1
b d
©
™
%)
e}
2
2
[




SY21-0889-5

File No. S38-01

IBM System/38

IBM System/38
Vertical Microcode Logic Overviews and
Component Descriptions Manual



Sixth Edition {September 1985)

This is a major revision of, and makes obsolete, SY21-0889-4. X.25 data link
information was added as a new chapter in Chapter 34. Existing Chapters 34
through 37 are renumbered to accommodate this addition. All other changes or
additions to the text and illustrations are indicated by a vertical line to the left of
the change or addition.

This publication provides an overview of the vertical microcode components and a
description of the functions within the vertical microcode components. Use this
publication only for the purposes stated in About This Manual.

Any reference to an IBM licensed program in this publication is not intended to
state or imply that only IBM’s licensed program may be used. Any functionally
equivalent program may be used instead.

Publications are not stocked at the address below. Requests for copies of IBM
Publications and for technical information about the system should be made to
your IBM representative or to the branch office serving your locality.

This publication could contain technical inaccuracies or typographical errors. Use
the Reader's Comment Form at the back of this publication to make comments
about this publication. If the form has been removed, address your comments to
IBM Corporation, Information Development, Department 245, Rochester,
Minnesota 55901. IBM may use and distribute any of the information you supply
in any way it believes appropriate without incurring any obligation whatever. You
may, of course, continue to use the information you supply.

©Copyright International Business Machines Corporation 1980, 1981, 1982, 1983,
1984, 1985



ABOUTTHISMANUAL . . . . . .. ... ... ...

Purpose of This Manual
Organization of This Manual
If You Need More Information

VERTICAL MICROCODE OVERVIEW . . . . . . . ..

Data Function . . . . . . . . . ..
Commit Management . . . . .

Data Base Management . . . . . . . . . . . ..
Independent Index Management . . . . . . . .

Journal Management .
Queue Management . . . . .
Space Object Management

Internal Machine Function . . . . . . . . . . ..
Storage Management (Auxiliary and Ma|n) e
Machine Index Management . . . . . . . . . .

Machine Support Function
Initialization/ Termination Management

Machine Check Management . . . . . . . . . . .
Machine Observation Management . . . . . . . .
Service and Installation Management .....

Object Function . . . .
Authorization Management
Context Management .

Recovery Initialization . . . . . . . . . . . . .

Program Control Function
Program Execution Management
Program Management .

Source/Sink Function . . . . . .
Instruction Processors . . . .
Machine Services Control Pomt
1/0 Managers e
Source/Sink Data Areas .....

Supervisor and Control Function . .
Event Management . . . . . . . . .

Exception Management . . . . . . . . . . . .
Process Management . . . . . . . . . . . . .
Resource Management . . . . . . . . . . ..

Common Function .
RELATIONSHIP OF COMPONENTS
Alternate IMPL . . . . . .
Internal Microprogram Load
Vertical Microcode and the System/ 38
Instruction Set

DATAFUNCTION . . . . . . . .. ... ... ....

COMMIT MANAGEMENT
Introduction
Transactions Under Commltment Control
IMPL Recovery .
System/38 Instructlon Support
Journal Support
Cursor Support .
Data Space Support -
Data Space Index Support . . .
Data Areas . . .

Attached Commlt Block Table ......

Commit Block

T T 1. 1T 1. 1. 1. 1T 1T 1 0000000000000 000000000000O0O
N Y e e D
PWN= =2 22000 OWOWOOONNNNYNYOCODODODPRPWWWWNNN=

[eNeNeNoNoNeoNeoNeoNeNo]

?
- RN
o S b

T
-

T U (I T U QRS T W N Gy

ONNOODOODWN= ==

Contents

Commit Key Index

Structure . . . . . e e e e e e e e e e e

DATA BASE MANAGEMENT . . . . . . . . . ..

Introduction
Data Sharing . . . e e e e

Load/Dump and Suspend e e e e
Data Base Management Recovery and IPL . . . .
Data Areas . . . . . . . . . . . . ..o
Data Space . . . . . . . . . . .. ... ..
Data Space Index . . . . . . . . . . ... ..
Key Specification Area . . ...................

User Exit Selection .
Creating a DS Index from an Exnstlng DS Index

Cursor . . . L. Lo e e
In-Use Table . . . . . . . ... ... ....

Structure . . . . .

INDEPENDENT INDEX MANAGEMENT . . . . . .
Introduction . . . . . . . .. L.
Create Independent Index . . . . . . . . . ..
Destroy Independent Index . . . . . . . . . .

Find/Remove Independent Index Entry

Insert Independent Index Entry . . . . . . . . .
Materialize Independent Index Attributes . . . . .
Modify Independent Index . . . . . . . . . . .
DataAreas . . . . . . . . . . . ... ...
Independent Index . . . . . . . . . .. ...
Index Description Template . . . . . . . . . .
Structure . . . . . . . . . .00

JOURNAL MANAGEMENT . . . . . . . ..

Introduction . . . . . . . .. .00 L.
Apply Journaled Changes . . . . . . . . . ..
Create Journal Port . . . . . . . . . .. . ..
Create Journal Space . . . . . . . . . . . ..

Destroy Journal Port

IPL Synchronization .

Object Recovery List
Structure . . . . . . . . . .. ..

QUEUE MANAGEMENT . . . . . . . . . . . ..

Introduction . . . . . . . .. ...

Recovery . . . . . . . . . . .. ...
DataAreas . . . . . . . . . . . . ..o

Contents

Destroy Journal Space . . . . . . . . . . ..
JournalData . . . . . . . . . . .. .. ...
Journal Object . . . . . . . . . . . ... ..
Materialize Journal Port Attrrbutes .......
Materialize Journal Space Attributes . . . . . .
Materialize Journaled Object Attributes . . . . .
Materialize Journaled Objects . . . . . . . . .
Modify Journal Port . . . . . . . . . . . . ..
Retrieve Journal Entries . . . . . . . . . . ..
Load/Dump and Suspend . . . . . . . . . ..
IPLRecovery . . . . . . . . . . . . ... ..
DataAreas . . . . . . . . . . . ..o
System-Wide Journal List . . . . . . . . . ..

| ] ??????wwwwww
o ]
QO PEEEPWONN= =

1 |
NN = = WWOWOOWOWONNNNNNYOOTOOODOOODOOTIO1LO = =



Queues . 5-2 Data Areas . . e e e 9-6
Message EIements 5-3 Index Control BIock e e e e e . ... ... 9-6
Structure . 5-3 Structure . 9-7
SPACE OBJECT MANAGEMENT 6-1 MACHINE SUPPORT FUNCTION . . . . . . . . .. 101
Introduction 6-1 INITIALIZATION/TERMINATION MANAGEMENT . . . 10-1
Create Space 6-1 Introduction . . . e [0 B
Materialize Space Attrlbutes 6-1 Initial M|croprogram Load T [0 28 |
Modify Space Attributes . 6-1 Initial Program Load . . . . . . . . . . . .. . 10-3
Destroy Space . . 6-2 Terminate Machine Processing . . . . . . . . . . 10-6
Dump Space Management 6-2 Data Areas . . . .. . .. .. 10-6
Data Areas . 6-3 VMC Communrcatrons Area (YYVCA) .. . . ... 10-6
Space Object 6-3 Machine Initialization Status Record (YYMISR) . . . 10-6
Structure . 6-4 Object Recovery List . . . . . . . . ... ... 10-7
Structure . . . . . . . . . . . . .. . .. ... 107

INTERNAL MACHINE FUNCTION . . . . . . . . . .. 71
AUXILIARY STORAGE MANAGEMENT 7-1 MACHINE CHECK MANAGEMENT . . . . . . . . . 111
Introduction 7-1 Introduction . . . .. . ..o 0o 0oL oL o0 1141
Invoking ASM Functlons 7-2 Data Areas . . . .. .. 1Nn-3
Space Accounting 7-3 Machine Check Logout Buffer (RTMCLB1) .. .. 1-3
Access Group Processing 7-3 Machine Check Queue . . . ... . 11-3
Non-Access Group Processing . 7-4 Machine Check Queue Element (RTMCQE1) .. .. 1-3
ASM Locks . 7-6 Structure . . . . . . . . ... ... ... ... 1N-3

Auxiliary Storage Inmallzatlon 7-7
Storage Management Shutdown 7-7 MACHINE OBSERVATION MANAGEMENT . . . . . . 12-1
Directory Recovery 7-7 Introduction . . . e e e e e e e e e 12
Data Areas . . . 7-9 Materialize System ObJect e e e e e e e e 12
Access Group 7-9 Materialize Pointer . . . FO . VS|
Free Space Directory 7-9 Materialize Pointer Locatlons F . VXS |
Permanent Directory .. . .. . ... . 17-10 Trace Instructions . . . . . . . . . . .. ... 12-1
Temporary Directory . . . .. . . . . ... 17T-10 Cancel Trace . . . . e e e s 12-2
Access Group Member D|rectory P £ Trace and Cancel Trace Invocatlons e e e e oo 12-2
Access Group Table of Contents . . . . . . . . . 7-12 Materialize Invocation . . . e e e e e 1222
Storage Management Vector Table . . . . . . . . 7-13 Materialize Instruction Attrlbutes e e e e s 12-2
SectorHeaders . . . . . . . . .. .. ... .. 7-13 DataAreas . . . . . . . . . . . . . ..o 12-2
Structure . . . . . . . . . . . .. .. ..o 7113 Trace Table . . . . . . . . . . . . ... ... 12-2
Structure . . . . . . . . . . L L0000 12-2

MAIN STORAGE MANAGEMENT . 8-1
Introduction 8-1 SERVICE AND INSTALLATION MANAGEMENT . . . . 13-1
MSM Paging Functron 8-1 Introduction . . . . . .. . ... oL 0 1341
Paging Function Tasks 8-2 Structure . . . . . . . . . . .. ... 13

Bring/Purge Access Group 8-11
Exchange Bring/Clear . 8-11 OBJECTFUNCTION . . . . ... ... ...... 141
MSM Locks 8-12 AUTHORIZATION MANAGEMENT . . . . . . . . . 14-1
Main Storage lnmahzatron 8-13 Introduction . . . Y £ 28
Data Areas . 8-14 Authorization Enforcement e e e e e e oo o142
Access Group 8-14 Recovery . . . . . . . . . . . . ... ... 142
Permanent Directory 8-14 DataAreas . . . . . . . . . . . . . .. .. ... 14-3
Temporary Directory . . 8-14 User Profile . . . . . . . . . .. ... .... 14-3
Access Group Member D|rectory . 8-14 System Pointer . . . . . . . . .. .. .. ... 14-4
Access Group Table of Contents 8-14 Process Control Block . . . . . . . . ... ... 14-4
Lookaside Directory . 8-14 Invocation Control Block . . . . . . . . . . ... 14-4
Static Directory . 8-14 User Profile Recovery . . . . . . . . . . .. .. 14-4
Primary Directory . 8-15 Structure . . . . . . . . . . .. ... ... ... 145

Storage Management Vector TabIe 8-15
Sector Headers . 8-15 CONTEXT MANAGEMENT . . . . . . . . .. .. . 15-1
Paging Request Element 8-15 Introduction . . . P 1 1
Storage Pools 8-16 Data Pointer Resolutlon T 1
Storage Queues (Search and Change) 8-16 Recovery . . . . . . . . . . . .. ... ... 151
Structure . 8-17 DataAreas . . . . . . . . . . . . . . . .. ... 16-2
Contexts . . . e e e e e e o ... .. ..o 15-2
MACHINE INDEX MANAGEMENT 9-1 Name Resolution Llst e .. .. 15-6
Introduction 9-1 Encapsulated Program Archltecture Header ... . 15-6
Index Structure . . 9-2 Machine Communication Area . . . . . . . . . . 15-6
Operations on Machine Indexes 9-4 Process Control Block . . . . . . . . . . .. .. 15-6



Task Dispatching Element
Structure .

RECOVERY INITIALIZATION
Introduction
Structure .

PROGRAM CONTROL FUNCTION . . . . . ..

PROGRAM EXECUTION MANAGEMENT .
Introduction
Program Act|vat|on
Program Invocation .
Program De-activation
Invocation Destruction
Data Areas . .
Process Automatrc Storage Area
Process Static Storage Area
Structure .

PROGRAM MANAGEMENT
Introduction .
Program Creation .
Program Materialization
Program Destruction
Program Observability .
Data Areas . .
Program Template
Encapsulated Program .
Structure .

SOURCE/SINK FUNCTION . . . . . .. . . ..

ADVANCED PROGRAM-TO-PROGRAM
COMMUNICATIONS STATION 1/0 MANAGER
Introduction
System/38 |nstruct|on Support
SNA Support
1/0 Support .
Error Logging
Data Areas . .
Network Archltecture Control Block .
Logical Unit Name Table
Mode Table
Half-Session Control BIock
Conversation Control Block
Conversation ldentifier
Structure .

BINARY SYNCHRONOUS COMMUNICATIONS
1/0 MANAGER
Introduction
Data Areas .
Link Control BIock
Service Order Table .
Controller Description Table
Operation Request Element
Structure .

CHANNEL 1/0 MANAGER
Introduction
Start/Halt Devuce Functlon
Channel Event Processing Function
Data Areas . .
Channel Error Message .
Channel Vary On/Off Message .
Structure .

171
17-1
17-1
17-1
17-2
17-3
17-3
17-3
17-3
17-5
17-7

18-1
18-1
18-1
18-4
18-4
18-4
18-5
18-5
18-5
18-7

191

19-1
19-1
19-4
19-6
19-8
19-9
19-9
19-9
19-10
19-10
19-11
19-11
19-11
19-11

N

N NN
1 [T I |

N
OOOIOOOOO
~NoOoO OO o = =

N NN

21-1
21-1
21-1
21-3
21-7
21-7
21-7
21-7

ERROR LOG

Introduction

Data Areas . .
Error Log Request
Error Log

Structure .

INSTRUCTION PROCESSORS
Introduction
Create Instruction Processors
Materialize Instruction Processors .
Modify Instruction Processors
Destroy Instruction Processors .
Request 1/0 Instruction Processor
Data Areas .
Logical Unit Descrlptlon (ZZSILUOB)
Controller Description {ZZSICDOB)
Network Description (ZZSINDOB) .
OU/ND Table (ZZSSOUND)
Structure .

SYNCHRONOQUS DATA LINK CONTROL PRIMARY
AND SECONDARY I/0 MANAGERS
Introduction
System/38 Instructlon Support
Connect . . .
Contact for SDLC Prrmary .
Contact for SDLC Secondary .
Discontact .
Test .
Normal Flow .
SDLC Autopoll Flow
Vary Off .
Error Flow .
Read Data Store
Internal Trap .
Data Areas .
Link Control BIock
Machine-Wide Storage .
SDLC {Synchronous Data Link Control)
Input Areas . .
Service Order Table .
Structure .

LOCAL I/0 MANAGER

Introduction
Internal Cleanup Routlne

Data Areas .

Structure .
Console LocaI |0M
Diskette Magazine Drive Local IOM .
MFCU Local IOM . . . .
3410/3411 Magnetic Tape LocaI |0M .
3430 Local IOM L.
3262/5211 Printer Local IOM
3203 Printer Local IOM

LOAD/DUMP MANAGEMENT

Introduction . .
Request 1/0 |nstruct|on Processlng .
Loading Objects From a Dump Space .
Modify Logical Unit Description Processing
Error Handling .
Storage Management for Load/Dump
Device IOM

22-1
22-1
22-1
22-1
22-2
22-2

23-1
23-1
23-1
23-1
23-1
23-1
23-1
23-3
23-3
23-3
23-4
23-4
23-5

24-1
24-1
24-2
24-6
24-9
24-9
24-9

24-10

24-10
24-12
24-13
24-13
24-14
24-14
24-15
24-15
24-15

24-15
24-16
24-16

25-1
25-1
25-5
25-6
25-6
25-6
25-7

25-11

25-12
25-14
25-18
25-20

26-1
26-1
26-4
26-6
26-6
26-9
26-9
26-9

Contents v



Data Areas . . . . ... . . . . . .. .. 26-10

Session Control BIock e e e e 26-10
Dump Network Message . . . . . . . . . . . 26-11
Dump Object Message . . . . . . . . . . . . 26-11
Load Network Messages . . . . . . . . . . . 26-11
Load Object Message . . . . . . . . . . . .. 26-12
Recoverable Error Processing . . . . . . . . . 26-12
Structure . . . . . . . L L L. L. 26-13
MACHINE SERVICES CONTROL POINT . . . . . . . 27-1
Introduction . . . L. . 271
Modify Controller Descrlpt|on (Synchronous) L. . 27-2
Modify Logical Unit Description (Synchronous) . . . 27-5
Modify Network Description (Synchronous) . . . . 27-6
Modify Controller Description (Asynchronous) . . . 27-7
Asynchronous Message Handling . . . . ... . 27-9
BSC/MTAM Automatic Recovery Task (BART) L. 27-25
Data Areas . . . e e e 27-25
Source/Sink Act|ve Dewce L|st ... .. ... 271-25
BART Control Block . . . . . . . . . . . .. 27-26
Structure . . . . . . . . L L. Lo 27-27

MULTI-LEAVING TELECOMMUNICATIONS ACCESS

METHOD I/O MANAGER . . . . . . . . . . . . . 28-1
Introduction . . . . . . . . . . . .. ... ... 28-1
Data Areas . . . 4
Link Control Block L. e e o oo 28-7
Service Order Table (SOT) e e e e ... 28-7
Structure . . . . . . . . . . . . . . ... .... 28-8
NATIVE I/O MANAGER . . . . . . . . . .. ... 291
Introduction . . . e e s 291
System/38 Instructlon Support .. ... ... 29-3
SNA Support . . . . . . .. . . .. ... .. 29-4
SessionControl . . . . . . . . . . .. . ... 29-6
I/OSupport . . . . . . . . . . .. .. ... 29-7
Data Areas . . . . e e e e e oo 299
Controller Descrlpnon e e e e oo e 299
Logical Unit Description . . . . . . . . . . . . . 29-9
Native Control Block . . . . . . . . . . . .. 29-10
Routing Table . . . . . . . . . . . . . . .. 29-10
Lookaside Table . . . . e 29-11
Operation Request Element and Program
OperationBlock . . . . . . . . . . . .. .. 29-1
Function Operation Block . . . . . . . . . . . 29-11
Source/Sink Data Areas . . . . . . . . . . . . 29-11
Structure . . . . . . . . . .. ..o 29-11
SECONDARY STATION I/0 MANAGERS . . . . . . 30-1
Introduction . . . ... . .. .. 30-1
System /38 lnstructlon Support .. . . . . .. . 30-4
SNA Support . . . . . . . . ... ... ... 30-5
I/OSupport . . . . . ... .. ........ 30-8
Error Logging . . . . . . . . . . .. . . . .. 30-9
Data Areas . . . ... .. ... 30-9
Network Archltecture Control Block .. . . . . .. 30-9
Logical Unit Name Table . . . . . . . . . . . 30-10
Mode Table . . . . e 30-10
Half-Session Control Block P 30-10
Conversion Control Block . . . . . . . . . .. 30-10
Structure . . . . . . . . L L. oo 30-11
PRIMARY STATION I/O MANAGER . . . . . . . . . 31-1
Introduction . . S
System /38 Instructnon Support e e e o oo, 31-3

vi

SNA Support
1/0O Support .
Error Logging
Data Areas .
Station Control Block
Routing Table .
3270 Host Field Format Table
Frame Slot
Buffer Control List
Output Request Message
Structure .

SYSTEM CONTROL ADAPTER I/O MANAGER .

Introduction

Data Areas . .
User Message for SCA IOM .
Function Address Table

Structure .

3270 EMULATION MANAGEMENT
Binary Synchronous Communications 1/0
Manager for 3270 Emulation . .
3270 Emulation Translation Function .
Data Areas . .

Operation Request Element

Link Control Block

Service Order Table .

Service Order Table Address Table

Poll/Select List .

Session Line Buffer .
Structure .

X.25 |/0 MANAGER
Introduction
Data Areas . . .
Link Control Block (LCB)
Service Order Table (SOT) .
SOT Address Table .
Request Table
Receive Buffers
Transmit Operation Request Elements (ORES)
Trap Table . . .
Valid Send/Receive Messages
Structure .

SUPERVISOR AND CONTROL FUNCTION . . .

EVENT MANAGEMENT
Introduction
Monitor Event .
Enable Event Monitor .
Disable Event Monitor .
Test Event .
Wait-on-Event .
Retrieve Event Data .
Cancel Event Monitor .
Signal Event .
Modify Process Event Mask
Recovery
Data Areas . .
Monitor Event Template .
Event Index
Signal Event Messages . .
Process Control Block (Nonresndent)
Process Control Block (Resident)

31-4
31-5
31-6
31-6
31-6
31-7
31-8
31-8
31-8
31-8
31-8

32-1
32-1
32-4
32-4
32-5
32-5

33-1



Task Dispatching Element
Structure .

EXCEPTION MANAGEMENT
Introduction
First-Level Exceptlon Handler
Second-Level Exception Handler
Third-Level Exception Handler
Data Areas .
CSEH Request BIock
Structure .

PROCESS MANAGEMENT .
Introduction
Create Process Control Space
Destroy Process Control Space .
Initiate Process . ..
Materialize Process Attnbutes
Modify Process Attributes
Suspend Process .
Terminate Instruction
Resume Process
Terminate Process
Create Task
Destroy Task .
Data Areas . .
Process Control Space
Process Definition Template
Structure .

RESOURCE MANAGEMENT
Introduction
Machine Support Functlons
Object Serialization
Timer Services .
Process Interruption .
Multiprogramming Level Suppon
Resource Management Service Task
Resource Management Attribute Control .
Access Group Control .
Data Areas .
Access Group .
Clock Comparator Data Area (#RMCCDX)
Hold Hash Table
Hold Record Area
Lock/Unlock Input Area . .
Lock-Wait Data Area (#RMLKDX)
Seize/Release Input Area
Seize-Wait Data Area (#RMSZDX)
Structure .

APPENDIX A. COMMON FUNCTION . . . . . . .

Machine-Wide Storage

Destroy Object (#CFDESTO)

Get Space from IWA (#CFGIWA)

Free Space from IWA (#CFFIWA)

Object Checker (#CFOCHKR) .

Report Object on Object Recovery List (#CFLOGRL)

GLOSSARY . . . . . . . . . ..o

»

[ [
NNNN=2 2 -

>r>>>>>

Contents

vii






PURPOSE OF THIS MANUAL

This manual when used with the publications listed
under If You Need More Information is designed to aid
the IBM program support representative (PSR) to isolate
a malfunction in the System/38 vertical microcode
(VMC). It is assumed that the PSR has a thorough
knowledge of the operation of VMC. The intent of this
publication is to provide an overview of the components
in VMC and a description of the functions within VMC
components for recall and review purposes.

ORGANIZATION OF THIS MANUAL

VMC consists of a group of components that implement
the System/38 instruction set and provide various
controls and functions required to support system
operation. This manual contains an introductory section
to VMC, a section for each of the VMC components,
and an appendix that describes the common functions
that cannot be related to a component. The sections
that describe the VMC components are grouped
according to overall system function as described under
Vertical Microcode Overview.

About This Manual

IF YOU NEED MORE INFORMATION

This manual should be used with the following
publications:

« IBM System/38 Functional Concepts Manual,
GA21-9330

« IBM System/38 Functional Reference Manual,
Volumes 1 and 2, GA21-9331, GA21-9800

o IBM System/38 Internal Microprogramming
Instructions, Formats, and Functions Reference Manual,
SC21-9037

« IBM System/38 Diagnostic Aids, SY21-0584

« IBM System/38 Service Guide, SY31-0523

« IBM System/38 System Control Adapter
Theory-Maintenance, SY31-0527

About This Manual ix






Vertical microcode (VMC) consists of a set of routines
that implement the machine instruction set and provide
various controls and functions required to accomplish a
user or system task. The operations of some VMC
functions, such as those that implement machine
instructions, are visible to the user. Other VMC
functions, such as those that manage the use of main

and auxiliary storage, are not directly visible to the user.

The primary functions of VMC are categorized as
follows:

- Data Function: Those routines that provide
manipulation of user data.

» Internal Machine Function: Those routines that
manage main and auxiliary storage and manipulate
the internal indexes used by other VMC functions.

» Machine Support Function: Those routines that
configure, initialize, and terminate machine
processing.

« Object Function: Those routines that control
addressability and access to objects.

Vertical Microcode Overview

- Program Control Function: Those routines that put a
user program template into executable form and
initialize the program prior to its execution.

« Source/Sink Function: Those routines that process
operations involving input/output devices.

» Supervisor and Control Function: Those routines that
establish a process and monitor the execution of
processes.

» Common Function: Those routines that perform a
variety of operations as required by other VMC and
system functions.

The modules that perform these functions are grouped
into sets that provide support in a specialized area.
These sets of modules are called components. The
VMC functions and their components are shown in
Figure O-1.

Vertical Microcode Overview 0-1



Function Component
Data Commit Management
Data Base Management
Independent Index Management
Journal Management
Queue Management
Space Object Management
Internal Auxiliary Storage Management (ASM)
Machine Main Storage Management (MSM)
Machine Index Management
Machine Initialization/ Termination Management
Support Machine Check Management
Machine Observation Management
| Service and Installation Management
Object Authorization Management
Context Management
Recovery Initialization
Program Program Execution Management
Control Program Management
Source/ Advanced Program-To-Program
Sink Communications Station 1/0

Manager (IOM)
Binary Synchronous Communications
I/0 Manager (IOM)
Channel 1/0 Management (IOM)
Error Log
Instruction Processors
Local 1/0 Managers {IOMs)
Load/Dump Management
Machine Services Control Point (MSCP)
MULTI-LEAVING Telecommunications
Access Method |1/0 Manager (I0M)
Native 1/0 Management (IOM)
Primary Station 1/0 Management (IOM)
Secondary Station and Synchronous
Data Link Control I/O Management
(IOM)
Synchronous Data Link Control
1/0 Manager {IOM)
X.25 Communications
/O Manager
System Control Adapter |/O
Management (SCA I0M)
, 3270 Emulation Management

Supervisor lEvent Management

and Control Exception Management
Process Management
Resource Management

Figure 0-1. Functions and Components in VMC

0-2

DATA FUNCTION

Commit Management

Commit management provides the capability to group
changes to an object or set of objects within one
process so the changes appear to be made
simultaneously even if a system or process failure
occurs before all changes are made.

Additional capability of commit management is to
withdraw changes from an object or set of objects
within one process and reposition the cursors to the last
point where changes were committed.

Data Base Management

Data base management functions store, retrieve, update
and delete data in the data base.

A data base is an area where online user data is stored
and organized. Data base management functions
manipulate user data and provide multiple views of the
data.

Multiple views of the same data can be provided for
different applications. These functions also provide for
the integrity and security of data. Security is provided
through the supported interfaces and authorization
management of user access to the data. Integrity is
provided through enforcing user-defined field
descriptions.

Data stored in a data base is contained in system
objects called data spaces. Each record within a data
space is called an entry. All entries within a given data
space have the same format. An entry can consist of a
single field or an ordered collection of fields. Entries in
a data space can be accessed in the sequence that they
were added to the data space or in a sequence using
keys.

A data space index is a system object used to access
one or more data spaces through keys. A single index
can cover multiple data spaces. The key can be either
one field of an entry or multiple fields of an entry as
specified by the user.



A cursor is a system object used to provide
addressability into a data space. A cursor also provides
mapping tables used to provide multiple views of the
entries in a data space.

Independent Index Management

Independent index management uses a system object
called an independent index. Independent indexes
provide a means of storing and retrieving data by
content and relative order. Independent index
management supports the instructions used to insert,
delete, and find index entries according to a variety of
rules associated with the instructions.

Journal Management

Journal management is used to record changes made to
an object along with descriptive information about the
object. These changes may be simultaneously recorded
on two journal spaces so, if one journal space is
damaged, the information can be retrieved from the
undamaged journal space. The journal, which consists
of the journal port and the journal space(s), and the
journaled object are automatically synchronized during
IPL. This also synchronizes the journaled object with all
other objects being journaled through the same journal
port.

The user can place entries on the journal space, along
with the entries for object changes, and retrieve the
entries by a variety of search criterias.

Queue Management

Queue management allows concurrently executing
processes to pass information among the processes.

A queue provides a common object that one or more
processes can send information to and receive
information from. Information sent to a queue is
contained in a message. The sending operation is an
enqueue operation. The operation that attempts to
remove a message from a queue is a dequeue
operation. Queues can accept a message that contains
a key used to identify or sequence the messages.

Messages can be processed in first-in-first-out,
last-in-first-out, or keyed sequence. Two basic types of
dequeue operations are supported:

« Dequeue
+ Dequeue or branch

Processes issuing a dequeue operation are placed in a
wait state if the queue is empty or if there are no
messages of the specified key on the queue. The
dequeue or branch operation allows a process to
continue processing at a specified point if no message is
received from the queue. A process can specify a limit
to the length of time it is to wait on a queue for a
message. When multiple processes are waiting on a
queue for a message, the message is given only to the
first process that accepts it.

Space Object Management

Space object management provides the function used to
create, materialize, modify, and destroy space objects.
Space objects are used to contain any type of data.
Certain special spaces are related to the execution of
user programs. The spaces are explicitly created just as
any other object, but are processed in unique ways by
program execution management. Explicit creation occurs
when an executing program issues a Create Space
Object instruction.

A space object can be extended, truncated, copied,
initialized, suspended, and destroyed through
System/38 instructions. Space object attributes can be
materialized and modified.

Vertical Microcode Overview 0-3



INTERNAL MACHINE FUNCTION

Storage Management {Auxiliary and Main)

Storage management enables a program to access
another program, VMC data object, and other user
objects as if they were residing in a single address
space. The space is addressable through 6-byte virtual
addresses. The programs and objects are permanently
stored on auxiliary storage that consists of
nonremovable disk units. These programs and objects
can be executed or manipulated only when they (or a
portion of the programs and objects} are in main
storage. Storage management allocates and maintains
data on auxiliary storage and provides copies of this
data in main storage as required.

Storage management consists of two components:

« Auxiliary storage management (ASM) that allocates
storage, maintains directories, and maps virtual
addresses to auxiliary storage locations. ASM also
manages space allocation for access groups.

« Main storage management (MSM} that transfers data
(including access groups) to and from main storage
and manages storage resources {pages).

Storage management services such as page transfers,
access group manipulations, and partitioning of storage
into storage pools are invoked by the resource
management routines.

Following are the units of storage used by storage
management:

Page: A 512-bvte block of storage. This is the basic
unit for storage management operations.

Sector: A 520-byte auxiliary storage record that
contains a page and an 8-byte storage management
header.

Segment: A contiguous address space that contains up
to 128 pages (64 K bytes).

Segment Group: An address space that can contain up
to 256 consecutive segments (16 MB).

There are two types of segment groups:

« Permanent: A segment group that exists until it is
explicitly destroyed.

« Temporary: A segment group that is automatically
destroyed at initial microprogram load (IMPL).

Access Group: An access group is a system object that
collects temporary objects into a group that can be
operated on as a single unit by storage management.
An access group is created with a segment identifier
and is allocated a block of contiguous space on auxiliary
storage. Other system objects can be allocated within
this block, each object having an identifier allowing each
object to be accessed individually. However, special
directory information enables storage management to
transfer all objects within the access group to and from
main storage as a single unit.

Virtual Storage Addressing

Several different types of addresses exist in the
System/38. The machine processor supports only a
6-byte address that contains the following:

« Segment identifier (4 bytes)

« Qffset into the segment (2 bytes}

VMC views this address as follows:

« Segment group identifier (3 bytes}

« Offset into the segment group (3 bytes)

Because the machine processor supports only a 2-byte
offset, VMC must process overflows into the segment
identifier. This is done explicitly by calculating the offset
or implicitly by invoking the effective address overflow
exception handler.

One bit of the segment group identifier indicates if the
segment group is permanent or temporary. A second bit
indicates if the segment group is allocated within an
access group. The remaining 22 bits are used to identify
the segment group.



When a segment group is created, storage management
assigns an 8-byte address to the new segment group.
This address consists of the following:

« Segment group extender (2 bytes)
« Segment group identifier (3 bytes)
« Offset into the segment group (3 bytes)

The segment group extender is a 2-byte extension to
the 6-byte VMC address. The extender together with
the 3-byte segment group number forms a 5-byte
identifier that is assigned only once during the life of the
machine. The 3-byte segment group identifiers are
assigned sequentially until hex 3FFO00, at which time
the segment group extender is incremented and the
address regeneration routine must be executed. At any
one time, each 3-byte segment group identifier in the
system is unique, although once the corresponding
segment group is destroyed, the identifier is available for
reassignment.

The segment group extender is used only by VMC
routines. When an object is accessed by a pointer
instruction, the extender in the object header is
compared with the extender in the 16-byte system
pointer. If they do not match, the pointer is invalid (the
pointer in this case is an old pointer to a destroyed
segment with a reassigned segment identifier). The
extender is not used for internal VMC addresses
because these addresses are checked for validity and
written with a special identifier if they are no longer in
use.

Each segment group in main storage begins with a
32-byte header. The contents of this header are as
follows:

« Segment group type (1 byte)

Flag byte (1 byte)

« Size (2 bytes)

« Extender (2 bytes)

- Object base segment address (6 bytes)
+ Reserved (14 bytes)

« Space locator (6 bytes)

The flag contains the object existence bit. This bit is
used to reclaim unused storage if a system failure
occurs when an object is being created. The existence
bit is set to O by a create segment operation. Any
module that invokes the create segment group function
to create a permanent object sets this bit to 1 and
writes the first page of the object to auxiliary storage
after the object is created. Any module that creates a
temporary object also sets this bit to 1 but does not
write the object to auxiliary storage because temporary
objects are not recovered after a system failure. As part
of recovery after a system failure, any segment group
that does not have the existence bit set to 1 is
destroyed.

As part of object creation, the creating module also
stores the address of the primary segment group of an
object in the header of each segment group of the
object. An object that consists of a single segment
group points to itself. As a part of the reclaim function,
any segment group that points to a nonexistent primary
object is also destroyed. This ensures that all segments
of a multisegment object are destroyed in the event of a
system failure that occurred during object creation.

Vertical Microcode Overview 0-5



Machine Index Management

Machine index management provides an indexing
function that is used by other VMC components.
Machine indexes consist of binary radix trees that are
used to store and retrieve data. Machine index
management provides a variety of functions that allow
other VMC components to insert, retrieve, and remove
entries from a machine index.

MACHINE SUPPORT FUNCTION

Initialization/Termination Management

The initialization function of VMC is used to put the
system into a state in which instructions can be
executed. The IMPL function is activated using the
machine power-on sequence or the system console.
Once the machine has been initialized, the
machine-to-programming transition function provides
the user of the machine interface with the capability of
initiating a user process. User processes can be initiated
from the data that exists either on the primary
load/dump device or within the machine on auxiliary
storage.

The terminate machine processing function provides the
user of the machine interface with the capability of
destroying all processes in the machine and of either
turning off the machine power or putting the machine
into a checked-stop state.

0-6

Machine Check Management

Machine check management provides the functions that
report machine malfunctions to the machine interface
through function check exception, machine check
exceptions, and machine check events. The functions
performed in machine check management are as
follows:

« Initiate recovery where possible

« Record machine malfunctions

« Signal malfunctions to the machine interface
« Signal that machine execution is terminated

When a malfunction occurs, the machine saves related
data, reactivates the user processes that were active at
the time of the failure, and signals the malfunction to
the machine interface as an exception or an event.
Execution of the instruction in progress at the time of
the machine check does not complete and the user
handles the exception in the same manner as any other
exception.

If the malfunction is unrecoverable, machine execution
terminates and indicators on the operator/service panel
come on to indicate the condition.

A process must monitor the function or machine check
exception if the process is to be notified of either a
function or a machine check that occurred in the
execution of a System/38 instruction.

Machine Observation Management

Machine observation management provides the
functions to observe the activity of the machine.
Observation is provided at the machine interface through
the use of trace and materialize instructions. These
instructions can monitor the execution of programs and
observe the execution of System/38 instructions.



The functions provided by machine observation
management are as follows:

» Trace the execution sequence of a user process by
monitoring calls and returns.

» Trace the execution sequence of a user program by
monitoring instruction execution.

« Materialize the addressability of pointers.
« Materialize information about system pointers.

« Materialize the current assignment of program
objects.

« Materialize the location of pointers in a space.

Service and Installation Management

Service and installation management is used in problem
determination and to modify or configure the machine
attributes. The functions provided are as follows:

Display/alter/dump

» Virtual storage stand-alone dump

« VMC trace

« Print stand-alone dump

« Address stop/instruction step

« Machine configuration update facility
» Auxiliary storage initialization

» Link/loader

« VMC error log facilities

Refer to the System/38 Diagnostic Aids manual for
information concerning the use of these functions.

OBJECT FUNCTION

Authorization Management

Authorization management provides the functions
defined through the machine interface to control the use
of user objects, system resources, and privileged
System /38 instructions.

A user profile is the collection point for authorization
related information that is defined at the machine
interface and monitored by VMC. Security functions
provided above the machine interface are monitored by
VMC.

Every process in the system executes under control of a
user profile. This allows both VMC and Control Program
Facility (CPF) to monitor the activities of each executing
process. The information in the user profile sets limits
as to what the executing process can and cannot do. A
given user profile can be unique to one user or can be
shared among several users.

Context Management

Context management is used to store addressability to
objects in the system and to transform a reference by a
symbolic name into an address. Addressability to a
system object can be placed in a context such that the
context can be used to locate the system object using a
symbolic address. The symbolic address of an object
used for context addressing consists of an object type,
subtype, and name. The symbolic address of each
object addressed by a single context must be a unique
address within that context.

Recovery Initialization

Recovery initialization is a recovery common function
used by VMC components to recover objects at IMPL
time. Recovery initialization builds a machine index with
an entry for every base segment of an object and every
secondary segment for multiple segment objects.
Recovery initialization also builds an index containing
every user profile. This index is used by authority
initialization. Recovery object read does selective finds
on the base segment index allowing base segments
and/or secondary segments to be retrieved by object
type or secondary segment type.

Vertical Microcode Overview 0-7



PROGRAM CONTROL FUNCTION

Program Execution Management

Program execution management controls the
synchronous execution of instructions within translated
programs. This is accomplished through a call/return
instruction set that standardizes interprogram linkages
and allows applications to be built from a combination
of high-level language programs, compiled control
language programs, and programs coded using the
System/38 instruction set (program templates).

The Call and Return instructions provide a common
linkage convention (saving and restoring of registers,
and so on) between any compiled high-level language
program, compiled control language programs, and
program templates. Because high-level languages and
control language programs are compiled into a program
template, their calls and returns are compiled into a
common call/return interface. Call and Return
instructions are the only means of transferring control
between separate (external) programs within a process;
control can be transferred between inline (internal)

programs using other instructions (Branch, Call Internal).

Program activation consists of putting the program into
an executable state within a process. The results of
program activation are the allocation and initialization of
static storage areas in the program. Program invocation
causes the flow of control within the process to be
passed to the entry point of the instruction stream
where execution is to begin. The results of program
invocation are the suspension of the execution of the
invoking program and the allocation and initialization of
the automatic storage defined in the invoked program.

0-8

Program execution management also provides a program
activation function. An activation is a logical copy of the
static objects of a program. An activation is established
explicitly by an Activate Program instruction and
implicitly during the invocation of a program that has not
been activated.

The logical objects in an invocation include activation
addressability, automatic object (program objects
allocated at invocation and deallocated at return),
exception handling specifications, and the call/return
relationship specifications. Invocations are created
through a call, transfer control, event detection,
exception detection, initial program in a process phase,
or a data base user exit program.

Program Management

Program management provides the functions that are
used to create executable programs, materialize the
attributes of a created program, and destroy created
programs. The create function consists of converting the
program template that is received through the machine
interface into a form that is executable in the system.
This function, called translation or encapsulation, syntax
checks the program template, generates a system object
called a program, returns diagnostic information as
required, and returns a system pointer to the generated
program system object.

The materialize function returns a copy of the input
program template. The destroy function removes
addressability to the created program and frees the
resources associated with the program to be destroyed.

J



SOURCE/SINK FUNCTION

Instruction Processors
Instruction processors provide support for the
System/38 instructions that operate on the following

objects:

Logical unit descriptions (LUDs)

« Controller descriptions (CDs)

Network descriptions (NDs)

Request |/O response queue

These processors support instructions that create,
materialize, modify, and destroy the preceding objects
and the Request |/O instruction.

Machine Services Control Point

Machine services control point (MSCP) supports other
source/sink functions by allocating and controlling all
source/sink resources. Services include establishing
physical and logical paths over which a user can
communicate with an input/output device, allocating
queues, and creating the tasks necessary to establish a
session with a device.

1/0 Managers

/0 managers (IOMs) interface with the horizontal
microcode (HMC) tasks associated with the physically
attached 1/0 devices. IOMs are either device or
function-dependent and execute as VMC tasks. Both
the routines and the tasks under which they execute are
referred to as IOMs. There is an IOM for each 1/0
device or 1/0 hardware capability as follows:

« Binary synchronous communications |IOM (for binary
synchronous communications lines)

« Channel IOM (internal)
« Error log (internal)

« Synchronous data link control primary line IOM (for
synchronous data link control communications lines)

« Synchronous data link control secondary line IOM (for
synchronous data link control communications lines)

- Local IOM (for console, printer, card, diskette, and
tape devices)

« Load/dump (for load/dump operations)

« MULTI-LEAVING telecommunications access method
IOM

« Native IOM (for locally attached work stations)
« Synchronous data link control secondary or APPC
station |IOM (for systems network architecture

[SNA])

+ Synchronous data link control primary station [OM
(for remotely attached work stations)

- System control adapter IOM (internal)

Vertical Microcode Overview 0-9



Source/Sink Data Areas

Source/sink components use several common data
areas for communications with other components. A
description of these areas is provided here instead of
with the individual source/sink components to eliminate
duplication.

Machine Configuration Record (MCR): The MCR contains
information about the physical devices that are |ocally
attached on a given machine. The MCR is built during
machine manufacture and is updated whenever devices
are installed or removed from the system. Source/sink
components use the MCR to determine how such fixed
resources as |/O registers and channel priority are
allocated to the devices. The MCR resides in a
preallocated segment built at installation time.

Source/Sink Active Device List: The source/sink active
device list is a dynamically built control block used and
controlled by the MSCP. It contains information about
the current status of all active devices. It is also used to
record the allocation of system resources such as tasks,
queues, and switched network lines. The source/sink
active device list has a base that resides in a
preallocated segment built at installation time.

Source/Sink OU/ND Table: The source/sink OU/ND
table is a control block used by the source/sink
instruction processors to keep track of how many NDs
axist for each QU and which ND(s) are varied on or in
diagnostic mode. The Create ND instruction uses the
table to determine if another ND can be created. The
Modify ND instruction uses the table to check if an ND
can be varied on or set in diagnostic mode. During
IMPL the table is built in a temporary segment, and its
address is placed in the source/sink active device list.

Feedback Record: The feedback record is the message
that is enqueued to the appropriate user response queue
to signal the completion of a function that had been
initiated by a Request 1/0 instruction. It contains a
return code or status indicators as well as
device-dependent data generated in response to the
associated request.

{OM Queue: Each 10OM has a single input queue on
which it receives requests to do work by Request |/0
instructions, responses from the operational unit (OU)
task, and control messages from other source
components. An IOM queuse is allocated when the
corresponding IOM task is created and is always used
exclusively by that IOM task.

Operational Unit (OU) Queue: An OU queus is the input
queue on which an operational unit microtask raceives
operation request elements (OREs) from the |[OM. Each
OU queue serves a specific OU task.

Queue Control Table (QCT): The QCT is a data structure
in the machine nucleus that provides information to the
table-driven OU task. A QCT exists for each OU in the
system. The QCT contains the | /O register assignmants
for the device and dynamic information to control the
OU task {for example, wait for tha device to complete,
get the next command, and terminate the current
request). QCTs for all devices are allocated and built
from information in the MCR at link /load time.

Operation Request Element (ORE): An ORE is a

send /receive message used to request services from an
OU task. An ORE is built by an IO0M and sent to an OU
queue. Functions requested include channel operations,
requests to be sent to the device adapter, and control
information.

Send /Receive Messages (SRM): An SRM is a general
term for all the messages sent between the components
that support the source/sink function, An ORE is an
example of one of these message types.



SUPERVISOR AND CONTROL FUNCTION

Event Management

Event management provides the functions that enable a
user to monitor for the occurrence of a set of events
and to take action based on the event or events that
occurred.

Events relate to and define occurrences that happen
within the machine. These events can be of importance
to a particular user application. Event management
allows a process to monitor for an event. The activity
being monitored can represent conditions both internal
and external to the monitoring process. That is, one
process can be monitoring conditions caused by the
same process or by other processes that can be
concurrently in the system.

Events are classed as machine-wide or process-only.
When a machine-wide event is signaled, an event
monitor index is searched to locate the processes that
are monitoring for the event. The process establishes a
monitor for an event before the event occurs when a
process-only event is signaled.

Events can be signaled either from a user process or
from the machine. User signaled events are generated
as a result of the System/38 Signal Event instruction.
These events are defined outside the scope of the
hardware and have no meaning to the hardware.
Monitoring of these events is based on user protocol.

Machine events are defined as part of the machine and
are detected and signaled by the machine. Machine
events are classed as either object-related or
machine-related. Object-related events are signaled
when an object has been created or destroyed, or when
the attributes of an object are modified.
Machine-related events are signaled when conditions
occur in the machine that are not directly related to a
system object (for example, machine resource limit
exceeded).

The intention to monitor for the occurrence of an event
is specified by establishing an event monitor within a
process. Event monitors describe to the machine what
event or condition is to be monitored and the action that
is to be performed when the event occurs.

Exception Management

Exception management provides the functions that
enable a user to monitor for the occurrence of an
exception and to process an exception when one occurs.

Exceptions are either errors that are detected by the
machine or conditions that are detected by user
programs. Exceptions detected by the machine occur as
a result of the execution of a System/38 instruction and
are signaled implicitly. Exceptions detected by a user
program occur as a result of some condition detected
within the program and are signaled explicitly by using
the Signal Exception instruction.

Exceptions are monitored through an exception
description. An exception description is a program
object that defines the exceptions that are to be
monitored and the action that is to be performed when
the exception occurs.

Process Management

Process management supports the structure that enables
the concurrent processing of work in the System/38.
This structure, called a process, enables programs to be
executed.

Process management initiates and terminates processes,
displays and modifies the attributes of processes, and
suspends and resumes the execution of processes. A
process can be independent or a subprocess
(dependent).

Vertical Microcode Overview 0-11



A user process is built as a result of an Initiate Process
instruction. This process is assembled from information
contained in the process definition template (PDT). The
main part of a process is the process control space
(PCS) that is created as a result of a Create Process
Control Space instruction. When a process is initiated, a
task dispatching element (TDE) is built on the first PCS
segment.

A process control block (PCB) is then built. The PCB
describes the process and is built in two parts. A
resident PCB is built in the first PCS segment. The
resident PCB contains fields that may have to be
referenced asynchronously by other processes. The
remainder of the PCB is built in the second segment.

The process invocation work area is then built in the
second segment following the PCB. The process
invocation work area is a block of storage, managed by
VMC as a stack, that is used for automatic storage
required by VMC routines and for the invocation control
blocks for all current program invocations under an
executing process.

A user process is the basic unit (task) of dispatchable
work in the system. Two other types of tasks exist in
the system:

« A microtask that executes HMC instructions. Such
tasks are normally associated with 1/0 devices.

« A VMC task that is created to perform work
asynchronous to user operations.

The microtask and VMC task are also supported by
process management.

Resource Management

Resource management controls the allocation and
management of the resources required during the
execution of processes in the system and calculates the
amounts of resources used by the processes. Resource
management controls the following types of resources:

» Storage
« Processor
« System objects (such as devices and data space)

Because several processes can be executing
concurrently (multiprogramming), the resources must be
controlled to manage contention for the use of resources
among the executing processes. Based on limits
established by the system administrator for the
processes in the system, resource management grants
the resources requested by processes within the limits
and priorities defined for a user environment.

Resource management can be viewed from several
levels. To the user above the machine interface,
resource management allocates objects to application
programs, provides storage and processor usage as
needed, and ensures the integrity of data and the
execution environment. To the CPF or the user control
program, resource management supports scheduling,
allocations, and the execution of processes. Within
VMC, resource management performs the immediate
distribution of resources to efficiently satisfy processing
demands.

J



Resource management is accomplished through control
and monitoring functions. Control functions are provided
through:

+ System/38 instructions that:
— Specifically request the allocation of resources
(locking instructions)
— Control the overall level of work in the system and
distribute the resources (modify instruction)
— Provide better use of storage resources (access
group and access state instruction)

« Process attributes that:
— Affect the distribution of resources
— Limit the use of resources

« Obiject attributes that affect the performance of the
users of the object

Monitoring functions are provided through:

« System/38 instructions that provide information on
the use of and contention for resources
{materialization instructions)

« Process attributes that provide information relative to
the use and allocation of resources for a process

« Machine events that indicate that a user has
exceeded the specified resource limit

+ Exceptions that indicate that a resource is not
available or that the use of a resource has exceeded
a specified limit

COMMON FUNCTION

Common function modules provide a variety of functions
for the VMC components. Most common function
modules that perform functions that are directly related
to an existing VMC component are described within that
component. Common function modules that cannot be
directly related to a VMC component are described in
Appendix A of this manual. Refer to the Contents for a
list of the functions described in the appendix.

Vertical Microcode Overview 0-13



Relationship of Components

VMC components are made operational as a result of an
alternate IMPL or an IMPL operation. The alternate
IMPL operation is a stand-alone operation that is used
to load the IMPL functions into the system from an
external device. Once the alternate IMPL operation is
complete, the IMPL functions can be initiated to make
the system operational.

Note: For a detailed description of the alternate IMPL
and IMPL operations, refer to the System/38 System
Control Adapter Theory-Maintenance manual.

Alternate IMPL

The purpose of an altemate IMPL operation is to read
the contents of a diskette magazine, execute the test
and load operations contained on the diskette magazine,
initialize certain areas of main and auxiliary storage, and
establish a system capable of executing some functions.
This is accomplished by selecting alternate IMPL on the
rotary switches on the service panel and starting a load
operation. This starts the execution of some microcode
instructions that are stored in read-only storage of the
system control adapter {SCA). These microcode
instructions cause the directory information, test
procedure, load procedures, and other microcode
procedures to be stored or executed in the system as
appropriate.

When the SCA microcode has completed, the service
monitor and the resident portion of the HMC are loaded
in the system. At this point, the system is capable of
executing some diagnostic functions and a set of VMC
functions. The VMC functions that can be executed
consist mainly of the following:

» MCR update: This function provides the capability of
maodifying the MCR. The MCR defines the hardware
configuration of a system.

» Auxiliary storage initialization: This function initializes
auxiliary storage and builds the storage management
directory used to map auxiliary storage space.

« Link/loader: This function copies the microcode from
the diskette magazine to the area reserved for this
code during auxiliary storage initialization.

Internal Microprogram Load

The operation of IMPL is similar to alternate IMPL
except that the VMC nucleus is loaded instead of the
service monitor, and that the system is capable of
executing the System/38 instruction set at the end of
initialization.

Figure 0-2 shows a logical view of the main areas in the
VMC nucleus. The figure also shows that the task
dispatching queue (TDQ) contains a task dispatching
element {TDE} for storage management initialization. At
the end of the IMPL sequence, HMC dispatches this
queue and control is passed to the storage management
initialization routines. When these routines have
completed execution, VMC is fully functional and
capable of supporting the Systermn/38 instruction set.

J



TDCQ

TDE

Available CRE Queue [ACQ)

[ call Return Elements (CREs) |

p—

Queue Control Table

HMC Processor Overlay

Hold Hash Table

SVL Table

SVL Function 1
SVL Function 2

SVL Function n

1/0 Event Stack

Interval Timer Counter

Clock Comparator Counter

Hash Table

Primary Directory

Available TDEs

Resource Management (resident)

Storage Management (resident)

Figure 0-2. VMC Nucleus

These areas
are required
for HMC
instruction
execution.

Vaertical Microcode and the System/38 Instruction
Set

Vertical microcode consists of the following:

« A component that converts the System/38
instructions in a user program into executable form

« A group of components that interpretively execute
portions of a user program

« A group of components that provide supervisory and
support functions

The components of VMC implement the System/38
instruction set in a manner similar to that of the
microcode in conventional systems. In the System/38,
however, VMC must first convert the System/38
instructions into internal microprogram instructions. The
internal microprogram instructions, in turn, cause the
HMC and the hardware to execute the functions that
were requested in a user program.

Figure 0-3 shows an example of what could take place
when a user program is executed on the system. Notice
that the VMC components are between the machine
interface and the HMC and the hardware. Also note
that the functions below the machine interface are
transparent to the user programmer.

First, the user program must be converted from
System /38 instructions into internal microprogram
instructions. This is accomplished by the translator, a
function of program management. This conversion is
also called encapsulation. Next, the program must be
made ready for execution. This is accomplished by
activating, then invoking, the program. Activation
initializes the static storage areas used by the program,
and is initiated either by the Activate Program instruction
or implicitly by an invocation. Invocation causes the
automatic storage areas used by the program to be
initialized and the program to be executed. Activation
and invocation are performed by program execution
management.

Vertical Microcode Overview 0-15



User Program

Request 1/0

Set Cursor

Retrieve Data Space Entry

Translator
User
Process

SVL (request 1/0O)

-

/_ (page fault)
SVL (set cursor)

SVL (retrieve)

Horizontal Microcode

\_____/

1/0 Device

-

c

Machine Interface

Source/Sink Management

1/0 Manager

Co—

)

Data Base Management

L]

Set Cursor
Function

Retrieve Data
Space Entry
Function

Storage Manageme

Page Fault
Handler

nt

Figure 0-3. Program Execution



Program execution occurs in an environment called a
process. Processes are similar to tasks on other
systems. Several processes can be executing
concurrently in the system; the execution of these
processes is controlled by process and resource
management. The processes can also be competing
with each other for system resources (for example,
storage or processor time); these resources are allocated
and controlled by resource management.

A program, during its execution, may require the use of
one of the interpretive VMC functions. For example, a
program may need data from an 1/0 device. When this
program was encapsulated, internal microprogram
instructions were inserted into the instruction stream.
These internal microprogram instructions establish the
supervisor linkage (SVL) to the VMC code that
processes the Request |/0 instruction.

Figure 0-4 shows an example of a Request I/0
operation. The Request 1/0 instruction processor
analyzes the request, and builds and sends a message
to the appropriate IOM. The IOM is a VMC task
executing device-dependent code to service a specific
1/0 device. When the |IOM is ready to accept more
work, the request |/O message is dequeued from the
IOM queue and processed. The IOM generates the
specific device commands necessary to perform the
requested functions and sends an ORE to the OU task.
The OU task consists of the HMC functions required to
interface to the channel hardware to start an 1/0
operation to the device. When the device completes the
operation, the OU task puts the completion status in the
ORE and sends it back to the IOM queue. The IOM in
turn sends a feedback record to the response queue
indicating that asynchronous processing of the 1/0
request is completed.

User Program

Machine Interface

| | User Process
Response
Queue
Request |/0
Instruction Processor
‘J/— IOM
¥ .
input *
Queue
f—_—————————e— e ————— HMC
'| L | OU Task
Input /.
Queue ~ :
1

I/0 Device

Figure 0-4. 1/0 Operation

Vertical Microcode Overview 0-17



Because the /0 functions operate asynchronously, the
user program can continue executing after it issues the
Request |/0 instruction. Before using the data areas
associated with the |/O request, it is necessary to
dequeue the feedback record to assure the
asynchronous 1/0 processing is complete. At any time
during execution of a program, reference can be made
to either executable code or data at a virtual address
that is not in main storage. In this case, storage
management receives control through an internal
microprogram exception that was generated as a result
of the page fault. Storage management executes the
necessary functions to transfer the data from auxiliary
storage. 1/0Q operations to auxiliary storage files are
controlled entirely by storage management. They do not
use the source/sink or IOM support. When storage
management has completed the operation of bringing
the referenced virtual storage into main storage, the user
program continues executing. The user is not aware of
the paging operation and can assume all allocated
storage is directly accessible to the program.



Commit Management

INTRODUCTION

Commit management provides the capability to group
changes (commit) to an object or set of objects within
one process so the changes appear to be made
simultaneously. This is guaranteed even if a system or
process failure occurs before all changes are made. If a
system or process fails, any group of incomplete
{uncommitted) changes are automatically withdrawn
from the object(s).

Commit management also provides the additional
capability to withdraw {(decommit) changes made to an
object or set of objects within one process and
reposition the cursors to the positions prior to where the
group of changes were withdrawn.

Commit management supports the following System/38
instructions:

« Commit

« Create Commit Block

« Decommit

« Destroy Commit Block

« Materialize Commit Block Attributes

« Modify Commit Block

Data Function

Transactions Under Commitment Control

A transaction under commitment control starts with the
access of the data base by a cursor and ends with the
execution of either a Commit or a Decommit instruction.
If neither of these instructions are executed because of
a program or system failure, decommit is assumed and
any changes to the data base made by the transaction
are withdrawn.

When a transaction ends with the execution of a
Commit instruction, the results are:

« All data space index keys reserved during the
transaction are freed.

« All record locks held during the transaction are freed.

« All changed records are made available for further
updates.

When a transaction ends with the execution of a
Decommit instruction, the results are:

« All changes made by the transaction are withdrawn.

« All data space index keys reserved during the
transaction are freed.

« All record locks held during the transaction are freed.
« All records are made available for updating.

« All cursors under commitment control are reset to the
position they had at the start of the commit cycle.

If a program or system failure occurs, decommit is

implicitly performed as part of process termination or as
part of a subsequent IMPL.

Commit Management 1-1



Changes Under Commitment Control

Changes made under commitment control are not held
until the end of the transaction but are applied
immediately to the data base.

The commit block and all data spaces that are changed
under commitment control must be journaled to the
same journal port. The images of the records before
they are changed are always journaled. If it is necessary
to withdraw a transaction, the image of the records
before they are changed are placed back in the data
base.

Record Locking

All records that are changed or added to by a
transaction are locked until the transaction completes. In
addition, locks can be optionally held until the
transaction is complete on all records accessed by the
transaction regardless of whether the records are
changed. This prevents the record from being changed
by another transaction during the duration of this
transaction.

Data Space Index

For unique data space indexes, any key removed by a
transaction is reserved until that transaction is
completed. While a key is reserved, no other transaction
can add that key to the data space index. This allows all
transactions to be withdrawn at any time prior to
executing a Cormmit instruction.

1-2

IMPL Recovery

The IMPL recovery for commit is actually a cooperative
effort of three VMC components, data base, journal, and
commit. The sequence performed in IMPL recovery is
as follows:

1. The data base component recovers data spaces
and data space indexes.

2. The journal component recovers journal ports and
journal spaces.

3. The journal component, module #JOISYNC,
synchronizes the journaled objects with their
journal ports. The synchronization is accomplished
by scanning the journal spaces and, for each
journal entry, calling the component that controls
the journaled object to verify that the change to
the object {represented by the journal entry) is
present in the object.

4.  The commit component, module #COINIT1, scans
the attached commit block table and, for each
commit block:

a. validates the fields in the commit block

b. decommits any uncommitted changes

c. places an entry on the object recovery list
giving the stetus of each commit block

5. The data base component recovers the data
spaces that were affected during IMPL recovery by
the journal and commit components.

6. The commit component, module, #COINIT2,
initializes the attached commit block table.

J



System/38 Instruction Support
Commit

The Commit instruction processor (#COCOMIT) is
invoked by the supervisor link (SVL) router as a result of
a Commit instruction. #COCOMIT places a commit entry
containing a description of the commit on the journal
and decreases the journal in-use counter. The commit
description is also placed in the commit block. Any data
space index keys that were reserved for the commit
block are removed and any data space entry locks held
by the commit block are released along with the data
space entry locks held by all cursors under commitment
control. For any data space that had its in-use count in
the data base in-use table increased during this commit
cycle, the in-use count is decreased. Any data space
previously locked by a Commit instruction for shared
update is released.

Create Commit Block

The Create Commit Block instruction processor
(#COCRCOB) is invoked by the SVL router as a result of
a Create Commit Block instruction. #COCRCOB creates
a permanent object called a commit block. The commit
block contains information concerning the changes to
objects under control of commit management. Some of
the data contained in the commit block can be
materialized through the Materialize Commit Block
Attributes instruction.

Decommit

The Decommit instruction processor {#CODCMIT) is
invoked by the SVL router as a result of a Decommit
instruction. When #CODCMIT is invoked, all
uncommitted changes are withdrawn from the object
causing all data space images to be restored to their
previous state. All indexes are simultaneously
maintained. If the previous state of the index cannot be
achieved, the index is invalidated and the decommit
cycle continues.

The changes necessary to perform the Decommit
instruction are journaled with an entry subtype indicating
the change is because of a Decommit instruction. A
decommit entry is then placed on the journal. This entry
contains the decommit status. Any data space index
keys that were reserved to this commit block are
removed.

The data space entry locks held by the commit block
and all cursors under commitment control are released.

The position of the cursors under commitment control is
reset to the position the cursors had when the commit
cycle started (when the start commit entry was
journaled). Cursors that were placed under commitment
control after the commit cycle started are reset to the
position they had when placed under commitment
control. Cursors that were removed from commitment
control before the decommit cycle are not repositioned.

Each data space modified by the Decommit instruction
is forced to auxiliary storage. For each data space that
had its in-use count increased during this commit cycle,
the count is decreased. For any data space that was
locked by the Commit instruction, the lock is released.

The journal in-use count is then decreased.

#CODCCF is invoked to perform the decommit process
if at process termination there is a commit block
attached to the terminating process that started a
commit cycle (start commit) but has not completed.
#CODCCEF is also invoked if at IMPL time there is a
commit block attached to any process from a prior |PL
that started a commit cycle.

Destroy Commit Block

The Destroy Commit Block instruction processor
(#CODSCOB) is invoked by the SVL router as a result of
a Destroy Commit Block instruction. This module
destroys any selected commit block that is not attached
to a process.

Materialize Commit Block Attributes

The Materialize Commit Block Attributes instruction
processor (#fCOMACOB) is invoked by the SVL router as
a result of a Materialize Commit Block Attributes
instruction. This module returns either the commit block
creation template with the current commit block
attributes, or the commit block status including the
number of uncommitted changes, the number of objects
under commitment control, and the commit description
of the last successful commit.

Commit Management 1-3



Modify Commit Block

The Modify Commit Block instruction processor
(#COMOCOB) is invoked by the SVL router as a result
of a Modify Commit Block instruction. #COMOCOB
performs the following:

« Attaches a commit block to a process.
« Detaches a commit block from a process.
+ Places objects {cursors} under commitment control.

» Removes specific objects {cursors) from commitment
control.

« Removes all objects (cursors) from commitment
control.

A commit block can be attached to a process as long as
it is not already attached to that process or to any other
process. Once a commit block is attached to a process,
the commit block can only be modified by that process.
An entry is placed on the journal indicating that the
commit block is attached.

A commit block cannot be detached from a process if a
start commit was journaled and no ensuing Commit or
Decommit instruction was executed, or if there are any
objects still under commitment control {in the commit
object list). An entry is placed on the journal indicating
that the commit block is detached.

The only objects that can be under commitment control
are cursors; however, it is the changes to the data
spaces under the cursor that can be committed or
decommited. The data spaces themselves are not under
commitment control because there may be another
cursor, not under commitment control, over the same
data spaces and changes made by this cursor would not
be under commitment control.

All objects changed under the control of a given commit
block must have their changes journaled to a single
journal port and that journal port must be the same
journal port to which the commit block is journaled.

When the cursor is placed under commitment control it
must be eligible for commitment control.

1-4

Any cursor that is to be removed from commitment
control must be eligible for removal from commitment
control. No journaling is performed when removing a
cursor from commitment control.

Journal Support

Journaling of the Commit Block

The commit block must be a journaled object when it is
attached to a process. The following commit block
activity is journaled:

« Modify Commit Block: Modify Commit Block {attach}
instruction and Modify Commit Block (detach)
instruction are journaled. The journaled entry contains
no data.

« Start Commit: This entry is placed on the journal
implicitly. The Commit, Set Cursor, and Insert Data
Space Entry instructions cause a start commit entry
to be journaled. After the start commit entry is
journaled, the journal sequence number of the entry is
placed in the commit block. This sequence number is
used to limit the search of the journal when a
Decommit instruction is executed. The journaled
entry contains no data.

« Commit: When a Commit instruction is executed, the
commit block is journaled. The journaled entry
contains the commit description entry.

« Save Cursor Position: The first time within a commit
cycle that a Set Cursor instruction is executed for a
given cursor, the data necessary to restore that
cursor's position is journaled. If a Decommit
instruction is executed, the data is used to reposition
the cursor.

+« Decommit: When a Decommit instruction is
executed, the commit block is journaled. The
journaled entry contains the decommit status of the
commit block.

o Destroy Commit Block: When a Destroy Commit
Block instruction is executed, the commit block is
journaled.



Journaling of Changes to Data Spaces

Because the journal is used to withdraw the changes in
case of a process/system failure or if a Decommit
instruction is executed, the before image of each change
made under commitment control is journaled. Journal
entries for data space changes made under commitment
control contain an additional journal entry prefix field
called commit ID. Commit ID is the sequence number of
the start commit journal entry.

Journal Space Use-count

Because the journal is used in the process of
decommiting, journal receivers containing uncommitted
changes cannot be suspended, destroyed, or restored.
This is controlled by maintaining an in-use count with
the journal receiver. The in-use count is increased when
a start commit entry is journaled and is decreased when
a Commit or Decommit instruction is executed. An
exception is signaled if an attempt is made to suspend,
destroy, or restore a journal receiver with a nonzero
in-use count.

IMPL Synchronization of the Commit Block with the
Journal

Before the commit component IMPL recovery
(#COINIT1) runs, the journal component IMPL
synchronization phase synchronizes all commit blocks
with the journal. When the journal component finds a
commit block, #COJOSYN is invoked to perform
synchronization.

Data spaces containing uncommitted changes are also
synchronized with the journal. The journal component
passes these journal entries to the data base
component. There are no special considerations made
for commit during this phase.

Cursor Support

Activate Cursor

The EPAHCOMT flag in the cursor header must be off
before the cursor is activated. The flag has no meaning
if the cursor is not activated.

Placing a Cursor Under Commitment Control

The cursor is placed under commitment control by the
Modify Commit Block instruction. The cursor must be
active within the process and can not hold any data
space entry locks. All of the data spaces under the
cursor must be journaled to the same port as the
commit block.

Removing a Cursor Under Commitment Control

The cursor is removed from commitment control by the
Modify Commit Block instruction. The cursor must not
hold any data space entry locks. If there are any
uncommitted changes made by the cursor, the data
spaces containing the changes are placed in in-use
mode (data base in-use count is increased) by commit.
The in-use count is decreased after the changes are
committed or decommitted.

Deactivate Cursor

A cursor cannot be de-activated while under
commitment control. The cursor must first be removed
from commitment control by the Modify Commit Block
instruction.

Locks Held by the Cursor at Commit/Decommit Time
After a Commit or Decommit instruction is executed, all
locks held by cursors under commitment control are
released.

Position of Cursor After Commit

After a Decommit instruction is executed, the position of
the cursors under commitment control is not changed.

Commit Management 1-5



Position of Cursor After Decommit

After a Decommit instruction is executed, all cursors
under commitment control are repositioned as follows:

+ |If the cursor was under commitment control when the
commit cycle started, the position of the cursor is
reset to the position that existed when the commit
cycle started.

» |f the cursor was placed under commitment control
after the commit cycle started, the position of the
cursor is reset to the position that existed when the
cursor was placed under commitment control.

It is possible to remove a cursor from commitment
control and again place it under commitment control
during one commit cycle. In this case, the cursor is
reset to the position that existed the last time the cursor
was placed under commitment control.

Cursors that were under commitment control some time
during the commit cycle but are no longer under
commitment control at the time of decommit, are not
repositioned.

Data Space Support

Data Space In-use Count

If a cursor is removed from commitment control while
there are uncommitted changes to data spaces under
the cursor, the data spaces are placed in-use (data base
in-use count is increased) by commit. The in-use count
is decreased after a Commit or Decommit instruction is
executed.

Inserted Data Space Entries

If an uncommitted insert is decommited, the result is a
deleted entry in the data space. This is necessary
because other committed entries may have been
inserted into the data space since the uncommitted
insert was made.

1-6

Data Space Entry Locks

Under commitment control, data space entry locks are
held on all changed entries until a Commit or Decommit
instruction is executed. Inserted entries are locked as
part of the insert operation. For data space updates or
deletes, the lock is not released as part of the update or
delete operations. Also locks may be held on entries
that are retrieved for update but are not updated
allowing the process to retrieve the entry for the second
time, ensuring that the entry is unchanged from the prior
retrieval within the same commit cycle.

Data Space Index Support

Unique Data Space Indexes

If a key is removed from a data space index containing
unique keys, the removed key is reserved until the
change is committed or decommited. Therefore, no
process, including the same process using a different
commit block, can add that key to the data space index.

Concurrent Data Space Index Build

If a data space index that enforces unique keys is built
or rebuilt, some special considerations for commit are
needed. If there are outstanding, uncommitted changes
to data spaces under the data space index, a commit
key index must be built. When building the commit key
index, it may be discovered that if the uncommitted
changes were decommitted, duplicate keys would have
to be inserted into the data space index. Therefore, the
data space index build is terminated and an exception is
signaled.



DATA AREAS

Attached Commit Block Table

The attached commit block table, shown in Figure 1-1,
provides a method for locating all of the commit blocks
that are attached to a process. An entry is added to the
attached commit block table when a commit block is
attached to a process and the entry is removed when

the commit block is detached.

Segment Group Header

Attached Commit Block Table
Header

e Available Attached Commit
Block Table Entry Address

Block Table Address

e End of the Attached Commit @

o—

Commit Block Address

Area Not In-Use

Commit Block

/"\_/

Commit Block Address

Last Entry

Attached Commit Block ®
Table Address
Commit Block
Attached Commit Block [ )

Table Address

Figure 1-1. Attached Commit Block Table

Commit Management

1-7



Commit Block

The commit block, shown in Figure 1-2, is a permanent
object that serves as the structure to control
commit/decommit within a process. A commit block is
associated and disassociated with a process by a
Modify Commit Block instruction. Only one commit
block can be attached to a process at a time.

Segment Group Header

Segment Group Header O
EPA Header

Associated Space Segment

Object Specific Header

e Commit Change List ¢ l (extendable) :
Address l

® Commit Description
Address

® Commit Object List [ o
Address

® Commit Lock List O
Address

Commit Lock List

Commit Object List

Comnnit Description

Commit Change List

Figure 1-2. Commit Block

1-8



Commit Key Index

The commit key index is @ machine index that resides in
a temporary segment group. There are four types of
entries possible in the commit key index. Three of the
entry types (reserved, hidden, and apparent) have the
same format. The fourth (start commit) has a unique
format.

The format for reserved, hidden, and apparent entries is
as follows:

Type of Data Space |Relative Attached

Entry Index Key Address of |Commit
Data Space | Block Table
Entry ‘ Offset

The format for the start commit entry is as follows:

Type of Journal Port | Sequence Attached
Entry Number Commit
Block Table
‘ ‘ Offset
STRUCTURE

The following is a list of the modules in commit
management and the functions that each module
performs. This list also shows how the module is
invoked.
#COACTFN Attached Commit Block Table Function
Manager

Function: Supports the functions required to manage the
attached commit block table.

How Invoked: Within this component and by the data

base and journal components.

#COACTSC Attached Commit Block Table Scan

Function: Supports the functions required to scan the
attached commit block table.

How Invoked: Within this component and by the data
base component.

#COCBIPL Verify Commit Block Pointers and Data

Function: Validates the header of a commit block and
checks all pointers in the commit block for validity.

How Invoked: Within this component.

#COCCLFN Commit Change List Functions

Function: Supports the functions required to manage the
commit change list.

How Invoked: Within this component and by the data

base component.

#COCHECK Cursor/Commit Checks

Function: Performs preliminary checks on a specified
commit block before continuing the process.

How Invoked: Within this component and by the data

base component.

#COCKIFN Commit Key Index Functions

Function: Supports the functions required to manage the
commit key index.

How Invoked: Within this component and by the data

base component.

#COCLLFN Commit Lock List Functions

Function: Supports the functions required to manage the
commit lock list.

How Invoked: Within this component and by the data

base component.

#COCOLFN Commit Object List Functions

Function: Performs all functions that modify the commit
object list within the commit block.

How Invoked: Within this component.

Commit Management 1-9



#COCOMIT Commit

Function: Implements the Commit instruction that
groups changes to an object or set of objects within one

process.

How Invoked: Commit instruction.

#ICOCRCOB Create Commit Block

Function: Implements the Create Commit Block
instruction.

How Invoked: Create Commit Block instruction.

f#icocucoB Clean Up Commit Block

Function: Cleans up the commit block after a Commit or
Decommit instruction is executed.

How Invoked: Within this component.

##fCODCCF Decommit Common Functions

Function: Performs the common functions to decommit
the changes made under control of a specified commit

block.

How Invoked: Within this component.

#CODCMIT Decommit

Function: Implements the Decommit instruction that
withdraws the changes previously made under the

control of a specified commit block.

How Invoked: Decommit instruction.

#CODCOEH Damage Commit Block Exception

Handler

Function: Handles the recovery from an exception
caused by damage to a specified commit block.

How Invoked: Within this component.

#CODSCOB Destroy Commit Block

Function: Implements the Destroy Commit Block
instruction that destroys a specified commit block.

How Invoked: Destroy Commit Block instruction.

#CODUMPT Dump Task to VMC Log
Function: Dumps the process to the VMC log.

How Invoked: Within this component.

#iCOFORCE Force Commit Block

Function: Writes the commit block to auxiliary storage
and optionally informs journal management that the

commit block was rewritten.

How Invoked: Within this component and by the journal
component.

#COINIT1 IMPL Recovery

Function: Performs the IMPL time recovery and
initialization functions for the commit component.

How Invoked: #CFRMAST (IMPL recovery controller).

#COINIT2 IMPL Initialization

Function: Clears the attached commit block table after
an IMPL object recovery function is complete.

How Invoked: #iCFRMAST (IMPL recovery controller).

##fCOJORDE Read Journal for Commit

Function: Reads the journal addressed by the journal
port in the EPA header of the specified commit block.

How Invoked: Within this component and by the data
base component.



#COJOSYN Synchronize Commit Block with Journal

Function: Synchronizes the commit block with the
journal during IMPL recovery.

How Invoked: Journal component.

#COMACOB Materialize Commit Block

Function: Implements the Materialize Commit Block

Attributes instruction that materializes either the commit

block creation template with current values, or the status

of the commit block.

How Invoked: Materialize Commit Block Attributes

instruction.

#COMOOBJ  Add/Remove Objects from
Commitment Control

Function: Performs the add objects to and remove

objects from commitment control functions that support

the Modify Commit Block Control instruction.

How Invoked: Within this component.

#CORELEH Release Exception Handler
Function: Excption handler to release seized objects.

How Invoked: Within this component.

#CORPCUR Reposition Cursor

Function: If the cursor is activated under commitment
control and has not been repositioned, all locks that the
cursor holds are placed on the commit block, then the

cursor is repositioned.

How Invoked: Within this component.

#COTERM Process Termination Exit

Function: Cleans up the commit block attached to the
process during VMC process termination.

How Invoked: Another VMC component.

#COULKEH Unlock Exception Handler

Function: If locks are held, this module performs the

unlocking procedure.

How Invoked: Within this component.

Commit Management

1-11






Data Base Management

INTRODUCTION

A data base is a collection of user information stored in
one or more objects called data spaces. Data base
management provides the functions that allow a user to
store, manage, and operate on these objects. Data base
management provides:

+ Late bound views of data

« Views of data independent of internal storage format
« Multiple views of the same data

« Security of data

« Integrity of managed data

Data base management supports the following
System/38 instructions:

« Activate Cursor

« Copy Data Space Entries
+ Create Cursor

+ Create Data Space

+ Create Data Space Index
« Data Base Maintenance
« De-activate Cursor

+ Delete Data Space Entry
« Destroy Cursor

+ Destroy Data Space

« Destroy Data Space Index

+ Ensure Data Space Entries

« Estimate Data Space Index Key Range

« Insert Data Space

« Insert Sequential Data Space Entries

« Materialize Cursor Attributes

« Materialize Data Space Attributes

« Materialize Data Space Index Attributes
« Modify Data Space Index Attributes

+ Release Data Space Entries

« Retrieve Data Space Entry

« Retrieve Sequential Data Space Entries
« Set Cursor

+ Update Data Space Entry

Some of the internal functions supported by data base
management are as follows:

« Build data space index

o Build composite key

« Build logical key

« Generate field mapping code
« Invalidate data space index

« Modify in-use table

Data Base Management 2-1



« Remove index addressability from data space header

« Remove addressability to data space entry from
locked entry queue

» Verify mapping template

- Conversion/mapping exception handler
« Unlock data space entry

« Bring data pages

« Detect pseudoduplicate keys

» Clone data segments

« Re-validate deleted entry count
« Log delayed key maintenance

« Force locked entry

« Force data space

» Force all indexes

« Force recently inserted entries
« Force recently modified entries

- Handle entry spanning segment identification {SID)
group boundary

« Discard all data space index directory blocks
. Mergq mini-indexes

« Clear data SIDs

« Derive ordinal number

« Derive data space entry virtual address

- Perform appropriate journaling of data base
modifications

2-2

Data Sharing

Data base management provides for the sharing of data
among concurrent processes. The following paragraphs
describe the methods used to share data and the
procedures used to ensure the integrity of the shared
data.

Cursors

The cursor is the only object that makes data accessible
to a process. The data space and data space index do
not contain any process related information. The
process dependent information is kept in the active
cursor, which is usable only by the activating process.
However, multiple processes can each simultaneously
have cursors over the same data spaces and data space
indexes allowing the processes to share the data. Every
instruction that accesses data in a data space obtains
the data by using a cursor; data is not accessible
through any other mechanism.

The cursor indicates the entry currently addressed for
retrieval and the entries locked for update. It contains
the information needed to map the internal format of the
entries into the format desired by the process. The
following types of mapping are supported:

« Field rearrangement

« Skipped fields

« Numeric field conversion to other numeric types

« Character field truncation and padding

« Derived field

« Joined records

» Record selection

J



These locks provide the following functions:
« Prevent the destruction of the object while in use

» Prevent a cursor from being used by more than one
process at any one time

« Prevent another process from obtaining a lock
exclusive no read lock on any data base objects
shared by a cursor

These locks are removed when the cursor is
de-activated.

If a cursor is active and a set cursor operation for an
update is performed, the data space is implicitly locked
with a lock shared update lock unless the lock applied
by the Activate Cursor instruction is adequate. This
implicit lock on the data space is not removed until all
the locked entries in that data space are updated,
deleted, or released. Data base management will place
only one implicit lock shared update lock on a data
space from a given cursor.

Locked Entries

Between the time an entry is located by a set cursor
operation and the time it is modified (updated or
deleted), the entry must be protected from modification
by other processes. Data base management locks the
entry during a set cursor operation if an update or
deletion of the entry is specified. The lock prevents
other processes from updating or deleting the entry.
The locking process can only hold one lock per data
space entry. Update and delete operations subsequently
unlock the entry. An entry can be unlocked without
change by using a Release Data Space Entries
instruction or by de-activating the cursor holding the
lock.

A set cursor operation applies an implicit lock to each
data updated. The list of hold records associated with
the locked data space entries are chained from the
cursor by head and tail pointers as shown in Figure 2-1.
The list is organized as both a last-in-first-out queue
and a first-in-first-out queue. An entry can be added to
the head of the queue or to the tail of the queue. When
an entry is removed from the queue, the entry lock is
removed from the head of the queue. The entry lock
can be removed from the head or tail of the queue by
using the Release Data Space Entries instruction. If the
cursor is under commitment control, the entry locks
must be transferred to the commit block.

The last four bytes of the hold records contain the
following information:

- Data space number (1 byte)

« Flag information (1 byte)

« Lock chain link (2 bytes)

The virtual address in the hold record addresses the first
byte of the locked data space entry. Because the entries

are locked with a lock exclusive allow read lock, other
users can only retrieve the locked entries.

Cursor Hold Records

-

Head /

Tail

Figure 2-1. Hold Records List

Data Base Management 2-3



In Use

When a cursor is activated, the data spaces and data
space index referenced by the cursor are marked as in
use. This is accomplished by incrementing the
use-count associated with both the data spaces and the
data space index. A data space index marked as in use
(a nonzero use-count) cannot be destroyed or explicitly
invalidated. When the cursor is de-activated, the
use-counts for these objects are decremented. A
nonzero use-count prevents any process from
destroying the data space index.

For recovery reasons, the use-count for both a data
space and a data space index is kept in the data base
in-use table. These counts are reset during initial
program load (IPL). One routine (#DBXMUSE) performs
all operations on the table. The in-use table is initialized
during each IPL (after recovery operations are complete).
The table consists of rows of object identifications. It is
seized and released every time it is referenced and is
seized and released only within #DBXMUSE.

An entry with a use-count and a retain status equal to O
identifies a free slot in the table. When a data space or
a data space index is t0 be operated on, an entry in the
in-use table that specifies that object is found and the
use-count is incremented. If the object is not found, the
first free slot is assigned to the object and the
use-count is incremented. |f an entry has been added
to or deleted from the in-use table, the table is saved
on auxiliary storage.

2-4

When an object is removed from the in-use state, the
table is seized and then searched. When the object is
located, its use-count is decremented.

A data space index entry is placed in the in-use table
when the index is in the process of being created,
rebuilt, loaded, or used as an access path. An entry is
removed when the operation is completed. This type of
entry is used at recovery time to determine the recovery
actions for a data space index that was being operated
on when a system failure occurred.

Note: The in-use table is saved (forced) on auxiliary
storage each time an entry is inserted into or deleted
from the table. It is not saved each time the use-count
is changed because the recovery operations proceed
regardless of how many processes were simultaneously
using the object.

Load/Dump and Suspend

The basic concept in data base load/dump operation is
the network. A network is defined as a grouping of data
spaces and data space indexes such that if a data space
index is a part of the network, then every data space
that is referenced by that data space index is also a part
of the network. (However, if a data space is a part of
the network, then every data space index that is
referenced by that data space need not be a part of the
network.) The smallest possible network is a single data
space. The largest possible network is the group of all
data spaces and data space indexes in the system.



C

Figure 2-2 shows an example of a network
configuration. The following is a list of the valid data
base networks that can exist in that figure:

« Data space index, data spaces 1, 2, and 3

. Data space index, data spaces 1 and 2 (example
shown)

« Data space 1

- Data space 2

« Data space 3

« Data spaces 1 and 2

« Data spaces 1 and 3

+ Data spaces 2 and 3

« Data spaces 1, 2, and 3

Load/dump will only dump or restore complete
networks, although the restored network can be a
subset of a dumped network. When loading a network,

all data spaces must be loaded before the indexes (if
any) are loaded.

Data Space Index

N

Data Space 1 Data Space 2 Data Space 3

Figure 2-2. Networks

Generally, load/dump performs seizing on a network
basis. Load/dump is responsible for seizing all objects
including the data space indexes that are referenced by
data space that is being overlaid by a load operation but
are not themselves being loaded. The invoking

load /dump routines will not load a data space if its field
description table is not identical to the field description
table of the data space being overlaid. This ensures that
indexes can be rebuilt validly.

Three data base functions are provided for the exclusive
use of the load/dump function:

« Fix data space header (#DBXFDSH)
« Fix data space index header (#DBXFIXH)
« Clean up at end of network (#DBXRINX)

These routines provide most of the object specific
actions required during loading of a data base object.
#DBXFDSH is invoked by load/dump after each data
space is loaded. This routine updates pointers in the
header and then ensures that the old network is deleted
and the new one is correctly loaded. If this is a create
and load operation, then the load/dump flag is set to on
in each data space index block. When the data space
indexes are loaded, this flag indicates that the index
pointer is from the address space of the machine that
performed the dump rather than the address space of
the machine performing the load. During network
cleanup, this flag indicates that the data space index
block is invalid (because no index was loaded) and
should be deleted.

If this is a replacement type load, then each data space
index block from the overlaid header is also copied into
the loaded header. Because the data space index blocks
from the overlaid header are copied, each is checked to
determine if the index it references is valid. If the index
reference is valid, then the index is invalidated (without
signaling an event) and the index invalidated flag is set
to on. If the data space index block is not subsequently
deleted because a new version of the index was not
loaded, the invalidated flag causes an index invalidated
event during network cleanup.

Data Base Management 2-5



#DBXFIXH is invoked by load/dump after each data
space index is loaded. In addition to updating the
internal pointers and pointers to the data spaces, this
routine examines each data space and performs the
following operations:

« If there is a data space index block in the data space
that points to the address currently occupied by the
index and the load/dump flag in this block is off,
#DBXFIXH sets the load/dump flag to on and sets
the pointer to zero. This causes the network cleanup
routine to delete the biock.

« If there is a data space index block in the data space
that points to the address of the index at the time
the index was dumped, and the load/dump flag in
this block is set to on, #DBXFIXH updates the pointer
to the current address and sets the load/dump flag
to off.

#DBXRINX is invoked when the loading of the network
is complete (a data space with no indexes is considered
a network). This routine searches the data space index
blocks for entries with the load/dump flag set to on and
deletes the entries. This routine also searches for data
space index blocks with the invalidated flag set to on
and signals an event for each index (turning the flag off
at the same time). This event can be used to indicate
that the index requires rebuilding.

2-6

Data Base Management Recovery and IPL

Recovery after an abnormal machine termination
involves restoration or destruction of objects. The data
base recovery phase manipulates the following objects
and internal structures:

« Data spaces

« Data space indexes
« Cursors

« In-use table

Most data base recovery operations are performed
during IPL. The operations performed are determined by
the contents of the in-use table. The data base objects
recovered as a result of references contained in the
in-use table are identified in the object recovery list.

The recovery operations performed during IPL affect all
data base objects except active cursors. Active cursors
are recovered during a subsequent attempt to activate
the cursors.

The in-use table (DB#DSIU) contains entries that
identify the data base objects that were being used
when the machine termination occurred. The objects
identified in the table include data spaces and data
space indexes. After all the entries in the in-use table
have been processed for recovery, the in-use table is
reset (all entries removed) in preparation for the next
IPL.



Data Space Recovery

The following actions are performed for each entry
contained in the in-use table that references a data
space:

1. All recently inserted entries are read, starting with
the most recently inserted entry on auxiliary
storage and progressing until an entry is detected
for which the insert operation was not completed.

2. The entry count and force count within the data
space header are updated to reflect the ordinal
number assigned to the final recoverable entry.

3. Information identifying the data space and its
recovery status are appended to the object
recovery list.

4, Any pending recovery action is performed.

5. All data space indexes affected by the contents of
the recovered data space are invalidated unless
internal flags indicate that the binary tree of the
index was not recently changed without being
forced to auxiliary storage. Information identifying
the invalidated indexes is then appended to the
object recovery list.

Data Space Index Recovery

Data space indexes are referenced in the in-use table
during the following:

» Creation of the data space index

« Rebuild of the data space index

» Use of the index as an access path
« Loading an index

Indexes that were in the process of being created when
a termination occurred are destroyed during the recovery
phase.

Indexes that were being rebuilt when a termination
occurred are invalidated and identified on the object
recovery list during the recovery phase. Indexes whose
binary trees were modified but not written to auxiliary
storage are invalidated and identified on the object
recovery list. Indexes that were being loaded are
flagged as damaged.

Cursor Recovery

Cursor recovery, if required, is performed during
subsequent attempts to activate the cursor. The current
process identification and the IPL number are examined
to determine if recovery for the cursor is required. If the
process identification in the cursor does not match the
current process identification, and the IPL number in the
cursor does not match the current IPL number, then the
cursor was activated at the time the machine failure
occurred. If this is the case, the appropriate fields are
updated and the cursor is reactivated.

DATA AREAS

The machine interface objects supported by data base
management are:

« Data space
» Data space index
» Cursor

The major data area created and used internally by data
base management is the data base in-use table.

Data Base Management 2-7



Data Space

A data space (shown in Figure 2-3) consists of three or
more segment groups. The first segment group
contains:

+ The segment group header

« The encapsulated program architecture (EPA) header

« The object specific header containing:

Length of index chain.

The maximum number of data segment groups
that can be allocated.

Number of data segment groups actually allocated
(usually one).

Pointers to the data segment groups. These
pointers address the last byte allocated in the
segment group. The address of the first byte of
data in the segment group is obtained by putting
O's in the right three bytes and adding hex 20 (the
length of the segment group header).

» A variable-length chain identifying the data space
indexes over the data space.

2-8



First Segment Group

.-\

(_J

Segment Group Header

Second Segment Group

Segment Group Header

EPA Header

Object Specific Header
® Field Table Pointer
® Data SID Table Pointer
¢ Index Linkage

DSGPTBL

]

Field Table

™

(XX X

Chain Entries

Third Segment Group

Segment Group Header

Default Entry Entry

1 Entry 2

Deleted Entry 4

—

1L

e

Entry N

Entry n +1

Figure 2-3. Data Space

Associated Space

Segment Group Header

Entry n + 2

Segment Group Header

q\lk__—_&ﬁ

Last Entry

(allocated)

| (extendable) I

Data Base Management

2-9



The entries in the variable-length chain contain: The third and subsequent segment groups contain:

« The address of the next entry on the chain. « A segment group header )

+« The address of the data space index. « Data space entries

« Code generated by a Create Data Space Index + Status information concerning each entry
instruction used to compare a data space entry to a
revised entry to determine if any key or selection The data space entries are stored in the data segment
fields have been changed as a result of an Update groups specified by the segment group table contained
Data Space Entry instruction. If the fields have not in the object specific header. All entries are strung
changed, the index is not affected by the update and together end-to-end, and are separated by a status
does not need modification. byte. A typical entry would be:

When a data space index is created, a chain entry for / /

that data space index is added to the end of the data

space header for every data space covered by the data \ Status | Field 1| Field2| . . . |Fieldn| Status \

space index. Linkage to a new entry is added to the r 7

front of the chain. When a data space index is

destroyed, the entry for that data space index is deleted where:

from the chain and all subsequent chain entries are

moved up in the segment group and the linkages « Status contains a flag that the entry:

adjusted. The hlocks of the chain within a data space — s valid

header are linked in reverse order of their creation. — Is deleted

Every chain entry is potentially a different size due to — Crosses a segment group boundary

the variable quantity of generated code residing in the

block. + Field 1 through Field n are ordered as defined in the

field table contained in the second segment group. J
The second segment group contains:

The segment groups can be viewed as one contiguous

« A segment group header addressing space (minus the segment group headers).
Entries can span segment group boundaries. The initial
« A table defining the data space entry fields (field entry in the first data segment group is a default entry
table} and is used to supply values for fields when inserting
entries and updating deleted entries when a value is not
« The associated space supplied by the user. The procedure for calculating the

address of an entry is shown in Figure 2-4,
The field table is used by create cursor, create data
space index, and materialize data space attributes
functions. The associated space (if present) follows the
field table and is extendable.



1. Multiply entry length by ordinal number:

AAAA x BBBB = CCCCCC

Is
No cceeee > Yes

Divide CCCCCC by hex
FFFFEO:

Q

FFFFEO ) Ccccce

Remainder (R)

Add 1 to Q to locate the
segment group table entry:

Q + 1 = Slot Containing Entry

FFFFEQ
2. Use first segment group
table entry.
XXXXXX)YYYYYY
XXXXXX)YYYYYY
3. Add: e

XX XX XX 00 00 20
* 00 00 00 CcC cC CC

XX XX XX 22 2Z 2z

~ 7
A

Figure 2-4. Calculating Entry Address

Add:

XX XX XX 00 00 20
00 00 00 RR RR RR (remainder)

XX XX XX 22 2Z Z2z

hd

+

Virtual Address
of Status Byte

of the Data Space
Entry

Data Base Management

2-11



Data Space Index

The data space index is made up of a primary segment
identification (SID) and 67 optional segment groups as
shown in Figure 2-5 and is addressed by a system
pointer. The primary SID group contains:

« The segment group header.
« An EPA header.

« An object specific header containing:
— Values and attributes
— Alternate collating sequence table (if alternate
collating is specified)
— Translate table
— Intermediate mapping table
— Non-user exit selection table
— Key specifications
— Selection specification

« A machine index.

The first optional SID group contains:

« The segment group header.

« An associated space.

The second optional SID group contains:
+ The segment group header.

« The selection routine if a select/omit data space
index.

The third optional SID group contains:
+ Segment group header.

- A log containing the changes made to all the data
spaces under the data space index since it was last
maintained. The remaining 63 segment groups
contain entries that constitute the expanded binary
tree.

The fourth optional SID group is present only for data
space indexes that require unique keys and the data
space index has had a key deleted by a process running
under commitment control. This SID group contains:

+ Segment group header
« Commit key index header

« Machine index containing data space index keys that
were deleted but are reserved to prevent duplicate
key conflicts from occurring during decommit

Alternate Collating Sequence Table

The alternate collating sequence table in the object
specific header is a 256-byte translation table that is
present only if alternate collating was specified when
the data space index was created. Machine indexes
order their keys according to their binary values. If the
user wants a character key field or a binary field to be
ordered differently than the normal binary (EBCDIC)
ordering, that field in the key can be translated to an
alternate collating sequence.

Translate Tables

Translate tables are used with intermediate mapping to
replace the actual characters in the data space with a
value defined in the translate table. A user can specify
an array of tables and the mapping specifications control
which table is used from the array.

Intermediate Mapping

If intermediate mapping is specified, the intermediate
mapping table is made up of one IKEY entry for each
DS under the DSI. The scalar portion of the object
specific header contains the address of the table. Each
IKEY entry contains:

+ The address of the mapping template.

- The address of the generated mapping code.

« The address of the field description table for the
intermediate buffer

« The address and length of the data literal area.

- Related flags and statistics.



Nonuser Exit Selection

If nonuser exit selection is specified, the selection table
is made up of one SEL entry for each DS under the DSI.
The scaler portion of the object specific header contains
the address of the table. Each SEL entry contains:

« The address of the selection template.

« The address of the generated selection code.

« The address and length of the data literal area.

« Related flags and statistics.

For user exit selection, the select/omit specification area

is described in the select/omit section {User Exit
Selection).

Data Base Management 2-13



Segment Group Header @

Segment Group Header

EPA Header

Object Specific Header L

® Scalars

® Commit Key Index [
Pointer

* Alternate Collating
Sequence

* Translate Table Array

* Intermediate Mapping
Table

* Nonuser Exit Selection
Table

® Data Space Table

* Key Specification
Area

* Select/Omit
Specification Area

Select/Omit Program

Segment Group Header

Delayed Maintenance Header

Delayed Maintenance Log Entries

Segment Group Header

Associated Space

I {extendable}

Segment Group Header

Machine index (2 K boundary)
* Base Page
® Root Page

® Secondary Page

{extendable)

Figure 2-5. Data Space Index

Commit Key Index Header

Machine Index

| (extendable)




C

| Key Specification Area

The key specification area is composed of a number of
tables as shown in Figure 2-6. The first data space key
(DKEY) table contains a row (entry) for each data space
covered by the data space index. Each row contains:

« The address of the data space

« The number of rows in the key field description table
for that data space

« A pointer to the key field description table (DKYT) for
that data space

The number of rows (number of data spaces covered by
the data space index) in the DKEY table (DB#DKEY) and
its address are contained in the object specific header.
The row number in the table is the data space number
required for keyed-cursor and insert-data-space-entry
operations.

There is a DKYT for each row in the DKEY table. The
DKYT defines the fields that form the key. Each row in
the DKYT defines the attributes of one field in the key.
These attributes are:

» The offset into and the location of the field in the
data space entry

» The length of the field (or value of the fork character
if specified)

« Attributes of the field, such as:
— Ascending/descending sequence
— Absolute value
— Alternate collating sequence
— Fork character
— Zone/digit force

DB#DKEY
Number of Highest
Number Binary Tree | Ordinal Key
Row 1 Pointer to Data Space of Keys References Number Length Pointer to DKYT
Number of Highest
Number Binary Tree Ordinal Key
Row 2 Pointer to Data Space of Keys References Number Length Pointer to DKYT ?
DB#DKYT
\
Length or
Sequence | Field Fork Relative Key Field Definitions for Data
Attributes | Attributes| Character Offset Location L Space 1 (one entry for each
1 1 field or fork character)
T —
N — e ] }
3
\—v Length or
Sequence Field Fork Relative ) o
Attributes | Attributes| Character Offset Location Key Field Definitions for Data
Space 2
, ] L

Figure 2-6. Key Specifications

Data Base Management 2-15



The order of the rows in the DKYT for a data space
defines the order of the fields in the composite key, and
is used by a table driven routine that builds composite
keys from either the data space entry or the physical
image derived from a user provided logical key.

Data base management uses machine indexes to store
and order keys in a data space index. An index control
block {IXCB) is used to communicate with machine
index management. Each time an index is to be used, it
is seized and the IXCB is loaded with the values needed
to operate on the index. When the operation is
completed, the index is released.

Because machine indexes handle every entry as a bit
string, and order them in ascending order, data base
management must perform several operations on the
key fields to obtain the desired ordering specified by the
user. A data base key is made up of one or more data
space entry fields, and optional single characters called
fork characters. The format of the key is:

Internal Data Base Information

A

/L e
Data Optional | Data Data Data Space | Ordinal | Internal
Field 1 | Fork Field 2 | Fork Field n | Number Number | Flags
User-Defined Information Data Base

Internal Relative Address




The user defines how the key is built to generate the
desired order in the index when the data space index is
created. After each key field has been built, data base
managerent takes the bit string of each key field or
fork characters, builds the internal information, and
inserts or removes the key into or from the machine
index portion of the data space index. Routine
#DBXBLKY performs the key building function.
Following are the operations performed by #DBXBLKY
to build a key for each field in an entry and to insert or
delete the key from the machine index:

« Force zone or digit: The selected 4 bits of each byte
within the key field are set to O.

« Alternate collating: Each byte of the key fields is
translated and replaced with the appropriate character
from the alternate collating table.

« Numeric ordering: A key field can be ordered in one
of the following ways:

— Unsigned bit string

— Algebraic value (signed)

— Absolute numeric value

Because the signs of binary, zoned, float, and packed

fields are located at different locations within a field,

using an unsigned bit string ordering results in the
following sequence:

— Binary (sign is the leftmost bit): O to positive
infinity followed by negative infinity to ~1.

— Packed (sign in numeric field of rightmost byte):
The order depends on valid sign value. Generally,
the orderis O, -0, 1, -1, .. ., n, -n.

— Zone (sign in zone field rightmost byte): The order
depends on valid sign values. Generally the order
is 10 positive numbers followed by the
corresponding 10 negative numbers.

— Float (sign on left): The ordering is O to infinity
and then the smallest magnitude negative number
to infinity.

« Order: The order sequence indicator specifies that
the key field is to be complemented to produce
descending sequence.

Data Base Management

2-17



Figure 2-7 shows the Key conversion rules used by
#DBXBLKY when building a key. The figure also shows
an example of the conversion performed.

The internal information that is added to the user key to
build the index key consists of the data base relative
address and some internal flags. The data base relative

address consists of the following:

The adjusted number of the data space in which the

entry is contained (0 origin)

The ordinal number of the entry

Example
Value Field Type Sign Rule Before After
Absolute Binary Positive No change 0003 0003
Negative Take twos complement FFFD 0003
Zoned Decimal Positive Force zone fields to O FOF3 0003
Negative FOD3 0003
Packed Decimal Positive Sign bits to hex F 003F 003F
Negative 003D 003F
Floating Point Pasitive No change 40400000 40400000 |
Negative Force sign bits to binary 0 | 0400000 | 40400000
Algebraic Binary Positive Force sign bit to negative |0003 I8003
I Negative Force sign bit to positive FFFD 7FFD
Zoned Decimal Positive Force zone fields to hex F |FOF3 FOF3
Negative Force zone fields to hex F, | FOD3 OF0C
then take ones
complement
Packed Decimal Positive Force sign bits to hex F 003F FOO3
and move to the left 4 bits
Negative Force sign bits to hex F, 003D OFFC
move to left 4 bits, then
take ones nomplement
Floating Point Positive Force sign bit to binary 1 | 40400000 C0400000
Negative Complement entire field C0400000 3FBFFFFF

Figure 2-7. Key Conversions



The adjusted data space number within the composite
@y designates the relative position of the data space in

e data space list starting from position zero (contained
in the template for the Create Data Space Index
instruction). The encoded ordinal number designates the
position of the entry in the data space (first
user-supplied entry has ordinal number of one). For an
index with a last-in-first-out ordering, the ordinal
number is complemented to place the high ordinal
numbers before the lower ordinal numbers.

The appended relative address field ensures unique keys
within the machine index, and the encoded information
is used when the key is subsequently retrieved to locate
the entry in the data space. The relative address also
allows relocation of data space indexes from system to
system without rebuilding the index.

Data Space 1:

Entry Key Field Entry
Number Char (2) Number
01 (AB) C1 C2 01
02 (CD) C3 Cc4 02
03 (EF) C5 C6 03
04 (D4) C4 F4 04
05 (34) F3 F4 05

The following is the resulting index
without using fork characters:

Fork characters allow the user to define the order of
keys of different lengths. When a user creates an index
over two or more data spaces or the same data space
multiple times, the designated key length for each data
space can vary in length. Because the key is made up
of the user key followed by the machine-supplied data
base relative address, the order of the keys in the index
is not user controllable without fork characters. Figure
2-8 shows two data spaces with variable-length keys.
The figure also shows examples of the key ordering,
one without fork characters, and one using fork
characters.

Note: The example orderings are field aligned for ease
of use.

Data Space 2:

Key Fields

Char (2) Bin (15)
(AB) C1 C2 00 00
(AB) C1 C2 00 O1
(34) F3 F4 03 00
(34) F3 F4 00 04
(34) F3 F4 05 06

The following is the resulting index using
fork characters FF for data space 1 and 00

for data space 2:

g User_lii_y_l‘ 8
Sx| - % | g! S sl -5
User Key w8 88 | §| w8 538
EE| 3§ 15 2! B3| E5
az|l oz Ilu. ol az|l oz
1 1
c1 C2 00 (00 O1 c1 c2' oo loo 00| 01 |00 01
C1 C2 00 00| 01 |00 O1 C1 czl 00 loo 01| o1 |00 02
C1 C2 00 01| 01 |00 02 C1 C2| FF | 00 |00 01
C3 C4 00 |00 02 c3 cal FF | 00 | 00 02
C4 F4 00 |00 04 c4 F4I FFI 00 | 00 04
Cc5 C6 00 |00 03 C5 C6 | FF | 00 |00 03
F3 F4 00 |00 05 F3 F4| 00 |00 04 | 01 |00 04
F3 F4 00 04| 01 |00 04 F3 F4al 00 103 00| 01 |00 03
F3 F4 03 00| 01 |00 03 F3 F4= 00 Ios 06 | 01 | 00 05
F3 F4 05 06| 01 |00 05 F3 F4 | FF | 00 | 00 05
| |

Example Key Ordering

< Figure 2-8.

Data Base Management



Select /Omit Specification Area

The select/omit specification area of the header is only
present if select/omit was specified when the data
space index was created. The tables in the select/omit
spacification area are used to map fields to a selection
buffer for passing to the user exit program provided by
the machine interface. This routine determines whether
or not a data space entry is t0 be addressed by a data
space index. The select/omit spacification area of the
header is made up of a number of tables (a data space
select/omit table and a variable number of data space
select/omit field description tables) as shown in Figure
2-9. The data space select/omit table has one row for
each data space covered by the data space index for
which there is select/omit specifications. The row
contains values for:

« The number of entries not addressed by the index
{the number rejected)

+ The number of fields to be passed to the selection
routine

» The length of the selection buffer
« A pointer to the generated mapping code
« The length of the selection mapping code

Following the data space select/omit table are some
number of areas, each containing:

» Generated code for mapping fields from the data
space entry to the selection buffer

« The data space select/omit field description table

defining the fields to be mapped from the data space
entry to the selection buffer

2-20

There is an area containing generated code and a data
space select/omit field description table for every data
space selact/omit table entry that specifies one or more
fields to be passed to the user exit program.

The generated mapping code is used to fill the selection
buffer before the buffer is passed to the user exit
program. The mapping code is used by update and
insert functions when a select/omit field is modified.
The mapping code is also used by the index build
function.

The data space select/ omit field description table is
used by the materialize function to materialize the data
space index template. The pointer to the generated
code and data space select/omit field dascription table
in the data space select/omit table row for a data space
is used to branch to the generated code. The length of
the generated code is also in the data space
selact/omit table row and is used to find the data space
select/omit field description table that follows the
generated code for that data space.

The machine index trunk page starts at a 2 K boundary
following the end of the object specific header. The
initial allocation of the space for the header segment
group is based on the current number of entries in the
data spaces, and ensures that the machine index has at
least three logical pages available, and that the area
allocated for the header segment group is a multiple of
4 K bytes. Refer to Data Space Index in this section and
to the Machine Index Management section in this manual
for additional information concerning the machine index.



Data Space Select/Omit Table (DB#DSEL)

Number Number Buffer Pointer to Code
Rejected of Fields Length Mapping Code " Length
\
Number Number Buffer Pointer to Code
Rejected of Fields Length Mapping Code ’ Length
—/

Mapping Code (select field AandC) -~=] A | B | C | D

Mapping Code

’/———“\

Data Space Select/Omit Field Description Table (DB#DSLT)

Entries for Fields in

Data Space Entry 1 (one
entry for each field)

Figure 2-9. Selection Specifications

Field Field Field
Location Type Length
Field Fieid Field
‘ Location Type Length
Field Field Field
Location Type Length

Entry for Data
Space 1

Entry for Data
Space 2

Data Space
Entry

Select/Omit Buffer

Data Base Management

2-21



| User Exit Selection

The user exit program allows the user to provide data
space indexes that address a subset of the entries in the
data spaces. The user exit program contains the logic
that determines if a data space entry is selected or
omitted from a data space index.

The user exit program is called implicitly from data base
instructions that perform index maintenance. These
instructions are:

- Insert Data Space Entry

« |Insert Sequential Data Space Entries

« Update Data Space Entry

« Create Data Space Index

« Data Base Maintenance with Rebuild Option

The user exit program is passed a space pointer as an
argument that points to a buffer that contains the
following information:

« Answer Field: This field is set by the user exit
program to direct the data base instructions that
called the user exit program to insert or not insert the
key into the data space index.

« Data Space Number: This field can be used by the
user exit program as input to make a decision on the
insertion of the key into the data space index. This
field contains the number of the data space that
contains the entry. Since an index can be over more
than one data space, the user exit program uses this
field to identify the correct data space.

. Data Space Entry Fields: These fields are used by
the user exit program to make a decision on the
insertion of the key into the data space index. These
fields are in the order and format as defined by the
data space index.

2-22

Creating a DS Index from an Existing DS Index

The user has the option of creating a D% index from an
existing (source/parent) DS index rather than directly
from the underlying data spaces. The user must specify
a subset of the source DS index entries to be used in
the new index. The key specifications provided are
compared with those in the source DS index to
determine if the new key specifications can be built
purely from fields in the keys of the source DS index,
which is faster than building the new keys from the
underlying data space entries. If the source DS index
contains nonuser exit selection, the selection template of
the source is reproduced in the new DS index and
merged, if necessary, with any newly specified selection
template. The resultant selection template is then used
to generate the final selection code. If any' of the
selection criteria relies on fields in the source DS index
intermediate buffer, then the intermediate mapping
templates undergo a similar operation. If the source DS
index intermediate mapping template is required in the
new DS index, then its corresponding translate tables
must be similarly reproduced in the new DS index.
Once created, the new DS index has no need to
maintain any linkage to the source DS index.

When a data space index is created, the user exit
program (if provided) is copied into the data space
index. The user exit program is placed in the third
segment group of the data space index. Only the
following parts of the user exit program are copied:

« EPA header

« Instruction stream

« Static initialization code

« Program header

« Program template

« Breakpoint offset mapping table

The remaining parts of the user exit program are ignored
since functions (for example: Trace instructions) that
require them are not used for user exit programs. The
addresses within the copied program are altered to

reference the copied segment group.

Copying the user exit program into the index ensures
the continued existence of the user exit program.

<



Cursor

The cursor, shown in Figure 2-10, is represented by two

segment groups.

The first segment group contains such things as:

« The segment group header

« An EPA header

» An object specific header (cursor header) that
contains things such as:

Attributes and status

Data space mapping code {DMAP)

Join cursor key mapping code {JMAP)

Data space selection code

Key buffer {if cursor is over an index)

Index control block {if cursor is over an index)

The second segment group contains:

« The segment group header

- Associated space

Data Base Management

2-23



Segment Group Header

EPA Header

Cursor Header

Attributes and Status

Data Space Mapping Table (DMAP)
Join Cursor Key Mapping Table (JMAP)
Group Definition/Description Table
Cursor Selection Map

Data Selection Routine (one per DMAP)}
Group Selection Routine

Translate Tables

Data Space Mapping (DMAP} Code (one for each data space in list}
Generated Input Mapping Code

Generated Output Intermediate Mapping Code

Generated QOutput Mapping Code

Generated Input Key Mapping Code

Generated Output Key Mapping Code

Join Key Mapping (JMAP) Code (repeated for each secondary data space}
Group Default Primitives Entry

Group Logical Key Default Entry

Generated Group Primitive Procedure Code

Generated Group Intermediate Map Code

Generated Data Space Selection Code (one for each data space)
Generated Cursor Intermediate Key {CRIK} Selection

Generated Cursor Intermediate Key {CRIK} Mapping Code

Fast Search Array for this data space

Merged Fast Search Array

Generated Group Selection Code

IXCEB for Primary Index

Key Buffer for Primary Index
Look-Ahead Buffer for Primary Index

IXCB for Secondary Index {one for each secondary DS}

Key Buffer 1 for Secondary Index
Key Buffer 2 for Secondary Index

intermediate Buffer for a Join Cursor

Buffer for DS Entries for a Join Cursor

Copied DS Mapping Template {one for each DS)

Copied DS Selection Template (one for each DS)

Group Buffer Definition Template, Selection Template, Mapping Template
Jain Definition Template

Data Literals for all Templates

Segment Group Header

Assaociated Space

Figure 2-10. Cursor

2-24



The DMAP contains a row (entry) for each data space
that the cursor is over. The data spaces are in the same
sequence as in the data space list supplied during
creation of the cursor. If the cursor is over a data space
index, the sequence in the data space list and in the
index is identical. This is checked at creation time by
comparing the list to the index. A subset of data spaces
can be specified at creation time by supplying zeros
instead of a system pointer for an entry in the data
space list; this causes a zero DMAP entry to be built.
The zero entry is built because the DMAP entry number
is the same as the data space number used by a set
cursor operation.

A row in the DMAP that identifies a data space contains
the following information:

« A pointer to the data space.

« Pointers to the mapping code used to map the logical
view to the actual physical form in the data space.
Up to five sets of mapping code can be present:

— Two sets are used for data mapping and are
always present
— Data to: Maps the data to the data space.

Used by insert and update functions.

— Data from: Maps the data from the data space.
Used by the retrieve function.

— Two sets are used for key mapping and are
present only if the cursor is over a data space
—Key to: Maps the logical key to the physical

format. Used by the set cursor function before
the composite key used as a search argument is
built.

—Key from: Maps a physical key to the logical
format. Used by the materialize cursor
attributes and set cursor functions to return the
logical key.

— The fifth set of mapping code is used for derived
field mapping:

— Derived Field Operations Mapping/Deriving
From Data Space: Used by set cursor, retrieve
data space entry, retrieve sequential data space
entry.

» Direct map indicator for the data mapping code. If
the data mapping code maps the entire entry, this
indicator is set on. This information is used by
update and insert functions to determine if the
default entry is to be used for the initial values.

« The lengths of the logical and physical image of the
entry.

» The unit of transfer length in bytes.

» If the cursor is active, the following indicators are
used:

— Authority that was saved from the last retrieve
authority operation for that data space.

— Data space used in this activation. A subset of the
data spaces the cursor is over can be specified
when the cursor is activated.

— Change bit indicates the data space was changed.
Used by the de-activate cursor function to write
the changed data to auxiliary storage.

A row in the JMAP contains information about join
cursors. There is one JMAP entry per data space under
a join cursor. The JMAP table in the cursor header
contains the following information:

» A pointer to the data space.

« A pointer to the data space index over this entry.

« The DKEY entry number in the index associated with
this entry.

+ The self-describing JMAP entry number.

» The JMAP entry number associated with the previous
data space (the data space that joined to the current
data space).

» Key lengths for the physical join key.

« The number of join key fields.

« A reference count for this position.

« Addressability to this position index control block.

» Addressability to a key buffer, which stores the
current key.

« Addressability to a work key buffer used for
searching the index.

« An index check count used to determine if the index
over this position has changed since positioning.

« Current positioning information (ORD number, ENTRY
address).

- Addressability to the data space entry image stored in
the cursor header.

Data Base Management 2-25



+ Run time statistics, such as prime and spin.
= Activation statistics such as index placed in use.

+ Addressability to join key mapping code that map the
fields from the cursor intermediate buffer (CRIB) into
a buffer where the key fields are contiguous.

When the cursor has selection specified with it, there is
an additional area allocated in the cursor header to
describe the associated selection. DB#CRCL is allocated
when there is either a cursor for each data space
selection or group-by selection is specified. DB#CRCL
contains the following information:

« Addressability to the DB#SEL table associated with
the cursor per/DS selection.

« Addressability to the DB#SEL table associated with
group-by selection.

« Address of merged fast-search array.
« Number of entries in the merged fast-search array.

« Maximum size of Boolean result stacks associated
with all the cursor for each data space cursor
intermediate key selection routines (selection by key
fields only).

+« Maximum size of Boolean result stacks associated
with all the cursor for each data space noncursor
intermediate key selection routines (selection on figlds
other than key fields and possible key fields).

2-26

When selection is specified, DB#SEL is associated with
each selection template specified. There is one SEL
table allocated for each data space under the cursor
when selection is specified for at least one data space.
Since selection is not mandatory for each data space,
the unused allocated space contains all zeros.

When group-by selection is specified on a cursor, an
area in the cursor header is allocated to store DB#GRP.
DB#GRP contains information about the group-by
selection function which must be performed,
addressability to default group-by primitives,
addressability to default logical key fields, and
addressability to the sets of mapping code possible with
group-by selection. The three sets of possible mapping
codes include:

+ Group~-by primitive processing.
« Group-by derived field operations.

+ Group-by output mapping code.



A cursor can be either a permanent or temporary object.
Before a cursor can be used, it must be activated. Once
activated, the data spaces and index (if an index is used)
are marked in use to assure their continued existence
and for recovery (see In-Use Table on this page for
additional information). An activate cursor operation
attaches the cursor to the activating process by storing
the process identification and the current IPL number
into the cursor. This action restricts the use of the
cursor to the activating process. The only instructions
that another process can issue to operate on an active
cursor are the Create Duplicate Object and Materialize
Cursor Attributes instructions.

De-activation of a cursor detaches the cursor from the
process, transfers locks to the associated commit block,
and restores the cursor to its original condition.
Whenever process termination occurs, any active cursors
are de-activated by data base process termination
clean-up routines. If an abnormal machine termination
occurs, an implicit de-activation is performed the next
time the cursor is activated.

In-Use Table

The in-use table is used for recovery purposes by
keeping track of the data spaces being used and the
data space indexes while they are being built. This table
is contained in a permanent preallocated segment. The
format of the in-use table is shown in Figure 2-11.

SID Group Header

Status Bits

Data Base Level Number

In-Use Table Forcing

Information
Object @ | Object Type Object Status | Use Count
Object @ | Object Type Object Status Use Count
0 (free)
Object @ | Object Type Object Status Use Count
| ——— N
— 1 T

Figure 2-11. In-Use Table Format

Data Base Management 2-27



STRUCTURE

The following is a list of the modules in data base
management and the function that each module
performs. This list also shows how the module is
invoked.
#DBACR Activate Cursor

Function: Ensures that a cursor is available to a process
and activates the cursor.

How Invoked: Activate Cursor instruction.

#DBAPINC Data Base Maintenance Routine to

Apply Increment to Data Space

Function: Applies an increment to the maximum number
of entries value for a data space. Utilizes the data base
common function #DBINCRM to perform the actual
increment.

How Invoked: Within this component.

#DBASMEH CSEH for 80, 81, and B2

Microprogramming Exceptions

Function: Traps 80, 81, and 82 exceptions and returns
to the next microprogramming instruction.

How Invoked: Through exception management.

#DBASYER Signal Asynchronously Detected

Exception During Build Index
Function: Signals the appropriate exception if concurrent
activity against the index causes the tree to reach an
invalid state or if the concurrent logging SID overflows
during a build data space index operation.

How Invoked: Within this component.

#DBBDVAL Build Default Value Array

Function: Loops through the JMAP entries of a join
cursor, constructing a 32-bit array indicating which

positions contribute default values.

How Invoked: Within this component.

2-28

#DBBLDCR Allocate Storage and Build Cursor

Header

Function; Allocate storage for and initialize the
appropriate fields in the curser header.

How [nvoked: Within this component.

#DBBLDER Signal Select/Omit or Duplicate Key

Exception During Build Index
Function: Signals a select/omit or duplicate key
exception early if more than 20 errors of one type are

detected prior to the catch-up phase of build index.

How !nvoked: Within this component.

#DBBRING Bring Data Space Entries

Function: Initiates paging operations as required to page
in currently needed data space entries and anticipate
future needs.

How Invoked: Data base common function invoked from

modules that locate and/ or retrieve data space entries.

#DBBUILD Perform Initial Data Space Index Build

Function: Builds a data space index tree by referencing
all data space entries under the index and inserting the

appropriate keys into the tree.

How Invoked: Within this component.

#DBCALCS Calculate Data Space Size

Function: Calculates the appropriate new size of a data
space based on its current size and its attributes.

How Invoked: Within this component.

#DBCATCH Perform Data Space Catch-Up

Function: Applies logged key changes to a data space
index at the end of a concurrent build or while activating

a delayed maintenance data space index.

How Invoked: Within this component.



#DBCATCY Perform a Build Index Catch~up Cycle

Function: Apply a specified portion of the delayed
maintenance logging SID to the DS index or Cursor Key

index.

How Invoked: Within this component.

#iDBCATDK Handle Duplicate Key

Function: Process duplicate keys encountered during a
catch-up cycle.

How Invoked: Within this component.

#iDBCATSO Handle Select/Omit Error

Function: Processes select/omit errors encountered
during a catch-up cycle.

How Invoked: Within this component.

#DBCCR Create Cursor

Function: Creates a cursor and links it to a data space
or data space index.

How Invoked: Create Cursor instruction.

#DBCCREH Create Cursor CSEH

Function: Performs the required recovery when an
exception is signaled during a create cursor operation.

How Invoked: Through exception management.

#DBCDS Create Data Space

Function: Creates a data space according to the
description provided.

How Invoked: Create Data Space instruction.

#DBCDSEH Create Data Space CSEH

Function: This CSEH is enabled by create data space
when storage is allocated. This CSEH deallocates the

storage that create data space allocated.

How Invoked: Through exception management.

#DBCHNEH Data Space Index Chain CSEH

Function: Detects microprogramming addressing
exceptions caused by a reference to nonexistent data

space index.

How Invoked: Through exception management.

#DBCINDS Add a DS Index Block to Each Data

Space
Function: Build DS index blocks for an index being
created and insert them into the header of each data

space being updated.

How Invoked: Within this component.

#DBCINEH Create Data Space Index CSEH

Function: Performs the required recovery for an
exception that occurred during a create data space index

operation.

How Invoked: Through exception management.

#DBCINX Create Data Space Index

Function: Creates a new data space index over one or
more existing data spaces.

How Invoked: Create Data Space Index instruction.

#DBCKDUP Check for Duplicate Key

Function: Distinguishes between pseudoduplicate keys
and genuine duplicate keys and optionally signals the

appropriate exception.

How Invoked: Within this component.

Data Base Management 2-29



#DBCKICU Build Reserved Key Index

Function: Reserves keys during the build index function
if there is a possibility of a decommit reinserting those

keys.

How [nvoked: Within this component.

#DBCKIJO Read Journal to Build the Reserved

Key Index

Function: Reads the journal to simulate a decommit
during the build index function and to reserve the keys.

How invoked: Within this component.

#DBCKSGT Check and Recover a Data Space SID

Group Table
Function: Performs recovery operations on the SID
group table and related fields of a data space including

clean-up operations for partial reset or partial extend.

How Invoked: Within this component.

#DBCLNLD Perform Load/Dump Cleanup

Function: Performs load/dump cleanup of certain data
space header fields.

How Invoked: Within this component.

#DBCLONE Clone Segment
Function; Makes a copy of a portion of a segment.

How [nvoked: Within this component.

#DBCLRSG Clear Segment
Function: Clears a portion of a segment.

How Invoked: Within this component.

2-30

#DBCNVDS Convert Data Space

Function: Performs necessary conversion of data spaces

during IPL /recovery and load/dump.

How Invoked: Within this component.

#DBCNVEH Conversion Error Feedback CSEH
Function: Completes conversion error feedback
information in the insert sequential option template.

How Invoked: Through exception management.

#DBCPYRC Complete Copy Data Space Entry
Function: Completes the functions required when using
a Copy Data Space Entry instruction to copy a data
space to itself.

How Invoked: Within this component.

#DBCRIPL Validate Cursor Internals During

Segment |dentifier Wrap

Function: Validates references to separate segment
groups from a cursor, verifies the existence of all
objects referenced by the cursor, verifies the existence
of all segment groups that comprise the cursor, and
detects damage within the cursor.

How Invoked: Segment identifier wrap interface.

#DBDACR De-activate Cursor

Function: Interfaces with the de-activate cursor
common function.

How Invoked: De-activate Cursor instruction.

#DBDCR Destroy Cursor

function: Destroys the specified cursor, removes all
context and user profile references to the cursor, and

frees all resources associated with this cursor,

How Invoked: Destroy Cursor instruction.

J

J



#DBDCTEH Deleted Entry Count CSEH

Function: Sets deleted entry count flags of the data
space as suspicious and unreliable if an error occurs

while deleting/restoring an entry.

How Invoked: Through exception management.

#DBDDS Destroy Data Space

Function: Destroys the specified data space, removes all
user profile and context references to the data space,

and frees all resources associated with this data space.

How Invoked: Destroy Data Space instruction.

#DBDEFER Defer Correction of Deleted Entry

Count

Function: Defers or corrects the deleted entry count in
the data space header.

How Invoked: Within this component.

#DBDEFLT Initialize Fields with Default Values

Function: Initializes fields with the appropriate default
values according to field type.

How Invoked: Within this component.

#DBDELCT Validate/Recover Deleted Entry Count

for Data Space
Function: Determines number of deleted entries in data
space and assures that the deleted entry counts in the
data space header and each data SID header are

correct.

How Invoked: Within this component.

#DBDELEN Delete Data Space Entry
Function: Deletes an entry from the data space.

How Invoked: Within this component.

#DBDELIM Data Base Common Function to Delete

Data Space Entries
Function: Deletes data space entries.
How Invoked: Within the data base and journal

components.

#DBDEREH Derived Mapping Exception Handler

Function: Handle exceptions that occur while executing
derived field mapping.

How Invoked: Within this component.

#DBDERKY Derive Logical Key
Function: Maps derived keys.

How Invoked: Within this component.

#DBDINX Destroy Data Space Index

Function: Destroys the specified data space index,
removes all user profile and context references
associated with the data space index, and frees all
resources associated with the index and also removes

any references from any associated space.

How Invoked: Destroy Data Space Index instruction.

#DBDISHR Dispose of Hold Record

Function: Disposes of the data space entry hold record
lock and releases it to the system or to a commit block.

How Invoked: Within this component.

#DBDIXEH Destroy Mini-Indexes

Function: Destroys mini-indexes created during a build
index in the event of an exception.

How Invoked: Within this component.

Data Base Management 2-31



#DBDKFEH Duplicate Key Feedback CSEH

Function: Completes duplicate key feedback information
in the option template of the Insert Sequential Data

Space Entries instruction.

How Invoked: Through exception management.

#DBDKYEH Delete Key CSEH

Function: Restores all modified data space indexes to
their prior state by inserting all recently deleted keys.

How Invoked: Within this component.

#DBDMGCR Damage a Cursor
Function: Set hard damage to a cursor.

How Invoked: Within this component.

#DBDMLEX Extend Delayed Maintenance Logging

SID

Function: Extends the logging SID when more space is
required to record a data space index modification.

How Invoked: Within this component.

#DBDMLOG Logs a Data Space Index Update

Function: Records a pending data space index binary
tree modification so that the data space index can be

brought up to data at a later time.

How Invoked: Within this component.

#DBDPKEH Duplicate Key CSEH

Function: Suppresses tentative ordinal numbers within
exception data.

How Invoked: Through exception management.

2-32

#DBDQDSE Remove Entry Lock From Queue

Function: Removes a data space entry lock from the
cursor’s locked entry queue.

How Invoked: Within this component.

#DBDSIPL Validate /Recover Data Space

Function: Detects internal damage within a data space
during install and load and after a system failure,
restores the data space to a useable condition, and
verifies the existence of all segment groups that
constitute the data space.

How Invoked: Within this component.

#DBDSI12 Converts Data Space Index to

Release 2

Function: Converts the data space index from release 1
to release 2 format.

How Invoked: Within this component.

#DBDSR12 Converts Data Space to Release 2

Function: Converts the data space from release 1 to
release 2 format.

How Invoked: Within this component.

#DBDSSEL Verify Selection Templates and

Generate Selection Code
Function: Generate data space selection code.

How Invoked: Within this component.

#DBENDSE Ensure Data Space Entries

Function: Places on auxiliary storage all data space
entries that have been modified through this cursor

since the last ensure operation or since cursor activation.

How Invoked: Ensure Data Space Entries instruction.



#DBENTAD Calculate Virtual Address of a Data

Space Entry

Function: Calculates the virtual address of a data space
entry given the data space virtual address and the
ordinal number of the data space entry.

How Invoked: Within the data base and journal
components.

#DBFORDS Force a Data Space and any Eligible

Indexes to Auxiliary Storage

Function: Saves the data space on auxiliary storage,
clears change flags within all affected data space
indexes, and writes to auxiliary storage only those
indexes in which all change flags have been cleared for
all data spaces in those indexes.

How Invoked: Within this component and by the ensure
object function.

#DBFORIN Force Inserted Entries

Function: Forces all inserts for a single data space. This
function is invoked if ensure is active or a user has the
write operation specified on an insert operation.

How Invoked: Within this component.

#DBFORSG Force all Data Spaces Under the Cursor
Function: Places on auxiliary storage all data space
entries that have been modified by a cursor operation
since the last ensure operation or the activation of the
cursor.

How Invoked: Within this component.

#DBFORUP Force Data Space Updates

Function: Forces all updated data space entries to
nonvolatile storage (any data segment group containing

updated data space entries).

How Invoked: Within this component.

#DBFRCEN Force Locked Entry

Function: Forces a single data space entry to nonvolatile
storage.

How Invoked: Within this component.

#DBFRCIX Force Data Space index

Function: Causes a data space index to be forced to
disk by forcing the changed data spaces referenced by

that data space index.

How Invoked: Within this component.

#DBFXBDY Fix Group Boundary

Function: Copies a data space entry spanning a group
boundary into a replacement buffer.

How Invoked: Within this component.

#DBHDCEH Damage Cursor CSEH

Function: Damages the cursor if an exception occurs
during the time this CSEH is enabled.

How Invoked: Within this component.

#DBIKYEH Insert Key CSEH

Function: Restores all modified data space indexes to
their prior state by removing all recently inserted keys.

How Invoked: Within this component.

#DBINBDY Insert Data Space Entry Spanning SID

Group Boundary

Function: Inserts a single data space entry that crosses
an SID group boundary.

How Invoked: Within this component.

Data Base Management 2-33



#DBINCRM Data Base Common Function to Apply

Increment to Data Space
Function. Applies increment to data space function.
How /nvoked: Within the data base and journal

components.

#DBINFER Induce an invalid Entry Status Byte for

Recovery Purposes

Function: Deliberately invalidates status byte for
recovery purposes.

How Invoked: Within this component.

#DBINIT1 Data Base IPL and Recovery Phase 1

Function: Performs all possible cleanup functions for
data base objects in use at the time of an abnormal
system termination. This is phase 1 of the data base

recovery.

How Invoked: Within this component.

#DBINIT2 Data Base IPL and Recovery Phase 2

Function: Performs lingering cleanup functions for data
base objects affected by journal and commit recovery.

This is phase 2 of the data base recovery.

How invoked: Within this component.

#DBINIWA Randomize the Invoker's Automatic

Variables

Function: Reach into the invoker's automatic storage
and randomize the variables.

How Invoked: Within this component.

#DBINJDS Handle Injured Data Space

Function: |dentifies a damaged data space, and discards
all linkage to associated indexes.

How [nvoked: Within this component.

2-34

#DBINSDR Data Base Maintenance Routine to

Insert Default or Deleted Entries

Function: Inserts default or.deleted entries into a data
space. Utilizes the data base common function
#DBINSIM to perform the actual inserts.

How Invoked: Within this component.

#DBINSEN Insert Data Space Entry
Function: Inserts a data space entry into the specified
data space.

How Invoked: Insert Data Space Entry instruction.

#DBINSEQ Insert Sequential Data Space Entries
Function: Inserts data space entries into the specified
data space.

How Invoked: Insert Sequential Data Space Entries
instruction.

#DBINSIN Insert Data Space Entries
Function: Performs the data base common function to
insert data space entries into the data space.

How Invoked: Within the data base and journal
components.

#DBIPLEH Tolerate Selected Page Reference

Exceptions that Occur During IPL

Function: Provides tolerance and resume point support
for page reference exceptions because of object
damage.

How Invoked: Through exception management.

#DBISRCH Search Data Space Index

Function: Examines binary tree contents to ensure that
the key utilized to locate the data space entry during the
Set Cursor instruction still identifies the same data
space entry, ‘

How Invoked: Within this component.

9



#DBIVLEH CSEH to Invalidate Data Space Indexes

Function: Responds to unexpected exceptions
encountered by invalidating all modified data space

indexes affected by the data space being populated.

How Invoked: Through exception management.

#DBIVXEH Invalidate a Data Space Index

Function: Invalidates a specific data space index in the
event an exception occurs while manipulating the data

space index.

How Invoked: Within this component.

#DBIXCEH CSEH to Invalidate a Data Space Index

Function: Responds to errors signaled during a machine
index operation by invalidating the data space index

involved in the operation.

How Invoked: Through exception management.

#DBIXCHN Perform Modification of Data Space

Indexes
Function: Performs insert key(s), delete key(s), empty
index requests, and invalidation requests when

performing modifications to the underlying data spaces.

How Invoked: Within this component.

#DBIXFEH Data Space index Full CSEH

Function: Invalidates full indexes that utilize release 1
format (2-byte) node structure.

How Invoked: Through exception management.

#DBIXGES Estimate Size of Data Space Index

Function: Estimates the number of index entries
between the low and high points of a key range.

How Invoked: Within this component.

#DBIXIPL Validate/Recover Data Space Index
Function: Detects internal damage within a data space
index during install and load or following a system
failure, invalidates the index if required, and verifies the
existence of all segment groups that constitute the data
space index.

How Invoked: Within this component.

#DBIXUEH CSEH to Remove DS Index from

In-Use Table
Function: Removes DS index from the in-use table.

How Invoked: Within this component.

#DBIXUSE Set Data Space Index Concurrent Log

Bit

Function: Set the concurrent log bit in the data space
index header if the data space index is being taken out
of use and there is no other user of this data space
index.

How Invoked: Within this component.

#DBIXVDS Verify Data Space and Data Space

Index Properly Address each Other
Function: Examines the DKEY table of a data space
index and the data space index directory blocks of a
data space to verify that they properly address each
other.

How Invoked: Within this component.

#DBJTLEH CSEH to Tolerate Journal Errors

Function: Tolerates the return feedback information on
journal errors.

How Invoked: Within the data base and load/dump
components.

Data Base Management 2-35



#DBLABRG Look-Ahead

Function: Performs look-ahead of data space entries.

How Invoked: Within this component.

#DBLCTKY Locate Key Candidate in Data Space

Index

Function: Locates a key candidate using a search key
and rule option.

How Invoked: Within this component.

#DBLGDNT Log Information About a Faulty Entry

Status Byte into the VMC Log

Function: Logs information associated with a faulty entry
status byte into the VMC log.

How Invoked: Within this component.

#DBLKMAP Record the First Execution of a Module,

Entry Point, or Function

Function: Records the address, name, and compile date
of the calling module and then no-ops the call
instruction. Used to identify newly linked modules and
to identify the first execution of rarely executed paths.

How Invoked: Within this component.

#DBLOGER Log Possible Error Keys During Data

Space Index Build
Function: Invokes the delayed maintenance logging
function to log the key. If the error threshold is reached,

then sets the error return flag.

How Invoked: Within this component.

2-36

#iDBMAINT Data Base Maintenance
Function: Performs special maintenance operations on
data base objects. The options supported are:

« Rebuild Index: Rebuild the index tree of an invalid
index based upon the data spaces pointed to by the
index.

« Invalidate Index: Mark a data space index as invalid
making the index un-usable until it is rebuilt, and
reclaim unused space.

« Reset Data Space: Delete all entries in a data space,
reclaim unused space, and free all ordinal numbers
previously assigned.

« Apply Increment to Data Space: Apply the increment
to the maximum number of entries value for a data
space.

« Insert deleted entries.
« Insert default entries.

How Invoked: Data Base Maintenance instruction.

#DBMALIVI Validate Data Space Index Chains
Function: Ensures that the data space index chain of a
data space is usable and optionally ensures that the data
space indexes over the data space are in a state that
permits the currently executing instruction to complete.

How Invoked: From modules that must use the data
space index chain and do not perform their own
checking.

#DBMAPEH Conversion/Mapping CSEH
Function: Performs the required recovery because of
decimal data and overflow exceptions caused by data
fields operated on by data base generated mapping
code.

How Invoked: Through exception management.



#DBMATCR Materialize Cursor Attributes

Function: Determines if the user requests materialization
of the statistics or the creation template for the
specified cursor, and invokes the appropriate
materialization function.

How Invoked: Materialize Cursor Attributes instruction.

#DBMATDS Materialize Data Space Attributes

Function: Determines if the user requests materialization
of the statistics or creation template and moves the
requested information into a space object.

How Invoked: Materialize Data Space Attributes

instruction.

#DBMATIX Materialize Data Space Index Attributes

Function: Determines if the user requests materialization
of the statistics or creation template and invokes the
appropriate materialization function.

How Invoked: Materialize Data Space Index Attributes

instruction.

#DBMCLEH CSEH to Discard Partially inserted Data

Space Entries

Function: Discards all partially inserted data space
entries from the specified data space.

How Invoked: Through exception management.

#DBMDSAT Modify Data Space
Function: Modifies the data space attributes.

How Invoked: Within this component.

#DBMERGE Merge Mini-Indexes into a Data Space

Index

Function: Merges mini-indexes into the data space
index during build index.

How Invoked: Within this component.

#DBMIVAL Invalidate a Data Space Index
Function: Invalidates a data space index.

How Invoked: Within this component.

#DBMODIM Modify Data Space Entry

Function: Updates data space entries.
How Invoked: Within the data base and journal

components.

#DBMODIX Modify Attributes of a Data Space

Index

Function: Changes an attribute of a data space index
that can be modified.

How Invoked: Modify Data Space Index Attribute

instruction.

#DBMONRL Release a Seize and Wait

Function: Releases a seized object. Performs a wait
operation if some other process is attempting to access

the object.

How Invoked: Within this component.

#DBMONSZ Seize an Object and Save the Hold

Record Address
Function: Seizes an object and saves the address of the
hold record so that the hold record can be tested
periodically to determine if another process is attempting

to access the object.

How Invoked: Within this component.

#DBMPSEL Derived Field Mapping

Function: Performs derived field mapping and selection
for each DMAP entry.

How Invoked: Within this component.

Data Base Management 2-37



#DBMRBLD Rebuild a Data Space Index

Function: Rebuilds .a data space index for data base
maintenance.

How Invoked: Within this component.

#DBMRSET Data Base Maintenance Routine to

Reset a Data Space

Function: Performs the data base maintenance option to
reset the data space.

How Invoked: Within this component.

#DBMR6F6 Merge Fast Search Arrays into a Single

Array
Function: Process ranges from one or more fast search
arrays to produce a single merged array with ordered

disjointed ranges.

How Invoked: Within this component.

#DBMUSEH Remove Objects from In-Use

Function: CSEH to remove the specified objects from
the in-use table in the event of an exception.

How Invoked: Within this component.

#DBORDNB Determine Ordinal Number

Function: Determines the ordinal number associated
with the given virtual address of a data space entry.

How Invoked: Within this component.

#DBPOSCR Restore a Cursor Position
Function: Restores the position of a cursor.

How Invoked: Within this component.

2-38

#DBRELEH Release Seized Objects CSEH

Function: Releases the objects listed in the designated
seize/release parameter block.

How Invoked: Through exception management.

#DBRESEQ Sequentially Retrieve Data Space

Entries
Function: Sequentially retrieves multiple data space
entries and sets the cursor to address the final entry
retrieved.
How Invoked: Retrieve Sequential Data Space Entries

instructions.

#DBRESET Logically Reset a Data Space

Function: ldentifies a data space as totally or partially
reset and destroys any unused data SiDs.

How Invoked: Within this component.

#DBRETEN Retrieve Data Space Entry

Function: Maps the data space entry designated by the
cursor into the user’'s interface buffer.

How Invoked: Retrieve Data Space Entry instruction.

#DBRLSEN Release Data Space Entries

Function: Releases data space entries {unlocks either the
first entry or all entries currently locked to a specified
active cursor). The number of entries unlocked is
determined by the release data space entries option.

How Invoked: Release Data Space Entries instruction.

#DBRMDSK Removes Data Space Keys from a Data

Space Index

Function: Removes all keys for a data space from a data
space index.

How Invoked: Within this component.



#DBRSIPL Recover from Reset
Function: Performs IPL-time recovery for a partial reset
operation against SID number 1 of a data space.

How Invoked: Within this component.

#DBRSQMN Retrieve Sequential Mainline
Function: Retrieves multiple data space entries or
group-by results.

How Invoked: Within this component.

#DBRSTDS Data Base Common Function to

Perform a Reset of a Data Space
Function: Fully resets a data space.

How Invoked: Within the data base and journal
components.

#DBSCAEH Store and Set Computational Attributes

Exception Handler

Function: The computational attributes are reset from
the exception data.

How Invoked: Within this component.

#DBSELEH Generated Selection Code Exception

Handler

Function: Sets the exception type and returns to the
next sequential instruction of the invoker of the
generated selection code if a data related exception
occurs during the execution of the generated selection
code.

How Invoked: Within this component.

#DBSELIX Select Affected Data Space Indexes

Function: Selects the data space indexes that are
affected by the modification of an underlying data

space.

How Invoked: Within this component.

#DBSETCR Set Cursor

Function: Causes the cursor to address an entry in a
data space as specified by the option list and the search
key. The address of the entry is stored in the cursor. If
requested, the logical key is returned in the area
specified.

How Invoked: Set Cursor instruction.

#DBSOEH Select/Omit CSEH

Function: Tolerates exceptions associated with a
select/omit data space index that occurred during the
execution of a user exit program.

How Invoked: Through exception management.

#DBSPCHK Run-Time Deleted Segment Group

Spanning Data Space Entry Checks

Function: Checks the segment group spanning data
space entries to assure that consistency is maintained
between the data space and data space index.

How Invoked: Within this component.

#DBSPNBG Detect and Process the Data Spaces
That Were Exposed to the Deleted

Span Segment Indicator
Function: Attempts to correct any damage caused by
the indicator that inadvertently deletes data space

entries that cross segment group boundaries.

How Invoked: Within this component.

#DBSRCHN Search DSPI Chain During Recovery

and Load/Dump

Function: Performs validity checks on the DSPI chain of
a data space during load/dump and IPL recovery.

How Invoked: Within this component.

Data Base Management 2-33



#DBSTUFF Build Keys from Data Spaces and

Insert Them into an Index
Function: Performs appropriate select/omit and build
key processing on data space entries and inserts the
entries into a data space index or mini~index during a

build index operation.

How Invoked: Within this component.

#DBSTUFX Put Keys into Index from Parent Index

Function: Generates keys from an existing index and
inserts them into the new index.

How Invoked: Within this component.

#DBSTUSB Build Key of Entry Crossing SID Group

Boundary
Function: Performs appropriate select/omit and build
key processing for a data space entry that crosses an

SID group boundary.

How Invoked: Within this component.

#DBTERM Data Base Process Termination Routine

Function: De-activates any cursors that are active at
process termination.

How Invoked: Process termination.

#DBTMPIX Manage Retain Status of a Data Space

Function: Modifies the retain status of the data space to
account for the presence of a temporary index

referenced from the DS index chain.

How Invoked: Within this component.

#DBUCOPY Copy Data Space Entries

Function: Copies data space entries from one data
space to another (or the same) data space according to

the specified options.

How Invoked: Copy Data Space Entries instruction.

#DBUCSEH Copy Data Space Entries CSEH

Function: Handles errors that occur during a Copy Data
Space Entries instruction. When source and receiver
data spaces are the same, backs up the data space to

its prior state.

How Invoked: Through exception management.

#DBUGDEL Report an Inconsistent Deleted Entry

Count

Function: Flags and reveals an inconsistent deleted entry
count of a data space.

How Invoked: Within this component.

#DBUNBLD Unbuild Composite Key

Function: Extracts individual fields from a composite key
and reverses any key building operations to obtain the

previous key value.

How Invoked: Within this component.

#DBUNDEL Update a Deleted Entry
Function: Updates a deleted data space entry.

How Invoked: Within this component.

#DBUPDEN Update Data Space Entry

Function: Updates the locked data space entry
addressed by the head of the locked entry queue

associated with the cursor.

How Invoked: Update Data Space Entry instruction.

#DBUPDIM Update a Nondeleted Entry
Function: Updates a nondeleted data space entry.

How Invoked: Within this component.



#DBVERIP Verify Internal Pointer

Function: Verifies that an internal segment pointer
contains an undamaged segment identifier.

How Invoked: Within this component.

#DBVERPT Verify External Pointer

Function: Verifies that an external segment pointer
references an existing segment group.

How Invoked: Within this component.

#DBVERSD Data Base Object Router for Segment

Identifier Wrap
Function: Determines the object type during segment
identifier wrap processing and invokes the appropriate
object-specific validation routine.
How Invoked: Through the segment identifier wrap

interface.

#DBVFYJN Verify Cursor Join Position

Function: Verifies the current position of a join cursor to
ensure it is still a valid composite join position.

How Invoked: Within this component.

#DBVFYKY Verify Key Presence in Data Space

Function: Determines if the key corresponding to the
data space entry is present in the input data space

index.

How Invoked: Within this component.

#DBVIPTR Verify a SID pointer

Function: Verify the input pointer for accuracy. If an
erroneous pointer is detected, replace the pointer with

the standard value representing a lost SID.

How Invoked: Within this component.

#DBVKCNT Verify MI-Specified Key Count of Byte

Length or Number of Key Fields
Function: Given a logical key count, consisting of either
a byte length or key field count, verifies the contents
and returns the length of the logical key including fork

characters.

How Invoked: Within this component.

#DBVRSEL Verify Selection Template

Function: Verify that the selection template is internally
consistent.

How Invoked: Within this component.

#DBXBIES Calculate Value For Extending Data

Space Indexes
Function: Given the current data space index size and an
optional minimum new size, calculates a new size that
fits desired allocation rules.
How Invoked: From modules that create or extend a

data space index.

#DBXBINX Build Data Space Index

Function: Builds or brings up to date the binary tree
(internal machine index) portion of a data space index.

How Invoked: W.ithin this component.

#DBXBLKY Build Composite Key

Function: Builds a composite key according to the input
parameters.

How Invoked: Within this component.

Data Base Management 2-41



#DBXCBEH Critical Data Base Error CSEH

Function: Causes CSEH to write a data base object
image to the VMC log in case of an unrecoverable error
in manipulating the object, and to stop machine
processing so that data base IPL recovery can attempt

to recover the error.

How Invoked: Through exception management.

#DBXCIRC Log Circular Data Space Index

Directory Block Chains
Function: VMC logs a data space when circular data
space index directory block chain is detected and soft

damage to the data space occurs.

How Invoked: Within this component.

#DBXCLDS Clear Trailing Area of Data Segment

Function: Discards the entries from the end of a data
space.

How Invoked: Within this component.

#DBXCPCR Copy Cursor

Function: Restores object specific fields in the cursor
after a create duplicate object operation.

How Invoked: Other VMC component as a result of a

create duplicate object operation.

#DBXDACR De-activate Cursor Common Function
Function: De-activates the specified cursor.
How Invoked: Within this component and process

termination.

#DBXDDS Destroy Data Space Common Function

Function: Performs common portions of destroy data
space for error and IPL recovery.

How Invoked: Within this component.

#DBXDINX Destroy Data Space Index Common

Function

Function: Performs common portions of destroy data
space index.

How Invoked: Within this component and destroy and
create data space index CSEHs.

#DBXDSID Carefully Destroy Data Segment
Function: Verifies the identity of a data space data
segment and destroys it.

How Invoked: Within this component.

#DBXFDSH Load/Dump Update Data Space

Header

Function: Updates addresses in a loaded data space
header and merges the data space index blocks of the
overlaid data space if one exists.

How Invoked: From load/dump.

#DBXFIXH Load/Dump Update Data Space index

Header
Function: Updates addresses in a loaded data space
index header and establishes pointers between the index

and the referenced data spaces.

How Invoked: From load/dump.

#DBXFMAP Data Movement/Conversion Code

Generation

Function: Generates field mapping and data conversion
code.

How Invoked: Within this component.

#DBXGBDY Parse Entry Spanning a Group

Boundary

Function: Locates both portions of a data space entry
spanning a SID group boundary.

How Invoked: Within this component.



#DBXGDER Generated Derived Field Mapping

Function: Processes the mapping template to produce
derived field mapping.

How Invoked: Within this component.

#DBXIVAL Invalidate Data Space index
Function: Invalidates an index and signals an event.

How Invoked: Within this component.

#DBXMATK Construct Logical Key

Function: Generates the logical key corresponding to the
data space entry.

How Invoked: Within this component.

#DBXMUSE Maintain the Data Base In-Use Table

Function: Records the data base objects that are being
used at any one time. This routine performs all IPL and
run-time functions that involve the in-use table. These
functions include:

« Initialize: Initializes the in-use table (IPL)

» Set: Sets pointer to retrieve first in-use table entry
(IPL)

. Retrieve: Retrieves next in-use table entry (IPL)
+ Find: Determines if an object is in-use (run time)

« Increment: Places an object in-use or increases the
count (run time)

« Decrement: Removes an object from in-use or
decreases the count (run time)

« Ensure: Ensures that the in-use status of all objects
is saved on secondary storage (run time)

- Signal Exception: Signals an object not eligible
exception (run time)

» Retain: Flags an object as a candidate for recovery
processing

How Invoked: Within this component and from

load /dump.

#DB5NDEF Verify Join Definition Template

Function: Verifies the join input template, then builds
the join portion of a cursor.

How Invoked: Within this component.

#DB5NPOS Set Secondary Position of a Join

Cursor
Function: Sets the secondary position of a join cursor.

How Invoked: Within this component.

Data Base Management 2-43



#DB6BDEF Verify Group-by Definition Template

List and Build Related Group-by
Structures
Function: Builds the intermediate buffer description for
group-hy results and generates all primitive processing
code.

How Invoked: Within this component.

#DBG6BMAP Verify Group-by Mapping

Function: Verifies group-by mapping code and generate
group-hy intermediate mapping code.

How Invoked: Within this component.

#DBGBSEL Verify Group-by Selection Template

and Generate Group-by Selection Code

Function: Verifies and generates Selection code for the
group-by intermediate buffer.

How Invoked: Within this component.

#DB6MSEL Group-by Derived Field Mapping and

Selection

Function: Performs group-by derived field mapping,
selection, and output mapping.

How Invoked: Within this component.

#DBGNSEL Generate Selection Code

Function: Processes the selection template to produce
the generated selection code.

How Invoked: Within this component.

#DBXPUSH Allocate Additional Data Space SID

Group Table Entries
Function: Allocates more space for SID group table
entries in a data space header by relocating any data

space index directory blocks in the data space header.

How Invoked: Within this component.

2-44

#DBXRINX Load/Durmp Network Cleanup
Function: Searches the data space index chain of
previously loaded and updated data space header for
any blocks with the load/dump flag set to on. Such
blocks are deleted and their spaces reclaimed. The data
space index chain is also searched for any blocks with
the index invalidated flag set to on. An event is signaled
for each index pointed to by such a block.

How Invoked: From load/dump.

#DBXRMVI Rermove Flagged Data Space Index

Blocks from the Data Space Header

Function: Searches the index list of a data space header
for any blocks with the remove flag set to on or the
load/dump flag set to on, and deletes those blocks.

How Invoked: Within this component.

#DBXRMVT Re-copy Data Space Header to the

Data Space Header Segment Group
Function: Copies the duplicated (copied) data space
header to the original header and destroys the

duplicated segment group.

How Invoked: Within this component.

#DBXSELT Invoke Select/Omit Routine

Function: Maps data space entry fields to the selection
buffer and invokes the selection routine to determine if

the entry is to be inserted into the data space index.

How Invoked: Within this component.

#DBXSIZE Alter the Size of a Segment Group of

an Object

Function: Alters the size of a segment group of an
object to the specified size.

How I[nvoked: Within this component.

5



#DBXTNDS Extend the Space Allocated for a Data
Space

Function: Extends a data space such that it is large
enough to hold additional entries.

How Invoked: Within this component.

#D0BXUNLK Unlock Data Space Entry

Function: Removes and disposes of the specified hold
records from the cursor’s locked entry queue.

How Invoked: Within this component.

#DBXVDER Verify Derived Field Mapping Template

Function: Verifies that the derived field mapping
template is internally consistent.

How Invoked: Within this component.

#DBXVERX Verify that a Segment Group Does
Exist

Function: Verifies that the designated segment group

does exist. If the segment does not exist, a designated

object is marked damaged.

How Invoked: Within this component.

#DBXVMAP Verify Mapping Template

Function: Verifies that the designated field resides
within the data space entry, the type attribute is valid,
and the length for the attribute specified is valid.

How Invoked: Within this component.

Data Base Management

2-45






Independent Index Management

INTRODUCTION

An independent index is a system object used for data
storage and retrieval. The index is designed to minimize
the storage required for data and the time needed to
insert, find, or remove pieces of data. Independent
indexes have multiple uses; among these are table
searches, sorts, merges, cross-references, and symbol
tables.

Independent index management controls the building
and maintenance of independent indexes. Independent
index management uses a machine index for the storage
of data and uses machine index management to perform
the operations on data contained in the indexes.

Independent index management supports the following
System/38 instructions:

« Create Independent Index

« Destroy Independent Index

» Find/Remove Independent Index Entry
« Insert Independent Index Entry

« Materialize Independent Index Attributes

+ Modify Independent Index

Figure 3-1 shows an overview of these independent
index management functions.

Create, Destroy,
Materialize, and
Modify Instruction
Processors

(# IXCRTIX,

# IXMATAT,

# IXDESTIX,

# IXMODII})

Independent
Index

———Enty)

Find/Remove and
Insert Independent
Index Entry
Instruction
Processors
(#1XMAIN and
#IXINSEN)

Index Control
Block

-

Machine Index
Management

Figure 3-1. Independent Index Management Overview

Independent Index Management  3-1



Create Independent Index Destroy Independent Index

Module #IXCRTIX is invoked by the supervisor link Module #IXDESTIX is invoked by the SVL router as a J

(SVL) router as a result of a Create Independent Index result of a Destroy Independent Index instruction.

instruction. #IXCRTIX copies the index description #IXDESIX invokes #CFOCHKR to seize and validate the

template into an internal area and calls #CFCRTO1 to index. #IXDESIX then invokes #CFDESTO to destroy

validate the template. the index (headers and machine index) and to remove
addressability from any context and user profile

#IXCRTIX then invokes #SMSGCRT to allocate the containing addressability to the index. Finally,

storage, and #IXCRTIX initializes the encapsulated #IXXDEST is invoked to destroy any secondary index

program architecture (EPA) and object specific headers segments.

and the base page of the index. #CFCRTO2 is then
called to insert addressability to the index into a context
(if requested) and the user profile (if the index is
permanent). The entire object is written to auxiliary
storage by #SVE8PPR. The system pointer is initialized
and returned to the caller.



Find/Remove Independent Index Entry

Module #IXMAIN is invoked by the SVL router as a
result of both Find Independent Index Entry and Remove
Independent Index Entry instructions. #IXMAIN
validates the instruction and then invokes #CFOCHKR to
seize and validate the index. #IXMAIN copies the rule
options list into an area in the invocation work area
(IWA), validates the list, and then builds an index control
block (IXCB) according to the rule options list as

follows:

Machine Index Function

prior

Rule Option First EXCB Subsequent EXCBs Subsequent EXCBs
Generic Request (Hex) (Find or Remove) (Find Only) (Remove Only)
Generic Equals 0001 Find low Find next Find low else next
Strictly Greater 0002 Find generic next Find next Find low else next
Than
Strictly Less 0003 Find generic prior Find generic prior Find generic prior
Than
Greater Than 0004 Find low else next Find next Find low else next
or Equal
Less Than 0005 Find high else prior Find generic prior Find generic prior
or Equal
First 0006 Find lowest Find next Find low else next
Last 0007 Find highest Find generic prior
Between 0008 Find low else next Find next or find Find low else next
(inclusive) or find high else generic prior or find generic prior

Independent Index Management 3-3




#IXMAIN then invokes the machine index function
(#XXEXCB} to perform the index operation. When an
entry is located, the status flags are checked for error
conditions. The following sequence is then repeated
until all occurrences of the entry have been located:

1. If a remove entry operation is specified, the entry
just found is removed from the index.

2. An internal return ¢ount is incremented,

3. Initialize the IXCB for the next find according to
the preceding rule options, and execute the control
block.

4.  Check the status flag for an error condition.

When all entries have been found, the return count is
placed in the option list and the index is released.

Insert Independent Index Entry

Module #IXINSEN is invoked by the SVL router as a
result of an Insert Independent Index Entry instruction.
H#IXINSEN invokes #CHOCHKR to seize and validate the
index. #IXINSEN copies the rules options list to an area
in the IWA, validates the list, and then builds an IXCB
according to the rule options list as follows:

Machine

Rule Option Index
Generic Request (Hex) Function
Insert 0001 Insert
Insert with 002 Insert
function
replacement
Insert conditional 0003 Insert
that key not in conditionally
index

3-4

For each entry to be inserted, move the argument to an
internal buffer, perform the index function (#IXXEXCB},
check the status flags (extend index if necessary}, and
increment the return count.

When all entries have been inserted, the return count is
placed in the options list and the index is released.

Materialize Independent Index Attributes

Module #IXMATAT is invoked by the SVL router as a
result of a Materialize Independent Index Attributes
instruction. #IXMATAT invokes #CFOCHKR to seize and
validate the index. #IXMATAT invokes #CFMATO2 to
copy the data to be materialized from the EPA header.
#IXMATAT then copies the data from the object specific
header to an internal buffer, and then moves the data
{up to the length of the template} from the buffer to the
user template. The find count in the object specific
header is set to 0 and the index is released.

Modify Independent Index

Module #IXMODII is invoked by the SVL router as a
result of a Modify Independent Index instruction.
#1XMODII invokes #CFOCHKR to seize and validate the
index. #IXMODII ¢copies the index to auxiliary storage.
#IXMODIl modifies the specified attributes. When all
specified attributes are modified, the index is released.

DATA AREAS

Independent Index
An independent index resides in one or two segment
groups as shown in Figure 3-2. The first segment
contains the following:
« The segment group header
« The EPA header
= An object specific header that contains:
— Index attributes, values, and pointers

— Buffer

« A machine index

I



The second segment is optional and contains the

following:
« The segment group header

« The associated space

Segment Group 1

Segment Group Header L

EPA Header
(- hd

Object Specific Header

® Attributes

® Argument Length

® Number of Entries Inserted

® Number of Entries Removed

® Number of Entries with Pointers
® Number of Pages in Index

e Buffer 1

Machine Index

® Base Page
® Secondary Page(s)

|
i {extendable) i

Page
Boundary

Segment Group 2

T

Segment Group Header

Associated Space

Figure 3-2. Independent Index

Index Description Template

The index description template is used by the create and
materialize index functions to build and materialize an
index. The template contains:

« Attributes and values

« Creation and recovery options

« Pointers

STRUCTURE

The following is a list of the modules in independent
index management and the function that each module
performs. The list also shows how the module is
invoked.

#IXCRTEH Create Index Component-Specific
Exception Handler (CSEH)

Function: Processes exceptions that occur during a
create independent index operation.

How Invoked: VMC component.

#IXCRTIX Create Independent Index

Function: Creates an independent index according to the
specifications contained in the creation template.

How Invoked: Create Independent Index instruction.

#IXDESIX Destroy Independent Index

Function: Destroys the specified index and removes all
references to the index from the system.

How Invoked: Destroy Independent Index instruction.

#IXINSEN Insert Independent Index Entry

Function: Inserts entries into the specified independent
index.

How Invoked: Insert Independent Index Entry instruction.

Independent Index Management 3-5



#IXINXEH Index CSEH

Function: Processes exceptions that occur during insert,
find, and remove entry operations.

How Invoked: VMC Component.

FIXMAIN Index Main

Function: Mainline index code that processes find and
remove index entry options.

How Invoked: Find Independent Index Entry and Remove
Independent Index Entry instructions.
#IXMATAT Materialize Independent Index

Function: Materializes the attributes of the specified
index.

How Invoked: Materialize Independent Index instruction.

#FXMODI Modify Independent Index

Function: Mecdifies the specified attributes within the
independent index.

How Invoked: Modify Independent Index instruction.

3-6



Journal Management

INTRODUCTION

Journal management records the changes made to
objects for use in recovery procedures and tracks
change activity.

Along with recording the changes made to an object,
journal management also records the following
information about the object:

« When the change is made.

« What process makes the change.

+ The user that makes the change.

» What program makes the change.

Journal management also:

« Records the changes simultaneously on two journal
spaces so that if one journal space is damaged, the
information can be retrieved from the undamaged
journal space.

« Automatically synchronizes the journal port and the
journaled object during initial program load (IPL). This
also synchronizes the journaled object with all other
objects being journaled through the same journal
port.

« Allows the user to place entries on the journal. These
may be interspersed with entries for object changes.

« Retrieves the entries from the journal by a variety of
search criteria.

« Recovers the journaled object from the journal port.
This can either involve forward recovery of the object
by applying the specified changes, or backward
recovery by applying the inverse of the specified
changes.

Journal Management  4--



Journal management uses two system objects to
implement these functions as shown in Figure 4-1.
They are the journal port and journal space.

Journal Space

Journal Port

Segment Group Header

EPA Header

Obiject Specific Header

Receiver Table /
® Journal Space No. 1 Address o+

Segment Group Header

EPA Header

Object Specific Header

Journal Port Address &
Twin Pointer o\\

Segment Table

Locator Table

" (expandable) !

® Journal Space No. 2 Address o —

Object Table

-

Segment Group Header ‘/

EPA Header

Object Specific Header

Journal Port Address e—
Segment Table \

Twin Pointer [ 8

Locator Table

) (expandable) 1
L

Figure 4-1. Journal Object Relationship




The journal port {Figure 4-2} is the object through which
journal entries are routed. It provides a method of
linking the journaled objects to the journal spaces. The
journal port also provides a definition of the lengths of
the various prefix data.

Segment Group Header

o

EPA Header

Object Specific Header {JOJOP)

Materialization Area

— Prefix Lengths

— Number of Journal Spaces

— Attached

Receiver Table

— First Journal Space Address

— Second Journal Space Address

Journal Entry Sequence Number

Number of Journaled Objects

Number of Object Slots Available

Block Status

Journal Port Object Table

— Segment Identifier of Journaled
Object

— Journal Identifier of Journaled
Object

— Start Synchronization Sequence
Number

— Qld Start Sequence Number

— Journaled Object Attributes

Note: The journal port object table
occurs once for each journaled object.

Figure 4-2. Journel Port

Segment Group Header

Associated Space

1 {expandable)

| T - - -

Journal Management

4-3



The journal space {Figure 4-3} is used to record journal
entries. When the journal space is attached to a journal
port, entries are placed into the journal space for any
change to an object that is being journaled through that
journal port. The entries are variable length. Linkage is
provided for both forward and backward search, and

random finds.

Base Segment

Data Segment

Segment Group Header

Data Segment Header
-® Segment Group Header Entries

EPA Header 1 {expandabie)

L e e e = -
Object Specific Header
Journal Segment Table /
® Journal Segment 1 Address »-
¢ Journal Segment 2 Address e =
® Journal Segment n Address Segment Group Header
Journal Locator Table Data Segment Header

I (expandable)

! Entries
| {expandable} |
e e e e - - o

Segment Group Header

Associated Space

I {expandable}
L

e |

Figurs 4-3. Journe! Space

-4



One or two journal spaces can be attached to a journal
port. If two journal spaces are attached to a journal
port, they must be attached at the same time, and their
contents must be identical. Once a journal space is
detached from the journal port, it cannot be attached to
a journal port again and can only be used for find
operations.

A journal space can be dumped or reloaded. If the
journal space is dumped when it is empty, (not attached
to a journal port), it is loaded as empty. If the journal
space is dumped when it is attached to a journal port or
after it has been detached from the journal port, it is
loaded as detached.

Journal management performs the following functions:
« Inserts an entry into the journal space.

« Finds entries on the journal space.

« Performs automatic synchronization during IPL.

« Recovers journaled objects during IPL.

« Performs fix up of journal spaces after the journal
spaces are loaded.

» Logs journaled objects on the object recovery list
during IPL.

Journal management supports the following System/38
instructions:

- Apply Journaled Changes
« Create Journal Port

« Create Journal Space

« Destroy Journal Port

« Destroy Journal Space

« Journal Data

« Journal Object

« Materialize Journal Port Attributes

« Materialize Journal Space Attributes

- Materialize Journaled Object Attributes
« Materialize Journaled Objects

« Modify Journal Port

« Retrieve Journal Entries

Apply Journaled Changes

#JOAPPLY is invoked as a resuit of an Apply Journaled
Changes instruction. This module applies the recorded
changes in a journal space to an object. The recorded
changes can be applied in either the forward direction or
the backward direction. In the forward direction, the
change indicated by the journal entry is applied to the
objects in ascending journal sequence number order. In
the backward direction, the reverse of the operation
specified in the journal space is applied to the objects in
descending journal sequence number order.

The Apply Journaled Changes instruction really consists
of multiple operations. These operations consist of
getting the next journal entry, and making the change to
the object.

Create Journal Port

#JOCRTJP is invoked as a result of a Create Journal
Port instruction. This module accepts a creation
template containing the common create template, plus
lengths for the time stamp, process name, user profile
name, and program name to be put into the prefix of
each entry journaled through this journal port. The
object must be created as a permanent object.

Create Journal Space

#JOCRTJS is invoked as a result of a Create Journal
Space instruction. This module accepts a creation
template containing the common create template, plus a
threshold event size. The object must be created as a
permanent object.

Journal Management 4-5



The journal space is set to the empty status when it is
created. This status allows the journal space to be
attached to a journal port. In empty status, the journal
space has no data segments. The first data segment is
created during the execution of the Modify Journal Port
instruction that attaches the journal space to a journal
port. When the first entry is put into the journal space,
the journal entry recognizes that there is not enough
space to insert the entry and extends the journal space.

Destroy Journal Port

#JODESJP is invoked as a result of a Destroy Journal
Port instruction. This module controls the destruction of
a journal port. The following rules control the
destruction of a journal port:

« If the journal port is damaged, it can be destroyed
with no restrictions.

+ If the journal port is not damaged, it cannot be
destroyed if it has undamaged journal spaces
attached or if there are undamaged objects journaled
through the joumal port.

Destroy Journal Space

#JODESJS is invoked as a result of a Destroy Journal
Space instruction. This module controls the destruction
of a journal space. The following rules control the
destruction of a journal space:

« If the journal space is attached to a journal port, it
may be destroyed only if the journal port is damaged.

+ If the journal space is not attached to a journal port,
it may be destroyed only if its use count is zero. The
use count of an unattached journal space may be
nonzero if the Modify Journal Port instruction used to
detach the joumal space did not complete properly or
if the journal space is required by commitment
control to perform a decommnit.

Note: Even if the journal space is damaged, it may not
be destroyed unless it meets the preceding criteria. If a
Modify Journal Port instruction fails before it is
completed, leaving the use count nonzero, the only way
to zero the use count is to perform an IPL.

Journal Data

#JOURDAT is invcked as a result of a Journal Data
instruction. In turn, the Journal Data instruction invokes
#JOURNAL to provide the facilities for inserting journal
entries into the journal space(s} attached to a journal
port.

Journal Object

#JOJOBJ is invoked as a result of a Journal Object
instruction. This module initiates the journaling of an
object or terrninates the journaling of an object. An
object is journaled to a journal space through a journal
port. The object to be journaled is associated with a
journal port with the Journal Object instruction. Starting
journaling of an object to a journal port causes an entry
to be placed in the journal spacels) attached to the
journal port. The Journal Object instruction also
removes the association between the object and journal
port, stopping recording of changes to that object.

Materialize Journal Port Attributes

#JOMATUIP is invoked as a result of a Materialize
Journal Port Attributes instruction. This module returns
a creation-like template for a journal port. This template
consists of the common object creation template and
four prefix lengths. The Materalize Journal Port
Attributes instruction also retums the number of journal
spaces attached to the journal port as well as the
pointers to those spaces.

Materialize Journal Space Attributes

#IJOMATIS is invoked as a result of a Materialize
Journal Space Attributes instruction. This module
returns a creation-like template for a journal space. This
consists of the common object creation template and
the threshold size. The Materialize Journal Space
Attributes instruction also returns a pointer to the journal
port to which the journal space is attached, and the
current state of the entries on the journal space. The
current state includes the first and last sequence
numbers, attach and detach time, prefix lengths, and the
length and sequence number of the longest entry.

J



Materialize Journaled Object Attributes

#JOMATOA is invoked as a result of a Materialize
Journaled Object Attributes instruction. This module
returns the journal status for any object including those
that cannot be journaled. The instruction returns the
object journal attributes, a pointer to the journal port if it
is currently being journaled, and the last (current) journal
identification.

Materialize Journaled Objects

#JOMATJO is invoked as a result of a Materialize
Journaled Object instruction. This module returns a list
of objects being journaled through the selected journal
port. This list may contain system pointers, object
identifiers, and/or journal identifiers.

As the list in the journal port is scanned to return the
information, the addresses are checked to make sure the
object addressed by the journal port object table also
points back to the journal port. The journal port object
table may contain entries that do not address journaled
objects because the table entry is created before the
start of journaling, and is destroyed after the end of
journaling. If such an entry is found while materializing
the journaled object, the entry is removed from the
journal port.

Modify Journal Port

#JOMODJP is invoked as a result of a Modify Journal
Port instruction. A journal space must be attached to a
journal port before it can become a receiver for journal
entries. Similarly, a journal port must have at least one
journal space attached before it can be used to journal
changes to the objects being journaled through that
journal port. #JOMODJP attaches new journal spaces
and detaches currently attached journal spaces.
#JOMODJP may detach all of the journal space(s) to the
journal port. Once a journal space has been detached, it
can never be attached to a journal port again.

Retrieve Journal Entries
#JORETEN is invoked as a result of a Retrieve Journal

Entries instruction. This module retrieves journal entries
from requested journal spaces.

Load/Dump and Suspend

The journal space can be loaded and dumped. A journal
space can be loaded again if it is empty or suspended,
or if the media version has the same first sequence
number and a last sequence number that is at least as
large as the storage version. The use count must also
be nonzero.

When a journal space is loaded, journal management is
called to correct the segment table and other pointers in
the journal space object specific header. |f the object
was attachd when it was saved, IPL recovery is run on
the journal space to insure that it is in a consistent
state.

If the journal space was dumped in an empty state, then
it will still be empty when loaded. If the journal space
was dumped as either attached or detached, then it will
be in the detached state when it is loaded.

A journal space may be dumped at any time. If the
journal space is attached when it is dumped, then the
dump code seizes the journal to guarantee that the
journal is at a block boundary. While the journal is
seized, the current insert address and the sizes of the
segments are saved. Any changes made to the object
after the dump begins will not be reflected when it is
loaded.

A journal space can be suspended when its use count is
zero. (It is not attached and not needed for IPL
synchronization.) When the journal space is suspended,
the data segments are destroyed, and the base segment
and associated space segment are truncated to one

page.

IPL Recovery

If the machine crashes, VMC must, if possible, restore
objects to a usable state. Since journaling is a
recovery/redundancy function, restoring objects to a
usable state is more important than usual.

This portion of the recovery is concerned only with the
linkage between journal ports and journal spaces.
However, failure to restore those linkages may disallow
later recovery operations that require the journal to be as
well defined and as complete as possible.

Journal Management  4-7



To prevent excessive numbers of writes during run time,
only the journal entries are forced. When the machine
crashes, it is necessary for the journal recovery function
to start at the last known force point in the header and
reconstruct the header from the entries.

IPL Synchronization

The purpose of the journaled object synchronizaion
phase of IPL is to assure that the journaled objects are
consistent with the journal entries in the journal spaces.
Since changes are journaled before any changes are
made to the object, it is possible that the object does
not contain all changes recorded in the journal space
and may need to be brought up to date.

The journal IPL synchronization routine is invoked during
every |IPL to determine if synchronization operations are
required. If synchronization operations are not required,
the journaled objects are marked in synchronization with
the journal. Otherwise, the necessary operations are
performed and then the objects are marked in
synchronization with the journal. Following object
synchronization, the receiver table (Figure 4-2) is
checked to determine if the journal spaces are detached.
If the journal spaces are detached, the receiver table is
cleared to complete the interrupted Modify Journal Port
instruction.

Any time the machine shuts down without writing main
storage to nonvolatile storage or not at a boundary (as
in a crash), it is possible that some changes to the
journaled object may have been recorded on the journal
space but the pages actually changed in the journaled
object were lost when the machine went down. This
routine assures that the journal and journaled object are
consistent by assuring that all recorded changes to the
journaled object have been written to nonvolatile
memory.

Since it is not known which changes were written out to
nonvolatile storage and which were lost, IPL
synchronization must perform all changes since the last
time the journaled object and journal were known to be
synchronized.

IPL synchronization needs to interrogate the object table
in the journal port header; and, if synchronization is
required, it must retrieve journal entries as well as
examine and modify the journaled objects. IPL
synchronization runs after the initial cleanup of both
journal and journaled objects.

Journal
® Journal Space
System-Wide Journal or
List Header e Journal Port
Slot 1
Journal
Slot 2 e Journal Space
or
° 3 e Journal Port
\—f‘
Slotn
Journal
e Journal Space
or

DATA AREAS

System-Wide Journal List

Journal management controls a segment called the
system-wide journal list {see Figure 4-4) that contains a
list of journal ports and journal spaces. The
system-wide journal list contains addressability to all
journal ports, and to all journal spaces that have a
nonzero use count. The system-wide journal list
contains 4 bytes for each object, a 3-byte segment
identifier and a 1-byte object type. The svstem-wide
journal list is used by #JOINIT to recover journal ports
and journal spaces during IPL. If the system-wide
journal list segment is damaged, it is recreated, and all
segments in the machine are scanned to refill it.

o Journal Port

Figure 44. System-Wide Journal List



Object Recovery List

The object recovery list contains a list of journal ports
and journal spaces that are recovered during IPL.

All journal ports are logged in the object recovery list.
The log entry is made by IPL synchronization and, in
addition to listing the usual damage bits, it indicates if
all objects journaled through the journal port are
synchronized.

Attached journal spaces are logged on the object
recovery list if they statisfy any of the following
conditions:

« Hard damage

+ Soft damage

« Suspended

» Unusable

« Past threshold

« Not synchronized

« Journal port is damaged

Any one of these conditions, with the exception of past
threshold, prevents any further journaling to the journal
space.

STRUCTURE

The following is a list of the modules in journal
management and the function that each module
performs. The list also shows how the module is
invoked.
#JOABTRL Build Transaction List

Function: Builds the transaction list index.

How Invoked: Within this component.

#JOAPLEH Apply Journaled Changes Exception

Handler

Function: Terminates or completes the operation of the
apply normal or abnormal termination.

How Invoked: Within this component.

#JOAPLYB Apply Change Backward

Function: Applies a single change to a data space in the
backward direction.

How Invoked: Within this component.

#JOAPLYF Apply Change Forward

Function: Applies a single change to a data space in the
forward direction.

How Invoked: Within this component.

#JOAPPLY Apply Journaled Changes

Function: Applies the recorded changes in a journal
space to an object.

How Invoked: Apply Journal Changes instruction.

#JOASELT Select Journal Entries

Function: Checks the journal entry against any selection
criteria.

How Invoked: W.ithin this component.

#JOASRSL Sort Select List

Function: Sorts the selection list provided to the Apply
Journaled Changes instruction.

How Invoked: W.ithin this component.

Journal Management 4-9



#JOATRNB Process Transaction List Backward

Function: Maintains the transaction list when applying
changes and/or scanning backward.

How Invoked: Within this component.

#JOATRNF Process Transaction List Forward

Function: Maintains the transaction list when applying
changes and/or scanning forward.

How Invoked: Within this component.

#JOAUTRL Unload Transaction List

Function: Removes the entries from the transaction list
and returns them to the user space.

How Invoked: Within this component.

#JOCLOSR Close Journal Locator
Function: Releases the list of journal spaces.

How Invoked: Within this component.

#JOCNLEH Cancel Open Block on Journal

Function: Cancels an open block on the journal
(exception handler).

How Invoked: From another VMC component.

#JOCRIT Apply Select Criteria

Function: Accepts or rejects the current entry based on
the selected criteria.

How Invoked: Within this component.

#JOCRTJP Create Journal Port

Function: Implements the Create Journal Port instruction
that creates the journal port system object.

How Invoked: Create Journal Port instruction.

#JOCRTJS Create Journal Space

Function: Implements the Create Journal Space
instruction that creates the journal space system object.

How Invoked: Create Journal Space instruction.

#JODESJP Destroy Journal Port

Function: Implements the Destroy Journal Port
instruction that destroys the journal port system object.

How Invoked: Destroy Journal Port instruction.

#JODESJS Destroy Journal Space

Function: Implements the Destroy Journal Space
instruction that destroys the journal space system

object.

How Invoked: Destroy Journal Space instruction.

#JOFIND Find Starting or Adjacent Journal Entry
Function: Finds the starting or adjacent journal entry.

How Invoked: Within this component.

#JOFINDA Find Adjacent Journal Space Entry

Function: Given a current entry, finds the adjacent entry
in the selected direction.

How Invoked: Within this component.

#JOFINDQ Find Starting Journal Space Entry by

Sequence Number

Function: Finds the starting entry when the user
specifies the sequence number as a starting entry.

How Invoked: Within this component.

#JOFINDS Find Starting Journal Space Entry
Function: Finds the starting journal space entry.

How Invoked: Within this component.

J

5



#JOFINDT Find Starting Journal Space Entry by

Time Stamp

Function: Finds the starting entry when the user
specifies the time stamp as a starting entry.

How Invoked: Within this component.

#JOFINEH Journal Find CSEH
Function: Closes the journal locator on an exception.

How Invoked: Other VMC component.

#JOFNDJS Find Starting Journal Space

Function: Finds the starting sequence number or time
stamp and selects the journal space containing the

starting entry.

How Invoked: Within this component.

#JOINIT Journal Object IPL Recovery

Function: Cleans up the journal objects after a machine
crash and puts out the IPL record on each active journal

whether the machine crashes or not.

How Invoked: IPL routines.

#JOIRCJP Journal Port Object Recovery

Function: Cleans up a journal port after a machine crash
and recovers any active, attached journal spaces using
#JOIRCJS. Reconciles twin active journal spaces with
#JORECTW.

How Invoked: W.ithin this component.

#JOIRCJS Journal Space Object Recovery

Function: Cleans up a journal space after a machine
crash.

How Invoked: Within this component.

#JOISYNC Journal and Object IPL Synchronization

Function: Synchronizes data spaces with journal during
IPL.

How Invoked: IPL routines.

#JOJOBJ Journal Object
Function: Starts and stops journaling of an object.

How Invoked: Journal Object instruction.

#JOMATJO Materialize Journaled Objects

Function: Materializes the list of objects being journaled
through a journal port.

How Invoked: Materialize Journaled Objects instruction.

#JOMATJIP Materialize Journal Port

Function: Materializes the creation-like template and
retums the current attributes of a journal port.

How Invoked: Materialize Journal Port Attributes

instruction.

#JOMATJIS Materialize Journal Space

Function: Materializes the creation-like template and
returns the current attributes of a journal space.

How Invoked: Materialize Journal Space Attributes

instruction.

#JOMATOA Materialize Journaled Object Attributes

Function: Materializes the journal attributes for any
object.

How Invoked: Materialize Journaled Object Attributes
instruction.

Journal Management 4-11



#JOMODEH Modify Journal Port Exception Handler

Function: Restores current area journal spaces and
clears old area journal spaces.

How Invoked: Within this component.

#JOMODJP Modify Journal Port

Function: Detaches all currently attached journal spaces
and optionally attaches new journal spaces and/or

resets journal entry sequence numbers.

How Invoked: Modify Journal Port instruction.

#JOOPENR Open Journal Locator

Function: Discovers and seizes explicit or implicit journal
space lists.

How Invoked: Within this component.

#JOPREMV Take Entry Out of Journal Port Table

Function: Takes an object entry out of the journal port
table.

How Invoked: Within this component and by load/dump.

#JOPUTEH Put in Exception Handler

Function: Backs out of putting an object entry into the
journal port entry table when an error occurs.

How Invoked: Within this component and other VMC

components.

#JOPUTIN Put an Entry in Journal Port Table

Function: Puts an object entry in a journal port entry
table.

How Invoked: Within this component and by load/dump.

#JORECTW Reconcile Twin Journal Spaces

Function: Ensures that active twin journal spaces are
identical during IPL recovery.

How Invoked: Within this component.

#JORETEN Retrieve Journal Entries

Function: Implements the Retrieve Journal Entries
instruction, which allows the user to selectively retrieve

entries from the journal.

How Invoked: Retrieve Journal Entries instruction.

#JOTCHTB Touch Locator Table

Function: Brings the next block of locator table entries
and touches the locator entry to detect damage.

How Invoked: Within this component.

#JOTOUCH Touch Current Entry

Function: Perform brings of journal entries and touches
current entry to detect damage.

How Invoked: Within this component.

#JOURDAT Journal Data

Function: Implements the Journal Data instruction that
allows the user to put entries onto the journal.

How Invoked: Journal Data instruction.

#JOURNAL Journal Entry

Function: Inserts a journal entry, and/or starts or ends a
block of journal entries, and/or force the journal.

How Invoked: Other VMC components.



Queue Management

INTRODUCTION

Queue management provides the functions necessary for
concurrently executing processes to exchange
information as shown in Figure 5-1. A queue is also
used for communications between an |/0 management
task and a process when an 1/0 request is completed.

A queue provides an object, sharable by processes
executing in the system, that can be used to send and
receive information. The basic unit of information in a
queue is a message. Messages can be sent to
{enqueued) and received from {dequeued) a queue.
Messages can contain a key used in identifying or
sequencing the messages; these are keyed messages.

Messages are processed in move-mode and can be
processed in first-in-first-out; last-in-first-out; or
keyed in sequence. The basic types of dequeue
operations are as follows:

+ Dequeue

« Dequeue and set indicator

» Dequeue and branch

Process A

y

Program A

Send/Receive Queue

Engqueue

Figure 6-1. Communication Between Processes

A process issuing a dequeue operation (no indicator or
branch options specified) is placed in a waiting state if
the gqueue is empty or there are no messages of a
particular key. A process issuing a dequeue operation
can specify a limit on the length of time it is to wait for
a message or the process can wait indefinitely. A
message arriving on a queue for which multiple
processes are waiting is given only to the first waiting
process.

The dequeue and set indicator operation sets an
indicator based on whether or not a message was
dequeued: then it continues to the next instruction. The
dequeue and branch operation allows a process to
continue processing at a point that is determined by
whether or not a message was dequeued.

Queue management supports the following System/38
instructions:

+ Create Queue

» Destroy Queue

« Dequeue Message

+ Enqueue Message

« Materialize Queue Attributes

« Materialize Queue Messages

Process B

y

Program B

Dequeue

Queue Management 5-1



Recovery

Component-specific exception handlers (CSEHs) are
used in all queue operations to ensure that a queue is
not left in an unusable state and that the damage bit is
set in the header (if required) before operation
terminates.

When a microprogramming exception occurs, the
damage bit in the queue header is set. If the machine
abnormally terminates and messages remain on a queue,
the initial program load (IPL) numbers in the queue and
the current IPL number are compared. If the numbers
do not match, the integrity of the queue is checked, and
the IPL number is updated. Otherwise the damage bit in
the queue header is set and the queue instruction
operation is terminated.

DATA AREAS

Queues

A queue is created in a segment group. An additional
segment group is also allocated if it is a composite
object. The queue is designed to function in move
mode; that is, all messages enqueued and dequeued are
moved to and from preformatted message elements that
are part of the queue. The source or target of a
message on an enqueue or dequeue operation is
designated by a space pointer.

The structure of a queue is shown in Figure 5-2. The
encapsulated program architecture (EPA) header is at the
beginning of the object, followed by the object specific
header. The object specific header consists of two
send/receive queues, control fields, and message
elements. The first queue is called the response queue;
the second is called the available queue. The control
fields hold such information as maximum number of
messages, number of message elements available, and
other queue attributes.

When a queue is initially created, all messages that the
queue can contain are formatted and enqueued to the
available queue; no messages are enqueued to the
response queue.

A bit is set in the last message in the available queue.
When this message is dequeued, a send/receive
message (SRM) access exception is signaled. A bit is
then set in the queue header that signals a queue
access exception for an unsuccessful dequeue, and
processing continues. An attempt to obtain another
message from the available queue causes a queue
access exception. If the queue was created with an
extendable attribute, the queue is extended when the
last message is dequeued.

A destroy message is formatted when a queue is
created. When this message is enqueued, an access
exception is signaled. This exception causes the destroy
functions to be invoked.

Segment Group Header

EPA Header

Object Specific Header

- Response queue header

« Available queue header

« Queue attributes and lengths
« Destroy message

« SRMs (base)

« Data areas (SRM data)

Figure 5-2. Structure of a Queue



Message Elements

Message elements are split into two parts as shown in
Figure 5-3. The first part, the base, consists of a
2-byte descriptor, a chain pointer, a key (if present), and
a pointer to the other part of the message. The second
part, the message, consists of a timestamp and the
message text.

The base portion of a message cannot cross a page
boundary; any byte of the text portion can cross a page
boundary. The message text can contain pointer and
character data. If a queue is extended, the new
messages are formatted and enqueued to the available
queue.

Response Available
Queue \ Queue '\
4
Base r p Base rr
Data Data
Base ‘ Base ‘
Data Data

Figure 5-3. Message Elements

STRUCTURE

The following is a list of the modules in queue
management and the function that each module
performs. The list also shows how the module is
invoked.
#PMCRQUE Create Queue

Function: Creates a system object called a queue that is
used for interprocess communication or synchronization
of interrelated processes.

How Invoked: Create Queue instruction.

#PMDQMSG Dequeue Message

Function: Dequeues a message from the specified
queue.

How Invoked: Dequeue Message instruction.

#PMDTYQU Destroy Queue

Function: Destroys the specified queue and all currently
enqueued messages.

How Invoked: Destroy Queue instruction.

Queue Management 5-3



H#PMEQMSG Enqueue Message

Function: Enqueues a message on the specified queue
in the specified sequence.

How Invoked: Enqueue Message instruction.

HPMMTQAT Materialize Attributes

Function: Materializes the attributes of the specified
queus.

How Invoked: Materialize Queue Attributes instruction.

#PMSRMAC Queue Message Access Exception

Handler

Function: Processes send/receive message access
exceptions that occur when a monitored message is

enqueued or dequeued. A send/receive message access

exception initiates a queue extension operation by

setting the access exception bit in the queue header. A

subsequent dequeue causes a queue access exception
to be signaled.

How Invoked: Other vertical microcode (VMC)
components.

#PMSRQAC Queue Access Exception Handler

Function: Processes send/receive queue access
exceptions that occur during queue processing. A
send /receive queue access exception initiates a queue

destruction or queue extension operation.

How Invoked: Other VMC components.

H#PMMATQM  Materialize Queue Messages
Function: Materialize the number of messages on a
queue, part of each message, or all of each message

and the key.

How Invoked: Materialize Queue Messages Instruction.

J



Space Object Management

INTRODUCTION

Space object management provides the functions that
establish and control the storage areas and space
objects used in the execution of machine instruction
programs. All space objects are explicitly created using
the Create Space instruction.

Created space objects are system objects. Space
objects can be extended, truncated, copied, initialized,
suspended, and destroyed by System/38 instructions.
Space object attributes, such as length and initial value,
can be materialized and modified. These operations are
subject to the authority that the machine instruction set
user has for the object.

Space object management supports the following
Systemn /38 instructions:

« Create Space
« Materialize Space Attributes
» Modify Space Attributes

» Destroy Space

Create Space

The Create Space instruction designates an area that is
to receive addressability to the created space and a
pointer to a template to be used to create the space.
The supervisor link (SVL) router invokes the create space
instruction processor (#SOCRT). This module performs
the space creation operation in the following phases:

» Syntax verification

« Object creation

« Obiject initialization

During the syntax verification phase, #SOCRT verifies
the contents of the creation template for completeness

and validity. #SOCRT also checks all authorization and
provides proper lock enforcement.

During object creation, #SOCRT performs the actual
allocation of the physical storage for the space. The
storage is allocated according to the attributes specified
in the creation template.

During the object initialization phase, #SOCRT inserts
the values and data into physical storage. These values
and data are necessary to make the storage into a valid
object. #SOCRT then completes the header portion of
the object and initializes the data portion with the values
requested in the template.

Materialize Space Attributes

The Materialize Space Attributes instruction processor
(#SOMAT) is invoked by the SVL router as a result of a
Materialize Space Attributes instruction. This module
first validates that the input pointer specifies a valid
space, and then checks all authorization and provides
proper lock enforcement. #SOMAT then materializes the
attributes of the space into the specified area. The
attributes are materialized in the same format as the
creation template.

Modify Space Attributes

The Modify Space Attributes instruction processor
(#SOMOD) is invoked by the SVL router as a result of a
Modify Space Attributes instruction. This module
performs the modification to the space in the following
phases:

« Syntax/address validation
» Object modification

in the syntax/address phase, #SOMOD ensures that the
input system pointer either addresses a space or
addresses an object that contains an associated space
with extendable attributes. #SOMOD then checks all
authorization, provides proper lock enforcement, and
ensures that the input size contains a valid value.

In the object modification phase, #SOMOD increases or
decreases the physical storage limit for the space,
updates the header information, and initializes the data
area with the initial values specified at create time (if the
storage was increased).

Space Object Management 6-1



Destroy Space

The Destroy Space instruction processor (#SODES) is
invoked by the SVL router as a result of a Destroy
Space instruction. #SODES validates that the input
pointer addresses a valid space, checks all authority, and
provides proper lock enforcement. #SODES then
destroys the contents of the physical storage used for
the space and deletes the context entry for that space.

Dump Space Management

Dump Space Management provides a way to dump
system objects to the internal storage media and
perform simple manipulation of the dump data. The
internal storage area that receives the dump data is
called a dump space.

The source/sink dump operation dumps system objects
into a dump space. The system objects can be reloaded
with a source/sink load operation.

The dump data in a dump space can be retrieved from
one dump space and loaded into another dump space.
The target dump space may exist on the originating
system or another system.

Dump Spaces

A dump space is an object that serves as a storage area
for a dump of other system objects. As such, it
provides an online storage alternative to the commonly
used offline storage media (diskettes and tape) for
dumps and backup.

A dump space contains a storage area for a contiguous
string of 8-bit bytes. The storage area size is variable
with a maximum size of roughly 2 gigabytes. The size
of a dump space can be specified on creation, implicitly
extended by the machine for dump and insert
operations, or explicitly reset with a modify operation.

Dump space objects provide storage for dump data
only. There is no provision for storage of any other type
of data.

Dump Space Functions

Operations on dump spaces as objects are supported by
the Create Dump Space, Destroy Dump Space,
Materialize Dump Space, and Modify Dump Space
instructions. These instructions manipulate the dump
space rather than the dump data that is contained in it.

Dump Space Creation

The Create Dump Space instruction creates and
allocates a dump space system object according to the
attributes specified in a template operand.

After creation, the dump space can be used as a
storage area for a source/sink dump of system objects.

Addressability to the newly created dump space is
returned in the system pointer specified on the
instruction. Future references to the dump space are
made through the system pointer. The data in a dump
space can be manipulated through insert and retrieve
operations.

Dump Space Materialization

The Materialize Dump Space instruction is used to
materialize the attributes related to a dump space so the
current attributes can be determined.

The Materialize System Object instruction is used to
materialize common system object attributes to
determine their current value.

Dump Space Modification

The Modify Dump Space instruction is used to modify
certain attributes related to a dump space. The
allocation size of the dump space can be reset to the
size of the dump data contained in the dump space.

Dump Space Destruction

The Destroy Dump Space instruction destroys a dump
space and frees the storage allocated to the object.
Future attempts to refer to the dump space through the
system pointer result in the object destroyed exception.
Addressability to the dump space is removed from the
addressing context.

9

9



Dump Space Data

The format and meaning of the dump data contained
within a dump space is not defined other than to
provide for its retrieval from a dump space and
subsequent insertion into another dump space. Dump
data is initially put into a dump space through a
source/sink dump operation to dump system objects
into the dump space. Subsequently, the system objects
contained in the dump data can be reloaded in the
machine through a source/sink load operation. The
format of the dump data produced by a dump operation
is an internal characteristic of the machine and cannot
be defined by the Ml user.

Retrieve and insert operations are supported for dump
data to provide for movement of the dump data from
one dump space to another where the target dump
space may not be on the same system as the source
dump space.

Load/Dump Functions

The Request Path Operation instruction can be used to
perform source/sink dump or load operations to or from
a dump space. A dump operation sets the appropriate
dump data into a dump space to back up the current
state of the specified system objects in a form that
allows the subsequent reloading. A load operation
operates on the dump data produced from a previous
dump operation to load the system objects contained in
the dump space.

The Request 1/0 instruction is used to perform
source/sink load or dump operations on a dump space.
A dump operation saves the dump space on a
load/dump storage media. A load operation restores the
dump space from a load/dump storage media.

Dump Space Data Retrieval

The Retrieve Dump Data instruction can be used to
retrieve the dump data contained in a dump space. The
retrieval is performed through a simple relative block
access of the dump data. The format of the dump data
retrieved is undefined other than for its size and that it
is packaged with a small amount of additional data used
for verification when the data is inserted into a target
dump space.

Dump Space Data Insertion

The Insert Dump Data instruction can be used to place
dump data previously retrieved from a dump space into
a target dump space. The insertion of dump data is
performed in a simple progression of fixed length blocks
of dump data starting with the first block of data
retrieved from the initial dump space and continuing in
ascending order to the end of the dump data.

The format of the dump data to be inserted is undefined
other than for its size and that it is packaged with a
small amount of additional data used for verification
during its insertion. The verification performed on the
data is done to ensure that the dump data is valid for
the current attributes and usage of the target dump
space. These verifications help to ensure machine
integrity when the objects are reloaded.

DATA AREAS

Space Object

A space object consists of a single segment group that
contains headers and a space of fixed or variable length.
Figure 6-1 shows the format of a space object. The
space can contain user data and is used for data storage
and manipulations.

Segment Group Header

® Attributes
® Sizes
® Pointer to Associated Space

EPA Header

(reserve area)

Space

| {extendable) |

Figure 6-1. Space Object Format

Space Object Management 6-3



STRUCTURE

The following is a list of the modules in the space
object management and the function that each module
performs. The list also shows how the module is
invoked.
#SOCRT Create Space Instruction Processor

Function: Creates a new space according to the input
specifications.

How Invoked: Create Space instruction.

#SOCRTEH Create Space Object

Component-Specific Exception Handler
(CSEH)

Function: Processes exceptions that occur during a
create space object operation.

How Invoked: Third-level exception handler.

#SODES Destroy Space Instruction Processor
Function: Destroys the specified space object.

How Invoked: Destroy Space instruction.

#SOMAT Materialize Space Attributes Instruction

Processor

Function: Retrieves and materializes the attributes of the ‘)

specified space object.

How Invoked: Materialize Space Attributes instruction.

#SOMOD Modify Space Attributes Instruction

Processor

Function: Modifies the attributes of the specified space
object.

How Invoked: Modify Space Attributes instruction,
#AICALLX (process automatic storage area extension),
and #AICRACT (process static storage area extension).



Internal Machine Function

Auxiliary Storage Management

INTRODUCTION

Auxiliary storage management (ASM) performs the
following functions:

 Allocates secondary {auxiliary} storage

« Assigns the segment identifiers (SIDs) by which
objects and segments are addressed

» Maintains directories that enable 6-byte virtual
addresses to be translated into auxiliary storage
locations

ASM functions to create, extend, truncate, or destroy

segments are invoked by other vertical microcode (VMC)
components.

Aucxiliary Storage Management  7-1



Invoking ASM Functions

ASM functions (create, extend, truncate, and destroy
segments} are invoked as a result of Supervisor Link
instructions that route control to #SV2DCRT.
#5V2DCRT performs common setup operations,
determines whether or not an access group is involved
in the operation, and invokes #SMASM to process
non-access group requests or #SMAGM to process
access group requests. Figure 7-1 shows an overview
of access group processing; Figure 7-2 shows an
overview of non-access group processing.

Some processing is common to all requests for storage
allocation. This processing is performed by #SV2DCRT.
This module first determines if either an access group or
non-access group function is requested; this is
accomplished as follows:

« |f a create operation, an explicit parameter identifies
the type (permanent, temporary-non-access-group,
or temporary-access-group member} of segment that
is to be created.

+ If an extend, truncate, or destroy operation, the base
segment being operated on is provided. Part of the
segment address identifies the type {permanent,
temporary-non-access-group, or
temporary-access-group) of segment.

#SV2DCRT then passes control to either #SMASM or
#SMAGM. When that function completes processing, it
is possible for events or exceptions to be signaled. An
event is signaled if the amount of available auxiliary
storage that remains is less than a user-specified limit.
An event is also signaled if the number of segment
group identifiers remaining for permanent or temporary
segments is less than a user specified limit. Exceptions
are signaled when the caller specifies that an exception
be signaled when an error occurs or when the return
code set hy the invoking function indicates an error. A
second event is signaled if the temporary storage limit
for a given process is exceeded.

VMC
Routine

SVL/SVX

ASM Linkage
(#SV2DCRT)

ASM—
Access Group
{#SMAGM)

SVL/SVX

ASM
(#SMASM)

SVL/SVX

Main Storage
Management
{#SVESBFFR)

Directory
Access
{(#SMACDIR)

Figure 7-1. ASM Overview of Access Group Processing




VMC

Routine
SVL/SVX

ASM Get IWA

Linkage (#CFGIWA)

(#SV2DCRT)

ASM

(#SMASM)

SVL Call
SvX SVL/SVX
. Director

Write Sector Call h“//::;na::;r::: Call Access ’
(SV44ADR) (#SVESPPR) (#SMACDIR)

Figure 7-2. ASM Overview of Non-Access Group Processing

Space Accounting

Because auxiliary storage is an important resource,
accounting of this resource occurs during ASM
operations. User profiles define the space allowed for
permanent storage operations; a field in a user process
defines the space allowed for temporary and access
group segments. These values can be used to limit and
control the creation and extension of segments by a
process.

If the creation or extension of a permanent segment
would cause the user profile auxiliary storage limit to be
exceeded, the creation or extension is not performed
and a return code is set. If the creation or extension of
a temporary or access group segment would cause the
process auxiliary storage limit to be exceeded, the
creation or extension is performed and an event is
signaled to note the occurrence. The process limit is
then set to the largest value possible so that the event
is not signaled again unless the user changes the
process limit and it is exceeded again.

Access Group Processing

Access groups are created, materialized, and destroyed
as a result of System/38 instructions. These
instructions are processed by resource management.
See Resource Management in this manual for information
concerning creating, materializing, and destroying access
groups.

If the requested ASM function involves an access group,
#SV2DCRT invokes #SMAGM at one of the following
entry points to perform the requested function:

« #SMAGCRT: Create segment in access group

- #SMAGEXT: Extend segment in access group

#SMAGTRC: Truncate segment in access group

» #SMAGDES: Destroy segment in access group

Auxiliary Storage Management 7-3



Create Segment in Access Group

#SMAGCRT first determines if sufficient space in the
access group is available to satisfy the request. If
enough space is not available, #SMASM is invoked to
extend the access group by 32 KB. The check and
extension are repeated until enough space is obtained to
satisfy the request, up to the 4 MB limit of an access
group size. The extension operation is performed by
#SMASM as if a VMC routine was extending a
temporary, non-access group segment.

After enough space is obtained, a segment number is
assigned to the new segment and inserted into the
access group member directory along with the segment
number of the access group. Space from the access
group is then allocated for the new segment and the
access group table of contents is updated to specify the
storage location of the newly created member pages.
The segment group header in the first page of the new
segment is then initialized.

Extend Segment in Access Group

#SMAGEXT checks to determine that the segment
group to be extended exists, and then determines if
sufficient space in the access group is available to
satisfy the request. If sufficient space is not available,
the access group is extended as with a create segment
operation. Once the access group has been extended to
a size sufficient to satisfy the request, space from the
access group is allocated for the extension and the
access group table of contents is updated to specify the
storage location of the newly created pages.

Truncate Segment in Access Group

#SMAGTRC checks that the segment to be truncated
exists. The segment is truncated by writing null value in
the access group table of contents for the pages to be
deleted. The access group is then compressed to
remove any unused spaces left by deleted pages. A
remove request is issued to remove any truncated pages
from main storage.

7-4

Destroy Segment in Access Group

#SMAGDES performs the destroy segment operation.
This operation is similar to a truncate operation except
that the entry for the destroyed segment is removed
from the access group member directory.

Serialization of Access Group Operations

The access group free space lock is used to serialize
most operations. The access group directory lock
{applicable to all access groups) is held exclusively when
updating the access group member directory or the
access group table of contents. The access group
directory lock is used to serialize ASM and main storage
management (MSM) operations on the same access
group.

Non-Access Group Proceassing

If the requested ASM function does not involve an
access group, #SV2DCRT invokes #SMASM at one of
the following entry points to perform the requested
function:

« #SMSGCRT: Create segment

« #SMSGEXT: Extend segment

« #SMSGTRC: Truncate segment

#SMSGDES: Destroy segment

Create Segment

#SMSGCRT (entry point in #SMASM) validates the
request and determines if sufficient space is available to
satisfy the request. If space is not available,
H#SMSGCRT sets a return code and returns control to
the caller.

If sufficient space is available, the next available
segment group identification is determined. (If this
causes the segment group identification generator to
reach hex 3FFO00, machine execution is immediately
terminated.] The necessary space is then allocated from
the free space directory, and auxiliary storage directory
entries (ASDEs) are built and inserted into either the
permanent or temporary directory.

J



If the request is for a permanent segment, a page of 0's
and the storage management header is written for the
first two pages of each allocated extent, except for the
first extent. The header is written on the second page
only of the first extent. The existence bit in the segment
header {page 0} is set to O implying that the segment
does not existl. This page must be written to auxiliary
storags using the Perform Paging Request instruction.
The Perform Paging Request instruction is issued from
the process that invoked the ASM function after the
create opseration is logically complste (for example, the
object header is completed and the secondary segments
are created). The invoker sets the existence bit to 1
before issuing the Perform Paging Requsest instruction.
Other ASM operations are not serialized during the
writing of the headers. See Serialization (Non-Access
Group) in this section for additional information.

Extend Segment

#SMSGEXT lentry point in #SMASM) validates the size
of the requested extension, that the segment exists, and
that there is sufficient space available to satisfy the
request. If the request is not valid, #SMSGEXT sets a
return code and returns control to the requestor. If the
request is valid, #SMSGEXT allocates the space and
writes the headers for sach new extent as with a create
segment operation.

Destroy Segment

#SMSGDES (entry point in #SMASM) first determines if
the segment exists. If not, #SMSGDES sets a return
code and returns control to the requestor.

For temporary segments, directory entries are removed
from the temporary directory and the extents of free
space are returned to the free space directory (they are
combined with adjacent free extents to form larger
blocks where possible).

Next, #SMPLAD (entry point in #SMACDIR) is invoked
to purge the affected addresses from the lookaside
directory. Then a remove psrform paging request is
issued. This request invokes #SVEBPPR to delste
addressability to any pages of the destroyed segment
that are currently in, or being paged from or to rnain
storage.

For permanent segments, the destruction is logically
performed a single ASDE at a time. (An ASDE can
contain from one to four extents.) This is accomplished
as follows:

« The ASDE is removed from the permanent directory.

+« #SMPLAD is invoked and a remove Perform Paging
Request instruction is executed to delete
addressability to the pages addressed by the ASDE.

« MSM is invoked to write a free space header to the
first two pages of each extent addressed by the
ASDE and the extent is returned to the free space
diractory.

The writing of the free space header is performed
before the extent is returned to the free space directory
because the free space lock is released before the write
operation.

Truncate Segment

The truncate operation is performed by #SMSGTRC (an
entry point in #SMASM). This operation is similar to the
destroy operation with the following exceptions:

« The input size is checked to ensure that it is less than
the current segment size.

« The extents are freed proceeding from the last
directory entry to the first and only until the target
address is reached.

+ The free space lock is not released.
« |f the target address is within an extent (not on an
axtant boundary), that extent is truncated 1/2, 1/4,

1/8, ... 1/32 768 of the original size as
appropriate.

Auxiliary Storage Management 7-5



Serialization (Non-Access Group)

The free space lock is held throughout most ASM
processing. This lock serializes the free space directory
and the work areas and fields used by ASM in the
storage management vector table (SMVT). When the
permanent and temporary directories are accessed, the
corresponding directory lock is held to serialize with
MSM operations. The MSM lock is held by #SMPLAD
when the lookaside directory is purged, and both MSM
and truncate locks are held when a remove perform
paging request is processed by MSM. The free space
lock is not held when the headers are written for
permanent segment create, extend, or destroy
operations but the lock is held for all write operations
when a permanent segment is truncated.

7-6

ASM Locks

The following locks are used for storage management
operations. These locks are send/receive counters in
the SMVT.

All locks, except as noted, are exclusive.

« Access Group Free Space Lock: This lock serializes
access group processing.

« Free Space Lock: This lock (held throughout most of
non-access group processing) serializes the free
space directory, SID generator, and various other
ASM areas in the SMVT.

« Access Group Directory Lock (exclusive and shared):
This lock synchronizes ASM and MSM operations
that involve access groups. When ASM updates
either the access group member directory or an
access group table of contents, ASM holds the lock
exclusively. When MSM interrogates either the
directory or table of contents, MSM holds the lock
shared.

« Permanent and Temporary Auxiliary Storage Directory
Locks: These locks are held while the corresponding
directory is examined or updated.

9

9



Auxiliary Storage Initialization

A module {(#SMASI) is loaded and invoked by the
service monitor. This module performs the following
functions:

« Moves the factory defect maps to cylinder 358 (62PC
only).

« Moves alternate sectors to cylinder 358 (62PC only).

« Writes O's to the header and data areas of each
sector.

« Allocates two aefect-free areas on drive 1 for
segments loaded during horizontal microcode (HMC)
initial microprogram load (IMPL).

« Creates storage management directories on drive 1.
» Allocates the prebuilt segments.

» Writes the SMVT onto drive 1. This SMVT contains
the directory valid bit, the segment identifier
generator, the static directory, the free space values,
and the auxiliary device configuration record.

» Enters free space for added actuators and updates
the number of actuators used by storage
management in the SMVT.

Because the machine configuration record on the disk is
just another pageable segment, storage management
startup needs a different record than the machine
configuration of the number and types of actuators. This
record is stored in the SMVT. The relevant portion of
the SMVT is updated by auxiliary storage initialization. If
the machine configuration record update on disk
followed by a link/load is not performed after drives are
added to the system, the subsequent IMPL will fail in
storage management startup.

Storage Management Shutdown

Shutdown occurs whenever the machine is brought
down in a controlled state. Shutdown must always be
run after an IMPL operation has proceeded past main
storage initialization if directory recovery is to be
avoided.

Shutdown (#SMSHTDN) is normally invoked as a result
of the Terminate Machine Processing instruction, though
errors internal to VMC not related to storage
management can also cause #SMSHTDN to be invoked
as part of system failure shutdown procedure.

Shutdown obtains the access group free space lock and
the free space lock. This inhibits any create or destroy
activity. Shutdown then cycles through the temporary
directory, reclaiming all extent descriptors and returning
the space to the free space directory. Shutdown then
cycles through the primary directory, writing all changed
pages to auxiliary storage. #SMSHTDN sets the
directory good bit, writes the SMVT checkpoint page
along with the directory good bit and other related
areas, and returns to the termination routine. Note that
the locks obtained during shutdown are still held after
the exit preventing further ASM activity.

Some diagnostic routines (display/alter in particular)
running under service monitor 1 can examine the
content of permanent and temporary storage as it
existed when shutdown was invoked. On the next IMPL
operation, the destruction of temporary space is
completed when #SMMSIT empties the temporary
directory.

Directory Recovery

Storage management directories are used to map virtual
addresses to auxiliary storage locations. Each sector on
auxiliary storage is defined by an 8-byte header that
contains the virtual address associated with a page. The
header also contains the size of the extent (contiguous
block of auxiliary storage allocated to a segment),
indicators of valid pointers on the page, and flags
associated with the segment. If it is determined that the
directory is unusable, a new directory can be
constructed by reading each sector on auxiliary storage.

Auxiliary Storage Management 7-7



In general, the storage management functions that
perform directory recovery operations interact as
follows:

« ASM (#SMASM) writes the headers during
operations on permanent segments so that the
existence, location, and size of segments can be
determined. For create requests, the first page of the
first extent is not written. When the invoking routine
has completed the create operation, it sets the
existence bit in the segment header to on and writes
the page to auxiliary storage. ASM also maintains
headers with a preassigned virtual address on the
first page of large extents of unallocated space.

« MSM (#SVE8PPR) always preserves record headers
during write operations.

« A bit in the SMVT (#SMSMVT) indicates if the
directories are valid. At IMPL, the bit is set to off
(directories invalid) and the SMVT is written to
auxiliary storage.

« The storage management shutdown routine
(#SMSHTDN) is invoked when the machine
terminates (normally or abnormally). If shutdown is
successfully accomplished, #SMSHTDN writes all
changed directory pages in main storage to auxiliary
storage, sets the directory valid bit on, and writes the
SMVT to auxiliary storage.

o During IMPL, #SMMSIT checks the directory valid bit
in the SMVT (which is loaded with the nucleus). If
valid, IMPL proceeds. If not valid, the directory
recovery program is invoked. (The system operator is
informed that directory recovery is in progress.) The
directory recovery program rebuilds the directories
and IMPL proceeds.

The directory recovery program recovers only the free
space directory and the permanent directory. The free
space, permanent, temporary, and access group member
directories are first reset to empty. The recovery then
occurs in two passes. The first pass reads auxiliary
storage, constructing immediately reclaimable free space
and permanent extent candidates. The second pass
examines these candidates and determines which are
permanent segments and which are destroyed (thus free
space).

Because segments are allocated in contiguous extents
whose relative record number is on the same
power-of-two boundary as their size, reading from
relative record zero to the end of auxiliary storage
detects each valid extent. The beginning of an extent is
found whenever the virtual address in the header is
permanent and the relative record number is an exact
multiple of the extent size in the header. Such a valid
extent is a candidate for being part of a permanent
object. It is stored in a directory and the remaining
headers in the extent are bypassed. A large extent of
free space is found whenever the virtual address in the
header is the preassigned delimiter for large blocks of
unallocated space and the relative record number is an
exact multiple of the extent size in the header. Such an
extent is returned to free space and the remaining
headers in the extent are bypassed. Sectors with other
headers (zeroed headers, temporary headers, or
permanent headers on wrong boundary) are combined
into free space extents and returned to the free space
directory. When all headers of all devices have been
processed, the directory of candidate extents is scanned
to reconstruct permanent segments.

Directory recovery requires that all headers be read. If a
permanent read error occurs, the header for that sector
cannot be accessed. The next sector on disk is read. If
that sector is the second page of a permanent extent,
its header is used to reconstruct the header of the
failing sector. If the second sector is also unreadable,
O’'s are provided for the header of the original failing
sector. In this case, if the original failing sector had
been the first page of a permanent extent, the extent is
lost. Otherwise, no visible effect occurs. However, if at
some later date the page is referenced during normal
operations, a permanent read error can occur.

J



The second pass processes candidates in order from the
lowest virtual address found to the highest. Once an
extent mapping a valid first page of a segment is found,
the virtual address of the beginning of the next extent in
the segment is computed from the size of the previous
extent.

If the next candidate does not have that address or is
not the start of a new segment, the extent is considered
to be a dangling extent.

Dangling extents may result from read errors during the
first pass, causing extents to be lost, or they may result
from incomplete create, extend, truncate, or destroy
operations. If any permanent read errors occur during
the first pass, dangling extents are replaced. The
headers of each page in the replaced extent are written
with an indicator bit on, showing that the page contains
bad data. Otherwise, dangling extents are considered to
be the result of incomplete ASM operations. They are
returned to free space, after the headers of the first two
pages are written as Q's to prevent conflicts with later
extend or truncate operations.

Directory entries are created and inserted into the
permanent directory for the extents of recovered
segments.

DATA AREAS

Access Group

An access$ group is 8 machine interface object that
collects objects into a group that can be operated on as
a single unit by storage management to reduce disk
accesses. It is created as an object with a segment
identifier and is allocated a block of contiguous space
on auxiliary storage. Other objects can be allocated
within this block, each object having its own identifier,
allowing each object to be accessed individually.
Howsever, special directory information enables storage
management to transfer all objects within the access
group to and from main storage as a single unit. See
Resource Management in this manual for additional
information concerning the creation and structure of
access groups.

Free Space Directory

All space on auxiliary storage is considered to consist of
blocks, called extents. The number of pages in an
extent is always equal to some exponential value of two
{for example, 20, 2", 22, .. 2% 0or 1,2 4, ...

32 768). Each extent is mapped by a 7-byte extent
descriptor which describes the unit, size, and relative
record number of the first page of the block.

The free space directory is a machine index that
contains the extent descriptors. This directory is
initialized when VMC is installed and is updated by ASM
operations. The format of the free space directory is
shown in Figure 7-3.

Unit Extent Relative
Number Size Record

) X
Unit Extent Relative
Number Size Record

Figure 7-3. Free Space Directory

Auxiliary Storage Management 7-9



Permanent Directory

The permanent directory is a machine index that

contains 11-, 16-, 21-, and 26-byte entries called
auxiliary storage directory entries (ASDEs). The ASDEs
map the disk addresses assigned to all permanent
segments. ASDEs consist of the first virtual address

mapped, followed by one through four extent

descriptors. The permanent directory is initialized when
VMC is installed and is updated by ASM operations.
The format of the permanent directory is shown in

Figure 7-4.

Temporary Directory

The format of the temporary directory is the same as
the permanent directory and is used to map addresses
of temporary segments. The format of the temporary

directory is shown in Figure 7-4.

Base Segment First Page 1st Extent 4th Extent
identifier Identifier Flags {reserved) Descriptor Descriptor
T —
Base Segment First Page 15t Extent 4th Extent
Identifier |dentifier Flags (reserved) Descriptor Descriptor

Figure 7-4. Permanent and Temporary Directories



Access Group Member Directory

( This directory maps the segments in an access group to
the actual access group. This enables MSM during a

page fault to access an object in an access group when
that access group is not in main storage. The contents

of the access group member directory is shown in

Figure 7-5.

Virtual Address of
Segment X

Virtual Address of
Access Group 1

Size of Segment X

—

Virtual Address of
Segment Y

Virtual Address of
Access Group 1

Size of Segment Y

Figure 7-5. Access Group Member Directory

Auxiliary Storage Management

7-11



Access Group Table of Contents

The access group table of contents describes the
contents of an access group in a manner that enables
MSM to operate on either the entire access group or its
individual pages. The table consists of 8-byte entries;
each entry contains the virtual address of a page of an
object in the access group and the status bits for that
page. The table of contents also contains auxiliary
storage information that is used to map the virtual
address of a page in the access group to its auxiliary
storage location and special indicators. The format of
the access group table of contents is shown in Figure
7-6.

Segment Group Header

—
-
Table of Contents
Length of Index of Number of Number of
Access Group Last Page | - Ayailable Pages |Created Segments
Segment in Pages Allocated
P .
Virtual Address of Page 1 Sage 1 1st Byte of Auxiliary Storage
Pta‘;uzs Address of 1st Entry
Virtual Address of Page 2 S:Stus 2nd Byte of Auxiliary Storage

Address of 1st Entry

Status

. P
Virtual Address of Page 3 | ' 29€ 3 3rd Byte of Auxiliary Storage
Address of 1st Entry

Page 4
Status
Page 5

Virtual Address of Page 4

4th Byte of Auxiliary Storage
Address of 1st Entry

Virtual Address of Page 5
Status

Figure 7-8. Access Group Table of Contents

\\_,/




Storage Management Vector Table

This control block is compiled as a nucleus module
(#SMSMVT) and contains the following information:

- Segment identification generators and segment
extender

« Storage management locks

« Device characteristics and free space information
« Work areas for ASM

« Index control blocks for directory operations

- Storage management system-wide statistics

« Main storage pool headers

Some of the information in this block is saved on

auxiliary storage during shutdown and at certain other
critical points.

Sector Headers

All sectors on disk are 520 bytes long. The first 8 bytes
form the header which contains the virtual address of
the page and associated page and segment information.
The sector header is used for the following:

« Allows pages to be made self-defining so that
directories can be recovered.

« Enables MSM to determine whether a page has been
previously referenced. If, after a page is transferred
to main storage, the header does not match the
virtual address being read, MSM assumes that this is
the first reference to the page and sets the page to
zero.

The header also contains information on the location of
machine interface pointers within the page.

The header is read or written with every MSM disk
operation. For write operations, the information in the
header is obtained by MSM from the primary directory
element and from the page itself (tags) so it is not
necessary to access the directory to construct the
header. The following shows the format of the sector
header:

Virtual Pointer to First
Page Machine Interface
Address Pointer in Page

Indicators Reserved

STRUCTURE

The following is a list of the modules in auxiliary storage
management and the function that each module
performs. The list also shows how the module is
invoked.
#SMAGM Auxiliary Storage Management for
Access Groups

Function: Creates, extends, truncates, and destroys
segments in access groups.

How Invoked: Within this component.

#SMASA Alternate Sector Assignment

Function: Moves factory defect record to track 358,
moves alternates to track 358, and writes O’s in tracks O

through 357.

How Invoked: Auxiliary storage initialization.

Auxiliary Storage Management 7-13



#SMASAS Auxiliary Storage Initialization Directory

Build

Function: Builds the auxiliary storage directories during
auxiliary storage initialization.

How Invoked: Auxiliary storage initialization.

ISMASI Auxiliary Storage Initialization

Function: Moves defect record and alternates to track
358, writes 0's in sectors O through 357, and assigns
the segment identifiers on drive 1. When initialized,
adds the free space for all new drives.

How Invoked: Service Monitor.

H#SMASIML Auxiliary Storage Initialization Message

Library

Function: Contains the display and message library for
auxiliary storage initialization.

How Invoked: Not applicable.

#SMASITD Task Dispatching Element for #SMASI

Function: Contains the Task Dispatching Element for
H#SMASI,

How Invoked: Not applicable.

#SMASM Auxiliary Storage Management

Function: Performs the create, extend, truncate, and
destroy functions for ASM.

How Invoked: Within this component.

H#SMEXDIR Extend Storage Management

Directories
Function: Extends the segrhents containing the
permanent, temporary, free space, and access groups

directories.

How invoked: Within this component.

#SMSGEX Signal Exception from ASM

Function: Signals an exception for an ASM detected
return code.

How Invoked: Within this component.

#SMTHEV Threshold Reached

Function: Signals an event when the ASM threshold
limit has either been reached or exceeded.

How Invoked: Within this component.

#SV2DCRT ASM Link Routine

Function: Provides the common linkage to ASM
functions.

How Invoked: VMC through an explicit supervisor
linkage (SVL).



Main Storage Management

INTRODUCTION

Main storage management (MSM) performs the
following paging functions:

« Places pages in main storage when necessary to
execute an instruction or perform |/O operations

« Performs specialized paging operations to improve
performance

« Places pages from main storage back into auxiliary
storage when required

« Manages the pages in main storage
In addition to the preceding paging functions, MSM

performs certain initialization, shutdown, and recovery
operations.

MSM Paging Function

The paging function (#SVE8PPR) of MSM is invoked by
other VMC components as a result of a page fault or a

Perform Paging Request instruction. A page fault is an

exception that occurs when a task uses a virtual address
to access a segment and the page corresponding to that

segment is not validly located in main storage. Page
faults are converted to a Perform Paging Request
instruction (bring, synchronous, no pin) by #SMPFEXH.

A Perform Paging Request instruction is a request to
MSM to perform one of the following functions:

- Bring: Bring pages into main storage.

« Exchange Bring: Bring pages into main storage
frames that were previously allocated to a specified
range of virtual addresses. (If the virtual addresses
specified cannot be used, new page frames are
allocated.)

« Write: Write changed pages to auxiliary storage.

Clear: Set pages to binary zeros.

Exchange Clear: Set pages to binary zeros and, if
possible, allocate the pages from a specified range of
virtual addresses. (If the virtual addresses specified
cannot be used, new page frames are allocated.)

Remove: Remove the specified pages in main
storage without writing them to auxiliary storage.

Purge: Write changed pages to auxiliary storage and
make the pages eligible for reassignment.

Bring Access Group: Bring active pages of an access
group into main storage.

Purge Access Group: Write all changed pages of an
access group to auxiliary storage.

A Perform Paging Request instruction results in an
implicit Supervisor Link instruction with three operands.
The first operand designates the first page to be
operated on, the second operand designates the last
page to be operated on. The third operand is contained
in byte register 15. This operand contains the Perform
Paging Request instruction function requested of
#SVEBPPR. In addition to the Perform Paging Request
instruction function, the following options can be
requested in the third operand:

Pin: Increases the pin count for pages brought into
main storage. (Option for bring and clear.)

Unpin: Decreases the pin count before the Perform
Paging Request instruction is performed. (Option for
write, purge, and remove.)

Synchronous: Allow the requesting task to wait for
completion of the requested task. (Option for write,
bring, and purge; implied for remove and clear.)

Asynchronous: Allow the requesting task to continue
execution without waiting for completion of the
requested operation. (Option for bring and purge; not
valid for remove and clear.)

Main Storage Management 8-1



The following functions are performed within #SVEBPPR
but are invoked from an interface other than a page
fault or a Perform Paging Request instruction:

+ Read sector: Read the specified relative sector into
the specified page

« Write sector: Write the specified page to the
specified sector

« Allocate page frame: Allocate a page frame with a
virtual address that is the same as the real address

MSM also provides the following functions:

« Deallocate page frame: Deallocate a
virtual-equals-real frame of main storage

« Alter storage pool: Modify the storage pool

Paging Function Tasks

Figure 8-1 shows the structure of the tasks associated
with a paging request. These tasks are described as
follows:

« User task: A user process, a nonstorage
management VMC task, or a nonstorage management
operational unit (QU) task.

« Asynchronous 1/0 task: A task that performs some
|/0 request and allows the user task to resume
exacution before the 1/0 operation is complete.

« Page out task (not shown in the figure}: This task
writes to auxiliary storage pages that have been
modified in main storage and makes these pages
eligible for replacement.

+ Storage management QU tasks: These tasks provide
the interface to the paging devices.

8-2

Communications among these tasks are accomplished
through paging request elements {PREs), OU queues,
and asynchronous paging request queue. The following
describes the sequence in the task structure. The step
nurmbers in the description correspond to the numbers in
Figure 8-1.

Note: The available PRE queue is actually the available
CRE queue {ACQ]} that storage management shares with
the horizontal microcode {(HMC) SVL mechanism. Before
a PRE is returned to the ACQ, MSM reformats the PRE
as an available CRE.

1. A Perform Paging Request instruction or a page
fault occurs, and the user task obtains a PRE from
the available PRE queue {the ACQ).

a. If the request is asynchronous, the PRE is
initialized and sent to the asynchronous 1/0
input queue and the user task performs a
Supervisor Exit instruction.

2. The first operational program is built and the PRE
is sent to the QU task queue.

3. The QU task receives the PRE that includes the
operational program. (The PRE appears as a
standard operation request element {ORE) to the
QU task.)

4.  The operational program is executed and the PRE
is returned to the user task or the asynchronous
1/0 task.

5. The PRE is received by the appropriate task.

6. If the request is not complete, the next operational
program is built, the PRE is sent to the OU queue,
and the sequence is repeated beginning with
step 3.

7. If the request is complete, the PRE is returned to
the available PRE queue and processing
completes. The user task performs a Supervisor
Exit instruction and the asynchronous /0 task
waits for further requests.



Any OU
Task

«—— 3

45

Asynchronous
I/0 Task

-7\Uﬁ

User Task

Available
PRE Queue

1a

Asynchronous

Paging Request
Queue

eV

Any OU Paging
Request Queue

Figure 8-1. Storage Management and Tasks

PRE Processing

The PRE is used to pass information among the tasks
involved with a paging request. The PRE contains the
last virtual address of the request, the length (minus 1),
an ORE, the PRE request code, the storage pool
number, and the owning task dispatching element (TDE).
See Data Areas in this section for additional information
concerning the contents of the PRE.

In the case of a page fault, the page fault exception
handler (entry point #SMPFEXH in #SVE8PPR) sets up a
PRE with the last virtual address (page bounded) and
the PRE request code to page fault (synchronous, no
pin). The length is not defined at this time. After the
storage management directory is accessed, the length is
set to one or more pages and the PRE request code is
set to read (synchronous, no pin). The pool number is
set either to the pool number specified in the TDE of
the requestor or to the default storage pool (pool 1}.

In the case of a Perform Paging Request instruction, the
Perform Paging Request instruction handler (#SVESPPR})
sets up a PRE with the last virtual address equal to the
page boundary of the second operand. The length is set
to the difference between the first and second
operands. The PRE request code is set according to the
operation requested in the third Perform Paging Request
instruction operand.

As the request proceeds, the pages are processed
(singly or in groups) beginning with the last virtual
address proceeding backwards to the first virtual
address. When processing for a page or group of pages
completes, the length is decremented. The original
request becomes a new request for the remaining pages
of the request.

When the length is O (PRELNGTH equals -1), all pages
have been processed. The PRE and any extensions are
returned and control is returned to the user via a
Supervisor Exit instruction.

Main Storage Management 8-3



Mainline Processing

Paging request processing for page faults and Perform
Paging Request instructions is shown in Figure 8-2.
VMC routines invoke the mainline module (#SVESPPR)
for a page request (through the Supervisor Link
instruction router) or a page fault (through the first-level
exception handler). The first-level exception handler
invokes the mainline module at entry point #SMPFEXH.

For bring (including page fault) and clear request,
#SVESBPPR invokes #SMACDIR to determine the relative
record number (auxiliary storage address) of the
requested address(es) and then allocates page frames in
main storage. Requests needing 1/0 operations are then
sent to the appropriate OU tasks. The OU task returns
the request to #SVESPPR.

If an 1/0 error was encountered, #SMERP is invoked
under the user task. If any problems (such as a segment
not found or uncorrectable |/O error) were encountered,
#iISVEBPPR invokes #CFSLEH to signal the exception. If
no errors were encountered, #SVE8SPPR returns control
to the user.

The page out task (#SMPOQOT) is used to write changed
pages to auxiliary storage. This task selects the pages
to be written to auxiliary storage based on information
accumulated by user tasks during page allocation. The
pages are written using a Perform Paging Request
instruction (purge). This task is initiated asynchronously
during page allocation.

8-4



User Process
(eligible to page fault)
Page Fault or PPR

SVL/SVX SVL/SVX
svLsvx v\ - _ _ _
r - - 1
|
I
Page Out Task | SENDC | m:il\:line |
(#SMPQT) (#SVESPPR) |
|
' |
Call L _ _ _ _SENDMW |
Return ﬁl |
i I
Access OU Task |
Directory (HMC) |
(#SMACDIR) |
T |
! |
| _ENQTDE _|
Return Call
Return
3370 3370 Storage
|
ERP Call ERP Setup Cal Management
(#SMNERP) (#SMNERPV) ERP (#SMERP)

Synchronous linkage

— — — Asynchronous linkage

Figure 8-2. Page Fault and PPR Processing

Main Storage Management 8-5



Directory Lookup

For any clear or read request (including a page fault), the
disk addresses of the pages are determined by
examining the storage management directories. For
purge and write requests, this is not required because
the auxiliary storage addresses are maintained in the
primary directory element (PDE) extention for each page.

Directory lookup is performed by #SMACDIR. If an
access group is not involved, and the faulting address or
the address specified in the Perform Paging Request
instruction is not in main storage, #SMACDIR searches
the static directory for the address. If the page is not
found in the static directory, the lookaside directory is
searched, and if the page is still not located, the
temporary or permanent directory is searched. If the
address is found in the temporary or permanent
directory, the entry is put into the lookaside directory.
Access to the lookaside and temporary or permanent
directories is serialized by storage management locks as
described in this section.

If an access group is involved, the access group
member directory is searched to determine what access
group contains the address. The access group table of
contents for that access group is searched.

If the requested virtual address(es) is not described in
any of the directories, an exception is signaled.

#SMACDIR also determines how many pages to read
and in some cases, the storage pool to receive them.
Page faults normally result in a single page bring. If the
block transfer attribute was specified when the segment
was created, auxiliary storage management (ASM) has
set the block transfer indicator in the auxiliary storage
directory entry (ASDE). #SMACDIR interprets this bit as
meaning that a block (depending on boundary and
extent size restrictions) of up to eight pages containing
the faulting page is to be transferred.

Page Replacement

Main storage is partitioned into one or more storage
pools. Associated with each pool are two queues, a
search queue and a change queue. The search queue is
used to locate the next available page. The change
queue is used to write the changed pages to auxiliary
storage. The page replacement algorithm operates on a
pool, rather than machine-wide basis. On all page faults
and most bring and clear requests, the PRE contains a
pool identifier that identifies the pool of the executing
process. The identified storage pool is searched to
select a page.

8-6

The page replacement algorithm searches from the
original first page to the last page in the search queue
of a pool until a page is located or the end of the queue
is reached. If the end of the queue is reached, a return
is issued and the pool is not tried again. This failure
situation is described under Page Out Task in this
section.

The page replacement algorithm examines the following
attributes to determine if a page is eligible for
replacement:

« Reference bit: This bit indicates if a page has been
referenced since it was read into main storage or
since it was last examined for replacement. (MSM
resets this bit upon examination.)

« Change bit: This bit indicates if a page in main
storage differs from the corresponding page on
auxiliary storage. (Both the reference and change bits
are set by execution of instructions and 1/0
operations.)

« Pin indicator: This byte indicates if a page can be
invalidated. (Storage management normally sets this
byte for other VMC routines; internal |/O operations
and instructions involving interrupted send/receive
queue (SRQ) operations set this byte directly.)

« Secondary reference bit: This bit indicates if the
reference bit was on the last time it was examined.
(MSM sets or resets this bit.)

« Storage management pinned: This byte in the PDE is
used by storage management to indicate special
conditions. All special conditions pin the page but do
not prevent invalidation of the page. MSM resets any
bits set to 1.

- Virtual address equals real address: This condition
indicates an unallocated page. This normally occurs
for pages or a segment that was recently destroyed.
(Nucleus pages are not accessible to the algorithm.)

J

J



If a page is unreferenced two times in succession,
unchanged, not pinned, or virtual-equals-real and not
pinned, the page can be allocated to a new request. If
the page is referenced or pinned, it is moved to the end
of the search queue. If a page is changed {unreferenced
and unpinned), it is moved to the change queue. Figure
8-3 shows the frame attributes and the actions that can
be taken for each attribute.

A dash on the chart in Figure 8-3 means a given frame
attribute is irrelevant. Reading the chart from top to
bottom tells a set of frame attributes under which the
action described above occurs. For example, a pinned
page in the first column, regardless of its other
attributes, is passed over.

| Action
\
Transfer to Change
Attributes | Pass Over! | Allocate? ‘ Queue’
Pinned or storage | | | r | l
Yes No N N
management o) 0 | No No No No
T T

Virtual equals real - No = No Yes No No | No No

T I
Referenced - Yes No — No No No No
Changed - = — - No No Yes Yes
Referenced last time - | — Yes - No - No —

T

Data base page N - No - - Yes - Yes
‘Do not allocate, do not transfer to the change queue.
ZAllocate the page for the new request.
3Transfer the page to the change queue.

Figure 8-3. Replacement Actions

Main Storage Management 8-7



Page Out Task
The page out task performs the following functions:

« Writes changed pages to auxiliary storage when the
system is not busy

« Writes pages to auxiliary storage when a pool has
pages on the change queue that are eligible for
replacement

When not in the process of writing pages to auxiliary
storage, the page out task waits on a send/receive
counter called the threshold counter. Each time the
page replacement algorithm puts a page on the change
queue, it increments the threshold count. When the
threshold count exceeds the specified threshold value, a
send count is issued to the threshold counter to restart
the page out task.

A task enters pool wait when the task attempts to
allocate a page for a read or clear operation and the end
of the original search queue is reached (all pages passed
over or put on the change queue). The task enqueues
its PRE to the pool wait queue. The task then sends
count to the page out task queue and issues a keyed
receive on the pool wait queue. The page out task is
restarted.

8-8

When the page out task is restarted, it attempts to write
up to five pages from the change queue of each pool
and transfer the pages to the search queue. Each time
the page out task is restarted the threshold count is
decremented.

After up to five pages per pool have been written, the
page out task restarts any user tasks that are waiting on
the pool wait queue. The user task may again attempt
to allocate a page.

Figure 8-4 shows an example of the page out function.
In the example, a user task needs a page frame and
searches its storage pool. After searching the entire
pool and not finding an available frame, the task signals
the page out task and enters a wait state. The page out
task writes all pages to the change queues and restarts
all user tasks that are waiting on the pool wait queue.



Pool Before Search

4

Search | Change

Current | Change
3 3

]

Page 4 (changed)

Page 5 {referenced)

1

Page 6 {pinned)

Page 1 (changed)

!

Page 2 {changed)

!

Page 3 {changed)

Pool After Search (before page out)

Search

()

Change
o

Current | Change
2 4

l—]

N

Page 5 (unreferenced)

!

Page 6 (pinned)

'

Page 1 {changed)

Page 2 {changed)

Page 3 (changed)

L

Page 4 (changed)

N

Pool Wait Queue

User
Task

Threshold °
Counter

Page Out
Task

Figure 8-4 (Part 1 of 2). Paging Example

Main Storage Management

8-9



Pool After Page Out

Search

4

Current
6

Change

‘_4

Page 5 (unreferenced)

|

Page 6 (pinned)

!

Page 1 (unreferenced)

-

Page 2 (unreferenced)

!

Page 3 (unreferenced)

!

Page 4 (unreferenced)

Figure 84 (Part 2 of 2). Paging Example

1/0 Pending

Because a page can reside only in one place in main
storage at any time, it is possible for one request to
start operations, followed by another storage
management request for the same page before the first
request completes. This condition is detected during
operational program creation. In this case, the second
task is subject to |/0 pending processing and proceeds
with the common pages according to the following:

Earlier Request Indicates
Current Request 1/0 Pending

Bring Overlay
Write, Purge Quit
Clear Wait
Remove Wait

The actions taken are as follows:

« Overlay: Read the page even though it is already in
main storage, but overlay it with subsequent
nonresident pages. Continue processing other pages
in the request. If no operational program has been
started, however, a wait is done on the pending
page.

- Wait: The previous 1/0 operation must complete
before processing the pending page.

« Quit: Use only pages currently in the operational
program for this 1/0 request. If no operational
program has been started, a wait is done on the
current page.

9



The 1/0 requests that set |/O pending by invalidating
the page are as follows:

« Bring: Sets |/0 pending in the PDE of the pages
being brought into main storage by the read.

« Purge/Write: Sets 1/0 pending in the PDE of the
pages in the operational program.

Because clear and remove requests do not perform any
I/O operations, the MSM directory lock is sufficient to
serialize these requests.

When a request is being processed, a wait condition can
be detected. This causes the current request to wait for
another request to complete. To wait for that request,
access pending is set in the PDE of the last virtual
address, and the PRE is enqueued to the |/O pending
queue in the storage management vector table (SMVT).
The pending task then waits on the |/0 pending queue.

When 1/0 complete processing is performed on a
request, the access pending bit in the PDE can be set
for one or more pages. These bits are reset and the
occurrence noted. After the current 1/0 request is
processed, the 1/0 pending queue is dequeued, member
by member. Those members with the last virtual
address designated as having 1/0 pending are returned
to the 1/0 pending queue. If the 1/0 pending is
satisfied, the PRE is sent to the paging request queue of
the appropriate task and the task is restarted.

Bring/Purge Access Group

The bring/purge access group functions of Perform
Paging Request instruction bring and purge pages of an
access group in one operation. They also provide the
ability to exclude the reading of pages in the access
group that are not heavily used.

The purge access group function checks the access
group table of contents. The access group table of
contents is brought into main storage and pinned. The
shared access group lock is obtained. The disk address
of the access group to be purged is found. The first
page of the access group to be purged {highest virtual
address) is tested for residency and validity. If the page
is resident and valid, the reference bit is checked. If the
page has not been referenced, history bits are set to 1
in the page entry in the access group table of contents.
Setting the history bits to 1 in the access group table of
contents prevents the page from being read into main
storage during a subsequent bring access group
function.

If the information in the page is changed, the page is
logically processed. If the information in the page is not
changed but is referenced, the page is not written and
the history bits in the access group table of contents are
set to allow the page to be read on the next bring
access group function. This process continues until the
entire extent is processed. When the entire extent is
processed, the pages are written to auxiliary storage and
the processing proceeds with the next extent.

The bring access group function checks each page entry
in the access group table of contents for residency. If
the page is resident, processing proceeds to the next

-page. If the page is not resident and the history bits are

set to O, a page frame is allocated and the page is
added to the operational program. If the history bits are
set to 1, the page is ignored. When all pages in the
request have been processed, the pages are read into
main storage.

Exchange Bring/Clear

The exchange bring and clear functions are special PPR
functions that allow a high degree of control over the
use of main storage. A normal bring or clear allocates
page frames according to the page replacement
algorithm. Exchange bring/clear, however, allows the
user of Perform Paging Request instruction to specify
page frames, by virtual address, that are to be used as
steal candidates.

Main Storage Management 8-11



Under exchange, the second operand of the Perform
Paging Request instruction specifies the virtual address
of the page(s) to be stolen. Byte register 14 contains
the number of pages to be brought/cleared. The
second operand address is tested, starting from high to
low address, to see if it can be stolen. The page is
either cleared (for clear) or added to the operational
program (for bring). The virtual address in the range of
the first operand is assigned to the stolen frame. If the
page in the second operand range is not available, the
page replacement algorithm is used to allocate one.

The exchange function allows users the ability to reuse
page frames, leaving a larger number of frames available
in the system at a given time.

MSM Locks

The following locks are used for main storage
management operations. These locks are send/receive
counters located in the SMVT. All locks, except as
noted, are exclusive.

« Access Group Directory Lock (exclusive and shared):
This lock synchronizes ASM and MSM operations
that involve access groups. When ASM updates
either the access group member directory of an
access group table of contents, the lock is held
exclusively. When MSM interrogates either the
member directory or table of contents, MSM holds
the lock shared.

« Truncate Lock (exclusive and shared): This lock
synchronizes ASM truncate and destroy operations
with read and clear requests. The lock is held as
shared except for remove requests.

« Permanent and Temporary Directory Locks: These
locks serialize the pageable permanent and temporary
directories. These locks are obtained by #SMACDIR
when performing a directory lookup.

« Error Recovery Procedure Lock: This lock serializes
error recovery processing.

« MSM Lock: This lock is held while primary directory
and the lookaside directory are updated or examined.

Pointer Tags

The machine maintains a bit for each quad-word of
main storage. |f the bit is 1, a pointer resides in the
quad-word. If the bit is O, the quad-word does not
contain a pointer. Only pointer instructions modify the
pointer bit.

When a page write is performed, the 32 bits
representing each of the 32 quad-words associated with
that page are also stored. These bits are stored in the
pointer. The tags are stored in the structure as shown in
Figure 8-5.

The tags are encoded into the structure as follows:

« If the | bit in the storage management header is O,
then the page has no pointers.

- If the | bit is set to 1, then field C (the last 5 bits of
the header) represent the location of the first pointer
(Format 1 pointer) on the page.

If the left byte in the format 1 pointer is O, no more
pointers are contained in the upper 256 bytes of the
page. If the right byte in the format 1 pointer is O, then
no more pointers are contained in the last 256 bytes of
the page. If either byte is set to 1's, the corresponding
byte offset locates the next pointer in that half page.
These pointers (Format 2 pointers) contain the storage
management bytes (16 bits) representing the tags for
that half page.

J



Storage Management

Header Byte
Virtual Page Address I (reserved) c
9
Page
Upper Half Page
1
Format 1 Pointer r 9
Format 2 Pointer Tags
Lower Half Page
J
Format 2 Pointer Tags

Figure 85. Tag Storage Structure

Main Storage Initialization

#SMMSIT in main storage management is the first VMC
routine to receive control during the initial microprogram
load (IMPL) sequence. This function is loaded as part of
the VMC nucleus and performs the following functions:

« Marks PDEs corresponding to bad pages as unusable.
Bad pages are indicated in the bad page bit mag built
by diagnostics during IMPL.

» Obtains the SMVT information stored on auxiliary
storage.

« Determines if directory recovery is required. If
required, sets an indicator in the machine initialization
status record (MISR). (Directory recovery is actually
performed later in the initialization process; see the
Initialization portion of the Machine Support Function
section in this manual for additional information.)

+ Empties the temporary directory.

» Initializes PDEs so they are all chained off storage
pool 1 {(#SMPQOLI).

« Frees the space occupied by the storage management
initialization routines {(#SMMSIT and #SMPOOLI).

At the completion of this function, certain prebuilt
segments can be paged. In particular, VMC, systermn
control adapter (SCA), machine configuration record
{MCR), and storage management directory pages can be
paged in. If the directory is unusable, it must be rebuilt
before other permanent pageable segments can be
referenced. After SCA initialization is complete,
#SMPICL2 is invoked to verify that drives 2 through 6 (if
attached) are operational. Directory recovery can then
be performed if required, after which a fully functional
paging environment is established. ASM functions
{create, destroy segment, and so on) become operational
at this time.

Main Storage Management B8-13



DATA AREAS

Access Group

An access group is an object that collects objects into a
group that can be operated on by storage management
as a unit to reduce disk accesses. It is created as an
object with a segment identifier and is allocated a block
of contiguous space on storage. Other objects can be
allocated within this block, each object having its own
virtual address, allowing each object to be accessed
individually. However, special directory information
enables storage management to transfer all objects
within the access group to and from main storage as a
single unit.

Permanent Directory

The permanent directory is a machine index that
contains 11-, 18-, 21-, and 28-byte entries called
ASDEs. The ASDEs map the disk addresses assigned to
all permanent segments. ASDEs consist of the first
virtual address mapped, followed by one through four
extent descriptors. The permanent directory is initialized
when VMC is installed and is updated by ASM
operations.

Temporary Directory

The format of the temporary directory is the same as
the permanent directory except that the temporary
directory is for temporary segments.

Access Group Member Directory

This directory maps the member segments in an access
group to the owning access group. This enables MSM
during a page fault to access objects in an access group
when that access group is not in main storage.

Access Group Table of Contents

The access group table of contents describes the
contents of an access group in @8 manner that enables
MSM to operate on either the entire access group or its
individual pages. The table consists of 8-byte entries;
each entry contains the virtual address of a page of an
object contained in the access group. Auxiliary storage
information and special indicators are also contained in
the table of contents.

Lookaside Directory

The lookaside directory is a resident array that contains
11-byte entries (ASDEs with one extent descriptor).
These entries are initialized when the permanent or
temporary directory is accessed. This directory aids
performance by providing a resident least-recently-used
type directory of frequently used segments. If a
segment is unused for a time and is pushed out of the
lookaside directory, the segment is still accessible
through either the permanent or temporary directories.
The lookaside directory is accessed by an algorithm on
the segment identifier. The lookaside directory is
updated during MSM operations, and during truncate
and destroy ASM operations.

Static Directory

The static directory is a resident table of entries. The
entries describe segments that must be accessible
without an access to the permanent or temporary
directory. {These segments contain the free space,
permanent, temporary, and access group directories
themselves. The static directory entries also describe
VMC code segments.) Static directory entries are
identical to lookaside directory entries. The static
directory resides in the SMVT and is initialized when
VMC is installed. All segments referenced before the
storage management directories are recovered must be
referenced in the static directory.



Primary Directory

The primary directory describes the current contents of
main storage, and is maintained by MSM. The entries in
the primary directory are used by hardware during
address translation. Entries in this directory are called
primary directory entries (PDEs) and contain fields used
by HMC, storage management flags, and the auxiliary
storage address associated with the virtual storage
address.

Storage Management Vector Table

This control block is compiled as a nucleus module
(#SMSMVT) and contains the following information:

+ Segment identifier generators and segment extender
- Storage management locks

« Device characteristics and free space information

« Work areas for ASM

» Index control blocks for directory operations

« Storage management system-wide statistics

» Main storage pool headers

Portions of the SMVT are preserved on auxiliary storage
during shutdown and certain other critical points.

Sector Headers

All sectors on auxiliary storage are 520 bytes long. The
first 8 bytes form the header which contains the virtual
address of the page and associated page and segment
information. The sector header is used to:

+« Make pages self-defining so that directories can be
recovered.

« Enable MSM to determine whether a page has been
previously referenced. If, after a page is transferred
to main storage, the header does not match the
virtual address being read, MSM assumes that this is
the first reference to the page and zero fills the page.
In addition to providing O’s in first references, this
eliminates the data security requirement of clearing
data on destroy operations.

The header also contains information on the location of
pointers within the page. The header is read or written
with every auxiliary storage operation. For write
operations, the information in the header is obtained by
MSM from the PDE and from the page itself (tags) so it
is not necessary to access the directory to construct the
header.

Paging Request Element

The PRE describes the main storage management
request. The PRE contains:

« The last virtual address of the request (PRELVADR})

« The length -1 in pages of the request (PRELNGTH)

- The operation request element (ORE) which instructs
the paging device (using the operation-unit task)

where to read or write page frames to or from

+ The PRE request code that describes the operation to
be performed

+ The task dispatching element (TDE) that will wait for
the request

Main Storage Management 8-15



When multiple page 1/0 operations are to be
performed, MSM obtains additional blocks of storage
called PRE extensions. The extensions contain a list of
the frames to operate on and the header area that the
8-byte record headers are to be either written into or
read from. Each extension is 128 bytes long for normal
Perform Paging Request instructions and is 512 bytes
{one page) for access group requests.

Storage Pools

Storage pools allow the partitioning of main storage
page frames. This is done to isolate processes with
unlike characteristics from paging against each other,
causing degraded response time. In particular, they are
intended to prevent batch processes from taking pages
from interactive processes. A pool multiprogramming
level (MPL) can be used to limit contention for frames

within each storage pool.

The storage management portion of a storage pool
consists of the following:

« Status

» First frame

« Last frame

« First changed

+ Last changed

» Current number
« Maximum number
« Pool statistics

The last 4 bytes of the PDE are used for linking PDEs.
A PDE can be on only one storage queue at a time.

8-16

Storage Queues (Search and Change)

A storage queue has two components, a head pointer,
and a tail pointer. Each storage pool has two storage
queues, a search queue that \s used to search for the
next available frame, and a changed queue that is the
page-write-list for that pool.

The change queue is the list of changed pages found by
the page replacement algorithm. The page out task
treats each of these queue as one large list except that
the pool-by-pool list allows the frames to be returned
to the same pool after the write is completed.

Two counts are kept:

« The maximum frame count, the count of all frames
assigned to the storage pool

» The current frame count, the number of frames
currently on the search queue



STRUCTURE

The following is a list of the modules in main storage
management and the function that each module
performs. The list also shows how the module is
invoked.
#CFPOOLS Extract Storage Pool Size

Function: Determines the current size of the process
storage pool.

How Invoked: Within this component.

#SMACDIR Access Directory

Function: Determines auxiliary storage address for a
page-in request. Sets an exception return code if an
invalid address.

How Invoked: Within this component.

#SMCONS Construct Operational Program
Function: Constructs large operational programs for
directory recovery and possibly other operational
programs for auxiliary storage scan operations.

How Invoked: Within this component.

#SMDALCP Deallocate Page Frame

Function: Returns a frame that was either previously
allocated in a call to #SMALCPF or one that is part of
the resident nucleus and is no longer needed.

How Invoked: User call.

#SMDRTSK Directory Recovery Read Drives Task
Function: Reads auxiliary storage and builds a sequential
index of the permanent extent candidates. Immediately
recoverable free space is returned to the free space
directory. If known defects occur, the associated header
is marked as free space and recovery continues.

How Invoked: Within this component.

#SMDR1 Directory Recovery Program, Pass 1

Function: Starts 1 to 4 tasks to read auxiliary storage
and synchronizes their finish.

How Invoked: VMC initialization.

#SMDR2 Directory Recovery Program, Pass 2

Function: Rebuilds the permanent directory from the
candidate extents found during pass 1. Makes free

space entries for failing candidates.

How Invoked: Within this component.

#SMERP Error Recovery

Function: Retries the failing 62PC operation and logs the
failure.

How Invoked: Within this component.

#SMFOBTO Function Operation Block (FOB)

Time-0ut/Halt-Device Processor
Function: Determines when a device times out and then
attempts to recover by sending the appropriate channel
command to halt the device. When the ORE/FOB with
the command is returned, the status is analyzed and
error recovery procedures initiated if necessary.

How Invoked: Periodically from the system interval timer.

#SMFRCSG Force Segment Group Utility

Function: Performs a Perform Paging Request instruction
write for all changed pages in a specified segment
group.

How Invoked: Other VMC components.

#SMMATAS  Materialize Auxiliary Storage Data

Function: Obtains auxiliary storage data (from
#SMSMVT) and stores it in RMMTMD area.

How Invoked: Other VMC components.

Main Storage Management 8-17



#SMMATMS  Materialize Main Storage Pool Data

Function: Obtains main storage pool data (from
#SMSMVT) and stores it in RMMTMD area.

How Invoked: Other VMC components.

#SMMODAS  Modify Auxiliary Storage Controls

Function: Modifies user-specified values for auxiliary
storage controls.

How Invoked: Other VMC components.

#SMMODMS  Modify Main Storage Pool Controls

Function: Modifies user-specified values for main
storage pool controls.

How Invoked: Other VMC components.

#SMMSIT Storage Management Initialization for

IMPL
Function: Establishes a paging environment by verifying
that the files are operational, the directories are usable,

and that main storage is usable.

How Invoked: Initialization.

H#SMINERP Error Recovery

Function: Retries the failing 3370 operation and logs the
failure.

How Invoked: Within this component.

#SMNERPV Error Recovery Setup

Function: Provides environment independence for
module #SMNERP.

How Invoked: Within this component.

#SMPICL2 Auxiliary Storage Startup for Adapter 2

and Drive Check for Drives 2 through 6
Function: Starts the second adapter and checks all file
units to determine that they are operational and ready

for use by storage management.

How Invoked: VMC initialization.

#SMPOOLI Storage Pool Initialization

Function: Prepares the PDEs for paging.

How Invoked: Within this component.

#SMPOT Page Out Task

Function: Performs the asynchronous page out of
changed pages and restarts tasks on the pool wait
queue.

How Invoked: This function is an infinite loop and an
independent task.

#SMPRE Fixed Allocation PREs

Function: Provides PREs for the various needs.

How Invoked: Not applicable.

H#SMSCADP SCA Directory Page

Function: Contains the directory information used by the
SCA at initial MPL to locate HMC, diagnostics, and so
on.

How Invoked: Not applicable.

H#SMSHTDN Storage Management Shutdown
Function: Terminates storage management and
preserves the directories. No further auxiliary storage
management operations are possible after shutdown,
though main storage management functions are still
available.

How Invoked: Terminate machine processing or an
equivalent call from a disaster cleanup module.

9



ASMSMVT Storage Management Vector Table

Function: Contains an initialized version of the SMVT
and the lookaside directory.

How invoked: Not applicable.

#SMSMVTI Fix SMVT for Link/Loader

Function: Copies the required values into the SMVT for
the link/loader.

How Invoked: Link/loader.

#SMSUSOB Suspend Object Processor

Function: Frees the auxiliary storage by truncating
objects to the minimum size that allows ownership and
addressability to be retained in the system. After
execution of the instruction, the attributes of the target
object can be materialized, but any attempt to reference
the functional portion results in an exception. The object
can be restored by executing the load object function.

How Invoked: Other VMC components.

#SMTAGSE Encode/Decode Pointer Tags
Function: Encodes and decodes pointer tags on a page.

How Invoked: Within this component.

#SVESPPR Perform Paging Request
Function: Performs the PPR or page fault functions,
reads and writes sectors, and allocates

virtual-equals-real page frames.

How Invoked: Other VMC components.

Main Storage Management

8-19






Machine Index Management

INTRODUCTION

Indexes provide a means for storing and retrieving data
by either content or relative order. Machine indexes are
used within the following:

« Independent index management

» Data space indexes

- Context management

+ Event management

o Authorization management

» Storage management

» Program management

» Link loader

Machine index operations are invoked as a result of a
supervisor linkage. An index control block (IXCB)
defines the operation to be performed, the argument to
be used, the space for the result, and the location of the

index. The calling component must declare and initialize
the IXCB prior to invoking machine index management.

Machine Index Management 9-1



Index Structure

Two versions of index code exist. The release 1 version
uses 2-byte elements and 512 byte pages and is limited
to a single segment group (16 MB). The release 2
version uses 3-byte elements, can contain up to 64
segment groups (1 GB), and allows a variety of page
sizes.

Internal machine indexes are binary radix trees that
consist of one or more pages and contain the following
elements:

- Page pointers: ldentify the other pages in the index.

+ Text elements: Define the length and address of the
associated text on the same page. The following are
the types of text elements:

— Common text: Text that is common to two or
more entries. When a common text element is
detected during an index search and the text
matches the argument, the text is moved to the
result area and the argument address is advanced.
If the text does not match the argument, the
search is terminated.

— Terminal text: Text that cannot be compressed
into common text. There is one terminal text
element for each entry in the index.

— Invalid terminator: Invalid terminators are used to
indicate that entries have been removed. The
search continues with the adjacent element. The
address portion of the text element is changed to
an invalid location.

« Nodes: Identify the bit to be tested in the current
byte of the argument, and contain a pointer to and a
description of a group (cluster) of elements. The
following are the types of nodes:

— Root node: The first node in a page.
— Successor node: Subsequent nodes in a page.

» Clusters: Contain a left and right element and can
contain common text.

9-2

Figure 9-1 shows an example of the structure of a
machine index and the elements in an index.

An index search is accomplished by using the search
argument to select a particular path through the tree
from the root node of the trunk page to a terminal text
element. Assuming that the argument matches some
entry in the index, the path is determined by examining
the search argument bits that are specified by the nodes
along the path; the root node specifies a bit to be
tested and points to a cluster. If the specified bit of the
argument is in the zero state, it will use the left element
of the next cluster; otherwise, it will use the right
element. This process is repeated for each node along
the path until a terminal text element is selected.
Common text in the selected clusters must match the
leading bytes of argument; after this has been verified,
the argument is advanced a corresponding number of
bytes before performing the bit test. The residue of the
argument must match the leading bytes of the terminal
text.



Root
Node

AN

/4 \
Left Right
Successor Node
Node
jal N\
Left Right Left Right
Text Text Node Node
[~ 1000 T 2000 |
p— TC
L Y
Common Left Right
Text Text Text
50 5400 5590
Left Right
Node Node
Page Pointers
Left Right
Node | _Tg(t_ _ Entries in this index:
2 1000
2900
f J \ \ 5000
5010
Left Right 5020
Text Text
00 10 5400
55690

Figure 9-1. Tree Structure

Machine index Management

9-3



Operations on Machine Indexes

Machine indexes consist of a series of entries. The
maximum length of an entry is 128 bytes. The
maximum length of an index is 1 GB (64 segment
groups). An index entry consists of two parts: a prefix
and a suffix.

The prefix is a key used in a find operation to locate an
entry. The suffix contains information associated with
that key. Following are the basic operations that can be
performed on index entries:

+ Insert entry
+ Find entry
+ Remove entry

There are a number of variations that can be specified
with each of the preceding operations. These variations
are described along with the descriptions of the basic
functions.

Find Entry

A find entry operation consists of a generic search of an
index to locate an index entry that ratches the search
argument designated by the IXCB. If a matching entry is
found, then either that entry or an adjacent entry
(depending on the operation specified in the IXCB]} is
returned to the area specified for the result. If a
matching entry is not found, a flag is set to indicate the
mismatch condition.

It is possible for an index to contain multiple entries that
satisfy the search requirements. For example, index
entries of 5000, 5010, and 5020 all satisfy the
requirements if an argument of 50 is specified. If there
are multiple entries in an index that satisfy the search
requirements, then a specific variation {such as high,
low, or next) must be provided to retrieve the desired
entry.

Find operations are classed as simple, adjacent, and

conditional finds. The classes of find operations and the
operation performed are shown in Figure 9-2.

9-4

In a simple find operation, the argument is used as a
key into the index. Either a matching entry is returned
or a mismatch condition is indicated. If multiple entries
match the argument, then the default (low or high) entry
is selected. Find highest and lowest operations ignore
the argument and return either the highest or lowest
entry in the index.

In an adjacent find operation, if an entry that matches
the argument is found, then either the entry that
precedes or follows the matching entry is returned
depending on the variation specified (prior or next). If a
matching entry is not found, then the entry that would
logically precede or follow the argument is returned.

The end-of-index condition is returned if no entry in the
index could satisfy the requested variation.

In a saved adjacent operation, the argument and result
areas are ignored and the entry adjacent to the last
found entry is returned in the same result area as the
last found entry. The index must not have been
rmodified since the last find. The end-of-index condition
is returned if no entry in the index satisfies the
requested variation.

Conditional finds perform a simple find on the index and
return the entry if a match is found. If a matching entry
is not found, then the appropriate adjacent find is
performed and the mismatch flag is set in the IXCB.

Class Operation

Simple Find low (of equals)

Find high {of equals)

Find lowest (in index)

Find highest (in index)

Adjacent | Find prior

Find next

Find generic prior

Find generic next

Saved Adjacent |Find saved prior

Find saved next

Conditional Find low else prior

Find low else next

Find high else prior

Find high else next

Figure 9-2. Find Operations



Figure 9-3 shows an example index and the entry that
would be returned for the operation specified using a
search argument of 50. The entry 5020 cannot be found
using an argument of 50. This entry can be found by
using any one of the following operations and search
arguments:

Operation Search Argument
Find low 502 or 5020
Find high 502 or 5020
Find next 5010, 5015, and so on
Find low
else prior 502 or 5021
Find prior 503, 5021, and so on
Operation Specified to Return
Index Entry the Entry
1000 Find lowest
—J-
4990 Find generic prior
5000 Find low
5010 Find next
5020
5030 Find prior
5040 Find high
5100 Find generic next
— =
9090 Find highest

Figure 7-3. Example index Find Operations
{Using an Argument of 50)

Insert Entry

The insert entry operations are as follows:
- Insert entry

« Insert conditionally

« Insert overlay only

The insert entry operation either inserts a new entry into
the index or overlays the suffix portion of an existing
entry. This operation is performed by first doing a find
low operation in order to locate the proper position to
insert the entry. If a matching entry already exists in the
index, no action is taken (each index entry must be
unique). The entry is overlaid with the new entry if the
following conditions are met:

+ The suffix length is nonzero.
« The mismatch occurred in the suffix.

« There is only one entry in the index with a prefix that
matches the search argument.

« The entry has the same length as the argument.
Otherwise, a new entry is added to the index.

For an insert conditionally operation, the entry is
inserted into the index if no entries with a prefix that
matches the argument are found. If an entry with a
prefix that matches the argument is found, then no
action is taken except to set the conditional insert flag in
the IXCB.

In an insert overlay-only operation, the conditions for an
overlay during an insert operation must be met to
overlay an entry. No entry is inserted using the insert
overlay-only operation if the conditions are not met.

Machine Index Management 9-5



Remove Entry

The remove entry operations are as follows:
« Remove low (of equals)

« Remove high {of equals)

« Remove exact

The first two operations perform a find low or find high
operation on the index. In all cases, if a matching entry
is located, the entry is deleted. If a matching entry is
not located, no operation occurs and a mismatch
condition is returned.

DATA AREAS

Index Control Block

Figure 9-4 shows the basic structure of the ICB. The
ICB is initialized by the VMC component invoking the
internal machine index function. The internal machine
index function returns information to the calling VMC
component in the ICB at the completion of an index
operation. The fields in the ICB and their use are as
follows:

» Operation: The index operation to be performed by
the internal machine index management function.
These operations (and their operation codes in
hexadecimal) are as follows:

— Find low (00)

— Find high (01)

— Find prior (02)

— Find next {03)

— Find generic prior {04)
— Find generic next (05)
— Find lowest {06)

— Find highest (07)

— lInsert entry {08)

— Insert conditionally (09)
— Remove low {0A)

— Remove high (OB)

— Find low/else prior {OC)
— Find low else next {OD)
— Find high else prior {OE)
— Find high else next {OF)
— Insert overlay-only {10)
— Find saved prior (11)

— Find saved next {12)

— Remove exact {13)

Length of argument area: The length of the area that
contains the key to be used in the find operation.

Length of the suffix area {insert operations only): The J

length of that portion of the argument area that is to
be used as the suffix of the entry.

Length of result area: The length of the area to
receive an index entry after a find operation.

Length of result returned {(output): The length of the
entry returned as a result of an index operation.

Number of pages referenced {output): The count of
pages referenced during an index operation after the
trunk page.

Status flags (output): The flags that indicate the
result of an index operation. These flags are as
follows:

— Index error encountered

— Specification error

— Catastrophic error (damage)

— Index full

— Character mismatch

— End-of-index

— Insert conditional

Pages referenced after trunk page (output): Bytes 4
and 5 of the addresses of the first six pages
referenced in an index operation. {Two pages for
release 2 indexes.)

Pointer to argument area: A pointer to the area that
contains the argument that is to be used as the
search key.

Pointer to the result area: A pointer to the area that
is to receive an index entry after a successful index
operation.

Pointer to the trunk page: A pointer to the first page
in the index.



Operation’

Lengths:

« Argument Area’
« Suffix Area’

» Result Area'

+ Result Returned?

Number of Pages Referenced?

Status Flags?

Pages Referenced after Trunk Page?

Pointers:
o Argument Area’
« Result Area’

« Trunk Page'

Work Area

'Input is required for an index operation.
2Information is returned after an index operation.

Figure 94. Index Control Block

STRUCTURE

The following is a list of the modules in machine index
management and the function that each module
performs. The list also shows how the module is
invoked.
#IXADPGS Add Pages to a Machine Index

Function: Extends the amount of space available to a
machine index.

How Invoked: Other VMC components.

#IXERROR Process Machine Index Error

Function: Creates a VMC log entry if an index error has
occurred, and if requested, signals exceptions.

How Invoked: Other VMC components.

H#IXEXTDX Extend Index
Function: Extends a release 1 index.

How Invoked: From #IXXEXCB

#IXTRINT Initialize the Trunk Page of a Machine

Index
Function: Initializes the trunk page of an index and sets
the flag byte to the value contained in the input

parameter.

How Invoked: Other VMC components.

#IXXDEST Destroy Secondary Index Segments

Function: Destroys the nonbase segments of a machine
index.

How Invoked: Other VMC components.

HIXXEXCB Machine Index Functions

Function: Performs the index operation requested in the
index control block (IXCB) for a release 1 index.

How Invoked: Other VMC components.

HIXXEXIX Extend Index
Function: Extends a release 2 index.

How Invoked: From #IXXINDX.

HIXXFIXB Fix Up Base Page

Function: Fixes the base page of a machine index after
it has been loaded or moved.

How Invoked: Other VMC components.

#IXXFORC Force Secondary Index Segments

Function: Forces to auxiliary storage the nonbase
segments of a machine index.

How Invoked: Other VMC components.

Machine Index Management 9-7



HIXXINDX Machine Index Functions {Extended)

Function: Performs the index operation requested in the
index control block for a release 2 index.

How Invoked: Other VMC components.
MXXWRAP Index Segment Identification {SI1D)
Wrap Check

Function: Performs SID wrap and other ¢cleanup
processing on a machine index.

How Invoked: Other VMC components.

9-8



Initialization/Termination Management

INTRODUCTION

Initial Microprogram Load

The initial microprogram load (IMPL) is the method used
to load VMC into the machine and begin initializing the
machine interface. An IMPL can occur from auxiliary
storage or through an external media (alternate IMPL).
The operator selects the mode to be used by positioning
rotary switches on the console. The IMPL process
performs certain hardware diagnostics {some of which
can be bypassed through the IMPL abbreviated function)
and dispatches an initial task that performs all required
VMC initialization functions. These functions include the
creation of an initial machine process used to start the
first user process.

When the IMPL sequence is initiated by the operator,
the horizontal microcode (HMC) performs certain main
storage functions (including hardware diagnostics) and
dispatches the prime task dispatching queue (TDQ), to
which is enqueued a prebuilt task used by VMC to
initialize itself and the support functions. This task
begins by executing a storage management module
(#SMMSIT) as described under Main Storage
Initialization in the Main Storage Management section of
this manual. #SMMSIT then branches to the VMC
initialization routine #RTVMCIR.

Machine Support Function

#RTVMCIR first calls the system control adapter (SCA)
initialization routine to initialize the system control
adapter. The SCA initialization routine starts up the
SCA, reads the console rotary switches, and reports
initialization conditions to VMC initialization routine
(#RTVMCIR) through the machine initialization status
record (MISR). The data reported in the MISR includes
the position of the console switches, SCA sense and
status information, any required error log data, whether
or not the primary console and the load/dump device
are operational, and if an IMPL halt is to occur. This
data can later be accessed by a user through the
Materialize Machine Attributes instruction. The
temporary and access group directories are then
initialized (#SMINDIR). If the directory is unusable and
needs to be rebuilt (as indicated in the MISR), the
auxiliary storage directory recovery program (#SMDR1)
is invoked. When #SMDR1 completes, all segments can
be paged. See Directory Recovery in the Auxiliary
Storage Management section of this manual for
additional information -concerning rebuilding the
directory.

The VMC initialization routine checks for the existence
of the following objects and structures by referencing
them:

« Alter log

« Source/sink active device list

« Data base in-use table

+ Object recovery list

If cne of the preceding does not currently exist, an

exception is signaled, and the IMPL exception handler
(#RTIMPLX) is invoked to create the object or structure.

Initialization/ Termination Management 10-1



Resource management (#RMINIT) initialization is then
invoked to create system-wide resources such as task
dispatching elements (TDEs), call/return elements
(CREs), and machine-wide storage functions. Resource
management initialization also starts the machine timer
functions and the machine time-of-day clock, using the
time saved when the machine was shut down. See
Initialization in the Resource Management section of this
manual for additional information concerning resource
management.

Exception management initialization (#EXINIT) is invoked
at this time to initialize statistics recorded about the
causes and frequency of effective address overflow
exceptions.

Process management initialization routine (#PMINIT) sets
up the machine-wide index for event management
(address is resident in the VMC communications area).
#PMINIT also initializes two send/receive counters to
provide serialization for process management functions
and event management indexes. #PMINIT initializes the
trace table to indicate no active traces. When process
management initialization completes, VMC task creation
and termination can be performed.

At this point, the VMC log task is created and initialized.

The damage assessment routine (#RCMKDMG) is
invoked at this time. #RCMKDMG runs in conjunction
with a special version of the directory rebuild program
that reads all pages assigned to permanent segments
and marks the permanent directory entries for any
segments containing read errors.

10-2

#RCMKDMG first checks the storage management
vector table (SMVT) to determine if the special version
of directory recovery ran previously in the IPL sequence.
If not, an entry is made in the VLOG indicating that no
further processing was performed, and the routine
terminates. Otherwise, the permanent directory is
searched for entries marked as containing read errors. If
such a segment is found and is part of an object, the
object is marked with the appropriate damage, and an
entry is made for the object in the object recovery list.
A count of the number of damaged objects found is
maintained, and that information is entered in the VLOG.

Next, the context rebuild function is called. The machine
context and any other context created with the
automatic rebuild option are checked for damage. If any
of these contexts are damaged, they are rebuilt.

The source/sink initialization function (#SSINIT) is then
activated. Source/sink initializatior builds the machine
services control point task. The machine error logging
function is activated to log any error messages that exist
on the error log queue.

The address regeneration program #SMSDWRP is
invoked to calculate the number of segment identifiers
that have been used. If 95 percent of the segment
identifiers have been used, an IMPL halt occurs to notify
the operator of this condition. If the operator sets the
rotary switches to the appropriate positions and elects
to perform another IMPL, #SMSDWRP regenerates the
segment identifiers to make available all unused
segment identifiers, and invokes recovery procedures
such as data base recovery. If all segment identifiers
have been used when #SMSDWRP is invoked, this
module performs the identifier regeneration without
operator intervention.

The authority management initialization (#AUINIT) is
then invoked to perform recovery procedures.

The data base, journal, and commit management
initialization and recovery routines are invoked to
perform recovery procedures and initialization of the
data base in-use table. The order of this multiphase
process is controlled by #CFRMAST.



At any point in the IMPL sequence, errors can occur
that can terminate the IMPL sequence. If a certain
initialization function cannot complete, it sets indicators
to the MISR to indicate to the VMC initialization routine
to halt the IMPL sequence.

When a power failure occurs, the machine can be
initialized automatically upon restoration of power by the
auto-IMPL feature. If the auto-IMPL feature is installed
and active, a power failure followed by restoration of
power automatically starts the IMPL sequence. The
IMPL sequence is the only operation performed. When
auto-IMPL sequence occurs, the storage management
directories are automatically rebuilt if required.

Initial Program Load

When the IMPL sequence is complete, the machine is
ready to initiate a user process. VMC initiates a
temporary machine process called the machine process
that is capable of using VMC functions. The machine
context is checked during an alternate initial program
load (AIPL) and if damaged, it is rebuilt and emptied. If
the machine context is usable, a machine user profile is
built by #RTUPROF. The address of the user profile is
stored in the VMC communications area. Control is then
passed from #RTVMCIR to a process management
routine #PMIPL1 that builds a TDE for the machine
process and places the TDE on the prime TDQ. #RTIPIR
gets control as the first program in the machine process
and initiates the first user process.

In order to start an initial user process, the following
parts are needed:

« A user profile to specify the process authority
attributes and objects owned

« A process definition template (PDT) to specify the
attributes of the process

+ A program template specifying the program to get
control in the initial process

If the user profile specified in the template exists, the
existing user profile is kept. If the user profile is
damaged, it is replaced and addressability to any objects
in the profile is lost.

Certain space objects are required:

« A process control space (PCS) for the machine to
stack invocations

« A process automatic storage area to stack the
invocations

« A process static storage area if the process uses
static storage

These areas are further described in Data Areas in the
Program Execution Management section of this manual.
The parts can be present on either auxiliary storage or
an external media device. If the information is stored on
auxiliary storage, an initial program load (IPL) sequence
is performed. In this case, a process definition template
was previously specified by the use of the Modify
Machine Attributes instruction. The process definition
template contains system pointers to a user profile and
an encapsulated program previously saved within a
space object.

If the parts of a process are on the load/dump device,
an alternate IPL (AIPL) sequence is performed. The data
for an AIPL sequence must be supplied in either
load/dump format (a space object) or data interchange
format (a character string).

The VMC initial process initiation routine uses the
process definition template to initiate a process. If an
alternate IPL sequence is to be performed, a load/dump
session is established and the data is read from the
load/dump device; otherwise the data is located on
auxiliary storage via the initial process definition
template. The data read from the load/dump device is a
series of creation templates for objects. These
templates are:

« A user profile template for a create user profile
operation.

« A program template.
« The spaces needed for user process initiation. (These
spaces are created with default attributes by the

initial process initiation routine.)

+ A process definition template.

Initialization/ Termination Management  10-3



The spaces are created with the Create Space
instruction. The system pointers are stored in the
machine initialization status record. The program is
translated using the Create Program instruction, and a
user profile is created using the Create User Profile
instruction. The user program and the user profile are
then used by the Initiate Process instruction to create
the first user process. The machine process then signals
the VMC initialization process, and the machine process
destroys itself.

If the IPL or AIPL sequence cannot be completed
because an error is detected, an IPL halt is executed
and, with the exception of a damaged user profile error,
no effort is made to restart the |IPL sequence. The IPL
halt performs the following:

= Sets indicators and reason code in the MISR and
writes the MISR to auxiliary storage

« Destroys any objects created by an IPL
« Executes the storage management shutdown function

» Places the machine in checkstop state and places a
termination code in the sequence indicator lights

An IPL halt can be caused by a hardware error (a
machine check or initial microprogram load (IMPL)
exception) or an exception signaled by a function used
by the IPL sequence.

10-4



Figure 10-1 shows the order of activation of VMC

components that initialize the VMC support functions.

VMC MSM vMC
Initialization Initialization Initialization
Task (#SMMSIT) (#RTVMCIR)
Source/Sink
IOM
(#LOSAIPL) Directory
Recovery
(#SMDR1)
Resource
Management
#RMINIT) Process
Management
Create (#PMINIT)
Task VMC Log
(#VLTASK)
Context
Rebuild
(#RCRBCTX)
Source/Sink
Management
(#SSINIT) Address
Regeneration
Program
Authority (#SMSDWRP)
Management Data Base,
#AUINIT) Journal,
and Commit
Management
Process (HCFRMAST)
Management
(#PMIPL1) initial
Process
Create Task Creation
(#RTIPIR)

Figure 10-1. Initialization Sequence

Initialization/ Termination Management 10-5



Terminate Machine Processing

The terminate machine processing function provides the
capability of destroying all processes in the system and
either turning off the power to the machine or putting
the machine into the check stop state. The processes
are destroyed in a manner as defined by the Terminate
Process instruction. The same function as defined by
the Terminate Process instruction is done for each
individual process that is destroyed. This operation is
further described in the Process Management section of
this manual.

The process that invokes the terminate machine
processing function must have the authority to destroy
all processes within the machine. The terminate function
is invoked whenever the Terminate Machine Processing
instruction is issued. A fixed time interval elapses before
machine processing is terminated. This allows all
processes to complete to normal termination. If one or
more processes remain active at the end of the time
interval, those processes are abnormally terminated.
Machine processing then completes processing using a
separate internal task.

Once machine processing has been terminated, it can
only be reactivated through machine initialization.

An optional function performed by the terminate
machine processing function is that of turning off the
machine power supply. This option is specified in the
Terminate Machine Processing instruction. If the
machine power supply is not turned off, the last
function performed by the terminate functions is to put
the machine into the check stopped state. For
diagnostic purposes, the process that invoked the
terminate function can save a space pointer for a
permanent space object that contains diagnostic data.
This data is user-defined and is not used by the
machine.

DATA AREAS

VMC Communications Area (YYVCA)

The VMC communications area contains the various
pageable control areas used in VMC. An overview of
the VMC communications area is shown in Figure 10-2.
The VMC communications area contains pointers used
by VMC components to address structures that are
pageable.

10-6

Alignment Area

Event Management SRC

Process Management SRC

Areas for VMC Components

« Common Functions

« Authorization Management
+ Program Management

« Exception Management

» Process Management

+ Resource Management

« Event Management

« Data Base Management

+ Source/Sink Management
» Machine Qbservation Managernent

« Support Functions

Figure 10-2. VMC Communications Area

Machine Initialization Status Record {YYMISR}

The machine intialization status record (MISR) is used by
VMC components to store information relating to the
status of the machine following an IPL or IMPL. Some
of the contents of the MISR can be materialized by
using a Materialize Machine Attributes instruction. An
overview of the MISR is shown in Figure 10-3.

Settings of Machine Switches and IMPL Status Flags
Device Status

Failing Test Indicator

IMPL/IMPL-Abbreviated Sequence Number

Flag Indicators

VMC Status

AlIPL Information

Figure 10-3. Machine Initialization Status Record



Object Recovery List

The object recovery list identifies the objects that were
not completely processed at machine termination. A
recovery entry exists in the list for every object subject
to recovery activity. These entries contain the object
type, a pointer to the object, and the status of the
object.

STRUCTURE

The following is a list of the modules in machine
initialization management and the function that each
module performs. The list also shows how the module
is invoked.
#RTIAIPL Read AIPL Data

Function: Reads AIPL process creation data from the
load/dump device.

How Invoked: Within this component,

#RTIMPLX IMPL Exception Handler
Function: Rebuilds damaged or missing segments.
How Invoked: Within this component (exceptions
generated in #RTVMCIR).

H#RTIPIR Initial Process Initialization Routine

Function: This routine is activated as a machine program

that executes in a process environment. This routine
creates a user defined process from data either on the
load/dump device or in the machine.

How Invoked: Process Management.

H#RTIPLHT IPL Halit

Function: Cleans up the IPL sequence on an abnormal
termination.

How Invoked: Exception management when an error
occurs during the IPL or AIPL.

#RTMCR Machine Configuration Record

Function: Contains the initialized machine configuration
record. This module does not contain executable code.

How Invoked: Not applicable.

#RTMPT1 Terminate Machine Processing Part 1

Function: Starts the machine processing termination
function.

How Invoked: Other VMC components.

#RTMPT2 Terminate Machine Processing Part 2

Function: Destroys all user processes and stops the
machine.

How Invoked: Within this component.

#RTMPT3 Terminate Machine Processing Part 3
Function: invokes the destroy function for a process.

How Invoked: Other VMC components.

#RTVCA VMC Communications Area Generating

Data
Function: Contains the data used to generate the VMC
communications area. This module does not contain

executabie code.

How Invoked: Not applicable.

#RTVMCIR VMC Initialization Routine

Function: Performs VMC initialization at IMPL or
IMPL-abbreviated time.

How Invoked: Other VMC components.

Initialization / Termination Management  10-7






Machine Check Management

INTRODUCTION

Machine check management protects the System/38
instruction set user from error conditions caused by
hardware, microcode, and logic failures. When a
machine check occurs, machine check management
performs one of the following:

« Immediately halts machine processing when a failure
is severe enough (terminal) that processing cannot
continue

« Initiates shutdown

« Generates either a machine check event and
exception or a function check exception

Machine check management also records certain
information for diagnostic purposes. An error report is
sent to the machine error log or the VMC log for all
function and machine checks except immediate machine
checks.

Machine checks occur as follows:

- As a result of a hardware failure in the processor, a
microcode failure caused by misuse of the internal
microprogramming (IMP) instructions, or an
exceptional condition in the execution of a microcode
routine. These are hardware-reported machine
checks that are stored in the machine error log.

- As a result of an unexpected IMP exception in a
VMC routine or a condition detected by a
VMC-reported function and machine checks that are
stored in the VMC log.

Hardware machine checks are reported by the hardware
machine check handler which is a horizontal microcode
(HMC) component. When a machine check is to be
reported, the hardware machine check handler disables
the task dispatcher and fills the machine check logout
buffer with error information and task status (base
registers, instruction address register, condition codes,
instruction length code). Machine check mode is set,
which forces a hard machine stop if another machine
check or exception occurs before machine check mode
is reset. The hardware machine check handler then
passes control to the resident VMC machine check
handler to determine the severity of the error and to
determine if further processing can take place.

Normally, when the resident machine check handler is
invoked, it runs under the currently executing task
dispatching element (TDE). The resident machine check
handler can also be invoked while in a wait state with
no TDE executing. In this case, the resident machine
check handler enters the run state, copies the error
information from the machine check logout buffer to a
machine check queue element, and returns to the wait
state. The error is recorded when another machine
check occurs.

The resident machine check handler determines if the
machine check is hard or soft as follows:

« Hard Machine Check: A machine check that requires
some recovery action by VMC before processing can
continue. (For some hard machine checks, recovery
may not be possible.)

« Soft Machine Check: A machine check that requires
no recovery action by VMC (a hardware function may
have already performed recovery actions).

If the machine check is hard, the following conditions
cause an immediate hard stop:

« The machine check occurred while task dispatching
was disabled

« An error in a horizontal microcode routine
« Certain channel errors

- “ertain main storage locks active

Machine Check Management 11-1



These conditions prevent further machine processing
because main storage management will not function. If
none of these conditions occur, the resident machine
check handler prepares to invoke the pageable machine
check handler. A call/return element (CRE) is obtained
to save the task status, and the remainder of the
machine check logout buffer is recorded in a machine
check queue element. An error in any of these
operations causes a hard stop. When processing is
complete, the dispatcher is enabled, machine check
mode is reset, and the resident machine check handler
invokes the pageable machine check handler. (Because
the majority of machine check management code is not
in main storage, a portion of storage management must
be usable before machine check management can
proceed.}

The pageable machine check handler establishes a
normal VMC execution environment and attempts to
recover the error. If an invocation work area (IWA) is
not present, one is created. If a main storage failure
occurred, the operation is retried by attempting to load
from the failing location. If no additional machine check
occurs, the retry of the failing location is considered
successful. If the retry of the failing locations is
successful or if no main storage error occurred, the
pageable machine check handler determines if the failing
instruction can be retried. Only those instructions that
can be executed a number of times with identical results
can be retried. If the retry is successful (no machine
check results), the task is restarted (via the Supervisor
Exit instruction) at the point of the failure.

If the retry did not succeed (because of a failing storage
location, nenretniable instruction, or instruction retry
failure), the following occurs:

+ The error 1s logged to the error log.

+ A machine check event is signaled and an entry is
made in the machine error file (regardless of the
disposition of the error}.

+ A machine check exception is signaled to the
machine interface user through the normal exception
handling process.

« The task will probably be terminated, unless VMC
invocations handle or exception handlers process the
error.

If a soft machine check is reported to the resident
machine check handler, normal machine check
processing without retry occurs. The error is reported
and the task is restarted.

The following actions are taken in machine check
processing to maintain the integrity of main storage:

+ When a hard main storage failure occurs, the primary
directory entry corresponding to the bad frame is
marked as bad. The frame can still be accessed, but
it will not be stolen or relocated by main storage
managemaent.

» When attempts to recover a main storage error fail,
the frame is invalidated and addressability to the
frame is destroyed.

« The location of a bad frame is tested. If the frame is
permanently resident or pinned, a hard stop is
executed.

« If a bad frame has been changed (that is, an exact
copy does not exist on auxiliary storage), an attempt
is made to signal a machine check and to invalidate
the corresponding page on auxiliary storage. If this
attempt fails, machine processing is terminated,

If none of these conditions has occurred, the page is
recovered by relocating the data to another page frame.

VMC checks caused by program execution errors are
reported as function or machine checks through the
exception management or the machine check handler. If
an IMP exception occurs in a VMC program and the
excaption is not handled by a VMC exception handler,
the exception is converted to a hard machine check by
the exception handler and the appropriate recording
occurs. The exception handler then reports a machine
check exception to the user. A VMC routine can also
explicitly create a machine or a function check by
signaling a machine check.



Throughout machine check processing, the integrity of
the machine interface and protection of data is the
primary concern. If the machine check handler cannot
isolate the error, machine processing is terminated. In
severe cases when the machine check handler itself
cannot operate, the cause of the error can usually be
determined by looking at the machine check logout
buffer in main storage. If the resident machine check
handler is forced to execute a hard stop, the logout
buffer is preserved.

DATA AREAS

Machine Check Logout Buffer (RTMCLB1)

The machine check logout buffer is an area in main
storage that is reserved for the reporting of machine
checks by the hardware machine check handier. This
area contains data concerning the cause of the machine
check and the environment existing when the machine
check occurred.

Machine Check Queue

The machine check queue is a queue in mair, storage
used to transfer machine check queue elements
between the resident and pageable machine check
handler.

Machine Check Queue Element (RTMCQE1)
Machine check queue elements are used by machine
check to pass machine check related information. An
element contains the following information:

« Element description

« Hardware error statistics

» HMC logout data

STRUCTURE

The following is a list of the modules in machine check
management and the function that each module
performs. The list also shows how the module is
invoked.
#RTELOG Send Machine Check to Error Log

Function: Puts header on machine check error message
and sends the message to the error log.

How Invoked: Within this component.

#RTIBADP Resident Bad Page Recovery

Function: Attempts to retry certain bad main storage
frames accessed by main storage management.

How Invoked: Within this component.

#RTIMCH Resident Machine Check Handler

Function: Processes machine malfunctions detected by
the HMC.

How Invoked: From HMC.

Machine Check Management 11-3



#RTIRTRY Resident Bad Page Recovery Recording
Routine

Function: Records bad frames recovered by #RTIBADP.

How Invoked: Resource management service task.

#RTPMCH Pageable Machine Check Handler
Function: Retries hardware errors, logs errors, initiates
dump, and invokes the third-level exception handler

(TLEH).

How Invoked: Within this component.

#ARTPMCKH Machine Check Service Routine

Function: Provides service functions for machine check
processing.

How Invoked: Within this component and exception
management.
#RTPMCKX Machine Check Component-Specific

Exception Handier (CSEH}

Function: Processes exceptions that occur in the
pageable machine check handler.

How Invoked: Other VMC components.



Machine Observation Management

INTRODUCTION

Machine observation management provide a means for
the user to view detailed information relating to system
objects and to trace the occurrence of the execution of
specific System /38 instructions. These functions are
accomplished through the following System/38
instructions:

« Materialize System Object

« Materialize Pointer

» Materialize Pointer Locations
« Trace Instructions

» Cancel Trace Instructions

« Trace Invocations

+ Cancel Trace Invocations

+ Materialize Invocation

« Materialize Instruction Attributes

Materialize Systam Object

#DOMTSOB is invoked as a result of a Materialize
System Object instruction. This module invokes
#CFOCHKR to validate the operands, authorizations, and
lock enforcement. #DOMTSOB then materializes
information about the system object addressed by
operand 2. This information includes context and user
profile information for objects that are addressed by
contexts and user profiles.

Materialize Pointer

#DOMTPTR is invoked as a result of a Materialize
Pointer instruction. This module first validates the
instruction operands. #DOMTPTR then materializes
information about the pointer contained in operand 2.
This information includes context information for
pointers to objects that are addressed by a context.

Materialize Pointer Locations

#DOMTPTL is invoked as a result of a Materialize
Pointer Locations instruction. This module validates the
operands. #DOMTPTL then materializes information
about the space addressed by operand 2. This
information is presented using the following algorithm:

« Each bit in the area addressed by operand 1
represents 16 bytes of data in the area addressed by
operand 2.

+ A bit value of O in the materialize area (operand 1)
indicates that the corresponding 16 bytes of the
scanned area (operand 2} did not contain a pointer.

« A bit value of 1 in the materialize area indicates that
the corresponding 16 bytes of the search area
contains a pointer.

Trace Instructions

#DOTRINS is invoked as a result of a Trace Instructions
System /38 instruction. This module first validates the
input operands. If the trace table does not currently
exist, it is created. If the trace table does not exist, it is
necessary to check that the VMC service function is not
using the program event monitor (PEM}. If the PEM is
in use, then an exception is signaled; otherwise, the
PEM is marked as being in use by the trace instructions
function. #DOTRINS then creates a program trace
element for the specified program. The trace element
contains the low and high PEM ranges for that program.
#DOTRINS then determines the hardware address for
each instruction number and creates a trace point entry.
The low and high PEM limits for the program are then
set.

#DOTRSEV is invoked from the exception handler
(#SVOOEXC) when a PEM exception is signaled.
#DOTRSEV searches the trace for a machine hardware
address. If a machine address is found, an instruction
reference event is signaled and a Supervisor Link
Monitored instruction is executed. The Supervisor Link
Monitored instruction allows the event monitor to
receive control. #DOTSEV then enables the PEM and
allows the monitored instruction to be executed.

Machine Observation Management 12-1



#DOTRINX is invoked if a call or return is executed
when instruction tracing is active. #DOTRINX
determines what program is about to be invoked if any
trace points have been specified in the trace table for
that program. If trace points have been specified,
#DOTRINX sets a flag in the task dispatching element
{(TDE} to indicate that a PEM is active, and sets the low
and high PEM range for this program. When a hardware
instruction within the specified ranges is executed, a
PEM exception is signaled.

Cancel Trace

#DOCTRIN is invoked as a result of a Cancel Trace
Instructions System/38 instruction. This module
validates the operands in the instruction. #DOCTRIN
then determines the hardware address for each

System /38 instruction specified in operand 2.
#DOCTRIN scans the trace table and deletes the entries
that match the instruction list, and sets the high and low
PEM limits for the specified program.

Trace and Cancel Trace Invocations

#DOTRCLE contains entry points to trace invocations
and to cancel the trace, and to signal the
invocation-reference event. #DOTRINV is invoked as a
result of a Trace Invocations instruction. This module
sets invocation trace flags in the specified invocation
control block. #DOCTRNYV is invoked as a result of a
Cancel Invocations Trace instruction. This module resets
invocation trace flags in the specified invocation control
block.

#DOTRIEV and #DOTRCEX are invoked during call and
return functions. These modules build event related data
and signal an invocation-reference event.

Materialize Invocation

#DOMATIA is invoked as a result of a Materialize
I\nvocation instruction. This module first validates the
operands of the instruction. The module then returns
information about the specified invocation and,
optionally, returns argument addresses and exception

descriptions.

12-2

Materialize Instruction Attributes

#DOMTINS is invoked as a result of a Materialize
Instruction Attributes instruction. The module first
checks the input template for obvious validity problems.
Then the program is scanned until the desired
instruction is located. Finally, each operand of the
desired instruction is materialized.

DATA AREAS

Trace Table

The trace table contains information required to trace
the instructions in a process. This table retains the
information about user programs. The trace table is
located by a pointer in the process control block for a
process. The table contains the following information:

« A program trace element for each program being
traced. (The element contains the high and low PEM
limits.}

- A list of all System /38 instructions that are being
traced and the corresponding hardware address for
those instructions.

If there are too many instructions to be retained in the
trace table, a machine index is created to retain the
trace points for some programs.

STRUCTURE

The foliowing is a list of the modules in machine
observation management and the function that each
module performs. The list also shows how the module
is invoked.
#DOCTRIN Cancel Trace Instructions

Function: Removes the specified instructions from the
trace table.

How Invoked: As a result of a Cancel Trace Instructions
instruction and other VMC components,



#DOMATIA Materialize Invocation

Function: Returns the program and instruction numbers
of the specified invocation, and returns the argument

addresses and exception descriptions.

How Invoked: Materialize Invocation instruction.

#DOMODSO Modify System Object

Function: Modify the time-stamp in the EPA header to
the current value.

How Invoked: SVL router.

#DOMTINS Materialize Instruction Attributes

Function: Materializes the attributes of an instruction for
a specific invocation within the process issuing the
instruction.

How Invoked: Materialize Instruction Attributes

instruction.

#DOMTPTL Materialize Pointer Locations

Function: Materializes the symbolic locations of valid
pointers in a given string of data.

How Invoked: Materialize Pointer Location instruction.

#DOMTPTR Materialize Pointer

Function: Materializes the type and attributes of a
pointer.

How Invoked: Materialize Pointer instruction.

#DOMTSOB  Materialize System Objects

Function: Materializes the identity and size of the
system object addressed by the system pointer.

How Invoked: Materialize System Objects instruction.

#DOTRCLE Trace Invocations

Function: Modifies trace invocation flags and signals the
trace-invocations event.

How Invoked: Trace Invocations and Cancel Invocations

Trace instructions and other VMC components.

#DOTRINS Trace Instructions

Function: Initiate trace instructions for the System/38
instructions.

How Invoked: Trace Instructions instruction.

#DOTRINX Set PEM Range

Function: Determines the correct PEM range for a call or
return.

How Invoked: Other VMC components.

#DOTRSEV Trace Instructions Signal Event

Function: Signals trace-instructions events for those
event-monitored exceptions that occur at addresses

specified in the trace table.

How Invoked: Other VMC components.

Machine Observation Management 12-3






Service and Installation Management

INTRODUCTION
VMC provides tools for use by service personnel for
problem determination. The service functions provided

are as follows:

Virtual Storage Standalone Dump: Dumps selected

virtual storage to a diskette.

Print Standalone Dump: Prints all or selective
portions of either main or virtual storage dumps.

VMC Log: Dumps selected VMC log entries to either

a diskette or a printer, and modifies the
characteristics of the VMC log.

Display/Alter/Dump: Displays and alters the
contents of virtual storage and dumps virtual storage

to a diskette or a printer.

VMC Trace: Provides a chronological record of the
execution of selected events within VMC.

Address Stop/Instruction Step: Provides address

stop and instruction step capabilities.

Machine Configuration Record Update Facility:
Assists the user in updating the machine

configuration record (MCR).

Link/Loader: Copies the microcode from the diskette
magazine to the area reserved for this code during

auxiliary storage initialization.

Auxiliary Storage Initialization: Initializes auxiliary
storage and builds the storage management directory.

The internal operations cf these functions are not
described except to provide a list of the modules that
perform these functions. For instructions on the use of
the service aids, see the System/38 Diagnostics Aids
manual and the System/38 Service Guide.

STRUCTURE

The following is a list of the modules that perform the
service and installation functions. The function that each
module performs is also included.

#CFMLOG

#RIADRSM

#RIADRST

#RID52
#RIDAADR

#RIDADAT

#RIDADDS

#RIDADSL

#RIDAEHS

#RIDAFSL
#RIDAINT

#RIDAIXU

#RIDAMIO

#RIDAMOD

#RIDARTE

#RIDASM1

#RIDASM3

#RIDASMA4

Performs VMC log operations

Addresses stop/instruction step service
monitor linkage

Addresses stop/instruction step service
function

Diagnoses machine interface dump list
Displays/alters/dumps address select

Displays/alters/dumps data
display/ alter support

Displays/alters/dumps display dump
status

Displays/alters/dumps data select
Displays/alters/dumps
component-specific exception handler
(CSEH)

Displays/alters/dumps function select

Displays/alters/dumps initialization

Displays/alters/dumps index utility
function

Displays/alters/dumps object select

Displays/alters/dumps VMC module
select

Displays/alters/dumps dump router

Displays/alters/dumps screen and
message library

Displays/alters/dumps screen and
message library

Displays/alters/dumps screen and
message library

Service and Installation Management 13-1



#RIDASM6

#RIDASMB

#RIDASUB

#RIDATKS

#RIDAVMD

#RIDIAGF

#RIDNDPI

#RIDNECI

#RIDPRSM

#RIDPR2

#RIDPR21

#RIDPR22

#RIDPR23

#RIDPR24

#RIDPR25

#RIDPR26

#RIGTBUF

#RIMATMA

#RIMODMA

#RIPEMCK

13-2

Displays /alters /dumps screen and
message library

Displays/alters/dumps screen and
message library

Displays/alters,/dumps subtask
(processes dumps)

Displays/alters/dumps task/process
select

Displays/alters/dumps VMC data
Diagnhoses instruction router
Diagnoses dump process internal
Diagnoses engineering change inquiry
Prints standalone dump main/ virtual
storage dump screen and message

library

Prints standalone dump main/virtual
storage dump

Prints standalone dump main storage
durnp initialization

Prints standalone dump main storage
durnp

Prints standalone dump virtual storage
dump initialization

Prints standalone virtual storage dump

Prints standalone dump main storage
durnp get page

Prints standalone dump main storage
dump task dispatching element
(TDE)/ call/return element (CRE) chains

Gets trace recording buffer

* Materializes machine attributes

" Driver for modify machine attributes

Validates data to set program-event
monitor

#RIPEMEX

#RIRICTL
#RIRTBUF
#RITOUCH
#RITRACE
#RITRCAC
#RITRCAL
#RITRCCL
#RITRCDA
#RITRCDP
#RITRCSC
#RITRCSM
#RITRMI
#RITRSAC

#RITRSAD

#RITRSAL
#RITRSCL
#RITRSDA
#RITRSDP

#RITRSM1

#RITRSM2

#RITRSM3

Addresses stop/instruction stop and
trace instruction program event monitor
exception handler

Retrieves internal data

Traces retrieve buffer

Traces segment identifier rnaintenance
General trace collection

Activates trace

Allocates trace space

Clears tracing

De-activates trace

Traces dump control

Traces common scroll

Traces control

Traces control from machine interface

Traces activation {screen interface)

Traces activate/de-activate
source/sink object

Traces allocation (screen interface)
Traces clear (screen interface}

Traces de-activate (screen interface)
Traces dump control {screen interface)

Traces screen and message library
part 1

Traces screen and message library
part 2

Traces screen and rmessage library
part 3

J

J



#RITRSM4

#RITRSM5

#RITRSM6

#RITRSM7

#RITRSM8

#RITRSM9

#RITRSSC
#RITRSSI

#RITRSTS
#RITRSTS

#RIVLDMP

#RIVLSF
#RIVLSML

#SDAIBLD

#SDALINQ
#SDALINS
#SDCDCTL
#SDCNCVT
#SDCNMOV
#SDCNTIM
#SDDCCTL
#SDDIBLD

#SDDICTL

Traces screen and message library
part 4

Traces screen and message library
part

Traces screen and message library
part 6

Traces screen and message library
part 7

Traces screen and message library
part 8

Traces screen and message library
part 9

Traces scroll control {screen interface)
Traces source/sink object initialization
Traces status (screen interface)
Traces task switch save buffer

VMC log asynchronous dump
subfunction

VMC log service function
VMC log screen and message library

Services function driver address index
build

Displays/alters/dumps alter log inquiry
Displays/alters/dumps log insert
Common display

Converts data

Moves data with exception handier
Services function driver convert time
Services function driver task controller
Dumps entry string build

Dumps control

#SDDIDC
#SDDIDIX
#SDDIDPR
#SDDIDSG
#SDDIFSO
#SDDIFS1
#SDDIFS2
#SDDIFS3

#SDDIFS4

#SDDIFS5
#SDDIFS6
#SDDIFS7
#SDDIFS8
#SDDIGDS
#SDDIMOV
#SDDIPDS
#SDDIPF
#SDDIPH
#SDDIPL
#SDDIPOC

#SDDIP21

#SDDIP22
#SDDIP23
#SDDIP49

#SDDISDT

Dumps compress

Dumps machine index entry
Dumps print

Dumps segment

Format search table (0)
Format search table (1)
Format search table (2)
Format search table (trace)

Format search table (object specific
header)

Format search table

Format search table

Format search table

Format search table

Dumps record interchange get
Dumps interchange move data
Dumps record interchange put
Dumps interchange print formatted
Dumps interchange print hex
Dumps interchange put line
Dumps interchange print open/close

Program special print routine (for
machine interface programs)

Context entry special print routine
User profile entry special print routine
Traces special formal routine

Dumps structure

Service and Installation Management 13-3



#SDDISRT
#SDDISTB
#SDDISO1

#SDDIS02

#SDDIS03

#SDDIS04
#SDDIS05
#SDDIS06
#SDDISO07
#SDDIS14
#SDDIS16
#SDDIS20
#SDDIS21
#SDDIS22
#SDDIS23
#SDDIS24
#SDDIS25
#SDDIS26
#SDDIS27
#SDDIS28
#SDDIS29
#SDDIS30
#SDDIS31
#SDDIS32

#5DDIS33

13-4

Dumps routing table
Instruction mnemonic tables
Dumps task/process
Dumps abject

Dumps process control block
{PCB)/task control block

Dumps default structure

Dumps task chain

Dumps machine index

Dumps segment

Dumps seize/lock

Dumps link map

Dumps access group

Dumps program mainline

Dumps contexts

Dumps user profile

Dumps user queus

Dumps data space

Dumps data space index

Dumps independent index
Dumps logical unit description (LUD)
Durnps controller description (CD)
Dumps network description (ND)
Dumps space object

Dumps machine context

Dumps process control space (PCS)

#SDDIS34
#SDDISA1
#SDDIS49
#SDDIS50
#SDDIS55
#SDDIS88

#SDDISS0

#SDDIS91
#SDDIS92
#SDDIS93

#SDDIS94

#SDDKCTL
#SDDPCTL
#SDDSBLD
#SDDCLS

#SDDSCTL
#SDDSOPN

#SDDSPFK

#SDFCABR
#SDFCCTL
#SDFCDST

#SDFCGI

#SDFCPFK

#SDFCRSP

Dumps cursor

Dumps machine wide storage
Dumps trace tables

Dumps task chain

Dumps index control block
Dumps alter log

Dumps process static storage
area/process automatic storage area

Dumps MCR
Dumps machine check logout buffer
Dumps task summary

Dumps task dispatching element and
call return element

Handles diskette /0O

Handies data path

Screens build

Displays close

Displays open/close/read/write
Displays open

Asynchronous program function keys
on/off

Requests a service function
Services function controlier
Destroys a service function

Handles general inquiry request 1/0
messages

Handles program function key response

Processes response request /0



#SDFCSTR

#SDFCTMD

#SDFCTRM

#SDFMCTL

#SDFVMOD

#SDIFTAB
#SDPRBLD
#SDPRCTL
#SDPRCUP
#SDQCCRQ
#SDQCGAM
#SDRICTL
#SDRIEXH
#SDRIMIF
#SDRIMIR
#SDSCCTL
#SDSERVT
#SDSMCRS
#SDSMGRP
#SDSSDVA
#SDSSFND
#SDSSMOD
#SDTCCRT

#SDTCDST

Starts a service function

Handles service function termination
message

Requests a service function

Finds machine interface object common
function

Services function driver find VMC
module

Services function table

Services function driver build print page
Services function driver print control
Sends process destroyed message
Creates/extends/destroys queue
Gets/returns available message
Requests |/0 control

Handles exceptions during request 1/0
Requests a machine interface function
Handles machine interface response
Processes session type request 1/0
Services vector table
Creates/extends/destroys queue
Gets/frees real page

Varies on/off source/sink object

Finds source/sink object

Modifies source/sink object

Creates service function driver tasks

Destroys service function driver tasks
and segments

#SDTCERA

#SDTCMOD

#ISDTCNDT

#SDTCRTT

#SDTKSEL

#SDTKSML

#SDWKCTL
#SDWKROU
#VLCCTL
#VLDUMP
#VLIPDES

#VLIPL

#VLRGDES

#VLRSLCT
HVLTASK

#VL82EH

Common module to handle errors

Mainline for all service function driver
tasks

Terminates service function driver tasks

Services function driver request task
termination

Task/process selection menu

Task selection menu screen and
message library

Subtask work controller

Subtask work router

Single VMC log control

VMC log dump interface

Puts dump entry string to VMC log

VMC log initial program load
(IPL}/cleanup

Gets VMC log dump entry string from
VMC log

VMC log retrieves/selects VMC log
VMC log insert task

VMC log 82 exception handler

Service and Installation Management 13-5






Authorization Management

INTRODUCTION

Authorization management controls the use of objects,
system resources, and privileged machine instructions.
This control is established by monitoring the following
types of authorization.

« Privileged Instruction: Authorization to issue
privileged machine instructions such as those that
create and modify user profiles.

« Resource: The amount of auxiliary storage a user
profile is authorized to allocate for its permanent
objects.

« Object: Authorization to use system objects, ensuring
that the objects referenced by an executing process
are used only in the ways permitted.

» Special: Authorization to perform special operations
on objects for which the ‘executing process does not
have specifically granted authorization (for example,
objects that are being loaded).

The user profile is the collection point for
authorization-related data. Every process in the system
executes under control of a user profile, allowing both
the system and the user to monitor and control the
activities of each executing process. The information in
the user profile sets limits to what can be performed by
an executing process. Attempts by a process to exceed
its authority result in exceptions and events.

Object Function

Any user profile can be unique to one user or can be
shared by several users. (User refers to external user of
machine instructions, including but not limited to the
system operator, security officer, IBM customer
engineer, command work station operators, and others
authorized to use the system.) Processes are initiated
and run under control of a process user profile.
Authorization management also supports authorizations
implied by adopted user profiles. At program creation,
the program owner can specify that the user profile can
be adopted by other users (user profiles) during
subsequent uses of the program. This means that any
object authorizations needed to successfully execute the
program are adopted with the program. Thus, the user
of a program with the adopted user profile attribute has
an extended set of authorizations during execution of
the program. When the program returns, the
authorizations of the adopted user profile are no longer
available to the process.

Authorization management supports the following
machine instructions:

« Create User Profile

« Destroy User Profile

« Grant Authority

« Grant-Like Authority

» Materialize Authority

« Materialize Authorized Objects
» Materialize Authorized Users
« Materialize User Profile

« Modify User Profile

« Retract Authority

» Transfer Ownership

» Test Authority

Authorization Management  14-1



Authorization management also provides the following
functions:

« Retrieve authority information
« Test object authority

» Validate privileged instruction and special
authorization

- Record and delete object ownership

Authorization Enforcement

Almost all VMC routines must check to ensure that the
user that invoked a VMC routine is authorized to
perform the requested operation. This check can be
performed directly on the user profile by the VMC
routine or by using the functions in authorization
management. The checks that can be made on a user
profile are:

Privileged Instruction: A user’s rights to use privileged
instructions are defined in the user profile. In general,
the privileged instruction checking routine of
authorization management is called by the VMC routine
supporting the instruction to be executed. This routine
verifies the user has the authority to perform the
privileged instruction. The authorization management
routine performs this verification by checking the bits
that define the privileged instructions authorized in the
adopted (if present) or the process user profiles.

Resource Usage: Auxiliary storage management
accounts for the auxiliary storage space allocated to
objects owned by the user profile. If the specified limit
will be exceeded by a create or extend operation,
storage management sets a return code. The calling
VMC routine then signals a user profile storage limit
exceeded exception. Auxiliary storage management
optionally signals the exception.

14-2

Object Authorization: Authorization management {and
#CFOCHKR) checks the authorization bits in the system
pointer and the public authority bits in the object
header; if sufficient authorization is not established with
this check, authorization management then checks the
adopted (if present) and process user profiles to verify
the authorization requirements, and checks all object
special authority in the user profile and the object
authorization entries in the associated index. If sufficient
authority cannot be established, authorization
management signals (optionally) an authorization
violation event and sets a return code; the calling VMC
routine signals an exception.

Special Authorization: This authorization is checked by
authorization management.

Recovery

There are requirements for maintaining valid user
profiles and allowing normal operation, even if the user
profile is damaged:

- Cleanup of dangling pointers whenever they are
found in a user profile during materialize, transfer
ownership, and other operations that modify
authority.

« Saving all index updates on auxiliary storage
immediately after modification.

- During object destruction, errors are logged and the
operation continues to conclusion, but damaged or
nonexistent user profiles are ignored.



DATA AREAS

User Profile

The user profile is a system object and is shown in
Figure 14-1. A user profile is contained in three
segment groups. The first segment group contains the
following information:

« The segment group header

« The encapsulated program architecture (EPA) header

« Special, resource, and privileged instruction
authorizations

« Recovery-related fields
« An index containing object authorizations

The EPA header of every object contains the following
authorization management related information:

« Public authority (the authority of any process to
access that object)

« A pointer to the owning user profile
« The object authority of the owner of the object

The following authorizations are contained in the user
profile:

« Special Authorization
— Implicit object authorizations
— Machine attribute modification authorizations

« Privileged Instruction: Privileged instructions
authorized to this user profile

« Resource Authorization: Amount of auxiliary storage
allowed for the object owned by this user profile

« Utilization Data: Amount of auxiliary storage currently
used by this user profile for permanent objects (this
amount is updated by storage management during
operations on permanent objects)

The user profile index contains pointers to the object
owned by or authorized to this user profile. It also
contains pointers to other user profiles that are
authorized to use the objects owned by this user profile.
The user profile index contains the following types of
entries:

« Object Ownership Entry: Pointer to the object

« Authorized Object Entry: Pointer to the object and
authorizations

« Authorized User Entry: Pointer to the object and a
pointer to authorized user

The second segment group contains a table that has the
same information (redundant) as the user profile index.
This table is used for recovery purposes if the user
profile index is damaged.

The third segment group contains the following
information:

« The segment group header

« The associated space

Authorization Management 14-3



Base Segment Group

Segment Group Header
[

Associated Space
Segment Group

EPA Header

® QObject Authority

® Pointer to Owning
User Profile

Object Specific
Header
® Authorizations
— Special
— Resource
— Instruction
— Storage
—®

® LUser Profile
Recovery Related
Fields

Segment Group Header

Associated Space

User Profile Table
Segment Group

User Profile Index
® QObjects Owned
® Authorizations
® Authorized Users

(extendable)

Figure 14-1. User Profile

14-4

Segment Group Header

User Profile Tahle

System Pointer

The system pointer can contain bits describing the
object authority to the object addressed by this pointer,

Process Control Block

The process control biock (PCB) contains a pointer to
the user profile governing its execution,

Invocation Control Block

The invocation control block contains a peinter to the
adopted user prcfile (if any} governing its execution.
Bits in the invocation control block indicate if a user
profile is adopted and if it can be shared by other
invocations. Adopted user profiles cannot be shared by
external exception and event handlers.

User Profile Recovery

Auxiliary Storage Usage Field

There are a number of ways that this field may become
inaccurate. Most of these involve some form of system
crash in which either storage management shutdown is
not performed or all processes are not brought to an
instruction boundary before machine termination. The
authority initialization module #HAUINIT), which runs
during IMPL, validates the auxiliary storage usage field if
either of the above conditions exist. FAUINIT first
validates the total cbject size of each permanent object
in the system. Then the #AUINIT places the sum of the
object sizes for each object owned by a given user
profile into the auxiliary storage usage field.



User Profile Index and Table

The information in the user profile index is stored,
redundantly, in the user profile table. If either is
determined to be damaged, it is rebuilt using the
information in the undamaged part. |f the damage is
detected while accessing the information (#AUINDEX]},
the rebuild occurs dynamically by invoking the rebuild
module (#JAUIXRBL). If the rebuild is unsuccessful, the
damage bit is set in the user profile.

Rebuild may also occur at IMPL time (#AUINIT) if the
user profile was being updated when a system crash
occurred. Each time the index is to be updated, the
index-in-use count in the object specific header is
incremented and written to auxiliary storage. When the
update is complete, the index-in-use count is
decremented. If, at IMPL time, this count indicates that
the user profile was in use when the machine
terminated, the index is assumed to be damaged and is
rebuilt. (If a table rebuild was in progress when the
machine terminated, the table is rebuilt.)

STRUCTURE
The following is a list of the modules in authorization
management and the function that each module
performs. The list also shows how the module is
invoked.
#AUCRTUP

Create User Profile

Function: Creates a new user profile according to the
input specifications.

How Invoked: Create User Profile instruction.

#AUCSEH Authorization Component-Specific

Exception Handler

Function: Processes exceptions that occur within
authorization management.

How Invoked: Through exception management.

#AUDESUP Destroy
Function: Destroys the specified user profile.

How Invoked: Destroy User Profile instruction.

#AUEXCEPT  Generate Exception

Function: Generates authority-related exceptions and
events.

How Invoked: Other VMC components.

#AUGRAU Grant Authority

Function: If public authority is specified, updates the
target object EPA header; if private authority is
specified, adds the authorized object entry to the
receiver user profile and inserts an authorized user entry
into the owning profile.

How Invoked: Grant Authority instruction.

#AUGRLAU Grant-Like Authority

Function: Performs the necessary grants to make a
receive user profile look like a source user profile. The
normal rules for materializing authorized users and for

grant authority are in effect.

How Invoked: Grant-Like Authority instruction.

#AUINIT Authority Initialization

Function: Initializes authority component and performs
necessary recovery of damaged user profiles.

How Invoked: Other VMC components.

#AUINDEX index Interface

Function: Provides the interface between authorization
management and machine index management.

How Invoked: Authorization management modules that
require index operations.

#AUIXRBL Index Rebuild
Function: Rebuilds the user profile index or table.

How Invoked: Other VMC components.

Authorization Management 14-5



#AUIXUTL User Profile Index Utility
Function: Initializes the user profile index.

How Invoked: Other VMC components.

#AUMATAU Retrieve Authority

Function: Retrieves the authorizations from a user profile
and puts them into a specified area.

How Invoked: Materialized Authority instruction.

#AUMATOB Materialize Authorized Objects

Function: Retrieves and materializes the authorized
object entries from a specified user profile.

How Invoked: Materialize Authorized Objects instruction.

#AUMATUP Materialize User Profile

Function: Retrieves and materializes the instruction,
special, and resource authorizations from a user profile.

How Invoked: Materialize User Profile instruction.

#AUMATUU Materialize Authorized User

Function: Searches the profile index of the owner of the
object for a pointer to authorized users, and retrieves

the authorized user names from the profile header.

How Invoked: Materialize Authorized Users instruction.

#AUMODUP Modify User Profile
Function: Modifies the authorizations in a user profile.

How Invoked: Modify User Profile instruction.

14-6

#AURCTAU Retract Authority

Function: For public authorization, inserts new
authorizations into the EPA header of the target object;
for private authorization, removes the authorized object

entry from the user profile of the receiver.

How Invoked: Retract Authority instruction.

#AUTBUTL User Profile Table Utility

Function: Creates, validates, and extends the user profile
table.

How Invoked: Other VMC components.

#AUTSTAU Test Authority

Function: Tests the authorized entry in the user profile
of the receiver.

How Invoked: Test Authority instruction.

#AUVERCH Version Change

Function: Performs changes to the user profile to
convert to the release 2 format.

How Invoked: Other VMC components.

#AUWCHEK Segment Identification Wrap Check

Function: Removes references to nonexistent objects
from a user profile.

How Invoked: Other VMC components.

#AUXCHEK User Profile Crosscheck
Function: Checks all user profiles for consistency.

How Invoked: Other VMC components.



#AUXFRO Transfer Ownership

Function: Updates the object header to reflect new
owner, transfers ownership and authorized user entries
from old owning profile to the user profile of the new
owner.

How Invoked: Transfer Ownership instruction.

#CFAUTH Authorization Common Function

Function: Validates the privileged instruction and special
authorizations (#CFAUPRV); retrieves the authorizations
of a specified object (#CFAURET); tests user profile to
determine if a user has the authority to execute the
operation requested (#CFAUTST); and retrieves the
object authority available to a process (JAUTSTAU).

How Invoked: Test Authority instruction and from other
authorization management modules that require
authorization verification.

#CFDELOO Delete Object Ownership

Function: Deletes ownership of a given object from the
owning user profile.

How Invoked: Other VMC components.

#CFRECOO Record Object Ownership

Function: Records ownership of a given object in a
given user profile.

How Invoked: Other VMC components.

Authorization Management

14-7






Context Management

INTRODUCTION

Contexts are used to store addressability to system
objects. The user creates contexts, inserts or deletes
addressability into or from contexts, and transfers
addressability from one context to another. These
functions are accomplished by using System/38
instructions. Addressability to a system object can only
be in one context at a time. Addressability to an object
need not be kept in a context, but the user must keep a
system pointer to the object in order to maintain
addressability to the object.

Once a system object is addressed by a context, the
object can be located in virtual storage by using the
Resolve System Pointer instruction or implicitly by using
an unresolved pointer. Using unresolved pointers is
called late binding, and is described in more detail in the
Program Management section of this manual.

Context management supports the following System /38
instructions:

« Create Context

« Destroy Context

« Materialize Context

« Modify Addressability

« Rename System Object

« Resolve System Pointer

Context management also supports the following
functions:

« Check dangling pointer
« Find entry in context (indirect support)

« Find entry in a name resolution list (NRL) context
(indirect support)

« Insert context entry
« Delete context entry

« Resolve system pointer

Data Pointer Resolution

Data pointers are resolved either explicitly by using the
Resolve Data Pointer instruction or implicitly by using an
unresolved data pointer. The Resolve Data Pointer
instruction results in supervisor linkage {SVL) to
#MNRESLVD. An unresolved data pointer results in the
verify exception handler (#CFVFYEH) being invoked.
#CFVFYEH in turn invokes #MNRESLVD at entry point
#CFRESOD. In either case, #MNRESLVD returns a
pointer to the data object if one exists.

Recovery
The primary recovery considerations are:
« The ability to handle a damaged context
« The ability to handle dangling pointers
— Context entries pointing to nonexistent or invalid
object

— Objects pointing to a context that does not exist

« Support of damage tolerant destroy system object
functions

Context Management 15-1



A damaged context is detected by context management
as a result of a return code from an index control block
operation by index management. The context is then
marked as damaged. A destroy context operation is the
only context management function that can be
performed on that context marked as damaged.

Dangling pointers are handled by additional checks:

= Whenever a context entry is examined, an optional
check can be made to determine that the context
addresses the proper object {the segment extender,
object name, and the back-pointer to the addressing
context are verified).

« Whenever the context pointer from an object is used,
a check is made to determine that the pointer
addresses an existing context.

DATA AREAS

Contexts
There are three types of contexts:

« Machine Context: This context is built at installation
time by the context rebuild function and is
permanently assigned a unique virtual address. This
address can be found at label #MCA4VMC in the
machine communication area {(MCA). The context
rebuild function rebuilds the machine context if it is
damaged or destroyed. This includes locating all
permanent objects that must be addressed by the
machine context and reinserting them in the machine
context. The context rebuild function also rebuilds all
permanent contexts that are damaged and marked as
eligible to be rebuilt. The machine context contains
addressability to all of the following objects and
cannot contain addressability to any other object:

Logical unit descriptions

Controller descriptions

Network descriptions

User profiles

Permanent contexts

15-2

Permanent Contexts: These contexts are built as a
result of Create Context instructions. Permanent
contexts can contain addressability to any object
{permanent or temporary) except those addressed by
the machine context or*those that cannot be
addressed by any context (temporary contexts, for
example).

Temporary Contexts: These contexts are also built as
a result of Create Context instructions, and contain
addressability to the same types of objects as
permanent contexts. Because addressability to
temporary contexts is not kept in the machine
context, the user must maintain addrassability to a
temporary context in a system pointer. If a temporary
context is not explicitly destroyed by the user, it is
destroyed by VMC as part of machine processing
tarmination.



C

Contexts reside in one or two segment groups as shown
in Figure 15-1. The first segment group contains a
segment group header, an encapsulated program
architecture (EPA) header, and a machine index that

contains the actual context entries.

SID Group 1

SID Group Header *o—

B

EPA Header

Machine Index

T S| NL| N @

| (extendable)

SID Group 2

SID Group Header

Associated Space

Figure 15-1. Encapsulated Context Format

The machine index portion of a context contains variable
length entnes In the following form:

(1 (1 (n (*) (8)

where:
- T identifies the type of the system object addressed
+ S is a user-defined qualifier (subtype)

« NL identifies the name length, with trailing blanks
removed to reduce context space requirements

« N is the user specified name of the object

- (@ is the 8-byte address of the EPA header of the
object

Note: The format of the context entries in the machine
index is different from the format seen by the user.

Context Management 15-3



Figure 15-2 shows the relationship of contexts, name
resolution list, and other pointers in the system. Some
relationships are described as follows:

0 A context pointing to another object

G NRL pointing to contexts

o A pointer to the context in the EPA header of an
object addressed by that context

Q Object not addressed by a context
Figure 15-2 also shows exception conditions that can
exist because of some unusual condition such as a

system failure. The conditions are:

G A context entry contains a pointer to an object that
does not exist.

° The EPA header of an object contains a pointer is

made up of all O's or a pointer to a context that
does not exist.

15-4

These conditions, called dangling pointers, are allowed
in the system. o occurs if an object is destroyed but
the context entry was not deleted. This is the case after
a system failure for permanent contexts that address
temporary objects. ° occurs if a context that contains
addressability to one or more system objects is
destroyed.

For rename object operations, G is also considered to
be dangling if the type, subtype, and name in the object

EPA header and the entry in the context do not match.

Type o dangling pointers are handled in the following
ways:

» For inserts, the address portion of the entry is
replaced with the new entry address.

« For deletes, there is no effect on the operation.
« For resolves, dangling pointers are ignored.
Type o dangling pointers are handled depending on the

function being performed. Functionally, the object is
considered not to be addressed by a context.

J



C

MCAe

{(#MNMCCTX)

Machine Context

Permanent Context

Temporary Context

SID Group SID Group
Header Header
EPA Header EPA Header
— H—_._____.—-—-_-_-
s [NL| N s |nL| (@]
—
S |NL T| S|INLIN|l®@
‘_-__—‘_________._—-d‘-
S (NL| N ——— T
MCA
Permanent Context
DE
T SID Group
Header
PCB EPA Header
T
NRL T| S |NLIN ,(_@\
Number Pointers . R ——
\r____—_‘____-—-—‘—'r-
@ -
@ o
@

Some Existing
Context

Figure 15-2. Relationship of Contexts

SID Group
Header

EPA Header

=

-~

A

Q0’s

Permanent
System Object

SID Group
Header

EPA Header

Temporary
System Object

SID Group
Header

EPA Header

Permanent or
Temporary
System Object

SID Group
Header

EPA Header

Permanent or
Temporary
System Object
SID Group
Header

EPA Header

Context Management




Name Resolution List

The NRL is a portion of a space that contains one or
more resolved system pointers to contexts. The
contexts contained in the NRL are selected by the user.
The NRL is supplied as an attribute of the PDT used by
the Initiate Process instruction. The NRL can be altered
by using the Modify Process Attributes instruction. The
NRL is used to specify the contexts to be searched and
the sequence of the search when attempting to resolve
a system pointer. System pointers in the NRL must be
resolved. The format of the NRL is shown in Figure
15-3.

Number Pointers Reserved

Systern Pointer to Context

System Pointer to Context
‘“--‘__-_-—__

It

System Pointer to Context

Figure 15-3. Name Resolution List

Encapsulated Program Architecture Header

The EPA header is part of an object used to describe
that object. The header contains the type, subtype,
name, and if the object is addressed by a context, a
pointer to that context.

Machine Communication Area

The MCA is used to map storage areas and provide
control areas. The MCA contains a pointer to the
machine context and TDE.

Process Control Block

The process control block {(PCB) is used to map storage

areas and provide control areas. The PCB contains a
pointer to the NRL.

15-6

Task Dispatching Element
The task dispatching element {TDE) is used to map

storage areas and provide control areas. The TDE
contains a pointer to the PCB.

STRUCTURE

The following is a list of the modules in context
management and the function that each module
performs. The list aiso shows how the module is
invoked.
#CFDELCE Delete Object Addressability

Function: Deletes addressability to an object from the
specified context.

How Invoked: Other VMC components.

#iICFINSCE Insert Object Addressability

Function: Inserts addressability to an object into the
specified context.

How invoked: Other VMC components.

#CFRESSP Resolve Pointer

Function: Resolves a late-bound {unresolved and
initialized) system pointer.

How Invoked: Other VMC components.

#MNCRTC Create Context

Function: Creates a context with the attributes specified
and returns addressability to the created context.

How Invoked: Create Context instruction.



#MNDGPCK  Check if Context Entry is Dangling

Function: The specified context entry is expanded, the
entry is checked to determine if it is dangling, and the

appropriate information is returned.

How Invoked: Within this component.

#MNDSTC Destroy Context
Function: Destroys the specified context.

How Invoked: Destroy Context instruction.

#MNMATC Materialize Context

Function: Materializes selected information from a
context.

How Invoked: Materialize Context instruction.

#MNMODA Modify Addressability

Function: Inserts addressability into a context, deletes
addressability from a context, or transfers addressability

from one context to another.

How Invoked: Modify Addressability instruction.

#MNRCTX Resolve—Find Object in One Context

Function: Attempts to locate the proper entry in the
specified context and returns the appropriate

information.

How Invoked: Within this component.

#MNRENAM Rename System Object

Function: Changes the symbolic identification (name,
subtype, or both) of a permanent or temporary system
object, and updates any contexts that reference that

object.

How Invoked: Rename Obiject instruction.

#MNRESSP

Function: Resolves a system pointer, and if specified,
sets or modifies authority.

How Invoked: Resolve System Pointer instruction.

#MNRNRL Resolve—Find Object in NRL

Function: Searches the NRL contexts to locate the
specified object entry and returns the appropriate

information.

How Invoked: Within this component.

#MNRSLVD Resolve Data Pointer Addressability

Function: Resolves a data pointer to the address and
attributes of a data pointer.

How Invoked: Other VMC components.

Context Management 15-7

Resolve System Pointer Control Module






Recovery Initialization

INTRODUCTION

Recovery initialization is a recovery common function
used by VMC components to recover objects at IMPL
time. An overview of the recovery initialization function
is shown in Figure 16-1. Recovery Initialization
performs the following functions:

» Builds a machine index with an entry for every base
segment of an object and every secondary segment
for multiple segment objects.

« Builds an index containing every user profile for use
by authority initialization.

+ Provides an interface to retrieve selected entries from
the object segment index.

#RCINIT is invoked by the first IPL recovery function
that needs to recover objects and create the
send/receive tasks. #RCINIT then finds an entry in the
permanent directory and sends that entry to the task
reading the storage unit for that permanent directory
entry. #RCBBSIX, running under each task, reads the
disk and puts an entry in the object segment index for
that segment. If the segment read is a user profile, an
entry is put in the user profile index.

#RCREAD is invoked to retrieve entries from the object
segment index and at the same time, the object type or
secondary segment type for the next object segment to
be returned from the index can be specified.

The recovery read function protects the user from
damage to either the base segment index or the
object(s) being returned. If a find is attempted to the
base segment index and the base segment index is
found to be unusable, it is rebuilt. If the rebuild function
fails, machine processing terminates with a machine
check. The read function assures the segment header
that the segment returned is readable at the time the
base segment index is built.

#CFRMAST
IPL Supervisor

#RCDINX
Destroy Base
Segment Index

IPL
Recovery
Routine

#RCREAD
Read Recovery
Segment Index

Required

#RCINIT
Recovery
Initialization

#RCBBSIX
Build Base
Segment Index

Figure 16-1. Recovery Initialization Overview

Recovery Initialization

index Build

Send/Receive

16-1



STRUCTURE

The following is a list of the modules in recovery
initialization and the function that each module performs.
The list also shows how the module is invoked.

#RCBBSIX Build Base Segment Index

Function: Searches the storage management permanent
directory and builds the following:

« An index containing the address of the base segment,
secondary segments, and associated space of each

permanent object in the system.

« An index containing the address of each user profile
in the system.

How Invoked: Within this component.

#RCDINX Destroy Recovery Segment Index
Function: Destroys the recovery segment machine index.

How Invoked: Other VMC components.

#RCINIT Recovery |nitialization

Function: Initializes the recovery component and builds
the data areas for use by #RCBBSIX.

How Invoked: Other VMC components.

#RCREAD Read Recovery Segment Index

Function: Selects entries from the machine index of the
system object segments.

How Invoked: Other VMC components.

16-2



Program Execution Management

INTRODUCTION

Program execution management provides the linkage
between programs and between programs and

subroutines within the programs. Program execution
management performs the following basic functions:

« Activates a program: Puts a program into a
ready-to-execute state

« Invokes a program: Causes the program to be
executed

« Modifies storage allocation: Extends or truncates the
allocated process automatic storage area, and
extends the allocated process static storage area

« De-activates a program: Removes the program from
an executable state

« Destroys a program invocation: Terminates the
execution of a program

Program Control Function

These functions provide support for the following
System/38 instructions:

» Activate Program

« Call External

« Call Internal’

« De-activate Program

« End

» Modify Automatic Storage Allocation
« Return External

« Set Argument List Length'

« Store Parameter List Length’

« Transfer Control

Program Activation

All programs executing in the system operate under
control of a process. Before a program can be activated
and executed, a process under which that program is to
execute must be established. Process management
performs the process creation operation and initially
allocates the areas used by the process. Process
creation is described in the Process Management section
of the manual.

'Support for these instructions is provided by code that is
generated by the translator and inserted into the instruction
stream of the encapsulated program.

Program Execution Management 17-1



Once a process has been established, program
execution managerment can activate a program. An
Activate Program instruction initiates the activation
operation. The primary object of the activation operation
is to initialize the process static storage area (PSSA) of
the program. If a program does not contain any static
areas, the program is considered permanently activated
and does not require activation.

Program Invocation

The invocation function of program execution
management controls the synchronous execution of
programs within a process. The invocation function
allows control to be passed from one program
instruction stream to another, and allows for a
subsequent return of control when a function is
complete.

Programs can be invoked under the following conditions:

« A process definition can specify a program to be
invoked as part of the process initiation phase.

« A process definition can specify the first program to
be invoked in the problem phase. When process
initiation enters the problem phase, the first process
problem state is given control.

= A Call External instruction causes execution of the
invoking program to be suspended and control to be
passed to the referenced program.

« A Transfer Control instruction causes execution of the
invoking program to be suspended, the invocation of
the invoking program to be destroyed, and control to
be passed to the referenced program.

17-2

« An exception description can specify a program to be
invoked when a specified exception occurs.

+ An event monitor can specify a program to be
invoked when a specified event occurs.

« A data space index can specify a user exit program
to invoke.

« A process definition can specify a program to be
invoked as part of the process termination phase.

Invoking a prograrn causes the following to occur:

« Execution of the invoking program is suspended and
the current status of the invoking program is saved
pending return of control.

« An invocation entry for the program is allocated in
the process automatic storage area (PASA). This
entry contains an allocation for each object that has
the automatic allocation attribute.

« The automatic objects are assigned their initial values.

« Exception descriptions that are defined in the
program are activated to process the associated
exceptions.

+ Parameter objects (if any are defined in the invoked
program) are resolved to argument objects passed by
the invoking program.

+ Authority of the program being invoked is verified.

» The program is implicitly activated if it was not
previously activated.

+ Control is passed to the entry point defined in the
instruction stream of the program to be invoked.
Instruction execution continues in the invoked
program until an invocation of another program is
encountered or the end of the program is reached.



Program De-activation

An activation entry can be marked as not active using
the De-activate Program instruction. An activation entry
that is not active must be activated before it can be
used in an invocation. The system implicitly reactivates
an inactive entry when the associated program is
invoked.

Invocation Destruction

When an invoked program relinquishes control, the
associated invocation is deallocated and the following
operations occur:

« Execution of the invoked program is suspended.
« The automatic space is deallocated.

« The exception descriptions associated with the
invocation are made inactive.

« An invocation exit program set for the invocation
being destroyed is optionally invoked if the invocation
is destroyed because of a return from exception or a
signal exception.

« Control is passed to some point in a previously
invoked program.

The invocation relinquishes control and is subsequently
destroyed under the following conditions:

« Return external: The invocation is destroyed and
control is passed to the invocation immediately
preceding the destroyed invocation in the process
chain.

- Transfer control: The invocation is destroyed and the
target program of the Transfer Control instruction is
invoked.

« Return from exception: The exception handling
sequence returns control to a previous invocation.

- Signal exception: The exception presentation
sequence passes control to a previous invocation.

DATA AREAS

Process Automatic Storage Area

The contents of the PASA are shown in Figure 17-1.
The PASA starts on a quad-word boundary and begins
with a 96-byte control element that contains the
following information:

« A pointer to the newest PASA element

« A pointer to the first PASA element

« A pointer to the next available PASA element

« The invocation mark counter (4 bytes)

Following the control element are the PASA elements.
Each element starts on a quad-word boundary and
contains the following information:

« A pointer to the previous PASA element

« A pointer to the next PASA element if one exists

« A pointer to the program associated with this PASA
element

« The current invocation count

« The type of the associated invocation

« The invocation mark count

« The user area

« The automatic data area

The invocation control block addresses the associated
PASA element so that when an invocation terminates
and the invocation is removed from the invocation work

area, the associated PASA element is also removed
from the chain.

Program Execution Management 17-3



Backward Pointer (current PASA element)

Control Element

Forward Pointer (first PASA element)

End of Chain (next available PASA element)

—®

Invocation Mark Count

Reserved 777111111 L0000

Backward Pointer

Forward Pointer

Program Pointer

Count | Type I% Invocation Mark Count VA User Area

Automatic Storage

Backward Pointer

First PASA Element

Forward Pointer

Program Pointer

Next PASA Element

Count | Type VA Invocation Mark Count VA User Area

Automatic Storage

Backward Pointer

{last element in chain)

Last PASA Element

Program Pointer

Count | Type 7// Invocation Mark Count /A User Area

Automatic Storage

7/ indicates reserved areas.
Z

®

Figure 17-1.

17-4

Process Automatic Storage Area



Process Static Storage Area

The contents of the PSSA are shown in Figure 17-2.
The PSSA starts on a quad-word boundary and begins
with a 96-byte control element that contains the
following information:

« A pointer to the newest element on the chain

« A pointer to the first element on the chain if one
exists

« A pointer to the next available PSSA element

« The PSSA modification flags

Following the control element are the PSSA elements.
These elements exist for programs that require static
storage. The elements can be created either explicitly by
using an Activate Program instruction or implicitly by
using Call External and Transfer Control instructions.
Each PSSA entry starts on a quad-word boundary and
contains the following information:

« A pointer to the previous PSSA element

« A pointer to the next PSSA element if one exists
« A pointer to the associated program

« The activation count

« The active flag

« The invocation count

« The activation mark count

« The length of this PSSA entry

« The static area for the program

Unlike invocation control block and PASA elements,
PSSA elements are not associated with an invocation
and are not destroyed (removed from the chain) when
an invocation terminates. Space associated with

de-activated PSSA elements is reused by the machine
when a new PSSA element is created.

Program Execution Management 17-5



Backward Pointer ({last PSSA element)

Forward Pointer {first PSSA element)

End of Chain {next available PSSA element)

Flags

Reserved 7/ /0000000000000

Backward Pointer

Forward Pointer

Program Pointer

V Invocation Activation
Count | FI L h
oun a9 // Mark Count | Mark Count engt
Static Area
Backward Pointer
Forward Pointer
Program Pointer
/] Invocation Activation
Count | Flag é Mark Count | Mark Count Length
1
Static Area

-

Backward Pointer

(last element 1n chain)

Program Pointer

I~
Count | Flag /

7

Invocation
Mark Count

Activation
Mark Count

Length

Static Area

@~

Figure 17-2. Process Static Storage Area

17-6

Control Element

—-®

First PSSA Element

Next PSSA Element

Last PSSA Element

VA
/// indicates reserved areas.



STRUCTURE

The following is a list of the modules in program
execution management and the function that each
module performs. The list also shows how the module
is invoked.

H#AICALLM Transfer Control

Function: Transfers control from one program to
another.

How invoked: Transfer Control instruction or other VMC
components.

#AICALLX Call External
Function: Passes control to a user program invocation.
PSSA and PASA entries are created and initialized as

required.

How Invoked: Call External instruction.

#AICMACH Call from Machine
Function: Invokes a program from the machine.

How tnvoked: Other VMC components.

#AICRACT Create Activation
Function: Initializes PSSA for a program.

How Invoked: As a result of one of the following:
— Activate Program instruction

— From #AICALLX or #AICALLM resulting from an

implicit activation at program invocation

#AIDACTV De-activate Program
Function: De-activates a program.

How Invoked: De-activate Program instruction.

#AIMDASA Automatic Storage

Function: Changes the automatic storage size for the

current invocation,

How Invoked: Modify Automatic Storage Allocation
instruction.

#AIRTX Return External/End

Function: Returns control to the next previous
invocation.

Hew {nvoked: Return External and End instructions.

Program Execution Management

17-7






Program Management

INTRODUCTION
Program management performs the following functions:

« Translates (encapsulates) a program template into an
executable object

« Provides addressability to the encapsulated object
« Materializes the attributes of the object
« Deletes addressability to the object

Program management supports the following System/38
instructions:

« Create Program
» Materialize Program
» Destroy Program

« Delete Program Observability

Program Creation

Before a program can be executed in the system,
program management must convert the program into an
evecutable form. The process of converting (called
encapsulation) the program into executable form is
initiated by a Create Program instruction, and the
conversion process is performed by the translator
(#XLATOR).

Because the operation of the translator is similar to that
of a compiler, the internal operation of the translator is
described only in general. The input to and the output
from the translator are emphasized in this description.

The input to the translator is the program template, the
output from the translator is an encapsulated program
system object. The program template contains a
description of the program to be created. This
information is as follows:

« Template header that contains the creation attributes
of the program and pointers to the remainder of the
template

« The object definition table (ODT) that contains the
following:

— The ODT directory vector (ODV) containing entries
that described the objects used by the program
and a pointer to an ODT entry string if the
descriptions of the objects cannot be completely
contained in the ODV

— The ODT entry string that contains variable length
entries that complete the definitions of the object
not completely described in the ODV

« The instruction stream of the program
The program template is built by a program resolution

function of either the control program facility (CPF) or
other control program.

Program Management 18-1



The encapsulated program system object contains the
following:

The encapsulated program architecture (EPA) header
that contains offsets and sizes relating to the object

The internal microprogramming instructions to be
executed

Static initialization code that contains constant values
and microprogramming instructions used to initialize
program static data

Automatic initialization code that contains
microprogramming instructions used to initialize
program automatic data

The object specific header that contains attributes,
offsets and sizes relating to the program

The object mapping table that contains entries that
provide location mapping for each object defined by
an ODV entry

18-2

+ The external object list that contains the list of
externally known names such as the external entry
point into the program

+ The exception directory that defines the exceptions to
be handled for this program and pointers to the
exception handlers for these exceptions

« User extendable space

+ Materialization definition template that contains a
copy of the input program template if the program
was specified as observable in the Create Program
instruction

- The break offset mapping table consisting of bit
entries that map the start of all microprogramming
instructions in the encapsulated program

Figure 18-1 shows an example of a user procedure, the
program ternplate for that procedure, and the resulting
encapsulated program.



palesauab |4y JO $91A4 7 Y283 1) 1iq | sureiuod — ajqe ] Buiddepy 1510 »ealg

4oE® 81220 3BY3 (AIlUd AQQQ) 12d duQ) SOl X1§ — djqe | Burddepy 120lqQ
are)dwal wesbosd [BulBli0 3yY) JO AJOD ' — 3)48 | LONIUYa(] UOBZI[BUI) B

87| 10 ‘aveds o1ne ‘3oeds 213815 ay) Wi J0alqo

{ouou) aoedg ajqepuaixy aasn
{suou) Aloau uonydasxy
(405107} anjea jRIIUL | 1| 4 10) awep
¥ 123lqo e1ep [eUIaIXA 311 JO AWEN
az1s wedbosy
Jutod Anua jeuwislxy
1517 128(q() (BuIRIX] e
abeyuij winkay
3IE0S 213818 343 O SINBA [ 2AOW
Jwed Anuy
FPOD 1dW1

(stwaGy abei0ls 31AG-G1 ) ZH 1 d PUE | Y | o JGf SIYEA |BII1LY

J9IN0I TAS TN O Ui
HI53Q 104 sequunu 130
Judsaad 24O Ou A1EIIpU)
151) Wwied JAS Wl $53.PpE 24RG

(LY Ld) LdO Jo SsaIppe 189

W 4o 3pIs Jybu pey
W 40 2PIS 143 01 § 3r0py

JAIN0I TAS | ©) Ui
dSATSY 40] 43quinu 139
1uasaid g-Z4() Ou d1EdIpuU|
181] wied JAS Ul $58IPPR 3ReG
(LY 1d) 14O }0 $531ppe 135

(43008v J81%eie4a) g 16f anfea jeiliuf

sjuelsucn welbosd aneig
8po7) UONeZNRILIU| MNEIS e
{auou) sjueisuon weiboay Buypes |
{afieyult uanal) ucisuedxa puj
A3IN0Y AL X (8D1)1L51TIWHYd 171AS
(HDS30.X°SLY IHHT
20X '(8D1'8L)9+ 1S TNEYd  dISANW
(8211 1SITWHYd'SLE 15
LH1d'518 vl
IUOSUEAXS HISI0
DE X (P94 dISAN
9’9l 2AN
JuGisuedxs JY18AdD
Aanoy X (BINASITNEYd LIAS
ASATSH.X'SLHE  1HHT
00, (801'8L19+USITNYYd  dIBAW

{(821)151WHvd’s1L8 13
LH1ld'SlE vl
JuaIsued s SA ISH

7 |0 SS3IPPE YIIM £ j 4 R21B1IU)
adeds olne ) anjea |eNul £y | 4 9A0K
‘BPOT) UCHRZIRIIILY MEWOINY
o 1dWI
(150 361015 NAG-QL) L Lof 40f 3reA [erdiuf
(0006 X3Y4) D 10} 2njeA JUEISUCD)
Sjueysuon weibosd Buipesn
sugiiansisu] Bunuwe Boidomniy [ewsly| e
58215
BT
ERGTeINNE
lapeaH weiboiy e
5azig
$135))0
s3LNqLly
19pBIH ¥d3 e

weibosg paensdesuy

10)B|SURY |

aN3

y 2530

al | 1| avisadd

o| 0| v dSATSH

WedU1g UONINIISU|

—— £H 1d

,\\\\.llo <Hl1d

|- luid

[ e[ o — 2
4 N o[ o0 \!. 9
a 2 8 vlvw ~ v
s30 AQO

100

WHd/1211dwog

aepdwa wesbosy

‘31dWVS aN3

{lyld) 42s30d

‘B=v

{7, Hid)  dSATSY

(1Y QQaY)IM 0Ny (ddSHY Ld £dld 12q
“({BIHAQVIIUI ANEIS (ddSiHid ZH1d 12a
{YS)u 2REIS (dASIYH 1d LHld 120
H{0)uelsu0) (91)J3X |14 o] 120
,43028Y. )M {L)SOd 21815 (Y)HTHD 8 120
‘leusa1xa (L)S0d INEIS (OLHYHD v 120
HIHOSHUND. ISSAHAAVYIWAS s 120
12014 ra|dweg

E:—vsoem 1280

Figure 18-1. Sample Program

18-3

Program Management



In general, the translator performs the following
functions:

» Accepts the program template as input data
« Checks the input for proper syntax

« Generates a program system object

« Returns diagnostic information

« Returns a system pointer to the generated system
object

The translator initializes an internal communication area
and then invokes the following phases to perform the
encapsulation procedure:

« Initialization (#XINIT) that validates the program
template header and builds the materialization
definition template

« ODT scan (#XODTSC) that checks the ODT for
proper syntax and builds the external object list and
the exception directory

+ Instruction stream scan (#XSCAN]} that checks the
instruction stream for proper syntax and builds areas
used by other translator phases

+ Register optimization (#XREGOPT) that assigns
addresses to registers, optimizes register
assignments, and builds the register assignment chain

+ Data generation (#XDATAGN) that builds the object
mapping table (OMT), initial constants for static and
automatic values, and a table for automatic storage
initialization

« Code generation ({#XCODEGN]} that builds the internal
microprogramming instruction (with opticnal
constants), the automatic initialization code, the static
initialization code, and the break offset mapping table

« Termination (#XTERM) that completes the program
header and completes the encapsulation process

Exceptions detected during encapsulation are processed
by the translator exception handler (#XEH]}.

18-4

Program Materialization

The basic attributes of an encapsulated program can be
materialized. If the program was designated as
observable when the prog?am was encapsulated and the
materialization definition tamplate has not been
destroyed, a copy of the program template can also be
materialized along with the basic attributes.

The Materialize Program instruction causes program
management module #PGMATPG to be invoked. This
module materializes the attributes and the materialization
definition template (if present) of the specified program
into the area specified by the user. The materialization
definition template contains a copy of the program
template that is used to create the program and the
OMT that is generated by the translator.

Program Destruction

An encapsulated program can be destroyed and
addressability to the program can be removed by
executing a Destroy Program instruction. This instruction
causes program management module #PGDESPG to be
invoked. This module verifies that the program is
eligible for destruction then deletes the addressability to
the program.

Program Ohservability

A program is observable if the encapsulated program
contains a materializaticn definition template, The Delete
Program Observability instruction causes program
management module #PGDELPQO to be invoked. This
module deletes the materialization definition template
and designates the program as not observable.

J



DATA AREAS Encapsulated Program

Figure 18-2 shows the basic structure of an

Progam Template encapsulated program. The program consists of two,
three, or four segment groups. Addressability to the
The program ternpiate is the input to the transiator. The program is to the first byte of the segment group
template consists of the following: header. The segment group header provides
addressability to the remainder of the program, either
» The template header that contains the creation directly, or indirectly through the object specific header.
attributes of the program and addressability to the The segment groups can be either permanent or
remainder of the template. temporary, and can exist in an access group.
« The instruction strearn that contains the operations to The contents of the first segment group are as follows:
be performed by the program. The instruction stream
contains the following information for each instruction + The segment group header
in the program:
— Instruction operation code » The EPA header
— Operation code extender field, if required
— lInstruction operand(s) if required + The object specific header for the program

+« The ODT that defines the amount and attributes of
the storage to be allocated for the objects referenced
in the program. The ODT contains the following
components:

— The ODV consisting of 4-byte entries. These
entries either completely describe the attributes of
an object or specify an offset into the ODT entry
string where a complete description of the object
can be found. Instruction operands that explicitly
reference an object contain index values into the
oDV,

— The ODT entry string that completes the
descriptions of those objects that cannot be
completely described in an ODV entry,

+ The break offset mapping table is an optional part of
the prograrm termplate. The break offset mapping
table provides mapping of the Systern/38 instructions
to the high-level language source statements. The
translator does not use the break offset mapping
table.

+ The symbol table is an optional part of the program
template. This table provides rmapping of the objects
refarenced in the program to the high-level language
source statements. The translator does not use the
symbol table.

Program Management 18-5



« The internal microprogramming code that consist of

the following:

— Leading prograrn constants: Constants at the
beginning of the instruction stream used to
initialize automatic storage or reference objects
defined as constants in the ODT. These constants
start on a doubleword boundary, have a maximum
length of 65 535 bytes, and cannot cross a
segrment boundary.

— Automnatic initialization code: Instructions
generated by the translator, used to initialize
automatic storage. The code starts on a halfword
boundary, has a maximum length of 65 535 bytes,
and cannot cross a segment boundary. The
automatic initialization code is included as part of
the entry point instructions if it fits within the first
segment of the program; otherwise, it is placed
following the static initialization code in another
segment.

— Internal microprogramming instructions:
Instructions generated by the translator that
perform the functions of the System/38
instruction set. The code starts on a doubleword
boundary has a maximum length of 1024 K bytes
{including leading and trailing constants) and can
cross segment boundaries. This code, generated
for a particular System/38 instruction, can be
either inline or supervisor linkage to another
routine that performs the function.

— Trailing program constants: Constants at the end
of the instructions that are used by expansions to
perforrn unique functions. This area is optional,
starts on a doubleword boundary if present, has a
maximum length of 4 K bytes, and cannot cross a
segment boundary.

18-6

= The static initialization code that consists of the
following:

— Static program constants; Constants similar to
those in the instruction stream except that these
are used to initialize static storage.

- Internal microprogramming instructions:
Instructions generated by the translator, used to
initialize static storage.

The static initialization code starts on a doubleword
boundary, has a maxirnum length of 65 535 bytes,
and cannot cross a segment boundary.

« The external object list that contains the following:
— The external entry point of the program
— Program length
— Named external data objects
— Initial value information for systermn and data
pointers

= The exception directory that defines the exceptions
that the program can handle and pointers to the
exception handlers for those exceptions.

The second segment group is present only if the
program is observable. This group contains the
following:

« The segment group header.

+ The materialization definition template that is a copy
of the input program template.

« The OMT that consists of a variable-length vector of
6-byte entries. The number of entries correspond to
the number of ODV entries. Each OMT entry
provides a location mapping for the object defined by
an associated QDV entry.



The third segment group contains the following:

‘ » The segment group header

C

» The break offset mapping table that provides
mapping to the System /38 instructions in the
program template to the microprogramming
instructions in the encapsulated program

The fourth segment contains the following:

+ The segment group header

« The user space

Segment Group Header (YYSGHDR)
EPA Header (YYEPAHDR)
Obiject Specific Header {(XPGMHDR)

® [nternal Microprogram
Instruction Stream

® Automatic Initialization Code
{included if space available
in first segment)

Static Initialization Code

Automatic Initialization Code
{if no space available
in first segment)

External Object (YYEQLELT)

Exception Directory

Segment Group Header

Materialization Definition Template

Object Mapping Table

Segment Group Header

Break Offset Mapping Table

Segment Group HMeader

User Space

I {extendable)

Figure 18-2. Encapsulated Program

STRUCTURE

The following is a list of the modules in program
management and the function that each module
performs. The list also shows how the module is
invoked.

#PGDELPO Deiete Observability

Function: Deletes the materialization definition template
and designates the program as not observabie.

How Invoked: Delete Program Observability instruction.

#PGDESPG Destroy Program

Function: Destroys addressability to the specified
program.

How Invoked: Destroy Program instruction.

HPGMATPG Materialize Program

Function; Materializes the selected attributes of the
specified program.

How Invoked: Materialize Program instruction.

#XCODEGN Code Generation

Function: Performs the code generation phase of a
create program operation.

How Invoked: From #XLATOR.

#XDATAGN Data Generation

function: Performs the data generation phase of a
create program operation.

How Invoked: From #XLATOR.

Program Management 18-7



#XEH Translator Component-Specific
Exception Handler {CSEH)

Function: Processes exceptions detected in a create
program operation.

How Invoked: From #XLATOR.

#XINIT Initialization

Function: Performs common setup functions for a create
program operation.

How Invoked: From #XLATOR.

#XLATOR Translator
Function: Performs common setup operations for a
create program operation and invokes the translator

phases.

How Invoked: Create Program instruction.

#XODTSC ODT Scan
Function: Validates the object definition table.

How Invoked: From #XLATOR.

#XREGOPT Register Optimization
Function: Optimizes register assignments.

How Invoked: From #XLATOR.

#XSCAN Instruction Stream Scan
Function: Validates the input instruction stream.

How Invoked: From #XLATOR.

#XTERM Termination
Function: Completes a create program operation.

How Invoked: From #XLATOR.

J



Advanced Program-To-Program
Communications Station I/0 Manager

INTRODUCTION

The link protocol characteristics for advanced
program-to-program communications (APPC) station
1/0 manager may be either primary or secondary
synchronous data link control (SDLC) and are
determined when the network description (ND) object is
created.

Under APPC station management, logical unit
descriptions (LUDs) take on a new definition. APPC
LUDs do not represent devices; instead, an APPC LUD
represents a group of paths to another processor. A
group of these are attached to a CD and represent a set
of parallel, independent paths to another processor.
These paths are referred to as assignable sessions. This
means that an APPC LUD has no device-unique data.
The APPC LUD, however, contains SNA information.
When a program opens a file using APPC LUD, a
conversation on an available session is allocated to that
file. Other sessions on the same LUD are still available
to be used by other communications files under the
same or other processes.

Source/Sink Function

The APPC station IOM interfaces with the following:

« Machine services control point {MSCP)

« Primary/secondary SDLC IOM

» Error log

« Modify Controller Description instruction processor

« Modify Logical Unit Description instruction processor
« Request 1/0 instruction processor

The user of the APPC station IOM can execute Modify
Controller Description and Modify Logical Unit
Description instructions, and can make, break, and
manage SNA paths to an LU within the other unit. The
Request 1/0 instruction is used to communicate with
and control sessions within the LU. The APPC station
IOM handles the logical paths for each LU to which the
System/38 is connected. An overview of the APPC
station |IOM is shown in Figure 19-1.

The APPC station IOM is a VMC task that is created by
MSCP when a Modify Controller Description (vary-on)
instruction is issued against an APPC controller
description (CD) object. The task is created with one
input send/receive queue upon which the send/receive
messages are placed. The MSCP also provides the
APPC station IOM with the address of the input
send/receive queue of the line IOM that will be used
and with the address of a controller description block
for exception handling.

Advanced Program-To-Program Communications Station 1/0 Manager 19-1



Control
Program Facility

Network
Description

Controller
Description

Logical Unit
Description

APPC
Station IOM

SNA Common
Modules

Machine Services
Control Point

Primary/Secondary
Line IOM

OU Tasks

I/0O Controller

Figure 19-1. APPC Station IOM Overview

19-2

The APPC station IOM uses a router module to invoke
the appropriate routine. The router gains control when
the APPC station |IOM task is created (CD vary-on time).
The router immediately executes a Receive Message
instruction from the APPC station send/receive queue
and waits for a send/receive message (SRM). Once an
SRM is received, the router performs an if/then/else
scan to invoke the routine that processes the requested
function. If the function is not identified in the
if/then/else scan, the SRM is checked to see if it is a
response. If the SRM is a response, the storage
occupied by the message is freed. (This message was
generated by the APPC station IOM, and no further
processing is required.) If the requested function is not
supported by the APPC Station IOM, the message is
returned with an unsupported status indicated. When
the SRM has been processed, the router executes a
Receive Message instruction from the APPC station IOM
send/receive queue, and the process is repeated.

Because there are unique function codes in the SRMs,
the APPC station IOM has one unique callable routine
per function and response. A routine is defined for a
response only if further processing is required upon the
return.

There are three types of APPC station IOM modules:
» System/38 instruction processor modules

« SNA support modules

« 1/0 support modules

The System/38 instruction processor modules provide
direct support of System/38 instructions. These
modules are defined as the code that recognizes the
requested function and initiates the processing of that
function. The SNA support modules are part of the
output and input data path. This support is on behalf of
the Request |/ 0 instruction. The |/0O support consists
of modules, including the SNA modules, that are in
direct support of the Request 1/0 instruction. See
Figure 19-2 for an overview of the APPC station IOM.



Control Program

Network
Description

Facility Process

L

APPC Station
I0M Queue

Controller
Description

Logical Unit
Description

APPC
Station IOM

Network
Architecture
Control Block

Mode Table

Primary /Secondary
Line IOM Queue

Primary/Secondary
Line IOM

Link
Control Block

\i Transmit
—l—r— OU Queue

Transmit
OU Task

N

Receive

OU Queue

Receive
OU Task

1/0 Controller

Figure 19-2. APPC Station IOM Processing

Advanced Program-To-Program Communications Station |/0 Manager

Logical Unit
Name Table

Half Session
Control Block

A

Conversation
Control Block

19-3



System/38 Instruction Support

All source/sink modify instructions passed to the APPC
station 10M are in the form of messages (SRMs). These
messages are built by mapping the instructions to the
VMC format, which is performed by the source/sink
instruction processors.

All messages are routed to the appropriate modules by
the APPC IOM router. The instructions supported are
described in the following paragraphs.

Modify Controller Description (Vary-On/Off): This
instruction is used by device management to establish or
to break the communication path from the MSCP to the
physical unit in the other APPC system.

Modify Controller Description (Dial): This instruction is
used to allow a remote Physical Unit to be dialed
manually or automatically.

Modify Controller Description (Abandon Connection): This
instruction is used to disconnect the APPC station IOM
from another APPC system. The APPC station IOM
stays active, but the switched line is disconnected.

Modify Controller Description (Continue/Cancel): This
instruction is used to allow the reuse or to suspend the
reuse of the controller description after an unrecoverable
error.

Modify Logical Unit Description (Vary-On/0Off): This
instruction is used to establish or to break the
communications path from the MSCP to the other APPC
logical unit.

19-4

Modify Logical Unit Description (Activate/De-activate):
This instruction is used to de-activate the LU-LU path
and is also used to activate the LU-LU path when it is
inactive.

The Modify Logical Unit Description (Activate)
instruction causes the MSCP to initiate the processing to
establish the SNA session resources.

The Modify Logical Unit Description (De-activate)
instruction causes all Request |/0 instructions except
activate resource to be returned to the user return queue
with a feedback status indicating the returned condition.
The number of request descriptors processed is set in
the feedback record. The LU-LU path and LU-LU
session are placed in an inactive state with all data
being purged for all active conversations. When the
necessary synchronization is completed, the conversation
identifications are deallocated and the LUD state is set
to varied-on state. The active SNA sessions are
de-activated.

A Modify Logical Unit Description (activate) instruction is
converted to a resume command by the source/sink
instruction processor when the LU is inactive (reset).

Modify Logical Unit Description (Reset): This instruction
causes each 1/0 request, except the activate resource
request, to be returned to the user return queue with an
indicator that the request was not processed. The
number of request descriptors (RDs) processed is set in
the feedback record, and all available unsolicited data is
destroyed. The communications path is placed in an
inactive state that can be reactivated with a Modify
Logical Unit Description (activate) instruction.

Modify Logical Unit Description (Continue/Cancel): These
instructions are used to allow the reuse or to suspend
the reuse of the device after an unrecoverable error.



Request 1/0: The process that issues conversation
requests must communicate with the APPC station IOM
by using the Request 1/0 instruction. The LU-LU
session is accessible to the process by using the
Request |/O (normal) instruction with the source/sink
request object pointer addressing the appropriate LUD
and conversation.

The Request 1/0 instruction is used to perform the
normal functions on the LU-LU flow and to manage
conversations.

Request 1/0 (Activate Resource): This request
establishes a conversation for the process to
communicate with the remote system through an SNA
session. The APPC station IOM uses an available source
session to request the use of an available remote source
session, bids for the use of a target's session, and
defines the protocols to start a new source session.

When no session is available, the Request 1/0 is held
pending, provided Normal is the indicated 1/0O operation,
until a session becomes available or a Request |/0O
{return activate resource) or Request | /O {de-activate
resource) is issued to force the Request 1/0 {activate
resource) to be returned.

When a session is allocated to the conversation, the
APPC station IOM returns a unique conversation
identifier to the process. The process uses the unique
conversation identifier for all 1/0 requests on that
conversation to the remote system.

Request 1/0 (Get Session): This request is used by the
process to obtain a new session after the previous
session is deallocated from a conversation by a detach
request. This request must specify the conversation
identifier. The APPC station IOM then allocates a new
session to this conversation similar to the way the
Request |1/0 {activate resource) instruction allocates a
session to a conversation.

Request 1/0 (Conversation Reset): This request causes
each outstanding |/0 request against the conversation
to be returned to the process return queue with an
indicator that the request was not processed. The
number of request descriptors processed is set in the
feedback record. The conversation is immediately
available for reuse; no Request |1/0 (activate request)
instruction is necessary.

Request 1/0 (De-activate Resource): This request
deallocates a conversation and makes a session (if
allocated to the conversation) available to another
process. Each 1/0 request is returned to the process
return queue with an indicator that the request was not
processed. The number of request descriptors
processed is set in the feedback record, and all
unsolicited data is destroyed.

Request 1/0 (Activate Resource Attach Manager): This
request allocates a path to the process for the FMH-5
attach requests received from the remote system. With
the completion of the Request |/O (activate resource
attach manager) instruction, the APPC station IOM
returns a unique conversation identifier to the process.
The process then issues a Request |/0 {receive)
instruction using the conversation identifier. When an
FMH-5 attach request is received, the APPC station
IOM allocates a new conversation, and uses the Request
I/0 (receive) instruction to return the conversation
identifier of the new conversation to the process. The
process then uses the new conversation identifier to
communicate with the remote system.

Request 1/0 (Change Number of Sessions): This request
causes the total number of sessions, the number of
source sessions, and the number of remote source
sessions to be increased or decreased.

Request 1/0 (Return Activate Resources): This request
returns to the user’s return queue all pending activate
resource request |/Os associated with the LUD specified
in the source/sink request, with feedback record status
indicating the condition.

Request 1/0 (RECFMS 00 Alert Operations): This
request is used to provide SSCP-PU flow alert support
when communicating with a 370-type host. Alerts are
not supported for connections to another System/38 or
APPC peer devices.

Request 1/0 (Return RECFMS 00 Alert REQIO): This
request returns to the user’'s return queue all RECFMS
00 Alert REQIOs associated with the CD specified in the
source/sink request.

Advanced Program-To-Program Communications Station 1/0 Manager 19-5



Reguest | /0 (Default Operations): This request provides
compatibility with current releases of the
communications requast 1/0s. it will be used for APPC
functions such as send data, receive, wait on resource,
post on receipt, sync check point, prepare to receive and
detach.

Reguest 1/0 (Request Write): This request sends a
signal request to the remote program. This is performed
at the machine interface by encoding a request
descriptor as a regular or immediate transmit.

Request |/0 (Send Response): This request causes the
SNA response to be sent. The rasponse sent is either
positive or negative based on the setting of the sense
data indicator bit in the response header.

Request 1/0 (Test and Quiesce): This subcommand is
used to determine the existence of certain resources and
requests to defer the processing of further requests if
the specified resources or requests exist at the time the
subcommand is processed.

SNA Support

The line I0Ms support the data link control layer of
SNA. The path control and transmission control layers
are supported by the common SNA modules that are
invoked by the APPC station IOM. The following
features are supported:

« One Physical Unit type 2.1

« Multiple LUs, each with parallel sessions, all of which
are LU type 6.2

« Transmission subsystem profile 7

« Function manager profile 19

Path Control

Path control routes basic information units betwesn the
remote LU's half-sessions and the System /38 local
LU’s half-sessions so that the node/link configuration
of the network is transparent to the half-sessions. For
System /38 inbound data, path control uses information
in the format identification transmission header to
control delivery of the basic information unit to either
the specified supervisory services or a session for an LU
in a mode (including a clustered group of LUs).

Path control implements the logical unit description
{LUD)} as the primary or secondary LU. This view of the
LUD as a port uncouples the end-user application from
a hard-coded physical address and allows the operating
system the option of late coupling of application and
physical address. Path control also treats all paths in an
LUD in a parallel fashion to provide flexibility in the
system’s use of the logical links.

For outbound messages, path control constructs a path
information unit in the output buffer and sends an
output request to the SDLC 10M.

J



For an input path information unit received from the line
IOM, path control ensures that the message unit is large

enough to contain the transmission header and
request/response header and that the transmission
header is a format identification type 2. The local
address, session index address assigner indicator, and

fields in the transmission header are used to determine
the appropriate session (SSCP-PU, SSCP-LU, LU-LU};
if the physical unit is active, the path information unit is

routed to the connection point manager.

Transmission Control

The transmission control element is a composite
protocol that provides control for a locally supported
half-session. Transmission control consists of the
following SNA components.

Common Session Control: The common session control
provides common support for handling flows to
half-sessions that are not active. Common session
control directs an appropriate activation request to
session control for further processing.

Data Flow Control: Data flow control controls the flow
of data and function manager data requests and
responses between half-sessions. Data flow control
handles only data flow control and function manager
data requests; network control and session control
requests do not flow through data flow control.

The data flow control also uses the request/response
header implementation and data flow control state to
invoke various resource manager functions.

Resource Manager: This component manages the
session and conversation resources. The resource

manager initiates the automatic-disconnect function and

does preprocessing of the initiate program function.

Connection Point Manager: The connection point
manager is the control point within the LU for
distribution of request/response units, validating input
sequence numbers, maintaining the pacing, and
supporting other functions related to the half-session
flows.

For outbound messages, the session and data traffic
states are checked. Additional checking is performed
before the message is sent to path control:

On the expedited flow, the connection point manager
forwards a request only if no response to a previously
expedited request is due from the remote system.

On the normal flow, the size of the request/response
unit is validated.

When secondary-to-primary pacing is supported for
a normal flow request, the connection point manager
determines when to set the pacing indicator in the
request header to indicate that a pacing response
must be retumed. The connection point manager
then prevents the forwarding of additional outhound
normal requests until the pacing response is received.

When primary-to-secondary pacing is supported, and
if a pacing request has been received, the connection
point manager sets the pacing indicator on in the
response header in a normal flow response to notify
another APPC system that additional normal flow
requests may be sent.

When session and data traffic states are not active,
the connection point manager forwards the permitted
inbound SNA activation requests (BIND) to common
session control. For other inbound messages, the
connection point manager checks the
request/response header to determine if pacing or
expedited requests can be sent. When a pacing
response should be sent to another APPC systern,
the size of the request/response header is validated,
the sequence number in the transmission header is
compared with the expected value, and a flag is set
to indicate that a pacing response should be sent.

Session Control: Session control supports protocols
related to session and data traffic activation,
de-activation, and recovery. All sassion control requests
flow from the primary unit to the secondary unit, and all
responses flow from the secondary unit to the primary
unit.

For an outbound response, session control identifies the
response code and sets the appropriate indicators
according to whether the response is positive or
negative. The response is forwarded to path control.

Advanced Program-To-Program Communications Station 1/0 Manager 19-7



The APPC station IOM supports the following SNA
session control requests:

+« BIND to establish a LU-LU session.
+« UNBIND to break a LU-LU session.

Requests pertaining to LU-LU sessions are sent to the
end user via 1/0 requests for additional processing.

The APPC communications to a physical unit Type 4/5
performs the following for SNA session control requests
from the host.

« Activates a physical unit to establish an
SSCP-physical unit session.

+ De-activates a physical unit to break an
SSCP-physical unit session.

= Activates a logical unit to establish an SSCP-LU
session.

« De-activates a logical unit to break an SSCP-LU
session.

I/0 Support

Qutput

The output process is started by a request 1/0 queueing
function (#T2RQI0}. This function receives all 1/0
requests from the APPC station IOM queue and
enqueues the request on the correct conversation queue.
The requests are always enqueued last on this queue
and are categorized according to the 1/0 path on which
they are to be executed (for example, expedited or
normal transmit, expedited or normal receive,
receive-any). The queuing function uses the second
byte of the message key to categorize the requests.

Once the requests are enqueued, the scheduler
(#T2SCED) is invoked to process the output. The
scheduler consists of two parts: loop selection and
logical | /O path selection. Loop selection uses the
conversation control block as its basic unit. This module
multiplexes output for different SNA sessions into one
output request and ensures that each conversation has
equal opportunity for output.

19-8

The logical |/0 path selection routine {#T2BSTOQ) gains
control from the loop selection module when a
conversation control block has 1/0 requests to be
processed. This modulg locates the next request to be
processed (for example logical | /O path), enforcing the
path control rule that expedited processing is executed
before normal processing. The selection routine also
controls the building of the SNA frames.

The transmit path message pointers in the half-session
control block are examined and if the pointer is O, the
appropriate 2-byte key is built and the conversation
queue is searched to find an 1/0 request. When an 1/0
request is located, the output SNA frames and
associated buffer control lists are built, and control is
returned to the loop scheduler.

On return, the loop scheduler determines if it is time to
build an output request. If not, the loop scheduler
selects the next conversation control block and repeats
the selection sequence. If the output request is to be
built, the loop scheduler builds the request, puts the
buffer in a busy status, and sends the output request
SRM to the line 1OM.

Output Posting

The APPC station IOM now waits for the output to
complete or for the input to arrive; output requests have
a higher priority than input requests. A transmit/receive
Request 1/0 instruction is first encoded as a transmit
Request 1/0 instruction; then, when all transmits are
complete, the instruction is encoded as a receive-only
Request 1/0 instruction and enqueued first on the
conversation queue. The output request/response
process uses the half-session control block pointer to
locate the Request |/0 instruction associated with the
frame. Then, using the indexes in that entry, it locates
the request descriptor (RD) associated with the SKNA
frame and marks it processed.



At this point the Request 1/0O instruction can bs in three
states:

= More transmit RDs to process
« All transmits complete, but receives yet to process
« All transmits and receives complete

The appropriate action is then taken by the APPC
station IOM to complete the output request/response
process. At this time, the buffer is marked not busy.

On return, the loop scheduler is invoked if more activity
is scheduled.

input

The APPC station IOM does not explicitly request input
from the transmission line. The line IOM responds to
polls from the primary unit and, in effect, the APPC
station IOM has a read operation outstanding. The line
I0OM passes received information frames to the APPC
station IOM via an input message. This message
contains the location and number of valid information
frames stared in the input buffer. The input routine
processes the information frames one frame at a time
until all frames are processed. The input routine uses
the transmission header to locate the correct
half-session control block and then determines the
logical 1/O path on which the frame is to be sent. If an
I/0 request is not pending or if no buffer space is
available, the frame is considered unsolicited data, and
an event or a feedback record is returned to the user.
The user is informed of only the first frame of
unsolicited data; howeaver, subsequent frames can cause
the same situation, depending on whether the 1/0
request contained enough buffer space to contain the
frames.

Unsolicited data is held on the queue of the
conversation control block in the form of a message.
This message is buiit by the APPC station IOM and has
the same format as an input message. The message
also contains a data area for the frame, allowing the
APPC station IOM to free the input buffer of the lina
IOM even if a user buffer for the data does not exist.
Unsolicited data is processed as an input request by the
same rmodules that perform input processing. The
conversation control block contains indicators to inform
the loop schaduler to process the data.

Error Logging

The APPC station IOM does not keep statistics
concerning the station; statistics are kept by the line
10M. The APPC station IOM does log SNA path errors.
These errors are recorded using the format of the error
recording functions. The data contains portions of the
SNA frame, including the transmission and request
headers, the sense data, and the first 14 bytes of the
request/response unit.

DATA AREAS

Refer to Source/Sink Data Areas in the VMC Overview
section of this manual far descriptions of source/sink
data areas. Also, refer to Data Areas in the Instruction
Processors section of this manual for descriptions of the
ND, CD, and LUD.

Network Architecture Control Block

The netwaork architecture control block is a commaon
control area used to manage the systems network
architecture (SNA) portions of the APPC station. It
contains a subset of data in the CD and is always in
main storage when the APPC station task is executing.
The network architecture control block functions as a
directory to areas built in machine-wide storage. It also
functions as a collection point for vital converged station
characteristics, a control point for converged station
output, and a common location for unique SNA and
converged station work areas.

The network architecture control block is allocated from
machine-wide storage at vary-on CD time.

Advanced Program-To-Program Communications Station |/0 Manager 19-9



Logical Unit Name Table

The logical unit name table is used as a collector for all
information necessary to operate the logical unit. This

entry represents the LU such that the local LU and the
rermote LU can communicate through logical groupings
of conversations.

The logical unit name table is accessed externally
through the system pointer to the LUD and accessed
internally through the LUD |/0 index contained in the
LUD. The LUD 1/0 index is set in the LUD and in the
conversation identifier at vary-on LUD time. The LUD
I/0O index is a direct index into the logical unit name
table. The first logical unit name table entry represents
the physical unit. It is accessed with an index of 0.

Each logical unit narme table entry contains the logical
unit type 6.2 for purposes of routing to the proper SNA
modules and building the conversation identifier for LU
6.2,

The logical unit name table serves as an anchor for
groupings of SNA sessions and the conversations used
to access the SNA sessions. All contention winner
primary half-sessions have a preassigned local address
which is the destination address field in the LUD. The
storage for the mode table and conversations is
allocated in machine-wide storage. This is done at
vary-on LUD time for LU type 6.2.

The logical unit name table entries representing the
LUDs have one mode entry for each mode specified in
the LUD device-specific area. It also has a group of
conversations that consists of the total of the user
conversations specified for each mode, one attach
manager conversation for each mode and one
conversation for the SSCP-LU session. The SSCP-LU
conversation has a conversation index of 0. The attach
manager conversations have indexes equal to the mode
index they are associated with.

19-10

Mode Table

The mode table is used to manage a group of
conversations and sessions that share a common set of
operational and functional characteristics such as, pacing
limits and maximum length of RU on LU-LU sessions.
Each mode table entry is associated with a definite LU
through the backward pointer of the logical unit name
table entry.

The mode entry serves as the major work area for the
conversation manager. The rmode table contains a copy
of the bind image used to bind the primary
half-sessions and a copy of the negotiated bind
response. The negotiated bind response is used to
communicate the bind fields {security/access) to the
target conversations and to ensure the same
characteristics for all sessions existing under this mode
entry.

The conversations through which an application
accesses SNA sessions are associated with a particular
mode entry. These conversations are managed by the
conversation group pointer, conversation free list, and
change-number-of-sessions data. The conversation
group pointer serves as an access to the conversations
assigned to this mode entry. These conversations are
contiguous in machine-wide storage. They are a subset
of all conversations associated with this logical unit
name table. The conversation free list contains the
conversations that are deallocated. This list is initialized
at vary-on LUD time to all possible conversations for
this mode. When a conversation is allocated, the first
conversation on the list is used to build the conversation
identifier. When a conversation is deallocated, the
conversation is placed back in the conversation free list.
The change-number-of-sessions data is used to
manage the session and conversation

allocation /deallocation.



Half-Session Control Block

Half-session control blocks are used for routing transmit
and receive requests to the proper network addressable
unit and for routing input to the proper destination in the
System/38. Each half-session control block represents
an SNA session; supports the SNA transmission
subsystem; and contains fields that support path control
{routing and expedited/normal SNA paths), connection
point manager {pacing). and LU {I/0O queueing and
session states).

Half-session control blocks are allocated and initialized
in machine-wide storage at vary-on LUD time for logical
unit type 6.2 LUDs.

Each half-session control block represents an SNA path
for data transmission. The half-session control blocks
are attached to a conversation by a Request |/0
(activate resource) instruction or detached by a Requast
1/0 (deactivate resource) instruction. The session may
be bound for a certain mode, in which case the
half-session control blocks are placed on a free list in
the mode table; otherwise, they are either on the
half-session control block available list or assigned to a
conversation.

The first two half-session control blocks are reserved
for boundary function support and internal APPC 10M
usage. The first supports an SSCP-physical unit session
that is activated and ready for 1/0 traffic at CD vary-on
time. The second half-session control block is used as
a temporary output holding area when the output
structure is already busy processing an output request.

Conversation Control Block

The conversation control block represents the
conversation resource viewed through a conversation
identifier. The maximum number of conversations is
specified as an attribute of the mode entry in the LU
type 6.2 LUD.

The conversation identifier is used to access the
conversation for all machine-interface operations, and
the backward pointer in the half-session control block is
used to access the conversation for all input operations.
When the conversation control block is not connected to
a half-session, it is an asynchronous conversation.
When a conversation is asynchronous, the half-session
control block pointer is 0.

Conversation ldentifier

The conversation identifier is used as the access to the
conversation and its resources. The conversation
identifier is located in the source/sink request variable
data area and is addressed through the Request I/0
instruction.

STRUCTURE

The following is a list of the APPC station I0M modules
and the function that each module performs. The list
also shows how the module is invoked.

#NA2BRP Build And Send BIND Response
Function: Builds and sends positive or negative BIND
response depending on sense code passed from LU

resource manager. (This procedure is called for LU type
6.2 only.)

How Invoked: Within this component.

#NAZCPLU Activate/De-activate LU Response

Processor

Function: Updates LU state for activate and de-activate
LU requests.

How I[nvoked: Within this component.

Advanced Program-To-Program Communications Station |/Q Manager 19-11



#NA2CPMR Connection Point Manager Receiver

Function: Performs connection point management
checks (including pacing) for data received and routes

for further processing.

How Invoked: Within this component.

#NA2CPMS Connection Point Manager Sender

Function: Performs connection point management
checks for data to be transmitted.

How Invoked: Within this component.

#NA2CPPU Activate / De-activate PU Response

Processor

Function: Updates physical unit state for activate
physical unit and de-activate physical unit requests.

How Invoked: Within this component.

#NA2DFCR Data Flow Control Receive

Function: Ensures the data flow control protocol
enforcement of the LU type 6.2 receive.

How Invoked: Within this component.

#NA2DFCS Data Flow Control Send

Function: Ensures the data flow control protocol
enforcement of the LU type 6.2 send.

How Invoked: Within this component.

#NA2EROR SNA Error Processor

Function: Determines if negative response must be
returned, and if so, builds negative response unit and

routes for transmission.

How Invoked: Within this component.

18-12

#NA2PCR Path Control Receiver

Function: Validates transmission header data and routes J

path information unit received to connection point
manager receive.

How Invoked: Within this component.

#NA2PCSD Path Control Sender

Function: Builds path information unit in output buffer
and indicates output is pending.

How Invoked: Within this component.

#NA2RFMS Request/Record Formatted

Maintenance Statistics
Function: Responds to REQMS request received, if
necessary, then builds record formatted maintenance
statistics request as a pseudo-1/0 request for

transmission.

How Invoked: Within this component.

#NA2SCSD Session Control Sender

Function: l|dentifies session control response, updates

appropriate [finite state machine | states, and forwards

response to path control send.

How Invoked: Within this component.

#TP2SECS Station |/0O Manager Router

Function: This module interrogates all incoming
send/receive messages and routes each to the

appropriate module.

How Invoked: Within this component.

#T2AHDR Attach Header Received

Function: Processes the attach header received on the
SNA session.

How Invoked: Within this component.

9



#T2ALUR Activate LU Response Processor
Function: Interrogates Activate LU-received response
from MSCP to-establish SSCP-LU and LU-LU
half-session controls and initializes transmission and
response headers for SNA activate LU response.

How Invoked: Within this component.

#T2APUR Activate PU Response Processor
Function: Interrogates activate physical unit-received
response from MSCP to establish output structure
storage and initializes transmission and response
headers for SNA activate physical unit response.

How Invoked: Within this component.

#T2ASRM  Asynchronous Resource Manager Request
1/0 Processor

Function: Processes activate resource request, get

session request 1/0s from input queue and mode

entry’s waiting queue, routes

change-number-of-sessions, and test and quiesce

request 1/0Os to #T2CNOS.

How Invoked: Within this component.

#T2AVR2 Activate Resource Send/Receive Message

Processor
Function: Processes response to BIND received.

How Invoked: Within this component.

#T2BDME  BIND Determine Mode Entry

Function: Finds mode table entry associated with mode
name specified in the received BIND.

How Invoked: Within this component.

#T2BDRI Build Dummy |/O Request

Function: Creates a pseudo-1/0 request structure and
enqueues it to the dummy conversation control block for

transmission.

How Invoked: Within this component.

#T2BIDRP BID Response Received Processor

Function: Processes the BID response received on a
session.

How Invoked: Within this component.

#T2BIDRQ BID Request Received Processor
Function: Processes BID request received on a session.

How Invoked: Within this component.

#T2BISRQ BIS Request Received Processor

Function: Processes the BIS request received on a
session.

How Invoked: Within this component.

#T2BNDRQ BIND Request Received Processor

Function: Process the BIND request received for a
session.

How Invoked: Within this component.

#T2BNDO BIND Request Scheduler

Function: Schedules the BIND request that is to be sent
to a session.

How Invoked: Within this component.

Advanced Program-~To~Program Communications Station 1/0 Manager 19-13



#iTZCMDS  Route Secondary Station Commands

Function: Interrogates all non-1/0 SRMs and response
SRMs and routes each to the appropriate routine.
Contains the following internal routines:

» HT2ACTS: Processes activate session SRM.

+ #T2DACS: Processes de-activate session SRM.

+ HT2VOFL: Processes vary-off LUD SRM.

« HT2VOFC: Processes vary-off CD SRM.

« HT2VONL: Processes vary-on LUD SRM.

» HT2CONT: Processes Request |/0O {continue) SRM.
« #T20USC: Processes quiesce SRM.

« #T2RSET: Processes reset SRM.

» #T2RSUM: Processes resume SRM.

+« HT2SRTO: Processes send/receive timeout SRM.

+« #T2SPND: Processes suspend SRM.

How Invoked: Within this component.

#iTZCNOS  Change Number Of Sessions Processor

Function: Decodes the action field in the
change-number-of-sessions entry in the source/sink

description and performs the requested function.

How Invoked: Within this component.

#T2DFCF Data Flow Control Flag Interface

Processor
Function: Processes the flags set by #NA2DFCR to act
either as an interface to the conversation manager or to

process delayed data.

How Invoked: Within this component.

19-14

#T2DIS Process SNA Clean-up for SDLC

Disconnect Command Received
Function: Sends abnormal disconnect SRM to MSCF for
normal and abnormal disconnect SRMs. Sends
abnormal de-activate physical unit SRM to MSCP for
the second Set Normal Response Mode instruction.

How Invoked: Within this component.

#T2DLYD Process Delayed Data

Function: Processes data delayed due to
between-bracket conditions.

How Invoked: Within this component.

HT2DOWN  Report Station Failure Condition
Function: Marks a station failure condition and reports it
via a feedback record if a Request |1/Q instruction is

outstanding.

How Invoked: Within this component.

H#T2DQBND Dequeue BIND Requests

Function: Dequeues and processes BIND requests on
the LU BIND queue for the associated mode name.

How Invoked: Within this component.

#T2DRSP Data Flow Control Response Sender

Function: Builds a response for cutput based on data in
the network address control block.

How Invoked: Within this component.

¥T2DSAMT Materialize LUD Device-Specific Area

Function: Builds the materializable device-specific area
in the LUD.

How Invoked: Within this component.

J



#T2DSAV Verify LUD Device-Specific Area

Function: Verifies the user template for the LUD
device-specific area.

How Invoked: Within this component.

#T2ERLG Build Error Log Entry

Function: Builds an error log entry SRM and sends it to
be logged.

How Invoked: Within this component.

H#T2ERPR Error Processor

Function: Builds and sends the UNBIND request into the
network architecture control block and sends it to

#NA2SCSD.

How Invoked: Within this component.

HT2FDBK Feedback 1/0 Request Result

Function: Builds the feedback record for an 1/0 request
feedback SRM.

How Invoked: Within this component.

#T2FRSES Free Session Received

Function: Processes a session-between-brackets
condition.

How Invoked: Within this component.

#T210S Process Inoperative State Request

Received from Secondary Line IOM

Function: Sets station offline and calls #T2DOWN to
notify the machine interface of a station failure.

How Invoked: Within this component.

#T2IPIU input Path Information Unit Processor

Function: Routes received SNA path information unit for
validation, then moves data into receiving |/Q request

buffer area.

How Invoked: Within this component.

#T20UTR Qutput Request Response Processor

Function: Matches output request response to /0
Request and sends feedback record when processing is

complete.

How Invoked: Within this component.

HT20UTX Forward QOutput Request to Secondary

Line 10M

Function: Completes and sends output request SRM to
the secondary line [OM.

How Invoked: Within this component.

#T2PBAR PREBIND Activate Resource

Function: Performs resource manager function for the
modify LUD activate session and modify LUD continue

requests.

How Invoked: Within this component.

HT2PGAR Purge Activate Resource Request 1/0s
Function: Returns all activate resource request 1/0s.

How Invoked: Within this component.

#T2PGCB Purge Logical Unit Activity

Function: Sends feedback record with partially complete
or complete status for |/Q request during Modify LUD

{reset) instruction processing.

How Invoked: Within this component.

Advanced Program-To-Program Communications Station |/0 Manager 19-15



-

#T2RQI0 I /O Request Processor

Function: Enqueues an 1/0 request with the correct flow
key to the proper half-session control block queue.

How Invoked: Within this component.

#T12Z2RTFN Request Information Unit Router

Function: Examines the current function and function
stage fields and routes control 10 the proper response
module. This module also loads the request 1/0 flow
field pointer and passes control to the proper SNA
module.

How invoked: Within this component.

#T2RTRRP Ready-To-Receive-Response Received

Function: Processes the ready-1o-receive-response
received on a session.

How Invoked: Within this component.

#T2RTRRQ Ready-To-Receive-Request Received

Function; Process the ready-to-receive-request received
on a session.

How invoked: Within this component.

#T2SCED Activity Scheduler

Function: Remaoves the conversation control blocks from
the output scheduling queue and dispatches transmit

1/0 requests.

How [nvoked: Within this component.

#T2SEH APPC Station IOM Exception Handler

Function: ldentifies the exceptions encountered in the
secondary station and returns them to the mainline
RECM in #TP2SECS when the exception is caused by
the user.

How [nvoked: As fourth level exception handler.

19-16

#T2SSDEH APPC Station Source/Sink Data Exception
Handler

Function: Handles any soprce/sink data exceptions that
occur in the APPC station I0M.

How invoked: From the third level exception handler.

#T2SYRI Synchronous Request |/0 Send/Receive

Message Processor

Function: Pracesses all synchronous request 1/0
send/receive messages.

How Invoked: Within this component.

#T2UNBRQ UNBIND Request Received Or Sent
Functlon: Processes the end of a session (UNBIND
request sent or raceived} with respect to the resource

manager function.

How [nvoked: Within this component.



Binary Synchronous Communications
I/0 Manager

INTRODUCTION

The binary synchronous communications (BSC) 1/0
manager (IOM) activates, manages, and de-activates the
BSC telecommunications link and enforces BSC
protocol. One BSC IOM task exists for each BSC
telecornmunications link.

The BSC IOM interfaces with the following:

« The machine services control point {MSCP)

« The error log

= An 1/0 controller

« Diagnostic component

+ Modify Network Description instruction

« Modify Controller Description instruction

« Modify Logical Unit Description instruction

+ Request I/O instruction

Binary Synchronous Communications |/ 0 Manager

20-1



A BSC IOM task is created by the MSCP as a result of
a Modify Network Description (vary on) instruction. The
BSC 10M task is associated with one communications
1/0 controller (I0C) line position and is shown in Figure
20-1.

The BSC IOM is used to communicate with devices on a
switched point-to-point line, a nonswitched
point-to-point line, and a multipoint line as a tributary
station. Up to 32 sessions per line can be supported on
tributary.

Line IOM Line IOM
(SDLC primaryl) {BSC)

Line IOM
(SDLC secondary)

V| i ] [

OU Queues

¥ 'y

V| [Rir

Line 1 Line 2 Line 3
l0C {SDLC primary) (BSC) (SDLC secondary)
Device Device Device

Figure 20-1. BSC IOM/I0C Line Position Relationships

20-2



Communication with external components is through a
send/raceive message which the BSC IOM receives
through a single send/receive queue as shown in Figure
20-2. The message can be generated in three ways; by
an external VMC or diagnostic component, an
operational request element {ORE), or a Request 1/0Q

instruction.
| BSC
| | IOM Queue
BSC Line IOM ‘L
BSC IOM Mainline
r—-———~—"-=—-=7=7==—7——7+— M
VMC Operation Operation

Send/Receive
Message Router
(ENTRYRTN}

VMC Send/Receive

Message Router
{TPBBROUT)

Link Scheduler

Request Element
Response Routine
{TPBRORE)

Request Element
Response Handler
(TPB@OREE)

[

1

Hardware Error

r
| 1
I 1
Message Handlers: ! and Protocol | Recovery
! Management | Procedures
& #TPBRQIO- 1 (TPBSCHED} ! (#TPBIOEX)
Request |/0 il St -
e H#TPBRQIC-
Request | /O
(continue) 1
P Link
¢ Send/Receive Process Link inr%C:;;L::ication
Message in Data State State
(See Figure 17-3} {RQI0QD) (CONTENTN)
Send/Receive g:e;itslfglemen N Feedback Record
Transmit Modules Mc? dules Transmit Modules

mkim

Send/Receive

Message Transmit

Queue

mkim

Figure 20-2. BSC IOM iInternal Structure

mEi

Operational Operational
Unit Transmit Unit Receive
Queue Queue

i
Response
Queue

Binary Synchronous Communicauons /0 Manager

20-3



20-4

The message router receives the message and uses the
key field in the message to determine if the message is
generated from an external VMC or diagnostic
component, an ORE, or a Request |1/0 instruction.

Then, based on the function field of the message, the
message router invokes the appropriate message handler
for the messages generated by the Request 1/0
instruction and the external VMC or diagnostic
components.

The messages generated by the Request I/0 instruction
are routed to routine #TPBRQIO in module #TPBBIOM.
There the messages are placed on an internal queue for
later execution. Request /0 (continue) instruction
messages are routed to routine #TPBRQIC in module
#TPBBIOM. The messages generated by an external
VMC or diagnostic component are routed to a message
specific routine for processing. See Figure 20-3 for a
list of send/receive message (SRM) handling entry
points.

Routine
Function (Entry Point)
Timer response #TPBTIME
Activate session #TPBASES
Regio continue #TPBRQIC
De-activate session #TPBDSES
Reset session #TPBRSES
Vary off LUD #TPBVOFL
Discontact #TPBDCON
De-activate link #TPBVOFN
Initialize line #TPBENB
De-activate connect in #TPBDABL
Connect in #TPBESC
Vary on LUD #TPBVONL
Contact #TPBCON
Exchange identification #TPBXID
Connect out #TPBDIAL
Abandon connection #TPBABCN
Abandon connect out #TPBABO
Change network description retry sets |#TPBNDRT
Activate link #TPBVONN
Machine interface timer message H#TPBSOFT
Modify device specific #TPBMDSA
Modify unit specific #TPBMUSC
Modify line specific #TPBMLSC
Resume session #TPBRSUM
Quiesce session #TPBRSES
Suspend session #TPBSPND
On-line test request #TPBOLTA
Read data store #TPBRDSO
Internal trap #TPBTRPO
Diagnostic control #TPBDI
Cancel Invite #TPBSINV
Return message (illegal entry) #TPBBAOM

Figure 20-3. Send/Receive Message Handling Entry Points

<



The messages generated by the OREs are handled

utine that generated the ORE to provide the address

; differently. The queue message router relies on the

of the routine to process the ORE response. See Figure

Function

Routine
(Entry Point)

) ; . Online test responder bid response #TPBOLT2
20-4 for a list of ORE response handling entry points.
Online test requester bid response #TPBOLTD
Routine Online test requester test request #TPBOLTE
Function (Entry Point) response
Perform BSC protocol analysis #TPBTXTR Online test requester receive line bid |#TPBOLTF
Process response from sending end | #TPBABRR Online test requester line bid setup #TPBOLTG
of transmission Online test end of transmission #TPBOLTH
Process ORE response for unsolicited |#TPBUNSL response before cleanup
line bid Online test responds to text message |#TPBOLTR
Process OREs for sending end of #TPBABRT received
transmission Online test sends the test message #TPBOLTS
Perform BSC multi-point tributary #TPBOPMP Read data store ORE response #TPBRDS2'
analysis handler
Process ORE response for reset #TPBBID1 Internal trap ORE response handler #TPBTRP2!
Process set line #TPBVNN1 Write poll list response handler #TPBWPL1'
priority/reset/ initialize ORE response Reset write poll list response handler |#TPBWPL2
Finish vary off ND, destroy IOM task |#TPBVOF1 Diagnostic dial #TPBWERA
tiali
Initialize 1/0O controller ORE response |#TPBENB1 Diagnostic identification after dial HTPBEARS
itch ti
Process enable switch connection | #TPBESC1 Diagnostic end of transmission after |#TPBEO7
response .
dial
identificati .
Process identification received #TPBXID1 Diagnostic enable switch connection |#TPBECAA
Finish de-activat ti
inish de-activate connect In #TPBDAB1 Diagnostic identification after answer | #TPBWCAN
tact (i ificati
Contac .(|dent|f|ca ion exchange) #TPBCON1 Diagnostic read #TPBDRFT
processing
. Di ti d line bid TPBDRUN
Contact (identification exchange) #TPBCON2 18gnostic read fine o1 #TPBDRU
processing 'OREs routed by direct call, not TPB@OREE value.
Process dial ORE response #TPBDL1
Finish abandon connect out #TPBABO1 Figure 20-4 (Part 2 of 2). ORE Response Handling Entry
processing Points
Finish abandon connection #TPBABC1
Finish vary off LUD #TPBVFL1
Online test responder bid for line #TPBOLT1

Figure 204 (Part 1 of 2). ORE Response Handling Entry

Points

Binary Synchronous Communications |/O Manager

20-5



20-6

The link scheduler and protocol management routines
are invoked by the message router when the message
has been processed. The link scheduler and protocol
management routines build the OREs for transmitting
data or rasponses and sends the OREs to the
operational unit queues.

All BSC I0M and I0C detected errors are processed by
the error recovery routines.

DATA AREAS

Link Control Block

The link control block {BLKB} is the primary control
block for the BSC IOM. It is aliocated in machine-wide
storage when the BSC IOM task is created and exists
until the task is destroyed. The BLKB contains the
following data and control areas:

+ Feedback record parameter area

» Pointers to other objects and control areas

+ Status flags and counters

« Link control characters {EBCDIC or ASCII)

« Work areas for the various BSC IOM routines

» Operation request slements {ORE)

- Program operation blocks (POB)

+ Function operation blocks (FOB)

+ Message operation blocks (MOB)

» Error and timer messages

Service Order Table

The service order table {BSOT) is the secondary control
block for the BSC IOM. It is allocated in machine-wide
storage at vary-on LUD time. One SOT exists for each
LUD that is varied on. The BSOT contains information
related to one session such as the request 1/0 hold
queue used during active sessions, a copy of pertinent
attributes of the device from the logical unit description,
and the logical unit description session status. For
point-to-point connections, one LUD exists. For
multipoint connections, up to 32 LUDs can exist.

Controller Description Table

The controller description table is a control block
containing information related to the station controlier
description. It contains a pointer to the controller
description, a pointer to the statistical data record, and
various status fields. For each controller description that
is varied on, there exists one controller description table.

Operation Request Element

The BSC IOM communicates with the |I0C by way of a
send/receive message called an ORE. In the operation
block portion of the ORE the various commands are
specified, data areas are indicated, and status is
returned. Three types of operation blocks are used: The
function operation block, the program operation block,
and the message operation block.

The function operation block contains single commands
such as Initialize, Establish Switched Connection, and
Line Reset, as well as Wnte and Read commands.

The program operation block is used when multiple
function operation blocks are to be executed. The
program operation block references a chain of function
operation blocks, each of which contains a command to
be executed.

The message operation block is used during data
transfer to eliminate the chance of command time-outs
when two separate commands must be issued to the
10C for the execution of one 1/ 0 operation.

9

9



STRUCTURE

The following is a list of the modules in the BSC IOM
and the function that each module performs, This list
also shows how the module is invoked.

#TPBBIOM BSC 10M Mainline Routines
Function: Activates, manages, and de-activates a BSC
telecommunication link. Performs all protocol

management and link level recovery. Handles the
scheduling and routing of 1/0 requests.

How [nvoked: Other VMC components.

#TPBDE BSC Online Test

Function: Provides diagnostic routines for BSC online
test request response read data store, and trap
functions. Allows the data link to be tested in a manner
transparent to the user application program.

How invoked: Within this component.

HTPBDI BSC Diagnostic Mode Control
Function: Provides control for line operation in
diagnostic mode. Allows link to perform online test,
trap, and read data store operations without an
application program to drive the link.

How Invoked: Within this component.

#TPBELSE BSC Nonmainline Paths

Function: Performs auxiliary functions for the main BSC
I0M module. These include routines to handle timer
requests, ASCIHI translation, and line abort, and sends all
messages to the MSCP.

How Invoked: Within this component.

#TPBERPL BSC Error Recovery Procedures

Processor

Function: Handles errors on the BSC link resulting from
horizontal microcode detected errors. Initiates recovery

procedures for |/O errors, OU errors, channel errors and
invalid commands. Updates the retry counters and logs
the error when the retry count has been exceeded.

How Imvoked: Within this component.

#TPBLPER BSC Link Protocol Error Recovery

Procedures Processor

Function: Examines the contents of the receive buffer
and initiates a recovery action based on what control
sequence or text transmission was received. Updates
the retry counters and logs the error when the retry
count has been exceeded.

How Invoked: Within this component.

HTPBMODC BSC Modify Controller Description

Processor

Function: Processes messages sent to the main BSC
JOM module as a result of a modify CD request.
Establishes contact with the remote station and handles
the abandon connection at the end of a session. Also
performs the dial operation for & switched connection.

How Invoked: Within this component.

H#TPBMODL BSC Modify Logical Unit Description

Processor

Function: Processes messages sent to the main BSC
IOM module as a result of a modify LUD request.
Handles the vary on/vary off of the LUD and assumes
responsibility for the activation, de-activation, and
resefting of a session.

How Invoked: Within this component.

Binary Synchronous Communications |/O Manager 20-7



KTPBMODN BSC Modify Network Description
Processor

Function: Processes messages sent to the main BSC
I0M module as a result of a modify ND request.
Handles the vary on/vary off of the ND and establishes

the connection.

How Invoked: Within this component.

FTPBMTPT BSC Multipoint Function Processor

Function: Handles poll/select responses and performs
poll list management

How Invoked: Within this component.



Channel 1/0 Manager

INTRODUCTION

The channel 1/0 manager (IOM) is a component that
issues channel commands, logs channel hardware errors
and event handler errors, notifies IOMs of post-event
attention request, and (for devices other than auxiliary
storage) participates in |/O error recovery. The channel
IOM has two primary functions:

« Start/halt device function that issues start and halt
device channel commands, handles errors that occur
as a result of these commands, and informs the
IOMs of the success or failure of the operation.

« Channel event processing function that issues read
event and start channel commands, logs channel
hardware and event handler errors, notifies IOMs of
post-event-attention and error requests, and
operational unit (OU) task failures, and (for devices
other than auxiliary storage) participates in 1/0 error
recovery.

Start/Halt Device Function

The start/halt device function supports the start and halt
device commands issued by a device IOM. This support
includes related processing and error recovery.

As shown in Figure 21-1, the start/halt device function
consists of an IOM task, OU task, IOM queue, and an
OU queue. The address of the IOM queue ((OSRQCSH)
is in the machine communications area (field
MCA4RSHO). The address of the OU queue
(OUSRQCSH) is also in the machine communications
area (field MCA4RSHI). Both queues, plus the OU task
dispatching element (TDE), are in #RTTASKS. The QU
task base registers are stored in the TDE. The IOM task
used is the device IOM task of the device issuing the
start or halt device request. Because no events (except
error events for the channel event processing function)
are posted as a result of a start or halt device channel
command, the start/halt device function shares the
channel error function queue control table (QCT).

Channel I/0 Manager 21-1



——l_—l_,_ Device

' 10M Queue
QU#
Device c
IOM Task ommand
Return Code
Call/Return
Interface
Device QCT
Command
—V—— Start/Halt End Event
| | Device |IOM Event Stack
LOSHIOM
Start/Halt (HLOSHIOM)
IOM Queue
Start/Hal
ORE
_|_|_ Channel
! 0OU Queue
ORE Return Start/Halt
Channel
QU Task

Figure 21-1. Start/Halt Device Function

21-2



The start/halt device function is initiated when a device
IOM invokes module #LOSHIOM.

#LOSHIOM validates the input, and then builds and
sends a start/halt device operation request
element/function operation block (ORE/FOB) to the OU
queue. When the ORE/FOB is returned, #LOSHIOM
checks bytes 14 and 15 of the ORE for one of the
following indications:

« 4007

Meaning: The previous start/halt command did not
complete.

Action: #LOSHIOM retries the command. After four
unsuccessful retries, the operation is considered
uncorrectable; the return code is set to hex 02 and
control returns to the invoking IOM.

+ 4010

Meaning: The start/halt request has timed out,
possibly due to a nonfunctioning channel.

Action: #LOSHIOM reinserts the OU number into the
ORE/FOB and retries the operation once. |f another
time-out occurs for this request, the operation is
considered uncorrectable; the return code is set to
hex 04 and control returns to the invoking I0M.

+ 40xx (where xx is neither 07 nor 10)
Meaning: Other operational program error.

Action: #LOSHIOM rebuilds the ORE/FOB and retries
the operation once. If another 40xx is returned on
this request, the operation is considered
uncorrectable; the return code is set to hex 08 and
control returns to the invoking IOM.

« 0100

Meaning: Command has been accepted and executed
(command end).

Action: #LOSHIOM determines if this was a halt
device commend. If so, #LOSHIOM determines if an
OU task is waiting on the send/receive counter in the
QCT, and if so, #LOSHIOM posts a command end
event to the QCT event stack.

Before returning control to the caller, #LOSHIOM sets
flags in the return code area to indicate the status of the
operation. If an invalid OU number has been passed to
#LOSHIOM, the return code is set to hex 80 to indicate
invalid input data.

Channel Event Processing Function

Figure 21-2 shows an overview of the channel event
processing function. This function consists of three
TDEs, three queues, and a QCT. The TDEs are for the
IOM task (called the resident-channel IOM task), an
error handling task (called the pageable-channel IOM
task), and an OU task. The queues are the
resident-channel IOM queue, the OU queue, and the
channel communications queue (for communications
among the resident channel IOM task, the pageable
channel IOM task and the machine services control
point).

The channel event processing function performs the
following:

+ Receives messages at vary-on time from machine
services control point (MSCP). These messages
contain the QCT offset, OU number, channel priority,
and IOM queue address for the device being varied
on. This information is used to update internal tables
that are used during error event processing, FOB
timing, and OU task failure processing to identify
active OU numbers and locate the associated QCTs
and IOM queue addresses.

« Receives messages at vary-off time from the MSCP.
These messages are returned and any information
about the device is removed from the channel error
function internal tables.

« Sends read-event and start-channel commands to
the OU queue for processing by the OU task. These
commands cause the OU task to return a channel
hardware error event, a post event, or an event
handler error event.

Channel 1/0 Manager 21-3



21-4

Responds to events as follows:

— A start channel command i