETE verb has been
added.

ori es:
. The material in this book has been reorganized:

- The verb syntax diagrams have been modified to express cer-
tain parameters as syntactically optional.

- The mapped and basic conversation verbs have been combined
into a single chapter, and the verbs that apply to both con-
versation types have keen sepacnt2azd into their own section of
the chapter.

- The descriptions of the conversation states for all of the

conversation verbs have been consolidated into one section of
the chapter.

Summary of Amendments v

- The descriptions of the return codes for all of the conversa-
t;‘\ont verbs have been consolidated into one section of the
chapter.

- The base- and option-set definition for product support of
all the verbs—conversation verbs and control operator
verbs—has been consolidated into an appendix.

. A clarification has been added to the list of product option sats
to diffarentiate between those for which only local support is
needed for their use, and those for which both local and remote
support is needed.

. A list is added showing the SNA-defined transaction program names
assigned for use by LU 6.2 products.

L ﬁ chgr:Eis added showing the hexadecimal codes for character sets
an .

[An appendix has been added containing a matrix representation of
the state transitions that occur at the conversation protocol
boundary for programs using the basic and type-independent con-
versation verbs.

U Other less significant editorial improvements have been made.

All these additions and changes, excluding the reorganization of
material, are indicated in the left margin with a vertical line.

SNA Transaction Programmer's Reference Manual for LU Type 6.2

Chapter 1. Introduction e o o o o o o o

Systems Network Architecture

Logical Unit Type 6.2 . e o e e s e e s
Transaction Program e e e e e o e e o o
Protocol Boundary . . e e e s e s e e
Interprogram c°mmun1catlon e e e o & o o

Chapter 2. LU 6.2 Protocol Boundary o o o

Interprogram Communication e o e o o o o o
Protocol Boundary Structure e e e s o o o

Chapter 3. Transaction Program Verbs . o

Transaction Program Structure and Execution
Verb Overview . e o e o o s o o o o s
Conversation Verbs . . e e e e e
Mapped Conversation Verbs e e . .
Type-Independent Conversation Verbs
Basic Conversation Verbs . .
Control-Operator Verbs P .
Change Number of Sessions Verbs
Session Control Verbs
LU Definition Verbs .
ABEND Conditions . .
Product-Support Subsettlng
Verb Description Format .

e o o o o o

e o

e o o 0 o o o &
.

e & o o o
e o o o
e o o o
o o o o o
o« o o s o

Chapter 4. cConversation verhs .

L]
L
L]
L]
*

Verb Descriptions . .
Mapped Conversation Verbs
MC_ALLOCATE .
MC_CONFIRM . .

MC_CONFIRMED
MC_DEALLOCATE
MC_FLUSH .
MC_GET_ ATTRIBUTES
MC_POST_ON_RECEIPT
MC_PREPARE_TO_RECEIVE
MC_RECEIVE_AND_WAIT .
MC_RECEIVE_IMMEDIATE .
MC_REQUEST_TO_SEND . o .
MC_SEND_DATA e e e e e e
MC_SEND_ERROR e e e e e
MC_TEST .
Type-Independent Conversatlon Ver
BACKOUT e e e s o e e
GET_TYPE e e e e e e e s
SYNCPT e o o s & o o o @
WAIT . N
Basic Conversatwon Verbs
ALLOCATE e e s e e
CONFIRM e e e e
CONFIRMED . o e
DEALLOCATE . e e
FLUSH . .
GET_ ATTRIBUTES
POST_ON_RECEIPT
PREPARE_TO_RECEIVE
RECEIVE_AND_WAIT
RECEIVE_IMMEDIATE
REQUEST_TO_SEND .
SEND_DATA e e s e
SEND_ERROR . e e e
TEST e e e e e e e

e o o o o

o o o o o
e o o o o o

o s e o o 0 0
.

e & o o o 0

® 6 0 o o o s o o o o

e e & ¢ & o+ o & o o o

e o o o+ o o o

e o o o
e 6 6 o o 2 * 2 e 6 2 s ¢ o o 0
.

e e 6 & o & 9 8 0 0 0 0 0 s o o

® @ o o o ® o 0 0 0 0 o o

.

oo.ooa'ooooo

e o o o o o
" o e ¢ v o o

e ¢ o o o o

e o & 6 o 0 0 0 o 0 0 o o o
e o o o o o

.
e o o * & ¢ e o o o
® 6 o 0 o s 0 0 s 6 " s 0 s s e o

® 6 o o o ¢ e o o & o o o 0

.
® 6 0 o 4 @ 0 o e ¢ 0 0 9 s 0 e e 0 0 »
.

e o o o o 0 o e o s 0 & o+ 0
O 6 0 0 & 6 ¢ & o o 0 0 o o
e & o o o o o 0 0 9 e

o o o o o o
o o ¢ o

e o ¢ o o o 6 0 o 0 0 0

e e o 0 o o & e o s 0

® 9 @ o o 0 0 e 6 & o o 0 o o 0 0 0 o o 0

e o o o

® o o o 0 o o o o o 0 o 0

@ 8 6 e 6 6 9 6 6 0 6 0 @ s s 6 s 0 e e 0 0 0 ¢ s & e 0 0 b s 0 s s o o

e o o ¢ 0 0 0 0 & o o o o

@ 6 o o 6 @ 0 0 8 9 6 6 6 0 0 0 0 0+ 0 4 0 0 0 6 6 0 0 2 0 0 0 0 0 0 0 0

® 6 6 0 8 0 0 @ 0 & 0 0 % s 0 6 . 0 8 6 0 0 4 o s 0 e 0 0 s e s o s 0

e o 6 o 0 0 0 o o o 0 s 0

e o o o
e o o o
s o e o
e e o .
e o o o
. o . o
e o e o
* o e o
e o o o
e o o o
e e o o
e o o o
e o o .
. L] L 2 L]
. .
. .
. .
. .
. .
. .
. .
. .
. .
. 3

.

.

.

.

® 8 @ o @ 8 6 & ° 9 5 6 9 6 0 06 0 o O 4 0 e e e & 2 O 4 e 0 s 6 e v 0 0
® 6 6 9 e 0 @ & 06 9 0 P B 6 2 0 . 6 0 4 0 % % e 9 e 6 6 0 0 0 0 0 s 0 o

® 8 6 6 0 6 o 6 6 0 0 0 6 0 o 2 % 0 e 0t 0 s 0 e e 0

@ 6 8 6 9 o 0 0 6 9 0 e ¢ s 2 e e 2 e 2 e 0

Contents

e & 5 o 0 0 0 0 o+ o 0 o 0

e ® & @ 6 4 0 O & 0 % 2 0 0 e 06 4 0 0 S 0 6 0 0 0 o s 0 0 0 0 0]

e o o o

3-3

N = OONNNOOTIPUW

1
-
-]

VOO0 NNNOATARTIVIUIVIAD LD DUHUWULNINN
DPONAINNUOOONNFROVUNONOOVIPHOOWNPOPO

vii

-t
-t
-t

Conversation States e 4 e e e e e e e e e e e e e e e e
Return Codes e e e e e e s e e e e e e e e e e e e e e e e

chapter 5. Control-Operator Verbs e ¢ o o o o o o o o o o

LU-LU Sessions . .
Single and Parallel Sess1ons
Contention-Winner Polarlty .

Verb Descriptions .

Change Number of Sessxons Verbs
CHANGE_SESSION_LIMIT . o s
INITIAUIZE_SESSION_LIMIT .
RESET_SESSION_LIMIT .
PROCESS_SESSION_LIMIT

Session Control Verbs
ACTIVATE_SESSION .
DEACTIVATE_SESSION

LU Definition Verbs
DEFINE_LOCAL_LU .
DEFINE_REMOTE_LU .
DEFINE_MODE e e .
DEFINE_TP . .
DISPLAY_LOCAL LU
DISPLAY_REMOTE_LU
DISPLAY_MODE .
DISPLAY_TP . .
DELETE e e e e

Return Codes . e e

" e e e
.
» e e o o

e o o o 8 & ° e © 0 0 6 0 o o o o
e & o o 6 ® o e o 6 o o o o o @

.
.
e o o & o 0 0 & o o 0 s 0 e e e o

o o o o

e o o o

e o o o o 0 0 e o o o o 0

e o o ¢ o 0 o o o e e o o o

e o o o 8 8 & ° * o e & o o o o

e o o 0 0 e & o e o

® 6 9 0 6 0 o o o+ 0 0 0 8 0 0 0 0 0

o o o o o o o 8 s " e 6 e 6 0 s o o

@ & 0 6 6 9 0 6 o e 6 6 o 8 9 6 e o s o o o 0
® & o o 6 9 6 & o o 0 0 9 e 0 o o o

@ 8 o 8 e o 8 e 2 s e 6 0 0 & s o e s 0 s o 0
@ 8 9 o ° e & o ¢ 0 o e ¢ o 2 s o o s s & o+ 0
e o o o o o

@ ® o o 6 0 0 @ ¢ o 2 ° 0 e 0 0 e 0 s 0 o o o
@ o o o & o & o o ¢ o o 0 o o+ o o

@ o o o o 6 o o o o » ® ® e s e e e 6 6 o o o
o o o s o o o

® & ¢ 9 o e o o o 0 0 e e e e e 0+ o 0 s s e 0
@ & o 8 4 0 8 e s e 6 o 0 v e e s o s 0 s 0

Appendix A. Base and Option Sets for Product Support

Support for Mapped Conversation Verbs and Parameters . .
Support for Type-Independent Conversation Verbs and Parameters
Support for Basic Conversation Verbs and Parameters e e e e
Support for Conversation Return Codes and What-Received
Indications . e e e e e e e e e e e e e e e
Support for Control Operator Verbs and Parameters for CNOS .
Sgpp:rtlfor Control-Operator Verbs and Parameters for Session
ontro . e e e e e e e e e e e e e e e
Support for Control Operator Verbs and Parameters for LU
Definition s o o o o 4 o o o e o o o & o »
Support for Control Operator Return Codes e e e e e e e o
Notes on Implementation Details e e e e e e e e e e e e e

Appendix B. Examples Using Basic conversation verbs e o o o
Appendix C. Symbol String Conventions ¢ o o o o 6 o o o o o

Symbol String Type e
Symbol String Length e 6 s e s e e e e e e e e e e e e e e

Appendix D. List of SNA Service Transaction Programs e o o

SNA Service Transaction Program Names .
Scheduler e e e e o o o o @
Queue e e e e e e e e e e e
DL71 . . “ e e e s e

Change Number of Sesstons)
Resynchronization . . .

Distributed Data Management :
Document Interchange Architecture

e o o o o
e o o o o o

SNA Distribution Services .
Product Oriented e e e e o e

. .

® o o o o 0 o o o
.
e o o o o o o o o o
e o o o o o o o o o
* e o 6 e e o o o o
o o o o o o o o o o
e o o o & o o o o o
.

e o o o ¢ 0 s e o o

Appendix E. Conversation State Matrices e o o o o o o o o

Index ® @ e e e e o o o ° o e o 9 o & * o © o © o O o o o o

SNA Transaction Programmer's Reference Manual for LU Type 6.2

HPH
[]
O O
o~

[IRC RO RS AV NC JC V)] ?
(™

1 USSR
N OO DUN ==

WWMWTTWMUUW
CGINNNN ==
oK

=40
5-42
5-44
5-47
5-49
5-51

A-1
A-5
A-8
A-9
A-12
A-14
A-15

A-16
A-19
A-20

O w
11
g

o0
11
[

UUUU??UUU o
NNVNNNNNNE - = D

X m o
O
=

LIST OF FIGURES

Chapter 1. Introduction

Figure 1-1. Transaction Programs and SNA Resources . .

Chapter 2. LU 6.2 Protocol Boundary
Figure 2-1. Program-to-Program Connection Through the SNA
Network o .
Figure 2-2. Effective Program-to Program Connectton . .
Figure 2-3. A Configuration of Interconnected Programs
Chapter 3. Transaction Program Verbs

Figure 3-1. Format Box for Representing Verb Syntax . .

Chapter 4. cConversation Verbs
Figure 4-1. Correlation of Conversation Verbs to the

Conversation States Allowing Their Issuance
Figure 4-2. Correlation of Return Codes to Verbs . . .

Chapter 5. Control-Operator Verbs

Figure 5-1. Correlation of Return Codes to Verbs e e

Appendix A. Base and Option Sets for Product Support

Figure A-1. Support for Mapped Conversation Verbs and

Parameters (Part 1 of 3)
Figure A-2. Support for Mapped Conversation Verbs and
Parameters (Part 2 of 3) . e e .
Figure A-3. Support for Mapped Conversation Verbs and
Parameters (Part 3 of 3) . . .
Figure A-4%. Support for Type-Independent Conversatlon Verbs
and Parameters
Figure A-5. Support for Basic Conversatton Verbs and
Parameters (Part 1 of 3) . . .
Figure A-6. Support for Basic Conversation Verbs and
Parameters (Part 2 of 3) . . .
Figure A-7. Support for Basic Conversat1on Verbs and
Parameters (Part 3 of 3) . . e e e

Figure A-8. Support for Conversation Return Codes “ e e
Figure A-9. Support for Conversation What-Received

Indications e e e e e e e e e e e e e e e
Figure A-10. Support for Control Operator Verbs and

Parameters for CNOS « e .
Figure A-11. Support for Control Operator Verbs and

Parameters for Session Control . e e e

Figure A-12. Support for Control Operator Verbs and
Parameters for LU Definition (Part 1 of 3)
Figure A-13. Support for Control Operator Verbs and
Parameters for LU Definition (Part 2 of 3)
Figure A-14. Support for Control Operator Verbs and
Parameters for LU Definition (Part 3 of 3)
Figure A-15. Support for Control Operator Return Codes .

Appendix B. Examples Using Basic Conversation verhs

Figure B-1. ALLOCATE, SEND_DATA, DEALLOCATE --
SYNC_LEVEL (NONE) e e e e e e e e e e e

List of Figures

1-2

3-10

%4-98
4-105

5-54%

A-5
A-6
A-7
A-8
A-9
A-10

A-11
A-12

A-13
A-14
A-15
A-16
A-17

A-18
A-19

B-2

X

Figure
Figure

Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure

Appendix
Figure

Figure
Figure

Appendix

Appendix
Figure
Figure
Figure

Figure

U
.

SYNC_LEVEL (CONFIRM)

[} 4
UNHOVRI~NOUID L N

SYNC_LEVEL (CONFIRM)

CONFIRM .

SEND_ERROR tn Send State
SEND_ERROR in Receive State
REQUEST_TO_SEND e e e e e
POST_ON_RECEIPT, WAIT . .
POST_ON_RECEIPT, TEST .
SYNCPT e e e e e e & o
SYNCPT, BACKOUT e e e e

IUTGT@U = W
e o o 0 s o o

wunfw
s et et |

¢. symbol string Conventions

C-1. Character Sets A and AE .
C-2. Symbol-String Types . o
C-3. Symbol-String Lengths . .

.

e o o o o o

ALLOCATE, SEND_DATA, DEALLOCATE -
RECEIVE_AND_WAIT, DEALLOCATE —--

.

e ¢ o o

.

.

o« s o o 0

PREPARE_TO_RECEIVE -- éYNC LEVEL(NONE) '
PREPARE_TO_RECEIVE == SYNC_LEVEL(CONFIRM)

o & o o o o o o

D. List of SNA Service Transaction Programs

E. Conversation State Matrices

¢« o o o

e e o

e 6 o o o o o

* o & o o o o o

e 6 e o o o o o o
e & o o o 0 & o s e 0

E-1. Conversation State Transition Matrix (Part 1 of

3 e
E-2. Conversation State Transition Matrix (Part 2 of

3)

E-3. anversatlon State Trans;tlon Matrtx (Part 3 of

E-%. Conversation State Check Matrlx)

SNA Transaction Programmer's Reference Manual for LU Type 6.2

e o o o o

11 ¢ 11
AP NOAPNON N

RUUWTNEQU
NNVNN = = |

E-2
E-4

E-6
E-8

CHAPTER 1. INTRODUCTION

This chapter introduces the reader to general concepts used through-
out the book.

S OR C CTUR

Systems Network Architecture (SNA) is the description of the logical
structure, formats, protocols, and operational sequences for trans-
mitting information units through networks and for controlling the
configuration and operation of networks. A formal description of SNA
is provided in SNA Format and Protocol Reference Manual: Architec-
tural lLogic. The description of SNA in this book is limited to the
saervices that SNA logical-unit type 6.2 (LU 6.2) provides to trans-
action programs. A formal description of LU 6.2 is provided in SNA
ormat_and ocol Reference Manual: Architec oqgic for LU T

LOGIC PE 6.

In SNA, the physical network consists of actual processors, called
nodes, and data links between the nodes. The logical network consists
of logical processors, called logical units (LUs),! and logical con-
nections, called sessions. One or more sessions connect one LU to
another LU. Information is transmitted from one LU to another LU over
a session.

LU 6.2 is a particular type of SNA logical unit. LU 6.2 provides a
connection, or port, between its transaction programs and network
resources. Each LU 6.2 makes a set of resources available to its
transaction programs. The exact set is product- and
configuration-dependent; examples are processor machine cycles and
main storage, files on magnetic disk or tape, input/output devices
such as keyboard and display terminals, and logical resources such as
sessions, queues, and data-base records. Some of these resources are
local to a program, that is, attached to the same LU as the program.
Other resources are remote, that is, attached to other LUs (remote is
defined in terms of the logical configuration of the network; the LUs
can be within the same physical node).

Resource allocation and control is a central function of LU 6.2. Pro-
grams can request the LU for access to a resource. The LU schedules
allocation to serially-reusable resources, creating new copies of
logical resources, such as sessions, when necessary. The LU provides
resource control in order to nasure integrity of the program's access
to the resource. For example, the LU maintains a state? represen-
tation of the resource, allowing the program to perform an operation
on the resource only when the resource is in the appropriate state for
that operation. The LU may also provide other resource-related serv-~-
ices to its programs, such as resource synchronization-point process-
ing that synchronizes committed changes to resources.

IRANSACTION PROGRAM

Transaction programs process transactions. A transaction is a type of
application. It usually involves a specific set of input data and
triggers the execution of a specific process or job. One example is

1 Other logical processors, such as physical units (PUs) and system
sarvices ccatrol points (SSCPs), also exist and are described in
SNA Concepts and Products.

< A specific operating condition of the resourca as it appears to
the program at a particular time of access. Over time, the
resource changes from one state to another in accord with the pro-
gram's operations on the resource.

Chapter 1. Introduction 1-1

the entry of a customer's deposit and the updating of the customer's
balance. A second example is the process of recording item sales,
arriving at the amount to be paid by or to a customer, verifying
checks before accepting them as tender, and receiving payment for the
merchandise. A third example is the transfer of a message to one or
more destination points.

A transaction oqram, as the term is used in this publication, is a
program that is executed by or within LU 6.2 and performs services
related to the processing of a transaction. For example, the program
may be an application program that processes a transaction or is one
of several programs that make up a transaction processing applica-
tion, or it may be a system program that performs system services for
an application program processing a transaction.

Distributed processing of a transaction within an SNA network occurs

when transaction programs communicate by exchanging information over

the sessions between their LUs, treating the session as a resource

that is shared between the programs. Figure 1-1 illustrates the con-

zﬁctioCUof two programs to SNA resources, including a session between
eir S.

Program A

|
LU 6.2 SNA Network
[X X J l . -
« e e e e . Other .
. Other . .Resources.
.Resources. —— Session —m—— . for .
. for . .Program B.
.Program A. e e e e e
e e e e o @ I 'YX
LU 6.2

i
Program B

Figure 1-1. Transaction Programs and SNA Resources

The "other resources™ shown in the figure may include other sessions
as well as local files and devices. The other sessions allow program
A or program B to communicate with other programs. During the commu-
nication between two programs, one program may send a message over the
session to another program, requesting access to a local resource of
the other program. In this way, a local resource of program B, for
example, may become a remote resource of program A.

PROTOCOL BOUNDARY

1-2

The LU 6.2 protecol boundary, as the term is used in this publication,
is the generic description of the transaction program's logical
interface to an SNA network, from the perspective of the transaction
program; LU 6.2 provides the protocol boundary between the program and
the network. The description is generic in the sense that it provides
a syntactical representation of the functions common to all IBM pro-
ducts that implement LU 6.2; the syntactical description is not neces-
sarily of any specific IBM product. IBM products implementing LU 6.2
may provide a programming interface that differs in syntax from the
protocol boundary described herein; however, the results achieved are
functionally equivalent to the results described in this book. For
information about the functional correspondence between the product's
programming interface and the protocol boundary described in this
book, refer to the IBM product publication describing the product's
programming interface.

SNA Transaction Programmar's Reference Manual for LU Type 6.2

The generic protocol boundary described herein represents the trans-
action program's logical interface to SNA and its services, and is the
primary subject of this book. The value of a generic description is
that the transaction program des:gner may plan an application that
spans many different products using a single generic interface, and
then map the design to the individual product-dependent interfaces.

Notg: Products may provide additional <functions for their trans-
action programs, that is, product-unique functions that are not
qescribed in this book. A given product-unique function may cause
information to be sent on an LU 6.2 session, depending on the func-
tion; however, the formats and protocols used on the LU 6.2 seSSIOn
are unchanged. (See NA Fo and Protoco eference Manual: Arc
tecture lLogic for LU Tvpe 6.2 for a definition of the formats and pro-
tocols associated with LU 6.2 sessions.) When designing an
application that may be executed on different products, the trans-
action program designer should not depend on the product-specific
functions being available across the different products.

G COMMUNICATION

Among the services that SNA and, in particular, LU 6.2 provides is
interprogram communication. IBM products implementing LU 6.2 provide
this service as Advanced Proqram—-to-Proqram Com ication (APPC).
Refer to the individual IBM product publications for details of their
APPC implementations.

Interprogram communication permits distribution of the processing of
a transaction among multiple programs within a network. The programs
coordinate the distributed processing by exchanging control informa-
tion or data. The protocol boundary provides the structure for pro-
grams to communicate with one another in order to process a
transaction. This structure meets the following requirements,
described in terms of their SNA realization:

Simultaneous activation — Many distributed applications require
their component programs to be active simultaneously. If the
sender of a request waits for the reply, the sending program is
depending upon timely execution by its partner. SNA achieves this
by simply carrying the program name in the request and letting the
receiving LU create an instance of the desired partner program.
This concept is recognizably that of transactions, so in SNA the
communicating programs are called transaction programs. It fol-
lows that distributed transactions are executed by distributed
transaction programs.

Efficient allocation — Just as programs use local resources by
asking the LU for access to them, programs ask the LU for access
to sessions for use as interprogram communication resources.
However, the program is not really concerned with the session,
which is (usually) a long-term connection between LUs. Nor is the
program concerned with the possibility of other programs using
the session before or after its own use. What the program asks
the LU for is a period of exclusive use of a session, that is, for
an abstract resource that is the unit of sharing of the session
resource. This resource is called a conversation.

conversation overhead — Conversations should be efficient in
allocation, data transfer, and deallocation. For instance, what
the programs see as two short messages, perhaps an inquiry and its
reply, should result in two short messages flowing in the network.
The LU achieves this by multiplexing conversations over a pool of
sassions, scheduling each session as a serially reusable
resource.

conversation lifetime — Conversations last for a time that is
determined only by the communicating programs. So, conversations
vary from a single, short message to many exchanges of long or
short messages. A conversation could continue indefinitely, ter-
minated only by failures.

Two-nay alternate data transfer — Conversations wuse two-way
alternate (half duplex) data transfer. This makes it easiar to

Chapter 1. Introduction 1-3

1-4

write transaction programs, in contrast to two-way simultaneous
(full duplex) transfer of data which experience shows leads to
more complicated and error-prone programs.

Attention mechanism — Conversations include an attention mech-
anism to handle asynchronous, but non-error, events.

Error notification — Conversations provide each program with a
method to notify its partner of errors when they are detected.

commitment control — When errors occur, recovery is greatly sim-
plified if the changes that a program has been making to its
resources can be made to appear atomic; for example, if resources
A and B are changed, then after a failure, B will be observed to
have changed if and only if A is also observed to have changed.
Committing changes atomically is a service that SNA extends to
distributed transaction programs. SNA calls this the sync point?
service. Conversations are defined to the sync point service in
each LU as either being protected by sync point or as being unpro-
tected. In the latter case, the transaction programs are them-
selves responsible for error recovery synchronization.

symmatry — Conversations are allocated by one active program,
but all other protocols (data transfer, attention, error notifi-
cation, and deallocation) are fully symmetric.

Mode of service — The program allocating the conversation names
the desired mode of transmission service, such as "interactive”
or "batch," to be provided by the network.

Levels of conversations — In order to adequately serve the needs
of system programs and application. transactions, two levels of
conversations exist: basic conversations, for system transaction
programs, and mapped conversations, for application transaction
programs.

Subset definition — A subsetting is defined for LU 6.2 by a base
set of functions and a limited number of option sets. IBM pro-
ducts that implement LU 6.2 all provide the base set of functions,
and may provide any of the option sets.

Sync point is a shortened term for synchronization point.

SNA Transaction Programmer's Reference Manual for LU Type 6.2

E

2.

0G

2 0COL _BOUNDA

The LU 6.2 protocol boundary is a generic interface between trans-
action programs and the SNA network. The protocol boundary permits
access to SNA services and resources, especially the services and
resources associated with interprogram communication. By means of
interprogram communication, distributed transactions can be designed
and implemented.

The distributed processing of a transaction also requires access to
system services and resources not related to interprogram communi-
cation; however, such services and resources are product-dependent.
The reader should refer to the individual product publications for
information about a particular product's programming interface to
rasources such as disk or tape files, input/output devices, and
pfgcessor main storage, and to non-SNA services that the product pro-
vides.

COMMUNIC

The protocol boundary permits transaction programs to communicate
with one another without being involved in the interactions that take
place within the network. Figure 2-1 shows two programs connected
through the SNA network. The LUs are connected by an LU-LU session,
and the programs are connected by a conversation allocated on the ses-
sion. For each LU-LU session, one LU is the contention winner of the
session and the other LU is the contention loser of the session.
These terms relate to how contention is resolved when the two LUs
attempt to allocate a conversation on the session at the same time.

Specific detalls are glven in NA Egcmat and Protocol Reference Manu-
al: Are ct c fo UuT

Program A

SNA Network
LU 6.2

LU 6.2

Program B

Figure 2-1. Program-to-Program Connection Through the SNA Network

From the programs' view, only the conversation is visible. The acti-
vation of the session and actual messages that the LUs exchange on
that session are hidden from the programs. Only the dalays associated
with the buffering and transmission of information within the network
are apparent to the programs. The program-to-program connection can
therefore be represented as shown in Figure 2-2.

Chapter 2. LU 6.2 Protocol Boundary 2~-1

ROTACO

2-2

Program A Program B

Figure 2-2. Effective Program-to-Program Connection

This view of program—-to-program connection can be extended to a more
general configuration of interconnected programs. Figure 2-3 shous
an example of one way in which seven programs can be interconnected.
The interconnection is logical; the physical configuration of the
network is not apparent to the programs.

Program E

Program B
Program F

Program A Program C
Program D Program G

Figure 2-3. A Configuration of Interconnected Programs

The configuration of interconnected programs changes over time. In
ghﬁlexample shown in Figure 2-3, the configuration may have evolved as
ollows:

1. Program A connects to Program B, then to Program C, and then to
Program D.

2. Program B connects to Program E and then to Program F.
3. Program D connects to Program G.

This configuration may have evolved in other ways, as well, and it may
be an interim configuration that ultimately grows to a much larger

configuration of interconnected programs. All configurations of
interconnected programs, however large, are made up of program-to-

program connections between pairs of programs. One program initiates

;he inte{connection process; in Figure 2-3, the initiating program is
rogram A.

DARY_S U

The protocol boundary is a structured interface. It is defined by
means of formatted functions, called verbs, and the protocols for the
verbs. The protocols are the allowed sequences of verbs, that is, the
order in which a transaction program can issue verbs. The protocols
are defined in terms of resource states. A transaction program can
issue a particular verb only when the the resource to which that verb
applies is in the appropriate state for that verb.

SNA Transaction Programmer's Reference Manual for LU Type 6.2

Tha verbs and states that represent the LU 6.2 protocol boundary ena-
ble the user to design distributed transactions, processed by dis-
tributed transaction programs. The number of transaction programs
can be small, involving only two programs, or large, involving many
programs. The transaction can have & fixed structure in which the
processing by all programs is predetermined at design time, such as a
single inquiry and reply between two programs. In contrast, the
transaction can have a flexible structure in which the programs
involved and the processing are determined at execution time, possi-
bly varying from one invocation of the transaction to the next; an
example is the updating of information in a distributed data base.

An overview description of the verbs is given in "Chapter 3. Trans-
action Program Verbs". The detailed descriptions of the verbs are
given in “Chapter 4. Conversation Verbs" and "Chapter 5.
Control-Operator Verbs". Resource states associated with the conver~
sation verbs are described in "Chapter 4. Conversation Verbs".

Chapter 2. LU 6.2 Protocol Boundary 2-3 -

This page intentionally left blank

2-4 SNA Transaction Programmer's Reference Manual for LU Type 6.2

CHAPTE TRANSACGTION PROG ERB

The LU 6.2 protocol boundary is defined by verbs that request the LU
to perform services. The verbs are described from the transactlon
programmer's view of the LU 6.2 protocol boundary. Events occurring
below the protocol boundary and not apparent at the boundary are not
described. Refer to § Format and a c anual : i=

T for details of events that occur below
the protocol boundary.

TRANSACTION PROGRAM STRUCTURE AND EXECUTION

All transaction programs have the following general structure:

name: PROCEDURE (resource-id [,pipl [,... [,piPn] 1 1])3

U verbs and other program statements
[]

RETURN;
END name;

The elements of the transaction program structure are:

name is the name of the transaction program. The transaction pro-
gram name is carried in the allocation request sent by a partner
program. The LU receiving the request locates the program by name
and creates a new instance,! or executable copy, of the program.
The location of the program, such as in a program library, is
product-dependent.

PROCEDURE begins the main procedure of the transaction program.

resource-id is the name of the variable in which tha LU places the
resource ID of the conversation on which the allocation request
was received. The conversation connects this transaction program
to the partner program that sent the allocation request.

Note: The description in this book assumes that transaction pro-
grams are always started by means of an allocation request
received on a conversation. The manner in which a product starts
the first program of an interconnected configuration of programs
is product-dependent. For example, the first program may be
started in response to a "load" request from an operator.

PiPly...,PiPN are the names of the variables in which the LU
places program initialization parameters (PIPs) 1 through n.
Product send and receive support of PIPs is optional; see Fig-
ure C-3 in "Appendix C. Symbol String Conventions" for details.
The PIPs are supplied by the allocating program. The contents of
the PIPs have meaning only to the transaction programs—they are
not examined or acted upon by the LU.

verbs and other program statements represent the combination of
verbs, described in this book, and othar programming-language
statements that make up the transaction-processing portion of the
program. Thus, the program's processing of a transaction begins

1 When it is n~ambiguous to do so, a program instance is simply
refarre? to as a program.

Chapter 3. Transaction Program Verbs 3-1

3-2

with the first varb or other program statement after the PROCEDURE
statement. It ends with the last verb or other program statement
preceding the RETURN statement, or with the processing implied by
the RETURN statement (discussed next).

RETURN ends execution of the program by returning control to the
LU. As part of the LU's processing of the RETURN statement, it
deallocates all conversations (and other resources) that the pro-
gram has not, itself, deallocated. Depending on the product, the
LU may perform other resource-related functions, including the
execution of verb functions for conversations still allocated,
before deallocating the resources.

END name identifies the physical end of the program. It is the
last statement in the program.

Note: The PROCEDURE, RETURN, and END statements are not
described elsewhere in this book. They are presented here only to
illustrate the general structure of all transaction programs.
IBM products implementing LU 6.2 may provide programming language
statements that differ in syntax from this description. However,
the functions of the product programming language statements are
equivalent to the functions described here.

Program execution, in terms of the verbs, occurs when the transaction
program issues a verb and the LU executes it; verbs are issued and
executed one at a time. When the program issues a verb, the program's
processing is suspended while the LU executes the verb. The program
resumes processing when the LU returns control to the program. The
program may then issue another verb.

Conversations use two-way alternate data transfer. Once a conversa-
tion is allocated, send-receive relationship is established between
the programs connected to the conversation. One program issues verbs
to send data and the other program issues verbs that receive the data.
When the sending program finishes sending data, it transfers control
of sending data to the other program.

The LUs at each end of a conversation have a buffer for sending and
receiving the data on the conversation. When the program issues a
verb that sends data, it specifies an area containing the data. The
LU moves the data to its d buffer, accumulating the data behind any
data from previous verbs. The LU transmits the data, or flushes its
send buffer, when either it accumulates a sufficient amount for trans-
mission, or the program issues a verb that explicitly causes the LU to
transmit the accumulated data. The amount of data sufficient for
transmission is determined by the maximum size request unit that can
be sent on the session on which the conversation is allocated. The
amount can vary from one session to another, and therefore from one
conversation to another.

As incoming data arrives on a conversation, the LU places the data in
its receive buffer, accumulating the data behind any it previously
received. When the program issues a verb that receives data, it spec-
ifies an area in which the LU is to place the data. The LU moves the
requested amount of data from the front of its receive buffer to tho
area specified by the program. In this way, the LU can accumulate
incoming data in its receive buffer in advance of the program issuing
tha verb, or verbs, that receive the data.

Verbs are defined that send information other than data. These verbs
cause the LU to flush its send buffer and then place the information
at the front of the buffer, behind which it accumulates data from sub-
sequent verbs. The receiving LU accumulates this information in its
receive buffer in the order it is received, with reference to other
information including data.

Program execution ends when the program returns control to the LU at
tzetcomptetion of the transaction. This is accomplished by the RETURN
statement.

SNA Transaction Programmer's Reference Manual for LU Type 6.2

VERB QOVERVIEW

This saection presents an overview of the verbs in terms of their indi-
vidual functions. The verbs are divided into categories. These cate-
gories are:

Conversation verbs
Control-operator verbs

Each category defines a major subdivision of the LU 6.2 protocol
boundary. The conversation verbs define the means for program-to-
program communication. The control-operator verbs define the means
for program or operator control of the LU's resources.

In the following overview, and in the remaining chapters of this book,
the verbs are described from the perspactive of the transaction pro-
gram issuing the verb. From this point of view, the program issuing
the verb is referred to as the local program, and the program at the
other end of the conversatton is referred to as the rem

Slmllarly, the LU processing the local program is referred to as the
local LU, and the LU processing the remote program is referred to as
the remote LU.2 The overview description of the conversation verbs and
control-operator verbs follows.

CONVERSATION VERBS

The conversation verbs provide program-to-program communication by
means of conversations between programs. The following conversation
types are defined:

Mapped
Basic

The verbs defining the conversation protocol boundary are divided
igto sgbcategories based on the conversation type. The subcategories
of verbs are:

Mapped conversation verbs
Type-independent conversation verbs
Basic conversation verbs

An overview of the conversation verbs follows.

Mapped Conversation Verbs

The mapped conversation verbs are intended for use by application
transaction programs. These verbs provide functions that are suit-
able for application programs written in high-level programming lan-
guages. A brief description of the mapped conversation verbs follows.

MC_ALLOCATE allocates a mapped conversation connecting the local
transaction program to a remote transaction program. A unique
resource ID is assigned to the mapped conversation. This verb is
issued prior to any verbs that refer to the mapped conversation.

MC_CONFIRM sends a.confirmation request to the remote transaction
program and waits for a reply, in order for the two programs to
synchronize their procesciag.

MC_CONFIRMED sends a confirmation reply to the remote transaction
prograa, in order for the two programs to synchronize their proc-
essing. The program issues the verb in response to receiving a
confirmation request.

MC_DEALLOCATE deallocates a mapped conversation resource from the
transaction program. The program issues this verb when it is fin-
ished using the mapped conversation.

2 When it is unambiguous to do so, the local program is simply
refa:rﬁﬁjto as the program, and the local LU is simply referred to
as the .

Chapter 3. Transaction Program Verbs 3-3

MC_FLUSH transmits all information that the LU has buffered, such
as data records from preceding MC _SEND_DATASs.

MC_GET_ATTRIBUTES returns information pertaining to a mapped con-
versation. Examples of information that may be requested are the
mode name, the name of the LU at which the remote transaction pro-
gram is located, or the synchronization level allocated for the
mapped conversation.

MC_POST_ON_RECEIPT requests posting of the specified mapped con-
versation when information is available for the program to
receive. The information can be a data record, mapped conversa-
tion status, or a request for confirmation or sync point.

MC_PREPARE_TO_RECEIVE changes the mapped conversation from send
state to receive state in preparation to receive data. A SEND
indication is sent to the remote program. The remote program's
end of the mapped conversation changes to send state when the pro-
gram receives the SEND indication.

MC_RECEIVE_-AND_UWAIT waits for information to arrive on the mapped
conversation and then receives the information. If information
is already available, the program receives it without waiting.
The information can be a data record, mapped conversation status,
or a request for confirmation or sync point. Control is returned
to the program with an indication of the type of information. The
verb can be issued when the mapped conversation is in send state.
In this case, the verb first sends a SEND indication to the remote
program, changing the mapped conversation to receive state, and
then waits for information to arrive.

MC_RECEIVE_IMMEDIATE receives any information that is available
from the specified mapped conversation, but does not wait for
information to arrive. The information (if any) can be a data
record, mapped conversation status, or a request for confirmation
or sync point. Control is returned to the program with an indi-
cation of whether any information was received and, if so, the
type of information.

MC_REQUEST_TO_SEND notifies the remote program that the local
program is requesting to enter send state for the mapped conversa-
tion. The mapped conversation will be changed to send state when
the local program subsequently receives a SEND indication from
the remote program.

MC_SEND_DATA sends one data record to the remote transaction pro-
gram. The data record consists entirely of data. The program can
specify data mapping as a function of the verb, or it can indicate
that the data record includes FM headers.

MC_SEND_ERROR informs the remote transaction program that the
local program has detected an application error. For example, the
local program can issue this verb to inform the remote program of
an error it detected in a data record it received, or to reject a
confirmation request. Upon successful completion of the verb,
the local program is in send state for the mapped conversation and
the remote program is in receive state.

MC_TEST tests the mapped conversation to determine whether it has
been posted, as a result of a praceding MC_POST _ON_RECEIPT verb,
or whether a request-to-send notification has been received.

Type-Independent conversation Verbs

3-6

The type-independent conversation verbs are intended for use with
both mapped and basic conversations. These verbs provide functions
that span both conversation types. A brief description of the
type-independent verbs follows.

BACKOUT restores all protected resources throughout a distributed
transaction to their status as of the last synchronization point.
Protected resources are those that are protacted by the sync point
service of LU 6.2.

SNA Transaction Programmer's Reference Manual for LU Type 6.2

GET_TYPE returns the type of resource. For mapped conversations
the type is MAPPED_CONVERSATION, and for basic conversations the
type is BASIC_CONVERSATION.

SYNCPT advances all protected resources throughout a distributed
transaction to the next synchronization point.

WAIT waits for posting to occur on any mapped or basic conversa-
tion from among a list of mapped and basic conversations. The
posting of mapped conversations is performed as a result of a pre-
ceding MC_POST_ON_RECEIPT verb issued for each of the mapped con-
versations. Similarly, the posting of basic conversations is
performed as a result of a preceding POST_ON_RECEIPT verb issued
for each of the basic conversations.

Basic conversation Verhs

The basic conversation verbs are intended for use by LU services pro-
grams. The LU services programs can provide end-user services or pro-
tocol boundaries for end-user application transaction programs. For
example, the mapped conversation LU services component issues basic
conversation verbs during its processing of mapped conversation
verbs. A brief description of the basic conversation verbs follows.

ALLOCATE allocates a conversation connecting the local trans-
action program to a remote transaction program. The conversation
type can be basic or mapped. A unique resource ID is assigned to
the conversation. This verb is issued prior to any verbs that
refar to the conversation.

CONFIRM sends a confirmation request to the remote program and
waits for a reply, in order for the two programs to synchronize
their processing.

CONFIRMED sends a confirmation reply to the remote program, in
order for the two programs to synchronize their processing. The
prograg issues this verb in response to receiving a confirmation
request.

DEALLOCATE deallocates a conversation from the transaction pro-
gram. The program issues this verb when it is finished using the
conversation.

FLUSH transmits all information that the LU has buffered, such as
data from preceding SEND_DATAs.

GET_ATTRIBUTES returns information pertaining to a conversation.

Examples of information that may be requested are the mode name,

the name of the LU at which the remote transaction program is

tgcated, or the synchronization level allocated for the conversa-
ion.

POST_ON_RECEIPT requests posting of the specified conversation
when information is available for the program to receive. The
information can be data, conversation status, or a request for
confirmation or sync point.

PREPARE_TO_RECEIVE changes the conversation from send state to
receive state in preparation to receive data. A SEND indication
is sent to the remote program. The remote program's ead of the
conversation changes to send state when the program receives the
SEND indication.

RECEIVE_AND_WAIT waits for information to arrive on the conversa-
tion and then receives the information. If information is already
available, the program receives it without waiting. The informa-
tion can be data, conversation status, or a request for confirma-
tion or sync point. Control is returned to the program with an
indication of the type of information. The verb can be issued
when the conversation is in send state. In this case, the verb
first sends a SEND indication to the remote program, changing the
conversation to receive state, and then waits for information to
arrive.

Chapter 3. Transaction Program Verbs 3-5

RECEIVE_IMMEDIATE receives any information that is available from
the specified conversation, but does not wait for information to
arrive. The information (if any) can be data, conversation sta-
tus, or a request for confirmation or sync point. Control is
returned to the program with an indication of whether any informa-
tion was received and, if so, the type of information.

REQUEST_TO_SEND notifies the remote program that the local pro-
gram is requesting to enter send state for the conversation. The
conversation will be changed to send state when the local program
subsequently receives a SEND indication from the remote program.

SEND_DATA sends data to a remote program. The data format con-
sists of logical records. The amount of data is specified inde-
pendently of the data format. A logical record contains a length
field and a data field. The length field is 2 bytes long; the
data field can be any length within the range of 0 to 32765 bytes.

SEND_ERROR informs the remote program that the local program has
detected an error. For example, the local program can issue this
verb to truncate an incomplete logical record it is sending, to
inform the remote program of an error it detected in data it
received, or to reject a confirmation request. Upon successful
completion of the verb, the local program is in send state for the
conversation and the remote program is in receive state.

TEST tests the conversation to determine whether it has been
posted, as a result of a preceding POST_ON_RECEIPT verb, or wheth-
er a request-to-send notification has been received.

CONTROL-OPERATOR VERBS

The control-operator verbs are intended for use by control-operator
transaction programs, that is, programs that assist the control oper-
ator in performing functions related to the control of an LU. The
varbs defining the control-operator protocol boundary are divided
into subcategories based on their functions. The subcategories are:

Change number of sessions verbs
Session control verbs
LU definition verbs

An overview of the control-operator verbs follows.

change Numbher of Sessions Verbs

3-6

This subcategory of control-operator verbs consists of four verbs

called the change-number-of-sessions, or CNOS, verbs. The CNOS verbs

change the (LU,mode) session limit, which controls the number of LU-LU

sessions per mode name that are available betuween two LUs for allo-

cation to conversations. In conjunction with changing the (LU,mode)

:ﬁsséon SJmit. the CNOS verbs change related operating parameters of
e two s.

The two LUs may cooperate in the execution of the CNOS verbs by means
of a CNOS request and CNOS reply. The LU executing the control-oper-
ator transaction program sends a CNOS request to the partner LU. The
partner LU invokes an SNA service transaction program called the "CNOS
service transaction program" (see "Appendix D. List of SNA Service
Transaction Programs"), which causes the partner LU to process the
CNOS request and send back a CNOS reply.

The CNOS verbs that a control-operator transaction program may issue
are:

CHANGE_SESSION_LIMIT changes the (LU,mode) session limit from one
nonzero value to another nonzero value.

INITIALIZE_SESSION_LIMIT changes the (LU,mode) session limit from
0 to a value greater than 0.

SNA Transaction Programmer's Reference Manual for LU Type 6.2

RESET_SESSION_LIMIT changes the (LU,mode) session limit from a
value greater than 0 to 0.

The CNOS verb that the CNOS service transaction program issues is:

PROCESS_SESSION_LIMIT causes the LU receiving the CNOS request to
process the request and send back a CNOS reply to the partner LU.

session _Control Verbs

This subcategory of control-operator verbs consists of two verbs used
for session control, one that activates an LU-LU session and one that
deactivates an LU-LU session. These verbs are:

ACTIVATE_SESSION activates an LU-LU session between the local LU
and a specified LU.

DEACTIVATE_SESSION deactivates a specified LU-LU session. The
type of deactivation can be cleanup or normal.

LU Definition Verbs

This subcategory of control-operator verbs is used to define or modify
the local LU's operating parameters, examine the parameters, and
delete the parameters. These verbs are:

DEFINE_LOCAL_LU initializes or modifies parameter values that
control the operation of the local LU.

DEFINE_REMOTE_LU initializes or modifies parameter values that
control the operation of the local LU in conjunction with a remote

.

DEFINE_MODE initializes or modifies parameter values that control
the operation of the local LU in conjunction with a group of ses-
sions with a remote LU, the group being identified by a mode name.

DEFINE_TP initializes or modifies parameter values that control
the operation of the local LU in conjunction with a local trans-
action program.

DISPLAY_LOCAL_LU returns parameter values that control the opera-
tion of the local LU.

DISPLAY_REMOTE_LU returns parameter values that control the oper-
ation of the local LU in conjunction with the remote LU.

DISPLAY_MODE returns parameter values that control the operation
of the local LU in conjunction with a group of sessions with a
remote LU, the group being identified by a mode name.

DISPLAY_TP returns parameter values that control the operation of
the local LU in conjunction with a local transaction program.

DELETE deletes the local LU's operating-parameter values that
have been defined by means of the DEFINE verbs.

ABEND CONDITIONS

Certain errors related to the execution of the verbs can cause an
abnormal ending (ABEND) of the transaction program. These ABEND con-
ditions are a direct consequence of an invalid specification or exe-
cution of a verb. When the LU terminates a program because of an
ABEND condition, it deallocates all of the program's active conversa-
tions. Depending on the product, the LU may abnormally deallocate the
conversations, or deallocate the conversations in the same way it does
for the RETURN statement (see the RETURN statement under "Transaction
Program Structure and Execution™ on page 3-1).

The ABEND conditions are:

Chapter 3. Transaction Program Verbs 3-7

3-8

Parameter Check occurs when the program issues a verb for which
local support is not available, or when the program specifies a
verb parameter with an invalid argument. The source of the inval-
id argument is considered to be part of the program definition.
(Contrast this definition with the definition of the return code,
PARAMETER_ERROR, in the section "Return Codes" in Chapter 4.) The
detailed verb descriptions list the applicable parameter checks.

The omission of a required parameter, the specification of an
undefined parameter, and the specification of an undefined argu-
ment on a parameter that requires one of a defined set of keyuwords
are also parameter check conditions. The parameter checks for the
omission of a required parameter and for the specification of an
undefined parameter apply to all verbs. The parameter check for
an undefined keyword argument applies to all verbs that specify
one or more parameters with keyword arguments. These parameter
checks are not explicitly listed with each detailed verb
description.

state Check occurs when the program attempts to issue a verb for a
conversation that is in a state in which the verb is not allowed.
The section "Conversation States" in Chapter 4 defines the allow-
able states for each conversation verb. The control-operator
verbs do not have states associated with them and therefore do not
have any state checks defined.

Ibe individual verk aescriptions list the applicable ABEND condi-
ions.

Note: 1In lieu of treating these ABEND conditions as described here,
products may provide a different mathod for handling the ABEND condi-
tions. For example, a product may return an error indication to the
program when it attempts to issue a verb in a state in which the verb
is not permitted., allowing the program to continue processing, or a
product may provide a compile-time check for the specification of
optional verbs and parameters that the product does not support.
Refer to the individual product's publications for details about how
it treats these conditions.

UBSETTING

Product-support subsetting of the verbs is defined by means of func-
tional groups, or sets. A set consists of all the functions that
together represent an indivisible group for products to implement.
That is, a product implementing a particular set implements all of the
functions within that set.

All products implement a subset of LU 6.2 functions called the base
set. The functions that are not part of the base set are optional.

The base set and option sets are defined in terms of the LU 6.2 proto-
col boundary, as follous:

Base set is the set of LU 6.2 verbs, parameters, return codes, and
what-received indications that all products support.

option sets are the sets of LU 6.2 verbs, parameters, return
codes, and what-received indications that a product may support,
depending on the product. A product may support any number of
option sets, or none. For each option set supported, all verbs,
parameters, return codes, and what-received indications in that
sat are supported.

The base set and option sets are further defined in terms of local
support and remote support.

Local support is the support of LU 6.2 verbs, parameters, return
codes, and what-received indications that the product provides at
the local end of a conversation, as seen by the local transaction
program. The program may issue an optional verb or parameter only
when the local product supports the option set. An attempt by the
program to issue an optional verb or parameter for which local
support is not available is considered an ABEND condition (see

SNA Transaction Programmer's Reference Manual for LU Type 6.2

"ABEND Conditions™ on page 3-7). An optional return code or
what-received indication can be reported to the program only when
the local product supports the option set.

Remote support is the support of verbs and parameters that the
product provides at the remote end of a conversation, as seen by
the local transaction program. (Remote support does not apply to
the return codes and what-received indications.) Only certain
verbs and parameters invoke processing at the remote end of the
conversation; the other verbs and parameters are processed
entirely at the local end of the conversation. When the program
issues a verb or parameter that invokes remote processing, and the
remote product does not provide remote support for the verb or
parameter, a return code indicating the lack of support is
reported to the program. The return code can be reported on the
verb for which remote support is not available or on a later verb,
depending on the verb.

The base and optional support for the conversation verbs and control-
operator verbs is defined in "Appendix A. Base and Option Sets for
Product Support™.

Note: The base- and option-set definition for product support
described in this book applies only to LU 6.2 products that provide an
application programming interface (API) for user-uritten programs
that is equivalent to the conversation verbs. The definition does not
apply to LU 6.2 products that are not user-programmable, or to pro-
ducts that are user-programmable but do not provide an API equivalent
to the conversation verbs; such products need support only the LU 6.2
functions required for their applications.

VERB DESCRIPTION FORMAT
This section explains the format used to describe the verbs in the
following chapters. The verb descriptions are presented alphabet-
ically, by name, in terms of each verb's function, syntactic format,
parameters, state changes, ABEND conditions, and usage notes.

The description of each verb begins with a brief explanation of its
function.

The verb's syntax is described next using a format box. The general
representation of the format box is shoun in Figure 3-1 on page 3-10.

Chapter 3. Transaction Program Verbs 3-9

3-10

Su ied Parameters:
verb-name parameter (argument)

parameter (argument)
(argument)

parameter (argument argument ... argument)

[parameter (argument)]

(argument)

[parameter (default-argument)]

Supplied-and-Returned Parameters:

parameter (argument)

Returned Parameters:

parameter (argument)

[parameter (argument)]

.
?

Figure 3-1. Format Box for Representing Verb Syntax

As shown in the preceding general format box, the syntax description
for each verb includes a verb name, verb parameters, and the ending
delimiter ";" (semicolon). The number of verb parameters depends on
the verb, and a verb may not have any parameters.

Parameter names are shown as uppercase keywords. Parameter arguments
are shown as uppercase keywords, as "variables,"™ or as a combination
of keyuwords and "variables." An argument keyword is used to show a
specific argument value associated with the parameter. An argument
“"variable" is used to show that the argument value can vary; it can be
program data, for example.

Some parameters show a vertical list of argument keywords (possibly
combinaed with "variables"). The vertical list means the arguments are
limited to those within the list, one of which is specified when the
verb is issued. Other parameters show an argument list as "variablel
... variablen."” The number of arguments in the argument list depends
on the verb; the number may be constant or it may vary from one issu-
ance of the verb to the next.

The parameters are grouped as Ysupplied parameters,"
"supplied-and-returned parameters," or "returned parameters."

o Supplied parameters contain arguments whose values are supplied
by the program when it issues the verb.

. Supplied-and-returned parameters contain arguments whose values
are supplied by the program when it issues the verb and whose val-
ues are returned to the program when it resumes processing.

. Returned parameters contain arguments whose values are returned
to the program when it resumes processing.

Soma parameters are shown within brackets. The bracket notation is
used to show which parameters may be omitted when the verb is issued.
It it also used for cross-publication reference purposes, so that oth-

SNA Transaction Programmer's Reference Manual for LU Type 6.2

er SNA and product publicatinrs that refer to the verbs in this book
may omit references to the bracketed parameters. In particular:

U Some bkracketed supplied parameters have multiple arguments with
one being a default argument, shown as underscored. Omission of
any of these parameters is treated as if the default argument wa.
specified on the perameter.

. Other bracketed supplied parameters have no default argument.
Omissicn of any of these parameters is treated as described for
the parameter.

[If a bracketed returned parameter is omitted, the argument value
is not returned.

Following the syntax is a description of the verb's parameters.
Included is a list of the return codes that can be returned to the
transaction program when it resumes processing.

The changes, if any, to the state of the conversation at the protocol
boundary are described next. The state changes occur as a result of
executing the verb.

Aftar the description of state changes, the ABEND conditions are given
for each verb.

Finally, notes are given to describe certain aspects of the verb's
usage in order to further clarify the actions of the verb.

Notes:

1. Products may provide application programming interfacas (APIs)
that differ from the verb syntax described in this book. For
example, a product may have different names for operations that
are equivalent to the verbs and parameters described herein; it
may combine the functions of certain verbs into one operation,
such as the functions of MC_SEND_DATA and MC_CONFIRM; and it may
separate the functions of a single verb into distinct operations,
such as separating the functions of MC_ALLOCATE into an operation
that acquires the session and an operation that allocates the con-
versation on the session. These are syntactical, not functional,
di fferences.

2. The bracket notation used in the syntax diagrams is unrelated to
the product-support subsetting described in this book. See
"Product-Support Subsetting™ on page 3-8 and "Appendix A. Base
and Option Sets for Product Support"™ in Appendix A for details
about product support. The bracket notation is also unrelated to
any product's API definition. The product may allow a different
set of parameters to be omitted, if any, and have different
defaults for the supplied parameters. Refer to the product's pro-
gramming publications for details of its API.

Chapter 3. Transaction Program Verbs 3-11

This page intentionally left blank

3-12 SNA Transaction Programmer's Reference Manual for LU Type 6.2

APT CONVERSATION VERBS

This chapter describes the category of verbs called conversation
verbs. The conversation verbs define the LU 6.2 conversation protocol
boundary. These verbs are used for program-to-program comnunications
over a conversation connecting two programs. Each conversation is of
a specific type:

Mapped
Basic

The conversation verbs are divided into subcategories, based on the
conversation type to which they apply:

Mapped conversation verbs
Type-independent conversation verbs
Basic conversation verbs

The mapped conversation verbs apply to mapped conversations. The
type-independent conversation verbs apply to both mapped and basic
conversations. The basic conversation verbs apply to basic conversa-
tions, and to mapped conversations for use by the mapped conversation
LU services component. Refer to SNA_Format an otoc Reference
Manual: rchi ture Logi or LU Type 6.2 for a description of the
mapped conversation LU services component.

Following the descriptions of the conversation verbs is a description

of conversation states that allow issuance of the verbs, and a
description of the return codes that apply to the conversation verbs.

VERB DESCRIPTIONS

The detailed descriptions of the mapped, type-independent, and basic
conversation verbs follouw.

Chapter 4. Conversation Verbs -1

MAPPED CONVERSATION VERBS

6-2

This section describes the subcategory of conversation verbs called
mapped_conversation verbs. These verbs are intended for use by appli-
cation transaction programs. They provide functions, such as data
mapping (a product option), that make the verbs suitable for applica-
tion programs written in a high-level programming language. Addi-
tionally, these verbs conceal from the application program the
logical-record data-stream format that a program using the basic con-
versation verbs must manage. The detailed descriptions of the mapped
conversation verbs follow.

Note: Every conversation is either a mapped or basic conversation.
The mapped conversation verbs are used for operations only on mapped
conversations. Thus, throughout the descriptions of the mapped con-
varsation verbs, references are made only to mapped conversations.
The program allocates a mapped conversation when it issues the
MC_ALLOCATE verb. Contrast this with the basic conversation verb,
QLLQCATE, which can allocate a conversation of either type, mapped or
asic.

SNA Transaction Programmer's Reference Manual for LU Typae 6.2

Mapped conversation verbs

MC_ALLOCATE
Allocates a session between the local LU and a remote LU, and on that
session allocates a mapped conversation between the local transaction
program and a remote transaction program. A resource ID is assigned
to the mapped conversation. This verb is issued prior to any verbs
that refer to the mapped conversation.)
supplied Parameters: .
MC_ALLOCATE LU_NAME (OWN)

(OTHER (variable))
MODE_NAME (variable)
TPN (variable)

-
{ WHEN SESSION ALLOCATED)

RETURN_CONTROL (DELAYED_ALLOCATION_PERMITTED)
(IMMEDIATE)

(NONE)
SYNC_LEVEL (CONFIRM)
(SYNCPT)

{ NONE)
SECURITY (SAME) .
(PGM (USER_ID (variable) PASSWORD (variable)
PROFILE (variable)))

PIP (NO)

(YES (variablel variable2 ... variablen))]

Returned Parameters:
RESOURCE ({ variable)
RETURN_CODE (variable)

supplied Paramaters:

LU_NAME specifies the name of the remote LU at which the remote trans-
action program is located. This LU name is any name by which the
local LU knows the remote LU for the purpose of allocating a mapped
conversation. The local LU transforms this locally-known LU name to
an LU name used by the network, if the names are different.

U OUN specifies that the remote transaction program is located at
the same LU as the local program.

. OTHER specifies that the remote transaction program is located at
another LU. The specified variable contains the LU name.

MODE_NAME specifies the mode name designating the network properties
for the session to be allocated for the mapped conversation. The net-
work properties include, for example, the class of service to be used,
and whether data is to be enciphered or translated to ASCII before it
is sent. The SNA-defined mode name, SNASVCMG, is not allowed to be
speggfied on the MC_ALLOCATE verb (contrast this with the ALLOCATE
verb).

TPN specifies the name of the remote transaction program to be con-
nected at the other end of the mapped conversation. TPN cannot speci-
fy an SNA service transaction program name at the mapped conversation
protocol boundary. (See "Appendix D. List of SNA Service Transaction

Chapter 4. Conversation Verbs 4-3

MC_ALLOCATE

Progra?s" for more details about SNA service transaction program
names.

RETURN_CONTROL specifies when the local LU is to return control to the
local program, in relation to the allocation of a session for the
mapped conversation. An allocation error resulting from the local
LU's failure to obtain a session for the mapped conversation is
reported either on this verb or a subsequent verb, depending on the
argument specified for this parameter. An allocation error resulting
from the remote LU's rejection of the allocation request is reported
on a subsequent verb.

. WHEN_SESSION_ALLOCATED specifies to allocate a session for the
mapped conversation before returning control to the program. An
error in allocating a session is reported on this verb.

. DELAYED_ALLOCATION_PERMITTED specifies to allocate a session for
the mapped conversation after returning control to the program.
An error in allocating a session is reported on a subsequent verb.

. IMMEDIATE specifies to allocate a session for the mapped conver-
sation if a session is immediately available, and return control
tglthetpaogram with a return code indicating whether a session is
allocated.

- A return code of OK indicates a session is immediately avail-
able and is allocated for the mapped conversation. A session
is immediately available when it is active, it is not allo-
cated to another mapped conversation, and the local LU is the
contention winner for the session.

- A return code of UNSUCCESSFUL indicates a session is not imme-
diately available. Allocation is not performed.

An error in allocating a session that is immediately available is
reported on this verb.

SYNC_LEVEL specifies the synchronization level that the local and
remote transaction programs can use on this mapped conversation.

. NONE specifies that the transaction programs will not perform
confirmation or sync point processing on this mapped conversa-
tion. The programs will not issue any verbs and will not recog-
nize any returned parameters relating to these synchronization
functions.

. CONFIRM specifies that the transaction programs can perform con-
firmation processing but not sync-point processing on this mapped
conversation. The programs may issue verbs and will recognize
returned parameters relating to confirmation, but they will not
issue any verbs and will not recognize any returned parameters
relating to sync point.

L SYNCPT specifies that the transaction programs can perform both
confirmation and sync-point processing on this mapped conversa-
tion. The programs may issue verbs and will recognize returned
parameters relating to confirmation or sync point. For
sync-point processing, a mapped conversation allocated with this
synchronization level is a protected resource.

SECURITY specifies access security information that the remote LU
uses to verify the identity of the end user and validate access to the
remote program and its resources. The access security information
consists of a user ID, a password, and a profile.

. NONE specifies to omit access security information on this allo-
cation request.

. SAME specifies to use the user ID and profile (if present) from
the allocation request that initiated execution of the local pro-
gram. The passuword (if present) is not used; instead, the user 1D
is indicated as being already verified. If the allocation request
that initiated execution of the local program contained no access

4-4 SNA Transaction Programmer's Reference Manual for LU Type 6.2

Mapped Conversation verbs

security information, then access security information is omitted
on this allocation request.

PGM specifies to use the access security information that the
local transaction program provides on this parameter. The local
program provides the information by means of the following argu-
ments:

- USER_ID specifies the variable containing the user ID. The
remote LU uses this value and the password to verify the iden-
tity of the end user making the allocation request. In addi-
tion, the remote LU may use the user ID for auditing or
accounting purposes, or it may use the user ID, together with
the profile (if present), to determine which remote programs
the local program may access and which resources the remote
program may access.

- PASSHORD specifiaes the variable containing the password. The
remote LU uses this value and the user ID to verify the iden-
tity of the end user making the allocation request.

- PROFILE specifies the variable containing the profile. The
remote LU may use this value, in addition to or in place of
the user ID, to determine which remote programs the local pro-
gram may access, and which resources the remote program may
access.

Specifying a null value for any of the access security arguments
is equivalent to omitting the argument.

PIP specifies program initialization parameters for the remote trans-
action program.

[

NO specifies that PIP data is not present.
YES specifies that PIP data is present.

- variablel variable2 ... variablen contain the PIP data to be
sent to the remote transaction program. The PIP data consists
of one or more subfields, each of which is specified by a sep-
arate variable; variables 1 through n correspond to subfields
1 through n. If a variable is omitted in the PIP parameter or
it is of null value, the corresponding PIP subfield is made to
be of zero length. The number of PIP subfields must agree
with the number of PIP variables specified on the remote pro-
gram's PROC statement (see "Transaction Program Structure and
Execution®™ in Chapter 3).

Returned Parameters:

RESOURCE specifies the variable in which the resource ID is to be
returnad. The length and actual format of the resource ID is product
dependent. The resource ID is returned to the program when the return
code is either OK or ALLOCATION_ERROR.

RETURN_CODE specifies the variable in which a return code is returned
to the local program. The return code indicates the result of verb
axecution. The RETURN_CONTROL parameter determines which of the fol-
lowing return codes can be returned to the program.

If RETURN_CONTROL(WHEN_SESSION_ALLOCATED) is specified, one of
the following return codes is returned:

- oK

- ALLOCATION_ERROR (with onae of the following subcodes)
— ALLOCATION_FAILURE_NO_RETRY
— ALLOCATION_FAILURE_RETRY
— SYNC_LEVEL_NOT_SUPPORTED_BY_LU

- PARAMETER_ERROR (for one of the following reasons)
— Invalid LU name
— Invalid mode name

If RETURN_CONTROLCDELAYED_ALLOCATION_PERMITTED) is specified,
one of the following return codes is returned:

Chapter 4. Conversation Verbs 4%-5

MC_ALLOCATE

0K
- PARAMETER_ERROR (for one of the following reasons)
= Invalid LU name
— Invalid mode name

If RETURN_CONTROL(IMMEDIATE) is specified, one of the following
return codes is returned:

- 0K
- ALLOCATION_ERROR (with the following subcode)
— SYNC_LEVEL_NOT_SUPPORTED_BY_LU
- PARAMETER_ERROR (for one of the following reasons)
— Invalld LU name
— Invalid mode name
- UNSUCCESSFUL (for the following reason)
— Session not immediately available

State Changes (when RETURN CODE indicates 0K):
Send state is entered.

ABEND Conditions:
Parameter Check

L K N N J ® o060 00

The program does not have mapped conversation support defined.
LU_NAME(OKN) is specified and not supported.

MODE_NAME specifies the SNA-defined mode name, SNASVCMG.

TPN specifies an SNA service transactlon program.

TPN specifies a null (zero length) va

RETURN_CONTROL (DELAYED_ALLOCATION PERMITTED) is specified and
not supported.

RETURN_CONTROL (IMMEDIATE) is specified and not supported.

SYNC_ LEVEL(SYNCPT) is specified and not supported

SECURITY(SAME) is specified and not supported
SECURITY(PGM(USER_ID(variable) PASSNORD(varlable))) is specified
and not supported.

SECURITY(PGM(PROFILE(variable))) is specified and not supported.
PIP(YES(variable)) is specified and not supported.

state Check

None

Notes:

1'

Depending on the product, the LU may send the allocation request
to the remote LU as soon as it allocates a session for the mapped
conversation. Alternatively, the LU may buffer the allocation
request until it accumulates from the PIP parameter of this verb
or from one or more subsequent MC_SEND_DATA verbs a sufficient
amount of information for transmission, or until the local pro-
gram issues a subsequent verb other than MC_SEND_DATA that
explicitly causes the LU to flush its send buffer. The amount of
information that is sufficient for transmission depends on the
characteristics of the sessici allceczted for the mapped conversa-
tion, and can vary from une session to another.

The)ncal program can ensure that the remote program is connected
ag AffggATgs possible by issuing MC_FLUSH immediately after

Two LUs connected by a session may both attempt to allocate a
mappaed conversation on the session at the same time. This is
called contention. Contention is resolved by making one LU the
contantion winner of the session and the other LU the contention
loser of the session. The contention-winner LU allocates a mapped
conversation on a session without asking permission from the con-
tention-loser LU. Conversaly, the contention-loser LU requests
permission from the contention-winner LU to allocate a mapped
conversation on the session, and the contention-winner LU aither
grants or raejects the raquest.

4-6 SNA Transaction Programmer's Reference Manual for LU Type 6.2

Mapped Conversation verbs

If the program issues MC_ALLOCATE with the parameter
RETURN_CONTROL(DELAYED_ ALLOCATION _PERMITTED), the LU delays
allocation of the session until it flushes its send buffer. At
that time the LU allocates the session and transmits the allo-
cation request to the remote LU. The program is unaffected by the
delayed allocation of the session, with one exception: When the
LU allocates a contention-loser session, it does so by transmit-
ting the allocation request and then waiting for information to
arrive before returning control to the program. This can affect
the sequence of tha verbs that the program can issue.

Fonaexample. suppose the program has the following sequence of
verbs:

MC_ALLOCATE with
RETURN_CONTROL (DELAYED_ALLOCATION_PERMITTED)

MC_PREPARE_TO_RECEIVE with TYPE (FLUSH)
MC_REQUEST_TO_SEND

In this example, assume the program is using MC_REQUEST_TO_SEND
to prompt the remote program to begin sending information,
instead of requesting send control. However, if the LU allocates
a contention-loser session (and an allocation error or resource
failure does not occur), control is not returned to the program
after it issues the MC_PREPARE_TO_RECEIVE until the remote pro-
gram sends some information. If the remote program waits for the
REQUEST_TO_SEND notification before sending any information, a
deadlock condition occurs. This deadlock can be avoided by issu-

the MC_ALLOCATE with either RETURN_CONTROL
(NHEN SESSION_ ALLOCATED) or RETURN_CONTROL C(IMMEDIATE).

SYNC_LEVEL(SYNCPT) permits use of the SYNCPT and BACKOUT verbs
and the Resynchronization transaction program (an SNA service
transaction program), to aid in maintaining consistency across
all protected resources within a distributed logical unit of
work. The Resynchronization program performs sync point resyn-
chronization, which maintains this consistency when session fail-

ure and reinitiation occurs. See SNA Eormag and Protocol
Reference Manual: Architecture logic for LU Tvpe 6.2 for more

details of syne point resynchronization.

Each LU indicates at session activation time whether it will
accept LU security parameters on allocation requests the partner
LU sends. If the remote LU will not accept any security parame-
ters from the local LU, and the local program specifias SECURI-
TY(SAME) or SECURITY(PGM(...)), the local LU downgradas the
spacification to SECURITY(NONE). Similarly, if tha remote LU
will not accept the local LU's verification of the user ID and
password, and the local program specifies SECURITY(SAME), the
local LU downgrades the specification to SECURITY(NONE).

The remote program is connected to the other end of the mapped
convarsation in receive state.

The program uses the resource ID, returned to the program on the
RESOURCE parameter, on all subsequent mapped conversation verbs
it issues for this mapped conversation.

References in this verb description to a program being in a par-

tjcular state are only in terms of the allocated mapped conversa-
ion.

Chapter 4. Conversation Varbs 4-7

MC_CONFIRM

Sends a confirmation request to a remote transaction program and waits
for a reply. This verb allows the local and remote programs to syn-
chronize their processing with one another. The LU flushes its send
buffer as a function of this verb.

MC_CONFIRM

Su ie arameters:
RESOURCE (variable)

e ed Parameters:
RETURN_CODE (variable)
REQUEST_TO_SEND_RECEIVED (variable)

H

supplied Pa et H

RESOURCE specifies the variable containing the resource ID. The
mapped conversation must be allocated with a synchronization level of
CONFIRM or SYNCPT.

Returned Parameters:

RETURN_CODE specifies the variable in which a return code is returned
to th:.local program. The return code indicates the result of verb
execution.

0K (remote program replied MC_CONFIRMED)
ALLOCATION_ERROR
BACKED_OUT
DEALLOCATE_ABEND
FMH_DATA_NOT_SUPPORTED
MAPPING_NOT_SUPPORTED
MAP_NOT_FOUND
MAP_EXECUTION_FAILURE
PROG_ERROR_PURGING
RESOURCE_FAILURE_NO_RETRY
RESOURCE_FAILURE_RETRY

REQUEST_TO_SEND_RECEIVED specifies the variable in which is returned
an indication of whether REQUEST_TO_SEND has been receivad. The indi-
cation is either YES or NO

¢ 0 00000 060 00

. YES indicates a REQUEST_TO_SEND notification has been received
from the remote transaction program. The remote program has
issued MC_REQUEST_TO_SEND, requesting the local program to enter
receive state and thereby place the remote program in send state.

o NO indicates a REQUEST_TO_SEND notification has not been
received.

Stat anges ETURN CO indicates 0KJ:

Receive state is entered when the verb is issued in defer state fol-
lowing MC_PREPARE_TO_RECEIVE.

Reset state is entered when the verb is issued in defer state follow-
ing MC_DEALLOCATE.

No state change occurs when the verb is issued in send state.
ABEND Conditions:
Parameter Check

. This mapped conversation was allocated with SYNC_LEVEL(NONE).
° RESOURCE specifies an unassigned resource ID.

4-8 SNA Transaction Programmer's Reference Manual for LU Type 6.2

Mapped conversation verbs

State Check

The mapped conversation is not in send or defer state.

Notes:

1.

The program may use this verb for various application-level func-
tions. For example:

. The program may issue this verb immediately following an
MC_ALLOCATE in order to determine whether the allocation of
the mgpped conversation is successful before sending any data
records.

. The program may issue this verb as a request for acknowledge-
ment of data records it sent to the remote program. The
remote program may respond by issuing MC_CONFIRMED as an
indication that it received and processed the data records
without error, or by issuing MC_SEND_ERROR as an indication
that it encountered an error.

When REQUEST_TO_SEND_RECEIVED indicates YES, the remote program
requests the local program to enter receive state and thereby
place the remote program in send state. A program enters receive
state by means of the MC_PREPARE_TO_RECEIVE or
MC_RECEIVE_AND_MWAIT verb. The partner program enters the corre-
sponding send state when it issues an MC_RECEIVE_AND_WAIT or
MC_RECEIVE_IMMEDIATE verb and receives the SEND indication (on
the WHAT_RECEIVED parameter).

References in this verb ‘description to a program being in a par-

:jcular state are only in terms of the specified mapped conversa-
ion.

Chapter 4. Conversation Verbs 4-9

MC_CONFIRMED

Sends a confirmation reply to the remote transaction program. This
verb allows the local and remote programs to synchrontze_therr proc-
essing with one another. The local program can issue this verb when
it receives a confirmation request (see the WHAT_RECEIVED parameter
of the MC_RECEIVE_AND_WAIT or MC_RECEIVE_IMMEDIATE verb).

MC_CONFIRMED

supplied Parameters:
RESOURCE (variable)

H

Sy

ied Parameters:

RESOURCE specifies the variable containing the resource ID.

State Changaes:

Receive state is entered when CONFIRM was received on the preceding
MC_RECEIVE_AND_WAIT or MC_RECEIVE_IMMEDIATE.

Send state is entered when CONFIRM_SEND was received on the preceding
MC_RECEIVE_AND_WAIT or MC_RECEIVE_IMMEDIATE.

Deallocate state is entered when CONFIRM_DEALLOCATE was received on
the preceding MC_RECEIVE_AND_WAIT or MC_RECEIVE_IMMEDIATE.

ABEND Conditions:
Parameter Check

RESOURCE specifies an unassigned resource ID.

State Check

The mapped conversation is not in confirm state.

Notes:

1.

2.

The program can issue this verb only as a reply to a confirmation
requaest; the verb cannot be issued at any other timea.

The program may use this verb for various application-level func-
tions. For example, the remote program may send some data records
followed by a confirmation request. When the local program
receives the confirmation request, it may issue this verb as an
ingication that it received and processed the data records with-
out error.

References in this verb description to a program being in a par-

:jcular state are only in terms of the specified mapped conversa-
ion.

4-10 SNA Transaction Programmer's Reference Manual for LU Type 6.2

Mapped conversation verbs

MC_DEALLOCATE
Deallocates the specified mapped conversation from the transaction
program. The deallocation can be either completed as part of this
verb, or deferred until the program issues an MC_ FLUSH, MC_CONFIRM, or
SYNCPT verb. When it is completed as part of this verb it can include
the function of the MC_FLUSH or MC_CONFIRM verb. The resource ID
becomes unassigned when deallocation is complete.
supplied Parameters:
MC_DEALLOCATE RESOURCE (variable)

ABEND
LOCAL

S!HO LEVEL) }

{
(

TYPE % OONFIRH)
(

Returned Parameters:
RETURN_CODE (variable)
H

Supplied Parameters:

RESOURCE specifies the variable containing the resource ID of the
mapped conversation to be deallocated.

TYPE specifies the type of deallocation to be performed.

L SYNC_LEVEL specifies to perform deallocation based on the syn-
chronization level allocated to this mapped conversation:

- If SYNC_LEVEL(NONE), execute the function of the MC_FLUSH
vaerb and deallocate the mapped conversation normally.

- If SYNC_LEVEL(CONFIRM), exaecute the function of the
MC_CONFIRM verb and if it is successful (as indicated by a
return code of 0K on this MC_DEALLOCATE verb), deallocate the
mapped conversation normally; if it is not successful, the
stgte of the mapped conversation is determined by the return
code.

- If SYNC_LEVEL(SYNCPT), defer the deallocation until the pro-
gram issues a SYNCPT, or the program issues an MC_CONFIRM or
MC_FLUSH for this mapped conversation. If the SYNCPT or
MC_CONFIRM is successful (as indicated by a return code of 0K
on that verb) or MC_FLUSH is issued, the mapped conversation
is then deallocated normally; otheruwise, the state of the
mapped conversation is determined by the return code.

. FLUSH specifies to execute the function of the MC_FLUSH verb and
deallocate the mapped conversation normally.

. CONFIRM specifies to execute the function of the MC_CONFIRM verb
and if it is successful (as indicated by a return code of 0K on
this MC_DEALLOCATE verb), deallocate the mapped conversation
normally; if it is not successful, the state of the mapped conver-
sation is determined by the return code.

. ABEND specifies to execute the function of the MC_FLUSH verb when
the mapped conversation is in send or defer state, and deallocate
the mapped conversation abnormally. Data purging can occur uwhen
the mapped conversation is in receive state.

. LOCAL specifies to deallocate the mapped conversation locally.

This type of deallocation must be specified if, and only if, the
mapped conversation is in deallocate state. Deallocate state is

Chapter 4. Conversation Verbs 4-11

MC_DEALLOCATE

entaered when the program receives on a previously issued verb a
return code indicating the mapped conversation has been deallo-
cated (see "Return Codes" on page 4-99).

The execution of the MC_FLUSH or MC_CONFIRM function as part of this
verb includes the flushing of the LU's send buffer. When, instead,
the deallocation is deferred, the LU also defers flushing its send
buffe;.until the program issues a subsequent verb for this mapped con-
versation.

Returned Parameters:

RETURN_CODE specifies the variable in which a return code is returned
to the local program. The return code indicates the result of verb
execution. The TYPE parameter determines which of the following
return codes can be returned to the program.

U If TYPE(SYNC_LEVEL) is specified and the synchronization level
allocated to this mapped conversation is NONE, or TYPE(FLUSH),
TYPECABEND), or TYPE(LOCAL) is specified, the following return
code is returned:

- 0K (deallocation is complete)

. If TYPE(SYNC_LEVEL) is specified and the synchronization level
allocated to this mapped conversation is CONFIRM, or
TY:E(COEFIRM) is specified, one of the following return codes is
returned:

0K (deallocation is complete)
ALLOCATION_ERROR
DEALLOCATE_ABEND
FMH_DATA_NOT_SUPPORTED
MAPPING_NOT_SUPPORTED
MAP_NOT_FOUND
MAP_EXECUTION_FAILURE
PROG_ERROR_PURGING
RESOURCE_FAILURE_NO_RETRY
RESOURCE_FAILURE_RETRY

U] If TYPE(SYNC_LEVEL) is specified and the synchronization level
allocated to this mapped conversation is SYNCPT, the following
return code is returned:

- 0K (deallocation is deferred)

State changes (uhen RETURN CODE indicates OK):

pefer state is entered when TYPE(SYNC_LEVEL) is specified and the syn-
chronization level is SYNCPT.

Reset state is entered when TYPE(FLUSH), TYPE(CONFIRM), TYPE(LOCAL),
or TYPE(ABEND) is specified, or when TYPE(SYNC_LEVEL) is specified
and the synchronization level is NONE or CONFIRM.

ABEND Conditions:
Parameter Check

. RESOURCE specifies an unassigned resource ID.
. TYPE(CONFIRM) is specified and the mapped conversation is allo-
cated with SYNC_LEVEL(NONE).

State Check

. TYPECFLUSH), TYPE(CONFIRM), or TYPE(SYNC_LEVEL) is specified and
the mapped conversation is not in send state.

L TYPECABEND) is specified and the mapped conversation is not in
send, defer, receive, confirm, or sync point state.

. TYPE(LOCAL) is specified and the mapped conversation is not in
deallocate state.

4-12 SNA Transaction Programmer's Reference Manual for LU Type 6.2

Mapped Conversation Verbs

Notes:

1.

When the deallocation is deferred (see the TYPE parameter), the LU
buffers the deallocation information to be sent to the remote LU
until the local program issues a verb that causes the LU to flush
its send buffer.

The TYPE(SYNC_LEVEL) parameter is intended to be used by the
transactlon program in order to deallocate the mapped conversa-
tion based on the synchronization level allocated to the mapped
conversation.

. If the synchronization level is NONE, the mapped conversation
is unconditionally deallocated.

. If the synchronization level is CONFIRM, the mapped conversa-
tion is deallocated when the remote program responds to the
confirmation request by issuing MC_CONFIRMED. The mapped
conversation remains allocated when the remote program
responds to the confirmation request by issuing
MC_SEND_ERROR.

. If the synchronization level is SYNCPT, the mapped conversa-
tion is deallocated when the local program subsequently
issues SYNCPT and all programs throughout the transaction,
connected to conversations having the synchronization level
of SYNCPT, respond to the sync point request by issuing
SYNCPT. The mapped conversation remains allocated when the
remote program responds to the sync point request by issuing
226255?‘ERR0R’ or one or more programs respond by issuing

The TYPE(FLUSH) parameter is intended to be used by the trans-
action program in order to unconditionally deallocate the mapped
conversation regardless of its synchronization level.
TYPE(FLUSH) is functionally equivalent to:

U TYPE(SYNC_LEVEL) with a synchronization level of NONE.

o TYPE(SYNC_LEVEL) with a synchronization level of SYNCPT, fol-
lowed by the MC_FLUSH verb.

The TYPE(CONFIRM) parameter is intended to be used by the trans-
action program in order to conditionally deallocate the mapped
conversation, depending on the remote program's response, when
the synchronization level is CONFIRM or SYNCPT. TYPE(CONFIRM) is
functionally equivalent to:

. TYPE(SYNC_LEVEL) with a synchronization level of CONFIRM.

. TYPE(SYNC_LEVEL) with a synchronization level of SYNCPT, fol-
lowed by the MC_CONFIRM verb.

The mapped conversation is deallocated when the remote program
responds to the confirmation request by issuing MC_CONFIRMED.
The mapped conversation remains allocated when the remote program
responds to the confirmation request by issuing MC_SEND_ERROR.

The TYPE(ABEND) parameter is intended to be used by tha trans-
action program in order to unconditionally deallocate the mapped
conversation regardless of its synchronization level and its cur-
rent state. Specifically, the parameter is intended to be used
when the program detects an error condition that prevents further
usaeful communications, that is, communications that would lead to
successful completion of the transaction. The specific use and
meaning of ABEND are program-defined.

The TYPE(LOCAL) parameter is intended to be used by the trans-
action program in order to complete the program's deallocation of
the mapped conversation after receiving an indication that tha
mapped conversation has been deallocated from the session, an
ingicatiog such as a DEALLOCATE_NORMAL or RESOURCE_FAILURE_RETRY
return code.

Chapter 4. Conversation Verbs 4-13

MC_DEALLOCATE

The remote transaction program receives the deallocate notifica-
gigg by means of a return code or what-received indication, as
ollows:

. DEALLOCATE_NORMAL return code: The local program specified
either TYPE(FLUSH); TYPE(SYNC_LEVEL) and the synchronization
level is NONE; or TYPE(SYNC_LEVEL), the synchronization level
;g FEJ?&PT’ and the local program subsequently issued

. CONFIRM_DEALLOCATE what-received indication: The local pro-
gram specified either TYPE(CONFIRM); TYPE(SYNC_LEVEL) and the
synchronization level is CONFIRM; or TYPE(SYNC_LEVEL), the
synchronization level is SYNCPT, and the local program subse-
quently issued MC_CONFIRM.

L TAKE_SYNCPT_DEALLOCATE what-received indication: The local
program specified TYPE(SYNC_LEVEL), the synchronization level
is SYNCPT, and the local program subsequently issued SYNCPT.

U DEALLOCATE_ABEND return code: The local program specified
TYPECABEND), with the following exception: If the remote
program has issued MC_SEND_ERROR in receive state, a DEALLO-
82;5‘2g§nﬁL return code is reported instead of DEALLO-

MC_DEALLOCATE with TYPE(ABEND) resets or cancels posting. If
posting is active and the mapped conversation has been posted,
posting is reset. If posting is active and the mapped conversa-
tion has not been posted, posting is canceled (posting will not
occ:f). See the MC_POST_ON_RECEIPT verb for more details about
posting.

References in this verb description to a program being in a par-

:jcular state are only in terms of the specified mapped conversa-
ion.

4~-16 SNA Transaction Programmer's Reference Manual for LU Type 6.2

Mapped Conversation verbs

MC_FLUSH

Flushes the local LU's send buffer. The LU sends any information it
has buffaered to the remote LU. Information the LU buffers can come
from MC_ALLOCATE, MC_DEALLOCATE, MC_SEND_DATA,
MC_PREPARE_TO_RECEIVE, or MC_SEND_ERROR. Refer to the descriptions
of these verbs for details of the information the LU buffers and when
buffering ocecurs.

Supplied Parameters:

MC_FLUSH RESOURCE (variable)

H

Supplied Parameters:

RESOURCE specifies the variable containing the resource ID.

state Changes:

Receive state is entered when the verb is issued in defer state fol-
lowing MC_PREPARE_TO_RECEIVE.

Reset state is entered when the verb is issued in defer state follow-
ing MC_DEALLOCATE.

No state change occurs when the vaerb is issued in send state.
ABEND Conditions:
Parameter Check

. This verb is not supported.
. RESOURCE specifies an unassigned resource ID.

state Check
The mapped convaersation is not in send or defer state.
otes?

1. This verb is useful for optimization of processing between the
local and remote programs. The LU normally buffers the data
records from consecutive MC_SEND_DATAs until it has a sufficient
amount for transmission. At that time it transmits the buffered
data records. However, the local program can issue MC_FLUSH in
order to cause the LU to transmit the buffered data records. In
this way, the local program can minimize the delay in the remote
program's processing of the data records.

2. This verb can be issued after MC_DEALLOCATE with TYPE(SYNC_LEVEL)
when the synchronization level for the mapped conversation is
SYNCPT. The effect to the remote program is the same as issuing
MC_DEALLOCATE with TYPE(FLUSH). The mapped conversation is deal-
located at tha completion of the MC_FLUSH verb.

3. This verb can be issued after MC_PREPARE_TO_RECEIVE with
TYPE(SYNC_LEVEL) when the synchronization level for the mapped
convearsation is SYNCPT. The effect to the remote program is the
same as issuing MC_PREPARE_TO_RECEIVE with TYPE(FLUSH). The
mapped conversation enters receive state at the completion of the
MC_FLUSH verb.

4. The LU flushes its send buffer only when it has some information
to transmit. If the LU has no information in its send buffer,
nothing is transmitted to the remote LU.

5. References in this verb description to a program being in a par-

:jcular state are only in terms of the specified mapped conversa-
jon.

Chapter 4. Conversation Verbs 4-15

MC_GET_ATTRIBUTES

Returns information pertaining to the specified mapped convaersation.

MC_GET_ATTRIBUTES RESOURCE (variable)

Supplied Parameters:

et ed Par [H

-

OWN_FULLY_QUALIFIED_LU_NAME (variable)]

PARTNER_LU_NAME (variable)]
PARTNER_FULLY_QUALIFIED_LU_NAME (variable)]
MODE_NAME (variable)]

SYNC_LEVEL (variable)]

SECURITY_USER_ID (variable)]

[SECURITY_PROFILE (variable)]

LUN_IDENTIFIER (variable)]

CONVERSATION_CORRELATOR (variable)]

4-16

sSu ied Parameters:

RESOURCE specifies the variable containing the resource ID of the
mapped conversation of which the attributes are desired.

Returned Parameters:

OUN_FULLY_QUALIFIED_LU_NAME specifies the variable for returning the
fully qualified name of the LU at which the local transaction program
is located. If the local fully qualified LU name is not knoun, a null
value is returned.

PARTNER_LU_NAME specifies the variable for returning the name of the
LU at which the remote transaction program is located. This is a name
by which the local LU knows the remote LU for the purpose of allocat-
ing a mapped conversation. Refer to the description of the LU_NAME
parameter of MC_ALLOCATE for more details.

PARTNER_FULLY_QUALIFIED_LU_NAME specifies the variable for returning
the fully qualified name of the LU at which the remote transaction
program is located. If the partner's fully qualified LU name is not
knouwn, a null value is returned.

MODE_NAME specifies the variable for returning the mode name for the
session on which the mapped conversation is allocated.

SYNC_LEVEL specifies the variable for returning the lavel of synchro-
nization processing being used for the mapped conversation. The syn-
chronization levels ara:

. NONE
U CONFIRM

SNA Transaction Programmer's Reference Manual for LU Type 6.2

Mapped Conversation Verbs
. SYNCPT

SECURITY_USER_ID specifies the variable for returning the user ID
carried on the allocation request that initiated execution of the
local program. A null value is returned if the allocation request did
not contain a user ID.

SECURITY_PROFILE specifies the variable for returning the profile
carried on the allocation request that initiated execution of the
local program. A null value is returned if the allocation request did
not contain a profile.

LUH_IDENTIFIER specifies the variable for returning the logical unit
of work (LUW) identifier associated with the mapped conversation. The
LUWN identifier is created and maintained by the LU. The LU uses it to
identify the most recent sync point and for accounting purposes. If
notLUN ;dentifier is used on the mapped conversation, a null value is
returned.

CONVERSATION_CORRELATOR specifies the variable for returning the con-
versation correlator. The conversation correlator is created and
maintained by the LU. The LU uses it during sync point resynchroniza-
tion. If no conversation correlator is used on the mapped conversa-
tion, a null value is returned.

state Changes:

None

ABEND Conditions:
Parameter Check

This verb is not supported.

RESOURCE specifies an unassigned resource ID.
SECURITY_USER_ID is specified and not supported.
SECURITY_PROFILE is specified and not supported.
LUW_IDENTIFIER is specified and not supported.
CONVERSATION_CORRELATOR is specified and not supported.

State Check

® © 0 000

None
oxes:

1. The program may issue this verb in order to obtain the attributes
of the mapped conversation, including the one by which the program
was started.

2. Specifying SECURITY_USER_ID or SECURITY_PROFILE returns the user
ID or profile carried on the allocation request that initiated
execution of the local program, regardless of which resource 1ID is
supplied on the RESOURCE parameter.

3. The LU creates the LUW identifier for its use during sync point
processing, and for accounting purposes. For sync point, the LUW
idgn:ifier uniquely identifies the most recent synchronization
point.

4. The LU creates the conversation correlator for its use during sync
point resynchronization. For sync point resynchronization, the
conversation correlator correlates the logical unit of work to
the sync point states associated with the current instance of the
local program.

Chapter 4. Conversation Verbs 4-17

MC_POST_ON_RECEIPT

Causes the LU to post the specified mapped conversation when informa-
tion is available for the program to receive. The information can be
data, mapped conversation status, or a request for conflrmation or
sync point. WAIT should be issued after MC_POST_ON_RECEIPT in order
to wait for posting to occur. Alternatively, MC TEST may be issued
following MC_POST_ON_RECEIPT in order to determine when posting has
occurred.

MC_POST_ON_RECEIPT | RESOURCE (variable)

Supplied Parameters:

LENGTH (variable)

.
?

4-18

Supplied Parameters:
RESOURCE specifies the variable containing the resource ID.

LENGTH specifies the variable containing a length value, which is the
maximum length data record that the program can receive. This parame-
ter is used to determine when to post the mapped conversation for the
receipt of a data record.

State Changes:

None

ABEND Conditions:
Parameter Check

. This verb is not supported.
. RESOURCE specifies an unassigned resource ID.

State Check

The mapped conversation is not in receive state.
Notes:

1. This verb is intended to be used in conjunction with MC_TEST or
WAIT. The use of this verb and WAIT allows a program to perform
synchronous receiving from multiple mapped conversations, wherea
the program issues this verb for each of the mapped conversations
and then issues WAIT (for each mapped conversation) to wait until
information is available to be received on the mapped conversa-
tions. The use of this verb and MC_TEST allows a program to con-
tinue 1its processing and test the mapped conversations to
determine when information is available to be received.

2. Posting occurs when the LU has any information that the program
can receive, such as a data record, mapped conversation status, or
a request for confirmation or sync point. Refer to the
MC_RECEIVE_AND_WAIT verb for a description of the types of infor-
mation a program can receive.

3. Posting is active for a mapped conversation when
MC_POST_ON_RECEIPT has been issued for the mapped conversation
and posting has not yvet been reset or cancelled.

Posting is reset when any of the following verbs is issued for the
same mapped conversation as specified on MC_POST_ON_RECEIPT after
the mapped conversation is posted:

BACKOUT

MC_DEALLOCATE with TYPE(ABEND)
MC_RECEIVE_AND_WAIT
MC_RECEIVE_IMMEDIATE

SNA Transaction Programmer's Reference Manual for LU Type 6.2

Mapped Conversation verhs

MC_SEND_ERROR
MC_TEST
WAIT

Posting is cancelled when any of the following verbs is issued for
the same mapped conversation as specified on MC_POST_ON_RECEIPT
before the mapped conversation is posted:

BACKOUT

MC_DEALLOCATE with TYPECABEND)
MC_RECEIVE_IMMEDIATE
MC_SEND_ERROR

In order for the program to activate posting again after posting
has been reset or cancelled, the program issues another
MC_POST_ON_RECEIPT.

Any number of MC_POST_ON_RECEIPTs may be issued for a given mapped
conversation before posting is reset or cancelled. The last
MC_POST_ON_RECEIPT issued for a mapped conversation is the one
that determines when posting will occur for data. For example, if
a program issues MC_POST_ON_RECEIPT with LENGTH(1000) in prepara-
tton to receive a 1000 byte data record, and then issues the verb
again with LENGTH(500), posting will occur when 500 bytes of the
data record are available.

MC_POST_ON_RECEIPT with LENGTH(0) has no special significance.
It specifies that posting for a data record is to occur upon
receipt of any amount of the data record of one byte or more. It
is equivalent to MC_POST_ON_RECEIPT with LENGTH(1).

References in this verb description to a program being in a par-

:fcular state are only in terms of the specified mapped conversa-
ion.

Chapter 4. Conversation Verbs 4-19

MC_PREPARE_TO_RECEIVE

Changes the mapped conversation from send to receive state in prepara-
tion to receive data. The change to receive state can be either com-
pleted as part of this verb, or deferred until the program issues an
MC_FLUSH, MC_CONFIRM, or SYNCPT verb. When it is completed as part of
this verb it includes the function of the MC_FLUSH or MC_CONFIRM verb.

MC_PREPARE_TO_RECEIVE | RESOURCE (variable)

Supplied Parameters:

(SYNC_LEVEL)
TYPE (FLUSH)

L (CONFIRM)

(LONG)

[LOCKS (SHORT)]

Returned Parameters:
RETURN_CODE (variable)
H

4-20

] 1i arameters:
RESOURCE specifies the variable containing the resource ID.

TYPE specifies the type of prepare-to-receive to be performed for this
mapped conversation.

L SYNC_LEVEL specifies to perform the prepare-to-receive based on
the synchronization level allocated to this mapped conversation:

- If SYNC_LEVEL(NONE), execute the function of the MC_FLUSH
verb and enter receive state.

= If SYNC_LEVEL(CONFIRM), wexecute the function of the
MC_CONFIRM verb and if it is successful (as indicated by a
return code of 0K on this MC_PREPARE_TO_RECEIVE verb), enter
receive state; if it is not successful, the state of the
mapped conversation is determined by the return code.

- If SYNC_LEVEL(SYNCPT), enter defer state until the program
issues a SYNCPT, or the program issues an MC_CONFIRM or
MC_FLUSH for this mapped conversation. If the SYNCPT or
MC_CONFIRM is successful (as indicated by a return code of 0K
on that verb) or MC_FLUSH is issued, receive state is then
entered for this mapped conversation; otherwise, the state of
the mapped conversation is determined by the return code.

L FLUSH specifies to execute the function of the MC_FLUSH verb and
enter receive state.

. CONFIRM specifies to execute the function of the MC_CONFIRM verb
and, if it is successful (as indicated by a return code of 0K on
this MC_PREPARE_TO_RECEIVE verb), enter receive state; if it is
not successful, the state of the mapped conversation is deter-
mined by the return code.

The execution of the MC_FLUSH or MC_CONFIRM function as part of this
varb includes the flushing of the LU's send buffer. When, instead,
defer state is entered, the LU defers flushing its send buffer until
the program issues a subsequent verb for this mapped conversation.

LOCKS specifies when control is to be returned to the local program
following execution of the CONFIRM function of this verb or following
execution of an MC_CONFIRM verb issued subsequent to this verb. This

SNA Transaction Programmer's Reference Manual for LU Type 6.2

Mapped Conversation verbs

parameter is significant only when TYPE(CONFIRM) is also specified or
when TYPE(SYNC_LEVEL) is also specified and the synchronization level
for this mapped conversation is CONFIRM; or when TYPE(SYNC_LEVEL) is
also specified, the synchronization level for this mapped conversa-
tion is SYNCPT, and a subsequent MC_CONFIRM is issued. Otherwise,
this parameter has no meaning and is ignored.

. SHORT specifies to return control when an affirmative reply is
received, as follows:

- When the synchronization level is CONFIRM, return control
from_ e:fcution of this verb when an MC_CONFIRMED reply is
received.

- When the synchronization level is SYNCPT, return control
immediately from execution of this verb; return control from
execution of a subsequent MC_CONFIRM verb when a correspond-
ing MC_CONFIRMED reply is received.

. LONG specifies to return control when information, such as data,
is received from the remote program following an affirmative
reply, as follows:

- When the synchronization level is CONFIRM, return control
from execution of this verb when information is received fol-
lowing an MC_CONFIRMED reply.

- When the synchronization level is SYNCPT, return control
immediately from execution of this verb; return control from
execution of a subsequent MC_CONFIRM verb when information is
received following a corresponding MC_CONFIRMED reply.

Returned Parameters:

RETURN_CODE specifies the variable in which a return code is returned
to the local program. The return code indicates the result of verb
exaecution. The TYPE parameter determines which of the following
return codes can be returned to the program.

. If TYPE(FLUSH) is specified, or if TYPE(SYNC_LEVEL) is specified
and the synchronization level allocated to this mapped conversa-
tion is NONE, the following return code is returned:

- 0K

L If TYPE(SYNC_LEVEL) is specified and the synchronization level
allocated to this mapped conversation is CONFIRM, or
TY:E(COZFIRM) is specified, one of the following return codes is
returned:

0K

ALLOCATION_ERROR
DEALLOCATE_ABEND
FMH_DATA_NOT_SUPPORTED
MAPPING_NOT_SUPPORTED
MAP_NOT__FOUND
MAP_EXECUTION_FAILURE
PROG_ERROR_PURGING
RESOURCE_FAILURE_NO_RETRY
RESOURCE_FAILURE_RETRY

. If TYPE(SYNC_LEVEL) is specified and the synchronization level
allocated to this mapped conversation is SYNCPT, the following
return code is returned:

- 0K
state Changes (uhen RETURN CODE indicates 0K):

Defer state is entered when TYPE(SYNC_LEVEL) is specified and the syn-
chronization level is SYNCPT.

Chapter 4. Conversation Verbs 4-21

MC_PREPARE_TO_RECEIVE

Receive state is entered when TYPE(FLUSH) or TYPE(CONFIRM) is.spegi-
fiad, or when TYPE(SYNC_LEVEL) is specified and the synchronization
lavel is NONE or CONFIRM.

ABEND Conditions:

Parameter Check

4-22

This verb is not supported.

RESOURCE specifies an unassigned resource ID. .
TYPE(CONFIRM) is specified and the conversation is allocated with
SYNC_LEVEL(NONE).

LOCKS(LONG) is specified and not supported.

state Chack

The mapped conversation is not in send state.

Notes:

1.

The TYPE(SYNC_LEVEL) parameter is intended to be used by the
transaction program in order to transfer send control to the
remote program based on the synchronization level allocated to
the mapped conversation.

. If the synchronization level is NONE, send control is trans-
ferred to the remote program without any synchronizing
acknouledgment.

L If the synchronization level is CONFIRM, send control is
transferrad to the remote program with confirmation
requested.

) If the synchronization level is SYNCPT, transfer of send con-
trol is deferred. When the local program subsequently issues
SYNCPT, send control is transferred to the remote program
with syne point requestead.

The TYPE(FLUSH) parameter is intended to be used by the trans-
action program in order to transfer send control to the remote
program without any synchronizing acknowledgment. TYPE(FLUSH) is
functionally equivalent to:

. TYPE(SYNC_LEVEL) with a synchronization level of NONE.

U TYPE(SYNC_LEVEL) with a synchronization laval of SYNCPT, fol-
lowed by tha MC_FLUSH verb.

The TYPE(CONFIRM) parameter is intended to be used by the trans-
action program in order to transfer send control to the remote
program wWith confirmation requested. TYPE(CONFIRM) is func-
tionally equivalent to:

. TYPE(SYNC_LEVEL) with a synchronization lavel of CONFIRM.

. TYPE(SYNC_LEVEL) with a synchronization level of SYNCPT, fol-
lowed by the MC_CONFIRM verb.

The remote transaction program receives send control by means of a
what-received indication of SEND, CONFIRM_SEND, or
TAKE_SYNCPT_SEND, as follows:

. SEND: The local program specified either TYPE(FLUSH);
TYPE(SYNC_LEVEL) and the synchronization level is NONE; or
TYPE(SYNC_LEVEL), the synchronization level is SYNCPT, and
the local program subsequently issued MC_FLUSH.)

. CONFIRM_SEND: The local program specified ei ther
TYPE(CONFIRM); TYPE(SYNC_LEVEL) and the synchronization level
is CONFIRM; or TYPE(SYNC_LEVEL), the synchronization level is
SYNCPT, and the local program subsequently issued MC_CONFIRM.

SNA Transaction Programmer's Reference Manual for LU Type 6.2

Mapped Conversation Verbs

J TAKE_SYNCPT_SEND: The local program specified
TYPE(SYNC_LEVEL), the synchronization level is SYNCPT, and
thae local program subsequently issuad SYNCPT.

If TYPE(SYNC_LEVEL) is specified and the synchronization level
for the mapped conversation is SYNCPT, the LU buffers the SEND
notification to be sent to the remote LU until the local program
issues a verb that causaes the LU to flush its send buffer.

The mapped conversation for the remote program enters the corre-
sponding send state when it issues an MC_RECEIVE_AND_WAIT or
MC_RECEIVE_IMMEDIATE verb and receives tha SEND indication (on
the WHAT_RECEIVED parameter). Tha remote program can then send
data to the local program.

References in this verb description to a program being in a par-

tjcular state are only in terms of the specified mapped conversa-
ion.

Chapter 4. Conversatiorn Verbs 4-23

MC_RECEIVE_AND_UWAIT

Waits for information to arrive on the specified mapped conversation
and then receives the information. If information is already avail-
able, the program receives it without waiting. The information can be
a data record, mapped conversation status, or a request for confjrm§-
tion or sync point. Control is returned to the program with an indi-
cation of the type of information.

The program can issue this verb when the mapped conversation is in
send state. In this case, the LU flushes its send buffer, sending all
buffered information and the SEND indication to the remote program.
This changes the mapped conversation to receive state. The LU then
waits for information to arrive. The remote program can send data to
the local program after it receives the SEND indication.

MC_RECEIVE_AND_WAIT | RESOURCE (variable)

Supplied Parameters:

Supplied-and-Returned Parameters:
LENGTH (variable)

Returned Paramaters:

RETURN_CODE (variable)
REQUEST_TO_SEND_RECEIVED (variable)
DATA (variable)

WHAT_RECEIVED (variable)

[MAP_NAME (variable)]

4-26

Su ied Parame :

RESOURCE specifies the variable containing the resource 1ID.

supplied-and-Returned Parameters:

LENGTH specifias the variable containing a length value that is the
maximum amount of the data record the program is to receive. When
control is returned to the program this variable contains the actual
amount of the data record the program received, up to the maximum. If
the program receives information other than data, this variable
remains unchanged.

Returned Parameters:

RETURN_CODE specifies the variable in which a return code is returned
to the program. The return code indicates the result of verb exe-
cution. The return codes that can be returned depend on the state of
the mapped conversation at the time this verb is issued.

. If this verb is issued in send state, the following return codes
can be returned:

oK

ALLOCATION_ERROR
BACKED_OUT
DEALLOCATE_ABEND
FMH_DATA_NOT_SUPPORTED
MAPPING_NOT_SUPPORTED
MAP_NOT_FOUND
MAP_EXECUTION_FAILURE
PROG_ERROR_PURGING

SNA Transaction Programmer's Referenca Manual for LU Type 6.2

Mapped Conversation verbs

— RESOURCE_FAILURE_NO_RETRY
— RESOURCE_FAILURE_RETRY

. If this verb is issued in receive state, the following return
codes can be returned:

0K

ALLOCATION_ERROR
BACKED_OUT
DEALLOCATE_ABEND
DEALLOCATE_NORMAL
FMH_DATA_NOT_SUPPORTED
MAPPING_NOT_SUPPORTED
MAP_NOT_FOUND
MAP_EXECUTION_FAILURE
PROG_ERROR_NO_TRUNC
PROG_ERROR_PURGING
RESOURCE_FAILURE_NO_RETRY
RESOURCE_FAILURE_RETRY

REQUEST_TO_SEND_RECEIVED specifies the variable in which is returned
an undtcatlon of whether REQUEST_TO_SEND has been received. The indi-
cation is either YES or NO

. YES indicates a REQUEST_TO_SEND notification has been received
from the remote transaction program. The remote program has
issued MC_REQUEST_TO_SEND, requesting the local program to enter
receive state and thereby place the remote program in send state

. NO indicates a REQUEST_TO_SEND notification has not been
received.

DATA specifies the variable in which the program is to receive the
data. When the program receives information other than data, as indi-
cg}ed by the WHAT_RECEIVED parameter, nothing is placed in this vari-
able.

WHAT_RECEIVED spacifies the variable in which is returned an indi-
cation of what the transaction program receives. Tha program should
examine this variable only when RETURN_CODE indicates O0OK; otheruise,
nothing is placed in this variable.

L DATA_COMPLETE indicates the program received a complete data
record or the last remaining portion of the record.

. DATA_TRUNCATED indicates the program received less than a com-
pleteddata record, and the LU discarded the remainder of the data
record.

. DATA_INCOMPLETE indicates the program received less than a com-
plete data record, and the LU retained the remainder of the data
record. The program may receive the remainder of the data record
by issuing another MC_RECEIVE_AND_WAIT (or possibly multiple
MC_RECEIVE_AND_WAITs).

. FMH_DATA_COMPLETE indicates the program received a complete data
record or the last remaining portion of the record, and the data
record contains FM headers.

. FMH_DATA_TRUNCATED indicates the program received less than a
complete data record containing FM headers, and the LU discarded
the remainder of the data record.

. FMH_DATA_INCOMPLETE indicates the program received less than a
complete data record containing FM headers, and the LU retained
the remainder of the data record. The program mav receive the
remainder of the data record by uing anothar
MC_RECEIVE_AND_WAIT (or possibly multiple Mc RECEIVE AND_MWAITSs).

U SEND indicates the remote program has entered receive state,

placing the local program in send state. The local program may
now issue MC_SEND_DATA.

Chapter 4. Conversation Verbs 4-25

MC_RECEIVE_AND_WAIT

4-26

U CONFIRM indicates the remote program has issued MC_CONFIRM,
requesting the local program to respond by issuing MC_CONFIRMED.
The program may respond, instead, by issuing a verb other than
MC_CONFIRMED, such as MC_SEND_ERROR.

L4 CONFIRM_SEND indicates the remote program has issued
MC_PREPARE_TO_RECEIVE with TYPECCONFIRM); or wWith
TYPE(SYNC_LEVEL), and either the synchronization level is CON-
FIRM, or it is SYNCPT and. the remote program subsequently.lssged
MC_CONFIRM. The local program may respond by issuing
MC_CONFIRMED, or by issuing another verb such as MC_SEND_ERROR.

. CONFIRM_DEALLOCATE indicates the remote program has issued
MC_DEALLOCATE with TYPE(CONFIRM); or with TYPE(SYNC_LEVEL), and
either the synchronization level is CONFIRM, or it is SYNCPT and
the remote program subsequently issued MC_CONFIRM. .The local
program may respond by issuing MC_CONFIRMED, or by issuing anoth-
er verb such as MC_SEND_ERROR.

. TAKE_SYNCPT indicates the remote program has issued _SYNCPT;
requesting the local program to respond by issuing SYNCPT in order
to perform the sync-point function on all protected resources
throughout the transaction. Issuing the SYNCPT verb also causes
an affirmative reply to be returned to the remote program if the
sync-point function is successful. The program may respond,
instead, by issuing a verb other than SYNCPT, such as BACKOUT or
MC_SEND_ERROR.

° TAKE_SYNCPT_SEND indicates the remote program has issued
MC_PREPARE_TO_RECEIVE with TYPE(SYNC_LEVEL), the synchronization
level is SYNCPT, and the remote program subsequently issued
SYNCPT. The local program may respond by issuing SYNCPT, or by
issuing another verb such as BACKOUT or MC_SEND_ERROR.

L TAKE_SYNCPT_DEALLOCATE indicates the remote program has issued
MC_DEALLOCATE with TYPE(SYNC_LEVEL), the synchronization level is
SYNCPT, and the remote program subsequently issued SYNCPT. The
local program may respond by issuing SYNCPT, or by issuing another
verb such as BACKOUT or MC_SEND_ERROR.

MAP_NAME specifies the variable in which is returned the name of the
format (such as the name of a DSECT or DECLARE) that defines the
structure of the data record. A null value returned means the data
record has not been mapped. That is, mapping of this data record is
suppressed.

When the program receives information other than data, as indicated by
the WHAT_RECEIVED parameter, nothing is placed in this variable.

State Changes (uhen RETURN CODE indicates 0K):

Receive state is entered when the verb is issued in send state and
WHAT_RECEIVED indicates DATA_COMPLETE, DATA_INCOMPLETE,
FMH_DATA_COMPLETE, or FMH_DATA_INCOMPLETE.

send state is entered when WHAT_RECEIVED indicates SEND.

confirm state is entered when WHAT_RECEIVED indicates CONFIRM, CON-
FIRM_SEND, or CONFIRM_DEALLOCATE.

sync-point state is entered when WHAT_RECEIVED indicates TAKE_SYNCPT,
TAKE_SYNCPT_SEND, or TAKE_SYNCPT_DEALLOCATE.

No state change occurs when the verb is issued in receive state and
WHAT_RECEIVED indicates DATA_COMPLETE, DATA_INCOMPLETE,
FMH_DATA_COMP.LETE, or FMH_DATA_INCOMPLETE.

ABEND Conditions:

Parameter Check

° RESOURCE specifies an unassigned resource ID.
. MAP_NAME is specified and not supported.

SNA Transaction Programmer's Reference Manual for LU Type 6.2

Mapped Conversation Verbs

State Check

The mapped conversation is not in send or receive state.

Notes:

1.

10.

When the program issues MC_RECEIVE_AND_WAIT in send state, the LU
implicitly executes an MC_PREPARE_ TO_RECEIVE with TYPE(FLUSH)
before executing the MC_ RECEIVE AND_WAIT. Refer to the
description of MC_PREPARE_TO_RECEIVE for details of its function.

Ihe mapped conversation protocol boundary provides for the send-
ing and receiving of data records. Unlike the logical records
defined for the basic conversation protocol boundary, data
records contain only data; they do not contain the logical record
length field.

The MC_RECEIVE_AND_WAIT verb can receive only as much of the data
record as specified by the LENGTH parameter. The WHAT_RECEIVED
parameter indicates whether the program has received a complete
or incomplete data record, as follows:

. The WHAT_RECEIVED parameter Indlcates DATA_COMPLETE or
FMH_DATA_COMPLETE when the program receives a complete data
record or the last remaining portion of a data record. The
length of the record or portion of the record is equal to or
less than the length specified on the LENGTH parameter.

. The WHAT_RECEIVED parameter indicates DATA_TRUNCATED,
DATA_INCOMPLETE, FMH_DATA_TRUNCATED, or FMH_DATA_INCOMPLETE
when the program recelves a portion of a data record other
than the last remaining portion. The data record is incom-
plete because the length of the record is greater than the
length specified on the LENGTH parameter; the amount received
equals the length specified.

Whether the LU discards or retains the remainder of an incomplete-
ly received data record depends on the product and the data-record
format indicated by the format name returned on the MAP_NAME
parameter. A product may imply by some or all of its format names
(including the null value) that the remaining data is discarded,
rather than retained.

MC_RECEIVE_AND_WAIT with LENGTH(0) has no special significance.
The type of information available is indicated by the RETURN_CODE
and WHAT_RECEIVED parameters, as usual. However, the program
receives no data.

The program receives only one kind of information at a time. For
example, it may receive data or a CONFIRM request, but it does not
receive both at the same time. The RETURN_CODE and WHAT_RECEIVED
parameters indicate to the program the kind of information the
program receives.

MC_RECEIVE_AND_WAIT includes posting. If posting is already
active when this verb is issued, this verb supersedes the prior
MC_POST_ON_RECEIPT function. Posting is reset at the completion
of this verb. See the MC_POST_ON_RECEIPT verb for more details
about posting.

It is the responsibility of both sending and receiving installa-
tions to maintain the map-name definitions referenced by their
application transaction programs.

The function of FM headers in the data record is significant only
to the transaction programs; the sending and receiving LUs per-
form no FM-header related processing other than indicating that
the data record contains FM headers. The presence of FM headers
in the data record is specified by the remote transaction program
by means of the FMH_DATA parameter of the MC_SEND_DATA that sent
the data record.

The REQUEST_TO_SEND notlflcatlon is usually received when the
local transaction program is in send state, and reported to the

Chapter 4. Conversation Verbs 4-27

MC_RECEIVE_AND_UWAIT

4-28

11.

12.

program on an MC_ SEND_DATA verb or on an MC_SEND_ERROR verb issued
in send state. However, the notification can be received when the
program is in receive state under the following conditions:

. When the local program just entered receive state and the
remgtet zrogram issued MC_REQUEST_TO_SEND before it entered
send state.

L When the remote program has just entered receive state by
means of the MC_PREPARE_TO_RECEIVE verb (not
MC_RECEIVE_AND_WAIT), and then issued MC_REQUEST_TO_SEND
before the local program enters send state. This can occur
because the REQUEST_TO_SEND is transmitted as an expedited
request and can therefore arrive ahead of the request carry-
ing the SEND indication. Potentially, the local program can-
not distinguish this case from the first. This ambiguity is
avoided when the remote program waits until it receives
information from the local program before it issues the
MC_REQUEST_TO_SEND.

U When the remote program issues the MC REQUEST TO_SEND in send
state (see "Notes on Implementation Details"™ in Appendix A).

The REQUEST_TO SEND notification is returned to the program in
addition to (not in place of) the information indicated by the
RETURN_CODE and WHAT_RECEIVED parameters.

References in this verb description to a program being in a par-
:jcular state are only in terms of the specified mapped conversa-
ion.

SNA Transaction Programmer's Reference Manual for LU Type 6.2

Mapped Conversation Verbhs
| MC_RECEIVE_IMMEDIATE

Receives any information that is available from the speclfled mapped
conversation, but does not wait for information to arrive. The infor-
mation (if any) can be data, mapped conversation status, or a request
for confirmation or sync point. Control is returned to the program
with an indication of whether any information was received and, if so,
the type of information.

Supplied Paramaters:
MC_RECEIVE_IMMEDIATE | RESOURCE (variable)

supplied-and-Returned Parameters:
LENGTH (variable)

Returned Parameters:

RETURN_CODE (variable)
REQUEST_TO_SEND_RECEIVED (variable)
DATA (variable)

WHAT_RECEIVED (variable)

[MAP_NAME (variable)]

ied Param (-
RESOURCE specifies the variable containing the resource ID.

supplied-and-Returned Parameters:

LENGTH specifies the variable containing a length value that is the
maximum amount of the data record the program is to receive. When
control is returned to the program this variable contains the actual
amount of the data record the program received, up to the maximum. If
the program receives information other than data, or no information at
all, this variable remains unchanged.

Returned Parameters:

RETURN_CODE specifies the variable in which a return code is returned
totthe program. The return code indicates the result of verb exe-
cution.

oK

ALLOCATION_ERROR
BACKED_OUT
DEALLOCATE_ABEND
DEALLOCATE_NORMAL
FMH_DATA_NOT_SUPPORTED
MAPPING_NOT_SUPPORTED
MAP_NOT_FOUND
MAP_EXECUTION_FAILURE
PROG_ERROR_NO_TRUNC
PROG_ERROR_PURGING
RESOURCE_FAILURE_NO_RETRY
RESOURCE_FAILURE_| RETRY
UNSUCCESSFUL - There is nothing to receive.

REQUEST_TO_SEND_RECEIVED specifies the variable in which is returned
an tndicatlon of whether REQUEST_TO_SEND has been received. The indi-
cation is either YES or NO.

® 6 00000000 ¢ 000

Chapter 4. Conversation Verbs 4-29

MC_RECEIVE_IMMEDIATE

4-30

J YES indicates a REQUEST_TO_SEND notification has been received
from the remote transaction program. The remote program has
1ssued MC_REQUEST_TO_SEND, requesting the local program to enter
receive state and thereby place the remote program in send state

. NG indicates a REQUEST_TO_SEND notification has not been
received.)

DATA specifies the variable in which the program is to receive the
data. When the program receives information other than data, as indi-
ca{ed by the WHAT_RECEIVED parameter, nothing is placed in this vari-
able.

WHAT_RECEIVED specifies the variable in which is returned an indi-
cation of what the transaction program received. The program should
examine this variable only when RETURN_CODE indicates 0K; otherwise,
nothing is placed in this variable.

. DATA_COMPLETE indicates the program received a complete data
raecord or the last remaining portion of the record.

. DATA_TRUNCATED indicates the program received less than a com-
pleteddata record, and the LU discarded the remainder of the data
record.

. DATA_INCOMPLETE indicates the program received less than a com-
plete data record, and the LU retained the remainder of the data
record. The program may receive the remainder of the data record
by issuing another MC_RECEIVE_IMMEDIATE (or possibly multiple
MC_RECEIVE_IMMEDIATEs).

. FMH_DATA_COMPLETE indicates the program received a complete data
record or the last remaining portion of the record, and the data
record contains FM headers.

. FMH_DATA_TRUNCATED indicates the program received less than a
complete data record containing FM headers, and the LU discarded
the remainder of the data record.

. FMH_DATA_INCOMPLETE indicates the program received less than a
complete data record containing FM headers, and the LU retained
the remainder of the data record. The program may receive the
remainder of the data racord by issuing another
MC_RECEIVE_IMMEDIATE (or possibly multiple
MC_RECEIVE_IMMEDIATEs).

. SEND indicates the remote program has entered receive state,
placing the local program in send state. The local program may
nouw issue MC_SEND_DATA.

. CONFIRM indicates the remote program has issued MC_CONFIRM,
requasting the local program to respond by issuing MC CONFIRMED
The program may respond, instead, by issuing a verb other than
MC_CONFIRMED, such as MC_SEND_ERROR.

. CONFIRM_SEND indicates the remote program has issued
MC_PREPARE_TO_RECEIVE with TYPE(CONFIRM); or with
TYPE(SYNC_LEVEL), and either the synchronization level is CON-
FIRM, or it is SYNCPT and the remote program subsequently issued
MC_CONFIRM. The 1local program may respond by issuing
MC_CONFIRMED, or by issuing another verb such as MC_SEND_ERROR.

. CONFIRM_DEALLOCATE indicates tha remote program has issued
MC_DEALLOCATE with TYPE(CONFIRM); or with TYPECSYNC_LEVEL), and
either the synchronization level is CONFIRM, or it is SYNCPT and
the remote program 5ubsequent1y issued MC_| CONFIRN. The local
program may respond by issuing MC CONFIRNED, or by issuing anoth-
er varb such as MC_SEND_ERROR.

. TAKE_SYNCPT indicates the remote program has issued SYNCPT,
requesting the local program to respond by issuing SYNCPT in ordar
to perform the sync-point function on all protected resources
throughout the transaction. Issuing the SYNCPT verb alse causes
an affirmative reply to be returned to the remote program if the

SNA Transaction Programmer's Reference Manual for LU Type 6.2

Mapped Conversation Verbs

sync-point function is successful. The program may respond,
instead, by issuing a verb other than SYNCPT, such as BACKOUT or
MC_SEND_ERROR.

. TAKE_SYNCPT_SEND indicates the remote program has issued
MC_PREPARE_TO_RECEIVE with TYPE(SYNC_LEVEL), the synchronization
level 1is SYNCPT, and the remote program subsequently issued
SYNCPT. The local program may respond by issuing SYNCPT, or by
issuing another verb such as BACKOUT or MC_SEND_ERROR.

. TAKE_SYNCPT_DEALLOCATE indicates the remote program has issued
MC_DEALLOCATE with TYPE(SYNC_LEVEL), the synchronization lavel is
SYNCPT, and the remote program subsequently issued SYNCPT. The
local program may respond by issuing SYNCPT, or by issuing another
vaerb such as BACKOUT or MC_SEND_ERROR.

MAP_NAME specifies the variable in which is returned the name of the
format (such as the name of a DSECT or DECLARE) that defines the
structure of the data record. A null value returned means the data
record has not been mapped. That is, mapping of this data record is
suppressed.

When the program receives information other than data, as indicated by
the WHAT_RECEIVED parameter, nothing is placed in this variable.

state Changes (uhen RETURN CODE indicates 0K):
send state is entered when WHAT_RECEIVED indicates SEND.

confirm state is entered when WHAT_RECEIVED indicates CONFIRM, CON-
FIRM_SEND, or CONFIRM_DEALLOCATE.

sync-point state is entered when WHAT_RECEIVED indicatas TAKE_SYNCPT,
TAKE_SYNCPT_SEND, or TAKE_SYNCPT_DEALTOCATE.

No state change occurs when WHAT_RECEIVED indicates DATA_COMPLETE,
DATA_INCOMPLETE, FMH_DATA_COMPLETE, or FMH_DATA_INCOMPLETE.

ABEND Condjtions:
Parameter Check

U This verb is not supported.
. RESOURCE specifies an unassigned resource ID.
. MAP_NAME is specified and not supported.

state Check
Tha mapped conversation is not in receive state.
es:

1. The mapped conversation protocol boundary providaes for the send-
ing and receiving of data records. Unlike the logical records
defined for the basic conversation protocol boundary, data
records contain only data; they do not contain the logical record
length field.

2. The MC_RECEIVE_IMMEDIATE verb can receive only as much of the data
raecord as specified by the LENGTH parameter. Thae WHAT_RECEIVED
parameter indicates whether the program has receivad a complete
or incomplete data record, as follows:

U The WHAT_RECEIVED parameter indicatas DATA_COMPLETE or
FMH_DATA_COMPLETE when the program receives a complete data
record or the last remaining portion of a data record. The
length of the record or portion of tha record is equal to or
less than the length specified on the LENGTH paramater.

. The WHAT_RECEIVED parameter indicates DATA_TRUNCATED,
DATA_INCOMPLETE, FMH_DATA_TRUNCATED, or FMH_DATA_INCOMPLETE
when the program receivas a portion of a data record other
than the last raemaining portion. The data record is incom-
pleta because:

Chapter 4. Convarsation Verbs 4-31

MC_RECEIVE_IMMEDIATE

4-32

10.

- The length of the record is greater than the length speci-
fied on the LENGTH parameter; in this case the amount
received equals the length specified.

- Only a portion of the data record is available, the por-
tion being equal to or less than the length specified on
the LENGTH parameter.

Whether the LU discards or retains the remainder of an incomplete-
ly received data record depends on the product and the data-record
format indicated by the format name returned on the MAP_NAME
parameter. A product may imply by some or all of its format names
(including the null value) that the remaining data is discarded,
rather than retained.

MC_RECEIVE_IMMEDIATE with LENGTH(0) has no special significance.
The type of information available, if any, is indicated by the
RETURN_CODE and WHAT_RECEIVED parameters, as usual. However, the
program receives no data.

The program receives only one kind of information at a time. For
example, it may receive data or a CONFIRM request, but it does not
receive both at the same time. The RETURN_CODE and WHAT_RECEIVED
parameters indicate to the program the kind of information the
program receives, if any.

MC_RECEIVE_IMMEDIATE resets or cancels posting. If posting is
active and the mapped conversation has been posted, posting is
reset. If posting is active and the mapped conversation has not
been posted, posting is cancelled (posting will not occur). See
the MC_POST_ON_RECEIPT verb for more details about posting.

It is the responsibility of both sending and receiving installa-
tions to maintain the map-name definitions referenced by their
application transaction programs.

The function of FM headers in the data record is significant only
to the transaction programs; the sending and receiving LUs per-
form no FM-header related processing other than indicating that
the data record contains FM headers. The presence of FM headers
in the data record is specified by the remote transaction program
by means of the FMH_DATA parameter of the MC_SEND_DATA that sent
the data record.

The REQUEST_TO_SEND notification is usually received when the
local transaction program is in send stata, and reported to the
program on an MC_SEND_DATA verb or on an MC_SEND_ERROR verb issued
in send state. Houwever, the notification can be received when the
program is in receive state under the following conditions:

L When the local program just entered receive state and the
remgtet zrogram issued MC_REQUEST_TO_SEND before it entered
send state.

. When the remote program has just entered receive state by
means of the MC_PREPARE_TO_RECEIVE verb (not
MC_RECEIVE_AND_WAIT), and then issued MC_REQUEST_TO_SEND
before the local program enters send state. This can occur
because the MC_REQUEST_TO_SEND is transmitted as an expedited
request and can therefore arrive ahead of the request carry-
ing the SEND indication. Potentially, the local program can-
not distinguish this case from the first. This ambiguity is
avoided when the remote program waits until it receives
information +from the local program before it issues the
MC_REQUEST_TO_SEND.

° When the remote program issues tha MC_REQUEST_TO_SEND in send
state (see "Notes on Implementation Details™ in Appendix A).

The REQUEST_TO_SEND notification is returned to the program in
addition to (not in place of) the information indicated by the
RETURN_CODE and WHAT_RECEIVED parameters.

SNA Transaction Programmer's Reference Manual for LU Type 6.2

Mapped conversation verbs
11. References in this verb description to a program being in a par-

:jcular state are only in terms of the specified mapped conversa-
ion.

Chapter 4. Conversation Verbs 4-33

MC_REQUEST_TO_SEND

Notifies the remote program that the local program is requesting to
enter send state for the mapped conversation. The mapped conversation
will be changed to send state when the leccal program subsequently
receives a SEND indication from the remote program.

MC_REQUEST_TO_SEND

Supplied Parameters:
RESOURCE (variaple)

H

4-34

supplied Parameters:

RESOURCE specifies the variable containing the resource ID.

State Changes:

None
ABEND Conditions:
Parameter Check

RESOURCE specifies an unassigned resource ID.

state Check

Thetmapped conversation is not in receive, confirm, or sync-point
state.

Notes:

1.

The REQUEST_TO_SEND notification is indicated to the remote pro-
gram by means of the REQUEST_TO_SEND_RECEIVED parameter. When
the REQUEST TO_SEND_RECEIVED parameter is set to YES, the remote
program is requested to enter receive state and thereby place the
local program in send state. A program enters receive state by
means of the MC_RECEIVE_AND_WAIT or MC_PREPARE_TO_RECEIVE verb.
The partner program enters the corresponding send state when it
issues an MC_RECEIVE_AND_WAIT or MC_RECEIVE_IMMEDIATE verh and
receives the SEND indication (on the WHAT_RECEIVED parameter).

The REQUEST_TO_SEND_RECEIVED indication of YES is normally
returned to the remote program when it is in send state, that is,
on an MC_SEND_DATA or on an MC_SEND_ERROR issued in send state.
However, it can be returned on an MC_RECEIVE_AND_WAIT or
MC_RECEIVE_IMMEDIATE verb; the description of
MC_RECEIVE_AND_WAIT or MC_ RECEIVE IMMEDIATE for details about
when this can occur.

When the remote LU receives the REQUEST_TO_SEND notlflcatlon, it
retains the notification until the remote program issues a verb on
which the notification can be indicated, that is, a verb with the
REQUEST_TO_SEND_RECEIVED parameter. The remote LU will retain
only one REQUEST_TO_SEND notification at a time (per mapped con-
versation); additional notifications are discarded until the
retained notification is indicated to the remote program. It is
therefore possible for the local program to issue the
MC_REQUEST_TO_SEND verb more times than are indicated to the
remote program.

References in this verb description to a program being in a par-
:icular state are only in terms of the specified mapped conversa-
ion.

SNA Transaction Programmer's Reference Manual for LU Type 6.2

MC_SEND_DATA

Mapped Conversation verbs

Sends one data record to the remote transaction program. The data
record consists entirely of data. The program can specify data map-
ping as a function of this verb, and it can indicate whether the data
record includes FM headers.

MC_SEND_DATA

supplied Parameters:
RESOURCE (variable)

DATA (variable)

LENGTH (variable)
MAP_NAME (NO)
[(YES (variable))]

FMH_DATA (NO)
(YES)

Returned Parameters:
RETURN_CODE (variable)

REQUEST_TO_SEND_RECEIVED (variable)

H

supplied Parameters:

RESOLIRCE specifies the variable containing the resource ID of the
mapped conversation on which the data record is to be sent.

DATA specifies the vas'iable containing the data record to be sent.
The data record consists entirely of data.! The length of the data
record is given by the LENGTH paramater.

LENGTH specifies the variable containing the length of the data record
to be sent. The length may be zero or greatar. If zero, a null data
record is sent.

MAP_NAME specifies whether the data record is to be mapped:

. NO specifies that data mapping is to be suppressed. The data
record is sent as is, without being mapped.

. YES specifies that the data record is to be mapped using the map
name contained in the variable. The map name is a non-null
user-defined name that identifies the format of the data record
andtthe mapping to be performed on the data record before it is
sent.

FMH_DATA specifies whether the data record contains FM headers.

. NO specifias that FM headers are not present in the data record.

. YES specifies that tha data record contains FM headers.

Returned Parameters:

RETURN_CODE specifies the variable in which a return code is returned

to the local program. The return code indicates the result of verb
execution.

1 The data format for the basic conversation verb, SEND_DATA, con-
sists of logical records, which include a length field. See the
dascription of SEND_DATA for more datails.

Chapter 4. Conversation Verbs 4-35

MC_SEND_DATA

1.4

ALLOCATION_ERROR
BACKED_OUT
DEALLOCATE_ABEND
FMH_DATA_NOT_SUPPORTED
MAPPING_NOT_SUPPORTED
MAP_NOT_FOUND
MAP_EXECUTION_FAILURE
PROG_ERROR_PURGING
RESOURCE_FAILURE_NO_RETRY
RESOURCE_FAILURE_RETRY

REQUEST_TO_SEND_RECEIVED specifies the variable in which is returned
an indication of whether REQUEST_TO_SEND has been received. The indi-
cation is either YES or NO.

. YES indicates a REQUEST_TO_SEND notification has been received
from the remote transaction program. The remote program has
issued MC_REQUEST_TO_SEND, requesting the local program to enter
receive state and thereby place the remote program in send state.

U] NO indicates a REQUEST_TO_SEND notification has not been
received.

® ¢ ¢ 000000 0o

tat hanges (ihen R RN CODE indi s 0K):

None

ABEND Conditions:
Parameter Chack

L RESOURCE specifies an unassigned resource ID.
] MAP_NAME(YES(variable)) is specified and not supported.
. FMH_DATA(YES) is specified and not supported.

State Check
The mapped conversation is not is send state.
Notes:

1. The mapped conversation protocol boundary provides for the send-
ing and receiving of data records. Unlike the logical records
defined for the basic conversation protocol boundary, data
records contain only data; they do not contain the logical record
length field.

2. The MC_SEND_DATA verb sends one complete data record. Thus, the
sending program cannot truncate a data record.

3. The LU buffers the data to be sent to the remote LU until it accu-
mulates from one or more MC_SEND_DATA verbs a sufficient amount
for transmission, or until the local program issues a verb that
causes the LU to flush its send buffer. The amount of data that
is sufficient for transmission depends on the characteristics of
the session allocated for the mapped conversation, and can vary
from one session to another.

4. The MAP_NAME parameter is used to specify data mapping. The data
mapping function uses the MAP_NAME parameter as follows:

. MAP_NAME(NO) is used to generate a null (zero-length) value
for the map name, which suppresses data mapping.

. MAP_NAME(YES(variable)) is used to specify a non-null map
name, which invokes data mapping.

The data mapping may be performed by the local LU, remote LU, or
both, depending on the data mapping function. When a mapped con-
versation is started, data mapping is initially suppressed until
MAP_NAME(YES(variable)) is specified, at which time data mapping
is invoked. During the remainder of the conversation data mapping

%-36 SNA Transaction Programmer's Reference Manual for LU Type 6.2

Mapped Conversation verbs

of each data record is either invoked or suppressed as the
MAP_NAME parameter specifies.

The data mapping function underlying the mapped conversation pro-
tocol boundary includes the sending of the map name to the remote
LU. The local LU sends the map name when data mapping is first
invoked on the mapped conversation, and thereafter whenever the
one to be sent differs from the one praviously sent. This proto-
col for sending the map name and data applies independently in
each direction on the mapped conversation.

The data mapping function underlying the mapped conversation pro-
tocol boundary may include mapping of the map name itself, depend-
ing on the mapping function. Consequently, the local program may
specify a map name that differs from the map name the remote pro-
gram receives. For example, the DATA parameter may specify a
high-level-language data structure, which the local LU must seri-
alize for transmission. Correspondingly, the remote LU may have
to map the serialized data into a (possibly different)
high-level-language data structure for the remote program. In
this example, the local LU maps the program-specified map name to
a second map name that describes the format of the serialized
data, and sends the second map name together with the serialized
data to the remote LU. The remote LU maps the second map name to a
third map name that describes the structure of the data passed to
the remote program.

It is the responsibility of both sending and receiving installa-
tions to maintain the map-name definitions referred to by their
application transaction programs.

The function of FM headers in the data record is significant only
to the transaction programs; the sending and receiving LUs per-
form no FM-header related processing other than indicating that
the data record contains FM headers. The presence of FM headers
in the data record is indicated to the remote transaction program
by means of the WHAT_RECEIVED parameter of the
MC_RECEIVE_AND_WAIT or MC_RECEIVE_IMMEDIATE verb that receives
the data record.

When REQUEST_TO_SEND_RECEIVED indicates YES, the remote program
is requesting the local program to enter receive state and thereby
place the remote program in send state. A program enters receive
state by means of the MC_PREPARE_TO_RECEIVE or
MC_RECEIVE_AND_WAIT verb. The partner program enters the corre-
sponding send state when it issues an MC_RECEIVE_AND_WAIT or
MC_RECEIVE_IMMEDIATE verb and receives the SEND indication (on
the WHAT_RECEIVED parameter).

References in this verb description to a program being in a par-

:jcular state are only in terms of the specified mapped conversa-
jon.

Chapter 6. Conversation Verbs 4-37

MC_SEND_ERROR

Informs the remote transaction program that the local progranm
detected an application error. If the mapped conversation is in send
state, the LU flushes its send buffer.

Upon successful completion of this verb, the local program is in send
state and the remote program is in receive state. Further action is
defined by transaction program-logic.

MC_SEND_ERROR

sSupplied Parameters:
RESOURCE (variable)

Returned Parameters:
RETURN_CODE (variable)

REQUEST_TO_SEND_RECEIVED (variable)
; y

Supplied Parameters:

RESOURCE specifies the variable containing the resource ID.

Returned Parameters:

RETURN_CODE specifies the variable in which a return code is returned
to the local program. The return code indicates the result of verb
execution. The return codes that can be returned depend on the state
of the mapped conversation at the time this verb is issued:

. If this verb is issued in send state, the following return codes
can be returned:

oK

ALLOCATION_ERROR
BACKED_OUT
DEALLOCATE_ABEND
PROG_ERROR_PURGING
RESOURCE_FAILURE_NO_RETRY
RESOURCE_FAILURE_RETRY
FMH_DATA_NOT_SUPPORTED
MAPPING_NOT_SUPPORTED
MAP_NOT_FOUND
MAP_EXECUTION_FAILURE

. If this verb is issued in receive state, the following return
codes can be returned:

oK

DEALLOCATE_NORMAL
RESQURCE_FAILURE_NO_RETRY
RESOURCE_FAILURE_RETRY

. If this verb is issued in confirm state or sync-point state, the
following return codes can be returned:

0K
= RESOURCE_FAILURE_NO_RETRY
= RESOURCE_FAILURE_RETRY

REQUEST_TO_SEND_RECEIVED specifies the variable in which is returned
an indication of whether REQUEST_TO_SEND has been received. The indi-
cation is either YES or NO.

. YES indicates a REQUEST_TO_SEND notification has been received
from the remote transaction program. The remote program has
issued MC_REQUEST_TO_SEND, requesting the local program to enter
receive state and thereby place the remote program in send state.

4-38 SNA Transaction Programmer's Reference Manual for LU Type 6.2

Mapped conversation verbs

NO indicates a REQUEST_TO_SEND notification has not been
received.

state Changes (when RETURN CODE indicates 0K):

send state is entered when the verb is issued in receive, confirm, or
sync-point state.

No state change occurs when the verb is issued in send state.

ABEND Conditions:
Parameter Check

RESOURCE specifies an unassigned resource ID.

state Check

The mapped conversation is not in send, receive, confirm, or
sync-point state.

Notes:

1.

The LU may send the error notification to the remote LU immediate-
ly, that is, during the processing of this verb, or the LU may
defer sending the notification until a later time. The determi-
nation is made as follows:

] If the local product does not support the MC_FLUSH verb (see
"Notes on Implementation Details™ in Appendix A), then the LU
sends the error notification immediately.

° If the local product does support the MC_FLUSH verb, then the
LU may or may not send the notification immediately, depend-
ing on the product. If the LU defers sending the notifica-
tion, it buffers the notification until it accumulates a
sufficient amount of information for transmission, or until
the local program issues a verb that causes the LU to flush
its send buffer. The amount of information that is sufficient
for transmission depends on the characteristics of the ses-
sion allocated for the mapped conversation, and can vary from
one session to another.

The local program can ensure that the remote program receives the
error notification as soon as possible by issuing MC_FLUSH imme-
diately after MC_SEND_ERROR.

MC_SEND_ERROR is reported to the remote transaction program as
one of the following return codes:

] PROG_ERROR_NO_TRUNC - The local program issued MC_SEND_ERROR
in send state. No da'a truncation occurs at the mapped con-
versation protocol boundary.

. PROG_ERROR_PURGING - The local program issued MC_SEND_ERROR
in receive state and all data sent by the remote program and
not yet received by the local program, if any, has been
purged; or the local program issued MC_SEND_ERROR in confirm
or sync-point state, in which case no purging has occurred.

When MC_SEND_ERROR is issued in receiva state, purging of incom-
ing information occurs. The incoming information that is purged
includes the following return code indications:

ALLOCATION_ERROR
BACKED_OUT
DEALLOCATE_ABEND
FMH_DATA_NOT_SUPPORTED
MAPPING_NOT_SUPPORTED
MAP_NOT_FOUND
MAP_EXECUTION_FAILURE
PROG_ERROR_NO_TRUNC
PROG_ERROR_PURGING

® © 0006 0 0 00

Chapter 4. Conversation Verbs 4-39

MC_SEND_ERROR

The return code DEALLOCATE_NORMAL is reported instead of ALLO-
CATION_ERROR or DEALLOCATE_ABEND. The return code OK is reported
instead of the other return codes. When the return code
BACKED_OUT is purged, the remote LU resends the BACKED_OUT indi-
cati:n ang the local program receives the return code on a subse-
quent verb.

The other kinds of incoming information that are purged are:
U Data, sent by means of the MC_SEND_DATA verb.
. Map name, sent by means of the MC_SEND_DATA verb.

. Confirmation request, sent by means of the MC_CONFIRM,
MC_PREPARE_TO_RECEIVE, or MC_DEALLOCATE verb.

. Sync point request, sent by means of the SYNCPT,
MC_PREPARE_TO_RECEIVE, or MC_DEALLOCATE verb.

If the confirmation or sync point request was sent in conjunction
with the MC_DEALLOCATE verb (by means of its TYPE(CONFIRM) or
TYPE(gYNC_LEVEL) parameter), the deallocation request is also
purged.

Incoming information that is not purged is the REQUEST_TO_SEND
indication. This indication is reported to the program when it
issues a verb that includes the REQUEST_TO_SEND_RECEIVED parame-
er.

When REQUEST_TO_SEND_RECEIVED indicates YES, the remote program
is requesting the local program to enter receive state and thereby
place the remote program in send state. A program enters receive
state means of the MC_RECEIVE_AND_WAIT or
MC_ PREPARE TO _RECEIVE verb. The partner program enters the cor-
responding send state when .it issues an MC_RECEIVE_AND_WAIT or
MC_RECEIVE_IMMEDIATE verb and receives the SEND indication (on
the WHAT RECEIVED parameter).

The program may use this verb for various application-level func-
tions. For example, the program may issue this verb to inform the
remote program of an error it detected in the data records it
received, or to reject a confirmation or sync-point request.

MC_SEND_ERROR resets or cancels posting. If posting is active and
the mapped conversation has been posted, posting is reset. If
posting is active and the mapped conversation has not been posted,
posting is canceled (posting will not occur). See the
MC_POST_ON_RECEIPT verb for more details about posting.

References in this verb description to a program being in a par-
:jcular state are only in terms of the specified mapped conversa-
ion.

4-40 SNA Transaction Programmer's Reference Manual for LU Type 6.2

Mapped Cconversation Verbs

MC_TEST
Tests the specified mapped conversation for a condition. The return
code indicates the result of the test.
Supplied Parameters:
MC_TEST RESOURCE (variable)

[TEST

(POSTED)
{ REQUEST_TO_SEND_RECEIVED)

Returned Parameters:
RETURN_CODE (variable)

Supplied Parameters:

RESOURCE specifies the variable containing the resource ID.

TEST specifies the condition to be tested.

L]

POSTED specifies to test whether the mapped conversation has been
posted. The return code indicates whether posting has occurred.

REQUEST_TO_SEND_RECEIVED specifies to test whether
REQUEST_TO_SEND notification has been received from the remote
transaction program. The return code indicates whether the
notification has been received.

Returned Parameters:

RETURN_CODE specifies the variable in which a return code is returned
to the program. The return code indicates the result of the test.
The TEST parameter determines which of the following return codes can
be returned to the program.

If TEST(POSTED) is specified, one of the following return codes is
returned:

- oK

— DATA

— NOT_DATA
POSTING_NOT_ACTIVE
UNSUCCESSFUL
ALLOCATION_ERROR
BACKED_OUT
DEALLOCATE_NORMAL
DEALLOCATE_ABEND
FMH_DATA_NOT_SUPPORTED
MAP_EXECUTION_FAILURE
MAP_NOT_FOUND
MAPPING_NOT_SUPPORTED
PROG_ERROR_NO_TRUNC
PROG_ERROR_PURGING
RESOURCE_FAILURE_NO_RETRY
RESOURCE_FAILURE_RETRY

If TEST(REQUEST_TO_SEND_RECEIVED) is specified, one of the fol-
lowing return codes is returned:

tretrrtrerrenrtd

0K
— UNSUCCESSFUL

State Changes (ihen RETURN CODE indicates 0K):

None

Chapter 4. Conversation Verbs 4-41

MC_TEST

4-62

ABEND Conditions:
Parameter Check

® o 00

This verb is not supported.

TEST(POSTED) is specified and not supported.
TEST(REQUEST_TO_SEND_RECEIVED) is specified and not supported.
RESOURCE specifies an unassigned resource ID.

state Check

TEST(POSTED) is specified and the mapped conversation is not in
receive state.

TEST(REQUEST_TO_SEND_RECEIVED) is specified and the mapped con-
versation is not in send, defer, or receive state.

Notes:

—_—

-

The TEST(POSTED) parameter on this verb is intended to be used in
conjunction with MC_POST_ON_RECEIPT. The use of
MC_POST_ON_RECEIPT and this verb allows a program to continue its
processing while waiting for information to become available,
where the program issues MC_POST_ON_RECEIPT for one or more
mapped conversations and then issues this verb for each mapped
convgrsgtion to determine when information is available to be
received.

For TEST(POSTED), the return code indicates whether posting has
occurred, as follous:

. OK indicates posting was active for the mapped conversation
and it has been posted. Posting is now reset. The subcode of
the 0K return code indicates why the mapped conversation has
been posted.

- DATA indicates data is available for the program to
receive.

- NOT_DATA indicates information other than data, such as a
SEND, CONFIRM, or TAKE_SYNCPT indication, is available
for the program to receive.

The program should issue MC_RECEIVE_AND_WAIT or
MC_RECEIVE_IMMEDIATE in order to receive the information.
The program may use the subcode to determine whether it needs
to specify the DATA parameter on the MC_RECEIVE_AND_WAIT or
MC_RECEIVE_IMMEDIATE verb.

° POSTING_NOT_ACTIVE indicates posting is not active for the
mapped conversation.

. UNSUCCESSFUL indicates posting is active for the mapped con-
versation and it has not been posted. Posting remains active.

The remaining return codes indicate posting was active for the
mapped conversation and it has been posted for the reason indi-
cated by the specific return code. Posting is nouw reset.

Posting is active for a mapped conversation when
MC_POST_ON_RECEIPT has been issued for the mapped conversation
and posting has not been reset or canceled (see the
MC_POST_ON_RECEIPT verb).

The TEST(REQUEST_TO_SEND_RECEIVED) parameter specifies to test
whether REQUEST_TO_SEND notification has been received from the
remote transaction program. The return code indicates whether
the notification has been received, as follous:

. 0K indicates REQUEST_TO_SEND has been received. The remote
program has issued MC_REQUEST_TO_SEND, requesting the local
program to enter receive state and thereby place the remote
program in send state. A program enters receive state by
means of the MC_RECEIVE_AND_WAIT or MC_PREPARE_TO_RECEIVE
verbh. The partner program enters the corresponding send

SNA Transaction Programmer's Reference Manual for LU Type 6.2

Mapped Conversation Verbs
state when it issues an MC_RECEIVE_AND_WAIT or
MC_RECEIVE_IMMEDIATE verb and receives the SEND indication
(on the WHAT_RECEIVED parameter).

J UNSUCCESSFUL indicates REQUEST_TO_SEND has not been received.

References in this verb description to a program being in a par-
ticular state are only in terms of the specified mapped conversa-

tion.

Chapter 4. Conversation Verbs 4-43

TYPE-INDEPENDENT CONVERSATION VERBS

6-44

This section describes the subcategory of conversation verbs called
tvpe-independent conversation verbs. These verbs are intended for
use on both mapped conversations and basic conversations. In partic-
ular, the BACKOUT, SYNCPT, and WAIT verbs can be issued against multi-
ple conversations, which can consist of either mapped or basic
conversations or both. The GET_TYPE verb is issued against a single
conversation, either mapped or basic.

The detailed descriptions of the type-independent conversation verbs
follow. References to verbs that can be either mapped or basic con-
versation verbs are shown with the "[MC_1" prefix in the verb name.

SNA Transaction Programmer's Reference Manual for LU Type 6.2

BACKOUT

Type-Independent conversation verbs

Restores all protected resources to their status as of the last syn-
chronization point. Protected resources are those currently allo-
cated to the transaction with a synchronization level of SYNCPT. The
last synchronization point is either the start of the transaction, or
the completion of the last successful sync point function if one was
executed since the start of the transaction. As part of the backout
function, the LU flushes its send buffers for all protected resources
that are in send or defer state.

BACKOUT

Parameters:

No parameters are defined for this verb.

state Changes:

The state of each protected resource at the completion of this verb is
th? {?ame as it was immediately following the last synchronization
point.

ABEND Conditions:
paramater Check

This verb is not supported.
state Check

At least one protected resource is not in send, defer, receive,
confirm, sync point, or backed-out state.

1. The BACKOUT verb causes the local LU to restore all local pro-
tected resources to their status as of the last synchronization
point, and to send a backed-out indication on all protected con-
versations. (A protected conversation is one that is allocated
with a synchronization level of SYNCPT.)

2. Any program throughout the distributed transaction may initiate
the backout function, that is, may be the first to issue BACKOUT
since the last synchronization point. It does so when it deter-
minas that an error or exceptional condition exists that requires
restoring all protected resources to their last synchronization
point. The program can initiate the backout function as a
response to a sync point request, or at other times unrelated to a
sync point request. All other programs interconnected by pro-
tected conversations are informed, by means of the BACKED_OUT
return code, that the backout function has been initiated.

3. A program must issua this verb whenever it receives a BACKED_OUT
return code, in order to extend the backout function to all pro-
tected resources throughout the transaction.

4. BACKOUT resets or cancels posting. If posting is active and the
resource has been posted, posting is reset. If posting is active
and the resource has not been posted, posting is canceled (posting
will not occur). See the I[MC_lPOST_ON_RECEIPT verb for details
about posting of a conversation.

Chapter 4. Conversation Verbs 4-45

GET_TYPE

Returns the type of resource to which the specified rasource ID is
assigned.

GET_TYPE | RESOURCE (variable)

Supplied Parameters:

Returned Parameters:
TYPE (variable)
H

4-46

Supplied Parameters:

RESOURCE specifies the variable containing the resource ID of the
resource of which the type is desired.

Returned Parameters:

TYPE specifies the variable for returning the type of resource that is
allocated. The types are:

] BASIC_CONVERSATION
. MAPPED_CONVERSATION

State Changes:
None

ABEND condjtions:
Parameter Check

o This verb is not supported.
. RESOURCE specifies an unassigned resource ID.

state Check
None

1. A program that can be processed at either the basic conversation
protocol boundary or the mapped conversation protocol boundary
issues this verb in order to determine which category of verbs,

basic conversation or mapped conversation, it is to use for the
resource.

SNA Transaction Programmer's Reference Manual for LU Type 6.2

Type-Independent conversation Verbs

SYNCPT
Advances all protected resources to the next synchronization point.
Protected resources are those currently allocated to the transaction
with a synchronization level of SYNCPT. As part of the sync point
function, the LU flushes its send buffers for all protected resources
that are in send or defer state.
Returned Parameters:
SYNCPT RETURN_CODE (variable)

REQUEST_TO_SEND_RECEIVED (variable)

Returned Parameters:

RETURN_CODE specifies the variable in which a return code is returned
to the program. The return code indicates the result of the sync
point function.

° 0K (sync point is successful)
] BACKED_OUT
U HEURISTIC_MIXED

REQUEST_TO_SEND_RECEIVED specifies the variable in which is returned
an indication of whether REQUEST_TO_SEND has been received. The indi-
cation is either YES or NO.

. YES indicates a REQUEST_TO_SEND notification has been received
from one or more remote programs.

. NO indicates a REQUEST_TO_SEND notification has not been
received.

Changes (uhe TU CODE_indica 0K):

Reset state is entered when the verb is issued in the defer state
entered by the preceding [MC_IDEALLOCATE verb.

Receive state is entered when the verb is issued in the defer state
entered by the preceding [MC_IPREPARE_TO_RECEIVE verb, or when the
verb is issued in the sync point state entered by receipt of
TAKE_SYNCPT on the preceding [MC_JRECEIVE_AND_WAIT or
[MC_JRECEIVE_IMMEDIATE verb.

send state is entered when the verb is issued in the sync point state
entered by receipt of TAKE_SYNCPT_SEND on the preceding
[MC_JRECEIVE_AND_WAIT or [MC_IRECEIVE_IMMEDIATE verb.

Deallocate state is entered when the verb is issued in the sync point
state entered by receipt of TAKE_SYNCPT_DEALLOCATE on the preceding
[MC_IRECEIVE_AND_WAIT or [MC_JRECEIVE_IMMEDIATE verb.

No state change occurs when the verb is issued in send state.

ABEND Conditions:

Parameter Check

. This verb is not supported.

state Check

D A protected resource is not in send, defer, or sync point state.

J A protected resource is in send state, and the program started but
did not finish sending a basic conversation logical record.

Chapter 4. Conversation Verbs G6-47

SYNCPT

4-48

Notes:

1.

The program may issue SYNCPT when all protected conversations are
in send, defer, or sync point state, or a combination of these
states; however, only one conversation can be in sync point state.
(A protected conversation is one that is allocated with a synchro-
nization level of SYNCPT.) The remote programs receive the sync
point request by means of the WHAT_RECEIVED parameter of the
[MC JRECEIVE_AND_WAIT or [MC_JRECEIVE_IMMEDIATE verb, as follous:

. On conversations for which the local program is in send state,
the remote programs receive the TAKE_SYNCPT indication.

L On conversations in defer state entered by means of a preced-
ing [MC_JPREPARE_TO_RECEIVE verb, the remote programs receive
the TAKE_SYNCPT_SEND indication.

. On conversations in defer state entered by means of a preced-
ing [MC_JDEALLOCATE verb, the remote programs receive the
TAKE_SYNCPT_DEALLOCATE indication.

In a distributed transaction, one program (usually chosen during
transaction design) is the initiator for sync point processing.
The other programs each cooperate in propagating the sync point
processing throughout the distributed transaction. The program
initiating sync point processing issues SYNCPT, which causes its
LU to send a sync point request on all of the protected conversa-
tions allocated to the program. Each program receiving the sync
point request may issue SYNCPT, thereby propagating the request
throughout the transaction. When all participating programs
respond. to the sync point request by issuing SYNCPT, their LUs and
the initiating program's LU advance their respective local
resources to the next synchronization point.

All protected resources, including conversations, allocated to

the local transaction program must be in send, defer, or sync

point state when the program issues SYNCPT. If one or more pro-

tected conversations are in receive state, the program may issue

gMCT]REQUEST_TO_SEND on those conversations to request send con-
rol.

The return code indicates whether the sync point function was suc-
cessful.

L 0K indicates all protected resources have been advanced to
the next synchronization point.

. BACKED_OUT indicates all protected resources are to be
restored to their status as of the last synchronization
point. The program must issue BACKOUT, which causes the back-
out function to be performed on all protected resources
throughout the transaction.

. HEURISTIC_MIXED indicates that some protected resources
throughout the distributed transaction have been advanced to
the next synchronization point and others have been restored
to the previous synchronization point as a result of an error
during the sync point processing. This mixed status of pro-
tected resources occurs when an LU operator intervenes in an
attempt to recover from the error. See SNA Formag and Proto-
col Reference Manual: Architecture Logic_ _for LU Tvpe 6.2 for

more details.

Use of sync point ensures consistency of the protected resources
involved in a distributed transaction. Consistency means that if
the return code, 0K, is returned to the transaction program that
issued the first SYNCPT verb (called the initiator), 0K will also
have been returned to the dependent SYNCPT verbs issued by every
other transaction program participating in the distributed log-

ical unit of work. '

Similarly, consistency means that if the BACKED_OUT return code
is received on any protected conversation in a distributed trans-

SNA Transaction Programmer's Reference Manual for LU Typa 6.2

Type-Independent Conversation vVerbs

action, BACKED_OUT will be received on all protected conversa-
tions in the distributed transaction. Further, all protected
local resources that share in the distributed logical unit of work
wil% be backed out to the most recent point of successful commit-
ment.

Of particular importance are updates to files or data bases. For
example, take the case of a fund transfer from an account main-
tained at one node to an account maintained at another node; use
of SYNCPT will ensure, except when 'heuristic decisions must be
made, that the debit from one account will be credited to the oth-
er.

The processing of unprotected resources is the program's respon-
sibility. If the sync point function is successful, the program
should advance all unprotected resources associated with the
transaction to a consistent state. If the sync point function is
unsuccessful, the unprotected resources should be restorad to a
state consistent with the previous synchronization point.

When REQUEST_TO_SEND_RECEIVED indicates YES, one or morae remote
programs are requesting the local program to enter receive state
and thereby placa the remote programs in send state. For each
resource on which a REQUEST_TO_SEND notification was received,
the notification will also be reported to the local program on the
next resource-specific verb it issues that has the
REQUEST_TO_SEND_RECEIVED parameter.

References in this verb description to a program being in a par-
ticular state are only in terms of each resource.

Chapter 4. Conversation Verbs 4-49

WAIT

Waits for posting to occur on any basic or mapped conversation from
among a list of conversations. Posting of a conversation occurs when
posting is active for the conversation and the LU has any information
that the program can receive, such as data, conversation status, or a
request for confirmation or sync point.

supplied Parameters:
WAIT | RESOURCE_LIST (variablel variable2 ... variablen)
Returned Parameters:
RETURN_CODE (variable)
RESOURCE_POSTED (variable)
H

supplied Parameters:

RESOURCE_LIST specifies the variables containing the resource IDs of

the conversations for which posting is expected.

. variablel variable2 ... variablen are the variables containing
the individual resource IDs. One or more resource IDs may be
specified.

Returned Parameters:

RETURN_CODE specifies the variable in which a return code is returned

to the program. The return code indicates the result of verb exe-

cution. The type of conversation posted determines which of the
return codes can be returned to the progranm.

. If a mapped conversation is posted, one of the following return
codes is returned:

- oK
— DATA
— NOT_DATA
- POSTING_NOT_ACTIVE
- ALLOCATION_ERROR
- BACKED_OUT
- DEALLOCATE_ABEND
- DEALLOCATE_NORMAL
- FMH_DATA_NOT_SUPPORTED
. MAP_EXECUTION_FAILURE
- MAP_NOT_FOUND
- MAPPING_NOT_SUPPORTED
- PROG_ERROR_NO_TRUNC
- PROG_ERROR_PURGING
- RESOURCE_FAILURE_NO_RETRY
- RESOURCE_FAILURE_ RETRY
U If a basic conversation is posted, one of the following return
codes is returned:
- 0K
— DATA
— NOT_DATA
- POSTING_NOT_ACTIVE
- ALLOCATION_ERROR
- BACKED_OUT
- DEALLOCATE_ABEND_PROG
- DEALLOCATE_ABEND_SVC
- DEALLOCATE_ABEND_TIMER
- DEALLOCATE NORMAL
- PROG_ERROR_NO_TRUNC
- PROG_ERROR_PURGING
- PROG_ERROR_TRUNC
4-50 SNA Transaction Programmer's Reference Manual for LU Type 6.2

RESO
post

Type-Independent Conversation Verbs

SYC_ERROR_NO_TRUNC
SVC_ERROR_PURGING
SVYC_ERROR_TRUNC
RESQURCE_FAILURE_NO_RETRY
RESOURCE_FAILURE_RETRY

URCE_POSTED specifies the variable in which the resource ID of the
ed conversation is returned to the program.

State Changes (when RETURN CODE indicates OK):

None

ABEND Conditions:

Para

Stat

0
1‘

mater Check

This verb is not supported.
RESOURCE_LIST specifies an unassigned resource ID.

e Check
None
This verb is intended to be wused in conjunction with

[MC_IPOST_ON_RECEIPT. The use of [MC_IPOST_ON_RECEIPT and this
verb allows a program to perform synchronous receiving from mul-
tiple conversations, where the program issues
[MC_JPOST_ON_RECEIPT for each of the conversations and then
issues this verb (for each conversation) to wait until informa-
tion is available to be received on the conversations.

The RESOURCE_LIST parameter may specify any combination of basic

and mapped conversations. Posting for each conversation may be

active or not active. This verb waits for posting to occur only

on the conversations for which posting is active. When a conver-
sation is posted, the resource ID of the posted conversation is
;eturned to the program by means of the RESOURCE_POSTED parame-
er.

Ihe return code indicates whether posting has occurred, as fol-
OUHS:

o OK indicates posting was active for a conversation and it has
been posted. Posting is now reset for the conversation. The
subcode of the 0K return code indicates why the conversation
has been posted.

- DATA indicates data is available for the program to
receive.

- NOT_DATA indicates information other than data, such as a
SEND, CONFIRM, or TAKE_SYNCPT indication, is available
for the program to receive.

The program should issue [MC_IRECEIVE_AND_WAIT or
[MC_IRECEIVE_IMMEDIATE in order to receive the information.
The program may use the subcode to determine whether it needs
to specify the DATA parameter on the [MC_IRECEIVE_AND_WAIT or
[MC_JRECEIVE_IMMEDIATE verb.

. POSTING_NOT_ACTIVE indicates posting is not active for any
and all of the conversations.

The remaining return codes indicate posting was active for a con-
versation and it has been posted for the reason indicated by the
specific return code. Posting is now reset for the conversation.

Posting is active for a conversation when [MC_]POST_ON_RECEIPT

has been issued for the conversation and posting has not been
reset or canceled (see the [MC_JPOST_ON_RECEIPT verb).

Chapter 4. Conversation Verbs 4-51

BASIC CONVERSATION VERBS

4-52

This section describes the subcategory of conversation verbs called
basic conversation_ verbs. These verbs are intended for use by LU
sepvices programs. The LU services programs can provide end-user
services or protocol boundaries for end-user application transaction
programs. Examples of LU services programs are:

. The LU services component programs that process mapped conversa-
tion verbs and control—-operator verbs. These verbs define the LU
6.2 %rotocol boundary for mapped conversations and the control
operator.

. SNA service transaction programs. These programs provide
end-user protocol boundaries that are defined by the specific IBM
product implementations of the service programs. Refer to the IBM
product publications for a description of the SNA service pro-
grams and their protocol boundaries that each product provides.
The names of some SNA service transaction programs that have gen-
eral applicability are listed in "Appendix D. List of SNA Service
Transaction Programs"™.

The detailed descriptions of the basic conversation verbs follou.

Note: Every conversation is either a basic or mapped conversation.
The basic conversation verbs can be used for operations on both types.
The mapped conversation verbs can be used for operations only on a
mapped conversation. The capability to use basic conversation verbs
on mapped conversations is provided for implementation of a mapped
conversation LU services component program. Throughout the
descriptions of the basic conversation verbs, references to a basic
conversation or mapped conversation are made only when it is necessary
to make a distinction between them. Otherwise, references are made
simply to conversations.

SNA Transaction Programmer's Reference Manual for LU Type 6.2

tasic conversation Verbs

ALLOCATE
Allocates a session between the local LU and a remote LU, and on that
session allocates a basic or mapped conversation between the local
program and a remote program. A resource ID is assigned to the con-
versation. This verb is issued prior to any verbs that refer to the
conversation.
Supplied Parameters:
ALLOCATE LU_NAME (OWN)

MODE_NAME (variable)
TPN (variable)

-
TYPE (BASIC CONVERSATION)]

(OTHER (variable))

(MAPPED_CONVERSATION)

(WHEN SESSION ALLOCATED)
RETURN_CONTROL (DELAYED_ALLOCATION_PERMITTED)
{ IMMEDIATE)

(NONE)
SYNC_LEVEL (CONFIRM)
(SYNCPT) '

(NONE)
SECURITY (SAME)
(PGM (USER_ID (variable) PASSWORD (variable)
. PROFILE (variable)))

PIP (NO)

(YES (variablellvariablez «es vVariablen))]

Returned Parameters:
RESOURCE (variable)

RETURN_CODE (variable)

3

supplied Parameters:

LU_NAME specifies the name of the remote LU at which the remote trans-
action program is located. This LU name is any name by uwhich the
local LU knows the remote LU for the purposae of allocating a conversa-
tion. The local LU transforms this locally-known LU name to an LU
name used by the network, if the names are different.

U OUN specifies that the remote program is located at the same LU as
the local program.

. OTHER specifies that the remote program is located at another LU.
The specified variable contains the LU name.

MODE_NAME specifies the mode name designating the network proparties
for the session to be allocated for the conversation. The network
properties include, for example, the class of sarvice to be used, and
whether data is to be enciphered or translated to ASCII before it is
sent. The SNA-defined mode name, SNASVCMG, may be specified, but only
by an LU services program.

Chapter 4. Conversation Verbs 4-53

ALLOCATE

4-54

TPN specifies the name of the remote transaction program to be con-
nected at the other end of the conversation. A transaction program
that has the appropriate privilege may specify the name of an SNA
service transaction program. Privilege is an identification that a
product or installation defines in order to differentiate LU services
transaction programs from other programs, such as application trans-
action programs. (See "Appendix D. List of SNA Service Transaction
Progra?s" for more details about SNA service transaction program
names.

TYPE specifies the type of conversation to be allocated.
J BASIC_CONVERSATION specifies to allocate a basic conversation.

. MAPPED_CONVERSATION specifies to allocate a mapped conversation.
This argument is used in support of mapped conversation verbs. It
may be specified only by a mapped conversation LU services pro-
gram.

RETURN_CONTROL specifies when the local LU is to return control to the
local program, in relation to the allocation of a session for the con-
vaersation. An allocation error resulting from the local LU's failure
to obtain a session for the conversation is reported either on this
verb or a subsequent verb, depending on the argument specified for
this parameter. An allocation error resulting from the remote LU's
raejection of the allocation request is reported on a subsequent verb.

. WHEN_SESSION_ALLOCATED specifies to allocate a session for the
conversation before returning control to the program. An error in
allocating a séssion is reported on this verb.

. DELAYED_ALLOCATION_PERMITTED specifies to allocate a session for
the conversation after returning control to the program. An error
in allocating a session is reported on a subsequent verb.

. IMMEDIATE specifies to allocate a session for the conversation if
a session is immediately available, and return control to the pro-
gram with a return code indicating whether a session is allocated.

- A return code of 0K indicates a session is immediately avail-
able and is allocated for the conversation. A session is
immediately available when it is active, it is not allocated
to another conversation, and the local LU is the contention
winner for the session.

- A return code of UNSUCCESSFUL indicates a session is not imme-
diataely available. Allocation is not performed.

An error in allocating a session that is immediately available is
reported on this verb.

SYNC_LEVEL specifies the synchronization level that the local and
remote programs can use on this conversation.

. NONE specifies that the programs will not perform confirmation or
sync point processing on this conversation. The programs will not
issue any verbs and will not recognize any returned parameters
relating to these synchronization functions.

. CONFIRM specifies that the programs can perform confirmation
processing but not sync-point processing on this conversation.
The programs may issue verbs and will recognize returned parame-
ters relating to confirmation, but they will not issue any verbs
and :ill not recognize any returned parameters relating to sync
point.

. SYNCPT specifies that the programs can perform both confirmation
and sync-point processing on this conversation. The programs may
issue verbs and will recognize returned parameters relating to
confirmation or sync point. For sync-point processing, a conver-
sation allocated with this synchronization level is a protected
resource.

SNA Transaction Programmer's Reference Manual for LU Type 6.2

Basic conversation ver.c

SECURITY specifies access security information that the remote LU
uses to verify the identity of the end-user and validate access to the
remote program and its resources. The access security information
consists of a user 1D, a password, and a profile.

o NONE specifies to omit access security information on this allo-
cation request.

. SAME specifies to use the user ID and profile (if present) from
the allocation request that initiated execution of the local pro-
gram. The password (if present) is not used; instead, the user ID
is indicated as being already verified. If the allocation request
that initiated execution of the local program contained no access
security information, then access security information is omitted
on this allocation request.

JJ PGM specifies to use the access security information that the
local program provides on this parameter. The local program pro-
vides the information by means of the following arguments:

= USER_ID specifies the variable containing the user ID. The
remote LU uses this value and the password to verify the iden-
tity of the end-user making the allocation request. In addi-
tion, the remote LU may use the user ID for auditing or
accounting purposes, or it may use the user ID, together with
the profile (if present), to determine which remote programs
the local program may access and which resources the remote
program may access.

- PASSUWORD specifies the variable containing the password. The

remote LU uses this value and the user ID to verify the iden- .

tity of the end-user making the allocation request.

- PROFILE specifies the variable containing the profile. The
remote LU may use this value, in addition to or in place of
the user ID, to determine which remote programs the local pro-
gram may access, and which resources the remote program may
access.

Specifying a null value for any of the access security arguments
is equivalent to omitting the argument.

PIP specifies program initialization parameters for the remote pro-
gram.

. NO specifies that PIP data is not present.
. YES specifies that PIP data is present.

- variablel variable2 ... variablen contain the PIP data to be
sent to the remote program. Tha PIP data consists of one or
more subfields, each of which is specified by a separate vari-
able; variables 1 through n correspond to subfields 1 through
n. If a variable is omitted in the PIP parameter or it is of
null value, the corresponding PIP subfield is made to be of 0
length. The number of PIP subfields must agree with the num-
ber of PIP variables specified on the remote program's PROC
statement (see "Transaction Program Structure and Execution"
in Chapter 3).

e ed ameters:

RESOURCE specifies the variable in which the resource ID is to be
returned. The length and actual format of the resource ID is product
dependent. The resource ID is returned to the program when the return
code is either 0K or ALLOCATION_ERROR.

RETURN_CODE specifies the variable in which a return code is returned
to the local program. The return code indicates the result of verb
execution. The RETURN_CONTROL parameter determines which of the fol-
lowing return codes can be returned to the program.

[If RETURN_CONTROLCWHEN_SESSION_ALLOCATED) is specified, one of
the following return codes is returned:

Chapter 4. Conversation Verbs 4-55

ALLOCATE

4-56

‘0K
— ALLOCATION_ERROR (with one of the following subcodes)
— ALLOCATION_FAILURE_NO_RETRY
— ALLOCATION_FAILURE_RETRY
— SYNC_LEVEL_NOT_SUPPORTED_BY_LU
- PARAMETER ERROR (for the following reasons)
— Invalid LU name
— Invalid mode name

If RETURN_CONTROL(DELAYED_ALLOCATION_PERMITTED) is specified,
one of the following return codes is returned:

0K
- PARAMETER_ERROR (for one of the following reasons)
— Invalid LU name
— Invalid mode name

If RETURN_chTROL(IMMEDIATE) is specified, one of the following
return codes is returned:

oK
- ALLOCATION_ERROR (with the following subcode)
— SYNC_LEVEL_NOT_SUPPORTED_BY_LU
- PARAMETER_ERROR (for one of the following reasons)
— Invalid LU name
— Invalid mode name
- UNSUCCESSFUL (for the following reason)
— Session not immediately available

State changes (when RETURN CODE indicates 0K):

send state is entered.

ABEND Conditions:
Parameter Check

® e 00 [4

LU_NAME(OUWN) is specified and not supported.

MODE_NAME specifies SNASYVCMG and the local program is not an LU
services program.

TPN specifies an SNA service transaction program name and the
local program does not have the appropriate privilege to allocate
a conversation to an SNA service program.

TPN specifies a null (0 length) value.

TYPE(BASIC_CONVERSATION) is specified and the local program does
not have basic conversation support defined.
TYPE(MAPPED_CONVERSATION) is specified and the local program is
not a mapped conversation LU services program.
RETURN_CONTROL(DELAYED_ALLOCATION_PERMITTED) is specified and
not supported.

RETURN_CONTROL(IMMEDIATE) is specified and not supported.
SYNC_LEVEL(SYNCPT) is specified and not supported.

SECURITY(SAME) is specified and not supported.
SECURITY(PGM(USER_ID(variable) PASSWORD(variable))) is specified
and not supported.

SECURITY(PGM(PROFILE(variable))) is specified and not supported.
PIP(YES(variable)) is specified and not supported.

- state Check

N
1.

None

es:

This verb is used by a transaction program to allocata a basic
conversation. It is also used by an LU services component program
to allocate either a basic conversation or a mapped conversation,
depending on the function that the component program provides.
For example, a component program that processes control oparator
verbs usas this verb to allocate a basic conversation, and a com-
ponent program that processes mapped conversation verbs uses this
verb to allocate a mapped conversation.

SNA Transaction Programmer's Reference Manual for LU Type 6.2

Basic conversation Verbs

Depending on the product, the LU may send the allocatlon request
to the remote LU as soon as it allocates a session for the conver-
sation. Alternatively, the LU may buffer the allocation request
until it accumulates from the PIP parameter of this verb or from
one or more subsequent SEND_DATA verbs a sufficient amount of
information for transmission, or until the local program issues a
subsequent verb other than SEND_DATA that explicitly causes the
LU to flush its send buffer. The amount of information that is
sufficient for transmission depends on the characteristics of the
session allocated for the conversation, and can vary from one ses-
sion to another.

The local program can ensure that the remote program is connected
as soon as possible by issuing FLUSH immediately after ALLOCATE.

Two LUs connected by a session may both attempt to allocate a con-
versation on the session at the same time. This is called con-
tention. Contention is resolved by making one LU the contention
winner of the session and the other LU the contention loser of the
sassion. The contention-winner LU allocates a conversation on a
session without asking permission from the contention-loser LU.
Conversely, the contention-loser LU requests permission from the
contention-winner LU to allocate a conversation on the session,
and tze contention-winner LU either grants or rejects the
request.

If the program issues ALLOCATE with the parameter
RETURN_ CONTROL(DELAYED ALLOCATION_PERMITTED), the LU delays
allocation of the session until it flushes its send buffer. At
that time the LU allocates the session and transmits the allo-
cation request to the ramote LU. The program is unaffected by the
delayed allocation of the session, with one exception: When the
LU allocates a contention-loser session, it does so by transmit-
ting the allocation request and then waiting for information to
arrive before returning control to the program. This can affect
the sequence of the verbs that the program can issue.

Forb example, suppose the program has the following sequence of
verbs:

ALLOCATE with RETURN_CONTROL(DELAYED_ALLOCATION_PERMITTED)
PREPARE_TO_RECEIVE with TYPE(FLUSH)
REQUEST_TO_SEND

In this example, assume the program is using REQUEST_TO_SEND to
prompt the remote program to begin sending information, instead
of requesting send control. However, if the LU allocates a con-
tention-loser session (and an allocation error or resource fail-
ure does not occur), control is not returned to the program after
it issues the PREPARE_TO_RECEIVE until the remote program sends
some information. If the remote program waits for the
REQUEST_TO_SEND notification before sending any information, a
deadlock condition occurs. This deadlock can be avoided by issu-

the ALLOCATE with either RETURN_CONTROL
(NHEN SESSION_ALLOCATED) or RETURN_ CONTROL (IMMEDIATE).

SYNC_LEVEL(SYNCPT) permits use of the SYNCPT and BACKOUT verbs
and the Resynchronization transaction program (an SNA service
transaction program), to aid in maintaining consistency across
all protected resources within a distributed logical unit of
work. The Resynchronization program performs sync point resyn-
chronization, which maintains this consistency when session fail-
ure and reinitiation occurs. See mat and Protoco

Reference Manual: Architecture logic for LU Tvpe 6.2 for more

details of sync point resynchronization.

Each LU indicates at session activation time whether it will
accept LU security parameters on allocation requests the partner
LU sends. If the remote LU will not accept any security parame-
ters from the local LU, and the local program specifies SECURI-
TY(SAME) or SECURITY(PGM(...)), the 1local LU doungrades the
specification to SECURITY(NONE). Similarly, if the remote LU

Chapter 4. Conversation Verbs 4-57

ALLOCATE

4-58

10.

will not accept the local LU's verification of the user ID and
password, and the local program specifies SECURITY(SAME), the
local LU doungrades the specification to SECURITY(NONE).

The remote program is connected to the other end of the conversa-
tion in receive state.

The program uses the resource ID, returned to the program on the
RESOURCE parameter, on all subsequent basic conversation verbs it
issues for this conversation.

References in this verb description to a program being in a par-
ticular state are only in terms of the allocated conversation.

SNA Transaction Programmer's Reference Manual for LU Type 6.2

Basic conversation Verbs

CONFIRM
Sends a confirmation request to a remote transaction program and waits
for a reply. This verb allows the local and remote programs to syn-
chronize their processing with one another. The LU flushes its send
buffer as a function of this verb.
Sy ied Parametars:
CONFIRM RESOURCE (variable)

Returned Parameters:
RETURN_CODE (variable)

REQUEST_TO_SEND_RECEIVED (variable)

H

supplied Parameters:

RESOURCE specifies the variable containing the resource ID. The con-
§$ﬁgg¥ion must be allocated with a synchronization level of CONFIRM or

Returned Parameters:

RETURN_CODE specifies the variable in which a return code is returned
to th:.local program. The return code indicates the result of verb
execution.

0K (remote program replied CONFIRMED)
ALLOCATION_ERROR

BACKED_OUT

DEALLOCATE_ABEND_PROG
DEALLOCATE_ABEND_SVC
DEALLOCATE_ABEND_TIMER
PROG_ERROR_PURGING
RESOURCE_FAILURE_NO_RETRY
RESOURCE_FAILURE_RETRY
SVC_ERROR_PURGING

REQUEST_TO_SEND_RECEIVED specifies the variable in which is returned
an lndlcatlon of whether REQUEST_TO_SEND has been raeceived. The indi-
cation is either YES or NO.

. YES indicates a REQUEST_TO_SEND notification has been received
from the remote transaction program. The remote program has
issued REQUEST_TO_SEND, requesting the local program to enter
receive state and thereby place the remote program in send state.

° NO indicates a REQUEST_TO_SEND notification has not been
received.

state Cha s (when RETURN CODE jndi es 0K):

Receive state is entered when the verb is issued in defer state fol-
lowing PREPARE_TO_RECEIVE.

Reset state is entered when the verb is issued in defer state follow-
ing DEALLOCATE.

No state change occurs when the verb is issued in send state.
ABEND Conditions:
Parameter Check

U The conversation was allocated with SYNC_LEVEL(NONE).
U RESOURCE specifies an unassigned resource ID.

Chapter 4. Conversation Verbs 4-59

CONFIRM
state Check

v The conversation is not in send or defer state.
. The conversation is in scnd state, and the program started but did
not finish sending a logical reccrd.

1. The program may use this verb for various application-level func-
tions. For example:

. The program may issue this verb immediately following an
ALLOCATE in order to determine whether the allocation of the
convearsation is successful before sending any data.

. The program may issue this verb as a request for acknowledge-
ment of data it sent to the remote program. The remote pro-
gram may respond by issuing CONFIRMED as an indication that it
received and processed the data without error, or by issuing
SEND_ERROR as an indication that it encountered an error.

2. When REQUEST_TO_SEND_RECEIVED indicates YES. the remote program
requests the local program to enter receive state and thareby
place the remote program in send state. A program enters receive
state by means of the PREPARE_TO_RECEIVE or RECEIVE_AND_WAIT
verb. The partner program enters the corresponding send state
when it issues a RECEIVE_AND_WAIT or RECEIVE_IMMEDIATE verb and
receives the SEND indication (on the WHAT_RECEIVED parameter).

3. References in this verb description to a program being in a par-
ticular state are only in terms of the specified conversation.

%4-60 SNA Transaction Programmer's Reference Manual for LU Type 6.2

Basic Conversation Verhs
CONFIRMED

Sends a confirmation reply to the remote transaction program. This
ver@ allows the local and remote programs to synchronize their proc-
essing with one another. The local program can issue this verb when
it receives a confirmation request (see the WHAT_RECEIVED parameter
of the RECEIVE_AND_WAIT or RECEIVE_IMMEDIATE verb).

Supplied Parameters:
CONFIRMED RESOURCE (variable)

3

sSu ied Paranme - H
RESOURCE specifies the variable containing the resource ID.

sState Changes:

Receive state is entered when CONFIRM was received on the preceding
RECEIVE_AND_WAIT or RECEIVE_IMMEDIATE.

send state is entered when CONFIRM_SEND was received on the preceding
RECEIVE_AND_WAIT or RECEIVE_IMMEDIATE.

Deallocate state is entered when CONFIRM_DEALLOCATE was received on
the preceding RECEIVE_AND_WAIT or RECEIVE_IMMEDIATE.

ABEND Conditions:
Parameter Check

RESOURCE specifies an unassigned resource ID.
state Check

The conversation is not in confirm state.
Notes:

1. The program can issue this verb only as a reply to a confirmation
request; the verb cannot be issued at any other time.

2. The program may use this verb for various application-level func-
tions. For example, the remote program may send data followed by
a confirmation request. When the local program receives the con-
firmation request, it may issue this verb as an indication that it
received and processed the data without error.

3. References in this verb description to a program being iq a par-
ticular state are only in terms of the specified conversation.

Chapter 4. Conversation Verbs 4-61

DEALLOCATE

Deallocates the specified conversation from the transaction program.
The deallocation can be either completed as part of this verb, or
deferred until the program issues a FLUSH, CONFIRM, or SYNCPT verb.
When it is completed as part of this verb it can include the function
of the FLUSH or CONFIRM verb. The resource ID becomes unassigned when
deallocation is complete.

DEALLOCATE

Supplied Parameters:
RESOURCE (variable)

SYNC LEVEL)
FLUSH
CONFIRM)
ABEND_PROG)
ABEND_SVC)
ABEND_TIMER)

i LOCAL)

TYPE

PN P p P PN PN

LOG_DATA (NO)
(YES (variable))

Returned Parameters:
RETURN_CODE (variable)

H

Supplied Parameters:

RESOURCE specifies the variable containing the resource ID of the con-
vaersation to be deallocated.

TYPE specifies the type of deallocation to be performed.

® SYNC_LEVEL specifies to perform deallocation based on the syn-
chronization level allocated to this conversation:

- If SYNC_LEVEL(NONE), execute %he function of the FLUSH verb
and deallocate the conversation normally.

- If SYNC_LEVEL(CONFIRM), execute the function of the CONFIRM
verb and if it is successful (as indicated by a return code of
0K on this DEALLOCATE verb), deallocate the conversation
normally; if it is not successful, the state of the conversa-
tion is determined by the return code.

- If SYNC_LEVEL(SYNCPT), defer the deallocation until the pro-
gram issues a SYNCPT, or the program issues a CONFIRM or FLUSH
for this conversation. If the SYNCPT or CONFIRM is successful
(as indicated by a return code of 0K on that verb) or FLUSH is
issued, the conversation is then deallocated normally; other-
wise, the state of the conversation is determined by the
raeturn code.

° FLUSH specifies to execute the function of the FLUSH verb and
deallocate the conversation normally.

L CONFIRM specifies to execute the function of the CONFIRM verb and
if it is successful (as indicated by a return code of 0K on this
DEALLOCATE verb), deallocate the conversation normally; if it is
no: succegsful, the state of the conversation is determined by the
return code.

. ABEND_PROG, ABEND_SVC, or ABEND_TIMER specifies to execute the
function of the FLUSH verb when the conversation is in send or
defer state, and deallocate the conversation abnormally.

4-62 SNA Transaction Programmer's Reference Manual for LU Type 6.2

Basic Conversation Verbs

Logical-record truncqtion can occur when the conversation is in
send state; data purging can occur when it is in receive state.

. LOCAL specifies to deallocate the conversation locally. This
type of deallocation must be specified if, and only if, the con-
versation is in deallocate state. Deallocate state is entered
when ?he'program receives on a previously issued verb a return
code indicating the conversation has been deallocated (see "Re-
turn Codes™ on page 4-99).

The execution of the FLUSH or CONFIRM function as part of this verb
includes the flushing of the LU's send buffer. When, instead, the
deallocation is deferred, the LU also defers flushing its send buffer
until the program issues a subsequent verb for this conversation.

LOG_DATA specifies whether product-unique error information is to be
placed in the system error logs of the LUs supporting this conversa-
tion. This parameter can be specified only when TYPE(ABEND_PROG),
TYPECABEND_SVC), or TYPE(ABEND_TIMER) is also specified.

. NO specifies that no error information is to be placed in the sys-
tem error logs.

) YES specifies that product-unique error information is to be
placed in the system error logs of the local and remote LUs. The
specified variable contains the product-unique error information,
in the format of the Error Log GDS variable. See SNA Format and
Protocol Reference Manual: Architecture Logic for L e 6.2 for
a definition of the Error Log GDS variable.

Returned Parameters:

RETURN_CODE specifies the variable in which a return code is returned
to the local program. The return code indicates the result of verb
execution. The TYPE parameter determines which of the following
return codes can be returned to the program.

. If TYPE(SYNC_LEVEL) is specified and the synchronization level
allocated to this conversation is NONE; or TYPE(FLUSH),
TYPE(ABEND_PROG), TYPECABEND_SVC), TYPECABEND_TIMER), or
TYPECLOCAL) is specified; the following return code is returned:

- 0K (deallocation is complete)

U If TYPE(SYNC_LEVEL) is specified and the synchronization level
allocated to this conversation is CONFIRM, or TYPE(CONFIRM) is
specified, one of the following return codes is returned:

0K (deallocation is complete)
ALLOCATION_ERROR
DEALLOCATE_ABEND_PROG
DEALLOCATE_ABEND_SVC
DEALLOCATE_ABEND_TIMER
PROG_ERROR_PURGING
SVC_ERROR_PURGING
RESOURCE_FAILURE_NO_RETRY
RESOURCE_FAILURE_RETRY

. If TYPE(SYNC_LEVEL) is specified and the synchronization level
allocated to this conversation is SYNCPT, the following return
code is returned:

rreteevre
1

- 0K (deallocation is deferred)

state Changes (isthen RETURN CODE indicates 0K):

Defer state is entered when TYPE(SYNC_LEVEL) is specified and the syn-
chronization level is SYNCPT.

Reset state is entered when TYPE(FLUSH), TYPE(CONFIRM), TYPE(LOCAL),
TYPECABEND_PROG), TYPECABEND_SVC), or TYPE(ABEND_TIMER) is specified;
or when TYPE(SYNC_LEVEL) is specified and the synchronization level
is NONE or CONFIRM.

Chapter 4. Conversation Verbs 4-63

DEALLOCATE

ABEMND Caonditions:
Parameter Check

RESOURCE specifies an unassigned resource ID. . .
TYPEC(CONFIRM) is specified and the conversation is allocated with
SYNC_LEVEL(NONE). .
TYPECABEND_SVC). or TYPECABEND_TIMER) is specified and not sup-
ported.

LOG_DATA is specified and not supported.

state Check

TYPECFLUSH), TYPE(CONFIRM), or TYPE(SYNC_LEVEL) is specified and
the conversation is not in send state. L.
TYPECFLUSH), TYPECCONFIRM), or TYPE(SYNC_LEVEL) is specified, the
conversation is in send state, and the program started but did not
finish sending a logical record. . .
TYPECABEND_PROG), TYPECABEND_SVC), or TYPE(ABEND_TIMER) is speci-
fied and the conversation is not in send, defer, receive, confirm,
or sync-point state. .
TYPEC(LOCAL) "'is specified and the conversation is not in deallo-
cate state.

Notes:

1.

When the deallocation is deferred (see the TYPE parameter), the LU
buffers the deallocation information to be sent to the remote LU
until the local program issues a verb that causes the LU to flush
its send buffer.

The TYPE(SYNC_LEVEL) parameter is intended to be used by the
transaction program in order to deallocate the conversation based
on the synchronization level allocated to the conversation.

e If the synchronization level is NONE, the conversation is
unconditionally deallocated.

. If the synchronization lavel is CONFIRM, the conversation is
deallocated when the remote program responds to the confirma-
tion request by issuing CONFIRMED. The conversation remains
allocated when the remote program responds to the confirma-
tion request by issuing SEND_ERROR.

. If the synchronization level is SYNCPT, the conversation is
deallocated when the local program subsequently issues SYNCPT
and all programs throughout the transaction, connected to
conversations having the synchronization level of SYNCPT,
respond to the sync point request by issuing SYNCPT. The con-
versation remains allocated when the remote program responds
to the sync point request by issuing SEND_ERROR, or one or
more programs respond by issuing BACKOUT.

The TYPE(FLUSH) parameter is intended to be used by the trans-
action program in order to unconditionally deallocate the conver-
sation regardless of its synchronization level. TYPE(FLUSH) is
functionally equivalent to:

. TYPE(SYNC_LEVEL) with a synchronization level of NONE.

L TYPE(SYNC_LEVEL) with a synchronization level of SYNCPT, fol-
lowed by the FLUSH verb.

The TYPE(CONFIRM) parameter is intended to be used by the trans-
action program in order to conditionally deallocate the conversa-
tion, depending on the remote program's response, when the
synchronization level is CONFIRM or SYNCPT. TYPE(CONFIRM) is
functionally equivalent to:

. TYPE(SYNC_LEVEL) with a synchronization level of CONFIRM.

. TYPE(SYNC_LEVEL) with a synchronization level of SYNCPT, fol-
lowed by the CONFIRM verb.

6-64 SNA Transaction Programmer's Reference Manual for LU Type 6.2

Basic Conversation Verbs

The conversation is deallocated when the remote program responds
tg the coqurmation requaest by issuing CONFIRMED. The conversa-
tlon_ remains allocated when the remote program responds to the
confirmation request by issuing SEND_ERROR.

The TYPECABEND_PROG), TYPECABEND_SVC), and TYPECABEND_TIMER)
parameters are intended to be used in order to unconditionally
deallocate the conversation regardless of its synchronization
level and its current state. Specifically:

L3 The TYPE(ABEND_PROG) parameter is intended to be used by a
transaction program when it detects an error condition that
prevents further useful communications, that is, communi-
cations that would lead to successful completion of the
transaction. The specific use and meaning of ABEND_PROG are
program-defined.

. The TYPE(ABEND_SVC) parameter is intended to be used by an LU
services component, such as one that processes mapped conver-
sation verbs, when it detects an error condition caused by its
peer LU services component in the remote LU. An example is a
format error in control information sent by the peer LU serv-
ices component. The specific use and meaning of ABEND_SVC are
product-defined.

. The TYPECABEND_TIMER) parameter is intended to be used by an
U services component, such as one that processes mapped con-
versation verbs, when it detects or is informed of a condition
that requires the conversation to be deallocated without fur-
ther communications. For example, too much time elapses
without receiving any information, or an operator prematurely
ends program execution. The specific conditions and the
means by which the LU services component detects or is
informed of the conditions are product-defined. The specific

use and meaning of ABEND_TIMER are also product-defined.

The TYPE(LOCAL) parameter is intended to be used by the trans-
action program in order to complete the program's deallocation of
the conversation after receiving an indication that the conversa-
tion has been deallocated from the session, an indication such as
a DEALLOCATE_NORMAL or RESOURCE_FAILURE_RETRY return code.

The remote transaction program receives the deallocate notifica-
gig? by means of a return code or what-received indication, as
ollouws:

L DEALLOCATE_NORMAL return code: The local program specified
either TYPEC(FLUSH); TYPE(SYNC_LEVEL) and the synchronization
level is NONE; or TYPE(SYNC_LEVEL), the synchronization level
is SYNCPT, and the local program subsequently issued FLUSH.

L] CONFIRM_DEALLOCATE what-received indication: The local pro-
gram specified either TYPE(CONFIRM); TYPE(SYNC_LEVEL) and the
synchronization level is CONFIRM; or TYPE(SYNC_LEVEL), the
synchronization level is SYNCPT,. and the local program subse-
quently issued CONFIRM.

. TAKE_SYNCPT_DEALLOCATE what-received indication: The local
program specified TYPE(SYNC_LEVEL), the synchronization level
is SYNCPT, and the local program subsequently issued SYNCPT.

L DEALLOCATE_ABEND_PROG, DEALLOCATE_ABEND_SVC, or DEALLO-
CATE_ABEND_TIMER return code: The local program specified,
respectively, TYPECABEND_PROG), TYPECABEND_SVC), or
TYPECABEND_TIMER), with the following exception: If the
remote program has issued a SEND_ERROR in receive state, a
DEALLOCATE_NORMAL return code is reported instead of one of
the DEALLOCATE_ABEND return codes.

DEALLOCATE with TYPECABEND_PROG), TYPECABEND_SVC), or
TYPECABEND_TIMER) resets or cancels posting. If posting is
active and the conversation has been posted, posting is reset. If
posting is active and the conversation has not been posted, post-

Chapter 4. Conversation Verbs 6-65

DEALLOCATE

ing is canceled (posting will not occur). See the POST_ON_RECEIPT

verb for more details about posting.

9. References in this verb description to a program being in a par-
ticular state are only in terms of the specified conversation.

4-66 SNA Transaction Programmer's Reference Manual for LU Type 6.2

Basic conversation verbs

FLUSH
Flushes the local LU's send buffer. The LU sends any information it
has buffered to the raemote LU. Information the LU buffers can come
from ALLOCATE, DEALLOCATE, SEND_DATA, PREPARE_TO_RECEIVE, or
SEND_ERROR. Refer to the descriptions of these verbs for details of
the information the LU buffers and when buffering occurs.
Supplied Parameters:
FLUSH | RESOURCE (variable)

.
4

Supplied Parameters:

RESOURCE specifies the variable containing the resource ID.

State Changes:

Receive state is entered when the verb is issued in defer state fol~-
lowing PREPARE_TO_RECEIVE.

Reset state is entered when the verb is issued in daefar state follow-
ing DEALLOCATE.

No state changa occurs when the verb is issued in send state.
BEND Conditi H
Parameter Check

U This verb is not supported.
. RESOURCE specifies an unassigned resource ID.

state Check
The conversation is not in send or defer state.
[¢] H

1. This verb is useful for optimization of processing between the
local and remote programs. The LU normally buffers the data from
consecutive SEND_DATAs until it has a sufficient amount for
transmission. At that time it transmits the buffered data. Houw-
ever, the local program can issue FLUSH in order to cause the LU
to transmit the buffered data. In this way, the local program can
minimize the delay in the remote program's processing of the data.

2. This verb can be issued after DEALLOCATE with TYPE(SYNC_LEVEL)
whan the synchronization level for the conversation is SYNCPT.
The effect to the remota program is the same as issuing DEALLOCATE
with TYPECFLUSH). The conversation is deallocated at the com-
pletion of the FLUSH verb.

3. This verb can be issuad after PREPARE_TO_RECEIVE with
TYPE(SYNC_LEVEL) when the synchronization level for the conversa-
tion is SYNCPT. The effect to the remote program is the same as
issuing PREPARE_TO_RECEIVE with TYPE(FLUSH). The conversation
enters receive state at the completion of the FLUSH verb.

4. The LU flushes its send buffer only when it has some information
to transmit. If the LU has no information in its send buffer,
‘nothing is transmitted to the remote LU.

5. References in this verb description to a program being in a par-
ticular stata are only in terms of the specified conversation.

Chapter 4. Convaersation Verbs 4-67

GET_ATTRIBUTES

Raturns information pertaining to the specified conversation.

GET_ATTRIBUTES RESOURCE (variable)

sSu ied Param rse

eturned Parameters:

[OWN_FULLY_QUALIFIED_LU_NAME (variable)]

[PARTNER_LU_NAME (variable)]

[PARTNER_FULLY_QUALIFIED_LU_NAME (variable)]
MODE_NAME (variable)]

SYNC_LEVEL (variable)]

SECURITY_USER_ID (variable)]

SECURITY_PROFILE (variable)]

LUU_IDENTIFIER (variable)]

CONVERSATION_CORRELATOR (variable)]

Supplied Parameters:

RESOURCE specifies the variable containing the resource ID of the con-
versation of which the attributes are desired.

Returned parameters:

OWN_FULLY_QUALIFIED_LU_NAME specifies the variable for returning the
fully qualified name of the LU at which the local transaction program

is located. If the local fully qualified LU name is not known, a null
value is returned.

PARTNER_LU_NAME specifies the variable for returning the name of the
LU at which the remote transaction program is located. This is a name
by which the local LU knows the remote LU for the purpose of allocat-
ing a conversation. Refer to the description of the LU_NAME parameter
of ALLOCATE for more details.

PARTNER_FULLY_QUALIFIED_LU_NAME specifies the variable for returning
the fully qualified name of the LU at which the remote transaction
program is located. If the partner's fully qualified LU name is not
known, a null value is returned.

MODE_NAME specifies the variable for returning the mode name for the
session on which the conversation is allocated.

SYNC_LEVEL specifies the variable for returning the level of synchro-
nization processing being used for the conversation. The synchroni-
zation levels ara:

° NONE
. CONFIRM

4-68 SNA Transaction Programmer's Reference Manual for LU Type 6.2

Basic conversation verbs
. SYNCPT

SECURITY_USER_ID specifies the variable for raeturning the user ID
carried on the allocation request that initiated execution of the
local program. A null value is returned if the allocation request did
not contain a user ID.

SECURITY_PROFILE specifies the variable for returning the profile
carried on the allocation request that initiated execution of the
local program. A null value is returned if the allocation request did
not contain a profile.

LUW_IDENTIFIER specifies the variable for returning the logical unit
of work (LUW) identifier associated with the conversation. The LUW
identifier is created and maintained by the LU. The LU uses it to
identify the most recent sync point and for accounting purposes. and
for accounting purposes. If no LUW identifier is used on the conver-
sation, a null value is returned.

CONVERSATION_CORRELATOR specifies the variable for returning the con-
varsation correlator. The conversation correlator is created and
maintained by the LU. The LU uses it during sync point resynchroniza-
tion. If no conversation correlator is used on the conversation, a
null value is returned.

State Changes:

None

ABEND Conditions:
Parameter Check

RESOURCE specifies an unassigned resource ID.
SECURITY_USER_ID is specified and not supported.
SECURITY_PROFILE is specified and not supported.
LUW_IDENTIFIER is specified and not supported.
CONVERSATION_CORRELATOR is specified and not supported.

state Check

® ® O 0 0

None

Notes:

1. The program issues this verb in order to obtain the attributes of
the tc:'nversation. including the one by which the program was
started.

2. Specifying SECURITY_USER_ID or SECURITY_PROFILE returns the user
ID or profile carried on the allocation request that initiated
execution of the local program, regardless of which resource ID is
supplied on the RESOURCE parameter.

3. The LU creates the LUW identifier for its use during sync point
processing, and for accounting purposes. For sync point, the LUW
identifier uniquely identifies the most recent synchronization
point.

4. The LU creates the conversation correlator for its use during sync
point resynchronization. For sync point resynchronization, the
conversation correlator correlates the logical unit of work to
the sync point states associated with the current instance of the
local program.

Chapter 4. Conversation Verbs 4-69

POST_ON_RECEIPT

Causes the LU to post the specified conversation when information is
available for the program to receive. The information can be data,
conversation status, or a request for confirmation or sync point.
WAIT should be issuad after POST_ON_RECEIPT in order to wait for post-
ing to occur. Alternatively, TEST may be issued following
POST_ON_RECEIPT in order to determine when posting has occurread.

POST_ON_RECEIPT | RESOURCE (variable)

supplied Parameters:

(BUFFER)
LENGTH (variable)

[FILL(!_.,_L)]

3

supplied Parameters:

RESOURCE specifies the variable containing the resource ID.

FILL specifies whether posting for data is to occur in terms of the
logical-record format of the data.

[LL specifies to post when a complete or truncated logical record
is received, or when a part of a logical record is received that
is at least equal in length to that specified on the LENGTH param-
eter, whichever occurs first.

. BUFFER specifies to post when data (independent of its
logical-record format) is available that is at least equal in
length to that specified by the LENGTH parameter, or when the end
of data is available, whichever occurs first.

The specification and effect of FILL(LL) versus FILL(BUFFER) is rele-
vant only at the time the verb is issued. The specification does not
depend on past use, and has no bearing on subsequent use, of this
parameter on any verbs to which it applies (POST_ON_RECEIPT,
RECEIVE_IMMEDIATE, and RECEIVE_AND_WAIT).

Posting also occurs independent of the FILL specification when infor-
mation other than data is received, such as conversation status (a
SEND, PROG_ERROR_TRUNC, or DEALLOCATE_NORMAL indication, for exam-
ple), or a confirmation or sync-point request.

LENGTH specifies the variable containing a length value, which is the
maximum length of data that the program can receive. This parameter

is used along with FILL to determine when to post the conversation for
the receipt of data.

State changes:
None

ABEND Conditions:
Parameter Check

L4 This verb is not supported.
o RESOURCE specifies an unassigned resource ID.

State Check

The conversation is not in receive state.

4-70 SNA Transaction Programmer's Reference Manual for LU Type 6.2

Basic Conversation verbhs

otes:

This verb is intended to be used in conjunction with TEST or WAIT.
The use of this verb and WAIT allows a program to perform synchro-
nous receiving from multiple conversations, where the program
issues this verb for each of the conversations and then issues
WAIT (for each conversation) to wait until information is avail-
able to be received on the conversations. The use of this verb
and TEST allows a program to continue its processing and test the
convgrsgtlons to determine when information is available to be
received.

Posting occurs when the LU has any information that the program
can receive, such as data, conversation status, or a request for
confirmation or sync point. Refer to the RECEIVE_AND_WAIT verb
for a description of the types of information a program can
receive.

Posting is active for a conversation when POST_ON_RECEIPT has
been issued for the conversation and posting has not yet been
reset or cancelled.

Posting is reset when any of the following verbs is issued for the
same conversation as specified on POST_ON_RECEIPT after the con-
versation is posted: '

BACKOUT

DEALLOCATE with TYPEC(ABEND_PROG), TYPECABEND_SVC), or
TYPECABEND_TIMER)

RECEIVE_AND_WAIT
RECEIVE_IMMEDIATE
SEND_ERROR

TEST

WAIT

Posting is cancelled when any of the following verbs is issued for
the same conversation as specified on POST_ON_RECEIPT before the
convarsation is posted:

BACKOUT

DEALLOCATE with TYPE(ABEND_PROG), TYPECABEND_SVC), or
TYPECABEND_TIMER)

RECEIVE_IMMEDIATE
SEND_ERROR

In order for the program to activate posting again after posting
has been reset or cancelled, the program issues another
POST_ON_RECEIPT.

Any number of POST_ON_RECEIPTs may be issued for a given conversa-
tion before posting is reset or cancelled. The last
POST_ON_RECEIPT issued for a conversation is the one that deter-
mines when posting will occur for data. For example, if a program
issues POST_ON_RECEIPT with FILL(BUFFER) and LENGTH(1000) in
preparation to receive 1000 bytes of data, and then issues the
verb again with LENGTH(500), posting will occur when 500 bytes'of
data are available; or if the program issues the verb again with
FILLC(LL), posting will occur in terms of logical records.

POST_ON_RECEIPT with LENGTH(0) has no special significance. It
specifies that posting for data is to occur upon receipt of any
amount of data of one byte or more. It is equivalent to
POST_ON_RECEIPT with LENGTH(1).

Chapter 4. Conversation Verbs 4-71

POST_ON_RECEIPT

6.

When FILL(BUFFER) is specified, posting for data occurs independ-
ent of its logical record format. The conversation is posted when
an amount of data is available that is equal to, or less than, the
length specified on the LENGTH parameter. Posting for less data
can occur only when the end of the data is available. The end of
data occurs when it is followed by an indication of a change in
the state of the conversation, that is, a change to send, confirm,
sync-point, or deallocate state. See RECEIVE_AND_WAIT for addi-
tional information.

References in this verb description to a program being in a par-
ticular state are only in terms of the specified conversation.

4-72 SNA Transaction Programmer's Reference Manual for LU Typa 6.2

Basic Conversation Verbs

PREPARE_TO_RECEIVE

Changes the conversation from send to receive state in preparation to
receive data. The change to receive state can be either completed as
part of this verb, or deferred until the program issues a FLUSH, CON-
fIRH. or SYNCPT verb. MWhen it is completed as part of this verb it
includes the function of the FLUSH or CONFIRM verb.

PREPARE_TO_RECEIVE | RESOURCE (variable)

Su ied Parameters:

(SYNC LEVEL)
TYPE (FLUSH

(CONFIRHM)

[LOCKS (SHORT)
¢ LONG)

Returned Parameters:
RETURN_CODE (variable)

supplied Parameters:
RESOURCE specifies the variable containing the resource ID.

TYPE specifies the type of prepare-to-receive to be performed for this
conversation.

L SYNC_LEVEL specifies to perform the prepare-to-receive based on
the synchronization level allocated to this conversation:

- If SYNC_LEVEL(NONE), execute the function of the FLUSH verb
and enter receive state.

- If SYNC_LEVEL(CONFIRM), execute the function of the CONFIRM
verb and if it is successful (as indicated by a return code of
0K on this PREPARE_TO_RECEIVE verb), enter receive state; if
it is not successful, the state of the conversation is deter-
mined by the return code.

- If SYNC_LEVEL(SYNCPT), enter defer state until the program
issues a SYNCPT, or the program issues a CONFIRM or FLUSH for
this conversation. If the SYNCPT or CONFIRM is successful (as
indicated by a return code of 0K on that verb) or FLUSH is
issued, receive state is then entered for this conversation;
otterwiseé the state of the conversation is determined by the
return code.

. FLUSH specifies to execute the function of the FLUSH verb and
enter receive state.

L CONFIRM specifies to execute the function of the CONFIRM verb and
if it is successful (as indicated by a return code of 0K on this
PREPARE_TO_RECEIVE verb), enter receive state; if it is not suc-
cegsful, the state of the conversation is determined by the return
code.

The execution of the FLUSH or CONFIRM function as part of this verb
includes the flushing of the LU's send buffer. When, instead, defer
state is entered, the LU defers flushing its send buffer until the
program issues a subsequent verb for this conversation.

LOCKS specifies when control is to be returned to the local program

following execution of the CONFIRM function of this verb or following
execution of a CONFIRM verb issued subsequent to this verb. This

Chapter 4. Conversation Verbs 4-73

PREPARE_TO_RECEIVE

4-74

parametar is significant only when TYPE(CONFIRM) is also specified,
or when TYPE(SYNC_LEVEL) is also specified and the synchronization
level for this conversation is CONFIRM; or when TYPE(SYNC_LEVEL) is
also specified, the synchronization level for this conversation is
SYNCPT, and a subsequent CONFIRM is issuaed. Otheruwise, this parameter
has no meaning and is ignored.

. SHORT specifies to return control when an affirmative reply is
raeaceived, as follous:

- When the synchronization level is CONFIRM, return control
from eﬁecution of this verb when a CONFIRMED reply is
received.

- When the synchronization laevel is SYNCPT, return control
immediately from execution of this verb; return control from
execution of a subsequent CONFIRM or SYNCPT verb when a corre-
sponding CONFIRMED or SYNCPT reply is received.

o LONG specifies to return control when information, such as data,
is received from the remote program following an affirmative
reply, as follous:

- When the synchreonization level is CONFIRM, return control
from execution of this verb when information is received fol-
lowing a CONFIRMED reply.

- When the synchronization level is SYNCPT, return control
immediately from execution of this verb; return control from
execution of a subsequent CONFIRM or SYNCPT verb when infor-
mation is received following a corresponding CONFIRMED or
SYNCPT reply.

Returned Parameters:

RETURN_CODE specifiaes the variable in which a return code is returned
to the local program. The return code indicates the result of verb
execution. The TYPE parameter determines which of the following
raeturn codes can be returned to the progranm.

. If TYPEC(FLUSH) is specified, or if TYPE(SYNC_LEVEL) is specified
and the synchronization level allocated to this conversation is
NONE, the following return code is returned:

- OK

. If TYPE(SYNC_LEVEL) is specified and the synchronization level
allocated to this conversation is CONFIRM, or TYPE(CONFIRM) is
spacified, one of the following return codes is returned:

0K

ALLOCATION_ERROR
DEALLOCATE_ABEND_PROG
DEALLOCATE_ABEND_SVC
DEALLOCATE_ABEND_TIMER
PROG_ERROR_PURGING
SYC_ERROR_PURGING
RESOURCE_FAILURE_NO_RETRY
RESOGURCE_FAILURE_RETRY

L If TYPE(SYNC_LEVEL) is specified and the synchronization level
allocated to this conversation is SYNCPT, the following return
code is returned:

- oK
hangas ETURN CODE indicates 0K):

Defer state is entered when TYPE(SYNC_LEVEL) is specified and the syn-
chronization level is SYNCPT.

Recaivae state is entered when TYPE(FLUSH) or TYPE(CONFIRM) is speci-
fied, or when TYPE(SYNC_LEVEL) is specified and the synchronization
level is NONE or CONFIRM.

SNA Transaction Programmer's Reference Manual for LU Type 6.2

Basic Conversation Verbs

ABEND Conditions:
Parameter Check

[]

This verb is not supported.

RESOURCE SPQCIfleS an unassigned resource ID.

TYPE(CONFIRM) is specified and the conversation is allocated ulth
SYNC_LEVEL(NONE).

LOCKSCLONG) is specified and not supported.

state Check

The conversation is not in send state.
The conversation is in send state, and the program started but did
not finish sending a logical record.

Notes:

1.

The TYPE(SYNC_LEVEL) parameter is intended to be used by the
transaction program in order to transfer send control to the
remote program based on the synchronization level allocated to
the conversation.

. If the synchronization level is NONE, send control is trans-
ferred to the remote program uwithout any synchronizing
acknowledgment.

. If the synchronization level is CONFIRM, send control is
transferred to the remote program with confirmation
requested.

. If the synchronization level is SYNCPT, transfer of send con-
trol is deferred. When the local program subsequently issues
SYNCPT, send control is transferred to thae remote program
with sync point requested.

The TYPE(FLUSH) parameter is intended to be used by the trans-
action program in order to transfer send control to the remote
program without any synchronizing acknouledgment. TYPE(FLUSH) is
functionally equivalent to:

. TYPE(SYNC_LEVEL) with a synchronization level of NONE.

. TYPE(SYNC_LEVEL) uwith a synchronization level of SYNCPT. fol-
lowed by the FLUSH verb.

The TYPE(CONFIRM) parameter is intended to be used by the trans-
action program in order to transfer send control to the remote
program with confirmation requested. TYPE(CONFIRM) is func-
tionally equivalent to:

U TYPE(SYNC_LEVEL) with a synchronization level of CONFIRM.

° TYPE(SYNC_LEVEL) with a synchronization level of SYNCPT, fol-
lowed by the CONFIRM verb.

The remote transaction program receives send control by means of a
what-received indication of SEND, CONFIRM_SEND, or
TAKE_SYNCPT_SEND, as follows:

. SEND: The local program specified either TYPE(FLUSH);
TYPE(SYNC_LEVEL) and the synchronization level is NONE; or
TYPE(SYNC_LEVEL), the synchronization level is SYNCPT, and
the local program subsequently issued FLUSH.

. CONFIRM_SEND: The local program specified either
TYPE(CONFIRM), TYPE(SYNC_LEVEL) and the synchronization level
is CONFIRM; or TYPE(SYNC_LEVEL), the synchronization lavel is
SYNCPT, and the local program subsequently issued CONFIRM.

o TAKE_SYNCPT_SEND: The local program specified

TYPECSYNC_ LEVEL), the synchronization level is SYNCPT, and
the local program subsequently issued SYNCPT.

Chapter 4. Conversation Verbs 4-75

PREPARE_TO_RECEIVE
5.

If TYPE(SYNC_LEVEL) is specified and the synchronization leval
for the conversation is SYNCPT, the LU buffers the SEND notifica-
tion to be sent to the remote program until the local program
issues a verb that causes the LU to flush its send buffer.

The conversation for the remote program enters the corresponding
send state when it issues a RECEIVE_AND_WAIT or RECEIVE_IMMEDIATE
verb and receives the SEND indication (on the WHAT_RECEIVED
parameter.) The remote program can then send data to the local
program.

References in this verb description to a program being in a par-
ticular state are only in terms of the specified conversation.

4-76 SNA Transaction Programmer's Reference Manual for LU Typa 6.2

Basic Conversation verbs
RECEIVE_AND_MWAIT

Naitg for information to arrive on the specified conversation and then
receives the information. If information is already available, the
program receives it without waiting. The information can be data,
conversatlon status, or a request for confirmation or sync point.
?ogtroltgs returned to the program with an indication of the type of
nformation.

The program can issue this verb when the conversation is in send
state._ In this case, the LU flushes its send buffer, sending all buf-
fered information and the SEND indication to the remote program. This
changes the conversation to receive state. The LU then waits for
information to arrive. The remote program can send data to the local
program after it receives the SEND indication.

Supplied Parameters:
RECEIVE_AND_MWAIT RESOURCE (variable)

FILL (LL)
{ BUFFER)

supplied-and-Returned Parameters:
LENGTH (variable)

Returned Parameters:

RETURN_CODE (variable)
REQUEST_TO_SEND_RECEIVED (variable)
DATA (variable)

WHAT_RECEIVED (variable)

H

RESOURCE specifies the variable containing the resource ID.

FILL specifies whether the program is to receive data in terms of the
logical-record format of the data.

. LL specifies the program is to receive one complete or truncated
logical record, or a portion of the logical record that is equal
to the length specified by the LENGTH parameter.

J BUFFER specifies the program is to receive data independent of its
logical-record format. The amount of data received will be equal
to, or less than, the length specified by the LENGTH parameter.
The amount is less than the specified length when the program
receives the end of the data.

The specification and effect of FILL(LL) versus FILL(BUFFER) is rele-
vant only at the time the verb is issued. The specification does not
depend on past use, and has no bearing on subsequent use, of this
parameter on any verbs to which it applies (POST_ON_RECEIPT,
RECEIVE_AND_WAIT, and RECEIVE_IMMEDIATE).

ied- -Returne a t H

LENGTH specifies the variable containing a length value that is the
maximum amount of data the program is to receive. When control is
returned to the program this variable contains the actual amount of
data the program received up to the maximum. If the program receives
information other than data, this variable remains unchanged.

Chapter 4. Conversation Verbs 4-77

RECEIVE_AND_UWAIT

$-78 SNA Tran

Returned Parameters:

RETURN_CODE specifies the variable in which a return code is returned
to the program. The return code indicates the result of verb exe-
cution. The return codes that can be returned depend on the state of
the conversation at the time this verb is issued.

L If this verb is issued in send state, the following return codes
can be returned:

oK

ALLOCATION_ERROR
BACKED_OUT
DEALLOCATE_ABEND_PROG
DEALLOCATE_ABEND_SVC
DEALLOCATE_ABEND_TIMER
PROG_ERROR_PURGING
SVYC_ERROR_PURGING
RESOURCE_FAILURE_NO_RETRY
RESOURCE_FAILURE_RETRY

] If this verb is issued in receive state, the following return
codes can be returned:

0K

ALLOCATION_ERROR
BACKED_OUT
DEALLOCATE_ABEND_PROG
DEALLOCATE_ABEND_SVC
DEALLOCATE_ABEND_TIMER
DEALLOCATE_NORMAL
PROG_ERROR_NO_TRUNC
PROG_ERROR_PURGING
PROG_ERROR_TRUNC
SVC_ERROR_NO_TRUNC
SVC_ERROR_PURGING
SVC_ERROR_TRUNC
RESOURCE_FAILURE_NO_RETRY
RESOURCE_FAILURE_RETRY

REQUEST_TO_SEND_RECEIVED specifies the variable in which is returned
an indication of whether REQUEST_TO_SEND has been received. The indi-
cation is either YES or NO.

ttrretrtrr e

. YES indicates a REQUEST_TO_SEND notification has been received
from the remote transaction program. The remote program has
issued REQUEST_TO_SEND, requesting the local program to enter
receive state and thereby place the remote program in send state.

. NO indicates a REQUEST_TO_SEND notification has not been
received.

DATA specifies the variable in which the program is to receive the
data. When the program receives information other than data, as indi-

cg}ed by the WHAT_RECEIVED parameter, nothing is placed in this vari-
able.

WHAT_RECEIVED specifies the variable in which is returned an indi-
cation of what the transaction program received. The program should
examine this variable only when RETURN_CODE indicates 0K; otherwuise,
nothing is placed in this variable.

. DATA is indicated when FILL(BUFFER) is specified and data (inde-
pendent of its logical-record format) is received by the program.

] DATA_COMPLETE is indicated when FILL(LL) is specified and a com-
plete logical record, or the last remaining portion thereof, is
received by the program.

J DATA_INCOMPLETE is indicated when FILL(LL) is specified and less
than a complete logical record is received by the program. The
transaction program issues another RECEIVE_AND_WAIT (or possibly
multiple RECEIVE_AND_WAITs) to receive the remainder of the data.

saction Programmer's Reference Manual for LU Type 6.2

Basi¢ Conversation Verbs

. LL_TRUNCATED is indicated when FILL(LL) is specified and the
2-byte LL field of a logical record has been truncated after the
first byte. The LU discards the truncated LL field; it is not
received by the program.

L SEND_ indicates the remote program has entered receive state,
placing the local program in send state. The local program may
now issue SEND_DATA.

. CONFIRM indicates the remote program has issued CONFIRM, request-
ing the local program to respond by issuing CONFIRMED. The pro-
gram may respond, instead, by issuing a verb other than CONFIRMED,
such as SEND_ERROR.

. CONFIRM_SEND indicates the remote program has issued PRE-
PARE_TO_RECEIVE with TYPE(CONFIRM); or with TYPE(SYNC_LEVEL), and
either the synchronization level is CONFIRM, or it is SYNCPT and
the remote program subsequently issued CONFIRM. The local pro-
gram may respond by issuing CONFIRMED, or by issuing another verb
such as SEND_ERROR.

L CONFIRM_DEALLOCATE indicates the remote program has issued DEAL-
LOCATE with TYPE(CONFIRM); or with TYPE(SYNC_LEVEL), and either
the synchronization level is CONFIRM, or it is SYNCPT and the
remote program subsequently issued CONFIRM. The local program
may respond by issuing CONFIRMED, or by issuing another verb such
as SEND_ERROR.

] TAKE_SYNCPT indicates the remote program has issued SYNCPT,
requesting the local program to respond by issuing SYNCPT in order
to perform the sync-point function on all protected resources
throughout the transaction. 1Issuing the SYNCPT verb also causes
an affirmative reply to be returned to the remote program if the
sync-point function is successful. The program may respond,
ggﬁgeggéogy issuing a verb other than SYNCPT, such as BACKOUT or

. TAKE_SYNCPT_SEND indicates the remote program has issued PRE-
PARE_TO_RECEIVE with TYPE(SYNC_LEVEL), the synchronization level
is SYNCPT, and the remote program subsequently issued SYNCPT. The
local program may respond by issuing SYNCPT, or by issuing another
verb such as BACKOUT or SEND_ERROR.

. TAKE_SYNCPT_DEALLOCATE indicates the remote program has issued
DEALLOCATE with TYPE(SYNC_LEVEL), the synchronization level is
SYNCPT, and the remote program subsequently issued SYNCPT. The
local program may respond by issuing SYNCPT, or by issuing another
verb such as BACKOUT or SEND_ERROR.

state Changes (when RETURN CODE indicates 0K):

Receive state is entered when the verb is issued in send state and
WHAT_RECEIVED indicates DATA, DATA_COMPLETE, DATA_INCOMPLETE, or
LL_TRUNCATED.

send state is enterad when WHAT_RECEIVED indicates SEND.

confirm state is entered when WHAT_RECEIVED indicates CONFIRM, CON-
FIRM_SEND, or CONFIRM_DEALLOCATE.

sync-point state is entered when WHAT_RECEIVED indicates TAKE_SYNCPT,
TAKE_SYNCPT_SEND, or TAKE_SYNCPT_DEALLOCATE.

No state change occurs when the verb is issued in receive state and
WHAT_RECEIVED indicates DATA, DATA_COMPLETE, DATA_INCOMPLETE, or
LL_TRUNCATED.

ABEND Conditions:

Parameter Check

RESOURCE specifies an unassigned resource ID.

Chapter 4. Conversation Verbs 4-79

RECEIVE_AND_WAIT

State Check

The conversation is not in send or receive state. .
The conversation is in send state, and the program started but did
not finish sending a logical record.

When the program issues RECEIVE_AND_WAIT in send state, the LU
implicitly executes a PREPARE_TO_RECEIVE with TYPE(FLUSH) before
executing the RECEIVE_AND_WAIT. "Refer to the description of PRE-
PARE_TO_RECEIVE for details of its function.

When FILLC(LL) is specified, the program is to receive a logical
record and there are the following possibilities:

] The program receives a complete logical record or the last
remaining portion of a complete record. The length of the
record or portion of the record is equal to or less than the
length specified on the LENGTH parameter. The WHAT_RECEIVED
parameter indicates DATA_COMPLETE.

. The program receives an incomplete logical record. The log-
ical record is incomplete because:

- The length of the logical record is greater than the
length specified on the LENGTH parameter; in this case
the amount received equals the length specified.

- Only a portion of the logical record is available because
it has been truncated, the portion being equal to or less
than the length specified on the LENGTH parameter.

The WHAT_RECEIVED parameter indicates DATA_INCOMPLETE. The
program issues another RECEIVE AND_WAIT (or “possibly multiple
RECEIZE AND_WAITs) to receive the remainder of the logical
record.

. The program receives no part of the logical record because it
was truncated after the first byte of the LL field. The
WHAT_RECEIVED parameter indicates LL_TRUNCATED.

Refer to the SEND_DATA verb for a definition of complete and
incomplete logical records.

Whan FILL(BUFFER) is specified, the program is to receive data
independent of its logical-record format. The program receives
an amount of data equal to, or less than, the length specified on
the LENGTH parameter. The program can receive less data only when
it receives the end of the data. The end of data occurs when it is
followed by an indication of a change in the state of the conver-
sation, that is, a change to send, confirm, sync-point, or deallo-
cate state. The program is responsible for tracking the
logical-record format of the data.

RECEIVE_AND_WAIT with LENGTH(0) has no special significance. The
type of information available is indicated by the RETURN_CODE and
WHAT_RECEIVED parameters, as usual. If data is available and
FILLCLL) is specified, the WHAT_RECEIVED parameter indicates
DATA_INCOMPLETE. If data is available and FILL(BUFFER) is speci-
fied, the WHAT_RECEIVED parameter indicates DATA. In either
case, however, the program receives no data.

The program receives only one kind of information at a time. For
example, it may receive data or a CONFIRM request, but it does not
receive both at the same time. Also, if the remote program trun-
cates a logical record, the local program receives the lnducatlon
of the truncation on the RECEIVE_AND_WAIT it issues after receiv-
ing all of the truncated record. The RETURN_CODE and
NHAT _RECEIVED parameters indicate to the program the kind of
information the program receives.

4-80 SNA Transaction Programmer's Reference Manual for LU Type 6.2

Basic Conversation Verbs

RECEIVE_AND_WAIT includes posting. If posting is already active
when this verb is issued, this verb supersedes the prior
POST_ON_RECEIPT function. Posting is reset at the completion of
thi:_verb. See the POST_ON_RECEIPT verb for more details about
posting.

The REQUEST_TO_SEND notification is usually received when the
local transaction program is in send state, and reported to the
program on a SEND_DATA verb or on a SEND_ERROR verb issued in send
state. However, the notification can be received when the program
is in receive state under the follouwing conditions:

. When the local program just entered receive state and the
rimgte program issued REQUEST_TO_SEND before it entered send
state.

. When the remote program has just entered receive state by
means of the PREPARE_TO_RECEIVE verb (not RECEIVE_AND_WAIT),
and then issued REQUEST_TO_SEND before the local program
enters send state. This can occur because the
REQUEST_TO_SEND is transmitted as an expedited request and
can therefore arrive ahead of the request carrying the SEND
indication. Potentially, the local program cannot distin-
guish this condition from the first. This ambiguity is
avoided when the remote program waits until it receives
information from the local program before it issues the
REQUEST_TO_SEND.

. When the remote program issues the REQUEST_TO_SEND in send
state (see "Notes on ‘Implementation Details" in Appendix A).

The REQUEST_TO_SEND notification is returned to the program in
addition to (not in place of) the information indicated by the
RETURN_CODE and WHAT_RECEIVED parameters.

References in this verb description to the program being in a par-
ticular state are only in terms of the specified conversation.

Chapter 4. Conversation Verbs 4-81

RECEIVE_IMMEDIATE

Receivaes any information that is available from the specified conver-
sation, but does not wait for information to arrive. The information
(if any) can be data, conversation status, or a request for confirma-
tion or sync point. Control is raturned to the program with an indi-
cation of whether any information was received and, if so, the type of
information.

RECEIVE_IMMEDIATE | RESOURCE (variable)

Supplied Parameters:

FILL (LL)
(BUFFER)
sSu ied-and-Ratu a ers:

LENGTH (variable)

Returned Parameters:

RETURN_CODE (variable)
REQUEST_TO_SEND_RECEIVED (variable)
DATA (variable)

WHAT_RECEIVED (variable)

H

4-82

Su ied Par H
RESOURCE specifies the variabla containing the resocurca ID.

FILL specifies whether the program is to receive data in terms of the
logical-record format of the data.

] LL specifies the program is to receive one logical record, or
"whatever portion of the logical record is availabla, up to the
length spacified by the LENGTH paramater.

L BUFFER specifies the program is to receive data independent of its
logicai-record format, up to the length specified by tha LENGTH
parameter.

The specification and effect of FILL(LL) varsus FILL(BUFFER) is rele-
vant only at the time the verb is issued. The specification doas not
depend on past use, and has no bearing on subsequent use, of this
parameter on any verbs to which it applies (POST_ON_RECEIPT,
RECEIVE_IMMEDIATE, and RECEIVE_AND_WAIT).

su ied-and-Returned Parameters:

LENGTH specifies the variable containing a length value that is the
maximum amount of data the program is to receive. When control is
returned to the program this variable contains the actual amount of
data the program received up to the maximum. If the program receives
information other than data, or no information at all, this variable
remains unchanged.

Returned Parameters:

RETURN_CODE specifies the variable in which a return code is returned
tot#he program. The return code indicates the result of verb exe-
cution.

oK
. ALLOCATION_ERROR

SNA Transaction Programmer's Reference Manual for LU Type 6.2

Basic Conversation vVerhs

BACKED_OUT
DEALLOCATE_ABEND_PROG
DEALLOCATE_ABEND_SVC
DEALLOCATE_ABEND_TIMER
DEALLOCATE_NORMAL
PROG_ERROR_NO_TRUNC
PROG_ERROR_PURGING
PROG_ERROR_TRUNC
SVC_ERROR_NO_TRUNC
SVC_ERROR_PURGING
SVC_ERROR_TRUNC
RESOURCE_FAILURE_NO_RETRY
RESOURCE_FAILURE_RETRY
UNSUCCESSFUL - There is nothing to receive.

REQUEST_TO_SEND_RECEIVED specifies the variable in which is returned
an indication of whether REQUEST_TO_SEND has been received. The indi-
cation is either YES or NO.

. YES indicates a REQUEST_TO_SEND notification has been received
from the remote program. The remote program has issued
REQUEST_TO_SEND, requesting the local program to enter receive
state and thereby place the remote program in send state.

. NO indicates a REQUEST_TO_SEND notification has not been
received.

® 0 00000060000 00

DATA specifies the variable in which the program is to receive the
data. When the program receives information other than data, as indi-
cgfed by the WHAT_RECEIVED parameter, nothing is placed in this vari-
a e.

WHAT_RECEIVED specifies the variable in which is returned an indi-
cation of what the transaction program received. The program should
examine this variable only when RETURN_CODE indicates 0K; otheruwise,
nothing is placed in this variable.

. DATA is indicated when FILL(BUFFER) is specified and data (inde-
pendent of its logical-record format) is received by the program.

. DATA_COMPLETE is indicated when FILL(LL) is specified and a com-
plete logical record, or the last remaining portion thereof, is
received by the program.

L DATA_INCOMPLETE is indicated when FILL(LL) is specified and less
than a complete logical record is received by the program. The
transaction program issues another RECEIVE_IMMEDIATE (or possibly
@ul}iple RgCEIVE_IMMEDIATEs) to receive the remainder of the log-
jcal record.

. LL_TRUNCATED is indicated when FILL(LL) is specified and the
2-byte LL field of a logical record has been truncated after the
first byte. The LU discards the truncated LL field; it is not
received by the progranm. ’

o SEND indicates the remote program has entered receive state,
placing the local program in send state. The local program may
now issue SEND_DATA.

. CONFIRM indicates the remote program has issued CONFIRM, request-
ing the local program to respond by issuing CONFIRMED. The pro-
gram may respond, instead, by issuing a verb other than CONFIRMED,
such as SEND_ERROR.

L CONFIRM_SEND indicates the remote program has issued PRE-
PARE_TO_RECEIVE with TYPE(CONFIRM); or with TYPE(SYNC_LEVEL), and
either the synchronization level is CONFIRM, or it is SYNCPT and
the remote program subsequently issued CONFIRM. The local pro-
gram may respond by issuing CONFIRMED, or by issuing another verb
such as SEND_ERROR.

U CONFIRM_DEALLOCATE indicates the remote program has issued DEAL-

LOCATE with TYPE(CONFIRM); or with TYPE(SYNC_LEVEL), and either
the synchronization level is CONFIRM, or it is SYNCPT and the

Chapter 4. Conversation Verbs 4-83

RECEIVE_IMMEDIATE

4-864

remote program subsequently issued CONFIRM. The local program
may respond by issuing CONFIRMED, or by issuing another verb such
as SEND_ERROR.

. TAKE_SYNCPT indicates the remote program has issued SYNCPT,
requesting the local program to respond by issuing SYNCPT in order
to perform the sync-point function on all protected resources
throughout the transaction. Issuing the SYNCPT verb also causes
an affirmative reply to be returned to the remote program if the
sync-point function is successful. The program may respond,
iggsegdéogy issuing a verb other than SYNCPT, such as BACKOUT or
S _ER .

. TAKE_SYNCPT_SEND indicates the remote program has issued PRE-
PARE T0_| RECEIVE with TYPE(SYNC_LEVEL), the synchronization level
is SYNCPT, and the remote program subsequently lssued SYNCPT. The
local program may respond by issuing SYNCPT, or by tssutng another
verb such as BACKOUT or SEND_ERROR.

. TAKE_SYNCPT_DEALLOCATE indicates the remote program has issued
DEALLOCATE with TYPE(SYNC_LEVEL), the synchronization level is
SYNCPT, and the remote program subsequently 1ssued SYNCPT. The
local program may respond by issuing SYNCPT, or by lssu1ng another
verb such as BACKOUT or SEND_ERROR.

State Changes (uhen RgTUgN CODE indicates 0K):
send state is entered when WHAT_RECEIVED indicates SEND.

confirm state is entered when WHAT_RECEIVED indicates CONFIRM, CON-
FIRM_SEND, or CONFIRM_DEALLOCATE.

sync-point state is entered when WHAT_RECEIVED indicates TAKE_SYNCPT,
TAKE_SYNCPT_SEND, or TAKE_SYNCPT_DEALLOCATE.

No state change occurs when WHAT_RECEIVED indicates DATA,
DATA_COMPLETE, DATA INCOMPLETE, or LL_TRUNCATED.

ABEND Conditions:
Parameter Check.

. This verb is not supported.
. RESOURCE specifies an unassigned resource ID.

State Check

The conversation is not in receive state.

Notes:

1. When FILL(LL) is specified, the program is to receive a logical
record and there are the following possibilities:

. The program receives a complete logical record or the last
remaining portion of a complete record. The length of the
record or portion of the record is equal to or less than the
length specified on the LENGTH parameter. The WHAT_RECEIVED
parameter indicates DATA_COMPLETE.

. The program receives an incomplete logical record. The log-
ical record is incomplete because:

- The length of the logical record is greater than the
length specified on the LENGTH parameter; in this case
the amount received equals the length specified.

- Only a portion of the logical record is available (possi-
bly because it has been truncated), the portion being
equal to or less than the length specified on the LENGTH
parameter.

The WHAT_RECEIVED parameter indicates DATA_INCOMPLETE. The
program issues another RECEIVE_IMMEDIATE (or possibly multi-

SNA Transaction Programmer's Reference Manual for LU Type 6.2

Basic Conversation Verbs

ple RECEIVE_IMMEDIATEs) to receive the remainder of the log-
ical record.

L The program receives no part of the logical record because it
was truncated after the first byte of the LL field. The
WHAT_RECEIVED parameter indicates LL_TRUNCATED.

Refer to the SEND_DATA verb for a definition of complete and
incomplete logical records.

When FILL(BUFFER) is specified, the program is to receive data
independent of its logical-record format. The program receives
whatever data is available, up to the amount specified on the
LENGTH parameter. The program is responsible for tracking the
logical-record format of the data.

RECEIVE_IMMEDIATE with LENGTH(0) has no special significance.
The type of information available, if any, is indicated by the
RETURN_CODE and WHAT_RECEIVED parameters, as usual. If data is
available and FILL(LL) is specified, the WHAT_RECEIVED parameter
indicates DATA_INCOMPLETE. If data is available and FILL(BUFFER)
is specified, the WHAT_RECEIVED parameter indicates DATA. 1In
either case, houwever, the program receives no data.

The program receives only one kind of information at a time. For
example, it may receive data or a CONFIRM request, but it does not
receive both at the same time. Also, if the remote program trun-
cates a logical record, the local program receives the indication
of the truncation on the RECEIVE_IMMEDIATE it issues after
receiving all of ¢the truncated record. The RETURN_CODE and
WHAT_RECEIVED parameters indicate to the program the kind of
information the program receives, if any.

RECEIVE_IMMEDIATE resets or cancels posting. If posting is
active and the conversation has been posted, posting is reset. If
posting is active and the conversation has not been posted, post-
ing is canceled (posting will not occur). See the POST_ON_RECEIPT
verb for more details about posting.

The REQUEST_TO_SEND notification is usually received when the
local transaction program is in send state, and reported to the
program on a SEND_DATA verb or on a SEND_ERROR verb issued in send
state. However, the notification can be received when the program
is in receive state under the following conditions:

. When the local program just entered receive state and the
r:m:te program issued REQUEST_TO_SEND before it entered send
state.

. When the remote program has just entered receive state by
means of the PREPARE_TO_RECEIVE verb (not RECEIVE_AND_WAIT),
and then issued REQUEST_TO_SEND before the local program
enters send state. This can occur because the
REQUEST_TO_SEND is transmitted as an expedited request and
can therefore arrive ahead of the request carrying the SEND
indication. Potentially, the local program cannot distin-
guish this case from the first. This ambiguity is avoided
when the remote program waits until it receives information
from the local program before it issues the REQUEST_TO_SEND.

. When the remote program issues the REQUEST_TO_SEND in send
state (see "Notes on Implementation Details™ in Appendix A).

The REQUEST_TO_SEND notification is returned to the program in
addition to (not in place of) the information indicated by the
RETURN_CODE and WHAT_RECEIVED parameters.

References in this verb description to a program being in a par-
ticular state are only in terms of the specifiad convaersation.

Chapter 4. Conversation Verbs 4-85

REQUEST_TO_SEND

Notifies the remote program that the local program is reguestjng to
enter send state for the conversation. The conversation will be
changed to send state when the local program subsequently receives a
SEND indication from the remote program.

REQUEST_TO_SEND

Supplied Parameters:
RESOURCE (variable)

H

supplied Parameters:

RESOURCE specifies the variable containing the resource ID.

State Changes:

None

ABEND Candjtions:
Parameter Check

RESOURCE specifies an unassigned resource ID.

State Check

The conversation is ndt in receive, confirm, or sync-point state.

Notes:

1.

The REQUEST_TO_SEND notification is indicated to the remote pro-
gram by means of the REQUEST_TO_SEND_RECEIVED parameter. When
the REQUEST_TO_SEND_RECEIVED parameter is set to YES, the remote
program is requested to enter receive state and thereby place the
local program in send state. A program enters receive state by
means of the RECEIVE_AND_WAIT or PREPARE_TO_RECEIVE verb. The
partner program enters the corresponding send state when it
issues a RECEIVE_AND_WAIT or RECEIVE_IMMEDIATE verb and receives
the SEND indication (on the WHAT_RECEIVED parameter).

The REQUEST_TO_SEND_RECEIVED indication of YES is normally
returned to the remote program when it is in send state, that is,
on a SEND_DATA verb or on a SEND_ERROR verb issued in send state.
However, it ‘'can be returned on a RECEIVE_AND_WAIT or
RECEIVE_IMMEDIATE verb; see the description of RECEIVE_AND_WAIT
or RECEIVE_IMMEDIATE for details about when this can occur.

When the remote LU receives the REQUEST_TO_SEND notification, it
retains the notification until the remote program issues a verb on
which the notification can be indicated, that is, a verb with the
REQUEST_TO_SEND_RECEIVED parameter. The remote LU will retain
only one REQUEST_TO_SEND notification at a time (per conversa-
tion); additional notifications are discarded until the retained
notification is indicated to the remote program. It is therefore .
possible for the local program to issue the REQUEST_TO_SEND verb
more times than are indicated to the remote program.

References in this verb description to a program being in a par-
ticular state are only in terms of the specified conversation.

4-86 SNA Transaction Programmer's Reference Manual for LU Type 6.2

SEND_DATA

Basic Conversation verbs

Sends data to the remote transaction program. The data format con-
sists of logical records. The amount of data is specified independ-
ently of the data format.

SEND_DATA

supplied Parameters:
RESOURCE (variable)

DATA (variable)
LENGTH (variable)

Returned Parameters:
RETURN_CODE (variable)

REQUEST_TO_SEND_RECEIVED (variable)

.
»

supplied Paramaters:

RESOURCE specifies the variable containing the resource ID of the con-
versation on which the data is to be sent.

DATA specifies the variable containing the data to be sent. The data
consists of logical records. Each logical record consists of a
two-byte length field (denoted as LL) followed by a data field; the
length of the data field can range from zero to 32765 bytes. The
two-byte length field contains the 15-bit binary length of the record,
and a high-order bit that is not examined by the LU (it is used, for
example, by the LU's mapped conversation component in support of the
mapped conversation verbs). The length of the record includes the
two-byte length field, that is, it equals the length of the data field
plus two. Thus, logical-record length values of hex2 0000, 0801,
8000, and 8001, are invalid.

LENGTH specifies the variable containing the length of the data to be
sent. This data length is not related in any way to the length of a
logical record. It is used only to determine the length of the data
located at the variable specified by the DATA parameter.

The data length may be zero or greater. If zero, no data is sent for
this issuance of the verb, and the DATA parameter is not significant,
However, the other parameters are significant and retain their mean-
ing as described.

Returned Parameters:

RETURN_CODE specifies the variable in which a return code is returned
to th:-local program. The return code indicates the result of verb
execution.

0K

ALLOCATION_ERROR
PROG_ERROR_PURGING
SVC_ERROR_PURGING
DEALLOCATE_ABEND_PROG
DEALLOCATE_ABEND_SVC
DEALLOCATE_ABEND_TIMER
BACKED_OUT
RESOURCE_FAILURE_NO_RETRY
RESOURCE_FAILURE_RETRY

REQUEST_TO_SEND_RECEIVED specifies the variable in which is returned
an indication of whether REQUEST_TO_SEND has been received. The indi-
cation is either YES or NO.

® 0000000 00

2 Hex (meaning hexadecimal) refers to the base-16 numbering system.

Chapter 4. Conversation Verbs 4-87

SEND_DATA

e YES indicates a REQUEST_TO_SEND notification has been received
from the remote transaction program. The remote program has
issued REQUEST_TO_SEND, requesting the local program to enter
receive state and thereby place the remote program in send state.

. NO indicates a REQUEST_TO_SEND notification has not been
received.

state Changes (uhen RETURN CODE indicates 0OK):

None

ABEND Conditions:
Parameter Check

. RESOURCE specifies an unassigned resource ID.
. DATA contains an invalid logical record length (LL) value of hex
0000, 0001, 8000, or 8001.

State Check
The conversation is not in send state.
otes:

1. The data sent by the program consists of logical records. The
logical records are independent of the length of data as specified
by the LENGTH parameter. That is, the data may consist of one or
more complete records, the beginning of a record, the middle of a
record, or the end of a record. The following combinations of
these are also possible:

. One or more complete records, followed by the beginning of a
record.

. The end of a record, followed by one or more complete records.

. The end of a record, followed by one or more complete records,
followed by the beginning of a record.

o The end of a record, followed by the beginning of a record.

2. The program must finish sending a logical record before issuing
any of the following verbs:

CONFIRM

DEALLOCATE with TYPE(FLUSH), TYPE(CONFIRM), or
TYPE(SYNC_LEVEL)

PREPARE_TO_RECEIVE

RECEIVE_AND_WAIT

SYNCPT

A program finishes sending a logical record when it sends a com-
plete record or when it truncates an incomplete record.

3. A complete logical record contains the two-byte LL field and all
bytes of the data field, as determined by the logical-record
length. (If the data field is of zero length, the complete log-
ical record contains only the two-byte length field.) An incom-
plete logical record consists of any amount of data less than a
complete record. It can consist of only the first byte of the LL
field, the two-byte LL field plus all of the data field except the
last byte, or any amount in between. A logical record is incom-
plete until the last byte of the data field is sent, or until the
fecozg byte of the LL field is sent if the data field is of zero

ength.

4. A program can truncate an incomplete logical record by issuing the
SEND_ERROR verb. SEND_ERROR causes the LU to flush its send buff-
er, wuwhich includes sending the truncated record. The LU then
treats the first two bytes of data specified in the next SEND_DATA
as the LL field. Issuing DEALLOCATE with TYPECABEND_PROG),

4-88 SNA Transaction Programmer's Reference Manual for LU Type 6.2

Basic conversation verbs

TYPECABEND_SVC), or TYPE(ABEND_TIMER) also truncates an incom-
plete logical record.

The LU buffers the data to be sent to the remote LU until it accu-

mulates from one or more SEND_DATAs a sufficient amount for trans-

mission, or until the local program issues a verb that causes the
LU to flush its send buffer. The amount of data that is suffi-
cient for transmission depends on the characteristics of the ses-

:ion a%%ocated for the conversation, and can vary from one session
o another.

When REQUEST_TO_SEND_RECEIVED indicates YES, the remote program
is requesting the local program to enter receive state and thereby
place the remote program in send state. A program enters receive
state by means of the RECEIVE_AND_WAIT or PREPARE_TO_RECEIVE
verb. The partner program enters the corresponding send state
when it issues a RECEIVE_AND_WAIT or RECEIVE_IMMEDIATE verb and
receives the SEND indication (on the WHAT_RECEIVED parameter).

References in this verb description to a program being in a par-
ticular state are only in terms of the specified conversation.

Chapter 4. Conversation Verbs 4-89

SEND_ERROR

Informs the remote +transaction program that the local program
detected an error. If the conversation is in send state, the LU
flushes its send buffer.

Upon successful completion of this verb, the local program is ip sepd
state and the remote program is in receive state. Further action is
defined by transaction program logic.

SEND_ERROR

supplied Parameters:
RESOURCE (variable)}

TYPE (PROG)
(svc)

LOG_DATA (NO)
(YES (variable))

Returned Parameters:
RETURN_CODE (variable)

REQUEST_TO_SEND_RECEIVED (variable)

3

§ugglied Parametegg:
RESOURCE specifies the variable containing the resource ID.

TYPE specifies the level of error—application or service—being
reported. This parameter is intended to distinguish between errors to
be reported to end-user application transaction programs and errors
to be reported to LU services transaction programs.

U PROG specifies an end-user application program error is being
reported. For instance, this error type is used by the LU serv-
ices component for mapped conversation verbs in its processing of
the MC_SEND_ERROR verb. The corresponding component at the
remote LU will pass the error return code on to the remote
end-user application program.

. SVC specifies an LU services error is being reported. For
instance, this error type is used by the LU services component for
mapped conversation verbs to report errors detected within the LU
sarvices layer.

LOG_DATA specifies whether product-unique error information is to be
:}aced in the system error logs of the LUs supporting this conversa-
ion.

. NO specifies that no error information is to be placed in the sys-
tem error logs.

L YES specifies that product-unique error information is to be
placed in the system error logs of the local and remote LUs. The
specified variable contains the product-unique error information,
in the format of the Error Log GDS variable. See SNA Format and

Protocol Reference Manual: Architecture Logic for LU Tvpe 6.2 for
a definition of the Error Log GDS variable.

Returned Parameters:

RETURN_CODE specifies the variable in which a return code is returned
to the local program. The return code indicates the result of verb
execution. The return codes that can be returned depend on tha state
of the conversation at the time this verb is issued:

4-90 SNA Transaction Programmer's Reference Manual for LU Type 6.2

Basic conversation Verbs

U If the SEND_ERROR is issued in send state, the following return
codes can be returned:

oK

ALLOCATION_ERROR
DEALLOCATE_ABEND_PROG
DEALLOCATE_ABEND_SVC
DEALLOCATE_ABEND_TIMER
PROG_ERROR_PURGING
SYC_ERROR_PURGING
BACKED_OUT
RESOURCE_FAILURE_NO_RETRY
RESOURCE_FAILURE_RETRY

. If the SEND_ERROR is issued in receive state, the following return
codes can be returned:

0K

DEALLOCATE_NORMAL
RESQURCE_FAILURE_NO_RETRY
RESOURCE_FAILURE_RETRY

. If the SEND_ERROR is issued in confirm state or sync-point state,
the following return codes can be returned:

0K
= RESOURCE_FAILURE_NO_RETRY
=~ RESOURCE_FAILURE_RETRY

REQUEST_TO_SEND_RECEIVED specifies the variable in which is returned
an indication of whether REQUEST_TO_SEND has been received. The indi-
cation is either YES or NO.

. YES indicates a REQUEST_TO_SEND notification has been received
from the remote transaction program. The remote program has
issued REQUEST_TO_SEND, requesting the local program to enter
receive state and thereby place the remote program in send state.

. NO indicates a REQUEST_TO_SEND notification has not been
received.

state Changes (when RETURN CODE indicates 0K):

send state is entered when the verb is issued in receive, confirm, or
sync-point state.

No state change occurs when the verb is issued in send state.

ABEND Conditions:
Parameter Check

L LOG_DATA is specified and not supported.
L RESOURCE specifies an unassigned resource ID.

State Check

The conversation is not in send, receive, confirm, or sync-point
state.

Notes:

1. The LU may send the error notification to the remote LU immediate-
ly, that is, during the processing of this verb, or the LU may
defer sending the notification until a later time. The determi-
nation is made as follows:

J If the local product does not support the FLUSH verb (see
"Notes on Implementation Details™ in Appendix A), then the LU
sends the error notification immediately.

. If the local product does support the FLUSH verb, then the LU

may or may not send the notification immediately, depending
on the product. If the LU defers sending the notification, it

Chapter 4. Conversation Verbs 4-91

buffers the notification until it accumulates a sufficient
amount of information for transmission, or until the local
program issues a verb that causes the LU to flush its send
buffer. The amount of information that is sufficient for
transmission depends on the characteristics of the session
allocated for the conversation, and can vary from one session
to another. Transmission of the information may begin imme-
diately, if the LOG_DATA parameter is specified with suffi-
cient log data, or transmission may not begln until
:ufféclent data from subsequent SEND_DATA verbs is also buf-
ere

The local program can ensure that the remote program receives the
error notification as soon as possible by issuing FLUSH imme-
diately after SEND_ERROR.

SEND_ERROR is reported to the remote transaction program as one of
the following return codes (based on the TYPE parameter):

. PROG_ERROR_TRUNC or SVC_ERROR_TRUNC - The local program
issued SEND_ERROR in send state after sending an incomplete
loglgal record (see SEND_DATA). The record has been trun-
cated.

L PROG_ERROR_NO_TRUNC or SVC_ERROR_NO_TRUNC - The local program
issued SEND ERROR in send state after sending a complete log-
ical record (see SEND_DATA) or prior to sending any record.
No truncation has occurred.

U PROG_ERROR_PURGING or SVC_ERROR_PURGING - The local program
issued SEND ERROR in receive state and all information sent
by the remote program and not vet received by the local pro-
gram, if any, has been purged; or the local program issued
SEND_ERROR in confirm or sync-point state, in which case no
purging has occurred.

When SEND_ERROR is issued in receive state, purging of incoming
information occurs. The incoming information that is purged
includes the following return code indications:

ALLOCATION_ERROR
BACKED_OUT
DEALLOCATE_ABEND_PROG
DEALLOCATE_ABEND_SVC
DEALLOCATE_ABEND_TIMER
PROG_ERROR_NO_TRUNC
PROG_ERROR_PURGING
PROG_ERROR_TRUNC
SVC_ERROR_NO_TRUNC
SVC_ERROR_PURGING
SVYC_ERROR_TRUNC

The return code DEALLOCATE_NORMAL is reported instead of ALLO-
CATION_ERROR, DEALLOCATE_ABEND_PROG, DEALLOCATE_ABEND_SVC, or
DEALLOCATE ABEND_TIMER. The return code 0K is reported instead
of the other return codes. When the return code BACKED_OUT is
purged, the remote LU resends the BACKED_OUT indication and the
local program receives the return code on a subsequent verb.

The other kinds of incoming information that are purged are:
. Data, sent by means of the SEND_DATA verb.

. Confirmation request, sent by means of the CONFIRM, PRE-
PARE_TO_RECEIVE, or DEALLOCATE verb.

L Sync point request, sent by means of the SYNCPT, PRE-
PARE_TO_RECEIVE, or DEALLOCATE verb.

If the confirmation or sync point request was sent in conjunction
with the DEALLOCATE verb (by means of its TYPE(CONFIRM) or
TYPE(ZYNC_LEVEL) parameter), the deallocation request is also
purged.

4-92 SNA Transaction Programmer's Reference Manual for LU Type 6.2

Basic conversation Verbs

Incoming information that is not purged is the REQUEST_TO_SEND
indication. This indication is reported to the program when it

issues a verb that includes the REQUEST_TO_SEND_RECEIVED parame-
er.

When REQUEST_TO_SEND_RECEIVED indicates YES, the remote program
is requesting the local program to enter receive state and thereby
place the remote program in send state. A program enters receive
state by means of the RECEIVE_AND_WAIT or PREPARE_TO_RECEIVE
verb. The partner program enters the corresponding send state
when it issues a RECEIVE_AND_WAIT or RECEIVE_IMMEDIATE verb and
receives the SEND indication (on the WHAT_RECEIVED parameter).

The program may use this verb for various application—-level func-
tions. For example, the program may issue this verb to truncate
an incomplete logical record it is sending, to inform the remote
program of an error it detected in data it received, or to reject
a confirmation or sync-point request.

SEND_ERROR resets or cancels posting. If posting is active and
the conversation has been posted, posting is reset. If posting is
active and the conversation has not been posted, posting is can-
celed (posting will not occur). See the POST_ON_RECEIPT verb for
more details about posting.

References in this verb description to a program being in a par-
ticular state are only in terms of the specified conversation.

Chapter 4. Conversation Verbs 4-93

TEST

Tests the specified conversation for a condition. The return code
indicates the result of the test.

TEST

Supplied Parameters:
RESOURCE (variable)

[TEST

(

{ REQUEST_TO_SEND_RECEIVED)

POSTED)]

Returned Parameters:
RETURN_CODE (variable)

4-964

supplied Parameters:

RESOURCE specifies the variable containing the resource ID.

TEST specifies the condition to be tested.

POSTED specifies to test whether the conversation has been
posted. The return code indicates whether posting has occurred.

REQUEST_TO_SEND_RECEIVED specifies to test whether
REQUEST_TO_SEND notification has been received from the remote
transaction program. The return code indicates whether the
notification has been received.

Returned Parameters:

RETURN_CODE specifies the variable in which a return code is returned
to the program. The return code indicates the result of the test.
The TEST parameter determines which of the following return codes can
be returned to the program.

If TEST(POSTED) is specified, one of the following return codes is
returned:

- OK

— DATA

— NOT_DATA
POSTING_NOT_ACTIVE
UNSUCCESSFUL
ALLOCATION_ERROR
BACKED_OUT
DEALLOCATE_ABEND_PROG
DEALLOCATE_ABEND_SVC
DEALLOCATE_ABEND_TIMER
DEALLOCATE_NORMAL
PROG_ERROR_NO_TRUNC
PROG_ERROR_PURGING
PROG_ERROR_TRUNC
SVC_ERROR_NO_TRUNC
SVC_ERROR_PURGING
SVC_ERROR_TRUNC
RESOURCE_FAILURE_NO_RETRY
RESOURCE_FAILURE_RETRY

If TEST(REQUEST_TO_SEND_RECEIVED) is specifiaed, one of the fol-
lowing return codes is returned:

0K
—~ UNSUCCESSFUL

SNA Transaction Programmer's Reference Manual for LU Type 6.2

Basic conversation vVerbs

State Changes (when RETURN CODE indicates 0KJ:

None

ABEND Conditions:
Parameter Check

This verb is not supported.

TEST(POSTED) is specified and not supported.
TEST(REQUEST_TO_SEND_RECEIVED) is specified and not supported.
RESOURCE specifies an unassigned resource ID.

State Check

TESI(POSTED) is specified and the conversation is not in receive
state.

TEST(REQUEST_TO_SEND_RECEIVED) is specified and the conversation
is not in send, defer, or receive state.

Notes:

1.

The TEST(POSTED) parameter on this verb is intended to be used in
conjunction with POST_ON_RECEIPT. The use of POST_ON_RECEIPT and
this verb allows a program to continue its processing while wait-
ing for information to become available, where the program issues
POST_ON_RECEIPT for one or more conversations and then issues
this verb for each conversation to determine when information is
available to be received.

For TEST(POSTED), the return code indicates whether posting has
occurred, as follows:

. 0K indicates posting was active for the conversation and it
has been posted. Posting is now reset. The subcode of the 0K
return code indicates why the conversation has been posted.

- DATA indicates data is available for the program to
receive.

- NOT_DATA indicates information other than data, such as a
SEND, CONFIRM, or TAKE_SYNCPT indication, is available
for the program to receive.

The program sho 1ld issue RECEIVE_AND_WAIT or
RECEIVE_IMMEDIATE in order to receive the information. The
program may use the subcode to determine whether it needs to
spacify the DATA parameter on the RECEIVE_AND_WAIT or
RECEIVE_IMMEDIATE verb.

L POSTING_NOT_ACTIVE indicates posting is not active for the
conversation.

] UNSUCCESSFUL indicates posting is active for the conversation
and it has not been posted. Posting remains active.

The remaining return codes indicate posting was active for the
conversation and it has been posted for the reason indicated by
the specific return code. Posting is now reset.

Posting is active for a conversation when POST_ON_RECEIPT has
been issued for the conversation and posting has not been reset or
canceled (see the POST_ON_RECEIPT verb).

The TEST(REQUEST_TO_SEND_RECEIVED) parameter specifies to test
whether REQUEST_TO_SEND notification has been received from the
remote transaction program. The return code indicates whether
the notification has been received, as follouws:

L] 0K indicates REQUEST_TO_SEND has been received. The remote
program has issued REQUEST_TO_SEND, requesting the local pro-
gram to enter receive state and thereby place the remote pro-
gram in send state. A program enters receive state by means

Chapter 4. Conversation Verbs 4-95

TEST

of the - RECEIVE_AND_WAIT or PREPARE_TO_RECEIVE verb. The

partner program enters the corresponding send state when it
issues a RECEIVE_AND_WAIT or RECEIVE_IMMEDIATE verb and

;ec?ives the SEND indication (on the WHAT_RECEIVED parame-
er).

. UNSUCCESSFUL indicates REQUEST_TO_SEND has not been received.

5. References in this verb daescription to a program being in a par-
ticular state are only in terms of the specified conversation.

4-96 SNA Transaction Programmer's Reference Manual for LU Type 6.2

CONVERSATYION STATES

The verbs that a program may issue for a particular conversation
depend on the state of the conversation. As the program issues verbs,
the state of the conversation can change. The change in the state of
the conversation is a result of the function of the verb, a result of
a verb issued by the remote program, or a result of network errors.

The state of a conversation is defined in terms of the local program's
view of the local end of the conversation. The local end of the con-
versation is the end to which the local program is connected. The
states of other conversations allocated to the program can be differ-
ent. For example, one conversation can be in receive state and anoth-
er in send state, concurrently. The following conversation states are
defined at the conversation protocol boundary (where the prefix [MC_]
lnta verb g?me means the verb can be either a mapped or basic conver-
sation verb):

ggset is the state in which the program can allocate the conversa-
ion.

send is the state in which the program can send data, request con-
firmation, or request sync point.

Defer is the state, entered by the [MC_]PREPARE_TO_RECEIVE or
[MC_IDEALLOCATE verb, in which the program can request sync point
or confirmation, or simply flush the LU's send buffer, in order to
complete the transition to receive or reset state.

Receive is the state in which the program can receive information
from the remote program.

confirm is the state in which the program can reply to a confirma-
tion request.

sync point is the state in which tha program can raspond to a sync
point request.

Backed out is the state in which the program can respond to a
backed out indication.

Deallocate is the state in which the program can deallocate the
conversation locally.

The state of the conversation determines the verbs that a program is
allowed to issue. Figure 4-1 on page 4-98 correlates the verbs, and
parameters if applicable, to the conversation states. For each verb
and state, a "yes,"™ "no,"™ or "n/a" is indicated. The "ves"™ means the
program is allowed to issue the verb when the conversation is in that
state. The "no" means the program cannot issue the verb when the con-
versation is in that state because the verb is disallowed in that
state. A verb issued for a conversation in a disallowed state is
treated as a state-check ABEND condition (see "ABEND Conditions™ in
Chapter 3). The individual verb descriptions list the applicable
state-check ABEND conditions. The "n/a" means the state is not appli-
cable either because it cannot exist at the time the verb is issued or
because it is not relevant to the verb.

The SYNCPT and BACKOUT verbs apply to all protected resources at the
time the verbs are issued, and only to protected resources. A conver-
sation is protected when it is allocated with a synchronization lavel
of SYNCPT. Therefore, the correlation of the SYNCPT and BACKOUT verbs
to conversation states applies only to protected conversations. The
states of unprotected conversations — those allocated with a syn-
g:ggga$ation laevel other than SYNCPT — are not relevant to SYNCPT and

Chapter 4. Conversation Verbs 4-97

Conversation States
Reset!Send |Defer |Re- Con- |Sync |Backed|Deal-
Verb ceive|firm |pointjout locate

[MC_JALLOCATE ves n/a n’a | nza n/a n/a n/a n/a
IMC_JCONFIRM n/a ves yes no no no no no
{MC_JCONFIRMED n/a no no no ves no no no
[MC_IDEALLOCATE with n/a ves no no no no no no

TYPECFLUSH),

TYPE(CONFIRM), or

TYPEC(SYNC_LEVEL)
[MC_JIDEALLOCATE with n/a ves | ves | ves | ves | ves no no

TYPECABEND_PROG),

TYPECABEND_SVC), or

TYPECABEND_TIMER)
[MC_IDEALLOCATE with n/a no no no no no no ves

TYPECLOCAL)
[MC_JFLUSH nZa ves ves no no no no no
[MC_JGET_ATTRIBUTES n/a | ves | yes | ves | yes | ves | ves ves
CMC_JPOST_ON_RECEIPT n/a no no ves no no no no
[MC_]PREPARE_TO_RECEIVE n/a | ves no no nbd no no no
[MC_IRECEIVE_AND_WAIT n/a ves no ves no no no no
[MC_JRECEIVE_IMMEDIATE n/a no no yes no no no no
[MC_IREQUEST_TO_SEND n/a no no ves ves yes no no
[MC_JISEND_DATA n/a ves no no no no no no
(MC_J1SEND_ERROR n/a ves no ves ves ves no no
[MC_JITEST with n/a no no ves no no no no

TEST(POSTED)
[MC_ITEST with n/a ves ves yes no no no no

TESTC(REQUEST_TO_SEND_

RECEIVED)

BACKOUT n/a yes ves yes ves yes ves n/a
GET_TYPE ' n/a ves ves yes ves ves ves ves
SYNCPT n/a ves yes no no ves no n/a
WAIT n/a no no ves no no no no

Figure 4-1. Correlation of Conversation Verbs to the Conversation States Allouwing
Their Issuance

A conversation enters a particular state when the program issues a
verb that causes a state transition or when the program receives a
return code that indicates a state transition. The specific state
transitions are defined in the individual verb descriptions under the
heading %"State Changes,"™ and in the return code dascriptions under
"Return Codes"™ on page 4-99.

4-98 SNA Transaction Programmer's Reference Manual for LU Type 6.2

RETURN CODES

Some verbs have a parameter called RETURN_CODE used to pass a return
code back to the program at the completion of the LU's execution of a
verb. The return code indicates the result of verb execution, includ-
ing any state changes to the specified conversation. See "Conversa-
tion States" on page 4-97 for a definition of the states.

Some of the return codes indicate results of the local LU's processing
of a verb; these return codes are returned on the verb that invoked
the local processing. Other return codes indicate results of process-
ing invoked at the remote end of the conversation and, depending on
the verb, can be returned on the verb that invoked the remote process-
ing or on a subsequent verb. Still other return codes report events
that originate at the remote end of the conversation. In any case,
only one code is returned at a time. Other verb-specific information
may be passed back in verb-unique parameters. See each specific verb
for a description of any verb-unique parameters.

Some of the return codes have the suffix "RETRY" or "NO_RETRY" in
their name. RETRY means that the condition indicated by the return
code may not be permanent, and the program may attempt to allocate the
conversation again. Whether the retry attempt succeeds depends on the
duration of the condition. In general, the program should limit the
number of times it attempts to retry without success, after which it
should consider the condition permanent. NO_RETRY means that the con-
dition is most likely permanent, and, in general, no attempt should be
mad: go allocate the conversation again until the condition is cor-
rected.

The return codes are described below. Each description includes the
meaning of the return code, the origin of the condition indicated by
the return code, when the return code can be reported to the progranm,
and the state of the conversation when control is returned to the pro-
grgm. The individual verb descriptions list the applicable return
codes.

ALLOCATION_ERROR indicates the local program issued an
MC_ALLOCATE or ALLOCATE verb and allocation of the specified con-
versation could not be completed. The ALLOCATION_ERROR indi-
cation together with one of the following subcodes form the
complete return code that is returned to the program; the subcode
identifies the specific error. (The remote LU and remote program
referred to in the following subcode definitions are the LU named
on the LU_NAME parameter and the program named on the TPN parame-
ter, respectively, of the verb.) When ALLOCATION_ERROR (with any
subcode) is returned to the program, the conversation is in deal-
locate state.

J ALLOCATION_FAILURE_NO_RETRY indicates the conversation can-
not be allocated on a session because of a condition that is
not temporary. For example, the session to be used for the
conversation cannot be activated because the current
(LU,mode) session limit for the specified (LU-name,mode-name)
pair is 0, or because of a system definition error or a
session-activation protocol error; or the session was deacti-
vated because of a session protocol error before the conver-
sation could be allocated. The program should not retry the
allocation request until the condition is corrected. This
return code is returned on the MC_ALLOCATE or ALLOCATE verb
when the program specifies (by means of the RETURN_CONTROL
parameter) that the local LU is to attempt to allocate a ses-
sion before returning control to the program; otherwise, it
is returned on a subsequent verb.

U] ALLOCATION_FAILURE_RETRY indicates the conversation cannot be
allocated on a session because of a condition that may be tem-
porary. For example, the session to be used for the conversa-
tion cannot be activated because of a temporary lack of
resources at the local LU or remote LU; or the session was
deactivated because of session outage before the conversation
could be allocated. The condition may be temporary, and the
program can retry the allocation request. This return code is
returned on the MC_ALLOCATE or ALLOCATE verb when the program

Chapter 4. Conversation Verbs 4-99

specifies (by means of the RETURN_CONTROL parameter) that the
local LU is to attempt to allocate a session before returning
contzol tg the program; otherwise, it is returned on a subse-
quent verb.

. CONVERSATION_TYPE_MISMATCH indicates the remote LU rejected
the allocation request because the local program issued an
MC_ALLOCATE or ALLOCATE verb and the remote program does not
support the respective mapped- or basic-conversation protocol
boundary, or the local program issued an MC_ALLOCATE verb and
the remote LU does not support mapped conversations. This
return code is returned on a subsequent verb.

U PIP_NOT_ALLOUED indicates the remote LU rejected the allo-
cation request because the local program specified program
initialization parameters (by means of the PIP(YES) parame-
ter) and either the remote LU does not support PIP data, or
the remote program has no PIP variables defined (see "Trans-
action Program Structure and Execution"™ in Chapter 3). This
return code is returned on a subsequent verb.

. PIP_NOT_SPECIFIED_CORRECTLY indicates the remote LU rejected
the allocation request because the remote program has one or
more PIP variables defined and the local program specified no
program initialization parameters (by means of the PIP(NO)
parameter), or it specified program initialization parameters
(by means of the PIP(YES) parameter) that do not correspond in
number to those defined for the remote program. This return
code is returned on a subsequent verb.

. SECURITY_NOT_VALID indicates the remote LU rejected the allo-
cation request because the access security information (spec-
ified by means of the SECURITY parameter) is invalid. This
return code is returned on a subsequent verb.

. SYNC_LEVEL_NOT_SUPPORTED_BY_LU indicates the local LU
rejected the allocation request because the local program
specified a synchronization level (by means of the SYNC_LEVEL
parameter) that the remote LU does not support. This return
code is returned on the MC_ALLOCATE or ALLOCATE verb when the
program specifies (by means of the RETURN_CONTROL parameter)
that the local LU is to attempt to allocate a session before
returning control to the program; otherwise, it is returned
on a subsequent verb.

. SYNC_LEVEL_NOT_SUPPORTED_BY_PGM indicates the remote LU
rejected the allocation request because the local program
specifiaed a synchronization level (by means of the SYNC_LEVEL
parameter) that the remote program does not support. This
return code is returned on a subsequent verb.

. TPN_NOT_RECOGNIZED indicates the remote LU rejected the allo-
cation request because the local program specified a remote
program name that the remote LU does not recognize. This
return code is returned on a subsequent verb.

[TRANS_PGM_NOT_AVAIL_NO_RETRY indicates the remote LU rejected
the allocation request because the local program specified a
remote program that the remote LU recognizes but cannot
start. The condition is not temporary, and the program should
not retry the allocation request. This return code is
returned on a subsequent verb.

] TRANS_PGM_NOT_AVAIL_RETRY indicates the remote LU rejected
the allocation request because the local program specified a
remote program that the remote LU recognizes but currently
cannot start. The condition may be temporary, and the program
can retry the allocation request. This return code is
returned on a subsequent verb.

With one exception, the subcodes of ALLOCATION_ERROR are not
explicitly listed in the individual verb descriptions, as any of
them can be returned as part of the ALLOCATION_ERROR return code.
The exception to this is for the MC_ALLOCATE and ALLOCATE verbs,

4-100 SNA Transaction Programmer's Reference Manual for LU Type 6.2

on which only certain subcodes can be returned; therefore, the
applicable subcodes are listed for these verbs.

BACKED_OUT indicates the remote program issued a BACKOUT, or the
local or remote LU has done so, in order to restore all protected
resources to their status as of the last synchronization point.
This return code can be reported to the local program on a verb it
issues in send, defer, or receive state. The conversation is in
backed-out state.

DEALLOCATE_ABEND indicates the remote program issued an
MC_DEALLOCATE verb specifying the TYPE(ABEND) parameter, or the
remote LU has done so because of a remote program ABEND condition.
If the conversation for the remote program was in receive state
when the verb was issued, information sent by the local program
and not yet received by the remote program is purged. This return
code can be reported to the local program on a verb it issues in
s:ng, defer, or receive state. The conversation is in deallocate
state.

DEALLOCATE_ABEND_PROG indicates the remote program issued a DEAL-
LOCATE verb specifying the TYPE(ABEND_PROG) parameter, or the
remote LU has done so because of a remote program ABEND condition.
If the conversation for the remote program was in receive state
when the verb was issued, information sent by the local program
and not yet received by the remote program is purged. This return
code can be reported to the local program on a verb it issues in
s:ng, defer, or receive state. The conversation is in deallocate
state.

DEALLOCATE_ABEND_SVC indicates the remote program issued a DEAL-
LOCATE verb specifying the TYPE(CABEND_SVC) parameter. If the
conversation for the remote program was in receive state when the
verb was issued, information sent by the local program and not yet
received by the remote program is purged. This return code can be
reported to the local program on a verb it issues in send, defer,
or receive state. The conversation is in deallocate state.

DEALLOCATE_ABEND_TIMER indicates the remote program issued a
DEALLOCATE verb specifying the TYPECABEND_TIMER) parameter. If
the conversation for the remote program was in receive state when
the verb was issued, information sent by the local program and not
vet received by the remote program is purged. This return code
can be reported to the local program on a verb it issues in send,
defer, or receive state. The conversation is in deallocate stataea.

DEALLOCATE_NORMAL indicates the remote program i ssue
MC_DEALLOCATE or DEALLOCATE verb specifying the TYPE(SYNC_ LEVEL)
or TYPE(FLUSH) parameter; if TYPE(SYNC_LEVEL), either the syn-
chronization level is NONE or it is SYNCPT and the remote program
subsequently issued an MC_FLUSH or FLUSH verb. This return code
is reported to the local program on a verb it issues in receive
state. The conversation is in deallocate state.

FMH_DATA_NOT_SUPPORTED indicates the 1local program issued an
MC_SEND_DATA specifying that the data record contains FM headers
(by means of the FMH_DATA parameter), and either the remote LU or
remote program does not support FM header data. This return code
is reported on a subsequent verb. All information sent by the
local program on the MC_SEND_DATA verb and subsequent verbs prior
to the reporting of the FMH_DATA_NOT_SUPPORTED return code is
purged. The conversation is in send state.

HEURISTIC_MIXED indicates the local program issued a SYNCPT and
an error occurred during the sync point processing within the dis-
tributed transaction. As a result of the error and subsequent LU
operator intervention, at least one LU advanced its local pro-
tected resources to the next synchronization point and at least
one LU restored its local protected resources to the previous syn-
chronization point.

MAP_EXECUTION_FAILURE indicates the local program issued an

MC_SEND_DATA specifying the data record is to be mapped (by means
of the MAP_NAME parameter), and the local LU or the remote LU

Chapter 4. Conversation Verbs 4-101

4-102

could not map the data record based on the map name. This return
code is returned on the MC_SEND_DATA verb whaen the map execution
failed at the local LU. ~Otherwise, the remote LU rejects the
data, and the return code is reported on a subsequent verb. All
informatlon sent by the local program on that MC_SEND_DATA verb

subsequent verbs prior to the reporting of tbe
MAP EXECUTION_FAILURE return code is purged. The conversation is
in send state.

MAP_NOT_FOUND indicates the local program issued an MC_SEND_DATA
specifying the data record is to be mapped (by means of the
MAP_NAME parameter), and the map name is unknown to the local LU
or the remote LU. This return code is reported on the
MC_SEND_DATA verb when the map name is unknown to the local LU.
Otherwise, the remote LU rejects the data, and the return code is
reported on a subsequent verb. All information sent by the local
program on that MC_SEND_DATA verb and subsequent verbs prior to
the report!ng of the MAP NOT_FOUND return code is purged. The
conversation is in send state.

MAPPING_NOT_SUPPORTED indicates the 1local program issued an
MC_SEND_DATA specifying the data record is to be mapped (by means
of the MAP_NAME parameter), and either the remote LU or remote
program does not support data mapping. This return code is
reported on a subsequent verb. All information sent by the local
program on that MC_SEND_DATA verb and subsequent verbs prior to
the reporting of the MAPPING_NOT_SUPPORTED return code is purged.
The conversation is in send state.

0K indicates the verb issued by the local program executed suc-
cessfully. That is, the function defined for the verb, up to the
point at which control is returned to the program, was performed
as gpecified. The state of the conversation is as defined for the
verb.

For some verbs, the OK indication together with one of the follouw-
ing subcodes form the complete return code that is returned to the
program; the subcode provides additional information.

. DATA indicates data is available for the program to receive.

. NOT_DATA indicates information other than data is available
for the program to receive.

PARAMETER_ERROR indicates the local program issued a verb speci-
fying a parameter containing an invalid argument. The source of
the argument is considered to be outside the program definition,
such as an LU name supplied by a terminal operator and used as the
argument of LU_NAME on MC_ALLOCATE or ALLOCATE. Contrast this
definition with the definition of the ABEND condition, Parameter
Check, in the section "“ABEND Conditions"™ in Chapter 3. This
return code is returned on the verb specifying the invalid argu-
ment. The state of the conversation remains unchanged.

POSTING_NOT_ACTIVE indicates the local program issued a verb that
determines whether a resource has been posted, and posting is not
active for any of the specified resources.

PROG_ERROR_NO_TRUNC indicates one of the following:

. The remote program issued an MC_SEND_ERROR verb and the con-
versation for the remote program was in send state. No trun-
cation occurs at the mapped conversation protocol boundary.
This return code is reported to the local program on an
MC_RECEIVE_AND_WAIT or MC_RECEIVE_IMMEDIATE verb it issues
prior to receiving any data records or after receiving one or
more data records.

. The remote program issued a SEND_ERROR verb specifying the
TYPE(PROG) parameter, the conversation for the remote program
was in send state, and the verb did not truncate a logical
record. HNo truncation occurs at the basic conversation pro-
tocol boundary when a program issues SEND_ERROR before send-
ing any logical records or after sending a complete logical

SNA Transaction Programmer's Reference Manual for LU Type 6.2

record. This return code is reported to the local program on
a RECEIVE_AND_WAIT or RECEIVE_IMMEDIATE verb it issues prior
to receiving any logical records or after receiving one or
more complete logical records.

The conversation remains in receive state.

PROG_ERROR_PURGING indicates the remote program issued an
MC_SEND_ERROR verb or it issued a SEND_ERROR verb specifying the
TYPE(PROG) parameter, and the conversation for the remote program
was in receive, confirm, or sync point state. The verb may have
caused information to be purged. Purging occurs when a program
issues MC_SEND_ERROR or SEND_ERROR in receive state before
receiving all the information sent by its partner program, that
is, all the information sent prior to the reporting of the
PROG_ERROR_PURGING return code to the partner program. The purg-
ing can occur at the local LU, remote LU, or both. No purging
occurs when a program issues the verb in confirm state or sync
point state, or in receive state after receiving all the informa-
tion sent by its partner program. This return code is normally
reported to the local program on a verb it issues after sending
some information to the remote program. However, the return code
can be reported on a verb the program issues prior to sending any
information, depending on the verb and when it is issued. The
conversation is in receive state.

PROG_ERROR_TRUNC indicates the remote program issued a SEND_ERROR
verb specifying the TYPE(PROG) parameter, the conversation for
the remote program was in send state, and the verb truncated a
logical record. Truncation occurs at the basic conversation pro-
tocol boundary when a program begins sending a logical record and
then issues SEND_ERROR before sending the complete logical
record. This return code is reported to the local program on a
RECEIVE_AND_WAIT or RECEIVE_IMMEDIATE wverb it issues after
receiving the truncated logical record. The conversation remains
in receive state.

SVC_ERROR_NO_TRUNC indicates the remote program issued a
SEND_ERROR verb specifying the TYPE(SVC) parameter. Otheruwise,
this return code, as it applies to the basic conversation protocol
boundary, has the same meaning as PROG_ERROR_NO_TRUNC. The con-
versation remains in receive state.

SVC_ERROR_PURGING indicates the remote program issued a
SEND_ERROR verb specifying the TYPE(SVC) parameter. Otherwise,
this return code, as it applies to the basic conversation protocol
boundary, has the same meaning as PROG_ERROR_PURGING. Tha con-
versation is in receive state.

SVC_ERROR_TRUNC indicates the remote program issued a SEND_ERROR
specifying the TYPE(SVC) parameter. Otherwise, this return code
has the same meaning as PROG_ERROR_TRUNC. The conversation
remains in receive state.

RESOURCE_FAILURE_NO_RETRY indicates a failure occurred that
caused the conversation to be prematurely terminated. For exam-
ple, the session being used for the conversation was deactivated
because of a session protocol error, or the conversation was deal-
located because of a protocol error between the mapped conversa-
tion components of the LUs. The condition is not temporary, and
the program should not retry the transaction until the condition
is corrected. This return code can be reported to the local pro-
gram on a verb it issues in any state other than reset or deallo-
cate. The conversation is in deallocate state.

RESOURCE_FAILURE_RETRY indicates a failure occurred that caused
the conversation to be prematurely terminated. For example, the
session being used for the conversation was deactivated because
of a session outage, such as a line failure, a modem failure, or a
crypto engine failure. The condition may be temporary, and theae
program can retry the transaction. This return code can be
reported to the local program on a verb it issues in any state
o:h:r than reset or deallocate. The conversation is in deallocatae
state.

Chapter 4. Conversation Verbs 4-103

UNSUCCESSFUL indicates the verb issued by the local program did
not execute successfully. This return code is returned on the
unsuccessful verb. The state of the conversation remains
unchanged.

Figure 4-2 on page %-105 shows the correlation of the return codes to
the verbs on which they can be returned. The "X" in the figure means
the return code can be returned on the corresponding verb. A verb
wittout any "X"s beside it means no return codes are defined for the
varb.

4-104 SNA Transaction Programmer's Reference Manual for LU Type 6.2

Conversation Verbs 4-105

Chapter 4.

DZVDOOWOVNLDL b d X x X
NS>0 WEKOK FKEDZO x XX X
NS>0 WO LDXOHZO x HKXX XXX
NS>0 WENKOK ZO HEDZO x XX bl
MHWNODKEOW LC<HIDKW ollE-old> X X HKXX XXX x X X XX XXX
HWNODEOW LLHODKW Z0 oCWE-odd> X X MXX XXX bd X X XXX XXX
OO WO FEDZO by XX x
LKOY WO ADXOHZO XXX XXX bl XXX XXX
a LKOWYW WEKONK ZO IXDZO XXX > X XX x
“ BLONFHZO ZOK <OFMF>W X X x
% a<K<EWFWNEY Wroon b4
c ox XX X XXX XXX XXX XXX XXX
w ECo0-ZO ZOF N300 -WA X X HKXX XXX x
.ﬂ E<o ZOF WLoDZA X X HKXX XXX x
| E<oa WXWODFHOZ LadHaDZW X X HKXX XXX b4
TWOKHNEFHO EHXWA : XX
LETI ACkF-<C ZOF VDLALOXM-WA X X XX XXX x
ALCIIO0OVOCHFULU ZOKECI XXX XXX x XX KX
QWCII0OCHW c<AaWlZA =HEWo x X X HKXX XXX
AUCI 00T <CcOlZA O>0 b4 X X HKXX XXX
AUCAIIOOCFL <AZA LKoY bl X X XXX XXX
AUCIIOVOCH-U <tz x HKXX XXX x
ACONWA ODF » XX XXX XX XX XXX
LI IOV~ HOZ WO x KXX XXX > XXX XXX
w
> w
MLl o
FlHan w
N O<IHZ > W
WHW=2AW -
=l W U
D20 IQNE | NOOCHZ
Ww MUWOZEO wHHWwxAW
A HEF<<HECO e e
W was o | ||| o 20 IaE |
FEEO FZWWWi-<nd W NWUOoOZEO o
<KD FOXD>D>nAW Ol HE<HHE<O
O I < |j<HHW | | w Ww wa o | ||| =-a
OliLauw Fawwsoar | —a FEEO FZWWLWEF-<g
A ZZLXOFFNWOOCTZZN | D> <KD FOXK>>nAl
n LOOELEOREE“EEE Ok a. OrHLUI< |[<HHW | |
D] <SO0ALOALALXXXNNII ¥ |[OF|OkiLay (o WWDSAQ
- T 111 1111 OFrZH|aZzZZadFF-nUBOOTZZN
0] OQO0O0OOLVLOOOOLVOOL | K>« | —OOCWIWO KWW W W
> | CEZEZEZEZZEESIE | AOVON | <O0QALOAALKXX NN =

Correlation of Return Codes to Verbs

Figure 4-2.

This page intentionally left blank

4=~106 SNA Transaction Programmer's Reference Manual for LU Type 6.2

CHAPTER 5. CONTROL-OPERATOR VERBS

LU=LU SESSIONS

This chapter describes the category of verbs called control-operator
verbg. The control-operator verbs define the protocol boundary for a
control-operator transaction program. In particular, the control-
operator protocol boundary is intended for use by transaction pro-
grams that assist the control operator in performing functions
related to the control of an LU.

Preceding the detailed descriptions of the control-operator verbs is
a discussion of LU-LU sessions and functional subcategories of the
control-operator verbs. Following the verb descriptions is a
desgription of the return codes that apply to the control-operator
verbs.

The following characteristics of LU-LU sessions are relevant to the
control-operator verbs:

U The means of connecting LUs — single session or parallel sessions

. The contention-winner polarities of LU-LU sessions

SINGLE AND PARALLEL SESSIONS

Two LUs may connect to each other by means of one LU-LU session,
called a single sassion, or multiple LU-LU sessions, called a
sessions. The means of connection, single session or parallel ses-
sions, depends on the products implementing the LUs. LU 6.2 products
that provide an application programming interface (API), for
user-uritten programs, equivalent to the conversation verbs support
both single-session and parallel-sassion connections. Products that
are not user programmabla, or that are but do not provide an API
equivalent to the conversation verbs, may support only single-session
connections, and typically do so; however, they may also support par-
allel-session connections.

. When parallel-session support is available to both LUs, they can
connect to each other using a single session or parallel sessions.

. When parallel-session support is unavailable to either LU, they
can connect to each other using only a single session.

The session activation request that one LU sends to another indicates
whaether the session is a single session or a parallel session.

An LU for which parallel session support is available establishes the
means of connection to a partner LU at the time the partner LU is
defined (see the DEFINE_REMOTE_LU verb). Tuwo LUs cannot be connected
by both single and parallel sessions at the same time.

For single-session connections, an implied limit of 1 is imposed on
the number of active sessions between the two LUs. That is, another
saession cannot be activated until the active session is deactivated.

For parallel-session connections, the sessions can be partitioned
into groups. Each group has a limit on the number of active sassions
within that group, which is agreed to by both LUs. Additional ses-
sions within a group can be activated up to its limit.

Each single session or group of parallel sessions has associated with
it a set of similar network properties and a corresponding mode name.
The mode name serves as an identifier of the set of network proper-
ties. It allows a transaction program to select the set of network
properties to be used for a conversation.

Chapter 5. Control-Operator Verbs 5-1

The set of similar network properties includes, for example, the high-
est synchronlzatlon level for conversations on the sessions, the
class of service for the sessions, whether the sessions provide trans-
mission securwty by means of session- or link-level cryptography, and
the session routing and delay characteristics. The correlation of
mode names to the sets of network properties is established at the
time the mode name is defined for the partner LU (see the DEFINE_MODE
verb).

The similarity of network properties among a group of sessions does
not imply that the network properties must be identical for all ses-
sions in the group. For example, the sessions within a group can be
activated on different physical transmission facilities and yvet have
equivalent class of service, or they can have different physical secu-
rity gzaracteristics and still have equivalent level of transmission
security.

CONTENTION-WINNER POLARITY

5-2

For each single or parallel LU-LU session, only one LU is the con-
tention winner of the session; the other LU is the contention loser of
the session. This contention-winner polarity of LU-LU sessions
determines how contention is resolved when the two LUs attempt to
allocate a conversation on the session at the same time.! The conten-
tion-winner LU allocates a conversation on a session without asking
permission from the contention-loser LU. Conversely, the conten-
tion-loser LU requests permission from the contention-winner LU to
allocate a conversation on the session, and the contention-winner LU
either grants or rejects the request. The contention-winner polarity
of a saession is established at session activation time.

For single sessions, the LU initiating the session activation can
requaest that it be the contention winner or loser. The LU responding
to the session activation can accept the requested polarity or change
the polarity, depending on the requested polarity. If the initiating
LU requests that it be the contention winner, the responding LU can
accept the polarity or change the polarity making it the contention
winner. If the initiating LU requests that it be the contention
loser, the responding LU always accepts the polarity.

For parallel sessions, each mode-name group of sessions can be parti-
tioned based on contention-winner polarities. A number of sessions in
the group can be designated as the minimum number of contention-winner
sessions for one LU, and all or part of the remaining sessions can be
designated as the minimum number of contention-winner sessions for
the other LU. This partitioning allows two LUs to divide a group of
parallel sessions between them such that each LU is assured of being
the contention winner of a minimum number of the sessions.

The LU initiating the activation of a parallel session designates that
it be the contention winner or contention loser. Details of how the
initiating LU determines whether it is to be the contention winner or
loser of a session are given in the notes in the descriptions of the
CHANGE_SESSION_LIMIT and INITIALIZE_SESSION_ LIMIT verbs. The LU
responding to the activation of a parallel session always accepts the
designated polarity.

Sessions can be activated by means of certain control-operator verbs,
and as a result of allocation requests. The control-operator verbs
that can cause sessions to be activated are CHANGE_SESSION_LIMIT,
INITIALIZE_SESSION_LIMIT, and ACTIVATE_SESSION. Refer to the
de:crlptlons of these verbs for more details about session actl-
vation.

Note: The contention-winner polarity of sessions_assigned the
SNA-defined mode name, SNASVCMG, is not negotiable. That is, the LU
rasponding to the activation of an SNASVCMG session always accepts the
desrgnated polarity.

1 Specific details are given in anﬂwms
Manual: Architecture Logic for LU Type 6.2.

anual: chitec fo UurT

SNA Transaction Programmer's Reference Manual for LU Type 6.2

VERB _DESCRIPTIONS

The control-operator verbs are divided into the following subcatego-
ries:

Change number of sessions verbs
Session control verbs
LU definition verbs

The detailed descriptions of the control-operator verbs follow.

Chapter 5. Control-Operator Verbs 5-3

CHANGE NUMBER OF SESSIONS VERBS

5-4

This subcategory of control-operator verbs consists of four verbs
called the change-number-of-sessions, or CNOS, verbs. The CNOS verbs
change the (LU,mode) session limit, which controls the number of LU-LU
sessions per mode name that are available between two LUs for allo-
cation to conversations. The CN0OS verbs apply to both single- and
parallel-session connections.

For single sessions and SNASVCMG sessions, the CNOS verbs change the
(LU, mode) session limit only at the local LU. The remote LU is not
involved in processing the change. The CNOS verbs that a control-
operator transaction program may issue for a single session or
SNASVCMG session are:

INITIALIZE_SESSION_LIMIT
RESET_SESSION_LIMIT

For parallel sessions, the CNOS verbs change the (LU,mode) session
limit as well as other CNOS parameters of the LUs, and both LUs are
involved in processing the changes. These other CNOS parameters con-
trol the minimum number of contention-uwinner LU-LU sessions for each
LU, control which LU is responsible for selecting and deactivating
LU-LU sessions when the (LU,mode) session limit is decreased or reset,
and control the draining of allocation requests when the (LU,mode)
session limit is reset.

The two LUs cooperate in the execution of the CNOS verbs by means of a
CNOS request and CNOS reply. The LU executing the control-operator
transaction program sends a CNOS request to the partner LU. The part-
ner LU invokes an SNA service transaction program called the "CNOS
service transaction program™ (see "Appendix D. List of SNA Service
Transaction Programs™), which causes the partner LU to process the
CNOS request and send back a CNOS reply. The CNOS request and reply
are sent on a basic conversation, referred to in this chapter as the
"CNOS conversation.™ The CNOS conversation is normally allocated on
an SNASVCMG session. However, if an SNASVCMG session is not active,
because of session outage for example, the CNOS conversation may be
allocated on another active session.

The LU that sends the CNOS request IS referred to as the source LU;
the LU that receives the CNOS request is referred to as the target LU.
The execution of a CNOS verb by the two LUs is considered a CNOS
transaction. The role of the LU as a source LU or target LU lasts for
the duration of the CNOS transaction.

The CNOS verbs that a control-operator transaction program may issue
for parallel sessions are:

CHANGE_SESSION_LIMIT
INITIALIZE_SESSION_LIMIT
RESET_SESSION_LIMIT

Only a transaction program that has CNOS privilege may issue these
verbs. The program is designated to have CNOS privilege when it is
defined to the local LU (see the DEFINE_TP verb).

The CNOS verb that the CNOS service transaction program issues for
parallel sessions is:

PROCESS_SESSION_LIMIT
The detailed descriptions of the CNOS verbs follows.

SNA Transaction Programmer's Reference Manual for LU Type 6.2

Change Number of Sessions Verbs
CHANGE_SESSION_LIMIT

Changes the (LU,mode) .session limit and contention-winner polarities
for parallel-session connections. The verb applies to the group of
sessions with the specified mode name between this (source) LU and the
specified (target) LU. The new (LU,mode) session limit and conten-
tion-winner polarities are enforced until changed by a subsequent
CNOS verb. As a consequence of changing the (LU,mode) session limit
and contention-winner polarities, LU-LU sessions with the specified
mode name may be activated or deactivated to conform to the new ses-
sion limit and polarities.

supplied Parameters:
CHANGE_SESSION_LIMIT LU_NAME (variable)

MODE_NAME (variable)

LU_MODE_SESSION_LIMIT (variable)
MIN_CONWINNERS_SOURCE (variable)
MIN_CONWINNERS_TARGET (variable)

RESPONSIBLE (SOURCE)
{ TARGET)

Returned Parameters:
RETURN_CODE (variable)

H

Supplied Parameters:

LU_NAME specifies the name of the target LU to which the change in

session limit and polarities applies. The LU name is a name that is

Ealig asqthe LU_NAME parameter of the ALLOCATE verb (see "ALLOCATE" in
apter 4).

MODE_NAME specifies the mode name for which the session limit and
polarities are to be changed. The specified mode name cannot be the
SNA-defined mode name, SNASVCMG.

LU_MODE_SESSION_LIMIT specifies the (LU,mode) session limit, that is,
the maximum number of sessions to be allowed, between the source LU
and target LU, for the specified mode name.

The specified session limit must be greater than 0. The target LU can
negotiate this parameter to a value greater than 0 and less than the
specified session limit. The specified session limit, or the negoti-
ated session limit if it is negotiated, becomes the new session limit.

The value specified on this parameter must be greater than or equal to
the sum of the values specified on the MIN_CONWINNERS_SOURCE and
MIN_CONWINNERS_TARGET parameters.

MIN_CONUINNERS_SOURCE specifies the number of sessions of which the
source LU is designated to be the contention winner. The specified
number must be 0 or greater. The specified number, or the negotiated
number if it is negotiated, becomes the new minimum number of conten-
tion-winner sessions for the source LU. The sum of this number and
the target LU's new minimum number of contention-winner sessions can-
not exceed the new session limit.

When the specified number is greater than 172 the new session limit
(rounded dounuward), the target LU can negotiate this parameter to a
number greater than or equal to 172 the new session limit and less
than the specified number. When the specified number is less than or

Chapter 5. Control-Operator Verbs 5-5

CHANGE_SESSION_LIMIT

5-6

equal to 1/2 the new session limit, the target LU cannot negotiate
this parameter.

MIN_CONWINNERS_TARGET specifies the number of sessions of which the
target LU is designated to be the contention winner. The specified
number must be 0 or greater. The specified number, or the naegotiated
number if it is negotiated, becomes the new minimum number of conten-
tion-winner sessions for the target LU. The sum of this number and
the source LU's new minimum number of contention-winner sessions can-
not exceed the new session limit.

The target LU can negotiate this parameter to a number less than or
equal to the new session limit minus the new minimum number of conten-
tion-winner sessions for the source LU.

RESPONSIBLE specifies which LU is responsible for selecting and deac-
tivating sessions as a result of a change that decreases the session
limit or the maximum number of contention-winner sessions for the
source or target LU; see note & for details. If no sessions need to be
deactivated, this parameter is ignored.

. SOURCE specifies that the source LU is responsible. The target LU
cannot negotiate this argument.

. TARGET specifies that the target LU is responsible. The target LU
can negotiate this argument to SOURCE, in which casa the source LU
becomes responsible.

The responsible LU can deactivate a session when both LUs are finished
using the session. This verb wnill not terminate active conversations.

Returned Parameters:

RETURN_CODE specifies the variable in which a return code is returned
totﬁhe program. The return code indicates the result of verb exe-
cution.

. 0K (with one of the following subcodes)
- AS_SPECIFIED

- AS_NEGOTIATED

ALLOCATION_ERROR

COMMAND_RACE_REJECT
LU_MODE_SESSION_LIMIT_ZERO
LU_SESSION_LIMIT_EXCEEDED
PARAMETER_ERROR (for one of the following reasons)
- Invalid LU name

- Invalid mode name

. REQUEST_EXCEEDS_MAX_ALLOWED

J RESOURCE_FAILURE_NO_RETRY

. UNRECOGNIZED_MODE_NAME

ABEND Conditions:
Parameter Check

This verb is not supported.

The program issuing this verb does not have CNOS privilege.
MODE_NAME specifies the SNA-defined mode name, SNASVCMG.
LU_MODE_SESSION_LIMIT specifies 0.

MIN_CONWINNERS_TARGET is specified and not supported.

The sum of MIN_CONWINNERS_SOURCE and MIN_CONWINNERS_TARGET speci-
fies a number greater than LU_MODE_SESSION_LIMIT.

o RESPONSIBLE(TARGET) is specified and not supported.

Notes:

1. This verb applies only to parallel-session connections.

2. All of the parallel sessions between two LUs can be partitioned
into groups, with all the sessions in a group having the same mode
name. This verb is used to change the limits on the number of
active sessions that can exist concurrently within a mode-name
group between the source LU and target LU. The limits imposed on

SNA Transaction Programmer's Reference Manual for LU Type 6.2

Change Number of Sessions Verbs

the number of active parallel sessions within a mode-name group
are:

a. The number of active sessions cannot exceed the (LU,mode)
sassion limit.

b. The number of active contention-winner sessions for the
source LU cannot exceed the (LU,mode) session limit minus the
minimum number of contention-winner sessions for the target

c. The number of active contention-winner sessions for the tar-
get LU cannot exceed the (LU,mode) session limit minus the new
minimum number of contention-winner sessions for the source

As a result of issuing this verb, sessions may be activated, deac-
tivated, or both to conform to the new limits. The next two notes
describe the conditions under which sessions may be activated or
deactivated.

The source or target LU may activate parallel sessions, up to the
limits given in note 2, as follows:

° It may activate new contention-winner sessions when the num-
ber of its active contention-winner sessions is less than the
new (LU,mode) session limit minus the new minimum number of
contention-winner sessions for its partner LU.

. It may activate new contention-loser sessions when the number
of its active contention-loser sessions is less than the new
(LU,mode) session limit minus its own new minimum number of
contention-winner sessions.

The LU may activate contention-winner or -loser sessions in
response to allocation requests or by means of the ACTI-
VATE_SESSION verb. Also, it may activate contention-winner ses-
sions automatically, after completion of this verb, up to the
lesser of the its new minimum number of contention-winner ses-
sions and its automatic-activation limit currently in effect (see
the DEFINE_MODE verb).

Parallel sessions are deactivated when this verb causes one or
more of the limits given in note 2 to be exceeded. The LU respon-
sible for selecting and deactivating sessions is designated by
the RESPONSIBLE parameter. The responsible LU deactivates ses-
sions until all three limits given in note 2 are met. When all
three limits are met, no more sessions are deactivated.

The responsible LU deactivates sessions that are not allocated to
conversations., If a session to be deactivated is currently allo-
cated to a conversation, the responsible LU waits until the con-
versation is deallocated and then deactivates the session.

The responsible LU can deactivate only those sessions that are in
excess of an LU's minimum number of contention-winner sessions.
If the number of currently active contention-winner sessions for
the source or target LU is less than or equal to its minimum num-
ber of contention-winner sessions, none of its contention-winner
sessions are deactivated.

Chapter 5. Control-Operator Verbs 5-7

INITIALIZE_SESSION_LIMIT

Establishes the initial (LU,mode) session limit for single- or paral-
lel-session connections, and the contention-winner polaritias for
parallel-session connections. The verb applies to the group of ses-
sions with the specified mode name between the source LU and the tar-
gat LU. The new (LU,mode) session limit and contention-winner
polarities are enforced until changed by a subsequent CNOS verb. As a
consequence of initializing the session limit, one or more LU-LU ses-
sions with the specified mode name may be activated.

INITIALIZE_SESSION_LIMIT | LU_NAME (variable)

supplied Parameters:

MODE_NAME (variable)
("SNASVCMG')

LU_MODE_SESSION_LIMIT (variable)
MIN_CONWINNERS_SOURCE (variable)
MIN_CONWINNERS_TARGET (variable)

Returned Parameters:
RETURN_CODE (variable)

5-8

supplied Parameters:

LU_NAME specifies the name of the target LU to which the initializa-
tion of session limit and polarities applies. The LU name is a name
that is valid as the LU_NAME parameter of the ALLOCATE verb (see "AL-
LOCATE"™ in Chapter 4).

MODE_NAME specifies the mode name for which the session limit and
polarities are to be initialized.

. variable contains the mode name.

. *SNASVCMG' specifies the SNA-defined mode name, which is used for
exchanging the CNOS request and reply when the source LU and tar-
get LU are connected by parallel sessions.

LU_MODE_SESSION_LIMIT specifies the (LU,mode) session limit for par-
allel-session connections, that is, the maximum number of parallel
sessions to be allowed, between the source LU and target LU, for the
specified mode name.

The specified session limit must be greater than 0. The target LU can
negotiate this parameter to a value greater than 0 and less than the
spacified session limit. The specified session limit, or the negoti-
ated session limit if it is negotiated, becomes the new session limit.

The value specified on this parameter must be greater than or equal to
the sum of the values specified on the MIN_CONWINNERS_SOURCE and
MIN_CONWINNERS_TARGET parameters.

For single-session connections, the specified (LU,mode) session limit
must be 1.

Eorzthe SNASVCMG mode name, the specified (LU,mode) session limit must
)

MIN_CONWINNERS_SOURCE specifies the number of parallel sessions of
which the source LU is designated to be the contention winner. Thea
specified number must be 0 or greater. The specified number, or the
negotiated number if it is nagotiated, becomes the new minimum number
of contention-winner sessions for the source LU. The sum of this num-

SNA Transaction Programmer's Reference Manual for LU Type 6.2

Change Number of Sessions Verbhs

bgr and the target LU's new minimum number of contention-winner ses-
sions cannot exceed the new session limit.

When the specified number is greater than 1/2 the new session limit
(rounded douwnuward), the target LU can negotiate this parameter to a
number greater than or equal to 172 the new session limit and less
than the specified number. When the specified number is less than or
equal to 1/2 the new session limit, the target LU cannot negotiate
this parameter.

For single-session connections, the specified minimum number of con-
tention-uwinner sessions for the source LU may be 0, or it may be 1 if
the value specified on the MIN_CONWINNER_TARGET parameter is 0.

For the SNASVCMG mode name, the specified minimum number of conten-
tion-winner sessions for the source LU must be 1.

MIN_CONWINNERS_TARGET specifies the number of parallel sessions of
which the target LU is designated to be the contention winner. Tha
specified number must be 0 or greater. The specified number, or the
negotiated number if it is negotiated, becomes the new minimum number
of contention-winner sessions for the target LU. The sum of this num-
ber and the source LU's new minimum number of contention-winner ses-
sions cannot exgeed the new session limit.

The target LU can negotiate this parameter to a number less than or
equal to the new session limit minus the new minimum number of conten-
tion-winner sessions for the source LU.

For single-session connections, the specified minimum number of con-
tention-winner sessions for the target LU may be 0, or itmay be 1l if
the value specified on the MIN_CONWINNER_SOURCE parameter is 0.

For the SNASVCMG mode name, the specified minimum number of conten-
tion-winner sessions for the target LU must be 1.

Returned Parameters:

RETURN_CODE specifies the variable in which a return code is returned
totyhe program. The return code indicates the result of verb exe-
cution.

. 0K (with one of the following subcodes)
- AS_SPECIFIED

- AS_NEGOTIATED

ALLOCATION_ERROR

COMMAND_RACE_REJECT
LU_MODE_SESSION_LIMIT_CLOSED
LU_MODE_SESSION_LIMIT_NOT_ZERO
LU_SESSION_LIMIT_EXCEEDED
PARAMETER_ERROR (for one of the following reasons)
- Invalid LU name

- Invalid mode name
REQUEST_EXCEEDS_MAX_ALLOWED
RESOURCE_FAILURE_NO_RETRY
UNRECOGNIZED_MODE_NAME

ABEND conditions:
Parameter Check

U The program issuing this verb does not have CNOS privilege.

. LU_MODE_SESSION_LIMIT specifies a value greater than 1 for a
single-session connection.

. MODE_NAME('SNASVCMG') is specified and LU_MODE_SESSION_LIMIT,
MIN_CONWINNERS_SOURCE, and MIN_CONWINNERS_TARGET do not specify
2, 1, and 1, respectively.

° LU_MODE_SESSION_LIMIT specifies 0.

MIN CONNINNERS TARGET is specified and not supported.

U The sum of MIN_CONWINNERS_SOURCE and MIN_CONWINNERS_TARGET speci-
fies a number greater than LU_MODE_ SESSION_LIMIT.

Chapter 5. Control-Operator Verbs 5-9

INITIALIZE_SESSION_LIMIT

5-10

1.

Notes:

The (LU,mode) session limit for a single-session connection is
initialized only locally at the source LU; a CNOS request and
reply are not exchanged betueen the two LUs. Thus, the INITIAL-
IZE_SESSION_LIMIT verb must be issued at both LUs before either LU
can activate the corresponding session. From each LU's perspec-
tive, each is the source LU for the processing of this verb.

For a single-session connection, the contention-winner polarity
for the session is determined from the MIN_CONWINNER_SOURCE and
MIN_CONWINNER_TARGET parameters on the verbs issued at both LUs.
The LU activating the session:

] Requests that it be the contention winner when the verb issued
at that LU specifies MIN_CONWINNERS_TARGET(0).

. Requests that it be the contention loser when the verb speci-
fies MIN_CONWINNERS_TARGET(1).

The partner LU:

® Accepts the requested contention-winner polarity when the
verb issued at that LU specifies MIN_CONWINNERS_SOURCE(O).

L Negotiates the polarity so that it is the contention winner
when the verb specifies MIN_CONWINNERS_SOURCE(1).

For a single-session connection, the LU may have more than one
mode defined at a time to a partner LU. Each (LU,mode) session
limit can be either 8 or 1, and more than one (LU,mode) session
limit can be 1, concurrently, for the partner LU. This permits
the LU to activate a session for any of the modes that have an
(LU,mode) session limit of 1; however, only one session can be
active at a time.

For a parallel-session connection to a target LU, the (LU,mode)
session limit and contention-winner polarities for the SNASVCMG
mode name and target LU must be initialized before (LU,mode) ses-
sion limit and contention-winner polarities can be initialized
for any other mode name for the target LU. The (LU,mode) session
limit and contention-winner polarities for the SNASVCMG mode name
and target LU are initialized only at the source LU; a CNGS
request and reply are not exchanged betueen the two LUs.

The (LU,mode) session limit and contention-winner polarities for
the SNASVCMG mode name must be initialized at both the source LU
and target LU before either LU can activate the corresponding ses-
sions; a CNOS request and reply are not exchanged between the two
LUs. From each LU's perspective, each is the source LU for the
processing of INITIALIZE_SESSION_LIMIT with
MODE_NAME(*SNASVCMG"').

All the parallel sessions between two LUs can be partitioned into
groups, wWith all the sessions in a group having the same mode
name. This verb can be used to initialize the limits on the num-
ber of active parallel sessions that can exist concurrently with-
in a mode-name ogroup between the source and target LUs. The
limits imposed on the number of active parallel sessions within a
mode-name group are:

a. The number of active sessions cannot exceed the (LU,mode)
session limit.

b. The number of active contention-winner sessions for the
source LU cannot exceed the (LU,mode) session limit minus the
Tanimum number of contention-winner sessions for the target

¢. The number of active contention-winner sessions for the tar-
get LU cannot exceed the (LU,mode) session limit minus the new
Tanimum number of contention-winner sessions for the source

SNA Transaction Programmer's Reference Manual for LU Type 6.2

Change Number of Sessions verbs

As a result of issuing this verb, parallel sessions may be acti-
vated to conform to.the new limits.

For single- and parallel-session connections, an LU may activate
contention-winner or -loser sessions in response to allocation
requests or by means of the ACTIVATE_SESSION verb. Also, it may
activate contention-winner sessions automatically, after com-
pletion of this verb, up to the lesser of the its new minimum num-
ber of contention-winner sessions and its automatic-activation
limit currently in effect.

Chapter 5. Control-0Operator Verbs 5-11

RESET_SESSION_LIMIT

Resets to 0 the (LU,mode) session limit for single or parallel-session
connections, and the contention-winner polarities for the parallel-
session connections. The verb applies to the group of sessions with
the specified mode name, or all mode names, between the source LU and
the target LU. The reset (LU,mode) session limit and contention-
winner polarities are enforced until initialized by a subsequent INI-
TIALIZE_SESSION_LIMIT verb. As a consequence of raesetting the
session limit and polarities, all active sessions with the specified
mode name, or all mode names, are deactivated.

RESET_SESSION_LIMIT | LU_NAME (variable)

supplied Parameters:

(ALL)
MODE_NAME (ONE (variable))
(ONE ("SNASVCMG'))

RESPONSIBLE (SOURCE)]
TARGET
DRAIN_SOURCE (NO)]

DRAIN_TARGET (NO)]

YES)

FORCE (NO)]

Returned Parameters:
RETURN_CODE (variable)
3

5-12

Supplied Parameters:

LU_NAME specifies the name of the target LU to which the resetting of
the session limit and polarities applies. The LU name is a name that
is gﬁlif asq§he LU_NAME parameter of the ALLOCATE verb (see "ALLOCATE"
in Chapter .

MODE_NAME specifies the mode name for which the session limit and
polarities are to be reset to 0.

. ALL specifies that the session limit and polarities for all mode
names that apply to the target LU are to be reset to 0, except for
the SNA-defined mode name, SNASVCMG, which remains unchanged.

) ONE(variable) specifies that the session limit and polarities for
only the specified mode name are to be reset to 0.

. ONE("SNASVCMG') specifies the SNA-defined mode name, which is
used for exchanging the CNOS request and reply when the source LU
and target LU are connected by parallel sessions.

RESPONSIBLE specifies which LU is responsible for deactivating the
sessions as a result of resetting the session limit for parallel-ses-
sion connections. This parameter is not applicable to single-session
connections or the SNASVCMG sessions.

° SOURCE specifijes that the source LU is responsible. The target LU
cannot negotiate this argument.

SNA Transaction Programmer's Reference Manual for LU Type 6.2

Change Number of Sessions Verbs

. TARGET specifies that the target LU is responsible. The target LU
can negotiate this argument to SOURCE, in which case the source LU
becomes responsible.

The parameters DRAIN_SOURCE and DRAIN_TARGET determine when the
responsible LU can deactivate the sessions:

. If an LU is to drain its allocation requests, it continues to
allocate conversations to active sessions. The responsible LU
deactivates a session only when the conversation allocated to the
session is deallocated and no request is awaiting allocation to
any session with the specified mode name. The allocation of an
a@atting request takes precedence over the deactivation of a ses-
sion.

° If an LU is not to drain its allocation requests, the responsible
LU deactivates a session as soon as the conversation allocated to
the session is deallocated. If no conversation is allocated to
gbet 3ession, the responsible LU deactivates the session imme-

iately.

In no case, houwever, does this verb force deallocation of active con-
versations.

Ihe RESPONSIBLE and MODE_NAME parameters are interrelated, as fol-
ous:

. If MODE_NAME(ALL) is specified, RESPONSIBLE is ignored for those
mode names for which the session limit is currently 0.

L If MODE_NAME(ONE(variable)) is specified and the current session
limit for that mode name is 0, RESPONSIBLE is ignored.

DRAIN_SOURCE specifies whether the source LU can drain its allocation
requests. For parallel-session connections, the target LU cannot
negotiate this parameter. This parameter is not applicable to the
SNASYCMG sessions.

. NO specifies that the source LU cannot drain its allocation
requests. All requests currently awaiting allocation, or subse-
quently issued, at the source LU are rejected with a return code
indicating the session limit is 0.

L YES sgspecifies that the source LU can drain its allocation
requests. The source LU continues to allocate conversations to
the sessions until no requests are awaiting allocation, at which
time its draining is ended. All allocation requests issued at the
source LU after draining is ended are rejected with a return code
indicating the session linmit is 0.

For parallel-session connections, the DRAIN_SOURCE and MODE_NAME
parameters are interrelated, as follouws:

. If MODE_NAMECALL) and DRAIN_SOURCE(YES) are specified,
DRAIN_SOURCE is ignored for those mode names for which the session
limit is currently 0.

. If MODE_NAMECALL) and DRAIN_SOURCE(NG) are specified,
DRAIN_SOURCE is accepted for all mode names, regardless of the
current session limit.

. If MODE_NAME(ONE(variable)) is specified, the current session
limit for that mode name is 0, and DRAIN_SOURCE(YES) is currently
in effect, DRAIN_SOURCE(NO) if specified causes the source LU's
draining to terminate.

. If MODE_NAME(ONE(variable)) is specified, the current session
limit for that mode name is 0, and DRAIN_SOURCE(NO) is currently
in effect, DRAIN_SOURCE(NO) must be specified.

DRAIN_TARGET specifies whether the target LU can drain its allocation
requests. This parameter is not applicable to the SNASVCMG sessions.

Chapter 5. Control-Operator Verbs 5-13

RESET_SESSION_LIMIT

5-14

L NO specifies that the target LU cannot drain its allocation
requests. All requests currently awaiting allocation, or subse-
quently issued, at the target LU are rejected with a return code
indicating the session limit is 0. For parallel-session con-
nections, the target LU cannot negotiate this argument.

U YES specifies that the target LU can drain its allocation
requests. The target LU continues to allocate conversations to
the sessions until no requests are awaiting allocation, at which
time its draining is ended. All allocation requests issued at the
target LU after draining is ended are rejected with a return code
indicating the session limit is 0. For parallel-session con-
nections, the target LU can negotiate this argument ‘to NO, in
which case the target LU cannot drain its allocation requests.

For parallel-session connections, the DRAIN_TARGET and MODE_NAME
parameters are interrelated, as follows:

. If MODE_NAMEC(ALL) and DRAIN_TARGET(YES) are specified,
DRAIN_TARGET is ignored for those mode names for which the session
limit is currently 0.

. If MODE_NAMECALL) and DRAIN_TARGET(NO) are spacified,
DRAIN_TARGET is accepted for all mode names, regardless of the
current session limit.

. If MODE_NAME(ONE(variable)) is specified, the current session
limit for that mode name is 0, and DRAIN_TARGET(YES) is currently
in effect, DRAIN_TARGET(NO) if specified causes the target LU's
draining to terminate.

U] If MODE_NAME(ONE(variable)) is specified, the current session
limit for that mode name is 0, and DRAIN_TARGET(NO) is currently
in effect, DRAIN_TARGET(YES) if specified can be either accepted
by the target LU or negotiated to NO. If accepted, the target LU
can drain its remaining allocation requests if draining has not
already ended.

FORCE specifies whether the source LU is to force the resetting of its
session limit when certain error conditions occur that prevent suc-
caessful exchange of the CNOS request and reply. This parameter is not
applicable to single-session connections or the SNASVCMG sessions.

. NO specifies that the session limit is to be reset only upon suc-
cessful completion of the exchange of the CNOS request and reply.

L YES specifies that the session limit is to be reset upon either
successful or unsuccessful completion of the exchange of the CNOS
request and reply, except for certain error conditions (see the
RETURN_CODE parameter). If a forced reset occurs, the source LU's
session limit is reset, and RESPONSIBLE(SOURCE) and
DRAIN_SOURCE(NO) are assumed (regardless of what the respective
parameters specify). The target LU's CNOS parameters may not be
changed, depending on the error condition and when it occurred
during the CNOS exchange.

Returned Parameters:

RETURN_CODE specifies the variable in which a return code is returned
to the program. The return code indicates the result of verb exe-
cution. The FORCE parameter determines which of the following return
codes can be returned to the program.

. If FORCE(NO) is specified, one of the following return codes is
returned:

- 0K (with one of the following subcodes)

— AS_SPECIFIED

— AS_NEGOTIATED

ALLOCATION_ERROR

COMMAND_RACE_REJECT

LU_MODE_SESSION_LIMIT_CLOSED

PARAMETER_ERROR (for one of the following reasons)
— Invalid LU name

SNA Transaction Programmer's Reference Manual for LU Type 6.2

Change Numbher of Sessions verhs

— Invalid mode name
- RESOURCE_FAILURE_NO_RETRY
- UNRECOGNIZED_MODE_NAME

If FORCE(YES) is specified, one of the following return codes is
returned:

- 0K (with one of the following subcodes)

— AS_SPECIFIED

— AS_NEGOTIATED

-— FORCED

COMMAND_RACE_REJECT

- PARAMETER_ERROR (for one of the following reasons)
— Invalid LU name
~— Invalid mode name

ABEND Conditions:
Parameter Check

The program issuing this verb does not have CNOS privilege.
MODE_NAME(ONE('SNASVCMG')) is specified and one or more (LU,mode)
session limits for the target LU are not 0.
MODE_NAME(ONE(variable)) and DRAIN_ SOURCE(YES) are specified, the
current (LU,mode) session limit is 0, and DRAIN_SOURCE(NO) is
currently in effect.

RESPONSIBLE(TARGET) is specified and not supported.
DRAIN_TARGET(NO) is specified and not supported.

FORCE(YES) is specified and not supported.

Notes:

1.

The (LU,mode) session limit for a single-session connection to a
target LU is reset only at the source LU; a CNOS request and reply
are not exchanged between the two LUs. The source LU deactivates
the session, if it is active, in accordance with the DRAIN_SOURCE
and DRAIN_TARGET parameters.

For parallel-session connections, when a mode name is specified
other than the SNA-defined mode name, SNASVCMG, or when ALL mode
names are indicated, the responsible LU deactivates the sessions
associated with the specified mode name, or all mode names other
than SNASVCMG, in accordance with the DRAIN_SOURCE and
DRAIN_TARGET parameters. The (LU,mode) session limits and con-
tention-winner polarities for all mode names other than SNASVCMG
must.gg geset before issuing this verb with the SNASVCMG mode name
specified.

When the SNASVCMG mode name is specified, the (LU,mode) session
limit and contention-winner polarities for the SNASVCMG mode name
are reset only at the source LU; a CNOS request and reply are not
exchanged between the two LUs. The source LU deactivates the ses-
sions associated with the SNASVCMG mode name as soon as all other
active sessions between the source LU and target LU are deacti-
vated. If no other sessions between the two LUs are active, the
source LU immediately deactivates the sessions associated with
the SNASVCMG mode name.

This verb can be issued when the (LU,mode) session limit is 0. In
particular, this verb may be issued multiple times uithout issu-
ing an intervening INITIALIZE_SESSION_LIMIT verb. For example,
if this verb was first issued specifying DRAIN_TARGET(YES) and
subsequently it is decided to disallow further draining by the
target LU, this verb can be issued a second time specifying
DRAIN_TARGET(NO). MWhen the (LU,mode) session limit is already 0,
the RESPONSIBLE parameter is ignored; the LU (SOURCE or TARGET)
specified on the first RESET_SESSION_LIMIT remains responsible
for deactivating sessions.

Chapter 5. Control-Operator Verbs 5-15

PROCESS_SESSION_LIMIT

Processes the session limit, contention-winner polarities, and
related CNOS parameters from the source LU and, if necessary, negoti-
ates them to values acceptable to the target LU.

PROCESS_SESSION_LIMIT | RESOURCE (variable)

Supplied Parameters:

Returned Parameters:

LU_NAME (variable)

MODE_NAME (variablel variable2)
RETURN_CODE (variable)

5-16

Supplied Parameters:

RESOURCE specifies the resource ID of the conversation that started
this program.

Returned Parameters:

LU_NAME specifies the variable in which is returned the name of the
source LU.

MODE_NAME specifies the variables in which are returned an indication
of whether one or all mode names are affacted, and, if one, the spe-
cific mode name.

U variablel is the variable in which is returned an indication of
u?:thgrdone or all mode names associated with the source LU are
affected.

- ONE indicates a specific mode name is affected. The mode name
is returned in variable2.

- ALL indicates all mode names are affected. Nothing is placed
in variable2.

J variable2 is the variable in which is returned the specific mode
name when only one is affected.

RETURN_CODE specifies the variable in which a return code is returned
totphe program. The return code indicates the result of verb exe-
cution.

. 0K (with one of the following subcodes)
- AS_SPECIFIED
- AS_NEGOTIATED

L RESOURCE_FAILURE_NO_RETRY

ABEND Conditions:
Parameter Check

The program issuing this verb is not the SNA service transaction
program identified as hex 06F1.

as:
1. This verb applies only to parallel session connections.

2. This verb is issued by an SNA service transaction program called
the "CNOS service transaction program," identified with the name
of hex 06F1. The CNOS service transaction program is invoked at
the target LU as a result of a CNOS verb being issued at the
source LU. The CNOS service transaction program then issues this

SNA Transaction Programmer's Reference Manual for LU Type 6.2

change Number of Sessions verbhs

verb in order to initiate the target LU's processing of the CNOS
request sent by the source LU.

The program issues the DISPLAY_MODE verb in order to obtain the

new session limit, contention-winner polarities, and related CNOS
parameters.

Chapter 5. Control-Operator Verbs 5-17

SESSION CONTROL VERBS

5-18

This subcategory of control-operator verbs consists of two verbs used
for session control, one that activates an LU-LU session and one that
deactivates an LU-LU session. The LU executing the verb is designated
the source LU and is responsible for the session activation or deacti-
vation. The other LU for the session is the target LU. These verbs
are:

ACTIVATE_SESSION
DEACTIVATE_SESSION

Only a transaction program that has session-control privilege may
issue these verbs. The program is designated to have session-control
privilege when it is defined to the local LU (see the DEFINE_TP verb).

The detailed descriptions of these verbs follous.

SNA Transaction Programmer's Reference Manual for LU Type 6.2

session control Verbs
ACTIVATE_SESSION
Activates a session with the specified mode name to the target LU.

The session is activated as a contention winner for either the source
LU or target LU.

Supplied Parameters:
ACTIVATE_SESSION LU_NAME (variable)

MODE_NAME (variable)
{ 'SNASVCMG')

Returned Parameters:
RETURN_CODE (variable)
3

sSupplied Parameters:

LU_NAME specifies the name of the target LU to which the session is to
be activated. This LU name is any name by which the source LU knous
the target LU for the purpose of activating a session. The source LU
transforms this locally-known LU name to an LU name used by the net-
work, if the names are different.

MODE_NAME specifies the mode name for the session.
. variable contains the mode name.

L *SNASVCMG® specifies the SNA-defined mode name, which is used for
exchanging the CNOS request and reply when the source LU and tar-
get LU are connected by parallel sessions.

Returned Parameters:

RETURN_CODE specifies the variable in which a return code is returned
totyhe program. The return code indicates the result of verb exe-
cution.

. OK (Wwith one of the following subcodes)
- AS_SPECIFIED
- AS_NEGOTIATED
. ACTIVATION_FAILURE_NO_RETRY
ACTIVATION_FAILURE_ RETRY
U PARAMETER_ERROR (for one of the following reasons)
- Invalid LU name.
Invalid mode name.
. LU _MODE_SESSION_LIMIT_EXCEEDED

ABEND conditions:
Parameter Check

. This verb is not supported.
. T?e program issuing this verb does not have session-control priv-
ilege.

Notes:

1. This verb can be used to activate a single session as a contention
winner for either the source LU or the target LU. The LU to be the
contention winner is established by means of the INITIAL-
IZE_SESSION_LIMIT verb.

2. This verb can be used to activate one or both parallel sessions
for the SNASVCMG mode name to a target LU. The source LU is the
contention winner for the first session; the target LU is the con-
tention winner for the second session.

Chapter 5. Control-Operator Verbs 5-19

ACTIVATE_SESSION

3.

This verb can be used to activate a parallel session as a con-
tention winner for either the source LU or the target LU. The
session is activated as a contention winner for the source LU when
the number of currently active contention-winner sessions for tha
source LU is less than the new (LU,mode) session limit minus the
new minimum number of contention-winner sessions for the target

LU. Otherwise, the session is activated as a contention winner
for the target LU.

5-20 SNA Transaction Programmer's Reference Manual for LU Type 6.2

session control Verbs
DEACTIVATE_SESSION

Deactivates the specified LU-LU session. The type of deactivation can
be cleanup or normal.

supplied Parameters:
DEACTIVATE_SESSION | SESSION_ID (variable)

TYPE (CLEANUP)
(NORMAL)

Returned Parameters:
RETURN_CODE (variable)

H

Supplied Parameters:

SE%SﬁON_ID specifies the identifier of the LU-LU session to be daacti-
vated.

TYPE specifiaes the type of deactivation.

. CLEANUP specifies that the session is to be deactivated imme-
diately, regardless of whether a conversation is currently allo-
cated to the session.

. NORMAL specifies that the session is to be deactivated normally,
after the conversation currently allocated to the session is
deallocated. If no conversation is currently allocated to the
session, normal deactivation begins immediately.

Returned Parameters:

RETURN_CODE specifies the variable in which a return code is returned
totyhe program. The return code indicates the result of verb exe-
cution.

0K
. PARAMETER ERROR (for the following reason)
The specified session identifier is not assigned to a cur-
rently active session.

ABEND Conditions:
Parameter Check
U This verb is not supported.

L I?e program issuing this verb does not have session-control priv-
ilege.

Chapter 5. Control-Opaerator Varbs 5-21

LU DEFINITION VERBS

5-22

This subcategory of control-operator verbs consists of the follouwing
verbs, which are used to define or modify the local LU's operating
pargmeters. examine the parameters, and delete the parameters. These
verbs are:

DEFINE_LOCAL_LU
DEFINE_REMOTE_LU
DEFINE_MODE
DEFINE_TP
DISPLAY_LOCAL_LU
DISPLAY_REMOTE_LU
DISPLAY_MODE
DISPLAY_TP

DELETE

The execution of these verbs involves only the local LU. They do not
cause any information to be sent outside the LU.

Some of the local LU's operating parameters can be added, modified, or
deleted only under appropriate conditions. An attempt to alter any of
these parameters when conditions are inappropriate is an error, caus-
ing the LU to return the PARAMETER_ERROR return code on the verb. The
parameters that are restricted in this way and the corresponding
errors are identified in the verb descriptions.

The DEFINE verbs may be issued multiple times to initialize or update
the local LU's operating parameters. The first time a verb parameter
is specified, the LU's corresponding operating parameter is initial-
ized; thereafter, it is changed. The following notes apply to all
verb parameters, except where stated otherwise in the individual verb
descriptions:

U If the LU's operating parameter is not currently defined and the
corresponding verb parameter is specified, the operating parame-
ter is initialized with the supplied value.

L If the LU's operating parameter is not currently defined and the
corraesponding verb parameter is omitted, the operating parameter
remains undefined.

° If the LU's operating parameter is currently defined and the cor-
responding verb parameter is specified, the operating parameter
value is replaced with the supplied value.

. If the LU's operating parameter is currently defined and the cor-
responding verb parameter is omitted, the operating parameter
value remains unchanged.

The DISPLAY verbs return current values of the local LU's operating
parameters. When a DISPLAY verb is issued specifying a parameter that
is not currently defined at the locai LU, a null value is returned.

The DELETE verb deletes the local LU's operating parameters. After a
parameter is deleted, it is no longer defined at the local LU.

Only a transaction program that has define privilege may issue the
DEFINE verbs and DELETE verb, and only a program that has display
privilege may issue the DISPLAY verbs. The program is designated to
have define or display privilege when it is defined to the local LU
(see the DEFINE_TP verb). The program that initially establishes
define privilege for other programs has implicit define privilege.

The detailed descriptions of these verbs follouw.

SNA Transaction Programmer's Reference Manual for LU Type 6.2

DEFINE_LOCAL_LU

LU Definition Verbs

Defines the fully qualified name for the local LU, and initializes or
changes parameters that control the operation of the local LU.

DEFINE_LOCAL_LU | FULLY_QUALIFIED_LU_NAME (variable)

Supplied Parameters:

LU_SESSION_LIMIT (NONE)
(VALUE (variable))

(ADD (USER_ID (variable)
PASSWORD (variable)
SECURITY PROFILE (variable)))
(DELETE (USER_ID (variable)
PROFILE (variable)))

(DELETE (variable))

[MAP_NAME (ADD (variable))]

Returned Parameters:
RETURN_CODE (variable)

e
’

supplied Parameters:

FULLY_QUALIFIED_LU_NAME specifies the fully qualified name of the
local LU. If the specified name is not currently defined, this verb
defines the name by which the local LU is knouwn throughout the net-
work, replacing the current name if one exists, and initializes the
LU-LU session limit. If the specified name is already defined, this
verb changes the other parameter values.

LU_SESSION_LIMIT specifies the LU-LU session limit for the total num-
ber of sessions for the local LU.

L NONE specifies that no limit is to be defined.
. VALUE specifies a number representing the LU-LU session limit.

SECURITY specifies to add or delete access security information that
the local LU uses for conversation-level security verification of
incoming allocation requests on an LU-wide basis. (Contrast this
parameter with the SECURITY_REQUIRED and SECURITY_ACCESS parameters
of the DEFINE_TP verb.) The local LU updates a conversation-level
security verification list from the information supplied on this
parameter. The verification list consists of one or more user IDs and
cor;espondlil;\g passwords, and zero or more profiles associated with
each user .

U ADD specifies to add access security information to the LU's
conversation-level security verification list. A user ID must be
specified together with either, or both, a password or profile.

- USER_ID specifies a user ID. If the user ID is not currently
defined, a password must also be specified, and the LU adds
the user ID, password, and profile (if specified) to its
conversation-level security verification list. If the user
ID is ?}{eady dafined, the list is updated with the password
or profile.

- PASSUWORD specifies the password for this user ID. If the user

ID is already defined, the password replaces the one current-
ly defined.

Chapter 5. Control-Operator Verbs 5-23

DEFINE_LOCAL_LU

- PROFILE specifies a profile for this user ID. If the user ID
éséalrifdy defined, the profile is added to the ones currently
efined.

. DELETE specifies to delete access security information from tha
LU's conversation-level security verification list. The user ID
may be specified alone or together with a profile.

= USER_ID spacifies the user ID. If a profile is not specified,
the user ID and its associated password and profiles are
deleted. If a profile is also specified, the user ID and its
associated password and nther profiles remain defined.

- PROFILE specifies the profile to be deleted.

MAP_NAME specifies to add or delete a map name that the local LU is to
support for local data mapping. Local transaction programs may speci-
fy this map name on the MAP_NAME parameter of the MC_SEND_DATA verb,
and r:mote LUs may send this map name to the local LU over mapped con-
versations.

. ADD specifies the map name to be added.
. DELETE specifies the map name to be deleted.
Returned Parameters:

RETURN_CODE returns an indication of the result of verb execution.

° 0K

. PARAMETER ERROR (for one of tha following reasons)
FULLY_QUALIFIED_LU_NAME specifies a value that is not a
type-A symbol string

- LU_SESSION_ LIMIT(VALUE(var1ab1e)) spacifies a value that 15
1::5 :han the sum of the (LU,mode) session limits currently in
effect.

- SECURITY(ADD(...)) specifias a user ID, password, or profile
that is not a symbol-string type (A, AE, GR, or DB) that the
product supports.

- SECURITY(ADD(...)) specifies only a user ID, or a password or
profile but no user ID.

- SECURITY(DELETE(...)) specifies a user ID or profile that is
not currently defined at the local LU.

- SECURITY(DELETE(...)) specifies only a profile.

= MAP_NAME(ADD(variable)) specifies a map name that is not a
symbol-string type (A, AE, or GR) that the product supports.

- MAP_NAME(DELETE(variable)) specifies a map name that is not
currently defined at the local LU.

ABEND Conditions:
Parameter Check

. This verb is not supported.
. The program issuing this verb does not have defina privilege.

Notes:

1. This verb can be used to define the name by which the local LU is
known throughout the network. To use it for this purposae, the
verb should be issued prior to the local LU's participation in any
network activity, such as initializing (LU,moda) session limits.

2. The LU-LU session limit is the maximum number of sessions that the
local LU can have active at a time. It represents the upper bound
on the sum of the (LU,mode) session limits, and it must be equal
to or greater than the sum of the (LU,mode) session limits cur-
rently in effect; see the description of the return code,
LU_SESSION_LIMIT_EXCEEDED, in "Return Codes™ on page 5-51 for
more details.

3. If no LU-LU session limit is defined at the local LU, the upper
bound, if any, on the sum of the (LU,mode) session limits is

5-24 SNA Transaction Pragrammer's Reference Manual for LU Type 6.2

LU Definition Verbs

product-determined. For example, the upper bound may be a fixed
value or determined by an algorithm.

When the first user ID and associated password and profiles are
added, the LU's conversation-level security verification list is
created. When the last user ID and associated password and pro-
files are deleted, the conversation-level security verification
list itself is deleted.

The 1local LU uses the conversation-level security verification
list to verify the access security information on allocation
requests it receives. Specifically, when the LU receives an allo-
cation request carrying a user ID and password, it verifies that
the user ID and password are present in its conversation-level
security verification list. If the allocation request also car-
ries a profile, the LU verifias that the profile is also present
in the list. Allocation requests that carry no access security
information, or that carry a user ID and an already-verified indi-
cation (and may also carry a profile), are not verified against
the conversation-level security verification list. However,
these requests may be subject to resource-access verification, as
determined by the SECURITY_ACCESS parameter on DEFINE_TP.

If the conversation-level security verification list does not
exist, the local LU will perform no conversation-level security
verification. Allocation requests that carry a user ID and pass-
word will not be accepted.

If no map names are defined at the local LU, it will perform no
data mapping.

More details concerning the LU's use of these operating parame-

ters are given in SNA Format and Protocol Refe e ual:
rchitectu ogic for LU Tvpe 6.2.

Chaptar 5. Control-Operator Verbs 5-25

DEFINE_REMOTE_LU

Initializes or changes parameters that control the operation of the
local LU in conjunction with a remote LU.

DEFINE_REMOTE_LU | FULLY_QUALIFIED_LU_NAME (variable)

supplied Parameters:

LOCALLY_KNOUN_LU_NAME (NONE)
{ NAME (variable))

[UNINTERPRETED_LU_NAME (NONE)
{ NAME (variable))

INITIATE_TYPE (INITIATE_ONLY)
(INITIATE_OR_QUEUE)

PARALLEL_SESSION_SUPPORT E xgs))]

CNOS_SUPPORT (YES)]

(NO)
[LU_LU_PASSHORD (NONE)
VALUE (variable J})
NONE)

SECURITY_ACCEPTANCE (CONVERSATION)
{ ALREADY_VERIFIED]}

Returned Parameters:
RETURN_CODE (variable)

5-26

Supplied Parameters:

FULLY_QUALIFIED_LU_NAME specifies the fully qualified name of the
remote LU. If the specified name is currently undefined to the local
LU, this verb defines the remote LU's fully qualified name and ini-
tializes the other parameter values specified on this verb. If the
specified name is already defined to the local LU, this verb changes
the other parameter values.

LOCALLY_KNOUN_LU_NAME specifies the locally-known name of the remote
LU that local transaction programs can specify on the LU_NAME parame-
ter of the MC_ALLOCATE and ALLOCATE verbs.

L NONE specifies that no locally-known LU name is to be defined.

. NAME specifies the locally-known LU name of the remote LU. This
name is not sent outside the local LU.

UNINTERPRETED_LU_NAME specifies the uninterpreted LU name of the
remote LU, which the local LU uses on INITIATE and TERMINATE requests
it sends to its SSCP.

. NONE specifies that no uninterpreted LU name is to be defined.

. NAME specifies the uninterpreted LU name of the remote LU.

SNA Transaction Programmer's Reference Manual for LU Type 6.2

LU Definition verbs

INITIATE_TYPE specifies the session-initiation type that the local LU
is to use on INITIATE requests it sends to its SSCP for initiating
sessions with the remote LU.

. INITIATE_ONLY specifies that session initiation requests are to
indicate "initiate only." The SSCP will not queue the session
initiation requests.

L INITIATE_OR_QUEUE specifies that session initiation requests are
to indicate "initiate or queue.” The SSCP may queue session the
initiation requests, if necessary, while waiting for the remote
LU to become available.

PARALLEL_SESSION_SUPPORT specifies whether the local LU supports par-
allel sessions with the remote LU. The local LU uses this parameter
to determine the indication for parallel session support that it spec-
ifies in session activation (BIND) requests and responses.

. YES specifies that parallel sessions are supported.
. NO specifies that parallel sessions are not supported.

CNOS_SUPPORT specifies whether the local LU supports the exchange of
CNOS requests and replies with the remote LU. The local LU uses this
parameter to determine the indication for CNOS support that it speci-
fies in session activation (BIND) requests and responses.

. YES specifies that CNOS is supported. PARAL-
LEL_SESSION_SUPPORT(YES) must also be specified.

. NO specifies that CNOS is not supported. PARAL-
LEL_SESSION_SUPPORT(NO) must also be specified.

LU_LU_PASSUORD specifies the LU-LU password to be used for
session-level LU-LU verification during session activation. The
LU~-LU password must be the same as that defined at the remote LU.

. NONE specifies that no LU-LU passuword is to be defined.

. NAME specifies the LU-LU password. It must be a random binary
value up to 64 bits (8 bytes) in length. It should be specified
in a form that can yield any binary value. For example, it could
be specified using the hexadecimal digits 0, 1, 2, ..., E, F t
represent each group of & bits. After being defined, the LU-LU
password is nondisplayable.

SECURITY_ACCEPTANCE specifies the level of access security informa-
tion that the local LU will accept on allocation requests it receives
from the remote LU. Access security information that includes a pass-—
word is verified against the LU's conversation-level security verifi-
cation list prior to acceptance, as described for the SECURITY
parameter on the DEFINE_LOCAL_LU verb.

. NONE specifies that no access security information is to be
accepted on allocation requests received from the remote LU.

J CONVERSATION specifies that the local LU will accept
conversation-level access security information, which must
include both a user ID and password, and may also include a pro-
file. The local LU wuWill not accept allocation requests that
include the already-verified indication.

U ALREADY_VERIFIED specifies that the 1local LU will accept
conversation-level access security information, which may include
the already-verified indication in place of a password.

Returned Parameters:

RETURN_CODE returns an indication of the result of verb execution.

. 0K

. PARAMETER_ERROR (for one of the following reasons)

- FULLY_QUALIFIED_LU_NAME specifies a value that is not a
type-A symbol string.

Chapter 5. Control-Operator Verbs 5-27

DEFINE_REMOTE_LU

5-28

— PARALLEL_SESSION_SUPPORT(YES) is specified and the total

LU-LU session limit is 1.

= PARALLEL_SESSION_SUPPORT(YES) and CNOS_SUPPORTED(NO) are

specified.

= PARALLEL_SESSION_SUPPORT(NO) and CNOS_SUPPORTED(YES) are

specified.

— PARALLEL_SESSION_SUPPORT, CNOS_SUPPORT, LU_LU_PASSWORD, or

SECURITY_ACCEPTANCE is specified and at least one (LU,mode)
session limit for the remote LU is not zero, or the LU-LU ses-
sion count between the local and remote LUs is not zero.

ABEND Conditions:
Paramater Chack

This verb is not supported.
The program issuing this verb does not have define privilege.

Notes:

1.

This verb can be used to define the fully qualified name of a
remote LU. In this case, the verb should be issued prior to the
locai ll.-lll, participating in any network activity involving the
remote .

If no locally-known name of the remote LU is defined at the local
LU, local transaction programs may specify the remote LU's fully
qualified LU name, or its uninterpreted name if one is currently
defined at the local LU, on the LU_NAME parameter of the
MC_ALLOCATE and ALLOCATE verbs.

An uninterpreted name of the remote-LU must be defined at both the
local LU and its SSCP before the local LU sends INITIATE and TER-
MINATE requests to its SSCP.

If no initiate type is defined at the local LU for the remote LU
and the product LU sends INITIATE requests to its SSCP, the type
used on the requests is product-determined.

Parallel-session support must be defined at the local LU for the
remote LU before it activates sessions with the remote LU.

CNOS support must be defined at the local LU for the remote LU
before it activates sessions with the remote LU.

Session-level LU-LU verification is used to verify the identity
of each LU to its session partner LU during activation of an LU-LU
session. It uses an LU-LU passuword as the key to the Data
Encryption Standard (DES) algorithm, in conjunction with an
LU-generated random-data value carried on the session-activation
request and response.

The same LU-LU password specification must be defined at both LUs,
either NONE or an LU-LU password. An LU-LU password should be a
random binary value. The means for specifying the LU-LU password
is product-dependent. The product may provide a utility proce-
dure for generating an LU-LU password, or it may require the user
to enter the password manually. In the latter case, the human
operator may use the following method to produce a random value:

. Enter the password value by means of hex digits (the numerals
0 through 9 and the upper-case characters A through F).

. Enter 16 random hex digits (fewer digits or non-random digits
will reduce the effective security for LU-LU verification).

L For each of the 16 hex digits, flip a coin four times. At
each flip of the coin, follow the path illustrated in the fol-
louwing figure. The fourth flip will select the hex digit to
be used. Repeat this procedure until all 16 hex digits are
obtained. The result is a 64-bit random LU-LU password.

SNA Transaction Programmer's Reference Manual for LU Type 6.2

10.

11.

LU Definition Verbs

start
"heads™ to the lgff | 2Eiils“ to the right
i1st flip —> 5 1
2nd flip —>
3rd flip —>
G¢th flip —>

finish —> 012 365678 9ABCDEF <= hex digit

The total number of coin flips is 64. O0f course, the equivalent
value for the LU-LU password can be obtained in binary notation,
where each coin flip, of "heads™ or "tails," selects the next
binary digit, 0 or 1, respectively.

If no LU-LU password is defined at the local LU for the remote LU,
20 ﬁﬁfsion-level LU-LU verification will take place between the
wo S.

Conversation-level access security information is carried on .

allocation requests in order for the receiving LU to verify the
identity of the user ID, and to control access to its resources.
The information includes a user ID together with a password or the
already-verified indication; the information may also include a
profile. Allocation requests that include a password are veri-
fied against the LU's conversation-level security verification
list; see the SECURITY parameter on the DEFINE_LOCAL_LU verb for
more details about conversation-level security verification. The
already-verified indication signifies that the identity of the
user ID has already been verified.

If no conversation-level security is defined at the local LU for
the remote LU, the local LU will accept from the remote LU only
allocation requests that carry no access security information.

More details concerning the LU's use of these operating parame-
ters are given in SNA Format and Protocol Reference Manual:

Architecture Logic for LU Tvype 6.2.

Chapter 5. Control-Operator Verbs 5-29

DEFINE_MODE

Initializes or changes parameters that control the operation of thae
local LU in conjunction with a group of sessions to the specified
remote LU, the session group being identified by a mode name.

DEFINE_MODE

supplied Parameters:
FULLY_QUALIFIED_LU_NAME ([variable)
MODE_NAME (variable)

SEND_PACING_MINDON (variable)]
RECEIVE_PACING_HWINDOW (variable)]
SEND_MAX_RU_SIZE_LOHER_BOUND (variable)]

: SEND_MAX_RU_SIZE_UPPER_BOUND (variable)]
RECEIVE_MAX_RU_SIZE_LONER_BOUND (variable)]
RECEIVE_MAX_RU_SIZE_UPPER_BOUND (variable)]

SYNC_LEVEL_SUPPORT (CONFIRM)
(CONFIRM_SYNCPT)

(OPERATOR)
SINGLE_SESSION_REINITIATION (PLU)
(SLU)
(PLU_OR_SLU)

SESSION_LEVEL_CRYPTOGRAPHY (NO)
(YES)

CONWINNER_AUTO_ACTIVATE_LIMIT (variable)]

Returned Parameters:
RETURN_CODE (variable)

-
’

supplied Paramaters:

FULLY_QUALIFIED_LU_NAME specifies the fully qualified name of the
remote LU to which the other parameters of this verb apply.

MODE_NAME specifies the mode name for the group of sessions to which
the remaining parameters of this verb apply. If the specified name is
currently undefined at the local LU for the remote LU, this verb
defines the mode name and initializes the other parameter values spec-
ified on this verb. If the specified name is already defined at the
local LU for the remote LU, this verb changes the other parameter val-
ues.

SEND_PACING_HINDOW specifies the pacing window size to be used on the
sessions for normal-flow requests that the local LU sends. The local
LU uses this parameter to determine the values for its send window
size and the remote LU's receive window size that it specifies in ses-
sion activation (BIND) requests.

5-30 SNA Transaction Programmer's Reference Manual for LU Type 6.2

LU Definition Verbs

RECEIVE_PACING_UWINDOU specifies the pacing window size to be used on
the sessions for normal-flow requests that the local LU receives. The
local LU uses this parameter to determine the values for its receive
window size and the remote LU's send window size that it specifies in
session activation (BIND) requests and responses.

SEND_MAX_RU_SIZE_LOUER_BOUND specifies the lower bound for the maxi-
mum size of normal-flow requests that the local LU sends on the ses-
sions. This value must be less than or equal to the value specified
on SEND_MAX_RU_SIZE_UPPER_BOUND. The local LU uses these louwer- and
upper-bound values to determine the value for its send maximum RU size
that it specifies in session activation (BIND) requests and
responses.

SEND_MAX_RU_SIZE_UPPER_BOUND specifies the upper bound for the maxi-
mum size of normal-flow requests that the local LU sends.

RECEIVE_MAX_RU_SIZE_LOWER_BOUND specifies the lower bound for the
maximum size of normal-flow requests that the local LU receives on the
sessions. This value must be less than or equal to the value speci-
fied on RECEIVE_MAX_RU_SIZE_UPPER_BOUND. The local LU uses these
lower- and upper-bound values to determine the value for its receive
maximum RU size that it specifies in session activation (BIND)
requests and responses.

RECEIVE_MAX_RU_SIZE_UPPER_BOUND specifies the upper bound for the
maximum size of normal-flow requests that the local LU receives.

SYNC_LEVEL_SUPPORT specifies the synchronization levels that the
local LU supports for conversations allocated to the sessions. The
local LU uses this parameter to determine the indication for the syn-
chronization level that it specifies in session activation (BIND)
requests and responses.

. CONFIRM specifies that conversations may use a synchronization
level of NONE or CONFIRM.

L] CONFIRM_SYNCPT specifies that conversations may use a synchroni-
zation level of NONE, CONFIRM, or SYNCPT.

SINGLE_SESSION_REINITIATION specifies the responsibility for session
reinitiation of a single session with the remote LU. The local LU
uses this parameter to determine the indication for session reiniti-
ation responsibility that it specifies in session activation (BIND)
requests and responses. The remote LU must be defined to not support
parallel sessions (see the PARALLEL_SESSION_SUPPORT parameter on the
DEFINE_REMOTE_LU verb).

. OPERATOR specifies that neither LU will automatically attempt to
reinitiate the session. If a reinitiation race occurs, where the
operators at both LUs attempt to reinitiate the session at the
same time, the reinitiation is successfully completed by the LU
with the greater fully qualified LU name (provided no session
activation errors are encountered). The comparison of the fully
qualified LU names is based on their hexadecimal values.

. PLU specifies that the primary LU will automatically attempt to
reinitiate the session.

. SLU specifies that the secondary LU will automatically attempt to
reinitiate the session.

. PLU_OR_SLU specifies that either LU may automatically attempt to
reinitiate the session. A reinitiation race between the two LUs
is resolved in the same way as for operator reinitiation.

SESSION_LEVEL_CRYPTOGRAPHY specifies wuwhether the local LU supports
session-level cryptography for the sessions. The local LU uses this
parameter to determine the indication for cryptography support that
it specifies in session activation (BIND) requests and responses.

. NONE specifies that no session-level cryptography is to be used.

Chapter 5. Control-0Operator Verbs 5-31

DEFINE_MODE

. MANDATORY specifies that session-level mandatory cryptography is
to be used on all FMD requests flowing on the sessions.

CONWINNER_AUTO_ACTIVATE_LIMIT specifies the automatic-activation
limit on the number of contention-winner sessions that the local LU
can automatically activate when the minimum number of contention-
winner sessions for the local LU increases (as a result of CNOS proc-
essing). The actual limit on the number of contention-winner sessions
automatically activated is the lesser of the value specified on this
parameter and the new minimum number of contention-winner sessions
for the local LU.

A value.of 0 specifies that the local LU is to automatically activate
no sessions.

Returned Parameters:

RETURN_CODE returns an indication of the result of verb execution.

0K

. PARAMETER ERROR (for one of the following reasons)
FULLY_QUALIFIED_LU_NAME does not specify a remote LU name
defined at the local LU.

- FULLY_QUALIFIED_LU_NAME specifies a value that is not a
type-A symbol string.

- MgDE_NAHE specifies a value that is not a type-A symbol
string.

— SEND_MAX_RU_SIZE_LOWER_BOUND specifies a value exceeding that
on SEND_MAX_RU_SIZE_UPPER_BOUND.

- RECEIVE_ MAX RU SIZE LONER BOUND specifies a value exceeding
that on RECEIVE_MAX_RU_SIZE_ UPPER_BOUND.

- SINGLE_SESSION_REINITIATION is specified for a remote LU that
is currently defined as supporting parallel sessions.

- A parameter other than CONWINNER_AUTO_ACTIVATE_LIMIT is spec-
ified and the (LU,mode) session limit and count for the mode
name are not zero.

ABEND Conditions:
Parameter Check

. This verb is not supported.
. The program issuing this verb does not have define privilege.

Notes:

1. If the mode name is currently defined, the (LU,mode) session limit
and count must be zero when this verb is issued specifying any of
the parameters other than CONWINNER_AUTO_ACTIVATE_LIMIT. The
auto-activation limit on the number of contention-winner sessions
may be initialized or changed at anytime.

2. If no send or receive pacing window size is defined, a
product-determined window size is used.

3. If no lower bound is defined for the send or receive maximum size
of dnormal-flow requests, a product-determined lower bound is
used.

4. If no upper bound is defined for the send or receive maximum size
of c’nor-ma].-*f’lom requests, a product-determined upper bound is
used.

5. If no synchronization level support is defined for the mode name,
conversations may use NONE or CONFIRM.

6. If no responsibility for session reinitiation of a single session
is def;ned for the mode name, a product-determined responsibility
is used.

7. If no session-level cryptography is defined for the mode name,
none is used.

5-32 SNA Transaction Programmer's Reference Manual for LU Type 6.2

LU Definition Verbs

If no automatic-activation limit for contention-winner sessions
is defined for the mode name, the local LU may not automatically
activate any sessions, or it may automatically activate sessions
up to the minimum number of the LU's contention-winner sessions
currently in effect, depending on the product.

More details concerning the LU's use of thase operating parame-

ters are given in SNA Format and Protocol Reference Ma :

Architecture Logic for LU Tvpe 6.2.

Chapter 5. Control-Operator Verbs 5-33

DEFINE_TP

Initializes or changes parameters that control the operation of the
local LU in conjunction with a transaction program.

Supplied Parameters:
DEFINE_TP | TP_NAME (variable)

{ ENABLED)
STATUS { TEMP_DISABLED)
{ PERM_DISABLED)

CONVERSATION_TYPE (MAPPED | BASIC)]

SYNC_LEVEL (NONE | CONFIRM | SYNCPT)]

T M

(NONE)

(CONVERSATION)
SECURITY_REQUIRED ({ PROFILE))

(ACCESS (USER_ID))

((USER_ID_PROFILE)})

((ADD (USER_ID (variable)
SECURITY_ACCESS PROFILE (variable)))
{ DELETE (USER_ID (variable)
PROFILE (variable)))

PIP (NO)
{ (YES (variable))

DATA_MAPPING (NO)
(YES)
{ YES)

FMH_DATA (NO)]

{ NONE)

PRIVILEGE (CNOS | SESSION_CONTROL | DEFINE | DISPLAY |
ALLOCATE_SERVICE_TP)

Returned Parameters:

[RETURN_CODE (variable)]

Su ied Parameters:

TP_NAME specifies the local transaction program name. If the speci-
fied name is not currently defined at the local LU, this verb defines
the program name and initializes the other parameter values specified
on this verb. If the specified name is already defined to the local
LU, this verb changes the other parameter values.

STATUS specifies the status for starting execution of the transaction

program when the local LU receives an allocation request naming the
program.

. ENABLED specifies that the local LU can start the progran.

5-34 SNA Transaction Programmer's Reference Manual for LU Type 6.2

LU Definition Verbs

. TEMP_DISABLED specifies that the local LU cannot start the pro-
gram. The local LU rejects the allocation request with an indi-
cation that the program is not available but retry is possible.

. PERM_DISABLED specifies that the local LU cannot start the pro-
gram. The local LU rejects the allocation request with an indi-
cation that the program is not available and no retry is possible.

CONVERSATION_TYPE specifies the conversation type allowed on allo-
cation requests that start the transaction program.

. MAPPED specifies that allocation requests indicating mapped con-
versation are allowed to start the program.

U BASIC specifies that allocation requests indicating basic conver-
sation are allowed to start the program.

One or both of these arguments may be specified.

SYNC_LEVEL specifies the synchronization level allowed on allocation
requests that start the transaction program.

] NONE specifies that allocation requests indicating a synchroniza-
tion level of none are allowed to start the program.

. CONFIRM specifies that allocation requests indicating a synchro-
nization level of confirm are allowed to start the program.

L SYNCPT specifies that allocation requests indicating a synchroni-
2ation level of sync point are allowed to start the program.

Any combination of these arguments may be specified.

SECURITY_REQUIRED specifies the type of security verification
required to be performed on incoming allocation requests that desig-
nate the transaction program. (Conversation-level security verifica-
tion, when required, is performed as specified on the SECURITY
parameter of the DEFINE_LOCAL_LU verb.)

. NONE specifies that no verification is required. Allocation
requests designating the transaction program may omit or include
access security information. Conversation-level security verifi-
cation will be performed on those requests that include a user ID
and password, but no resource-access verification is performed.

. CONVERSATION specifies that conversation-level security verifica-
tion is to be performed on requests that carry a user ID and pass-
word, but no resource-access verification is performed.
Allocation requests designating the transaction program must car-
ry a user ID and either a password or an already-verified indi-
cation. (Acceptance of the already-verified indication is
determined by the SECURITY_ACCEPTANCE parameter of the
DEFINE_REMOTE_LU verb.)

. ACCESS specifies that conversation-level security verification is
to be performed on requests that carry a user ID and password, and
resource-access verification is also to be performed. Allocation
requests designating the transaction program must carry a user ID
and either a password or an already-verified indication. (Ac-
ceptance of the already-verified indication is determined by the
SECURITY_ACCEPTANCE parameter of the DEFINE_REMOTE_LU verb.) The
local LU performs resource-access verification using a
resource-access authorization list associated with the trans-
action program. The list is created by means of the SECURI-
TY_ACCESS parameter. The type of resource-access verification to
be performed is specified as follows:

- PROFILE specifies that the profile carried on the allocation
request is to be verified against the resource-access author-
ization list. The allocation request must carry a profile
that matches one in the authorization list. The user ID on
the allocation request is ignored for the resource-access
verification.

Chapter 5. Control-0Operator Verbs 5-35

DEFINE_TP

USER_ID specifies that the user ID carried on the allocation
request is to be verified against the resource-access author-
ization list. The allocation request must carry a user ID
that matches one in the authorization list. The profile (if
present) on the allocation request is ignored for the
resource-access verification.

USER_ID_PROFILE specifies that the user ID and profile car-
ried on the allocation request are to be verified against the
resource-access authorization list. The allocation request
must carry a user ID and profile that match a user ID and
associated profile in the authorization list.

SECURITY_ACCESS specifies to add or delete access security informa-
tion that the local LU uses for resource-access verification. This
parameter must be specified when the SECURITY_REQUIRED parameter
specifies that resource-access verification is required. The local
LU updates a resource-access authorization list, associated with the
transaction program, from the information supplied on this parameter.
The resource-access authorization list consists of either (1) one or

more profiles, or (2) one or more user IDs with zero or more profiles
associated with each user ID.

ADD

specifies to add access security information to the

resource-access authorization list associated with the trans-
action program. A profile may be specified alone, or a user ID
may be specified alone or together with a profile.

USER_ID specifies a user ID. A user ID must be specified when
the SECURITY_REQUIRED parameter specifies resource-access
verification that includes verification of user IDs. A pro-
file may also be specified, depending on the SECURI-
TY_REQUIRED parameter. If the user ID is not currently
defined for the transaction program, the LU adds it and the
profile (if specified) to the resource-access authorization
list. If the user ID is already defined, the list is updated
with the profile.

PROFILE specifies a profile to be added to the
resource-access authorization list. A profile may be speci-
fied only when the SECURITY_REQUIRED parameter specifies
resource-access verification that includes verification of
profiles. A profile must be specified alone when the
resource—-access verification includes verification of only
profiles. A user ID must also be specified when the
resource-access verification includes verification of both
user IDs and profiles. If a user ID is also specified, the
profile is added to those associated with the user ID.

DELETE specifies to delete access security information from the
resource-access authorization list associated with the trans-
action program. A profile may be specified alone, or a user ID
may be specified alone or together with a profile.

USER_ID specifies a user ID. A user ID must be specified when
the SECURITY_REQUIRED parameter specifies resource-access
verification that includes verification of user IDs. A pro-
file may also be specified, depending on the SECURI-
TY_REQUIRED parameter. If a user ID is specified alone, the
user ID and all of its associated profiles are deleted from
the resource-access authorization list. If a profile is also
specified, the user ID and profile are deleted when no other
profiles are currently defined for the user ID; if other pro-
files are currently defined for the user ID, the user ID and
other profiles remain defined.

PROFILE specifies a profile to be deleted from the
resource~access authorization list. A profile may be speci-
fied only when the SECURITY_REQUIRED parameter specifies
resource-access verification that includes verification of
profiles. A profile must be specified alone when the
resource-access verification includes verification of only
profiles. A user ID must also be specified when the SECURI-

5-36 SNA Transaction Programmer's Reference Manual for LU Type 6.2

LU Definition Verbhs

TY_REQUIRED parameter specifies resource-access verification
that includes verification of both user IDs and profiles.

PIP specifies whether PIP data is required on allocation requests that
start the transaction program.

. NO specifies that no PIP data is required. Only allocation
requests carrying no PIP data are allowed to start the program.

. YES specifies that PIP data is required. Only allocation requests
carrying the number of PIP subfields specified on this parameter
are allowed to start the program. The specified number should
agree with the number of PIP variables associated with the pro-
gram. For more information about the association of PIP variables
with the program, see "Transaction Program Structure and Exe-
cution™ in Chapter 3.

DATA_MAPPING specifies whether data mapping support is to be provided

to the transaction program. This parameter applies only when CONVER-

3@T§0N_TYPE(MAPPED) or CONVERSATION_TYPE(MAPPED|BASIC) is also speci-
ied.

. NO specifies that no data mapping support is to be provided. Map
names received on any mapped conversations allocated to the pro-
gram are rejected.

U YES specifies that data mapping support is to be provided.

FMH_DATA specifies whether FMH data support is to be provided to the

transaction program. This parameter applies only wuwhen CONVERSA-

;Io: TYPE(MAPPED) or CONVERSATION_TYPE(MAPPED|BASIC) is also speci-
ie

° NO specifies that no FMH data support is to be provided. FMH data
regei¥eg on any mapped conversations allocated to the program is
rejected.

. YES specifies that FMH data support is to be provided.

PRIVILEGE specifies the category of control operator verbs that the
transaction program is allowed to issue. Either NONE or any combina-
tion of CNOS, SESSION_CONTROL, DEFINE, DISPLAY, and ALLO-
CATE_SERVICE_TP may be specified.

. NONE specifies that the program is not allowed to issue verbs that
require a privilege to do so.

[cuog specifies that the program is allowed to issue the CNOS
verbs.

. SESSION_CONTROL specifies that the program is allowed to issue
the ACTIVATE_SESSION and DEACTIVATE_SESSION verbs.

. DEFINE specifies that the program is allowed to issue the DEFINE
verbs and the DELETE verbs.

. DISELAY specifies that the program is allowed to issue the DISPLAY
verbs.

o ALLOCATE_SERVICE TP specifies that the program is allowed to
issue the ALLOCATE verb with its TPN parameter specifying an SNA
service transaction program.

Returned Parameters:

RETURN_CODE returns an indication of the result of verb execution.

. 0K
. PARAMETER_ERROR (for one of the following reasons)
- CONVERSATION_TYPE(BASIC) and either DATA_MAPPING(YES) or
FMH_DATACYES) are speci fied.
- SECURITY_ACCESS is specified, SECURITY_REQUIRED is omitted,
and no type of security verification is currently defined.

Chapter 5. Control-Operator Verbs 5-37

DEFINE_TP

— SECURITY_ACCESS is specified and the type of security verifi-

cation specified on SECURITY_REQUIRED or currently defined
does not include resource-access verification.

- SECURITY_ACCESS specifies a user ID or profile and the type of

security verification specified on SECURITY_REQUIRED or cur-
rently defined does not include the respective verification
of user IDs or profiles.

- SECURITY_ACCESS specifies only a profile and the type of

security verification specified on SECURITY_REQUIRED or cur-
rently defined includes verification of user IDs.

- SECURITY_ACCESS(ADD(...)) specifies a user ID or profile that

is not a symbol-string type (A, AE, GR, or DB) that the prod-
uct supports.

- SECURITY_ACCESS(DELETE(...)) specifies a user ID or profile

that is not currently defined at the local LU.

ABEND Conditions:
Parameter Check

[4
*

This verb is not supported.
The program issuing this verb does not have define privilege.

Notes:

1.

The values specified on the parameters of this verb take effect at
the next invocation of the transaction program.

If the status for starting execution of the transaction program is
not defined, the program's status is ENABLED.

If the conversation type allowed on allocation requests that
start the transaction program is not defined, a mapped or basic
conversation is allowed.

If the synchronization level allowed on allocation requests that
start the transaction program is not defined, a synchronization
level of NONE or CONFIRM is allowed.

Resource-access verification is used to verify the access securi-
ty information on incoming allocation requests for the authority
to access the transaction program named on the requests and the
local resources that the program allocates. The local LU main-
tains a resource-access authorization list for this purpose. The
authorization list is created and updated from information sup-
plied on the SECURITY_ACCESS parameter. The list may consist of
profiles alone, or it may consist of user IDs alone or with asso-
:iated profiles, as determined by the SECURITY_REQUIRED parame-
er.

There is a resource-access authorization list for each trans-
action program for which resource-access verification is defined.
When the first user ID and associated password and profiles are
added, or the first profile is added, a resource-access authori-
2ation list is created for the program. When the last user ID and
associated password and profiles are deleted, or the last profile
le ieteted. the resource-access authorization list itself is
eleted.

If resource-access verification is to be performed and it
includes verification of user IDs, the authorization list must
contain one or more user IDs when the verification of allocation
requests takes place. Similarly, if the verification includes
profiles, the list must contain one or more profiles.

If the type of security verification required on incoming allo-
cation requests is currently defined and a different type is spec-
ified, the new type replaces the current type. If resource-access
verification is currently defined as being required and a differ-
ent type of resource-access verification is specified, the
resogrge-access authorization list is deleted and a new list is
created.

5-38 SNA Transaction Programmer's Reference Manual for LU Type 6.2

10.

11.

12.

13.

164,

15.

LU Definition verbs

If SECURITY_ACCESS is specified without SECURITY_REQUIRED, the
type of security verification currently defined applies to the
use of the SECURITY_ACCESS parameter.

If no type of security verification is currently defined, none is
required to start the program. However, if the allocation request
carries access security information, the 1local LU performs
conversation-level security verification.

If no PIP subfield number is defined at the local LU for the
transaction program, only allocation requests carrying no PIP
data are allowed to start the program.

If no data mapping support is defined at the local LU for the
transaction program, none is provided.

If no FMH data support is defined at the local LU for the trans-
action program, none is provided.

If no privilege is defined at the local LU for the transaction
program, the program may issue only conversation verbs.

More details concerning the LU's use of these operating parame-
ters are given in SN ormat nd Pro ol Reference Manual:

Architecture Logic for LU Type 6.2.

Chapter 5. Control-Operator Verbs 5-39

DISPLAY_LOCAL_LU

§etu;n€hcurrent values of parameters that control the operation of the
oca .

DISPLAY_LOCAL_LU | FULLY_QUALIFIED_LU_NAME (variable)

sSupplied Parameters:

Returned Parameters:
RETURN_CODE (variable)

LU_SESSION_LIMIT (variable)]
LU_SESSION_COUNT (variable)]
SECURITY (variable)]

MAP_NAMES (variable)]

REMOTE_LU_NAMES (variable)]

TP_NAMES (variable)]

.o

5-40

supplied Parameters:

:ULLI_?SALIFIED_LU_NAHE specifies the fully qualified name of the
oca .

Returned Parameters:
RETURN_CODE returns an indication of the result of verb execution.
U 0K
. PARAMETER_ERROR (for the following reason)
- FULLY_QUALIFIED_LU_NAME does not specify a local LU name cur-
rently defined at the local LU.

LU_SESSION_LIMIT returns the LU-LU session limit currently defined at
the local LU.

LU_SESSION_COUNT returns the LU-LU session count, which is the total
number of active sessions for the local LU.

SECURITY returns the conversation-level security verification list
currently defined at the local LU.

MAP_NAMES returns a list of the local map names currently defined at
the local LU.

REMOTE_LU_NAMES returns a list of the remote LU names currently
defined at the local LU.

TP_NAMES returns a list of the local transaction program names cur-
rently defined at the local LU.

ABEND Conditions:
Parameter Check

. This verb is not supported.
] The program issuing this verb does not have display privilege.

SNA Transaction Programmer's Reference Manual for LU Type 6.2

LU Definition Verbs

Notes:

1. This verb can be used to obtain operating parameter values that
are established by the DEFINE_LOCAL_LU, DEFINE_REMOTE_LU, and
DEFINE_TP verbs, as well as the current LU-LU session count.

2. More details concerning the LU's use of these operating parame-

ters are given in SNA Format and Protocol Reference Manual:
Architecture Logic for LU Tvpe 6.2.

Chapter 5. Control-Operator Verbs 5-41

DISPLAY_REMOTE_LU

Returns current values of parameters that control the operation of the
local LU in conjunction with a remote LU.

DISPLAY_REMOTE_LU | FULLY_QUALIFIED_LU_NAME (variable)

Supplied Parameters:

Returned Parameters:
RETURN_CODE (variable)

LOCALLY_KNOWN_LU_NAME (variable)

| UNINTERPRETED_LU_NAME (variable)]
INITIATE_TYPE (variable) |
PARALLEL_SESSION_SUPPORT (variable)]
CNOS_SUPPORY (variable)]
SECURITY_ACCEPTANCE_LOCAL_LU (variable)]

SECURITY_ACCEPTANCE_REMOTE_LU (variable)]

MODE_NAMES (variable)]

e

5-642

Supplied Parameters:

FULLY_QUALIFIED_LU_NAME specifies the fully qualified name of the
remote LU.

Returned Parameters:

RETURN_CODE returns an indication of the result of verb execution.

. 0K
. PARAMETER_ERROR (for the following reason)
- FULLY_QUALIFIED_LU_NAME does not specify a remote LU name
currently defined at the local LU.

LOCALLY_KNOWN_LU_NAME returns the locally-knouwn name of the remote
LU, currently defined at the local LU.

UNINTERPRETED_LU_NAME returns the uninterpreted name of the remote
LU, currently defined at the local LU.

INITIATE_TYPE returns an indication of the session-initiation type
for the remote LU, currently defined at the local LU.

PARALLEL_SESSION_SUPPORT returns an indication of the parallel ses-
sion support for sessions with the remote LU. If one or more sessions
are active between the local and remote LUs, this parameter returns an
indication of the actual parallel session support; otherwise, it
{ﬁturns an indication of the support currently defined at the local

CNOS_SUPPORT returns an indication of the CNOS support for sessions
with the remote LU. If one or more sessions are active between the

SNA Transaction Programmer's Reference Manual for LU Type 6.2

LU Definition Verbs

local and remote LUs, this parameter returns an indication of the
actual CNOS support; otheruwise, it returns an indication of the sup-
port currently defined at the local LU.

SECURITY_ACCEPTANCE_LOCAL_LU returns an indication of the level of

access security information that the local LU will accept on allo-

:atifn rf%ﬂfSts it receives from the remote LU, currently defined at
e loca .

SECURITY_ACCEPTANCE_REMOTE_LU returns an indication of the level of
access security information that the remote LU will accept on allo-
cation requests it receives from the local LU, when one or more ses-
sions are active between the local and remote LUs. The value returned
is what is currently defined at the remote LU, which is conveyed to
the local LU during session activation.

MODE_NAMES returns a list of the mode names currently defined at the
local LU for sessions with the remote LU.

ABEND Conditions:
Parameter Check

. This verb is not supported.
. The program issuing this verb does not have display privilege.

Notes:

1. This verb is used to obtain operating parameter values that are
defined by the DEFINE_REMOTE_LU and DEFINE_MODE verbs.

2. More details concerning the LU's use of these operating parame-
ters are given in SHNA ormat and Protocol eference Manual:

Architecture lLlogic for LU Type 6.2.

Chapter 5. Control-Operator Verbs 5-643

DISPLAY_MODE

Returns current values of parameters that control the operation of the
local LU in conjunction with a group of sessions to a remote LU, the
session group being identified by a mode name.

DISPLAY_MODE | FULLY_QUALIFIED_LU_NAME (variable)

Supplied Parameters:

MODE_NAME (variable)
Returned Parameters:
RETURN_CODE (variable)

[SEND_PACING_WINDOM (variable)]
RECEIVE_PACING_MWINDOMW (variable)]
SEND_MAX_RU_SIZE_LOWER_BOUND (variable)]
SEND_MAX_RU_SIZE_UPPER_BOUND (variable)]
RECEIVE_MAX_RU_SIZE_LOWER_BOUND (variable)]
RECEIVE_MAX_RU_SIZE_UPPER_BOUND (variable)]
SYNC_LEVEL_SUPPORT (variable)]
SINGLE_SESSION_REINITIATION (variable)]
SESSION_LEVEL_CRYPTOGRAPHY (variable)]
CONWINNER_AUTO_ACTIVATE_LIMIT (variable)]
LU_MODE_SESSION_LIMIT (variable)]
MIN_CONWINNERS (variable)]

MIN_CONLOSERS (variable)]

| TERMINATION_COUNT (variable)]

[DRAIN_LOCAL_LU (variable)]

DRAIN_REMOTE_LU (variable) |

LU_MODE_SESSION_COUNT (variable)]

CONUINNERS_SESSION_COUNT (variable)]

5-46

SNA Transaction Programmer's Reference Manual for LU Type 6.2

LU Definition verbs

(continued from preceding page)
[CONLOSERS_SESSION_COUNT (variable)]

[SESSION_IDS (variable)]

.
t 4

sSupplied Parameters:

FULLY_QUALIFIED_LU_NAME specifies the fully qualified name of the
remote LU.

MODE_NAME specifies the mode name.

Returned Parameters:
RETURN_CODE returns an indication of the result of verb execution.

L PARAMETER ERROR (for one of the following reasons)
- FULLY_QUALIFIED_LU_NAME does not specify a remote LU name
currently defined at the local LU.
- MODE_NAME does not specify a mode name currently defined at
the local LU.

SEND_PACING_WINDOW returns the local LU's send pacing window size for
the sessions, currently defined at the local LU.

RECEIVE_PACING_| HINDOW returns the local LU's receive pacing window
size for the sessions, currently defined at the local LU.

SEND_MAX_RU_SIZE_LOWER_BOUND returns the lower bound for the maxumum
size of normal-flow requests that the local LU sends on the sessions,
currently defined at the local LU.

SEND_MAX_RU_SIZE _UPPER_BOUND returns the upper bound for the maxrmum
size of normal-flow requests that the local LU sends on the sessions,
currently defined at the local LU.

RECEIVE_MAX_RU_SIZE_LOWER_BOUND returns the lower bound for the maxi-
mum size of normal-flow requests that the local LU receives on the
sessions, currently defined at the local LU.

RECEIVE_MAX_RU_SIZE_UPPER_BOUND returns the upper bound for the maxi-
mum size of normal-flow requests that the local LU receives on the
sessions, currently defined at the local LU.

SYNC_LEVEL returns an indication of the synchrontzatlon levels that
are supported for conversations allocated to the sessions. If one or
more sessions within the mode name group are active between the local
and remote LUs, this parameter returns an indication of the actual
synchronization level support; otherwise, it returns an indication of
the support currently defined at the local LU.

SINGLE_SESSION_REINITIATION returns an lnducatlon of the session
relnltlatlon responstblllty for a single session with the remote LU.
If a session is active between the local and remote LUs, this parame-
ter returns an indication of the actual session reinitiation respon-
sibility; otherwise, it returns an indication of the responsibility
currently defined at the local LU.

SESSION_LEVEL_CRYPTOGRAPHY returns an indication of the sess‘on-level
cryptography support for the sessions. If one or more sessions within
the mode name group are active between the local and remote LUs, this
parameter returns an indication of tha actual session-level
cryptography support; otherwise, it returns an indication of the sup-
port currently defined at the local LU.

Chapter 5. Control-Operator Verbs 5-45

DISPLAY_MODE

CONHINNER_AUTO_ACTIVATE_LIMIT returns the local LtU's
automattc-actlvatron limit on the number of contention winner ses-
sions, currently defined at the local LU.

LU_MODE_SESSION_LIMIT returns the current (LU,mode) session limit.

MIN_CONHINNERS returns the current minimum number of sessions for
which the local LU is designated to be the contention winner.

MIN_CONLOSERS returns the current minimum number of sessions for
which the remote LU is designated to be the contention winner, making
the local LU the contention loser.

TERMINATION_COUNT returns the termination count, which is the number
of sessions for which that the local LU is responsible to deactivate
as a result of CNOS processing.

DRAIN_LOCAL_LU returns an indication of whether the local LU is
allowed to drain its allocation requests as a result of CNOS process-
ing that resets the (LU,mode) session limit.

DRAIN_REMOTE_LU returns an indication of whether the remote LU is
allowed to drain its allocation requests as a result of CNOS process-
ing that resets the (LU,mode) session limit.

LU_MODE_SESSION_COUNT returns the current (LU,mode) session count.

CONWINNERS_SESSION_COUNT returns the number of active sessions for
which the local LU is the contention winner.

CONLOSERS_SESSION_COUNT returns the number of active sessions for
which the local LU is the contention loser.

SESSION_IDS returns a list of the session identifiers assigned to the
active sessions.

ABEND Conditions:
Parameter Check

. This verb is not supported.
. The program issuing this verb does not have display privilege.

Notes:

1. This verb can be used to obtain operating parameter values that
are established by the DEFINE_MODE verb and the CNOS verbs.

2. More details doncerning the LU's use of these operatxng parame-

ters are given in SNA Format and Protocol Reference Manual:
Architecture Logic for LU Tvpe 6.2.

5-66 SNA Transaction Programmer's Reference Manual for LU Type 6.2

LU Definition vVerbs

DISPLAY_TP
Returns current values of parameters that control the operation of the
local LU in conjunction with a transaction program.
supplied Parameters:
DISPLAY_TP TP_NAME (variable)

Returned Parameters:

T o

-
CONVERSATION_TYPE (variable)]

RETURN_CODE (variable)]

STATUS (variable)]

SYNC_LEVEL (variable)]
SECURITY_REQUIRED (variable)]
SECURITY_ACCESS (variable)]
PIP (variable)]

DATA_MAPPING (variable) |
FMH_DATA (variable)]

PRIVILEGE (variable)]

we

Supplied Paramaters:

TP_NAME specifies the local transaction program name.

Returned Parameters:

RETURN_CODE returns an indication of the result of verb exacution.

U 0K
. PARAMETER_ERROR (for the following reason)
- TP_NAME does not specify a transaction program name that is
currently defined at the local LU.

STATUS returns an indication of the status for starting execution of
the transaction program, as currently defined at the local LU.

CONVERSATION_TYPE returns an indication of the conversation type
required on allocation requests that start the transaction program,
as currently defined at the local LU.

SYNC_LEVEL returns an indication of the 'synchronization level
required on allocation requests that start the transaction program,
as currently defined at the local LU.

SECURITY_REQUIRED returns an indication of the type of security ver-

ification that is required to be performed on incoming allocation
requests designating the transaction program.

Chapter 5. Control-Operator Verbs 5-47

DISPLAY_TP

SECURITY_ACCESS returns the resource-access authorization list cur-
rently defined for the transaction program at the local LU.

PIP returns the number of PIP subfields required on allocation
;ﬁqustslﬁnft start the transaction program, as currently defined at
e loca .

DATA_MAPPING returns an indication of whether data mapping support is
provided to the transaction program, as currently defined at the local

FMH_DATA returns an indication of whether FMH data support is provided
to the transaction program, as currently defined at the local LU.

PRIVILEGE returns an indication of the class of privileged verbs that

the transaction program is allowed to issue, as currently defined at
the local LU.

ABEND Conditions:
Parameter Check

L] This verb is not supported.
J The program issuing this verb does not have display privilege.

Notes:

1. This verb can be used to obtain operating parameter values that
are established by the DEFINE_TP verb.

2. More details concerning the LU's use of these operating parame-
ters are given in SNA Format and Protocol Reference Manual:
Architecture Logic for LU Tvpe 6.2.

5-48 SNA Transaction Programmer's Reference Manual for LU Type 6.2

LU Definition Verbs

DELETE
Deletes parameter values, established by means of the DEFINE verbs,
that control the operation of the local LU. The execution of this
verb involves only the local LU; it does not cause any information to
be sent outside the LU.
Supplied Parameters:
DELETE (LOCAL_LU_NAME (variable)]

[TP_NAME (variable)]

REMOTE_LU_NAME (variable)]

MODE_NAME (variable)]

Returned Parameters:
RETURN_CODE (variable)

H

supplied Parameters:

LOCAL_LU_NAME specifies the fully qualified name of the local LU.
This parameter must be specified alone. Specifyving this parameter
deletes the local LU name and all parameter values associated with the
local LU; that is, it deletes all parameter values that have been
defined by means of the DEFINE_LOCAL_LU, DEFINE_REMOTE_LU,
DEFINE_MODE, and DEFINE_TP verbs.

REMOTE_LU_NAME specifies the fully qualified name of the remote LU.
This parameter may be specified together with the MODE_NAME parame-
ter. Specifying this parameter without the MODE_NAME parameter
deletes the remote LU name and all parameter values associated with
the remote LU; that is, it deletes all parameter values that have been
defined by means of the DEFINE_REMOTE_LU and DEFINE_MODE verbs. Spec-
ifying this parameter together with the MODE_NAME parameter deletes
parameter values associated with the mode name, but the remote LU name
andh alldparameter values not associated with the mode name remain
unchanged.

MODE_NAME specifies the mode name. This parameter must be specified
together with the REMOTE_LU_NAME parameter. Specifying this parame-
ter deletes all parameter values associated with the mode name for the
remote LU; that is, it deletes the mode name and all parameter values
that have been defined by means of the DEFINE_MODE_NAME verb.

TP_NAME specifies the local transaction program name. Specifving
this parameter deletes all parameter values associated with the
transaction program; that is, it deletes the program name and all
pargmeter values that have been defined by means of the DEFINE_TP
verb.

eturned Parameters:

RETURN_CODE returns an indication of the result of verb execution.

. 0K
. PARAMETER ERROR (for one of the following reasons)
LOCAL_LU_NAME specifies a local LU name not currently defined
at the local LU.
- LOCAL_LU_NAME is not specified alonea.
- REMOTE_LU_NAME specifies a remote LU name not currently
defined at the local LU.

Chapter 5. Control-Operator Verbs 5-49

DELETE

5-50

- TODETNfSE specifies a mode name not currently defined at the
oca .

MODE_NAME is specified without REMOTE_LU_NAME.

- TP_NAME specifies a local transaction program name not cur-
rently defined at the local LU.

ABEND Conditions:
Parameter Check

L]
L]

This verb is not supported.
The program issuing this verb does not have define privilege.

Notes:

1.

2.

Deleting parameter values makes those values undefined to the
local LU.

When deleting a local LU name and all its associated parameter
values, verb should be issued only when the local LU is not par-
ticipating in any netuwork activity.

When deleting a remote LU name and all its associated parameter
values, verb should be issued only when the local LU is not par-
ticipating in any network activity involving the remote LU.

When deleting a mode name and all its associated parameter values,
verb should be issued only when the local LU is not participating
in any network activity involving the remote LU and mode name.

When deleting a transaction program name and all its associated
parameter values, verb should be issued only when the transaction
program is not in use.

More details concerning the LU's use of the LU-LU session limit
are given in SNA Format and Protocol Reference Manual: Architec-

ture Logic for LU Type 6.2.

SNA Transaction Programmer's Reference Manual for LU Type 6.2

RETURN CODES

Some verbs have a parameter called RETURN_CODE used to pass a return
code back to the transaction program at the completion of the LU's
execution of a verb. The return code indicates the result of process-
ing the verb on which it is returned. Only one code is returned at a
time. Other verb-specific information may be passed back in
verb-unique parameters. See each specific verb for a description of
any verb-unique parameters.

The return codes are described below. Each description includes the
meaning of the return code and the origin of the condition indicated
by the return code.

ACTIVATION_FAILURE_NO_RETRY indicates the ACTIVATE_SESSION verb
failed to activate the session because of a condition that is not
temporary. For example, the session cannot be activated because
the (LU,mode) session limit for the specified target LU and mode
name is currently 0 at the target LU—this applies to single ses-
sions and to sessions for the SNASVCMG mode name; or because of a
system definition error or a session-activation protocol error.
The control operator should not retry the transaction until the
condition is corrected.

ACTIVATION_FAILURE_RETRY indicates the ACTIVATE_SESSION verb
failed to activate the session because of a temporary condition.
For example, the session cannot be activated because of a tempo-
rary lack of resources at the source LU or target LU. The control
operator may retry the session activation later.

ALLOCATION_ERROR indicates the CNOS verb did not execute success-
fully because the allocation of the control operator conversation
with the target LU cannot be completed. The ALLOCATION_ERROR
indication together with one of the following subcodes form the
complete return code that is returned to the transaction program;
the subcode identifies the specific error. The source and target
LUs' CNOS parameters are not changed.

- ALLOCATION_FAILURE_NO_RETRY indicates the control operator
conversation cannot be allocated because of a condition that
is not temporary. For example, the session to be used for the
control operator conversation cannot be activated because the
(LU,mode) session limit for the specified target LU and
SNASVCMG mode name is currently 0 at either the source LU or
target LU; or because of a system definition error or a
session-activation protocol error; or because a session pro-
tocol error caused the session to be deactivated before the
conversation could be allocated. The control operator should
not retry the transaction until the condition is corrected.

— ALLOCATION_FAILURE_RETRY indicates the control operator con-
versation cannot be allocated because of a temporary condi-
tion. For example, the session to be used for the control
operator conversation cannot be activated because of a tempo-
rary lack of resources at the source LU or target LU; or the
session was deactivated because of session outage before the
conversation could be allocated. The condition is temporary,
and the control operator can retry the transaction later.

- TRANS_PGM_NOT_AVAIL_RETRY indicates the target LU is current-
ly unable to start the transaction program identified as hex
06F1l, which is the SNA service transaction program for the
control operator. For example, there may be a temporary lack
of resources the target LU needs to start the transaction pro-
gram. The condition is temporary, and the control operator
can retry the transaction later.

COMMAND_RACE_REJECT indicates the CNOS verb did not execute suc-
cessfully because the source LU or target LU is currently process-
ing another CNOS transaction for the same mode name. The other
CNOS transaction is processed to completion. The source and tar-
getbLUs' CNOS parameters are not changed by the unsuccessful CNOS
verb.

Chapter 5. Control-Operator Verbs 5-51

5-52

LU_MODE_SESSION_LIMIT_CLOSED indicates the CNOS verb did not exe-
cute successfully because the target LU currently will not allow
the (LU,mode) session limit for the specified mode name to be
raised above 0. The (LU,mode) session limit remains at 0. This
condition is not necessarily permanent; the control operator may
retry the CNOS transaction later.

LU_MODE_SESSION_LIMIT_EXCEEDED indicates the ACTIVATE_SESSION
verb could not activate the session with the specified mode name
to the target LU, for one of the following reasons:

1. For a single session connection to the target LU, either the
(LU,mode) session limit is currently 0, or an LU-LU session is
already active (with the specified or a different mode name).

2. For a parallel session connection to the target LU, the number
of currently active sessions with the specified mode name
equals the (LU,mode) session limit.

LU_MODE_SESSION_LIMIT_NOT_ZERO indicates the program attempted to
initialize an (LU,mode) session limit that is already initial-
ized, that is, the session limit is already greater than 0. The
source and target LUs' CNOS parameters are not changed.

LU_MODE_SESSION_LIMIT_ZERO indicates the program attempted to
change an (LU,mode) session limit that has not been initialized,
that is, the session limit is 0. The source and target LUs' CNOS
parameters are not changed.

LU_SESSION_LIMIT_EXCEEDED indicates the CNOS verb did not execute
successfully because the new (LU,mode) session limit would cause
the sum of the (LU,mode) session limits to exceed the total LU-LU
sassion limit for the source LU (see the DEFINE_LOCAL_LU verb).
The sum of the (LU,mode) session limits is calculated as follous:

1. A single session connection to a target LU is counted as 1 if
at least one of the (LU,mode) session limits for that target
LU is 1, including the specified session limit. Otherwise, it
is counted as 0.

2. A parallel session connection to a target LU is counted as the
sum of all (LU,mode). session limits for the target LU, includ-
ing the specified session limit.

OK indicates the verb executed successfully. The following sub-
codes augment this return code and indicate whether the parameter

{alues were processed as specified or as negotiated by the target

- AS_SPECIFIED indicates the two LUs executed the verb as spec-
ified, without negotiation.

- AS_NEGOTIATED indicates the two LUs executed the verb as
negotiated by the target LU. One or more parameter values
have been negotiated. The transaction program can obtain the
negotiated parameter values by issuing the DISPLAY_MODE verb.
The verb descriptions define which parameter values can be
negotiated.

- FORCED indicates the source LU forced the resetting of its
(LU, mode) session limit as a result of an error condition that
prevented successful completion of the exchange of the CNOS
request and reply. The target LU's CNOS parameters may not be
changed, depending on the error condition and when it
occurred during the CNOS exchange.

PARAMETER_ERROR indicates the verb did not execute successfully
because it specifies a parameter that contains an invalid argu-
ment. The source of the argument may be outside the transaction
program definition, such as a control-operator supplied LU name
or mode name. When this return code is returned on a CNOS verb,
the source and target LUs' CNOS parameters are not changed. When
it is returned on a session activation or deactivation verb, the
LU-LU session is not activated or deactivated, respectively.

SNA Transaction Programmer's Reference Manual for LU Type 6.2

When it is returned on a define, display, or delete verb, the LU
operating parameters are not altered or returned.

REQUEST_EXCEEDS_MAX_ALLOWED indicates the CNOS verb did not exe-
cute successfully because it specifies an (LU,mode) session limit
that exceeds the source LU's maximum (LU,mode) session limit
defined for the target LU and mode name (see the DEFINE_MODE
vgrb).d The source and target LUs' CNOS parameters are not
changed.

RESOURCE_FAILURE_NO_RETRY indicates the CNOS verb did not execute
successfully because of a failure that caused the control opera-
tor conversation to be prematurely deallocated. For example, the
session being used for the control operator conversation was
deactivated because of a. session protocol error, or because of
session outage from which the control operator component of the LU
could not recover; or the conversation was deallocated because of
a protocol error between the control operator components of the
LUs. The condition is not temporary, and the control operator
should not retry the transaction until the condition is cor-
rected. The CNOS parameters remain unchanged at the source LU, or
both tzs source and target LUs, depending on when the failure
occurred.

UNRECOGNIZED_MODE_NAME indicates the CN0OS verb did not execute
successtully because the target LU does not recognize the speci-
fied mode name. The source and target LUs' CNOS parameters are
not changed.

Figure 5-1 on page 5-54 shows the correlation of the return codes to
the verbs on which they can be returned. The "X" in the figure means
the return code can be returned on the corresponding verb. A verb
without any "X"s under it means no return codes are defined for the
verb. The individual verb descriptions list the applicable return
codes. However, the subcodes of ALLOCATION_ERROR are not explicitly
liited. ag any of them can be returned as part of the ALLOCATION_ERROR
return code.

Chapter 5. Control-Operator Verbs 5-53

5-54

Return Codes

AJAJAJCIL|LJLJLIL]O}IP|R|R}|U
C{C|ILIOJUJU{UJUJUIKIAJE]E|IN
TITILIM R|QiS|R
I|I{O|MIMIM[M|M]S AJUJO|E
VIV|{CIA|O|O|O|O|E M|EjU]C
AJAJAIN|D|D|D|D]S E|S{R]O
TIT|TID|E|EJE|E|S T|T|C|6
IjI|1 I E EIN
O[0|O[R|SS[S]{S|O RIE I
NININIAJE|E|EJE]|N X|F|zZ
C|S|S{S|S E|CJA]E
FIFIEJE|S|S|S|S]L RIE|I}{D
AJAIR IJI}jI|I}1 RIE]L
I|I{R|R]O]O|O|OM OfDjU|M
LIL]JOJE|N|NININYI RIS|R|O
UJUIR|J T EID
R{R EJLJL]LIL M E
E|E CII{I|I]I|E AN
TIMIMIM{M|X X]0|N
N|R I|I}{I|I|C A
OlE TIT|TIT|E AIRIM
T E LJEJE
R|R C|EIN]Z|D LT
ElY L{X|O]E}E 0fR
T O{C|T|R|D Wiy
R S|E 0 E
Y E|(E|Z D
D|DIE
E|R
Verbs D|O
CHANGE_SESSION_LIMIT XX XIXIXIX]X|X
INITIALIZE_SESSION_LIMIT XX X XXX X|X
PROCESS_SESSION_LIMIT X X
RESET_SESSION_LIMIT X X XX XX
ACTIVATE_SESSION XX X XX
DEACTIVATE_SESSION XX
DEFINE_LOCAL_LU XX
DEFINE_REMOTE_LU XX
DEFINE_MODE XX
DEFINE_TP XX
DISPLAY_LOCAL_LU XX
DISPLAY_REMOTE_LU XX
DISPLAY_MODE XX
DISPLAY_TP XX
DELETE XX

Figure 5-1. Correlation of Return Codes to Verbs

SNA Transaction Programmer's Reference Manual for LU Type 6.2

APPEND

]

ND_OPTION SETS FOR_PRODUCT SUPPO

The LU 6.2 functions available to a transaction program are described
in this book by means of verbs and their supplied and returned parame-
ters. The returned parameters include the return codes of the
RETURN_CODE parameter, defined for most verbs, and the what-received
indications of the MWHAT_RECEIVED parameter, defined for the
MC_RECEIVE_AND_WAIT, MC_RECEIVE_IMMEDIATE, RECEIVE_AND_WAIT, and
RECEIVE_IMMEDIATE verbs.

An LU 6.2 product may provide support for all of the verbs, parame-
ters, return codes, and what-received indications, or a permitted
subset of them. The permitted subsetting for LU 6.2 products is
defined by means of a base set and a number of option sets (see
"Product-Support Subsetting” in Chapter 3 for a discussion of base and
option sets). The option sets defined for the verbs, parameters,
return codes, and what-received indications are:?

1. conversations betueen programs located at the same LU: This
option set allows a local program to allocate a conversation to a
remote program located at the same LU as the local progranm.

2. Delayed allocation of a session: This option set allows a program
Eofgelay allocation of a session until the LU must flush its send
uffer.

3. Immediate allocation of a session: This option set allows a pro-
gram to allocate a contention-winner session only if one is imme-
diately available; otherwise, the allocation is unsuccessful.

4. Sync point services: This option set allows a program to request
sync point processing of all protected resources throughout the
scope of the transaction. This option set includes the SYNCPT and
BACKOUT verbs.

5. Session-level LU-LU verification: This option set allows a pro-
gram or operator to designate the LU-LU passwords, associated
with remote LUs, that the local LU uses to verify the identity of
a remote LU at session activation time.

6. User ID verification: This option set allows a program or opera-
tor to designate the user IDs and associated passwords that the
local LU uses to verify the identity of a user 1D carried on allo-
cation requests it receives, and to designate the remote LUs that
are permitted to send to the local LU allocation requests carrying
a user ID and either a passuword or an already-verified indication.
This option set also allows the program allocating a conversation
to specify that the allocation request carry the user ID received
on the request that started the program, together uith an
already-verified indication. Option set 5 is a prerequisite.

7. Program supplied user ID and passiord: This option set allows the
program allocating a conversation to supply the user ID and pass-
word.tgtbe sent on the allocation request. Option set 5 is a pre~
requisite.

8. User ID authorization: This option set allows a program or opera-
tor to designate the user IDs that are authorized access to spe-
cific resources of the LU, such as transaction programs. Option
set 6 is a prerequisite.

9. Profile verification and authorization: This option set allows a
program or operator to designate the profiles that the local LU
uses to verify a profile carried on allocation requests it

1 The numbers associated with these option sets are used only for
descriptive purposes; they have no architectural significance,
and may change from one edition of this book to the next.

Appendix A. Base and Option Sets for Product Support A-1

A-2

10.

11.

12.

13.

14,

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

receives, and:to designate the profiles that are authorized
access to specific resources of the LU, such as transaction pro-
grams. Option set 6 is a prerequisite.

Profile passthrough: This option set allows the program allocat-
ing a conversation to specify that the allocation request carry
the profile received on the request that started the program.
Option set 6 is a prerequisite.

Program supplied profile: This option set allows the program
allocating a conversation to supply the profile to be sent on the
allocation request. Option set 7 is a prerequisite.

PIP data: This option set allows the program allocating a conver-
gation to provide the remote program with initialization parame-
ers.

Logging of data in a system log: This option set allows a program
to record error information in the system's error log.

Flush the LU's send buffer: This option set allows a program to
explicitly cause the LU to flush its send buffer.

LUN identifier: This option set allows an LU implementation to
use the LUW identifier for accounting purposes.

Prepare to receive: This option set allows a program to change
the conversation from send state to receive state and at the same
time flys? the LU's send buffer, request confirmation, or request
sync point.

Long locks: This option set allows a program to perform the
prepare-to-receive function and request confirmation, and resume
processing when information, such as data or conversation status,
is received from the remote program following an affirmative
reply. Option set 16 is a prerequisite.

Post on receipt nith wait: This option set allows a program to
request posting of multiple conversations and then to wait (sus-
pend its processing) until information is available on any one of
the conversations. Option set 16 is a prerequisite.

Post on receipt with test for posting: This option set allouws a
program to request posting of a conversation and then to test the
conversation to determine whether information is available.
Option set 16 is a prerequisite.

Receive immediate: This option set allows a program to receive
whatever information is available on a conversation without hav-
ing to request posting of the conversation. Option set 16 is a
prerequisite.

Test for request-to-send received: This option set allows a pro-
gram to test whether a request-to-send notification has been
receiveq on a conversation, for example following sync point
processing.

Data mapping: This option set allows a program to request mapping
of the data by the local and remote LUs.

FMH data: This option set allows programs to send and receive
data records containing FM header data. The FM header data has
meaning only to the application programs.

Get attributes: This option set allows a program to obtain attri-
butes of a mapped conversation.

Get conversation type: This option set allous a program that sup-
ports both the basic conversation and mapped conversation proto-
col boundaries to determine which category of verbs it should use
in conjunction with a resource ID.

SNA Transaction Programmer's Reference Manual for LU Type 6.2

26.

27.

28.

29.

30.

31.

32.

33.

3.

35.

36.

37.

38.

39.

40.

41.

Mapped Conversation LU Services Component: This option set
allows implementation of a mapped conversation LU services compo-
nent program, which processes mapped conversation verbs.

CHANGE_SESSION_LIMIT verbh: This option set allows a program or
operator at the source LU to request a change in the (LU,mode)
session limit from one nonzero value to another, or a change in
the minimum number of contention-winner sessions for the source
LU or target LU.

MIN_CONWINNERS_TARGET parameter: This option set allows a pro-
gram or operator at the source LU to request a nonzero value for
the target LU's minimum number of contention-winner sessions.
Option set 27 is a prerequisite for this parameter on
CHANGE_SESSION_LIMIT.

RESPONSIBLE(TARGET) parameter: This option set allows a program
or operator at the source LU to request that the target LU be
responsible for session deactivations when the verb requires a
decrease in the number of active sessions. Option set 27 is a
prerequisite for this parameter on CHANGE_SESSION_LIMIT.

DRAIN_TARGET(NO) parameter: This option set allows a program or
operator at the source LU to prevent the target LU from draining
its allocation requests as a result of resetting the (LU,mode)
session limit to 0.

FORCE parameter: This option set allows a program or operator to
specify that the (LU,mode) session limit is to be reset to 0 even
if t?eICNOS exchange between the source LU and target LU is unsuc-
cessful.

ACTIVATE_SESSION verb: This option set allows a program or opera-
tor to activate LU-LU sessions.

DEACTIVATE_SESSION verb: This option set allows a program or
operator to deactivate LU-LU sessions.

LU-parameter verbs: This option set allows a program or operator
to specify the operating parameters of its LU. Within this option
set, the individual operating parameters that a product supports
and makes accessible to the program or operator are
product-dependent.

LU-LU session limit: This option set allows a program or operator
to specify the LU-LU session limit.

tocally-knoin LU names: This option set allows a program or oper-
ator to specify the locally-knouwn names of remote LUs.

Uninterpreted LU names: This option set allows a program or oper-
ator to specify the uninterpreted names of remote LUs.

Single-session reinitiation: This option set allows a program or
operator to specify the responsibility for reinitiation of single
sessions to remote LUs.

Maximum RU size bounds: This option set allows a program or oper-—
ator to specify the lower and upper bounds for the maximum RU
sizes on sessions within an (LU,mode) group.

session-level mandatory cryptography: This option set allous a
program or operator to specify that session-level mandatory
cryptography is to be used on sessions within an (LU,mode) group.

contention Hinner automatic activation limit: This option set
allows a program or operator to specify the limit for automat-
ically activating contention-winner sessions within an (LU,mode)
group.

The following figures identify local and remote support of the base
set and option sets for the verbs, parameters, return codes, and
what-received indications. Local support is defined for all of these.
Remote support is defined only for the verbs and parameters, as it

Appendix A. Base and Option Sets for Product Support A-3

A-%

does not apply to the return codes and what-received indications. Two
hyphens (--) are shown for remote support of a verb or parameter that
does not invoke remote processing.

The verbs, parameters, return codes, and what-received indications
belonging to the base set are identified by "B™ in the local-support
or remote-support column. Those belonging to an option set are iden-
tified by the number of that option set.

For some of the verbs, parameters, return codes, and what-received
indications, more than one option set is identified. An identifica-
tion of the form "a or b™ means the verb, parameter, return code, or
what-received indication is supported when either option set "a" or
"b" is supported. An identification of the form "a and b"™ means the
verb, parameter, return code, or what-received indication is sup-
ported when both option sets "a" and "b" are supported.

Notes pertaining to the base and optional support of the verbs, param-
eters, return codes, and what-received indications are listed follow-
ing the figures, beginning on page A-20. The verbs, parameters,
return codes, and what-received indications to which the notes apply
include a note reference, showun as "Inl," in the local- or
remote-support column. The notes explain certain implementation
details, which are product dependent.

Note: As shown in the figures for the conversation verbs and parame-
ters, most of the option sets are optional only for local support;
remote support for the verbs and parameters of these option sets is
either part of the base set (indicated with "B") or is not applicable
(indicated with "--"). The local program may use these conversation
verbs and parameters whenever its product supports them. Use of the
remaining conversation verbs and parameters—those for which remote
support of an option set is shown—depends on the remote support that
the remote product provides. In particular, the local program may use
the verbs and parameters of the following option sets whenever its
product supports them and the remote product provides the support
indicated in the remote-support column:

Sync point services

End-user verification

Program supplied user ID and password
Profile passthrough

Program supplied profile

PIP data

. Data mapping

23. FMH data

N =t e N O D
NN De o o
.« o o

SNA Transaction Programmer's Reference Manual for LU Type 6.2

SUPPORY FOR MAPPED CONVERSATION VERBS AND PARAMETERS

Verb and Parameter

Local Support

Remote Support

| MC_ALLOCATE

LU_NAME(OWN)

LU_NAME(OTHER(variable))

MODE_NAME

TPN

RETURN_CONTROL (WHEN_SESSION_ALLOCATED)
RETURN_CONTROL(DELAYED_ALLOCATION_PERMITTED)
RETURN_CONTROL (IMMEDIATE)

SYNC_LEVEL (NONE)

SYNC_LEVEL(CONFIRM)

SYNC_LEVEL(SYNCPT)

SECURITY(NONE)

SECURITY(SAME)

SECURITY(PGM(USER_ID(variable)
PASSWORD(variable)
PROFILE(variable)))

PIP(NO)

PIP(YES(variable))
RESOURCE
RETURN_CODE

(-4] W w
UWN

or 10 [3]

NN Oy

11
12 (4]

B [1]
B
B
B

-

MC_CONFIRM
RESOURCE
RETURN_CODE
REQUEST_TO_SEND_RECEIVED

MC_CONFIRMED
RESOURCE

MC_DEALLOCATE
RESOURCE
TYPE(SYNC_LEVEL)
TYPE(FLUSH)
TYPE(CONFIRM)
TYPECABEND)
TYPE(LOCAL)
RETURN_CODE

TEFTIWIITW | IW | TIOW [Ww W

| MC_FLUSH
RESOURCE

| Figure A-1.

Appendix A.

Support for Mapped Conversation Verbs and Parameters (Part 1 of 3)

Base and Option Sets for Product Support

Verb and Parameter

Local Support

Remote Support

MC_GET_ATTRIBUTES %, 6, 9, 15, -
or 24
RESOURCE 4, 6, 9, 15, ==
or 2%
OWN_FULLY_QUALIFIED_LU_NAME 24 -
PARTNER_LU_NAME 24 -
PARTNER_FULLY_QUALIFIED_LU_NAME 24 -
MODE_NAME 24 -
SYNC_LEVEL % or 2% --
SECURITY_USER_ID) --
SECURITY_PROFILE 9 --
LUW_IDENTIFIER % or 15 --
CONVERSATION_CORRELATOR 4 -
MC_POST_ON_RECEIPT 18 or 19 [51] -
RESOURCE 18 or 19 --
LENGTH 18 or 19 [10])} --
MC_PREPARE_TO_RECEIVE 16 B
RESQURCE 16 -
TYPE(SYNC_LEVEL) 16 B
TYPE(FLUSH) 16 B
TYPE(CONFIRM) 16 B
LOCKS(SHORT) 16 B
LOCKSC(LONG) 17 B
RETURN_CODE 16 -
MC_RECEIVE_AND_WAIT B [61] e
RESOURCE B -
LENGTH B [101] -
RETURN_CODE B -
REQUEST_TO_SEND_RECEIVED B [9] -
DATA B -
WHAT_RECEIVED B [7] -
MAP_NAME 22 -
MC_RECEIVE_IMMEDIATE 20 -
RESOURCE 20 --
LENGTH 20 [101] --
RETURN_CODE 20 -
%EQUEST TO_SEND_RECEIVED gg £91 --
WHAT_RECEIVED 20 (7] -
MAP_NAME 20 and 22 -
MC_REQUEST_TO_SEND B (8] B
RESOURCE B -
Figure A-2. Support for Mapped Conversation VYerbs and Parameters (Part 2 of 3)

A-6

SNA Transaction Programmer's Reference Manual for LU Type 6.2

Verb and Parameter

Local Support

Remote Support

MC_SEND_DATA
RESOURCE
DATA
LENGTH
MAP_NAME(NO)
MAP_NAME(YES(variable))
FMH_DATA(NO)
FMH_DATACYES)
RETURN_CODE
REQUEST_TO_SEND_RECEIVED

N e
N = =

23 [12]

23 [12]

MC_SEND_ERROR
RESOURCE
RETURN_CODE
REQUEST_TO_SEND_RECEIVED

WEIWw |[w W RO w

MC_TEST
RESOURCE
TEST(POSTED)
TEST(REQUEST_TO_SEND_RECEIVED)
RETURN_CODE

19 or 21
19 or 21
19
21
19 or 21

Figure A-3. Support for Mapped Conversation Verbs

Appendix A.

and Parameters (Part 3 of 3)

Base and Option Sets for Product Support

A-7

SUPPORT _FOR TYPE-INDEPENDENT CONVERSATION VERBS AND PARAMETERS

Verb and Parameter

Local Support

Remote Support

BACKOUT 4 4
GET_TYPE 25 -
RESOURCE 25 --
TYPE 25 -
SYNCPT % 4
RETURN_CODE A -
REQUEST_TO_SEND_RECEIVED [A -
WAIT 18 -
RESOURCE_LIST 18 --
RETURN_CODE 18 --
RESOURCE_POSTED 18 -

| Figure A-4. Support for Type-Independent Conversation Verbs and Parameters

A-8 SNA Transaction Programmer's Reference Manual for LU Type 6.2

SUPPORT FOR BASIC CONVERSATION VERBS AND PARAMETERS

Verb and Parameter

Local Support

Remote Support

ALLOCATE

LU_NAMECOWN)
LU_NAME(OTHER(variable))
MODE_NAME

TPN
TYPE(BASIC_CONVERSATION)
TYPE(MAPPED_CONVERSATION)

RETURN_CONTROL (WHEN_SESSION_ALLOCATED)
RETURN_CONTROL(DELAYED_ALLOCATION_PERMITTED)

RETURN_CONTROL (IMMEDIATE)
SYNC_LEVEL (NONE)
SYNC_LEVEL(CONFIRM)
SYNC_LEVEL(SYNCPT)
SECURITY(NONE)
SECURITY(SAME)

SECURITY(PGM(USER_ID(variable)
PASSWORD(variable)
PROFILE(variable)))

PIP(NO)
PIP(YES(variable))
RESOURCE
RETURN_CODE

26
[21

T woow o

oo w

4
6 or 10 [31]
7
7
11

12 [41]

B [1]

CONFIRM

RESOURCE
RETURN_CODE
REQUEST_TO_SEND_RECEIVED

CONFIRMED

RESOURCE

DEALLOCATE

RESCURCE
TYPE(SYNC_LEVEL)
TYPE(FLUSH)
TYPE(CONFIRM)
TYPECABEND_PROG)
TYPE(ABEND_SVC)
TYPECABEND_TIMER)
TYPE(LOCAL)
LOG_DATA(ND)
LOG_DATA(YES(variable))
RETURN_CODE

IO W | W | WP | W

NN
-3
~e
-
Cned band

(-4

WIS

w
-~
-
v
-t

FLUSH

RESOURCE

164
164

-]

Figure A-5.

Appendix A.

Support for Basic Conversation Verbs and Parameters (Part 1 of 3)

Base and Option Sets for Product Support

A-9

Verb and Parameter

Local Support

Remote Support

GET_ATTRIBUTES B --
RESOURCE B --
OWN_FULLY_QUALIFIED_LU_NAME B --
PARTNER_LU_NAME B --
PARTNER_FULLY_QUALIFIED_LU_NAME B --
MODE_NAME B --
SYNC_LEVEL B --
SECURITY_USER_ID 6 --
SECURITY_PROFILE 9 --
LUW_IDENTIFIER 4 or 15 --
CONVERSATION_CORRELATOR 4 --

POST_ON_RECEIPT 18 or 19 [5) | --
RESOURCE 18 or 19 -
FILLCLL) 18 or 19 [161] --
FILL (BUFFER) 18 or 19 [161] --
LENGTH 18 or 19 --

PREPARE_TO_RECEIVE 16 B
RESOURCE 16 --
TYPE(SYNC_LEVEL) 16 B
TYPE(FLUSH) 16 B
TYPE(CONFIRM) 16 B
LOCKS (SHORT) 16 B
LOCKS (LONG) 17 B
RETURN_CODE 16 --

RECEIVE_AND_WAIT B [6] --
RESOURCE B -
FILLC(LL) B [16] -~
FILL (BUFFER) B [16] --
LENGTH B -
RETURN_CODE B --
REQUEST_TO_SEND_RECEIVED B [9] --
DATA B -
WHAT_RECEIVED B [7] --

RECEIVE_IMMEDIATE 20 --
RESOURCE 20 --
FILLCLL) 20 [16] -
FILL(BUFFER) 20 [16] --
LENGTH 20 -
RETURN_CODE 20 --
REQUEST_TO_SEND_RECEIVED 20 [9] --
DATA 20 -
WHAT_RECEIVED 20 71 --

REQUEST_TO_SEND B [8] B
RESOURCE B -

Figure A-6.

A-10

Support for Basic Conversation Verbs and Parameters (Part 2 of 3)

SNA Transaction Programmer's Reference Manual for LU Type 6.2

Verb and Parameter

Local Support

Remote Support

SEND_DATA
RESOURCE
DATA
LENGTH
RETURN_CODE
REQUEST_TO_SEND_RECEIVED

B
B
B

SEND_ERROR
RESOURCE
TYPE(PROG)
TYPE(SVC)
LOG_DATA(NO)
LOG_DATA(YES(variable))
RETURN_CODE
REQUEST_TO_SEND_RECEIVED

26 [14]

W W WwEw | omwwoew

TEST
RESOURCE
TEST(POSTED)
TEST(REQUEST_TO_SEND_RECEIVED)
RETURN_CODE

19 or 21
19 or 21

19 or 21

Figure A-7. Support for Basic Conversation Verbs and Parameters (Part 3 of 3)

Appendix A.

Base and Option Sets for Product Support

A-11

SUPPORT_ FOR CONVERSATION RETURN CODES AND WHAT-RECEIVED INDICATIONS

Return Code Local Support
ALLOCATION_ERROR
ALLOCATION_FAILURE_NO_RETRY
ALLOCATION_FAILURE_RETRY
CONVERSATION_TYPE_MISMATCH
PIP_NOT_ALLOWED 12
PIP_NOT_SPECIFIED_CORRECTLY
SECURITY_NOT_VALID 6.11; 10 or
SYNC_LEVEL_NOT_SUPPORTED_BY_PGM
SYNC_LEVEL_NOT_SUPPORTED_BY_LU
TPN_NOT_RECOGNIZED
TRANS_PGM_NOT_AVAIL_NO_RETRY
TRANS_PGM_NOT_AVAIL_RETRY
BACKED_OQUT 4
DEALLOCATE_ABEND_PROG
DEALLOCATE_ABEND_SVC
DEALLOCATE_ABEND_TIMER
DEALLOCATE_NORMAL
FMH_DATA_NOT_SUPPORTED 23
HEURISTIC_MIXED 4
MAP_EXECUTION_FAILURE 22
MAP_NOT_FOUND 22
MAPPING_NOT_SUPPORTED 22
0K B
DATA 18 or 19
NOT_DATA 18 or 19
PARAMETER_ERROR B
POSTING_NOT_ACTIVE 18 or 19
PROG_ERROR_NO_TRUNC
PROG_ERROR_PURGING
RESOURCE_FAILURE_NO_RETRY
RESOURCE_FAILURE_RETRY
SVC_ERROR_NO_TRUNC
SVC_ERROR_PURGING
SVC_ERROR_TRUNC

UNSUCCESSFUL 3;2i9; 20 or

o IDwew

www o

W w|wiw

| w|w|wjw ||

Figure A-8. Support for Conversation Return Codes

A-12 SNA Transaction Programmer's Reference Manual for LU Type 6.2

What-Received Indication Local Support
| CONFIRM B
| CONFIRM_DEALLOCATE B
| CONFIRM_SEND B
DATA B
B
B
B

| DATA_COMPLETE

DATA_INCOMPLETE

DATA_TRUNCATED (131
FMH_DATA_COMPLETE 23
FMH_DATA_INCOMPLETE 23
FMH_DATA_TRUNCATED 23 [131
LL_TRUNCATED B [17]

1 | senp B
TAKE_SYNCPT 4
TAKE_SYNCPT_DEALLOCATE 4
TAKE_SYNCPT_SEND 4

| Figure A-9. Support for Conversation What-Received Indications

Appendix A. Base and Option Sets for Product Support A-13

SUPPORT FOR CONTROL-OPERATOR VERBS AND PARAMETERS FOR CNOS

Verb and Parameter

Local Support

Remote Support

CHANGE_SESSION_LIMIT
LU_NAME
MODE_NAME
LU_MODE_SESSION_LIMIT
MIN_CONWINNERS_SOURCE
MIN_CONWINNERS_TARGET
RESPONSIBLE(SOURCE)
RESPONSIBLE(TARGET)
RETURN_CODE

[T wEIE

[191

INITIALIZE_SESSION_LIMIT
LU_NAME
MODE_NAME
LU_MODE_SESSION_LIMIT
MIN_CONWINNERS_SOURCE
MIN_CONWINNERS_TARGET
RETURN_CGDE

28

oo wwow

PROCESS_SESSION_LIMIT
LU_NAME

MODE_NAME
RETURN_CODE

11w
11

RESET_SESSION_LIMIT
LU_NAME
MODE_NAMECALL)
MODE_NAME(ONE(variable))
RESPONSIBLE(SOURCE)
RESPONSIBLE(TARGET)
DRAIN_SOURCE(NO)
DRAIN_SOURCE(YES)
DRAIN_TARGET(NO)
DRAIN_TARGET(YES)
FORCE(NO)
FORCE(YES)
RETURN_CODE

(2 lalmls]
[d ek -4

31

& W WY WWIOW | PTTWw [P T w

[191

[201

I T TwIRwww

Figure A-10. Support for Control Operator Verbs and

Parameters for CNOS

A-14 SNA Transaction Programmer's Reference Manual for LU Type 6.2

SUPPORT_FOR_CO - ERB D _PARAMETERS_FO oL

Verb and Parameter Local Support Remote Support
ACTIVATE_SESSION 32 B

LU_NAME 32 B

MODE_NAME 32 B

RETURN_CODE 32 -
DEACTIVATE_SESSION 33 B

SESSION_ID 33 -

TYPE(CLEANUP) 33 B

TYPE(NORMAL) 33 B

RETURN_CODE 33 -

Figure A-11. Support for Control Operator Verbs and Parameters for Session Control

Appendix A. Base and Option Sets for Product Support A-15

SUPPORY FOR CONTROL-OPERATOR VERBS AND PARAMETERS FOR LU DEFINITION

Verb and Parameter Local Support Remote Support
DEFINE_LOCAL_LU 34 -
FULLY_QUALIFIED_LU_NAME 34 -
LU_SESSION_LIMIT(NONE) 34 -
LU_SESSION_LIMIT(VALUE(variable)) 34 and 35 --
SECURITY(ADD(USER_ID(variable) 34 and 6 --
PASSWORD(variable) 34 and 6 -
PROFILE(variable))) 34 and 9 -
SECURITY(DELETE(USER_ID(variable) 34 and 6 -
PROFILE(variable))) 34 and 9 -
MAP_NAME(ADD(variable)) 34 and 22 -
MAP_NAME(DELETE(variable)) 34 and 22 -
RETURN_CODE 34 -
DEFINE_REMOTE_LU 34 -~
FULLY_QUALIFIED_LU_NAME 34 --
LOCALUY_KNOWN_LU_NAME(NONE) 34 --
LOCALLY_KNOWN_LU_NAME(NAME(variable)) 34 and 36 --
UNINTERPRETED_LU_NAME(NONE) 34 -
UNINTERPRETED_LU_NAME(NAME(variable)) 34 and 37 -
INITIATE_TYPECINITIATE_ONLY) 34 --
INITIATE_TYPECINITIATE_OR_QUEUE) 34 -
PARALLEL_SESSION_SUPPORT(YES) 34 -
PARALLEL_SESSION_SUPPORT(NO) 34 --
CNOS_SUPPORT(YES) 34 --
CNOS_SUPPORT(NO) 34 -
LU_LU_PASSWORDCNONE) 34 --
LU_LU_PASSWORD(VALUE(variable)) 36 and 5 -
SECURITY_ACCEPTANCE(NONE) 34 -
SECURITY_ACCEPTANCECCONVERSATION) 36 and 6 -—
SECURITY_ACCEPTANCECALREADY_VERIFIED) 3¢ and 6 -
RETURN_CODE 34 --
DEFINE_MODE 34 [211] -
FULLY_QUALIFIED_LU_NAME 34 --
MODE_NAME 34 --
SEND_PACING_WINDOW 34 -
RECEIVE_PACING_WINDOW 34 --
SEND_MAX_RU_SIZE_LOWER_BOUND(256) 34 -
SEND_MAX_RU_ _SIZE_LOWER_BOUND(=256) 34 and 39 --
SEND_MAX_RU _SIZE_UPPER_ _BOUND(256) 34 -~
SEND_MAX_RU_SIZE_UPPER_ _BOUND(-256) 34 and 39 -
RECEIVE_MAX_RU_SIZE_ LOWER_BOUND(256) 34 -
RECEIVE_MAX_RU_SIZE_LOWER_BOUND(~256) 34 and 39 -
RECEIVE_MAX_RU_SIZE_ UPPER_BOUND(256) 34 -
RECEIVE_MAX_RU_SIZE_ UPPER_BOUND(-256) 34 and 39 -
SYNC_LEVEL_SUPPORT(CONFIRM) 36 --
SYNC_LEVEL_ _SUPPORT(CONFIRM_SYNCPT) 36 and & -
SINGLE_SESSION _REINITIATIONC(OPERATOR) 34 --
SINGLE_SESSION_REINITIATIONC(PLU) 34 and 38 -
SINGLE_SESSION_REINITIATION(SLU) 34 and 38 --
SINGLE_SESSION_. _REINITIATIONCPLU_OR_SLU) 34 and 38 -
SESSION_LEVEL_CRYPTOGRAPHY(NO) 34 -
SESSION_LEVEL_CRYPTOGRAPHY(YES) 34 and 40 -
CONWINNER_AUTO_ACTIVATE_LIMIT 3¢ and 41 -
RETURN_CODE 34 -

Figure A-12. Support for Control Operator Verbs and Parameters for LU Definition
(Part 1 of 3)

A-16 SNA Transaction Programmer's Reference Manual for LU Type 6.2

Verb and Parameter

Local Support

Remote Support

DEFINE_TP 34 -
TP_NAME 34 -
STATUSC(ENABLED) 34 -
STATUSC(TEMP_DISABLED) 34 --
STATUS(PERM_DISABLED) 34 -
CONVERSATION_TYPE(MAPPED) 34 --
CONVERSATION_TYPE(BASIC) 34 -
SYNC_LEVEL (NONE) 34 -
SYNC_LEVEL (CONFIRM) 34 -
SYNC_LEVEL(SYNCPT) 34 and & -
SECURITY_REQUIRED(NONE) 34 -
SECURITY_REQUIRED(CONVERSATION) 34 and 6 -
SECURITY_REQUIRED(ACCESS(PROFILE)) 34 and 9 -
SECURITY_REQUIRED(ACCESS(USER_ID)) 34 and 8 -
SECURITY_REQUIRED(ACCESS(USER_ID_PROFILE)) 346 8 and --
SECURITY_ACCESS(ADD(USER_ID(variable) 34 and 8 -

PROFILE(variable))) 34 and 9 --
SECURITY_ACCESS(DELETE(USER_ID(variable) 34 and 8 -
PROFILE(variable))) 34 and 9 -

PIP(NO) 34 -
PIP(YES(variable)) 34 and 12 -
DATA_MAPPING(NO) 34 -
DATA_MAPPING(YES) 34 and 22 --
FMH_DATA(NO} 34 -
FMH_DATAC(CYES) 34 and 23 -
PRIVILEGE(NONE) 3% b
PRIVILEGE(CNOS) 34 --
PRIVILEGE(SESSION_CONTROL) 34, and --

32 or 33

PRIVILEGE(DEFINE) 34 -
PRIVILEGE(DISPLAY) 34 -
PRIVILEGE(ALLOCATE_SERVICE_TP) 34 -
RETURN_CODE 34 -

DISPLAY_LOCAL_LU 34 -
FULLY_QUALIFIED_LU_NAME 34 -—
RETURN_CODE 34 -
LU_SESSION_LIMIT 34 -
LU_SESSION_COUNT 34 --
SECURITY 34 and 6 --
MAP_NAMES 34 -
REMOTE_LU_NAMES 36 --
TP_NAMES 34 -

DISPLAY_REMOTE_LU 34 -
FULLY_QUALIFIED_LU_NAME 34 -
RETURN_CODE 34 -
LOCALLY_KNOWN_LU_NAME 34 and 36 ——
UNINTERPRETED_LU_NAME 3% and 37 -
INITIATE_TYPE 34 --
PARALLEL_SESSION_SUPPORT 34 --
CNOS_SUPPORT 34 -
SECURITY_ACCEPTANCE_LOCAL_LU 34 and 6 -
SECURITY_ACCEPTANCE_REMOTE_LU 34 and 6 -
MODE_NAMES 34 -

Figure A-13. Support for Control Operator Verbs and Parameters

(Part 2 of 3)

for LU Definition

Appendix A. Base and Option Sets for Product Support A-17

Verb and Parameter

Local Support

Remote Support

DISPLAY_MODE 34 -
FULLY_QUALIFIED_LU_NAME 36 -
MODE_NAME 34 -
RETURN_CODE 34 -
SEND_PACING_WINDOW 34 -
RECEIVE_PACING_WINDOW 36 --
SEND_MAX_RU_SIZE_LOWER_BOUND 34 and 39 -
SEND_MAX_RU_SIZE_ UPPER_BOUND 34 and 39 -
RECEIVE_MAX_RU_SIZE_LOWER_BOUND 3¢ and 39 -
RECEIVE_MAX_RU_SIZE_UPPER_BOUND 34 and 39 -
SYNC_LEVEL_SUPPORY 34 -
SINGLE_SESSION_REINITIATION 34 and 38 -
SESSION_LEVEL_CRYPTOGRAPHY 34 and 40 il
CONWINNER_AUTO_ACTIVATE_LIMIT 34 and 41 -
LU_MODE_SESSION_LIMIT 34 -
MIN_CONWINNERS 34 -
MIN_CONLOSERS 34 --
TERMINATION_COUNT 34 -
DRAIN_LOCAL_LU 34 -
DRAIN_REMOTE_LU 34 -
LU_MODE_SESSION_COUNT 34 -
CONWINNERS_SESSION_COUNT 34 -
CONLOSERS_SESSION_COUNT 34 -
SESSION_IDS 34 --

DISPLAY_TP 34 -
TP_NAME 34 -
RETURN_CODE 34 -
STATUS 34 -
CONVERSATION_TYPE 34 -
SYNC_LEVEL 34 --
SECURITY_REQUIRED 3% and 6 -
SECURITY_ACCESS 34, and -

8 or 9
PIP 34 and 12 -
DATA_MAPPING 3¢ and 22 -
FMH_DATA 34 and 23 --
PRIVILEGE 34 -

DELETE 34 -
LOCAL_LU_NAME 34 -
REMOTE_LU_NAME 34 -
MODE_NAME 34 -
TP_NAME 34 -
RETURN_CODE 34 -

Figure A-14. Support for Control Operator Verbs and Parameters

(Part 3 of 3)

for LU Definition

A-18 SNA Transaction Programmer's Reference Manual for LU Type 6.2

UPPO OR_CONTROL-OPERATOR RETURN CODES

Return Code Local Support
ACTIVATION_FAILURE_NO_RETRY 32
ACTIVATION_FAILURE_RETRY 32
ALLOCATION_ERROR

ALLOCATION_FAILURE_NO_RETRY

ALLOCATION_FAILURE_RETRY

TRANS_PGM_NOT_AVAIL_RETRY
COMMAND_RACE_REJECT
LU_MODE_SESSION_LIMIT_CLOSED
LU_MODE_SESSION_LIMIT_EXCEEDED 32
LU_MODE_SESSION_LIMIT_NOT_ZERO B
LU_MODE_SESSION_LIMIT_ZERO 27
LU_SESSION_LIMIT_EXCEEDED
oK

AS_SPECIFIED

AS_NEGOTIATED

FORCED
PARAMETER_ERROR
REQUEST_EXCEEDS_MAX_ALLOWED
RESOURCE_FAILURE_NO_RETRY

UNRECOGNIZED_MODE_NAME

W Wl woww

W | @

31

W|w|w |

Figure A-15. Support for Control Operator Return Codes

Appendix A. Base and Option Sets for Product Support A-19

NOTES ON IMPLEMENTATION DETAILS
The following notes pertain to the base and optional support shown in

the preceding figures. These notes describe certain implementation
details, which are product dependent.

Notes that Apply to Conversation Verhs:

A~20

1.

8.

The MC_ALLOCATE and ALLOCATE verbs send an allocation request to
the remote LU. The remote LU starts the transaction program named
in the allocation request. As this function is described in this
book, the remote LU starts a new execution instance of the named
transaction program. All products support this capability. A
product may, in addition, allow an already—-executing instance of
the named transaction program to receive an allocation request by
means of a product-dependent verb. This product-dependent capa-~
bility provides no means in the LU for correlating the new conver-
sation to a previous one.

The RETURN_CONTROL parameter on the MC_ALLOCATE and ALLOCATE
verbs specifies when local processing of the verb is to be com-
pleted, in terms of the allocation of a session for the conversa-
tion. A product may provide for the specification of additional
conditions for allocating sessions, such as a variation of the
argument WHEN_SESSION_ALLOCATED that omits contention-loser ses-
sions from the selection process.

Products that provide local support for option set 6
(conversation-level security verification) but not option set 7
(program supplied user ID and password) may choose to not make the
SECURITY parameter on the MC_ALLOCATE and ALLOCATE verbs explic-
itly available to their transaction programs. Such products
implicitly support both SECURITY(SAME) and SECURITY(NONE) in that
they doungrade SECURITY(SAME) to SECURITY(NONE) when the remote
LU does not accept conversation-level security, or the already-
verified indication, from the local LU.

Support of the PIP paramater on the MC_ALLOCATE and ALLOCATE verbs
is optional and local support is independent of remote support.
product may provide either local or remote support, or both.

The MC_POST_ON_RECEIPT and POST_ON_RECEIPT verbs, as described in
this book, may be issued for a given conversation any number of
times before posting is reset or cancelled. (See the notes under
the descriptions of the verbs for more details.) However, a prod-
uct may, instead, permit the verbs to be issued only once for a
given conversation and disallow subsequent use of the verbs on
that conversation until posting is reset or cancelled.

The MC_RECEIVE_AND_WAIT and RECEIVE_AND_WAIT verbs are used to
wait until the requested amount of data or other information is
available for the program to receive, receive the data or other
information, and then resume program execution. Rather than
resuming program execution as soon as the requested amount of data
is received, the product may defer resuming program execution
until it receives something other than data, such as a SEND, CON-
FIRM, TAKE_SYNCPT, or DEALLOCATE indication.

The WHAT_RECEIVED parameter on the MC_RECEIVE_AND_WAIT,
MC_RECEIVE_IMMEDIATE, RECEIVE_AND_WAIT, and RECEIVE_IMMEDIATE
verbs returns to the transaction program only one indication at a
time. This serialization of returning what-received indications
to the program results in discrete states of the conversation for
each returned indication. (See the verb descriptions in this book
for the state changes that can occur.) A product may, instead,
return more than one indication at a time. For example, the prod-
uct may return indications for both DATA and SEND at the com-
pletion of the verbs. In this case, the state changes that occur
at the completion of the verbs may differ from that described in
Ehis.lbook. Refer to the product's publication for <further
etails.

The MC_REQUEST_TO_SEND and REQUEST_TO_SEND verbs, as described in
this book, may be issued only when the conversation is in receive,

SNA Transaction Programmer's Reference Manual for LU Type 6.2

confirm, or sync point state. Issuing the verbs for a conversa-
tion in any other state is described as a state-check ABEND condi-
tion. As an alternative to the ABEND condition, a product may
also permit its transaction programs to issue the verbs for con-
versations in send or defer state.

The REQUEST_TO_SEND_RECEIVED parameter the
MC_RECEIVE_AND_WAIT, MC_RECEIVE_IMMEDIATE, RECEIVE_ AND NAIT, and
RECEIVE_IMMEDIATE verbs 'is used to receive a request-to-send
notification when the conversation is in receive state. (See the
notes under the descriptions of these verbs for details of when
this can occur.) However, a product may defer passing the
request-to-send notification to the program until the program
issues an MC_SEND_DATA or SEND_DATA verb, or issues an
M%_iEND_ERROR or SEND_ERROR verb when the conversation is in send
state.

Also, a product that defers passing the request-to-send notifica-
tion to the program may discard the notification, and not pass it
to the program, if the program issues an MC_PREPARE_TO_RECEIVE or
PREPARE_TO_RECEIVE verb, issues an MC_RECEIVE_AND_WAIT or
RECEIVE_AND_WAIT verb when the conversation is in send state, or
receives a PROG_ERROR_PURGING or SVYC_ERROR_PURGING return codae
when the conversation is in send state.

Notes that Apply Only to Mapped Conversation Verbs:

10.

11.

12.

13.

A base local and remote support is defined for the data record
length specified by the LENGTH parameter on the
MC_POST_ON_RECEIPT, MC_RECEIVE_AND_WAIT, MC_RECEIVE_IMMEDIATE,
and MC_SEND_DATA verbs. The base support for the data record
length is 2048. All transaction programs are allowed to send and
receive data records up to 2048 bytes in length. Local and remote
support for data records greater than 2048 bytes in length is
optional, and the maximum length is product-dependent.

The MAP_NAME parameter on the MC_SEND_DATA verb is used to specify
data mapping. MAP_NAME(NO) yields a null value for the map name,
which suppresses data mapping, whereas MAP_NAME(YES(variable))
specifies a non-null map name, which invokes data mapping. Pro-
ducts that support option set 22 (data mapping) provide local and
remote support for both MAP_NAME(NO) and MAP_NAME(YES(variable)).
However, roduct may provide local support only for
MAP NAME(YES(var1able)) on MC_SEND_DATAs issued on conversations
that use data mapping.

The FMH_DATA(YES) parameter on the MC_SEND_DATA verb specifies
that the data record contains FM header data. Transaction pro-
grams written for a product that implements LU 6.1 make use of the
specification of FM header data. A product that implements LU 6.2
may provide local and remote support for this parameter, either
because it processes LU 6.1 programs or because it processes LU
6.2 programs that connect to LU 6.1 programs.

The what-received indications, DATA_TRUNCATED and
FMH_DATA_TRUNCATED, inform the program that it received only part
of the data record and the LU has discarded the remaining part. A
product may, instead, retain the remaining data and indicate
DATA_INCOMPLETE or FMH_DATA_INCOMPLETE. Alternatively, the prod-
uct may support both capabilities and allow the program to select
whethaer the LU is to discard or retain remaining data.

Notes that Apply Only to Basic Conversation Verbs:

16,

15.

The TYPE(ABEND_SVC) and TYPE(ABEND_TIMER) parameters on the DEAL-
LOCATE verb and the TYPE(SVC) parameter on the SEND_ERROR verb are
used to indicate errors that the mapped conversation LU services
component detects. A product that does not support option set 26
(mapped conversation LU services component) may, nevertheless,

guppgrt these parameters at its basic conversation protocol
oundary.

The LOG_DATA parameter on the DEALLOCATE and SEND_ERROR verbs is
used to record product-unique error information in the system

Appendix A. Base and Option Sets for Product Support A-21

A-22

16.

17.

error logs of the local and remote LUs. The capability to receive
the log data is part of the base remote support. However, a prod-
uct that does not provide local support for option set 13 (logging
of data in a system log) may discard the received log data rather
than process it.

The FILL parameter on the POST_ON_RECEIPT, RECEIVE_AND_WAIT, and
RECEIVE_IMMEDIATE verbs has two arguments: LL and BUFFER. A prod-
ugtt:ay support only one of the arguments, or it may support both
o em.

The arguments are described in this book as being independent of
each other; that is, the specification of either one does not
depend on the past use of the parameter, and has no bearing on its
subsequent use. A product supporting both arguments may treat
them as described, or it may treat them in a dependent manner,
allowing the program to specify only one or the other for certain
gequgnfef gf the verbs and indicating an error if this restriction
is violated.

The what-received indication, LL_TRUNCATED, informs the program
that the LU received only the first byte of the LL field of a log-
ical record, because it was truncated. The truncated LL field is
discarded by the receiving LU rather than being passed to the
receiving program. A product may, instead, pass the truncated LL
field to the program and indicate DATA_INCOMPLETE rather than
LL_TRUNCATED.

Notes that Apply tao Control-Operator Verbs:

18.

19.

20.

21.

A product may provide local (source LU) support for only one of
the arguments, NO or YES, of the DRAIN_SOURCE parameter on the
RESET_SESSION_LIMIT verb, or it may support both arguments. How-
ever, all products provide remote (target LU) support for both
arguments.

Remote support for the RESPONSIBLE(TARGET) parameter of the
CHANGE_SESSION_LIMIT and RESET_SESSION_LIMIT verbs is part of the
base set of functions. However, a product may provide remote sup-
port for this parameter by aluways negotiating the TARGET argument
to SOURCE during its remote processing, as a target LU, of
CHANGE_SESSION_LIMIT and RESET_SESSION_LIMIT.

Remote support for the DRAIN_TARGET(YES) parameter of the the
RESET_SESSION_LIMIT verb is part of the base set of functions.
However, a product may provide remote support for this parameter
by always negotiating the YES argument to NO during its remote
processing, as a target LU, of RESET_SESSION_LIMIT.

A product may allow the control operator or transaction program to
specify certain parameters of the DEFINE_MODE verb by means of the
EEFINE_LOCAL_LU or DEFINE_REMOTE_LU verb, instead. These parame-
ers are:

SYNC_LEVEL_SUPPORT
SINGLE_SESSION_REINITIATION
SESSION_LEVEL_CRYPTOGRAPHY

When these parameters are specified by means of DEFINE_LOCAL_LU,
the local LU's corresponding operating parameters are constant
across all mode names for all remote LUs. Similarly, when these
parameters are specified by means of DEFINE_REMOTE_LU, the local
LU's corresponding operating parameters are constant across all
modetnﬁn?s for a given remote LU, but they may differ for each
remote .

SNA Transaction Programmer's Reference Manual for LU Type 6.2

PENDIX B.

XAMPLES USING BASIC CONVERSATION VERBS

This appendix contains examples of the use of some of the basic con-
versation verbs. Each example shows two transaction programs, TP(a)
and TP(b), connected by a conversation. The letters a and b represent
each program's name.

Each example concentrates on the use of one, two or three verbs, in
conjunction with several other verbs, and how the verbs issued by one
program relate to the verbs issued by the other program. When a verb
causes the LU to send information to the other program, the resulting
flow is shown as an arrow (—>). Some verbs cause the LU to suspend
the program's processing until the LU completes execution of the verb;
a vertical line (]) under the verb indicates the suspension of program
processing.

Some parameters are shown with the verbs. The parameters shown are
those that are significant to the example. Supplied parameters are
shown as "parameter-name(supplied-value)," and returned parameters
are shown as "parameter-name=returned-value." Parameters not signif-
icant to the example are not shown.

On the page facing the example are notes that explain what the example
is illustrating. The notes are numbered. The part of the example to
which the note applies is keyed with the same number, shown within
braces. For instance, the part of the example in Figure B-1 on page
B-2 that is keyed by "{1}" is explained by note 1 on the facing page.

The examples contain a few comments, which are shown within brackets.
For example, the comment, "[TP(a) runningl,™ in Figure B-1 on page B-2

geaps the program is already processing at the point the example
egins.

Appendix B. Examples Using Basic Conversation Verbs B-1

TP(a)

[TP(a) runningl

ALLOCATE {1}
TPN('b')
SYNC_LEVEL(NONE) {2}
RETURN_CODE=0K {3}

SEND_DATA {4}
RETURN_CODE=0K

DEALLOCATE ({5}
TYPE(SYNC_LEVEL)
RETURN_CODE=0K {61}

[end conversation] ({71}

TP(b3}

> [start TP(b)] {8}

RECEIVE_AND_WAIT {9}
RETURN_CODE=0K
WHAT_RECEIVED=DATA_COMPLETE

RECEIVE_AND_WAIT {10}
RETURN_CODE=DEALLOCATE_NORMAL

DEALLOCATE ({11}
TYPE(LOCAL)
RETURN_CODE=0K

[end conversationl {12}

Figure B-1. ALLOCATE, SEND_DATA, DEALLOCATE -- SYNC_LEVEL (NONE)

B-2 SNA Transaction Programmer's Reference Manual for LU Type 6.2

Notes for Figure B-1:

1.

TP(a) issues ALLOCATE to request a

conversation with partner program
;b', designated by the TPN parame-
er.

The SYNC_LEVEL(NONE) parameter
spacifies a synchronization level
of NONE, which means no confirma-
tion or sync point processing.

The LU places the allocation
request in its send buffer and
returns control to TP(a) with the
conversation in send state. Noth-
ing is sent.

TP(a) issues SEND_DATA, causing the
LU to place the data (a logical
record) in its buffer behind the
allocation request. Still, nothing
is sent, because the LU does not
vet have a sufficient amount of
information for transmission (in
this example).

TP(a) issues DEALLOCATE with

TYPE(SYNC_LEVEL), which implies no
synchronization and causes the LU
to send the contents of its buffer

Appendix B.

10.

11.

12.

together with a DEALLOCATE_NORMAL
indication.

Because the synchronization level
is NONE, DEALLOCATE with
TYPE(SYNC_LEVEL) completes imme-
diately and successfully. Contrast
this with Figure B-2 on page B-4.

The conversation is deallocated
from the session at the completion
of DEALLOCATE.

TP(b) is started, with the conver-
sation in receive state, when its
LU receives the allocation request.

TP(b) issues RECEIVE_AND_WAIT and
raceives the complete logical
record.

TP{b) issues another
RECEIVE_AND_WAIT and receives the
DEALLOCATE_NORMAL indication. ’

TP(b) issues DEALLOCATE with
TYPE(LOCAL), causing the LU to dis-
card its control information for
the conversation.

The conversation ends for TP(b).

Examples Using Basic Conversation Verbs B-3

TP(a)

[{TP(a) runningl

ALLOCATE {1}
TPN('b')
SYNC_LEVEL (CONFIRM)
RETURN_CODE=0K {3}

SEND_DATA {4}
RETURN_CODE=0K

DEALLOCATE ({5}
WYP%&?YNC_LEVEL)

RETURN_CODE=0K {11}

{2}

[end conversationl {12}

TP(b)

> [start TP(b)]1 {71}

RECEIVE_AND_WAIT ({8}
RETURN_CODE=0K
WHAT_RECEIVED=DATA_COMPLETE

RECEIVE_AND_WAIT {9}
RETURN_CODE=0K
WHAT_RECEIVED=CONFIRM_

DEALLOCATE

CONFIRMED ({10}

DEALLOCATE {13}
TYPECLOCAL)
RETURN_CODE=0K

[end conversationl] {14}

Figure B-2. ALLOCATE, SEND_DATA, DEALLOCATE -- SYNC_LEVEL(CONFIRM)

B~-4 SNA Transaction Programmer's Reference Manual for LU Type 6.2

Notes for Figure B-2: 7. TP(b) is started, with the conver-
sation in receive state, when its
1. TP(a) issues ALLOCATE to request a LU receives the allocation request.
conversation with partner program
'h'. 8. TP(b) issues RECEIVE_AND_WAIT and
receives the complete logical
2. The SYNC_LEVEL(CONFIRM) parameter record.
specifies a synchronization level
of CONFIRM, which means confirma- 9. TP(b) issues another
tion processing is permitted. RECEIVE_AND_WAIT and receives the
CONFIRM_DEALLGOCATE request.
3. The LU places the allocation
request in its send buffer and 10. TP(b) responds affirmatively by
returns control to TP(a) with the issuing CONFIRMED, causing its LU
conversation in send state. Noth- to send a positive response. If
ing is sent. TP(b) responded negatively by issu-
ing SEND_ERROR (not shown), the
4. TP(a) issues SEND_DATA, causing the conversation would remain allo-
LU to place the data (a logical cated.
record) in its buffer behind the
allocation request. Still, nothing 11. The LU returns control to TP(a),
is sent. indicating an affirmative response
and successful completion of the
5. TP(a) issues DEALLOCATE with DEALLOCATE.
TYPE(SYNC_LEVEL), which implies
confirmation processing and causes 12. The conversation is deallocated
the LU to send the contents of its from the session at the completion
buffer together with a CON- of DEALLOCATE.
FIRM_DEALLOCATE request.
13. TP(b) issues DEALLOCATE with
6. Because the synchronization level TYPEC(LOCAL), causing the LU to dis-
is CONFIRM, DEALLOCATE with card its control information for
TYPE(SYNC_LEVEL) causes the LU to the conversation.
suspend TP(a)'s processing until it
receives a response, affirmative or 14. The conversation ends for TP(b).
negative.
Appendix B. Examples Using Basic Conversation Verbs B-5

TPCa)

[TP(a) running &
in conversationl] {1}

SEND_DATA {2}
RETURN_CODE=0K

RECEIVE_AND_WAIT {4}

RETURN_CODE=0K {10} <

>

WHAT_RECEIVED=DATA_COMPLETE

RECEIVE_AND_WAIT ({11}
RETURN_CODE=0K
WHAT_RECEIVED=CONFIRM_DEALLOCATE

CONFIRMED ({12}

DEALLOCATE {15}
TYPEC(LOCAL)
RETURN_CODE=0K

{end conversationl {161}

>

TP(b)

[TP(b) running &
in conversationl

RECEIVE_AND_WAIT ({3}

RETURN_CODE=0K {5}
WHAT_RECEIVED=DATA_COMPLETE

RECEIVE_AND_WAIT {6}
RETURN_CODE=0K
WHAT_RECEIVED=SEND

SEND_DATA {7}
RETURN_CODE=0K

DEALLOCATE {8}
WYP%;?YNC_LEVEL)

RETURN_CODE=0K {13}

[end conversation] {14}

Figure B-3. RECEIVE_AND_WAIT, DEALLOCATE —-— SYNC_LEVEL(CONFIRM)

B-6 SNA Transaction Programmer's Reference Manual for LU Type 6.2

Notes for Figure B-3:

1.

Assume TP(a) has already allocated
the conversation with
SYNC_LEVEL(CONFIRM), and the con-
versation is now in send state for
TP(a) and receive state for TP(b).

TP(a) issues SEND_DATA, causing the
LU to place the data (a logical
rec:rd) in its buffer. Nothing is
sent.

TP(b) issues RECEIVE_AND_WAIT,
causing the LU to suspend TP(b)'s
processinag until it receives infor-
mation.

TP(a) issues RECEIVE_AND_WAIT,
causing the LU to send the contents
of its buffer together with the
SEND indication. The LU suspends
TP(a)'s processing until it
receives information.

The LU returns control to TP(b),
indicating that the program has
received the complete logical
record.

TP(b) issues another
RECEIVE_AND_MWAIT and receives the
SEND indication.

TP(b) issues SEND_DATA, causing the
LU to place the data (a logical
record) in its buffer. Nothing is
sent.

TP(b) issues DEALLOCATE with
TYPE(SYNC_LEVEL), which implies

Appendix B.

10.

11.

12.

13.

16,

15.

16.

confirmation processing and causes
the LU to send the contents of its
buffer together with a CON-
FIRM_DEALLOCATE request.

Because the synchronization level
is CONFIRM, DEALLOCATE with
TYPE(SYNC_LEVEL) causes the LU to
suspend TP(b)'s processing until it
receives a response, affirmative or
negative.

The LU returns control to TP(a),
indicating that the program has
received the complete logical
record.

TP(a) issues another
RECEIVE_AND_WAIT and receives the
CONFIRM_DEALLOCATE request.

TP(a) responds affirmatively by
issuing CONFIRMED, causing its LU
to send a positive response.

The LU returns control to TP(b),
indicating an affirmative response
and successful completion of the
DEALLOCATE.

The conversation is deallocated
from the session at the completion
of DEALLOCATE.

TPCa) issues DEALLOCATE with
TYPEC(LOCAL), causing the LU to dis-
card its control information for
the conversation.

The conversation ends for TP(a).

Examples Using Basic Conversation Verbs B-7

TP(a) TP(b)

[TP(a) running & [TP(b) running &
in conversation] {1} in conversationl
SEND_DATA {2} RECEIVE_AND_WAIT ({3}

RETURN_CODE=0K

PREPARE_TO_RECEIVE {4}
TYPE(SYNC_LEVEL)
RETURN_CODE=0K {5} > RETURN_CODE=0K {7}
WHAT_RECEIVED=DATA_COMPLETE

RECEIVE_AND_WAIT {61}
RECEIVE_AND_WAIT ({8}
RETURN_CODE=0K
WHAT_RECEIVED=SEND

SEND_DATA {9}

Figure B~4. PREPARE_TO_RECEIVE -- SYNC_LEVEL(NONE)

B-8 SNA Transaction Programmer's Reference Manual for LU Type 6.2

Notes for Figure B-4: 5. Because the synchronization level
is NONE, PREPARE_TO_RECEIVE uwith
1. Assume TP(a) has already allocated TYPE(SYNC_LEVEL) completes imme-
the conversation with diately and successfully. Contrast
SYNC_LEVEL(NONE), and the conversa- this with Figure B-5 on page B-10.
tion is now in send state for TP(a)
and receive state for TP(b). 6. The conversation for TP(a) is now
in receive state, so TP(a) issues a
2. TP(a) issues SEND_DATA, causing the RECEIVE_AND_WAIT.
LU to place the data (a logical
record) in its buffer. Nothing is 7. The LU returns control to TP(b),
sent. indicating that the program has
received the complete logical
3. TP(b) issues RECEIVE_AND_WAIT, record.
causing the LU to suspend TP(b)'s
processing until it receives infor- 8. TP(b) issues another
mation. RECEIVE_AND_WAIT and receives the
SEND indication.
4. TP(a) issues PREPARE_TO_RECEIVE
with TYPE(SYNC_LEVEL), which 9. The conversation for TP(b) is now
implies no synchronization and in send state, so TP(b) issues a
causes the LU to send the contents SEND_DATA.
of its buffer together with the
SEND indication.
Appendix B. Examples Using Basic Conversation Verbs B-9

TP(a) TP(b)

[TP(a) running & [TP(b) running &
in conversationl ({1} in conversationl
SEND_DATA ({2} RECEIVE_AND_WAIT (3}

RETURN_CODE=0K

PREPARE_TO_RECEIVE {4}
TYPEC(SYNC_LEVEL) > RETURN_CODE=0K {6}
{5} WHAT_RECEIVED=DATA_COMPLETE

RECEIVE_AND_WAIT ({7}
RETURN_CODE=0K
WHAT_RECEIVED=CONFIRM_SEND

RETURN_CODE=0K {10} < CONFIRMED {8}

RECEIVE_AND_WAIT ({11} SEND_DATA {9}

Figure B-5. PREPARE_TO_RECEIVE -~ SYNC_LEVEL(CONFIRM)

B-10 SNA Transaction Programmer's Reference Manual for LU Type 6.2

Notes for Figure B-5:

1.

Assume TP(a) has already allocated
the conversation with
SYNC_LEVEL(CONFIRM), and the con-
versation is now in send state for
TP(a) and receive state for TP(b).

TP(a) issues SEND_DATA, causing the
LU to place the data (a logical
record) in its buffer. Nothing is

sent.

TP(b) issues RECEIVE_AND_WAIT,
causing the LU to suspend TP(b)'s
processing until it receives infor-
mation.

TP(a) issues PREPARE_TO_RECEIVE
with TYPE(SYNC_LEVEL), which
implies confirmation processing and
causes the LU to send the contents
of its buffer together with the
CONFIRM_SEND request.

Because the synchronization level
is CONFIRM, PREPARE_TO_RECEIVE with
TYPE(SYNC_LEVEL) causes the LU to
suspend TP(a)'s processing until it

Appendix B.

10.

11.

Examples Using Basic Conversation Verbs

receives a response, affirmative or
negative.

The LU returns control to TP(b),
indicating that the program has
receivaed the complete logical
record.

TP(b) issues another
RECEIVE_AND_WAIT and receives the
CONFIRM_SEND request.

TP(b) responds affirmatively by
issuing CONFIRMED, causing its LU
to send a positive response.

The conversation for TP(b) is now
in send state, so TP(b) issues a
SEND_DATA.

The LU returns control to TP(a),
indicating an affirmative response
and successful completion of the
PREPARE_TO_RECEIVE.

The conversation for TP(a) is now

in receive state, so TP(a) issues a
RECEIVE_AND_WAIT.

B-11

TP(a) TP(b)

[TPCa) running & {TP(b) running &
in conversationl {1} in conversationl
SEND_DATA ({2} RECEIVE_AND_WAIT ({3}

RETURN_CODE=0K

CONFIRM {4} > RETURN_CODE=0K {5}
WHAT_RECEIVED=DATA_COMPLETE

RECEIVE_AND_WAIT {6}
RETURN_CODE=0K
WHAT_RECEIVED=CONFIRM

RETURN_CODE=0K {9} < CONFIRMED {71

SEND_DATA ({10} RECEIVE_AND_WAIT ({8}

Figure B-6. CONFIRM

B-12 SNA Transaction Programmer's Reference Manual for LU Type 6.2

Notes for Figure B-6:

1.

Assume TP(a) has already allocated
the conversation with
SYNC_LEVEL(CONFIRM), and the con-
versation is now in send state for
TP(a) and receive state for TP(b).

TP(a) issues SEND_DATA, causing the
LU to place the data (a logical
rec:rd) in its buffer. MNothing is
sent.

TP(b) issues RECEIVE_AND_WAIT,
causing the LU to suspend TP(b)'s
processing until it receives infor-
mation.

TP(a) issues CONFIRM in order to
synchronize the processing of the
two programs. The CONFIRM verb
causes the LU to send the contents
of its buffer together with the
CONFIRM request. The LU suspends
TP(a)'s processing until it
receives a response, affirmative or
negative.

Appendix B.

1¢.

Examples Using Basic Conversation Verbs

The LU returns control to TP(b),
indicating that the program has
received the complete logical
record.

TP(b) issues another
RECEIVE_AND_WAIT and receives the
CONFIRM request.

TP(b) responds affirmatively by
issuing CONFIRMED, causing its LU
to send a positive response.

The conversation for TP(b) is still
in receive state, so TP(b) issues
another RECEIVE_AND_WAIT.

The LU returns control to TP(a),
indicating an affirmative response
and successful completion of the
CONFIRM.

The conversation for TP(a) is still

in send state, so TP(a) issues
another SEND_DATA.

B-13

TP(a)

[TPC(a) running &
in conversationl {1}

SEND_DATA {2}
RETURN_CODE=0K

SEND_ERROR {4}

RETURN_CODE=0K {5}

SEND_DATA {6}

Figure B-7. SEND_ERROR in Send State

TP(b)

[TP(b) running &
in conversationl

RECEIVE_AND_WAIT {3}

> RETURN_CODE=0K {7}
WHAT_RECEIVED=DATA_COMPLETE

RECEIVE_AND_WAIT {8}
> RETURN_CODE=PROG_ERROR_NO_
TRUNC .

RECEIVE_AND_WAIT {9}

B-14 SNA Transaction Programmer's Reference Manual for LU Type 6.2

Notes for Figure B-7:

1.

Assume TP(a) has already allocated
the conversation and it is now send
state for TP(a) and receive state
for TP(b).

TP(a) issues SEND_DATA, causing the
LU to place the data (a logical
rec:rd) in its buffer. Nothing is
sent.

TP(b) issues RECEIVE_AND_WAIT,
causing the LU to suspend TP(b)'s
processing until it receives infor-
mation.

TP(a) issues SEND_ERROR in order to
notify the partner program of an
error. The SEND_ERROR verb causes
the LU to send the contents of its
buffer.

After sending the contents of its
buffer, the LU sends the error

Appendix B.

Examples Using Basic Conversation Verbs

notification and returns control to
the program.

The conversation for TP(a) is still
in send state, so TP(a) issues
another SEND_DATA, possibly con-
taining additional error-recovery
information.

The LU returns control te TP(b),
indicating that the program has
received the complete logical
record.

TP(b) issues another
RECEIVE_AND_WAIT and receives the
error notification,
PROG_ERROR_NO_TRUNC, meaning TP(a)
issued a SEND_ERROR that did not
tru:cate the logical record it
sent.

The conversation for TP(b) is still

in receive state, so TP(b) issues
another RECEIVE_AND_WAIT.

B-15

TP(a)

[TP(a) running &
in conversationl

SEND_DATA {2}
RETURN_CODE=0K

SEND_DATA {4}
RETURN_CODE=0K

SEND_DATA {8}

RETURN_CODE=PROG_ERROR
PURGING T11)}

RECEIVE_AND_WAIT

Figure B-8. SEND_ERROR in Receive State

TP(b)

SEND_ERROR

SEND_DATA

[TP(b) running &
in conversationl

RECEIVE_AND_WAIT ({3}

RETURN_CODE=0K {5}
WHAT_RECEIVED=DATA_COMPLETE

{6}

RETURN_CODE=0K {9}

{10}

B-16 SNA Transaction Programmer's Reference Manual for LU Type 6.2

Notes for Figure B-8:

1.

Assume TP(a) has already allocated
the conversation and it is now send
state for TP(a) and receive state
for TP(b).

TP(a) issues SEND_DATA, causing the
LU to place the data (a logical
rec:rd) in its buffer. Nothing is
sent.

TP(b) issues RECEIVE_AND_WAIT,
causing the LU to suspend TP(b)'s
processing until it receives infor-
mation.

TP(a) issues another SEND_DATA,
causing the LU to place the data
(another logical record) in its
buffer. The LU now has more than
enough data for transmission, so it
sends some of the contents of its
buffer, and retains the remainder
for later transmission.

The LU returns control to TP(b),
indicating that the program has
received a complete logical record.

TP(b) issues SEND_ERROR in order to
notify the partner program of an
error. The SEND_ERROR verb causes
the LU to purge information it has
receivaed and not yet passed to
TP(b), and to send a negative

Appendix B.

10.

11.

Examples Using Basic Conversation Verbs

response. The LU then suspends
TP(b)'s processing awaiting the
receipt of SEND control.

The LU for TP(a) receives the nega-
tive response, causing it to purge
the remaining contents of its buff-
er.

TP(a) issues SEND_DATA. The
SEND_DATA is unsuccessful -- the LU
doas not place the data in its
buffer. The SEND_DATA causes the
LU to send the SEND control without
data. The LU then suspends TP(a)'s
processing awaiting the receipt of
the error notification.

The LU for TP(b) receives tha SEND
control, sends the error notifica-
tion, and returns control to TP(b).

The conversation for TP(b) is now
in send state, so TP(b) issues a

SEND_DATA, possibly containing

:@ditional error-recovery informa-
ion.

The LU returns control to TP(a),
indicating that it has received the
error notification,
PROG_ERROR_PURGING.

The conversation for TP(a) is nouw

in receive state, so TP(a) issues a
RECEIVE_AND_WAIT.

B-17

TPCa)

[TP(a) running &
in conversationl ({1}

SEND_DATA {4}
RETURN_CODE=0K
REQUEST_TO_SEND_RECEIVED=YES

SEND_DATA (51}
RETURN_CODE=0K

RECEIVE_AND_WAIT {6}

Figure B-9. REQUEST_TO_SEND

TP(b)

[TP(b) running &
in conversationl

\
REQUEST_TO_SEND {2}

RECEIVE_AND_WAIT ({3}

RETURN_CODE=0K {7}
WHAT_RECEIVED=DATA_COMPLETE

RECEIVE_AND_WAIT {8}
RETURN_CODE=0K
WHAT_RECEIVED=DATA_COMPLETE

RECEIVE_AND_WAIT ({9}
RETURN_CODE=0K
WHAT_RECEIVED=SEND

SEND_DATA {10}

B-18 SNA Transaction Programmer's Reference Manual for LU Type 6.2

Notes for Figure B-9:

1.

Assume TP(a) has already allocated
the conversation and it is now send
state for TP(a) and receive state
for TP(b).

TP(b) issues REQUEST_TO_SEND and
the LU sends the REQUEST_TO_SEND
indication. The conversation for
TP(b) remains in receive state
because REQUEST_TO_SEND does not
force a turnaround of SEND control.
Contrast this with SEND_ERROR in
Figure B-8 on page B-16.

TP(b) issues RECEIVE_AND_WAIT,
causing the LU to suspend TP(b)'s
processing until it receives infor-
mation.

TP(a) issues SEND_DATA, causing the
LU to place the data (a logical
record) in its buffer, and indicate
that it has received a
REQUEST_TO_SEND indication. Noth-
ing is sent.

TP(a) issues another SEND_DATA,
causing the LU to place the data

Appendix B.

10.

Examples Using Basic Conversation Verbs

(another logical record) in its
buffer. The LU still does not have
enough data for transmission, so
nothing is sent.

TP(a) issues RECEIVE_AND_WAIT,
causing the LU to send the contents
of its buffer together with the
SEND indication. The LU suspends
TP(a)'s processing until it
receives information.

The LU returns control to TP(b),
indicating that the program has
received a complete logical record.

TP(b) issues another
RECEIVE_AND_WAIT and receives
another complete logical record.

TP(b) issues another
RECEIVE_AND_WAIT and receives the
SEND indication.

The conversation for TP(b) is now

in send state, so TP(b) issues a
SEND_DATA.

B-19

TP(a)

{TP(a) running &
in conversationl] {1}

SEND_DATA {8}

FLUSH

{9}

Figure B-10. POST_ON_RECEIPT,

B-20

WAIT

>

TP(b)

[TP(b) running &
in conversationl

POST_ON_RECEIPT {2}
RESOURCE(CONV_BA)

POST_ON_RECEIPT {3}
RESOQURCE(CONV_BC)

WAIT {4}
RESOURCE_LIST(CONY_BA
CONV_BC)

RETURN_CODE=0K {5}
RESOURCE_POSTED=CONV_BC

RECEIVE_AND_WAIT {6}
RESOURCE(CONY_BC)
RETURN_CODE=0K
WHAT_RECEIVED=DATA_COMPLETE

RECEIVE_AND_WAIT {7}
RESOURCE(CONV_BA)

RETURN_CODE=0K {10}
WHAT_RECEIVED=DATA_COMPLETE

SNA Transaction Programmer's Reference Manual for LU Type 6.2

Notes for Figure B-10:

1.

Assume TP(a) has already allocated
the conversation and it is now in
send state for TP(a) and receive
state for TP(b).

TP(b) issues POST_ON_RECEIPT for
the conversation with TP(a).

TP(b) issues another
POST_ON_RECEIPT for the conversa-
tion with TP(c), not shoun.

TP(b) then issues WAIT with a
resource list specifying both con-
versations. In this way, the pro-
gram can receive the information on
the conversation on which it
arrives first. The WAIT causes the
LU to suspend TP(b)'s processing
until it receives information on
either conversation.

Information arrives on the conver-
sation with TP(c). The LU resets

Appendix B.

10.

Examples Using Basic Conversation Verbs

the posting on that conversation
and returns control to TP(b).

TP(b) issues RECEIVE_AND_WAIT for
the conversation with TP(¢c) and
receives a complete logical record.

TP{b) then issues RECEIVE_AND_WAIT
for the conversation with TP(a),
causing the LU to suspend TP(b)'s
processing until it receives infor-
mation on that conversation.

TP(a) issues SEND_DATA, causing the
LU to place the data (a logical
rec:rd) in its buffer. Nothing is
sent.

TP(a) issues FLUSH, causing the LU
to send the contents of its buffer.

The LU returns control to TP(b),

indicating that the program has
received a complete logical record.

B-21

TP(a)

[TP(a) running &
in conversationl ({1}

SEND_DATA {4}

FLUSH {5}

Figure B-11. POST_ON_RECEIPT, TEST

TP(b)

[TP(b) running &
in conversationl

POST_ON_RECEIPT {2}

TEST {3}
RETURN_CODE=UNSUCCESSFUL

{6}

TEST {7}

RETURN_CODE=0K

RECEIVE_AND_WAIT ({8}
RETURN_CODE=0K
WHAT_RECEIVED=DATA_COMPLETE

B-22 SNA Transaction Programmer's Reference Manual for LU Type 6.2

Notes for Figure B-11:

10

Assume TP(a) has already allocated
the conversation and it is now in
send state for TP(a) and receive
state for TP(b).

TP(b) issues POST_ON_RECEIPT for
the conversation with TP(a).

TP(b) then issues TEST, which
returns with
RETURN_CODE=UNSUCCESSFUL indicating
information is not available.
Posting remains active and TP(b)
continues processing.

TP(a) issues SEND_DATA, causing the
LU to place the data (a logical

Appendix B.

Examples Using Basic Conversation Verbs

record) in its buffer. Nothing is

sent.

TP(a) issues FLUSH, causing the LU
to send the contents of its buffer.

Data arrives on the conversation,
causing the LU to post the event.

Some time later, TP(b) issues TEST
again. This time it returns with
RETURN_CODE=0K, and posting is
reset.

TP(b) issues RECEIVE_AND_WAIT for
the conversation and receives a
complete logical record.

B-23

AN

TP(a)

[TPCa) running &
in conversation] ({11}

SEND_DATA {3}
RETURN_CODE=0K

SYNCPT

RETURN_CODE=0K {14}

{5}

SEND_DATA ({15}

Figure B-12. SYNCPT

. B-26

{6}

{11}

TP(b)

[TP(b) running &
in conversationl] {2}

RECEIVE_AND_WAIT {4}

RETURN_CODE=0K {7}
WHAT_RECEIVED=DATA_COMPLETE

RECEIVE_AND_WAIT {8}
RETURN_CODE=0K
WHAT_RECEIVED=TAKE_SYNCPT

{9} '

SYNCPT {10}

RETURN_CODE=0K {12}

RECEIVE_AND_WAIT {13}

SNA Transaction Programmer's Reference Manual for LU Type 6.2

Notes for Figure B-12:

1.

"Assume TP(a) has already allocated

the conversation with
SYNC_LEVEL(SYNCPT), and the conver-
sation is now in send state for
TP(a) and receive state for TP(b).

Assume TP(b) has also allocated one
or more conversations with
SYNC_LEVEL(SYNCPT) to other pro-
grams.

TP(a) issues SEND_DATA, causing the
LU to place the data (a logical
rec:rd) in its buffer. Nothing is
sent.

TP(b) issues RECEIVE_AND_WAIT,
causing the LU to suspend TP(b)'s
processing until it receives infor-
mation.

TP(a) issues SYNCPT in order to
advance all protected resources
throughout the distributed logical
unit of work to the next synchroni-
zation point. The LU suspends
TP(a)'s processing until the sync
point processing is complete. As
part of the sync point processing,
the LUs send and receive commands
on the conversations; the commands
are referred to in this example as
a sync point request and reply.
These commands are not apparent to
the programs.

The SYNCPT verb causes the LU to
send the contents of its buffer
together with the initial sync
point request.

The LU for TP(b) receives the data
and sync point request. The LU
returns control to TP(b), indicat-
ing that the program has received a
complete logical record.

TP(b) issues another
RECEIVE_AND_WAIT and receives the
TAKE_SYNCPT request, which is what
the LU indicates to the program as
a result of receiving the sync
point request.

9. TP(b) finishes processing of pro-
tected local resources, if neces-
sary, and ensures all other
p;o:ected conversations are in send
staxe.

10. TP(b) issues SYNCPT, causing the LU
to send the contents of its buffers
(one for each conversation) togeth-
er with a sync point request on all
other protected conversations. The
LU suspends TP(b)'s processing
until a sync point reply is
received on all these conversa-
tions.

11. After receiving sync point replies
on all of the other protected con-
versations, the LU for TP(b) sends
a sync point reply on the conversa-
tion on which it received the ini-
tial sync point request.

12. The LU returns control to TP(b)
indicating successful completion of
the SYNCPT for all protected
resources allocated to TP(b) and
all "down stream™ TPs, that is, to
all TPs other than TP(a).

13. The conversation for TP(b) is still
in receive state, so TP(b) issues
another RECEIVE_AND_WAIT.

16. The LU for TP(a) receives the final
sync point reply and returns con-
trol to TP(a) indicating successful
completion of the SYNCPT for all
protected resources throughout the
distributed logical unit of work.

15. The conversation for TP(a) is still
in send state, so TP(a) issues
another SEND_DATA.

Note: More synec point commands may

actually be exchanged between the par-
ticipating LUs than the flows in this
example indicate. See SNA Format and
Protocol ference Manual: Architec-

ture Logic for LU Tvpe 6.2 for details.

. Appendix B. Examples Using Basic Conversation Verbs B-25

TP(a)

[TPC(a) running &
in conversationl

SEND_DATA {3}
RETURN_CODE=0K

SYNCPT

BACKOUT

{5}

RETURN_CODE=BACKED_OUT

{14}

SEND_DATA ({15}

Figure B-13.

B-26

{6}

{13}

SYNCPT, BACKOUT

TP(b)

[TP(b) running &
in conversationl]l {2}

RECEIVE_AND_WAIT ({4}

RETURN_CODE=0K {71}
WHAT_RECEIVED=DATA_COMPLETE

RECEIVE_AND_WAIT (8}
RETURN_CODE=0K
WHAT_RECEIVED=TAKE_SYNCPT

{9}

SYNCPT {10}

|
RETURN_CODE=BACKED_OUT {11}
BACKOUT {12}
16}

RECEIVE_AND_WAIT ({17}

SNA Transaction Programmer's Reference Manual for LU Type 6.2

Notes for Figure B-13:

1.

10.

Assume TP(a) has already allocated
the conversation with
SYNC_LEVEL(SYNCPT), and the conver-
sation is now in send state for
TP(a) and receive state for TP(b).

Assume TP(b) has also allocated one
or more conversations with
SYNC_LEVEL(SYNCPT) to other pro-
grams.

TP(a) issues SEND_DATA, causing the
LU to place the data (a logical
rec:rd) in its buffer. MNothing is
sent.

TP(b) issues RECEIVE_AND_WAIT,
causing the LU to suspend TP(b)'s
processing until it receives infor-
mation.

TP(a) issues SYNCPT in order to
advance all protected resources
throughout the distributed logical
unit of work to the next synchroni-
zation point. The LU suspends
TP(a)'s processing until the sync
point processing is complete. As
part of the sync point processing,
the LUs send and receive commands
on the conversations; the commands
are referred to in this example as
a sync point request and reply.
These commands are not apparent to
the programs.

The SYNCPT verb causes the LU to
send the contents of its buffer
together with the initial sync
point request.

The LU for TP(b) receives the data
and sync point request. The LU
returns control to TP(b), indicat-
ing that the program has received a
complete logical record.

TP(b) issues another
RECEIVE_AND_WAIT and receives the
TAKE_SYNCPT request, which is what
the LU indicates to the program as
a result of receiving the sync
point request.

TP(b) finishes processing of pro-
tected local resources, if neces-
sary, and ensures all subordinate
conversations are in send state.

TP(b) issues SYNCPT, causing the LU
to send the contents of its buffers
(one for each conversation) togeth-
er with a sync point request on all

Appendix B.

11.

12.

13.

14,

15.

16.

17.

Examples Using Basic Conversation Verbs

other protected conversations. The
LU suspends TP(b)'s processing
until the sync point processing on
all these conversations is com-

plete.

Instead of receiving sync point
replies on all of the other pro-
tected conversations, the LU for
TP(b) receives at least one
BACKED_OUT indication. The LU
returns control to TP(b) with the
BACKED_OUT indication.

TP(b) issues BACKOUT, causing the
LU to restore all protected local
resources to the last synchroniza-
tion point, and send BACKED_OUT
indications on all protected con-
versations except the one(s) on
which it received the preceding
BACKED_QOUT indication. BACKOUT is
accomplished throughout the dis-
tributed logical unit of work in
the same manner as for TP(b). That
is, the LU for each program
receives a BACKED_OUT indication,
returns control to its program with
the BACKED_OUT indication, and then
when the program issues BACKOUT it
restores all protected local
resources to the last synchroniza-
tion point and sends BACKED_OUT
indications on all remaining pro-
tected conversations, if any.

The LU for TP(a) receives the
BACKED_OUT indication, sends back a
positive response, and returns con-
trol to TP(a) with the BACKED_OUT
indication.

TP(a) issues BACKOUT, causing the

LU to restore all protected local

resources to the last synchroniza-
tion point.

The conversation for TP(a) is
restored to send state—the state
at the completion of the last syn-
chronization point—so TP(a) issues
another SEND_DATA, possibly con-
taining error-recovery information.

The LU for TP(b) receives the posi-
tive response from the LU for TP(a)
and all other LUs to which it sent
the BACKED_OUT indication, and
returns control to TP(b).

The conversation for TP(b) is
restored to receive state—the
state at the completion of the last
synchronization point—so TP(b)
issues another RECEIVE_AND_MWAIT.

B-27

This page intentionally left blank

B-28 SNA Transaction Programmer's Reference Manual for LU Type 6.2

APPENDIX C. SYMBOL STRING CONVENTIONS

This manual refers to the following symbol strings:

Network ID

LU Name

Fully-Qualified LU Name
Mode Name

Transaction Program Name
SECURITY Subfields

PIP Subfields

Map Name

This appendix defines the type and length of these symbol strings.
The meanings of these symbol strings are defined in the chapters
describing the individual verbs that refer to these symbol strings.
The type and length of each symbol string is defined in terms of the
send and receive support of all LU 6.2 products that implement the
symbol string.

SYMBOL STRING TYPE

The symbol-string type identifies the set of characters from which the
symbol string can be composed, and therefore the characters a trans-
action program can use to specify the symbol string. The following
symbol-string types are defined:

U Type A (Assembler oriented): a character string consisting of one
or more EBCDIC uppercase letters A through Z; numerics 0 through
9; and special characters $, 8, and 3; the first character of
which is an uppercase letter or a special character.

. Type AE (A extended): a character string consisting of one or
more EBCDIC lowercase letters a through 2z; uppercase letters A
through Z; numerics 0 through 9; special characters $, #, 3; and
the period (.); with no restriction on the first character.

. Type GR (EBCDIC graphics): a character string consisting of one
or more EBCDIC characters in the range hex 41 through hex FE with
no restriction on the first character.

. Type DB (double byte): a byte string consisting of an even number
of four or more bytes beginning with a byte of hex 0E, followed by
b¥t:5 i;kthe range hex 41 through hex FE, and ending with a byte
") ex .

. Type G (general): a byte string consisting of one or more bytes
in the range hex 00 through hex FF, with no restriction on the
first byte.

The set of type-A and type-AE characters, and the hex codes for these
characters, are shown in Figure C-1 on page C-2.

Appendix C. Symbol String Conventions Cc-1

c-2

Hex |Gra- Set Hex |{Gra- Set
Code|phic| Description Code|phic| Description
A AE A AE
4B . Period X C4 D D, Capital X X
5B $ Dollar Sign X X c5 E E, Capital X X
7B # Number Sign X X cé F F, Capital X X
7C a At Sign X X c7 G G, Capital X X
81 a a, Small X c8 H H, Capital X X
82 b b, Small X c9 I I, Capital X X
83 c c, Small X D1 J J» Capital X X
84 d d, Small X D2 K K, Capital X X
85 e e, Small X D3 L L, Capital X X
86 f f, Small X D4 M M, Capital X X
87 9 g, Small X D5 N N, Capital X X
88 h h, Small X D6 0 0, Capital X X
89 i i, Small X D7 P P, Capital X X
91 3 j» Small X D8 Q Q, Capital X X
92 k k, Small X D9 R R, Capital X X
93 1 1, Small X E2) S, Capital X X
94 m m, Small X E3 T T, Capital X X
95 n n, Small X E4 U U, Capital X X
96 o o, Small X E5 v V, Capital X X
97 P p, Small X E6 W W, Capital X X
98 q q, Small X E7 X X, Capital X X
99 r r, Small X E8 Y Y, Capital X X
A2 s s, Small X E9 A 2, Capital X X
A3 t t, Small X Fo 0 Zero X X
A4 u u, Small X F1 1 One X X
A5 v v, Small X F2 2 Two X X
A6 W W, Small X F3 3 Three X X
A7 x X, Small X F4 4 Four X X
A8 Y, v, Small X F5 5 Five X X
A9 2 2, Small X F6 6 Six X X
C1 A A, Capital X X F7 7 Seven X X
c2 B B, Capital X X F8 8 Eight X X
c3 c C, Capital X X F9 9 Nine X X

Figure C-1.

Figure €C-2 on page C-3 defines the product send support and receive

Character Sets A and AE

support for each symbol string

port

multiple types are indicated,
and send support may differ from receive support.

SNA Transaction Programmer's Reference Manual for LU Type 6.2

in terms of the symbol-string types.
Depending on the symbol string, product send support or receive sup-
is indicated either by a single type or multiple types. Where

the type selected is product-defined

Symbol String

Type

Send Support

Receive Support

Network ID A A
LU Name [11 - -
Fully-Qualified LU Name [2] A.A A.A
Mode Name A A

Transaction Program Name [3]

AE, GR, or DB

A, AE, GR, or DB

LU-LU Password [4]

SECURITY Subfields

AE, GR, or DB

A, AE, GR, or DB

PIP Subfields

G

G

Map Name

A, AE, or GR

A, AE, or GR

Notes:

3. The first character of

1. The LU name is a locally-known name;
one LU knows another LU.
this LU name in conjunction with the
allocates a session for a conversation.
sent outside the LU. The symbol-string type is G.

it is the name by which

A transaction program specifies

name when it

This LU name is not

2. The fully-qualified LU name consists of two symbol strings of
type A concatenated by a period (".").
string represents the network ID;
represents the network LU name. The period is not part of
the network ID or the network LU name.

an SNA
name is a character ranging in
0D and hex 10 through hex 3F (excluding hex 0E and hex 0F).
More details about SNA service
a list of SNA service transaction
"Appendix D. List of SNA Service Transaction Programs".

4. The LU-LU password is a

The lefthand symbol
the righthand symbol string

service transaction program
value from hex 00 through hex

transaction program names and
programs is given in

locally-specified value and is not

sent outside the LU. The symbol-string type is G.

Figure C-2. Symbol-String Types

Appendix C.

Symbol String Conventions

c-3

SYMBOL STRING LENGTH

c-4

The symbol-string length represents the number of characters a symbol
string can contain. Three symbol-string lengths are defined:

. Minimum specification length: the minimum number of characters
that a transaction program is allowed to use to specify the symbol
string. For some symbol strings, the minimum specification
length is zero. Zero-length strings are valid symbol strings and

are subject to the same usage conditions as valid non-zaro length
strings.!

. Maximum send support: the maximum number of characters that all
products can send for the symbol string.

. Maximum receive support: the maximum number of characters that
all products can receive for the symbol string.

The maximum send or receive support for a symbol string's length is
defined either by a single value or within a range of values, depend-
ing on the symbol string.

The single value is the maximum number of characters in a symbol
string that all products can send or receive.

The range of values represents a lower and upper bound of the maximum

number of characters in a symbol string that a product can send or

receive. The specific maximum number of characters a product can send

g; receive for each of these symbol strings is product-defined within
e range.

Figure C-3 on page C-5 defines the product maximum send and receive
support for each symbol string in terms of the symbol-string lengths.
Where support is defined to be within a range of values, the range is
given as "lower-value<—>upper-value," uwhich identifies the lower and
upper bounds of the range.

Note: The variable to which a type-A, type-AE, type-GR, or type-DB
symbol string is assigned may be longer than the symbol string; in
this case, the symbol string is left-justified within the variable and
the variable is filled out to the right with space (hex 40) charac-
ters. Space characters, if present, are not part of the symbol
string. If the symbol string is formed from the concatenation of two
or more individual symbol strings, such as the fully-qualified LU
name, the concatenated symbol string as a whole is left-justified
within the variable and the variable is filled out to the right with
space characters. Space characters, if present, are not part of the
concatenated symbol string.

1 A valid symbol string is one that meets the requirements of the

symbol-string type defined for that symbol string.

SNA Transaction Programmer's Reference Manual for LU Type 6.2

this LU name in conjunction with the mode
allocates a session for a conversation.

LU name is product-defined.
sent outside the LU. It is 64 bits (8 bytes)

the right with binary 0's.

support is independent of receive support.
number of PIP subfields a product can send
product-defined; it can be any number greater

to 7.

4. The maximum send support for PIP
product-defined; it can be any length greater
to 64.

5. The maximum receive support for PIP

:rogzct-defined; it can be any length greater
[.

Symbol String Length
Speggggzggion Seggxgﬁggort Rece?sgigzgport

Network ID 0 8 8
LU Name (11 0 - -
Fully-Qualified LU Name 1 17 17
Mode Name 0] 8
Transaction Program Name 1 8<—>64 8<—>64
LU-LU Password [21] 1 - -
SECURITY Subfields 0 8<->10 0<—>10
PIP Subfields [3] 0 64<—>% [4] 64<~>% [51]
Map Name 1 8<—>64 7<—>64

Notes:

1. The LU name is a locally-known name; it is the name by which

one LU knows another LU. A transaction program specifies
name when it
This LU name is not
sent outside the LU. The maximum specification length of the

2. The LU-LU password is a locally-specified value and is not
in length. At
least 8 bits (1 byte) must be specified. If less than 64
bits are specified, the local LU fills the password out to

3. Product support of PIP subfields is optional, and send

The maximum

or receive is
than or equal

subfields is
than or equal

subfields is
than or equal

Figure C~3. Symbol-String Lengths

Appendix C. Symbol String Conventions

C-5

This page intentionally left blank

Cc-6 SNA- Transaction Programmer's Reference Manual for LU Type 6.2

APPENDIX D. LIST OF SNA SERVICE TRANSACTION PROGRAMS

This appendix lists the classes of SNA service transaction programs.
The SNA service transaction programs are categorized according to
functional classes. A class is identified by t<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>