

L - - - SY21-0889-5 - - -- - - - -- --- --- File No. S38-01 - - - ---- - --- - • -

IBM System/38

IBM System/3S
Vertical Microcode Logic Overviews and
Component Descriptions Manual

Sixth Edition (September 1985)

This is a major revision of, and makes obsolete, SY21-0889-4. X.25 data link
information was added as a new chapter in Chapter 34. Existing Chapters 34
through 37 are renumbered to accommodate this addition. All other changes or
additions to the text and illustrations are indicated by a vertical line to the left of
the change or addition.

This publication provides an overview of the vertical microcode components and a
description of the functions within the vertical microcode components. Use this
publication only for the purposes stated in About This Manual.

Any reference to an IBM licensed program in this publication is not intended to
state or imply that only IBM's licensed program may be used. Any functionally
equivalent program may be used instead.

Publications are not stocked at the address below. Requests for copies of IBM
Publications and for technical information about the system should be made to
your IBM representative or to the branch office serving your locality.

This publication could contain technical inaccuracies or typographical errors. Use
the Reader's Comment Form at the back of this publication to make comments
about this publication. If the form has been removed, address your comments to
IBM Corporation. Information Development, Department 245. Rochester.
Minnesota 55901. IBM may use and distribute any of the information you supply
in any way it believes appropriate without incurring any obligation whatever. You
may, of course. continue to use the information you supply.

©Copyright International Business Machines Corporation 1980, 1981. 1982. 1983.
1984. 1985

l

ABOUT THIS MANUAL . .
Purpose of This Manual
Organization of This Manual
If You Need More Information

VERTICAL MICROCODE OVERVIEW
Data Function.

Commit Management
Data Base Management
Independent Index Management
Journal Management . .',
Queue Management
Space Object Management

Internal Machine Function
Storage Management (Auxiliary and Main)
Machine Index Management

Machine Support Function
Initialization /Termination Management
Machine Check Management. . . .
Machine Observation Management .
Service and Installation Management

Object Function
Authorization Management .
Context Management .
Recovery Initialization . . .

Program Control Function
Program Execution Management
Program Management .

Source/Sink Function
Instruction Processors
Machine Services Control Point.
I/O Managers
Source/Sink Data Areas. . .

Supervisor and Control Function .
Event Management . .
Exception Management
Process Management .
Resource Management

Common Function
RELATIONSHIP OF COMPONENTS

Alternate IMPL
Internal Microprogram Load . .
Vertical Microcode and the System/38

Instruction Set

DATA FUNCTION.
COMMIT MANAGEMENT
Introduction

Transactions Under Commitment Control
IMPL Recovery.
System/38 Instruction Support .
Journal Support
Cursor Support.
Data Space Support
Data Space Index Support .

Data Areas
Attached Commit Block Table
Commit Block

ix
ix
ix
ix

0-1
0-2
0-2
0-2
0-3
0-3
0-3
0-3
0-4
0-4
0-6
0-6
0-6
0-6
0-6
0-7
0-7
0-7
0-7
0-7
0-8
0-8
0-8
0-9
0-9
0-9
0-9

0-10
0-11
0-11
0-11
0-11
0-12
0-13
0-14
0-14
0-14

0-15

1-1
1-1
1-1
1-1
1-2
1-3
1-4
1-5
1-6
1-6
1-7
1-7
1-8

Contents

Commit Key Index
Structure

DATA BASE MANAGEMENT
Introduction

Data Sharing.
Load/Dump and Suspend
Data Base Management Recovery and IPL

Data Areas
Data Space
Data Space Index
Key Specification Area
User Exit Selection
Creating a DS Index from an Existing DS Index
Cursor
In-Use Table

Structure

INDEPENDENT INDEX MANAGEMENT
Introduction

Create Independent Index
Destroy Independent Index
Find/Remove Indeplmdent Index Entry
Insert Independent Index Entry
Materialize Independent Index Attributes.
Modify Independent Index

Data Areas
Independent Index
Index Description Template

Structure

JOURNAL MANAGEMENT
Introduction

Apply Journaled Changes
Create Journal Port .
Create Journal Space .
Destroy Journal Port .
Destroy Journal Space
Journal Data
Journal Object
Materialize Journal Port Attributes
Materialize Journal Space Attributes
Materialize Journaled Object Attributes
Materialize Journaled Objects
Modify Journal Port. . .
Retrieve Journal Entries .
Load/Dump and Suspend
I PL Recovery. . .
I PL Synchronization . . .

Data Areas
System-Wide Journal List
Object Recovery List

Structure

QUEUE MANAGEMENT
Introduction

Recovery
Data Areas .

1-9
1-9

2-1
2-1
2-2
2-4
2-6
2-7
2-8

2-12
2-15
2-22
2-22
2-23
2-27
2-28

3-1
3-1
3-2
3-2
3-3
3-4
3-4
3-4
3-4
3-4
3-5
3-5

4-1
4-1
4-5
4-5
4-5
4-6
4-6
4-6
4-6
4-6
4-6
4-7
4-7
4-7
4-7
4-7
4-7
4-8
4-8
4-8
4-9
4-9

5-1
5-1
5-2
5-2

Contents iii

Queues
Message Elements

Structure

SPACE OBJECT MANAGEMENT
Introduction

Create Space
Materialize Space Attributes
Modify Space Attributes. .
Destroy Space
Dump Space Management.

Data Areas ...
Space Object

Structure

INTERNAL MACHINE FUNCTION
AUXILIARY STORAGE MANAGEMENT
Introduction

Invoking ASM Functions.
Space Accounting
Access Group Processing
Non-Access Group Processing
ASM Locks
Auxiliary Storage Initialization
Storage Management Shutdown
Directory Recovery

Data Areas
Access Group . . .
Free Space Directory
Permanent Directory
Temporary Directory
Access Group Member Directory
Access Group Table of Contents
Storage Management Vector Table
Sector Headers .

Structure

MAIN STORAGE MANAGEMENT
Introduction

MSM Paging Function
Paging Function Tasks
Bring/Purge Access Group
Exchange Bring/Clear. .
MSM Locks
Main Storage Initialization

Data Areas
Access Group .. .
Permanent Directory
Temporary Directory
Access Group Member Directory
Access Group Table of Contents
Lookaside Directory .
Static Directory.
Primary Directory
Storage Management Vector Table
Sector Headers.
Paging Request Element.
Storage Pools
Storage Queues (Search and Change)

Structure

MACHINE INDEX MANAGEMENT
Introrjuction

iv

I ndex Structure.
Operations on Machine Indexes

5-2
5-3
5-3

6-1
6-1
6-1
6-1
6-1
6-2
6-2
6-3
6-3
6-4

7-1
7-1
7-1
7-2
7-3
7-3
7-4
7-6
7-7
7-7
7-7
7-9
7-9
7-9

7-10
7-10
7-11
7-12
7-13
7-13
7-13

8-1
8-1
8-1
8-2

8-11
8-11
8-12
8-13
8-14
8-14
8-14
8-14
8-14
8-14
8-14
8-14
8-15
8-15
8-15
8-15
8-16
8-16
8-17

9-1
9-1
9-2
9-4

Data Areas
Index Control Block

Structure

MACHINE SUPPORT FUNCTION
INITIALIZATION/TERMINATION MANAGEMENT
Introduction

Initial Microprogram Load . .
Initial Program Load
Terminate Machine Processing

Data Areas
VMC Communications Area (YYVCA)
Machine Initialization Status Record (YYMISR)
Object Recovery List

Structure

MACHINE CHECK MANAGEMENT
Introduction
Data Areas

Machine Check Logout Buffer (RTMCLB1)
Machine Check Queue
Machine Check Queue Element (RTMCQE1)

Structure

MACHINE OBSERVATION MANAGEMENT.
Introduction

Materialize System Object .
Materialize Pointer
Materialize Pointer Locations
Trace Instructions
Cancel Trace.
Trace and Cancel Trace Invocations
Materialize Invocation
Materialize Instruction Attributes

Data Areas ..
Trace Table

Structure ...

SERVICE AND INSTALLATION MANAGEMENT.
Introduction
Structure

OBJECT FUNCTION
AUTHORIZATION MANAGEMENT
Introduction

Authorization Enforcement
Recovery

Data Areas
User Profile . .
System Pointer .
Process Control Block .
Invocation Control Block.
User Profile Recovery

Structure

CONTEXT MANAGEMENT
Introduction

Data Pointer Resolution
Recovery

Data Areas
Contexts
Name Resolution List
Encapsulated Program Architecture Header
Machine Communication Area
Process Control Block.

9-6
9-6
9-7

10-1
10-1
10-1
10-1
10-3
10-6
10-6
10-6
10-6
10-7
10-7

11-1
11-1
11-3
11-3
11-3
11-3
11-3

12-1
12-1
12-1
12-1
12-1
12-1
12-2
12-2
12-2
12-2
12-2
12-2
12-2

13-1
13-1
13-1

14-1
14-1
14-1
14-2
14-2
14-3
14-3
14-4
14-4
14-4
14-4
14-5

15-1
15-1
15-1
15-1
15-2
15-2
15-6
15-6
15-6
15-6

J

Task Dispatching Element
Structure

RECOVERY INITIALIZATION
Introduction
Structure

PROGRAM CONTROL FUNCTION
PROGRAM EXECUTION MANAGEMENT.
Introduction

Program Activation . .
Program Invocation . .
Program De-activation
Invocation Destruction

Data Areas
Process Automatic Storage Area
Process Static Storage Area

Structure

PROGRAM MANAGEMENT
Introduction

Program Creation . . .
Program Materialization
Program Destruction
Program Observability

Data Areas
Program Template
Encapsulated Program .

Structure

SOURCE/SINK FUNCTION
ADVANCED PROGRAM-TO-PROGRAM
COMMUNICATIONS STATION I/O MANAGER

Introduction
System/38 Instruction Support .
SNA Support
I/O Support .
Error Logging

Data Areas ...
Network Architecture Control Block
Logical Unit Name Table
Mode Table
Half-Session Control Block
Conversation Control Block
Conversation Identifier

Structure

BINARY SYNCHRONOUS COMMUNICATIONS
I/O MANAGER

Introduction
Data Areas

Link Control Block
Service Order Table .
Controller Description Table
Operation Request Element

Structure

CHANNEL I/O MANAGER
Introduction

Start/Halt Device Function.
Channel Event Processing Function

Data Areas
Channel Error Message
Channel Vary On/Off Message.

Structure

15-6
15-6

16-1
16-1
16-2

17-1
17-1
17-1
17-1
17-2
17-3
17-3
17-3
17-3
17-5
17-7

18-1
18-1
18-1
18-4
18-4
18-4
18-5
18-5
18-5
18-7

19-1

19-1
19-1
19-4
19-6
19-8
19-9
19-9
19-9

19-10
19-10
19-11
19-11
19-11
19-11

20-1
20-1
20-6
20-6
20-6
20-6
20-6
20-7

21-1
21-1
21-1
21-3
21-7
21-7
21-7
21-7

ERROR LOG
Introduction
Data Areas.

Error Log Request
Error Log

Structure

INSTRUCTION PROCESSORS
Introduction

Create Instruction Processors
Materialize Instruction Processors .
Modify Instruction Processors . .
Destroy Instruction Processors . .
Request I/O Instruction Processor

Data Areas
Logical Unit Description (ZZSILUOB)
Controller Description (ZZSICDOB)
Network Description (ZZSINDOB) .
OU/ND Table (ZZSSOUND)

Structure

SYNCHRONOUS DATA LINK CONTROL PRIMARY
AND SECONDARY I/O MANAGERS

Introduction
System/38 Instruction Support .
Connect
Contact for SDLC Primary . .
Contact for SDLC Secondary .
Discontact .
Test
Normal Flow
SDLC Autopoll Flow
Vary Off
Error Flow .. .
Read Data Store
Internal Trap . .

Data Areas
Link Control Block
Machine-Wide Storage
SDLC (Synchronous Data Link Control)

I nput Areas. . . .
Service Order Table .

Structure

LOCAL I/O MANAGER
Introduction

Internal Cleanup Routine.
Data Areas
Structure

Console Local 10M . . .
Diskette Magazine Drive Local 10M
MFCU Local 10M.
3410/3411 Magnetic Tape Local 10M .
3430 Local 10M
3262/5211 Printer Local 10M
3203 Printer Local 10M . .

LOAD/DUMP MANAGEMENT
Introduction

Request I/O Instruction Processing
Loading Objects From a Dump Space
Modify Logical Unit Description Processing
Error Handling
Storage Management for Load/Dump.
Device 10M

22-1
22-1
22-1
22-1
22-2
22-2

23-1
23-1
23-1
23-1
23-1
23-1
23-1
23-3
23-3
23-3
23-4
23-4
23-5

24-1
24-1
24-2
24-6
24-9
24-9
24-9

24-10
24-10
24-12
24-13
24-13
24-14
24-14
24-15
24-15
24-15

24-15
24-16
24-16

25-1
25-1
25-5
25-6
25-6
25-6
25-7

25-11
25-12
25-14
25-18
25-20

26-1
26-1
26-4
26-6
26-6
26-9
26-9
26-9

Contents v

Data Areas
Session Control Block. .
Dump Network Message
Dump Object Message
Load Network Messages
Load Object Message . .
Recoverable Error Processing

Structure

MACHINE SERVICES CONTROL POINT
Introduction

Modify Controller Description (Synchronous)
Modify Logical Unit Description (Synchronous)
Modify Network Description (Synchronous)
Modify Controller Description (Asynchronous)
Asynchronous Message Handling

BSC/MTAM Automatic Recovery Task (BART)
Data Areas

Source/Sink Active Device List.
BART Control Block

Structure

MULTI-LEAVING TELECOMMUNICATIONS ACCESS
METHOD I/O MANAGER

Introduction
Data Areas

Link Control Block
Service Order Table (SOT)

Structure

NATIVE I/O MANAGER
Introduction

System/38 Instruction Support .
SNA Support
Session Control
I/O Support . .

Data Areas
Controller Description
Logical Unit Description
Native Control Block
Routing Table
Lookaside Table
Operation Request Element and Program

Operation Block
Function Operation Block
Source/Sink Data Areas.

Structure

SECONDARY STATION I/O MANAGERS
Introduction

System/38 Instruction Support .
SNA Support
I/O Support .
Error Logging

Data Areas ...
Network Architecture Control Block
Logical Unit Name Table
Mode Table
Half-Session Control Block
Conversion Control Block

Structure

PRIMARY STATION I/O MANAGER.
Introduction

System/38 Instruction Support ..

vi

26-10
26-10
26-11
26-11
26-11
26-12
26-12
26-13

27-1
27-1
27-2
27-5
27-6
27-7
27-9

27-25
27-25
27-25
27-26
27-27

28-1
28-1
28-7
28-7
28-7
28-8

29-1
29-1
29-3
29-4
29-6
29-7
29-9
29-9
29-9

29-10
29-10
29-11

29-11
29-11
29-11
29-11

30-1
30-1
30-4
30-5
30-8
30-9
30-9
30-9

30-10
30-10
30-10
30-10
30-11

31-1
31-1
31-3

SNA Support
I/O Support
Error Logging

Data Areas
Station Control Block
Routing Table
3270 Host Field Format Table
Frame Slot
Buffer Control List
Output Request Message

Structure .

SYSTEM CONTROL ADAPTER I/O MANAGER
Introduction
Data Areas

User Message for SCA 10M
Function Address Table

Structure .

3270 EMULATION MANAGEMENT
Binary Synchronous Communications I/O
Manager for 3270 Emulation

3270 Emulation Translation Function
Data Areas

Operation Request Element
Link Control Block
Service Order Table.
Service Order Table Address Table
Poll/Select List.
Session Line Buffer

Structure .

X.25 I/O MANAGER
Introduction
Data Areas

Link Control Block (LCB)
Service Order Table (SOT)
SOT Address Table
Request Table
Receive Buffers
Transmit Operation Request Elements (ORES)
Trap Table.
Valid Send/Receive Messages

Structure .

SUPERVISOR AND CONTROL FUNCTION
EVENT MANAGEMENT
Introduction

Monitor Event . . .
Enable Event Monitor
Disable Event Monitor .
Test Event
Wait-on-Event. . .
Retrieve Event Data .
Cancel Event Monitor
Signal Event
Modify Process Event Mask
Recovery

Data Areas
Monitor Event Template
Event Index
Signal Event Messages
Process Control Block (Nonresident)
Process Control Block (Resident) . .

.....

31-4
31-5
31-6
31-6
31-6
31-7
31-8
31-8
31-8
31-8
31-8

32-1
32-1
32-4
32-4
32-5
32-5

33-1

33-1
33-5
33-6
33-6
33-6
33-6
33-6
33-7
33-7
33-7

34-1
34-1
34-3
34-3
34-4
34-4
34-4
34-4
34-4
34-5
34-6
34-7

35-1
35-1
35-1
35-1
35-2
35-2
35-2
35-2
35-2
35-2
35-2
35-3
35-4
35-4
35-4
35-4
35-4
35-4
35-4

J

J

L

Task Dispatching Element
Structure

EXCEPTION MANAGEMENT
Introduction

First-Level Exception Handler
Second-Level Exception Handler
Third-Level Exception Handler

Data Areas
CSEH Request Block

Structure

PROCESS MANAGEMENT
Introduction

Create Process Control Space
Destroy Process Control Space
Initiate Process. . :
Materialize Process Attributes
Modify Process Attributes
Suspend Process . .
Terminate Instruction
Resume Process .
Terminate Process
Create Task .
Destroy Task. . .

Data Areas
Process Control Space
Process Definition Template

Structure

RESOURCE MANAGEMENT
Introduction

Machine Support Functions
Object Serialization .
Timer Services
Process Interruption. . . .
Multiprogramming Level Support
Resource Management Service Task
Resource Management Attribute Control
Access Group Control

Data Areas
Access Group
Clock Comparator Data Area (#RMCCDX)
Hold Hash Table . . .
Hold Record Area
Lock/Unlock Input Area
Lock-Wait Data Area (#RMLKDX)
Seize/Release Input Area
Seize-Wait Data Area (#RMSZDX)

Structure

APPENDIX A. COMMON FUNCTION
Machine-Wide Storage
Destroy Object (#CFDESTO)
Get Space from IWA (#CFGIWA)
Free Space from IWA (#CFFIWA)
Object Checker (#CFOCHKR) ..
Report Object on Object Recovery List (#CFLOGRL)

GLOSSARY.

INDEX ...

35-4
35-5

36-1
36-1
36-4

36-10
36-14
36-17
36-17
36-18

37-1
37-1
37-4
37-4
37-4
37-5
37-5
37-5
37-6
37-6
37-7
37-9
37-9

37-10
37-10
37-10
37-11

38-1
38-1
38-1
38-3

38-11
38-12
38-17
38-22
38-22
38-25
38-28
38-28
38-30
38-30
38-30
38-30
38-31
38-31
38-31
38-32

A-1
A-1
A-1
A-2
A-2
A-2
A-2

8-1

X-1

Contents vii

J

viii

PURPOSE OF THIS MANUAL

This manual when used with the publications listed
under If You Need More Information is designed to aid
the IBM program support representative (PSR) to isolate
a malfunction in the System/38 vertical microcode
(VMC). It is assumed that the PSR has a thorough
knowledge of the operation of VMC. The intent of this
publication is to provide an overview of the components
in VMC and a description of the functions within VMC
components for recall and review purposes.

ORGANIZATION OF THIS MANUAL

VMC consists of a group of components that implement
the System/38 instruction set and provide various
controls and functions required to support system
operation. This manual contains an introductory section
to VMC, a section for each of the VMC components,
and an appendix that describes the common functions
that cannot be related to a component. The sections
that describe the VMC components are grouped
according to overall system function as described under
Vertical Microcode Overview.

About This Manual

IF YOU NEED MORE INFORMATION

This manual should be used with the following
pu blications:

• IBM System/38 Functional Concepts Manual,
GA21-9330

• IBM System/38 Functional Reference Manual,
Volumes 1 and 2, GA21-9331, GA21-9800

• IBM System/38 Internal Microprogramming
Instructions, Formats, and Functions Reference Manual,
SC21-9037

• IBM System/38 Diagnostic Aids, SY21-0584

• IBM System/38 Service Guide, SY31-0523

• IBM System/38 System Control Adapter
Theory-Maintenance, SY31-0527

About This Manual ix

J

J

x

Vertical microcode (VMC) consists of a set of routines
that implement the machine instruction set and provide
various controls and functions required to accomplish a
user or system task. The operations of some VMC
functions, such as those that implement machine
instructions, are visible to the user. Other VMC
functions, such as those that manage the use of main
and auxiliary storage, are not directly visible to the user.

The primary functions of VMC are categorized as
follows:

• Data Function: Those routines that provide
manipulation of user data.

• Internal Machine Function: Those routines that
manage main and auxiliary storage and manipulate
the internal indexes used by other VMC functions.

• Machine Support Function: Those routines that
configure, initialize, and terminate machine
processing.

• Object Function: Those routines that control
addressability and access to objects.

Vertical Microcode Overview

• Program Control Function: Those routines that put a
user program template into executable form and
initialize the program prior to its execution.

• Source/Sink Function: Those routines that process
operations involving input/output devices.

• Supervisor and Control Function: Those routines that
establish a process and monitor the execution of
processes.

• Common Function: Those routines that perform a
variety of operations as required by other VMC and
system functions.

The modules that perform these functions are grouped
into sets that provide support in a specialized area.
These sets of modules are called components. The
VMC functions and their components are shown in
Figure 0-1.

Vertical Microcode Overview 0-1

Function Component

Data Commit Management
Data Base Management
Independent Index Management
Journal Management
Queue Management
Space Object Management

Internal Auxiliary Storage Management (ASM)
Machine Main Storage Management (MSM)

Machine Index Management

Machine Initialization /Termination Management
Support Machine Check Management

Machine Observation Management
Service and Installation Management

Object Authorization Management
Context Management
Recovery Initialization

Program Program Execution Management
Control Program Management

Source/ Advanced Program - To- Program
Sink Communications Station I/O

Manager (10M)
Binary Synchronous Communications

I/O Manager (10M)
Channel I/O Management (10M)
Error Log
Instruction Processors
Local I/O Managers (lOMs)
Load/Dump Management
Machine Services Control Point (MSCP)
MULTI-LEAVING Telecommunications

Access Method I/O Manager (10M)
Native I/O Management (10M)
Primary Station I/O Management (10M)
Secondary Station and Synchronous

Data Link Control I/O Management
(10M)

Synchronous Data Link Control
I/O Manager (10M)

X.25 Communications
I/O Manager

System Control Adapter I/O
Management (SCA 10M)

3270 Emulation Management

Supervisor Event Management
and Control Exception Management

Process Management
Resource Management

Figure 0-1. Functions and Components in VMC

0-2

DATA FUNCTION

Commit Management

Commit management provides the capability to group
changes to an object or set of objects within one
process so the changes appear to be made
simultaneously even if a system or process failure
occurs before all changes are made.

Additional capability of commit management is to
withdraw changes from an object or set of objects
within one process and reposition the cursors to the last
point where changes were committed.

Data Base Management

Data base management functions store, retrieve, update
and delete data in the data base.

A data base is an area where online user data is stored
and organized. Data base management functions
manipulate user data and provide multiple views of the
data.

Multiple views of the same data can be provided for
different applications. These functions also provide for
the integrity and security of data. Security is provided
through the supported interfaces and authorization
management of user access to the data. Integrity is
provided through enforcing user-defined field
descriptions.

Data stored in a data base is contained in system
objects called data spaces. Each record within a data
space is called an entry. All entries within a given data
space have the same format. An entry can consist of a
single field or an ordered collection of fields. Entries in
a data space can be accessed in the sequence that they
were added to the data space or in a sequence using
keys.

A data space index is a system object used to access
one or more data spaces through keys. A single index
can cover multiple data spaces. The key can be either
one field of an entry or multiple fields of an entry as
specified by the user.

J

L

A cursor is a system object used to provide
addressability into a data space. A cursor also provides
mapping tables used to provide multiple views of the
entries in 'a data space.

Independent Index Management

Independent index management uses a system object
called an independent index. Independent indexes
provide a means of storing and retrieving data by
content and relative order. Independent index
management supports the instructions used to insert,
delete, and find index entries according to a variety of
rules associated with the instructions.

Journal Management

Journal management is used to record changes made to
an object along with descriptive information about the
object. These changes may be simultaneously recorded
on two journal spaces so, if one journal space is
damaged, the information can be retrieved from the
undamaged journal space. The journal, which consists
of the journal port and the journal space(s}, and the
journaled object are automatically synchronized during
IPL. This also synchronizes the journaled object with all
other objects being journaled through the same journal
port.

The user can place entries on the journal space, along
with the entries for object changes, and retrieve the
entries by a variety of search criterias.

Queue Management

Queue management allows concurrently executing
processes to pass information among the processes.

A queue provides a common object that one or more
processes can send information to and receive
information from. Information sent to a queue is
contained in a message. The sending operation is an
enqueue operation. The operation that attempts to
remove a message from a queue is a dequeue
operation. Queues can accept a message that contains
a key used to identify or sequence the messages.

Messages can be processed in first-in-first-out,
last-in-first-out, or keyed sequence. Two basic types of
dequeue operations are supported:

• Dequeue

• Dequeue or branch

Processes issuing a dequeue operation are placed in a
wait state if the queue is empty or if there are no
messages of the specified key on the queue. The
dequeue or branch operation allows a process to
continue processing at a specified point if no message is
received from the queue. A process can specify a limit
to the length of time it is to wait on a queue for a
message. When multiple processes are waiting on a
queue for a message, the message is given only to the
first process that accepts it.

Space Object Management

Space object management provides the function used to
create, materialize, modify, and destroy space objects.
Space objects are used to contain any type of data.
Certain special spaces are related to the execution of
user programs. The spaces are explicitly created just as
any other object, but are processed in unique ways by
program execution management. Explicit creation occurs
when an executing program issues a Create Space
Object instruction.

A space object can be extended, truncated, copied,
initialized, suspended, and destroyed through
System/38 instructions. Space object attributes can be
materialized and modified.

Vertical Microcode Overview 0-3

INTERNAL MACHINE FUNCTION

Storage Management (Auxiliary and Main)

Storage management enables a program to access
another program, VMC data object, and other user
objects as if they were residing in a single address
space. The space is addressable through 6-byte virtual
addresses. The programs and objects are permanently
stored on auxiliary storage that consists of
nonremovable disk units. These programs and objects
can be executed or manipulated only when they (or a
portion of the programs and objects) are in main
storage. Storage management allocates and maintains
data on auxiliary storage and provides copies of this
data in main storage as required.

Storage management consists of two components:

• Auxiliary storage management (ASM) that allocates
storage, maintains directories, and maps virtual
addresses to auxiliary storage locations. ASM also
manages space allocation for access groups.

• Main storage management (MSM) that transfers data
(including access groups) to and from main storage
and manages storage resources (pages).

Storage management services such as page transfers,
access group manipulations, and partitioning of storage
into storage pools are invoked by the resource
management routines.

Following are the units of storage used by storage
management:

Page: A 512-byte block of storage. This is the basic
unit for storage management operations.

Sector: A 520-byte auxiliary storage record that
contains a page and an 8-byte storage management
header.

Segment: A contiguous address space that contains up
to 128 pages (64 K bytes).

Segment Group: An address space that can contain up
to 256 consecutive segments (16 MB).

0-4

There are two types of segment groups:

• Permanent: A segment group that exists until it is
explicitly destroyed.

• Temporary: A segment group that is automatically
destroyed at initial microprogram load (lMPL).

Access Group: An access group is a system object that
collects temporary objects into a group that can be
operated on as a single unit by storage management.
An access group is created with a segment identifier
and is allocated a block of contiguous space on auxiliary
storage. Other system objects can be allocated within
this block, each object having an identifier allowing each
object to be accessed individually. However, special
directory information enables storage management to
transfer all objects within the access group to and from
main storage as a single unit.

Virtual Storage Addressing

Several different types of addresses exist in the
System/38. The machine processor supports only a
6-byte address that contains the following:

• Segment identifier (4 bytes)

• Offset into the segment (2 bytes)

VMC views this address as follows:

• Segment group identifier (3 bytes)

• Offset into the segment group (3 bytes)

Because the machine processor supports only a 2-byte
offset, VMC must process overflows into the segment
identifier. This is done explicitly by calculating the offset
or implicitly by invoking the effective address overflow
exception handler.

One bit of the segment group identifier indicates if the
segment group is permanent or temporary. A second bit
indicates if the segment group is allocated within an
access group. The remaining 22 bits are used to identify
the segment group.

J

When a segment group is created, storage management
assigns an a-byte address to the new segment group.
This address consists of the following:

• Segment group extender (2 bytes)

• Segment group identifier (3 bytes)

• Offset into the segment group (3 bytes)

The segment group extender is a 2-byte extension to
the 6-byte VMC address. The extender together with
the 3-byte segment group number forms a 5-byte
identifier that is assigned only once during the life of the
machine. The 3-byte segment group identifiers are
assigned sequentially until hex 3FFOClO, at which time
the segment group extender is incremented and the
address regeneration routine must be executed. At any
one time, each 3-byte segment group identifier in the
system is unique, although once the corresponding
segment group is destroyed, the identifier is available for
reassignment.

The segment group extender is used only by VMC
routines. When an object is accessed by a pointer
instruction, the extender in the object header is
compared with the extender in the 16-byte system
pointer. If they do not match, the pointer is invalid (the
pointer in this case is an old pointer to a destroyed
segment with a reassigned segment identifier). The
extender is not used for internal VMC addresses
because these addresses are checked for validity and
written with a special identifier if they are no longer in
use.

Each segment group in main storage begins with a
32-byte header. The contents of this header are as
follows:

• Segment group type (1 byte)

• Flag byte (1 byte)

• Size (2 bytes)

• Extender (2 bytes)

• Object base segment address (6 bytes)

• Reserved (14 bytes)

• Space locator (6 bytes)

The flag contains the object existence bit. This bit is
used to reclaim unused storage if a system failure
occurs when an object is being created. The existence
bit is set to 0 by a create segment operation. Any
module that invokes the create segment group function
to create a permanent object sets this bit to 1 and
writes the first page of the object to auxiliary storage
after the object is created. Any module that creates a
temporary object also sets this bit to 1 but does not
write the object to auxiliary storage because temporary
objects are not recovered after a system failure. As part
of recovery after a system failure, any segment group
that does not have the existence bit set to 1 is
destroyed.

As part of object creation, the creating module also
stores the address of the primary segment group of an
object in the header of each segment group of the
object. An object that consists of a single segment
group points to itself. As a part of the reclaim function,
any segment group that points to a nonexistent primary
object is also destroyed. This ensures that all segments
of a multisegment object are destroyed in the event of a
system failure that occurred during object creation.

Vertical Microcode Overview 0-5

Machine Index Management

Machine index management provides an indexing
function that is used by other VMC components.
Machine indexes consist of binary radix trees that are
used to store and retrieve data. Machine index
management provides a variety of functions that allow
other VMC components to insert, retrieve, and remove
entries from a machine index.

MACHINE SUPPORT FUNCTION

Initialization/Termination Management

The initialization function of VMC is used to put the
system into a state in which instructions can be
executed. The IMPL function is activated using the
machine power-on sequence or the system console.
Once the machine has been initialized, the
machine-to-programming transition function provides
the user of the machine interface with the capability of
initiating a user process. User processes can be initiated
from the data that exists either on the primary
load/dump device or within the machine on auxiliary
storage.

The terminate machine processing function provides the
user of the machine interface with the capability of
destroying all processes in the machine and of either
turning off the machine power or putting the machine
into a checked-stop state.

0-6

Machine Check Management

Machine check management provides the functions that
report machine malfunctions to the machine interface
through function check exception, machine check
exceptions, and machine check events. The functions
performed in machine check management are as
follows:

• Initiate recovery where possible

• Record machine malfunctions

• Signal malfunctions to the machine interface

• Signal that machine execution is terminated

When a malfunction occurs, the machine saves related
data, reactivates the user processes that were active at
the time of the failure, and signals the malfunction to
the machine interface as an exception or an event.
Execution of the instruction in progress at the time of
the machine check does not complete and the user
handles the exception in the same manner as any other
exception.

If the malfunction is unrecoverable, machine execution
terminates and indicators on the operator/service panel
come on to indicate the condition.

A process must monitor the function or machine check
exception if the process is to be notified of either a
function or a machine check that occurred in the
execution of a System/38 instruction.

Machine Observation Management

Machine observation management provides the
functions to observe the activity of the machine.
Observation is provided at the machine interface through
the use of trace and materialize instructions. These
instructions can monitor the execution of programs and
observe the execution of System/38 instructions.

J

The functions provided by machine observation
management are as follows:

• Trace the execution sequence of a user process by
monitoring calls and returns.

• Trace the execution sequence of a user program by
monitoring instruction execution.

• Materialize the addressability of pointers.

• Materialize information about system pointers.

• Materialize the current assignment of program
objects.

• Materialize the location of pointers in a space.

Service and Installation Management

Service and installation management is used in problem
determination and to modify or configure the machine
attributes. The functions provided are as follows:

• Display/alter/dump

• Virtual storage stand-alone dump

• VMC trace

• Print stand-alone dump

• Address stop/instruction step

• Machine configuration update facility

• Auxiliary storage initialization

• Link/loader

• VMC error log facilities

Refer to the System/38 Diagnostic Aids manual for
information concerning the use of these functions.

OBJECT FUNCTION

Authorization Management

Authorization management provides the functions
defined through the machine interface to control the use
of user objects, system resources, and privileged
System/38 instructions.

A user profile is the collection point for authorization
related information that is defined at the machine
interface and monitored by VMC. Security functions
provided above the machine interface are monitored by
VMC.

Every process in the system executes under control of a
user profile. This allows both VMC and Control Program
Facility (CPF) to monitor the activities of each executing
process. The information in the user profile sets limits
as to what the executing process can and cannot do. A
given user profile can be unique to one user or can be
shared among several users.

Context Management

Context management is used to store addressability to
objects in the system and to transform a reference by a
symbolic name into an address. Addressability to a
system object can be placed in a context such that the
context can be used to locate the system object using a
symbolic address. The symbolic address of an object
used for context addressing consists of an object type,
subtype, and name. The symbolic address of each
object addressed by a single context must be a unique
address within that context.

Recovery Initialization

Recovery initialization is a recovery common function
used by VMC components to recover objects at IMPL
time. Recovery initialization builds a machine index with
an entry for every base segment of an object and every
secondary segment for multiple segment objects.
Recovery initialization also builds an index containing
every user profile. This index is used by authority
initialization. Recovery object read does selective finds
on the base segment index allowing base segments
and/or secondary segments to be retrieved by object
type or secondary segment type.

Vertical Microcode Overview 0-7

PROGRAM CONTROL FUNCTION

Program Execution Management

Program execution management controls the
synchronous execution of instructions within translated
programs. This is accomplished through a call/return
instruction set that standardizes interprogram linkages
and allows applications to be built from a combination
of high-level language programs, compiled control
language programs, and programs coded using the
System/38 instruction set (program templates).

The Call and Return instructions provide a common
linkage convention (saving and restoring of registers,
and so on) between any compiled high-level language
program, compiled control language programs, and
program templates. Because high-level languages and
control language programs are compiled into a program
template, their calls and returns are compiled into a
common call/return interface. Call and Return
instructions are the only means of transferring control
between separate (external) programs within a process;
control can be transferred between inline (internal)
programs using other instructions (Branch, Call Internal).

Program activation consists of putting the program into
an executable state within a process. The results of
program activation are the allocation and initialization of
static storage areas in the program. Program invocation
causes the flow of control within the process to be
passed to the entry point of the instruction stream
where execution is to begin. The results of program
invocation are the suspension of the execution of the
invoking program and the allocation and initialization of
the automatic storage defined in the invoked program.

0-8

Program execution management also provides a program
activation function. An activation is a logical copy of the
static objects of a program. An activation is established
explicitly by an Activate Pr09ram instruction and
implicitly during the invocation of a program that has not
been activated.

The logical objects in an invocation include activation
addressability, automatic object (program objects
allocated at invocation and deallocated at return).
exception handling specifications, and the call/return
relationship specifications. Invocations are created
through a call, transfer control, event detection,
exception detection, initial program in a process phase,
or a data base user exit program.

Program Management

Program management provides the functions that are
used to create executable programs, materialize the
attributes of a created program, and destroy created
programs. The create function consists of converting the
program template that is received through the machine
interface into a form that is executable in the system.
This function, called translation or encapsulation, syntax
checks the program template, generates a system object
called a program, returns diagnostic information as
required, and returns a system pointer to the generated
program system object.

The materialize function returns a copy of the input
program template. The destroy function removes
addressability to the created program and frees the
resources associated with the program to be destroyed.

SOURCE/SINK FUNCTION

Instruction Processors

Instruction processors provide support for the
System/38 instructions that operate on the following
objects:

• Logical unit descriptions (LUDs)

• Controller descriptions (CDs)

• Network descriptions (NOs)

• Request I/O response queue

These processors support instructions that create,
materialize, modify, and destroy the preceding objects
and the Request I/O instruction.

Machine Services Control Point

Machine services control point (MSCP) supports other
source/sink functions by allocating and controlling all
source/sink resources. Services include establishing
physical and logical paths over which a user can
communicate with an input/output device, allocating
queues, and creating the tasks necessary to establish a
session with a device.

I/O Managers

I/O managers (lOMs) interface with the horizontal
microcode (HMC) tasks associated with the physically
attached I/O devices. 10Ms are either device or
function-dependent and execute as VMC tasks. Both
the routines and the tasks under which they execute are
referred to as 10Ms. There is an 10M for each I/O
device or I/O hardware capability as follows:

• Binary synchronous communications 10M (for binary
synchronous communications lines)

• Channel 10M (internal)

• Error log (internal)

• Synchronous data link control primary line 10M (for
synchronous data link control communications lines)

• Synchronous data link control secondary line 10M (for
synchronous data link control communications lines)

• Local 10M (for console, printer, card, diskette, and
tape devices)

• Load/dump (for load/dump operations)

• MULTI-LEAVING telecommunications access method
10M

• Native 10M (for locally attached work stations)

• Synchronous data link control secondary or APPC
station 10M (for systems network architecture
[SNA))

• Synchronous data link control primary station 10M
(for remotely attached work stations)

• System control adapter 10M (internal)

Vertical Microcode Overview 0-9

Source/Sink Data Areas

Source/sink components use several common data
areas for communications with other components. A
description of these areas is provided here instead of
with the individual source/sink components to eliminate
duplication.

Machine Configuration Record (MCR): The MCR contains
information about the physical devices that are locally
attached on a given machine. The MCR is built during
machine manufacture and is updated whenever devices
are installed or removed from the system. Source/sink
components use the MCR to determine how such fixed
resources as I/O registers and channel priority are
allocated to the devices. The MCR resides in a
preallocated segment built at installation time.

Source/Sink Active Device List: The source/sink active
device list is a dynamically built control block used and
controlled by the MSCP. It contains information about
the current status of all active devices. It is also used to
record the allocation of system resources such as tasks.
queues. and switched network lines. The source/sink
active device list has a base that resides in a
preallocated segment built at installation time.

Source/Sink OU/NO Table: The source/sink OU/NO
table is a control block used by the source/sink
instruction processors to keep track of how many NOs
exist for each OU and which NO(s) are varied on or in
diagnostic mode. The Create NO instruction uses the
table to determine if another NO can be created. The
Modify NO instruction uses the table to check if an NO
can be varied on or set in diagnostic mode. Ouring
IMPL the table is built in a temporary segment. and its
address is placed in the source/sink active device list.

Feedback Record: The feedback record is the message
that is enqueued to the appropriate user response queue
to signal the completion of a function that had been
initiated by a Request I/O instruction. It contains a
return code or status indicators as well as
device-dependent data generated in response to the
associated request.

0-10

10M Queue: Each 10M has a single input queue on
which it receives requests to do work by Request I/O
instructions. responses from the operational unit (OU)
task. and control messages from other source
components. An 10M queue is allocated when the
corresponding 10M task is created and is always used
exclusively by that 10M task.

Operational Unit (OU) Queue: An OU queue is the input
queue on which an operational unit microtask receives
operation request elements (OREs) from the 10M. Each
OU queue serves a specific OU task.

Queue Control Table (QCT): The aCT is a data structure
in the machine nucleus that provides information to the
table-driven OU task. A aCT exists for each OU in the
system. The aCT contains the I/O register assignments
for the device and dynamic information to control the
OU task (for example. wait for the device to complete.
get the next command. and terminate the current
request). aCTs for all devices are allocated and built
from information in the MCR at link/load time.

Operation Request Element (ORE): An ORE is a
send/receive message used to request services from an
OU task. An ORE is built by an 10M and sent to an OU
queue. Functions requested include channel operations.
requests to be sent to the device adapter. and control
information.

Send/Receive Messages (SRM): An SRM is a general
term for all the messages sent between the components
that support the source/sink function. An ORE is an
example of one of these message types.

J

J

SUPERVISOR AND CONTROL FUNCTION

Event Management

Event management provides the functions that enable a
user to monitor for the occurrence of a set of events
and to take action based on the event or events that
occurred.

Events relate to and define occurrences that happen
within the machine. These events can be of importance
to a particular user application. Event management
allows a process to monitor for an event. The activity
being monitored can represent conditions both internal
and external to the monitoring process. That is, one
process can be monitoring conditions caused by the
same process or by other processes that can be
concurrently in the system.

Events are classed as machine-wide or process-only.
When a machine-wide event is signaled, an event
monitor index is searched to locate the processes that
are monitoring for the event. The process establishes a
monitor for an event before the event occurs when a
process-only event is signaled.

Events can be signaled either from a user process or
from the machine. User signaled events are generated
as a result of the System/38 Signal Event instruction.
These events are defined outside the scope of the
hardware and have no meaning to the hardware.
Monitoring of these events is based on user protocol.

Machine events are defined as part of the machine and
are detected and signaled by the machine. Machine
events are classed as either object-related or
machine-related. Object-related events are signaled
when an object has been created or destroyed, or when
the attributes of an object are modified.
Machine-related events are signaled when conditions
occur in the machine that are not directly related to a
system object (for example, machine resource limit
exceeded).

The intention to monitor for the occurrence of an event
is specified by establishing an event monitor within a
process. Event monitors describe to the machine what
event or condition is to be monitored and the action that
is to be performed when the event occurs.

Exception Management

Exception management provides the functions that
enable a user to monitor for the occurrence of an
exception and to process an exception when one occurs.

Exceptions are either errors that are detected by the
machine or conditions that are detected by user
programs. Exceptions detected by the machine occur as
a result of the execution of a System/38 instruction and
are signaled implicitly. Exceptions detected by a user
program occur as a result of some condition detected
within the program and are signaled explicitly by using
the Signal Exception instruction.

Exceptions are monitored through an exception
description. An exception description is a program
object that defines the exceptions that are to be
monitored and the action that is to be performed when
the exception occurs.

Process Management

Process management supports the structure that enables
the concurrent processing of work in the System/38.
This structure, called a process, enables programs to be
executed.

Process management initiates and terminates processes,
displays and modifies the attributes of processes, and
suspends and resumes the execution of processes. A
process can be independent or a subprocess
(dependent).

Vertical Microcode Overview 0-11

A user process is built as a result of an Initiate Process
instruction. This process is assembled from information
contained in the process definition template (PDT). The
main part of a process is the process control space
(PCS) that is created as a result of a Create Process
Control Space instruction. When a process is initiated, a
task dispatching element (TDE) is built on the first PCS
segment.

A process control block (PCB) is then built. The PCB
describes the process and is built in two parts. A
resident PCB is built in the first PCS segment. The
resident PCB contains fields that may have to be
referenced asynchronously by other processes. The
remainder of the PCB is built in the second segment.

The process invocation work area is then built in the
second segment following the PCB. The process
invocation work area is a block of storage, managed by
VMC as a stack, that is used for automatic storage
required by VMC routines and for the invocation control
blocks for all current program invocations under an
executing process.

A user process is the basic unit (task) of dispatchable
work in the system. Two other types of tasks exist in
the system:

• A microtask that executes HMC instructions. Such
tasks are normally associated with I/O devices.

• A VMC task that is created to perform work
asynchronous to user operations.

The microtask and VMC task are also supported by
process management.

0-12

Resource Management

Resource management controls the allocation and
management of the resources required during the
execution of processes in t~e system and calculates the
amounts of resources used by the processes. Resource
management controls the following types of resources:

• Storage

• Processor

• System objects (such as devices and data space)

Because several processes can be executing
concurrently (multiprogramming), the resources must be
controlled to manage contention for the Lise of resources
among the executing processes. Based on limits
established by the system administrator for the
processes in the system, resource management grants
the resources requested by processes within the limits
and priorities defined for a user environment.

Resource management can be viewed from several
levels. To the user above the machine interface,
resource management allocates objects to application
programs, provides storage and processor usage as
needed, and ensures the integrity of data and the
execution environment. To the CPF or the user control
program, resource management supports scheduling,
allocations, and the execution of processes. Within
VMC, resource management performs the immediate
distribution of resources to efficiently satisfy processing
demands.

J

J

J

Resource management is accomplished through control
and monitoring functions. Control functions are provided
through:

• System/38 instructions that:
Specifically request the allocation of resources
(locking instructions)
Control the overall level of work in the system and
distribute the resources (modify instruction)
Provide better use of storage resources (access
group and access state instruction)

• Process attributes that:
Affect the distribution of resources

- Limit the use of resources

• Object attributes that affect the performance of the
users of the object

Monitoring functions are provided through:

• System/38 instructions that provide information on
the use of and contention for resources
(materialization instructions)

• Process attributes that provide information relative to
the use and allocation of resources for a process

• Machine events that indicate that a user has
exceeded the specified resource limit

• Exceptions that indicate that a resource is not
available or that the use of a resource has exceeded
a specified limit

COMMON FUNCTION

Common function modules provide a variety of functions
for the VMC components. Most common function
modules that perform functions that are directly related
to an existing VMC component are described within that
component. Common function modules that cannot be
directly related to a VMC component are described in
Appendix A of this manual. Refer to the Contents for a
list of the functions described in the appendix.

Vertical Microcode Overview 0-13

Relationship of Components

VMC components are made operational as a result of an
alternate IMPL or an IMPL operation. The alternate
IMPL operation is a stand-alone operation that is used
to load the IMPL functions into the system from an
external device. Once the alternate 1M PL operation is
complete, the IMPL functions can be initiated to make
the system operational.

Note: For a detailed description of the alternate IMPL
and IMPL operations, refer to the System/38 System
Control Adapter Theory-Maintenance manual.

Alternate IMPL

The purpose of an alternate IMPL operation is to read
the contents of a diskette magazine, execute the test
and load operations contained on the diskette magazine,
initialize certain areas of main and auxiliary storage, and
establish a system capable of executing some functions.
This is accomplished by selecting alternate 1M PL on the
rotary switches on the service panel and starting a load
operation. This starts the execution of some microcode
instructions that are stored in read-only storage of the
system control adapter (SCA). These microcode
instructions cause the directory information, test
procedure, load procedures, and other microcode
procedures to be stored or executed in the system as
appropriate.

0-14

When the SCA microcode has completed, the service
monitor and the resident portion of the H MC are loaded
in the system. At this point. the system is capable of
executing some diagnostic functions and a set of VMC
functions. The VMC functions that can be executed
consist mainly of the following:

• MCR update: This function provides the capability of
modifying the MCR. The MCR defines the hardware
configuration of a system.

• Auxiliary storage initialization: This function initializes
auxiliary storage and builds the storage management
directory used to map auxiliary storage space.

• Link/loader: This function copies the microcode from
the diskette magazine to the area reserved for this
code during auxiliary storage initialization.

Internal Microprogram Load

The operation of IMPL is similar to alternate IMPL
except that the VMC nucleus is loaded instead of the
service monitor, and that the system is capable of
executing the System/38 instruction set at the end of
initialization.

Figure 0-2 shows a logical view of the main areas in the
VMC nucleus. The figure also shows that the task
dispatching queue (TOQ) contains a task dispatching
element (TOE) for storage management initialization. At
the end of the IMPL sequence, HMC dispatches this
queue and control is passed to the storage management
initialization routines. When these routines have
completed execution, VMC is fully functional and
capable of supporting the System/38 instruction set.

J

J

TDO

I TDE I
Available CRE Oueue (ACO)

I Call Return Elements (CREs)l

I r
Oueue Control Table

HMC Processor Overlay

Hold Hash Table

SVL Table

SVL Function 1
SVL Function 2

1 SVL Function n f
I/O Event Stack

Interval Timer Counter

Clock Comparator Counter

Hash Table

Primary Directory

Available TDEs

Resource Management (resident)

Storage Management (resident)

Figure 0-2. VMC Nucleus

These areas
are required
for HMC
instruction
execution.

Vertical Microcode and the System/3S Instruction
Set

Vertical microcode consists of the following:

• A component that converts the System/38
instructions in a user program into executable form

• A group of components that interpretively execute
portions of a user program

• A group of components that provide supervisory and
support functions

The components of VMC implement the System/38
instruction set in a manner similar to that of the
microcode in conventional systems. In the System/38,
however, VMC must first convert the System/38
instructions into internal microprogram instructions. The
internal microprogram instructions, in turn, cause the
HMC and the hardware to execute the functions that
were requested in a user program.

Figure 0-3 shows an example of what could take place
when a user program is executed on the system. Notice
that the VMC components are between the machine
interface and the HMC and the hardware. Also note
that the functions below the machine interface are
transparent to the user programmer.

First, the user program must be converted from
System/38 instructions into internal microprogram
instructions. This is accomplished by the translator, a
function of program management. This conversion is
also called encapsulation. Next, the program must be
made ready for execution. This is accomplished by
activating, then invoking, the program. Activation
initializes the static storage areas used by the program,
and is initiated either by the Activate Program instruction
or implicitly by an invocation. Invocation causes the
automatic storage areas used by the program to be
initialized and the program to be executed. Activation
and invocation are performed by program execution
management.

Vertical Microcode Overview 0-15

0-16

User Program

Request I/O

Set Cursor

Retrieve Data Space Entry

Machine Interface
VMC v Source/Sink Management

I Translator I
User
Process

SVL (request I/O)

(- (page fault)

I
I
I
I
I
I
I
I

SVL (set cursor)

SVL (retrieve)

I/O Manager

...

Data Base Management
/

/

/'------------1
Set Cursor
Function

/ -~----~

--~
Retrieve Data
Space Entry
Function

I Storage Management ------------,
HMC I , i ______

!~ __ H",;wnt~w,
I

I/O Device !

Figure 0-3. Program Execution

Page Fault
Handler

J

Program execution occurs in an environment called a

process. Processes are similar to tasks on other
systems. Several processes can be executing
concurrently in the system; the execution of these
processes is controlled by process and resource
management. The processes can also be competing
with each other for system resources (for example,
storage or processor time); these resources are allocated
and controlled by resource management.

A program, during its execution, may require the use of
one of the interpretive VMC functions. For example, a
program may need data from an I/O device. When this
program was encapsulated, internal microprogram
instructions were inserted into the instruction stream.
These internal microprogram instructions establish the
supervisor linkage (SVL) to the VMC code that
processes the Request I/O instruction.

Figure 0-4 shows an example of a Request I/O
operation. The Request I/O instruction processor
analyzes the request, and builds and sends a message
to the appropriate 10M. The 10M is a VMC task
executing device-dependent code to service a specific
I/O device. When the 10M is ready to accept more
work, the request I/O message is dequeued from the
10M queue and processed. The 10M generates the
specific device commands necessary to perform the
requested functions and sends an ORE to the OU task.
The OU task consists of the HMC functions required to
interface to the channel hardware to start an I/O
operation to the device. When the device completes the
operation, the OU task puts the completion status in the
ORE and sends it back to the 10M queue. The 10M in
turn sends a feedback record to the response queue
indicating that asynchronous processing of the I/O
request is completed.

User Program

I

Machine Interface :
.-----------~------

Response
Queue

L!T
Input
Queue

: Translator

User Process

Request I/O
Instruction Processor

10M

---------- ------ HMC

Input
Queue

Figure 0-4. I/O Operation

OU Task

I/O Device

Vertical Microcode Overview 0-17

Because the I/O functions operate asynchronously, the
user program can continue executing after it issues the
Request I/O instruction. Before using the data areas
associated with the I/O request. it is necessary to
dequeue the feedback record to assure the
asynchronous I/O processing is complete. At any time
during execution of a program, reference can be made
to either executable code or data at a virtual address
that is not in main storage. In this case, storage
management receives control through an internal
microprogram exception that was generated as a result
of the page fault. Storage management executes the
necessary functions to transfer the data from auxiliary
storage. I/O operations to auxiliary storage files are
controlled entirely by storage management. They do not
use the source/sink or 10M support. When storage
management has completed the operation of bringing
the referenced virtual storage into main storage, the user
program continues executing. The user is not aware of
the paging operation and can assume all allocated
storage is directly accessible to the program.

0-18

J

J

Commit Management

INTRODUCTION

Commit management provides the capability to group
changes (commit) to an object or set of objects within
one process so the changes appear to be made
simultaneously. This is guaranteed even if a system or
process failure occurs before all changes are made. If a
system or process fails, any group of incomplete
(uncommitted) changes are automatically withdrawn
from the object(s).

Commit management also provides the additional
capability to withdraw (decommit) changes made to an
object or set of objects within one process and
reposition the cursors to the positions prior to where the
group of changes were withdrawn.

Commit management supports the following System/38
instructions:

• Commit

• Create Commit Block

• Decommit

• Destroy Commit Block

• Materialize Commit Block Attributes

• Modify Commit Block

Data Function

Transactions Under Commitment Control

A transaction under commitment control starts with the
access of the data base by a cursor and ends with the
execution of either a Commit or a Decommit instruction.
If neither of these instructions are executed because of
a program or system failure, decommit is assumed and
any changes to the data base made by the transaction
are withdrawn.

When a transaction ends with the execution of a
Commit instruction, the results are:

• All data space index keys reserved during the
transaction are freed.

• All record locks held during the transaction are freed.

• All changed records are made available for further
updates.

When a transaction ends with the execution of a
Decommit instruction, the results are:

• All changes made by the transaction are withdrawn.

• All data space index keys reserved during the
transaction are freed.

• All record locks held during the transaction are freed.

• All records are made available for updating.

• All cursors under commitment control are reset to the
position they had at the start of the commit cycle.

If a program or system failure occurs, decommit is
implicitly performed as part of process termination or as
part of a subsequent IMPL.

Commit Management 1 -1

Changes Under Commitment Control

Changes made under commitment control are not held
until the end of the transaction but are applied
immediately to the data base.

The commit block and all data spaces that are changed
under commitment control must be journaled to the
same journal port. The images of the records before
they are changed are always journaled. If it is necessary
to withdraw a transaction, the image of the records
before they are changed are placed back in the data
base.

Record Locking

All records that are changed or added to by a
transaction are locked until the transaction completes. In
addition, locks can be optionally held until the
transaction is complete on all records accessed by the
transaction regardless of whether the records are
changed. This prevents the record from being changed
by another transaction during the duration of this
transaction.

Data Space Index

For unique data space indexes, any key removed by a
transaction is reserved until that transaction is
completed. While a key is reserved, no other transaction
can add that key to the data space index. This allows all
transactions to be withdrawn at any time prior to
executing a Commit instruction.

1-2

IMPL Recovery

The IMPL recovery for commit is actually a cooperative
effort of three VMC components, data base, journal, and
commit. The sequence performed in IMPL recovery is
as follows:

1.

2.

3.

4.

5.

6.

The data base component recovers data spaces
and data space indexes.

The journal component recovers journal ports and
journal spaces.

The journal component, module #JOISYNC,
synchronizes the journaled objects with their
journal ports. The synchronization is accomplished
by scanning the journal spaces and, for each
journal entry, calling the component that controls
the journaled object to verify that the change to
the object (represented by the journal entry) is
present in the object.

The commit component, module #COINIT1, scans
the attached commit block table and, for each
commit block:
a. validates the fields in the commit block
b. decommits any uncommitted changes
c. places an entry on the object recovery list

giving the status of each commit block

The data base component recovers the data
spaces that were affected during IMPL recovery by
the journal and commit components.

The commit component, module, #COINIT2,
initializes the attached commit block table.

J

J

System/3S Instruction Support

Commit

The Commit instruction processor (#COCOMIT) is
invoked by the supervisor link (SVL) router as a result of
a Commit instruction. #COCOMIT places a commit entry
containing a description of the commit on the journal
and decreases the journal in-use counter. The commit
description is also placed in the commit block. Any data
space index keys that were reserved for the commit
block are removed and any data space entry locks held
by the commit block are released along with the data
spac~ entry locks held by all cursors under commitment
control. For any data space that had its in-use count in
the data base in-use table increased during this commit
cycle, the in-use count is decreased. Any data space
previously locked by a Commit instruction for shared
update is released.

Create Commit Block

The Create Commit Block instruction processor
(#COCRCOB) is invoked by the SVL router as a result of
a Create Commit Block instruction. #COCRCOB creates
a permanent object called a commit block. The commit
block contains information concerning the changes to
objects under control of commit management. Some of
the data contained in the commit block can be
materialized through the Materialize Commit Block
Attributes instruction.

Decommit

The Decommit instruction processor (#CODCMIT) is
invoked by the SVL router as a result of a Decommit
instruction. When #CODCMIT is invoked, all
uncommitted changes are withdrawn from the object
causing all data space images to be restored to their
previous state. All indexes are simultaneously
maintained. If the previous state of the index cannot be
achieved, the index is invalidated and the decommit
cycle continues.

The changes necessary to perform the Decommit
instruction are journaled with an entry subtype indicating
the change is because of a Decommit instruction. A
decommit entry is then placed on the journal. This entry
contains the decommit status. Any data space index
keys that were reserved to this commit block are
removed.

The data space entry locks held by the commit block
and all cursors under commitment control are released.

The position of the cursors under commitment control is
reset to the position the cursors had when the commit
cycle started (when the start commit entry was
journaled). Cursors that were placed under commitment
control after the commit cycle started are reset to the
position they had when placed under commitment
control. Cursors that were removed from commitment
control before the decommit cycle are not repositioned.

Each data space modified by the Decommit instruction
is forced to auxiliary storage. For each data space that
had its in-use count increased during this commit cycle,
the count is decreased. For any data space that was
locked by the Commit instruction, the lock is released.

The journal in-use count is then decreased.

#CODCCF is invoked to perform the decommit process
if at process termination there is a commit block
attached to the terminating process that started a
commit cycle (start commit) but has not completed.
#CODCCF is also invoked if at IMPL time there is a
commit block attached to any process from a prior IPL
that started a commit cycle.

Destroy Commit Block

The Destroy Commit Block instruction processor
(#CODSCOB) is invoked by the SVL router as a result of
a Destroy Commit Block instruction. This module
destroys any selected commit block that is not attached
to a process.

Materialize Commit Block Attributes

The Materialize Commit Block Attributes instruction
processor (#COMACOB) is invoked by the SVL router as
a result of a Materialize Commit' Block Attributes
instruction. This module returns either the commit block
creation template with the current commit block
attributes, or the commit block status including the
number of uncommitted changes, the number of objects
under commitment control, and the commit description
of the last successful commit.

Commit Management 1-3

Modify Commit Block

The Modify Commit Block instruction processor
(#COMOCOB) is invoked by the SVL router as a result
of a Modify Commit Block instruction. #COMOCOB
performs the following:

• Attaches a commit block to a process.

• Detaches a commit block from a process.

• Places objects (cursors) under commitment control.

• Removes specific objects (cursors) from commitment
control.

• Removes all objects (cursors) from commitment
control.

A commit block can be attached to a process as long as
it is not already attached to that process or to any other
process. Once a commit block is attached to a process,
the commit block can only be modified by that process.
An entry is placed on the journal indicating that the
commit block is attached.

A commit block cannot be detached from a process if a
start commit was journaled and no ensuing Commit or
Decommit instruction was executed, or if there are any
objects still under commitment control (in the commit
object list). An entry is placed on the journal indicating
that the commit block is detached.

The only objects that can be under commitment control
are cursors; however, it is the changes to the data
spaces under the cursor that can be committed or
decommited. The data spaces themselves are not under
commitment control because there may be another
cursor, not under commitment control, over the same
data spaces and changes made by this cursor would not
be under commitment control.

All objects changed under the control of a given commit
block must have their changes journaled to a single
journal port and that journal port must be the same
journal port to which the commit block is journaled.

When the cursor is placed under commitment control it
must be eligible for commitment control.

1-4

Any cursor that is to be removed from commitment
control must be eligible for removal from commitment
control. No journaling is performed when removing a
cursor from commitment control.

Journal Support

Journaling of the Commit Block

The commit block must be a journaled object when it is
attached to a process. The following commit block
activity is journaled:

• Modify Commit Block: Modify Commit Block (attach)
instruction and Modify Commit Block (detach)
instruction are journaled. The journaled entry contains
no data.

• Start Commit: This entry is placed on the journal
implicitly. The Commit. Set Cursor, and Insert Data
Space Entry instructions cause a start commit entry
to be journaled. After the start commit entry is
journaled, the journal sequence number of the entry is
placed in the commit block. This sequence number is
used to limit the search of the journal when a
Decommit instruction is executed. The journaled
entry contains no data.

• Commit: When a Commit instruction is executed, the
commit block is journaled. The journaled entry
contains the commit description entry.

• Save Cursor Position: The first time within a commit
cycle that a Set Cursor instruction is executed for a
given cursor, the data necessary to restore that
cursor's position is journaled. If a Decommit
instruction is executed, the data is used to reposition
the cursor.

• Decommit: When a Decommit instruction is
executed, the commit block is journaled. The
journaled entry contains the decommit status of the
commit block.

• Destroy Commit Block: When a Destroy Commit
Block instruction is executed, the commit block is
journaled.

J

J

Journaling of Changes to Data Spaces

Because the journal is used to withdraw the changes in
case of a process/system failure or if a Decommit
instruction is executed, the before image of each change
made under commitment control is journaled. Journal
entries for data space changes made under commitment
control contain an additional journal entry prefix field
called commit 10. Commit 10 is the sequence number of
the start commit journal entry.

Journal Space Use-count

Because the journal is used in the process of
decommiting, journal receivers containing uncommitted
changes cannot be suspended, destroyed, or restored.
This is controlled by maintaining an in-use count with
the journal receiver. The in-use count is increased when
a start commit entry is journaled and is decreased when
a Commit or Decommit instruction is executed. An
exception is signaled if an attempt is made to suspend,
destroy, or restore a journal receiver with a nonzero
in-use count.

IMPL Synchronization of the Commit Block with the
Journal

Before the commit component IMPL recovery
(#COI N IT1) runs, the journal component 1M PL
synchronization phase synchronizes all commit blocks
with the journal. When the journal component finds a
commit block, #COJOSYN is invoked to perform
synchronization.

Data spaces containing uncommitted changes are also
synchronized with the journal. The journal component
passes these journal entries to the data base
component. There are no special considerations made
for commit during this phase.

Cursor Support

Activate Cursor

The EPAHCOMT flag in the cursor header must be off
before the cursor is activated. The flag has no meaning
if the cursor is not activated.

Placing a Cursor Under Commitment Control

The cursor is placed under commitment control by the
Modify Commit Block instruction. The cursor must be
active within the process and can not hold any data
space entry locks. All of the data spaces under the
cursor must be journaled to the same port as the
commit block.

Removing a Cursor Under Commitment Control

The cursor is removed from commitment control by the
Modify Commit Block instruction. The cursor must not
hold any data space entry locks. If there are any
uncommitted changes made by the cursor, the data
spaces containing the changes are placed in in-use
mode (data base in-use count is increased) by commit.
The in-use count is decreased after the changes are
committed or decommitted.

Deactivate Cursor

A cursor cannot be de-activated while under
commitment control. The cursor must first be removed
from commitment control by the Modify Commit Block
instruction.

Locks Held by the Cursor at CommitjDecommit Time

After a Commit or Decommit instruction is executed, all
locks held by cursors under commitment control are
released.

Position of Cursor After Commit

After a Decommit instruction is executed, the position of
the cursors under commitment control is not changed.

Commit Management 1-5

Position of Cursor After Decommit

After a Decommit instruction is executed, all cursors
under commitment control are repositioned as follows:

• If the cursor was under commitment control when the
commit cycle started, the position of the cursor is
reset to the position that existed when the commit
cycle started.

• If the cursor was placed under commitment control
after the commit cycle started, the position of the
cursor is reset to the position that existed when the
cursor was placed under commitment control.

It is possible to remove a cursor from commitment
control and again place it under commitment control
during one commit cycle. In this case, the cursor is
reset to the position that existed the last time the cursor
was placed under commitment control.

Cursors that were under commitment control some time
during the commit cycle but are no longer under
commitment control at the time of decommit, are not
repositioned.

Data Space Support

Data Space In-use Count

If a cursor is removed from commitment control while
there are uncommitted changes to data spaces under
the cursor, the data spaces are placed in-use (data base
in-use count is increased) by commit. The in-use count
is decreased after a Commit or Decommit instruction is
executed.

Inserted Data Space Entries

If an uncommitted insert is decommited, the result is a
deleted entry in the data space. This is necessary
because other committed entries may have been
inserted into the data space since the uncommitted
insert was made.

1-6

Data Space Entry Locks

Under commitment control, data space entry locks are
held on all changed entries until a Commit or Decommit
instruction is executed. Inse[1:ed entries are locked as
part of the insert operation. For data space updates or
deletes, the lock is not released as part of the update or
delete operations. Also locks may be held on entries
that are retrieved for update but are not updated
allowing the process to retrieve the entry for the second
time, ensuring that the entry is unchanged from the prior
retrieval within the same commit cycle.

Data Space Index Support

Unique Data Space Indexes

If a key is removed from a data space index containing
unique keys, the removed key is reserved until the
change is committed or decommited. Therefore, no
process, including the same process using a different
commit block, can add that key to the data space index.

Concurrent Data Space Index Build

If a data space index that enforces unique keys is built
or rebuilt, some special considerations for commit are
needed. If there are outstanding, uncommitted changes
to data spaces under the data space index, a commit
key index must be built. When building the commit key
index, it may be discovered that if the uncommitted
changes were decommitted, duplicate keys would have
to be inserted into the data space index. Therefore, the
data space index build is terminated and an exception is
signaled.

J

DATA AREAS

Attached Commit Block Table

The attached commit block table, shown in Figure 1-1,
provides a method for locating all of the commit blocks
that are attached to a process. An entry is added to the
attached commit block table when a commit block is
attached to a process and the entry is removed when
the commit block is detached.

Segment Group Header

Attached Commit Block Table
Header

• Available Attached Commit .--
Block Table Entry Address

• End of the Attached Commit _
Block Table Address

Commit Block Address ...
I

Area Not In-Use

l...-'::
::.-

Commit Block Address -
Last Entry

Figure 1-1. Attached Commit Block Table

Commit Block

Attached Commit Block --I-

Table Address

Commit Block

Attached Commit Block 4

Table Address

Commit Management 1-7

Commit Block

The commit block, shown in Figure 1-2, is a permanent
object that serves as the structure to control
commit/decommit within a process. A commit block is
associated and disassociated with a process by a
Modify Commit Block instruction. Only one commit
block can be attached to a process at a time.

Segment Group Header
/' Segment Group Header

./ EPA Header -
Associated Space Segment

Object Specific Header
I

• Commit Change List

.-- r-

I
I

Address
: (extendable)
L ____________ J

• Commit Description
Address

• Commit Object List ... -
Address

• Commit Lock List .--
0 Address

Commit Lock List

Commit Object List

Commit Description

Commit Change List

I
L (extendable) .J

Figure 1-2. Commit Block

1-8

J

J

Commit Key Index

The commit key index is a machine index that resides in
a temporary segment group. There are four types of
entries possible in the commit key index. Three of the
entry types (reserved, hidden, and apparent) have the
same format. The fourth (start commit) has a unique
format.

The format for reserved, hidden, and apparent entries is
as follows:

Type of Data Space Relative Attached
Entry Index Key Address of Commit

Data Space Block Table
Entry Offset

The format for the start commit entry is as follows:

Type of Journal Port Sequence Attached
Entry Number Commit

Block Table
Offset

STRUCTURE

The following is a list of the modules in commit
management and the functions that each module
performs. This list also shows how the module is
invoked.

#COACTFN Attached Commit Block Table Function
Manager

Function: Supports the functions required to manage the
attached commit block table.

How Invoked: Within this component and by the data
base and journal components.

#COACTSC Attached Commit Block Table Scan

Function: Supports the functions required to scan the
attached commit block table.

How Invoked: Within this component and by the data
base component.

#COCBIPL Verify Commit Block Pointers and Data

Function: Validates the header of a commit block and
checks all pointers in the commit block for validity.

How Invoked: Within this component.

#COCCLFN Commit Change List Functions

Function: Supports the functions required to manage the
commit change list.

How Invoked: Within this component and by the data
base component.

#COCHECK Cursor/Commit Checks

Function: Performs preliminary checks on a specified
commit block before continuing the process.

How Invoked: Within this component and by the data
base component.

#COCKIFN Commit Key Index Functions

Function: Supports the functions required to manage the
commit key index.

How Invoked: Within this component and bylhe data
base component.

#COCLLFN Commit Lock List Functions

Function: Supports the functions required to manage the
commit lock list.

How Invoked: Within this component and by the data
base component.

#COCOLFN Commit Object List Functions

Function: Performs all functions that modify the commit
object list within the commit block.

How Invoked: Within this component.

Commit Management 1-9

#COCOMIT Commit

Function: Implements the Commit instruction that
groups changes to an object or set of objects within one
process.

How Invoked: Commit instruction.

#COCRCOB Create Commit Block

Function: Implements the Create Commit Block
instruction.

How Invoked: Create Commit Block instruction.

#COCUCOB Clean Up Commit Block

Function: Cleans up the commit block after a Commit or
Decommit instruction is executed.

How Invoked: Within this component.

#CODCCF Decommit Common Functions

Function: Performs the common functions to decommit
the changes made under control of a specified commit
block.

How Invoked: Within this component.

#CODCMIT Decommit

Function: Implements the Decommit instruction that
withdraws the changes previously made under the
control of a specified commit block.

How Invoked: Decommit instruction.

#CODCOEH Damage Commit Block Exception
Handler

Function: Handles the recovery from an exception
caused by damage to a specified commit block.

How Invoked: Within this component.

1-10

#CODSCOB Destroy Commit Block

Function: Implements the Destroy Commit Block
instruction that destroys a specified commit block.

How Invoked: Destroy Commit Block instruction.

#CODUMPT Dump Task to VMC Log

Function: Dumps the process to the VMC log.

How Invoked: Within this component.

#COFORCE Force Commit Block

Function: Writes the commit block to auxiliary storage
and optionally informs journal management that the
commit block was rewritten.

How Invoked: Within this component and by the journal
component.

#COINIT1 IMPL Recovery

Function: Performs the IMPL time recovery and
initialization functions for the commit component.

How Invoked: #CFRMAST (lMPL recovery controller).

#COINIT2 IMPL Initialization

Function: Clears the attached commit block table after
an IMPL object recovery function is complete.

How Invoked: #CFRMAST (lMPL recovery controller).

#COJORDE Read Journal for Commit

Function: Reads the journal addressed by the journal
port in the EPA header of the specified commit block.

How Invoked: Within this component and by the data
base component.

J

J

#COJOSYN Synchronize Commit Block with Journal

Function: Synchronizes the commit block with the
journal during IMPL recovery.

How Invoked: Journal component.

#COMACOB Materialize Commit Block

Function: Implements the Materialize Commit Block
Attributes instruction that materializes either the commit
block creation template with current values, or the status
of the commit block.

How Invoked: Materialize Commit Block Attributes
instruction.

#COMOOBJ Add/Remove Objects from
Commitment Control

Function: Performs the add objects to and remove
objects from commitment control functions that support
the Modify Commit Block Control instruction.

How Invoked: Within this component.

#CORELEH Release Exception Handler

Function: Excption handler to release seized objects.

How Invoked: Within this component.

#CORPCUR Reposition Cursor

Function: If the cursor is activated under commitment
control and has not been repositioned, all locks that the
cursor holds are placed on the commit block, then the
cursor is repositioned.

How Invoked: Within this component.

#COTERM Process Termination Exit

Function: Cleans up the commit block attached to the
process during VMC process termination.

How Invoked: Another VMC component.

#COUlKEH Unlock Exception Handler

Function: If locks are held, this module performs the
unlocking procedure.

How Invoked: Within this component.

Commit Management 1-11

J

1-12

Data Base Management

INTRODUCTION

A data base is a collection of user information stored in
one or more objects called data spaces. Data base
management provides the functions that allow a user to
store. manage. and operate on these objects. Data base
management provides:

• Late bound views of data

• Views of data independent of internal storage format

• Multiple views of the same data

• Security of data

• Integrity of managed data

Data base management supports the following
System/38 instructions:

• Activate Cursor

• Copy Data Space Entries

• Create Cursor

• Create Data Space

• Create Data Space Index

• Data Base Maintenance

• De-activate Cursor

• Delete Data Space Entry

• Destroy Cursor

• Destroy Data Space

• Destroy Data Space Index

• Ensure Data Space Entries

I • Estimate Data Space Index Key Range

• Insert Data Space

• Insert Sequential Data Space Entries

• Materialize Cursor Attributes

• Materialize Data Space Attributes

• Materialize Data Space Index Attributes

• Modify Data Space Index Attributes

• Release Data Space Entries

• Retrieve Data Space Entry

• Retrieve Sequential Data Space Entries

• Set Cursor

• Update Data Space Entry

Some of the internal functions supported by data base
management are as follows:

• Build data space index

• Build composite key

• Build logical key

• Generate field mapping code

• Invalidate data space index

• Modify in-use table

Data Base Management 2-1

• Remove index addressability from data space header

• Remove addressability to data space entry from
locked entry queue

• Verify mapping template

• Conversion / mapping exception handler

• Unlock data space entry

• Bring data pages

• Detect pseudoduplicate keys

• Clone data segments

• Re-validate deleted entry count

• Log delayed key maintenance

• Force locked entry

• Force data space

• Force all indexes

• Force recently inserted entries

• Force recently modified entries

• Handle entry spanning segment identification (SID)
group boundary

• Discard all data space index directory blocks

• Merg~ mini-indexes

• Clear data SI Ds

• Derive ordinal number

• Derive data space entry virtual address

• Perform appropriate journaling of data base
modifications

2-2

Data Sharing

Data base management provides for the sharing of data
among concurrent processes .• The following paragraphs
describe the methods used to share data and the
procedures used to ensure the integrity of the shared
data.

Cursors

The cursor is the only object that makes data accessible
to a process'. The data space and data space index do
not contain any process related information. The
process dependent information is kept in the active
cursor, which is usable only by the activating process.
However, multiple processes can each simultaneously
have cursors over the same data spaces and data space
indexes allowing the processes to share the data. Every
instruction that accesses data in a data space obtains
the data by using a cursor; data is not accessible
through any other mechanism.

The cursor indicates the entry currently addressed for
retrieval and the entries locked for update. It contains
the information needed to map the internal format of the
entries into the format desired by the process. The
following types of mapping are supported:

• Field rearrangement

• Skipped fields

• Numeric field conversion to other numeric types

• Character field truncation and padding

• Derived field

• Joined records

• Record selection

J

J

These locks provide the following functions:

• Prevent the destruction of the object while in use

• Prevent a cursor from being used by more than one
process at anyone time

• Prevent another process from obtaining a lock
exclusive no read lock on any data base objects
shared by a cursor

These locks are removed when the cursor is
de-activated.

If a cursor is active and a set cursor operation for an
update is performed, the data space is implicitly locked
with a lock shared update lock unless the lock applied
by the Activate Cursor instruction is adequate. This
implicit lock on the data space is not removed until all
the locked entries in that data space are updated,
deleted, or released. Data base management will place
only one implicit lock shared update lock on a data
space from a given cursor.

Locked Entries

Between the time an entry is located by a set cursor
operation and the time it is modified (updated or
deleted), the entry must be protected from modification
by other processes. Data base management locks the
entry during a set cursor operation if an update or
deletion of the entry is specified. The lock prevents
other processes from updating or deleting the entry.
The locking process can only hold one lock per data
space entry. Update and delete operations subsequently
unlock the entry. An entry can be unlocked without
change by using a Release Data Space Entries
instruction or by de-activating the cursor holding the
lock.

A set cursor operation applies an implicit lock to each
data updated. The list of hold records associated with
the locked data space entries are chained from the
cursor by head and tail pointers as shown in Figure 2-1.
The list is organized as both a last-in-first-out queue
and a first-in-first-out queue. An entry can be added to
the head of the queue or to the tail of the queue. When
an entry is removed from the queue, the entry lock is
removed from the head of the queue. The entry loc.k
can be removed from the head or tail of the queue by
using the Release Data Space Entries instruction. If the
cursor is under commitment control, the entry locks
must be transferred to the commit block.

The last four bytes of the hold records contain the
following information:

• Data space number (1 byte)

• Flag information (1 byte)

• Lock chain link (2 bytes)

The virtual address in the hold record addresses the first
byte of the locked data space entry. Because the entries
are locked with a lock exclusive allow read lock, other
users can only retrieve the locked entries.

Cursor Hold Records

Figure 2-1. Hold Records List

Data Base Management 2-3

In Use

When a cursor is activated, the data spaces and data
space index referenced by the cursor are marked as in
use. This is accomplished by incrementing the
use-count associated with both the data spaces and the
data space index. A data space index marked as in use
(a nonzero use-count) cannot be destroyed or explicitly
invalidated. When the cursor is de-activated, the
use-counts for these objects are decremented. A
nonzero use-count prevents any process from
destroying the data space index.

For recovery reasons, the use-count for both a data
space and a data space index is kept in the data base
in-use table. These counts are reset during initial
program load (lPL). One routine (#DBXMUSE) performs
all operations on the table. The in-use table is initialized
during each IPL (after recovery operations are complete).
The table consists of rows of object identifications. It is
seized and released every time it is referenced and is
seized and released only within #DBXMUSE.

An entry with a use-count and a retain status equal to 0
identifies a free slot in the table. When a data space or
a data space index is to be operated on, an entry in the
in-use table that specifies that object is found and the
use-count is incremented. If the object is not found, the
first free slot is assigned to the object and the
use-count is incremented. If an entry has been added
to or deleted from the in-use table, the table is saved
on auxiliary storage.

2-4

When an object is removed from the in-use state, the
table is seized and then searched. When the object is
located, its use-count is decremented.

A data space index entry is placed in the in-use table
when the index is in the process of being created,
rebuilt, loaded, or used as an access path. An entry is
removed when the operation is completed. This type of
entry is used at recovery time to determine the recovery
actions for a data space index that was being operated
on when a system failure occurred.

Note: The in-use table is saved (forced) on auxiliary
storage each time an entry is inserted into or deleted
from the table. It is not saved each time the use-count
is changed because the recovery operations proceed
regardless of how many processes were simultaneously
using the object.

Load/Dump and Suspend

The basic concept in data base load / dump operation is
the network. A network is defined as a grouping of data
spaces and data space indexes such that if a data space
index is a part of the network, then every data space
that is referenced by that data space index is also a part
of the network. (However, if a data space is a part of
the network, then every data space index that is
referenced by that data space need not be a part of the
network.) The smallest possible network is a single data
space. The largest possible network is the group of all
data spaces and data space indexes in the system.

J

J

J

Figure 2-2 shows an example of a network
configuration. The following is a list of the valid data
base networks that can exist in that figure:

• Data space index, data spaces 1, 2, and 3

• Data space index, data spaces 1 and 2 (example
shown)

• Data space 1

• Data space 2

• Data space 3

• Data spaces 1 and 2

• Data spaces 1 and 3

• Data spaces 2 and 3

• Data spaces 1, 2, and 3

Load/dump will only dump or restore complete
networks, although the restored network can be a
subset of a dumped network. When loading a network,
all data spaces must be loaded before the indexes (if
any) are loaded.

Data Space Index

Data Space 2 Data Space 3

Figure 2-2. Networks

Generally, load/dump performs seizing on a network
basis. Load/dump is responsible for seizing all objects
including the data space indexes that are referenced by
data space that is being overlaid by a load operation but
are not themselves being loaded. The invoking
load/dump routines will not load a data space if its field
description table is not identical to the field description
table of the data space being overlaid. This ensures that
indexes can be rebuilt validly.

Three data base functions are provided for the exclusive
use of the load/dump function:

• Fix data space header (#DBXFDSH)

• Fix data space index header (#DBXFIXH)

• Clean up at end of network (#DBXRINX)

These routines provide most of the object specific
actions required during loading of a data base object.
#DBXFDSH is invoked by load/dump after each data
space is loaded. This routine updates pointers in the
header and then ensures that the old network is deleted
and the new one is correctly loaded. If this is a create
and load operation, then the load/dump flag is set to on
in each data space index block. When the data space
indexes are loaded, this flag indicates that the index
pointer is from the address space of the machine that
performed the dump rather than the address space of
the machine performing the load. During network
cleanup, this flag indicates that the data space index
block is invalid (because no index was loaded) and
should be deleted.

If this is a replacement type load, then each data space
index block from the overlaid header is also copied into
the loaded header. Because the data space index blocks
from the overlaid header are copied, each is checked to
determine if the index it references is valid. If the index
reference is valid, then the index is invalidated (without
signaling an event) and the index invalidated flag is set
to on. If the data space index block is not subsequently
deleted because a new version of the index was not
loaded, the invalidated flag causes an index invalidated
event during network cleanup.

Data Base Management 2-5

#DBXFIXH is invoked by load/dump after each data
space index is loaded. In addition to updating the
internal pointers and pointers to the data spaces, this
routine examines each data space and performs the
following operations:

• If there is a data space index block in the data space
that points to the address currently occupied by the
index and the load/dump flag in this block is off,
#DBXFIXH sets the load/dump flag to on and sets
the pointer to zero. This causes the network cleanup
routine to delete the block.

• If there is a data space index block in the data space
that points to the address of the index at the time
the index was dumped, and the load/dump flag in
this block is set to on, #DBXFIXH updates the pointer
to the current address and sets the load/dump flag
to off.

#DBXRINX is invoked when the loading of the network
is complete (a data space with no indexes is considered
a network). This routine searches the data space index
blocks for entries with the load/dump flag set to on and
deletes the entries. This routine also searches for data
space index blocks with the invalidated flag set to on
and signals an event for each index (turning the flag off
at the same time). This event can be used to indicate
that the index requires rebuilding.

2-6

Data Base Management Recovery and IPL

Recovery after an abnormal machine termination
involves restoration or destruction of objects. The data
base recovery phase manipulates the following objects
and internal structures:

• Data spaces

• Data space indexes

• Cursors

• In-use table

Most data base recovery operations are performed
during IPL. The operations performed are determined by
the contents of the in-use table. The data base objects
recovered as a result of references contained in the
in-use table are identified in the object recovery list.

The recovery operations performed during IPL affect all
data base objects except active cursors. Active cursors
are recovered during a subsequent attempt to activate
the cursors.

The in-use table (DB#DSIU) contains entries that
identify the data base objects that were being used
when the machine termination occurred. The objects
identified in the table include data spaces and data
space indexes. After all the entries in the in-use table
have been processed for recovery, the in-use table is
reset (all entries removed) in preparation for the next
IPL.

J

J

Data Space Recovery

The following actions are performed for each entry
contained in the in-use table that references a data
space:

1.

2.

3.

4.

5.

All recently inserted entries are read, starting with
the most recently inserted entry on auxiliary
storage and progressing until an entry is detected
for which the insert operation was not completed.

The entry count and force count within the data
space header are updated to reflect the ordinal
number assigned to the final recoverable entry.

Information identifying the data space and its
recovery status are appended to the object
recovery list.

Any pending recovery action is performed.

All data space indexes affected by the contents of
the recovered data space are invalidated unless
internal flags indicate that the binary tree of the
index was not recently changed without being
forced to auxiliary storage. Information identifying
the invalidated indexes is then appended to the
object recovery list.

Data Space Index Recovery

Data space indexes are referenced in the in-use table
during the following:

• Creation of the data space index

• Rebuild of the data space index

• Use of the index as an access path

• Loading an index

Indexes that were in the process of being created when
a termination occurred are destroyed during the recovery
phase.

Indexes that were being rebuilt when a termination
occurred are invalidated and identified on the object
recovery list during the recovery phase. Indexes whose
binary trees were modified but not written to auxiliary
storage are invalidated and identified on the object
recovery list. Indexes that were being loaded are
flagged as damaged.

Cursor Recovery

Cursor recovery, if required, is performed during
subsequent attempts to activate the cursor. The current
process identification and the I PL number are examined
to determine if recovery for the cursor is required. If the
process identification in the cursor does not match the
current process identification, and the IPL number in the
cursor does not match the current IPL number, then the
cursor was activated at the time the machine failure
occurred. If this is the case, the appropriate fields are
updated and the cursor is reactivated.

DATA AREAS

The machine interface objects supported by data base
management are:

• Data space

• Data space index

• Cursor

The major data area created and used internally by data
base management is the data base in-use table.

Data Base Management 2-7

Data Space

A data space (shown in Figure 2-3) consists of three or
more segment groups. The first segment group
contains:

• The segment group header

• The encapsulated program architecture (EPA) header

• The object specific header containing:
Length of index chain.
The maximum number of data segment groups
that can be allocated.
Number of data segment groups actually allocated
(usually one).
Pointers to the data segment groups. These
pointers address the last byte allocated in the
segment group. The address of the first byte of
data in the segment group is obtained by putting
O' s in the right three bytes and adding hex 20 (the
length of the segment group header).

• A variable-length chain identifying the data space
indexes over the data space.

2-8

J

First Segment Group Second Segment Group

I ~1
~

Segment Group Header Segment Group Header

EPA Header 'V Field Table

~ Object Specific Header
• Field Table Pointer ~ Associated Space

• Dol, SID Tobl. po;n7
Index Linkage

DSGPTBL

• • •
Chain Entries

L
C

,l' I I -- I (extendable) I
I I L.. __________ ...J

CT.;'" Sogment G,oup
,

Segment Group Header Segment Group Header Segment Group Header

Default Entry I Entry / I Entry n + 2 I I 1--::::
1 I Entry 2 I //1 I I I
Deleted I Entry 4 I

r
I I

T I I I Last Entry

Entry N I entry n + 1 r/ I (allocated)

I

I (extendable) I L... ________ J

Figure 2-3. Data Space

Data Base Management 2-9

The entries in the variable-length chain contain:

• The address of the next entry on the chain.

• The address of the data space index.

• Code generated by a Create Data Space Index
instruction used to compare a data space entry to a
revised entry to determine if any key or selection
fields have been changed as a result of an Update
Data Space Entry instruction. If the fields have not
changed, the index is not affected by the update and
does not need modification.

When a data space index is created, a chain entry for
that data space index is added to the end of the data
space header for every data space covered by the data
space index. Linkage to a new entry is added to the
front of the chain. When a data space index is
destroyed, the entry for that data space index is deleted
from the chain and all subsequent chain entries are
moved up in the segment group and the linkages
adjusted. The blocks of the chain within a data space
header are linked in reverse order of their creation.
Every chain entry is potentially a different size due to
the variable quantity of generated code residing in the
block.

The second segment group contains:

• A segment group header

• A table defining the data space entry fields (field
table)

• The associated space

The field table is used by create cursor, create data
space index, and materialize data space attributes
functions. The associated space (if present) follows the
field table and is extendable.

2-10

The third and subsequent segment groups contain:

• A segment group header

• Data space entries

• Status information concerning each entry

The data space entries are stored in the data segment
groups specified by the segment group table contained
in the object specific header. All entries are strung
together end-to-end, and are separated by a status
byte. A typical entry would be:

Status Field 1 Field 2 Field n Status

where:

• Status contains a flag that the entry:
Is valid
Is deleted
Crosses a segment group boundary

• Field 1 through Field n are ordered as defined in the
field table contained in the second segment group.

The segment groups can be viewed as one contiguous
addressing space (minus the segment group headers).
Entries can span segment group boundaries. The initial
entry in the first data segment group is a default entry
and is used to supply values for fields when inserting
entries and updating deleted entries when a value is not
supplied by the user. The procedure for calculating the
address of an entry is shown in Figure 2-4.

J

J

1. Multiply entry length by ordinal number:

AAAA x BBBB = CCCCCC

2. Use first segment group
table entry.

3. Add:

xx XX XX 00 00 20
+ 00 00 00 CC CC CC

XX XX XX ZZ ZZ ZZ
,

Figure 2-4. Calculating Entry Address

No

Virtual Address
of Status Byte
of the Data Space
Entry

Yes

Divide CCCCCC by hex
FFFFEO:

Q

FFFFEO)CCCCCC

Remainder (R)

Add 1 to Q to locate the
segment group table entry:

Q + 1 = Slot Containing Entry

XX XX XX 00 00 20
+ 00 00 00 RR RR RR (remainder)

XX XX XX ZZ ZZ ZZ

Data Base Management 2-11

Data Space Index

The data space index is made up of a primary segment
identification (SID) and 67 optional segment groups as
shown in Figure 2-5 and is addressed by a system
pointer. The primary SID group contains:

• The segment group header.

• An EPA header.

• An object specific header containing:
Values and attributes
Alternate collating sequence table (if alternate
collating is specified)
Translate table
Intermediate mapping table
Non-user exit selection table
Key specifications
Selection specification

• A machine index.

The first optional SID group contains:

• The segment group header.

• An associated space.

The second optional SID group contains:

• The segment group header.

• The selection routine if a select/omit data space
index.

The third optional SID group contains:

• Segment group header.

• A log containing the changes made to all the data
spaces under the data space index since it was last
maintained. The remaining 63 segment groups
contain entries that constitute the expanded binary
tree.

2-12

The fourth optional SID group is present only for data
space indexes that require unique keys and the data
space index has had a key deleted by a process running
under commitment control. This SID group contains:

• Segment group header

• Commit key index header

• Machine index containing data space index keys that
were deleted but are reserved to prevent duplicate
key conflicts from occurring during decommit

Alternate Collating Sequence Table

The alternate collating sequence table in the object
specific header is a 256-byte translation table that is
present only if alternate collating was specified when
the data space index was created. Machine indexes
order their keys according to their binary values. If the
user wants a character key field or a binary field to be
ordered differently than the normal binary (EBCDIC)
ordering, that field in the key can be translated to an
alternate collating sequence.

Translate Tables

Translate tables are used with .intermediate mapping to
replace the actual characters in the data space with a
value defined in the translate table. A user can specify
an array of tables and the mapping specifications control
which table is used from the array.

Intermediate Mapping

If intermediate mapping is specified, the intermediate
mapping table is made up of one IKEY entry for each
DS under the DSI. The scalar portion of the object
specific header contains the address of the table. Each
IKEY entry contains:

• The address of the mapping template.

• The address of the generated mapping code.

• The address of the field description table for the
intermediate buffer

• The address and length of the data literal area.

• Related flags and statistics.

J

J

J

Nonuser Exit Selection

If nonuser exit selection is specified, the selection table
is made up of one SEL entry for each DS under the DSI.
The scaler portion of the object specific header contains
the address of the table. Each SEL entry contains:

• The address of the selection template.

• The address of the generated selection code.

• The address and length of the data literal area.

• Related flags and statistics.

For user exit selection, the select/omit specification area
is described in the select/omit section (User Exit
Selection).

Data Base Management 2-13

Segment Group Header ..
EPA Header ... J

Segment Group Header
Object Specific Header ... 1-

Select/Omit Program
• Scalars

• Commit Key Index -...
Segment Group Header Pointer

• Alternate Collating Delayed Maintenance Header

Sequence
Delayed Maintenance Log Entries

• Translate Table Array

• Intermediate Mapping Segment Group Header
Table 1-

Associated Space

• Nonuser Exit Selection
Table I I

I (extendable) I
• Data Space Table I I _____________ J

• Key Specification
Area

Segment Group Header

• Select/Omit
Specification Area Commit Key Index Header

Machine Index J
Machine Index (2 K boundary)

I I • Base Page I (extendable) I
I I • Root Page
L _____________

• Secondary Page

Il (extendable) I

Figure 2-5. Data Space Index

2-14

Key Specification Area

The key specification area is composed of a number of
tables as shown in Figure 2-6. The first data space key
(DKEY) table contains a row (entry) for each data space
covered by the data space index. Each row contains:

• The address of the data space

• The number of rows in the key field description table
for that data space

• A pointer to the key field description table (DKYT) for
that data space

The number of rows (number of data spaces covered by
the data space index) in the DKEY table (DB#DKEY) and
its address are contained in the object specific header.
The row number in the table is the data space number
required for keyed-cursor and insert-data-space-entry
operations.

DB#DKEY

Number of

There is a DKYT for each row in the DKEY table. The
DKYT defines the fields that form the key. Each row in
the DKYT defines the attributes of one field in the key.
These attributes are:

• The offset into and the location of the field in the
data space entry

• The length of the field (or value of the fork character
if specified)

• Attributes of the field, such as:
- Ascending / descending sequence
- Absolute value
- Alternate collating sequence

Fork character
Zone/digit force

Highest
Number Binary Tree Ordinal Key

Row 1 Pointer to Data Space of Keys References Number Length Pointer to DKYT ..

Number of Highest ~ Number Binary Tree Ordinal Key
Row 2 Pointer to Data Space of Keys References Number Length Pointer to DKYT ,

L..---- J
~

DB#DKYT

Length or
Sequence Field Fork Relative Key Field Definitions for Data
Attributes Attributes Character Offset Location Space 1 (one entry for each

field or fork character)

"-
1

Length or
Sequence Field Fork Relative
\ttributes A.ttributes Character Offset Location Key Field Definitions for Data

Space 2
'--

Figure 2-6. Key Specifications

Data Base Management 2-15

The order of the rows in the DKYT for a data space
defines the order of the fields in the composite key. and
is used by a table driven routine that builds composite
keys from either the data space entry or the physical
image derived from a user provided logical key.

Data base management uses machine indexes to store
and order keys in a data space index. An index control
block (lXCB) is used to communicate with machine
index management. Each time an index is to be used. it
is seized and the IXCB is loaded with the values needed
to operate on the index. When the operation is
completed. the index is released.

Because machine indexes handle every entry as a bit
string. and order them in ascending order. data base
management must perform several operations on the
key fields to obtain the desired ordering specified by the
user. A data base key is made up of one or more data
space entry fields. and optional single characters called
fork characters. The format of the key is:

Internal Data Base Information
~

II '"
Data Optional Data Data Data Space Ordinal Internal
Field 1 Fork Field 2 Fork Field n Number Number Flags

IJ .. "
,

v v

User-Defined Information Data Base
Internal Relative Address

2-16

J

...

J

The user defines how the key is built to generate the
desired order in the index when the data space index is
created. After each key field has been built, data base
management takes the bit string of each key field or
fork characters, builds the internal information, and
inserts or removes the key into or from the machine
index portion of the data space index. Routine
#DBXBLKY performs the key building function.
Following are the operations performed by #DBXBLKY
to build a key for each field in an entry and to insert or
delete the key from the machine index:

• Force zone or digit: The selected 4 bits of each byte
within the key field are set to O.

• Alternate collating: Each byte of the key fields is
translated and replaced with the appropriate character
from the alternate collating table.

• Numeric ordering: A key field can be ordered in one
of the following ways:
- Unsigned bit string
- Algebraic value (signed)
- Absolute numeric value
Because the signs of binary, zoned, float, and packed
fields are located at different locations within a field,
using an unsigned bit string ordering results in the
following sequence:

Binary (sign is the leftmost bit): 0 to positive
infinity followed by negative infinity to -1.
Packed (sign in numeric field of rightmost byte):
The order depends on valid sign value. Generally,
the order is 0, -0, 1, -1, ... , n, -no
Zone (sign in zone field rightmost byte): The order
depends on valid sign values. Generally the order
is 10 positive numbers followed by the
corresponding 10 negative numbers.

- Float (sign on left): The ordering is 0 to infinity
and then the smallest magnitude negative number
to infinity.

• Order: The order sequence indicator specifies that
the key field is to be complemented to produce
descending sequence.

Data Base Management 2-17

Figure 2-7 shows the key conversion rules used by
#DBXBLKY when building a key. The figure also shows
an example of the conversion performed.

The internal information that is added to the user key to
build the index key consists of the data base relative
address and some internal flags. The data base relative
address consists of the following:

• The adjusted number of the data space in which the
entry is contained (0 origin)

• The ordinal number of the entry

Value Field Type Sign Rule

Absolute Binary Positive No change

Negative Take twos complement

Zoned Decimal Positive Force zone fields to 0

Negative

Packed Decimal Positive Sign bits to hex F

Negative

Floating Point Positive No change

Negative Force sign bits to binary 0

Algebraic Binary Positive Force sign bit to negative

Negative Force sign bit to positive

Zoned Decimal Positive Force zone fields to hex F

Negative Force zone fields to hex F,
then take ones
complement

Packed Decimal Positive Force sign bits to hex F
and move to the left 4 bits

Negative Force sign bits to hex F,
move to left 4 bits, then
take ones ~omplement

Floating Point Positive Force sign bit to binary 1

Negative Complement entire field

Figure 2-7. Key Conversions

2-18

J

Example

Before After

0003 0003

FFFD 0003

FOF3 0003

FOD3 0003

oo3F oo3F

003D 003F

40400000 40400000

C04OO000 40400000 J
0003 8003

FFFD 7FFD

FOF3 FOF3

FOD3 OFOC

003F F003

003D OFFC

40400000 C0400000

C0400000 3FBFFFFF

The adjusted data space number within the composite
~ 'oey designates the relative position of the data space in
"",e data space list starting from position zero (contained

in the template for the Create Data Space Index
instruction). The encoded ordinal number designates the
position of the entry in the data space (first
user-supplied entry has ordinal number of one). For an
index with a last-in-first-out ordering, the ordinal
number is complemented to place the high ordinal
numbers before the lower ordinal numbers.

The appended relative address field ensures unique keys
within the machine index, and the encoded information
is used when the key is subsequently retrieved to locate
the entry in the data space. The relative address also
allows relocation of data space indexes from system to
system without rebuilding the index.

Fork characters allow the user to define the order of
keys of different lengths. When a user creates an index
over two or more data spaces or the same data space
multiple times, the designated key length for each data
space can vary in length. Because the key is made up
of the user key followed by the machine-supplied data
base relative address, the order of the keys in the index
is not user controllable without fork characters. Figure
2-8 shows two data spaces with variable-length keys.
The figure also shows examples of the key ordering,
one without fork characters, and one using fork
characters.

Note: The example orderings are field aligned for ease
of use.

Data Space 1 : Data Space 2:

Entry Key Field
Number Char (2)

01 (AB) C1 C2
02 (CD) C3 C4
03 (EF) C5 C6
04 (04) C4 F4 05 (34) F3 F4

The following is the resulting index
without using fork characters:

Q)
u
~ ; ...

User Key - Q) CI).c !.c
IV E .- E
'la ~ 'E ~
cz OZ

C1 C2 00 00 01
C1 C2 00 00 01 00 01
C1 C2 00 01 01 00 02
C3 C4 00 00 02
C4 F4 00 00 04
C5 C6 00 00 03
F3 F4 00 00 05
F3 F4 00 04 01 00 04
F3 F4 03 00 01 00 03
F3 F4 05 06 01 00 05

l. figure 2-8. Example Key Ordering

Entry Key Fields
Number Char (2) Bin (15)

01 (AB) C1 C2 00 00
02 (AB) C1 C2 00 01
03 (34) F3 F4 03 00
04 (34) F3 F4 00 04
05 (34) F3 F4 05 06

The following is the resulting index using
fork characters F F for data space 1 and 00
for data space 2:

User Key
~ r--

I ; I ~ ; ...
1:)1 'iV Q)

1.:01: fl
CI).c

.!: .c
IV E E I'" IV ... 'C
IV ~ ... ~

I~ 01 cz 0 z
!

C1 C2 00 00 00 01 00 01
C1 C2 00 00 01 01 00 02
C1 C2 FF 00 00 01
C3 C4 FF 00 00 02
C4 F4 FF 00 00 04
C5 C6 FF 00 00 03
F3 F4 00 00 04 01 00 04
F3 F4 00 03 00 01 00 03
F3 F4 00 05 06 01 00 05
F3 F4 FF 00 00 05

Data Base Management 2-19

Select/Omit Specification Area

The select/omit specification area of the header is only
present if select/omit was specified when the data
space index was created. The tables in the select/omit
specification area are used to map fields to a selection
buffer for passing to the user exit program provided by
the machine interface. This routine determines whether
or not a data space entry is to be addressed by a data
space index. The select/omit specification area of the
header is made up of a number of tables (a data space
select/ omit table and a variable number of data space
select/ omit field description tables) as shown in Figure
2-9. The data space select/omit table has one row for
each data space covered by the data space index for
which there is select/ omit specifications. The row
contains values for:

• The number of entries not addressed by the index
(the number rejected)

• The number of fields to be passed to the selection
routine

• The length of the selection buffer

• A pointer to the generated mapping code

• The length of the selection mapping code

Following the data space select/omit table are some
number of areas, each containing:

• Generated code for mapping fields from the data
space entry to the selection buffer

• The data space select/omit field description table
defining the fields to be mapped from the data space
entry to the selection buffer

2-20

There is an area containing generated code and a data
space select/omit field description table for every data J
space select/ omit table entry that specifies one or more
fields to be passed to the user exit program.

The generated mapping code is used to fill the selection
buffer before the buffer is passed to the user exit
program. The mapping code is used by update and
insert functions when a select/omit field is modified.
The mapping code is also used by the index build
function.

The data space select/ omit field description table is
used by the materialize function to materialize the data
space index template. The pointer to the generated
code and data space select/omit field description table
in the data space select/omit table row for a data space
is used to branch to the generated code. The length of
the generated code is also in the data space
select/ omit table row and is used to find the data space
select/ omit field description table that follows the
generated code for that data space.

The machine index trunk page starts at a 2 K boundary
following the end of the object specific header. The
initial allocation of the space for the header segment
group is based on the current number of entries in the
data spaces, and ensures that the machine index has at
least three logical pages available, and that the area
allocated for the header segment group is a multiple of
4 K bytes. Refer to Data Space Index in this section and
to the Machine Index Management section in this manual
for additional information concerning the machine index.

l

Data Space Select/Omit Table (DB#DSE L)

NumbeF Number Buffer Pointer to Code
Rejected of Fields Length Mapping Code ... Length

Number Number Buffer Pointer to \ Code
Rejected of Fields Length Mapping Code, Length

-~
/

/
Mapping Code (select field A and C) r-- AJBIClDI

Mapping Code '" I A I C I
~~ -
Data Space Select/Omit Field Description Table (DB#DSL T)

Field Field
Location Type

Field Field
Location Type

Field Field
Location Type

Field
Length

Field
Length

Field
Length

Entries for Fields in
Data Space Entry 1 (one
entry for each field)

Figure 2-9. Selection Specifications

}
Entry for Data
Space 1

} Entry for Data
Space 2

Data Space
Entry

Select/Omit Buffer

Data Base Management 2-21

User Exit Selection

The user exit program allows the user to provide data
space indexes that address a subset of the entries in the
data spaces. The user exit program contains the logic
that determines if a data space entry is selected or
omitted from a data space index.

The user exit program is called implicitly from data base
instructions that perform index maintenance. These
instructions are:

• Insert Data Space Entry

• Insert Sequential Data Space Entries

• Update Data Space Entry

• Create Data Space Index

• Data Base Maintenance with Rebuild Option

The user exit program is passed a space pointer as an
argument that points to a buffer that contains the
following information:

• Answer Field: This field is set by the user exit
program to direct the data base instructions that
called the user exit program to insert or not insert the
key into the data space index.

• Data Space Number: This field can be used by the
user exit program as input to make a decision on the
insertion of the key into the data space index. This
field contains the number of the data space that
contains the entry. Since an index can be over more
than one data space, the user exit program uses this
field to identify the correct data space.

• Data Space Entry Fields: These fields are used by
the user exit program to make a decision on the
insertion of the key into the data space index. These
fields are in the order and format as defined by the
data space index.

2-22

Creating a DS Index from an Existing DS Index

The user has the option of creating a DS index from an
existing (source/parent) DS index rather than directly
from the underlying data spates. The user must specify
a subset of the source DS index entries to be used in
the new index. The key specifications provided are
compared with those in the source DS index to
determine if the new key specifications can be built
purely from fields in the keys of the source DS index,
which is faster than building the new keys from the
underlying data space entries. If the source DS index
contains nonuser exit selection, the selection template of
the source is reproduced in the new DS index and
merged, if necessary, with any newly specified selection
template. The resultant selection template .is then used
to generate the final selection code. If any of the
selection criteria relies on fields in the source DS index
intermediate buffer, then the intermediate mapping
templates undergo a similar operation. If the source DS
index intermediate mapping template is required in the
new DS index, then its corresponding translate tables
must be similarly reproduced in the new DS index.
Once created, the new DS index has no need to
maintain any linkage to the source DS index.

When a data space index is created, the user exit
program (if provided) is copied into the data space
index. The user exit program is placed in the third
segment group of the data space index. Only the
following parts of the user exit program are copied:

• EPA header

• Instruction stream

• Static initialization code

• Program header

• Program template

• Breakpoint offset mapping table

The remaining parts of the user exit program are ignored
since functions (for example: Trace instructions) that
require them are not used for user exit programs. The
addresses within the copied program are altered to
reference the copied segment group.

Copying the user exit program into the index ensure::.
the continued existence of the user exit program.

J

J

Cursor

The cursor, shown in Figure 2-10, is represented by two
segment groups.

The first segment group contains such things as:

• The segment group header

• An EPA header

• An object specific header (cursor header) that
contains things such as:

Attributes and status
Data space mapping code (DMAP)

- Join cursor key mapping code (JMAP)
Data space selection code
Key buffer (if cursor is over an index)

- Index control block (if cursor is over an index)

The second segment group contains:

• The segment group header

• Associated space

Data Base Management 2-23

Segment Group Header

EPA Header J
Cursor Header

Attributes and Status

Data Space Mapping Table (DMAP)
Join Cursor Key Mapping Table (J MAP)
Group Definition/Description Table
Cursor Selection Map
Data Selection Routine (one per DMAP)
Group Selection Routine
Translate Tables

Data Space Mapping (DMAP) Code (one for each data space in list)
Generated Input Mapping Code
Generated Output Intermediate Mapping Code
Generated Output Mapping Code
Generated Input Key Mapping Code
Generated Output Key Mapping Code

Join Key Mapping (J MAP) Code (repeated for each secondary data space)
Group Default Primitives Entry
Group Logical Key Default Entry
Generated Group Primitive Procedure Code
Generated Group Intermediate Map Code

Generated Data Space Selection Code (one for each data space)
Generated Cursor Intermediate Key (CRIK) Selection
Generated Cursor Intermediate Key (CRIK) Mapping Code J
Fast Search Array for this data space
Merged Fast Se<;lrch Array
Generated Group Selection Code
IXCB for Primary Index

Key Buffer for Primary Index
Look-Ahead Buffer for Primary Index

IXCB for Secondary Index (one for each secondary DS)

Key Buffer 1 for Secondary Index
Key Buffer 2 for Secondary Index

Intermediate Buffer for a Join Cursor
Buffer for DS Entries for a Join Cursor
Copied DS Mapping Template (one for each DS)
Copied DS Selection Template (one for each DS)
Group Buffer Definition Template, Selection Template, Mapping Template
Join Definition Template
Data Literals for all Templates
Segment Group Header
Associated Space

Figure 2-10. Cursor

2-24

The DMAP contains a row (entry) for each data space
that the cursor is over. The data spaces are in the same
sequence as in the data space list supplied during
creation of the cursor. If the cursor is over a data space
index, the sequence in the data space list and in the
index is identical. This is checked at creation time by
comparing the list to the index. A subset of data spaces
can be specified at creation time by supplying zeros
instead of a system pointer for an entry in the data
space list; this causes a zero DMAP entry to be built.
The zero entry is built because the DMAP entry number
is the same as the data space number used by a set
cursor operation.

A row in the DMAP that identifies a data space contains
the following information:

• A pointer to the data space.

• Pointers to the mapping code used to map the logical
view to the actual physical form in the data space.
Up to five sets of mapping code can be present:

Two sets are used for data mapping and are
always present
- Data to: Maps the data to the data space.

Used by insert and update functions.
- Data from: Maps the data from the data space.

Used by the retrieve function.
Two sets are used for key mapping and are
present only if the cursor is over a data space
- Key to: Maps the logical key to the physical

format. Used by the set cursor function before
the composite key used as a search argument is
built.

- Key from: Maps a physical key to the logical
format. Used by the materialize cursor
attributes and set cursor functions to return the
logical key.

The fifth set of mapping code is used for derived
field mapping:
- Derived Field Operations Mapping/Deriving

From Data Space: Used by set cursor, retrieve
data space entry, retrieve sequential data space
entry.

• Direct map indicator for the data mapping code. If
the data mapping code maps the entire entry, this
indicator is set on. This information is used by
update and insert functions to determine if the
default entry is to be used for the initial values.

• The lengths of the logical and physical image of the
entry.

• The unit of transfer length in bytes.

• If the cursor is active, the following indicators are
used:

Authority that was saved from the last retrieve
authority operation for that data space.
Data space used in this activation. A subset of the
data spaces the cursor is over can be specified
when the cursor is activated.
Change bit indicates the data space was changed.
Used by the de-activate cursor function to write
the changed data to auxiliary storage.

A row in the JMAP contains information about join
cursors. There is one JMAP entry per data space under
a join cursor. The J MAP table in the cursor header
contains the following information:

• A pointer to the data space.

• A pointer to the data space index over this entry.

• The DKEY entry number in the index associated with
this entry.

• The self-describing JMAP entry number.

• The JMAP entry number associated with the previous
data space (the data space that joined to the current
data space).

• Key lengths for the physical join key.

• The number of join key fields.

• A reference count for this position.

• Addressability to this position index control block.

• Addressability to a key buffer, which stores the
current key.

• Addressability to a work key buffer used for
searching the index.

• An index check count used to determine if the index
over this position has changed since positioning.

• Current positioning information (ORD number, ENTRY
address).

• Addressability to the data space entry image stored in
the cursor header.

Data Base Management 2-25

• Run time statistics, such as prime and spin.

• Activation statistics such as index placed in use.

• Addressability to join key mapping code that map the
fields from the cursor intermediate buffer (CRIB) into
a buffer where the key fields are contiguous.

When the cursor has selection specified with it, there is
an additional area allocated in the cursor header to
describe the associated selection. DB#CRCL is allocated
when there is either a cursor for each data space
selection or group-by selection is specified. DB#CRCL
contains the following information:

• Addressability to the DB#SEL table associated with
the cursor per/DS selection.

• Addressability to the DB#SEL table associated with
group-by selection.

• Address of merged fast-search array.

• Number of entries in the merged fast-search array.

• Maximum size of Boolean result stacks associated
with all the cursor for each data space cursor
intermediate key selection routines (selection by key
fields only).

• Maximum size of Boolean result stacks associated
with all the cursor for each data space noncursor
intermediate key selection routines (selection on fields
other than key fields and possible key fields).

2-26

When selection is specified, DB#SEL is associated with
each selection template specified. There is one SEL
table allocated for each data space under the cursor
when selection is specified for at least one data space.
Since selection is not mandatory for each data space,
the unused allocated space contains all zeros.

When group-by selection is specified on a cursor, an
area in the cursor header is allocated to store DB#GRP.
DB#GRP contains information about the group-by
selection "function which must be performed,
addressability to default group-by primitives,
addressability to default logical key fields, and
addressability to the sets of mapping code possible with
group-by selection. The three sets of possible mapping
codes include:

• Group-by primitive processing.

• Group-by derived field operations.

• Group-by output mapping code.

J

J

A cursor can be either a permanent or temporary object.
Before a cursor can be used, it must be activated. Once
activated, the data spaces and index (if an index is used)
are marked in use to assure their continued existence
and for recovery (see In-Use Table on this page for
additional information). An activate cursor operation
attaches the cursor to the activating process by storing
the process identification and the current I PL number
into the cursor. This action restricts the use of the
cursor to the activating process. The only instructions
that another process can issue to operate on an active
cursor are the Create Duplicate Object and Materialize
Cursor Attributes instructions.

De-activation of a cursor detaches the cursor from the
process, transfers locks to the associated commit block,
and restores the cursor to its original condition.
Whenever process termination occurs, any active cursors
are de-activated by data base process termination
clean-up routines. If an abnormal machine termination
occurs, an implicit de-activation is performed the next
time the cursor is activated.

In-Use Table

The in-use table is used for recovery purposes by
keeping track of the data spaces being used and the
data space indexes while they are being built. This table
is contained in a permanent preallocated segment. The
format of the in- use table is shown in Figure 2-11.

SID Group Header

Status Bits

Data Base Level Number

In·Use Table Forcing
Information

Object @ Object Type Object Status Use Count

Object @ Object Type Object Status Use Count

o (free)

Object @ Object Type Object Status Use Count

L.--:: c
Figure 2-11. In-Use Table Format

Data Base Management 2-27

STRUCTURE

The following is a list of the modules in data base
management and the function that each module
performs. This list also shows how the module is
invoked.

#DBACR Activate Cursor

Function: Ensures that a cursor is available to a process
and activates the cursor.

How Invoked: Activate Cursor instruction.

#DBAPINC Data Base Maintenance Routine to
Apply Increment to Data Space

Function: Applies an increment to the maximum number
of entries value for a data space. Utilizes the data base
common function #DBINCRM to perform the actual
increment.

How Invoked: Within this component.

#DBASMEH CSEH for 80, 81, and 82
Microprogramming Exceptions

Function: Traps 80, 81, and 82 exceptions and returns
to the next microprogramming instruction.

How Invoked: Through exception management.

#DBASYER Signal Asynchronously Detected
Exception During Build Index

Function: Signals the appropriate exception if concurrent
activity against the index causes the tree to reach an
invalid state or if the concurrent logging SID overflows
during a build data space index operation.

How Invoked: Within this component.

#DBBDVAl Build Default Value Array

Function: Loops through the JMAP entries of a join
cursor, constructing a 32-bit array indicating which
positions contribute default values.

How Invoked: Within this component.

2-28

#DBBlDCR Allocate Storage and Build Cursor
Header

Function: Allocate storage for and initialize the
appropriate fields in the cursor header.

How Invoked: Within this component.

#DBBlDER Signal Select/Omit or Duplicate Key
Exception During Build Index

Function: Signals a select/omit or duplicate key
exception early if more than 20 errors of one type are
detected prior to the catch-up phase of build index.

How Invoked: Within this component.

#DBBRING Bring Data Space Entries

Function: Initiates paging operations as required to page
in currently needed data space entries and anticipate
future needs.

How Invoked: Data base common function invoked from
modules that locate and/or retrieve data space entries.

#DBBUllD Perform Initial Data Space Index Build

Function: Builds a data space index tree by referencing
all data space entries under the index and inserting the
appropriate keys into the tree.

How Invoked: Within this component.

#DBCAlCS Calculate Data Space Size

Function: Calculates the appropriate new size of a data
space based on its current size and its attributes.

How Invoked: Within this component.

#DBCATCH Perform Data Space Catch-Up

Function: Applies logged key changes to a data space
index at the end of a concurrent build or while activating
a delayed maintenance data space index.

How Invoked: Within this component.

J

J

#DBCATCY Perform a Build Index Catch-up Cycle

Function: Apply a specified portion of the delayed
maintenance logging SID to the OS index or Cursor Key
index.

How Invoked: Within this component.

#DBCATDK Handle Duplicate Key

Function: Process duplicate keys encountered during a
catch-up cycle.

How Invoked: Within this component.

#DBCATSO Handle Select/Omit Error

Function: Processes select/omit errors encountered
during a catch-up cycle.

How Invoked: Within this component.

#DBCCR Create Cursor

Function: Creates a cursor and links it to a data space
or data space index.

How Invoked: Create Cursor instruction.

#DBCCREH Create Cursor CSEH

Function: Performs the required recovery when an
exception is signaled during a create cursor operation.

How Invoked: Through exception management.

#DBCDS Create Data Space

Function: Creates a data space according to the
description provided.

How Invoked: Create Data Space instruction.

#DBCDSEH Create Data Space CSEH

Function: This CSEH is enabled by create data space
when storage is allocated. This CSEH deallocates the
storage that create data space allocated.

How Invoked: Through exception management.

#DBCHNEH Data Space Index Chain CSEH

Function: Detects microprogramming addressing
exceptions caused by a reference to nonexistent data
space index.

How Invoked: Through exception management.

#DBCINDS Add a DS Index Block to Each Data
Space

Function: Build OS index blocks for an index being
created and insert them into the header of each data
space being updated.

How Invoked: Within this component.

#DBCINEH Create Data Space Index CSEH

Function: Performs the required recovery for an
exception that occurred during a create data space index
operation.

How Invoked: Through exception management.

#DBCINX Create Data Space Index

Function: Creates a new data space index over one or
more existing data spaces.

How Invoked: Create Data Space Index instruction.

#DBCKDUP Check for Duplicate Key

Function: Distinguishes between pseudoduplicate keys
and genuine duplicate keys and optionally signals the
appropriate exception.

How Invoked: Within this component.

Data Base Management 2-29

#DBCKICU Build Reserved Key Index

Function: Reserves keys during the build index function
if there is a possibility of a decommit reinserting those
keys.

How Invoked: Within this component.

#DBCKIJO Read Journal to Build the Reserved
Key Index

Function: Reads the journal to simulate a decommit
during the build index function and to reserve the keys.

How Invoked: Within this component.

#DBCKSGT Check and Recover a Data Space SID
Group Table

Function: Performs recovery operations on the SID
group table and related fields of a data space including
clean-up operations for partial reset or partial extend.

How Invoked: Within this component.

#DBCLNLD Perform Load/ Dump Cleanup

Function: Performs load/ dump cleanup of certain data
space header fields.

How Invoked: Within this component.

#DBCLONE Clone Segment

Function: Makes a copy of a portion of a segment.

How Invoked: Within this component.

#DBCLRSG Clear Segment

Function: Clears a portion of a segment.

How Invoked: Within this component.

2-30

#DBCNVDS Convert Data Space

Function: Performs necessary conversion of data spaces
during IPL!recovery and loaq/dump.

How Invoked: Within this component.

#DBCNVEH Conversion Error Feedback CSEH

Function: Completes conversion error feedback
information in the insert sequential option template.

How Invoked: Through exception management.

#DBCPYRC Complete Copy Data Space Entry

Function: Completes the functions required when using
a Copy Data Space Entry instruction to copy a data
space to itself.

How Invoked: Within this component.

#DBCRIPL Validate Cursor Internals During
Segment Identifier Wrap

Function: Validates references to separate segment
groups from a cursor, verifies the existence of all
objects referenced by the cursor, verifies the existence
of all segment groups that comprise the cursor, and
detects damage within the cursor.

How Invoked: Segment identifier wrap interface.

#DBDACR De-activate Cursor

Function: Interfaces with the de-activate cursor
common function.

How Invoked: De-activate Cursor instruction.

#DBDCR Destroy Cursor

Function: Destroys the specified cursor, removes all
context and user profile references to the cursor, and
frees all resources associated with this cursor.

How Invoked: Destroy Cursor instruction.

J

#DBDCTEH Deleted Entry Count CSEH

Function: Sets deleted entry count flags of the data
space as suspicious and unreliable if an error occurs
while deleting/restoring an entry.

How Invoked: Through exception management.

#DBDDS Destroy Data Space

Function: Destroys the specified data space, removes all
user profile and context references to the data space,
and frees all resources associated with this data space.

How Invoked: Destroy Data Space instruction.

#DBDEFER Defer Correction of Deleted Entry
Count

Function: Defers or corrects the deleted entry count in
the data space header.

How Invoked: Within this component.

#DBDEFLT Initialize Fields with Default Values

Function: Initializes fields with the appropriate default
values according to field type.

How Invoked: Within this component.

#DBDElCT Validate/Recover Deleted Entry Count
for Data Space

Function: Determines number of deleted entries in data
space and assures that the deleted entry counts in the
data space header and each data SID header are
correct.

How Invoked: Within this component.

#DBDELEN Delete Data Space Entry

Function: Deletes an entry from the data space.

How Invoked: Within this component.

#DBDELIM Data Base Common Function to Delete
Data Space Entries

Function: Deletes data space entries.

How Invoked: Within the data base and journal
components.

#DBDEREH Derived Mapping Exception Handler

Function: Handle exceptions that occur while executing
derived field mapping.

How Invoked: Within this component.

#DBDERKY Derive Logical Key

Function: Maps derived keys.

How Invoked: Within this component.

#DBDINX Destroy Data Space Index

Function: Destroys the specified data space index,
removes all user profile and context references
associated with the data space index, and frees all
resources associated with the index and also removes
any references from any associated space.

How Invoked: Destroy Data Space Index instruction.

#DBDISHR Dispose of Hold Record

Function: Disposes of the data space entry hold record
lock and releases it to the system or to a commit block.

How Invoked: Within this component.

#DBDIXEH Destroy Mini-Indexes

Function: Destroys mini-indexes created during a build
index in the event of an exception.

How Invoked: Within this component.

Data Base Management 2-31

#DBDKFEH Duplicate Key Feedback CSEH

Function: Completes duplicate key feedback information
in the option template of the Insert Sequential Data
Space Entries instruction.

How Invoked: Through exception management.

#DBDKYEH Delete Key CSEH

Function: Restores all modified data space indexes to
their prior state by inserting all recently deleted keys.

How Invoked: Within this component.

#DBDMGCR Damage a Cursor

Function: Set hard damage to a cursor.

How Invoked: Within this component.

#DBDMLEX Extend Delayed Maintenance Logging
SID

Function: Extends the logging SID when more space is
required to record a data space index modification.

How Invoked: Within this component.

#DBDMLOG Logs a Data Space Index Update

Function: Records a pending data space index binary
tree modification so that the data space index can be
brought up to data at a later time.

How Invoked: Within this component.

#DBDPKEH Duplicate Key CSEH

Function: Suppresses tentative ordinal numbers within
exception data.

How Invoked: Through exception management.

2-32

#DBDQDSE Remove Entry Lock From Queue

Function: Removes a data space entry lock from the
cursor's locked entry queue.

How Invoked: Within this component.

#DBDSIPL Validate/Recover Data Space

Function: Detects internal da~age within a data space
during install and load and after a system failure,
restores the data space to a useable condition, and
verifies the existence of all segment groups that
constitute the data space.

How Invoked: Within this component.

#DBDSI12 Converts Data Space Index to
Release 2

Function: Converts the data space index from release 1
to release 2 format.

How Invoked: Within this component.

#DBDSR12 Converts Data Space to Release 2

Function: Converts the data space from release 1 to
release 2 format.

How Invoked: Within this component.

#DBDSSEL Verify Selection Templates and
Generate Selection Code

Function: Generate data space selection code.

How Invoked: Within this component.

#DBENDSE Ensure Data Space Entries

Function: Places on auxiliary storage all data space
entries that have been modified through this cursor
since the last ensure operation or since cursor activation.

How Invoked: Ensure Data Space Entries instruction.

J

#DBENTAD Calculate Virtual Address of a Data
Space Entry

Function: Calculates the virtual address of a data space
entry given the data space virtual address and the
ordinal number of the data space entry.

How Invoked: Within the data base and journal
components.

#DBFORDS Force a Data Space and any Eligible
Indexes to Auxiliary Storage

Function: Saves the data space on auxiliary storage,
clears change flags within all affected data space
indexes, and writes to auxiliary storage only those
indexes in which all change flags have been cleared for
all data spaces in those indexes.

How Invoked: Within this component and by the ensure
object function.

#DBFORIN Force Inserted Entries

Function: Forces all inserts for a single data space. This
function is invoked if ensure is active or a user has the
write operation specified on an insert operation.

How Invoked: Within this component.

#DBFORSG Force all Data Spaces Under the Cursor

Function: Places on auxiliary storage all data space
entries that have been modified by a cursor operation
since the last ensure operation or the activation of the
cursor.

How Invoked: Within this component.

#DBFORUP Force Data Space Updates

Function: Forces all updated data space entries to
nonvolatile storage (any data segment group containing
updated data space entries).

How Invoked: Within this component.

#DBFRCEN Force Locked Entry

Function: Forces a single data space entry to nonvolatile
storage.

How Invoked: Within this component.

#DBFRCIX Force Data Space Index

Function: Causes a data space index to be forced to
disk by forcing the changed data spaces referenced by
that data space index.

How Invoked: Within this component.

#DBFXBDY Fix Group Boundary

Function: Copies a data space entry spanning a group
boundary into a replacement buffer.

How Invoked: Within this component.

#DBHDCEH Damage Cursor CSEH

Function: Damages the cursor if an exception occurs
during the time this CSEH is enabled.

How Invoked: Within this component.

#DBIKYEH Insert Key CSEH

Function: Restores all modified data space indexes to
their prior state by removing all recently inserted keys.

How Invoked: Within this component.

#DBINBDY Insert Data Space Entry Spanning SID
Group Boundary

Function: Inserts a single data space entry that crosses
an SID group boundary.

How Invoked: Within this component.

Data Base Management 2-33

#DBINCRM Data Base Common Function to Apply
Increment to Data Space

Function: Applies increment to data space function.

How Invoked: Within the data base and journal
components.

#DBINFER Induce an Invalid Entry Status Byte for
Recovery Purposes

Function: Deliberately invalidates status byte for
recovery purposes.

How Invoked: Within this component.

#DBINIT1 Data Base IPL and Recovery Phase 1

Function: Performs all possible cleanup functions for
data base objects in use at the time of an abnormal
system termination. This is phase 1 of the data base
recovery.

How Invoked: Within this component.

#DBINIT2 Data Base I PL and Recovery Phase 2

Function: Performs lingering cleanup functions for data
base objects affected by journal and commit recovery.
This is phase 2 of the data base recovery.

How Invoked: Within this component.

#DBINIWA Randomize the Invoker's Automatic
Variables

Function: Reach into the invoker's automatic storage
and randomize the variables.

How Invoked: Within this component.

#DBINJDS Handle Injured Data Space

Function: Identifies a damaged data space, and discards
all linkage to associated indexes.

How Invoked: Within this component.

2-34

#DBINSDR Data Base Maintenance Routine to
Insert Default or Deleted Entries

Function: Inserts default or .deleted entries into a data
space. Utilizes the data base common function
#DBINSIM to perform the actual inserts.

How Invoked: Within this component.

#DBINSEN Insert Data Space Entry

Function: Inserts a data space entry into the specified
data space.

How Invoked: Insert Data Space Entry instruction.

#DBINSEQ Insert Sequential Data Space Entries

Function: Inserts data space entries into the specified
data space.

How Invoked: Insert Sequential Data Space Entries
instruction.

#DBINSIN Insert Data Space Entries

Function: Performs the data base common function to
insert data space entries into the data space.

How Invoked: Within the data base and journal
components.

#DBIPLEH Tolerate Selected Page Reference
Exceptions that Occur During IPL

Function: Provides tolerance and resume point support
for page reference exceptions because of object
damage.

How Invoked: Through exception management.

#DBISRCH Search Data Space Index

Function: Examines binary tree contents to ensure that
the key utilized to locate the data space entry during the
Set Cursor instruction still identifies the same data
space entry.

How Invoked: Within this component.

J

#DBIVLEH CSEH to Invalidate Data Space Indexes

Function: Responds to unexpected exceptions
encountered by invalidating all modified data space
indexes affected by the data space being populated.

How Invoked: Through exception management.

#DBIVXEH Invalidate a Data Space Index

Function: Invalidates a specific data space index in the
event an exception occurs while manipulating the data
space index.

How Invoked: Within this component.

#DBIXCEH CSEH to Invalidate a Data Space Index

Function: Responds to errors signaled during a machine
index operation by invalidating the data space index
involved in the operation.

How Invoked: Through exception management.

#DBIXCHN Perform Modification of Data Space
Indexes

Function: Performs insert key(sl. delete key(sl. empty
index requests, and invalidation requests when
performing modi'fications to the underlying data spaces.

How Invoked: Within this component.

#DBIXFEH Data Space Index Full CSEH

Function: Invalidates full indexes that utilize release 1
format (2-byte) node structure.

How Invoked: Through exception management.

#DBIXGES Estimate Size of Data Space Index

Function: Estimates the number of index entries
between the low and high points of a key range.

How Invoked: Within this component.

#DBIXIPL Validate/Recover Data Space Index

Function: Detects internal damage within a data space
index during install and load or following a system
failure, invalidates the index if required, and verifies the
existence of all segment groups that constitute the data
space index.

How Invoked: Within this component.

#DBIXUEH CSEH to Remove DS Index from
In-Use Table

Function: Removes DS index from the in-use table.

How Invoked: Within this component.

#DBIXUSE Set Data Space Index Concurrent Log
Bit

Function: Set the concurrent log bit in the data space
index header if the data space index is being taken out
of use and there is no other user of this data space
index.

How Invoked: Within this component.

#DBIXVDS Verify Data Space and Data Space
Index Properly Address each Other

Function: Examines the DKEY table of a data space
index and the data space index directory blocks of a
data space to verify that they properly address each
other.

How Invoked: Within this component.

#DBJTLEH CSEH to Tolerate Journal Errors

Function: Tolerates the return feedback information on
journal errors.

How Invoked: Within the data base and load/dump
components.

Data Base Management 2-35

#DBLABRG Look-Ahead

Function: Performs look-ahead of data space entries.

How Invoked: Within this component.

#DBLCTKY Locate Key Candidate in Data Space
Index

Function: Locates a key candidate using a search key
and rule option.

How Invoked: Within this component.

#DBLGDNT Log Information About a Faulty Entry
Status Byte into the VMC Log

Function: Logs information associated with a faulty entry
status byte into the VMC log.

How Invoked: Within this component.

#DBLKMAP Record the First Execution of a Module,
Entry Point, or Function

Function: Records the address, name, and compile date
of the calling module and then no-ops the call
instruction. Used to identify newly linked modules and
to identify the first execution of rarely executed paths.

How Invoked: Within this component.

#DBLOGER Log Possible Error Keys During Data
Space Index Build

Function: Invokes the delayed maintenance logging
function to log the key. If the error threshold is reached,
then sets the error return flag.

How Invoked: Within this component.

2-36

#DBMAINT Data Base Maintenance

Function: Performs special maintenance operations on
data base objects. The options supported are:

• Rebuild Index: Rebuild the index tree of an invalid
index based upon the data spaces pointed to by the
index.

• Invalidate Index: Mark a data space index as invalid
making the index un-usable until it is rebuilt, and
reclaim unused space.

• Reset Data Space: Delete all entries in a data space,
reclaim unused space, and free all ordinal numbers
previously assigned.

• Apply Increment to Data Space: Apply the increment
to the maximum number of entries value for a data
space.

• Insert deleted entries.

• Insert default entries.

How Invoked: Data Base Maintenance instruction.

#DBMAIVI Validate Data Space Index Chains

Function: Ensures that the data space index chain of a
data space is usable and optionally ensures that the data
space indexes over the data space are in a state that
permits the currently executing instruction to complete.

How Invoked: From modules that must use the data
space index chain and do not perform their own
checking.

#DBMAPEH Conversion/Mapping CSEH

Function: Performs the required recovery because of
decimal data and overflow exceptions caused by data
fields operated on by data base generated mapping
code.

How Invoked: Through exception management.

J

J

L

#DBMATCR Materialize Cursor Attributes

Function: Determines if the user requests materialization
of the stat~stics or the creation template for the
specified cursor, and invokes the appropriate
materialization function.

How Invoked: Materialize Cursor Attributes instruction.

#DBMATDS Materialize Data Space Attributes

Function: Determines if the user requests materialization
of the statistics or creation template and moves the
requested information into a space object.

How Invoked: Materialize Data Space Attributes
instruction.

#DBMATIX Materialize Data Space Index Attributes

Function: Determines if the user requests materialization
of the statistics or creation template and invokes the
appropriate materialization function.

How Invoked: Materialize Data Space Index Attributes
instruction.

#DBMCLEH CSEH to Discard Partially Inserted Data
Space Entries

Function: Discards all partially inserted data space
entries from the specified data space.

How Invoked: Through exception management.

#DBMDSAT Modify Data Space

Function: Modifies the data space attributes.

How Invoked: Within this component.

#DBMERGE Merge Mini-Indexes into a Data Space
Index

Function: Merges mini-indexes into the data space
index during build index.

How Invoked: Within this component.

#DBMIVAL Invalidate a Data Space Index

Function: Invalidates a data space index.

How Invoked: Within this component.

#DBMODIM Modify Data Space Entry

Function: Updates data space entries.

How Invoked: Within the data base and journal
components.

#DBMODIX Modify Attributes of a Data Space
Index

Function: Changes an attribute of a data space index
that can be modified.

How Invoked: Modify Data Space Index Attribute
instruction.

#DBMONRL Release a Seize and Wait

Function: Releases a seized object. Performs a wait
operation if some other process is attempting to access
the object.

How Invoked: Within this component.

#DBMONSZ Seize an Object and Save the Hold
Record Address

Function: Seizes an object and saves the address of the
hold record so that the hold record can be tested
periodically to determine if another process is attempting
to access the object.

How Invoked: Within this component.

#DBMPSEL Derived Field Mapping

Function: Performs derived field mapping and selection
for each DMAP entry.

How Invoked: Within this component.

Data Base Management 2-37

#DBMRBLD Rebuild a Data Space Index

Function: Rebuilds a data space index for data base
maintenance.

How Invoked: Within this component.

#DBMRSET Data Base Maintenance Routine to
Reset a Data Space

Function: Performs the data base maintenance option to
reset the data space.

How Invoked: Within this component.

#DBMR6F6 Merge Fast Search Arrays into a Single
Array

Function: Process ranges from one or more fast search
arrays to produce a single merged array with ordered
disjointed ranges.

How Invoked: Within this component.

#DBMUSEH Remove Objects from In-Use

Function: CSEH to remove the specified objects from
the in-use table in the event of an exception.

How Invoked: Within this component.

#DBORDNB Determine Ordinal Number

Function: Determines the ordinal number associated
with the given virtual address of a data space entry.

How Invoked: Within this component.

#DBPOSCR Restore a Cursor Position

Function: Restores the position of a cursor.

How Invoked: Within this component.

2-38

#DBRELEH Release Seized Objects CSEH

Function: Releases the objects listed in the designated
seize / release parameter bloc~.

How Invoked: Through exception management.

#DBRESEQ Sequentially Retrieve Data Space
Entries

Function: Sequentially retrieves multiple data space
entries and sets the cursor to address the final entry
retrieved.

How Invoked: Retrieve Sequential Data Space Entries
instructions.

#DBRESET Logically Reset a Data Space

Function: Identifies a data space as totally or partially
reset and destroys any unused data SIDs.

How Invoked: Within this component.

#DBRETEN Retrieve Data Space Entry

Function: Maps the data space entry designated by the
cursor into the user's interface buffer.

How Invoked: Retrieve Data Space Entry instruction.

#DBRLSEN Release Data Space Entries

Function: Releases data space entries (unlocks either the
first entry or all entries currently locked to a specified
active cursor). The number of entries unlocked is
determined by the release data space entries option.

How Invoked: Release Data Space Entries instruction.

#DBRMDSK Removes Data Space Keys from a Data
Space Index

Function: Removes all keys for a data space from a data
space index.

How Invoked: Within this component.

J

#DBRSIPL Recover "from Reset

Function: Performs IPL-time recovery for a partial reset
operation against SID number 1 of a data space.

How Invoked: Within this component.

#DBRSQMN Retrieve Sequential Mainline

Function: Retrieves multiple data space entries or
group-by results.

How Invoked: Within this component.

#DBRSTDS Data Base Common Function to
Perform a Reset of a Data Space

Function: Fully resets a data space.

How Invoked: Within the data base and journal
components.

#DBSCAEH Store and Set Computational Attributes
Exception Handler

~ Function: The computational attributes are reset from
the exception data.

How Invoked: Within this component.

#DBSELEH Generated Selection Code Exception
Handler

Function: Sets the exception type and returns to the
next sequential instruction of the invoker of the
generated selection code if a data related exception
occurs during the execution of the generated selection
code.

How Invoked: Within this component.

#DBSEUX Select Affected Data Space Indexes

Function: Selects the data space indexes that are
affected by the modification of an underlying data
space.

How Invoked: Within this component.

#DBSETCR Set Cursor

Function: Causes the cursor to address an entry in a
data space as specified by the option list and the search
key. The address of the entry is stored in the cursor. If
requested, the logical key is returned in the area
specified.

How Invoked: Set Cursor instruction.

#DBSOEH Select/Omit CSEH

Function: Tolerates exceptions associated with a
select/omit data space index that occurred during the
execution of a user exit program.

How Invoked: Through exception management.

#DBSPCHK Run-Time Deleted Segment Group
Spanning Data Space Entry Checks

Function: Checks the segment group spanning data
space entries to assure that consistency is maintained
between the data space and data space index.

How Invoked: Within this component.

#DBSPNBG Detect and Process the Data Spaces
That Were Exposed to the Deleted
Span Segment Indicator

Function: Attempts to correct any damage caused by
the indicator that inadvertently deletes data space
entries that cross segment group boundaries.

How Invoked: Within this component.

#DBSRCHN Search DSPI Chain During Recovery
and Load/Dump

Function: Performs validity checks on the DSPI chain of
a data space during load/dump and IPL recovery.

How Invoked: Within this component.

Data Base Management 2-39

#DBSTUFF Build Keys from Data Spaces and
Insert Them into an Index

Function: Performs appropriate select/omit and build
key processing on data space entries and inserts the
entries into a data space index or mini-index during a
build index operation.

How Invoked: Within this component.

#DBSTUFX Put Keys into Index from Parent Index

Function: Generates keys from an existing index and
inserts them into the new index.

How Invoked: Within this component.

#DBSTUSB Build Key of Entry Crossing SID Group
Boundary

Function: Performs appropriate select/omit and build
key processing for a data space entry that crosses an
SID group boundary.

How Invoked: Within this component.

#DBTERM Data Base Process Termination Routine

Function: De-activates any cursors that are active at
process termination.

How Invoked: Process termination.

#DBTMPIX Manage Retain Status of a Data Space

Function: Modifies the retain status of the data space to
account for the presence of a temporary index
referenced from the OS index chain.

How Invoked: Within this component.

#DBUCOPY Copy Data Space Entries

Function: Copies data space entries from one data
space to another (or the same) data space according to
the specified options.

How Invoked: Copy Data Space Entries instruction.

2-40

#DBUCSEH Copy Data Space Entries CSEH

Function: Handles errors that occur during a Copy Data
Space Entries instruction. When source and receiver
data spaces are the same, backs up the data space to
its prior state.

How Invoked: Through exception management.

#DBUGDEL Report an Inconsistent Deleted Entry
Count

Function: Flags and reveals an inconsistent deleted entry
count of a data space.

How Invoked: Within this component.

#DBUNBLD Unbuild Composite Key

Function: Extracts individual fields from a composite key
and reverses any key building operations to obtain the
previous key value.

How Invoked: Within this component.

#DBUNDEL Update a Deleted Entry

Function: Updates a deleted data space entry.

How Invoked: Within this component.

#DBUPDEN Update Data Space Entry

Function: Updates the locked data space entry
addressed by the head of the locked entry queue
associated with the cursor.

How Invoked: Update Data Space Entry instruction.

#DBUPDIM Update a Nondeleted Entry

Function: Updates a non deleted data space entry.

How Invoked: Within this component.

J

#DBVERIP Verify Internal Pointer

Function: Verifies that an internal segment pointer
contains an undamaged segment identifier.

How Invoked: Within this component.

#DBVERPT Verify External Pointer

Function: Verifies that an external segment pointer
references an existing segment group.

How Invoked: Within this component.

#DBVERSD Data Base Object Router for Segment
Identifier Wrap

Function: Determines the object type during segment
identifier wrap processing and invokes the appropriate
object-specific validation routine.

How Invoked: Through the segment identifier wrap
Interface.

#DBVFYJN Verify Cursor Join Position

Function: Verifies the current position of a join cursor to
ensure it is still a valid composite join position.

How Invoked: Within this component.

#DBVFYKY Verify Key Presence in Data Space

Function: Determines if the key corresponding to the
data space entry is present in the input data space
index.

How Invoked: Within this component.

#DBVIPTR Verify a SID pointer

Function: Verify the input pointer for accuracy. If an
erroneous pointer is detected, replace the pointer with
the standard value representing a lost SID.

How Invoked: Within this component.

#DBVKCNT Verify MI-Specified Key Count of Byte
Length or Number of Key Fields

Function: Given a logical key count, consisting of either
a byte length or key field count, verifies the contents
and returns the length of the logical key including fork
characters.

How Invoked: Within this component.

#DBVRSEL Verify Selection Template

Function: Verify that the selection template is internally
consistent.

How Invoked: Within this component.

#DBXBIES Calculate Value For Extending Data
Space Indexes

Function: Given the current data space index size and an
optional minimum new size, calculates a new size that
fits desired allocation rules.

How Invoked: From modules that create or extend a
data space index.

#DBXBINX Build Data Space Index

Function: Builds or brings up to date the binary tree
(internal machine index) portion of a data space index.

How Invoked: Within this component.

#DBXBLKY Build Composite Key

Function: Builds a composite key according to the input
parameters.

How Invoked: Within this component.

Data Base Management 2-41

#DBXCBEH Critical Data Base Error CSEH

Function: Causes CSEH to write a data base object
image to the VMC log in case of an unrecoverable error
in manipulating the object, and to stop machine
processing so that data base IPL recovery can attempt
to recover the error.

How Invoked: Through exception management.

#DBXCIRC Log Circular Data Space Index
Directory Block Chains

Function: VMC logs a data space when circular data
space index directory block chain is detected and soft
damage to the data space occurs.

How Invoked: Within this component.

#DBXClDS Clear Trailing Area of Data Segment

Function: Discards the entries from the end of a data
space.

How Invoked: Within this component.

#DBXCPCR Copy Cursor

Function: Restores object specific fields in the cursor
after a create duplicate object operation.

How Invoked: Other VMC component as a result of a
create duplicate object operation.

#DBXDACR De-activate Cursor Common Function

Function: De-activates the specified cursor.

How Invoked: Within this component and process
termination.

#DBXDDS Destroy Data Space Common Function

Function: Performs common portions of destroy data
space for error and IPL recovery.

How Invoked: Within this component.

2-42

#DBXDINX Destroy Data Space Index Common
Function

Function: Performs common portions of destroy data
space index.

How Invoked: Within this component and destroy and
create data space index CSEHs.

#DBXDSID Carefully Destroy Data Segment

Function: Verifies the identity of a data space data
segment and destroys it.

How Invoked: Within this component.

#DBXFDSH Load/Dump Update Data Space
Header

Function: Updates addresses in a loaded data space
header and merges the data space index blocks of the
overlaid data space if one exists.

How Invoked: From load/dump.

#DBXFIXH Load/Dump Update Data Space Index
Header

Function: Updates addresses in a loaded data space
index header and establishes pointers between the index
and the referenced data spaces.

How Invoked: From load/dump.

#DBXFMAP Data Movement/Conversion Code
Generation

Function: Generates field mapping and data conversion
code.

How Invoked: Within this component.

#DBXGBDY Parse Entry Spanning a Group
Boundary

Function: Locates both portions of a data space entry
spanning a SID group boundary.

How Invoked: Within this component.

J

#DBXGDER Generated Derived Field Mapping

Function: Processes the mapping template to produce
derived field mapping.

How Invoked: Within this component.

#DBXIVAL Invalidate Data Space Index

Function: Invalidates an index and signals an event.

How Invoked: Within this component.

#DBXMATK Construct Logical Key

Function: Generates the logical key corresponding to the
data space entry.

How Invoked: Within this component.

#DBXMUSE Maintain the Data Base In-Use Table

Function: Records the data base objects that are being
used at anyone time. This routine performs all IPL and
run-time functions that involve the in-use table. These
functions include:

• Initialize: Initializes the in-use table (lPL)

• Set: Sets pointer to retrieve first in-use table entry
(lPL)

• Retrieve: Retrieves next in-use table entry (lPL)

• Find: Determines if an object is in-use (run time)

• Increment: Places an object in-use or increases the
count (run time)

• Decrement: Removes an object from in-use or
decreases the count (run time)

• Ensure: Ensures that the in-use status of all objects
is saved on secondary storage (run time)

• Signal Exception: Signals an object not eligible
exception (run time)

• Retain: Flags an object as a candidate for recovery
processing

How Invoked: Within this component and from
load/dump.

#DB5NDEF Verify Join Definition Template

Function: Verifies the join input template, then builds
the join portion of a cursor.

How Invoked: Within this component.

#DB5NPOS Set Secondary Position of a Join
Cursor

Function: Sets the secondary position of a join cursor.

How Invoked: Within this component.

Data Base Management 2-43

#DB6BDEF Verify Group-by Definition Template
List and Build Related Group-by
Structures

Function: Builds the intermediate buffer description for
group-by results and generates all primitive processing
code.

How Invoked: Within this component.

#DB6BMAP Verify Group-by Mapping

Function: Verifies group-by mapping code and generate
group-by intermediate mapping code.

How Invoked: Within this component.

#DB6BSEL Verify Group-by Selection Template
and Generate Group-by Selection Code

Function: Verifies and generates Selection code for the
group-by intermediate buffer.

How Invoked: Within this component.

#DB6MSEL Group-by Derived Field Mapping and
Selection

Function: Performs group-by derived field mapping,
selection, and output mapping.

How Invoked: Within this component.

#DB6NSEL Generate Selection Code

Function: Processes the selection template to produce
the generated selection code.

How Invoked: Within this component.

#DBXPUSH Allocate Additional Data Space SID
Group Table Entries

Function: Allocates more space for SID group table
entries in a data space header by relocating any data
space index directory blocks in the data space header.

How Invoked: Within this component.

2-44

#DBXRINX Load/Dump Network Cleanup

Function: Searches the data space index chain of
previously loaded and updated data space header for
any blocks with the load/dump flag set to on. Such
blocks are deleted and their spaces reclaimed. The data
space index chain is also searched for any blocks with
the index invalidated flag set to on. An event is signaled
for each index pointed to by such a block.

How Invoked: From load/dump.

#DBXRMVI Remove Flagged Data Space Index
Blocks from the Data Space Header

Function: Searches the index list of a data space header
for any blocks with the remove flag set to on or the
load / dump flag set to on, and deletes those blocks.

How Invoked: Within this component.

#DBXRMVT Re-copy Data Space Header to the
Data Space Header Segment Group

Function: Copies the duplicated (copied) data space
header to the original header and destroys the
duplicated segment group.

How Invoked: Within this component.

#DBXSELT Invoke Select/Omit Routine

Function: Maps data space entry fields to the selection
buffer and invokes the selection routine to determine if
the entry is to be inserted into the data space index.

How Invoked: Within this component.

#DBXSIZE Alter the Size of a Segment Group of
an Object

Function: Alters the size of a segment group of an
object to the specified size.

How Invoked: Within this component.

J

#DBXTNDS Extend the Space Allocated for a Data
Space

Function: E1<tends a data space such that it is large
enough to hold additional entries.

How Invoked: Within this component.

#DBXUNLK Unlock Data Space Entry

Function: Removes and disposes of the specified hold
records from the cursor's locked entry queue.

How Invoked: Within this component.

#DBXVDER Verify Derived Field Mapping Template

Function: Verifies that the derived field mapping
template is internally consistent.

How Invoked: Within this component.

#DBXVERX Verify that a Segment Group Does
Exist

Function: Verifies that the designated segment group
does exist. If the segment does not exist. a designated
object is marked damaged.

How Invoked: Within this component.

#DBXVMAP Verify Mapping Template

Function: Verifies that the designated field resides
within the data space entry. the type attribute is valid.
and the length for the attribute specified is valid.

How Invoked: Within this component.

Data Base Management 2-45

J

2-46

Independent Index Management

INTRODUCTION

An independent index is a system object used for data
storage and retrieval. The index is designed to minimize
the storage required for data and the time needed to
insert, find, or remove pieces of data. Independent
indexes have multiple uses; among these are table
searches, sorts, merges, cross-references, and symbol
tables.

Independent index management controls the building
and maintenance of independent indexes. Independent
index management uses a machine index for the storage
of data and uses machine index management to perform
the operations on data contained in the indexes.

Independent index management supports the following
System/38 instructions:

• Create Independent Index

• Destroy Independent Index

• Find/Remove Independent Index Entry

• Insert Independent Index Entry

• Materialize Independent Index Attributes

• Modify Independent Index

Figure 3-1 shows an overview of these independent
index management functions.

Create, Destroy,
Materialize, and
Modify Instruction Independent
Processors Index
(# IXCRTIX,
IXMATAT, Entry
IXDESTIX,
IXMODII)

Find/Remove and
Insert Independent
Index Entry
Instruction
Processors
(#IXMAIN and
#IXINSEN)

Index Control
Block

=c.RequesY

Machine Index
Management

Figure 3-1. Independent Index Management Overview

Independent Index Management 3-1

Create Independent Index

Module #IXCRTIX is invoked by the supervisor link
(SVL) router as a result of a Create Independent Index
instruction. #IXCRTIX copies the index description
template into an internal area and calls #CFCRT01 to
validate the template.

#IXCRTIX then invokes #SMSGCRT to allocate the
storage, and #IXCRTIX initializes the encapsulated
program architecture (EPA) and object specific headers
and the base page of the index. #CFCRT02 is then
called to insert addressability to the index into a context
(if requested) and the user profile (if the index is
permanent). The entire object is written to auxiliary
storage by #SVE8PPR. The system pointer is initialized
and returned to the caller.

3-2

Destroy Independent Index

Module #IXDESTIX is invoked by the SVL router as a
result of a Destroy Independent Index instruction.
#IXDESIX invokes #CFOCHKR to seize and validate the
index. #IXDESIX then invokes #CFDESTO to destroy
the index (headers and machine index) and to remove
addressability from any context and user profile
containing addressability to the index. Finally,
#IXXDEST is invoked to destroy any secondary index
segments.

J

Find/Remove Independent Index Entry

Module illXMAIN is invoked by the SVL router as a
result of both Find Independent Index Entry and Remove
Independent Index Entry instructions. #IXMAIN
validates the instruction and then invokes #CFOCHKR to
seize and validate the index. #IXMAIN copies the rule
options list into an area in the invocation work area
(lWA). validates the list. and then builds an index control
block (lXCB) according to the rule options list as
follows:

Rule Option First EXCB
Generic Request (Hex) (Find or Remove)

Generic Equals 0001 Find low

Strictly Greater 0002 Find generic next
Than

Strictly Less 0003 Find generic prior
Than

Greater Than 0004 Find low else next
or Equal

Less Than 0005 Find high else prior
or Equal

First 0006 Find lowest

Last 0007 Find highest

Between 0008 Find low else next
(inclusive) or find high else

prior

Machine Index Function

Subsequent EXCBs Subsequent EXCBs
(Find Only) (Remove Only)

Find next Find low else next

Find next Find low else next

Find generic prior Find generic prior

Find next Find low else next

Find generic prior Find generic prior

Find next Find low else next

Find generic prior

Find next or find Find low else next
generic prior or find generic prior

Independent Index Management 3-3

#IXMAIN then invokes the machine index function
(#IXXEXCB) to perform the index operation. When an
entry is located, the status flags are checked for error
conditions. The following sequence is then repeated
until all occurrences of the entry have been located:

1.

2.

3.

4.

If a remove entry operation is specified, the entry
just found is removed from the index.

An internal return count is incremented.

Initialize the IXCB for the next find according to
the preceding rule options, and execute the control
block.

Check the status flag for an error condition.

When all entries have been found, the return count is
placed in the option list and the index is released.

Insert Independent Index Entry

Module #IXINSEN is invoked by the SVL router as a
result of an Insert Independent Index Entry instruction.
#IXINSEN invokes #CHOCHKR to seize and validate the
index. #IXINSEN copies the rules options list to an area
in the IWA, validates the list, and then builds an IXCB
according to the rule options list as follows:

3-4

Rule Option
Generic Request (Hex)

Insert 0001

Insert with 002
function
replacement

Insert conditional 0003
that key not in
index

Machine
Index
Function

Insert

Insert

Insert
conditionally

For each entry to be inserted, move the argument to an
internal buffer, perform the index function (#IXXEXCB),
check the status flags (extend index if necessary), and
increment the return count.

When all entries have been inserted, the return count is
placed in the options list and the index is released.

Materialize Independent Index Attributes

Module #IXMATAT is invoked by the SVL router as a
result of a Materialize Independent Index Attributes
instruction. #IXMATAT invokes #CFOCHKR to seize and
validate the index. #IXMATAT invokes #CFMAT02 to
copy the data to be materialized from the EPA header.
#IXMAT AT then copies the data from the object specific
header to an internal buffer, and then moves the data
(up to the length of the template) from the buffer to the
user template. The find count in the object specific
header is set to 0 and the index is relea"3ed.

Modify Independent Index

Module #IXMODII is invoked by the SVL router as a
result of a Modify Independent Index instruction.
#IXMODII invokes #CFOCHKR to seize and validate the
index. #IXMODII copies the index to auxiliary storage.
#IXMODII modifies the specified attributes. When all
specified attributes are modified, the index is released.

DATA AREAS

Independent Index

An independent index resides in one or two segment
groups as shown in Figure 3-2. The first segment
contains the following:

• The segment group header

• The EPA header

• An object specific header that contains:
Index attributes, values, and pointers

- Buffer

• A machine index

J

The second segment is optional and contains the
following:

• The segment group header

• The associated space

Segment Group 1

Segment Group Header

EPA Header

Object Specific Header

• Attributes

• Argument Length

• Number of Entries Inserted

• Number of Entries Removed

• Number of Entries with Pointers

• Number of Pages in Index

• Buffer 1

Page
Machine Index Boundary

• Base Page

• Secondary Pagels)

I
(extendable)

I
I I L.. ___________ J

Segment Group 2

Segment Group Header

Associated Space

I
I (extendable) I L... __________J

Figure 3-2. Independent Index

Index Description Template

The index description template is used by the create and
materialize index functions to build and materialize an
index. The template contains:

• Attributes and values

• Creation and recovery options

• Pointers

STRUCTURE

The following is a list of the modules in independent
index management and the function that each module
performs. The list also shows how the module is
invoked.

#IXCRTEH Create Index Component-Specific
Exception Handler (CSEH)

Function: Processes exceptions that occur during a
create independent index operation.

How Invoked: VMC component.

#IXCRTIX Create Independent Index

Function: Creates an independent index according to the
specifications contained in the creation template.

How Invoked: Create Independent Index instruction.

#IXDESIX Destroy Independent Index

Function: Destroys the specified index and removes all
references to the index from the system.

How Invoked: Destroy Independent Index instruction.

#IXINSEN Insert Independent Index Entry

Function: Inserts entries into the specified independent
index.

How Invoked: Insert Independent Index Entry instruction.

Independent Index Management 3-5

#IXINXEH Index CSEH

Function: Processes exceptions that occur during insert,
find, and remove entry operations.

How Invoked: VMC Component.

#IXMAIN Index Main

Function: Mainline index code that processes find and
remove index entry options.

How Invoked: Find Independent Index Entry and Remove
Independent Index Entry instructions.

#IXMATAT Materialize Independent Index

Function: Materializes the attributes of the specified
index.

How Invoked: Materialize Independent Index instruction.

#IXMODII Modify Independent Index

Function: Modifies the specified attributes within the
independent index.

How Invoked: Modify Independent Index instruction.

3-6

J

Journal Management

INTRODUCTIO.!'l

Journal management records the changes made to
objects for use in recovery procedures and tracks
change activity.

Along with recording the changes made to an object,
journal management also records the following
information about the object:

• When the change is made.

• What process makes the change.

• The user that makes the change.

• What program makes the change.

Journal management also:

• Records the changes simultaneously on two journal
spaces so that if one journal space is damaged, the
information can be retrieved from the undamaged
journal space.

• Automatically synchronizes the journal port and the
journaled object during initial program load (IPL). This
also synchronizes the journaled object with all other
objects being journaled through the same journal
port.

• Allows the user to place entries on the journal. These
may be interspersed with entries for object changes.

• Retrieves the entries from the journal by a variety of
search criteria.

• Recovers the journaled object from the journal port.
This can either involve forward recovery of the object
by applying the specified changes, or backward
recovery by applying the inverse of the specified
changes.

Journal Management 4-1

Journal management uses two system objects to
implement these functions as shown in Figure 4-1.
They are the journal port and journal space.

Journal Port

(Segment Group Header

EPA Header

Object Specific Header

Receiver Table / • Journal Space No.1 Address.
• Journal Space No. 2 Address-

Object Table

Figure 4-1. Journel Object Relationship

4-2

J
Journal Space

Segment Group Header

EPA Header

Object Specific Header

Journal Port Address .-1\
Twin Pointer

1\
Segment Table

Locator Table

I (expandable) I L ________
- _I

Segment Group Header 1/
EPA Header

Object Specific Header

Journal Port Address .--

1\ Segment Table

Twin Pointer -
Locator Table

. I (expandable) I L _________ ...J

The journal port (Figure 4-2) is the object through which
journal entries are routed. It provides a method of
linking the journaled objects to the journal spaces. The
journal port also provides a definition of the lengths of
the various prefix data.

Segment Group Header .--~ Segment Group Header

EPA Header Associated Space

Object Specific Header (JOJOP) I (expandable)

• Materialization Area '------- ---
- Prefix Lengths
- Number of Journal Spaces

- Attached

• Receiver Table
- First Journal Space Address

- Second Journal Space Address

• Journal Entry Sequence Number

• Number of Journaled Objects

• Number of Object Slots Available

• Block Status

• Journal Port Object Table
- Segment Identifier of Journaled

Object
- Journal Identifier of Journaled

Object
- Start Synchronization Sequence

Number
- Old Start Sequence Number
- Journaled Object Attributes

Note: The journal port object table
occurs once for each journaled object.

Figure 4-2. Journal Port

I ..

Journal Management 4-3

The journal space (Figure 4-3) is used to record journal
entries. When the journal space is attached to a journal
port, entries are placed into the journal space for any
change to an object that is being journaled through that
journal port. The entries are variable length. Linkage is
provided for both forward and backward search, and
random finds.

Data Segment

Segment Group Header

Base Segment Data Segment Header

/"
f-e Segment Group Header Entries

EPA Header I (expandable) L _____ ---
Object Specific Header

Journal Segment Table V • Journal Segment 1 Address ..

• Journal Segment 2 Address

• Journal Segment n Address Segment Group Header

Journal Locator Table Data Segment Header

I (expandable) I Entries
L ______ - - --- ..J

I (expandable) I
L _________ ..J

Segment Group Header

Associated Space

I (expandable) I L_____ ..J

Figure 4-3. Journal Space

4-4

J

I
...J

One or two journal spaces can be attached to a journal
port. If two journal spaces are attached to a journal
port, they must be attached at the same time, and their
contents ffluSt be identical. Once a journal space is
detached from the journal port, it cannot be attached to
a journal port again and can only be used for find
operations.

A journal space can be dumped or reloaded. If the
journal space is dumped when it is empty, (not attached
to a journal port), it is loaded as empty. If the journal
space is dumped when it is attached to a journal port or
after it has been detached from the journal port, it is
loaded as detached.

Journal management performs the following functions:

• Inserts an entry into the journal space.

• Finds entries on the journal space.

• Performs automatic synchronization during IPL.

• Recovers journaled objects during IPL.

• Performs fix up of journal spaces after the journal
spaces are loaded.

• Logs journaled objects on the object recovery list
during IPL.

Journal management supports the following System/38
instructions:

• Apply Journaled Changes

• Create Journal Port

• Create Journal Space

• Destroy Journal Port

• Destroy Journal Space

• Journal Data

• Journal Object

• Materialize Journal Port Attributes

• Materialize Journal Space Attributes

• Materialize Journaled Object Attributes

• Materialize Journaled Objects

• Modify Journal Port

• Retrieve Journal Entries

Apply JOllrnaled Changes

flJOAPPL Y is invoked as a result of an Apply Journaled
Changes instruction. This module applies the recorded
changes in a journal space to an object. The recorded
changes can be applied in either the forward direction or
the backward direction. In the forward direction, the
change indicated by the journal entry is applied to the
objects in ascending journal sequence number order. In
the backward direction, the reverse of the operation
specified in the journal space is applied to the objects in
descending journal sequence number order.

The Apply Journaled Changes instruction really consists
of multiple operations. These operations consist of
getting the next journal entry, and making the change to
the object.

Create Journal Port

flJOCRTJP is invoked as a result of a Create Journal
Port instruction. This module accepts a creation
template containing the common create template, plus
lengths for the time stamp, process name, user profile
name, and program name to be put into the prefix of
each entry journaled through this journal port. The
object must be created as a permanent object.

Create Journal Space

flJOCRTJS is invoked as a result of a Create Journal
Space instruction. This module accepts a creation
template containing the common create template, plus a
threshold event size. The object must be created as a
permanent object.

Journal Management 4-5

The journal space is set to the empty status when it is
created. This status allows the journal space to be
attached to a journal port. In empty status, the journal
space has no data segments. The first data segment is
created during the execution of the Modify Journal Port
instruction that attaches the journal space to a journal
port. When the first entry is put into the journal space,
the journal entry recognizes that there is not enough
space to insert the entry and extends the journal space.

Destroy Journal Port

#JODESJP is invoked as a result of a Destroy Journal
Port instruction. This module controls the destruction of
a journal port. The following rules control the
destruction of a journal port:

• If the journal port is damaged, it can be destroyed
with no restrictions.

• If the journal port is not damaged, it cannot be
destroyed if it has undamaged journal spaces
attached or if there are undamaged objects journaled
through the journal port.

Destroy Journal Space

#JODESJS is invoked as a result of a Destroy Journal
Space instruction. This module controls the destruction
of a journal space. The following rules control the
destruction of a journal space:

• If the journal space is attached to a journal port, it
may be destroyed only if the journal port is damaged.

• If the journal space is not attached to a journal port,
it may be destroyed only if its use count is zero. The
use count of an unattached journal space may be
nonzero if the Modify Journal Port instruction used to
detach the journal space did not complete properly or
if the journal space is required by commitment
control to perform a decommit.

Note: Even if the journal space is damaged, it may not
be destroyed unless it meets the preceding criteria. If a
Modify Journal Port instruction fails before it is
completed, leaving the use count nonzero, the only way
to zero the use count is to perform an IPL.

4-6

Journal Data

#JOURDAT is invoked as a result of a Journal Data
instruction. In turn, the JOlN'nal Data instruction invokes
#JOURNAL to provide the facilities for inserting journal
entries into the journal space(s) attached to a journal
port.

Journal Object

#JOJOBJ is invoked as a result of a Journal Object
instruction. This module initiates the journaling of an
object or terminates the journaling of an object. An
object is journaled to a journal space through a journal
port. The object to be journaled is associated with a
journal port with the Journal Object instruction. Starting
journaling of an object to a journal port causes an entry
to be placed in the journal space(s) attached to the
journal port. The Journal Object instruction also
removes the association between the object and journal
port, stopping recording of changes to that object.

Materialize Journal Port Attributes

#JOMATJP is invoked as a result of a Materialize
Journal Port Attributes instruction. This module returns
a creation-like template for a journal port. This template
consists of the common object creation template and
four prefix lengths. The Materialize Journal Port
Attributes instruction also returns the number of journal
spaces attached to the journal port as well as the
pointers to those spaces.

Materialize Journal Space Attributes

#JOMATJS is invoked as a result of a Materialize
Journal Space Attributes instruction. This module
returns a creation-like template for a journal space. This
consists of the common object creation template and
the threshold size. The Materialize Journal Space
Attributes instruction also returns a pointer to the journal
port to which the journal space is attached, and the
current state of the entries on the journal space. The
current state includes the first and last sequence
numbers, attach and detach time, prefix lengths, and the
length and sequence number of the longest entry.

J

Materialize Journaled Object Attributes

#JOMATOA is invoked as a result of a Materialize
Journaled Object Attributes instruction. This module
returns the journal status for any object including those
that cannot be journaled. The instruction returns the
object journal attributes, a pointer to the journal port if it
is currently being journaled, and the last (current) journal
identification.

Materialize Journaled Objects

#JOMATJO is invoked as a result of a Materialize
Journaled Object instruction. This module returns a list
of objects being journaled through the selected journal
port. This list may contain system pointers, object
identifiers, and/or journal identifiers.

As the list in the journal port is scanned to return the
information, the addresses are checked to make sure the
object addressed by the journal port object table also
points back to the journal port. The journal port object
table may contain entries that do not address journaled
objects because the table entry is created before the
start of journaling, and is destroyed after the end of
journaling. If such an entry is found while materializing
the journaled object, the entry is removed from the
journal port.

Modify Journal Port

#JOMODJP is invoked as a result of a Modify Journal
Port instruction. A journal space must be attached to a
journal port before it can become a receiver for journal
entries. Similarly, a journal port must have at least one
journal space attached before it can be used to journal
changes to the objects being journaled through that
journal port. #JOMODJP attaches new journal spaces
and detaches currently attached journal spaces.
#JOMODJP may detach all of the journal space(s) to the
journal port. Once a journal space has been detached, it
can never be attached to a journal port again.

Retrieve Journal Entries

#JORETEN is invoked as a result of a Retrieve Journal
Entries instruction. This module retrieves journal entries
from requested journal spaces.

Load/Dump and Suspend

The journal space can be loaded and dumped. A journal
space can be loaded again if it is empty or suspended,
or if the media version has the same first sequence
number and a last sequence number that is at least as
large as the storage version. The use count must also
be nonzero.

When a journal space is loaded, journal management is
called to correct the segment table and other pointers in
the journal space object specific header. If the object
was attachd when it was saved, I PL recovery is run on
the journal space to insure that it is in a consistent
state.

If the journal space was dumped in an empty state, then
it will still be empty when loaded. If the journal space
was dumped as either attached or detached, then it will
be in the detached state when it is loaded.

A journal space may be dumped at any time. If the
journal space is attached when it is dumped, then the
dump code seizes the journal to guarantee that the
journal is at a block boundary. While the journal is
seized, the current insert address and the sizes of the
segments are saved. Any changes made to the object
after the dump begins will not be reflected when it is
loaded.

A journal space can be suspended when its use count is
zero. (It is not attached and not needed for IPL
synchronization.) When the journal space is suspended,
the data segments are destroyed, and the base segment
and associated space segment are truncated to one
page.

IPL Recovery

If the machine crashes, VMC must, if possible, restore
objects to a usable state. Since journaling is a
recovery / redundancy function, restoring objects to a
usable state is more important than usual.

This portion of the recovery is concerned only with the
linkage between journal ports and journal spaces.
However, failure to restore those linkages may disallow
later recovery operations that require the journal to be as
well defined and as complete as possible.

Journal Management 4-7

To prevent excessive numbers of writes during run time,
only the journal entries are forced. When the machine
crashes, it is necessary for the journal recovery function
to start at the last known force point in the header and
reconstruct the header from the entries.

IPL Synchronization

The purpose of the journaled object synchronizaion
phase of IPL is to assure that the journaled objects are
consistent with the journal entries in the journal spaces.
Since changes are journaled before any changes are
made to the object, it is possible that the object does
not contain all changes recorded in the journal space
and may need to be brought up to date.

The journal I PL synchronization routine is invoked during
every IPL to determine if synchronization operations are
required. If synchronization operations are not required,
the journaled objects are marked in synchronization with
the journal. Otherwise, the necessary operations are
performed and then the objects are marked in
synchronization with the journal. Following object
synchronization, the receiver table (Figure 4-2) is
checked to determine if the journal spaces are detached.
If the journal spaces are detached, the receiver table is
cleared to complete the interrupted Modify Journal Port
instruction.

Any time the machine shuts down without writing main
storage to nonvolatile storage or not at a boundary (as
in a crashi, it is possible that some changes to the
journaled object may have been recorded on the journal
space but the pages actually changed in the journaled
object were lost when the machine went down. This
routine assures that the journal and journaled object are
consistent by assuring that all recorded changes to the
journaled object have been written to nonvolatile
memory.

Since it is not known which changes were written out to
nonvolatile storage and which were lost, I PL
synchronization must perform all changes since the last
time the journaled object and journal were known to be
synchronized.

IPL synchronization needs to interrogate the object table
in the journal port header; and, if synchronization is
required, it must retrieve journal entries as well as
examine and modify the journaled objects. IPL
synchronization runs after the initial cleanup of both
journal and journaled objects.

4-8

DATA AREAS

System-Wide Journal List

Journal management controls a segment called the
system-wide journal list (see Figure 4-4) that contains a
list of journal ports and journal spaces. The
system-wide journal list contains addressability to all
journal ports, and to all journal spaces that have a
nonzero use count. The system-wide journal list
contains 4 bytes for each object, a 3-byte segment
identifier and a 1-byte object type. The system-wide
journal list is used by #JOINIT to recover journal ports
and journal spaces during IPl. If the system-wide
journal list segment is damaged, it is recreated, and all
segments in the machine are scanned to refill it.

V System·Wide Journal
List Header

Slot 1

Slot 2

..... -
Slot n

Figure 44. System-Wide Journal List

Journal

• Journal Space
or

• Journal Port

Journal

• Journal Space
or

• Journal Port

Journal

• Journal Space
or

• Journal Port

J

Object Recovery List

The object recovery list contains a list of journal ports
and journal spaces that are recovered during IPL.

All journal ports are logged in the object recovery list.
The log entry is made by IPL synchronization and, in
addition to listing the usual damage bits, it indicates if
all objects journaled through the journal port are
synchronized.

Attached journal spaces are logged on the object
recovery list if they statisfy any of the following
conditions:

• Hard damage

• Soft damage

• Suspended

• Unusable

• Past threshold

• Not synchronized

• Journal port is damaged

Anyone of these conditions, with the exception of past
threshold, prevents any further journaling to the journal
space.

STRUCTURE

The following is a list of the modules in journal
management and the function that each module
performs. The list also shows how the module is
invoked.

IIJOABTRL Build Transaction List

Function: Builds the transaction list index.

How Invoked: Within this component.

IIJOAPLEH Apply Journaled Changes Exception
Handler

Function: Terminates or completes the operation of the
apply normal or abnormal termination.

How Invoked: Within this component.

IIJOAPLYB Apply Change Backward

Function: Applies a single change to a data space in the
backward direction.

How Invoked: Within this component.

IIJOAPLYF Apply Change Forward

Function: Applies a single change to a data space in the
forward direction.

How Invoked: Within this component.

IIJOAPPLY Apply Journaled Changes

Function: Applies the recorded changes in a journal
space to an object.

How Invoked: Apply Journal Changes instruction.

IIJOASELT Select Journal Entries

Function: Checks the journal entry against any selection
criteria.

How Invoked: Within this component.

IIJOASRSL Sort Select List

Function: Sorts the selection list provided to the Apply
Journaled Changes instruction.

How Invoked: Within this component.

Journal Management 4-9

IIJOATRNB Process Transaction List Backward

Function: Maintains the transaction list when applying
changes and/or scanning backward.

How Invoked: Within this component.

IIJOATRNF Process Transaction List Forward

Function: Maintains the transaction list when applying
changes and/or scanning forward.

How Invoked: Within this component.

IIJOAUTRL Unload Transaction List

Function: Removes the entries from the transaction list
and returns them to the user space.

How Invoked: Within this component.

IIJOCLOSR Close Journal Locator

Function: Releases the list of journal spaces.

How Invoked: Within this component.

IIJOCNLEH Cancel Open Block on Journal

Function: Cancels an open block on the journal
(exception handler).

How Invoked: From another VMC component.

IIJOCRIT Apply Select Criteria

Function: Accepts or rejects the current entry based on
the selected criteria.

How Invoked: Within this component.

IIJOCRTJP Create Journal Port

Function: Implements the Create Journal Port instruction
that creates the journal port system object.

How Invoked: Create Journal Port instruction.

4-10

IIJOCRTJS Create Journal Space

Function: Implements the Create Journal Space
instruction that creates the journal space system object.

How Invoked: Create Journal Space instruction.

IIJODESJP Destroy Journal Port

Function: Implements the Destroy Journal Port
instruction that destroys the journal port system object.

How Invoked: Destroy Journal Port instruction.

IIJODESJS Destroy Journal Space

Function: Implements the Destroy Journal Space
instruction that destroys the journal space system
object.

How Invoked: Destroy Journal Space instruction.

IIJOFIND Find Starting or Adjacent Journal Entry

Function: Finds the starting or adjacent journal entry.

How Invoked: Within this component.

IIJOFINDA Find Adjacent Journal Space Entry

Function: Given a current entry. finds the adjacent entry
in the selected direction.

How Invoked: Within this component.

IIJOFINDQ Find Starting Journal Space Entry by
Sequence Number

Function: Finds the starting entry when the user
specifies the sequence number as a starting entry.

How Invoked: Within this component.

/#JOFINDS Find Starting Journal Space Entry

Function: Finds the starting journal space entry.

How Invoked: Within this component.

J

#JOFINDT Find Starting Journal Space Entry by
Time Stamp

Function: Finds the starting entry when the user
specifies the time stamp as a starting entry.

How Invoked: Within this component.

#JOFINEH Journal Find CSEH

Function: Closes the journal locator on an exception.

How Invoked: Other VMC component.

#JOFNDJS Find Starting Journal Space

Function: Finds the starting sequence number or time
stamp and selects the journal space containing the
starting entry.

How Invoked: Within this component.

#JOIN IT Journal Object IPL Recovery

Function: Cleans up the journal objects after a machine
crash and puts out the IPL record on each active journal
whether the machine crashes or not.

How Invoked: IPL routines.

#JOIRCJP Journal Port Object Recovery

Function: Cleans up a journal port after a machine crash
and recovers any active, attached journal spaces using
#JOIRCJS. Reconciles twin active journal spaces with
#JORECTW.

How Invoked: Within this component.

#JOIRCJS Journal Space Object Recovery

Function: Cleans up a journal space after a machine
crash.

How Invoked: Within this component.

#JOISYNC Journal and Object IPL Synchronization

Function: Synchronizes data spaces with journal during
IPL.

How Invoked: IPL routines.

#JOJOBJ Journal Object

Function: Starts and stops journaling of an object.

How Invoked: Journal Object instruction.

#JOMATJO Materialize Journaled Objects

Function: Materializes the list of objects being journaled
through a journal port.

How Invoked: Materialize Journaled Objects instruction.

#JOMATJP Materialize Journal Port

Function: Materializes the creation-like template and
returns the current attributes of a journal port.

How Invoked: Materialize Journal Port Attributes
instruction.

#JOMATJS Materialize Journal Space

Function: Materializes the creation-like template and
returns the current attributes of a journal space.

How Invoked: Materialize Journal Space Attributes
instruction.

#JOMATOA Materialize Journaled Object Attributes

Function: Materializes the journal attributes for any
object.

How Invoked: Materialize Journaled Object Attributes
instruction.

Journal Management 4-11

#JOMODEH Modify Journal Port Exception Handler

Function: Restores current area journal spaces and
clears old area journal spaces.

How Invoked: Within this component.

#JOMODJP Modify Journal Port

Function: Detaches all currently attached journal spaces
and optionally attaches new journal spaces and/or
resets journal entry sequence numbers.

How Invoked: Modify Journal Port instruction.

#JOOPENR Open Journal Locator

Function: Discovers and seizes explicit or implicit journal
space lists.

How Invoked: Within this component.

#JOPREMV Take Entry Out of Journal Port Table

Function: Takes an object entry out of the journal port
table.

How Invoked: Within this component and by load/dump.

#JOPUTEH Put in Exception Handler

Function: Backs out of putting an object entry into the
journal port entry table when an error occurs.

How Invoked: Within this component and other VMC
components.

#JOPUTIN Put an Entry in Journal Port Table

Function: Puts an object entry in a journal port entry
table.

How Invoked: Within this component and by load/dump.

4-12

#JORECTW Reconcile Twin Journal Spaces

Function: Ensures that active twin journal spaces are
identical during IPL recovery.

How Invoked: Within this component.

#JORETEN Retrieve Journal Entries

Function: Implements the Retrieve Journal Entries
instruction, which allows the user to selectively retrieve
entries from the journal.

How Invoked: Retrieve Journal Entries instruction.

#JOTCHTB Touch Locator Table

Function: Brings the next block of locator table entries
and touches the locator entry to detect damage.

How Invoked: Within this component.

#JOTOUCH Touch Current Entry

Function: Perform brings of journal entries and touches
current entry to detect damage.

How Invoked: Within this component.

#JOURDAT Journal Data

Function: Implements the Journal Data instruction that
allows the user to put entries onto the journal.

How Invoked: Journal Data instruction.

#JOURNAL Journal Entry

Function: Inserts a journal entry, and/or starts or ends a
block of journal entries, and/or force the journal.

How Invoked: Other VMC components.

J

J

Queue Management

INTRODUCTION

Queue management provides the functions necessary for
concurrently executing processes to exchange
information as shown in Figure 5-1. A queue is also
used for communications between an I/O management
task and a process when an I/O request is completed.

A queue provides an object, sharable by processes
executing in the system, that can be used to send and
receive information. The basic unit of information in a
queue is a message. Messages can be sent to
(enqueued) and received from (dequeued) a queue.
Messages can contain a key used in identifying or
sequencing the messages; these are keyed messages.

Messages are processed in move-mode and can be
processed in first-in-first-out; last-in-first-out; or
keyed in sequence. The basic types of dequeue
operations are as follows :

• Dequeue

• Dequeue and set indicator

• Dequeue and branch

Process A

I
/pmg,.mA Send / Receive Queue

Enqueue

r Message Message

Figure 5-1. Communication Between Processes

A process issuing a dequeue operation (no indicator or
branch options specified) is placed in a waiting state if
the queue is empty or there are no messages of a
particular key. A process issuing a dequeue operation
can specify a limit on the length of time it is to wait for
a message or the process can wait indefinitely. A
message arriving on a queue for which multiple
processes are waiting is given only to the first waiting
process.

The dequeue and set indicator operation sets an
indicator based on whether or not a message was
dequeued; then it continues to the next instruction. The
dequeue and branch operation allows a process to
continue processing at a point that is determined by
whether or not a message was dequeued.

Queue management supports the following System/38
instructions:

• Create Queue

• Destroy Queue

• Dequeue Message

• Enqueue Message

• Materialize Queue Attributes

• Materialize Queue Messages

Process B

I
/prog",mB

Dequeue

Messagel

Queue Management 5-1

Recovery

Component-specific exception handlers (CSEHs) are
used in all queue operations to ensure that a queue is
not left in an unusable state and that the damage bit is
set in the header (if required) before operation
terminates.

When a microprogramming exception occurs, the
damage bit in the queue header is set. If the machine
abnormally terminates and messages remain on a queue,
the initial program load (IPL) numbers in the queue and
the current IPL number are compared. If the numbers
do not match, the integrity of the queue is checked, and
the IPL number is updated. Otherwise the damage bit in
the queue header is set and the queue instruction
operation is terminated.

DATA AREAS

Queues

A queue is created in a segment group. An additional
segment group is also allocated if it is a composite
object. The queue is designed to function in move
mode; that is, all messages enqueued and dequeued are
moved to and from preformatted message elements that
are part of the queue. The source or target of a
message on an enqueue or dequeue operation is
designated by a space pointer.

The structure of a queue is shown in Figure 5-2. The
encapsulated program architecture (EPA) header is at the
beginning of the object, followed by the object specific
header. The object specific header consists of two
send/receive queues, control fields, and message
elements. The first queue is called the response queue;
the second is called the available queue. The control
fields hold such information as maximum number of
messages, number of message elements available, and
other queue attributes.

5-2

When a queue is initially created, all messages that the
queue can contain are formatted and enqueued to the
available queue; no messages are enqueued to the
response queue.

A bit is set in the last message in the available queue.
When this message is dequeued, a send/receive
message (SRM) access exception is signaled. A bit is
then set in the queue header that signals a queue
access exception for an unsuccessful dequeue, and
processing continues. An attempt to obtain another
message from the available queue causes a queue
access exception. If the queue was created with an
extendable attribute, the queue is extended when the
last message is dequeued.

A destroy message is formatted when a queue is
created. When this message is enqueued, an access
exception is signaled. This exception causes the destroy
functions to be invoked.

Segment Group Header

EPA Header

Object Specific Header

· Response queue header

· Available queue header

· Queue attributes and lengths

· Destroy message

· SRMs (base)

· Data areas (SRM data)

Figure 5-2. Structure of a Queue

J

J

Message Elements

Message elements are split into two parts as shown in
Figure 5-3. The first part, the base, consists of a
2-byte descriptor, a chain pointer, a key (if present), and
a pointer to the other part of the message. The second
part, the message, consists of a timestamp and the
message text.

The base portion of a message cannot cross a page
boundary; any byte of the text portion can cross a page
boundary. The message text can contain pointer and
character data. If a queue is extended, the new
messages are formatted and enqueued to the available
queue.

Response
Queue

Data

Figure 5-3. Message Elements

Available
Queue

Data

STRUCTURE

The following is a list of the modules in queue
management and the function that each module
performs. The list also shows how the module is
invoked.

#PMCRQUE Create Queue

Function: Creates a system object called a queue that is
used for interprocess communication or synchronization
of interrelated processes.

How Invoked: Create Queue instruction.

#PMDQMSG Dequeue Message

Function: Dequeues a message from the specified
queue.

How Invoked: Dequeue Message instruction.

#PMDTYQU Destroy Queue

Function: Destroys the specified queue and all currently
enqueued messages.

How Invoked: Destroy Queue instruction.

Queue Management 5-3

#PMEQMSG Enqueue Message

Function: Enqueues a message on the specified queue
in the specified sequence.

How Invoked: Enqueue Message instruction.

#PMMTQAT Materialize Attributes

Function: Materializes the attributes of the specified
queue.

How Invoked: Materialize Queue Attributes instruction.

#PMSRMAC Queue Message Access Exception
Handler

Function: Processes send/receive message access
exceptions that occur when a monitored message is
enqueued or dequeued. A send/receive message access
exception initiates a queue extension operation by
setting the access exception bit in the queue header. A
subsequent dequeue causes a queue access exception
to be signaled.

How Invoked: Other vertical microcode (VMC)
components.

5-4

#PMSRQAC Queue Access Exception Handler

Function: Processes send / receive queue access
exceptions that occur during queue processing. A
send/receive queue access exception initiates a queue
destruction or queue extension operation.

How Invoked: Other VMC components.

#PMMATQM Materialize Queue Messages

Function: Materialize the number of messages on a
queue, part of each message, or all of each message
and the key.

How Invoked: Materialize Queue Messages Instruction.

J

J

Space Object Management

INTRODtJCTION

Space object management provides the functions that
establish and control the storage areas and space
objects used in the execution of machine instruction
programs. All space objects are explicitly created using
the Create Space instruction.

Created space objects are system objects. Space
objects can be extended, truncated, copied, initialized,
suspended, and destroyed by System/38 instructions.
Space object attributes, such as length and initial value,
can be materialized and modified. These operations are
subject to the authority that the machine instruction set
user has for the object.

Space object management supports the following
System/38 instructions:

• Create Space

• Materialize Space Attributes

• Modify Space Attributes

• Destroy Space

Create Space

The Create Space instruction designates an area that is
to receive addressability to the created space and a
pointer to a template to be used to create the space.
The supervisor link (SVL) router invokes the create space
instruction processor (#SOCRT). This module performs
the space creation operation in the following phases:

• Syntax verification

• Object creation

• Object initialization

During the syntax verification phase, #SOCRT verifies
the contents of the creation template for completeness
and validity. #SOCRT also checks all authorization and
provides proper lock enforcement.

During object creation, #SOCRT performs the actual
allocation of the physical storage for the space. The
storage is allocated according to the attributes specified
in the creation template.

During the object initialization phase, #SOCRT inserts
the values and data into physical storage. These values
and data are necessary to make the storage into a valid
object. #SOCRT then completes the header portion of
the object and initializes the data portion with the values
requested in the template.

Materialize Space Attributes

The Materialize Space Attributes instruction processor
(#SOMAT) is invoked by the SVL router as a result of a
Materialize Space Attributes instruction. This module
first validates that the input pointer specifies a valid
space, and then checks all authorization and provides
proper lock enforcement. #SOMAT then materializes the
attributes of the space into the specified area. The
attributes are materialized in the same format as the
creation template.

Modify Space Attributes

The Modify Space Attributes instruction processor
(#SOMOD) is invoked by the SVL router as a result of a
Modify Space Attributes instruction. This module
performs the modification to the space in the following
phases:

• Syntax/address validation

• Object modification

In the syntax/address phase, #SOMOD ensures that the
input system pointer either addresses a space or
addresses an object that contains an associated space
with extendable attributes. #SOMOD then checks all
authorization, provides proper lock enforcement, and
ensures that the input size contains a valid value.

In the object modification phase, #SOMOD increases or
decreases the physical storage limit for the space,
updates the header information, and initializes the data
area with the initial values specified at create time (if the
storage was increased).

Space Object Management 6-1

Destroy Space

The Destroy Space instruction processor (#SODES) is
invoked by the SVL router as a result of a Destroy
Space instruction. #SODES validates that the input
pointer addresses a valid space, checks all authority, and
provides proper lock enforcement. #SODES then
destroys the contents of the physical storage used for
the space and deletes the context entry for that space.

Dump Space Management

Dump Space Management provides a way to dump
system objects to the internal storage media and
perform simple manipulation of the dump data. The
internal storage area that receives the dump data is
called a dump space.

The source/sink dump operation dumps system objects
into a dump space. The system objects can be reloaded
with a source/sink load operation.

The dump data in a dump space can be retrieved from
one dump space and loaded into another dump space.
The target dump space may exist on the originating
system or another system.

Dump Spaces

A dump space is an object that serves as a storage area
for a dump of other system objects. As such, it
provides an online storage alternative to the commonly
used offline storage media (diskettes and tape) for
dumps and backup.

A dump space contains a storage area for a contiguous
string of 8-bit bytes. The storage area size is variable
with a maximum size of roughly 2 gigabytes. The size
of a dump space can be specified on creation, implicitly
extended by the machine for dump and insert
operations, or explicitly reset with a modify operation.

Dump space objects provide storage for dump data
only. There is no provision for storage of any other type
of data.

6-2

Dump Space Functions

Operations on dump spaces as objects are supported by
the Create Dump Space, De~troy Dump Space,
Materialize Dump Space, and Modify Dump Space
instructions. These instructions manipulate the dump
space rather than the dump data that is contained in it.

Dump Space Creation

The Create Dump Space instruction creates and
allocates a dump space system object according to the
attributes specified in a template operand.

After creation, the dump space can be used as a
storage area for a source/sink dump of system objects.

Addressability to the newly created dump space is
returned in the system pointer specified on the
instruction. Future references to the dump space are
made through the system pointer. The data in a dump
space can be manipulated through insert and retrieve
operations.

Dump Space Materialization

The Materialize Dump Space instruction is used to
materialize the attributes related to a dump space so the
current attributes can be determined.

The Materialize System Object instruction is used to
materialize common system object attributes to
determine their current value.

Dump Space Modification

The Modify Dump Space instruction is used to modify
certain attributes related to a dump space. The
allocation size of the dump space can be reset to the
size of the dump data contained in the dump space.

Dump Space Destruction

The Destroy Dump Space instruction destroys a dump
space and frees the storage allocated to the object.
Future attempts to refer to the dump space through the
system pointer result in the object destroyed exception.
Addressability to the dump space is removed from the
addressing context.

J

J

Dump Space Data

The format and meaning of the dump data contained
within a dump space is not defined other than to
provide for its retrieval from a dump space and
subsequent insertion into another dump space. Dump
data is initially put into a dump space through a
source/sink dump operation to dump system objects
into the dump space. Subsequently, the system objects
contained in the dump data can be reloaded in the
machine through a source/ sink load operation. The
format of the dump data produced by a dump operation
is an internal characteristic of the machine and cannot
be defined by the MI user.

Retrieve and insert operations are supported for dump
data to provide for movement of the dump data from
one dump space to another where the target dump
space may not be on the same system as the source
dump space.

Load / Dump Functions

The Request Path Operation instruction can be used to
perform source/ sink dump or load operations to or from
a dump space. A dump operation sets the appropriate
dump data into a dump space to back up the current
state of the specified system objects in a form that
allows the subsequent reloading. A load operation
operates on the dump data produced from a previous
dump operation to load the system objects contained in
the dump space.

The Request I/O instruction is used to perform
source/sink load or dump operations on a dump space.
A dump operation saves the dump space on a
load / dump storage media. A load operation restores the
dump space from a load / dump storage media.

Dump Space Data Retrieval

The Retrieve Dump Data instruction can be used to
retrieve the dump data contained in a dump space. The
retrieval is performed through a simple relative block
access of the dump data. The format of the dump data
retrieved is undefined other than for its size and that it
is packaged with a small amount of additional data used
for verification when the data is inserted into a target
dump space.

Dump Space Data Insertion

The Insert Dump Data instruction can be used to place
dump data previously retrieved from a dump space into
a target dump space. The insertion of dump data is
performed in a simple progression of fixed length blocks
of dump data starting with the first block of data
retrieved from the initial dump space and continuing in
ascending order to the end of the dump data.

The format of the dump data to be inserted is undefined
other than for its size and that it is packaged with a
small amount of additional data used for verification
during its insertion. The verification performed on the
data is done to ensure that the dump data is valid for
the current attributes and usage of the target dump
space. These verifications help to ensure machine
integrity when the objects are reloaded.

DATA AREAS

Space Object

A space object consists of a single segment group that
contains headers and a space of fixed or variable length.
Figure 6-1 shows the format of a space object. The
space can contain user data and is used for data storage
and manipulations.

Segment Group Header

(• Attributes

• Sizes

• Pointer to Associated Space

EPA Header

(reserve area)

Space

I I I (extendable) I
L... __________ ...J

Figure 6-1. Space Object Format

Space Object Management 6-3

STRUCTURE

The following is a list of the modules in the space
object management and the function that each module
performs. The list also shows how the module is
invoked.

#SOCRT Create Space Instruction Processor

Function: Creates a new space according to the input
specifications.

How Invoked: Create Space instruction.

#SOCRTEH Create Space Object
Component-Specific Exception Handler
(CSEH)

Function: Processes exceptions that occur during a
create space object operation.

How Invoked: Third-level exception handler.

#SODES Destroy Space Instruction Processor

Function: Destroys the specified space object.

How Invoked: Destroy Space instruction.

6-4

#SOMAT Materialize Space Attributes Instruction
Processor

Function: Retrieves and materializes the attributes of the
specified space object.

How Invoked: Materialize Space Attributes instruction.

#SOMOD Modify Space Attributes Instruction
Processor

Function: Modifies the attributes of the specified space
object.

How Invoked: Modify Space Attributes instruction,
#AICALLX (process automatic storage area extension!.
and #AICRACT (process static storage area extension).

J

J

Auxiliary Storage Management

INTRODUCTION

Auxiliary storage management (ASM) performs the
following functions:

• Allocates secondary (alJxiliary) storage

• Assigns the segment identifiers (SIOs) by which
objects and segments are addressed

• Maintains directories that enable 6-byte virtual
addresses to be translated into auxiliary storage
locations

ASM functions to create, extend, truncate, or destroy
segments are invoked by other vertical microcode (VMC)
components.

Internal Machine Function

Auxiliary Storage Management 7-1

Invoking ASM Functions

ASM functions (create, extend, truncate, and destroy
segments) are invoked as a result of Supervisor Link
instructions that route control to #SV2DCRT.
#SV2DCRT performs common setup operations,
determines whether or not an access group is involved
in the operation, and invokes #SMASM to process
non-access group requests or #SMAGM to process
access group requests. Figure 7-1 shows an overview
of access group processing; Figure 7-2 shows an
overview of non-access group processing.

Some processing is common to all requests for storage
allocation. This processing is performed by #SV2DCRT.
This module first determines if either an access group or
non-access group function is requested; this is
accomplished as follows:

• If a create operation, an explicit parameter identifies
the type (permanent, temporary-non-access-group,
or temporary-access-group member) of segment that
is to be created.

• If an extend, truncate, or destroy operation, the base
segment being operated on is provided. Part of the
segment address identifies the type (permanent,
temporary-non-access-group, or
temporary-access-group) of segment.

#SV2DCRT then passes control to either #SMASM or
#SMAGM. When that function completes processing, it
is possible for events or exceptions to be signaled. An
event is signaled if the amount of available auxiliary
storage that remains is less than a user-specified limit.
An event is also signaled if the number of segment
group identifiers remaining for permanent or temporary
segments is less than a user specified limit. Exceptions
are signaled when the caller specifies that an exception
be signaled when an error occurs or when the return
code set by the invoking function indicates an error. A
second event is Signaled if the temporary storage limit
for a given process is exceeded.

7-2

1
ASM
(#SMASM)

1

VMC
Routine

SVL/SVX

ASM Linkage
(#SV2DCRT)

ASM-
Access Group
(#SMAGM)

J SVL/Svx

1
SVL/Svx

Main Storage
Management
(#SVE8PPR)

J
1

Directory
Access
(#SMACDIR)

Figure 7·1. ASM Overview of Access Group Processing

J

J

J

Write Sector
(SV44ADR)

SVL

Call

VMC
Routine

SVL/SVX

ASM
Linkage
(#SV2DCRT)

ASM
(#SMASM)

SVX SVL/SVX

Main Storage
Management
(#SVE8PPR)

Figure 7-2. ASM Overview of Non-Access Group Processing

Space Accounting

Because auxiliary storage is an important resource,
accounting of this resource occurs during ASM
operations. User profiles define the space allowed for
permanent storage operations; a field in a user process
defines the space allowed for temporary and access
group segments. These values can be used to limit and
control the creation and extension of segments by a
process.

If the creation or extension of a permanent segment
would cause the user profile auxiliary storage limit to be
exceeded, the creation or extension is not performed
and a return code is set. If the creation or extension of
a temporary or access group segment would cause the
process auxiliary storage limit to be exceeded, the
creation or extension is performed and an event is
signaled to note the occurrence. The process limit is
then set to the largest value possible so that the event
is not signaled again unless the user changes the
process limit and it is exceeded again.

Call

Call

Get IWA
(#CFGIWA)

Directory
Access
(#SMACDIR)

Access Group Processing

Access groups are created, materialized, and destroyed
as a result of System!38 instructions. These
instructions are processed by resource management.

See Resource Management in this manual for information
concerning creating, materializing, and destroying access
groups.

If the requested ASM function involves an access group,
#SV2DCRT invokes #SMAGM at one of the following
entry points to perform the requested function:

• #SMAGCRT: Create segment in access group

• #SMAGEXT: Extend segment in access group

• #SMAGTRC: Truncate segment in access group

• #SMAGDES: Destroy segment in access group

Auxiliary Storage Management 7-3

Create Segment in Access Group

#SMAGCRT first determines if sufficient space in the
access group is available to satisfy the request. If
enough space is not available. #SMASM is invoked to
extend the access group by 32 KB. The check and
extension are repeated until enough space is obtained to
satisfy the request. up to the 4 MB limit of an access
group size. The extension operation is performed by
#SMASM as if a VMC routine was extending a
temporary. non-access group segment.

After enough space is obtained. a segment number is
assigned to the new segment and inserted into the
access group member directory along with the segment
number of the access group. Space from the access
group is then allocated for the new segment and the
access group table of contents is updated to specify the
storage location of the newly created member pages.
The segment group header in the first page of the new
segment is then initialized.

Extend Segment in Access Group

#SMAGEXT checks to determine that the segment
group to be extended exists. and then determines if
sufficient space in the access group is available to
satisfy the request. If sufficient space is not available.
the access group is extended as with a create segment
operation. Once the access group has been extended to
a size sufficient to satisfy the request. space from the
access group is allocated for the extension and the
access group table of contents is updated to specify the
storage location of the newly created pages.

Truncate Segment in Access Group

#SMAGTRC checks that the segment to be truncated
exists. The segment is truncated by writing null value in
the access group table of contents for the pages to be
deleted. The access group is then compressed to
remove any unused spaces left by deleted pages. A
remove request is issued to remove any truncated pages
from main storage.

7-4

Destroy Segment in Access Group

#SMAGDES performs the destroy segment operation.
This operation is similar to a truncate operation except
that the entry for the destroyed segment is removed
from the access group member directory.

Serialization of Access Group Operations

The access group free space lock is used to serialize
most operations. The access group directory lock
(applicable to all access groups) is held exclusively when
updating the access group member directory or the
access group table of contents. The access group
directory lock is used to serialize ASM and main storage
management (MSM) operations on the same access
group.

Non-Access Group Processing

If the requested ASM function does not involve an
access group. #SV2DCRT invokes #SMASM at one of
the following entry points to perform the requested
function:

• #SMSGCRT: Create segment

• #SMSGEXT: Extend segment

• #SMSGTRC: Truncate segment

• #SMSGDES: Destroy segment

Create Segment

#SMSGCRT (entry point in #SMASM) validates the
request and determines if sufficient space is available to
satisfy the request. If space is not available.
#SMSGCRT sets a return code and returns control to
the caller.

If sufficient space is available. the next available
segment group identification is determined. (If this
causes the segment group identification generator to
reach hex 3FFOOO. machine execution is immediately
terminated.) The necessary space is then allocated from
the free space directory. and auxiliary storage directory
entries (ASDEs) are built and inserted into either the
permanent or temporary directory.

J

J

If the request is for a permanent segment, a page of 0' s
and the storage management header is written for the
first two pages of each allocated extent, except for the
first extent. The header is written on the second page
only of the first extent. The existence bit in the segment
header (page 0) is set to 0 (implying that the segment
does not exist). This page must be written to auxiliary
storage using the Perform Paging Request instruction.
The Perform Paging Request instruction is issued from
the process that invoked the ASM function after the
create operation is logically complete (for example, the
object header is completed and the secondary segments
are created). The invoker sets the existence bit to 1
before issuing the Perform Paging Request instruction.
Other ASM operations are not serialized during the
writing of the headers. See Serialization (Non-Access
Group) in this section for additional information.

Extend Segment

#SMSGEXT (entry point in #SMASM) validates the size
of the requested extension, that the segment exists, and
that there is sufficient space available to satisfy the
request. If the request is not valid, #SMSGEXT sets a
return code and returns control to the requestor. If the
request is valid, #SMSGEXT allocates the space and
writes the headers for each new extent as with a create
segment operation.

Destroy Segment

#SMSGDES (entry point in #SMASM) first determines if
the segment exists. If not, #SMSGDES sets a return
code and returns control to the requestor.

For temporary segments, directory entries are removed
from the temporary directory and the extents of free
space are returned to the free space directory (they are
combined with adjacent free extents to form larger
blocks where possible).

Next, #SMPLAD (entry point in #SMACDIR) is invoked
to purge the affected addresses from the lookaside
directory. Then a remove perform paging request is
issued. This request invokes #SVE8PPR to delete
addressability to any pages of the destroyed segment
that are currently in, or being paged from or to main
storage.

For permanent segments, the destruction is logically
performed a single ASDE at a time. (An ASDE can
contain from one to four extents.) This is accomplished
as follows:

• The ASDE is removed from the permanent directory.

• #SMPLAD is invoked and a remove Perform Paging
Request instruction is executed to delete
addressability to the pages addressed by the ASDE.

• MSM is invoked to write a free space header to the
first two pages of each extent addressed by the
ASDE and the extent is returned to the free space
directory.

The writing of the free space header is performed
before the extent is returned to the free space directory
because the free space lock is released before the write
operation.

Truncate Segment

The truncate operation is performed by #SMSGTRC (an
entry point in #SMASM). This operation is similar to the
destroy operation with the following exceptions:

• The input size is checked to ensure that it is less than
the current segment size.

• The extents are freed proceeding from the last
directory entry to the first and only until the target
address is reached.

• The free space lock is not released.

• If the target address is within an extent (not on an
extent boundary), that extent is truncated 1/2, 1/4,
1/8, ... , 1/32 768 of the original size as
appropriate.

Auxiliary Storage Management 7-5

Serialization (Non-Access Group)

The free space lock is held throughout most ASM
processing. This lock serializes the free space directory
and the work areas and fields used by ASM in the
storage management vector table (SMVT). When the
permanent and temporary directories are accessed, the
corresponding directory lock is held to serialize with
MSM operations. The MSM lock is held by #SMPLAD
when the lookaside directory is purged, and both MSM
and truncate locks are held when a remove perform
paging request is processed by MSM. The free space
lock is not held when the headers are written for
permanent segment create, extend, or destroy
operations but the lock is held for all write operations
when a permanent segment is truncated.

7-6

ASM Locks

The following locks are used for storage management
operations. These locks are send/receive counters in
the SMVT.

All locks, except as noted, are exclusive.

• Access Group Free Space Lock: This lock serializes
access group processing.

• Free Space Lock: This lock (held throughout most of
non-access group processing) serializes the free
space directory, SID generator, and various other
ASM areas in the SMVT.

• Access Group Directory Lock (exclusive and shared):
This lock synchronizes ASM and MSM operations
that involve access groups. When ASM updates
either the access group member directory or an
access group table of contents, ASM holds the lock
exclusively. When MSM interrogates either the
directory or table of contents, MSM holds the lock
shared.

• Permanent and Temporary Auxiliary Storage Directory
Locks: These locks are held while the corresponding
directory is examined or updated.

J

J

J

Auxiliary Storage Initialization

A module (#SMASI) is loaded and invoked by the
service monitor. This module performs the following
functions:

• Moves the factory defect maps to cylinder 358 (62PC
only).

• Moves alternate sectors to cylinder 358 (62PC only).

• Writes 0' s to the header and data areas of each
sector.

• Allocates two ciefect-free areas on drive 1 for
segments loaded during horizontal microcode (HMC)
initial microprogram load (lMPL).

• Creates storage management directories on drive 1.

• Allocates the prebuilt segments.

• Writes the SMVT onto drive 1. This SMVT contains
the directory valid bit, the segment identifier
generator, the static directory, the free space values,
and the auxiliary device configuration record.

• Enters free space for added actuators and updates
the number of actuators used by storage
management in the SMVT.

Because the machine configuration record on the disk is
just another pageable segment, storage management
startup needs a different record than the machine
configuration of the number and types of actuators. This
record is stored in the SMVT. The relevant portion of
the SMVT is updated by auxiliary storage initialization. If
the machine configuration record update on disk
followed by a link/load is not performed after drives are
added to the system, the subsequent IMPL will fail in
storage management startup.

Storage Management Shutdown

Shutdown occurs whenever the machine is brought
down in a controlled state. Shutdown must always be
run after an IMPL operation has proceeded past main
storage initialization if directory recovery is to be
avoided.

Shutdown (#SMSHTDN) is normally invoked as a result
of the Terminate Machine Processing instruction, though
errors internal to VMC not related to storage
management can also cause #SMSHTDN to be invoked
as part of system failure shutdown procedure.

Shutdown obtains the access group free space lock and
the free space lock. This inhibits any create or destroy
activity. Shutdown then cycles through the temporary
directory, reclaiming all extent descriptors and returning
the space to the free space directory. Shutdown then
cycles through the primary directory, writing all changed
pages to auxiliary storage. #SMSHTDN sets the
directory good bit, writes the SMVT checkpoint page
along with the directory good bit and other related
areas, and returns to the termination routine. Note that
the locks obtained during shutdown are still held after
the exit preventing further ASM activity.

Some diagnostic routines (display/alter in particular)
running under service monitor 1 can examine the
content of permanent and temporary storage as it
existed when shutdown was invoked. On the next IMPL
operation, the destruction of temporary space is
completed when #SMMSIT empties the temporary
directory.

Directory Recovery

Storage management directories are used to map virtual
addresses to auxiliary storage locations. Each sector on
auxiliary storage is defined by an 8-byte header that
contains the virtual address associated with a page. The
header also contains the size of the extent (contiguous
block of auxiliary storage allocated to a segment),
indicators of valid pointers on the page, and flags
associated with the segment. If it is determined that the
directory is unusable, a new directory can be
constructed by reading each sector on auxiliary storage.

Auxiliary Storage Management 7-7

In general, the storage management functions that
perform directory recovery operations interact as
follows:

• ASM (#SMASM) writes the headers during
operations on permanent segments so that the
existence, location, and size of segments can be
determined. For create requests, the first page of the
first extent is not written. When the invoking routine
has completed the create operation, it sets the
existence bit in the segment header to on and writes
the page to auxiliary storage. ASM also maintains
headers with a preassigned virtual address on the
first page of large extents of unallocated space.

• MSM (#SVE8PPR) always preserves record headers
during write operations.

• A bit in the SMVT (#SMSMVT) indicates if the
directories are valid. At IMPL, the bit is set to off
(directories invalid) and the SMVT is written to
auxiliary storage.

• The storage management shutdown routine
(#SMSHTDN) is invoked when the machine
terminates (normally or abnormally). If shutdown is
successfully accomplished, #SMSHTDN writes all
changed directory pages in main storage to auxiliary
storage, sets the directory valid bit on, and writes the
SMVT to auxiliary storage.

• During IMPL, #SMMSIT checks the directory valid bit
in the SMVT (which is loaded with the nucleus). If
valid, IMPL proceeds. If not valid, the directory
recovery program is invoked. (The system operator is
informed that directory recovery is in progress.) The
directory recovery program rebuilds the directories
and IMPL proceeds.

7-8

The directory recovery program recovers only the free
space directory and the permanent directory. The free
space, permanent, temporary, and access group member
directories are first reset to empty. The recovery then
occurs in two passes. The first pass reads auxiliary
storage, constructing immediately reclaimable free space
and permanent extent candidates. The second pass
examines these candidates and determines which are
permanent segments and which are destroyed (thus free
space).

Because segments are allocated in contiguous extents
whose relative record number is on the same
power-of-two boundary as their size, reading from
relative record zero to the end of auxiliary storage
detects each valid extent. The beginning of an extent is
found whenever the virtual address in the header is
permanent and the relative record number is an exact
multiple of the extent size in the header. Such a valid
extent is a candidate for being part of a permanent
object. It is stored in a directory and the remaining
headers in the extent are bypassed. A large extent of
free space is found whenever the virtual address in the
header is the preassigned delimiter for large blocks of
unallocated space and the relative record number is an
exact multiple of the extent size in the header. Such an
extent is returned to free space and the remaining
headers in the extent are bypassed. Sectors with other
headers (zeroed headers, temporary headers, or
permanent headers on wrong boundary) are combined
into free space extents and returned to the free space
directory. When all headers of all devices have been
processed, the directory of candidate extents is scanned
to reconstruct permanent segments.

Directory recovery requires that all headers be read. If a
permanent read error occurs, the header for that sector
cannot be accessed. The next sector on disk is read. If
that sector is the second page of a permanent extent,
its header is used to reconstruct the header of the
failing sector. If the second sector is also unreadable,
D's are provided for the header of the original failing
sector. In this case, if the original failing sector had
been the first page of a permanent extent, the extent is
lost. Otherwise, no visible effect occurs. However, if at
some later date the page is referenced during normal
operations, a permanent read error can occur.

J

J

J

L

The second pass processes candidates in order from the
lowest virtual address found to the highest. Once an
extent mapping a valid first page of a segment is found,
the virtual address of the beginning of the next extent in
the segment is computed from the size of the previous
extent.

If the next candidate does not have that address or is
not the start of a new segment, the extent is considered
to be a dangling extent.

Dangling extents may result from read errors during the
first pass, causing extents to be lost, or they may result
from incomplete create, extend, truncate, or destroy
operations. If any permanent read errors occur during
the first pass, dangling extents are replaced. The
headers of each page in the replaced extent are written
with an indicator bit on, showing that the page contains
bad data. Otherwise, dangling extents are considered to
be the result of incomplete ASM operations. They are
returned to free space, after the headers of the first two
pages are written as 0' s to prevent conflicts with later
extend or truncate operations.

Directory entries are created and inserted into the
permanent directory for the extents of recovered
segments.

DATA AREAS

Access Group

An access group is a machine interface object that
collects objects into a group that can be operated on as
a single unit by storage management to reduce disk
accesses. It is created as an object with a segment
identifier and is allocated a block of contiguous space
on auxiliary storage. Other objects can be allocated
within this block, each object having its own identifier,
allowing each object to be accessed individually.
However, special directory information enables storage
management to transfer all objects within the access
group to and from main storage as a single unit. See
Resource Management in this manual for additional
information concerning the creation and structure of
access groups.

Free Space Directory

All space on auxiliary storage is considered to consist of
blocks, called extents. The number of pages in an
extent is always equal to some exponential value of two
(for example, 2°, 21, 22, ••• , 215, or 1, 2,4, ... ,
32768). Each extent is mapped by a 7-byte extent
descriptor which describes the unit, size, and relative
record number of the first page of the block.

The free space directory is a machine index that
contains the extent descriptors. This directory is
initialized when VMC is installed and is updated by ASM
operations. The format of the free space directory is
shown in Figure 7-3.

Unit Extent Relative
Number Size Record

;::::::
Unit Extent Relative
Number Size Record

Figure 7-3. Free Space Directory

Auxiliary Storage Management 7-9

Permanent Directory

The permanent directory is a machine index that
contains 11-, 16-, 21-, and 26-byte entries called
auxiliary storage directory entries (ASDEs). The ASDEs
map the disk addresses assigned to all permanent
segments. ASDEs consist of the first virtual address
mapped, followed by one through four extent
descriptors. The permanent directory is initialized when
VMC is installed and is updated by ASM operations.
The format of the permanent directory is shown in
Figure 7-4.

Temporary Directory

The format of the temporary directory is the same as
the permanent directory and is used to map addresses
of temporary segments. The format of the temporary
directory is shown in Figure 7 -4.

Base Segment First Page
Identifier Identifier Flags (reserved)

Base Segment First Page
Identifier Identifier Flags (reserved)

Figure 7-4. Permanent and Temporary Directories

7-10

1st Extent 4th Extent

Descriptor ... Descriptor

-
1st Extent 4th Extent

Descriptor ... Descriptor

L

Access Group Member Directory

This directory maps the segments in an access group to
the actual access group. This enables MSM during a
page fault to access an object in an access group when
that access group is not ill main storage. The contents
of the access group member directory is shown in
Figure 7-5.

Virtual Address of Virtual Address of
Segment X Access Group 1 Size of Segment X

Virtual Address of Virtual Address of
Segment Y Access Group 1 Size of Segment Y

Figure 7-5. Access Group Member Directory

Auxiliary Storage Management 7-11

Access Group Table of Contents

The access group table of contents describes the
contents of an access group in a manner that enables
MSM to operate on either the entire access group or its
individual pages. The table consists of a-byte entries;
each entry contains the virtual address of a page of an
object in the access group and the status bits for that
page. The table of contents also contains auxiliary
storage information that is used to map the virtual
address of a page in the access group to its auxiliary
storage location and special indicators. The format of
the access group table of contents is shown in Figure
7-6.

[Se,moot Gcoup ""de,

--
Table of Contents

Length of Index of Number of
Access Group Last Page Available Pages
Segment in Pages Allocated

Number of
Created Segments

Virtual Address of Page 1
Page 1

1 st Byte of Auxiliary Storage
Status
Page 2

Add ress of 1 st Entry
Virtual Address of Page 2

Status
2nd Byte of Auxiliary Storage

Page 3
Address of 1st Entry

Virtual Address of Page 3
Status

3rd Byte of Auxiliary Storage

Page 4
Address of 1st Entry

Virtual Address of Page 4
Status

4th Byte of Auxiliary Storage

Page 5
Address of 1st Entry

Virtual Address of Page 5
Status. v----

Figure 7-6. Access Group Table of Contents

7-12

J

J

i,...o

J

Storage Management Vector Table

(.., This control block is compiled as a nucleus module
(#SMSMVi) and contains the following information:

• Segment identification generators and segment
extender

• Storage management locks

• Device characteristics and free space information

• Work areas for ASM

• Index control blocks for directory operations

• Storage management system-wide statistics

• Main storage pool headers

Some of the information in this block is saved on
auxiliary storage during shutdown and at certain other
critical points.

Sector Headers

All sectors on disk are 520 bytes long. The first 8 bytes
form the header which contains the virtual address of
the page and associated page and segment information.
The sector header is used for the following:

• Allows pages to be made self-defining so that
directories can be recovered.

• Enables MSM to determine whether a page has been
previously referenced. If, after a page is transferred
to main storage, the header does not match the
virtual address being read, MSM assumes that this is
the first reference to the page and sets the page to
zero.

The header also contains information on the location of
machine interface pOinters within the page.

The header is read or written with every MSM disk
operation. For write operations, the information in the
header is obtained by MSM from the primary directory
element and from the page itself (tags) so it is not
necessary to access the directory to construct the
header. The following shows the format of the sector
header:

Virtual Pointer to First

Page Machine Interface

Address Indicators Reserved Pointer in Page

STRUCTURE

The following is a list of the modules in auxiliary storage
management and the function that each module
performs. The list also shows how the module is
invoked.

#SMAGM Auxiliary Storage Management for
Access Groups

Function: Creates, extends, truncates, and destroys
segments in access groups.

How Invoked: Within this component.

#SMASA Alternate Sector Assignment

Function: Moves factory defect record to track 358,
moves alternates to track 358, and writes O's in tracks 0
through 357.

How Invoked: Auxiliary storage initialization.

Auxiliary Storage Management 7 -13

#SMASAS Auxiliary Storage Initialization Directory
Build

Function: Builds the auxiliary storage directories during
auxiliary storage initialization.

How Invoked: Auxiliary storage initialization.

#SMASI Auxiliary Storage Initialization

Function: Moves defect record and alternates to track
358, writes O's in sectors 0 through 357, and assigns
the segment identifiers on drive 1. When initialized,
adds the free space for all new drives.

How Invoked: Service Monitor.

#SMASIMl Auxiliary Storage Initialization Message
library

Function: Contains the display and message library for
auxiliary storage initialization.

How Invoked: Not applicable.

#SMASITD Task Dispatching Element for #SMASI

Function: Contains the Task Dispatching Element for
#SMASI.

How Invoked: Not applicable.

#SMASM Auxiliary Storage Management

Function: Performs the create, extend, truncate, and
destroy functions for ASM.

How Invoked: Within this component.

7-14

#SMEXDIR Extend Storage Management
Directories

Function: Extends the segrtlents containing the
permanent, temporary, free space, and access groups
directories.

How Invoked: Within this component.

#SMSGEX Signal Exception from ASM

Function: Signals an exception for an ASM detected
return code.

How Invoked: Within this component.

#SMTHEV Threshold Reached

Function: Signals an event when the ASM threshold
limit has either been reached or exceeded.

How Invoked: Within this component.

#SV2DCRT ASM link Routine

Function: Provides the common linkage to ASM
functions.

How Invoked: VMC through an explicit supervisor
linkage (SVl).

J

Main Storage Management

INTRODUCTION

Main storage management (MSM) performs the
following paging functions:

• Places pages in main storage when necessary to
execute an instruction or perform I/O operations

• Performs specialized paging operations to improve
performance

• Places pages from main storage back into auxiliary
storage when required

• Manages the pages in main storage

In addition to the preceding paging functions, MSM
performs certain initialization, shutdown, and recovery
operations.

MSM Paging Function

The paging function (#SVE8PPR) of MSM is invoked by
other VMC components as a result of a page fault or a
Perform Paging Request instruction. A page fault is an
exception that occurs when a task uses a virtual address
to access a segment and the page corresponding to that
segment is not validly located in main storage. Page
faults are converted to a Perform Paging Request
instruction (bring, synchronous, no pin) by #SMPFEXH.

A Perform Paging Request instruction is a request to
MSM to perform one of the following functions:

• Bring: Bring pages into main storage.

• Exchange Bring: Bring pages into main storage
frames that were previously allocated to a specified
range of virtual addresses. (If the virtual addresses
specified cannot be used, new page frames are
allocated.)

• Write: Write changed pages to auxiliary storage.

• Clear: Set pages to binary zeros.

• Exchange Clear: Set pages to binary zeros and, if
possible, allocate the pages from a specified range of
virtual addresses. (If the virtual addresses specified
cannot be used, new page frames are allocated.)

• Remove: Remove the specified pages in main
storage without writing them to auxiliary storage.

• Purge: Write changed pages to auxiliary storage and
make the pages eligible for reassignment.

• Bring Access Group: Bring active pages of an access
group into main storage.

• Purge Access Group: Write all changed pages of an
access group to auxiliary storage.

A Perform Paging Request instruction results in an
implicit Supervisor Link instruction with three operands.
The first operand designates the first page to be
operated on, the second operand designates the last
page to be operated on. The third operand is contained
in byte register 15. This operand contains the Perform
Paging Request instruction function requested of
#SVE8PPR. In addition to the Perform Paging Request
instruction function, the following options can be
requested in the third operand:

• Pin: Increases the pin count for pages brought into
main storage. (Option for bring and clear.)

• Unpin: Decreases the pin count before the Perform
Paging Request instruction is performed. (Option for
write, purge, and remove.)

• Synchronous: Allow the requesting task to wait for
completion of the requested task. (Option for write,
bring, and purge; implied for remove and clear.)

• Asynchronous: Allow the requesting task to continue
execution without waiting for completion of the
requested operation. (Option for bring and purge; not
valid for remove and clear.)

Main Storage Management 8-1

The following functions are performed within #SVE8PPR
but are invoked from an interface other than a page
fault or a Perform Paging Request instruction:

• Read sector: Read the specified relative sector into
the specified page

• Write sector: Write the specified page to the
specified sector

• Allocate page frame: Allocate a page frame with a
virtual address that is the same as the real address

MSM also provides the following functions:

• Deallocate page frame: Deallocate a
virtual-equals-real frame of main storage

• Alter storage pool: Modify the storage pool

Paging Function Tasks

Figure 8-1 shows the structure of the tasks associated
with a paging request. These tasks are described as
follows:

• User task: A user process, a nonstorage
management VMC task, or a nonstorage management
operational unit (OU) task.

• Asynchronous I/O task: A task that performs some
I/O request and allows the user task to resume
execution before the I/O operation is complete.

• Page out task (not shown in the figure): This task
writes to auxiliary storage pages that have been
modified in main storage and makes these pages
eligible for replacement.

• Storage management OU tasks: These tasks provide
the interface to the paging devices.

8-2

Communications among these tasks are accomplished
through paging request elements (PREs). OU queues,
and asynchronous paging request queue. The following
describes the sequence in the task structure. The step
numbers in the description correspond to the numbers in
Figure 8-1.

Note: The available PRE queue is actually the available
CRE queue (ACQ) that storage management shares with
the horizontal microcode (HMC) SVL mechanism. Before
a PRE is returned to the ACQ, MSM reformats the PRE
as an available CRE.

1. A Perform Paging Request instruction or a page
fault occurs, and the user task obtains a PRE from
the available PRE queue (the ACQ).
a. If the request is asynchronous, the PRE is

initialized and sent to the asynchronous I/O
input queue and the user task performs a
Supervisor Exit instruction.

2. The first operational program is built and the PRE
is sent to the OU task queue.

3. The OU task receives the PRE that includes the
operational program. (The PRE appears as a
standard operation request element (ORE) to the
OU task.)

4. The operational program is executed and the PRE
is returned to the user task or the asynchronous
I/O task.

5. The PRE is received by the appropriate task.

6. If the request is not complete, the next operational
program is built, the PRE is sent to the OU queue,
and the sequence is repeated beginning with
step 3.

7. If the request is complete, the PRE is returned to
the available PRE queue and processing
completes. The user task performs a Supervisor
Exit instruction and the asynchronous I/O task
waits for further requests.

J

J

~
Asynchronous
I/O Task

t
5

I

2

AnyOU
Task

4,5
I

Wr-r W -'
Available
PRE Queue

Asynchronous
Paging Request
Queue

Any OU Paging
Request Queue

14--- 3 ------,

1
User Task

I
1a

I

2,6

Figure 8-1. Storage Management and Tasks

PRE Processing

The PRE is used to pass information among the tasks
involved with a paging request. The PRE contains the
last virtual address of the request, the length (minus 1),
an ORE, the PRE request code, the storage pool
number, and the owning task dispatching element (TDE).
See Data Areas in this section for additional information
concerning the contents of the PRE.

In the case of a page fault, the page fault exception
handler (entry point #SMPFEXH in #SVE8PPR) sets up a
PRE with the last virtual address (page bounded) and
the PRE request code to page fault (synchronous, no
pin). The length is not defined at this time. After the
storage management directory is accessed, the length is
set to one or more pages and the PRE request code is
set to read (synchronous, no pin). The pool number is
set either to the pool number specified in the TDE of
the requestor or to the default storage pool (pool 1).

In the case of a Perform Paging Request instruction, the
Perform Paging Request instruction handler (#SVE8PPR)
sets up a PRE with the last virtual address equal to the
page boundary of the second operand. The length is set
to the difference between the first and second
operands. The PRE request code is set according to the
operation requested in the third Perform Paging Request
instruction operand.

As the request proceeds, the pages are processed
(singly or in groups) beginning with the last virtual
address proceeding backwards to the first virtual
address. When processing for a page or group of pages
completes, the length is decremented. The original
request becomes a new request for the remaining pages
of the request.

When the length is 0 (PRELNGTH equals -1), all pages
have been processed. The PRE and any extensions are
returned and control is returned to the user via a
Supervisor Exit instruction.

Main Storage Management 8-3

Mainline Processing

Paging request processing for page faults and Perform
Paging Request instructions is shown in Figure 8-2.
VMC routines invoke the mainline module (#SVE8PPR)
for a page request (through the Supervisor Link
instruction router) or a page fault (through the first-level
exception handler). The first-level exception handler
invokes the mainline module at entry point #SMPFEXH.

For bring (including page fault) and clear request,
#SVE8PPR invokes #SMACDIR to determine the relative
record number (auxiliary storage address) of the
requested address(es) and then allocates page frames in
main storage. Requests needing I/O operations are then
sent to the appropriate OU tasks. The OU task returns
the request to #SVE8PPR.

If an I/O error was encountered, #SMERP is invoked
under the user task. If any problems (such as a segment
not found or uncorrectable I/O error) were encountered,
#SVE8PPR invokes #CFSLEH to signal the exception. If
no errors were encountered, #SVE8PPR returns control
to the user.

The page out task (#SM POT) is used to write changed
pages to auxiliary storage. This task selects the pages
to be written to auxiliary storage based on information
accumulated by user tasks during page allocation. The
pages are written using a Perform Paging Request
instruction (purge). This task is initiated asynchronously
during page allocation.

8-4

J

SVL/SVX

Page Out Task
(#SMPOT)

Access
Directory
(#SMACDIR)

3370
ERP
(#SMNERP)

User Process

(eligible to page fault)
Page Fault or PPR

SVL/SVX SVL/SVX

!
SENDC .. - --

Call

Return

Return

Call

MSM
Mainline
(#SVE8PPR)

I

r--­
+

f I SENDMW L _______ -,

3370
ERP Setup
(#SMNERPV)

Call

Call

Return

I
i

OU Task
(HMC)

1
Storage

Management

ERP (#SMERP)

Figure 8-2. Page Fault and PPR Processing

- -,

Synchronous linkage

Asynchronous linkage

Main Storage Management 8-5

Directory Lookup

For any clear or read request (including a page fault), the
disk addresses of the pages are determined by
examining the storage management directories. For
purge and write requests, this is not required because
the auxiliary storage addresses are maintained in the
primary directory element (POE) extention for each page.

Directory lookup is performed by #SMACDIR. If an
access group is not involved, and the faulting address or
the address specified in the Perform Paging Request
instruction is not in main storage, #SMACDIR searches
the static directory for the address. If the page is not
found in the static directory, the lookaside directory is
searched, and if the page is still not located, the
temporary or permanent directory is searched. If the
address is found in the temporary or permanent
directory, the entry is put into the lookaside directory.
Access to the lookaside and temporary or permanent
directories is serialized by storage management locks as
described in this section.

If an access group is involved, the access group
member directory is searched to determine what access
group contains the address. The access group table of
contents for that access group is searched.

If the requested virtual address(es) is not described in
any of the directories, an exception is signaled.

#SMACDIR also determines how many pages to read
and in some cases, the storage pool to receive them.
Page faults normally result in a single page bring. If the
block transfer attribute was specified when the segment
was created, auxiliary storage management (ASM) has
set the block transfer indicator in the auxiliary storage
directory entry (ASDE). #SMACDIR interprets this bit as
meaning that a block (depending on boundary and
extent size restrictions) of up to eight pages containing
the faulting page is to be transferred.

Page Replacement

Main storage is partitioned into one or more storage
pools. Associated with each pool are two queues, a
search queue and a change queue. The search queue is
used to locate the next available page. The change
queue is used to write the changed pages to auxiliary
storage. The page replacement algorithm operates on a
pool, rather than machine-wide basis. On all page faults
and most bring and clear requests, the PRE contains a
pool identifier that identifies the pool of the executing
process. The identified storage pool is searched to
select a page.

8-6

The page replacement algorithm searches from the
original first page to the last page in the search queue J
of a pool until a page is located or the end of the queue
is reached. If the end of the queue is reached, a return
is issued and the pool is not tried again. This failure
situation is described under Page Out Task in this
section.

The page replacement algorithm examines the following
attributes to determine if a page is eligible for
replacement:

• Reference bit: This bit indicates if a page has been
referenced since it was read into main storage or
since it was last examined for replacement. (MSM
resets this bit upon examination.)

• Change bit: This bit indicates if a page in main
storage differs from the corresponding page on
auxiliary storage. (Both the reference and change bits
are set by execution of instructions and I/O
operations.)

• Pin indicator: This byte indicates if a page can be
invalidated. (Storage management normally sets this
byte for other VMC routines; internal I/O operations
and instructions involving interrupted send/receive
queue (SRQ) operations set this byte directly.)

• Secondary reference bit: This bit indicates if the
reference bit was on the last time it was examined.
(MSM sets or resets this bit.)

• Storage management pinned: This byte in the POE is
used by storage management to indicate special
conditions. All special conditions pin the page but do
not prevent invalidation of the page. MSM resets any
bits set to 1.

• Virtual address equals real address: This condition
indicates an unallocated page. This normally occurs
for pages or a segment that was recently destroyed.
(Nucleus pages are not accessible to the algorithm.)

J

If a page is unreferenced two times in succession.
unchanged. not pinned. or virtual-equals-real and not
pinned. the page can be allocated to a new request. If
the page is referenced or pinned. it is moved to the end
of the se~rch queue. If a page is changed (unreferenced
and unpinned). it is moved to the change queue. Figure
8-3 shows the frame attributes and the actions that can
be taken for each attribute.

A dash on the chart in Figure 8-3 means a given frame
attribute is irrelevant. Reading the chart from top to
bottom tells a set of frame attributes under which the
action described above occurs. For example. a pinned
page in the first column. regardless of its other
attributes. is passed over.

Action

Attributes Pass Over1 Allocate2

Pinned or storage
Yes No No

I

No No
management

Virtual equals real - No No I Yes No

Referenced - Yes No - No

Changed - - - - No

Referenced last time - - Yes - No

Data base page - - No - -

1 Do not allocate, do not transfer to the change queue.
2Allocate the page for the new request .
3Transfer the page to the change queue.

Figure 8-3. Replacement Actions

I Transfer to Change
Queue3

No No No

No No No

No No No

No Yes Yes

- No -

Yes - Yes

Main Storage Management 8-7

Page Out Task

The page out task performs the following functions:

• Writes changed pages to auxiliary storage when the
system is not busy

• Writes pages to auxiliary storage when a pool has
pages on the change queue that are eligible for
replacement

When not in the process of writing pages to auxiliary
storage, the page out task waits on a send/receive
counter called the threshold counter. Each time the
page replacement algorithm puts a page on the change
queue, it increments the threshold count. When the
threshold count exceeds the specified threshold value, a
send count is issued to the threshold counter to restart
the page out task.

A task enters pool wait when the task attempts to
allocate a page for a read or clear operation and the end
of the original search queue is reached (all pages passed
over or put on the change queue). The task enqueues
its PRE to the pool wait queue. The task then sends
count to the page out task queue and issues a keyed
receive on the pool wait queue. The page out task is
restarted.

8-8

When the page out task is restarted, it attempts to write
up to five pages from the change queue of each pool
and transfer the pages to the search queue. Each time
the page out task is restarted the threshold count is
decremented.

After up to five pages per pool have been written, the
page out task restarts any user tasks that are waiting on
the pool wait queue. The user task may again attempt
to allocate a page.

Figure 8-4 shows an example of the page out function.
In the example, a user task needs a page frame and
searches its storage pool. After searching the entire
pool and not finding an available frame, the task signals
the page out task and enters a wait state. The page out
task writes all pages to the change queues and restarts
all user tasks that are waiting on the pool wait queue.

J

J

Pool Before Search Pool After Search (before page out)

Page 5 (unreferenced)

Page 5 (referenced) Page 6 (pinned)

Page 6 (pinned) Page 1 (changed)

Page 1 (changed) Page 2 (changed)

Page 2 (changed) Page 3 (changed)

Page 3 (changed) Page 4 (changed)

Lir-
Pool Wait Queue

User - Threshold - Page Out ~.
Task Counter Task

Figure 8-4 (Part 1 of 2). Paging Example

L
Main Storage Management 8-9

Pool After Page Out

Page 5 (unreferenced)

Page 6 (pinned)

Page 1 (unreferenced)

Page 2 (unreferenced)

Page 3 (unreferenced)

Page 4 (unreferenced)

Figure 8-4 (Part 2 of 21. Paging Example

8-10

I/O Pending

Because a page can reside only in one place in main
storage at any time, it is possible for one request to
start operations, followed by another storage
management request for the same page before the first
request completes. This condition is detected during
operational program creation. In this case, the second
task is subject to I/O pending processing and proceeds
with the common pages according to the following:

Current Request

Bring

Write, Purge

Clear

Remove

Earlier Request Indicates
I/O Pending

Overlay

Quit

Wait

Wait

The actions taken are as follows:

• Overlay: Read the page even though it is already in
main storage, but overlay it with subsequent
nonresident pages. Continue processing other pages
in the request. If no operational program has been
started, however, a wait is done on the pending
page.

• Wait: The previous I/O operation must complete
before processing the pending page.

• Quit: Use only pages currently in the operational
program for this I/O request. If no operational
program has been started, a wait is done on the
current page.

J

The I/O requests that set I/O pending by invalidating
the page are as follows:

• Bring: Sets I/O pending in the POE of the pages
being brought into main storage by the read.

• Purge/Write: Sets I/O pending in the POE of the
pages in the operational program.

Because clear and remove requests do not perform any
I/O operations, the MSM directory lock is sufficient to
serialize these requests.

When a request is being processed, a wait condition can
be detected. This causes the current request to wait for
another request to complete. To wait for that request,
access pending is set in the POE of the last virtual
address, and the PRE is enqueued to the I/O pending
queue in the storage management vector table (SMVT).
The pending task then waits on the I/O pending queue.

When I/O complete processing is performed on a
request, the access pending bit in the POE can be set
for one or more pages. These bits are reset and the
occurrence noted. After the current I/O request is
processed, the I/O pending queue is dequeued, member
by member. Those members with the last virtual
address designated as having I/O pending are returned
to the I/O pending queue. If the I/O pending is
satisfied, the PRE is sent to the paging request queue of
the appropriate task and the task is restarted.

Bring/Purge Access Group

The bring / purge access group functions of Perform
Paging Request instruction bring and purge pages of an
access group in one operation. They also provide the
ability to exclude the reading of pages in the access
group that are not heavily used.

The purge access group function checks the access
group table of contents. The access group table of
contents is brought into main storage and pinned. The
shared access group lock is obtained. The disk address
of the access group to be purged is found. The first
page of the access group to be purged (highest virtual
address) is tested for residency and validity. If the page
is resident and valid, the reference bit is checked. If the
page has not been referenced, history bits are set to 1
in the page entry in the access group table of contents.
Setting the history bits to 1 in the access group table of
contents prevents the page from being read into main
storage during a subsequent bring access group
function.

If the information in the page is changed, the page is
logically processed. If the information in the page is not
changed but is referenced, the page is not written and
the history bits in the access group table of contents are
set to allow the page to be read on the next bring
access group function. This process continues until the
entire extent is processed. When the entire extent is
processed, the pages are written to auxiliary storage and
the processing proceeds with the next extent.

The bring access group function checks each page entry
in the access group table of contents for residency. If
the page is resident, processing proceeds to the next
-page. If the page is not resident and the history bits are
set to 0, a page frame is allocated and the page is
added to the operational program. If the history bits are
set to 1, the page is ignored. When all pages in the
request have been processed, the pages are read into
main storage.

Exchange Bring/Clear

The exchange bring and clear functions are special PPR
functions that allow a high degree of control over the
use of main storage. A normal bring or clear allocates
page frames according to the page replacement
algorithm. Exchange bring/clear, however, allows the
user of Perform Paging Request instruction to specify
page frpmes, by virtual address, that are to be used as
steal candidates.

Main Storage Management 8-11

Under exchange, the second operand of the Perform
Paging Request instruction specifies the virtual address
of the pagels) to be stolen. Byte register 14 contains
the number of pages to be brought/cleared. The
second operand address is tested, starting from high to
low address, to see if it can be stolen. The page is
either cleared (for clear) or added to the operational
program (for bring). The virtual address in the range of
the first operand is assigned to the stolen frame. If the
page in the second operand range is not available, the
page replacement algorithm is used to allocate one.

The exchange function allows users the ability to reuse
page frames, leaving a larger number of frames available
in the system at a given time.

MSM Locks

The following locks are used for main storage
management operations. These locks are send/receive
counters located in the SMVT. All locks, except as
noted, are exclusive.

• Access Group Directory Lock (exclusive and shared):
This lock synchronizes ASM and MSM operations
that involve access groups. When ASM updates
either the access group member directory of an
access group table of contents, the lock is held
exclusively. When MSM interrogates either the
member directory or table of contents, MSM holds
the lock shared.

• Truncate Lock (exclusive and shared): This lock
synchronizes ASM truncate and destroy operations
with read and clear requests. The lock is held as
shared except for remove requests.

• Permanent and Temporary Directory Locks: These
locks serialize the pageable permanent and temporary
directories. These locks are obtained by #SMACDIR
when performing a directory lookup.

• Error Recovery Procedure Lock: This lock serializes
error recovery processing.

• MSM Lock: This lock is held while primary directory
and the lookaside directory are updated or examined.

8-12

Pointer Tags

The machine maintains a bit for each quad-word of
main storage. If the bit is 1, a pointer resides in the
quad-word. If the bit is 0, the quad-word does not
contain a pointer. Only pointer instructions modify the
pointer bit.

When a page write is performed, the 32 bits
representing each of the 32 quad-words associated with
that page are also stored. These bits are stored in the
pointer. The tags are stored in the structure as shown in
Figure 8-5.

The tags are encoded into the structure as follows:

• If the I bit in the storage management header is 0,
then the page has no pointers.

• If the I bit is set to 1, then field C (the last 5 bits of
the header) represent the location of the first pointer
(Format 1 pointer) on the page.

If the left byte in the format 1 pointer is 0, no more
pointers are contained in the upper 256 bytes of the
page. If the right byte in the format 1 pointer is 0, then
no more pointers are contained in the last 256 bytes of
the page. If either byte is set to l' s, the corresponding
byte offset locates the next pointer in that half page.
These pointers (Format 2 pointers) contain the storage
management bytes (16 bits) representing the tags for
that half page.

J

J

Storage Management
Header Byte

Virtual Page Address

Page

I (reserved)

Upper Half Page

Format 1 Pointer , ,I , I
Format 2 Pointer Tags 1

Lower Half Page

Format 2 Pointer Tags 1

Figure 8-5. Tag Storage Structure

C

-

Main Storage Initialization

#SMMSIT in main storage management is the first VMC
routine to receive control during the initial microprogram
load (lMPL) sequence. This function is loaded as part of
the VMC nucleus and performs the following functions:

• Marks PDEs corresponding to bad pages as unusable.
Bad pages are indicated in the bad page bit map built
by diagnostics during IMPL.

• Obtains the SMVT information stored on auxiliary
storage.

• Determines if directory recovery is required. If
required, sets an indicator in the machine initialization
status record (MISR). (Directory recovery is actually
performed later in the initialization process; see the
Initialization portion of the Machine Support Function
section in this manual for additional information.)

• Empties the temporary directory.

• Initializes PDEs so they are all chained off storage
pool 1 (#SMPOOLl).

• Frees the space occupied by the storage management
initialization routines (#SMMSIT and #SMPOOLl).

At the completion of this function, certain prebuilt
segments can be paged. In particular, VMC, system
control adapter (SCA). machine configuration record
(MCR), and storage management directory pages can be
paged in. If the directory is unusable, it must be rebuilt
before other permanent pageable segments can be
referenced. After SCA initialization is complete,
#SMPICL2 is invoked to verify that drives 2 through 6 (if
attached) are operational. Directory recovery can then
be performed if required, after which a fully functional
paging environment is established. ASM functions
(create, destroy segment, and so on) become operational
at this time.

Main Storage Management 8-13

DATA AREAS

Access Group

An access group is an object that collects objects into a
group that can be operated on by storage management
as a unit to reduce disk accesses. It is created as an
object with a segment identifier and is allocated a block
of contiguous space on storage. Other objects can be
allocated within this block, each object having its own
virtual address, allowing each object to be accessed
individually. However, special directory information
enables storage management to transfer all objects
within the access group to and 'From main storage as a
single unit.

Permanent Directory

The permanent directory is a machine index that
contains 11-,18-,21-, and 28-byte entries called
ASDEs. The ASDEs map the disk addresses assigned to
all permanent segments. ASDEs consist of the first
virtual address mapped, followed by one through four
extent descriptors. The permanent directory is initialized
when VMC is installed and is updated by ASM
operations.

Temporary Directory

The format of the temporary directory is the same as
the permanent directory except that the temporary
directory is for temporary segments.

Access Group Member Directory

This directory maps the member segments in an access
group to the owning access group. This enables MSM
during a page fault to access objects in an access group
when that access group is not in main storage.

8-14

Access Group Table of Contents

The access group table of contents describes the
contents of an access group in a manner that enables
MSM to operate on either the entire access group or its
individual pages. The table consists of 8-byte entries;
each entry contains the virtual address of a page of an
object contained in the access group. Auxiliary storage
information and special indicators are also contained in
the table of contents.

Lookaside Directory

The lookaside directory is a resident array that contains
11-byte entries (ASDEs with one extent descriptor).
These entries are initialized when the permanent or
temporary directory is accessed. This directory aids
performance by providing a resident least-recently-used
type directory of frequently used segments. If a
segment is unused for a time and is pushed out of the
lookaside directory, the segment is still accessible
through either the permanent or temporary directories.
The lookaside directory is accessed by an algorithm on
the segment identifier. The lookaside directory is
updated during MSM operations, and during truncate
and destroy ASM operations.

Static Directory

The static directory is a resident table of entries. The
entries describe segments that must be accessible
without an access to the permanent or temporary
directory. (These segments contain the free space,
permanent, temporary, and access group directories
themselves. The static directory entries also describe
VMC code segments.) Static directory entries are
identical to lookaside directory entries. The static
directory resides in the SMVT and is initialized when
VMC is installed. All segments referenced before the
storage management directories are recovered must be
referenced in the static directory.

J

J

J

Primary Directory

The primary directory describes the current contents of
main storage, and is maintained by MSM. The entries in
the primary directory are used by hardware during
address translation. Entries in this directory are called
primary directory entries (PDEs) and contain fields used
by HMC, storage management flags, and the auxiliary
storage address associated with the virtual storage
address.

Storage Management Vector Table

This control block is compiled as a nucleus module
(#SMSMVT) and contains the following information:

• Segment identifier generators and segment extender

• Storage management locks

• Device characteristics and free space information

• Work areas for ASM

• Index control blocks for directory operations

• Storage management system-wide statistics

• Main storage pool headers

Portions of the SMVT are preserved on auxiliary storage
during shutdown and certain other critical points.

Sector Headers

All sectors on auxiliary storage are 520 bytes long. The
first 8 bytes form the header which contains the virtual
address of the page and associated page and segment
information. The sector header is used to:

• Make pages self-defining so that directories can be
recovered.

• Enable MSM to determine whether a page has been
previously referenced. If, after a page is transferred
to main storage, the header does not match the
virtual address being read, MSM assumes that this is
the first reference to the page and zero fills the page.
In addition to providing O's in first references, this
eliminates the data security requirement of clearing
data on destroy operations.

The header also contains information on the location of
pointers within the page. The header is read or written
with every auxiliary storage operation. For write
operations, the information in the header is obtained by
MSM 'From the PDE and from the page itself (tags) so it
is not necessary to access the directory to construct the
header.

Paging Request Element

The PRE describes the main storage management
request. The PRE contains:

• The last virtual address of the request (PRELVADR)

• The length -1 in pages of the request (PRELNGTH)

• The operation request element (ORE) which instructs
the paging device (using the operation-unit task)
where to read or write page frames to or from

• The PRE request code that describes the operation to
be performed

• The task dispatching element (TDE) that will wait for
the request

Main Storage Management 8-15

When multiple page I/O operations are to be
performed, MSM obtains additional blocks of storage
called PRE extensions. The extensions contain a list of
the frames to operate on and the header area that the
8-byte record headers are to be either written into or
read from. Each extension is 128 bytes long for normal
Perform Paging Request instructions and is 512 bytes
(one page) for access group requests.

Storage Pools

Storage pools allow the partitioning of main storage
page frames. This is done to isolate processes with
unlike characteristics from paging against each other,
causing degraded response time. In particular, they are
intended to prevent batch processes from taking pages
from interactive processes. A pool multiprogramming
level (MPL) can be used to limit contention for frames
within each storage pool.

The storage management portion of a storage pool
consists of the following:

• Status

• First frame

• Last frame

• First changed

• Last changed

• Current number

• Maximum number

• Pool statistics

The last 4 bytes of the POE are used for linking POEs.
A POE can be on only one storage queue at a time.

8-16

Storage Queues (Search and Change)

A storage queue has two components, a head pointer,
and a tail pointer. Each storage pool has two storage
queues, a search queue that 1s used to search for the
next available frame, and a changed queue that is the
page-write-list for that pool.

The change queue is the list of changed pages found by
the page replacement algorithm. The page out task
treats each of these queue as one large list except that
the pool-by-pool list allows the frames to be returned
to the same pool after the write is completed.

Two counts are kept:

• The maximum frame count, the count of all frames
assigned to the storage pool

• The current frame count, the number of frames
currently on the search queue

STRUCTURE

The following is a list of the modules in main storage
management and the function that each module
performs. The list also shows how the module is
invoked.

#CFPOOLS Extract Storage Pool Size

Function: Determines the current size of the process
storage pool.

How Invoked: Within this component.

#SMACDIR Access Directory

Function: Determines auxiliary storage address for a
page-in request. Sets an exception return code if an
invalid address.

How Invoked: Within this component.

#SMCONS Construct Operational Program

Function: Constructs large operational programs for
directory recovery and possibly other operational
programs for auxiliary storage scan operations.

How Invoked: Within this component.

#SMDALCP Deallocate Page Frame

Function: Returns a frame that was either previously
allocated in a call to #SMALCPF or one that is part of
the resident nucleus and is no longer needed.

How Invoked: User call.

#SMDRTSK Directory Recovery Read Drives Task

Function: Reads auxiliary storage and builds a sequential
index of the permanent extent candidates. Immediately
recoverable free space is returned to the free space
directory. If known defects occur, the associated header
is marked as free space and recovery continues.

How Invoked: Within this component.

#SMDR1 Directory Recovery Program, Pass 1

Function: Starts 1 to 4 tasks to read auxiliary storage
and synchronizes their finish.

How Invoked: VMC initialization.

#SMDR2 Directory Recovery Program, Pass 2

Function: Rebuilds the permanent directory from the
candidate extents found during pass 1. Makes free
space entries for failing candidates.

How Invoked: Within this component.

#SMERP Error Recovery

Function: Retries the failing 62PC operation and logs the
failure.

How Invoked: Within this component.

#SMFOBTO Function Operation Block (FOB)
Time-Out/Halt-Device Processor

Function: Determines when a device times out and then
attempts to recover by sending the appropriate channel
command to halt the device. When the ORE/FOB with
the command is returned, the status is analyzed and
error recovery procedures initiated if necessary.

How Invoked: Periodically from the system interval timer.

#SMFRCSG Force Segment Group Utility

Function: Performs a Perform Paging Request instruction
write for all changed pages in a specified segment
group.

How Invoked: Other VMC components.

#SMMATAS Materialize Auxiliary Storage Data

Function: Obtains auxiliary storage data (from
#SMSMVT) and stores it in RMMTMD area.

How Invoked: Other VMC components.

Main Storage Management 8-17

#SMMATMS Materialize Main Storage Pool Data

Function: Obtains main storage pool data (from
#SMSMVT) and stores it in RMMTMD area.

How Invoked: Other VMC components.

#SMMODAS Modify Auxiliary Storage Controls

Function: Modifies user-specified values for auxiliary
storage controls.

How Invoked: Other VMC components.

#SMMODMS Modify Main Storage Pool Controls

Function: Modifies user-specified values for main
storage pool controls.

How Invoked: Other VMC components.

#SMMSIT Storage Management Initialization for
IMPL

Function: Establishes a paging environment by verifying
that the files are operational, the directories are usable,
and that main storage is usable.

How Invoked: Initialization.

#SMNERP Error Recovery

Function: Retries the failing 3370 operation and logs the
failure.

How Invoked: Within this component.

#SMNERPV Error Recovery Setup

Function: Provides environment independence for
module #SMNERP.

How Invoked: Within this component.

8-18

#SMPICL2 Auxiliary Storage Startup for Adapter 2
and Drive Check for Drives 2 through 6

Function: Starts the second adapter and checks all file
units to determine that they are operational and ready
for use by storage management.

How Invoked: VMC initialization.

#SMPOOLI Storage Pool Initialization

Function: Prepares the PDEs for paging.

How Invoked: Within this component.

#SMPOT Page Out Task

Function: Performs the asynchronous page out of
changed pages and restarts tasks on the pool wait
queue.

How Invoked: This function is an infinite loop and an
independent task.

#SMPRE Fixed Allocation PREs

Function: Provides PREs for the various needs.

How Invoked: Not applicable.

#SMSCADP SCA Directory Page

Function: Contains the directory information used by the
SCA at initial MPL to locate HMC, diagnostics, and so
on.

How Invoked: Not applicable.

#SMSHTDN Storage Management Shutdown

Function: Terminates storage management and
preserves the directories. No further auxiliary storage
management operations are possible after shutdown,
though main storage management functions are still
available.

How Invoked: Terminate machine processing or an
equivalent call from a disaster cleanup module.

J

J

#SMSMVT Storage Management Vector Table

Function: Contains an initialized version of the SMVT
and the lookaside directory.

How Invoked: Not applicable.

#SMSMVTI Fix SMVT for Link/ Loader

Function: Copies the required values into the SMVT for
the link/loader.

How Invoked: Link/loader.

#SMSUSOB Suspend Object Processor

Function: Frees the auxiliary storage by truncating
objects to the minimum size that allows ownership and
addressability to be retained in the system. After
execution of the instruction, the attributes of the target
object can be materialized, but any attempt to reference
the functional portion results in an exception. The object
can be restored by executing the load object function.

How Invoked: Other VMC components.

#SMTAGSE Encode/Decode Pointer Tags

Function: Encodes and decodes pointer tags on a page.

How Invoked: Within this component.

#SVE8PPR Perform Paging Request

Function: Performs the PPR or page fault functions,
reads and writes sectors, and allocates
virtual-equals-real page frames.

How Invoked: Other VMC components.

Main Storage Management 8-19

J

8-20

Machine Index Management

INTRODUCTION

Indexes provide a means for storing and retrieving data
by either content or relative order. Machine indexes are
used within the following:

• Independent index management

• Data space indexes

• Context management

• Event management

• Authorization management

• Storage management

• Program management

• Link loader

Machine index operations are invoked as a result of a
supervisor linkage. An index control block (lXCB)
defines the operation to be performed, the argument to
be used, the space for the result, and the location of the
index. The calling component must declare and initialize
the IXCB prior to invoking machine index management.

Machine Index Management 9-1

Index Structure

Two versions of index code exist. The release 1 version
uses 2-byte elements and 512 byte pages and is limited
to a single segment group (16 MB). The release 2
version uses 3-byte elements, can contain up to 64
segment groups (1 GB). and allows a variety of page
sizes.

Internal machine indexes are binary radix trees that
consist of one or more pages and contain the following
elements:

• Page pointers: Identify the other pages in the index.

• Text elements: Define the length and address of the
associated text on the same page. The following are
the types of text elements:
- Common text: Text that is common to two or

more entries. When a common text element is
detected during an index search and the text
matches the argument, the text is moved to the
result area and the argument address is advanced.
If the text does not match the argument, the
search is terminated.

- Terminal text: Text that cannot be compressed
into common text. There is one terminal text
element for each entry in the index.

- Invalid terminator: Invalid terminators are used to
indicate that entries have been removed. The
search continues with the adjacent element. The
address portion of the text element is changed to
an invalid location.

• Nodes: Identify the bit to be tested in the current
byte of the argument, and contain a pointer to and a
description of a group (cluster) of elements. The
following are the types of nodes:

Root node: The first node in a page.
- Successor node: Subsequent nodes in a page.

• Clusters: Contain a left and right element and can
contain common text.

9-2

Figure 9-1 shows an example of the structure of a
machine index and the elements in an index.

An index search is accomplished by using the search
argument to select a particular path through the tree
from the root node of the trunk page to a terminal text
element. Assuming that the argument matches some
entry in the index, the path is determined by examining
the search argument bits that are specified by the nodes
along the path; the root node specifies a bit to be
tested and points to a cluster. If the specified bit of the
argument is in the zero state, it will use the left element
of the next cluster; otherwise, it will use the right
element. This process is repeated for each node along
the path until a terminal text element is selected.
Common text in the selected clusters must match the
leading bytes of argument; after this has been verified,
the argument is advanced a corresponding number of
bytes before performing the bit test. The residue of the
argument must match the leading bytes of the terminal
text.

J

Root
Node

.J \.
/ '\

Left Right
Successor Node
Node

./'- ./\.
("'\ L ~

Left Right Left Right
Text Text Node Node

1----- 1-----
1000 2900

./ ./\.
(f "'\

Common Left Right

Text Text Text
r- --- r----- 1-----

50 5400 5590

./\.
('\

Left Right
Node Node

./ \ r''i ("\
Page Pointers

Left Right
Node Text Entries in this index:

1-- - --
20 1000

./\ 2900

{ "\ 5000
5010

Left Right 5020
Text Text ----- -- ---
00 10 5400

5590

Figure 9-1. Tree Structure

Machine Index Management 9-3

Operations on Machine Indexes

Machine indexes consist of a series of entries. The
maximum length of an entry is 128 bytes. The
maximum length of an index is 1 GB (64 segment
groups). An index entry consists of two parts: a prefix
and a suffix.

The prefix is a key used in a find operation to locate an
entry. The suffix contains information associated with
that key. Following are the basic operations that can be
performed on index entries:

• Insert entry

• Find entry

• Remove entry

There are a number of variations that can be specified
with each of the preceding operations. These variations
are described along with the descriptions of the basic
functions.

Find Entry

A find entry operation consists of a generic search of an
index to locate an index entry that matches the search
argument designated by the IXCB. If a matching entry is
found, then either that entry or an adjacent entry
(depending on the operation specified in the IXCB) is
returned to the area specified for the result. If a
matching entry is not found, a flag is set to indicate the
mismatch condition.

It is possible for an index to contain multiple entries that
satisfy the search requirements. For example, index
entries of 5()()(), 5010, and 5020 all satisfy the
requirements if an argument of 50 is specified. If there
are multiple entries in an index that satisfy the search
requirements, then a specific variation (such as high,
low, or next) must be provided to retrieve the desired
entry.

Find operations are classed as simple, adjacent, and
conditional finds. The classes of find operations and the
operation performed are shown in Figure 9-2.

9-4

In a simple find operation, the argument is used as a
key into the index. Either a matching entry is returned
or a mismatch condition is indicated. If multiple entries
match the argument, then the default (low or high) entry
is selected. Find highest and lowest operations ignore
the argument and return either the highest or lowest
entry in the index.

In an adjacent find operation, if an entry that matches
the argument is found, then either the entry that
precedes or follows the matching entry is returned
depending on the variation specified (prior or next). If a
matching entry is not found, then the entry that would
logically precede or follow the argument is returned.
The end-of-index condition is returned if no entry in the
index could satisfy the requested variation.

In a saved adjacent operation, the argument and result
areas are ignored and the entry adjacent to the last
found entry is returned in the same result area as the
last found entry. The index must not have been
modified since the last find. The end-of-index condition
is returned if no entry in the index satisfies the
requested variation.

Conditional finds perform a simple find on the index and
return the entry if a match is found. If a matching entry
is not found, then the appropriate adjacent find is
performed and the mismatch flag is set in the IXCB.

Class Operation

Simple I Find low (of equals)

Find high (of equals)

Find lowest (in index)

Find highest (in index)

Adjacent Find prior

Find next

Find generic prior

Find generic next

Saved Adjacent Find saved prior

Find saved next

Conditional Find low else prior

Find low else next

Find high else prior

Find high else next

Figure 9-2. Find Operations

J

Figure 9-3 shows an example index and the entry that
would be returned for the operation specified using a
search argument of 50. The entry 5020 cannot be found
using an argument of 50. This entry can be found by
using anyone of the following operations and search
arguments:

Operation

Find low
Find high
Find next
Find low
else prior
Find prior

Index Entry

1000

-- 4990

5000

5010

5020

5030

5040

5100

Search Argument

502 or 5020
502 or 5020
5010, 5015, and so on

502 or 5021
503, 5021, and so on

Operation Specified to Return
the Entry

Find lowest

Find generic prior

Find low

Find next

Find prior

Find high

Find generic next

Find highest

Figure 7-3. Example Index Find Operations

(Using an Argument of 50)

f

Insert Entry

The insert entry operations are as follows:

• Insert entry

• Insert conditionally

• Insert overlay only

The insert entry operation either inserts a new entry into
the index or overlays the suffix portion of an existing
entry. This operation is performed by first doing a find
low operation in order to locate the proper position to
insert the entry. If a matching entry already exists in the
index, no action is taken (each index entry must be
unique). The entry is overlaid with the new entry if the
following conditions are met:

• The suffix length is nonzero.

• The mismatch occurred in the suffix.

• There is only one entry in the index with a prefix that
matches the search argument.

• The entry has the same length as the argument.

Otherwise, a new entry is added to the index.

For an insert conditionally operation, the entry is
inserted into the index if no entries with a prefix that
matches the argument are found. If an entry with a
prefix that matches the argument is found, then no
action is taken except to set the conditional insert flag in
the IXeB.

In an insert overlay-only operation, the conditions for an
overlay during an insert operation must be met to
overlay an entry. No entry is inserted using the insert
overlay-only operation if the conditions are not met.

Machine Index Management 9-5

Remove Entry

The remove entry operations are as follows:

• Remove low (of equals)

• Remove high (of equals)

• Remove exact

The first two operations perform a find low or find high
operation on the index. In all cases, if a matching entry
is located, the entry is deleted. If a matching entry is
not located, no operation occurs and a mismatch
condition is returned.

DATA AREAS

Index Control Block

Figure 9-4 shows the basic structure of the ICB. The
ICB is initialized by the VMC component invoking the
internal machine index function. The internal machine
index function returns information to the calling VMC
component in the ICB at the completion of an index
operation. The fields in the ICB and their use are as
follows:

• Operation: The index operation to be performed by
the internal machine index management function.
These operations (and their operation codes in
hexadecimal) are as follows:
- Find low (00)
- Find high (01)

Find prior (02)
Find next (03)

- Find generic prior (04)
- Find generic next (05)

Find lowest (06)
- Find highest (07)
- Insert entry (08)

Insert conditionally (09)
- Remove low (OA)
- Remove high (OB)

Find low / else prior (OC)
- Find low else next (00)

Find high else prior (OE)
Find high else next (OF)

- Insert overlay-only (10)
- Find saved prior (11)

9-6

Find saved next (12)
Remove exact (13)

• Length of argument area: The length of the area that
contains the key to be used in the find operation.

• Length of the suffix area (insert operations only): The
length of that portion of the argument area that is to
be used as the suffix of the entry.

• Length of result area: The length of the area to
receive an index entry after a find operation.

• Length of result returned (output): The length of the
entry returned as a result of an index operation.

• Number of pages referenced (output): The count of
pages referenced during an index operation after the
trunk page.

• Status flags (output): The flags that indicate the
result of an index operation. These flags are as
follows:
- Index error encountered

Specification error
Catastrophic error (damage)

- Index full
Character mismatch

- End-of-index
Insert conditional

• Pages referenced after trunk page (output): Bytes 4
and 5 of the addresses of the first six pages
referenced in an index operation. (Two pages for
release 2 indexes.)

• Pointer to argument area: A pointer to the area that
contains the argument that is to be used as the
search key.

• Pointer to the result area: A pointer to the area that
is to receive an index entry after a successful index
operation.

• Pointer to the trunk page: A pointer to the first page
in the index.

J

Operation'

Lengths:

· Argument Area'

· Suffix Area'

· Result Area'

· Result Returned2

Number of Pages Referenced2

Status Flags2

Pages Referenced after Trunk Page2

Pointers:

· Argument Area'

· Result Area'

· Trunk Page'

Work Area

'Input is required for an index operation.
21nformation is returned after an index operation.

Figure 9-4. Index Control Block

STRUCTURE

The following is a list of the modules in machine index
management and the function that each module
performs. The list also shows how the module is
invoked.

#IXADPGS Add Pages to a Machine Index

Function: Extends the amount of space available to a
machine index.

How Invoked: Other VMC components.

#IXERROR Process Machine Index Error

Function: Creates a VMC log entry if an index error has
occurred, and if requested, signals exceptions.

How Invoked: Other VMC components.

#IXEXTDX Extend Index

Function: Extends a release 1 index.

How Invoked: From #IXXEXCB

#IXTRINT Initialize the Trunk Page of a Machine
Index

Function: Initializes the trunk page of an index and sets
the flag byte to the value contained in the input
parameter.

How Invoked: Other VMC components.

#IXXDEST Destroy Secondary Index Segments

Function: Destroys the nonbase segments of a machine
index.

How Invoked: Other VMC components.

#IXXEXCB Machine Index Functions

Function: Performs the index operation requested in the
index control block (lXCB) for a release 1 index.

How Invoked: Other VMC components.

#IXXEXIX Extend Index

Function: Extends a release 2 index.

How Invoked: From #IXXINDX.

#IXXFIXB Fix Up Base Page

Function: Fixes the base page of a machine index after
it has been loaded or moved.

How Invoked: Other VMC components.

#IXXFORC Force Secondary Index Segments

Function: Forces to auxiliary storage the non base
segments of a machine index.

How Invoked: Other VMC components.

Machine Index Management 9-7

#IXXINDX Machine Index Functions (Extended)

Function: Performs the index operation requested in the
index control block for a release 2 index.

How Invoked: Other VMC components.

#IXXWRAP Index Segment Identification (SID)
Wrap Check

Function: Performs SID wrap and other cleanup
processing on a machine index.

How Invoked: Other VMC components.

9-8

J

I nitialization/Termination Management

INTRODUCTION

Initial Microprogram Load

The initial microprogram load (lMPL) is the method used
to load VMC into the machine and begin initializing the
machine interface. An IMPL can occur from auxiliary
storage or through an external media (alternate IMPL).
The operator selects the mode to be used by positioning
rotary switches on the console. The IMPL process
performs certain hardware diagnostics (some of which
can be bypassed through the IMPL abbreviated function)
and dispatches an initial task that performs all required
VMC initialization functions. These functions include the
creation of an initial machine process used to start the
first user process.

When the IMPL sequence is initiated by the operator,
the horizontal microcode (HMC) performs certain main
storage functions (including hardware diagnostics) and
dispatches the prime task dispatching queue (TDQ), to
which is enqueued a prebuilt task used by VMC to
initialize itself and the support functions. This task
begins by executing a storage management module
(#SMMSIT) as described under Main Storage
Initialization in the Main Storage Management section of
this manual. #SMMSIT then branches to the VMC
initialization routine #RTVMCIR.

Machine Support Function

#RTVMCIR first calls the system control adapter (SCA)
initialization routine to initialize the system control
adapter. The SCA initialization routine starts up the
SCA, reads the console rotary switches, and reports
initialization conditions to VMC initialization routine
(#RTVMCIR) through the machine initialization status
record (MISR). The data reported in the MISR includes
the position of the console switches, SCA sense and
status information, any required error log data, whether
or not the primary console and the load/dump device
are operational, and if an IMPL halt is to occur. This
data can later be accessed by a user through the
Materialize Machine Attributes instruction. The
temporary and access group directories are then
initialized (#SMINDIR). If the directory is unusable and
needs to be rebuilt (as indicated in the MISRl, the
auxiliary storage directory recovery program (#SMDR1)
is invoked. When #SMDR1 completes, all segments can
be paged. See Directory Recovery in the Auxiliary
Storage Management section of this manual for
additional information concerning rebuilding the
directory.

The VMC initialization routine checks for the existence
of the following objects and structures by referencing
them:

• Alter log

• Source/sink active device list

• Data base in-use table

• Object recovery list

If cne of the preceding does not currently exist, an
exception is signaled, and the IMPL exception handler
(#RTIMPLX) is invoked to create the object or structure.

Initialization /Termination Management 10-1

Resource management (#RMINIT) initialization is then
invoked to create system-wide resources such as task
dispatching elements (TDEs), call/return elements
(CREs), and machine-wide storage functions. Resource
management initialization also starts the machine timer
functions and the machine time-of-day clock, using the
time saved when the machine was shut down. See
Initialization in the Resource Management section of this
manual for additional information concerning resource
management.

Exception management initialization (#EXINIT) is invoked
at this time to initialize statistics recorded about the
causes and frequency of effective address overflow
exceptions.

Process management initialization routine (#PMINIT) sets
up the machine-wide index for event management
(address is resident in the VMC communications area).
#PMINIT also initializes two send/receive counters to
provide serialization for process management functions
and event management indexes. #PMINIT initializes the
trace table to indicate no active traces. When process
management initialization completes, VMC task creation
and termination can be performed.

At this point, the VMC log task is created and initialized.

The damage assessment routine (#RCMKDMG) is
invoked at this time. #RCMKDMG runs in conjunction
with a special version of the directory rebuild program
that reads all pages assigned to permanent segments
and marks the permanent directory entries for any
segments containing read errors.

10-2

#RCMKDMG first checks the storage management
vector table (SMVT) to determine if the special version
of directory recovery ran previously in the IPL sequence.
If not, an entry is made in the VLOG indicating that no
further processing was performed, and the routine
terminates. Otherwise, the permanent directory is
searched for entries marked as containing read errors. If
such a segment is found and is part of an object, the
object is marked with the appropriate damage, and an
entry is made for the object in the object recovery list.
A count of the number of damaged objects found is
maintained, and that information is entered in the VLOG.

Next, the context rebuild function is called. The machine
context and any other context created with the
automatic rebuild option are checked for damage. If any
of these contexts are damaged, they are rebuilt.

The source/sink initialization function (#SSINIT) is then
activated. Source/sink initialization builds the machine
services control point task. The machine error logging
function is activated to log any error messages that exist
on the error log queue.

The address regeneration program #SMSDWRP is
invoked to calculate the number of segment identifiers
that have been used. If 95 percent of the segment
identifiers have been used, an IMPL halt occurs to notify
the operator of this condition. If the operator sets the
rotary switches to the appropriate positions and elects
to perform another IMPL, #SMSDWRP regenerates the
segment identifiers to make available all unused
segment identifiers, and invokes recovery procedures
such as data base recovery. If all segment identifiers
have been used when #SMSDWRP is invoked, this
module performs the identifier regeneration without
operator intervention.

The authority management initialization (#AUINIT) is
then invoked to perform recovery procedures.

The data base, journal, and commit management
initialization and recovery routines are invoked to
perform recovery procedures and initialization of the
data base in-use table. The order of this multiphase
process is controlled by #CFRMAST.

J

J

At any point in the IMPL sequence, errors can occur
that can terminate the IMPL sequence. If a certain
initialization function cannot complete, it sets indicators
to the MISR to indicate to the VMC initialization routine
to halt the IMPL sequence.

When a power failure occurs, the machine can be
initialized automatically upon restoration of power by the
auto-IMPL feature. If the auto-IMPL feature is installed
and active, a power failure followed by restoration of
power automatically starts the IMPL sequence. The
IMPL sequence is the only operation performed. When
auto-IMPL sequence occurs, the storage management
directories are automatically rebuilt if required.

Initial Program Load

When the IMPL sequence is complete, the machine is
ready to initiate a user process. VMC initiates a
temporary machine process called the machine process
that is capable of using VMC functions. The machine
context is checked during an alternate initial program
load (AIPL) and if damaged, it is rebuilt and emptied. If
the machine context is usable, a machine user profile is
built by #RTUPROF. The address of the user profile is
stored in the VMC communications area. Control is then
passed from #RTVMCIR to a process management
routine #PMIPL1 that builds a TDE for the machine
process and places the TDE on the prime TDQ. #RTIPIR
gets control as the first program in the machine process
and initiates the first user process.

In order to start an initial user process, the following
parts are needed:

• A user profile to specify the process authority
attributes and objects owned

• A process definition template (PDT) to specify the
attributes of the process

• A program template specifying the program to get
control in the initial process

If the user profile specified in the template exists, the
existing user profile is kept. If the user profile is
damaged, it is replaced and addressability to any objects
in the profile is lost.

Certain space objects are required:

• A process control space (PCS) for the machine to
stack invocations

• A process automatic storage area to stack the
invocations

• A process static storage area if the process uses
static storage

These areas are further described in Data Areas in the
Program Execution Management section of this manual.
The parts can be present on either auxiliary storage or
an external media device. If the information is stored on
auxiliary storage, an initial program load (IPL) sequence
is performed. In this case, a process definition template
was previously specified by the use of the Modify
Machine Attributes instruction. The process definition
template contains system pointers to a user profile and
an encapsulated program previously saved within a
space object.

If the parts of a process are on the load/dump device,
an alternate IPL (AIPL) sequence is performed. The data
for an AIPL sequence must be supplied in either
load/dump format (a space object) or data interchange
format (a character string).

The VMC initial process initiation routine uses the
process definition template to initiate a process. If an
alternate IPL sequence is to be performed, a load/dump
session is established and the data is read from the
load/ dump device; otherwise the data is located on
auxiliary storage via the initial process definition
template. The data read from the load/dump device is a
series of creation templates for objects. These
templates are:

• A user profile template for a create user profile
operation.

• A program template.

• The spaces needed for user process initiation. (These
spaces are created with default attributes by the
initial process initiation routine.)

• A process definition template.

Initialization/Termination Management 10-3

The spaces are created with the Create Space
instruction. The system pointers are stored in the
machine initialization status record. The program is
translated using the Create Program instruction, and a
user profile is created using the Create User Profile
instruction. The user program and the user profile are
then used by the Initiate Process instruction to create
the first user process. The machine process then signals
the VMC initialization process, and the machine process
destroys itself.

If the IPL or AIPL sequence cannot be completed
because an error is detected, an IPL halt is executed
and, with the exception of a damaged user profile error,
no effort is made to restart the IPL sequence. The IPL
halt performs the following:

• Sets indicators and reason code in the MISR and
writes the MISR to auxiliary storage

• Destroys any objects created by an IPL

• Executes the storage management shutdown function

• Places the machine in checkstop state and places a
termination code in the sequence indicator lights

An IPL halt can be caused by a hardware error (a
machine check or initial microprogram load (lMPL)
exception) or an exception signaled by a function used
by the IPL sequence.

10-4

J

Figure 10-1 shows the order of activation of VMC
components that initialize the VMC support functions.

VMC MSM VMC
Initialization r---- Initialization ~ Initialization
Task (#SMMSIT) (#RTVMCIR)

Create
Task

Create Task

Figure 10-1. Initialization Sequence

Source/Sink
10M
(#LOSAIPL)

Directory
Recovery

Resource
(#SMDR1)

Management
(#RMINIT)

Process
Management
(#PMINIT)

VMC Log
(#VLTASK)

Context
Rebuild

Source/Sink
(#RCRBCTX)

Management
(#SSINIT) Address

Regeneration
Program

Authority (#SMSDWRP)

Management Data Base,
(#AUINIT) Journal.

and Commit
Management

Process (#CFRMAST)
Management
(#PMIPL1) Initial

Process
Creation
(#RTIPIR)

Initialization /Termination Management 10-5

Terminate Machine Processing

The terminate machine processing function provides the
capability of destroying all processes in the system and
either turning off the power to the machine or putting
the machine into the check stop state. The processes
are destroyed in a manner as defined by the Terminate
Process instruction. The same function as defined by
the Terminate Process instruction is done for each
individual process that is destroyed. This operation is
further described in the Process Management section of
this manual.

The process that invokes the terminate machine
processing function must have the authority to destroy
all processes within the machine. The terminate function
is invoked whenever the Terminate Machine Processing
instruction is issued. A fixed time interval elapses before
machine processing is terminated. This allows all
processes to complete to normal termination. If one or
more processes remain active at the end of the time
interval. those processes are abnormally terminated.
Machine processing then completes processing using a
separate internal task.

Once machine processing has been terminated, it can
only be reactivated through machine initialization.

An optional function performed by the terminate
machine processing function is that of turning off the
machine power supply. This option is specified in the
Terminate Machine Processing instruction. If the
machine power supply is not turned off, the last
function performed by the terminate functions is to put
the machine into the check stopped state. For
diagnostic purposes, the process that invoked the
terminate function can save a space pointer for a
permanent space object that contains diagnostic data.
This data is user-defined and is not used by the
machine.

DATA AREAS

VMC Communications Area (VYVCA)

The VMC communications area contains the various
pageable control areas used in VMC. An overview of
the VMC communications area is shown in Figure 10-2.
The VMC communications area contains pointers used
by VMC components to address structures that are
pageable.

10-6

Alignment Area

Event Management SRC

Process Management SRC

Areas for VMC Components

· Common Functions

· Authorization Management

· Program Management

· Exception Management

· Process Management

· Resource Management

· Event Management

· Data Base Management

· Source/Sink Management

· Machine Observation Management

· Support Functions

Figure 10-2. VMC Communications Area

Machine Initialization Status Record (VVMISR)

The machine intialization status record (MISR) is used by
VMC components to store information relating to the
status of the machine following an IPL or IMPL. Some
of the contents of the MISR can be materialized by
using a Materialize Machine Attributes instruction. An
overview of the MISR is shown in Figure 10-3.

Settings of Machine Switches and IMPL Status Flags
Device Status
Failing Test Indicator
IMPL/IMPL-Abbreviated Sequence Number
Flag Indicators
VMC Status
AIPL Information

Figure 10-3. Machine Initialization Status Record

J

Object Recovery List

The object recovery list identifies the objects that were
not completely processed at machine termination. A
recovery entry exists in the list for every object subject
to recovery activity. These entries contain the object
type, a pointer to the object, and the status of the
object.

STRUCTURE

The following is a list of the modules in machine
initialization management and the function that each
module performs. The list also shows how the module
is invoked.

#RTIAIPL Read AI PL Data

Function: Reads AIPL process creation data from the
load/dump device.

How Invoked: Within this component.

#RTIMPLX IMPL Exception Handler

Function: Rebuilds damaged or missing segments.

How Invoked: Within this component (exceptions
generated in #RTVMCIR).

#RTIPIR Initial Process Initialization Routine

Function: This routine is activated as a machine program
that executes in a process environment. This routine
creates a user defined process from data either on the
load/dump device or in the machine.

How Invoked: Process Management.

#RTIPLHT IPL Halt

Function: Cleans up the IPL sequence on an abnormal
termination.

How Invoked: Exception management when an error
occurs during the IPL or AIPL.

#RTMCR Machine Configuration Record

Function: Contains the initialized machine configuration
record. This module does not contain executable code.

How Invoked: Not applicable.

#RTMPT1 Terminate Machine Processing Part 1

Function: Starts the machine processing termination
function.

How Invoked: Other VMC components.

#RTMPT2 Terminate Machine Processing Part 2

Function: Destroys all user processes and stops the
machine.

How Invoked: Within this component.

#RTMPT3 Terminate Machine Processing Part 3

Function: Invokes the destroy function for a process.

How Invoked: Other VMC components.

#RTVCA VMC Communications Area Generating
Data

Function: Contains the data used to generate the VMC
communications area. This module does not contain
executable code.

How Invoked: Not applicable.

#RTVMCIR VMC Initialization Routine

Function: Performs VMC initialization at IMPL or
IMPL-abbreviated time.

How Invoked: Other VMC components.

Initialization/Termination Management 10-7

J

J

10·8

Machine Check Management

INTRODUCTION

Machine check management protects the System/38
instruction set user from error conditions caused by
hardware, microcode, and logic failures. When a
machine check occurs, machine check management
performs one of the following:

• Immediately halts machine processing when a failure
is severe enough (terminal) that processing cannot
continue

• Initiates shutdown

• Generates either a machine check event and
exception or a function check exception

Machine check management also records certain
information for diagnostic purposes. An error report is
sent to the machine error log or the VMC log for all
function and machine checks except immediate machine
checks.

Machine checks occur as follows:

• As a result of a hardware failure in the processor, a
microcode failure caused by misuse of the internal
microprogramming (IMP) instructions, or an
exceptional condition in the execution of a microcode
routine. These are hardware-reported machine
checks that are stored in the machine error log.

• As a result of an unexpected IMP exception in a
VMC routine or a condition detected by a
VMC-reported function and machine checks that are
stored in the VMC log.

Hardware machine checks are reported by the hardware
machine check handler which is a horizontal microcode
(HMC) component. When a machine check is to be
reported, the hardware machine check handler disables
the task dispatcher and fills the machine check logout
buffer with error information and task status (base
registers, instruction address register, condition codes,
instruction length code). Machine check mode is set,
which forces a hard machine stop if another machine
check or exception occurs before machine check mode
is reset. The hardware machine check handler then
passes control to the resident VMC machine check
handler to determine the severity of the error and to
determine if further processing can take place.

Normally, when the resident machine check handler is
invoked, it runs under the currently executing task
dispatching element (TDE). The resident machine check
handler can also be invoked while in a wait state with
no TDE executing. In this case, the resident machine
check handler enters the run state, copies the error
information from the machine check logout buffer to a
machine check queue element, and returns to the wait
state. The error is recorded when another machine
check occurs.

The resident machine check handler determines if the
machine check is hard or soft as follows:

• Hard Machine Check: A machine check that requires
some recovery action by VMC before processing can
continue. (For some hard machine checks, recovery
may not be possible.)

• Soft Machine Check: A machine check that requires
no recovery action by VMC (a hardware function may
have already performed recovery actions).

If the machine check is hard, the following conditions
cause an immediate hard stop:

• The machine check occurred while task dispatching
was disabled

• An error in a horizontal microcode routine

• Certain channel errors

• ':ertain main storage locks active

Machine Check Management 11-1

These conditions prevent further machine processing
because main storage management will not function. If
none of these conditions occur, the resident machine
check handler prepares to invoke the pageable machine
check handler. A call/return element (CRE) is obtained
to save the task status, and the remainder of the
machine check logout buffer is recorded in a machine
check queue element. An error in any of these
operations causes a hard stop. When processing is
complete, the dispatcher is enabled, machine check
mode is reset, and the resident machine check handler
invokes the pageable machine check handler. (Because
the majority of machine check management code is not
in main storage, a portion of storage management must
be usable before machine check management can
proceed.)

The pageable machine check handler establishes a
normal VMC execution environment and attempts to
recover the error. If an invocation work area (lWA) is
not present, one is created. If a main storage failure
occurred, the operation is retried by attempting to load
from the failing location. If no additional machine check
occurs, the retry of the failing location is considered
successful. If the retry of the failing locations is
successful or if no main storage error occurred, the
pageable machine check handler determines if the failing
instruction can be retried. Only those instructions that
can be executed a number of times with identical results
can be retried. If the retry is successful (no machine
check results), the task is restarted (via the Supervisor
Exit instruction) at the point of the failure.

If the retry did not succeed (because of a failing storage

location, nonretriable instruction, or instruction retry

failure), the following occurs:

• The error IS logged to the error log.

• A machine check event is signaled and an entry is

made In the machine error file (regardless of the

dispOSition of the error).

A machine check exception is signaled to the

machine Interface user through the normal exception

handling process.

• The task will probably be terminated, unless VMC
invocations handle or exception handlers process the

error.

11-2

If a soft machine check is reported to the resident
machine check handler, normal machine check
processing without retry occurs. The error is reported
and the task is restarted.

The following actions are taken in machine check
processing to maintain the integrity of main storage:

• When a hard main storage failure occurs, the primary
directory entry corresponding to the bad frame is
marked as bad. The frame can stili be accessed, but
it will not be stolen or relocated by main storage
management.

• When attempts to recover a main storage error fail,
the frame is invalidated and addressability to the
frame is destroyed.

• The location of a bad frame is tested. If the frame is
permanently resident or pinned, a hard stop is
executed.

• If a bad frame has been changed (that is, an exact
copy does not exist on auxiliary storage), an attempt
is made to signal a machine check and to invalidate
the corresponding page on auxiliary storage. If this
attempt fails, machine processing is terminated.

If none of these conditions has occurred, the page is
recovered by relocating the data to another page frame.

VMC checks caused by program execution errors are
reported as function or machine checks through the
exception management or the machine check handler. If
an IMP exception occurs in a VMC program and the
exception is not handled by a VMC exception handler,
the exception is converted to a hard machine check by
the exception handler and the appropriate recording
occurs. The exception handler then reports a machine
check exception to the user. A VMC routine can also
explicitly create a machine or a function check by
signaling a machine check.

J

J

Throughout machine check processing, the integrity of
the machine interface and protection of data is the
primary concern. If the machine check handler cannot
isolate the error, machine processing is terminated. In
severe cases when the machine check handler itself
cannot operate, the cause of the error can usually be
determined by looking at the machine check logout
buffer in main storage. If the resident machine check
handler is forced to execute a hard stop, the logout
buffer is preserved.

DATA AREAS

Machine Check Logout Buffer (RTMCLB1)

The machine check logout buffer is an area in main
storage that is reserved for the reporting of machine
checks by the hardware machine check handler. This
area contains data concerning the cause of the machine
check and the environment existing when the machine
check occurred.

Machine Check Queue

The machine check queue is a queue in mair. storage
used to transfer machine check queue elements
between the resident and pageable machine check
handler.

Machine Check Queue Element (RTMCQE1)

Machine check queue elements are used by machine
check to pass machine check related information. An
element contains the following information:

• Element description

• Hardware error statistics

• HMC logout data

STRUCTURE

The following is a list of the modules in machine check
management and the function that each module
performs. The list also shows how the module is
invoked.

#RTELOG Send Machine Check to Error Log

Function: Puts header on machine check error message
and sends the message to the error log.

How Invoked: Within this component.

#RTIBADP Resident Bad Page Recovery

Function: Attempts to retry certain bad main storage
frames accessed by main storage management.

How Invoked: Within this component.

#RTIMCH Resident Machine Check Handler

Function: Processes machine malfunctions detected by
the HMC.

How Invoked: From HMC.

Machine Check Management 11-3

#RTIRTRY Resident Bad Page Recovery Recording
Routine

Function: Records bad frames recovered by #RTIBADP.

How Invoked: Resource management service task.

#RTPMCH Pageable Machine Check Handler

Function: Retries hardware errors, logs errors, initiates
dump, and invokes the third-level exception handler
(TLEH).

How Invoked: Within this component.

#RTPMCKH Machine Check Service Routine

Function: Provides service functions for machine check
processing.

How Invoked: Within this component and exception
management.

#RTPMCKX Machine Check Component-Specific
Exception Handler (CSEH)

Function: Processes exceptions that occur in the
pageable machine check handler.

How Invoked: Other VMC components.

11-4

J

Machine Observation Management

INTRODUCTION

Machine observation management provide a means for
the user to view detailed information relating to system
objects and to trace the occurrence of the execution of
specific System/38 instructions. These functions are
accomplished through the following System/38
instructions:

• Materialize System Object

• Materialize Pointer

• Materialize Pointer Locations

• Trace Instructions

• Cancel Trace Instructions

• Trace Invocations

• Cancel Trace Invocations

• Materialize Invocation

• Materialize Instruction Attributes

Materialize System Object

#DOMTSOB is invoked as a result of a Materialize
System Object instruction. This module invokes
#CFOCHKR to validate the operands, authorizations, and
lock enforcement. #DOMTSOB then materializes
information about the system object addressed by
operand 2. This information includes context and user
profile information for objects that are addressed by
contexts and user profiles.

Materialize Pointer

#DOMTPTR is invoked as a result of a Materialize
Pointer instruction. This module first validates the
instruction operands. #DOMTPTR then materializes
information about the pointer contained in operand 2.
This information includes context information for
pointers to objects that are addressed by a context.

Materialize Pointer Locations

#DOMTPTL is invoked as a result of a Materialize
Pointer Locations instruction. This module validates the
operands. #DOMTPTL then materializes information
about the space addressed by operand 2. This
information is presented using the following algorithm:

• Each bit in the area addressed by operand 1
represents 16 bytes of data in the area addressed by
operand 2.

• A bit value of a in the materialize area (operand 1)
indicates that the corresponding 16 bytes of the
scanned area (operand 2) did not contain a pointer.

• A bit value of 1 in the materialize area indicates that
the corresponding 16 bytes of the search area
contains a pointer.

Trace Instructions

#DOTRINS is invoked as a result of a Trace Instructions
System/38 instruction. This module first validates the
input operands. If the trace table does not currently
exist. it is created. If the trace table does not exist, it is
necessary to check that the VMC service function is not
using the program event monitor (PEM). If the PEM is
in use, then an exception is signaled; otherwise, the
PEM is marked as being in use by the trace instructions
function. #DOTRINS then creates a program trace
element for the specified program. The trace element
contains the low and high PEM ranges for that program.
#DOTRINS then determines the hardware address for
each instruction number and creates a trace point entry.
The low and high PEM limits for the program are then
set.

#DOTRSEV is invoked from the exception handler
(#SVOOEXC) when a PEM exception is signaled.
#DOTRSEV searches the trace for a machine hardware
address. If a machine address is found, an instruction
reference event is signaled and a Supervisor Link
Monitored instruction is executed. The Supervisor Link
Monitored instruction allows the event monitor to
receive control. #DOTSEV then enables the PEM and
allows the monitored instruction to be executed.

Machine Observation Management 12-1

#DOTRINX is invoked if a call or return is executed
when instruction tracing is active. #DOTRINX
determines what program is about to be invoked if any
trace points have been specified in the trace table for
that program. If trace points have been specified,
#DOTRINX sets a flag in the task disp~ltching element
(TDE) to indicate that a PEM is active, and sets the low
and high PEM range for this program. When a hardware
instruction within the specified ranges is executed, a
PEM exception is signaled.

Cancel Trace

#DOCTRIN is invoked as a result of a Cancel Trace
Instructions System/38 instruction. This module
validates the operands in the instruction. #DOCTRIN
then determines the hardware address for each
System/38 instruction specified in operand 2.
#DOCTRIN scans the trace table and deletes the entries
that match the instruction list, and sets the high and low
PEM limits for the specified program.

Trace and Cancel Trace Invocations

#DOTRCLE contains entry points to trace invocations
and to cancel the trace, and to signal the
invocation-reference event. #DOTRINV is invoked as a
result of a Trace Invocations instruction. This module
sets invocation trace flags in the specified invocation
control block. #DOCTRNV is invoked as a result of a
Cancel Invocations Trace instruction. This module resets
invocation trace flags in the specified invocation control
block.

#DOTRIEV and #DOTRCEX are invoked during call and
return functions. These modules build event related data
and signal an invocation-reference event.

Materialize Invocation

#DOMATIA is invoked as a result of a Materialize
Invocation instruction. This module first validates the
" o~rands of the instruction. The module then returns
information about the specified invocation and,
optionally, returns argument addresses and exception
descriptions.

12-2

Materialize Instruction Attributes

#DOMTINS is invoked as a result of a Materialize
Instruction Attributes instruction. The module first
checks the input template for obvious validity problems.
Then the program is scanned until the desired
instruction is located. Finally, each operand of the
desired instruction is materialized.

DATA AREAS

Trace Table

The trace table contains information required to trace
the instructions in a process. This table retains the
information about user programs. The trace table is
located by a pointer in the process control block for a
process. The table contains the following information:

• A program trace element for each program being
traced. (The element contains the high and low PEM
limits.)

• A list of all System/38 instructions that are being
traced and the corresponding hardware address for
those instructions.

If there are too many instructions to be retained in the
trace table, a machine index is created to retain the
trace points for some programs.

STRUCTURE

The following is a list of the modules in machine
observation management and the function that each
module performs. The list also shows how the module
is invoked.

#DOCTRIN Cancel Trace Instructions

Function: Removes the specified instructions from the
trace table.

How Invoked: As a result of a Cancel Trace Instructions
instruction and other VMC components.

J

#DOMATIA Materialize Invocation

Function: Returns the program and instruction numbers
of the specified invocation, and returns the argument
addresses and exception descriptions.

How Invoked: Materialize Invocation instruction.

#DOMODSO Modify System Object

Function: Modify the time-stamp in the EPA header to
the current value.

How Invoked: SVL router.

#DOMTINS Materialize Instruction Attributes

Function: Materializes the attributes of an instruction for
a specific invocation within the process issuing the
instruction.

How Invoked: Materialize Instruction Attributes
instruction.

#DOMTPTL Materialize Pointer Locations

Function: Materializes the symbolic locations of valid
pOinters in a given string of data.

How Invoked: Materialize Pointer Location instruction.

#DOMTPTR Materialize Pointer

Function: Materializes the type and attributes of a
pointer.

How Invoked: Materialize Pointer instruction.

#DOMTSOB 'Materialize System Objects

Function: Materializes the identity and size of the
system object addressed by the system pointer.

How Invoked: Materialize System Objects instruction.

#DOTRCLE Trace Invocations

Function: Modifies trace invocation flags and signals the
trace-invocations event.

How Invoked: Trace Invocations and Cancel Invocations
Trace instructions and other VMC components.

#DOTRINS Trace Instructions

Function: Initiate trace instructions for the System/38
instructions.

How Invoked: Trace Instructions instruction.

#DOTRINX Set PEM Range

Function: Determines the correct PEM range for a call or
return.

How Invoked: Other VMC components.

#DOTRSEV Trace Instructions Signal Event

Function: Signals trace-instructions events for those
event-monitored exceptions that occur at addresses
specified in the trace table.

How Invoked: Other VMC components.

Machine Observation Management 12-3

J

12-4

Service and Installation Management

INTRODUCTION

VMC provides tools for use by service personnel for
problem determination. The service functions provided
are as follows:

• Virtual Storage Standalone Dump: Dumps selected
virtual storage to a diskette.

• Print Standalone Dump: Prints all or selective
portions of either main or virtual storage dumps.

• VMC Log: Dumps selected VMC log entries to either
a diskette or a printer, and modifies the
characteristics of the VMC log.

• Display/Alter/Dump: Displays and alters the
contents of virtual storage and dumps virtual storage
to a diskette or a printer.

• VMC Trace: Provides a chronological record of the
execution of selected events within VMC.

• Address Stop / I nstruction Step: Provides address
stop and instruction step capabilities.

• Machine Configuration Record Update Facility:
Assists the user in updating the machine
configuration record (MCR).

• Link/Loader: Copies the microcode from the diskette
magazine to the area reserved for this code during
auxiliary storage initialization.

• Auxiliary Storage Initialization: Initializes auxiliary
storage and builds the storage management directory.

The internal operations of these functions are not
described except to provide a list of the modules that
perform these functions. For instructions on the use of
the service aids, see the System/38 Diagnostics Aids
manual and the System/38 Service Guide.

STRUCTURE

The following is a list of the modules that perform the
service and installation functions. The function that each
module performs is also included.

#CFMLOG

#RIADRSM

#RIADRST

#RID52

#RIDAADR

#RIDADAT

#RIDADDS

#RIDADSL

#RIDAEHS

#RIDAFSL

#RIDAINT

#RIDAIXU

#RIDAMIO

#RIDAMOD

#RIDARTE

#RIDASM1

#RIDASM3

#RIDASM4

Performs VMC log operations

Addresses stop/instruction step service
monitor linkage

Addresses stop/instruction step service
function

Diagnoses machine interface dump list

Displays/ alters/ dumps address select

Displays/ alters/ dumps data
display / alter support

Displays/ alters/ dumps display dump
status

Displays/alters/dumps data select

Displays/ alters/ dumps
component-specific exception handler
(CSEH)

Displays/alters/dumps function select

Displays/ alters/ dumps initialization

Displays/ alters/ dumps index utility
function

Displays/ alters/ dumps object select

Displays/alters/dumps VMC module
select

Displays/alters/dumps dump router

Displays/alters/dumps screen and
message library

Displays/ alters/ dumps screen and
message library

Displays/ alters/ dumps screen and
message library

Service and Installation Management 13-1

#RIDASM6 Displays/alters/dumps screen and #RIPEMEX Addresses stop/instruction stop and
message library trace instruction program event monitor J exception handler

#RIDASM8 Displays/ alters/ dumps screen and
message library #RIRICTL Retrieves internal data

#RIDASUB Displays/ alters/ dumps subtask #RIRTBUF Traces retrieve buffer
(processes dumps)

#RITOUCH Traces segment identifier maintenance
#RIDATKS Displays/alters/dumps task/process

select #RITRACE General trace collection

#RIDAVMD Displays/alters/dumps VMC data #RITRCAC Activates trace

#RIDIAGF Diagnoses instruction router #RITRCAL Allocates trace space

#RIDNDPI Diagnoses dump process internal #RITRCCL Clears tracing

#RIDNECI Diagnoses engineering change inquiry #RITRCDA De-activates trace

#RIDPRSM Prints standalone dump main/virtual #RITRCDP Traces dump control
storage dump screen and message
library #RITRCSC Traces common scroll

#RIDPR2 Prints standalone dump main/virtual #RITRCSM Traces control
storage dump

#RITRMI Traces control from machine interface
#RIDPR21 Prints standalone dump main storage

dump initialization #RITRSAC Traces activation (screen interface)

#RIDPR22 Prints standalone dump main storage #RITRSAD Traces activate/de-activate
dump source / sink object

#RIDPR23 Prints standalone dump virtual storage #RITRSAL Traces allocation (screen interface)
dump initialization

#RITRSCL Traces clear (screen interface)
#RIDPR24 Prints standalone virtual storage dump

#RITRSDA Traces de-activate (screen interface)
#RIDPR25 Prints standalone dump main storage

dump get page #RITRSDP Traces dump control (screen interface)

#RIDPR26 Prints standalone dump main storage #RITRSM1 Traces screen and message library
dump task dispatching element part 1
(TDE)/call/return element (CRE) chains

#RITRSM2 Traces screen and message library
#RIGTBUF Gets trace recording buffer part 2

#RIMATMA Materializes machine attributes #RITRSM3 Traces screen and message library
part 3

#RIMODMA Driver for modify machine attributes

#RIPEMCK Validates data to set program-event
monitor

13-2

#RITRSM4 Traces screen and message library #SDDIDC Dumps compress

L
part 4

#SDDIDIX Dumps machine index entry
#RITRSM5 Traces screen and message library

part 5 #SDDIDPR Dumps print

#RITRSM6 Traces screen and message library #SDDIDSG Dumps segment
part 6

#SDDIFSO Format search table (0)
#RITRSM7 Traces screen and message library

part 7 #SDDIFS1 Format search table (1)

#RITRSM8 Traces screen and message library #SDDIFS2 Format search table (2)
part 8

#SDDIFS3 Format search table (trace)
#RITRSM9 Traces screen and message library

part 9 #SDDIFS4 Format search table (object specific
header)

#RITRSSC Traces scroll control (screen interface)
#SDDIFS5 Format search table

#RITRSSI Traces source / sink object initialization
#SDDIFS6 Format search table

#RITRSTS Traces status (screen interface)
#SDDIFS7 Format search table

#RITRSTS Traces task switch save buffer
#SDDIFS8 Format search table

#RIVLDMP VMC log asynchronous dump
subfunction #SDDIGDS Dumps record interchange get

#RIVLSF VMC log service function #SDDIMOV Dumps interchange move data

IIRIVLSML VMC log screen and message library #SDDIPDS Dumps record interchange put

#SDAIBLD Services function driver address index #SDDIPF Dumps interchange print formatted
build

#SDDIPH Dumps interchange print hex
#SDALlNQ Displays/alters/dumps alter log inquiry

#SDDIPL Dumps interchange put line
#SDALINS Displays/alters/dumps log insert

#SDDIPOC Dumps interchange print open/close
#SDCDCTL Common display

#SDDIP21 Program special print routine (for
#SDCNCVT Converts data machine interface programs)

#SDCNMOV Moves data with exception handler #SDDIP22 Context entry special print routine

#SDCNTIM Services function driver convert time #SDDIP23 User profile entry special print routine

#SDDCCTL Services function driver task controller #SDDIP49 Traces special formal routine

#SDDIBLD Dumps entry string build #SDDISDT Dumps structure

#SDDICTL Dumps control

Service and Installation Management 13-3

#5DDI5RT Dumps routing table #5DD1534 Dumps cursor

#5DDI5TB Instruction mnemonic tables #5DD1541 Dumps machine wide storage J
#5DD1501 Dumps task/process #5DD1549 Dumps trace' tables

#5DD1502 Dumps object #5DD1550 Dumps task chain

#5DD1503 Dumps process control block #5DD1555 Dumps index control block
(PCB)/task control block

#5DD1588 Dumps alter log
#5DDI504 Dumps default structure

#5DD1590 Dumps process static storage
#5DD1505 Dumps task chain area/process automatic storage area

#5DD1506 Dumps machine index #5DD1591 Dumps MCR

#5DD1507 Dumps segment #5DD1592 Dumps machine check logout buffer

#5DD1514 Dumps seize/lock #5DD1593 Dumps task summary

#5DD1516 Dumps link map #5DD1594 Dumps task dispatching element and
call return element

#5DD1520 Dumps access group
#5DDKCTL Handles diskette I/O

#5DD1521 Dumps program mainline
#5DDPCTL Handles data path

#5DD1522 Dumps contexts .J #5DD5BLD 5creens build
#5DD1523 Dumps user profile

#5DDCL5 Displays close
#5DD1524 Dumps user queue

#5DD5CTL Displays open / close / read / write
#5DD1525 Dumps data space

#5DD50PN Displays open
#5DD1526 Dumps data space index

#5DD5PFK Asynchronous program function keys
#5DD1527 Dumps independent index on/off

#5DD1528 Dumps logical unit description (LUD) #5DFCABR Requests a service function

#5DD1529 Dumps controller description (CD) #5DFCCTL 5ervices function controller

#5DD1530 Dumps network description (ND) #5DFCD5T Destroys a service function

#5DD1531 Dumps space object #5DFCGI Handles general inquiry request I/O
messages

#5DD1532 Dumps machine context
#5DFCPFK Handles program function key response

#5DD1533 Dumps process control space (PC5)
#5DFCR5P Processes response request I/O

13-4

#SDFCSTR Starts a service function #SDTCERA Common module to handle errors

L #SDFCTMD Handles service function termination #SDTCMOD Mainline for all service function driver
message tasks

#SDFCTRM Requests a service function #SDTCNDT Terminates service function driver tasks

#SDFMCTL Finds machine interface object common #SDTCRTT Services function driver request task
function termination

#SDFVMOD Services function driver find VMC #SDTKSEL Task/process selection menu
module

#SDTKSML Task selection menu screen and
#SDIFTAB Services function table message library

#SDPRBLD Services function driver build print page #SDWKCTL Subtask work controller

#SDPRCTL Services function driver print control #SDWKROU Subtask work router

#SDPRCUP Sends process destroyed message #VLCCTL Single VMC log control

#SDQCCRQ Creates/ extends/ destroys queue #VLDUMP VMC log dump interface

#SDQCGAM Gets/returns available message #VLlPDES Puts dump entry string to VMC log

#SDRICTL Requests I/O control #VLlPL VMC log initial program load
(lPL)/cieanup

#SDRIEXH Handles exceptions during request I/O

~
#VLRGDES Gets VMC log dump entry string from

#SDRIMIF Requests a machine interface function VMC log

#SDRIMIR Handles machine interface response #VLRSLCT VMC log retrieves/selects VMC log

#SDSCCTL Processes session type request I/O #VLTASK VMC log insert task

#SDSERVT Services vector table #VL82EH VMC log 82 exception handler

#SDSMCRS Creates/ extends/ destroys queue

#SDSMGRP Gets/frees real page

#SDSSDVA Varies on/off source/sink object

#SDSSFND Finds source/sink object

#SDSSMOD Modifies source/sink object

#SDTCCRT Creates service function driver tasks

#SDTCDST Destroys service function driver tasks
and segments

Service and Installation Management 13-5

J

13-6 J

Authorization Management

INTRODUCTION

Authorization management controls the use of objects,
system resources, and privileged machine instructions.
This control is established by monitoring the following
types of authorization.

• Privileged Instruction: Authorization to issue
privileged machine instructions such as those that
create and modify user profiles.

• Resource: The amount of auxiliary storage a user
profile is authorized to allocate for its permanent
objects.

• Object: Authorization to use system objects, ensuring
that the objects referenced by an executing process
are used only in the ways permitted.

• Special: Authorization to perform special operations
on objects for which the ·executing process does not
have specifically granted authorization (for example,
objects that are being loaded).

The user profile is the collection point for
authorization-related data. Every process in the system
executes under control of a user profile, allowing both
the system and the user to monitor and control the
activities of each executing process. The information in
the user profile sets limits to what can be performed by
an executing process. Attempts by a process to exceed
its authority result in exceptions and events.

Object Function

Any user profile can be unique to one user or can be
shared by several users. (User refers to external user of
machine instructions, including but not limited to the
system operator, security officer, IBM customer
engineer, command work station operators, and others
authorized to use the system.) Processes are initiated
and run under control of a process user profile.

Authorization management also supports authorizations
implied by adopted user profiles. At program creation,
the program owner can specify that the user profile can
be adopted by other users (user profiles) during
subsequent uses of the program. This means that any
object authorizations needed to successfully execute the
program are adopted with the program. Thus, the user
of a program with the adopted user profile attribute has
an extended set of authorizations during execution of
the program. When the program returns, the
authorizations of the adopted user profile are no longer
available to the process.

Authorization management supports the following
machine instructions:

• Create User Profile

• Destroy User Profile

• Grant Authority

• Grant- Like Authority

• Materialize Authority

• Materialize Authorized Objects

• Materialize Authorized Users

• Materialize User Profile

• Modify User Profile

• Retract Authority

• Transfer Ownership

• Test Authority

Authorization Management 14-1

Authorization management also provides the following
functions:

• Retrieve authority information

• Test object authority

• Validate privileged instruction and special
authorization

• Record and delete object ownership

Authorization Enforcement

Almost all VMC routines must check to ensure that the
user that invoked a VMC routine is authorized to
perform the requested operation. This check can be
performed directly on the user profile by the VMC
routine or by using the functions in authorization
management. The checks that can be made on a user
profile are:

Privileged Instruction: A user's rights to use privileged
instructions are defined in the user profile. In general.
the privileged instruction checking routine of
authorization management is called by the VMC routine
supporting the instruction to be executed. This routine
verifies the user has the authority to perform the
privileged instruction. The authorization management
routine performs this verification by checking the bits
that define the privileged instructions authorized in the
adopted (if present) or the process user profiles.

Resource Usage: Auxiliary storage management
accounts for the auxiliary storage space allocated to
objects owned by the user profile. If the specified limit
will be exceeded by a create or extend operation,
storage management sets a return code. The calling
VMC routine then signals a user profile storage limit
exceeded exception. Auxiliary storage management
optionally signals the exception.

14-2

Object Authorization: Authorization management (and
#CFOCHKR) checks the authorization bits in the system
pointer and the public authority bits in the object
header; if sufficient authorization is not established with
this check, authorization management then checks the
adopted (if present) and process user profiles to verify
the authorization requirements, and checks all object
special authority in the user profile and the object
authorization entries in the associated index. If sufficient
authority cannot be established, authorization
management signals (optionally) an authorization
violation event and sets a return code; the calling VMC
routine signals an exception.

Special Authorization: This authorization is checked by
authorization management.

Recovery

There are requirements for maintaining valid user
profiles and allowing normal operation, even if the user
profile is damaged:

• Cleanup of dangling pointers whenever they are
found in a user profile during materialize, transfer
ownership, and other operations that modify
authority.

• Saving all index updates on auxiliary storage
immediately after modification.

• During object destruction, errors are logged and the
operation continues to conclusion, but damaged or
nonexistent user profiles are ignored.

J

DATA AREAS

User Profile

The user profile is a system object and is shown in
Figure 14-1. A user profile is contained in three
segment groups. The first segment group contains the
following information:

• The segment group header

• The encapsulated program architecture (EPA) header

• Special, resource, and privileged instruction
authorizations

• Recovery-related fields

• An index containing object authorizations

The EPA header of every object contains the following
authorization management related information:

• Public authority (the authority of any process to
access that object)

• A pointer to the owning user profile

• The object authority of the owner of the object

The following authorizations are contained in the user
profile:

• Special Authorization
Implicit object authorizations

- Machine attribute modification authorizations

• Privileged Instruction: Privileged instructions
authorized to this user profile

• Resource Authorization: Amount of auxiliary storage
allowed for the object owned by this user profile

• Utilization Data: Amount of auxiliary storage currently
used by this user profile for permanent objects (this
amount is updated by storage management during
operations on permanent objects)

The user profile index contains pointers to the object
owned by or authorized to this user profile. It also
contains pointers to other user profiles that are
authorized to use the objects owned by this user profile.
The user profile index contains the following types of
entries:

• Object Ownership Entry: Pointer to the object

• Authorized Object Entry: Pointer to the object and
authorizations

• Authorized User Entry: Pointer to the object and a
pointer to authorized user

The second segment group contains a table that has the
same information (redundant) as the user profile index.
This table is used for recovery purposes if the user
profile index is damaged.

The third segment group contains the following
information:

• The segment group header

• The associated space

Authorization Management 14-3

Base Segment Group

Segment Group Header

EPA Header

• Object Authority

• Pointer to Owning
User Profi Ie

Object Specific
Header

• Authorizations
- Special
- Resource
- Instruction
- Storage -

• User Profi Ie
Recovery Related
Fields

-
User Profile Index

• Objects Owned

• Authorizations

• Authorized Users

(extendable)

Figure 14-1. User Profile

14-4

Associated Space
Segment Group

Segment Group Header

Associated Space

User Profile Table
Segment Group

Segment Group Header

User Profile Table

System Pointer

The system pointer can contain bits describing the
object authority to the object addressed by this pointer.

Process Control Block

The process control block (PCB) contains a pointer to
the user profile governing its execution.

Invocation Control Block

The invocation control block contains a pointer to the
adopted user profile (if any) governing its execution.
Bits in the invocation control block indicate if a user
profile is adopted and if it can be shared by other
invocations. Adopted user profiles cannot be shared by
external exception and event handlers.

User Profile Recovery

Auxiliary Storage Usage Field

There are a number of ways that this field may become
inaccurate. Most of these involve some form of system
crash in which either storage management shutdown is
not performed or all processes are not brought to an
instruction boundary before machine termination. The
authority initialization module (#AUINIT), which runs
during IMPL, validates the auxiliary storage usage field if
either of the above conditions exist. #AUINIT first
validates the total object size of each permanent object
in the system. Then the #AUINIT places the sum of the
object sizes for each object owned by a given user
profile into the auxiliary storage usage field.

J

J

User Profile Index and Table

The information in the user profile index is stored,
redundantly, in the user profile table. If either is
determined to be damaged, it is rebuilt using the
information in the undamaged part. If the damage is
detected while accessing the information (#AUINDEX),
the rebuild occurs dynamically by invoking the rebuild
module (#AUIXRBL). If the rebuild is unsuccessful, the
damage bit is set in the user profile.

Rebuild may also occur at IMPL time (#AUINIT) if the
user profile was being updated when a system crash
occurred. Each time the index is to be updated, the
index-in-use count in the object specific header is
incremented and written to auxiliary storage. When the
update is complete, the index-in-use count is
decremented. If, at IMPL time, this count indicates that
the user profile was in use when the machine
terminated, the index is assumed to be damaged and is
rebuilt. (If a table rebuild was in progress when the
machine terminated, the table is rebuilt.)

STRUCTURE

The following is a list of the modules in authorization
management and the function that each module
performs. The list also shows how the module is
invoked.

#AUCRTUP Create User Profile

Function: Creates a new user profile according to the
input specifications.

How Invoked: Create User Profile instruction.

#AUCSEH Authorization Component-Specific
Exception Handler

Function: Processes exceptions that occur within
authorization management.

How Invoked: Through exception management.

#AUDESUP Destroy

Function: Destroys the specified user profile.

How Invoked: Destroy User Profile instruction.

#AUEXCEPT Generate Exception

Function: Generates authority-related exceptions and
events.

How Invoked: Other VMC components.

#AUGRAU Grant Authority

Function: If public authority is specified, updates the
target object EPA header; if private authority is
specified, adds the authorized object entry to the
receiver user profile and inserts an authorized user entry
into the owning profile.

How Invoked: Grant Authority instruction.

#AUGRLAU Grant-Like Authority

Function: Performs the necessary grants to make a
receive user profile look like a source user profile. The
normal rules for materializing authorized users and for
grant authority are in effect.

How Invoked: Grant-Like Authority instruction.

#AUINIT Authority Initialization

Function: Initializes authority component and performs
necessary recovery of damaged user profiles.

How Invoked: Other VMC components.

#AUINDEX Index Interface

Function: Provides the interface between authorization
management and machine index management.

How Invoked: Authorization management modules that
require index operations.

#AUIXRBL Index Rebuild

Function: Rebuilds the user profile index or table.

How Invoked: Other VMC components.

Authorization Management 14-5

#AUIXUTL User Profile Index Utility

Function: Initializes the user profile index.

How Invoked: Other VMC components.

#AUMATAU Retrieve Authority

Function: Retrieves the authorizations from a user profile
and puts them into a specified area.

How Invoked: Materialized Authority instruction.

#AUMATOB Materialize Authorized Objects

Function: Retrieves and materializes the authorized
object entries from a specified user profile.

How Invoked: Materialize Authorized Objects instruction.

#AUMATUP Materialize User Profile

Function: Retrieves and materializes the instruction,
special, and resource authorizations from a user profile.

How Invoked: Materialize User Profile instruction.

#AUMATUU Materialize Authorized User

Function: Searches the profile index of the owner of the
object for a pointer to authorized users, and retrieves
the authorized user names from the profile header.

How Invoked: Materialize Authorized Users instruction.

#AUMODUP Modify User Profile

Function: Modifies the authorizations in a user profile.

How Invoked: Modify User Profile instruction.

14-6

#AURCTAU Retract Authority

Function: For public authorization, inserts new
authorizations into the EPA header of the target object;
for private authorization, removes the authorized object
entry from the user profile of the receiver.

How Invoked: Retract Authority instruction.

#AUTBUTL User Profile Table Utility

Function: Creates, validates, and extends the user profile
table.

How Invoked: Other VMC components.

#AUTSTAU Test Authority

Function: Tests the authorized entry in the user profile
of the receiver.

How Invoked: Test Authority instruction.

#AUVERCH Version Change

Function: Performs changes to the user profile to
convert to the release 2 format.

How Invoked: Other VMC components.

#AUWCHEK Segment Identification Wrap Check

Function: Removes references to nonexistent objects
from a user profile.

How Invoked: Other VMC components.

#AUXCHEK User Profile Crosscheck

Function: Checks all user profiles for consistency.

How Invoked: Other VMC components.

J

J

#AUXFRO Transfer Ownership

Function: Updates the object header to reflect new
owner, transfers ownership and authorized user entries
from old owning profile to the user profile of the new
owner.

How Invoked: Transfer Ownership instruction.

#CFAUTH Authorization Common Function

Function: Validates the privileged instruction and special
authorizations (#CFAUPRV); retrieves the authorizations
of a specified object (#CFAURET); tests user profile to
determine if a user has the authority to execute the
operation requested (#CFAUTST); and retrieves the
object authority available to a process (#AUTSTAU).

How Invoked: Test Authority instruction and from other
authorization management modules that require
authorization verification.

#CFDELOO Delete Object Ownership

Function: Deletes ownership of a given object from the
owning user profile.

How Invoked: Other VMC components.

#CFRECOO Record Object Ownership

Function: Records ownership of a given object in a
given user profile.

How Invoked: Other VMC components.

Authorization Management 14-7

J

14-8

Context Management

INTRODUCTION

Contexts are used to store addressability to system
objects. The user creates contexts, inserts or deletes
addressability into or from contexts, and transfers
addressability from one context to another. These
functions are accomplished by using System/38
instructions. Addressability to a system object can only
be in one context at a time. Addressability to an object
need not be kept in a context, but the user must keep a
system pointer to the object in order to maintain
addressability to the object.

Once a system object is addressed by a context, the
object can be located in virtual storage by using the
Resolve System Pointer instruction or implicitly by using
an unresolved pointer. Using unresolved pointers is
called late binding, and is described in more detail in the
Program Management section of this manual.

Context management supports the following System/38
instructions:

• Create Context

• Destroy Context

• Materialize Context

• Modify Addressability

• Rename System Object

• Resolve System Pointer

Context management also supports the following
functions:

• Check dangling pointer

• Find entry in context (indirect support)

• Find entry in a name resolution list (NRL) context
(indirect support)

• Insert context entry

• Delete context entry

• Resolve system pointer

Data Pointer Resolution

Data pointers are resolved either explicitly by using the
Resolve Data Pointer instruction or implicitly by using an
unresolved data pointer. The Resolve Data Pointer
instruction results in supervisor linkage (SVL) to
#MNRESLVD. An unresolved data pointer results in the
verify exception handler (#CFVFYEH) being invoked.
#CFVFYEH in turn invokes #MNRESLVD at entry point
#CFRESOD. In either case, #MNRESLVD returns a
pointer to the data object if one exists.

Recovery

The primary recovery considerations are:

• The ability to handle a damaged context

• The ability to handle dangling pointers
Context entries pointing to nonexistent or invalid
object
Objects pointing to a context that does not exist

• Support of damage tolerant destroy system object
functions

Context Management 15-1

A damaged context is detected by context management
as a result of a return code from an index control block
operation by index management. The context is then
marked as damaged. A destroy context operation is the
only context management function that can be
performed on that context marked as damaged.

Dangling pointers are handled by additional checks:

• Whenever a context entry is examined, an optional
check can be made to determine that the context
addresses the proper object (the segment extender,
object name, and the back-pointer to the addressing
context are verified).

• Whenever the context pointer from an object is used,
a check is made to determine that the pointer
addresses an existing context.

DATA AREAS

Contexts

There are three types of contexts:

• Machine Context: This context is built at installation
time by the context rebuild function and is
permanently assigned a unique virtual address. This
address can be found at label #MCA4VMC in the
machine communication area (MCA). The context
rebuild function rebuilds the machine context if it is
damaged or destroyed. This includes locating all
permanent objects that must be addressed by the
machine context and reinserting them in the machine
context. The context rebuild function also rebuilds all
permanent contexts that are damaged and marked as
eligible to be rebuilt. The machine context contains
addressability to all of the following objects and
cannot contain addressability to any other object:

15-2

Logical unit descriptions
Controller descriptions
Network descriptions
User profiles
Permanent contexts

• Permanent Contexts: These contexts are built as a
result of Create Context instructions. Permanent
contexts can contain addressability to any object
(permanent or temporary) except those addressed by
the machine context or-those that cannot be
addressed by any context (temporary contexts, for
example).

• Temporary Contexts: These contexts are also built as
a result of Create Context instructions, and contain
addressability to the same types of objects as
permanent contexts. Because addressability to
temporary contexts is not kept in the machine
context, the user must maintain addressability to a
temporary context in a system pointer. If a temporary
context is not explicitly destroyed by the user, it is
destroyed by VMC as part of machine processing
termination.

J

Contexts reside in one or two segment groups as shown
in Figure 15-1. The first segment group contains a
segment group header, an encapsulated program
architecture (EPA) header, and a machine index that
contains the actual context entries.

SID Group 1

SID Group Header -
EPA Header

Machine Index

#1
S

I
NL

1
N I @1

I I @] S NL N

I (extendable) I L ________ ...J

SID Group 2

SID Group Header

Associated Space

Figure 15-1. Encapsulated Context Format

The machine Index portion of a context contains variable

length entries In the following form:

T S NL N @

(1) (1) (1) (*) (8)

where:

• T identifies the type of the system object addressed

• S is a user-defined qualifier (subtype)

• NL identifies the name length, with trailing blanks
removed to reduce context space requirements

• N is the user specified name of the object

• @ is the 8-byte address of the EPA header of the
object

Note: The format of the context entries in the machine
index is different from the format seen by the user.

Context Management 15-3

Figure 15-2 shows the relationship of contexts, name
resolution list, and other pointers in the system. Some
relationships are described as follows:

., A context pointing to another object

4) NRL pointing to contexts

• A pointer to the context in the EPA header of an
object addressed by that context

CD Object not addressed by a context

Figure 15-2 also shows exception conditions that can
exist because of some unusual condition such as a
system failure. The conditions are:

G A context entry contains a pointer to an object that
does not exist.

., The EPA header of an object contains a pointer is
made up of all 0' s or a pointer to a context that
does not exist.

15-4

These conditions, called dangling pointers, are allowed
in the system. G occurs if an object is destroyed but J
the context entry was not deleted. This is the case after .
a system failure for permanent contexts that address
temporary objects. ., occurs if a context that contains
addressability to one or more system objects is
destroyed.

For rename object operations, G is also considered to
be dangling if the type, subtype, and name in the object
EPA header and the entry in the context do not match.

Type G dangling pointers are handled in the following
ways:

• For inserts, the address portion of the entry is
replaced with the new entry address.

• For deletes, there is no effect on the operation .

• For resolves, dangling pointers are ignored.

Type" dangling pointers are handled depending on the
function being performed. Functionally, the object is
considered not to be addressed by a context.

J

MCA

(#MNMCCTX)

{ Permanent

C Machine Context Permanent Context System Object

SID Group SID Group SID Group e
1 Header Header

~.
Header / EPA Header EPA Header ... EPA Header

- - -
T S NL N @" ~ T S NL N @

0
T S NL N @"I

~
T S NL N @

T S NL N @ -
l:: T

Temporary

I~
System Object

SID Group e Permanent Context Header

SID Group EPA Header V
Header

~
...

EPA Header ...
-
Iii S HNill--o

Number Pointers /
L:: r Permanent or

@ "'0 Temporary
@ System Object

@ ... SID Group I
O's Header / Temporary Context

EPA Header
SID Group .- e
Header CD

Some Existing EPA Header ... y
Context

- @~ T S NL N
Permanent or

L: r Temporary

System Object

SID Group
Header

EPA Header ... - G

Figure 15-2. Relationship of Contexts

Context Management 15-5

Name Resolution List

The NRL is a portion of a space that contains one or
more resolved system pointers to contexts. The
contexts contained in the NRL are selected by the user.
The NRL is supplied as an attribute of the PDT used by
the Initiate Process instruction. The NRL can be altered
by using the Modify Process Attributes instruction. The
NRL is used to specify the contexts to be searched and
the sequence of the search when attempting to resolve
a system pointer. System pointers in the NRL must be
resolved. The format of the NRL is shown in Figure
15-3.

Number Pointers I Reserved

System Pointer to Context

System Pointer to Context

~L_S~ys_t_e_m_p_o_i_n_te_r_t_o_c_o_n_t_e_xt __________ ~r
Figure 15-3. Name Resolution list

Encapsulated Program Architecture Header

The EPA header is part of an object used to describe
that object. The header contains the type, subtype,
name, and if the object is addressed by a context, a
pointer to that context.

Machine Communication Area

The MCA is used to map storage areas and provide
control areas. The MCA contains a pointer to the
machine context and TDE.

Process Control Block

The process control block (PCB) is used to map storage
areas and provide control areas. The PCB contains a
pointer to the NRL.

15-6

Task Dispatching Element

The task dispatching element (TDE) is used to map
storage areas and provide control areas. The TDE
contains a pointer to the PCB.

STRUCTURE

The following is a list of the modules in context
management and the function that each module
performs. The list aiso shows how the module is
invoked.

#CFDELCE Delete Object Addressability

Function: Deletes addressability to an object from the
specified context.

How Invoked: Other VMC components.

#CFINSCE Insert Object Addressability

Function: Inserts addressability to an object into the
specified context.

How Invoked: Other VMC components.

#CFRESSP Resolve Pointer

Function: Resolves a late-bound (unresolved and
initialized) system pointer.

How Invoked: Other VMC components.

#MNCRTC Create Context

Function: Creates a context with the attributes specified
and returns addressability to the created context.

How Invoked: Create Context instruction.

J

#MNDGPCK Check if Context Entry is Dangling

Function: The specified context entry is expanded, the
entry is checked to determine if it is dangling, and the
appropriate information is returned.

How Invoked: Within this component.

#MNDSTC Destroy Context

Function: Destroys the specified context.

How Invoked: Destroy Context instruction.

#MNMATC Materialize Context

Function: Materializes selected information from a
context.

How Invoked: Materialize Context instruction.

#MNMODA Modify Addressability

Function: Inserts addressability into a context, deletes
addressability from a context, or transfers addressability

~ from one context to another.

How Invoked: Modify Addressability instruction.

#MNRCTX Resolve-Find Object in One Context

Function: Attempts to locate the proper entry in the
specified context and returns the appropriate
information.

How Invoked: Within this component.

#MNRENAM Rename System Object

Function: Changes the symbolic identification (name,
subtype, or both) of a permanent or temporary system
object, and updates any contexts that reference that
object.

How Invoked: Rename Object instruction.

#MNRESSP Resolve System Pointer Control Module

Function: Resolves a system pointer, and if specified,
sets or modifies authority.

How Invoked: Resolve System Pointer instruction.

#MNRNRL Resolve-Find Object in NRL

Function: Searches the NRL contexts to locate the
specified object entry and returns the appropriate
information.

How Invoked: Within this component.

#MNRSLVD Resolve Data Pointer Addressability

Function: Resolves a data pointer to the address and
attributes of a data pointer.

How Invoked: Other VMC components.

Context Management 15-7

J

J
15-8

Recovery Initialization

INTRODUCTION

Recovery initialization is a recovery common function
used by VMC components to recover objects at IMPL
time. An overview of the recovery initialization function
is shown in Figure 16-1. Recovery Initialization
performs the following functions:

• Builds a machine index with an entry for every base
segment of an object and every secondary segment
for multiple segment objects.

• Builds an index containing every user profile for use
by authority initialization.

• Provides an interface to retrieve selected entries from
the object segment index.

#RCINIT is invoked by the first IPL recovery function
that needs to recover objects and create the
send/receive tasks. #RCINIT then finds an entry in the
permanent directory and sends that entry to the task
reading the storage unit for that permanent directory
entry. #RCBBSIX, running under each task, reads the
disk and puts an entry in the object segment index for
that segment. If the segment read is a user profile, an
entry is put in the user profile index.

#RCREAD is invoked to retrieve entries from the object
segment index and at the same time, the object type or
secondary segment type for the next object segment to
be returned from the index can be specified.

The recovery read function protects the user from
damage to either the base segment index or the
object(s) being returned. If a find is attempted to the
base segment index and the base segment index is
found to be unusable, it is rebuilt. If the rebuild function
fails, machine processing terminates with a machine
check. The read function assures the segment header
that the segment returned is readable at the time the
base segment index is built.

#CFRMAST
I PL Supervisor

#RCDINX
Destroy Base
Segment Index

IPL
Recovery
Routine

#RCREAD
Read Recovery
Segment Index

Index Build
Required

#RCINIT
Recovery
Initialization

Send / Receive

#RCBBSIX
Build Base
Segment Index

Figure 16-1. Recovery Initialization Overview

Recovery Initialization 16-1

STRUCTURE

The following is a list of the modules in recovery
initialization and the function that each module performs.
The list also shows how the module is invoked.

#RCBBSIX Build Base Segment Index

Function: Searches the storage management permanent
directory and builds the following:

• An index containing the address of the base segment,
secondary segments, and associated space of each
permanent object in the system.

• An index containing the address of each user profile
in the system.

How Invoked: Within this component.

#RCDINX Destroy Recovery Segment Index

Function: Destroys the recovery segment machine index.

How Invoked: Other VMC components.

#RCINIT Recovery Initialization

Function: Initializes the recovery component and builds
the data areas for use by #RCBBSIX.

How Invoked: Other VMC components.

#RCREAD Read Recovery Segment Index

Function: Selects entries from the machine index of the
system object segments.

How Invoked: Other VMC components.

16-2

J

J

Program Execution Management

INTRODUCTION

Program execution management provides the linkage
between programs and between programs and
subroutines within the programs. Program execution
management performs the following basic functions:

• Activates a program: Puts a program into a
ready-to-execute state

• Invokes a program: Causes the program to be
executed

• Modifies storage allocation: Extends or truncates the
allocated process automatic storage area, and
extends the allocated process static storage area

• De-activates a program: Removes the program from
an executable state

• Destroys a program invocation: Terminates the
execution of a program

Program Control Function

These functions provide support for the following
System/38 instructions:

• Activate Program

• Call External

• Call InternaP

• De-activate Program

• End

• Modify Automatic Storage Allocation

• Return External

• Set Argument List Length'

• Store Parameter List Length'

• Transfer Control

Program Activation

All programs executing in the system operate under
control of a process. Before a program can be activated
and executed, a process under which that program is to
execute must be established. Process management
performs the process creation operation and initially
allocates the areas used by the process. Process
creation is described in the Process Management section
of the manual.

, Support for these instructions is provided by code that is
generated by the translator and inserted into the instruction
stream of the encapsulated program.

Program Execution Management 17-1

Once a process has been established, program
execution management can activate a program. An
Activate Program instruction initiates the activation
operation. The primary object of the activation operation
is to initialize the process static storage area (PSSA) of
the program. If a program does not contain any static
areas, the program is considered permanently activated
and does not require activation.

Program Invocation

The invocation function of program execution
management controls the synchronous execution of
programs within a process. The invocation function
allows control to be passed from one program
instruction stream to another, and allows for a
subsequent return of control when a function is
complete.

Programs can be invoked under the following conditions:

• A process definition can specify a program to be
invoked as part of the process initiation phase.

• A process definition can specify the first program to
be invoked in the problem phase. When process
initiation enters the problem phase, the first process
problem state is given control.

• A Call External instruction causes execution of the
invoking program to be suspended and control to be
passed to the referenced program.

• A Transfer Control instruction causes execution of the
invoking program to be suspended, the invocation of
the invoking program to be destroyed, and control to
be passed to the referenced program.

17-2

• An exception description can specify a program to be
invoked when a specified exception occurs.

• An event monitor can specify a program to be
invoked when a specified event occurs.

• A data space index can specify a user exit program
to invoke.

• A process definition can specify a program to be
invoked as part of the process termination phase.

Invoking a program causes the following to occur:

• Execution of the invoking program is suspended and
the current status of the invoking program is saved
pending return of control.

• An invocation entry for the program is allocated in
the process automatic storage area (PASA). This
entry contains an allocation for each object that has
the automatic allocation attribute.

• The automatic objects are assigned their initial values.

• Exception descriptions that are defined in the
program are activated to process the associated
exceptions.

• Parameter objects (if any are defined in the invoked
program) are resolved to argument objects passed by
the invoking program.

• Authority of the program being invoked is verified.

• The program is implicitly activated if it was not
previously activated.

• Control is passed to the entry point defined in the
instruction stream of the program to be invoked.
Instruction execution continues in the invoked
program until an invocation of another program is
encountered or the end of the program is reached.

L

Program De-activation

An activation entry can be marked as not active using
the De-activate Program instruction. An activation entry
that is not active must be activated before it can be
used in an invocation. The system implicitly reactivates
an inactive entry when the associated program is
invoked.

Invocation Destruction

When an invoked program relinquishes control. the
associated invocation is deallocated and the following
operations occur:

• Execution of the invoked program is suspended.

• The automatic space is deallocated.

• The exception descriptions associated with the
invocation are made inactive.

• An invocation exit program set for the invocation
being destroyed is optionally invoked if the invocation
is destroyed because of a return from exception or a
signal exception.

• Control is passed to some point in a previously
invoked program.

The invocation relinquishes control and is subsequently
destroyed under the following conditions:

• Return external: The invocation is destroyed and
control is passed to the invocation immediately
preceding the destroyed invocation in the process
chain.

• Transfer control: The invocation is destroyed and the
target program of the Transfer Control instruction is
invoked.

• Return from exception: The exception handling
sequence returns control to a previous invocation.

• Signal exception: The exception presentation
sequence passes control to a previous invocation.

DATA AREAS

Process Automatic Storage Area

The contents of the PASA are shown in Figure 17 -1.
The PASA starts on a quad-word boundary and begins
with a 96-byte control element that contains the
following information:

• A pointer to the newest PASA element

• A pointer to the first PASA element

• A pointer to the next available PASA element

• The invocation mark counter (4 bytes)

Following the control element are the PASA elements.
Each element starts on a quad-word boundary and
contains the following information:

• A pointer to the previous PASA element

• A pointer to the next PASA element if one exists

• A pointer to the program associated with this PASA
element

• The current invocation count

• The type of the associated invocation

• The invocation mark count

• The user area

• The automatic data area

The invocation control block addresses the associated
PASA element so that when an invocation terminates
and the invocation is removed from the invocation work
area, the associated PASA element is also removed
from the chain.

Program Execution Management 17·3

Backward Pointer (current PASA element)

Forward Pointer (first PASA element)

Control Element

J
End of Chain (next available PASA element)

I nvocation Mark Count

First PASA Element

Invocation Mark Count User Area

Backward Pointer

Forward Pointer

Next PASA Element

Invocation Mark Count User Area

Backward Pointer

(last element in chain) Last PASA Element

Program Pointer

Count Invocation Mark Count User Area

Automatic Storage

A~--~--~
/"./': indicates reserved areas.
~

Figure 17-1. Process Automatic Storage Area

17-4

Process Static Storage Area

The contents of the PSSA are shown in Figure 17-2.
The PSSA starts on a quad-word boundary and begins
with a 96-byte control element that contains the
following information:

• A pointer to the newest element on the chain

• A pointer to the first element on the chain if one
exists

• A pointer to the next available PSSA element

• The PSSA modification flags

Following the control element are the PSSA elements.
These elements exist for programs that require static
storage. The elements can be created either explicitly by
using an Activate Program instruction or implicitly by
using Call External and Transfer Control instructions.
Each PSSA entry starts on a quad-word boundary and
contains the following information:

• A pointer to the previous PSSA element

A pointer to the next PSSA element if one exists

• A pointer to the associated program

• The activation count

• The active flag

• The invocation count

• The activation mark count

• The length of this PSSA entry

• The static area for the program

Unlike invocation control block and PASA elements,
PSSA elements are not associated with an invocation
and are not destroyed (removed from the chain) when
an invocation terminates. Space associated with
de-activated PSSA elements is reused by the machine
when a new PSSA element is created.

Program Execution Management 17·5

Backward Pointer (last PSSA element)

Forward Pointer (first PSSA element)

(next available PSSA element)

Forward Pointer

Invocation
Mark Count

Static Area

Backward Pointer

Forward Pointer

Invocation

Ma~k Count

Static Area

Backward Pointer

(last element in chain)

Program Pointer

Count

Static Area

Invocation
Mark Count

Activation
Mark Count

Activation

Mark Count

Activation
Mark Count

Control Element

I---~A

First PSSA Element

Length

Next PSSA Element

Length

Last PSSA Element

Length

A~ ____________________________________ ~ ~ indicates reserved areas.

Figure 17-2. Process Static Storage Area

17-6

L

STRUCTURE

The following is a list of the modules in program
execution management and the function that each
module performs. The list also shows how the module
is invoked.

#AICALLM Transfer Control

Function: Transfers control from one program to
another.

How Invoked: Transfer Control instruction or other VMC
components.

#AICALLX Call External

Function: Passes control to a user program invocation.
PSSA and PASA entries are created and initialized as
required.

How Invoked: Call External instruction.

#AICMACH Call from Machine

Function: Invokes a program from the machine.

How Invoked: Other VMC components.

#AICRACT Create Activation

Function: Initializes PSSA for a program.

How Invoked: As a result of one of the following:
Activate Program instruction

- From #AICALLX or #AICALLM resulting from an
implicit activation at program invocation

#AIDACTV De-activate Program

Function: De-activates a program.

How Invoked: De-activate Program instruction.

#AIMDASA Automatic Storage

Function: Changes the automatic storage size for the
current invocation.

How Invoked: Modify Automatic Storage Allocation
instruction.

#AIRTX Return External/End

Function: Returns control to the next previous
invocation.

How Invoked: Return External and End instructions.

Program Execution Management 17 - 7

J

J

J
17-8

L
Program Management

INTRODUCTION

Program management performs the following functions:

• Translates (encapsulates) a program template into an
executable object

• Provides addressability to the encapsulated object

• Materializes the attributes of the object

• Deletes addressability to the object

Program management supports the following System/38
instructions:

• Create Program

• Materialize Program

• Destroy Program

• Delete Program Observability

Program Creation

Before a program can be executed in the system,
program management must convert the program into an
executable form. The process of converting (called
encapsulation) the program into executable form is
initiated by a Create Program instruction, and the
conversion process is performed by the translator
(#XLATOR).

Because the operation of the translator is similar to that
of a compiler, the internal operation of the translator is
described only in general. The input to and the output
from the translator are emphasized in this description.

The input to the translator is the program template, the
output from the translator is an encapsulated program
system object. The program template contains a
description of the program to be created. This
information is as follows:

• Template header that contains the creation attributes
of the program and pointers to the remainder of the
template

• The object definition table (ODT) that contains the
following:
- The ODT directory vector (ODV) containing entries

that described the objects used by the program
and a pointer to an ODT entry string if the
descriptions of the objects cannot be completely
contained in the ODV

- The ODT entry string that contains variable length
entries that complete the definitions of the object
not completely described in the ODV

• The instruction stream of the program

The program template is built by a program resolution
function of either the control program facility (CPF) or
other control program.

Program Management 18-1

The encapsulated program system object contains the
following:

• The encapsulated program architecture (EPA) header
that contains offsets and sizes relating to the object

• The internal microprogramming instructions to be
executed

• Static initialization code that contains constant values
and microprogramming instructions used to initialize
program static data

• Automatic initialization code that contains
microprogramming instructions used to initialize
program automatic data

• The object specific header that contains attributes,
offsets and sizes relating to the program

• The object mapping table that contains entries that
provide location mapping for each object defined by
an ODV entry

18-2

• The external object list that contains the list of
externally known names such as the external entry
point into the program

• The exception directory that defines the exceptions to
be handled for this program and pointers to the
exception handlers for these exceptions

• User extendable space

• Materialization definition template that contains a
copy of the input program template if the program
was specified as observable in the Create Program
instruction

• The break offset mapping table consisting of bit
entries that map the start of all microprogramming
instructions in the encapsulated program

Figure 18-1 shows an example of a user procedure, the
program template for that procedure, and the resulting
encapsulated program.

J

"'C

c8
OJ
3
s:
Q)

:J
Q)

co
CD
3
CD
3.

00
I

W

r '
"TI

ciS"
c
;

--!!
~
3
"tI
CD
~

g
iil
3

r~

User Proced u re

Sample: Proc;
DCl SA SYMADDRESS('CURSOR1");

DCl A CHAR(lO) Static POS(1) External;

DCl B CHAR(S) Static POS(1) Init('ABCDEF");

DCl C FIXED(lS) Constant(O);

DCl PTRl PTR(SYP) Static Init(SA);

DCl PTR2 PTR(SPP) Static Init(ADDR(B));

DCl PTR3 PTR(SPP) Auto Init(ADDR(A));

RSlVSP (PTR::);
A=B;
DESCR (PTR1);
END SAMPLE;

I -

~ Compiler/PRM

-~ --y Program Template

ODT

ODV

A

B

C

PTRl

PTR2

PTR3

Instruction Stream

RSlVSP 4J0J0J

CPYBlAP 11 2 11) J

OES

C D

U R

E F

S o

1\

E
~
c: ..
~

DESCR 4

END II I I I~

>

Encapsulated Program

• EPA Header
Attributes
Offsets
Sizes

• Program Header
Attributes
Offsets
Sizes

• Internal Microprogramming Instructions
leading Program Constants

Constant value for C (hex 00(0)

Initial value for PTR3 (16-byte storage form)

IMPI Code
Automatic Initialization Code.

Move PTR3 in;tial value to auto space
Initialize PTR3 with address of A

RSL VSP expansion:

lA B15,PTRl
ST B15,PARMLlST(lCB)
MVBIP PARMLlST+6(18,ICB),X'00'
lHRI RH15,X'RSlVSP'
SVll PARMLlST(ICB), X'MI Router'

CPYBLAP expansion:
MVC A(6),B
MVBIP A+6(41,X'40'

OESCR expansion:
lA B15,PTRl
ST B15,PARMLlST(ICB)
MVBIP PARMLlST+6(18, ICB), X'00'
lHRI R15,X'DESCR'
SVL1 PARMLlST(ICB),X'MI Router'

End expansion (return linkage)

Trailing Program Constants (none)

• Static Initialization Code
Static Program Constants

Initial value for B (character ABCOEF)

r

Get address of OPl (PTR 1)

Save address in SV l parm list
Indicate no OP2-4 present
Get number for RSlVSP
Link to M I SV l router

Move B to left side of A
Pad right side of A

Get address of OPl (pTR 1)
Save address in SVl parm list
Indicate no OP2-4 present
Get number for DESCR
link to MI SVl router

Initial values for PTR 1 and PTR2 (16-byte storage forms)

IMPI Code
Entry point

Move initial values to the static space

Return linkage

• External Object list
External entry point
Program size
Name of the ex ternal data object A
Name for PTRl initial value (Cursor)

• Exception Directory (none)
• User Extendable Space (none)
• Materialization Definition Table - A copy of the original program template
• Object Mapping Table - Six entries (one per ODV entry) that locate each

object in the static space, auto space, or ICB

• Break Offset Mapping Table - Contains 1 bit for each 2 bytes of IMPI generated

In general, the translator performs the following
functions:

• Accepts the program template as input data

• Checks the input for proper syntax

• Generates a program system object

• Returns diagnostic information

• Returns a system pointer to the generated system
object

The translator initializes an internal communication area
and then invokes the following phases to perform the
encapsulation procedure:

• Initialization (#XINIT) that validates the program
template header and builds the materialization
definition template

• ODT scan (#XODTSC) that checks the ODT for
proper syntax and builds the external object list and
the exception directory

• Instruction stream scan (#XSCAN) that checks the
instruction stream for proper syntax and builds areas
used by other translator phases

• Register optimization (#XREGOPT) that assigns
addresses to registers, optimizes register
assignments, and builds the register assignment chain

• Data generation (#XDAT AG N) that builds the object
mapping table (OMT), initial constants for static and
automatic values, and a table for automatic storage
initialization

• Code generation (#XCODEGN) that builds the internal
microprogramming instruction (with optional
constants), the automatic initialization code, the static
initialization code, and the break offset mapping table

• Termination (#XTERM) that completes the program
header and completes the encapsulation process

Exceptions detected during encapsulation are processed
by the translator exception handler (#XEH).

18-4

Program Materialization

The basic attributes of an encapsulated program can be
materialized. If the program was designated as
observable when the program was encapsulated and the
materialization definition template has not been
destroyed, a copy of the program template can also be
materialized along with the basic attributes.

The Materialize Program instruction causes program
management module #PGMATPG to be invoked. This
module materializes the attributes and the materialization
definition template (if present) of the specified program
into the area specified by the user. The materialization
definition template contains a copy of the program
template that is used to create the program and the
OMT that is generated by the translator.

Program Destruction

An encapsulated program can be destroyed and
addressability to the program can be removed by
executing a Destroy Program instruction. This instruction
causes program management module #PGDESPG to be
invoked. This module verifies that the program is
eligible for destruction then deletes the addressability to
the program.

Program Observability

A program is observable if the encapsulated program
contains a materialization definition template. The Delete
Program Observability instruction causes program
management module #PGDELPO to be invoked. This
module deletes the materialization definition template
and designates the program as not observable.

J

OATA AREAS

Progam Template

The program template is the input to the translator. The
template consists of the following:

• The template header that contains the creation
attributes of the program and addressability to the
remainder of the template.

• The instruction stream that contains the operations to
be performed by the program. The instruction stream
contains the following information for each instruction
in the program:
- Instruction operation code
- Operation code extender field, if required

Instruction operand(s) if required

• The OOT that defines the amount and attributes of
the storage to be allocated for the objects referenced
in the program. The OOT contains the following
components:
- The OOV consisting of 4-byte entries. These

entries either completely describe the attributes of
an object or specify an offset into the OOT entry
string where a complete description of the object
can be found. Instruction operands that explicitly
reference an object contain index values into the
OOV.
The OOT entry string that completes the
descriptions of those objects that cannot be
completely described in an OOV entry.

• The break offset mapping table is an optional part of
the program template. The break offset mapping
table provides mapping of the System/38 instructions
to the high-level language source statements. The
translator does not use the break offset mapping
table.

• The symbol table is an optional part of the program
template. This table provides mapping of the objects
referenced in the program to the high-level language
source statements. The translator does not use the
symbol table.

Encapsulated Program

Figure 18-2 shows the basic structure of an
encapsulated program. The program consists of two,
three, or four segment groups. Addressability to the
program is to the first byte of the segment group
header. The segment group header provides
addressability to the remainder of the program, either
directly, or indirectly through the object specific header.
The segment groups can be either permanent or
temporary, and can exist in an access group.

The contents of the first segment group are as follows:

• The segment group header

• The EPA header

• The object specific header for the program

Program Management 18-5

• The internal microprogramming code that consist of
the following:

18-6

Leading program constants: Constants at the
beginning of the instruction stream used to
initialize automatic storage or reference objects
defined as constants in the ODT. These constants
start on a doubleword boundary, have a maximum
length of 65 535 bytes, and cannot cross a
segment boundary.
Automatic initialization code: Instructions
generated by the translator, used to initialize
automatic storage. The code starts on a halfword
boundary, has a maximum length of 65 535 bytes,
and cannot cross a segment boundary. The
automatic initialization code is included as part of
the entry point instructions if it fits within the first
segment of the program; otherwise, it is placed
following the static initialization code in another
segment.
Internal microprogramming instructions:
Instructions generated by the translator that
perform the functions of the System/38
instruction set. The code starts on a doubleword
boundary has a maximum length of 1024 K bytes
(including leading and trailing constants) and can
cross segment boundaries. This code, generated
for a particular System/38 instruction, can be
either inline or supervisor linkage to another
routine that performs the function.
Trailing program constants: Constants at the end
of the instructions that are used by expansions to
perform unique functions. This area is optional,
starts on a doubleword boundary if present, has a
maximum length of 4 K bytes, and cannot cross a
segment boundary.

• The static initialization code that consists of the
following:

Static program constants: Constants similar to
those in the instruction stream except that these
are used to initialize static storage.
Internal microprogramming instructions:
Instructions generated by the translator, used to
initialize static storage.

The static initialization code starts on a doubleword
boundary, has a maximum length of 65 535 bytes,
and cannot cross a segment boundary.

• The external object list that contains the following:
The external entry point of the program
Program length
Named external data objects
Initial value information for system and data
pointers

• The exception directory that defines the exceptions
that the program can handle and pointers to the
exception handlers for those exceptions.

The second segment group is present only if the
program is observable. This group contains the
following:

• The segment group header.

• The materialization definition template that is a copy
of the input program template.

• The OMT that consists of a variable-length vector of
6-byte entries. The number of entries correspond to
the number of ODV entries. Each OMT entry
provides a location mapping for the object defined by
an associated ODV entry.

The third segment group contains the following:

• The segment group header

• The break offset mapping table that provides
mapping to the System/38 instructions in the
program template to the microprogramming
instructions in the encapsulated program

The fourth segment contains the following:

• The segment group header

• The user space

Segment Group Header (YYSGHDR)

EPA Header (YYEPAHDR)

Object Specific Header (XPGMHDR)

• I nterna I Microprogram
Instruction Stream

• Automatic Initialization Code
(included if space available
in first segment)

Static Initialization Code

Automatic Initialization Code
(if no space avai lable
in first segment)

External Object (YYEOLEL T)

Exception Directory

Segment Group Header

Materialization Definition Template

Object Mapping Table

Segment Group Header

Break Offset Mapping Table

Segment Group Header

User Space

Figure 18-2. Encapsulated Program

STRUCTURE

The following is a list of the modules in program
management and the function that each module
performs. The list also shows how the module is
invoked.

#PGDELPO Delete Observability

Function: Deletes the materialization definition template
and designates the program as not observable.

How Invoked: Delete Program Observability instruction.

#PGDESPG Destroy Program

Function: Destroys addressability to the specified
program.

How Invoked: Destroy Program instruction .

#PGMATPG Materialize Program

Function: Materializes the selected attributes of the
specified program.

How Invoked: Materialize Program instruction.

#XCODEGN Code Generation

Function: Performs the code generation phase of a
create program operation.

How Invoked: From #XLATOR.

#XDATAGN Data Generation

Function: Performs the data generation phase of a
create program operation.

How Invoked: From #XLATOR.

Program Management 18-7

#XEH Translator Component-Specific
Exception Handler (CSEH)

Function: Processes exceptions detected in a create
program operation.

How Invoked: From #XLATOR.

#XINIT Initialization

Function: Performs common setup functions for a create
program operation.

How Invoked: From #XLATOR.

#XLATOR Translator

Function: Performs common setup operations for a
create program operation and invokes the translator
phases.

How Invoked: Create Program instruction.

#XODTSC ODT Scan

Function: Validates the object definition table.

How Invoked: From #XLATOR.

#XREGOPT Register Optimization

Function: Optimizes register assignments.

How Invoked: From #XLATOR.

#XSCAN Instruction Stream Scan

Function: Validates the input instruction stream.

How Invoked: From #XLATOR.

18-8

#XTERM Termination

Function: Completes a create program operation.

How Invoked: From #XLATOR.

L

Advanced Program-To-Program
Communications Station I/O Manager

INTRODUCTION

The link protocol characteristics for advanced
program-to-program communications (APPC) station
I/O manager may be either primary or secondary
synchronous data link control (SDLC) and are
determined when the network description (ND) object is
created.

Under APPC station management, logical unit
descriptions (LUDs) take on a new definition. APPC
LUDs do not represent devices; instead, an APPC LUD
represents a group of paths to another processor. A
group of these are attached to a CD and represent a set
of parallel, independent paths to another processor.
These paths are referred to as assignable sessions. This
means that an APPC LUD has no device-unique data.
The APPC LUD, however, contains SNA information.
When a program opens a file using APPC LUD, a
conversation on an available session is allocated to that
file. Other sessions on the same LUD are still available
to be used by other communications files under the
same or other processes.

Source/Sink Function

The APPC station 10M interfaces with the following:

• Machine services control point (MSCP)

• Primary/secondary SDLC 10M

• Error log

• Modify Controller Description instruction processor

• Modify Logical Unit Description instruction processor

• Request I/O instruction processor

The user of the APPC station 10M can execute Modify
Controller Description and Modify Logical Unit
Description instructions, and can make, break, and
manage SNA paths to an LU within the other unit. The
Request I/O instruction is used to communicate with
and control sessions within the LU. The APPC station
10M handles the logical paths for each LU to which the
System/38 is connected. An overview of the APPC
station 10M is shown in Figure 19-'.

The APPC station 10M is a VMC task that is created by
MSCP when a Modify Controller Description (vary-on)
instruction is issued against an APPC controller
description (CD) object. The task is created with one
input send/receive queue upon which the send/receive
messages are placed. The MSCP also provides the
APPC station 10M with the address of the input
send/receive queue of the line 10M that will be used
and with the address of a controller description block
for exception handling.

Advanced Program-To-Program Communications Station I/O Manager 19-1

Network

/
Description

Control Controller
Program Facility Description

~ Logical Unit
Description

~
APPC Machine Services
Station 10M Control Point

1
SNA Common Primary /Secondary
Modules Line 10M

!
OU Tasks

!
I/O Controller

Figure 19-1. APPC Station 10M Overview

19-2

The APPC station 10M uses a router module to invoke
the appropriate routine. The router gains control when \
the APPC station 10M task is created (CD vary-on time). ~
The router immediately executes a Receive Message
instruction from the APPC station send/receive queue
and waits for a send/receive message (SRM). Once an
SRM is received, the router performs an if/then/else
scan to invoke the routine that processes the requested
function. If the function is not identified in the
if/then/else scan, the SRM is checked to see if it is a
response. If the SRM is a response, the storage
occupied by the message is freed. (This message was
generated by the APPC station 10M, and no further
processing is required.) If the requested function is not
supported by the APPC Station 10M, the message is
returned with an unsupported status indicated. When
the SRM has been processed, the router executes a
Receive Message instruction from the APPC station 10M
send/receive queue, and the process is repeated.

Because there are unique function codes in the SRMs,
the APPC station 10M has one unique callable routine
per function and response. A routine is defined for a
response only if further processing is required upon the
return.

There are three types of APPC station 10M modules:

• System/38 instruction processor modules

• SNA support modules

• I/O support modules

The System/38 instruction processor modules provide
direct support of System/38 instructions. These
modules are defined as the code that recognizes the
requested function and initiates the processing of that
function. The SNA support modules are part of the
output and input data path. This support is on behalf of
the Request I/O instruction. The I/O support consists
of modules, including the SNA modules, that are in
direct support of the Request I/O instruction. See
Figure 19-2 for an overview of the APPC station 10M.

L

Control Program
Facility Process

Station APPC
IOMQ ueue

•
Secondary Primary/

Line 10M Queue

t Transmit
~ OUQueue

Transmit
OU Task

~
APPC
Station 10M

Primary / Secondary
Line 10M

I I

I/O Controlle~

Figure 19-2. APPC Station 10M Processing

Network
Description

Controller
Description

Logical Unit
Description

Network
Arch itectu re
Control Block

Link
Control Block

,t Receive
~ OUQueue

Receive
OU Task

Mode Table r-

i
Logical Unit
Name Table

Half Session
Control Block

l
Conversation

f4-Control Block

Advanced Program-To-Program Communications Station I/O Manager 19-3

System/38 Instruction Support

All source/sink modify instructions passed to the APPC
station 10M are in the form of messages (SRMs). These
messages are built by mapping the instructions to the
VMC format, which is performed by the source / sink
instruction processors.

All messages are routed to the appropriate modules by
the APPC 10M router. The instructions supported are
described in the following paragraphs.

Modify Controller Description (Vary-On/Off): This
instruction is used by device management to establish or
to break the communication path from the MSCP to the
physical unit in the other APPC system.

Modify Controller Description (Dial): This instruction is
used to allow a remote Physical Unit to be dialed
manually or automatically.

Modify Controller Description (Abandon Connection): This
instruction is used to disconnect the APPC station 10M
from another APPC system. The APPC station 10M
stays active, but the switched line is disconnected.

Modify Controller Description (Continue/Cancel): This
instruction is used to allow the reuse or to suspend the
reuse of the controller description after an unrecoverable
error.

Modify Logical Unit Description (Vary-On/Off): This
instruction is used to establish or to break the
communications path from the MSCP to the other APPC
logical unit.

19-4

Modify Logical Unit Description (Activate/De-activate):
This instruction is used to de-activate the LU-LU path
and is also used to activate the LU-LU path when it is
inactive.

The Modify Logical Unit Description (Activate)
instruction causes the MSCP to initiate the processing to
establish the SNA session resources.

The Modify Logical Unit Description (De-activate)
instruction causes all Request I/O instructions except
activate resource to be returned to the user return queue
with a feedback status indicating the returned condition.
The number of request descriptors processed is set in
the feedback record. The LU-LU path and LU-LU
session are placed in an inactive state with all data
being purged for all active conversations. When the
necessary synchronization is completed, the conversation
identifications are deallocated and the LUD state is set
to varied-on state. The active SNA sessions are
de-activated.

A Modify Logical Unit Description (activate) instruction is
converted to a resume command by the source/sink
instruction processor when the LU is inactive (reset).

Modify Logical Unit Description (Reset): This instruction
causes each I/O request, except the activate resource
request, to be returned to the user return queue with an
indicator that the request was not processed. The
number of request descriptors (RDs) processed is set in
the feedback record, and all available unsolicited data is
destroyed. The communications path is placed in an
inactive state that can be reactivated with a Modify
Logical Unit Description (activate) instruction.

Modify Logical Unit Description (Continue/Cancel): These
instructions are used to allow the reuse or to suspend
the reuse of the device after an unrecoverable error.

J

J

Request I/O: The process that issues conversation
requests must communicate with the APPC station 10M
by using the Request I/O instruction. The LU-LU
session is accessibje to the process by using the
Request I/O (normal) instruction with the source/sink
request object pointer addressing the appropriate LUD
and conversation.

The Request I/O instruction is used to perform the
normal functions on the LU-LU flow and to manage
conversations.

Request I/O (Activ3te Resource): This request
establishes a conversation for the process to
communicate with the remote system through an SNA
session. The APPC station 10M uses an available source
session to request the use of an available remote source
session, bids for the use of a target's session, and
defines the protocols to start a new source session.

When no session is available, the Request I/O is held
pending, provided Normal is the indicated I/O operation,
until a session becomes available or a Request I/O
(return activate resource) or Request I/O (de-activate
resource) is issued to force the Request I/O (activate
resource) to be returned.

When a session is allocated to the conversation, the
APPC station 10M returns a unique conversation
identifier to the process. The process uses the unique
conversation identifier for all I/O requests on that
conversation to the remote system.

Request I/O (Get Session): This request is used by the
process to obtain a new session after the previous'
session is deallocated from a conversation by a detach
request. This request must specify the conversation
identifier. The APPC station 10M then allocates a new
session to this conversation similar to the way the
Request I/O (activate resource) instruction allocates a
session to a conversation.

Request I/O (Conversation Reset): This request causes
each outstanding I/O request against the conversation
to be returned to the process return queue with an
indicator that the request was not processed. The
number of request descriptors processed is set in the
feedback record. The conversation is immediately
available for reuse; no Request I/O (activate request)
instruction is necessary.

Request I/O (De-activate Resource): This request
deallocates a conversation and makes a session (if
allocated to the conversation) available to another
process. Each I/O request is returned to the process
return queue with an indicator that the request was not
processed. The number of request descriptors
processed is set in the feedback record, and all
unsolicited data is destroyed.

Request I/O (Activate Resource Attach Manager): This
request allocates a path to the process for the FMH-5
attach requests received from the remote system. With
the completion of the Request I/O (activate resource
attach manager) instruction, the APPC station 10M
returns a unique conversation identifier to the process.
The process then issues a Request I/O (receive)
instruction using the conversation identifier. When an
FMH-5 attach request is received, the APPC station
10M allocates a new conversation, and uses the Request
I/O (receive) instruction to return the conversation
identifier of the new conversation to the process. The
process then uses the new conversation identifier to
communicate with the remote system.

Request I/O (Change Number of Sessions): This request
causes the total number of sessions, the number of
source sessions, and the number of remote source
sessions to be increased or decreased.

Request I/O (Return Activate Resources): This request
returns to the user's return queue all pending activate
resource request I/Os associated with the LUD specified
in the source/sink request, with feedback record status
indicating the condition.

Request I/O (RECFMS 00 Alert Operations): This
request is used to provide SSCP-PU flow alert support
when communicating with a 370-type host. Alerts are
not supported for connections to another System/38 or
APPC peer devices.

Request I/O (Return RECFMS 00 Alert REQIO): This
request returns to the user's return queue all RECFMS
00 Alert REQIOs associated with the CD specified in the
source / sink request.

Advanced Program-To-Program Communications Station I/O Manager 19-5

Request I/O (Default Operations): This request provides
compatibility with current releases of the
communications request 1/ Os. It will be used for APPC
functions such as send data, receive, wait on resource,
post on receipt, sync check point, prepare to receive and
detach.

Request I/O (Request Write): This request sends a
signal request to the remote program. This is performed
at the machine interface by encoding a request
descriptor as a regular or immediate transmit.

Request I/O (Send Response): This request causes the
SNA response to be sent. The response sent is either
positive or negative based on the setting of the sense
data indicator bit in the response header.

Request I/O (Test and Quiesce): This subcommand is
used to determine the existence of certain resources and
requests to defer the processing of further requests if
the specified resources or requests exist at the time the
subcommand is processed.

19-6

SNA Support

The line 10Ms support the data link control layer of
SNA. The path control and transmission control layers
are supported by the common SNA modules that are
invoked by the APPC station 10M. The following
features are supported:

• One Physical Unit type 2.1

• Multiple LUs, each with parallel sessions, all of which
are LU type 6.2

• Transmission subsystem profile 7

• Function manager profile 19

Path Control

Path control routes basic information units between the
remote LU's half-sessions and the System/38 local
LU's half-sessions so that the node/link configuration
of the network is transparent to the half-sessions. For
System/38 inbound data, path control uses information
in the format identification transmission header to
control delivery of the basic information unit to either
the specified supervisory services or a session for an LU
in a mode (including a clustered group of LUs).

Path control implements the logical unit description
(LUO) as the primary or secondary LU. This view of the
LUO as a port uncouples the end-user application from
a hard-coded physical address and allows the operating
system the option of late coupling of application and
physical address. Path control also treats all paths in an
LUO in a parallel fashion to provide flexibility in the
system's use of the logical links.

For outbound messages, path control constructs a path
information unit in the output buffer and sends an
output request to the SOLC 10M.

J

For an input path information unit received from the line
10M. path control ensures that the message unit is large
enough to contain the transmission header and
request/response header and that the transmission
header is a format identification type 2. The local
address. session index address assigner indicator. and
fields in the transmission header are used to determine
the appropriate session (SSCP-PU. SSCP-LU. LU-LU);
if the physical unit is active. the path information unit is
routed to the connection point manager.

Transmission Control

The transmission control element is a composite
protocol that provides control for a locally supported
half-session. Transmission control consists of the
following SNA components.

Common Session Control: The common session control
provides common support for handling flows to
half-sessions that are not active. Common session
control directs an appropriate activation request to
session control for further processing.

Data Flow Control: Data flow control controls the flow
of data and function manager data requests and
responses between half-sessions. Data flow control
handles only data flow control and function manager
data requests; network control and session control
requests do not flow through data flow control.

The data flow control also uses the request/ response
header implementation and data flow control state to
invoke various resource manager functions.

Resource Manager: This component manages the
session and conversation resources. The resource
manager initiates the automatic-disconnect function and
does preprocessing of the initiate program function.

Connection Point Manager: The connection point
manager is the control point within the LU for
distribution of request/response units. validating input
sequence numbers. maintaining the pacing. and
supporting other functions related to the half-session
flows.

For outbound messages. the session and data traffic
states are checked. Additional checking is performed
before the message is sent to path control:

• On the expedited flow. the connection point manager
forwards a request only if no response to a previously
expedited request is due from the remote system.

• On the normal flow. the size of the request/response
unit is validated.

• When secondary-to-primary pacing is supported for
a normal flow request, the connection point manager
determines when to set the pacing indicator in the
request header to indicate that a pacing response
must be returned. The connection point manager
then prevents the forwarding of additional outbound
normal requests until the pacing response is received.

• When primary-to-secondary pacing is supported. and
if a pacing request has been received. the connection
point manager sets the pacing indicator on in the
response header in a normal flow response to notify
another APPC system that additional normal flow
requests may be sent.

When session and data traffic states are not active.
the connection point manager forwards the permitted
inbound SNA activation requests (BIND) to common
session control. For other inbound messages. the
connection point manager checks the
request/ response header to determine if pacing or
expedited requests can be sent. When a pacing
response should be sent to another APPC system.
the size of the request/ response header is validated.
the sequence number in the transmission header is
compared with the expected value. and a flag is set
to indicate that a pacing response should be sent.

Session Control: Session control supports protocols
related to session and data traffic activation.
de-activation. and recovery. All session control requests
flow from the primary unit to the secondary unit. and all
responses flow from the secondary unit to the primary
unit.

For an outbound response. session control identifies the
response code and sets the appropriate indicators
according to whether the response is positive or
negative. The response is forwarded to path control.

Advanced Program-To-Program Communications Station I/O Manager 19-7

The APPC station 10M supports the following SNA
session control requests:

• BIND to establish a LU-LU session.

• UNBIND to break a LU-LU session.

Requests pertaining to LU-LU sessions are sent to the
end user via I/O requests for additional processing.

The APPC communications to a physical unit Type 4/5
performs the following for SNA session control requests
from the host.

• Activates a physical unit to establish an
SSCP-physical unit session.

• De-activates a physical unit to break an
SSCP-physical unit session.

• Activates a logical unit to establish an SSCP-LU
session.

• De-activates a logical unit to break an SSCP-LU
session.

I/O Support

Output

The output process is started by a request I/O queueing
function (#T2RQI0). This function receives all I/O
requests from the APPC station 10M queue and
enqueues the request on the correct conversation queue.
The requests are always enqueued last on this queue
and are categorized according to the I/O path on which
they are to be executed (for example, expedited or
normal transmit, expedited or normal receive,
receive-any). The queuing function uses the second
byte of the message key to categorize the requests.

Once the requests are enqueued, the scheduler
(#T2SCED) is invoked to process the output. The
scheduler consists of two parts: loop selection and
logical I/O path selection. Loop selection uses the
conversation control block as its basic unit. This module
multiplexes output for different SNA sessions into one
output request and ensures that each conversation has
equal opportunity for output.

19-8

The logical I/O path selection routine (#T2BSTO) gains
control from the loop selection module when a
conversation control block has I/O requests to be
processed. This module locates the next request to be
processed (for example'logical I/O path), enforcing the
path control rule that expedited processing is executed
before normal processing. The selection routine also
controls the building of the SNA frames.

The transmit path message pointers in the half-session
control block are examined and if the pointer is 0, the
appropriate 2-byte key is built and the conversation
queue is searched to find an I/O request. When an I/O
request is located, the output SNA frames and
associated buffer control lists are built, and control is
returned to the loop scheduler.

On return, the loop scheduler determines if it is time to
build an output request. If not, the loop scheduler
selects the next conversation control block and repeats
the selection sequence. If the output request is to be
built, the loop scheduler builds the request, puts the
buffer in a busy status, and sends the output request
SRM to the line 10M.

Output Posting

The APPC station 10M now waits for the output to
complete or for the input to arrive; output requests have
a higher priority than input requests. A transmit/receive
Request I/O instruction is first encoded as a transmit
Request I/O instruction; then, when all transmits are
complete, the instruction is encoded as a receive-only
Request I/O instruction and enqueued first on the
conversation queue. The output request/ response
process uses the half-session control block pointer to
locate the Request I/O instruction associated with the
frame. Then, using the indexes in that entry, it locates
the request descriptor (RD) associated with the SI\:A
frame and marks it processed.

J

At this point the Request I/O instruction can be in three
states:

• More transmit RDs to process

• All transmits complete, but receives yet to process

• All transmits and receives complete

The appropriate action is then taken by the APPC
station 10M to complete the output request/response
process. At this time, the buffer is marked not busy.

On return, the loop scheduler is invoked if more activity
is scheduled.

Input

The APPC station 10M does not explicitly request input
from the transmission line. The line 10M responds to
polls from the primary unit and, in effect, the APPC
station 10M has a read operation outstanding. The line
10M passes received information frames to the APPC
station 10M via an input message. This message
contains the location and number of valid information
frames stored in the input buffer. The input routine
processes the information frames one frame at a time
until all frames are processed. The input routine uses
the transmission header to locate the correct
half-session control block and then determines the
logical I/O path on which the frame is to be sent. If an
I/O request is not pending or if no buffer space is
available, the frame is considered unsolicited data, and
an event or a feedback record is returned to the user.
The user is informed of only the first frame of
unsolicited data; however, subsequent frames can cause
the same situation, depending on whether the I/O
request contained enough buffer space to contain the
frames.

Unsolicited data is held on the queue of the
conversation control block in the form of a message.
This message is built by the APPC station 10M and has
the same format as an input message. The message
also contains a data area for the frame, allowing the
APPC station 10M to free the input buffer of the line
10M even if a user buffer for the data does not exist.
Unsolicited data is processed as an input request by the
same modules that perform input processing. The
conversation control block contains indicators to inform
the loop scheduler to process the data.

Error Logging

The APPC station 10M does not keep statistics
concerning the station; statistics are kept by the line
10M. The APPC station 10M does log SNA path errors.
These errors are recorded using the format of the error
recording functions. The data contains portions of the
SNA frame, including the transmission and request
headers, the sense data, and the first 14 bytes of the
request/ response unit.

DATA AREAS

Refer to Source/Sink Data Areas in the VMC Overview
section of this manual for descriptions of source/sink
data areas. Also, refer to Data Areas in the Instruction
Processors section of this manual for descriptions of the
NO, CD, and LUD.

Network Architecture Control Block

The network architecture control block is a common
control area used to manage the systems network
architecture (SNA) portions of the APPC station. It
contains a subset of data in the CD and is always in
main storage when the APPC station task is executing.
The network architecture control block functions as a
directory to areas built in machine-wide storage. It also
functions as a collection point for vital converged station
characteristics, a control point for converged station
output, and a common location for unique SNA and
converged station work areas.

The network architecture control block is allocated from
machine-wide storage at vary-on CD time.

Advanced Program-To-Program Communications Station I/O Manager 19-9

Logical Unit Name Table

The logical unit name table is used as a collector for all
information necessary to operate the logical unit. This
entry represents the LU such that the local LU and the
remote LU can communicate through logical groupings
of conversations.

The logical unit name table is accessed externally
through the system pointer to the LUD and accessed
internally through the LUD I/O index contained in the
LUD. The LUD I/O index is set in the LUD and in the
conversation identifier at vary-on LUD time. The LUD
I/O index is a direct index into the logical unit name
table. The first logical unit name table entry represents
the physical unit. It is accessed with an index of O.

Each logical unit name table entry contains the logical
unit type 6.2 for purposes of routing to the proper SNA
modules and building the conversation identifier for LU
6.2.

The logical unit name table serves as an anchor for
groupings of SNA sessions and the conversations used
to access the SNA sessions. All contention winner
primary half-sessions have a preassigned local address
which is the destination address field in the LUD. The
storage for the mode table and conversations is
allocated in machine-wide storage. This is done at
vary-on LUD time for LU type 6.2.

The logical unit name table entries representing the
LUDs have one mode entry for each mode specified in
the LUD device-specific area. It also has a group of
conversations that consists of the total of the user
conversations specified for each mode, one attach
manager conversation for each mode and one
conversation for the SSCP-LU session. The SSCP-LU
conversation has a conversation index of O. The attach
manager conversations have indexes equal to the mode
index they are associated with.

19-10

Mode Table

The mode table is used to manage a group of
conversations and sessions that share a common set of
operational and functional characteristics such as, pacing
limits and maximum length of RU on LU-LU sessions.
Each mode table entry is associated with a definite LU
through the backward pointer of the logical unit name
table entry.

The mode entry serves as the major work area for the
conversation manager. The mode table contains a copy
of the bind image used to bind the primary
half-sessions and a copy of the negotiated bind
response. The negotiated bind response is used to
communicate the bind fields (security/access) to the
target conversations and to ensure the same
characteristics for all sessions existing under this mode
entry.

The conversations through which an application
accesses SNA sessions are associated with a particular
mode entry. These conversations are managed by the
conversation group pointer, conversation free list. and
change-number-of-sessions data. The conversation
group pointer serves as an access to the conversations
assigned to this mode entry. These conversations are
contiguous in machine-wide storage. They are a subset
of all conversations associated with this logical unit
name table. The conversation free list contains the
conversations that are deallocated. This list is initialized
at vary-on LUD time to all possible conversations for
this mode. When a conversation is allocated, the first
conversation on the list is used to build the conversation
identifier. When a conversation is deallocated, the
conversation is placed back in the conversation free list.
The change-number-of-sessions data is used to
manage the session and conversation
allocation / deallocation.

J

J

Half-Session Control Block

Half-session control blocks are used for routing transmit
and receive requests to the proper network addressable
unit and for routing input to the proper destination in the
System/38. Each half-session control block represents
an SNA session; supports the SNA transmission
subsystem; and contains fields that support path control
(routing and expedited/normal SNA paths). connection
point manager (pacing), and LU (I/O queueing and
session states).

Half-session control blocks are allocated and initialized
in machine-wide storage at vary-on LU D time for logical
unit type 6.2 LUDs.

Each half-session control block represents an SNA path
for data transmission. The half-session control blocks
are attached to a conversation by a Request I/O
(activate resource) instruction or detached by a Request
I/O (deactivate resource) instruction. The session may
be bound for a certain mode, in which case the
half-session control blocks are placed on a free list in
the mode table; otherwise, they are either on the
half-session control block available list or assigned to a
conversation.

The first two half-session control blocks are reserved
for boundary function support and internal APPC 10M
usage. The first supports an SSCP-physical unit session
that is activated and ready for I/O traffic at CD vary-on
time. The second half-session control block is used as
a temporary output holding area when the output
structure is already busy processing an output request.

Conversation Control Block

The conversation control block represents the
conversation resource viewed through a conversation
identifier. The maximum number of conversations is
specified as an attribute of the mode entry in the LU
type 6.2 LUD.

The conversation identifier is used to access the
conversation for all machine-interface operations, and
the backward pointer in the half-session control block is
used to access the conversation for all input operations.
When the conversation control block is not connected to
a half-session, it is an asynchronous conversation.
When a conversation is asynchronous, the half-session
control block pointer is O.

Conversation Identifier

The conversation identifier is used as the access to the
conversation and its resources. The conversation
identifier is located in the source/sink request variable
data area and is addressed through the Request I/O
instruction.

STRUCTURE

The following is a list of the APPC station 10M modules
and the function that each module performs. The list
also shows how the module is invoked.

#NA2BRP Build And Send BIND Response

Function: Builds and sends positive or negative BIND
response depending on sense code passed from LU
resource manager. (This procedure is called for LU type
6.2 only.)

How Invoked: Within this component.

#NA2CPLU Activate/De-activate LU Response
Processor

Function: Updates LU state for activate and de-activate
LU requests.

How Invoked: Within this component.

Advanced Program-To-Program Communications Station I/O Manager 19-11

#NA2CPMR Connection Point Manager Receiver

Function: Performs connection point management
checks (including pacing) for data received and routes
for further processing.

How Invoked: Within this component.

#NA2CPMS Connection Point Manager Sender

Function: Performs connection point management
checks for data to be transmitted.

How Invoked: Within this component.

#NA2CPPU Activate/De-activate PU Response
Processor

Function: Updates physical unit state for activate
physical unit and de-activate physical unit requests.

How Invoked: Within this component.

#NA2DFCR Data Flow Control Receive

Function: Ensures the data flow control protocol
enforcement of the LU type 6.2 receive.

How Invoked: Within this component.

#NA2DFCS Data Flow Control Send

Function: Ensures the data flow control protocol
enforcement of the LU type 6.2 send.

How Invoked: Within this component.

#NA2EROR SNA Error Processor

Function: Determines if negative response must be
returned, and if so, builds negative response unit and
routes for transmission.

How Invoked: Within this component.

19-12

#NA2PCR Path Control Receiver

Function: Validates transmission header data and routes
path information unit received to connection point
manager receive.

How Invoked: Within this component.

#NA2PCSD Path Control Sender

Function: Builds path information unit in output buffer
and indicates output is pending.

How Invoked: Within this component.

#NA2RFMS Request/Record Formatted
Maintenance Statistics

Function: Responds to REQMS request received, if
necessary, then builds record formatted maintenance
statistics request as a pseudo-I/O request for
transmission.

How Invoked: Within this component.

#NA2SCSD Session Control Sender

Function: Identifies session control response, updates
appropriate [finite state machine 1 states, and forwards
response to path control send.

How Invoked: Within this component.

#TP2SECS Station I/O Manager Router

Function: This module interrogates all incoming
send / receive messages and routes each to the
appropriate module.

How Invoked: Within this component.

#T2AHDR Attach Header Received

Function: Processes the attach header received on the
SNA session.

How Invoked: Within this component.

J

#lT2ALUR Activate LU Response Processor

Function: Interrogates Activate LU-received response
from MSCP to-establish SSCP-LU and LU-LU
half-session controls and initializes transmission and
response headers for SNA activate LU response.

How Invoked: Within this component.

#lT2APUR Activate PU Response Processor

Function: Interrogates activate physical unit-received
response from MSCP to establish output structure
storage and initializes transmission and response
headers for SNA activate physical unit response.

How Invoked: Within this component.

#lT2ASRM Asynchronous Resource Manager Request
I /0 Processor

Function: Processes activate resource request, get
session request I/Os from input queue and mode
entry's waiting queue, routes
change-number-of-sessions, and test and quiesce
request I/Os to #T2CNOS.

How Invoked: Within this component.

#lT2AVR2 Activate Resource Send/Receive Message
Processor

Function: Processes response to BIND received.

How Invoked: Within this component.

#lT2BDME BIND Determine Mode Entry

Function: Finds mode table entry associated with mode
name specified in the received BIND.

How Invoked: Within this component.

#lT2BDRI Build Dummy I/O Request

Function: Creates a pseudo-I/O request structure and
enqueues it to the dummy conversation control block for
transmission.

How Invoked: Within this component.

#lT2BIDRP BID Response Received Processor

Function: Processes the BID response received on a
session.

How Invoked: Within this component.

#lT2BIDRQ BID Request Received Processor

Function: Processes BID request received on a session.

How Invoked: Within this component.

#lT2BISRQ BIS Request Received Processor

Function: Processes the BIS request received on a
session.

How Invoked: Within this component.

#lT2BNDRQ BIND Request Received Processor

Function: Process the BIND request received for a
session.

How Invoked: Within this component.

#lT2BNDO BIND Request Scheduler

Function: Schedules the BIND request that is to be sent
to a session.

How Invoked: Within this component.

Advanced Program-To-Program Communications Station I/O Manager 19-13

#T2CMDS Route Secondary Station Commands

Function: Interrogates all non-I/O SRMs and response
SRMs and routes each to the appropriate routine.
Contains the following internal routines:

• #T2ACTS: Processes activate session SRM.

• #T2DACS: Processes de-activate session SRM.

• #T2VOFL: Processes vary-off LUD SRM.

• #T2VOFC: Processes vary-off CD SRM.

• #T2VONL: Processes vary-on LUD SRM.

• #T2CONT: Processes Request I/O (continue) SRM.

• #T2QUSC: Processes quiesce SRM.

• #T2RSET: Processes reset SRM.

• #T2RSUM: Processes resume SRM.

• #T2SRTO: Processes send/receive timeout SRM.

• #T2SPND: Processes suspend SRM.

How Invoked: Within this component.

#T2CNOS Change Number Of Sessions Processor

Function: Decodes the action field in the
change-number-of-sessions entry in the source/sink
description and performs the requested function.

How Invoked: Within this component.

#T2DFCF Data Flow Control Flag Interface
Processor

Function: Processes the flags set by #NA2DFCR to act
either as an interface to the conversation manager or to
process delayed data.

How Invoked: Within this component.

19-14

#T2DIS Process SNA Clean-up for SDLC
Disconnect Command Received

Function: Sends abnormal disconnect SRM to MSCP for
normal and abnormal disconnect SRMs. Sends
abnormal de-activate physical unit SRM to MSCP for
the second Set Normal Response Mode instruction.

How Invoked: Within this component.

#T2DLYD Process Delayed Data

Fun(;fion: Processes data delayed due to
between-bracket conditions.

How Invoked: Within this component.

#T2DOWN Report Station Failure Condition

Function: Marks a station failure condition and reports it
via a feedback record if a Request I/O instruction is
outstanding.

How Invoked: Within this component.

#T2DQBND Dequeue BIND Requests

Function: Dequeues and processes BIND requests on
the LU BIND queue for the associated mode name.

How Invoked: Within this component.

#T2DRSP Data Flow Control Response Sender

Function: Builds a response for output based on data in
the network address control block.

How Invoked: Within this component.

#T2DSAMT Materialize LUD Device-Specific Area

Function: Builds the materializable device-specific area
in the LUD.

How Invoked: Within this component.

J

#T2DSAV Verify LUD Device-Specific Area

Function: Verifies the user template for the LUD
device-specific area.

How Invoked: Within this component.

#T2ERLG Build Error Log Entry

Function: Builds an error log entry SRM and sends it to
be logged.

How Invoked: Within this component.

#T2ERPR Error Processor

Function: Builds and sends the UNBIND request into the
network architecture control block and sends it to
#NA2SCSD.

How Invoked: Within this component.

#T2FDBK Feedback I/O Request Result

Function: Builds the feedback record for an I/O request
feedback SRM.

How Invoked: Within this component.

#T2FRSES Free Session Received

Function: Processes a session-between-brackets
condition.

How Invoked: Within this component.

#T210S Process Inoperative State Request
Received from Secondary Line 10M

Function: Sets station offline and calls #T2DOWN to
notify the machine interface of a station failure.

How Invoked: Within this component.

#T2IPIU Input Path Information Unit Processor

Function: Routes received SNA path information unit for
validation, then moves data into receiving I/O request
buffer area.

How Invoked: Within this component.

#T20UTR Output Request Response Processor

Function: Matches output request response to I/O
Request and sends feedback record when processing is

complete.

How Invoked: Within this component.

#T20UTX Forward Output Request to Secondary
Line 10M

Function: Completes and sends output request SRM to
the secondary line 10M.

How Invoked: Within this component.

#T2PBAR PREBIND Activate Resource

Function: Performs resource manager function for the
modify LUD activate session and modify LUD continue
requests.

How Invoked: Within this component.

#T2PGAR Purge Activate Resource Request 1/ Os

Function: Returns all activate resource request 1/ Os.

How Invoked: Within this component.

#T2PGCB Purge Logical Unit Activity

Function: Sends feedback record with partially complete
or complete status for I/O request during Modify LUD
(reset) instruction processing.

How Invoked: Within this component.

Advanced Program-To- Program Communications Station I/O Manager 19-15

#T2RQIO I/O Request Processor

Function: Enqueues an I/O request with the correct flow
key to the proper half-session control block queue.

How Invoked: Within this component.

#T2RTFN Request Information Unit Router

Function: Examines the current function and function
stage fields and routes control to the proper response
module. This module also loads the request I/O flow
field pointer and passes control to the proper SNA
module.

How Invoked: Within this component.

#T2RTRRP Ready-To-Receive-Response Received

Function: Processes the ready-to-receive-response
received on a session.

How Invoked: Within this component.

1T2RTRRQ Ready-To-Receive-Request Received

Function: Process the ready-to-receive-request received
on a session.

How Invoked: Within this component.

#T2SCED Activity Scheduler

Function: Removes the conversation control blocks "from
the output scheduling queue and dispatches transmit
I/O requests.

How Invoked: Within this component.

#T2SEH APPC Station 10M Exception Handler

Function: Identifies the exceptions encountered in the
secondary station and returns them to the mainline
RECM in #TP2SECS when the exception is caused by
the user.

How Invoked: As fourth level exception handler.

19-16

#T2SSDEH APPC Station Source/Sink Data Exception
Handler

Function: Handles any sOJ-lrce/sink data exceptions that
occur in the APPC station 10M.

How Invoked: From the third level exception handler.

#T2SYRI Synchronous Request I/O Send/Receive
Message Processor

Function: Processes all synchronous request I/O
send/receive messages.

How Invoked: Within this component.

#T2UNBRQ UNBIND Request Received Or Sent

Function: Processes the end of a session (UNBIND
request sent or received) with respect to the resource
manager function.

How Invoked: Within this component.

Binary Synchronous Communications
I/O Manager

INTRODUCTION

The binary synchronous communications (BSC) I/O
manager (10M) activates, manages, and de-activates the
BSC telecommunications link and enforces BSC
protocol. One BSC 10M task exists for each BSC
telecommunications link.

The BSC 10M interfaces with the following:

• The machine services control point (MSCP)

• The error log

• An I/O controller

• Diagnostic component

• Modify Network Description instruction

• Modify Controller Description instruction

• Modify Logical Unit Description instruction

• Request I/O instruction

Binary Synchronous Communications I/O Manager 20-1

A SSC 10M task is created by the MSCP as a result of
a Modify Network Description (vary on) instruction. The
SSC 10M task is associated with one communications
I/O controller (lOC) line position and is shown in Figure
20-1 .

The SSC 10M is used to communicate with devices on a
switched point-to-point line, a nonswitched
point-to-point line, and a multipoint line as a tributary
station. Up to 32 sessions per line can be supported on
tributary.

Receive and
Transmit
OU Queues

10C

Line 10M
(SDLC primary)

Line 1
(SDLC primary)

Device

Figure 20-1. BSe IOM/IOe Line Position Relationships

20-2

Line 10M
(SSC)

Line 2
(SSC)

Device

J

Line 10M
(SDLC secondary)

Line 3
(SDLC secondary)

Device

J

Communication with external components is through a
send/receive message which the BSC 10M receives
through a single send/receive queue as shown in Figure
20-2. The message can be generated in three ways; by
an external VMC or diagnostic component, an
operational request element (ORE), or a Request I/O
instruction.

--w-
Bse Line 10M

VMC
Send/Receive
Message Router
(ENTRYRTN)

1
VMC Send/Receive
Message Handlers:

• IITPBRQIO-
Request I/O

• #TPBRQIC-
Request I/O
(continue)

• Send / Receive
Message
(See Figure 17-3)

Send / Receive
Transmit Modules

I

• L.!..r
Send / Receive
Message Transmit
Queue

~

BSC 10M Mainline
r---------------,
I I
I I
I Message Router I

~ (TPBBROUT) i ~
I I
I I

L-------J-------J
r------- -------,
I Link Scheduler I
I I
I and Protocol I
I I
I Management I
I I
I (TPBSCHED) I L ___ ------- ___ J

Process Link
in Data State
(RQIOQD)

Operation
Request Element
Modules

I I

• •
Operational Operational
Unit Transmit Unit Receive
Queue Queue

Figure 2~2. sse 10M Internal Structure

BSC
10M Queue

Operation
Request Element
Response Routine
(TPBRORE)

!
Hardware Error
Recovery
Procedures
(#TPBIOEX)

j
Process Link
in Communication
State
(CONTENTN)

Feedback Record
Transmit Modules

I

•
Response
Queue

Operation - Request Element
Response Handler
(TPB@OREE)

Binary Synchronous Communications I/O Manager 20-3

20-4

The message router receives the message and uses the
key field in the message to determine if the message is
generated from an external VMC or diagnostic
component, an ORE, or a Request I/O instruction.
Then, based on the function field of the message, the
message router invokes the appropriate message handler
for the messages generated by the Request I/O
instruction and the external VMC or diagnostic
components.

The messages generated by the Request I/O instruction
are routed to routine #TPBRQIO in module #TPBBIOM.
There the messages are placed on an internal queue for
later execution. Request I/O (continue) instruction
messages are routed to routine #TPBRQIC in module
#TPBBIOM. The messages generated by an external
VMC or diagnostic component are routed to a message
specific routine for processing. See Figure 20-3 for a
list of send/receive message (SRM) handling entry
points.

Routine I)
Function (Entry Point) -
Timer response #TPBTIME

Activate session #TPBASES

Reqio continue #TPBRQIC

De-activate session #TPBDSES

Reset session #TPBRSES

Vary off LUD #TPBVOFL

Discontact #TPBDCON

De-activate link #TPBVOFN

Initialize line #TPBENB

De-activate connect in #TPBDABL

Connect in #TPBESC

Vary on LUD #TPBVONL

Contact #TPBCON

Exchange identification #TPBXID

Connect out #TPBDIAL

Abandon connection #TPBABCN

Abandon connect out #TPBABO

Change network description retry sets #TPBNDRT

Activate link #TPBVONN

Machine interface timer message #TPBSOFT

Modify device specific #TPBMDSA

Modify unit specific #TPBMUSC

Modify line specific #TPBMLSC

Resume session #TPBRSUM

Quiesce session #TPBRSES

Suspend session #TPBSPND

On-line test request #TPBOLTA

Read data store #TPBRDSO

Internal trap #TPBTRPO

Diagnostic control #TPBDI

Cancel Invite #TPBSINV

Return message (illegal entry) #TPBBAOM

Figure 20-3. Send/Receive Message Handling Entry Points

The messages generated by the OREs are handled
I differently. The queue message router relies on the
~)utine that generated the ORE to provide the address

of the routine to process the ORE response. See Figure
20-4 for a list of ORE response handling entry points.

L

Routine
Function (Entry Point)

Perform BSC protocol analysis #TPBTXTR

Process response from sending end #TPBABRR
of transmission

Process ORE response for unsolicited #TPBUNSL
line bid

Process OREs for sending end of #TPBABRT
transmission

Perform BSC multi-point tributary #TPBOPMP
analysis

Process ORE response for reset #TPBBID1

Process set line #TPBVNN1
priority/reset/initialize ORE response

Finish vary off ND, destroy 10M task #TPBVOF1

Initialize I/O controller ORE response #TPBENB1

Process enable switch connection #TPBESC1
response

Process identification received #TPBXID1

Finish de-activate connect in #TPBDAB1

Contact (identification exchange) #TPBCON1
processing

Contact (identification exchange) #TPBCON2
processing

Process dial ORE response #TPBDL1

Finish abandon connect out #TPBAB01
processing

Finish abandon connection #TPBABC1

Finish vary off LUD #TPBVFL1

Online test responder bid for line #TPBOLT1

Figure 20-4 (Part 1 of 21. ORE Response Handling Entry

Points

Routine
Function (Entry Point)

Online test responder bid response #TPBOLT2

Online test requester bid response #TPBOLTD

Online test requester test request #TPBOLTE
response

Online test requester receive line bid #TPBOLTF

Online test requester line bid setup #TPBOLTG

Online test end of transmission #TPBOLTH
response before cleanup

Online test responds to text message #TPBOLTR
received

Online test sends the test message #TPBOLTS

Read data store ORE response #TPBRDS2'
handler

Internal trap ORE response handler #TPBTRP2'

Write poll list response handler #TPBWPL1'

Reset write poll list response handler #TPBWPL2

Diagnostic dial #TPBWERA

Diagnostic identification after dial #TPBEARS

Diagnostic end of transmission after #TPBE07
dial

Diagnostic enable switch connection #TPBECAA

Diagnostic identification after answer #TPBWCAN

Diagnostic read #TPBDRFT

Diagnostic read line bid #TPBDRUN

'OREs routed by direct call, not TPB@OREE value.

Figure 2()'4 (Part 2 of 21. ORE Response Handling Entry

Points

Binary Synchronous Communications I/O Manager 20-5

The link scheduler and protocol management routines
are invoked by the message router when the message
has been processed. The link scheduler and protocol
management routines build the OREs for transmitting
data or responses and sends the OREs to the
operational unit queues.

All BSC 10M and 10C detected errors are processed by
the error recovery routines.

DATA AREAS

Link Control Block

The link control block (BLKB) is the primary control
block for the BSC 10M. It is allocated in machine-wide
storage when the BSC 10M task is created and exists
until the task is destroyed. The BLKB contains the
following data and control areas:

• Feedback record parameter area

• Pointers to other objects and control areas

• Status flags and counters

• Link control characters (EBCDIC or ASCII)

• Work areas for the various BSC 10M routines

• Operation request elements (ORE)

• Program operation blocks (POB)

• Function operation blocks (FOB)

• Message operation blocks (MOB)

• Error and timer messages

20-6

Service Order Table

The service order table (BSOT) is the secondary control J
block for the BSC 10M. It is allocated in machine-wide
storage at vary-on LUD time. One SOT exists for each
LUD that is varied on. The BSOT contains information
related to one session such as the request I/O hold
queue used during active sessions, a copy of pertinent
attributes of the device from the logical unit description,
and the logical unit description session status. For
point-to-point connections, one LUD exists. For
multipoint connections, up to 32 LUDs can exist.

Controller Description Table

The controller description table is a control block
containing information related to the station controller
description. It contains a pointer to the controller
description, a pointer to the statistical data record, and
various status fields. For each controller description that
is varied on, there exists one controller description table.

Operation Request Element

The BSC 10M communicates with the 10C by way of a
send/receive message called an ORE. In the operation
block portion of the ORE the various commands are
specified, data areas are indicated, and status is
returned. Three types of operation blocks are used: The
function operation block, the program operation block,
and the message operation block.

The function operation block contains single commands
such as Initialize, Establish Switched Connection, and
Line Reset. as well as Write and Read commands.

The program operation block is used when multiple
function operation blocks are to be executed. The
program operation block references a chain of function
operation blocks, each of which contains a command to
be executed.

The message operation block is used during data
transfer to eliminate the chance of command time-outs
when two separate commands must be issued to the
10C for the execution of one I/O operation.

STRUCTURE

The following is a list of the modules in the BSC 10M
and the function that each module performs. This list
also shows how the module is invoked.

#/TPBBIOM BSC 10M Mainline Routines

Function: Activates, manages, and de-activates a BSC
telecommunication link. Performs all protocol
management and link level recovery. Handles the
scheduling and routing of I/O requests.

How Invoked: Other VMC components.

#/TPBDE BSC Online Test

Function: Provides diagnostic routines for BSC online
test request response read data store, and trap
functions. Allows the data link to be tested in a manner
transparent to the user application program.

How Invoked: Within this component.

#/TPBDI BSC Diagnostic Mode Control

Function: Provides control for line operation in
diagnostic mode. Allows link to perform online test,
trap, and read data store operations without an
application program to drive the link.

How Invoked: Within this component.

#/TPBELSE BSC Nonmainline Paths

Function: Performs auxiliary functions for the main BSC
10M module. These include routines to handle timer
requests, ASCII translation, and line abort, and sends all
messages to the MSCP.

How Invoked: Within this component.

IITPBERPL BSC Error Recovery Procedures
Processor

Function: Handles errors on the BSC link resulting from
horizontal microcode detected errors. Initiates recovery
procedures for I/O errors, OU errors, channel errors and
invalid commands. Updates the retry counters and logs
the error when the retry count has been exceeded.

How Invoked: Within this component.

IITPBLPER BSC Link Protocol Error Recovery
Procedures Processor

Function: Examines the contents of the receive buffer
and initiates a recovery action based on what control
sequence or text transmission was received. Updates
the retry counters and logs the error when the retry
count has been exceeded.

How Invoked: Within this component.

IITPBMODC BSC Modify Controller Description
Processor

Function: Processes messages sent to the main BSC
10M module as a result of a modify CD request.
Establishes contact with the remote station and handles
the abandon connection at the end of a session. Also
performs the dial operation for a switched connection.

How Invoked: Within this component.

IITPBMODL BSC Modify Logical Unit Description
Processor

Function: Processes messages sent to the main BSC
10M module as a result of a modify LUD request.
Handles the vary on/vary off of the LUD and assumes
responsibility for the activation, de-activation, and
resetting of a session.

How Invoked: Within this component.

Binary Synchronous Communications I/O Manager 20- 7

#TPBMODN Bse Modify Network Description
Processor

Function: Processes messages sent to the main Bse
10M module as a result of a modify ND request.
Handles the vary on/vary off of the ND and establishes
the connection.

How Invoked: Within this component.

#TPBMTPT Bse Multipoint Function Processor

Function: Handles poll/select responses and performs
poll list management

How Invoked: Within this component.

20-8

J

Channel I/O Manager

INTRODUCTION

The channel I/O manager (10M) is a component that
issues channel commands, logs channel hardware errors
and event handler errors, notifies IOMs of post-event
attention request and (for devices other than auxiliary
storage) participates in I/O error recovery. The channel
10M has two primary functions:

• Start/halt device function that issues start and halt
device channel commands, handles errors that occur
as a result of these commands, and informs the
IOMs of the success or failure of the operation.

• Channel event processing function that issues read
event and start channel commands, logs channel
hardware and event handler errors, notifies IOMs of
post-event-attention and error requests, and
operational unit (OU) task failures, and (for devices
other than auxiliary storage) participates in I/O error
recovery.

Start/Halt Device Function

The start/halt device function supports the start and halt
device commands issued by a device 10M. This support
includes related processing and error recovery.

As shown in Figure 21-1, the start/halt device function
consists of an 10M task, OU task, 10M queue, and an
OU queue. The address of the 10M queue (lOSROCSH)
is in the machine communications area (field
MCA4RSHO). The address of the OU queue
(OUSROCSH) is also in the machine communications
area (field MCA4RSHI). Both queues, plus the OU task
dispatching element (TDE). are in #RTTASKS. The OU
task base registers are stored in the TDE. The 10M task
used is the device 10M task of the device issuing the
start or halt device request. Because no events (except
error events for the channel event processing function)
are posted as a result of a start or halt device channel
command, the start/halt device function shares the
channel error function queue control table (OCT).

Channel I/O Manager 21-1

Start/Halt
10M Queue

ORE Return

Device
10M Task

Device
10M Queue

Call/Return
Interface

Start/Halt
Device 10M
(#LOSHIOM)

Start/Halt
ORE

Start/Halt
Channel
OU Task

Channel
OU Queue

Figure 21-1. Start/Halt Device Function

21-2

Command
End Event

OU#

Command

Return Code

Device QCT

Event Stack

The start/halt device function is initiated when a device
10M invokes module #LOSHIOM.

#LOSHIOM validates the input, and then builds and
sends a start/halt device operation request
element/function operation block (ORE/FOB) to the OU
queue. When the ORE/FOB is returned, #LOSHIOM
checks bytes 14 and 15 of the ORE for one of the
following indications:

• 4007

Meaning: The previous start/halt command did not
complete.

Action: #LOSHIOM retries the command. After four
unsuccessful retries, the operation is considered
uncorrectable; the return code is set to hex 02 and
control returns to the invoking 10M.

• 4010

Meaning: The start/halt request has timed out,
possibly due to a nonfunctioning channel.

Action: #LOSHIOM reinserts the OU number into the
ORE/FOB and retries the operation once. If another
time-out occurs for this request, the operation is
considered uncorrectable; the return code is set to
hex 04 and control returns to the invoking 10M.

• 40xx (where xx is neither 07 nor 10)

Meaning: Other operational program error.

Action: #LOSHIOM rebuilds the ORE/FOB and retries
the operation once. If another 40xx is returned on
this request, the operation is considered
uncorrectable; the return code is set to hex 08 and
control returns to the invoking 10M.

• 0100

Meaning: Command has been accepted and executed
(command end).

Action: #LOSHIOM determines if this was a halt
device command. If so, #LOSHIOM determines if an
OU task is waiting on the send/receive counter in the
OCT, and if so, #LOSHIOM posts a command end
event to the OCT event stack.

Before returning control to the callp.r, #LOSHIOM sets
flags in the return code area to indicate the status of the
operation. If an invalid OU number has been passed to
#LOSHIOM, the return code is set to hex 80 to indicate
invalid input data.

Channel Event Processing Function

Figure 21-2 shows an overview of the channel event
processing function. This function consists of three
TDEs, three queues, and a OCT. The TDEs are for the
10M task (called the resident-channel 10M task). an
error handling task (called the pageable-channel 10M
task), and an OU task. The queues are the
resident-channel 10M queue, the OU queue, and the
channel communications queue (for communications
among the resident channel 10M task, the pageable
channel 10M task and the machine services control
point).

The channel event processing function performs the
following:

• Receives messages at vary-on time from machine
services control point (MSCP). These messages
contain the OCT offset, OU number, channel priority,
and 10M queue address for the device being varied
on. This information is used to update internal tables
that are used during error event processing, FOB
timing, and OU task failure processing to identify
active OU numbers and locate the associated aCTs
and 10M queue addresses.

• Receives messages at vary-off time from the MSCP.
These messages are returned and any information
about the device is removed from the channel error
function internal tables.

• Sends read-event and start-channel commands to
the OU queue for processing by the OU task. These
commands cause the OU task to return a channel
hardware error event, a post event, or an event
handler error event.

Channel I/O Manager 21-3

• Responds to events as follows:
A start channel command is issued if an event
handler error with channel secondary error event is
received.
All events except channel secondary error events
are logged.
For errors on devices identified in the internal
tables, the appropriate IOM(s) is notified using a
channel error message.

• Provides an FOB time-out function to notify the
device 10M when a certain number of time intervals
have passed without the FOB being completed. The
device 10M indicates how many time intervals are
allowed by setting the FOB time limit field in the
OCT. The time interval is 30 seconds. The FOB
time-out function does not apply to storage
management devices. The device 10M is notified
through a channel-error message of any FOB that
has suspended activity.

• Checks a counter in the source/sink active device list
for OU tasks that have encountered a hardware
exception. In this case, the channel event processing
function sends a channel error message to the
associated device 10M queue. This message notifies
the device 10M of the OU task failure.

• Provides support for the Power Warning feature. A
power warning event is signaled and the resident
channel 10M sends a message to the SCA 10M for a
full uninterruptible power supply or to the
mini-uninterruptible power supply task for a
mini-un interruptible power supply.

21-4

Channel Error
Msg
Post Event
Msg

Device

MSCP

Vary On/Off
Message

Pageable
Channel
10M Task

Channel Events

Channel
Communications
Queue

Error Log
Msg

10M Queue

Device 10M
Error Log
Task

Figure 21-2. Channel Event Processing Function

Resident
Channel
10M Task

Start Channel
or Read Event
ORE

Channel
OU Task

Channel
10M Queue

Channel
OU Queue

Channel
Events

Channel I/O Manager 21-5

Resident Channel 10M

#LOCHRCI performs channel event processing for
functions that cannot wait for paging and to correct
errors that prevent paging. #LOC H RC I is resident in the
nucleus and does not use other functions that require
paging. #LOCHRCI performs the following functions:

• Removes events (except for event handler errors with
channel secondary error and power warning events)
from the channel event processing OCT event list and
passes the events using channel communication
messages to the pageable channel 10M.

• Processes event handler errors with channel
secondary errors. When these errors are received,
#LOCHRCI issues a start channel command to restart
the channel and enable paging to occur.

• Processes power warning post events by sending a
message to the SCA 10M for full UPS or the
basic-UPS task for basic-UPS.

Pageable Channel 10M

#LOCHPCI performs channel event processing for
functions that can or must wait for paging. #LOCHPCI
performs the following functions:

• Interfaces with synchronous MSCP routines at
vary-on and vary-off times.

• Responds to channel communications messages from
the resident channel 10M.

• Provides FOB timing.

• Checks for OU tasks with a microprogramming
exception.

At vary-on time, a message is received from the MSCP.
This message contains the OCT offset, OU number,
channel priority, and 10M queue address for the device
being varied on. #LOCHPCI stores this information in an
internal table and returns the message to the MSCP.
When a vary-off message is received from the MSCP,
#LOCHPCI removes the information corresponding to
the device being varied off from the internal table and
returns the message to the MSCP.

21-6

#LOCHPCI responds to channel communications
messages from the resident channel 10M as follows: J
• Determines the event type (post event attention, post

event error, channel hardware error, event handler
error, and un logged event counts).

• Determines if the OU number is known and if an
entry for the OU number exists in the internal table.
If an entry exists, #LOCHPCI sends a channel error
message to the device 10M queue.

• For adapter-wide post event errors, #LOCHPCI sends
a channel error message to each device 10M queue
for that channel priority.

• Logs the event and the time the event was received.

The device 10M requests FOB timing by setting the FOB
limit field in the OCT. At fixed time intervals (every 30
seconds), #LOCHPCI scans the FOBs being timed. If the
FOB has not completed, #LOCHPCI updates a counter in
the OCT. If the value in the counter exceeds the limit
set by the device 10M, #LOCHPCI sends a channel error
message to the device 10M.

If an OU task causes a microprogramming exception,
the exception handler executes a Receive Count
instruction to a counter in the source/sink active device
list. #LOCHPCI checks this counter every 30 seconds. If
a task is found waiting on the counter, the internal
device tables are checked for an 10M queue address
that matches the address of the task waiting on the
counter. If a match is found, the OU task and the
machine communication area are dumped to VLOG
through the channel event queue. Then a channel error
message is sent to the device 10M queue to inform the
device 10M of the OU task failure.

DATA AREAS

Channel Error Message

The channel 10M notifies the device laMs of channel
errors and FOB time-outs by sending a 40-byte
message to the device 10M queue. The message
consists of a 24-byte header (ZZSSVHDR), an 8-byte
time stamp, and a 4-byte channel event or an 8-byte
VLOG identification (ZZLOCHE1).

Channel Vary On/Off Message

The channel vary on/off message consists of a 24-byte
header (ZZSSVHDRI. a 6-byte 10M queue address, a
6-byte OCT address, a 1-byte au number, and a
1-byte channel priority (ZZLOCHVO).

STRUCTURE

The following is a list of the modules in the channel
10M and the function that each module performs. The
list also shows how the module is invoked.

#LOCHPCI Pageable Channel 10M

Function: Performs channel event processing for
functions that can or must wait for paging.

How Invoked: Within this component.

#LOCHRCI Resident Channel 10M

Function: Performs channel event processing for
functions that cannot wait for paging and for errors that
prevent paging. This module is part of the resident
nucleus.

How Invoked: Other VMC components.

#LOSHIOM Start/Halt Device

Function: Validates input, and then builds and sends a
start or halt device ORE/FOB to the au queue for
processing by the au task.

How Invoked: Other VMC components.

Channel I/O Manager 21-7

21-8

Error Log

INTRODUCTION

The error log provides a method for other VMC routines
to log errors and retrieve the logged entries. The
interface to the error log is a send / receive interface
through the error log input queue.

To log an error, the requesting VMC routines send a
logging request message to the error log input queue.
The logging request contains identification information, a
time stamp, and a pointer to the error data. The error
log component receives the message and files it in the
time sequence with all other entries that have the same
identification.

To retrieve logged entries, the requesting VMC module
sends an error log retrieval request message to the error
log input queue. The retrieval request message identifies
the entry to be retrieved and the area to receive the
entry, and the attributes of the search to be performed
by the error log component. The error log component
receives the request, locates the entry, and returns the
entry to the area specified by the requesting VMC
routine.

After the requester has received the first message in the
desired time frame, the requester requests the next
entry for this identifier (using flags in the message) and
continues until all messages have been returned or the
time stamp returned is out of the specified range.

The requester can request data from the error log using
ignore identifier mode. This allows the requester to
build a list of identifiers or detect any unexpected
entries.

Note: Time sequencing is lost in ignore identifier mode.

The error logging function (#MSERRLG) is an
asynchronous task used to log error messages. A
request to log a message is made by sending a special
message to a queue (pointed to by MCA4VELQ in the
machine communications area). The message points to
a standard log request, that in turn, points to requester
specified data.

DATA AREAS

Error Log Request

An overview of the error log request is shown in Figure
22-1. This is a message used to request that an entry
be inserted into or retrieved from the error log.

Header (ZZSSVHDR)

• Function
• Pointer to Reply Queue

Error Log (ZZMSELOG)

• Pointer to Data Area
• Time Stamp
• Lengths and Attributes
• Error and Device
• Identification

Figure 22-1. Error Log Request

Error Log 22-1

Error log

Figure 22-2 shows the layout of an error log entry and
the identification system. The figure shows the logical
form of the log; the format shown in the figure is not
necessarily the format in which the entries are passed to
or from the error log routine.

Identifier OU Exchange Time
Type Number Identification Stamp

Figure 22-2. Error Log Entry

STRUCTURE

The error log functions are performed by a single
module (#MSERRLG). The following shows the function
of this module. and how this module is invoked.

#MSERRlG Error Log

Function: Receives a request from the error log queue.
processes the request. and returns the request to the
appropriate response queue.

How Invoked: Other VMC components (primarily I/O
managers) to log errors. The error recording edit
program retrieves and formats the entries for display or
printing.

22-2

J

Sequence Record Error Error
Data

Number Type Class Code

J

Instruction Processors

INTRODUCTION

The instruction processors directly support the
System/38 source/sink instructions. There is an
instruction process for each of the 13 source/ sink
instructions. These processors operate against the
following primary object types:

• Logical Unit Descriptions (LUDs)

• Controller Descriptions (CDs)

• Network Descriptions (NDs)

• Request I/O Response Queue

The instruction processors are used to create,
materialize, modify, and destroy the preceding objects,
and to perform I/O operations. The instruction
processors are invoked through the supervisor
link-supervisor exit (SVL-SVX) linkages whenever the
corresponding System/38 instruction is executed. The
instruction processors execute synchronously with the
user procedure; however, the instruction processors can
cause asynchronous processing by invoking other VMC
tasks. Task switching from the instruction processors to
other VMC tasks (for example, the I/O managers) is
always initiated through a send-message operation.

Create Instruction Processors

The create instruction processors perform the create
ND, CD, and LUD functions. There is a separate
processor for each create instruction. These processors
create the specified object according to the input
template operand in the instruction.

Materialize Instruction Processors

The materialize instruction processors perform the
materialize NO, CD, and LUD functions. There is a
separate processor for each materialize instruction.
These processors materialize the specified object
according to the materialization option specified in the
option operand in the instruction. The materialization
option allows the entire object, individual elements
within the object, or groups of elements to be selected
for materialization.

Modify Instruction Processors

The modify instruction processors perform the modify
ND, CD, and LUD functions. There is a separate
processor for each modify instruction. These processors
modify the specified object according to the
specification in an input template and modification
operands in the instruction. The modification option
allows the entire object, individual elements within the
object, or groups of elements to be modified.

Destroy Instruction Processors

The destroy instruction processors perform the destroy
ND, CD, and LUD functions. There is a separate
processor for each destroy instruction. These processors
destroy the specified object and free the storage space
used by the object.

Request I/O Instruction Processor

The Request I/O instruction processor schedules the
requested work to the appropriate device 10M, to the
load / dump processor, or to machine service control
point (MSCP) by building a message to be sent to the
input queue of that component. The Request I/O
instruction is the only path from the machine interface
to the source/sink devices. The operation performed by
the 10M and the return of the feedback record are not
functions of the Request I/O instruction processor; the
function of the Request I/O instruction processor is
complete when the message is sent to the 10M
component. Figure 23-1 shows the relationships among
the Request I/O instruction processor and the 10M
components for a normal Request I/O instruction. For a
synchronous Request I/O instruction, the I/O is
completed before control is returned to the user
program.

Instruction Processors 23-1

l-

I.-. , Response
Queue

User P rogram

Request I/O
Instruction

t I/O Reques
Instruct
Process
(#SIRQI

ion
or
01)

Figure 23-1. Request I/O Overview

_ 23-L

J

Llr Device 10M f..-

10M Queue

Llr Load/Dump I-----J
Processor

Load/Dump
Queue

Llr MSCP

J
MSCP
Queue

DATA AREAS

Also refer to the Vertical Microcode Overview section of
this manual for additional descriptions of source/sink
data areas.

Logical Unit Description (ZZSILUOB)

The LU D describes a physical I/O device attached to
the system. The LUD contains:

• Segment group header

• Encapsulated program architecture (EPA) header

• Type definition data

• Pointers and internal data

• Physical definition data

• Session information

• Load/dump information

• Status indicators

• Internal VMC work area

• Specific characteristics

• Retry value sets

• Error threshold sets

• Device-specific contents

Controller Description (ZZSICDOB)

The CD represents a physical controller. The CD also
links the ND and the LUD. The CD contains the
following :

• Segment group header

• EPA header

• Type definition data

• Pointers and internal data

• Physical definition data

• Dial digits

• Station control information

• Activate physical unit information

• Selected mode data

• Status indicators

• ND candidate list

• Specific characteristics

• Transmit identification data area

• Unit-specific contents

Instruction Processors 23-3

Network Description (ZZSINDOB)

The NO describes an I/O port and teleprocessing line
for remotely attached I/O devices. The NO contains the
following:

• Segment group header

• EPA header

• Type definition data

• Pointers and internal data

• Communications initialization information

• Exchange identification

• Physical definition data

• Communications subsystem parameter data

• Line definition data

• Selectable mode data

• Status indicators

• CO eligibility list

• Specific characteristics

• Retry value sets

• Line-specific contents

23-4

OU/ND Table (ZZSSOUND)

The OU/NO table is used to keep track of how many
NOs exist and which NOs are varied on or in diagnostic
state. The OU/NO table contains the following:

• Send/receive count for serialization

• Number of OU/NO entries (12)

For each OU number, the OU/NO table contains the
following:

• OU number

• Flag bits indicating if first or last OU number within a
group

• Count of NOs in existence (maximum of 10)

• Number of NOs varied on (maximum of 1)

• Number of NOs in diagnostic state (maximum of 1)

• Pointer to varied-on NO

• Pointer to NO in diagnostic state

J

STRUCTURE

The following is a list of the source/sink instruction
processor modules and the function that each module
performs. The list also shows how the module is
invoked.

#SICDCR1 Create CD

Function: Validates the input template and creates a
controller description according to the template.

How Invoked: Create Controller Description instruction.

#SICDDV1 Destroy CD

Function: Destroys the specified controller description.

How Invoked: Destroy Controller Description instruction.

#SICDMD1 Modify CD

Function: Modifies the specified controller description
element(s) according to the modification options and
input template operands.

How Invoked: Modify Controller Description instruction.

#SICDMT1 Materialize CD

Function: Materializes the specified controller description
element(s) according to the materialization options
operands.

How Invoked: Materialize Controller Description
instruction.

#SICDRT1 Range Table for CD

Function: Performs range table checking on various
elements of the creation or modification input template
operands.

How Invoked: Within this component.

#SILUCR1 Create LUD

Function: Validates the input template and creates a
logical unit description according to the template.

How Invoked: Create Logical Unit Description instruction.

#SILUDV1 Destroy LUD

Function: Destroys the specified logical unit description.

How Invoked: Destroy Logical Unit Description
instruction.

#SILUMD1 Modify LUD

Function: Modifies the specified logical unit description
according to the modification options and input template
operands.

How Invoked: Modify Logical Unit Description
instruction.

#SILUMT1 Materialize LUD

Function: Materializes the specified logical unit
description element(s) according to the materialization
options operands.

How Invoked: Materialize Logical Unit Description
instruction.

#SILURT1 Range Table for LUD

Function: Performs range table checking on various
elements of the creation or modification input template
operands.

How Invoked: Within this component.

#SINDCR1 Create ND

Function: Validates the input template and creates a
network description according to the template.

How Invoked: Modify Network Description instruction.

Instruction Processors 23-5

#SINDDY1 Destroy NO

Function: Destroys the specified network description.

How Invoked: Destroy Network Description instruction.

#SINDMD1 Modify NO

Function: Modifies the specified network description
element(s) according to the modification options and
input template operands.

How Invoked: Modify Network Description instruction.

#SINDMT1 Materialize NO

Function: Materializes the specified network description
element(s) according to the materialization options
operands.

How Invoked: Materialize Network Description
instruction.

#SINDRT1 Range Table for NO

Function: Performs range table checking on various
elements of the creation or modification input template
operands.

How Invoked: Within this component.

#SIRQI01 Request I/O Processor

Function: Processes the Request I/O instruction and
builds a message that is placed in the queue of the
appropriate VMC component.

How Invoked: Request I/O instruction.

23-6

#SIRQSYN Synchronous Request I/O Processor

Function: Processes a Synchronous Request I/O
instruction. When 1/ o. is complete. control is returned
to the user program. No feedback record remains to be
dequeued.

How Invoked: Within this component.

#SSINOUT Initialize aU/NO Table

Function: Creates and initializes the aU/NO table.

How Invoked: Other VMC component.

Synchronous Data link Control Primary L and Secondary I/O Managers

INTRODUCTioN

An SDLC I/O manager (10M) activates. manages. and
de-actIvates the telecommunications channel and
enforces the synchronous data link control (SDLC)
protocol. A SDLC primary 10M task is created by the
machine services control point (MSCP) as a result of a
Modify Network Description (vary on) instruction.
System /38 provides separate tasks for primary and
secondary SDLC roles .

Receive and
Transmit
OU Queues

10C

Line 10M
(SDLC primary)

Line 1
(SDLC primary)

Device

Line 10M
(BSC)

Line 2
(BSC)

Device

Figure 24-1. Line IOM/IOe Line Position Relationships

An SDLC 10M is used for communications to devices on
a switched point-to-point line. a nonswitched
multi-point line. or a nonswitched point-to-point line
and interfaces with the following :

• Machine services control point (MSCP)

• Channel 10M

• Modify Network Description instruction processor

• Modify Controller Description instruction processor

• Transmit and receive operational unit (OU) tasks

The user of the SDLC 10M can execute Modify
Controller Description and Modify Network Description
instructions to establish the SDLC data link with the
remote end. The SDLC 10M ensures that the SNA
frames reach their destination on the SDLC data link.
One SDLC secondary 10M is required for each
telecommunications line to which System/38 is
connected.

• Station 10Ms

• The error log

• An I/O controller (lOC)

A SDLC 10M task is associated with one 10C line
position as shown in Figure 24-1. The 10C
simultaneously supports four teleprocessing lines and
interfaces with the four corresponding line 10M tasks.

Line 10M
(SDLC secondary)

Line 10M

Line 3
(SDLC secondary) Line 4

Device Device

Synchronous Data Link Control Primary and Secondary I/O Managers 24-1

The SDLC 10M is a VMC task created by MSCP when a
Modify Network Description (vary on) instruction is
issued against an SDLC network description (ND) object.
The task is created with one input queue upon which
the send/receive messages and the operational
response elements (ORE) are placed. The MSCP
provides the SDLC 10M with transmit and receive
operational unit tasks to communicate with the
communications input/ output controller (lOC). The
MSCP also invokes the communications 10C wake up
module (if necessary) to initialize the 10C.

System/38 Instruction Support

All source/sink modify instructions passed to the SDLC
10Ms are in the form of messages (SRMs). These
messages are built by mapping the instructions to the
VMC format. This step is performed by the source/sink
instruction processors.

All messages are routed to the appropriate modules by
the SDLC 10M routers. The instructions supported are
described in the following paragraphs.

Modify Network Description (Vary-On/Off): These
instructions establish or break the interface between the
secondary SDLC 10M and the communications I/O
controller (lOC)' and initialize or reset the 10C for the
telecommunications line.

Modify Network Description (Manual Answer/Abandon
Call): This instruction synchronizes the hardware
adapter signals with the operator actions for completing
or discontinuing a switched manual answer connection.

24-2

Modify Network Description (Continue/Cancel): This
instruction is used to allow the reuse or to suspend the
reuse of the network description after a nonrecoverable
error.

Modify Network Description (Start Data): This instruction
indicates that the operator has manually placed the
coupler in data mode. and the line is now ready for data
communications.

Modify Controller Description (Vary-On/Off): These
instructions are used by device management to establish
or to break the communications path to the system
services control point (SSCP) in the primary unit or
station represented by the controller description from
the physical unit (PU) in the secondary System/38.

Modify Controller Description (Dial): This instruction
allows a station to be dialed manually or automatically.

Modify Controller Description (Abandon Connection): This
instruction disconnects the secondary SDLC 10M from a
remote station. The secondary SDLC 10M stays active;
but the switched line is disconnected.

Modify Controller Description (Continue/Cancel): These
instructions allow the reuse or suspend the reuse of the
device after an unrecoverable error.

J

Communication to a SOLC 10M is through a
send/receive message, which the SOLC 10M receives
through a single send/receive queue as shown in Figure
24-2. The message can be generated by either another
VMC function or an operation request element (ORE).

SOLC

The queue message router receives the message and
uses the key field in the message to determine if the
message is a VMC message or an ORE. Then, based on
the function field, the queue message router invokes the
appropriate message or ORE handler as shown in Figure
24-3 for a message, and Figure 24-4 for an ORE.

Ll.r- 10M Queue

MSCP and Station
10M Message
Handlers

f

Figure 24-2. SOLe 10M Processing

Queue
Message
Router

! !
Output
Scheduler

Transmit
Modules

I +
• I

Transmit
OU Queue

Receive
OU Queue

ORE Response
Handlers

f

Synchronous Data Link Control Primary and Secondary I/O Managers 24-3

SDLC
SDLC Primary Secondary

Function Requester 10M Module 10M Modules J
Activate link MSCP #TPLALKO #TP2ALKO

De-activate link MSCP #TPLDAKO #TPLDAKO

Request exchange MSCP #TPLXIDO #TP2RSID
identification

Contact MSCP #TPLCNTO #TP2CNT

Discontact MSCP #TPLDCTO #TP2DCT

Initialize line MSCP #TPLlNLN #TPLlNLN

Activate connect-in MSCP #TPLACIN #TPLACIN

De-activate MSCP #TPLDCIN #TPLDCIN
connect-in

Connect-out MSCP #TPLCOUT #TPLCOUT

Abandon MSCP #TPLACOT #TPLACOT
connect-out

Abandon connection MSCP #TPLABCN #TPLABCN

Output request Station 10M #TPLQRTO #TP2SDLC

Execute test Diagnostic #TPLEXTO N/A

Read data store Diagnostic #TPLRDSO #TP2RDSO

Internal trap Diagnostic #TPLTRPO #TP2TRPO

Figure 24-3. Message Function Handlers

24-4

SOLC
SOLC Primary Secondary

Function Key Field Type Command 10M Module 10M Modules

POB Write data #TPLORTO #TP2SDLC

FOB Set line priorities #TPLSLPR #TPLSLPR

FOB Initialize #TPLALK1 #TP2ALK1

FOB Line reset #TPLRSTR #TPLRSTR

FOB Enable switched #TPLESCR #TPLESCR
connection

FOB Auto dial #TPLAUDL #TPLAUDL

FOB Read sense #TPLIOL 1 #TPLIOL 1

FOB Write data #TPLWDNS #TP2SDLC

XID FOB Read data #TPLXID2 #TP2XIDR

SNRM FOB Read data #TPLCNT2 #TP2SNRM

DISC FOB Read data #TPLDCT2 #TP2DM

Information/ FOB Read data #TPLISIN #TP2ISIN
Supervisory frame

Test FOB Read data #TPLTST2 #TP2TSTR

FOB Read data store #TPLRDS2 #TP2RDS2

FOB Set monitor #TPLTRP2 #TP2TRP2
mode

lThese modules are invoked from #TPRRDDA.

Figure 24-4. ORE Function Handlers

Synchronous Data Link Control Primary and Secondary I/O Managers 24-5

The output scheduler shown in Figure 24-2 is invoked
by the message handlers. The output scheduler scans
the SOT until all entries have been checked. When an
entry with a pending status is found, the output
scheduler invokes the appropriate transmit module for
the specified status as shown in Figure 24-5.

The error recovery procedure modules in the SDLC 10M
centralize recovery procedures for line IOM- and
IOC-detected errors. The error recovery procedure
modules are invoked by the ORE response handler when
an error is detected. The queue message router also
detects unrecoverable errors and invokes the appropriate
error recovery procedure module.

SOLC Primary
Status/Condition 10M Module

XID Pending #TPLXID1

SNRM Pending #TPLCNT1

DISC Pending #TPLDCT1

Output Pending #TPLSCED

Test Pending #TPLTST1

Confirmation due or #TPLSCED
contacted without
output pending

Skip - --

Response Pending -- -

Read Data Store #TPLRDS1
Pending

Internal Trap and #TPLTRP1
Set Monitor Mode
Pending

Figure 24·5. Transmit Modules

24-6

Connect

Before any line on a communications IOC is activated,
the IOC control storage must be initialized by an MSCP
function of VMC. Following this function, the MSCP
creates a SDLC 10M task and a queue. The SDLC 10M
task is entered at the queue message router and
executes a receive message instruction to the queue.
The SDLC 10M then awaits an activate link message to
be sent by the MSCP.

When the activate link message is received, the queue
message router invokes the activate link handler to
handle the message. For SDLC primary the backward
object chain of the network description (ND) is used to
determine the number of stations and the largest
required input buffer size. The activate link handler then
acquires machine-wide storage, initializes the service
order tables, input buffers, and FOBs. Next, an ORE is
built to send the set line priorities command. The line
priority field is passed by the MSCP as a parameter in
the message. Control is then returned to the queue
message router, which again executes a receive
message instruction. When the set line priorities ORE is
returned, it is routed to #TPLSLPR, which either builds
and sends a line reset ORE for a switched line or
invokes #TPLlNLN (initialize line) for a nonswitched line.

Initialize line builds an initialize ORE based on
parameters in the network description. After the
initialize ORE has been returned, it is routed to
#TPLALK 1 which sets the status field of the activate link
message and executes a send message instruction to
return the message to the response queue.

For nonswitched lines, the line activation operation is
completed. For switched lines, the MSCP sends either
an activate connect-in message for autoanswer, manual
answer, and manual dial, or an activate connect-out
message for autodial.

When the activate connect-in message is received, the

queue message router invokes #TPLACIN, which build~
and sends an enable switch connection ORE. The
response to the enable switched connection ORE is
processed by module #TPLESCR, which sets the status
in the activate connect-in message and returns it to the
MSCP.

When a connect-out message is received, #TPLCOUT is
invoked to build and send an autodial ORE. The
response to the autodial ORE is processed by
#TPLAUDL, which returns the connect-out message.

Because the line 10M always returns to the receive
message state of the queue message router, the MSCP
can interrupt previous switched-connection operations.
To halt a connect-out (autodial) operation, the MSCP
sends an abandon connect-out message. This message
is processed by #TPLACOT, which builds and sends a
line reset ORE to the receive OU queue. This command
resets the IOC and associated hardware and causes the
autodial ORE to be returned. An enable switched
connection (activate connect-in) is interrupted by a
de-activate connect-in from the MSCP. This message
is processed by #TPLDCIN. In this case the line reset
ORE is sent to the transmit OU queue. When the enable
switched connection or autodial ORE is returned, the
queue message router determines that a line reset was
issued and does not invoke #TPLESCR or #TPLAUDL.

XID for SDLC primary

Once the connection is established, whether the line is
switched or nonswitched, the MSCP directs the initial
communication with the station using the request
exchange station identification message. This message
is routed to #TPLXIDO which, for nonswitched lines,
locates the appropriate service order table entry for the
text in the message. For a switched connection, the first
SOT entry is used because the identity of the station
has not been established. An XID control area is
established and the XID frame is transmitted within
it.

The request exchange identification message is returned

to the MSCP, the SOT entry status is set to exchange
identification pending, and the output scheduler is
invoked. The output scheduler searches the SOT entries
for pending output. Because exchange identification
pending is set for an entry, #TPLXIDl is invoked. This
module builds the Read Data command in the
appropriate ORE in the link control block (LKB). It also
sets exchange identification sent and the station address
in the ORE key. An input buffer is located by searching
the buffer control list for an entry with free status.
Finally, the read data ORE is sent to the receive OU
queue (the IOC microcode maintains the read pending
until a poll bit is sent by a write data ORE).

Next, a write data ORE is built using the same ORE key
function as the read data. The FOB data address is that
of the transmit XID in the XID control area of the SOT
entry. The first byte is set to the appropriate SDLC
address (specific address for nonswitched, all stations
for switched). the second byte is set to the SDLC
nonsequenced command exchange identification with
the poll bit set.

The write data ORE is then sent to the transmit OU
queue. The ORE key is set with a function and station
address so that error recovery can properly associate the
station and the error when the ORE is returned.

Finally, the transmit busy and receive busy LKB status
bits are set. Control is returned to the output scheduler,
which finds transmit and receive busy set, discontinues
the search of the SOT, and returns control to the queue
message router. When the write data ORE is returned,
the queue message router invokes #TPLWDNS, which
handles write data ORE responses for non sequenced or
supervisory type SDLC commands.

After the basic/functional status (BSTAT /FSTAT)
indicators are checked for proper completion, transmit
busy is reset and control is returned to the queue
message router. When the read data ORE is received,
the queue message router uses the FOB command and
the ORE key function to invoke #TPLXID2, which

handles the read data ORE and exchange identification
response.

Synchronous Data Link Control Primary and Secondary I/O Managers 24-7

If a disconnect mode response is received or if the
BSTAT /FSTAT indicates an idle state detect time-out,
the SOT entry is checked to see if delayed contact is
allowed for this station. (Delayed contact allows the
controller description to be varied on before the station
is physically powered on.) If delayed contact is allowed,
a wait time-out is issued for approximately 60 seconds,
and the skip bit is turned on.

When the wait time-out message (issued when the
time-out expires) is received from the response queue,
it is directed to #TPLDEL Y. This module searches the
entire SOT for entries that are in delayed contact status
and, upon finding such an entry, resets the skip bit so
the exchange identification will be attempted again when
the scheduler next services that station. Inactive
controllers in delayed contact status are inserted into the
polling list one at a time so it requires a complete cycle
through the polling list for each (' N') controller in
delayed contact status when the timer expires. This
ensures that no active controllers will have their
response time impacted by more than one idle state
time value in anyone polling cycle through the SOT
table and that no inactive controller has to wait longer
than one delayed contact time interval plus ('N') polling
cycles to be allowed back on the line. The timer is
started when all inactive controllers specified as delayed
contact have been retried.

If the BSTAT /FSTAT indicates error-free completion, a
request contact message is sent to the MSCP. Error­
free completion consists of validation of the ORE key
station address, validation of the SDLC address in the
buffer (nonswitchedl, and assurance that the station
response was a valid exchange. The text of this
message contains the exchange identification
information received from the station.

The SOT entry status is set to skip, the LKB receive
busy status is reset, and control is returned to the queue
message router. When the request contact message is
returned by the MSCP, the response bit is set in the
VMC header function field. This bit indicates to the
queue message router that the module #TPLSRMR is to
be invoked. #TPLSRMR handles the returned message
and, in the case of request contact, inoperative, error
log, and input request, frees the machine-wide storage
containing the message.

24-8

XID3 Format Checking

When an XID3 is received, a request contact VMC SRM
with error status is. sent to the MSCP for any of the
following:

• The received XID is too short for a valid XID.

• An error control vector is found in the received XI D.

• The received XID does not specify a negotiable SDLC
role and contains values unacceptable to the SDLC
10M. An XID3 with error appended is transmitted to
notify the other end of the unacceptable value.

A result field is updated in the XCA to inform the
calling program of the format check results.

The receipt of any control vector in the XID other
than a network name control vector or an error
control vector causes the search for an error control
vector to be discontinued.

J

J

Contact for SOLC Primary

The operation for contact is the same as that described
under Connect with the following exceptions:

• The following modules are substituted:

Normal Flow Contact

#TPLXIDO #TPLCNTO

#TPLXID1 #TPLCNT1

#TPLXID2 #TPLCNT2

• #TPLCNT2 does not set the skip bit in the SOT entry
status.

• A request contact is not sent to the MSCP.

• An SDLC nonsequence command Set Normal
Response Mode command is sent and a
nonsequenced acknowledgment is received.

Contact for SOLC Secondary

When a read ORE returns a SNRM command,
#TP2SNRM is called to place the station (SOT entry) in
normal response mode. If the station is already in
normal response mode and an intervening S- or I-frame
is received, a second SNRM VMC SRM is sent to the
SIOM. If a station is contacted, it is reset and 'contact
pending' is set.

In the SOT entry, Ns and Nr counts are zeroed out and
a frame reject state indicator is cleared. The response
transmit~ed is determined by the following:

• If disconnect is pending, an SDLC RD is sent.

• If contact is pending, an SDLC DM is sent.

• If the XCA does not identify the other end to be a
Type 2.1 node, an SDLC UA response is sent. In this
case, a request contact VMC SRM is not sent to the
MSCP. When the host sends an activate physical
unit SNA request, common SNA path control is
invoked to send a request activate physical unit SRM
to the MSCP. If the request activate physical unit
response is positive, it is sent to the SIOM. If the
response is negative, common SNA support is
invoked to transmit a negative activate physical unit
response.

• If the XCA identifies a Type 2.1 node and the SIOM
is contacted, an SDLC UA is sent.

• If the XCA identifies a Type 2.1 node and the SIOM
is not contacted, an SDLC DM is sent and a request
contact SRM is sent to the MSCP. The text of the
message contains the last XID received and 'contact
pending' is set.

Oiscontact

The operation for discontact is the same as that
described under Connect with the following exceptions:

• The following modules are substituted:

Normal Flow Oiscontact

#TPLXI DO #TPLDCTO

#TPLXID1 #TPLDCT1

#TPLXID2 #TPLDCT2

• A request contact is not sent to the MSCP.

• The SDLC nonsequenced Disconnect command is
sent.

• The SOT entry is cleared and the entry status is set
to skip.

SynchronolJs Data Link Control Primary and Secondary I/O Managers 24-9

Test

The operation for test is the same as that described
under Connect with the following exceptions:

• The following modules are substituted:

Normal Flow Test

#TPLXIDO #TPLEXTO

#TPLXID1 #TPLTST1

#TPLXID2 #TPLTST2

The input and output buffers are supplied by the
requester, and pointers to these buffers are contained
in the message text.

Normal Flow

Once contact processing is complete, the SOT entry
status is set to contacted. This indicates that when the
output scheduler encounters this entry, it transmits a
supervisory frame to poll for input.

24-10

However, as the station 10M task is activated, the SNA
sessions are established and the request/response units
are exchanged between the primary and the secondary
station. In order to cause the SDLC 10M to transmit 1-
(information) frames, an output request message is sent
to the SDLC 10M queue. The queue message router
invokes the output request handler. This module sets
output pending status in the SOT entry and invokes the
output scheduler. The output scheduler encounters the
SOT entry, finds the output pending status, and invokes
the I-frame transmission handler. This module retrieves
the output request message, locates the buffer control
list of the station 10M, and, using the
number-of-frames value in the message, begins to build
the program operation block/function operation block
operational program. Each frame submitted by the
station 10M is addressed by a separate FOB that
contains a Write Data command as shown in Figure
24-6. The SDLC control field of each frame is set to
indicate the SDLC number sent and number received.
An input buffer is then obtained by using the SDLC 10M
buffer control list, and a read data ORE is built and sent
to the receive OU queue. The operation request
element/program operation block is then sent to the
transmit OU queue. Finally, transmit and receive busy
status indicators are set in the LKB, and control is
returned to the output scheduler.

J

VMC Header Station Address
Buffer Control Number of Frames

ListPoint~ to Transmit

c'M Buff .. Cootml Ust

LKB Status Length Frame ~
Program Operation Status Length Frame

\1 ""\
Block

Status Length Frame

I I ""\

Status Length Frame ""\

(FOB Chain

Write Data
I

I A I C I 1 .,
Write Data

I
1 A I C I 1 1

..I

Write Data "T IAlcl 1
/

Write Data "J 1 A I CII I

I Poll bit is set.

Figure 24-6. Output Request-Operational Program Relationship

L
Synchronous Data Link Control Primary and Secondary I/O Managers 24-11

The queue messagp. router invokes the I-frame write
response handler when the operation request
element/ program operation block is received. This
module checks both the BST AT and the FST AT of each
FOB for completion. For a complete transmission,
transmit busy in the LKB is reset.

When the read data ORE is received, the queue
message router or the read data analysis module
invokes the I-frame write response handler. (The
-Function field in the ORE key had been set to
information/supervisory frame sent.) The I-frame write
response handler determines which frames have been
received (provided BSTAT /FSTAT or ISTAT indicates no
errors). For a supervisory response, the number received
by the station is compared with the number sent by the
system. If in agreement, the output request message is
retrieved, the frame positions in the buffer control list of
the station 10M are set to completion status, the VMC
header status is set. and the message is returned to the
station 10M. Output pending status in the SOT entry is

reset.

For I-frame(s) received, the number sent/received
comparison is made as in the preceding description.
Each ISTAT is checked, the number sent is incremented,
and an input request message is built and sent to the
station 10M.

Finally, receive-busy in the LKB is reset and control is
returned to the output scheduler. The next time this
station is selected by the output scheduler, the I-frames
received are confirmed to the station. This occurs
through either a supervisory frame or additional I-frames
(if another output request message is received). The line
10M then continues to service the station(s) until all SOT
entry status indicators are set to skip.

24-12

SOLe Autopoll Flow

SOLC autopoll cannot be performed if there are more
than eight stations varied on the SOLC primary line.

#TPLAUTO directs the autopoll function. This module is
invoked by the scheduler when the following conditions
are met:

• There has been no activity except polling on the line
and no station on the line has responded with
I-frames.

• There are not more than eight stations varied on.

#TPLAUTO updates the control byte for each entry in
the poll list according to the send and receive counts in
the SOT entry, builds the autopoll transmit ORE and a
receive ORE, and sends the OREs to the appropriate OU
task queues. The transmit ORE is posted after one pass
through the poll list; the receive ORE is returned when
the autopoll operation is terminated by one of the
following conditions:

• A polled station changes state from receive ready to
receive not ready.

• A polled station changes state from receive not ready
to receive ready.

• A polled station responds with other than receive
ready or receive not ready.

• A polled station responds with an unexpected
sequence count.

• A Stop Autopoll command is issued that returns the
receive ORE associated with the Autopoll command.

• A polled station responds with one or more bytes
after the control byte.

• A polled station does not respond.

• Any error condition is detected.

Vary Off

When the MSCP is directed to vary off a line, it sends a
de-activate link message to the SDLC 10M queue. The
queue message router invokes #TPLDAKO, which issues
a halt to both OU tasks, frees the machine-wide storage
obtained by the activate link handler, and remains in a
receive message loop until all messages sent by the
SDLC 10M are returned. The last instruction is a destroy
task function that destroys the primary SDLC 10M task.

Error Flow

A substantial portion of the SDLC 10M is involved in the
recovery of the many errors that are possible in the
management of the telecommunications channel. These
errors are categorized as follows:

Level

LINK

LINK

STATION

STATION

Recovery

Permanent
Error, No
Retry

Retryable

Permanent
Error, No
Retry

Retryable

Example

BSTATO = I/O Error
BSTAT1 = Line Not
Initialized

BSTATO = I/O
Exception BSTAT1
Clear to send Inactive

SDLC frame reject
received

BSTATO = I/O
Exception
BSTAT /ISTAT = Cyclic
Redundancy Check
Error

To retry errors, it is necessary to be able to reference a
user-specifiable retry limit. Such limits are maintained in
the network description and are referenced by the SDLC
10M error recovery procedure modules.

The first SDLC 10M module that is involved in error
detection is the queue message router. When an ORE is
received, BST ATO is tested for command complete, I/O
exception, or I/O error indications. If any of these are
present, the normal response module is invoked.
However, if none of the preceding indications are
present, the queue message router invokes #TPLIOLO,
the inoperative link handler.

When a module such as #TPLXID2, #TPLCNT2, or
#TPLISIN is invoked by the queue message router,
BSTATO is checked for I/O exception or I/O error. If an
exception or an error exists, #TPLIOEX, the I/O
exception handler, is invoked with appropriate
parameters. #TPLIOEX increments the error counter in
the LKB or SOT entry, makes retry determination,
restarts the OU task, and performs a read sense for I/O
errors. #TPLIOEX also invokes either #TPLlOS, the
inoperative station handler, or #TPLIOLO, the inoperative
link handler, depending upon the error type. #TPLIOEX
also invokes #TPLlOX1 to cause an error log record to
be built and sent, if appropriate.

Module #TPLIOLO sets an error code in the status field
in the VMC header for any MSCP or station 10M
message pending in the LKB and SOT, and then returns
the messages. When appropriate, a send count is
issued to the queue control table to restart the
appropriate OU task, and a read sense ORE is built and
sent to the appropriate queue. When the read sense
ORE is returned, the queue message router invokes
#TPLIOL 1, the read sense response handler. If a read
sense operation is not appropriate at this time,
#TPLIOL 1 is invoked directly by #TPLIOLO. #TPLIOL 1
invokes #TPLlOX1, the error log writer, an entry point of
#TPLIOEX. When control is returned to #TPLIOL 1, it
builds an inoperative message and sends it to the
MSCP. The error code reported in this message is used
in the event raised by the MSCP to inform the Control
Program Facility of the error.

Control is then returned to the queue message router to
await a de-activate link message, or an initialize line
message from the MSCP.

Synchronous Data Link Control Primary and Secondary I/O Managers 24-13

Modules such as #TPLXID2 or #TPLISIN also detect
errors not reported by the 10C in BSTAT, FSTAT, or
ISTAT. These are errors such as invalid SDLC station
address, sequence number mismatch, and invalid control
field. These errors are reported to #TPLIOEX and
logged, just as with the BSTAT, FSTAT.. and ISTAT
errors.

Read Data Store

The read data store send/receive message (SRM) is
sent by the diagnostic component to the line 10M to
perform the read data store function. The queue
message router receives the SRM and calls #TPLRDSO.
#TPLRDSO sets read data store pending status in the
LKB and calls the output scheduler. The output
scheduler checks for read data store pending. If read
data store pending is on, the scheduler calls #TPLRDS1.
#TPLRDS1 is the highest priority function in the
scheduling sequence and executes before any other
pending functions. #TPLRDS1 builds the read data store
ORE and sends it to the transmit OU quelle. The ORE
response is then handled by #TPLRDS2. #TPLRDS2
validates and error checks the BSTAT in the ORE
response, performs proper cleanup, and sends the read
data store SRM to the return queue.

24-14

Internal Trap

The internal trap SRM is sent by the diagnostic
component to the line 10M to perform the set monitor
mode function. The queue message router receives the
SRM and calls #TPL TRPO. #TPL TRPO then handles the
following functions:

• Trap Sync
A previous trap setup SRM was received with wait
for sync specified.

Single Station
Set monitor mode pending is set for the station
specified.
All Stations
Set monitor mode pending is set for the next
station to be serviced by the scheduler.

• Trap Setup
The following setup functions are handled:

Wait For Sync (all stations)
The trap wait bit is set on for each configured
SOT entry.
Wait For Sync (single station)
The trap wait bit is set on for the single specified
station.
Do not Wait For Sync (no reset)
The trap wait and set monitor mode pending bits
are set on for the next station to be serviced by
the scheduler. This causes the set monitor mode
I/O to perform its function immediately.
Do not Wait For Sync (reset)
The trap wait and set monitor mode pending bits
are set on for the next station to be serviced by
the scheduler. This causes the set monitor mode
I/O to be reset immediately.

The scheduler is then called to service the appropriate
station and function.

The scheduler checks for trap wait and set monitor
mode pending. If both bits are on, the scheduler calls
set monitor mode transmission (TPL TRP1) for the station
being serviced. This is a high-priority function in the
scheduling sequence and executes before all other
pending functions except for the read data store
function.

#TPL TRP1 sets up the transmit OR E with the Set
Monitor Mode command and sends the transmit ORE to
the transmit OU queue.

After receiving the set monitor mode function, the ORE
is returned by the loe to the SOLe 10M and is routed
by the queue message router to the set monitor mode
response (#TPL TRP2). This routine resets all set monitor
mode pending and trap wait bits in all SOT entries, sets
status in the trap SRM, and returns the SRM to the
diagnostic component. If an error occurred, the status is
set to the BSTAT returned in the ORE and proper
cleanup is executed. No retry procedures are performed,
regardless of the severity of the error.

OATA AREAS

Link Control Block

The LKB is in the invocation work area of the queue
message router and is present when the task is active.
The LKB contains pointers, the program operation block
OREs, status indicators, and retry counters used for
error recovery.

A pointer to the LKB is stored in register 4 and is saved
throughout the task. The contents of the LKB and its
relationship to other SOLe 10M areas are shown in
Figure 24-7.

Machine-Wide Storage

When an activate link message is received, an area in
machine-wide storage is acquired. The size of this
storage is calculated from the network and controller
description parameters:

• Number of stations (controller descriptions)

• Station buffer sizes

This area, shown in Figure 24-7, is used to contain the
following areas:

• The service order table (SOT)

• Function operation block (FOB)

• Buffer control list

• Input buffers

SDLC (Synchronous Data Link Control) Input Areas

The synchronous data link control (SOLe) input area
consists of two parts: the input buffers and the input
buffer control list. This area is built in machine-wide
storage by the SOLe 10M during vary-on-NO
processing. Multiple input buffers are established, each
large enough to contain the maximum number of frames
supported by SOLe. The buffers are controlled by the
input buffer control list; there is one entry for each
buffer. The input buffer control list entry contains the
status of the buffer, the length of the buffer, and a
pointer to the buffer. Each module that needs an input
buffer first checks the status in the buffer control list
and uses the first buffer marked not busy. If all buffers
are busy, the SOLe 10M enters the receive-not-ready
state and remains in that state until an input buffer is
available.

Synchronous Data Link Control Primary and Secondary I/O Managers 24-15

link Control Block (LKB)

I.Program Operation Block

Operation Request Elements (OREs)

Machine Wide Storage Service Order Table

t.Pointer Pointer ...

I
Buffer Control List

t.Pointer

Retry Counts

'j Status

\ Machine-Wide Storage

Function Operation Block (FOB) Chain

I Command I pOint~

1 Command I pOint~
Service Order Table (SOT)

Input Buffers

~ V Buffer 1 I

~ Buffer n I

k
~Buffer Control List

Pointer to Buffer 1

I'--~ Buffer 1 Status

\ -
~

Pointer to Buffer n

~
Buffer n Status

Figure 24-7. Primary SOLe 10M Areas

24-16

/

Service Order Table

The SOT contains an entry for each station on the line.
An entry contains the following information:

• Operational status

• Pointers

• Retry counts

• Work areas

The FOBs are entries in a chain. Each entry contains an
FOB command and a pointer.

The buffer control list is used to maintain the location
and status of the input buffers. There is an entry in the
buffer control list for each buffer. The entry contains a
pointer to the buffer and the status of that buffer. A
nonzero status indicates that the buffer is in use; a zero
status indicates that the buffer is available for use.

STRUCTURE

The following is a list of the modules in the SDLC 10M
and the function that each module performs. This list
also shows how the module is invoked.

#TLXIDCK XID Format-3 Checker

Function: Validates the contents of format-3 exchange
identification frame a received.

How Invoked: Within this component.

#TL1RD Request Disconnect Response Handler

Function: Notifies the station 10M or MSCP of the
response received.

How Invoked: Within this component.

#TL2NAIF System Network Architecture (SNA)

Interface

Function: Creates and initializes SNA control areas for
SDLC to enable SNA logic processing of the first
expected activate physical unit request from a boundary
function.

How Invoked: Within this component.

#TL2RFMS Report Maintenance Statistics

Function: Notifies the station 10M of maintenance
statistics counter overflow within SDLC secondary.

How Invoked: Within this component.

#TP2ALKO Activate Link Processor

Function: Obtains storage and / or initializes SDLC
control blocks, input buffers, buffer control list,
SSCP-PU routing elements, and function operation
block (FOB) list, sets line in normal disconnect mode
and PU inactive, and issues set line priorities ORE to the
IOC.

How Invoked: Within this component.

#TP2CINV Invalid Command Processor

Function: Establishes the command reject exception
condition.

How Invoked: Within this component.

IITP2CNT Contact Processor

Function: Saves secondary station's send/receive queue
address, initializes statistical data, and returns contact
response to MSCP.

How Invoked: Within this component.

#TP2DCT Discontact Processor

Function: Cleans up control blocks after vary-off CD
SRM has destroyed the secondary station 10M and
returns discontact response to MSCP.

How Invoked: Within this component.

#TP2DM Disconnect Mode Processor

Function: Processes SDLC disconnect command
received from host. Responds with proper
acknowledgment and enters normal disconnect mode.

How Invoked: Within this component.

#TP2ISIN Information/Supervisory Input Frame
Processor

Function: Validates received SDLC information and
supervisory frames and routes for appropriate
processing.

How Invoked: Within this component.

#TP2MC Mode Change Processor

Function: Process the following mode changes:

• Second Set Normal Response Mode command.

• Disconnect from host.

• Command reject condition.

How Invoked: Within this component.

#TP20FMX Output Frame Processor

Function: Builds and sends all OREs to the transmit OU
queue, then sends a read ORE to the receive OU queue.

How Invoked: Within this component.

Synchronous Data Link Control Primary and Secondary I/O Managers 24-17

#TP2RDSO Read Data Store SRM Processor

Function: Handles the read data store SRM and sets
pending status for subsequent execution.

How Invoked: Within this component.

#TP2RDS1 Read Data Store ORE Processor

Function: Builds and sends a read data store ORE to the
transmit au queue.

How Invoked: Within this component.

#TP2RDS2 Read Data Store SRM Responder

Function: Updates the status of the read data store
SRM and returns the read data store SRM response to
the return queue.

How Invoked: Within this component.

#TP2RSID Request System Service Control Point
Identification Processor

Function: Builds and sends an unpaired read ORE to the
receive au queue to be ready for SDLC exchange
identification processing with the host.

How Invoked: Within this component.

#TP2SDLC Secondary Line 10M Activity Controller

Function: Loops to receive an SRM or an ORE from the
secondary line 10M send/receive queue and routes it for
appropriate processing.

How Invoked:

#TP2SNRM

Other VMC components.

Set Normal Response Mode Command
Processor

Function: Processes SDLC Set Normal Response Mode
command.

How Invoked: Within this component.

24-18

#TP2TRPO Set Internal Trap

Function: Processes the internal trap setup for the
diagnostic component. Sets service order table status
and optionally invokes scheduler to call #TP2TRP1.

How Invoked: Within this component.

#TP2TRP1 Send Set Monitor Mode

Function: Builds and sends the set monitor mode ORE
to the transmit au queue.

How Invoked: Within this component.

#TP2TRP2 Set Monitor Mode Response

Function: Returns the internal trap response, and
handles errors and exceptions on the set monitor mode
ORE.

How Invoked: Within this component.

#TP2TSTR Test Command Responder

Function: Processes the SDLC Test command to
duplicate back to the host any information frame present
in the Test command.

How Invoked: Within this component.

#TP2XIDR Exchange Identification Processor

Function: Processes the SDLC Exchange Identification
command to prepare the response for the host.

How Invoked: Within this component.

#TPLABCN Abandon Connection

Function: Terminates a switched-line connection.

How Invoked: Within this component.

J

J

#TPLACIN Activate Connect-In

Function: Enables a line for autoanswer, manual answer,
or manual dial.

How Invoked: Within this component.

#TPLACOT Abandon Connect-Out

Function: Resets a line so that the dial process is ended.

How Invoked: Within this component.

#TPLALKO Activate Link

Function: Builds the link control block and FOB chain,
reserves space for the service order table, and issues
the Set Line Priority command.

How Invoked: Within this component.

#TPLALK1 I nitialize Response

Function: Processes the IOC response to the Initialize
command.

How Invoked: Within this component.

#TPLAUDL Autodial Response

Function: Informs the MSCP that the dial-out process is
completed and a switched connection was established.

How Invoked: Within this component.

#TPLAUTO Autopoll

Function: Invokes the autopoll function.

How Invoked: Within this component.

#TPLCHEV Channel Event/Error Handler

Function: Processes channel events and errors.

How Invoked: Within this component.

#TPLCNTO Contact Message Handler

Function: Sets the service order table entry for SNRM
transmission.

How Invoked: Within this component.

#TPLCNT1 Set Normal Response Mode Command
Transmission

Function: Acquires an input buffer for the receive
operation, sets up the transmit and receive OREs, sets
the nonsequenced Set Normal Response Mode
command in the frame, and sends it to the OU queue.

How Invoked: Within this component.

#TPLCNT2 Set Normal Response Mode Command
Response

Function: Validates and error checks the BSTAT,
FSTAT, and control field responses obtained from the
ORE. Returns the MSCP contact message as
appropriate.

How Invoked: Within this component.

#TPLCOUT Connect-Out

Function: Enables the line for dialing to the station
indicated in the message.

How Invoked: Within this component.

#TPLDAKO De-activate Link

Function: Resets the IOC hardware on the line, sends a
vary-off network description error to the error log
queue, irees the working storage obtained at activate
link time, and destroys the line 10M task.

How Invoked: Within this component.

Synchronous Data Link Control Primary and Secondary I/O Managers 24-19

#TPLDCIN De-activate Connect-In

Function: Resets the line so that the connect-in process
is no longer active.

How Invoked: Within this component.

#TPLDCTO Discontact Function Request Handler

Function: Sets the service order table entry for
discontact transmission, and sends a vary-off controller
description error to the error log queue.

How Invoked: Within this component.

#TPLDCT1 Discontact Transmission

Function: Builds the ORE and FOB for the Discontact
command and transmits them to the OU queues. Sets
I/O busy in the LKB and updates status counters in the
LKB and SOT.

How Invoked: Within this component.

#TPLDCT2 Discontact Response Handler

Function: Checks the status of I/O completion, updates
completion status, invokes inoperative station on hard
errors, and returns the message to the MSCP with the
status.

How Invoked: Within this component.

#TPLDELY Wait Time-Out Handler

Function: Searches the SOT for entries for delayed
contact, resets the skip bit, and invokes the output
scheduler.

How Invoked: Within this component.

24-20

#TPLESCR Enable Switched Connection Response

Function: Informs the MSCP that a switched connection
was established.

How Invoked: Within this component.

#TPLEXCP SDLC Task Exception Handler

Function: Notifies MSCP and station IOMs of an
exception occurring in the SDLC 10M.

How Invoked: Fourth level exception handler.

#TPLEXTO Execute Test

Function: Processes the execute test message and sets
pending status for subsequent execution.

How Invoked: Within this component.

#TPLFOBT FOB Time-Out Handler

Function: Processes the time-out message of the
channel 10M.

How Invoked: Within this component.

#TPLlNLN Initialize Line

Function: Causes the line associated with the command
to be initialized with the parameters received in the
network description.

How Invoked: Within this component.

#TPLIOCO Communications IOC Initialization
Routine

Function: Causes the communications IOC data storage
to be built and written.

How Invoked: Other VMC components.

J

#TPLlOC1 Write IOC Data Storage

Function: Builds the communications IOC data storage
image and issues the write data storage command to
the OU queue.

How Invoked: Within this component.

#TPLlOC2 Error Log During IOC Wakeup

Function: Performs error logging for errors encountered
in #TPLIOCO or #TPLlOC1.

How Invoked: Within this component.

#TPLIOEX I/O Exception Handler

Function: On a communications error, performs retry
determination, saves various counts for analysis
purposes, performs appropriate logging for given
situations, invokes the inoperative station routine if a
limit is exceeded on a station-related error, and invokes
the inoperative line routine if a limit is exceeded on a
line related error.

How Invoked: Within this component.

#TPLIOLO Inoperative Link

Function: Sends response messages with permanent
error status for the line and all stations on the line.
Restarts the OU tasks and performs a read sense
operation.

How Invoked: Within this component.

#TPLlOL1 Read Sense Response

Function: Causes an error log record with device status
(DSTAT) states to be sent to the error log queue. Sends
an inoperative message to the MSCP and each active
station 10M to indicate the cause of the failure.

How Invoked: Within this component.

#TPLIOS I noperative Station

Function: Clears the service order table status for the
station, and builds error recovery procedures messages
and sends them to the appropriate queues. The skip bit
is set in the SOT to disable the station. A vary on can
be issued to bring the station back on line.

How Invoked: Within this component.

#TPLISIN Information Transfer and Supervisory
Frame Input

Function: Based on the frame type, the error status, and
the number sent count, this module determines if an
input frame is accepted as a valid I-frame that is to be
sent to the station 10M or as a frame to be handled
further within the SDLC primary 10M. Sequence counts
are also compared to determine if any output
retransmission is required.

How Invoked: Within this component.

#TPLOROH Output Request Handler

Function: Routes output request messages based on
destination station status in the SOT entry.

How Invoked: Within this component.

#TPLPEVT Post Event Handler

Function: Processes post error event messages from the
channel 10M.

How Invoked: Within this component.

#TPLORTO Queue Message Router

Function: Analyzes send/receive queue elements (OREs
and messages) and routes them to the appropriate
module for processing.

How Invoked: Other VMC components.

Synchronous Data Link Control Primary and Secondary I/O Managers 24-21

#TPLQRT1 Queue Message Router (Nonmainline)

Function: Analyzes send/receive queue elements (OREs
and messages) not routed directly by #TPLQRTO and
routes them to the appropriate module for processing.

How Invoked: Within this component.

#TPLRSTR Reset Response

Function: Sets status and returns the response message.

How Invoked: Within this component.

#TPLSCED Output Scheduler

Function: Selects an eligible station and starts an output
operation. Prepares the ORE, program operation block,
FOB, and I-frame for output request messages.
Prepares ORE, FOB, and S-frame for the supervisory
response frame. Builds a receive ORE/FOB. Performs a
send messages operation to send the messages to the
transmit and receive OU queues.

How Invoked: Within this component.

#TPLSLPR Set Line Priorities Response

Function: Processes the IOC set line priorities response.

How Invoked: Within this component.

#TPLSRMR Response Handler

Function: Performs input buffer and message
management for the response message.

How Invoked: Within this component.

#TPLRDSO Read Data Store Message Handler

Function: Handles the read data store SRM and sets
pending status in the link control block for subsequent
processing.

How Invoked: Within this component.

24-22

#TPLRDS1 Read Data Store Execution

Function: Sets up the transmit ORE and sends it to the
transmit OU queue.

How Invoked: Within this component.

#TPLRDS2 Read Data Store Response Handler

Function: Validates and error checks the BSTAT in the
ORE response, performs cleanup, and sends the read
data store SRM to the response queue.

How Invoked: Within this component.

#TPLTRPO Internal Trap Setup

Function: Processes the trap setup and diagnostic
component. Sets SOT status for affected entries, then
calls the scheduler to cause the set monitor mode ORE
to be sent.

How Invoked: Within this component.

#TPLTRP1 Set Monitor Mode Transmission

Function: Builds the transmit ORE, sets the Set Monitor
Mode command in the ORE, and sends it to the
transmit OU queue.

How Invoked: Within this component.

#TPLTRP2 Set Monitor Mode Response

Function: Posts back the trap SRM and handles the
errors and exceptions on the set monitor mode ORE.

How Invoked: Within this component.

#TPLTST1 SDLC Test Transmission

Function: Builds the transmit and receive OREs, builds
the nonsequenced Test command in the frame, and
sends the preceding to the OU queues.

How Invoked: Within this component.

#TPLTST2 Test Response

Function: Returns the execute test message with the
appropriate status.

How Invoked: Within this component.

#TPLWDIS Write Data I-Frame Response

Function: Processes the write data ORE for information
commands transmitted. Performs error checking and
initiates error recovery when possible.

How Invoked: Within this component.

#TPLWDNS Write Data ORE
Handler- Nonsequenced Sent

Function: Processes the write data ORE when the ORE
key indicates that a nonsequenced command or S-frame
was transmitted. Initiates error recovery if a recoverable
error is indicated.

How Invoked: Within this component.

#TPLXIDO Request Exchange Identification
Handler

Function: Sets the service order table entry for exchange
identification transmission and returns the MSCP
message.

How Invoked: Within this component.

#TPLXID1 Exchange Identification Transmission

Function: Acquires an input buffer for the receive
operation, builds the transmit and receive OREs, builds
the nonsequenced exchange identification in the frame,
and sends the preceding to the OU queues.

How Invoked: Within this component.

#TPLXID2 Exchange Identification Response

Function: Validates and error-checks the BSTAT,
FSTAT, and control field responses obtained from the
ORE. Builds a request contact message if appropriate

How Invoked: Within this component.

Synchronous Data Link Control Primary and Secondary I/O Managers 24-23

24-24

Local I/O Manager

INTRODUCTION

The local I/O manager (10M) provides the control of
certain locally attached I/O devices (printers, card
readers, diskette, console, and tape devices). Local
10Ms are device dependent and provide the interface
between the System/38 instructions and the internal
microprogram instructions. There is a local 10M task for
each online device and there is a set of 10M routines for
each device type supported. Multiple 10M tasks for
similar devices can use the same 10M routines.

An overview to local 10M processing is shown in Figure
25-1. A local 10M task, the associated operational unit
(OU) task, the related queues (including the 10M queue
and the OU queue), and related tables are constructed
by the machine services control point (MSCP) as a result
of Modify Logical Unit Description (vary-on) instruction
and are destroyed at vary-off time. Although the 10M
task is created by the MSCP, the 10M task destroys
itself at vary-off time.

A local 10M task is dispatched (placed on the prime
task dispatching queue) by the MSCP. A local 10M task
then performs additional initialization before waiting on
the 10M queue associated with this task. Once an 10M
task is waiting on the 10M queue, it is ready to receive
additional modify logical unit description requests; I/O
requests are then passed from the issuing process to
the 10M queue. Modify logical unit description and I/O
requests requiring actions by the adapter are formatted
into operation request elements (OREs) and are sent by
the local 10M task to the OU queue. The OU task
returns the completed OREs to the 10M queue. The
10M task always waits on the associated 10M queue to
receive additional and completed requests. When a
machine interface request is completed, the request is
returned to the machine interface response queue
designated for the process issuing the Modify Logical
Unit Description or Request I/O instruction. There is a
local 10M for each of the following devices:

• Printer

• Diskette

• Multi-function card unit (MFCU)

• 3410/3411 Magnetic Tape

• 3430 Magnetic Tape

• Console

Local I/O Manager 25~1

L!.J
Response
Queue

User Program

Request I/O
Instruction
Processor

--1tr IOM
Queue

Local 10M

• \ OU
L!.J Queue

OU Task -

Figure 25-1. Local 10M Overview

25-2

The basic flow of a local 10M is as follows:

1. Create and initialize fields (modify logical unit
description-vary-on) :

• Get machine-wide storage for all OREs
(operation request elements).

• Build keys and pointers.

• Build the program operation block and
messages for all I/O operations.

• Begin never-ending loop to receive messages
from the 10M queue.

2. Receive a request (an I/O request, a modify
request. or a completed OU request).

3. Decode the request:

• Check the request by key or function to invoke
the appropriate routine to process the request.

• If the request is invalid, return the request with
invalid status indicated .

4. Return to step 2.

There are local 10M routines that process each possible
major message type (vary on, vary off. and so on) as
shown in Figure 25-2. The routines interface with the
OU task, the user, or both. All local 10Ms are similar in
structure. A local 10M consists of a main driver routine
that invokes the different functions to be performed.
The function invoked can either be in the same module
as the main-driver module, or in a different module.
The appropriate module to be invoked is determined
from the key and function fields of the request message.
The operations of the local 10M functions are described
in the following paragraphs. The 10M for the diskette is
used for this description because it is representative of
the other local 10Ms.

J

OU Error
Initialization r-- OU Response Response

I
Load/Dump

t--
I Message

Receive and
Vary On

Decode

t-- Vary Off

f- Suspend

f- Reset

r---- Resume

t-- De-activate r- Read Il Common

U Read/Write
t-- Activate t-- Write

f- Quiesce - Format

t--
Device
Specific

- Seek

f--
Error Threshold - Address
Values

t--
Retry

t-- Send Operation
Values Blocks

f-
Request Build Feedback
I/O Record

'-
Request - Sense
I/O Continue

'- Increment-
Magazine

Figure 25-2. Local 10M Functions

Local I/O Manager 25-3

Initialization: This function obtains space for the ORE
and obtains addressability to all objects used.
Initialization then builds the message and program
operation block used for all operations and builds the
queue and message area used by load / dump.

Receive and Decode: This function, performed by the
main-driver module, dequeues a message from the 10M
queue and validates the key or function field. If the key
or function field is valid, this function invokes the proper
routine to process the request. If the key or function is
not valid, this routine indicates an invalid status and
returns the message to the issuing process.

au Response: This function validates the response by
checking the basic status (BSTAT) that was returned
from the device, and if invalid, invokes the error
processing routine. If valid, the OU response routine
updates fields based on flag bytes, and performs a
compare descriptor operation if a load/dump read
descriptor command is specified. The OU response
function updates the current diskette address
(cylinder-head-sector). Then, depending on the
command specified, the request I/O routine (if more
work is to be performed), the feedback record routine (if
the work is completed), or the load / dump function is
invoked.

Load/Dump Message: This function is available only for
a magnetic media device. It builds parameters for a load
or dump function, and then processes the request.

Vary On: This function establishes addressability to the
required data areas and initiates a startup sequence for
the device. This function then responds to the request.

Vary Off: This function releases the storage buffers and
issues a check-reset to the device. Vary off then
responds to the request and causes the 10M task itself
to be destroyed.

25-4

Suspend: This function completes processing on the
request I/O in process, then raises the key to a value
that inhibits additional processing of request I/O
messages and responds to the request.

Reset: This function halts the OU task, dequeues all
OREs from the OU queue, and then, if required, restarts
the OU task. Reset then returns the current message
and all messages that are currently enqueued on the
10M queue. Reset then releases any storage buffers as
required, and responds to the request.

Resume: This function enables message processing and
then responds to the request.

De-activate: This function unloads the diskette (if one is
loaded), then positions the diskette magazine in the
home position (manual slot 1) and logs the statistical
information, and then responds to the request.

Activate: This function creates a load/dump task if
required, obtains the required device specific
parameters, and then responds to the request.

Quiesce: This function processes all request I/O
messages on the 10M queue, raises the key so that no
additional request I/O messages will be processed, and
then responds to the request.

J

Device Specific: This function obtains the required
device specific information, and for some devices,
performs device related functions. This processing
includes building the required OREs and sending them
to the OU- tasks and waiting for the OU task response.

Error Threshold Values: This function sets the threshold
values for logging read and write data check errors.

Retry Values: This function sets the retry values for
retrying read and write data check errors.

Request I/O: This function first validates the message.
The appropriate routines are then invoked to process
each request descriptor (RD). The required OREs for
each RD are built and sent to the OU task. When all
RDs have been processed, the request I/O message is
returned to the user process.

Request I/O Continue: This function resets all error flags
and lowers the key value so that request I/O messages
can be processed.

Internal Cleanup Routine

Local 10Ms provide recovery from damaged objects. An
internal cleanup routine is added to each of the local
10Ms when an internal microprogram instruction
exception is detected. This routine first determines the
type of exception. If the exception is a source/sink data
exception, the cleanup routine handles the exception. If
the exception is something other than a source/sink
data exception, the cleanup routine calls a common
exception cleanup routine.

Local I/O Manager 25-5

DATA AREAS VARYOFF Vary off
ACTSESS Activate logical session

J The data areas for the local 10M are described under DACTSESS De-activate logical session
Source/Sink Data Areas in the Vertical Microcode OUIESCE Ouiesce
Overview section of this publication. RESET Reset

SUSPEND Suspend
RESUME Resume

STRUCTURE CONTINUE Continue
CHNLERR Channel error message

The following is a list of the modules in the local 10Ms CHNLPEVT Post event message
and the function that each module performs. This list BUILDFBR Build feedback record
also shows how the module is invoked. BUILDERL Error logging

ELOGRESP Error logging response
RETRYCMD Retry failing command

Console Local 10M SENDLEGM Unrecoverable I/O light-emitting diode
message to system control adapter

#LOCNIOM Console 10M (SCA) 10M
DUALERP Perform recovery for multiple

Function: Provides the interface between the user and commands
the OU task that performs the console function. This is LEDRMGB Process light-emitting diode message
a queued interface, where this module accepts requests from SCA 10M
on its input queue, performs the task, and then GATEOPNA Perform input/output controller (lOC)
responds to the request by returning it to the gate open (any) macro
appropriate queue. This module contains the following GATEOPN Perform 10C gate open macro
procedures: GATECLZE Perform 10C gate close (C) macro

TIMEHNDL Handle 2-second-interval timer
INITIALZ Initialization message and issue system request
OURSPCHK Process response from OU task read modified J OUSTATCK BSTAT analysis CANRDMOD Cancel system request read modified
DSTATCHK Device status (DSTAT) analysis OURSTART Performs SSRSTOU macro
CHNLERR Channel error OURSET Resets 10C console
REOIO Process request I/O message REWRITE Writes last saved screen
ROREAD Read without control OUFAIL Process OU task failure message
ROCANCEL Cancel a read modified FOBTIMOT Function operation block (FOB)
ROWRITE Write with or without control time-out
ROCNTL Control PREPAOC Preprocess request 1/ Os
VARYON Vary on VERIFY Verify request description

KBRDCNTL Update keyboard state
MOVEDATA Move data from 10M buffer to users

buffer
CLEANUP Reset error recovery procedure

parameters
STDERP Standard ERP
HARDERR Set hardware error

How Invoked: Within the console 10M.

25-6

#lOMACNM Diskette 10M Channel Error
Recovery Module

Function: Contains routines to process errors
encountered by the channel. Determines the error type
and the action to be performed. This module contains
the following procedure:

LOMACHEM
LOMAC101
LOMAC204

LOMAC208
LOMAC504

LOMACPOS

Process channel messages
Channel error
Channel time-out on an Autoload
command
Channel time-out
Read sense error during channel error
recovery
Position heads

How Invoked: Within the diskette 10M.

Diskette Magazine Drive local 10M

#lOMACOM Diskette 10M Common Function
Processor

Function: Contains the routines that perform common
functions. This module contains the following
procedures:

LOMASEND
LOMACFOB
LOMASPCK

LOMAALEB

LOMAPERF
LOMALADD
LOMACBLF
LOMACBRF
LOMABLOG
LOMACNVT
LOMACUPN

Send the OREs to the OU queue
Complement fields in FOBs
Check space available on current
cylinder
Build the address list elements for
read/write
Performance analyzer
Update last address
Build load / dump feedback record
Build REQIO feedback record
Build the error log message
EBCDIC/ ASCII conversion
Unpin storage

How Invoked: Within the diskette 10M.

Local I/O Manager 25-7

#LOMAERP Diskette 10M Error Recovery Procedure

Function: Contains routines to process errors
encountered by the OU task. Determines the error type
and the action to be performed. This module contains
the following procedures:

LOMAOUE
LOMANOUE
LOMAEIOE
LOMAAUTE
LOMAMEDE
LOMA0100
LOMA0103
LOMA0104
LOMA0105
LOMA0106
LOMA0107
LOMA0108
LOMA0201
LOMA0202
LOMA0203
LOMA0205
LOMA0206
LOMA0207
LOMA0301
LOMA0302

LOMA0303
LOMA0304

LOMA0305
LOMA0306
LOMA0307
LOMA0308
LOMA0309
LOMA0403
LOMA0404

LOMA0405
LOMA0406

25-8

OU error response
OU error response (no error entry)
I/O error
Decode autoloader error
Decode media error
Operation program error
Overrun
Disconnect
Parity-1 error
Parity-2 error
Command reject
Control address mark found
Wrap
Autoloader parity error
Invalid autoloader function code
Erase current error
Autoloader write / erase current error
Write gate
Autoloader carriage bed malfunction
Autoloader picker malfunction/fail to
eject
Autoloader fail to pick
Autoloader diskette window fail to
open
Autoloader device cover open
Autoloader not oriented
Autoloader out of sequence
Speed check
CHN mismatch
Data CRC error on read
Data CRC error on write and read
verify
ID CRC error on read
ID CRC error on write

LOMA0407
LOMA0408
LOMA040A
LOMA0505
LOMA0506
LOMA0507
LOMA0508
LOMA050C
LOMA9998
LOMAEVFY
LOMAEUCT
LOMAEISK
LOMAEMED
LOMAESEK
LOMAESKN
LOMAEFMT
LOMAEFID
LOMAECC
LOMAEFBR

Not oriented-1
Not oriented-2
No record found
Invalid BSTAT /DSTAT
Read sense error
Autoloader parity error on read sense
Retry stack limit exceeded
Failed to read hex FF in ID field
Channel busy
Verify and log error
Update retry and error SAR counters
Insert on retry list
Media error
Seek/ compare error
Seek/no compare error
Format diskette error
Format read I D error
Single bit data CRC error correction
Build feedback record

How Invoked: Within the diskette 10M.

J

#LOMAIOM Diskette 10M Main Module

Function: Provides the interface between the user and
the OU task that performs the diskette function. It is a
queued interface, where this module accepts requests
on its input queue, performs the task, and responds to
the request by returning the request to the appropriate
queue.

This module decodes the messages and invokes one of
the following functions:

• MSCP /Modify Logical Unit Description instruction
processor (#LOMALUD)

• Request I/O processor (#LOMARIO)

• Load/dump processor (#LOMALDM)

• OU response processor (#LOMAOUM)

• Channel error processor (#LOMACNM)

This module contains the following procedures:

LOMAICLN

LOMAINIT

Cleanup for IMPL
exceptions
10M initialization

How Invoked: By MSCP at vary-on-LUD time.

#LOMALDM Diskette 10M Load/Dump Processor

Function: Processes messages that are sent to the
diskette 10M as a result of a load/dump request. This
module contains the following procedures:

LOMALDCM

LOMALDNM
LOMALDWB

LOMALDRB
LOMALDSB

Handle load/dump continue
requests
Handle load/dump normal requests
Handle load/dump write block
requests
Handle load/dump read block requests
Handle load/dump space block
requests

How Invoked: Within the diskette 10M.

#LOMAOUM Diskette 10M OU Response Module

Function: Processes the OU response. This module
contains the following procedures:

LOMAOUR
LOMAOFMT

LOMAOVTC

LOMAOINC

LOMAOSEK

LOMAOULD

LOMAOSDR

Handle OU response
Handle OU response for Format
RD command
Handle OU response for Read
VTOC command
Handle OU response for Increment
command
Handle OU response for Seek
command
Handle OU response for load/dump
descriptor request
Increment SDR counters

How Invoked: Within the diskette 10M.

Local I/O Manager 25-9

#LOMALUD Diskette 10M MSCP/Modify Logical
Unit Description Instruction Processor

Function: Processes messages that are sent to the
diskette mainline as a result of a modify logical unit
description request. This module contains the following
procedures:

LOMAVONN
LOMAGALE
LOMAVOFF
LOMAFALE
LOMAACTS
LOMADSAC

LOMACCVH

LOMADACS
LOMAQUIS

LOMASUSP

LOMARESM

LOMARSET

LOMALDMC

LOMARVSC

LOMAETSC

LOMASMSG

MSCP vary-on request
Get address list element space
MSCP vary-off request
Free address list element space
MSCP activate session request
Modify Logical Unit Description
instruction device-specific area
change request
Process volume and header
information
MSCP de-activate session request
Modify Logical Unit Description
instruction quiesce session
request
Modify Logical Unit Description
instruction suspend session request
Modify Logical Unit Description
instruction resume session request
Modify Logical Unit Description
instruction reset session request
Modify Logical Unit Description
instruction load/dump mode change
request
Modify Logical Unit Description
instructi::m retry value sets change
request
Modify Logical Unit Description
instruction error threshold sets
change request
Send response to Modify Logical Unit
Description instruction/MSCP

How Invoked: Within the diskette 10M.

25-10

#LOMARIO Diskette Request I/O Processor

Function: Processes messages that are sent to the
diskette 10M as a result of a request I/O. This module
contains the following procedures:

LOMARCON
LOMARIOR
LOMARLAD
LOMARINC
LOMARSEK
LOMARHLT
LOMARWRN

LOMARRDN

LOMARWV
LOMAWVTC
LOMARDAT
LOMAWDAT
LOMAWVT2
LOMAWVT3
LOMARVTC
LOMAWVIP

LOMARVIP
LOMARFMT

Request I/O continue
Request I/O message router
Process Address command
Process Increment command
Process Seek command
Process Halt command
Process Request I/O Write Request
Descriptor command
Process Request I/O Read Request
Descriptor command
Read/write common function
Handle write of VTOC
Process Request I/O Read command
Process Request I/O Write command
Handle write of VTOC (part 2)
Handle write of VTOC (part 3)
Process Read VTOC command
Process Write Initial Program Load
(IPL) Sectors command
Process Read IPL Sectors command
Process Format command

How Invoked: Within the diskette 10M.

#LOMATOM Time-out Message Processor

Function: Process time-out messages sent to the 72MD
10M as the result of a modify LUD request. This
module contains the following procedure:

LOMATOMH Modify Logical Unit Description
time-out message handler

How Invoked: Within the diskette 10M.

MFCU Local 10M

L #LOMFIOM MFCU 10M Mainline

Function: Provides the interface between the user
procedure and the OU task performing the MFCU
function. This is a queued interface where this module
accepts requests on its input queue, performs the task,
and then responds to the request by returning the
request to the appropriate queue. This module contains
the following procedures:

#LOMFVON
#LOMFVOF
#LOMFACT
#LOMFDAC
#LOMFQSC
#LOMFRST
#LOMFRES
#LOMFSSP
#LOMFRCN
#LOMFRIO

Handle vary-on
Handle vary-off
Handle activate session
Handle de-activate session
Handle quiesce
Handle reset
Handle resume
Handle suspend
Handle request I/O continue
Handle request I/O

#LOMFSFC Process Single Function command
#LOMFPPT Process Punch and Print command
#LOMFRPX Process Read and Punch or

Read and Print command
#LOMFRPP Process Read and Punch and

Print command
#LOMFOUR Handle OU task response
#LOMFNRS Handle normal OU response
#LOMFERS Handle error OU response
#LOMFRTN Return VMC message
#LOMFDSA Process the device-specific

area change request
#LOMFCER Handle channel error messages
LOMFCLEN Handle error recovery cleanup
LOMFRSOU Restart OU task
LOMFELOG Build error log message
BLDFBRE Build feedback record
LOMFX96 Translate 96 characters
LOMFX128 Translate 128 characters
LOMFSNDR Send ORE to OU
LOMFRDSN Build and send read sense

command to OU
LOMFRDDS Build and Send Data

Store command
LOMFCEWU Wrap-up channel error

processing
#LOMFWTR Build wait for ready ORE
LOMFECOD Determine error code for

error log message
LOMFICLN MFCU exception handler

How Invoked: Within the MFCU 10M.

Local I/O Manager 25-11

3410/3411 Magnetic Tape local 10M

#lOTACOM 3410/3411 Magnetic Tape 10M
Common Function Processor

Function: This module consists of routines that perform
common functions for the tape 10M. The module
contains the following procedures :

LOTAOUR
LOTAGFMS
LOTABEFR

LOTACNVT
LOTAELOG
LOTAGVST
LOTATRJB
LOTARSOU
LOTARMVE
LOTAQMSG
LOTARFRM

LOTATPST
LOTAVSDR

LOTACBER
LOTASLOG
LOTANBTS

Handle OU response
Get/free machine-wide storage
Build and send feedback record (error
response)
Data conversion
Error log message
Generate volume statistics
Terminate all jobs
Restart OU task
Remove OU message
Requeue request I/O message
Return first request I/O
message
Examine tape status
Communicate with volume
statistical data record manager
Build channel busy error log message
Send error log message
Recalculate number of blocks to skip

How Invoked: Within the 3410/3411 Magnetic Tape
10M.

25-12

#lOTAERP 3410/3411 Magnetic Tape 10M Error
Recovery Procedure

Function: This module is called when the response from
the OU task indicates that an error condition has
occurred. It determines the error type and the action to
be performed. This module contains the following
procedures:

LOTAOUE
LOTAEDCD
LOTAEIOE
LOTAEI01
LOTARSID

LOTAERDC
LOTAEWDC
LOTAEROR

LOTAEWOR

LOTAEIOX
LOTAEWLR
LOTAECDR
LOTAETNA

LOTAESVC

LOTAEIDB

LOTAERDN
LOTAERBD
LOTAEWUP
LOTAEEDC

LOTAEICD

LOTAEWCZ

LOTAEUST
LOTARDEC

LOTAWTEC

LOTAECHN
LOTAEDNA

Handle OU error response
Error decoder
I/O error handler-1
I/O error handler-2
Determine residual
operation count
Read data check error recovery
Write data check error recovery
Handle read overrun
error recovery
Handle write overrun
error recovery
Handle I/O exception
Handle wrong length record retrying
Handle command rejects
Handle tape not available
error recovery
Handle start velocity error
recovery (error)
Handle phase-encoded identification
burst error recovery (error)
Read noise error recovery (error)
Read back data loop write-to-read
Error wrap-up
Erase gap data check error
recovery (error)
Illegal command error
recovery (error)
Word count zero error
recovery (error)
Update error statistics
Determine read data check
error code
Determine write data check
error code
Channel error recovery
Drive not attached error recovery

How Invoked: Within the 3410/3411 Magnetic Tape
10M.

J

#LOTAIOM 3410/3411 Magnetic Tape 10M
Mainline

Function: This module provides the interface between
the user and the OU task that performs the tape
function. This is a queued interface where this module
accepts requests on its input queue. Control type
requests are processed immediately upon receipt.
Request I/O and load/dump requests are dequeued
from the main input queue and enqueued on separate
device queues. These separate device queues are then
serviced in a sequential manner to prevent one device
from monopolizing the tape control unit. Responses to
requests are accomplished by returning the request to
the appropriate request queue.

This module decodes the message and invokes one of
the following functions:

• MSCP/MODLUD processor (#LOTALUDI

• Request I/O processor (#LOTASCHI

• Common function processor (#LOTACOMI

• Error recovery processor (#LOTAERPI

This module contains the following procedures:

LOTAROUT
LOTAINIT
LOTAICLN

10M message router
Initialization routine
Tape exception handler

How Invoked: Other VMC components.

#LOTALUD 3410/3411 Magnetic Tape 10M
MSCP/Modify Controller Description
(CDI/Modify LUD Processor

Function: Processes messages that are sent to the tape
10M as a result of a modify controller description or a
modify logical unit description request. This module
contains the following procedures:

LOTAVNCD
LOTAVFCD
LOTAVNLU
LOTAVFLU
LOTAACTS
LOTADSAC

LOTADACS
LOTAQUIS
LOTASUSP
LOTARESM
LOTARSET
LOTALDMC

LOTARVSC

LOTAETSC

LOTASDOB

LOTASMSG

LOTASZSH
LOTARLSE
LOTAGALE
LOTAFALE
LOTAMLTD
LOTARMRM

MSCP vary-on CD request
MSCP vary-off CD request
MSCP vary-on LUD request
MSCP vary-off LUD request
MSCP activate session request
Modify LUD device-specific area
change request
MSCP de-activate session request
Modify LUD quiesce session request
Modify LUD suspend session request
Modify LUD resume session request
Modify LUD reset session request
Modify LUD load/dump mode change
request
Modify LUD retry value sets
change request
Modify LUD error threshold sets
change request
Send OREs to the OU queue and
wait for response
Send response to Modify LUD or
MSCP queue
Seize the object
Release the object
Get storage for address list element
Free storage for address list element
Handle second time-out message
Return Modify LUD reset and
load / dump abort message

How Invoked: Within the 3410/3411 Magnetic Tape
10M.

Local I/O Manager 25-13

#LOTASCH 3410/3411 Magnetic Tape 10M
Scheduler

Function: Processes messages that are sent to the tape
10M as a result of a request I/O or load/dump request.
This module contains the following procedures:

LOTARCON

LOTASCHD
LOTAALEB
LOTAPIN
LOTAPSTE
LOTASEND
LOTARIOR
LOTARDWR
LOTASRCL

LOTALDDP
LOTALDTP
LOTACKTP
LOTALTRS
LOTADQMW

LOTALDWB
LOTALDRB
LOTALDSB
LOTALDCD

LOTALDDD

Request I/O and load/dump
continue
Scheduler
Build address list element
Pin/unpin storage
Handle channel post event message
Send ORE to OU task
Request I/O router
Request I/O read and write
Request I/O space rewind, write
tape marks, and clear
Load/dump message router
Request I/O Load Tape command
Request I/O Check Tape command
Load tape read sense
Dequeue request I/O and load/dump
messages
Handle load/dump write block request
Handle load/dump read block request
Handle load/dump space block request
Handle load/dump compress data
request
Handle load/dump decompress data
request

How Invoked: Within the 3410/3411 Magnetic Tape
10M.

3430 Local 10M

#LOSGIOM 3430 10M Mainline Processor

Function: Provides the interface between the user and
the OU task that performs the 3430 tape function. This
is a queued interface where this module accepts
requests on its input queue. Control type requests are
processed immediately upon receipt. Request I/O and
load/dump requests are dequeued from the main input
queue and enqueued on separate device queues. These
separate device queues are then serviced in a sequential
manner to prevent one device from monopolizing the
tape control unit. Responses to requests are
accomplished by returning the request to the appropriate
request queue.

25-14

This module also decodes the message and invokes one
of the following functions:

• Time-out message processor (#LOSGTOM)

• Channel error message processor (#LOSGCEM)

• OU response message processor (#LOSGOUM)

• Channel attention message processor (#LOSGCAM)

• Modify CD/Modify LUD message processor
(#LOSGMLM)

• Request I/O message processor (#LOSGRIM)

• Load/dump message processor (#LOSGLDM)

• Error recovery processor (#LOSGERP)

• Common function processor (#LOSGCOM)

This module contains the following procedures:

LOSGIOIT
LOSGIORM
LOSGIOMR
LOSGIODS
LOSGIODT
LOSGIOCU

Initialization routine
Receive message handler
10M message router
Device scheduler
Destroy task routine
10M cleanup routine

How Invoked: Other VMC component.

J

#lOSGTOM Time-out Message Processor

Function: Processes time-out messages sent to the
3430 tape 10M as a result of a modify lUD request.
This module contains the following procedure:

lOSGTOMM Modify lUD time-out message handler

How Invoked: Within the 3430 tape 10M.

#lOSGCEM Channel Error Message Processor

Function: Processes channel error messages that have
occurred as a result of a channel error. This module
contains the following procedure:

lOSGCERM Channel error handler

How Invoked: Within the 3430 tape 10M.

#lOSGOUM 3430 Tape 10M OU Response
Processor

Function: Processes the OU response for messages sent
to the OU task.

How Invoked: Within the 3430 tape 10M.

#lOSGCAM Channel Attention Message Processor

Function: Processes the channel attention messages
sent to the 3430 tape 10M. This module contains the
following procedure:

lOSGCAPE Handle post event messages

How Invoked: Within the 3430 tape 10M.

#lOSGMlM 3430 Tape 10M Modify Controller
Description and Modify logical Unit
Description Processor

Function: Processes messages that are sent to the 3430
tape 10M as a result of a modify controller description
request and a modify logical unit description request.
This module contains the following procedures:

lOSGMVNC
lOSGMVNl
lOSGMACT

lOSGMlDX

lOSGMERV

lOSGMETV

lOSGMQIS

lOSGMSSP

lOSGMRST

lOSGMRSM

lOSGMDAC

lOSGMVFl

lOSGMVFC

lOSGMRMG

Handle modify CD vary-on request
Handle modify Iud vary-on request
Handle modify lUD device specific
area change request
Handle modify lU D load / dump
exchange mode request
Handle modify lUD error retry values
change request
Handle modify lU D error threshold
values change request
Handle modify lU D quiesce session
request
Handle modify lUD suspend session
request
Handle modify lUD reset session
request
Handle modify lUD resume session
request
Handle modify lUD deactivate session
request
Handle modify lUD vary-off lUD
request
Handle modify lUD vary-off CD
request
Send response to modify CD/modify
lUD message

How Invoked: Within the 3430 tape 10M.

Local I/O Manager 25-15

#LOSGRIM Request I/O Processor

Function: Processes messages that are sent to the 3430
tape 10M as a result of a request I/O request. This
module contains the following procedures:

LOSGRICM
LOSGRINM
LOSGRIWB
LOSGRIRB
LOSGRICT
LOSGRIST

LOSGRIRT

LOSGRIET
LOSGRIWT
LOSGRIW

Handle request I/O continue request
Handle request I/O normal request
Handle write block request
Handle read block request
Handle check tape request
Handle space block and space file
requests
Handle rewind and rewind/unload
requests
Handle erase tape request
Handle write tape mark request
Validate Request I/O request and
request descriptors

How Invoked: Within the 3430 tape 10M.

#LOSGLDM Load/Dump Message Processor

Function: Processes load/dump messages received by
the 3430 tape 10M. This module contains the following
procedures:

LOSGLDCM
LOSGLDNM
LOSGLDWB
LOSGLDRB
LOSGLDSB
LOSGLDCD

LOSGLDD

Handle load/dump continue request
Handle load/dump normal request
Handle load/dump write block request
Handle load/dump read block request
Handle load/dump space block request
Handle load/dump compress data
request
Handle load/dump decompress data
request

How Invoked: Within the 3430 tape 10M.

25-16

J

#lOSGERP Error Recovery Processor LOSG5300 Handle error processing for command

L
reject (write to file protected)

Function: Handles the error recovery processing when LOSG5400 Handle error processing for 3430
the OU response from the OU task indicates an error detected overrun
condition. This module contains the following LOSG5500 Handle error processing for backward
procedures: at BOT

LOSG5700 Handle error processing for data check
LOSGEOUE Process OU error response from OU (Read command)

task LOSG5800 Handle error processing for data check
LOSGEIXC Handle I/O exception errors (Read command)-with LWR failure
LOSGECRJ Handle command reject errors LOSG5900 Handle error processing for data check
LOSGEIER Handle I/O errors (Write command)
LOSG1500 Handle error processing for write LOSG5AOO Handle error processing for data check

beyond end of tape (Write command)-with LWR failure
LOSG1600 Handle error processing for wrong LOSG5000 Handle error processing for not capable

length record (not PE and not GCR)
LOSG1700 Handle error processing for read over LOSG5EOO Handle error processing for 10 burst

tape mark check
LOSG1800 Handle error processing for ready LOSG5FOO Handle error processing for word count

change after OU began processing an zero
ORE LOSG6000 Handle error processing for unit check

LOSG2000 Handle error processing for FOB error (OSE command)
LOSG2200 Handle error processing for ready LOSG6100 Handle error processing for unit check

change before OU began processing an LOSG7000 Handle error processing for invalid
ORE BSTAT/OSTAT

LOSG2300 Handle error processing for sense LOSG7100 Handle error processing for read sense
required failure

LOSG2500 Handle error processing for tape unit LOSG7200 Handle error processing for retry stack
busy overflow

LOSG3000 Handle error processing for select in LOSG7800 Handle error processing for 10M error
error, power off or disable LOSG9800 Handle error processing for operation

LOSG3200 Handle error processing for disconnect program error
inactive LOSG9998 Handle error processing for operation

LOSG3300 Handle error processing for interface program error (channel busy)
check LOSGEUOC Update request I/O RO or load/dump

LOSG3400 Handle error processing for adapter message and prepare failing OU
detected BUS IN check message for retrying

LOSG3500 Handle error processing for adapter LOSGERFR Return feedback record to load/dump
detected BUS OUT check or request I/O queue

LOSG3600 Handle error processing for unexpected
subsystem status/COAOOR How Invoked: Within the 3430 tape 10M.

LOSG4000 Handle error processing for unexpected
channel response register contents

LOSG4l00 Handle error processing for System/38
channel overrun

LOSG5000 Handle error processing for equipment
check

LOSG5100 Handle error processing for 3430
detected BUS OUT check

LOSG5200 Handle error processing for intervention
required

Local I/O Manager 25-17

#LOSGCOM 3430 Tape Common Function
Processor

Function: This module consists of routines that perform
common functions for the 3430 tape 10M. The module
contains the following procedures:

LOSGCBAL
LOSGCBLF
LOSGCBRF

LOSGCCNV

LOSGCELG
LOSGCFLU
LOSGCPIN
LQSGCRMV

LOSGCSND

LOSGCTRJ

Build address list elements
Build load/dump feedback record
Build and send request I/O feedback
record
Convert EBCDIC data to ASCII for
output and convert ASCII data to
EBCDIC for input
Generate and send error log message
Flush 10M and device queues
Pin/unpin storage
Remove OU message from OU task
queue
Set up and send OU message to OU
task queue
Terminate all jobs

How Invoked: Within the 3430 tape 10M.

25-18

3262/5211 Printer Local 10M

#LOTZERP 3262/5211 Printer Error Recovery
Procedure

Function: Accepts error message (either channel error or
invalid BSTAT) and performs error recovery. Issues read
sense data and read internal buffer requests. Makes a
system log entry if necessary and wraps up error
processing. This module contains the following
procedures:

#LOTZERP
LOTZMISC

REQIOERC
TZOPFAIL

READSENS
TZERPROC

TZERCDCL
RDTZEBUF
TZSYSLG
TZCHNLER

LOTZCNLR
LOTZCNLF
RTNCHMSG
TERMERRP
LOTZCONT
LOTZRSOU
LOTZBFR
LOTZBFC

Error recovery procedure
Handle miscellaneous request I/O
errors
Common 10M detected error recovery
Handle ORE with bad BSTAT and
initiate error recovery
Send read sense data request
Handle read sense data and read
internal buffers response
Decode DSTAT data
Read internal error buffer
Build and send error log entry
Handle channel error message and
initiate error recovery
Process the channel error
Finish processing the channel error
Return channel error message
Terminate error processing
Continue printing after error
Restart the OU task
Build and send the feedback record
Build and return feedback record

How Invoked: Within the 3262/5211 printer 10M.

L

#LOTZIOM 3262/5211 Printer Mainline

Function: Provides the interface between the user
procedure and the OU task performing the printer
function. This is a queued interface where this module
accepts requests on its input queue, performs the task
(possibly performed by another module), and then
responds to the request by returning the request to the
appropriate queue. This module contains the following
procedures:

#LOTZIOM Initial activation of module
LOTZRIO Handle request I/O
LOTZSCSP Execute Standard Character Stream

Print command
LOTZSEND Send standard character stream print

operation to OU queue
LOTZOUR Handle OU task response
LOTZRSP Handle standard character stream

response
LOTZRSND Resending the ORE to the OU task
LOTZSCSC Standard Character Stream command

completion processing
TZRSTART Restart the OU task
LOTZSIDX Handle segment identification crOSSings
LOTZINIT Handle initialization
LOTZICLN Internal cleanup routine for IMPI

exceptions

How Invoked: Other VMC components.

#LOTZLUD 3262/5211 Printer Modify Logical
Unit Description Request Handler

Function: Processes requests to modify LUD (logical unit
description) by providing the interface between the user
and the OU task performing the printer function. After
performing the requested operation, a response is
returned to the appropriate queue. This module contains
the following procedures:

#LOTZLUD
LOTZMLNM

LOTZMLMG
LOTZRMSG
LOTZQSC
LOTZRES
LOTZDAC
LOTZRCN
LOTZDSA
LOTZMLP
LOTZDEVI

LOTZMINL
TZLDSACK

LOTZRST
LOTZRSTF

LOTZVON
LOTZLUDR

LOTZACT
LOTZVOFF
LOTZSSP

Complete analyzing request
Return a modify LUD message with a
good status
Return a modify LUD message
Return message to return queue
Handle quiesce
Handle resume
Handle de-activate
Handle request I/O continue
Handle change device-specific area
Handle modify LUD pending
Build and send ORE to write
device-specific area parameters to the
adapter
Handle a forms length of 2 to 17 lines
Validate device-specific area
parameters
Handle reset
Dequeue all request I/Os from 10M
queue
Handle vary-on
Decode OU response to a modify LUD
request
Handle activate
Handle vary-off
Handle suspend

How Invoked: Within the 3262/5211 printer 10M.

Local I/O Manager 25-19

3203 Printer Local 10M

#LODRIOM 3203 Printer Mainline

Function: Provides the interface between the user
procedure and the OU task performing the printer
function. This is a queued interface in which this
module accepts requests on its input queue, performs
the task (possibly performed by another module), and
then responds to the request by returning the request to
the appropriate queue. This module contains the
following procedures:

LODRIRIO

LODRISND
LODRIOUR
LODRISPR

LODRISID

LODRINIT
LODRICLN

Validate the request I/O and build the
print ORE
Send the print ORE to the OU task
Handle the OU task response
Handle the standard character stream
print response from the OU task and
returns completion status to the user
Build an auxiliary FOB to handle data
that crosses a segment boundary
Initialize the 3203 10M
Handle exception handler cleanup

How Invoked: Other VMC components.

25-20

#LODRLUD 3203 Printer Modify Logical Unit
Description Request Handler

Function: Processes requests to modify the LUD by
providing the interface between the user and the OU
task performing the printer function. After performing
the requested operation, a response is returned to the
appropriate queue. This module contains the following
procedures:

LODRLGRM

LODRLPML

LODRLOIS
LODRLRSM
LODRLDAC
LODRLRCN

LODRLMDS

LODRLPND
LODRLDSA

LODRLUPC

LODRLOLD

LODRLRST
LODRLRTR

LODRLRTF

LODRLUDR

LODRLVON
LODRLACT
LODRLVFF
LODRLSAD

LODRLSUS

Return the modify LUD message to the
user
Complete the pending modify LUD
quiesce or suspend messages
Process the quiesce message
Process the resume message
Process the de-activate message
Process the request I/O continue
message
Verify the parameters in the
device-specific area on a
device-specific area change message
Process pending device commands
Forward the device-specific area
information to the printer
Build and send the Block/Allow
Unprintable Character command to the
device
Modify device to handle extended
forms length
Initiate processing of a reset message
Handle OU responses during reset
processing
Finish reset processing and returns the
reset message
Complete processing of the vary-on,
activate, and vary-off messages
Process the vary-on message
Process the activate message
Process the vary-off message
Reset the SSADL flags and shut off
the 10C
Process the suspend message

How Invoked: Within the 3203 printer 10M.

L

#LODRERP 3203 Printer Error Recovery Procedure

Function: Accepts error messages and performs error
recovery. These errors include channel errors,
unsucces~ful completion of OU responses, post event
errors, OU task exceptions, and invalid Request I/O
instructions. This module also returns the error response
to the user. This module contains the following
procedures:

LODREREQ

LODREBFR
LODREOUE

LODRECBY

LODRESNS

LODREPRC

LODRERBF

LODREPNR

LODREDCD

LODRELOG

LODREZLG
LODRECHN

LODREDCE

LODRECNR

LODRETRM
LODRECON

LODRECOQ
LODRERSO

Reject the Request I/O instruction
because of an invalid field
Build and send the feedback record
Handle OU task responses when
unsuccessful completion code occurs
Process a response that encountered a
channel busy condition
Build and send error recovery OREs to
the printer
Handle responses to error recovery
OREs
Build and send OREs to read internal
buffers
Decode operator intervention required
errors
Determine error from the device status
field
Build and send error data to the system
error log
Clear the 10M internal error log data
Process messages received from the
channel 10M
Decode the channel 10M message and
determines if the message was caused
by a post event error, FOB time-out, or
a channel error
Handle responses from the OU task
after receiving a channel message
Terminate error processing
Process Continue Print After Error
command
Recall OREs from the OU task
Restart the OU task

How Invoked: Within the 3203 printer 10M.

Local I/O Manager 25-21

J

25-22

Load/Dump Management

INTRODUCTION

The load/dump management component is designed as
a "pipeline", where the individual modules do a part of
the total process, and the information passes from task
to task in a direct line. Performance is greatly improved
with this design concept because each module is a
separate task. Work flowing through load/dump is not
serialized while waiting for I/O, because other
load/dump tasks can continue to run.

Load/dump management provides the functions that
allow the user to save objects on an external medium
such as, a diskette or an internal dump space, and
retrieve those objects at a later time. The objects that
can be processed by load/dump are:

• Data spaces

• Data space indexes

• Independent indexes

• Programs

~ • Journal spaces

• Space objects

• Dump spaces

If objects are dumped internally to a dump space, and
the dump space is dumped to an external medium, the
objects can be restored directly from the external
medium.

The interface to Load/Dump is through the Request
I/O, Modify LUD, and Request Path Operation
instructions. REQIO and MODLUD are used when the
operation is to external media (tape or diskette). REQPO
is used when the operation is to an internal dump
space. For simplicity in the following section, only the
REQIO and MODLUD instructions are mentioned. The
following chart shows the equivalent REQPO function:

REOIO and MODLUD

REQIO (normal)
REQIO (continue)
MODLUD Activate
MODLUD Reset
MODLUD Suspend
MODLUD Quiesce
MODLUD De-activate

Equivalent REOPO function

I/O Request
I/O Request (continue)
Initiate Path
Reset Path
Suspend Path
Quiesce
Terminate Path

These objects can be dumped, loaded over an existing
object, or created and loaded onto this or another
system. A load / dump session is initiated by a Modify
Logical Unit Description (activate) instruction. The user
communicates with load/dump through the Request I/O
instruction.

The Modify Logical Unit Description instruction is used
to change load/dump states (for example: suspend and
reset). The Request I/O instruction is used to specify
the load/dump commands and to specify the pointer to
the objects to be processed.

Load/Dump Management 26-1

Figure 26-1 shows an overview of load/dump
management. Load/dump management consists of 11
modules, each with many internal subroutines. #LDPREP
is invoked from #SIRQI01, Request I/O instruction
processes and checks for errors on the Request I/O
instruction before it is sent to the load/dump pipeline
modules. The remaining modules make up the
load/dump pipeline. In the load/dump pipeline, each
object that is to be loaded or dumped is broken into
blocks of data to be processed by the diskette or tape
10M.

Load/Dump
Pipeline

Feedback
Record

Diskette
10M Queue

Diskette /Tape
10M Task

'- OU Task

OU
Queue

Figure 26-1. Load/Dump Processing

26-2

! --,\1 r-- Response
~ Queue

User/Program
Save / Restore
Installation

Request I/O
Instruction

Request I/O
Instruction
Processor
(#SIRQI01)

Request I/O
Message

~
Load/Dump
Queue

L1r
LUD Queue

Modify LUD Instruction

Load/Dump
Error Checker
(#LDPREP)

Modify
I LUD Message

Modify LUD
Instruction
Processor
(#SILUMD1)

J

Load/dump processing is performed by a series of
tasks. Each task in the "pipeline" performs a single
major function of the total load/dump process. The
major functions include, Request I/O instruction
prdcessing, load/dump network I/O preprocessing,
object I/O preprocessing, object I/O processing, object
I/O postprocessing, and load/dump network I/O
postprocessing. The general flow of messages within
the "pipeline", as shown in Figure 26-2, is from the
Request I/O instruction processor through the I/O
preprocessors, the object I/O processor, and the I/O
postprocessors and then back to the Request I/O
instruction processor.

~~~ue 
Load/Dump 
Request I/O 
Instruction 
Processor 

-Jr-
I/O Preprocessing 
(#LDPREP) 

-Jr- 10M 
Queue 

Object 
Disk Servers I/O Manager 

(#LDOLOIM) 

-Jr-
I/O Post 
Processing 
(#LDDPST) 

I 
Figure 26-2. General Load/Dump Logic and Message Flow 

Device 10Ms 

Load/Dump Management 26-3 



Request I/O Instruction Processing 

Error Checking the I/O Request 

After load/dump is activated, the next logical step is for 
the user to issue an I/O request that contains 
load/dump commands. This I/O request is checked for 
errors that could occur at this time. The Request I/O 
instruction processor (#SI R0101) invokes #LDPREP to 
perform this check. #LDPREP uses various subroutines 
to validate the I/O request. the objects used, and the 
process and current invocation user profiles. If an error 
is detected, #LDPREP signals the appropriate exception. 
When all checks are performed and if no errors were 
detected, control is returned to #SIROI01. #SIROI01 
sends a request I/O message to the load/dump queue 
for the load / dump" pipeline" to receive. 

Dumping Objects 

When #LDMODE receives an I/O request to dump 
objects, it scans through the request descriptor for 
network boundaries. Each time #LDMODE finds a 
network boundary, it formats a network message and 
sends the message to #LDDNPRE. The network 
message indicates which request descriptors are in the 
network, journal information, task dispatching element, 
and various counters and pointers for use by 
#LDDNPRE. Between each network message, the mode 
routine checks for modify LUD messages. 

#LDDNPRE receives the network message from 
#LDMODE. #LDDNPRE seizes each object identified in 
the network message and transfers control to #LDDPST. 
For each dump request descriptor in the network, 
#LDDNPRE formats and sends an object message to 
#LDDOPRE. Each object message contains 
addressability to the specific request descriptor for that 
object. journal information, information on which 
network the object is from, and data areas for 
#LDDOPRE. 

#LDDOPRE receives the object message from 
#LDDNPRE. An object-specific routine is invoked to 
verify that the object can be dumped. Another 
object-specific routine is invoked to build the 
load/dump descriptor, and to list the segments that are 
included in the object. #LDDOPRE adds a list of 
pointers to the object message il}dicating the segments 
to be dumped. This includes toRe load/dump descriptor 
segment and each of the segments in the object. The 
object message is then sent to #LDODOIM. 

26-4 

#LDODOIM receives the object message from 
#LDDNPRE. The segments listed in the message are 
brought into storage, pinned, and added to an address 
list element. The address list element is put into a 
message that is sent to the device 10M. The device 
10M transfers the data to the media. When the process 
is completed, the segments are unpinned and the object 
message is sent to #LDDPST. 

#LDDPST receives the object message from 
#LDODOIOM, releases the object addressed by the 
message, and does any necessary journaling. The 
released object message is sent to #LDDNPRE to be 
reused. When #LDDPST has received all the object 
messages for a network, the network message is sent 
to #LDMODE. When all network messages have been 
sent and received, #LDMODE responds with a feedback 
record. 

Loading Objects 

To perform a load function, load/dump loads an object 
from a load / dump media either by overlaying an already 
existing object (load) or creating a new object (create 
and load). Load/dump searches the media for the 
request descriptor that describes the object to be 
loaded. When the correct request descriptor is found, 
load/dump either adjusts the object being overlaid or 
creates a new object in which to load the object. The 
object is then loaded. When the load function is 
completed, the object is restored to a usable form. 

When #LDMODE receives an I/O request to load an 
object, #LDMODE scans the request descriptor for 
network boundaries. Each time a network boundary is 
found, #LDMODE formats a network message and 
sends it to #LDLNPRE. The network message contains 
information on which request descriptors are in the 
network, set command information, task dispatching 
element. and counters and pointers for use by 
#LDLNPRE. Between each network message, 
#LDMODE checks for modify LUD messages. 

The load network preprocessing task (#LDLNPRE) is a 
function that receives a load network request from 
#LDMODE and breaks the network into load object 
requests to be processed by #L.DLOPRE (load object 
preprocessing task). The load network request has 
information about a group of request descriptors that 
are grouped together as a load/dump network. 



When #LDLNPRE receives a load network request, 
#LDLNPRE scans the load/dump network to access the 
objects that are associated with the network. This 
involves doing an exclusive seize on each object 
associated with the load request and on each data 
space index that is over a data space associated with a 
load request. The seizes are transferred to #LDLNPST 
(load network postprocessing task), where each object is 
released after it is loaded. 

#LDLNPRE then breaks the load/dump network into 
individual objects. #LDLNPRE formats a load object 
request for each load and create-and-Ioad request 
descriptor in the network. Each load object request has 
information about the object to be loaded, as well as 
information about the network with which it is 
associated. As each load object request is formatted, it 
is sent down the "pipeline" to #LDLOPRE. 

#LDLOPRE takes a load object request from #LDLNPRE 
and interfaces with storage management (#LDOLOIM) to 
load the object. 

Work begins in #LDLOPRE when a load object request 
containing information about an object to be loaded 
from the media, is received. When an object on the 
media is to be loaded over an already existing object in 
storage, an object-specific routine is invoked to check 
the object in storage to make sure that it is a valid 
object to be loaded over. Once it is verified that the 
object can be loaded ·over, #LDLOPRE sends a read 
descriptor request to #LDOLOIM and waits for a 
response. After the request descriptor is read from the 
media (#LDLOPRE has received the read descriptor 
response), an object-specific routine is invoked to check 
the request descriptor to make sure that the object on 
the media is a valid object to be loaded into storage. 
When the request descriptor is verified, another 
object-specific routine is called to adjust the storage to 
the appropriate size necessary to contain the object to 
be loaded from the media. 

#LDLOPRE then completes processing the load object 
request by building a read object request and sending it 
to #LDOLOIM. The read object request indicates that 
the object should be read from the media and loaded 
into storage. 

#LDLOPST takes a read object response from 
#LDOLOIM and restores the loaded object to a usable 
form. Each object must have the encapsulated program 
architecture header and pointers to the associated space 
adjusted, as well as some object-specific processing, in 
order to put the object in a suitable format. 

Each created and loaded object is inserted into a user 
profile. When requested, each object is also inserted 
into a context by #LDLOPST. 

When it is requested that a create and load object 
should be journaled, #LDLOPST starts the journal 
process. An object-loaded entry is made for any object 
that is being journaled. 

#LDLOPST then completes processing the object by 
sending a load object response to #LDLNPST, indicating 
that the object is in a usable form. 

#LDLNPST receives load object responses from 
#LDLOPST and gathers them back into load/dump 
networks. When all the load object responses 
associated with a load / dump network are received, 
#LDLNPST completes network processing. Then links 
are restored between objects in the load/dump network. 
After the links are restored, the objects associated with 
the load/dump network are released. This task then 
completes its processing of the network by sending a 
load network response to #LDMODE indicating that the 
network is in a usable form. 

When all network messages have been sent and 
received, #LDMODE responds with a feedback record. 

Load/Dump Management 26-5 



Loading Objects from a Dump Space 

Objects that are saved to an internal dump space, then 
dumped to an external medium, can be restored directly. 
The objects are restored from the external medium if the 
proper bit is set in the set load / dump parameters 
request descriptor. 

When #LDPREP module verities the source/sink 
request, it checks for a set load / dump parameters 
request descriptor with the 'load out of a dumped 
space' bit set. #LDPREP sets a corresponding bit in the 
load / dump session control block. 

When #LDMODE receives an I/O request to load an 
object, it checks to see if the bit is set, and creates the 
#LDLOOC task. #LDLOOC (load out of container) 
checks to see if the media is positioned correctly. If not, 
an invalid descriptor error is signaled, and the I/O 
request ends. If the media is positioned correctly, 
#LDLOOC modifies the device parameters so 
#LDOLOIM builds its commands as if loading from a 
dump space. #LDLOOC also changes the address of the 
input queue for the 10M. Thus, #LDLOOC is now 
inserted between #LDOLOIM and the device 10M. 

When #LDLOOC receives the read request, it sends a 
read request to the 10M to fill its internal buffers. 
#LDLOOC then copies data from its buffers to the 
buffer in the #LDOLOIM read request. Any data left 
over in #LDLOOC buffers is saved and copied to the 
next request from #LDOLOIM. 

26-6 

Modify Logical Unit Description Processing 

Modify LUD Message Flow 

The general strategy used by load / dump for handling 
Modify LUD instructions to the LUDs are as follows: 

Note: There are some exceptions. These exceptions 
depend on the modify LUD messages and are listed 
under the appropriate modify LUD message. 

• Load / dump receives the modify LU D message. 

• Load/dump management processes the modify LUD 
message, informing the load/dump "pipeline" as 
needed. This mayor may not involve broadcasting 
internal modify LUD type messages to the tasks in 
the" pipeline". 

• When load / dump processing is completed, 
load/dump sends the modify LUD message to the 
device 10M. After processing is completed, the 
device 10M returns the modify LUD message to 
load/dump. 

• When load/dump receives the response from the 
device 10M, the modify LUD message is returned to 
the modify LUD processor. 



Activate Message 

The device 10M creates the load / dump session when it 
receives a Modify LUD (activate) instruction for a 
primary LUP in load/dump mode. The device 10M 
creates the load / dump session control block and 
initializes the parts of the session control block that 
contain device-specific information. Then the device 
10M creates the #LDMAIN task and passes the address 
of the session control block to a register. #LDMAIN 
provides the initialization and termination code for the 
load/dump session. The modify LUD activate message 
is then sent to #LDMAIN so that the activation status 
can be returned to MSCP along with the message. 

#LDMAIN determines the load/dump mode (load or 
dump) and completes the initialization of the session 
control block for that mode. #LDMAIN then creates the 
queues and buffers required by load/ dump for that 
function. When the queues and buffers are allocated 
successfully, #LDMAIN creates the "pipeline" tasks that 
are associated with that function. When activation 
processing is complete, #LDMAIN returns the modify 
LUD activate message and calls the mode routine 
(#LDMODE). The mode routine handles all active state 
processing. 

Suspend Message 

Load/dump suspends the load/dump session. This 
involves interrupting the Request I/O instruction in 
progress, but completing any networks in progress. The 
load/ dump mode task stops sending work down the 
"pipeline" at the next network boundary. When all 
outstanding networks have completed, load / dump 
returns the feedback record with the suspended error 
status and the suspend message is returned with a 
successful status. If an error occurs, load / dump returns 
the feedback record with the appropriate error status 
and rejects the suspend operation. 

Quiesce Message 

Load/dump quiesces the load/dump session. This 
involves completing any Request I/O instructions in 
progress, and any Request I/O instructions on the input 
queue. The load / dump mode task keeps track of the 
functions that need to be completed. When all Request 
I/O instructions are completed, the quiesce message is 
returned with successful status. If an error occurs, 
load/ dump returns the feedback record with the 
appropriate error status and rejects the quiesce 
operation. 

Reset Message 

When load/dump receives the modify LUD reset 
message from the modify LUD processor the following 
occurs: 

1. 

2. 

3. 

Load/dump turns on a reset bit in the load/dump 
session control block. The reset bit is needed 
because parts of the "pipeline" may be slower in 
completing the reset, thus, a task may think it has 
been reset and then may receive some messages 
from an earlier task. The reset bit also aids in a 
quick start of reset. Tasks may start resetting 
immediately, even before they receive the reset 
message. 

Load / dump broadcasts an internal reset message 
to all "pipeline" tasks. The internal reset message 
is sent to activate tasks that may be waiting on 
their input queues. The message is broadcast, 
instead of passed down the "pipeline", because a 
task waiting on an external seize may hold up the 
passing of the reset message. 

Load/ dump returns any outstanding retry 
messages to the task that received the error. If a 
"pipeline" task has a retry message outstanding, it 
waits for the message before doing any reset 
processing. 

4. Load / dump then waits for outstanding work and 
reset responses to be returned. Any retry 
messages received now are returned to the proper 
task. 

Load/Dump Management 26-7 



5. 

6. 

Each task receives the internal reset message, then 
returns the message to the load / dump queue. If 
the task is in error mode, it waits until it receives a 
retry message and then aborts the current work. 

When an abnormal end-of-task occurs, the task 
receives any input messages necessary to 
complete processing. The task then releases all 
seizes and passes all current work through the 
"pipeline" with a partially processed completion 
code. No work is put on the input queue as long 
as the reset bit in the load / dump session control 
block is turned on. Any error message from a 
previous task is passed through unchanged as in 
normal processing. 

When all outstanding work is returned, and all the 
internal reset messages are returned, the mode 
routine returns the feedback record with a partially 
processed error summary set (only if there is an 
internal request I/O message). The mode routine 
then removes all the request I/O messages from 
the input queue and returns feedback record 
messages with the error summary. The reset bit in 
the load / dump session control block is turned off 
and the modify LUD reset message is returned to 
the modify LUD processor. This modify LUD reset 
message is not routed through the device 10M 
because the object 10M (the "pipeline" task that 
communicates with the device 10M) resets the 
device 10M as part of the object 10M reset 
processing. 

Resume Message 

Load/dump does no processing for a resume message. 
Only the state of the LUD changes. 

Load / Dump Indicators - Exchange Message 

Load/dump receives the modify LUD exchange message 
and changes the needed pointers so the noncurrent LUD 
and the current LU D are switched. The exchange 
message is not sent to the device 10M. 

26-8 

De-activate Message 

The mode routine receives the message and sends it to 
#LDMAIN. #LDMAIN broadcasts an internal de-activate 
to each task in the "pipeline". Each "pipeline" task that 
receives the message cleans up, returns the message, 
and destroys itself. #LDMAIN deallocates all buffers 
allocated during session activation. #LDMAIN sends the 
modify LUD de-activate message to the device 10M and 
waits for it to be returned. When the response is 
received, #LDMAIN returns the de-activate message to 
the modify LUD message processor and destroys itself. 

First Time-out Message Processing 

If load/dump does not know of any modify LUD 
messages, either internally or at the device 10M, the 
time-out message is returned to the Modify LUD 
processor and no action is taken. If there is a modify 
LUD message at the device 10M, load/dump starts 
second time-out processing. See Second Time-out 
Message Processing later in this chapter. 

If load / dump is processing a quiesce or suspend 
message, the message is rejected with time-out status. 
If load/dump is processing any other modify LUD 
messages, load/dump starts second time-out 
processing. 

Second Time-out Message Processing 

Note: Second time-out processing does not necessarily 
mean that a second time-out message was received. It 
is a name used for abnormal ending of the load/dump 
task. 

Second time-out processing involves starting a timing 
process that causes load / dump to get a fake second 
time-out 5 seconds after a real second time-out 
message. The fake time-out message contains a 
nonzero return queue pointer. Load / dump issues the 
fake time-out because it never gets a real second 
time-out message if the device is a tape. 

J 



Load/dump receives the second time-out message (real 
or fake) and passes it directly to the device 10M. Any 

response is ignored by the load / dump. 

Load/dump then begins to take down the session by 
broadcasting an internal message to time-out any 
subordinate tasks. Load / dump waits for all the internal 
time-out messages to be returned, and then #LDMAIN 
destroys itself. 

Error Handling 

When any" pipeline" task receives an error, it stops 
processing new requests from its input queue by 
adjusting the receive key. The" pipeline" task builds an 
error message (using the current request message) that 
contains a completion code showing what error 
occurred, and information necessary to restart the task. 
This information always includes a pointer to the 
"pipeline" task input queue, and a copy of the current 
return queue address. This error message is then sent 
through the" pipeline". 

Each task receives the error message after previous 
messages on its input queue are processed. The error 
message is not processed, but is sent through the 
"pipeline". The mode routine receives the error 
message and reads the completion code. The mode 
routine sends back a feedback record with the 
appropriate error summary. 

If the I/O request is retried, the mode routine changes 
the error message into a retry message by restoring the 
return queue pointer from the saved copy, changing the 
key, and clearing the completion code field. Then the 
mode routine sends the message to the receiving queue 
of the task that received the error. When the failing task 
receives the retry message, it is released from error 
mode. The task then uses the information in the 
message to retry the request. 

If an error occurs in two "pipeline" tasks at the same 
time, the error from the task working on the earliest 
request is processed first. Since that task has closed its 
input queue, it does not receive the error message from 
the other task until after the mode routine receives the 
error message, recovers and retries by sending the retry 
message to the task. The second error message 
continues through the "pipeline". 

Storage Management for Load/Dump 

Load / dump manages its own I/O and storage pool 
separately from the rest of VMC. 

When the load / dump session starts, #LDMAI N sets the 
size of a special pool that is created out of the user's 
storage pool. This special pool is then used only for 
storage needed by load / dump. The size of the special 
pool is based on the size of the original user pool and 
the transfer size of the device. The special pool is 
created by the object 10M when the load/dump activate 
message is received. The object 10M returns the special 
pool pages to the user pool when a modify LUD 
de-activate message is received. 

Data is manipulated only in the special pool pages. The 
use of the pages is explicitly managed by the object 
10M. Access to secondary, or disk storage is also 
managed explicitly by the object 10M. The normal 
storage management interfaces are not used. When the 
object 10M is activated, a variable number of disk server 
tasks are created. The number is set by #LDMAIN and 
depends on the number of disks on the machine. These 
disk server tasks handle all the accesses to the disks for 
the load/dump session for data being loaded or 
dumped. Normal paging continues to use the normal 
storage management. When the object 10M receives 
the de-activate message, the disk server tasks are 
destroyed. 

Device 10M 

Load/Dump Session Control Block (Create/Destroy) 

A load/dump session control block is created by a 
diskette or tape 10M each time a device LUD is varied 
on and is destroyed when the device LUD is varied off. 
This is to ensure that a load / dump queue, contained in 
the load / dump session control block, exists when an 
activate message is received for a load/dump session 
and also to ensure that the load / dump session control 
block and load/dump queue exist until a load/dump 
session is de-activated. The load / dump session control 
block must exist before activation and after 
de-activation of a load/dump session so the modify 
LUD activate, de-activate, and time-out messages are 
handled properly. 

Load/Dump Management 26-9 



Load/Dump Session (Activate/De-activate) 

A common routine (#LOLDDAD) is called by the device 
IOMs to activate or de-activate a load/dump session. 
To activate a primary load / dump session, #LOLDDAD 
initializes the load / dump session control block including 
the load / dump queue contained in the load / dump 
session control block. #LOLDDAD then creates the 
load / dump task. If the create task is successful, the 
activate message is forwarded to the load / dump queue 
and returned to the Modify LUD processor by 
load/dump management. If the create task fails, the 
activate message is returned to the Modify LUD 
processor with the error status. To activate an 
alternative load / dump session, the routine copies the 
load/dump queue pointer and load/dump session 
control block pointer from the primary LUD to the 
alternative LUD and returns the activate message to the 
Modify LUD processor. 

After the primary load / dump session is activated, all 
modify LUD messages for the current load/dump 
session are sent to the load / dump queue. All modify 
LUD messages for noncurrent load / dump session 
devices are sent to the 10M queue. 

If a time-out message is received by the device 10M for 
the activation of the primary load/ dump session, it is 
forwarded to the load/dump queue. 

The common routine (#LOLDDAD) is again invoked by 
the device 10M to de-activate a load/dump session 
device. The pointers to the load / dump queue and the 
load/ dump session control block are replaced by zeros, 
and #LOLDDAD then returns the de-activate message 
to the sender. 

26-10 

DATA AREAS 

Session Control Block 

There is one session control block for each load/dumIJ 
session. The session control block is the common 
structure for intratask control and communication. The 
session control block is divided into four areas: general. 
load / dump specific, object I/O manager specific, and 
device I/O manager specific. 

The general area of the session control block contains 
pointers and session tuning information. Some of the 
pointers and tuning parameters are created by the 
device 10M during session activation. The rest are 
created by #LDMAIN, during session activation, and 
updated by #LDMODE during modify LUD processing. 

The pointers point to structures and queues outside the 
load/dump "pipeline". The device 10M input queue 
pointer and current LUD pointer are set by the device 
10M during session activation. The load / dump session 
input queue pointer is set by #LDMAIN during session 
activation. The current LUD pointer and current modify 
LUD message pointer are updated by the #LDMODE 
during modify LUD processing. 

The tuning parameters control the performance of the 
load/dump "pipeline". There are three types of tuning 
parameters: LUD parameters, device parameters, and 
load/dump parameters. The LUD parameters are 
specified by the user when the Modify LUD (activate) 
instruction is issued. The device 10M copies the 
parameters from the LUD to the session control block 
during session activation. The device parameters are 
values defining the data transfer characteristics of a 
specific device. The load/ dump parameters are values 
calculated from the LUD and device parameters. The 
load/ dump parameters define the limits on the 
resources used by load / dump during an active session. 

J 

J 



The load/ dump specific area is initialized by #LDMAIN 
during session activation. The load / dump specific area 
of the session control block contains queues and 
pointers that control the flow of information within the 
load/dum\:> "pipeline". There is one queue for 
#LDMAIN and #LDMODE, and one for each "pipeline" 
task in a session. The control information is contained 
in two tables: the "pipeline" communications table and 
the flow control table. The "pipeline" communications 
table supports the intertask communication that 
bypasses the normal sequential flow of the "pipeline". 
The flow control table contains one flow control entry 
for each task in the" pipeline". The flow control table 
controls the flow of information in the "pipeline" by 
specifying for each task the queue that it uses for input, 
and the queue it uses for output. 

Dump Network Message 

The dump network message is created by #LDMAIN. 
#LDMODE formats the dump network message and 
sends it to #LDDNPRE. The network message indicates 
where the network starts, how many request descriptors 
there are in the network, how many objects are in the 
network, journal information, and task dispatching 
element. 

Each object message has a pointer to its dump network 
message. #LDDPST uses this pointer to locate the 
dump network message. As each object message is 
received, #LDDPST increases an objects-received count 
in the dump network message. When the 
objects-received count is the same as the number of 
objects in the network, #LDDPST sends the dump 
network message to #LDMODE. 

Dump Object Message 

The dump object message is created by #LDMAIN and 
formatted by #LDDNPRE. The dump object message 
contains journal information, an area for a segment 
identifier table, and pointers to the request descriptor, 
the object, the dump network message for the object, 
and the load/dump descriptor segment identifier. 
#LDDNPRE creates one load/dump descriptor segment 
identifier for each dump object message. The area for 
the segment identifier table is at the end of the dump 
object message. It contains a list of segments that are 
in the object. This table is built by #LDDOPRE, and 
identifies to #LDODOIM what segments to send to the 
device. 

Load Network Messages 

The load network message is created at initialization 
time by #LDMAIN. The segment identifier that contains 
this message also contains two tables associated with 
the network. These tables are the object table and the 
seize table. #LDMODE builds the load network message 
and sends it to #LDLNPRE. Based on information in the 
load network message, #LDLNPRE builds the two tables 
and places them at the end of the network message. 

There is one entry in the object table for each object in 
the network. All the information to build the object table 
entry for a load operation is contained in #LDLNPRE. 
#LDLNPRE normally builds the object table. However, 
for a create and load operation, most of the necessary 
information is contained in the load/dump descriptor, 
which load/dump cannot access until the information is 
read from the media. In this case, #LDLOPRE builds the 
object table entry. Each entry in the object table has an 
indicator that is set on by #LDLOPST when an object is 
successfully loaded. 

There is one entry in the seize table for each object in 
the network and one entry for each data space index 
that is over a data space being loaded in the current 
network. The seize table entries are built when each 
object is being seized by a load/dump "pipeline" task. 
#LDLNPRE seizes all objects being loaded over and 
builds the seize table entry at that time. For create and 
load operations, the object is seized by #LDLOPST after 
the object is loaded from the media, and the seize table 
is built at that time. Each entry has an indicator, 
indicating if the object is seized or released. 

Addressability to the network message is established 
through each object message associated with the 
network, and #LDLNPST gains addressability to the 
network message through the object messages. When 
#LDLNPST has completed all processing on the 
network, it sends the load network response back to 
#LDMODE after releasing all the seized objects in the 
network. 

Load/Dump Management 26-11 



Load Object Message 

The load object message is contained in a segment 
identifier created during initialization by #LDMAIN. An 
object information segment associated with each load 
object message is created by #LDLNPRE, and a pointer 
to the object information segment is set in the load 
object message. The load object message invokes 
different processing in the" pipeline", depending on the 
value of the function code. The same message is used 
as a load object, a read descriptor, and a read object 
message by different tasks in the" pipeline". 

The object information segment identifier contains the 
object segment table, the fix-up data, and the base 
page buffer that is associated with the object. The 
object segment table contains an entry for each segment 
in the object. The fix-up data varies from object to 
object. Some object types have no fix-up data, while 
with other object types, the length of the fix-up data 
depends on the characteristics of each particular object. 
Each object has a base page buffer that must begin on 
a page boundary and have the length of one page. 
Because the length of the object segment table and the 
fix-up data varies from object to object, the pointers to 
the data areas in this segment identifier are kept in the 
object message and are computed for each object. 

There is one entry in the object segment table for each 
segment in the object. The object segment table is built 
by the object-specific routines that perform object 
storage adjustment. The object segment table is used 
to tell #LDOLOIM where the object is to be loaded and 
when the object is read from the media. The object 
segment table is found in the object information 
segment that is associated with each object message. 

26-12 

Recoverable Error Processing 

When a recoverable error such as an end-of-volume 
error occurs, load/dump raises the receive key such that 
only request I/O continue or modify LUD messages can 
be received. Load/dump then returns to the user the 
request I/O that incurred the error. The user must then 
correct the error (for an end-of-volume this means that 
the user must interface directly with the 10M to 
reposition the device at the start of the next volume). 
The user then issues the Request I/O instruction that 
incurred the error to load/dump. This request must be 
put at the top of the load/dump queue. The user then 
issues a Request I/O (continue) instruction. Load / dump 
receives the Request I/O (continue) instruction, lowers 
the receive key to allow normal processing, and then 
returns the request I/O continue status to the user. 

The next request I/O received by load/dump will be the 
request that incurred the error. Load / dump checks the 
RDs received with the request to detect that no 
modifications were made. Then load/dump passes the 
message to the 10M that is responsible for completing 
the request. 

J 



STRUCTURE 

The following is a list of the modules in load/dump 
management and the function that each module 
performs. This list also shows how the module is 
invoked. 

#LDCRTDS Create Dump Space 

Function: Creates a new dump space according to the 
input specifications. 

How Invoked: Within this component. 

#LDDESDS Destroy Dump Space 

Function: Destroys the specified dump space. 

How Invoked: Destroy Dump Space instruction. 

#LDDFDT Dump Flow Definition Table 

Function: Describes the tasks and the order of those 
tasks in the "pipeline" for dump mode. 

How Invoked: Within this component. 

#LDDNPRE Load/Dump Dump Network 
Preprocessing Routine 

Function: Preprocesses dump requests on a load / dump 
network. Distributes a network request to object 
requests. 

How Invoked: Within this component. 

#LDDOPRE Load / Dump Object Preprocessing 

Function: Interfaces with the object 10M (#LDODOIM) 
to dump objects to a media. 

How Invoked: Within this component. 

#LDDPST Load/Dump Dump Object/Network 
Postprocessing Routine 

Function: Sends dump object responses until a network 
is completed, then sends the dump network response. 

How Invoked: Within this component. 

#LDENSUR Ensure Dump Space Object Instruction 
Processor 

Function: Ensures that all the data in the specified dump 
space is written to auxiliary storage. 

How Invoked: Within this component. 

#LDlNSDD Insert Dump Data Instruction Processor 

Function: Adds the given data record to the specified 
dump space. 

How Invoked: Insert Dump Data instruction. 

#LDLD Dump Space Object Specific Routine 

Function: Verifies and provides information about a 
dump space when the dump space is being dumped or 
loaded. 

How Invoked: Within this component. 

#LDLDESC Validate Load / Dump Descriptor 
for Read Descriptor 

Function: Verifies that the block of data read "from the 
media is a load / dump descriptor and checks for a 
match with the requested object identifier. Returns 
additional information to the caller such as descriptor 
size, data format, block size when dumped, and space 
block count to the next descriptor. 

How Invoked: Within this component. 

#LDLFDT Load Flow Definition Table 

Function: Describes the tasks and the order of those 
tasks in the "pipeline" for load mode. 

How Invoked: Within this component. 

Load/Dump Management 26-13 



#LDLFND Validate Load/Dump Descriptor for 
Find Next Descriptor 

Function: Verifies that the block of data read from the 
media is a load / dump descriptor and copies the object 
identifier into the specified object identifier buffer. 
Returns additional information to the caller such as 
descriptor size, data format, block size when dumped, 
and space block count to the next descriptor. 

How Invoked: Within this component. 

#LDLNPRE Load / Dump Load Network 
Preprocessing Routine 

Function: Preprocesses load requests on a load / dump 
network. Sends a network request into object requests. 

How Invoked: Within this component. 

#LDLNPST Load/Dump Load Network 
Postprocessing Routine 

Function: Does load postprocessing on a load / dump 
network. Distributes object responses until a network is 
completed, then restores the network to a usable form. 

How Invoked: Within this component. 

#LDLOOC Load Objects from a Dump Space 

Function: Reads the data from the media and presents it 
to load/ dump management as needed. This routine 
maps the block sizes that are on the media. 

How Invoked: Within this component. 

#LDLOPRE Load / Dump Load Object Preprocessing 
Routine 

Function: Interfaces with the object 10M (#LDOLOIM) to 
load objects from a media. 

How Invoked: Within this component. 

26-14 

#LDLOPST Load / Dump Load Object 
Postprocessing 

Function: Restores an object to a usable form after it is 
loaded from a media. 

How Invoked: Within this component. 

#LDMAIN Load/Dump Session Main Task Entry 
Point 

Function: Provides the common initialization and 
termination code for the load/dump session. 

How Invoked: Within this component. 

#LDMATDS Materialize Dump Space Attributes 
Instruction Processor 

Function: Retrieves and materiali7P c; the attributes of the 
specified dump space. 

How Invoked: Within this component. 

#LDMODDS Modify Dump Space Attributes 
I nstruction Processor 

Function: Modifies the attributes of the specified dump 
space. 

How Invoked: Within this component. 

#LDMODE Load/Dump Mode Routine 

Function: Controls the interface processing for 
load/dump in dump and load mode. 

How Invoked: Within this component. 

#LDODOIM Load / Dump Object I/O Manager for 
Dump 

Function: Manages transfer of data from the single level 
storage to an external device for load / dump. 

How Invoked: Within this component. 



#LDOLOIM Load / Dump Object I/O Manager for 
Load 

Function: Manages transfer of data from the external 
device to single level storage for load / dump. 

How Invoked: Within this component. 

#LDPIPEH Load / Dump" Pipeline" Default 
Exception Handler 

Function: Handles and reports unexpected exceptions in 
load / dump" pipeline" tasks. 

How Invoked: Within this component. 

#LDPREP Load/Dump Request I/O 
Preprocessing Routine 

Function: Preprocesses error checking for the 
load/dump I/O request. The error checking is done 
synchronously by the process. 

How Invoked: Request I/O instruction. 

#LDREQPO Request Path Operation Instruction 
Processor 

Function: Provides the interface between the REQPO 
instruction and load / dump. 

How Invoked: Within this component. 

#LDRETDD Retrieve Dump Data Instruction 
Processor 

Function: Gets a data record out of the specified dump 
space at the specified location. 

How Invoked: Within this component. 

#LDSIDS Change Dump Space Size Routine 

Function: Extends or truncates the dump space data 
area as requested. 

How Invoked: Within this component. 

#LODDCD Load/Dump Data 
Compression/Decompression Task for 
72M D Diskette Device 

Function: Compresses the data before sending it to the 
72MD 10M task for dump, and decompresses the data 
from the 72MD when restoring it. 

How Invoked: Within this component. 

Load/Dump Management 26-15 



26-16 



Machine Services Control Point 

INTRODUCTION 

The machine services control point (MSCP) consists of 
routines that provide services to other source / sink 
components. These routines assist in allocating and 
controlling the use of all source/sink resources. The 
functions of these routines are to: 

• Establish the physical and logical paths over which a 
user can communicate with a source/sink device. 

• Assist in recovery and orderly termination of a 
session when a failure occurs. 

• Handle requests on the MSCP-Iogical unit (LU) and 
MSCP-physical unit (PU) sessions, SDLC only. 

There are two types of MSCP routines. 

• Synchronous routines: These routines execute 
synchronously to the requester, are invoked using a 
call / return interface, and execute under the process 
of the requester. 

• Asynchronous routines: These routines execute under 
an independent MSCP task and perform their 
functions asynchronous to any. processing done by 
the requester. 

Both types of routines use the source/sink active device 
list. The source/sink active device list is a control block 
that contains the information required by these routines. 
This block is further described in the Data Areas in this 
section. 

The System/38 instructions and functions supported by 
the synchronous MSCP routines are as follows: 

• Modify Controller Description 
Vary-on 

- Dial 
Abandon connection 
Vary-off 
Continue 

- Cancel 

• Modify Logical Unit Description 
Vary-on 

- Activate/de-activate session 
- Vary-off 
- Continue 

Cancel 

• Modify Network Description 
- Vary-on 
- Enable 

Manual answer/manual start data 
- Disable 

Abandon call 
- Vary-off 
- Continue 

Cancel 

The synchronous MSCP routines are invoked by the user 
process, and they complete execution before the 
System/38 instruction is complete. 

The MSCP task (asynchronous) is a VMC function that 
is always active, waiting on a queue for function 
requests or responses to MSCP messages. When a 
message is received, the base MSCP module 
(#MSCPTSK) routes the message to the appropriate 
routine according to the function code. These routines 
do not wait for any asynchronous requests or 
responses; they perform their functions and return 
control to #MSCPTSK. 

Machine Services Control Point 27-1 

\ 



Modify Controller Description (Synchronous) 

The MSCP routines that perform the modify controller 
description (CD) functions for vary-on communications 
and dial do not perform the entire function. In these 
cases, messages are sent to the appropriate I/O 
manager (10M) to initiate the function. At some time 
later, additional asynchronous processing by the MSCP 
task is required to complete a vary-on and dial. 

Vary-On 

#MSCVONN acquires storage and builds the CD 
source/ sink active device list control block. For 
nonswitched lines, the CD is associated with a specific 
network description (ND) that must already be varied on. 
The CD source/sink active device list block is created, 
and a message is enqueued to the CD pending queue in 
the source/ sink active device list. A request exchange 
identification message is then sent to the 
SDLC/BSC/MTAM 10M to request that the station be 
polled for the exchange identification information for 
that station. 

Note: For a 3274 Controller, a request contact message 
is also sent to the asynchronous MSCP task to start the 
contact sequence. 

This ends the synchronous processing and the CD is set 
to the vary-on pending state. 

When a CD for a nonswitched network only is being 
explicitly varied-on using the Modify CD instruction and 
the ND associated with the CD is not available due to 
prior failures or the reuse of the communications line 
has been suspended, the recovery resource / activation 
state for the CD is set to the status of the ND. The CD 
is in the varied-on pending state and synchronous 
processing is completed. 

For switched lines, the CD can be associated with any 
number of NDs when a call is completed. The CD 
source/sink active device list block is created, and a 
message is enqueued to the CD pending queue in the 
source/ sink active device list until the connection is 
made. The CD is set to the varied-on pending state, 
ending the synchronous portion on the vary-on. 

27-2 

For directly attached CDs (no NDs), the complete 
vary-on process is performed. This consists of the 
following: 

• The operational unit (OU) tasks and the 10M task are 
created and their registers initialized. This is not done 
for a display station pass-through controller. 

• The input queues are allocated to these tasks. 

• A CD contact message is sent to the 10M. This is 
not done for a display station pass-through 
controller. 

• A CD source/sink active device list block is created 
and chained to the source/ sink active device list. 

• A CD contact successful event is signaled for the 
work station controller or a display station 
pass-through controller. 

For X.25 permanent virtual circuits (PVC)' the CD is 
associated with a specific ND and a logical channel 
entry. When the CD is varied on, the MSCP creates and 
initializes the CD source/sink active device list control 
block. The CD pending message is enqueued to the CD 
source sink active device list control block. The key of 
this message contains the remote XID, the local line ID, 
the logical channel I D, and an indication that this 
pending message is for an X.25 CD. A request XID 
message is sent to the XIOM to send XID across the 
network. The request XID message contains the CD 
address for a PVC. When the request XID message is 
returned, the synchronous processing of vary-on CD is 
complete and the CD status is set to the vary-on 
pending state. 

For X.25 switched virtual circuits, the CD could be 
associated with any of a number of NDs when the call 
is completed. Also, the CD could be associated with 
any number of logical channel entries when the call is 
completed. When a switched CD is varied on, a CD 
source sink active device list control block is created and 
initialized. Also, the CD pending message is enqueued 
to the CD pending queue. The key of this message 
contains the remote network address, the remote 
password, and an indication that this is an X.25 CD. 
The CD is set to vary-on pending state and the 
synchronous processing is complete. 

J 

J 



Dial 

#MSCDIAL processes the modify CD dial request. The 
ND candidate list in the CD is searched to locate a 
swhched ND that is in the switched-enabled state for 
dial out with the recovery resource/ activation state set 
to continue. The line is then allocated to the dial 
operation for this CD. An abandon call message is sent 
to the MSCP task to inhibit the SDLC/BSC/MTAM 10M 
from accepting incoming calls. If the status field in the 
abandon call message is good, an initialize-line message 
is sent to the SDLC/BSC/MTAM 10M. Dialing is in 
progress when good status is returned with the 
initialize-line message. If the ND for the line indicates 
that the machine is in autodial mode, then the 
connect-out message is sent to the SDLC/BSC/MTAM 
10M. For manual dial, the CD manual intervention event 
is signaled with system pointers to the CD and the ND. 
The CD and ND are set to the dialing state, ending the 
synchronous portion of the dial. 

For X.25, #MSCDIAL processes the modify CD dial 
request. The ND candidate list in the CD is searched to 
locate an X.25 ND that has at least one switched virtual 
circuit out or switched virtual circuit both logical channel 
entry available. If a logical channel is available, the 
MSCP sends the connect out message to the XIOM to 
initiate an outgoing call request. The connect out 
message is sent to the XIOM with the address of the 
CD in it. There may not be an outgoing logical channel 
available when the outgoing call request gets to the 
adapter. If there is no outgoing logical channel available, 
the connect out message is returned to the MSCP with 
an appropriate status code. The MSCP then signals the 
CD contact unsuccessful event with a reason code 
indicating that there was a dial failure. 

Abandon Connection 

#MSCABAN (an entry point in #MSCVONN) processes 
the modify CD abandon connection request. This 
module sends the abandon call message to the MSCP 
task to terminate the connection. 

A message is enqueued to the CD-pending queue in the 
source/sink active device list. The CD is then set to the 
varied-an-pending state. 

For X.25, the modify CD abandon connection instruction 
is used to terminate a switched virtual circuit. The reset 
LUD and vary-off LUD are sent to the station 10M for 
any LUDs varied on, then the reset CD message is sent 
to the station 10M. After an appropriate response is 
received to the reset CD message, vary-off is sent to 
the station 10M and discontact is sent to the XIOM. 
The abandon connection message is not sent to the 
XIOM. The CD pending message is again enqueued to 
the CD pending queue and the CD and LUDs are set to 
the varied-an-pending state. 

Vary-Off 

#MSCVOFF (an entry point in #MSCVONN) processes 
the modify-CD-vary-off request. The procedure of a 
vary-off is similar to that for an abandon connection 
with the following exceptions: 

• Logical unit descriptions (LUDs) are always varied off 
before a CD is varied off. 

• The CD is set to the v,ilry-off state. 

• The source/sink active device list CD block is 
unchained from the ND block or the CD pending list, 
and the associated storage is freed. 

For X.25, the modify CD vary-off instruction is used to 
terminate a permanent virtual circuit or a switched virtual 
circuit. The reset CD message is sent to the station 
10M. After an appropriate response is received to the 
reset CD message, vary-off CD is sent to the station 
10M and the discontact message is sent to the XIOM. 
The abandon connection message is not sent to the 
XIOM for a switched or permanent virtual circuit. The 
CD source/sink active device list control block storage 
is freed and the CD is set to varied-off state. 

Machine Services Control Point 27-3 



Cancel 

#MSCCNCL (an entry point in #MSCVONN) processes 
the modify CD cancel request. This routine is used to 
suspend the reuse of the controller and any attached 
varied-on LUDs by setting the recovery 
resource/activation state in the CD and LUD objects to 
cancel. If the CD has varied-on LUDs attached, the 
recovery resource / activation state is set to cancel in 
each attached LUD object. 

For all attached LUD objects, all queued pending 
activate resource request 1/ Os present when this 
instruction is issued are returned to the machine 
interface response queue. 

Continue 

#MSCCNTU (an entry point in #MSCVONN) processes 
the modify CD continue request. This routine is used to 
enable the reuse of the controller and any attached 
varied-on LUDs by setting the recovery 
resource/ activation state in the CD and LUD objects to 
continue. If the CD has varied on LUDs attached, the 
module #MSLCNTU is called for each LUD to complete 
the continue processing. 

For nonswitched lines or X.25 permanent virtual circuits, 
the CD is associated with a specific ND that must have 
a recovery resource / activation state of continue or 
active. A message is enqueued to the CD pending 
queue in the source/sink active device list and the 
request exchange identification message is sent to the 
SDLC/BSC/MTAM 10M requesting that this station be 
polled to get the station's exchange identification 
information. 

Note: For a 3274 Controller, a request contact message 
is also sent to the asynchronous MSCP task to start the 
contact sequence. 

27-4 

For switched lines or X.25 switched virtual circuits, a 
message is enqueued to the CD pending queue in the 
source/sink active device list and when an activate 
resource request I/O is present for any attached LUD, 
the CD switched intervention event is signaled with a 
system pointer to the CD. The synchronous continue 
processing is complete with the remainder of the 
function to be performed when an incoming call is 
received or a Modify CD (dial) instruction is issued. 

For directly attached work station controllers, all of the 
MSCP functions needed to complete the continue are 
performed synchronously. This consists of the 
following: 

• A CD contact (ERP) message is sent to the native 
10M. 

• A CD contact successful event is signaled for the 
work station controller and a display station 
pass-through controller. 

• A vary-on LUD continue message is sent to the 
MSCP task for each varied-on LUD attached to the 
CD. 

J 



L 

Modify Logical Unit Description (Synchronous) 

Vary-On 

#MSLVONN processes the modify-LUD-vary-on 
request. The function performed by #MSLVONN is 
determined by the type of LUD being varied on. 

For a local device. the entire vary-on processing is 
completed by #MSLVONN. This is accomplished as 
follows: 

• The OU task and 10M task are created. and the 
registers are initialized. 

• The input queues are allocated to these tasks. 

• A vary-on LUD message is sent to the 10M. 

• An LUD source/sink active device list block is 
created. 

• When the 10M responds to the varied-on message. 
the MSCP function is completed by setting the LUD 
to the varied-on state and signaling a LUD-contact 
successful event. 

For a device attached through a CD. the LUD state can 
only be advanced to the state of the CD. For example. 
if the CD is in the varied-on pending state. the LUD can 
be advanced only to the varied-on pending state. When 
the CD is advanced to the varied-on state. the LUD can 
be advanced to the varied-on state and the process 
completed. For a LUD attached to a display station 
pass-through CD. the LUD goes to a varied on state 
(recovery resource/ activation state indicates normal 
pending). 

When the LUD is attached to a CD. there are no tasks 
to be created because the 10M task is associated with 
the CD for SDLC/work station or the ND for BSC or 
MTAM. An LUD source/sink active device list block is 
created and a vary-on-LUD message is sent to the 
MSCP task. Satisfactory response to this message 
completes the MSCP processing for a vary-on-LUD 
operation. 

When a LUD attached to a CD is being varied-on and 
the CD is not available due to prior failures. or the reuse 
of the controller has been suspended. the recovery 
resource / activation state for the LU D is set to the status 
of the CD. 

Activate I De-activate 

When a modify LUD to activate or de-activate a session 
is executed. #MSLSCRT and #MSLSDES send the 
appropriate message to the proper 10M. 

For a LUD attached to a BSC CD that is being activated 
and the MSCP recovery for the device has not 
completed. the activate session is rejected with the error 
status that caused the inoperative condition. The LUD 
remains in the varied-on state and the synchronous 
processing is complete. 

Vary-Off 

#MSLVOFF (an entry point in #MSLVONN) processes 
the modify LUD vary-off request. A vary-off operation 
is similar to a vary-on operation. The type of LUD and 
the state of the LUD determine the processing 
performed. Each vary-on step has a corresponding 
vary-off step. The following steps are performed as 
required to vary-off an LUD: 

• A vary-off LUD message is sent to the MSCP task to 
reset the MSCP-LU data flow if the LUD is attached 
to a CD. For a locally attached device. the vary-off 
LUD message is sent to the 10M. 

• A De-Activate Logical Unit Systems Network 
Architecture (SNA) command is sent to the device if 
required. 

• A vary-off LUD request message is sent to the 
MSCP task if the LUD is attached via a CD. For a 
LUD attached to a display station pass-through CD. 
the vary-off LUD message is sent to the 10M only if 
the pass-through task is active. For a local device. 
the vary-off LUD message is sent to the 10M. 

• The tasks are destroyed. 

• The queues are returned to the queue pool. 

• The source/sink active device list LUD block is heed. 

Machine Services Control Point 27-5 



Cancel 

#MSLCNCL (an entry point in #MSLVONN) processes 
the modify LUD cancel request. This routine is used to 
suspend the reuse of the device by setting the recovery 
resource/activation state in the LUD to cancel. 

All queued pending activate resource Request I/O 
instructions present when this instruction is issued are 
returned to the response queue. 

Continue 

#MSLCNTU (an entry point in #MSLVONN) processes 
the modify LUD continue request. This routine is used 
to enable the reuse of the device by setting the recovery 
resource/ activation state in the LU D to continue. When 
activate resource Request I/O instructions are pending, 
the recovery resource/activation state is changed to 
activation pending. The vary-on LUD continue message 
is sent to the MSCP task. 

Modify Network Description (Synchronous) 

Vary-On 

When a modify ND vary-on request is executed, the 
MSCP creates the following tasks and initializes the 
associated registers: 

• A transmit OU task 

• A receive OU task 

• An SDLC/BSC/MTAM/XIOM 10M task 

The input queues for these tasks are allocated and the 
tasks are dispatched. If the first line is being activated 
on an IOC, the MSCP creates a wakeup task and sends 
a message to that task. The task invokes the wakeup 
routine (#TPLlOCO). This routine resets the I/O 
controller (lOC)' performs some diagnostic functions, 
and issues the commands to put the IOC in normal 
mode. 

For X.25, #TXIOPUP is called to send the appropriate 
startup commands to the lOP. If this is the second line 
to become active for this lOP, the adjust buffer 
allocation message is sent to the XIOM running for the 
first active line. 

27-6 

An activate-link message is then sent to the 
SDLC/BSC/MTAM/XIOM 10M. 

If the random access memory load flag in the machine 
configuration record is set on, the MSCP loads the 
communications random access memory. 

The MSCP provides protection for a given subsystem to 
ensure that a high speed line is not varied on 
concurrently with any other line or lines that share the 
same communications IOC. 

Enable 

#MSNENAB (an entry point in #MSNVONN) processes 
the modify ND enable request. If the ND being varied 
on represents a switched line with autoanswer, then 
initialize-line and connect-in messages are sent to the 
SDLC/BSC/MTAM 10M. The connect-in message 
response is sent to the MSCP task input queue when 
the autoanswer function is complete. 

This instruction is not supported for X.25. 

Manual Answer jManual Start Data 

These functions are requested as a result of a Modify 
ND instruction and are used to synchronize VMC 
controlled hardware adapter signals with the actions 
being performed by the operator in completing a 
switched connection. 

Manual answer indicates that the operator has answered 
the phone and has established the connection. 
#MSNVONA (an entry point in #MSNVONN) sends an 
initialize-line message to the SDLC/BSC/MTAM 10M 
to begin line adapter initialization. 

Manual-start-data indicates that the operator has placed 
the coupler in data mode and the line is ready to be 
used for data communications. #MSNVOND (an entry 
point in #MSNVONN) sends a connect-in message to 
the line 10M. The SDLC/BSC/MTAM 10M signals the 
adapter to enable switched connection to begin line 
usage. 

These instructions are not supported for X.25. 



Disable 

#MSNDSAB (an entry point in #MSNVONN) sends the 
abandon call message to the MSCP task to inhibit the 
SDLC/BSC/MTAM 10M from accepting incoming calls. 

This instruction is not supported for X.25. 

Abandon Call 

#MSNABAN (an entry point in #MSNVONN) is used to 
terminate a dial or answer connection. #MSNABAN 
sends the abandon call message to the MSCP task to 
terminate the connection. 

This instruction is not supported for X.25. 

Vary-Off 

#MSNVOFF (an entry point in #MSNVONN) processes 
the modify ND vary-off request. The Modify ND 
instruction to vary-off a network description initiates a 
request to the MSCP to free all resources allocated to 
the associated line. The MSCP sends a de-activate-link 
message to the SDLC/BSC/MTAM 10M. This causes 
the SDLC/BSC/MTAM 10M to reset the hardware and 
free any associated storage. The MSCP then destroys 
the transmit and receive au tasks servicing this line, 
returns queues to the queue pool, frees the storage 
used for the source/sink active device list ND block, 
and updates the source/sink active device list to 
indicate that this line is not in use. 

For X.25, if another line on the lOP is active, the adjust 
buffer allocation message is sent to the 10M running 
that line. 

Cancel 

#MSNCNCL (an entry point in #MSNVONN) processes 
the modify ND cancel/request. This routine is used to 
suspend the reconnection and reuse of the 
communications link by setting the recovery 
resource/ activation state in the N D object to cancel. If 
the ND represents a nonswitched line, the recovery 
resource/ activation state is set to cancel in all attached 
CD objects and LUD objects to complete the cancel 
processing. 

For all attached LUD objects, all queued pending 
activate resource Request I/O instructions present when 
this instruction is issued are returned to the 
machine-interface response queue. 

Continue 

#MSNCNTU (an entry point in #MSNVONN) processes 
the modify ND continue request. This routine is used to 
enable the reuse of the communications link by setting 
the recovery resource/activation status in the ND object 
to continue and sending the initialize line message to the 
SDLC/BSC/MTAM 10M to request initialization of the 
line adapter. If the ND represents a switched line with 
autoanswer and is in the enabled state, the connect-in 
message is sent to the SDLC/BSC/MTAM 10M. The 
connect-in message response is sent to the MSCP task 
input queue when the autoanswer function is complete. 

Modify Controller Description (Asynchronous) 

Vary-On 

The synchronous MSCP routine for vary-on CD has 
completed its function when the SDLC/BSC/MTAM 
10M is requested to poll a station for exchange 
identification information. When the SDLC/BSC/MTAM 
10M receives the response to this request, it sends a 
message to the MSCP and the following operations are 
performed: 

• A request-contact or request-activate PU message 
with the exchange identification or the system 
services control point identification information is 
received from the SDLC/BSC/MTAM 10M. 
#MSCDRQC is invoked to validate the exchange 
identification information and to perform the 
following: 

For SDLC, create the station 10M task, send a 
vary-on CD message to the station 10M, and send 
a contact message to the SDLC 10M. 
For BSC and MTAM, send a contact message to 
the BSC/MTAM 10M. 

• Response to the contact, and for SDLC, the vary-on 
CD message must be received before further 
processing can occur. #MSCDCON and #MSCDVCD 
both maintain and check status flags in the 
source/sink active device list to monitor these 
messages. For all controllers except the 3274, when 
the message(s) have been received, the CD contact 
successful event is signaled to indicate that the 
vary-on is complete. 

Note: For a 3274 Controller, a request I/O message is 
built to send an activate physical unit to the 3274 
Controller. When the ACTPU response is received, the 
CD contact successful event is signaled to indicate that 
the vary-on is complete. 

Machine Services Control Point 27 - 7 

\ 



The request contact or request activate physical unit 
message response is returned to the queue indicated in 
the message. If any LUDs attached to this CD are in the 
varied-on pending state, a vary-on-LUD message is 
sent for each LUD attached to the CD. If the CD 
indicates a primary station, the attached LUDs remain in 
the vary-on-pending state until an activate LU SNA 
command is received from the host system. 

• #MSLDVOR processes the response to the 
vary-on-LUD message. If required, this routine 
builds an activate- LU request I/O and sends it to the 
station 10M. The statior. 10M sends an activate-LU 
request to the device and receives the response. If 
the activate- LU request I/O is not required, the 
vary-on is completed and the LUD contact successful 
event is signaled. 

• When a response to the activate LU is received, 
#MSLDALR is invoked to complete the vary-on and 
to signal the LUD contact successful event to indicate 
that the vary-on operation is complete. 

Dial 

The dial request causes an initial ize-line message to be 
sent from the synchronous MSCP function to the 
SDLC/BSC/MTAM 10M. When the response to this 
message is received by the MSCP task, the following 
operations are performed. 

• When the autodial operation completes, a 
connect-out response is sent to the MSCP task. 
#MSCDACR is invoked to send the exchange 
identification request to the SDLC/BSC/MTAM 10M. 

• #MSCDXID processes the response to the exchange 
identification information. The SDLC/BSC/MTAM 
10M also sends a request-contact or 
request-activate-physical unit message when it 
receives a response to the request exchange 
identification. When a request-contact or 
request-activate-physical unit message is received, 
processing resumes as described under Varv-On for 
asynchronous operations. 

27-8 

Enable-Switched, Autoanswer 

When a switched autoanswer line is enabled, a 
connect-in message is sent to the SDLC/BSC/MTAM 
10M to cause it to wait for an incoming call. When an 
incoming call occurs, it is automatically answered, the 
SDLC/BSC/MTAM 10M sends the connect-in response 
to the MSCP task, and the following operations are 
performed: 

• #MSCDACR processes the response to the 
connect-in message. If a connection has been 
established, an exchange identification request is sent 
to the SDLC/BSC/MTAM 10M. 

• #MSCDXID processes the response to the exchange 
identification information. After the exchange 
identification response is received, the 
SDLC/BSC/MTAM 10M sends a request contact 
message or a request activate PU message. When a 
request-contact or request-activate physical unit 
message is received, processing resumes as 
described under Vary-On for asynchronous 
operations. 

Error Conditions 

Should an error occur in one of the preceding 
asynchronous operations, cleanup procedures restore the 
changes made during the operation that failed . The 
following sequence is entered at the point determined 
by the amount of cleanup that is required: 

• For SDLC, a vary-off CD is sent to the station 10M. 
#MSCDTSK processes the response to restore 
queues and pointers for the station 10M task, and a 
discontact message is sent to the SDLC/BSC/MTAM 
10M. 

• #MSCDONE is invoked to process the response to 
the discontact message. 

• An abandon-connection message for a switched line 
is sent to the SDLC/BSC/MTAM 10M to reset the 
line connection. 



• #MSCDCLN processes the response to the abandon 
connection. If the line is enabled for autoanswer, this 
module builds the appropriate line parameters and 
sends an initialize-line message that conditions the 
line for a retry operation. Otherwise, #MSCDCLN 
restores object status and linkage, and restores 
source/sink active device list indicators and linkage. 

• #MSILRSP checks if the initialize request was due to 
an error. In this case, #MSILRSP restores object 
status and linkage, and restores source/sink active 
device list indicators and linkage. 

Unsolicited Input 

Data can arrive in the system from devices on the 
teleprocessing network with routing code indicating that 
it should be sent to the MSCP. This can be data on the 
system services control point (SSCP)- LU or SSCP- PU 
flow path. The station 10M builds an unsolicited-input 
message and sends it to the MSCP queue. The MSCP 
determines the reason for the unsolicited data and 
invokes a routine to handle it or signals an event if the 
data must be directed above the machine interface. 

Work station have three sources of information that 
cause data to be sent to the MSCP: 

• The System Request key. This key indicates that the 
operator wants to interrupt the current operation. 
This information is for program control only and the 
MSCP signals an event. The event-related data 
contains the information associated with the system 
request message. 

• The Test Request key. When this key is pressed, the 
MSCP signals an event to the machine interface with 
data identifying the device that issued the request. 

• Record maintenance statistics request. When the 
error log buffer is full, a message is generated and 
the error data is sent to MSCP. The MSCP task 
invokes a routine to format the error log message and 
header information, and sends it to the error log task. 
A response is also sent to the remote work station to 
indicate that the error data was received. 

Request I/O 

A Request I/O instruction can be executed indicating 
that this is an MSCP request I/O operation. The 
request I/O message is routed to the MSCP queue to 
be handled by the MSCP task. This request allows a 
user program to communicate with an SNA device via 
the SSCP- LU or SSCP- PU session. The Request I/O 
instruction is used to send a request or response to the 
device. The object pointer in the request I/O 
source/sink request points to an LUD or CD that 
indicates an LU or PU flow, respectively. 

Asynchronous Message Handling 

When #MSCPTSK receives a message from the input 
queue, it uses the function code to invoke the 
appropriate routine. The function codes and the routines 
invoked are shown in Figure 27 -1. The paragraphs that 
follow the chart describe the functions of the message 
processors internal to the #MSCPTSK module. 

Machine Services Control Point 27-9 



Function 
Code Message Name Procedure Name Module Name 

021B Request discontact #MSINOPS #MSSWMGD 
J 

0281 Inoperative station #MSINOPS #MSSWMGD 
0282 Inoperative line #MSINOPL #MSSWMGD 
0284 Request contact #MSCDRQC #MSSWMGA 
0286 Request activate physical unit #MSCDRQC #MSSWMGA 

(secondary) 
0287 Request activate logical unit #MSLDALU #MSLDMSG 

(secondary) 
0288 Inoperative station (BSC) #MSINOPS #MSSWMGD 
0289 Protocol violation INOPERAT #MSCPTSK 

(MTAM/BSC) 
028C Connect in request #MSCDCNI #MSSWMGA 
028D X.25 reconnect request #MSRECON #MSSWMGS 
0290 Request de-activate logical #MSDALUN #MSSWMGD 

unit (normal) 
0291 Request de-activate logical #MSDALUA #MSSWMGD 

unit (abnormal) 
0292 Request de-activate physical #MSDAPUN #MSSWMGD 

unit (normal) 
0293 Request de-activate physical #MSINOPS #MSSWMGD 

unit (abnormal) 
0294 Request disconnect (normal) #MSDISCN #MSSWMGD 
0295 Request disconnect #MSINOPS #MSSWMGD 

(abnormal) 
0297 Last session unbound #MSDALUA #MSSWMGD 
0298 First session bound #MSLDALU #MSLDMSG 
1035 Vary-on LUD (continue) #MSLDVOC #MSLDMSG 

request 
1042 MSCP aysnchronous vary-on #MSLDVOQ #MSLDMSG 

LUD request 
1043 MSCP asynchronous vary-off #MSLDVFQ #MSLDMSG 

LUD request 
1047 MSCP asynchronous ABANCALL #MSCPTSK 

abandon call request 
104F Second time-out notification #MSCDTOT #MSSWMGD 
2004 Unsolicited LU request UNSOLlNL #MSCPTSK 
2006 Unsolicited PU request AELUNSPU #MSCPTSK 
2008 Unsolicited line bid (BSC) INOPERAT #MSCPTSK 
2009 Suspended stream data INOPERAT #MSCPTSK 

received MTAM 

Figure 27-1 (Part 1 of 2). Message Handling Routines 

27-10 



Function 
Code Message Name Procedure Name Module Name 

200A Stream restored (MTAM) INOPERAT #MSCPTSK 
200B Incoming data discarded INOPERAT #MSCPTSK 

(MTAM) 
200C Device conflict (MTAM) INOPERAT #MSCPTSK 
5002 Request I/O #MSSROIO #MSSROIO 
5010 Asynchronus resource #MSSROIO #MSSROIO 

management request I/O 
5020 Synchronous resource #MSSROIO #MSSROIO 

management request I/O 
7001 Request I/O control #MSSROIO #MSSROIO 

(continue) 
8201 Response to contact #MSCDCON #MSSWMGA 
8202 Response to discontact #MSCDONE #MSSWMGD 
820E Response to connect out #MSCDACR #MSSWMGS 
820F Response to abandon #MSCDCLN #MSSWMGD 

connection 
8215 Response to initialize line #MSILRSP #MSSWMGS 
8216 Response to activate connect #MSCDACR #MSSWMGS 

in 
8217 Response to de-activate #MSCDCIO #MSSWMGD 

connect in 
8218 Response to de-activate #MSCDCIO #MSSWMGD 

connect out 
8240 Response to request #MSCDXID #MSSWMGS 

exchange identification 
8284 Response to request contact #MSCDRSP #MSSWMGA 
8295 Response to request #MSCDRSP #MSSWMGA 

disconnect 
9007 Response to reset RSPRESET #MSCPTSK 
9030 Response to vary-on LUD #MSLDVOR #MSLDMSG 

(cold) 
9031 Response to vary - on CD #MSCDVCD #MSSWMGA 

(cold) 
9032 Response to vary-on LUD #MSLDVOR #MSLDMSG 

(ERP) 
9033 Response to vary-on CD #MSCDVCD #MSSWMGA 

(ERP) 
903E Response to vary-off LUD #MSLDVFE #MSLDMSG 

(ERP) 
903F Response to vary-off CD #MSCDTSK #MSSWMGD 

(ERP) 
9040 Response to vary-off LUD #MSLDVFR #MSLDMSG 

(cold) 
9041 Response to vary-off CD #MSCDTSK #MSSWMGD 

(cold) 
B003 Response to error log #MSAELRS #MSAELRS 
D002 Response to request I/O RSPREOIO #MSCPTSK 
D002 Response to activate physical #MSCDAPR #MSCPTSK 

unit 

Figure 27-1 (Part 2 of 21. Message Handling Routines 

Machine Services Control Point 27-11 



Unsolicited-Physical-Unit Request 

AELUNSPU processes the unsolicited-physical-unit 
request. If the message is an SNA request maintenance 
statistics, a record error log message is built with an 
error log record descriptor and an error log data record. 
If the length of the unsolicited-physical-unit message 
indicates that only common error data is present, 
#MSAELRS is invoked with a pointer to the error log 
message. Otherwise, the error log message is sent to 
the error log queue. Also, a request I/O response 
message is built and sent to the 10M queue indicated in 
the CD object. 

If the unsolicited data is an SNA negative response, the 
CD source/sink active device list block is checked for an 
abandon call pending flag. If the abandon call flag is 
set, the vary-off CD message is sent to the station 10M 
and the discontact message is sent to the SDLC 10M. 

If the unsolicited data is an SNA request disconnect 
command, then the inoperative station message is built 
and sent to the MSCP task. This causes a discontact 
message to be sent to the SDLC 10M and vary-off CD 
(ERP) to be sent to the station 10M. 

5250 Information Display System Error Log Request I/O 
Response 

AELRSPHD processes the 5250 information display 
system error log Request I/O response. This procedure 
checks the user key field in the message to see if the 
response is a request. Also, the feedback record is 
checked for any errors. 

If neither of these conditions exist, the abandon call 
pending flag in the CD source/sink active device list 
block is checked. If the flag is set, a discontact 
message is sent to the SDLC 10M and a vary-off CD 
message is sent to the native 10M. 

Inoperative Message 

Messages received from the BSC/MTAM 10M invoke 
INOPERAT to signal BSC/MTAM events. The response 
bit in the message is then set and the message is sent 
to the response queue indicated in the message. 

27-12 

Abandon Call Request Messages 

For disable ND, abandon call ND, or dial out CD 
messages, if the ND represents a switched line for 
autodial, the de-activate-connect-out message is sent 
to the SDLC/BSC/MTAM 10M. If the ND represents a 
switched line which is not for autodial, the 
de-activate-connect-in message is sent to the 
SDLC/BSC/MTAM 10M. If the vary-on CD message 
has been sent to the station 10M, the reset CD message 
must be sent to the station 10M. 

For abandon connection CD messages, if the CD 
recovery resource / activation state is active, then the 
abandon call message is returned with a status 
indicating that the object state was invalid. 

If the modify CD abandon connection function is 
performed after a normal disconnect occurs (CD 
recovery resource/activation state is normal pending). 
then the abandon connection message is sent to the 
SDLC/BSC/MTAM 10M. 

If the CD state is active, LUDs active, and the recovery 
resource / activation state is continue, then the reset LU D 
message is sent to all attached LUDs. When the reset 
LUD response is received, the vary-off LUD (error 
recovery procedure) message is sent to the 10M. 

If the CD state is active LUDs varied-on, the reset LUD 
message is sent to the 10M for all varied-on LUDs 
regardless of the recovery resource / activation state in 
the CD. The vary-off LUD (cold) message is sent to the 
10M when the reset LUD response is received. 

If the CD state is varied-on, the reset CD message is 
sent to the station 10M. When the reset CD response is 
received, the vary-off CD (cold) message is sent to the 
station 10M. If a BSC/MTAM CD is being varied off, 
the discontact message is sent to the BSC/MTAM 10M. 

For vary-off CD messages, if the CD state is varied on, 
the reset CD message is sent to the station 10M. When 
the reset CD response is received, the vary-off CD 
(cold) message is sent to the station 10M. If a 
BSC/MTAM CD is being varied off, the discontact 
message is sent to the BSC/MTAM 10M. 

If the CD state is varied-on-pending, the abandon call 
message is returned to the synchronous MSCP with a 
good status. 



Unsolicited- Logical- Unit Request 

UNSOLlNL processes the unsolicited-logical-unit 
request. If the message is an SNA function manager 
data request, a supervisory services request event is 
signaled. The subtype (formatted or unformatted) 
depends on the format indicator in the request. 

If the message is an SNA data flow control request for 
logical unit status, then one of two events is signaled. If 
the message indicates a device available status, the LUD 
contact successful event is signaled and the LUD 
recovery resource / activation state is set to continue or 
active; if the message indicates a device unavailable 
status, the LUD device not available event is signaled 
and the LUD recovery resource/activation state is set to 
normal pending or normal pending/activation pending. 

All events have system pointers to the LUD. The 
supervisory services request event contains additional 
data from the SNA request. The device-failure event 
contains 2 bytes of logical unit status. A request I/O 
message is then built to send an SNA response to the 
10M queue specified in the LUD source/sink active 
device list block. The response flag is set in the 
unsolicited messages and the message is then sent to 
the return queue specified in the message. 

Reset Response 

RSPRESET processes the reset response. If the type 
field in the message indicates a LUD is being reset and 
the activate logical unit SNA command was previously 
sent to the device, the deactivate logical unit SNA 
command is sent to the native 10M. For a BSC/LUl CD 
or when an activate LU was not sent, the vary-off LUD 
message is sent to the 10M. 

If the type field in the message indicates a CD is being 
reset and the CD indicates a 5250 work station, the 
MSCP routine #MSAELRB is invoked. #MSAELRB 
builds a request maintenance statistics request I/O and 
sends it to the 10M queue indicated in the CD object. 
For a 3270 Controller a deactivate physical unit request 
I/O message is built and sent to the 10M queue 
indicated in the CD object. For an LUl or peer 
secondary station, the connection is terminated by the 
following functions: 

• When a nonzero response is received for an LUl or 
APPC secondary station, the discontact and vary-off 
CD messages are not sent until MSCP receives a 
disconnect normal request. 

• When a zero response is received, a discontact 
message is sent to the SDLC 10M and a vary-off CD 
message is sent to the station 10M. 

Request I/O Response 

Routine RSPREQIO processes the response to a 
Request I/O instruction. If the user key in the message 
indicates that it is a response to an unsolicited-input 
message generated by the MSCP, the storage occupied 
by both the message and the feedback record is 
released. If the user key in the message indicates that 
the message was generated by the CD physical unit 
services, #MSCDAPR is invoked for an activate physical 
unit response, routine RSPDCTPU is invoked for 
deactivate physical unit response, otherwise, routine 
AELRSPHD is invoked. This routine processes error log 
responses. If the user key in the messages indicates 
that the message was generated by the LUD logical unit 
services, #MSLDALR or #MSLDDLR is invoked. 
#MSLDALR processes the activate-logical-unit 
response. #MSLDDLR processes the 
de-activate-Iogical-unit response. 

Deactivate Physical Unit Response 

Routine RSPDCTPU processes the response to the 
de-activate physical unit SNA command. A discontact 
message is sent to the SDLC 10M. A vary-off CD 
message is sent to the station 10M. 

Machine Services Control Point 27-13 



Physical Unit Services Routines 

The modules #MSSWMGA, #MSSWMGD, and 
#MSSWMGS contain the routines that process the 
request and response messages involving physical unit 
services. All message handling routines check the flags 
that indicate if the synchronous MSCP function is 
attempting an operation that should stop asynchronou~ 
MSCP processing. The routines that process respons ~ 
messages also free the storage occupied by the 
messages. 

Request Contact (Primary SDLC and BSCjMTAMjXIOM) 

and Request Activate PU (Secondary): #MSCDRQC 
processes the request contact and request activate 
physical unit messages. For a nonswitched line or a 
switched dial connection, the exchange information field 
or the system services control point identification field is 
compared with the exchange information or system 
services control point identification field in the CD(s) 
attached to the line. If the fields match, the following 
operations are performed: 

• For SDLC, a station 10M task is created, a vary-on 
CD message is sent to the station 10M queue, and a 
contact message is sent to the SDLC 10M queue. 

• For BSC or MT AM, a contact message is sent to the 
BSC/MTAM 10M. 

For X.25, when the request contact or request activate 
physical unit messages are received by the MSCP from 
the XIOM, the MSCP validates the remote XID system 
services control point identification the same as an 
SDLC line. 

If the fields do not match, the CD-contact unsuccessful 
event containing pointers to the CD and ND and the 
exchange identification information or system services 
control point identification information received is 
signaled. 

For an SDLC switched-answer connection, the exchange 
identification information field or the system services 
control point identification information field in the 
message is compared as follows: 

• For SDLC, the exchange identification information 
field or the system services control point 
identification information field in the message is 
compared with the list of switched CDs that are in 
the vary-on-pending state. 

27-14 

If a match IS found, the N D candidate list in the 
corresponding CD is checked to determine if the CD 
contains a pointer to the N D for the line that sent the 
message. If the N D is in the candidate list, a station 
10M task is created and messages are sent as described 
for a leased line or a switched dial connection. If the 
ND is not in the candidate list, the 
CD-contact-unsuccessful event with system pointers to 
the CD and ND and the exchange identification 
information or system service control point identification 
received is then signaled. If a CD with matching 
exchange information is not found on the candidate list, 
an ND exchange identification-failure event or a system 
service control point identification failure event 
containing a system pointer to the ND and the exchange 
identification information or system service control point 
identification is signaled. 

For a BSC or MTAM switched-answer connection, the 
ND eligibility list is checked to determine if a pointer to 
a varied-on-pending CD is present for the line that sent 
the message. If the CD is in the eligibility list, the 
exchange identification information field in the message 
is compared with the list of exchange identification 
information contained in the CD. If a match is found, 
messages are sent as described for leased line or a 
switched dial connection. If a CD with matching 
exchange identification information is not found, an ND 
exchange identification failure event containing a system 
pointer to the N D and exchange identification 
information is signaled. 

If a CD is found in the eligibility list, but the exchange 
identification information field does not match any of 
those in the CD list of exchange identifications, the CD 
contact-unsuccessful event containing system pointers 
to the CD and ND exchange identification information is 
signaled. 

On a switched line, if either the CD contact unsuccessful 
or the ND exchange identification or the system service 
control point identification-failure event is signaled, an 
abandon connection message is sent to the 
SDLC/BSC/MTAM/XIOM 10M. 

For X.25 permanent virtual circuits, the MSCP tries to 
find a vary-on-pending CD for a permanent virtual 
circuit attached to the ND and logical channel entry that 
the XI D system services control point identifier was 
received on. If a CD is found, the contact message is 
sent to the XIOM and the vary on CD message is sent 
to the station 10M. If a CD is not found, the CD contact 
unsuccessful event is signaled with an appropriate 
reason code. 



For X.25 switched virtual circuits, the request 
contact/ request activate physical unit processing is not 

analogous to switched SDLC processing. When the 
request contact/ request activate physical unit message 
is received oh a switched line, the CD is already 
identified. All that is left to be done is to ensure that 
the XID system services control point identifier that 
came off the line matches the XID system services 
control point identifier in the CD. If the match is 
successful, the contact message is sent to the XIOM 
and the vary-on CD message is sent to the station 10M. 
If the match is not successful, the CD contact 
unsuccessful event is signaled with the appropriate 
reason code. 

Response to Contact: #MSCDCON processes responses 
to contact messages. If the status field in the message 
is good and if the source/sink active device list for 
SDLC indicates that the vary-on-CD response was 
received without error, then SDLCCOMN is invoked to 
complete the contact operation for all controller types 
except 3274. For a 3274 controller type, a request I/O 
message is built to send activate physical unit message 
to the 3274 Controller. 

If the status field in the message indicates an error, then 
SDLCCERR is invoked to recover from the contact 
failure. 

Response to Discontact: #MSCDONE processes 
responses to discontact messages. This routine invokes 
ABANCOMN to complete the recovery. 

Response to Connect In/Out: #MSCDACR processes 
responses to connect in / out messages. If the status 

field in the message is good, a request exchange 
identification or system services control point 
identification message is sent to the SDLC/BSC/MTAM 
10M. If the status field indicates an error other than 
from the result of an abandon call processing, the 
abandon connection message is sent to the 
SDLC/BSC/MTAM 10M, and a CD contact 
unsuccessful event containing pointers to the CD and 
N D is signaled if it is a response to connect out. 

For X.25, the response to the connect out message is 
received by the MSCP after an outgoing call request is 
processed. If the status indicates that the call request 
completed successfully, then the message includes the 
logical channel ID the connection was assigned to. The 
MSCP updates the link control entry associated with 
that link control identifier with the CD pointer at this 
time. Also, the MSCP sends the request XID message 
to the XIOM. If the status in the response indicates that 
the call request did not complete successfully, the CD 
contact unsuccessful event is signaled with an 
appropriate reason code. The connect-in response is 
the same as SDLC. 

Response to Abandon Connection: #MSCDCLN processes 
responses to abandon connection messages. If the ND 
for the line specifies autoanswer mode and is not the 
result of abandon call processing, an initialize-line 
message is sent to the SDLC/BSC/MTAM 10M. 
Otherwise, the UNHOOK procedure is invoked to 
perform cleanup. 

Machine Services Control Point 27 -15 



Response to Initialize Line: #MSILRSP processes 
responses to initialize-line messages. If the status field 
in the message is good, the activate-connect-in 
message is sent to the SDLC/BSC/MTAM 10M. If the 
status field in the message is not good, the returned 
status is saved, and the MSCP recovery failed flag is set 
in the ND source/sink active device list. 

For X.25, the initialize line response is not received by 
the asynchronous MSCP task. However, the initialize line 
message is sent to the XIOM by synchronous MSCP 
modify N D continue code. 

Response to De-activate Connect In/Out: #MSCDCIO 
processes responses to de-activate connect in/out 
messages. If the status field in the message is good, or 
if the ND object is not in inoperative pending state, or if 
an abandon call dial out request is pending, the internal 
procedure unhook is invoked. When the above 
conditions are not met, the abandon connection 
message is sent to the SDLC/BSC/MTAM 10M. 

Response to Request Exchange Identification: #MSCDXID 
processes responses to exchange identification requests. 
This routine sets a flag to indicate that the message was 
received and then frees the storage occupied by the 
message. 

Response to Vary-On CD: #MSCDVCD processes 
responses to vary-on CD messages. If the status field 
in the message indicates good status, and the 
contact-response message was received without error, 
SDLCCOMN is invoked to complete the vary-on-CD 
operation for all controller types except 3274. For a 
3274 Controller type, a request I/O message is built to 
send activate physical unit message to the 3274 
controller. If the status field indicates an error, 
SDLCCERR is invoked to recover from the error. 

27-16 

Response to Vary-Off CD (SDLC Only): #MSCDTSK 
processes responses to vary-off CD messages. If the 
CD is not attached to an ND (vary-off for work station). 
the response bit in the abandon call message is set, and 
the message is returned to the response queue specified 
in the message. Otherwise, ABANCOMN is invoked to 
complete recovery. 

Response to Activate Physical Unit (SDLC Only): 

#MSCDAPR processes responses to activate physical 
unit. #MSCDAPR is invoked from RSPREQIO (a routine 
within #MSCPTSK). If the error summary field in the 
activate physical unit request I/O feedback record is 
normal, the activate physical unit response is positive, 
and the activate physical unit response unit is 
acceptable. An internal procedure, SDLCCOMN, is 
called to complete the vary on of the CD. Otherwise 
and internal procedure, SDLCCERR is called to start 
recovery after the failure. If the activate physical unit 
response is negative or the activate physical unit 
response unit is unacceptable, the CD contact 
unsuccessful event is signaled by SDLCCERR; 
otherwise, the activate physical unit was not successful 
because of a hardware problem and MSCP is notified 
via the inoperative line or inoperative station messages. 

Complete Vary-On CD: SDLCCOMN completes the 
vary-on CD operation and is invoked by #MSCDCON 
and #MSCDVCD. If the LUD-varied-on count in the CD 
is greater than zero, the CD state is updated to 
CD-active/LUDs-varied on. If the count is not greater 
than zero, then the state is updated to CD varied-on. 
The CD-contact-successful event containing system 
pointers to the CD and ND is signaled. If any LUDs 
attached to the CD are in the vary-on-pending state, a 
vary-on LUD message is sent to the station 10M. 

For X.25, SDLCCOMN is called by #MSCDCON (contact 
response), #MSCDVCD (vary-on CD response). and 
#MSCDAPR (activate physical unit response) to 
complete the asynchronous vary-on CD processing. The 
CD is updated to varied-on if no attached LUDs are 
varied on, or is changed to active/LUDs varied-on state 
if at least one attached LUD is varied on. The CD 
contact successful event is signaled with a system 
pointer to the ND and the CD. The logical link identifier 
is also included in the event data for X.25. The vary-on 
LUD message is sent to the station 10M for all attached 
LUDs in the vary-an-pending state. The request contact 
or request activate physical unit message is returned to 
the line 10M. 

J 



Switched CD/NO Cleanup: UNHOOK performs the 
cleanup operation and is invoked by #MSCOCIO, 
#MSCOCLN, #MSINOPL, ABANCOMN, or #MSCOTOT. 
The NO state is set to the enabled state, and the flags 
in the NO source/sink active device list block are 
cleared. If a CD source/sink active device list block is 
chained to the NO block, the CD block is removed from 
the NO block and enqueued to the CD pending queue 
with all flags reset. If the CD block has an LUO block 
chain, then the CD state is set to 
CO-varied-on-pending and LUOs-varied-on-pending 
state; otherwise the state is set to the 
CO-vary-on-pending state. 

For X.25, the function performed by UNHOOK is 
analogous to the function it performs for SOLC and 
BSC. The CD pointer in the link control entry is cleared 
for a switched virtual circuit. Also, the NO pointer in the 
CD is cleared for a switched virtual circuit. The CD is 
changed to vary-on-pending and the NO is changed to 
vary-on, if it has no other active CDs attached. 

Starts Recovery After Vary-On Failure: SOLCCERR 
starts the recovery procedure after a vary-on failure 
occurs and is invoked by #MSCOCON, #MSCOVCO, and 
#MSCOAPU. The discontact message is sent to the 
SOLC/BSC/MTAM 10M and the vary-off CD message 
is sent to the station 10M to destroy the task. If the CD 
indicates a primary station, the request activate physical 
unit message is returned to the line 10M with a negative 
response; otherwise, the request contact message is 
returned to the SOLC/BSC/MTAM 10M with a negative 
response. 

Completes Abandon Processing: ABANCOMN completes 
the abandon processing and is invoked by #MSCOONE, 
#MSINOPS, #MSOISCN, and #MSCOTSK. If leased 
lines are being used and the discontact/vary-off CD 
messages were sent as a result of receiving an abandon 
call message from the synchronous MSCP routine, 
UNHOOK is invoked to perform cleanup. If a switched 
line is being used, the abandon connection message is 
sent to the SOLC/BSC/MTAM 10M. The response bit 
in the abandon call message is turned on, and the 
message is returned to the response queue indicated in 
the message. 

For X.25, the abandon processing routine is called when 
an inoperative station message is received by the MSCP 
task. Also, this routine is called when both the vary-off 
CD and discontact messages are received by the MSCP 
task during abandon call processing. For an X.25 NO, 
this routine calls the UNHOOK routine. The abandon 
connection message is never sent to the XIOM. 

Inoperative Line Request: #MSINOPL processes 
inoperative line requests. The recovery resource/ 
activation state in the NO is set to inoperative pending 
and the NO line failure (inoperative) event is signaled 
with a system pointer to the NO object, the inoperative 
status code, OU number, and time stamp of the 
message. For a switched line, the system pointer to the 
CD object is included if attached to the NO. 

The response bit is set in the message, and the 
message is sent to the response queue indicated in the 
message. 

In addition to the above processing, when a CD is 
attached to the NO, the CD recovery resource/activation 
state is set to inoperative pending, and the internal 
procedures, INOPCOMN and UNHOOK (if required), are 
called. 

Machine Services Control Point 27-11 



Inoperative Station Request: #MSINOPS processes 
inoperative station requests. The recovery 
resource/activation state in the CD is set to inoperative 
pending and the CD failure (inoperative) event is 
signaled with a system pointer to the CD object, the 
inoperative status code, OU number, and the time stamp 
of the message. 

The response bit is set in the message, and the 
message is sent to the response queue indicated in the 
message. 

The internal procedures, INOPCOMN and ABANCOMM 
(not for local work station). are called to complete the 
recovery. 

De-activate Logical Unit Abnormal, Device Failure: 
#MSDALUA processes de-activate abnormal device 
failures. The following events may be signaled: 

Message Received Event Signaled 

Request De-activate LU LUD Device Failure 
Abnormal 

Peer Device Failure LU-to-LU Termination 
(Status Code Hex 001 or 
002) 

Peer Device Failure LUD no sessions 
(Status code Hex 001 or 
003) 

Peer Device Failure LUD Idle Sessions 
(Status Code Hex 0004) 

Peer Device Failure CD Unbound 
(Status Code Hex 8nnn) Intervention 

27-18 

For peer device failure (status codes hex n001 or n003, 
the LU D recovery resou rce / activation state is set to 
continue or activation pending. 

For peer device failure (status code hex n002 or request 
de-activate LU abnormal), the LUD recovery 
resource/ activation state is set to inoperative pending or 
inoperative pending / activation pending. 

For peer device failure (status code hex n001, n002, or 
n003). the CD recovery resource/activation state is 
tested for active or activation pending status. If either of 
these CD bits are on, the CD chain of LUDs is checked 
for LU Ds whose recovery resource / activation state is 
active or activation pending. As a result of this chain 
check, the CD recovery resource/activation state may 
remain the same or be changed to activation pending or 
continue. 

For request de-activate logical unit abnormal, the CD 
recovery resource / activation status bits are not changed. 

The response bit is set in the message, and the 
message is sent to the response queue indicated in the 
message. 

De-activate Physical Unit Normal Request: #MSDAPUN 
processes de-activate physical unit normal requests. 
The CD failure (SSCP-to-PU session inactive) event is 
signaled with a system pointer to the CD object and a 
status code of hex 0001. 

The CD block is enqueued to the CD pending queue in 
the source/sink active device list. 

The response bit is set in the message, and the 
message is sent to the response queue indicated in the 
message. 

J 



De-activate Logical Unit Normal Request: #MSDALUN 

processes de-activate logical unit normal request. The 
LUD failure (SSCP-to- LU session inactive) event is 
signaled'with a system pointer to the LUD object and a 
status code of hex 0001. 

The LU D recovery resource / activation state is changed 
to normal pending. If there are any pending activate 
resource request I/Os outstanding, the LUD recovery 
resource/activation state is changed to normal 
pending / activation pending. 

The response bit is set in the message, and the 
message is sent to the response queue indicated in the 
message. 

Disconnect Normal Request: #MSDISCN processes 
disconnect normal requests if the ND is for switched 
answer and there is no CD attached, the ND recovery 
resource/activation state is set to continue and the ND 
connection unsuccessful (ND disconnect unsuccessful) 
event is signaled with a system pointer to the ND 
object. 

For a nonswitched line or a switched dial connection, 
prior to the request contact/ activate physical unit 
message being received, the ND and CD recovery 
resource/activation state bits are set to continue (for 
switched) and normal pending (for nonswitched). The 
CD contact unsuccessful event is signaled with a system 
pointer to the ND and CD objects. For a switched dial 
connection, the internal procedure, ABANCOMN, is 
called or for a leased MT AM / secondary station, the 
internal procedure INOPCOMN is called. 

For all other conditions, after the CD contact successful 
event has been signaled, the CD loss of contact event 
with a system pointer to the CD object is signaled. The 
ND recovery resource/activation state is set to continue 
and the CD recovery resource/ activation state is set to 
normal pending. The internal procedure, ABANCOMN, 
is called. For an LUl or secondary station, a message is 
enqueued to the CD pending queue in the source/sink 
active device list until the connection is reestablished. 

The response bit is set in the message, and the 
message is sent to the response queue indicated in the 
message. 

Complete Inoperative Processing: INOPCOMN completes 

the inoperative processing by: 

• Dequeuing the CD message from the CD pending 
queue in the source/sink active device list. 

• For each varied-on LUD attached to the controller, 
copying the CD recovery resource/ activation state to 
the LU D recovery resource / activation state. 

• Dequeuing from the activate resource pending queue 
in the LUD, any immediate request I/Os present and 
calling #SSBLDFB to build a feedback record to be 
returned to the response Queue. 

• Completing the abandon call processing, if in 
progress prior to the receipt of the inoperative 
request, by sending a disconnect message to the 
SDLC/BSC/MTAM 10M and a vary-off CD message 
to the station 10M. 

• For a leased MT AM or nonswitched primary 
connection, signaling the CD primary intervention 
event with a system pointer to the CD object 
whenever an activate resource request I/O is 
enqueued to the activate resource pending queue in 
the source/ sink active device list. 

Machine Services Control Point 27-19 



Time-out Request Message From #SSSNDR: #MSCDTOT 
processes the time-out request message. A 
synchronous modify request failed to complete within 
the specified time limit. The time-out request is sent to 
the MSCP to attempt the completion of the function and 
if necessary destroy the failing 10M task. This is 
accomplished as follows: 

• All outstanding messages, except request 1/ Os, have 
the function code changed to a response for ease of 
processing in the event the message is returned while 
processing the time-out request. 

• If the station 10M or device 10M failed to respond to 
the message, the time-out kill message is sent to the 
10M queue to destroy the message and a discontact 
message is sent to the SLDC/BSC/MTAM 10M to 
complete the take-down sequence. 

• If the line 10M failed to respond to the message, a 
time-out kill message is sent to the line 10M queue 
to destroy the message. 

• If the line 10M tries to return a time-out kill 
message, there is an intentional function check to 
force the following: 

Associated source/sink objects are marked 
partially damaged. 
The user must vary off, then vary on, the objects 
to recover. 
The VMC log is examined to determine why the 
instruction timed out. 

• For requests outstanding for a LUD object, the 
time-out request message is sent to the station 10M. 

27-20 

Connect-In Request 

For X.25, this message is received by the MSCP from 
the XIOM when a call request message is received by 
the System/38. The connect-in request message 
contains the ND address, the logical channel ID, and the 
call request message. When this message is received, 
the MSCP searches for a switched CD in 
vary-on-pending state and continue status with a 
remote network address parameter that matches the call 
request. If no such CD is found, the ND connection 
failure event (00E,04,06) is signaled with a reason code 
of 0100. 

If a CD is found, the remote password parameter is 
checked against the password in the call request. If the 
password check fails, the ND connection failure event is 
signaled with a reason code of 0200. 

If the passwords match and reverse charging was 
requested in the call request, the CD that was found is 
checked to ensure that reverse charging is allowed for 
calls received for this CD. If reverse charging was 
requested and the CD does not allow it. the CD contact 
unsuccessful event (004,04,04) is signaled. 

If reverse charging is allowed, the protocol requested in 
the call request is checked against the protocol 
configured in the CD. If the protocol check passes, the 
connect-in request is returned to the XIOM with a 
status indicating that the call should be accepted. Also, 
the MSCP updates the logical link entry that is 
associated with the logical link ID that was chosen by 
the adapter. 

If any of the above checks fail. the connect-in request 
message is returned to the XIOM with a status 
indicating that the call should be rejected. 

X.25 Reconnect Request 

This message is received by the MSCP when the 
adapter assigns an X.25 switched virtual circuit to a 
different logical link. The two logical link entries 
involved are updated to reflect the logical link change. 

Asynchronous MSCP Routines lor X.25 

The use of MSCP asynchronous routines can be 
explained by outlining several operations that describe 
the sequence of events. 

J 



Vary-On CD 

The synchronous MSCP routine for modify CD (vary-on) 
completes its function after it tells the XIOM to poll a 
station for ID exchange information. When the XIOM 
receives this information. a message is sent to the 
MSCP task that starts the asynchronous vary-on CD 
sequence. 

Asynchronous Vary-On CD Sequence 

Request contact or request activate physical unit is 
received from the XIOM with XID or system services 
control point information. Also included in this message 
is the ND address and the logical link ID. #MSCDRQC 
is called to validate the XI D or system services control 
point information. create a station 10M task. send a 
vary-on CD message to the station 10M and a request 
contact message to the 10M. 

The remainder of the asynchronous vary-on CD 
processing is the same for X.25 as for SDLC. 

Dial Sequence for X.2S 

When a user program opens a file to a LUD attached to 
an X.25 switched CD. the MSCP signals the manual 
intervention event. If the CD is configured as a dial-out 
CD. CPF issues a modify CD (dial) instruction. When the 
modify CD (dial) instruction is issued. the synchronous 
MSCP searches the ND list for an available ND. When 
an ND is found. the connect-out message is sent to the 
XIOM. The abandon call message and the initialize line 
message is not sent; instead. the connect-out message 
is handled asynchronously by the MSCP task. The state 
of the CD and the ND are updated and the modify CD 
(dial) instruction is complete. 

The test to determine whether an ND is available to dial 
out on is described below: 

• The MSCP tests to see if any switched logical link 
entries are available 

• If at least one logical link entry is available. the 
MSCP sends a message to the XIOM to get the 
current status of the logical links from the X.25 
adapter. 

• The synchronous MSCP waits for a response to this 
message. 

• If the response to this message indicates that there is 
an outgoing logical link available. the MSCP sends 
the connect-out message to the XIOM. 

• If either of the above two tests fail. the current ND is 
passed by and the next ND in the list is tested. 

• If the N D list is exhausted. the resource not available 
exception is signaled. 

Answer Sequence 

For the X.25 answer sequence. the MSCP will not send 
a connect-in message to the XIOM. All incoming 
switched logical links are enabled to accept incoming 
calls at vary-on ND time. The MSCP is notified of an 
incoming call request via the connect-in request 
message. When the connect-in request message is 
received by the MSCP. verification is performed. If all 
checks are successful. the request XID message is sent 
to the XIOM. 

Logical Unit Services Routines 

#MSLDMSG contains the routines that process 
responses to messages that are requests for logical unit 
services. The routines that handle response messages. 
free the storage for the message. 

Synchronous Vary-On LUD (Cold) Request: #MSLDVOQ 
processes synchronous vary-on LUD requests. A 
vary-on LUD message is sent to the 10M only if the 
state of the CD is vary-on or greater. For a CD that 
indicates a state of varied-on-pending. the CD recovery 
resource/activation state is copied to the LUD recovery 
resource / activation state. The response bit in the 
message is turned on and returned to the response 
queue indicated in the message. 

Machine Services Control Point 27-21 



Synchronous Vary On LUO (Continue) Request: 
#MSLDVOC processes synchronous vary-on LUD 
(continue) requests. A vary-on LUD (error recovery 
procedure or cold) message is sent to the 10M only if 
the state of the CD is varied-on or greater and the CD 
recovery resource / activation state is not inoperative 
pending, normal pending, or cancel. If the CD indicates 
a BSC station, a vary-on LUD (cold) message is sent. If 
the CD indicates LU 1, peer, or work station, a vary-on 
LUD (error recovery procedure) message is sent. 

For a CD that indicates a state of varied-on-pending, 
the LU D recovery resource / activation state is checked 
for activation pending state. If the LUD state is 
activation pending, and the CD is switched with a 
recovery resource/activation state of continue, the 
switched intervention event is signaled. 

For a CD with a recovery resource/activation state of 
inoperative pending or cancel, an exception is signaled 
indicating this condition. The response bit in the 
vary-on LUD (continue) request is turned on and the 
message is returned to the response queue indicated in 
the message. 

Response to Vary-On LUO (Cold or Error Recovery 
Procedure): #MSLDVOR processes responses to 
vary-on-LUD messages. If the status field in the 
message indicates good status, the session definition 
data in the LUD is checked to determine if an 
activate- LU is required. If activation is required, an 
activate-LU request message is built with the MSCP 
queue specified as the response queue. This message is 
then sent to the 10M queue specified in the LUD 
source/ sink active device list block. 

27-22 

If activate- LU is not required, the LU D state is changed 
to varied-on if the LUD is currently in the 
vary-on-pending state. If this is the first LUD being 
varied-on, the CD state is changed to CD active/LUDs 
varied-on; or if the LUD is in a state greater than 
varied-on, the CD state is changed to CD active/LUDs 
active. If an activate resource request I/O is pending 
(not APPC)' the activate resource request I/O is 
returned to the machine-interface response queue and 
the CD and LUD recovery resource/activation state bits 
are set to active. The LUD contact-successful event is 
signaled with a system pointer to the LUD. The MSCP 
vary-on request message (if present) is located, the 
response bit in the message is turned on, and returned 
to the response queue indicated in the message. 

If the status field in the message indicates hex 8000, 
and the LUD is attached to an LU1 CD, an activate-LU 
request has not been received from the primary station. 
Vary-on LUD processing is suspended until an activate 
LU request is received from the primary station. 

If the status field in the message is nonzero (for LU1 
not equal to hex 8000)' a vary-off LUD message is sent 
to the 10M queue indicated in the LUD source/sink 
device list block. If the vary-on LUD is not the result of 
a synchronous MSCP vary-on LUD request, the LUD 
contact-unsuccessful event is signaled with a system 
pointer to the LUD. 

Response to Activate Logical Unit (SOLC Only): 
#MSLDALR processes responses to activate-logical-unit 
messages. #MSLDALR is invoked from R5PREQI0 (a 
routine within #MSCPTSK). If the feedback record code, 
the response length, and the positive response indicator 
are all good, the LUD state is changed to varied-on if 
currently in the varied-on-pending state. If this is the 
first LUD being varied on, or if the LUD is in a state 
greater than varied on, the CD state is changed to CD 
active/LUDs active. If an activate resource Request I/O 
is pending (not APPC), the activate resource request I/O 
is returned to the machine-interface response queue and 
the CD and LUD recovery resource/activation state bits 
are set to active. If the bit in the response indicates that 
the LU is available, the LUD contact-successful event is 
signaled with a system pointer to the LUD. The MSCP 
vary-on request message (if present) is located, the 
response bit in the message is turned on and returned 
to the response queue indicated in the message. 



If the activate- LU response is negative or the length of 

the response is bad, a vary-off LUD message is built 

and sent to the 10M queue indicated in the LUD 
source/.sink active device list block. If the activate LU is 
not the result of a synchronous MSCP vary-on LUD 
request, the LUD contact-unsuccessful event is signaled 
with a system pointer to the LU D and the activate LU 
response data. 

Response to De-activate LU: #MSLDDLR processes 
responses to de-activate-Iogical units. A vary-off LUD 
(cold) message is sent to the 10M. 

Synchronous Vary-Off LUD Request: #MSLDVFQ 
processes synchronous vary-off LUD requests. A reset 
LUD message is sent to the 10M to quiesce the 
MSCP-LU data flow only if the LUD is in the vary-on 
state. If the LU D is not in the vary-on state, or for a 
LUD attached to a BSC CD for which the MSCP 
recovery for the device has not completed (LUD contact 
successful event has not been signaled). the response 
bit in the vary-off LUD request message is set, and the 
message is returned to the response queue indicated in 
the message. 

Responses to Vary-Off LUD: #MSLDVFR and 
#MSLDVFE processes responses to vary-off LUD 
messages. For a synchronous vary-on/off LUD request, 
the response bit in the message is turned on, and the 
message is returned to the response queue indicated in 
the message. For a synchronous abandon call request, 
the pending vary-off LUD message count is checked for 
zero. When the count reaches zero, and the CD 
represents an LU 1, peer, or work station controller, a 
reset CD message is sent to the station 10M. 

For a BSC/MTAM CD, the reset CD message is 
changed to a reset CD response and sent to the MSCP 
input queue. 

Request Activate LU from Primary Station and First 
Session Bound: #MSLDALU processes activate logical 
unit from primary station requests. If the LU D is in the 
varied-an-pending state, it is changed to the varied-on 
state. 

If this is the first LU D being varied on, the CD state is 

changed to active and the LUD state to varied-on, or if 

the LUD is in a state greater than varied-on, the CD 
state is changed to CD active/LUD active. If an activate 
resource request I/O is pending (LU1 only). or the LUD 
state is greater than varied on (LU 1 only) the activate 
resource request I/O is returned to the machine 
interface response queue, and the CD and LUD recovery 
resource / activation state bits are set to active. The LU D 
contact-successful event is signaled with a system 
pointer to the LUD. The response bit in the message IS 

turned on and returned to the response queue indicated 
in the message. 

If the LU D state is varied off or the recovery 
resource / activation state is inoperative- pending or 
cancel, the LUD contact-unsuccessful event is signaled 
(LU 1 only) with a system pointer to the LU D. A good 
response code is inserted into the message, the 
response bit in the message is turned on, and the 
message is returned to the response queue indicated in 
the message. 

When the first session is bound for a peer LUD, the CD 
and LUD recovery resource/activation state bits are set 
to active. However, if the LU D recovery 
resource / activation status is inoperative pending or 
cancel, a bad response code is inserted into the 
message, the response bit in the message is turned on, 
and the message is returned to the queue indicated in 
the message. 

Error Log Routines 

The error log routines support the request maintenance 
statistics, record maintenance statistics, and record error 
log message functions for the MSCP asynchronous task. 

Response to Error Log: #MSAELRS processes responses 
to the error log. A pointer to the 
unsolicited-physical-unit request message is contained 
in the error log message. The response flag is set in the 
message, and the message is sent to the response 
queue specified in the message. The storage for the 
error log message is then released. 

Machine Services Control Point 27-23 



Build and Send Request Maintenance Statistics Request 
I/O: #MSAELRB processes the request maintenance 
statistics request I/O. Storage is allocated for a request 
maintenance statistics message. The request descriptor 
field is initialized and #MSREOB is invoked to build the 
request I/O message. The request maintenance 
statistics request information unit is then built in the 
message, and the message is sent to the 10M queue 
specified in the CD. 

Logical Unit/Physical Unit Request I/O Routines 

#MSSROIO provides the support to handle the I/O 
requests issued by the process for the MSCP-LU and 
MSCP-PU sessions. The MSCP receives all requests 
but does not necessarily provide the "function and may in 
turn route the I/O request to the associated 10M. This 
support is provided for the following MSCP request I/O 
functions: 

• Default operations (SSCP-LU, SSCP-PU) 

• Record formatted maintenance statistics type 00 alert 
operations (SSCP-PU) 

• Return record formatted maintenance statistics type 
00 alert operations (SSCP-PU) 

• Activate resource (MSCP-LU) 

• De-activate resource (MSCP-LU) 

• Return activate resource (MSCP-LU, MSCP-PU) 

Record Formatted Maintenance Statistics Alert 
Operations: CDREOIO or LUDREOIO processes the 
record formatted maintenance statistics request. The CD 
or LUD object state is checked for varied-on or greater. 
If the state is varied-on or greater, the I/O request is 
sent to the 10M queue indicated in the object. 

27-24 

Activate Resource Request: ARREOIO processes the 
activate resource I/O request. For a LU D attached to a 
BSC, LU 1, or work station CD, the activate resource 
request I/O is never routed to an 10M. When the LUD 
is not contacted, the activate resource I/O request is 
enqueued to the activate resource queue in the LUD 
source/sink active device list. When LUD contact 
occurs or when an activate resource I/O request is 
received after LU D contact occurs, a feedback record for 
the activate resource I/O request is returned to the 
response queue. 

For a LUD attached to a peer CD, the activate resource 
I/O request is handled by the station 10M. Before the 
LUD is varied-on, the LUD object state is varied on 
pending and the activate resource I/O request is 
enqueued to the activate resource queue in the LUD 
source/sink active device list. When the station 10M 
receives the vary-on LUD (cold) message hom the 
MSCP, the station 10M takes the activate resource I/O 
requests off the activate resource queue in the LUD 
source/sink active device list and enqueues them on the 
LUDs mode table waiting queues. After the station 10M 
returns the vary-on LUD (cold) message, and until the 
LUD is varied off (cold), all activate resource I/O 
requests are routed to the station 10M. 

When the LUD has not been varied on for the first time, 
or if it is recovering after a failure, one of the following 
occurs: 

• For a switched line, when the recovery 
resource/activation state for the CD and LUD is 
continue, the CD switched intervention event is 
signaled. 

• For an MTAM or primary peer nonswitched line, 
when the recovery resource/activation state for the 
CD and LUD are normal pending, the CD primary 
intervention event is signaled. 



De-activate Resource Request: DRREQIO processes the 
de-activate resource I/O request. The activate resource, 
specified in the SSR, is dequeued from the activate 
resource queue in the LUD source/sink active device list 
or from a mode table waiting queue and returned to the 
machine-interface response queue. 

For a LUD attached to a peer CD, the de-activate 
resource I/O request is routed to the station 10M; 
ctherwise, it is returned to the machine-interface 
response queue with normal completion status. 

Return Activate Resource Request: RAREQIO processes 
the return activate resou rce I/O req uest. All activate 
resource I/O requests are dequeued from the activate 
resource queue in the LUD source/sink active device list 
and returned to the response queue. When the system 
pointer in the SSR specifies a CD, this process is done 
for all varied-on LUDs attached to the CD. 

For a peer CD, the return activate resource I/O request 
is routed to the station 10M; otherwise, it is returned to 
the machine-interface response queue with normal 
completion status. 

BSC/MTAM AUTOMATIC RECOVERY TASK (BART) 

The BSC/MTAM automatic recovery task (BART) is 
created for the BSC/MTAM I/O managers (lOMs) for 
processing line and station failures. BART is not directly 
associated with any specific communications line. When 
a line or station failure occurs, the associated 10M 
invokes #MSBERP and #MSBART to create BART. A 
BART is created for each BSC/MTAM 10M line or 
station failure. If multiple line or station failures occur, 
multiple BARTs are created. 

The failing 10M invokes #MSBERP. #MSBERP first 
creates a new 10M queue, then #MSBART creates the 
BART. All information between the failing 10M and 
#MSBERP is passed through the BART control block. 
When BART is created, register 5 is pointing to the 
BART control block. Storage for the BART control block 
is controlled by the MSCP to prevent the storage from 
being freed if the 10M is destroyed before BART is 
destroyed. BART uses the 10M·s old queue as the main 
send / receive queue. 

DATA AREAS 

Source/Sink Active Device List 

The source / sink active device list is a data structure 
consisting of a fixed base with additional control blocks 
allocated as each ND, CD, or LUD is varied on. The ND, 
CD, and LUD blocks (not the same as ND, CD, and LUD 
objects) are chained to the base source/sink active 
device list. These control blocks contain information 
maintained and used by the various MSCP routines. The 
source / sink active device list base entries are as 
follows: 

• MSCP Task Input Queue Header (MSCPQ): This 
queue header is used as an input queue for messages 
intended for the MSCP task. 

• MSCP Queue Pool Header (MSSQP): Queues used 
by the MSCP functions are managed using a pooling 
scheme. Unused queues are placed on a queue pool 
queue header as send/receive messages. Access to 
the unused queues is via the module #MSFECHQ. 
When an MSCP function needs a queue, #MSFECHQ 
is invoked to get the next unused queue. When a 
queue is returned to the pool, the caller changes the 
descriptor byte to a send / receive message and 
enqueues the message to MSSQP. 

• MSCP Task Process Control BLock (PCB) Address 
(MSS@PCB): The MSCP initialization module stores 
the current PCB in the source/sink active device list. 
All MSCP functions use this PCB address when 
getting or freeing machine-wide storage. 

• Directly-Attached CD Block Pointer (MSSCNPTR): 
CD blocks for controllers that are directly attached 
(not associated with an ND) to the system are 
chained to this pointer. 

• Local LUD LU Block Pointer (MSSLUPTR): LUD 
blocks for local LUDs (those with no CD or ND 
attached) are chained to this pointer. 

• Queue Pool Pointer (MSSQPLPT): Blocks of queues 
in the queue pool are chained to this pointer. 

• Set Line Priority Parameters (MSSSETLP): Each 10C 
has an 8-byte set line priorities field reserved in the 
source/sink active device list. These fields are 
completed at 10C wakeup and are used by the 
activate link function. 

Machine Services Control Point 27-25 



• Active Line Flags (MSSAFLAG): Each lac for 
communications has a 1-byte active line flag field in 
the source/sink active device list. Each bit represents 
a pair (0-8, 1 -9, and so on) of lines on an lac. A 
O-bit indicates an inactive line; a 1-bit indicates an 
active line. These flags are used to determine if lac 
wakeup should be performed. 

• Sender Identification Pool Pointer (MSSIDADR): A 
field of 4096 bits, chained to by this pointer, 
represents which sender identifications (0 through 
4095) are used or are available for use. The 
assignment of the identifications is managed by 
#MSGETID (get an identification from the 
identification pool) and #MSRELID (return an 
identification to the identification pool). 

• ND Block Pointer Array (MSSNB@): The ND blocks 
are addressed through an array of thirty-two 6-byte 
pointers (MSSNB@); if an ND block does not exist, 
the pointer is O. The first entry in the array is for 
OU#20, followed by 21 through 27, 60 through 67, 
AD through A7, and EO through E7. 

• CD Pending Queue (MSSCPQUE): When a CD 
attached via a switched network is varied on, the CD 
is set to the vary-on- pending state until the 
connection is made. Since the CD is not associated 
with a particular N D (and line) until the call is 
completed, the CD block is enqueued to the CD 
pending queue. 

• Active Line Speed Counters (MSSLVONC and 
MSSLVDMC): Each lac for communications has a 
2-byte counter in the source / sink active device list. 
Each counter represents the BPS values of the 
varied-on lines (1 = < 48 000 BPS, 4 = > 48 000 
BPS). These counters are used to ensure that a high 
speed line is not varied on concurrently with any 
other line or lines that share the same lac. 

• OU/ND Table Pointer (MSSPOUND): The OU/ND 
table is used to keep track of how many NDs exist 
(per aU) and which ones are varied on or in 
diagnostic state. 

27-26 

In addition to the fixed portion of the source/sink active 
device list, a block of data is generated and chained to 
the source/sink active device list whenever a CD, LUD, 
or ND is varied on. These blocks contain pointers to 
queues, task dispatching elements (TDEs), objects, 
related blocks, and status flags. 

BART Control Block 

The BART control block, shown in Figure 27-2, is the 
only control field used by BART. Because BART does 
not communicate with anything outside the system, the 
BART control block has no protocol characters or fields 
to be used. 

BART Queue Pointer (old 10M queue) 

10M New Queue Pointer (not used by BART) 

Failing ND Pointer 

Failing CD Pointer 

Count of Active LU Ds 

Feedback Record to be Returned 

Saved Feedback Record 

Device Dependent Code 

Hardware Error Code 

Error Time-Stamp 

au Number 

Identification Of the Failing 10M 

Status Flags 

BART Control Table 

Figure 27-2. BART Control Table 

J 



STRUCTURE 

The following is a list of the MSCP modules and the 
function th,ilt each module performs. The list also shows 
how the module is invoked. 

#MSAElRB Request Build 

Function: Builds and sends the request I/O message to 
request maintenance statistics. 

How Invoked: Within this component. 

#MSAELRS Error Log Response Handler 

Function : Sends the error log response to the response 
queue indicated in the message. 

How Invoked: Within this component. 

#MSBART BSC/MTAM Automatic Recovery Task 

Function: Handles messages on the 10M's old queue. 

How Invoked: Another VMC component. 

#MSBERP BSC/MTAM Error Recovery Procedures 

Function: Handles the creation of the new 10M queue 
and creates the #MSBART module needed by the 
BSC/MTAM 10M error recovery. 

How Invoked: Another VMC component. 

#MSCDIAL Dial On Switched Lines 

Function: Initiates a manual or autodial operation to a 
switched controller. 

How Invoked: Source/Sink instruction processor. 

#MSCPTSK MSCP Asynchronous Task 

Function: Initializes the source/sink active device list 
and processes MSCP requests. 

How Invoked: System initialization; other VMC 
components. 

#MSCVONN CD Status Control 

Function: Modifies the status of the controller 
description as indicated by the source/sink instruction 
processor. 

How Invoked : Source/Sink instruction processor. 

#MSFECHQ MSCP Queue Management Subroutine 

Function: Returns an MSCP queue element from a pool 
to the caller. 

How Invoked: Within this component. 

#MSGETID MSCP Station Identification Generator 

Function: Searches the identification pool for the first 
unused identification and returns the identification to the 
caller. 

How Invoked: Within this component. 

#MSLDMSG Logical Unit Services 

Function: Processes all messages pertaining to logical 
units (LUDs) that appear on the MSCP input queue. 

How Invoked: Responses to messages from this 
component returned by laMs. 

#MSLSCRT Create / Destroy Session 

Function: Activates and de-activates a session between 
the using process and the logical unit. 

How Invoked: Source/Sink instruction processor. 

#MSLVONN LUD Status Control 

Function: Varies the status of the logical unit description 
as indicated by the instrl :tion processor. 

How Invoked: Source/Sink instruction processor. 

Machine Services Control Point 27-27 



#MSNVONN N D Status Control 

Function: Varies the status of the network description as 
indicated by the instruction processor. 

How Invoked: Source/Sink instruction processor. 

#MSOUQCT Find and Initialize a OCT 

Function: Finds and initializes a queue control table 
(OCT) for a given operational unit number. 

How Invoked: Within this component. 

#MSRELID Release MSCP Station Identification 

Function: Returns an identification to the pool. 

How Invoked: Within this component. 

#MSREQB MSCP Build Request I/O Message 

Function: Creates the Request I/O and feedback 
messages in machine-wide storage. 

How Invoked: Within this component. 

#MSSRQIO MSCP Request I/O Handler 

Function: Handles all MSCP Request I/O instructions 
issued by the M I process. 

How Invoked: Source/sink instruction processor. 

#MSSWMGA Physical Unit Services #1 

Function: Processes messages on the MSCP input 
queue that pertain to the asynchronous contact of 
physical units (controller descriptions). 

How Invoked: Request messages from 10Ms or 
responses from 10Ms to request messages from this 
component. 

27-28 

#MSSWMGD Physical Unit Services #2 

Function: Processes messages on the MSCP input 
queue that pertain to disconnecting physical units 
(controller descriptions). 

How Invoked: Request messages from 10Ms or 
responses from 10Ms to request messages from this 
component. 

#MSSWMGS Physical Unit Services #3 

Function: Processes messages on the MSCP input 
queue that pertain to establishing connections of 
physical units (controller descriptions). 

How Invoked: Request messages from 10Ms or 
responses from 10Ms to request messages from this 
component. 

J 



L 

MULTI-LEAVING Telecommunications 
Access Method I/O Manager 

INTRODUCTION 

The MULTI-LEAVING telecommunications access 
method (MTAM) I/O manager (10M) activates, 
manages, and de-activates the telecommunications 
channel and enforces the MTAM protocol. An MTAM 
I/O manager task is created by the machine services 
control point (MSCP) as a result of a Modify Network 
Description (vary-on) instruction. The MTAM I/O 
manager is used for communications to devices on a 
switched or nonswitched point-to-point 
telecommunications network. The basic MTAM support 
runs online using a subset of the BSC protocol 
commands. 

An MT AM I/O manager interfaces with the following: 

• The MSCP 

• The error log 

• An I/O controller 

• Modify Network Description instruction 

• Modify Controller Description instruction 

• Modify Logical Unit Description instruction 

• Request I/O instruction 

MULTI-LEAVING Telecommunications Access Method I/O Manager 28-1 



An MTAM I/O manager task is associated with one 
communications 10C line position and provides specific 
support as shown in Figure 28-1. 

Receive and 
Transmit 
OU Queues 

10C 

Line 10M 
(SDLC primary) 

Line 1 
(SDLC primary) 

Device 

Line 10M 
(BSC) 

Line 2 
(BSC) 

Device 

Line 10M 
(SDLC secondary) 

Line 3 
(SDLC secondary) 

Device 

Line 10M 
(MTAM 10M) 

Line 4 
(MTAM 10M) 

Device 

Figure 28-1. MULTI-LEAVING Telecommunications Access Method IOM/IOC Line Position Relationships 

28-2 



Communications to the MTAM 10M is through a 
send/receive queue as shown in Figure 28-2. The types 
of messages received are as follows: 

• Source/sink instructions (from the CPF process) 

• MSCP messages 

• Operation request elements (OREs) (from either 
transmit or receive OUs) 

• Time-out messages generated by the MTAM 10M 
(by the clock comparator task) 

• Channel error messages (from the channel 10M) 

MTAM I/O Manager 

VMC 
Send / Receive 
Message Router 
(ENTRYRTN) 

Return 
VMC Messages 
(#TMMSMSG) 

I 

• L.!.r 
VMC Send/Receive 
Message Queue 

Figure 28-2. MTAM 10M 

--., 

Llr 
Mainline 

r---------------, 
I I 
I I 
I Message Router I 

~ (#TMMROUT) i~ 
I I 
I I 

L-------J-------J 
r------- -------, 
I Link Scheduler I 
I I 
I and Protocol I 
I I 
I Management I 
I I 
I (TPMMSCHD) I L.. _______ _______ J 

Put data on 
the line modules 

I 
• ...c::=-

Transmit 
Queue 

I 
~. 

Receive 
Queue 

Operational Unit 

MTAM 
10M Queue 

ORE Response 
Routine 
(TPMMRORE) 

t 
Hardware Error 
Recovery 
Procedures 
(#TMMERPL) 

- ORE Handler 
(TPM@OREE) 

Feedback 
Record 
(#TMMFDBK) 

• 
Machine Interface 
Response Queue 

MULTI-LEAVING Telecommunications Access Method I/O Manager 28-3 



The queue message router receives the message and 
uses the key field in the message to determine if the 
message is a VMC message or an ORE. Then, based on 
the function field, the queue message router invokes the 
appropriate message (Figure 28-3) or ORE handler 
(Figure 28-4). 

Function Module 

Request I/O #TMMROID 

Request I/O (continue) #TMMROIC 

Activate session #TMMASES 

Resume session #TMMRSUM 

Reset session #TMMRSES 

De-activate session #TMMDSES 

Initialize line #TMMENB 

De-activate connect-in #TMMDABL 

Establish switched connection #TMMESC 

Time-out #TMMTIME 

Vary-on LUD #TMMVDNL 

Dial (connect-out) #TMMDIAL 

Abandon connection #TMMABO 

Suspend session #TMMSPND 

Ouiece session #TMMOUES 

Read data store #TMMRDSO 

Trap #TMMTRPO 

Request exchange identification #TMMXID 

Contact #TMMCON 

Discontact #TMMDCON 

Change ND retry values #TMMNDRT 

Message time-out #TMMSFTD 

Change device sp&cific area #TMMMDSA 

Change line specific area #TMMMLSA 

Change user specific area #TMMMUSC 

Bad message #TMMBADM 

Figure 28-3. Message Function Handlers 

28-4 

Function Module 

Initialize line ORE #TMMENBR 

Reset line #TMMDABR 

Establish switched connection #TMMESCR 

Dial #TMMDLR 

Abandon connect-out #TMMABDR 

Activate link #TMMVNNR 

De-activate link #TMMVOFR 

Abandon connect-out line #TMMABOR 

Read data store #TMMRDS2 

Trap #TMMTRP2 

Request exchange identification #TMMXIDR 

Contact #TMMCONR 

Text processor #TMMTXTR 

Figure 28-4. ORE Function Handlers 



To communicate with an MTAM host, the MTAM 10M 
issues write, read, and control type commands to the 
hardware/microcode support associated with the 
communications link attached to the 10C. See Figure 
28-5. The 10C allows up to four communications lines. 
Two 10Cs can be attached to the system so that the 
system can support eight communications lines. For 
synchronous transmission, a communications line may 
be activated as BSC point-to-point nonswitched or 
switched. 

Prior to activation of any communications line 10C, the 
MTAM 10M through the MSCP verifies and ensures that 
the 10C is operational. 

For each communications line on an 10C, there are two 
operational unit (OU) tasks, each with a send/receive 
queue. Two OU tasks per communications line allow a 
simultaneous transmit/ receive capability useful for 
interrupting an operation by issuing a reset to the OU 
send/receive queue. These OU tasks and send/receive 
queues are created by the MSCP during line activation. 
The MTAM 10M maintains the send/receive queue 
addresses in the link control block. 

Communication to the MTAM 10M is through a 
send/receive message called an operation request 
element (ORE). The operation block portion of the ORE 
is the portion where commands are specified, data areas 
are indicated, and status is returned. The MT AM 10M 
uses three types of operation blocks: the function 
operation block, the program operation block, and the 
message operation block. 

The function operation block contains single commands 
such as initialize, establish switched connections, or line 
reset (line directed commands); as well as Write and 
Read commands. 

The program operation block is used when multiple 
function operation blocks are to be executed. The 
program operation block references a chain of function 
operation blocks, each of which contains a command to 
be executed. 

The message operation block is used during data 
transfer to eliminate the chance of command time-outs 
when two separate commands must be issued to the 
10C for the execution of one I/O operation. 

When the OU task has completed the activity requested 
by the command field of the function operation block, it 
sets the basic status (BSTAT) field of the function 
operation block. The first byte of the BSTAT (BSTATO) 
is a general indication of the success of the operation. 
When BSTATO indicates an error, the second byte of 
the BSTAT (BSTAT1) gives a more specific indication of 
the cause of the error. The 10C returns the functional 
status (FSTAT) to the MTAM 10M during Read and 
Write operations. 

MULTI-LEAVING Telecommunications Access Method I/O Manager 28-5 



MSCP 

CPF 
Process 

Transmit 
OU Task 

MTAM 10M 

I/O Controller 

Figure 28-5. MTAM I/O Manager Interface 

28-6 

Receive 
OU Task 

Network 
Description 

Controller 
Description 

Logical Unit 
Description 

MTAM 
Control 
Block 

Receive 
OU Queue 

Service 
Order 
Table 



L 

DATA AREAS 

Link Control Block 

The link control block (LKB) is in the invocation work 
area of the queue message router and is present when 
the task is active. The LKB contains the pointers, 
program operation block OREs, status indicators, and 
retry counters used for error recovery. 

A pointer to the LKB is stored in register 4 and is saved 
throughout the task. The contents of the LKB is shown 
in Figure 28-6. 

Program Operation Blocks 

Operation Request Elements 
Pointers 
Sense Area 
Retry Counters 
Time-out Parameters 
Service Order Table 
Input Buffer 
Alternate Input Buffer 

Figure 28~. Link Control Block 

Service Order Table (SOT) 

The service order table consists of 17 entries. Each 
entry represents a device. See Figure 28-7. 

Input 
Devices 

Output 
Devices 

SOT Entry Number/Entry 

1 Console Keyboard 
2 Reader 1 
3 Reader 2 
4 Reader 3 
5 Reader 4 
6 Reader 5 
7 Reader 6 
8 Reader 7 
9 Console Display 

10 Printer 1 
11 Printer 2 or Punch 7 
12 Printer 3 or Punch 6 
13 Printer 4 or Punch 5 
14 Printer 5 or Punch 4 
15 Printer 6 or Punch 3 
16 Printer 7 or Punch 2 
17 Punch 1 

Figure 28-7. Service Order Table 

MULTI-LEAVING Telecommunications Access Method I/O Manager 28-7 



Each SOT entry represents the device or devices 
indicated in the SOT and as shown in Figure 28-8, 
contains the following areas: 

• Dequeue key 

• Flags 

• Pointers 

• Data fields 

Dequeue Key 

· Internal Queue Key (SOT Key) 

Flags 

· Session Active Flag 

· Suspend Flag 

· Reset Flag 

· Quiesce Flag 

· System/38 BID Bit 

· Host BID Bit 

· Local Device Type 

· Host Device Type 

· Current Request I/O Valid Flag 

· End of File Found Flag 

· First Time Through Flag 

· Terminating Error Mode 

· Summary Flag 

Pointers 

· Pointer to Internal Queue 

· Pointer to Logical Unit Description Object for 
Console, Reader, Printer 

· Pointer to Logical Unit Description Object for 
Punch Devices 

· Pointer to Modify Message 

· Pointer to Current Request I/O 

Data Fields 

· Function Control Sequence Mask 

· Subrecord Control Byte Save Area 

· Trace Control Field 

Figure 28-8. Service Order Table Entry 

28-8 

STRUCTURE 

The following is a list of the modules in the MTAM 10M 
and the function that each module performs. This list 
also shows how the module is invoked. 

#TPMELSE Nonmainline Functions/Protocol Error 
Recovery Procedure 

Function: Handles the following routines: 

• Start/cancel timer 

• Read data store 

• Trap 

• Initialize 

• Unsolicited data handler 

• Request I/O (bid) instruction 

• Error recovery procedures 

How Invoked: Within this component. 

#TMMERPL Horizontal Microcode Error Recovery 
and Logging 

Function: Processes errors on the link as a result of 
horizontal microcode errors and does logging of the 
errors. 

How Invoked: Within this component. 

#TMMMIOM Mainline Function 

Function: Handles the mainline functions of the MTAM 
10M and routes all the incoming messages. 

How Invoked: Other VMC component. 

#TMMMODC Modify CD 

Function: Processes messages that are sent to the 
MT AM 10M as a result of a Modify CD instruction. 

How Invoked: Within this component. 

J 



#TMMMODL Modify LUO 

L Function: Processes messages that are sent to the 
MTAM 10M as a result of a Modify LUO instruction. 

How Invoked: Within this component. 

#TMMMODN Modify NO 

Function: Processes messages that are sent to the 
MTAM 10M as a result of a Modify NO instruction. 

How Invoked: Within this component. 

MULTI-LEAVING Telecommunications Access Method I/O Manager 28-9 



J 

28-10 



L 

Native I/O Manager 

INTRODUCTION 

The native I/O manager (10M) is a VMC task for local 
work stations that interfaces with: 

• Machine services control point (MSCP) 

• Error log 

• Modify Controller Description instruction processor 

• Modify Logical Unit Description instruction processor 

• Request I/O instruction processor 

• Transmit and receive operational unit (OU) tasks 

• Service "function task 

The user of the native 10M can execute Modify 
Controller Description and Modify Logical Unit 
Description instructions, and can make, break, and 
manage a systems network architecture (SNA) path to a 
logical unit (LU) attached to the work station controller. 
The Request I/O instruction is used to communicate 
with a logical unit. The native 10M handles the logical 
path for each LU attached to the work station controller; 
the native 10M is the multiplexing point for all 
communications to and from the work station controller. 

The native 10M provides the user with the capability to 
communicate with locally attached 5250 devices using 
an interface that is compatible with remotely attached 
5250 devices. 

There is a native 10M task for each work station 
controller. Each 10M can handle from 1 to 32 logical 
units at a time. 

The interface to the native 10M is through send/receive 
messages (SRMs) including I/O requests, operation 
request elements (OREs). and the feedback record. See 
the Source/Sink Data Areas in the VMC Overview section 
of this manual for a description of these areas. 

The native 10M is a VMC task that is created by MSCP 
when a Modify Controller Description (vary-on) 

instruction is issued against a work station controller 
description object. The task is created with one input 
queue used to hold the SRMs and OREs. MSCP also 
creates transmit and receive OU tasks for the native 
10M associated with the work station controller. 

The operation of the native 10M is shown in Figure 
29-1. The native 10M uses a router module to invoke 
the appropriate routine. The router gains control when 
the native 10M task is created (activate CD time). The 
router immediately executes a receive to the native 10M 
queue and waits for an SRM or ORE. Once a message 
is received, the router performs a table lookup to locate 
the routine that performs the requested function. If the 
function is not in the table and the message is not an 
ORE, the SRM is checked to see if it is a response. If 
the SRM is a response, the storage occupied by the 
message is freed. (This message was generated by the 
native 10M and no further processing is required.) If the 
requested function is not supported by the native 10M, 
the message is returned with an unsupported status 
indicated. When the SRM or ORE has been processed, 
the router again does a receive on the native 10M queue 
and the process is repeated. 

There is a module for each SRM function code and ORE 
command code. 

There are three types of native 10M modules: 

• System/38 instruction processor modules 

• SNA support modules 

• I/O support modules 

The System/38 instruction processor modules provide 
direct support of the source/ sink modify instruction 
processors. The SNA support modules are part of the 
input and output data path. The SNA support is used 
with the Request I/O instruction because the native 
10M provides the interface that is compatible with 
remotely attached 5250 devices. The I/O support 
modules provide direct support of the Request I/O 
instruction (this support includes the SNA modules). and 
the OREs used to perform the I/O operations to the 
work station controller. 

Native I/O Manager 29-1 



Write, Clear, 
Reset, Startup, 
Read Data Store 

Transmit 
OU Task 

CPF 
Process 

Request I/O, 
Modify LUD, 
Modify CD 

Native 
10M 

Read, Read 
Sense, Clear 

Receive 
OU Task 

I/O Controller 

Figure 29-1. Native 10M Overview 

29-2 

Controller 
Description 

Logical Unit 
Description 

Native 
Control 
Block 

Receive 
OU Queue 

Lookaside 
Table 

Routing 
Table 



System/38 Instruction Support 

All source/sink modify instructions are passed to the 
native 10M in the form of messages (SRMs). These 
messages are built by mapping the instructions to the 
VMC format. This step is performed by the source/sink 
instruction processors. 

All messages are routed to the appropriate modules by 
the native 10M router. The instructions supported are 
described in the following paragraphs. 

Modify Controller Description (Vary-On/Off): This 
instruction is used to establish or break the 
communications path to the physical unit in the station 
represented by a controller description. 

Modify Controller Description (Cancel): This instruction is 
used to suspend the reconnection and reuse of the 
controller description (CD). An SRM is sent to the native 
10M causing the CD to go into error recovery mode and 
suspend request I/O processing. 

Modify Controller Description (Continue): This instruction 
is used to allow the reuse of the CD and request that 
contact be established after an unrecoverable error 
occurs. An SRM is sent to the native 10M causing the 
CD to reset error recovery mode after an inoperative 
station failure and allow processing to continue. 

Modify Controller Description (Unit-Specific Contents): 
This instruction is used to modify the unit-specific 
contents of the CD. The native 10M does not use any 
of the modifiable unit-specific contents in its CD. 

Modify Logical Unit Description (Vary-On/Off): This 
instruction is used to establish or break the 
communications path from the MSCP to the logical unit. 
It also performs preliminary setup for a Modify Logical 
Unit Description (activate) instruction to establish a 
logical unit to logical unit path. 

Modify Logical Unit Description (Cancel): This instruction 
is used to suspend use of the device after an 
unrecoverable error. An SRM is sent to the native 10M. 
The native 10M uses the object pointer in the SRM to 
locate the proper entry in the routing table and puts the 
device represented by the LUD listed in the routing table 
into error recovery mode. 

Modify Logical Unit Description (Continue): This 
instruction is used to allow the reuse of the device after 
an unrecoverable error occurs. An SRM is sent to the 
native 10M activating the MSCP-PU control path. 

Modify Logical Unit Description (Activate/De-activate): 
This instruction is used to establish or break the 
communications path from the system logical unit to a 
work station controller logical unit. 

Resume: A Modify Logical Unit Description (activate) 
instruction is altered to a resume command by the 
source/sink instruction processors when the logical unit 
is in the inactive state (quiesce, suspend, reset). 

Modify Logical Unit Description (Quiesce): Once the 
native 10M receives this request, it completes all I/O 
requests that are either in process or waiting on the 
queue. When processing of this instruction is 
completed, device management reaches a normal 
completion and all I/O request processing is stopped 
until a Modify Logical Unit Description (activate) 
instruction is issued. 

Modify Logical Unit Description (Reset): This instruction 
causes all I/O requests to be returned to the user 
request queue, with an indicator that the request was 
not processed. The number of request descriptors 
processed is also set in the feedback record. This 
instruction also places the path in an inactive state that 
can be reactivated with a Modify Logical Unit 
Description (activate) instruction. All available unsolicited 
data is purged by this instruction. 

Native I/O Manager 29-3 



Modify Logical Unit Description (Suspend): This 
instruction ensures that all I/O requests for logical units 
are in the suspend state. This means that if all I/O 
requests have been started, those that contain transmit 
requests only or receive requests only will be completed, 
and those that contain transmit/receive requests will 
have only the transmit portion completed. The I/O 
requests that complete are put on the return queue with 
the appropriate feedback code and the number of 
request descriptors (RDs) processed. Any 
transmit/receive type of I/O request with only the 
transmit portion complete remains on the queue of the 
logical unit. 

Modify Logical Unit Description (Device-Specific 
Contents): This instruction is used to modify the 
device-specific contents of the logical unit description 
(LUD). Since the CD is already varied on, the native 
10M is used to verify the device-specific contents of the 
LUD whenever the device-specific contents are 
modified. The native 10M then returns either positive or 
negative status to the user. These modifications will not 
take effect until a Modify Controller Description 
(vary-off) and a Modify Controller Description (vary-on) 
instruction is issued. 

Request I/O: This instruction is used for two purposes: 

• Perform I/O operations on the various paths (MSCP 
to physical unit, MSCP to logical unit, logical unit to 
logical unit). 

• Return the logical unit to an active path state after a 
terminating error has occurred (Request 
I/O-continue). 

The I/O function is described under I/O Support in this 
chapter. The Request I/O (continue) instruction uses a 
termination error mode bit in the routing table. This bit 
is set when a terminating error is encountered. The user 
is informed of the error by a code in the feedback 
record. If the user can recover from the error, the user 
resets the mode bit with the Request I/O (continue) 
instruction, and normal I/O processing resumes. 

29-4 

SNA Support 

The native 10M provides a locally attached interface that 
is compatible with remotely attached 5250 devices. The 
native 10M uses SNA support equivalent to the remote 
station 10M and the remote work station controller. This 
support consists of the data flow control and 
transmission subsystem layers of SNA 0081 (T3). The 
data flow control layer is that of a first speaker (bind 
receiver-similar to a secondary station arrangement). 
The transmission subsystem layer is contained entirely 
within the native 10M, including both host and terminal 
modules. The transmission subsystem provides the 
orderly exchange of data between logical units. It 
consists of path control and connection point manager. 

Path Control 

Path control uses the information in the T3 transmission 
header to control delivery of received basic information 
units to the addresses, supervisory services, or LUs in a 
node (including a clustered group of LUs). 

Path control is broken into the following areas: 

• Routing 

• Function identification translation 

• Logical I/O paths 

The routing function consists of a search of the 
lookaside table to find the correct route table entry. In 
the outbound direction, the search depends on the LU 
being varied on. This information is obtained from the 
Request I/O instruction. This information along with the 
requested I/O function (MSCP or normal) is used to 
locate the correct path (MSCP-PU, MSCP-LU, or 
LU-LU). In the inbound direction, the destination 
address from the transmission header is used to locate 
the correct logical unit in the routing and lookaside 
tables. The transmission header flow bits are then used 
to point to the LU-LU or MSCP-LU path (the 
transmission header is in the read data ORE). For either 
inbound or outbound traffic, once the correct route table 
and lookaside table entries are located, the native 10M 
performs the necessary steps to deliver the basic 
information unit. 

J 



Function identification translation converts the internal 
transmission header and request/ response header to the 
work station controller write-ORE parameters, and from 
work station controller read-ORE parameters to the 
internal transmission header and request/ response 
header. This process provides the common interface for 
both remotely and locally attached 5250 devices. 

Because the native 10M is performing this conversion 
"from function manager parameters to the internal 
transmission header and request/response header and 
vice versa, it is not necessary for the native 10M to 
perform many of the transmission header and 
request/response header format checks. 

Once the translation and routing functions have located 
the correct path (for example, routing table and 
lookaside table entries), the native 10M selects the 
correct logical I/O path for the frame. The frame or I/O 
request contains the data necessary to identify the 
correct logical I/O path. An I/O path is selected by 
setting the basing variable. SNA defines the logical I/O 
paths as either expedited or normal for both 
transmission and receive. These logical I/O paths are 
represented in each routing table entry. 

Connection Point Manager 

The connection point manager is the control point within 
the logical unit for distribution of the request units to 
the appropriate LU component (session control. data 
flow control, and function manager data). It also 
enforces pacing for those logical units that require 
pacing. 

Connection point manager routes all session control 
request units whenever they are received, but routes 
data flow control (DFC) and function management 
request units only when the session is active. This 
function is done only for outbound traffic. The 
distribution for inbound traffic is done by the user 
process based on data in the feedback record and 
receive request descriptors. 

Pacing is a means whereby the receiving connection 
point manager can control the rate at which it receives 
requests on the normal data flow. Responses are not 
paced. Also, expedited data is not paced. 

Pacing is only needed for printers attached to the work 
station controller. Pacing is only used for output printer 
data, and is initiated by the pacing count in the logical 
unit description. 

Each routing table entry has "fields defined to be used 
for pacing a path. The fields are the pacing count and 
counter of frames sent. If the pacing count is 0, pacing 
is not invoked. 

Pacing is started by setting the pacing count to the pace 
limit and the counter to O. This initial state specifies that 
the first frame is to be sent and the counter to be 
incremented by one. Subsequent "frames are sent out 
until the counter equals the pace count (limit). The 
pacing response from the LU causes the counter to be 
decremented by the pacing count. This means that the 
terminal can handle N more frames (N being the pace 
limit). The LU controls the flow by sending the pacing 
response when it is ready to receive more frames. 

The native 10M and work station controller pacing 
differs from SNA 0081 pacing as follows: 

• The pacing response is not requested from the work 
station controller. The response is passed to the 
native 10M when the work station controller has 
enough (pacing count) buffers available. 

• The pacing state is set to the initial state when a 
component-aborted situation is encountered Request 
Shutdown command. 

Native I/O Manager 29-5 



Session Control 

Session control commands are used to initiate and 
terminate sessions for end-to-end communication 
between LUs. Session control T3 allows only four 
commands (activate LU, de-activate LU, bind, and 
unbind). Activate and de-activate LU are used by the 
MSCP to establish the MSCP-LU session. Bind and 
unbind are used by the function manager (host) to 
establish the LU-LU session and exchange LU 
descriptions and security data. The native 10M does not 
maintain any session control state machines. It only 
translates the SNA commands to the work station 
controller write data parameter list and the read data 
response parameters, and these parameters to SNA 
command responses. 

The native 10M uses the LUD specific characteristics 
area to build the bind parameter list for the work station 
controller. 

Data Flow Control 

The native 10M uses the DFC first speaker (bind 
receiver). This means that the native 10M does not have 
any responsibility for recovery; when an error is 
encountered, the native 10M enters a receive state and 
wait~ for orders from the host. 

DFC monitors and controls the exchange of requests 
and responses to and from the function manager 
according to the half-duplex send/receive mode of 
operation. DFC controls the flow of request units to the 
function manager by processing the request/ response 
header bits which specify chaining, response type, 
direction, and flow. 

Chaining is the process whereby DFC groups the 
request units for recovery purposes. All request units 
passing through DFC use chaining. The native 10M 
generates the correct chaining bits for inbound data 
(data from the work station controller). 

29-6 

The native 10M enforces the following rules regarding 
response type and direction: 

• A request/response header indicating end-chain 
requires a definite response (with or without change 
direction) or an exception response with CD. 

• All request/response headers indicating the start or 
middle chain and not the end chain cannot request 
change direction, and must request an exception 
response. 

DFC processes two flows for all request units: 

• Data flow control 

• Function manager data 

The request/ response header of the function manager 
data request units is monitored for managing DFC-state 
machines. The native 10M generates the outbound DFC 
command request units and decodes the inbound DFC 
commands. The DFC commands exist only as 
parameters in the work station controller read-data ORE. 
The native 10M converts those parameters to the actual 
SNA request units before the requests are passed to the 
host in the feedback record. 

The DFC commands are: 

• Cancel: This command is used to terminate the chain 
currently being sent. This command is executed 
either because the sending LU detected an error 
before the complete chain was sent or a negative 
response to the chain was received. 

The native 10M generates this DFC command only if 
the work station controller returns a read data ORE 
with the Cancel command set on. The work station 
controller sets the Cancel command on if the work 
station controller lost contact with the device during a 
read operation. 

When the Cancel command is received, the native 
10M builds a null write function operation block (FOB) 
(FOB with zero length request/ response unit), and 
sends it to the work station controller. The Cancel 
command also turns on the cancel in progress bit in 
the FOB. The null write FOB causes the work station 
controller to clear the SNA purging chain state and 
return a positive response. 

J 



• Logical Unit Status command (SNA): This command 
is used to report the status of a device while the 
device is in the send state. The work station 
controller uses this command to report component 
failures and component availability conditions. 

• Request Shutdown command (SNA): This command 
indicates that this LU is ready to be de-activated. 
Since the host of the native 10M is the bind sender, 
the host is required to send an unbind command. 
The native 10M returns a negative response (function 
not supported) when it receives a Request Shutdown 
command (SNA) from the host. The work station 
controller generates the Request Shutdown command 
(SNA) whenever it encounters a component failure. 
The work station controller turns on a Request 
Shutdown command (SNA) flag in a read-data ORE, 
indicating negative response or the Logical Unit 
Status command (SNA). The native 10M maps the 
read-data ORE into the negative response or the 
Logical Unit Status command (SNA), followed by the 
Request Shutdown command (SNA). The native 10M 
also causes the pacing counter to be set to a and the 
Logical Unit Status command (SNA) component abort 
to be sent to MSCP. 

• Signal: This command is used for both inbound and 
outbound operations on the expedited flow, and is 

~ used to request or report attention, request a 
direction change, turn on or off a message indicator, 
and indicate manual intervention. The native 10M 
does special handling for attention and request 
change direction. The native 10M ensures that only 
one attention is outstanding at one time. Any 
additional attentions are purged. 

The signal request change direction is supported through 
the work station controller write-data ORE hold-read 
option. When the work station controller receives this 
request, it ensures that any LU read currently in 
progress is not allowed to complete. The LU read is 
suspended until a subsequent LU data stream command 
(a restore or data-stream read of any type) releases the 
read. When a write-data ORE completes, the native 
10M returns the CD to the host. 

The signal request change direction is sent to the native 
10M as a conditional request. This means that the 
native 10M must first ensure that a LU read is 
outstanding before processing the request. If a read is 
not outstanding, the request change direction request 
I/O is returned not processed. 

MSCP Functions 

The native 10M provides the MSCP with an interface 
similar to the one provided to the logical unit. Two 
differences apply to this interface: 

• The MSCP-LU or MSCP-PU path is not placed in 
terminating-error mode. Thus, a continue is not 
required to resume request I/O operations. 

• If a suspend command is issued, the native 10M 
assumes that no additional Request I/O instructions 
will be issued for that path until a resume request is 
issued. 

The MSCP either processes unsolicited data or passes 
the unsolicited data to the user as data in events. The 
events are either formatted or unformatted supervisory 
services data. The MSCP always returns the unsolicited 
data SRM with a successful completion code. 

I/O Support 

Output 

The output process is started by a request I/O spooling 
function (#TPNRQIO). This function receives all I/O 
requests from the native 10M queue and enqueues the 
requests on the correct LU queue. The requests are 
always enqueued last on this queue and are categorized 
according to the I/O path on which they are to be 
executed (for example, expedited and normal transmit, 
expedited and normal receive, receive any, receive 
immediate). The spooler uses the second byte of the 
SRM key for these encodings. 

Native I/O Manager 29-7 



Once the requests are moved to the appropriate LU 
queue, the scheduler is invoked to process the output. 
The scheduler consists of two parts, a loop selection 
and a logical I/O path selection. The loop selection 
uses one lookaside table entry as the basic unit. This 
module ensures that each LU gets an equal opportunity 
for output and ensures that each transmit ORE contains 
data for only one LU. 

The logical I/O path selection module (build station 
output) gets control from the loop selection when the 
next lookaside table entry is selected. Addressability to 
the route table entry is established before the logical 
I/O path is selected. This section locates the next 
request to be processed (logical I/O path), enforcing the 
path control rule that expedited processing is executed 
before normal processing. The selection routine also 
controls the building of the work station controller write 
data FOBs. For Kanji devices, module #TPEIDO (for 
display output) or module #TPEIPO (for printer output) is 
called to translate ideographic extension characters into 
RAM addresses and to load the device ideographic 
RAM. 

The correct path is selected from the transmit path 
message pointers in the routing table entry. If the 
pointer is 0, the appropriate 2-byte key is built and a 
dequeue equal is done on the LU queue. If a request 
I/O is not located, the process returns to the loop 
selection module and the next LU is processed. If an 
I/O request is located, the output FOBs are built for 
that request if required. 

When the FOBs are built, the SNA finite state machines 
are updated and the transmission header, 
request/ response header, are translated into the work 
station controller FOB command format. 

On return, the loop scheduler determines whether it is 
time to build an operational program (any FOBs to be 
sent). If not, the loop scheduler selects the next entry 
and repeats the selection sequence. If the operational 
program is to be built, the loop scheduler builds the 
program, sends it to the transmit OU, and puts the 
transmit OU in a busy status. 

29-8 

Output Posting 

The native 10M now waits for the output to complete or 
input to arrive. This can occur in any order, depending 
on whether or not the output operation was successful. 

If the output operation was successful, the operational 
program returns control to the native 10M prior to any 
input resulting from the output, and the write-date ORE 
response handling module does the following: 

1. If the output was for a display or printer (printer 
when end-chain not sent), the module marks the 
transmit RDs as being processed. This routine 
then builds a feedback record when either all RDs 
are processed, or all transmits are processed and a 
receive RD is processed with an end-chain 
indicator on. 

2. 

3. 

If the output is for a printer and end-chain is 
indicated, and the work station controller is in a 
purging-chain-state (negative response to a chain 
occurred), the write-data response module 
processes the request as in the preceding step. 

If the output is for a printer and end-chain is 
indicated, and the work station controller is not in 
a purging-chain-state, the write data response 
does not mark the RDs as being processed. The 
RDs are marked as being processed when the 
read-data ORE with the work station controller 
requested response bit set is received. 

If the output operation was not successful, the output 
response can be received after the input operation 
(negative response for this chain). If the output 
response is received first, the write-data response 
module does not mark the RDs as being processed. 
This is done by the read-data-response module when it 
receives the negative response. This applies to both 
printers and displays. 



Input 

The native 10M does not explicitly request for a specific 
logical ooit input from the work station controller. The 
work station controller polls the logical units for input 
and, in effect, the native 10M has a read outstanding. 
The work station controller passes the input to the 
native 10M through a read-data ORE. This ORE 
contains the location, length, flow, and the logical unit 
address for the request unit. The input processor 
(#TPNLUCL) uses this information to perform the 
translation from the ORE/function operation block (FOB) 
format of the work station controller to the transmission 
header and request/response header format of SNA. 
The input processor also identifies the data flow control 
module that is to process the request unit. This data is 
stored in the native control block for use by the request 
I/O-locate and DFC modules. For Kanji displays, 
module #TPEIDI is called to re-translate RAM addresses 
in the data stream back into ideographic extension 
characters and to handle ideographic alternative entry, 
LUSTAT. The input processor then passes control to the 
request I/O-locate module. 

The request I/O-locate module selects the correct 
logical I/O path on which the frame is to be sent. If an 
I/O request is not pending or no buffer space is 
available, the frame is considered unsolicited data and 
an event or feedback record respectively is returned to 
the user. If the native 10M is in the receive state, the 
frame is also considered unsolicited data but the user is 
not informed of this occurrence. This is done by the 
native 10M because the work station controller passes 
any available input to the native 10M and because the 
work station controller is not aware of SNA 
send / receive states. 

Unsolicited data is held on the queue of the logical unit 
in the form of an ORE. This ORE is built by the native 
10M and has the same format as the read-data ORE. 
The ORE also contains a data area for a copy of the 
data stored in the native control block by the input 
processor and the request unit. This allows the native 
10M to free the input buffer even if the user has not 
supplied a buffer for the data. Because the unsolicited 
data is formatted as a read-data ORE, it is processed by 
the same modules used for input. The routing table 
entry contains bits that indicate that the scheduler is to 
process this data. 

If a request I/O is located, the DFC module that is to 
process this request unit is invoked. DFC finite state 
machines are updated at this point, causing SNA 0081 
data flow control protocols to be enforced. Once this is 
completed, the connection point manager 
send-operation posts the request/response unit to be 
returned to the user using the request I/O. The native 
10M then waits for the next message to be placed on 
the input queue. 

DATA AREAS 

Also refer to Source/Sink Data Areas in the Vertical 
Microcode Overview section of this manual for additional 
description of source/sink data areas. 

Controller Description 

The CD is used to identify the OU number of the work 
station controller and the chain of logical units attached 
to the work station controller. 

The input/output controller (lOC) wakeup procedure 
uses the chain of LUDs in order to construct the 
parameters for the work station controller Load-Poll-List 
command. This command establishes the polling 
sequence, LU addressing, and LU translate table. 

The native 10M uses the CD at activate CD time. The 
native 10M saves the OU number in the native control 
blocks and obtains the machine-wide storage needed to 
build internal control blocks. 

Logical Unit Description 

The LUD is used to describe the device type, logical 
session identifier, cable and head address, translate 
table, format table length and features attached. At 
vary-on LUD time, the native 10M uses this control 
block to establish the routing table data needed to 
communicate with the LU. 

Native I/O Manager 29-9 



Native Control Block 

Figure 29-2 shows an overview of the native control 
block. The native control block is built in the routing 
module (#TPNNIOM) in the invocation work area at 
activate controller description time. The native control 
block is a common control point for managing the work 
station controller. The native control block contains a 
subset of the data in the CD and is used to avoid page 
faults on user-owned CD objects. The native control 
block is always in main storage when the native 10M 
task is executing. 

The native control block provides a directory function to 
other data areas stored in the machine-wide storage. 
The native control block also functions as a collection 
point for native characteristics, control point for native 
output, and common location for unique SNA and native 
work areas. 

Pointers 

• Controller Description 

• LU Queue 

• Routing Table 

• User Buffer 

• Input Buffers 

• FOB Chain 

• Lookaside Table 

Output Control 

• Status Flags 

• LU Service Index 

• Counters 

SNA and Work Area 

• SNA Sense Code 

• Transmission Header 

• Request/Response Header 

• Message Counter 

• Destination Address Field Index Table 

Figure 29-2. Native Control Block 

29-10 

Routing Table 

The routing table is allocated and initialized in 
machine-wide storage at activate CD time. The routing 
table supports the SNA transmission subsystem. This 
table contains fields that support path control (routing 
and expedited/normal I/O paths), connection point 
manager (pacing), data flow control. and logical unit 
(I/O queueing and session states). 

An entry in the routing table represents an SNA path. 
Figure 29-3 shows an overview of a routing table entry. 
There are two entries per logical unit attached to a work 
station controller, one for each of the LU-LU and 
MSCP- LU sessions. These entries are established at 
LUD vary-on time. The MSCP-LU path is activated and 
ready for I/O traffic at that time. The LU-LU session is 
activated and ready for I/O traffic at modify LUD 
(activate) time. 

The second entry in the routing table represents the 
MSCP path (MSCP-PU) for the work station controller. 
This path is activated and ready for I/O traffic at 
activate CD time. 

Path Control 

• Object 

• Origin/Destination Address 

• Transmit Flow 

- Expedited 

- Normal 

• Receive Flow 

Expedited 

Normal 

Immediate 

Connection Point Manager 

• Pacing Flags 

• Pacing Counters 

Logical Unit 

• I/O Queue 

• Session State Flags 

• Unsolicited Data Flags 

• Active Request I/O Counter 

Figure 29-3. Routing Table Entry 

J 



Lookaside Table 

The lookaside table, like the routing table, is allocated 
and initialized in machine-wide storage at activate CD 
time. The lookaside table contains additional fields to 
support the logical unit. An entry in the lookaside table 
also represents an SNA path and is the basic loop 
scheduling unit. A one-to-one correspondence exists 
between the entries of the lookaside table and the 
entries of the routing table. When scheduling output, a 
reference to the proper routing table entry is also 
established at this time. Figure 29-4 shows an overview 
of a lookaside table entry. 

Logical Unit 

• Transmit Request I/O Count 

• Additional Session State Flags 

• Additional Unsolicited Data Flags 

Figure 29-4. Lookaside Table Entry 

Operation Request Element and Program Operation 
Block 

The ORE and the program operation block exist in the 
invocation work area of the native 10M, and exit during 
the execution of the 10M task. The ORE and the 
program operation block.are used to request the OU 
task to execute a chain of FOBs. 

Function Operation Block 

The FOB is allocated in machine-wide storage. The 
native 10M allocates 32 FOBs. 

Source/Sink Data Areas 

These data areas belong to the Request I/O instruction 
user. They contain device-specific commands and 
output text. The data contained in the source/sink data 
areas is not referenced by the native 10M unless the 
data concerns data flow or session control, but is used 
by the OU task as the output buffers. However, if the 
source/sink data area is destroyed, either the OU task 
or the native 10M task will terminate. 

STRUCTURE 

The following is a list of the native 10M modules and 
the function that each module performs. The list also 
shows how the module is invoked. 

IfTPNCMDS Group Native 10M Commands 

Function: Groups native 10M MSCP commands into one 
module. This module contains the following entry 
points: 

• #TPNACCD: Vary-on CD 

• #TPNVONL: Vary-on LUD 

• #TPNACSS: Activate session 

• #TPNDCSS: De-activate session 

• #TPNVOFC: Vary-off CD 

• #TPNVOFL: Vary-off LUD 

How Invoked: Within this component. 

IfTPNEXCP Native 10M Exception Handler 

Function: This module handles all exceptions in the 
native 10M. This module contains the following entry 
point: 

• #TPNOUEX: Exception handler for OU task 
exceptions 

How Invoked: Within this component and from the third 
level exception handler. 

Native I/O Manager 29-11 



#TPNFUNC Group Native 10M Functions 

Function: Groups native 10M functions into one module. 
This module contains the following entry points: 

• #TPNPECE: Post event or channel error 

• #TPNIOER: I/O error handler 

• #TPNDARR: Work station controller reset response 

• #TPNDACR: Work station controller clear response 

• #TPNRSR: Work station controller read sense 
response 

• #TPNERLG: Error log 

How Invoked: Within this component. 

#TPNIOCI Work Station Controller 10C Initialize 

Function: Puts the work station controller 10C into 
normal mode. 

How Invoked: Within this component. 

#TPNLUCL Logical Unit Control and Function 
Manager Data 

Function: Analyzes the read-data ORE response and 
converts it to the correct SNA transmission header, 
request/ response header, and request unit. 

How Invoked: Within this component. 

#TPNNIOM Native 10M Queue Message Router 

Function: This module is the main entry point in the 
native 10M. Routes SRMs and OREs to the appropriate 
module. 

How Invoked: Other VMC components. 

29-12 

#TPNOPER Group Native 10M Operation Routines 

Function: Groups operation routines into one module. 
This module contains the following entry points: 

• #TPNHDSM: Handle read-data store SRM 

• #TPNBDSO: Build read-data store ORE 

• #TPNHDSR: Handle read-data store ORE response 

• #TPNSRTO: SRM time-out handler 

How Invoked: Within this component. 

#TPNRIOL Request I/O Locate 

Function: This module locates the proper I/O request to 
receive the input data. 

How Invoked: Within this component. 

#TPNRQIO Request I/O 

Function: Receives all Request I/O instructions from the 
native 10M queue and enqueues the requests on the 
routing table with the correct key. This module contains 
the following entry point: 

• #TPNFDBK: Request I/O feedback 

How Invoked: Within this component. 

#TPNSCED LU Output Scheduler 

Function: Selects the routing table entry to be processed 
based on the loop (equal priority) scheduling and loops 
through the routing table until all entries have been 
checked or processed. 

How Invoked: Within this component. 

J 



#TPNSERV Group Native 10M Service Routines 

Function: Groups native 10M service routines into one 
module. This module contains the following entry 
points: 

• #TPNQUSC: Quiesce 

• #TPNRSET: Reset 

• #TPNRSUM: Resume 

• #TPNCONT: Continue 

• #TPNPGLU: Purge LU 

• #TPNSPND: Suspend 

• #TPNUSOL: Unsolicited response 

• #TPNPGUD: Purge unsolicited data 

How Invoked: Within this component. 

#TPNWDRS Write Data Response 

Function: Processes all responses to write-data OREs. 
This module processes write-data ORE completions and 
I/O exceptions but invokes the I/O error handler for 
I/O errors and rejected commands. 

How Invoked: Within this component. 

#TPEIDO Ideographic Display Output 

Function: Scans Kanji data, translates to RAM 
addresses, and manages ideographic RAM contents list. 

How Invoked: Within this component. 

#TPEIDI Ideographic Display Input 

Function: Scans Kanji input data, translates RAM 
addresses into ideographic extension characters, 
processes alternative entry LUSTAT. 

How Invoked: Within this component. 

#TPEIPO Ideographic Printer Output 

Function: Scans Kanji data, translates to RAM 
addresses, and manages ideographic RAM contents list. 

How Invoked: Within this component. 

#TPERClM RAM Contents List Manager 

Function: This set of subroutines performs common 
operations on the RAM contents list of ideographic 
devices. 

How Invoked: Within this component. 

#TPERROR Kanji Error Handler 

Function: Handles errors unique to Kanji devices. 

How Invoked: Within this component. 

Native I/O Manager 29-13 



J 

29-14 



L 
Secondary Station I/O Managers 

INTRODUCTION 

The secondary station 10M provides the function that 
allows System/38 logical units to communicate in an 
SNA network or in a system services control point 
(SSCP) network. 

An LUc 6.2 LUD is active under the jurisdiction of the 
advanced program-to-program communications (APPC) 
station I/O manager. The secondary station 10M 
represents a secondary physical unit type 2 (PU.T2) 
controlling the secondary LU 1, LU2, or LU3 LU Ds. 

The secondary physical unit type 2 (PU.T2) support 
consists of two VMC I/O managers (IOMs) and a 
common group of systems network architecture (SNA) 
modules. The secondary station 10M is the interface 
between the machine interface and the secondary line 
10M or the X.25 line 10M. The secondary line 10M 
performs the synchronous data link control (SDLC) 
function. The common group of SNA modules 
(#NA2xxxx) performs path control, session control, 
physical unit (PU) and logical unit (LU) services, and 
connection point manager functions of the secondary 
station 10M. 

The secondary station 10M interfaces with the following: 

• Machine services control point (MSCP) 

• Secondary line 10M 

• X.25 line 10M (XIOM) 

• Error log 

• Modify Controller Description instruction processor 

• Modify Logical Unit Description instruction processor 

• Request I/O instruction processor 

The user of the secondary station 10M can execute 
Modify Controller Description and Modify Logical Unit 
Description instructions, and can make, break, and 
manage an SNA path to an LU within the primary unit. 
The Request I/O instruction is used to communicate 
with an LU. The secondary station 10M handles the 
logical path for each LU within the primary unit to which 
the System/38 is connected. 

An overview of the secondary 10Ms is shown in Figure 
30-1. 

The secondary station 10M is a VMC task that is 
created by MSCP when a Modify Controller Description 
(vary-on) instruction is issued against a secondary 
controller description (CD) object. The task is created 
with one input send/receive queue upon which the 
send/receive messages are placed. The MSCP also 
provides the secondary station 10M with the address of 
the input send/receive queue of the secondary SDLC 
10M and with the address of a controller description 
block for exception handling. 

Secondary Station I/O Managers 30-1 



/ 
Control 
Program Facility 

~ 

Secondary 
Station 10M 

SNA Common 
Modules 

I/O Controller 

Figure 30-1. Secondary 10M Overview 

30-2 

Network 
Description 

Controller 
Description 

Logical Unit 
Description 

~ 
Machine Services 
Control Point 

~ 
Secondary 
Line 10M 
or XIOM 

~ 
OU Tasks 

l 

The secondary station 10M uses a router module to 
invoke the appropriate routine. The router gains control 
when the secondary station 10M task is created 
(vary-on CD time). The router immediately executes a 
Receive Message instruction from the secondary station 
send/receive queue and waits for a send/receive 
message (SRM). Once an SRM is received, the router 
performs an if/then / else scan to invoke the routine that 
processes the requested function. If the function is not 
identified in the if /then/ else scan, the SRM is checked 
to see if it is a response. If the SRM is a response, the 
storage occupied by the message is freed. (This 
message was generated by the secondary station 10M, 
and no further processing is required.) If the requested 
function is not supported by the secondary station 10M, 
the message is returned with an unsupported status 
indicated. When the SRM has been processed, the 
router executes a Receive Message instruction from the 
secondary station 10M send/receive queue, and the 
process is repeated. 

Because there are unique function codes in the SRMs, 
the secondary station 10M has one unique callable 
routine per function and response. A routine is defined 
for a response only if further processing is required 
upon the return. 

Following are the types of secondary station 10M 
modules: 

• System/38 instruction processor modules 

• SNA support modules 

• I/O support modules 

• DHCF (Distributed Host Command Facility) support 
modules 

The System/38 instruction processor modules provide 
direct support for System/38 instructions. These 
modules recognize the requested function and initiate 
the processing of that function. 

The SNA support modules are part of the output and 
input data paths. The I/O support consists of modules, 
including the SNA modules, that are in direct support of 
the Request I/O instruction. 

The DHCF modules support the connection of a 
System/370 terminal to a System/38 application. 
Included within the DHCF support is 327x to 525x and 
525x to 327x data stream translation. See Figure 30-2 
for an overview of the secondary station 10M. 

J 



Control Program 
Facility Process 

ry Station Seconda 
10M Que ue 

~ 
Seconda 
10M Qu 

ry SDLC 
eue 

t Transmit 
I...!..J OU Queue 

Transmit 
OU Task 

~ 
Secondary 
Station 10M 

Secondary 
SDLC 10M 
or XIOM 

I I 

I/O Controller 

Figure 30-2. Secondary 10M Processing 

Network 
Description 

Controller 
Description 

Logical Unit 
Description 

Network 
Architecture 
Control Block 

Link 
Control Block 

,t Receive 
I...!..J OU Queue 

Receive 
OU Task 

Mode Table r--

f 
Logical Unit 
Name Table 

Half Session 
Control Block 

t 
Conversation 

~ 
Control Block 

Secondary Station I/O Managers 30-3 



System/3S Instruction Support 

All source/sink modify instructions passed to the 
secondary 10Ms are in the form of messages (SRMs). 
These messages are built by mapping the instructions to 
the VMC format. This step is performed by the 
source/ sink instruction processors. 

All messages are routed to the appropriate modules by 
the secondary 10M routers. The instructions supported 
are described in the following paragraphs. 

Modify Controller Description (Vary-On/Off): This 
instruction is used by device management to establish or 
to break the communication path to the system services 
control point (SSCP) in the primary unit or station 
represented by the controller description from the 
physical unit (PU) in the secondary System/38. 

Modify Controller Description (Dial): This instruction is 
used to allow a station to be dialed manually or 
automatically. 

Modify Controller Description (Abandon Connection): This 
instruction is used to disconnect the secondary SDLC 
10M from a remote station. The secondary SDLC 10M 
stays active; but the switched line is disconnected. 

Modify Controller Description (Continue/Cancel): These 
instructions allow or suspend the reuse of the device 
after an unrecoverable error. 

30-4 

Modify Logical Unit Description (Activate/De-activate): 
This instruction is used to establish or to break the 
communications path from the System/38 LU to the 
remote (primary) LU. 

A Modify Logical Unit Description (activate) instruction is 
converted to a resume command by the source/sink 
instruction processor when the LU is in an inactive state 
(quiesce, reset, suspend). 

Modify Logical Unit Description (Vary-On/Off): This 
instruction is used to establish or to break the 
communications path from the SSCP to the System/38 
secondary LU. 

Modify Logical Unit Description (Quiesce): This 
instruction is used to complete all I/O requests that are 
either in process or waiting on the secondary station 
10M's input queue. When processing of this instruction 
is complete, device management reaches a normal 
completion, and I/O request processing is stopped until 
a Modify Logical Unit Description (activate) instruction is 
issued. 

Modify Logical Unit Description (Reset): This instruction 
causes each I/O request to be returned to the user 
return queue with an indicator that the request was not 
processed. The number of request descriptors (RDs) 
processed is set in the feedback record, and all available 
unsolicited data is destroyed. The communications path 
is placed in an inactive state that can be reactivated 
with a Modify Logical Unit Description (activate) 
instruction. 

Modify Logical Unit Description (Suspend): This 
instruction ensures that all I/O requests are in a 
suspended state. All I/O requests that have been 
started are completed and returned to the user return 
queue with the appropriate feedback code and number 
of RDs processed. Processing of the suspended I/O 
requests can be resumed with a Modify Logical Unit 
(activate) instruction. 

Modify Logical Unit Description (Continue/Cancel): This 
instruction allows or suspends the reuse of the device 
after an unrecoverable error. 

J 



Request I/O: This instruction: 

• Performs I/O operations on the various paths: 
SSCP-PU, SSCP-LU, LU-LU 

• Returns the LU to an active path state after a 
terminating error has occurred: Request I/O 
(continue) 

The request I/O function is described under I/O Support 
later in this chapter. 

The request I/O (continue) function uses a terminating 
error mode bit in the conversation control block. This bit 
is set on when a terminating error is encountered. The 
user is informed of the error by a code in the feedback 
record. If the user can recover from the error, the user 
resets the mode bit with the Request I/O (continue) 
instruction, and normal I/O processing resumes. 

The following list is a brief description of the Request 

I/Os: 

• Request I/O (Activate Resource) . This request 
activates the resource (LUO) for use by the 
requesting M I user. 

• Request I/O (De-activate Resource). This request 
sends pending activate resource request 1/ Os back to 
the user's return queue. 

• Request I/O (Return Activate Resources). This request 
sends back to the user's return queue all pending 
activate resource request 1/ Os associated with the 
LUO specified in the source/sink request with feed 
back record status indicating the condition. 

• Request I/O (Return Formatted Maintenance Statistics 
00 Alert Operations). This request provides SSCP-PU 
flow alert support when communicating with a host 
that has system services control point. Alerts are not 
supported for connections to another System/38 or 
APPC peer devices. 

• Request I/O (Return Record Formatted Maintenance 
Statistics 00 Alert Request I/O instructions). This 
request sends back to the user's return queue all 
Record Maintenance Statistics 00 Alert request I/O 
instructions associated with the CO specified in the 
source / sink request. 

• Request I/O (Return REQIO). This request causes all 
outstanding request I/Os for this LUO to be sent 
back to the user's return queue with status indicating 
that a return request I/O instruction was executed. 

• Request I/O (Set PCS Address). This request causes 
the PCS address of the sending process to be saved 
by the secondary station 10M. This enables the 
secondary station 10M to signal the LU-LU normal 
flow unsolicited data event on a process-dependent 
basis rather than a machine-wide basis. The event 
continues to be signaled until a modify LUO (Reset) 
instruction is received. 

SNA Support 

The secondary SOLC 10M supports the data link control 
layer of SNA. The path control and transmission control 
layers are supported by the common SNA modules that 
are invoked by the secondary station 10M. The 
following features are supported: 

• One PU, PU type 2 (PU.T2) 

• Transmission subsystem profile 3 

• Function manager profile 3 

• Unformatted system services using the SNA 
character string for the presentation class on the 
SSCP-LU flow 

• A unique SSCP identification for each line connected 
to the System/38 

Secondary Station I/O Managers 30-5 



Path Control 

Path control routes basic information units between the 
remote primary and the System/38 secondary half 
sessions so that the node/link configuration of the 
network is transparent to the half sessions. For 
System/38 inbound data, path control uses information 
in the format identification transmission header to 
control delivery of the basic information unit to either 
the specified supervisory services or an LU in a node 
(including a clustered group of LUs). 

Path control implements the logical unit description 
(LUD) as the secondary LU. This view of the LUD as a 
port uncouples the end user application from a 
hard-coded physical address and allows the operating 
system the option of late coupling of application and 
physical address. Path control also treats all paths in a 
parallel fashion to provide flexibility in the host's use of 
the logical links. 

For outbound messages, path control constructs a path 
information unit in the output buffer and sends an 
output request SRM to the secondary SDLC 10M. 

For an input path information unit received from the 
secondary line 10M, path control ensures that the 
message unit is large enough to contain the 
transmission header and request/response header and 
that the transmission header is a format identification 
type 2. The origin and destination address fields in the 
transmission header are used to determine the 
appropriate session (SSCP-PU, SSCP-LU, LU-LU); if 
the PU is active, the path information unit is routed to 
the connection point manager. 

30-6 

Transmission Control 

The transmission control element is a composite 
protocol machine that provides control for a locally 
supported half session. Transmission control consists of 
the following SNA components. 

Common Session Control: The common session control 
provides common support for handling flows to half 
sessions that are not active. Common session control 
directs an appropriate activation request to session 
control for further processing. 

Connection Point Manager: The connection point 
manager is the control point within the LU for 
distribution of request/response units, validating input 
sequence numbers, maintaining the pacing state 
machines, and supporting other functions related to the 
half-session flows. 

For outbound messages, the session and data traffic 
states are checked. Additional checking is performed 
before the message is sent to path control: 

• On the expedited flow, the connection point manager 
forwards a request only if no response to a previously 
expedited request is due from the host. 

• On the normal flow, the size of the request/ response 
unit is validated. 

• When secondary-to-primary pacing is supported for 
normal flow request. the connection point manager 
determines when to set the pacing indicator in the 
request header to indicate that a pacing response 
must be returned by the host. The connection point 
manager then prevents the forwarding of additional 
outbound normal requests until the pacing response 
is received. 

• When primary-to-secondary pacing is supported, and 
if a pacing request has been received, the connection 
point manager sets the pacing indicator on in the 
response header in a normal flow response to notify 
the host that additional normal flow requests may be 
sent. 

J 



When session and data traffic states are not active, the 
connection point manager forwards the permitted 
inbound SNA activation requests (bind and start data 
traffic) to common session control. For other inbound 
messages, the connection point manager checks the 
request/ response header to determine if paced or 
expedited requests can be sent. When a pacing 
response should be sent to the host, the size of the 
request/response header is validated, the sequence 
number in the transmission header is compared with the 
expected value, and a flag is set to indicate that a 
pacing response should be sent. 

Session Control: Session control supports protocols 
related to session and data traffic activation, 
de-activation, and recovery. All session control requests 
flow from the primary unit to the secondary System/38, 
and all responses flow from the secondary System/38 
to the primary unit. 

For an outbound response, session control identifies the 
response code and sets the appropriate state indicators 
according to whether the response is positive or 
negative. The response is forwarded to the path control. 

The secondary 10Ms support the following SNA session 
control requests: 

• Activate PU to establish an SSCP-PU session. 

• De-activate PU to break an SSCP-PU session. 

• Activate LU to establish an SSCP- LU session. 

• De-activate LU to break an SSCP-LU session. 

• Bind to establish an LU- LU session. 

• Unbind to break a LU-LU session. 

• Start data traffic to permit user data to flow in the 
LU-LU session. 

• Clear to stop user data flowing in the LU-LU session. 

Requests pertaining to LU-LU sessions are sent to the 
secondary end user via I/O requests for additional 
processing. 

Secondary Station I/O Managers 30-7 



I/O Support 

Output 

The output process is started by a request I/O queueing 
function (#T2RQIO). This function receives all I/O 
requests from the secondary station 10M queue and 
enqueues the requests on the correct LU queue. The 
requests are always enqueued last on this queue and 
are categorized according to the I/O path on which they 
are to be executed (for example, expedited or normal 
transmit, expedited or normal receive, receive-any). The 
queuing function uses the second byte of the message 
key for these encodings. 

Once the requests are enqueued, the scheduler 
(#T2SCED) is invoked to process the output. The 
scheduler consists of two parts: loop selection and 
logical I/O path selection. Loop selection uses the 
half-session control block as its basic unit. This module 
multiplexes output for different LUs into one output 
request and ensures that each LU has equal opportunity 
for output. 

The logical I/O path selection routine (#T2BSTO) gains 
control from the loop selection module when a 
half-session control block has I/O requests to be 
processed. This selection locates the next request to be 
processed (for example logical I/O path), enforcing the 
path control rule that expedited processing is executed 
before normal processing. The selection routine also 
controls the building of the SNA frames. 

The transmit path message pointer in the half-session 
control block is examined, and if the pointer is 0, the 
appropriate 2-byte key is built and the LU queue is 
searched to find an I/O request. If an I/O request is 
not located, the process returns to the loop scheduler, 
and another LU request is processed. If an I/O request 
is located, the output SNA frames and associated buffer 
control lists are built, and control is returned to the loop 
scheduler. 

30-8 

On return, the loop scheduler determines if it is time to 
build an output request. If not, the loop scheduler 
selects the next half-session control block and repeats 
the selection sequence. If the output request is to be 
built, the loop scheduler builds the request, puts the 
buffer in a busy status, and sends the output request 
SRM to the secondary SDLC 10M. 

Output Posting 

The secondary station 10M now waits for the output to 
complete or for the input to arrive; output requests have 
a higher priority than input requests. A transmit/ receive 
Request I/O instruction is first encoded as a transmit 
Request I/O instruction; then, when all transmits are 
complete, the instruction is encoded as a receive-only 
Request I/O instruction and enqueued first on the LU 
queue. The output request response process uses the 
half-session control block pointer to locate the Request 
I/O instruction associated with the frame. Then, using 
the indexes in that entry, it locates the request 
descriptor (RD) associated with the SNA frame and 
marks it processed. 

At this point the Request I/O instruction can be in three 
states: 

• More transmit RDs to process 

• All transmits complete, but receives yet to process 

• All transmits and receives complete 

The appropriate action is then taken by the secondary 
station 10M to complete the output request response 
process. At this time, the buffer is marked not busy. 

On return, the loop schedule is invoked to schedule 
more activity. 



Input 

The secondary station 10M does not explicitly request 
input from the transmission line. The secondary SOLC 
10M responds to polls from the primary unit and, in 
effect, the secondary station 10M has a read operation 
outstanding. The secondary SOLC 10M passes received 
information frames to the secondary station 10M via an 
input message. This message contains the location and 
number of valid information frames stored in the input 
buffer. The input routine processes the information 
frames one frame at a time until all frames have been 
processed. The input routine uses the transmission 
header to locate the correct half-session control block 
and then determines the logical I/O path on which the 
frame is to be sent. If an I/O request is not pending or 
if no buffer space is available, the frame is considered 
unsolicited data, and an event or a feedback record is 
returned to the user. The user is informed of only the 
first frame of unsolicited data; however, the subsequent 
frames can cause the same situation, depending on 
whether the I/O request contained enough buffer space 
to contain the frames. 

Unsolicited data is held on the queue of the 
conversation control block in the form of a message. 
This message is built by the secondary station 10M and 
has the same format as an input message. The 
message also contains a data area for the frame, 
allowing the secondary station 10M to free the input 
buffer of the secondary line 10M even if a user buffer 
for the data does not exist. SOLC unsolicited data is 
processed as an input request by the same modules that 
perform input processing. The conversation control 
block contains indicators to inform the scheduler to 
process the data. 

Error Logging 

The secondary station 10M does not keep statistics 
concerning the station; these statistics are kept by the 
secondary SOLC 10M. The secondary station 10M does 
log SNA path errors. These errors are recorded using 
the format of the error recording functions. The data 
contains portions of the SNA frame, including the 
transmission and request headers, the sense data, and 
the first 14 bytes of the request/response unit. 

DATA AREAS 

Refer to Source/Sink Data Areas in the Vertical 
Microcode Overview section of this manual for 
descriptions of source/sink data areas. Also, refer to 
Data Areas in the Instruction Processors section of this 
manual for descriptions of the NO, CD, and LUO. 

Network Architecture Control Block 

The network architecture control block is a common 
control area used to manage the systems network 
architecture (SNA) portions of the secondary station. It 
contains a subset of data in the CD and is always in 
main storage when the secondary station task is 
executing. The network architecture control block 
functions as a directory to areas built in machine-wide 
storage. It also functions as a collection point for vital 
converged station characteristics, a control point for 
converged station output, and a common location for 
unique SNA and converged station work areas. 

The network architecture control block is allocated from 
machine-wide storage at vary-on CD time. 

Secondary Station I/O Managers 30-9 



Logical Unit Name Table 

The logical unit name table is used as a collector for all 
information necessary to operate the logical unit. This 
entry represents the LU such that the local LU and the 
remote LU can communicate through logical groupings 
of conversations. 

The logical unit name table is accessed externally 
through the system pointer to the LUD and accessed 
internally through the LUD I/O index contained in the 
LUD. The LUD I/O index is set in the LUD and in the 
conversation identifier at vary-on LUD time. The LUD 
I/O index is a direct index into the logical unit name 
table. The first logical unit name table entry represents 
the physical unit. It is accessed with an index of O. 

Each logical unit name table entry contains the LU type 
1 for purposes of routing to the proper SNA modules 
and building the conversation identifier for LU 1. 

The logical unit name table serves as an anchor for 
groupings of SNA sessions and the conversations used 
to access the SNA sessions. All half-sessions have a 
preassigned local address which is the destination 
address field in the LUD. The storage for the mode 
table and conversations is allocated in machine-wide 
storage. This is done at vary-on CD time for LU1. 

Each logical unit name table entry representing a LUD 
has one mode entry. Each mode entry has two 
conversations representing the SSCP-LU session and 
the LU-LU session. The SSCP-LU conversation has a 
conversation index of O. 

30-10 

Mode Table 

The mode table is used for accessing the SSCP-LU and 
lU-LU conversation. 

Half-Session Control Block 

Half-session control blocks are used for routing transmit 
and receive requests to the proper network addressable 
unit and for routing input to the proper destination in the 
System/38. Each half-session control block represents 
an SNA session; supports the SNA transmission 
subsystem; and contains fields that support path control 
(routing and expedited/normal SNA paths), connection 
point manager (pacing), and LU (I/O queueing and 
session states). 

Half-session control blocks are allocated and initialized 
in machine-wide storage at CD vary-on time for LU1 
LUDs. 

Each half-session control block represents an SNA path 
for data transmission. 

The first two half-session control blocks are reserved 
for boundary function support and internal secondary 
station 10M usage. The first supports an SSCP-physical 
unit session that is activated and ready for I/O traffic at 
CD vary-on time. The second half-session control block 
is used as a temporary output holding area when the 
output structure is already busy processing an output 
request. 

Conversation Control Block 

The conversation control block represents the 
conversation resource. The LU1 LUDs have two 
conversation control blocks associated with the two LU1 
SNA sessions (SSCP-LU and LU-LU). 

The conversation identifier is used to access the 
conversation for all machine-interface operations, and 
the backward pointer in the half-session control block is 
used to access the conversation for all input operations. 

J 



STRUCTURE 

The following is a list of the secondary station and 
SDLC secondary 10M modules and the function that 
each module performs. The list also shows how the 
module is invoked. The VMC components that can be 
invoked within each module are also shown. 

#NA2CPLU Activate / De-activate LU Response 
Processor 

Function: Updates LU state machines for activate and 
de-activate LU requests. 

How Invoked: Within this component. 

#NA2CPMR Connection Point Manager Receiver 

Function: Performs connection point management 
checks (including pacing) for data received and routes 
for further processing. 

How Invoked: Within this component. 

#NA2CPMS Connection Point Manager Sender 

Function: Performs connection point management 
checks for data to be transmitted. 

How Invoked: Within this component. 

#NA2CPPU Activate/De-activate PU Response 
Processor 

Function: Updates PU state machines for activate PU 
and de-activate PU requests. 

How Invoked: Within this component. 

#NA2EROR SNA Error Processor 

Function: Determines if negative response must be 
returned, and if so, builds negative response unit and 
routes for transmission. 

How Invoked: Within this component. 

#NA2PCR Path Control Receiver 

Function: Validates transmission header data and routes 
path information unit received to connection point 
manager receive. 

How Invoked: Within this component. 

#NA2PCSD Path Control Sender 

Function: Builds path information unit in output buffer 
and denotes output is pending. 

How Invoked: Within this component. 

#NA2RFMS Request/Record Formatted 
Maintenance Statistics 

Function: Responds to REOMS request received, if 
necessary, then builds record formatted maintenance 
statistics request as a pseudo-I/O request for 
transmission. 

How Invoked: Within this component. 

#NA2SCSD Session Control Sender 

Function: Identifies session control response, updates 
appropriate finite state machine states, and forwards 
response to path control send. 

How Invoked: Within this component. 

#TP2SECS Secondary Station 10M Activity 
Controller 

Function: Loops to receive an SRM from the secondary 
station 10M send/receive queue and routes it for 
appropriate processing. 

How Invoked: Other VMC components. 

Secondary Station I/O Managers 30-11 



#T2ALUR Activate LU Response Processor 

Function: Interrogates activate LU-received response 
from MSCP to establish SSCP-LU and LU-LU 
half-session controls and initializes transmission and 
response headers for SNA activate LU response. 

How Invoked: Within this component. 

#T2APUR Activate PU Response Processor 

Function: Interrogates activate PU-received responae 
from MSCP to establish output structure storage and 
initializes transmission and response headers for SNA 
activate PU response. 

How Invoked: Within this component. 

#T2BDRI Build Dummy I/O Request 

Function: Creates a pseudo-I/O request structure and 
enqueues it to the dummy half-session control block for 
transmission. 

How Invoked: Within this component. 

30-12 

#T2CMDS Route Secondary Station Commands 

Function: Interrogates all non-I/O SRMs and response 
SRMs and routes each to the appropriate routine. 
Contains the following internal routines: 

• #T2ACTS: Processes activate session SRM. 

• #T2DACS: Processes de-activate session SRM. 

• #T2VOFL: Processes vary-off LUD SRM. 

• #T2VOFC: Processes vary-off CD SRM. 

• #T2VONL: Processes vary-on LUD SRM. 

• #T2CONT: Processes request I/O (continue) SRM. 

• #T2QUSC: Processes quiesce SRM. 

• #T2RSET: Processes reset SRM. 

• #T2RSUM: Processes resume SRM. 

• #T2SRTO: Processes send/receive time-out SRM. 

• #T2SPND: Processes suspend SRM. 

How Invoked: Within this component. 

#T2DIS Process SNA Cleanup for SDLC 
Disconnect Command Received 

Function: Sends abnormal disconnect SRM to MSCP for 
normal and abnormal disconnect SRMs. Sends 
abnormal de-activate PU SRM to MSCP for the second 
Set Normal Response Mode SRM. 

How Invoked: Within this component. 

#T2DOWN Report Station Failure Condition 

Function: Marks a station failure condition and reports it 
via a feedback record if a Request I/O instruction is 
outstanding. 

How Invoked: Within this component. 

J 



#T2ERLG Build Error Log Entry 

Function: Builds an error log entry SRM and sends it to 
be logged. 

How Invoked: Within this component. 

#T2FDBK Feedback I/O Request Result 

Function: Builds the feedback record for an I/O request 
feedback SRM. 

How Invoked: Within this component. 

#T2HFDBK DHCF I/O Request Feedback Processor 

Function: Feeds back an I/O request built by the DHCF 
code in the secondary station 10M. 

How Invoked: Within this component. 

#T2HIN 525x Emulation Input Processor 

Function: Converts inbound 327x data streams to a 
525x data stream. 

How Invoked: Within this component. 

#T2HIPIU DHCF Input Path Information Unit 
Processor 

Function: Processes input data from a System/370 
terminal for DHCF. 

How Invoked: Within this component. 

#T2HOUT 525x Emulation Overview for Output 

Function: Converts outbound 525x data stream to 327x 
data stream. 

How Invoked: Within this component. 

#T2HOUTR DHCF Output Request Response 
Processor 

Function: Completes an output request for a DHCF 
transmit I/O Request 

How Invoked: Within this component. 

#T2HPOFF DHCF LUD Power-off Simulator 

Function: Terminates the DHCF half session. 

How Invoked: Within this component. 

#T2HRQlO DHCF I/O Request Processor 

Function: Processes all I/O requests from the work 
station function manager for the DHCF devices. 

How Invoked: Within this component. 

#T210S Process Inoperative State Request 
Received from Secondary Line 10M 

Function: Sets station off line and calls #T2DOWN to 
notify the machine interface of a station failure. 

How Invoked: Within this component. 

#T2IPIU Input Path Information Unit Processor 

Function: Routes received SNA path information unit for 
validation, then moves data into receiving I/O request 
buffer area. 

How Invoked: Within this component. 

#T20UTR Output Request Response Processor 

Function: Matches output request response to I/O 
Request and sends feedback record when processing is 
complete. 

How Invoked: Within this component. 

Secondary Station I/O Managers 30-13 



#T20UTX Forward Output Request to Secondary 
Line 10M 

Function: Completes and sends output request SRM to 
the secondary line 10M. 

How Invoked: Within this component. 

#T2REQ8 Service Routine to Build a DHCF I/O 
Request Message 

Function: Builds an I/O request message for DHCF to 
convert the work station function managers I/O request 
into an LU 1 I/O request for transmission of data. 

How Invoked: Within this component. 

#T2RQIO I/O Request Processor 

Function: Enqueues an I/O request with the correct flow 
key to the proper half-session control block queue. 

How Invoked: Within this component. 

30-14 

#T2SCED Activity Scheduler 

Function: Scans half-session control blocks to locate 
and dispatch transmit I/O requests. 

How Invoked: Within this component. 

#T2SEH Secondary Station 10M Exception 
Handler 

Function: Identifies the exceptions encountered in the 
secondary station and returns them to the mainline 
RECM in #TP2SECS when the exception is caused by 
the user. 

How Invoked: As fourth level exception handler. 

J 



Primary Station I/O Manager 

INTRODUCTION 

Primary station I/O manager (10M) is a VMC task that 
interfaces with: 

• Error log 

I • SDLC or X.25 line 10M 

• Machine services control point (MSCP) 

• Modify Controller Description instruction processor 

• Modify Logical Unit Description instruction processor 

• Request I/O instruction processor 

The user of the primary station 10M can execute Modify 
Controller Description and Logical Unit Description 
instructions, and make, break, and manage a systems 
network architecture (SNA) (T3) path to a logical unit 
(LU) attached to the station. The Request I/O 
instruction is used to communicate with that LU. The 
primary station 10M is the multiplexing point for all 
communications to and from the station. 

There is one primary station 10M task per station on the 
line. 

The interface to the primary station 10M is via 
send/receive messages and the feedback record. Refer 
to the Vertical Microcode Overview section of this manual 
for a description of these areas. 

Figure 31-1 shows the operation of the primary station 
10M. The router module receives control when the 
primary station 10M task is created at vary-on controller 
description (CD) time. The router issues a receive to the 
primary station 10M queue and waits for a message to 
be enqueued. When a message is enqueued, the router 
invokes the module that performs the requested 
function. If the requested function is not valid, the 
primary station 10M returns the message with an 
unsupported status indicated. If the message is a 
response requiring no further processing, the primary 
station 10M frees the storage occupied by the message 
(this message was generated by the primary station 
10M), issues a receive to the primary station 10M 
queue, and waits for the next message to be enqueued. 

There is a separate primary station 10M module for each 
unique function code and response. The modules return 
a response only if further processing is required. 

There are three types of primary station 10M modules: 

• System /38 instructions 

• SNA 

• I/O 

The System/38 instruction support modules recognize 
the requested function and initiate the processing of that 
function. These modules are further categorized into 
I/O, path, and MSCP support functions. 

The SNA support modules are part of the input and 
output data path. The SNA support is used with the 
Request I/O instruction, since primary station 10M 
provides the interface that is compatible with 
SNA/SDLC-type devices. 

The I/O support modules provide support of the 
Request I/O instruction (this support includes the SNA 
modules). 

Primary Station I/O Manager 31-1 



'--
SOLC or X.25 
Line 10M 

CPF Process 

,~ Application A 
I....!.J Function Manager 

Response SNA T3 
Queue 1..-__ ...,-__ ---1 

R Station 
10M 

~ Queue 

Station 10M f--

Router 
Support Module 

MSCP Task 

Transmit ~ ~ Receive 
OU Queue OU Queue 

Communications 1--------1 
IOC or lOP 

Figure 31-1. Primary Station 10M Processing 

31-2 

Work Station 

3270 
Translate 

Station 
Control 
Block 

Error Log 

LU 

LU 

Error Log 
Queue 

Host Field 
Format Table 
(HFFT) 

Routing Table 

LUOA 

LUD B 

LUD C 



System/38 Instruction Support 

All support of the System/38 instructions is presented 
to station 10M in the form of a VMC message. These 
messages are the result of mapping the instructions to 
the VMC format. This step is performed by the 
high-level language interface, instruction layer. 

All messages are routed to their support modules by the 
primary station 10M router. The instructions supported 
are described in the following paragraphs. 

Modify Controller Description (Vary-On/Off): This 
instruction is used to establish or break the 
communications path to the physical unit in the station 
represented by a CD. 

Modify Controller Description Error Recovery Mode 
(Vary-On/Off): This instruction is used to place the 
communications path to the physical unit in error 
recovery mode represented by the CD. 

Modify Logical Unit Description (Vary-On/Off): This 
instruction is used to establish or break the 
communications path from the MSCP to the LU. The 
instruction also performs initial setup for the LU-to-LU 
path. 

Modify Logical Unit Description Error Recovery Mode 
(Vary-On/Off): This instruction is used to place the 
communications path from the MSCP to the logical unit 
in error recovery mode represented by the LUD. 

Modify Logical Unit Description (Activate/De-activate): 
This instruction is used to establish or break the 
communications path from the system LU to the station 
LU. 

Resume: A Modify Logical Unit Description (activate) 
instruction is altered to a resume command by the 
instruction layer when the LU is in the inactive state 
(quiesce, suspend, reset). 

Modify Logical Unit Description (Quiesce): Once the 
primary station 10M receives this request, it completes 
all I/O requests that are either in process or waiting on 
the queue. When this instruction is completed, device 
management reaches a normal completion and all I/O 
request processing is stopped until a Modify Logical 
Unit Description (activate) instruction is issued. 

Modify Logical Unit Description (Reset): This instruction 
causes all I/O requests to be returned to the user return 
queue, with an indicator that the request was not 
processed. The number of request descriptors (RDsi 
processed is also set in the feedback record. This 
instruction also destroys all available unsolicited data 
and places the communications path in an inactive state. 
The path can be reactivated with a Modify Logical Unit 
Description (activate) instruction. 

Modify Logical Unit Description (Suspend): This 
instruction ensures that all I/O requests for logical units 
are in the suspend state. This means that all the I/O 
requests that have been started will be processed to a 
transmit/receive RD boundary. The I/O requests that 
complete are put on the return queue with the 
appropriate feedback code and the number of RDs 
processed. Any transmit/ receive type of I/O request 
with only the transmit portion complete remain on the 
logical unit queue. 

Request I/O: This instruction is used for two purposes: 

• Perform I/O on the various paths such as 
MSCP-Physical Unit (PUl, MSCP-LU, LU-LU. 

• Return the logical unit to an active path state after a 
terminating error has occurred (Request I/O-Continue 
instruction). 

The I/O function is described under I/O Support in this 
chapter. The Request I/O (continue) instruction uses a 
terminating error mode bit in the routing table. This bit 
is set when a terminating error is encountered. The user 
is informed of this action by a code in the feedback 
record. If the user can recover from the error, the user 
resets the mode bit with the Request I/O (continue) 
instruction, and normal processing resumes. 

Primary Station I/O Manager 31-3 



SNA Support 

The primary station 10M acts as the transmission 
subsystem layer of SNA 0081 (T3). The SNA support 
consists of path control, connection point manager, and 
I/O for the MSCP. 

Path Control 

Path control uses the information in the T3 transmission 
header to control delivery of received basic information 
units to either the specified supervisory services or a LU 
in a node (including a clustered group of LUs). 

Path control is broken into the following areas: 

• Routing 

• Format identification translation 

• Logical I/O paths 

The routing function consists of a search of the routing 
table. In the outbound direction, a routing table index 
and the request I/O function (MSCP or normal) are used 
to locate the correct path (MSCP-PU, MSCP-LU, 
LU-LU). The index is set up by the primary station 10M 
at vary-on LUD time and placed in the instruction by the 
instruction layer. 

In the inbound direction, the destination address from 
the transmission header is used to locate the correct 
logical unit in the routing table. The transmission header 
flow bits are then used to point to the LU - LU or 
MSCP-LU path. For either inbound or outbound traffic, 
once the correct routing table entry is located, the 
primary station 10M performs the necessary steps to 
deliver the basic information unit. 

31-4 

Format identification translation is the process whereby 
the SNA transmission header is converted to the 
System/38 internal format and the System/38 internal 
format is converted to the SNA transmission header. 
Th,is function also provides all of the SNA 0081 validity 
checks on the T3 transmission header. The translation 
modules also initiate all logging and negative response 
actions. 

Once the translation and routing functions have located 
the correct path (for example, routing table entry), 
primary station 10M selects the correct logical I/O path 
for the frame. The frame or I/O request contains the 
data necessary to identify the correct logical path. There 
is a based structure that maps the fields describing an 
I/O path; the path is selected by setting the basing 
variable. SNA defines the logical I/O paths as either 
expedited or normal for both transmission and receive 
paths. These logical I/O paths are represented in each 
routing table entry. 

Connection Point Manager 

The connection point manager functions are divided 
between the VMC and the control program facility (CPF). 
The primary station 10M in VMC provides the pacing 
function. This function provides support equivalent to 
that of SNA 0081. Pacing is a means whereby the 
receiving connection point manager can control the rate 
at which it receives requests on the normal data flow. 
Responses and expedited data are not paced, only 
outbound data is paced. 

Each routing table entry has fields used for pacing. 
These fields are the pacing count, count of frames sent, 
and a pacing flag. 

Pacing is started by setting the pacing count (limit) to 
the value contained in either the logical unit description 
(LUD) or a negotiable-bind response from a terminal. 
and by setting on the pacing flag. The primary station 
10M then begins sending path information units and 
incrementing the counter until the counter equals the 
pacing limit (this occurs even if the pacing flag has been 
set on by a response from a terminal). The pacing 
response from the terminal sets the pacing flag 
indicating that the terminal can handle N more path 
information units (N being the pacing limit). The terminal 
controls the flow via sending the pacing response when 
it is ready to receive more frames. 



MSCP Functions 

The primary station 10M provides the MSCP with an 
interface similar to the one provided to the logical unit. 
Following are the differences that apply to this interface: 

• The MSCP-LU or MSCP-PU path is not placed in 
terminating-error mode. Thus, a continue is not 
required to resume request I/O operations. 

• Feedback records are in the format of posted 
messages. 

• If a quiesce, suspend, or reset command is used, the 
primary station 10M assumes that no additional I/O 
request will be issued until a resume request is 
issued. 

Unsolicited data is reported to the MSCP through VMC 
messages. The MSCP either processes the data or 
passes it to the user interface as event- related data. 
The events used are formatted or unformatted 
supervisory services data. The MSCP always returns the 
unsolicited data message with a successful completion 
code. 

I/O Support 

Output 

The output process is started by a request I/O queueing 
function (#TPSRQIO). This function receives all I/O 
requests from the primary station 10M queue and 
enqueues the requests on the correct LU queue. The 
requests are always enqueued last on this queue and 
are categorized according to the I/O path on which they 
are to be executed (for example, expedited or normal 
transmit, expedited or normal receive, receive-any). The 
queueing function uses the second byte of the message 
key for these encodings. 

Once the requests are enqueued, the scheduler 
(#TPSCHED) is invoked to process the output. The 
scheduler consists of two parts: loop selection and 
logic'll I/O path selection. Loop selection uses as its 
basic unit one routing table entry. This module 
multiplexes output for different LUs into one output 
request and ensures that each LU has equal opportunity 
for output. 

The logical I/O path selection module (#TPSBSO) gains 
control from the loop selection module when the next 

routing table entry that has request 1/ Os to be 
processed is selected. This selection locates the next 
request to be processed (logical I/O path, for example). 
enforcing the path control rule that expedited processing 
is executed before normal processing. The selection 
routine also controls the building of the SNA frames. 

The correct path is selected from the transmit path 
message pointers in the routing table entry. If the 
pointer is 0, the appropriate 2-byte key is built and a 
dequeue-equal is done on the LU queue. If a request 
I/O is not located, the process returns to the loop 
scheduler and another LU request is processed. If an 
I/O request is located, the output SNA Frames and 
associated buffer control lists are built and control is 
returned to the loop scheduler. 

For 3270 and System/38 finance type devices, module 
#TSTOUT is called to translate the 5250 data stream to 
3270 or System/38 finance data stream before the SNA 
frames are built. 

On return, the loop scheduler determines if it is time to 
build an output request. If not, the loop scheduler 
selects the next entry and repeats the selection 
sequence. If the output request is to be built, the loop 
scheduler builds the request and puts the buffer in a 
busy status. 

Output Posting 

The primary station 10M now waits for the output to 
complete or for input to come in; output requests have 
a higher priority than input requests. A transmit/ receive 
Request I/O instruction is first encoded as a transmit; 
then, when all transmits are complete, the instruction is 
encoded as a receive-only and enqueued first on the LU 
queue. The output request response process uses the 
buffer control list routing table pointer to locate the 
Request I/O instruction associated with the frame. 
Then, using the indexes in that entry, it locates the RD 
associated with that SNA frame and marks it processed. 

For Kanji devices, module #TPSIDO (for display output) 
or module #TPSIPO (for printer output) is called to 
translate ideographic extension characters into RAM 
addresses and to load the ideographic RAMs into the 
device. 

Primary Station I/O Manager 31-5 



At this point, the Request I/O instruction can be in 
three states: 

• More transmit RDs to process 

• All transmits complete, but receives yet to process 

• All transmits and receives complete 

The appropriate action is taken, thus completing the 
output request response process. At this time, the 
buffer is marked not busy. 

On return, the loop scheduler is invoked to schedule 
more input. 

Input 

The primary station 10M does not explicitly request 
input from the line. Line 10M polls the stations for input 
and, in effect. the primary station 10M has a read 
outstanding. Line 10M passes the result of the polling 
to the primary station 10M via an input message. This 
message contains the location and number of valid 
information frames stored in the input buffer. The input 
routine processes the information frames one frame at a 
time until all frames are processed. For Kanji displays, 
module #TPSIDI is called to translate RAM addresses in 
the data stream back into ideographic extension 
characters, and to handle ideographic alternative entry 
LUSTAT. The input routine uses the transmission 
header to locate the correct routing table entry; then it 
determines the logical I/O path on which the frame is to 
be sent. For 3270 and System/38 finance type devices, 
module #TSTIN is called to translate the 3270 data 
stream to 5250 data stream before the data is given to 
CPF. If an I/O request is not pending or if no buffer 
space is available, the frame is considered unsolicited 
data and an event or feedback record, respectively, is 
returned to the user. The user is informed of only the 
first frame of unsolicited data; however, subsequent 
frames can cause the same situation, depending on 
whether or not the I/O request contained enough buffer 
space to contain the frames. 

31-6 

Unsolicited data is held on the queue of the logical unit 
in the form of a message. This message is built by the 
primary station 10M and has the same format as an 
input message. The message also contains a data area 
for the frame, allowing the primary station 10M to free 
the input buffer of line 10M even if a user buffer for the 
data does not exist. Unsolicited data is processed as an 
input request by the same modules that perform input 
processing. The routing table entry contains indicators 
to inform the scheduler to process the data. 

Error Logging 

The primary station 10M does not keep statistics 
concerning the station; these statistics are kept by line 
10M. An exception is for Kanji controllers, in which case 
some Kanji statistics are kept by the station 10M. SDLC 
station 10M does log SNA path errors. These errors are 
recorded using the format of the error recording 
functions. The data contains portions of the SNA frame, 
including the transmission and request headers and the 
first 14 bytes of the request/ response unit. 

DATA AREAS 

The primary station 10M has two major data areas: the 
station control block and the routing table. It also has 
ownership of the output buffers of the station. The 
input buffers are owned by line 10M and are processed 
using an input message. For 3270 devices, an additional 
area called the host field format table (HFFT) is built and 
maintained by the PSIOM. 

Station Control Block 

Figure 31-2 shows an overview of the station control 
block. The station control block is built in the invocation 
work area (lWA) at vary-on CD time. This block is a 
common control point for managing the station. It 
contains a subset of the data in the CD and is always in 
main storage when the primary station 10M task is 
executing. The station control block also functions as a 
directory to areas built in machine-wide storage. It also 
functions as a collection point for vital station 
characteristics, control point for station output. and 
common locations for unique SNA and station work 
areas. 

J 



Pointers 

• Controller Description 

• Line 10M Queue 

• Routing Table 

• Work Area 

• Output Buffer Control List 

• Output Request 

Station Characteristics 

• Physical Address 

• Exchange Identification 

• Frame Limit 

• Request/Response Unit Size (Maximum) 

Output Control 

• Status Flags 

• Buffer Control List Index 

• LU Service Index 

SNA and Station Work Area 

• SNA Sense Code 

• Transmission Header 

• Request/Response Header 

Figure 31-2. Station Control Block 

Routing Table 

The routing table is allocated and initialized in 
machine-wide storage at vary-on CD time. This table 
supports the SNA transmission subsystem and contains 
fields that support path control (routing and 
expedited/normal SNA paths), connection point 
manager (pacing), and logical unit (I/O queueing and 
session states). 

An entry in the table represents an SNA path and a loop 
scheduling unit. Figure 31-3 shows an overview of a 
routing table entry. There are two entries for each 
logical unit attached to a station. one entry for the 
LU-LU path. and one entry for the MSCP-LU path. 
These entries are established at vary-on LUD time. The 
MSCP-LU path is activated and ready to process 
request I/O traffic. The LU-LU path is activated and 
ready to process request I/O traffic at modify LUD 
(activate) time. 

Only the station has an MSCP path (MSCP-PU). This 
path is represented by a second routing table entry. 
This path is activated and ready to process request I/O 
traffic at vary-on CD time. 

Routing table entries are established in pairs; there is 
only one spare entry for the first routing table entry 
number. This entry is activated and used for temporary 
LU-LU paths. (A temporary path exists for the time 
required to send an unrecognized destination address 
negative SNA response.) 

Path Control 

• Object Pointer 

• Origin/Destination Address 

• Transmit Flow 

- Expedited 

- Normal 

• Receive Flow 

- Expedited 

- Normal 

- Immediate 

Connection Point Manager 

• Pacing Flags 

• Pacing Counters 

Logical Unit 

• I/O Queue 

• Session State Flags 

• Unsolicited Data Flags 

• Active Request I/O Counter 

• Pointer to 3270 HFFT 

Figure 31-3. Routing Table Entry 

Primary Station I/O Manager 31 - 7 



3270 Host Field Format Table 

This area is used for 327x and System/38 finance 
devices only. The area is created at either vary-on CD 
time for a controller or at vary-on LUD time for a 
device. The HFFT contains flags and pointers to control 
the translation and processing of data to and from 327x 
and System/38 finance controllers and devices. Figure 
31-4 shows an overview of the HFFT table entries. 

Frame Slot 

The frame slot is a storage area used to build the 
SDLC/SNA frame for an output request. The slot is 
allocated on a doubleword boundary. The slot contains 
enough space to hold the address, control, longest 
transmission header, longest request/ response header, 
and longest request/ response unit. The slot is used by 
line 10M and enough slots exist to accommodate the 
maximum number of frames allowed for this station. 

Buffer Control List 

The buffer control list is allocated in machine-wide 
storage and consists of enough entries to accommodate 
the maximum number of frames allowed for this station. 
The entries in the list contain the data necessary to 
report the status of the output operation and build the 
output request that performs the output operation. Line 
10M performs the functions necessary to build the 
operational program and handle the SDLC. 

The next available slot in the list is located via the buffer 
control list index contained in the station control block. 
A slot is reset to zero when an output request is 
completed. 

Host Field Format Table 

• Device Type and Model 

• Processing Flags 

• Roll Data 

• Pointer to Translate Storage 

• Field Format Table Indexes 

• Unsolicited Data Array 

• Bind Save Area 

• Outbound and Inbound Sequence Number Counters 

• Field Format Table Index - Addr.ess and Attribute 

• Printer Device Pointers and Counters 

Figure 31-4. Host Field Format Table 

31-8 

Output Request Message 

The output request message contains the output 
operation to be performed by line 10M. The information 
contained in this message consists of parameters that 
identify the station, number of frames, and the location 
of the buffer control list. 

The primary station 10M ensures that only one output 
request is in process at one time by setting a buffer 
busy indicator in the station control block. 

An output request can contain data for several logical 
units. 

STRUCTURE 

The following is a list of the modules in the primary 
station 10M and the function that each module 
performs. The list also shows how the module is 
invoked. 

#TPSCHED LU Scheduler 

Function: Selects routine table entries to be processed 
based on priority scheduling. 

How Invoked: Within this component. 

#TPSCMDS Group Primary Station 10M MSCP 
Commands and System/38 Instruction 
Processors 

Function: Provides a means for grouping the primary 
station 10M MSCP commands and System/38 
instruction processors into one module. 

How Invoked: Within this component as a result of 
routing a function. 

#TPSDOWN Station Down 

Function: Reports to all LUs attached to this station that 
the station is down. 

How Invoked: Within this component. 



#TPSEXCP Station Exception Handler 

Function: Recovers from an SSD destroyed exception 
and performs an orderly cleanup or any other 
exceptions. 

How Invoked: From the third level exception handler. 

#TPSFDBK Build Feedback Record 

Function: Builds feedback record in order to report 
completion of a Request I/O instruction. 

How Invoked: Within this component. 

#TPSIGNL Signal Event 

Function: Signals events for unsolicited data. 

How Invoked: Within this component. 

#TPSIPIU Input Path Information Unit Process 

Function: Processes the input path information unit. 

How Invoked: Within this component as a result of 
routing an input request. 

#TPSPGLU Purge Logical Unit 

Function: Purges unsolicited data for that logical unit 
and performs the modify LUD reset function. 

How Invoked: Within this component. 

#TPSRQIO Request I/O 

Function: Enqueues an I/O request with the correct flow 
key on the proper routing table entry queue. 

How Invoked: Within this component as a result of 
routing an I/O request. 

#TPSIDO Ideographic Display Output 

Function: Scans Kanji data, translates to RAM 
addresses, and manages ideographic RAM contents list. 

How Invoked: Within this component. 

#TPSIDI Ideographic Display Input 

Function: Scans Kanji input data, translates RAM 
addresses into ideographic extension characters, 
processes alternative entry, LUST A T. 

How Invoked: Within this component. 

#TPSIPO Ideographic Printer Output 

Function: Scans Kanji data, translates to RAM 
addresses, and manages ideographic RAM contents list. 

How Invoked: Within this component. 

#TPSRCLM RAM Contents List Manager 

Function: This set of subroutines performs common 
operations on the RAM contents list of ideographic 
devices. 

How Invoked: Within this comoonent. 

#TPSRROR Kanji Error Handler 

Function: Handles errors unique to Kanji devices. 

How Invoked: Within this component. 

#TSTPRT 3270 Printer Translation 

Function: Does outbound translation of 5250 printer 
data stream to 3270 printer data stream. 

How Invoked: Called from #TSTOUT for printer device. 

Primary Station I/O Manager 31-9 



#TSTOUT 3270 Output Translation 

Function: Does outbound translation of data from 5250 
data stream to 3270 data stream. 

How Invoked: Called from #TPSCHED for 3270 devices 
only. 

#TSTIN 3270 Input Translation 

Function: Translates inbound data from 3270 data 
stream to 5250 data stream. 

How Invoked: Called from #TPSIPIU for 3270 devices 
only. 

#TPSSIOM Primary Station 10M Message Router 

Function: This is the mainline loop for the primary 
station 10M. All incoming messages and responses are 
routed through this module. 

How Invoked: Other VMC components. 

#TPSTRNP Output Request Posting 

Function: Posts the results of an output request and 
invokes the scheduler to continue processing. 

How Invoked: Within this component as a result of 
routing an output request response. 

31-10 



L 

System Control Adapter I/O Manager 

INTRODUCTION 

The system control adapter (SCA) I/O manager (10M) 
provides an interface to the system control adapter. 
This interface is used by the machine services control 
point (MSCP), other 10Ms, and S/38 instructions. High­
and low-level messages are processed by the SCA 10M. 
A high-level message provides for the execution of an 
SCA function defined in the function address table 
(FAT). A low-level message provides for the execution 
of one or two operational programs supplied by the 
user. 

An overview to SCA processing is shown in Figure 
32-1. The SCA 10M is prebuilt in #RTTASKS and 
consists of an 10M task, an operational unit (OU) task, 
an 10M queue, an OU queue, and a queue control table 
(QCT). The SCA 10M receives the message and, for a 
high-level message, builds an operation request element 
(ORE) and the operational program based on the 
information in the function address table for the 
requested function. For a low-level message, an ORE is 
built for the user-supplied operational program. The 
ORE is sent to the OU queue and the SCA 10M 
executes a receive operation to the 10M queue to wait 
for the OU task to return the ORE. When the ORE is 
received by the SCA 10M and a second operational 
program is not supplied, the status field of the user 
request is updated and the user request message is 
returned to the user queue. If a second operational 
program is supplied, an ORE is built for that program 
and sent to the OU queue as before. The status is 
updated and the request message is returned to the 
user. The second operational program is executed 
regardless of the status of the first operational program. 
No retries are attempted for errors occurring during 
either operational program. 

User Task 

SCAIOM 
Task 

User 
Queue 

10M 
Queue 

---, \I. r- OU 
~ Queue 

OU Task 

Figure 32-1. SeA Processing 

System Control Adapter I/O Manager 32-1 



Figure 32-2 shows the operation when the high-level 
functions requested involves a post event. The 
operation is similar to preceding operations with the 
following modifications: 

• Receive the user message (which can include an 
address of a function-started message to be returned 
to the requestor's queue) when the post-event 
function is started. 

• Build two operation programs and an ORE using 
information from the FAT and the user message. The 
last operation block of the first operational program is 
a message operation block to send the 
function-started message (optional) to the user 
queue. 

• Send the ORE for the first operational program to the 
OU task to start the post-event function and to 
return the function-started message. 

~ .• User 
L:!.J Queue 

User Task 

~\ 10M 
L!J Queue 

Post-Event SCA 10M 

Message Task 

'-iir- ---cls-Channel ! 10M Queue 

Channel 10M OU Task 

Returned ORE I 

Figure 32-2. SeA Processing with Post Event 

32-2 

OU 

• When the ORE is returned to the SCA 10M, do a 
receive from the 10M queue to wait for the 
post-event message from the channel 10M. 

• When the channel 10M post-event attention message 
is received, return the channel message and if needed 
send an ORE for the second operational program to 
the OU task to read the results from random access 
memory (RAM2) and to restore the SCA. 

• Then the OU task returns the second ORE, the status 
field in the user message is set and the message is 
returned to the user queue. 

Function-Started 
Message 

Queue 

-

J 



During the execution of a long running post-event 
attention function, the SeA 10M returns all incoming 
user requests (except for reset, terminate, and read 
sense) with a status field of busy. 

A message is sent to the error log as the result of a 
basic status (BSTAT) error, post event error, channel 
hardware error, or an event handler error. If the post 
event error indicates a power fault, the power status is 
also logged. 

The SeA 10M also processes device power fault 
indications. A device power fault indication is received 
by the SeA 10M as a channel post-event error 
message. The SeA 10M sends a message to 
the SeA 10M queue to obtain the power fault status 
and the status is logged. 

When the system is connected to an uninterruptible 
power supply (UPS), the SeA 10M processes utility 
power failures and restorations. A utility power 
failure/restoration is received by the SeA 10M as a 
channel post-event error message when a full UPS is 
installed. The SeA 10M examines the machine 
communications area to determine if an event handler 
was defined for an uninterruptible power supply 
activation/de-activation event. If the event handler is 
defined, the SeA 10M signals a machine-wide 

~ uninterruptible power supply activated / de-activated 
event. If no event handler is defined, the SeA 10M 
saves volatile storage and powers down the system. 

When a basic-UPS is installed, the SeA 10M will only 
get control if utility power returns. If it does get control 
(via a high priority message from the basic-UPS task). 
the SeA 10M calls the service task to update the time 
of day (TOO) clocks, checks for the event handler and if 
one is defined, signals a machine wide basic-UPS 
deactivated event. This event contains the amount of 
time spent on UPS. 

The SeA 10M then issues a halt to the SeA OU and 
both console OUs, clears the console indicators (set by 
the SeA when interrogating the power line), reloads the 
resident RAM1 code, and sends a message to the error 
log that contains the amount of time spent on UPS. 

System Control Adapter I/O Manager 32-3 



DATA AREAS 

User Message for SeA 10M 

Communication with the SCA 10M is through the 
standard VMC send-receive message. The header 
portion of the message is defined by ZZSSVHDR, and 
appended to the header will be up to 22 bytes of 
additional information mapped by ZZLOSAMG. The 
format of the message is as follows: 

VMC Data Data Length Result 
Header Address Address 

The format of the low level message is as follows: 

VMC Header First Operation Second Operation 
Program Address Program Address 

(optional) 

32-4 

Result Function- Execute 
Length Started Data 

Message Address 
Address 



Function Address Table 

The FAT is contained in #LOSAFAT and is used by the 
SCA to load and execute SCA routines. The FAT 
contains entries that describe functions being requested. 
The contents of the FAT are shown in Figure 32-3. 

Resident Information 

· Pointer to RAM 1 Overlay 

· Number of RAM1 Transfers 

· Pointer to RAM2 Overlay 

· Number of RAM2 Transfers 

First Function Entry 

· Control Field 

· Reserved Area 

· Number of Channel Transfers 

· Pointer to Overlay 

· RAM 1 Entry Pointer 

Last Function Entry 

· Control Field 

· Reserved Area 

· Number of Channel Transfers 

· Pointer to Overlay 

· RAM 1 Entry Pointer 

Figure 32-3. Function Address Table (FAT) 

STRUCTURE 

The following is a list of the modules in the SCA 10M 
and the function that each module performs. The list 
also shows how the module is invoked. 

#LOSACNT SCA 10M Control 

Function: Processes user requested SCA functions. 

How Invoked: Other VMC components. 

#LOSAFAT SCA Function Address Table 

Function: Provides the information used to build 
operational programs for user messages. This module 
does not contain executable code. 

How Invoked: Not applicable. 

#LOSAIPL Initialize the SCA and Obtain Status 

Function: Starts the SCA, reads the device status 
(DSTAT). restores RAM1 and RAM2. reads the position 
of the control switches. and reads the data storage that 
contains the soft errors encountered during an initial 
microprogram load (lMPL). 

How Invoked: Initial program load (lPL) routine. 

System Control Adapter I/O Manager 32-5 



J 

32-6 



3270 BSe Emulation Management 

3270 BSC emulation management is designed to 
communicate to a host system using 3270 type devices 
on a binary synchronous communications (BSC) line. 
The system/38 appears to the host as a 3271 controller 
with attached 3270 devices. 

3270 BSC emulation management, shown in Figure 
33-1, consists of two components, the BSC I/O 
manager (BIOM) for 3270 emulation and the 3270 
emulation translation function. 

CPF 

3270 Emulation 
Translator 

VMC 

BSC 3270 
Emulation 
Utility 

BSC 3270 
Emulation 10M 

--------------------

Host System 

Figure 33-1. 3270 Emulation Manager Overview 

The BSC I/O manager sends and receives 3270 data 
streams. The 3270 Emulation Translator translates 3270 
data streams into 5250 data streams or program 
interface format. The 3270 device being emulated can 
be a display station or a printer. 

BINARY SYNCHRONOUS COMMUNICATIONS I/O 
MANAGER FOR 3270 EMULATION 

The binary synchronous communications (BSC) I/O 
manager (10M) for 3270 emulation activates, manages, 
and de-activates the BSC telecommunications link and 
enforces BSC 3270 protocol. One BSC 10M for 3270 
emulation task exists for each BSC 3270 emulation 
telecommunications link. 

The 3270 BSC 10M interfaces with the following: 

• The machine services control point (MSCP) 

• The error log 

• An I /0 controller 

• Diagnostic component 

• Modify Network Description instruction 

• Modify Controller Description instruction 

• Modify Logical Unit Description instruction 

• Request I/O instruction 

3270 BSe Emulation Management 33-1 



A BSC 10M for 3270 emulation task is created by the 
MSCP as a result of a Modify Network Description 
(vary-on) instruction. The BSC 10M for 3270 emulation 
task is associated with one communications I/O 
controller (lOC) line position and is shown in Figure 
33-2. 

The BSC 10M for 3270 emulation is used to 
communicate with devices on a multipoint line as a 
tributary station. Up to 32 sessions per line can be 
supported. 

Line 10M 
(SDLC primary) 

Line 10M 

Receive and 
Transmit 
OU Queues 

10C 
Line 1 
(SDLC primary) 

Device 

(BSC for 3270) 

Line 2 
(BSC for 3270) 

Device 

Figure 33-2. BSC IOM/IOC Line Position Relationships for 3270 Emulation 

33-2 

Line 10M 
(SDLC secondary) 

Line 3 
(SDLC secondary) 

Device 



Communication with external components is through a 
send/receive message which the BSC 10M for 3270 
emulation receives through a single send / receive queue 
as shown in Figure 33-3. The message can be 
generated in three ways; by an external VMC or 
diagnostic component, an operational request element 
(ORE), or a Request I/O instruction. 

Bse Line 10M 

VMC 
Send / Receive 
Message Router 
(#TEBSRMS) 

Send / Receive 
Transmit Modules 

I 

--Js--
Send / Receive 
Message Transmit 
Queue 

BSC 10M Mainline 
1- -- -- - -- -- - -- ---I 
1 1 
1 1 

~.: Message Router ~~ 
1 (TEBBROUT) 1 
1 1 
1 1 

L-------f-------J 

1_ - - - - - - _t_ ------ -I 

: Link Scheduler : 
1 and Protocol 1 
1 1 
1 Management 1 

: (#TEBSCHD) : L ______________ J 

Process Link 
Transmissions 
(#TEBSDOB) 

Operation 
Request Element 
Modules 

I I 

Operational Operational 
Unit Transmit Unit Receive 
Queue Queue 

Figure 33·3. BSe 10M for 3270 Emulation Internal Structure 

BSC 10M for 
3270 Emulation Queue 

Operation 
Request Element 
Response Routine 
(TEBBRORE) 

t 
Hardware Error 
Recovery 
Procedures 
(#TEBHMCS) 

Feedback Record 
Transmit Modules 

I 

Response 
Queue 

-
Operation 
Request Element 
Response Handler 
(TEBL@ORE) 

3270 BSe Emulation Management 33-3 



The message router receives the message and uses the 
key field in the message to determine if the message is 
generated from an external VMC component or 
diagnostic component, an ORE, or a Request I/O 
instruction. Then, based on the function field of the 
message, the message router invokes the appropriate 
message handler for the messages generated by the 
external VMC or diagnostic components. If the message 
is a Request I/O instruction then the message is queued 
on the internal session queue. 

The messages generated by an external VMC 
component or diagnostic component, or Request I/O 
(continue) instruction messages are routed to a message 
specific routine (#TEBSRMS) for processing. See Figure 
33-4 for a list of send/receive message (SRM) handling 
entry points. 

33-4 

Routine 
Function (Entry Point) 

Timer response #TEBTIME 

Activate session #TEBASES 

Request I/O (continue) instruction #TEBROIC 

De-activate session #TEBDSES 

Reset session #TEBRSES 

Vary-off LUD #TEBVOFL 

Discontact #TEBDCON 

De-activate link #TEBVOFN 

Initialize line #TEBENB 

Vary-on LUD #TEBVONL 

Contact #TEBCONT 

Change network description retry sets #TEBNDRT 

Activate link #TEBVONN 

Exchange identification #TEBXID 

Machine interface timer message #TEBSFTD 

Modify device specific #TEBMDSA 

Modify unit specific #TEBMUSC 

Modify line specific #TEBMLSC 

Resume session #TEBRSUM 

Ouiesce session #TEBRSES 

Suspend session #TEBSPND 

Read data store #TEBRDSO 

Internal trap #TEBTRPO 

Cancel Invite #TEBSINV 

Return message (invalid entry) #TEBBADM 

Figure 33-4. Send/Receive Message Handling Entry Points 



The messages generated by the OREs are handled 
differently. The queue message router relies on the 
routine that generated the ORE to provide the address 
of the routin~ to process the ORE response. See 
Figure 33-5 for a list of ORE response handling entry 
points. 

Routine 
Function (Entry Point) 

Perform 3270 BSC protocol analysis #TEBTXTR 

Perform 3270 BSC multipoint #TEBOPMP 
tributary analysis 

Write poll list response handler #TEBWPL1 

Perform 3270 response to status #TEBSTA1 
analysis 

Perform 3270 response to NAK sent #TEBTIM1 
after Read command received 

Process set line priority/reset initialize #TEBVNN1 
ORE response 

Initialize I/O controller ORE response #TEBENB1 

Perform disconnect response analysis #TEBDCN1 

Perform reset response analysis #TEBRSLO 

Read data store send / receive #TEBRDSO 
message handler 

Read data store ORE sender #TEBRDS1 

Read data store ORE response #TEBRDS2 

Trap send/receive message handler #TEBTRPO 

Trap ORE sender #TEBTRP1 

Trap ORE response handler #TEBTRP2 

Figure 33-5. ORE Response Handling Entry Points 

The link scheduler and protocol management routines 
are invoked by the message router before the message 
is processed. The link scheduler and protocol 
management routines build the OREs for transmitting 
data or responses and sends the OREs to the 
operational unit queues. 

All BSC 3270 10M and 10C detected errors are 
processed by the error recovery routines. 

3270 EMULATION TRANSLATION FUNCTION 

Communication between a host system and the 
System/38 involves outbound (from the host) and 
inbound (to the host) data transmissions. The 3270 
emulation translation function takes the outbound 3270 
data stream and translates it to either a 5250 data 
stream or to the program interface. and takes the 
inbound data stream from either a 5250 or from the 
program interface and translates it to a 3270 data 
stream (see Figure 33-1). 

The 3270 emulation translation function is invoked by 
the emulation utility through a Request I/O instruction 
which has an option to indicate a synchronous 
call/return request. The synchronous call/return request 
is a generalized function that calls a module based on 
information in the device LUD. The device-specific 
parameters in the LU D characterize the device to be 
emulated. These parameters are necessary to properly 
execute this Request I/O instruction. The source/sink 
request object also provides parameters in its SSR 
extension area for the translation process. These 
parameters include a pointer to the working space used 
by the translation function to maintain control 
information and the internal screen image buffer. 

3270 BSe Emulation Management 33-5 



The translation process maintains a 1920-byte buffer 
(screen image buffer) for each session, which contains a 
representation of the 3270 screen. This buffer contains 
3270 attributes and data at the same relative locations 
they would occupy in a 3270 display system. The buffer 
is updated as each inbound or outbound data stream is 
translated. Since 3270 attributes cannot be 
distinguished from data once they are separated from 
the original data stream, an array must be built in which 
each entry points to an attribute in the buffer. Together, 
the array and the buffer define the fields in the screen 
image buffer. 

The translation process can result in either an outbound 
data stream for a display or printer, or in a format for a 
user program. The inbound translation always results in 
a 3270 data stream. For BSC, the program interface 
formats the outbound 3270 data stream into a screen 
image buffer, header and field information. If an error 
occurs during the translation process, an exception code 
is returned in the request I/O message. 

DATA AREAS 

Operation Request Element 

The BSC 10M for 3270 emulation communicates with 
the 10C by way of a send/receive message called an 
ORE. In the operation block portion of the ORE the 
various commands are specified, data areas are 
indicated, and status is returned. Three types of 
operation blocks are used: the function operation block, 
the program operation block, and the message operation 
block. 

The function operation block contains single commands 
such as initialize, line reset, write, and read commands. 

The program operation block is used when multiple 
function operation blocks are to be executed. The 
program operation block references a chain of function 
operation blocks, each of which contains a command to 
be executed. 

The message operation block is used during data 
transfer to eliminate the chance of command time-outs 
when two separate commands must be issued to the 
10C for the execution of one I/O operation. 

33-6 

Link Control Block 

The link control block (BLCB) is the primary control 
block for the BSC 10M for 3270 emulation. It is 
allocated in machine-wide storage when the BSC 10M 
for 3270 emulation task is created and exists until the 
task is destroyed. The BLCB contains the following data 
and control areas: 

• Feedback record parameter area 

• Pointers to other objects and control areas 

• Status flags and counters 

• Link control characters (EBCDIC) 

• Work areas for the various BSC 10M for 3270 
emulation routines 

• Operation request elements (ORE) 

• Program operation blocks (POB) 

• Function operation blocks (FOB) 

• Message operation blocks (MOB) 

• Error and timer messages 

Service Order Table 

The service order table (SOT) is the secondary control 
block for the BSC 10M for 3270 emulation. It is 
allocated in machine-wide storage at LUD vary-on time. 
One SOT exists for each LUD that is varied on. The 
SOT contains information related to one session such as 
the request I/O hold queue used during active sessions, 
a copy of pertinent attributes of the device from the 
logical unit description, and the logical unit description 
session status. For 3270 operations, up to 32 LUDs can 
exist. 

Service Order Table Address Table 

The SOT address table contains pointers to the 32 SOT 
entries. The index received by the BSC 10M for 3270 
emulation determines the session for which the message 
is intended. 



Poll/Select List 

The poll/select list enables the BSe 10M for 3270 
emulation to communicate with the loe to define the 
proper action the loe should take to specific polls, 
general polls, or selects received for the host. The loe 
automatically terminates a general or specific poll if the 
poll/select list indicates that the poll should be 
terminated. All selects received are returned to the 10M. 

Session Line Buffer 

One buffer exists for each session. This buffer is used 
to contain received data from the host. 

STRUCTURE 

The following is a list of the modules in 3270 emulation 
management and the function that each module 
performs. The list also shows how the module is 
invoked. 

#TEBBIOM Bse 3270 Emulation Mainline Module 

Function: Activates, manages, and de-activates the BSe 
telecommunication link communicating as a 3270 
emulator to a host system. 

How Invoked: Other VMe component. 

#TEBELSE Bse 3270 Emulation Nonmainline 
Paths 

Function: Performs all activity on the BSe 
telecommunication link not performed by #TEBBIOM. 

How Invoked: Within this component. 

#TEBERPL Bse 3270 Emulation Management 
Error Recovery Procedure for Link 
Processor 

Function: Processes not hex 0100 BSTAT values and 
channel errors returned to the BSe 3270 emulation 
manager. 

How Invoked: Within this component. 

#TEBLPER Link Protocol Error Recovery 
Procedures for BSe 3270 Emulation 
Management 

Function: Inspects the contents of the receive buffer 
and initiates a recovery action based on the buffer 
contents. 

How Invoked: Within this component. 

#TEBMODP Bse 3270 Emulation 10M-Modify NO, 
Modify eo, and Modify LUO Processor 

Function: Processes messages that are sent to the main 
BSe 3270 emulation manager module (#TEBBIOM) as a 
result of a Modify NO, Modify eo, or Modify LUO 
instruction. 

How Invoked: Within this component. 

#TEBDE Bse 3270 Emulation 10M Diagnostic 
Processor 

Function: Provides routines for a BSe 3270 emulation, 
internal trap, and read data store. 

How Invoked: Within this component. 

#TEXLATE 3270 Emulation Translation Function 

Function: Provides translation support for 3270 
emulation function that will interface with BSe line 
protocol. 

How Invoked: Request I/O instruction. 

#TEXLANG 3270 Emulation Language Translator 

Function: Provides language group translation support 
for the 3270 emulation function. 

How Invoked: Within this component. 

3270 BSe Emulation Management 33-7 



33-8 



X.25 Communications I/O Manager 

INTRODtJCTION 

The X.25 Communications I/O Manager (XIOM) is a 
vertical microcode component that interfaces with the 
MSCP and up to 32 station 10Ms, APPC/LU1 or remote 
work stations. It supports two instructions; Modify 
Network Description and Materialize Network 
Description. The XIOM activates, de-activates, and 
manages an X.25 data link attached to the System/38. 
There is one XIOM for each X.25 line. 

The XIOM is created by the MSCP as the result of a 
Modify Network Description (Vary-on) instruction. The 

XIOM task is associated with one communications port 
or operation unit (OU) pair (transmit, receive) on the 
System/38. The XIOM destroys itself during the 
processing of a Modify Network Description (Vary-off) 
instruction. An overview of the XIOM is shown in 
Figure 34-1. 

OU 

X.25 I/O 
Manager 

XIOM 
Receive 
Queue 

Queues~ 

System/38 Channel 

X.25 lOP 

Figure 34-1. XI OM Overview 

X.25 Communications I/O Manager 34-1 



The integrated X.25 adapter provides a higher level of 
function than has traditionally been done in a 
System/38 line adapter. The adapter contains three 
layers of the open system interface (OSI) model: 
physical, data link control. and packet. IBM added a 
fourth layer, (QLLC, ELLC, or PSH) to provide adjacent 
node services such as XID, mode selection, 
SNRM/SABM, test, and disconnect. ELLC, also 
provides end-to-end confirmation. 

Within the System/38 processing unit, the changes for 
X.25 support are mainly confined to the vertical 
microcode (VMC). The XI OM is between the existing 
SNA station 10Ms and the integrated X.25 adapter. All 
SNA station 10Ms can run on an X.25 network, and up 
to 32 stations can run through the XIOM concurrently. 
Each System/38 can support two integrated X.25 
adapters concurrently, so using X.25 a maximum of 64 
SNA stations can be running on the system 
concurrently. An overview of the System/38 
implementation of X.25 architecture is shown in 
Figure 34- 2. 

34-2 

APPC/LUl 
SIOM PU2 

RWS SIOM 
5250 Primary 

OU 

\ 

X.25 I/O 
Manager 

APPC/LUl 
SIOM PEER 

RWS SIOM 
3270 Primary 

XIOM 
Receive 
Queue 

Queues~ 

System/38 Channel 

Integrated X.25 Adapter ! 
Input/ Output Processor 

Channel Interface Code 

! ! 
Logical Link Control Layer 

Diagnostics Packet Layer 

Link Control Layer 

Physical Layer 

Figure 34-2. X.25 System Overview 

J 



DATA AREAS 

Link Control Block (LCB) 

The major XIOM control block is the link control block 
(LCB). The LCB contains all the information associated 
with the X.25 data link to the data communications 
equipment and to the pointers to tables that contain 
information for the control blocks for individual logical 
links. 

The logical link control blocks are called service order 
tables (SOTs). There is one SOT for each active logical 
link, and a pointer to the current SOT is kept in the LCB 
whenever one is identified. The current SOT field in the 
LCB is important because it points to the active logical 
link control block. 

All of the other control blocks in the XIOM are based on 
the structure of the LCB. This allows the control blocks 
to reside in machine-wide storage, which provides 
better readability of dumps and better performance. 
Figure 34-3 shows an overview of the LCB and 
associated control blocks and tables. 

SOT Address Table: 

Pointer SOT Pointer Sender 10 
1 

SOT Pointer Sender 10 
2 
~ -- ---SOT Pointer Sender 10 

32 

Link 
Control 
Block 
(LCB) Request Table: 

Primitive Index 
0 

Primitive Index 
1 -- --....... --- -- -

Primitive Index 
255 

Pointer I Current SOT 

Figure 34-3. Overview of Link Control Block 

Control 
Active SOT 

Byte 

Control 
Byte Inactive SOT ---- Active SOT 
Control 
Byte 

Inactive SOT 

-

I 
X.25 Communications I/O Manager 34-3 



Service Order Table (SOT) 

The SOT contains all of the information necessary for 
each logical link or station. There is one SOT for each 
active logical link and each logical link is associated with 
one station. 

The SOT contains queue headers, which the 10M uses 
to hold output requests from the stations that are in 
various states. It also contains pointers to CD oriented 
SRMs, partially completed input requests, and in 
general, all information pertaining to the communications 
link. 

SOT Address Table 

The SOT address table is the method used to index the 
SOTs. Since the table is relatively small, it can be kept 
resident, and can be referenced to obtain the active 
SOTs. 

The SOT address table contains a pointer to an SOT, a 
VMC sender ID, and a control byte. The VMC sender ID 
routes output requests to the proper SOT. 

Request Table 

The request table is used to route confirmations to the 
proper routine as well as identify the proper SOT. The 
request table contains the primitive of the request being 
sent out, and the index of the SOT address table entry 
associated with the SOT for this logical link. 

When a routine sends a request to the X.25 adapter, it 
makes an entry in the request table at the VMC ID 
index. VMC ID is a wraparound single-byte counter that 
is incremented each time a request is made. This allows 
255 requests at one time. 

14-4 

Receive Buffers 

The XIOM manages input buffers in a common pool for 
all routines. These buffers are a combination of: 

An input request send/receive message (SRM). 

• A receive operation request element (ORE) structure. 

A pool of buffers is built at ND vary-on time. Buffers 
are managed from common routines (#TXGBUFF and 
#TXFBUFF). The XIOM allocates more buffers if 
needed. Figure 34-4 shows an overview of the receive 
buffer structure. 

o 16 32 

Input Request 

Receive ORE 

Pool of Buffers Address Pointer 
Operation to Data 
Block 

Function Pointer to 
Operation Control 
Block Block 

Figure 34-4. Receive Buffer 

The address operation block (AOB) contains an address 
to an preacquired data buffer, and the function operation 
block (FOB) contains a pointer to a preacquired OSI 
block area. 

Transmit Operation Request Elements (OREs) 

The data transmit buffers are controlled by the SIOM. 
The XIOM maintains a single transmit ORE which 
contains enough AOB/FOB pairs to transmit the 
maximum amount of data that the adapter will allow to 
be outstanding. The XIOM also maintains a queue of 
transmit OREs which are shared by all routines. 

J 



Trap Table 

The trap table contains a history of all CDs that ran on 
each logical link during the time the XIOM was active. 
The XIOM saves the CD name, the protocol 
(ELLC,QL'lC, or PSHI. and the character set (EBCDIC or 
ASCII) that the CD was using for the trap routines so 
those routines can go through the trap buffer and 
format the data correctly. The trap routines need to 
know the character set to interpret the data correctly. 
The routines also need to know what protocol was 
running in order to format the SNA data. The LLC 
header precedes the SNA data. Because each LLC 
protocol has a different length header, the LLC protocol 
must be known to increment the correct number of 
bytes past the header to get to the SNA data. When 
the XIOM is running, each logical link can support 
different CDs; therefore, the XIOM must keep a history 
of what CDs were supported by each logical link. This 
is done by using a link list that contains the CD name, 
protocol, and character set, as well as a pointer to the 
next node. Figure 34-5 shows the form of the trap 

table. 

Trap Table: 

Logical 
Pointer 

CD 
ChannellD Name 

- -- -
Logical 

n ChannellD 
Pointer 

Figure 34-5. Trap Table 

LLC Character 

Protocol Set 
Pointer 

X.25 Communications I/O Manager 34-5 



Valid Send/Receive Messages 

The VMC SRM requests supported by the XIOM are 
listed below. 

Message Request Response 

Start Trap 0000 8000 

Start Trace 0001 8001 

Stop Trace 0002 8002 

Stop Trap 0010 8010 

Contact 0201 8201 

Discontact 0202 8202 

Activate Link 020A 820A 

Deactivate Link 020B 820B 

Connect Out 020E 820E 

Initialize Line 0215 8215 

Abandon Connect Out 0218 8218 

Request XID 0240 8240 

Inoperative Station 0281 NA 

Channel Event Error 0300 8300 

Channel Hardware Error 0400 8400 

Channel Post Event Error 0500 8500 

Channel Post Event Attention 0600 8600 

Channel FOB Time-Out 0700 8700 

Channel/OU Task Exception 0800 8800 

Get Logical Channel Statistics 1011 9011 

Get Logical Link Statistics 1012 9012 

Second Time-Out 104F 904F 

Output Request 2000 8000 

Execute LLC Test 2005 A005 

Read Data Store 2007 A007 

Force SDR Update 3000 BOOO 

34-6 

J 
Module Origin 

#TXTRAPO DE 

#TXTRACO CSM 

#TXTRACO CSM 

#TXTRAPO DE 

#TXCONTR MSCP 

#TXDISCS MSCP 

#TXALKO MSCP 

#TXDACLN MSCP 

#TXCONOT MSCP 

#TXINLN MSCP 

#TXABCON MSCP 

#TXROXID MSCP 

#TXINPST SIOM 

#TXCHAN Channel 

#TXCHAN Channel 

#TXCHAN Channel 

#TXCHAN Channel 

#TXCHAN Channel 

#TXCHAN Channel 

#TXSTAT1 SS 

#TXSTAT2 SS 

#TXLATE MSCP 

TXOUTREO SIOM 

#TXLNKO DE 

#TXRDSO DE 

#TXSTAT3 Error Log 



STRUCTURE 

The following list of modules in the XIOM includes the 
function that each module performs. This list also 
includes how the module is invoked. 

#TXXIOM Mainline 10M 

Function: Performs mainline data handling and routing 
for the 10M. 

How Invoked: Other VMC components. 

#TXNDUP Network Description Bring-up 

Function: Brings up the X.25 Network Description 
object. 

How Invoked: Within this component. 

#TXCDUP Controller Description Bring-up 

Function: Brings up the X.25 Controller Description 
object. 

How Invoked: Within this component. 

#TXDOWN Take-down Routines 

Function: Takes down the X.25 CD and ND. 

How Invoked: Within this component. 

#TXERPl Error Recovery Routines 

Function: This module contains all routines needed for 
error recovery. 

How Invoked: Within this component. 

X.25 Communications I/O Manager 34-7 



34-8 



L 

Event Management 

INTRODUCTION 

Event management provides the function that allows the 
user to do the following: 

• Monitor for user or machine signaled events 

• Signal events 

• Wait for the occurrence of an event 

Event monitors are used to monitor for the occurrence 
of process-related and machine-wide events. These 
monitors are established when the Monitor Event 
instruction is executed. A monitor event template 
describes what to monitor and what action to take when 
the event is signaled. For process-related events, the 
monitor event template is inserted into the event 
monitor stack located either in the invocation work area 
(lWA) of the process or in an overflow area of 
machine-wide storage. For machine-wide events, an 
event entry is also inserted into the event management 
index. 

Events are signaled either by the user by using the 
Signal Event instruction or by functions within VMC. 
When a machine-wide event is signaled, the event index 
is searched for processes that are monitoring the event. 
When a process-only event is signaled, the process 
being signaled is specified by a system pointer in the 
signal template. The event management then enqueues 
an event signaled message to the interrupt queue of the 
monitoring process. 

When an event is signaled, more than one monitor can 
be signaled. Multiple monitors can be signaled in one 
process or in multiple processes for a machine-wide 
event. 

Supervisor and Control Function 

Event management provides a function that allows a 
process to wait for the occurrence of an event. This is 
accomplished through the Wait-On-Event instruction. 
This allows the process that issues the instruction to 
remain in a wait state until the specified event is 
signaled or a specified time period has elapsed. When a 
time-out occurs, an exception is signaled to the 
monitoring process. 

Event management supports the following System/38 
instructions: 

• Monitor Event 

• Enable Event Monitor 

• Disable Event Monitor 

• Test Event 

• Wait on Event 

• Retrieve Event Data 

• Cancel Event Monitor 

• Signal Event 

• Modify Process Event Mask 

Monitor Event 

#EMMNEVT is invoked as a result of a Monitor Event 
instruction. This module validates the event template 
and checks the event index for duplicate monitors. 
When the new monitor is validated, #EMMNEVT 
allocates space for the new monitor in the event monitor 
stack in the IWA (and the event management index if a 
machine-wide event) or in the machine-wide storage 
extension if the IWA is full. 

Event Management 35-1 



Enable Event Monitor 

#EMEBLED is invoked as a result of an Enable Event 
Monitor instruction. This module sets the 
enable/ disable status bit to 0 (enabled). If the event 
monitor is in the signaled state, the disabled-schedule 
messages are enqueued to the event management 
queue in the process control block (PCB). If the 
specified event monitor is a timer event, #RMWTOE is 
invoked to establish the time interval. #CFESCH is then 
invoked to schedule any pending events. 

Disable Event Monitor 

#EMDBLED is invoked as a result of a Disable Event 
Monitor instruction. This module sets the 
enable/ disable status bit in the event monitor to one 
(disabled). 

Test Event 

#EMTSEVT is invoked as a Test Event instruction. This 
module validates the specified monitor identification and 
then invokes #CFDQEMG to dequeue either the 
schedule-message that matches the specified monitor 
identification or the highest priority schedule-message if 
a monitor identification is not specified. 

If a schedule-message is located, #EMREVTD is 
invoked to retrieve the event data, store the data in the 
area specified by operand 1, and set condition code to 
signaled. If a schedule message was not located, the 
condition code is set to not signaled. In line code then 
performs a conditional branch when control is returned 
by #EMREVTD. 

Wait-on-Event 

The process can wait indefinitely for the event, or a 
specific wait time can be specified. The process 
remains in the wait state until the event is signaled or, if 
a time period is speci"fied, until the time speci"fied is 
reached and an exception is signaled to the process. If 
the wait is satisfied by an event and an event handler is 
not specified, #EMREVTD is invoked to move the event 
data to the area specified by operand 1. 

35-2 

Retrieve Event Data 

#EMREVTD is invoked as a result of a Retrieve Event 
Data instruction. This module locates the event-related 
data using a pointer (set by #CFESCH, #EMTSEVT, or 
#EMWOE) in the PCB, and moves that data to the 
specified area. 

Cancel Event Monitor 

#EMCMEVT is invoked as a result of a Cancel Event 
Monitor instruction. This module locates the specified 
event monitor, marks the monitor as de-activated, and 
cancels the timer request if a timer event. If the event 
monitor is machine-wide, #EMCMEVT removes the 
entry from the event index and any pending events for 
the specified monitor are lost. 

Signal Event 

Figure 35-1 shows an overview to signal event. When 
an event is to be signaled, either by the machine or as a 
result of a Signal Event instruction, the event 
management signal and schedule event functions are 
invoked. These functions locate the process that is 
monitoring the event. For process-only events, the 
signal template contains a pointer to the process; for 
machine-wide events, the event index contains a pointer 
to the process and the event monitor with the process. 
Once the signal and schedule functions locate the event 
monitor, the function interrupts the monitoring process. 

#EMSGEVT is invoked as a result of a Signal Event 
instruction. This module validates the instruction 
operands, copies the signal template to the IWA, and 
invokes #CFSGEVT. 

J 



#CFSGEVT is invoked for both VMC and user-signaled 

events. For machine-wide monitors, #CFSGEVT 
searches the event management index in three passes to 
locate a monitor. The first pass looks for a monitor with 
an identification that matches that of the event being 
signaled, the second for a matching generic subtype 
monitor, the third for a matching type subtype monitor. 
Each time a monitor is located, #CFSGEVT allocates and 
initializes a signal/schedule message and invokes 
#RMINIPI. #RMINIPI interrupts the signaled process 
and enqueues the signal to the interrupt queue of the 
signaled process. When a process-only event is 
signaled, #CFSGEVT then allocates and initializes a 
signal/schedule message, and invokes #RMINIPI to 
interrupt the signaled process and enqueue the signal 
message to the interrupt queue of the signaled process. 
(See Process Interruption in the Resource Management 

section of this manual for additional information 
concerning process interruption.) 

When the process has been interrupted and becomes 
the highest priority task on the prime task dispatching 
element (TDE) queue, #CFESCH is invoked to schedule 
event handlers either at a System /38 instruction 
boundary (a maskable Supervisor Link instruction was 
issued) or when the process has been removed from a 
wait (for example, a wait-on-event). #CFESCH then 
invokes #CFDQEMG to remove the signal/schedule 

.,..., messages from the process interrupt queue (the rules 
specified in the monitor event template are enforced). 
When a message that contains event handler 
specifications is removed from the queue, a pointer to 
the message is put into the PCB (to allow a Retrieve 
Event Data instruction to retrieve the data) and the event 
handler is invoked (through #AICALLM). When all event 
handlers have been scheduled, #CFESCH returns control 
to the interrupted process at the next sequential 
instruction. 

Modify Process Event Mask 

This function is provided in translator generated in-line 
code. The current event mask can optionally be stored, 
and a new mask can be specified. 

When the process is masked for events, the events are 
retained (to the limit specified in each monitor). but no 
event handlers are invoked. 

User Process 
Signal Event 

VMC Process 

Dequeue Event 
Message 
(#CFDQEMG) 

Call Interface 
(#AICALLM) 

Event Handler 

Signal Event 
Instruction 
Processor 
(#EMSGEVT) 

Signal Event 
(#CFSGEVT) 

Initiate 
Interrupt 

Process 
(#RMINIPI) 

--,is-
Process 
Interrupt 
Queue 

Schedule Event -(#CFESCH) 

Figure 35-1. Signal Event Processing 

Event Management 35-3 



Recovery 

Component-specific exception handlers (CSEHs) are 
used to ensure the shared-exclusive lock mechanism 
(implemented by a send / receive counter) is not left in 
an unusable state when an exception occurs. 

AU areas modified by event management are allocated in 
temporary storage; therefore, damage determination and 
recovery for system termination is not required. 

DATA AREAS 

Monitor Event Template 

The monitor event template describes the event to be 
monitored. The template contains: 

• Template size and attributes 

• A pointer to the event handler 

• Event options 

• Event compare value 

• Event identification (class, type, subtype) 

Event Index 

The event index is a machine index initialized by process 
management at initial microprogram load (lMPL). The 
event index contains entries for all event monitors that 
monitor machine-wide event signals. The entries 
contain: 

• Event identification 

• Monitor event address 

• Listener (process control space [PCS] address) 

The event index is serialized by a shared-exclusive lock 
to synchronize all event management functions. 

35-4 

Signal Event Messages 

The signal event messages are enqueued to the signal 
event queues. These messages describe the events to 
be scheduled. 

Process Control Block (Nonresident) 

The contents of the nonresident PCB that are 
specifically related to event management are: 

• Event signal send/receive queues: Contain messages 
describing the events to be scheduled or signaled 

• Pointer to the wait-on-event parameters 

• Start of event related data chain 

• Start of monitored event stack 

Process Control Block (Resident) 

The contents of the resident PCB specifically related to 
event management are: 

• Process interrupt queue: Contains messages for the 
initial signal-event interrupt 

• Process interrupt pending indicator: Indicates that the 
event-schedule function is active 

Task Dispatching Element 

The TOE contains the process-mask indicator used to 
mask processes from events, and the wait-on-event 
indicator used to indicate that the instruction executes 
within the process. 

J 



STRUCTURE 

The following is a list of the modules in event 
management and the function that each module 
performs: The list also shows how the module is 
invoked. 

#CFDQEMG Dequeue Event Messages 

Function: Dequeues the event signal/schedule 
messages from the process interrupt queue and the 
event send/receive queues in the PCB. 

How Invoked: Within this component. 

#CFESCH Schedule Event 

Function: Schedules the event handler if present in the 
monitor and ends wait-on-event when the desired event 
is signaled. 

How Invoked: Other VMC components and within this 
component. 

#CFSGEVT Signal Event 

Function: Provides the common functions used to signal 
a machine- or user-signaled event. 

How Invoked: Other VMC components and within this 

component. 

#EMDBLED Disable Event Monitor 

Function: Disables the event monitor in the current 
process event stack. 

How Invoked: Disable Event Monitor instruction. 

#EMMNEVT Monitor Event 

Function: Establishes a monitor within the executing 
process that detects the occurrence of the specified 
machine or user signaled event. 

How Invoked: Monitor Event instruction. 

#EMREVTD Retrieve Event Data 

Function: Retrieves the event-related data and places 
the data in the specified space object. 

How Invoked: Retrieve Event Data instruction and within 
this component. 

#EMSGEVT Signal Event Instruction Processor 

Function: Signals the specified event. 

How Invoked: Signal Event instruction. 

#EMTSEVT Test Event 

Function: Provides synchronous testing for an event that 
may have been signaled within the process. 

How Invoked: Test Event instruction. 

#EMWOE Wait-On-Event 

Function: Provides synchronization of the process with 
an external source by waiting for a specified event to 
occur. 

How Invoked: Wait-On- Event instruction. 

Event Management 35-5 



35-6 



Exception Management 

INTRODUCTION 

Exception management provides both System/38 
exception instruction support and exception handling. 
The System/38 instructions supported are as follows: 

• Signal Exception 

• Sense Exception Description 

• Return From Exception 

• Materialize Exception Description 

• Modify Exception Description 

• Retrieve Exception Data 

• Test Exception 

The Signal Exception instruction provides the capability 
of forcing a process into exception signaling mode. 
Once the exception is introduced into the system, it is 
processed similar to VMC-signaled exceptions. The 
Return From Exception instruction allows control flow to 
be redirected when processing of an exception is 
complete. The remaining instructions provide 
manipulation of exception data or exception 
descriptions. 

Programs have the capability of setting invocation exit 
programs. These programs are executed when it is 
detected that the invocation that set the invocation exit 
is being bypassed. This occurs when control is given to 
a higher invocation to handle an exception from a Signal 
Exception instruction or from the exception generator or 
upon return from an exception handler (Return From 
Exception instruction). An invocation of an invocation 
exit program may not be bypassed. 

Exception handling provides the following functions: 

• Supports the Signal Exception instruction 

• Supports VMC-signaled exceptions 

• Intercepts both hardware-detected exceptions and 
machine checks 

• Passes all exceptions to the machine interface 

Exceptions originate from the following sources: 

• The machine interface as a result of a Signal 
Exception instruction 

• VMC as a result of VMC-detected errors 

• Horizontal microcode (HMC) as a result of 
HMC-detected errors 

Exception handling consists of routing and processing 
functions (see Figure 36-1) that allow VMC to attempt 
recovery "from an exception before passing the exception 
to the machine interface. The exception management 
functions that perform the routing and processing 
functions are as follows: 

• Exception Generator: The exception generator is the 
primary error handling function. All exceptions to be 
passed to the machine interface are directed to this 
function. The exception generator performs the 
following functions: 
- Searches for a user-defined exception handler 
- Prepares exception data 
- Performs invocation cleanup 
- Invokes the user-defined exception handler if one 

exists (otherwise the exception handler performs 
default action) 

• User- Defined Exception Handler: These exception 
handlers are written using the System/38 instruction 
set and are used to process exceptions signaled to 
the machine interface. 

• Signal Exception Router: Establishes the linkage 
between the generate exception Supervisor Link 
instruction (#SV1 DEXC) and the third-level exception 
handler (TLEH) and invokes the TLEH. 

• TLEH (Third-Level Exception Handler): The TLEH 
(#CFTLEH) is invoked from the machine check 
handler, the second-level exception handler (SLEHl, 
or directly from VMC. The TLEH routes the exception 
to a component-specific exception handler (CSEH) 
and performs actions based on the status returned by 
the CSEH. 

Exception Management 36-1 



• CSEH (Component-Specific Exception Handler): A 
CSEH is defined by a VMC component to attempt to 
resolve an exception, replace the exception with a' 
more meaningful one, or perform a cleanup function. 
A CSEH exists on a chain of exception handlers and 
is invoked by the TLEH. 

• FLEH (First-Level Exception Handler): The FLEH 
(#SVOOEXC) receives control from the HMC when the 
HMC detects an error. The FLEH then routes the 
exception to the appropriate common exception 
handler in VMC. 

• Common Exception Handlers: These exception 
handlers process certain exceptions that occur 
because of an internal microprogramming exception 
encountered in either translator inline code or VMC 
code. The exceptions processed are those for which 
recovery is normally possible and as such are routed 
as quickly as possible to the common exception 
handlers from the resident FLEH. 

• SLEH (Second-Level Exception Handler): The SLEH 
is a nonresident module that receives control directly 
from the FLEH for exceptions that do not qualify for 
a common exception handler. In addition, the SLEH 
may receive control from certain common exception 
handlers when an exception is unrecoverable. The 
SLEH then routes the exception to a default 
exception handler to process the exception. 

• Default Exception Handlers: These exception 
handlers construct machine interface exceptions 
based on the occurrence of particular internal 
microprogram exceptions. This action is taken for 
internal microprogram exceptions which commonly 
occur during normal processing and are not 
considered errors in the VMC. 

36-2 



Signal Exception Instruction 

Exception User-Defined 
Generator Exception 
(#CFEXGEN) Handler 

r-
I 

VMC-Detected 
Signal r--

Machine Exception TLEH CSEH 

Check Router (#CFTLEH) Chain 
,- (#SV1DEXC) 

HMC-Detected FLEH 
Common 

(#SVOOEXC) 
Exception r---
Handlers 

t--

- Default 
SLEH 

Exception 
(#CFSLEH) 

Handlers 

Figure 36-1. Exception Routine and Processing 

Exception Management 36-3 



First-Level Exception Handler 

The FLEH (#SVOOEXC) is given control from the HMC 
when an internal microprogramming (IMP) internal 
microprogramming machine exception occurs. The FLEH 
routes the exception to the appropriate common 
exception handler or the second-level exception handler 
as shown in the following list: 

Time-out available call/return element #RMTSACQ 
(CRE) queue/CRE/task dispatching 
element (TDE) monitored 

Invalid description (02) #CFSLEH 

Busy (04) #RMBSYXH 

Allocate clear message (08) #SMCLEXH 

Monitored queue descriptor (OA) #RMAEHS 

Monitored message descriptor (OC) #RMAEHS 

Monitored TDE description (OE) #RMAEHS 

Send / receive count (SRC) overflow #CFSLEH 
(10) 

Address translation (12) #SMPFEXH 

Program event monitoring (14) #RIPEMEX 
/#DOTRSEV 

Execute (16) #CFSLEH 

Specification (18) #CFSLEH 

Addressing (1 A) #CFSLEH 

Effective address overflow (1 C) #CFEAOSE 
/#CFEAOEH 

Data (1 E) #CFSLEH 

Binary overflow (20) #CFSLEH 

Binary divide (22) #CFSLEH 

Decimal overflow (24) #CFSLEH 

Decimal zero divide (26) #CFSLEH 

Operation (30) #CFSLEH 

Stack (32) #CFSTKSE 

Verify (34) #CFSLEH 

Chain conflict (36) #CFSLEH 

End of chain (38) #CFSLEH 

Edit digit count (3A) #CFSLEH 

Length conformance (3C) #CFSLEH 

Edit mask syntax (3E) #CFSLEH 

Invalid segment group address (40) #CFSLEH 

Second chain (46) #CFSLEH 

36-4 

IMP exceptions can occur during the execution of a 
machine interface process or VMC task and can be 
caused by translator-generated inline code or VMC 
routines executing on behalf of the process. Some IMP 
exceptions are anticipated for the process, meaning that 
they can be caused by machine interface users and are 
a part of System/38 instruction support. Other IMP 
exceptions are unanticipated, meaning that they cannot 
be caused by the user or for proper execution of VMC 
routines. In this case, the exception is generally a result 
of an error in VMC code or damage and results in a 
machine check, function check, or a damage exception. 
The function of the common exception handlers are 
described in the following paragraphs. The common 
exception handlers are always active during execution of 
a process and are in support of several anticipated IMP 
exceptions. 



Time Slice End and CRE Exception Handler 

#RMTSACQ is invoked by the FLEH to process the 
following exceptions: 

• Time slice end 

• ACQ descriptor 

• CRE descriptor 

• TOE descriptor 

When #RMTSACQ receives control from the FLEH, the 
address of the exception CRE is in register 2. The 
exception code in the CRE is examined, and #RMCREAC 
is called to replenish the CRE chain if the monitored 
CRE exception bit is on. 

Then, the exception code is examined for the time slice 
end exception; if the bit is on, #RMREPTS is invoked to 
replenish the time slice value. All parameters and work 
storage needed to replenish the time slice value are in 
the main storage resident portion of the process control 
block (PCB) so that no page fault is incurred while 
replenishing the time slice. #RMTSACQ invokes 
#RMINIPI to interrupt the current process for the 
multiprogramming level (MPL) functions. 

Time slice end is an asynchronous exception. It can 
happen during page fault handling; therefore, the 
monitored TOE exception is not unmasked until the 
current page fault is handled. A monitored CRE 
exception could be signaled because a page fault 
exception receives a monitored CRE. Therefore, 
#RMCREAC is main storage resident, does not page 
fault, and a special interface is established to get a main 
storage page frame for replenishing a CRE chain without 
causing a page fault. 

Occurrences of monitored TOE exceptions are cumulated 
in static storage. The exception bits for TOE, CRE, and 
time slice end exceptions are set to zero before control 
is returned to #SVOOEXC. 

#RMTSACQ is main storage resident. It does not page 
fault and it does not use invocation work area (IWA). 

Address Translation (Page Fault) Exception Handler 

Routine #SMPFEXH receives control from the FLEH 
when an address translation exception (page fault) 
occurs. Page faults can occur for several reasons. The 
page fault exception handler processes any address 
presented for translation by an internal microprogram 
instruction or by an operation unit task. 

Effective Address Overflow Exception Handler 

#CFEAOSE is invoked by the FLEH as a result of an 
effective address overflow exception. Routine 
#CFEAOEH is invoked by #CFEAOSE if the effective 
address overflow exception was not a stack overflow 
using register 3. #CFEAOEH determines if the exception 
was caused by crossing a segment boundary within a 
segment group, and if so, completes the execution of 
the failing instruction. The failing program is then 
restarted at the instruction immediately following the 
failing instruction. 

#CFEAOEH passes control directly to the SLEH if the 
internal microprogram instruction causing the exception 
is not one supported by the routine. Internal 
microprogram instructions not supported by this routine 
are as follows: 

• AOO-ALHBL 

• Branch 
BAL 

- BALL 
BC 
BCN 

- BCNX 
- BCT 

BU 

• Compare and Swap Halfword 

• Jump 
JBF 
JBN 
JC 

Exception Management 36-5 



• System Control 
- DQM 
- DQTDE 
- DTDQ 
- EQM 
- EQTDE 
- FHR 
- FHRF 
- GHR 
- GHRF 
- HVVA 
- IPDE 
- RRCRR 
- RECC 
- RECM 
- SENDC 
- SENDM 
- SETCC 
- SETIT 
- SETIOD 
- STCC 
- STIT 
- STIOD 

An effective address overHow exception generated by 
any of the preceding instructions causes the SLEH to 
gain control, CSEHs to process, and the default action 
of machine check to occur. The following list of internal 
microprogram instructions are supported and are 
processed by #CFEAOEH: 

• Add 
- AC 
- AH 
- AHI 
- ALB 
- ALC 
- ALH 
- ALHI 
- AP 

• And 
- NB 
- NBI 
- NC 
- NH 

36-6 

• Branch 
- TMBIBZ 
- TMBIBO 

• Compare 
- CC 
- CH 

- CHI 
- CLB 
- CLBI 
- CLC 
- CLCL 
- CLCR 
- CLH 
- CLHI 
- CP 

• Address Computation 
- CAL 
- CALH 
- CSA 
- CSAC 
- CSACH 

• Convert 
- CVBP 
- CVPB 
- CVPZ 
- CVZP 

• Divide 
- DHS 
- DP 
- DWS 

• Edit 
- EDPD 

• Exclusive OR 
- XB 
- XBI 
- XC 
- XH 

• Execute 
- EX 



· Load . System Control 
- L - CALLI 

L - LA - FNC2 

- LB - RRCRR 
- LH - LPDEA 
- LM - LHTEA 
- LMB - EPDE 
- LMH - RPDE 

- IPDE 

· Move - AHSP01 

- MVBI - AHSPO 
- MVBIP - AFSPO 
- MVC - SVL1 
- MVCL - SVL2 
- MVCR - LSOP 
- MVHI - LVT 

- MVNN - STST 
.- MVNZ - MVCAT 
- MVPS - MVAST 
- MVZN - EXTAG 
- MVZZ - INTAG 

· Multiply · Test 
- MHS - TMBI 
- MP - TMBIBZ 
- MWS - TMBIBO 

· OR · Translate 

L - OB - TR 
- OBI - TRT 

- OC - TRR 
- OH 

· Trim 

· Shift - TRIM 

- SLHCT 

· Zero and Add 

· Store - ZAC 
- ST 
- STB The following implicit SVLs are also supported : 

- STH 
- STM · MPL 

- STMB 
- STMH · DPL 

· Subtract · PPR 
- SC 
- SH 
- SLB 
- SLC 
- SLH 
- SP 

Exception Management 36-7 



This routine locates the failing instruction using register 
BO and the instruction address register OAR) stored in 
the CRE (the instruction length counter is subtracted 
from the IAR). The cause of the effective address 
overflow exception is determined by examining each 
operand base-displacement by locating the operand 
base register in the CRE, adding it to the displacement 
in a work area, and checking to see if a new segment 
was generated as part of the resulting address. Besides 
checking each operand, the data is checked to 
determine if it spans a segment boundary. The effective 
address, computed from each operand and added to the 
explicit or implicit length of the data addressed by the 
operand, is tested to determine if a segment boundary is 
crossed. All possible effective address overflow 
conditions for the instruction are tested and detected 
because several conditions can occur simultaneously. 
When multiple effective address overflow conditions 
occur, all are handled by this routine at one time to 
prevent recursions. If an effective address overflow 
recursion is detected, control is immediately passed to 
the SLEH. 

When all the effective address overflow conditions have 
been detected, the failing instruction is moved to a work 
area and modified to compensate for the conditions. 
Each base-displacement operand is replaced by a work 
register number for the base and 0 for the displacement. 
The work registers are loaded with the effective 
addresses from the previous calculations. Any remaining 
register operands are assigned work registers, which are 
loaded with the contents of the corresponding 
operand-designated register stored in the CRE. If the 
data spans a segment boundary, then the data is moved 
to a work area and the appropriate operand work 
register is updated to point to the work area. 

Once the instruction has been rebuilt, it is executed from 
the work area (execute instruction target). Since the 
effective address overflow condition is detected by the 
HMC prior to many other exception conditions, the 
instruction could fail again with a different type 
exception. An example is an arithmetic exception such 
as binary overflow or decimal zero divide. If any of 
these exceptions occur while executing the rebuilt 
instruction, the CRE and original storage areas are 
updated to reflect the results of the exception. The 
exception data is passed by #CFEAOEH to the 
second-level exception handler so that the normal action 
can be taken as described for the SLEH which includes 
passing control to CSEHs to process the exception. 

36-8 

After the instruction has been executed successfully, the 
post-execution environment must be captured and 
passed back to the user. The condition code set by the 
instruction will be captured and moved to the CRE 
containing the failing instructions' status. If a register 
was modified by the instruction, it is copied to the 
appropriate register save area entry in the CRE. Any 
data areas that were moved to work areas and then 
modified by the instruction will be moved back to their 
original location, taking care not to cause another 
exception. This routine then issues a Supervisor Exit 
instruction, causing the machine interface process to 
begin executing at the next sequential instruction, with 
the failing instruction now appearing to have completed 
successfully. 

Some instructions supported by this routine require 
special considerations because of unique problems they 
present. Some of the known problems of this type are 
as follows. 

Execute Instruction: If the failing instruction appears to 
be the Execute instruction, it is tested to determille if it 
failed with the effective address overflow exception, or 
if the instruction being indirectly executed failed. If the 
Execute instruction itself failed, control is passed directly 
to the SLEH (this is considered an error). Otherwise, the 
address of the instruction being indirectly executed is 
calculated from the decoded Execute instruction 
operand, and that instruction is processed as described 
previously. 

Load/Store Multiple (LM, LMB, LMH, STM, STMB, 

STMH): Since the load/store multiple instructions can 
require the use of more work registers than are 
available, these instructions are simulated by moving the 
data directly to register save areas in the CRE or the 
reverse. These instructions do not change the condition 
code, so it can be left as it was in the CRE. Care is 
taken to compensate for the effective address overflow 
conditions during the moves. The other load and store 
instructions (L, LB, LH, ST, STB, STH) are treated as a 
subset case of these instructions, and processed the 
same way. 



Move/Compare Characters Long (MVCL, CLCL): If the 
failing instruction is MVCL or CLCL, and the effective 
address overflow condition is caused by the address of 
either 8-byte operand control field, then control is 
passed directly to the SLEH (this is considered an error). 
Otherwise, the condition must have been caused by data 
spanning a segment boundary, and the current status of 
the operation is contained in the 8-byte control "fields. 
These instructions are simulated, handling small pieces 
at a time until the segment boundary is crossed. Both 
operands could span segment boundaries in different 
relative locations. Also, the two operands can be of 
different lengths, requiring the pad character to be used. 
The 8-byte control field is updated to reflect the result 
of the operation, and for the CLCL instruction, a 
condition code is determined and returned in the CRE. 

Compute Subscript Address (CSA): In addition to 
base-displacement, there are two other ways this 
instruction can cause an effective address overflow. The 
two conditions that may cause an effective address 
overflow are (1) if the index times the element size 
crosses the 64 K boundary, and (2) if the beginning 
address of the array plus the index times the element 
size crosses the 64 K boundary. In order to prevent 
recursive effective address overflows, the entire 
instruction is simulated rather than being reexecuted. 

Tag Instructions (LVT, STST, MVCAT, MVAST, EXTAG, 
INT AG): These instructions require special handling to 
ensure that the tags are set correctly after reexecution. 
In many cases the operands must be quadwords and 
quadword-aligned. This ensures that they do not cross 
segment boundaries. In these cases the instruction can 
be reexecuted after the EA computation. The 
instructions of this type are LVT, STST, and MVAST. 
The MVCAT is executed in parts much like MVCL and 
CLCL in order to preserve the boundary alignment of the 
operands. The EXTAG and INTAG require that the 
operands be quadword-aligned. Therefore, they can be 
reexecuted using a quadword aligned work area by 
using MVCAT instructions for the data movement. 

Supervisor Link Instruction (Supervisor Link 1, Supervisor 
Link 2): These instructions are reexecuted by simulating 
the hardware routing function. The exception code in 
the CRE is reset and the CRE reused for the supervisor 
link (SVL) CRE. The operand address(es) is computed 
and loaded into the proper register(s). The remaining 
registers are restored from the CRE and control passed 
to the proper SVL routine. 

Implicit SVLs: These instructions are handled as regular 
internal microprogram instructions; however, only 
base/displacement operands are handled. For example, 
the implied parameters of the Edit instruction are not 
handled. 

Busy Exception Handling 

All busy exceptions are routed to #RMBSYXH by the 
FLEH. #RMBSYXH is an entry point in #RMBSYX that 
is nucleus-resident and contains executable instructions 
and a data area. 

When #RMBSYXH receives control, it first performs a 
receive count to an SRC used to serialize data area 
access. Then it checks to determine if there is currently 
a busy waiter. If there is no current waiter, the interval 
timer is set for 250 msec. Then the count of waiters is 
incremented, a send count is performed to the serializing 
SRC, and a receive count is performed to an SRC where 
the TOE waits. When the wait ends, a Supervisor Exit 
instruction is performed to retry the original instruction 
causing the exception. 

When the interval timer performs a send count, the task 
waiting for the timer SRC begins execution. That task 
performs an RECC to the SRC used to serialize access 
to the busy wait data area. Each TOE on the wait SRC 
is dequeued, its IAR is advanced to the Supervisor Exit 
instruction following the RECC, and the TOE is placed 
on the prime TOQ. Finally, an SENOC is performed to 
the SRC used to serialize data access. The interval timer 
task performs another Receive Count instruction to the 
interval timer SRC to wait until the next interval expires. 

Exception Management 36-9 



Access Exception Handler 

Internal microprogram operations that access a queue 
can cause the following: 

• Monitored queue access 

• Monitored message access 

• Monitored TDE access 

#RMAEHS handles these monitored exceptions. 
Additionally, when queue operations are issued against 
the ACO, IMP treats the ACO as a send/receive queue 
(SRO) for those operations and the same three access 
exceptions can be signaled. 

#RMAEHS is invoked by the FLEH when one of the 
three access exceptions is signaled. These exceptions 
are encoded in exception code (byte 1) in the exception 
CRE, and only one exception is presented at a time. 
When control is transferred to #RMAEHS, the address 
of the exception CRE is in register 2. 

#RMAEHS uses registers as work storage to decode the 
instruction that caused the access exception. Based on 
exception code and op code, it invokes #RMTDEAH 
(TDE access exception handler) or #PMSROAC (queue 
access exception handler for queue support), and 
depending on the monitored bit in a message (or CRE), 
#RMAEHS either invokes #RMCREAC to replenish CRE 
or #PMSRMAC to support queue management. 

#RMAEHS clears the exception code and issues a 
Supervisor Exit instruction to return control to the task 
dispatching function. 

36-10 

Second-Level Exception Handler 

The SLEH (#CFSLEH) is invoked by the FLEH to process 
the following exceptions: 

Invalid descriptor (02) 

SRC overflow (10) 

Execute (16) 

Specification (18)' 

Effective address overflow (1 C)' 

Data (1 E) 

Binary overflow (20) 

Binary divide (22) 

Decimal overflow (24) 

Decimal zero divide (26) 

Operation (30) 

Verify (34)' 

Chain conflict (36)' 

End-of-chain (38)' 

Edit digit count (3A) 

Length conformance (3C) 

Edit mask syntax (3E) 

Invalid segment group address (40)' 

Second chain (46) 

Segment identification (SID) does not exist (80)' 

Page not allocated (81)' 

Permanent I/O error (82)' 

Invalid pool state (83) 

Invalid pin request (84) 

Invalid write request (85) 

Bad main store page frame (86)' 

'These exceptions are passed to default exception handlers. 



The SLEH invokes the TLEH to process VMC 
exceptions, invokes the exception generator to process 
translated code exceptions, or invokes a default 

exception handler to process the exception. 

The default exception handlers are described in the 
following paragraphs. 

VMC Default Exception Handler 

Routine #CFMIDEH is an exception handler that receives 
control from the SLEH as a result of a segment or page 
not allocated, effective address overflow, sector read 
error, or a bad main store page frame exception. It 
interprets the exception and generates an appropriate 
machine interface exception. The exceptions generated 
are as follows: 

• Invalid space reference 

• Object destroyed 

• Space addressing violation 

• Object suspended 

• Parameter reference violation 

• Segment header damage (machine check) 

• Machine context damaged 

• System object damaged (full and partial) 

If the conditions cannot ue mapped to one of these 
exceptions, the exception not handled is set and control 

is returned to the SLEH. CSEHs and machine interface 
exception handlers then get control. 

#CFMIDEH receives control if a soft addressing 
exception (80 to 81). sector read error (82). bad main 
store page frame (86). or effective address overflow 
exception (1 C) occurs and is not handled by the FLEH. 
The effective address overflow exception is normally 
handled by another routine (#CFEAOEH) from the FLEH, 
but in cases where a segment group boundary violation 
is detected, the exception is passed through the 
exception process to #CFMIDEH. If the exception is for 
a machine interface process, the failing address base 
(before overflow) is passed to the SLEH in the CSEH 
parameter interface. (If a 1 C exception was not handled 
and was not a segment group overflow, the failing 
virtual address is set to 0; #CFMIDEH does not handle 
the exception.) #CFMIDEH then processes the effective 
address overflow exception exactly as the 81 exception 
because both imply an extent violation for some object. 
The processing of #CFMIDEH is generally as described 
in the following paragraphs. 

Exception 80: This exception is processed as follows: 

• If the internal microprogram exception code is 80, 
indicating that the failing address points to a segment 
that does not exist and is not part of an existing 
segment group, and for which the segment portion of 
the address is in the virtual-equals-virtual range, then 
a parameter list is generated for the object destroyed 
exception. The address of the list is placed in the 
parameter list supplied by the SLEH, and the return 
code is set to 4, indicating to the SLEH that a 
machine interface exception is to be issued. 

• If the internal microprogram exception is 80 and the 
segment portion of the failing address is OOOOFDOO, 
then a parameter list is generated for the space 
addressing violation exception. The return code is set 
to 4 before returning to the SLEH. 

Exception Management 36-11 



• If the IMP exception is 80 and the segment portion 
of the failing address is OOOOFEOO. then a parameter 
list is generated for the parameter reference violation 
exception. The return code is set to 4 before 
returning to the SLEH. 

• If the IMP exception is 80 and the segment portion 
of the failing address is OOOOFFOO. then a parameter 
list is generated for the invalid space reference 
exception. The return code is set to 4 before 
returning to the SLEH. 

Exceptions 81 and 1 C: These exceptions are processed 
as follows: 

• If the 81 or 1 C exception occurred and the object 
header indicates the object is suspended. a parameter 
list is generated for the object suspended exception. 
and the return code is set to 4 before returning to the 
SLEH. 

• If the object suspended condition is not reflected in 
the header of the object. and if the error occurred in 
the space portion of an object, a parameter list is 
generated for the space addressing exception and the 
return code is set to 4 before returning to the SLEH. 

• If none of the preceding conditions are met, based on 
the input address. then the return code is set to a in 
the SLEH parameter list indicating that this routine 
did not handle the exception. When the SLEH 
regains control from this routine. some system 
default action is taken. 

Exception 82: This exception is processed as follows: 

• If the 82 exception occurred and the address is the 
base page of a segment, the segment header damage 
machine check is signaled. 

• If the bad page is not the base page of the segment. 
then the first page of the segment is found and used 
to locate the base segment of the object. 

36-12 

• If the object found is not a machine interface object. 
a sector read error on non machine interface object 
machine check is signaled. 

• If the object is the machine context. machine context 
damage is signaled. 

• If the object is a space object. journal space. or a 
data space. partial damage is set in order to allow the 
user to recover the rest of the data. and the partial 
object damage exception is signaled. 

• Other machine interface objects have damage set 
which makes the object unusable. and the system 
object damaged excel.ll.on is signaled. 

Exception 86: This exception is processed as follows: 

• The disk sector that corresponds to the bad main 
store page frame is found. 

• The disk sector is marked logically bad to prevent use 
of the invalid data (this exception occurs only if the 
page has been changed). 

• The exception is then handled the same as an 82 
exception. 

Verify Exception Handler 

Routine #CFVFYEH is a default exception handler that is 
used for the internal microprogram verify exception. 
#CFVFYEH interprets the verify exception and either 
signals the appropriate machine interface exception or 
resolves the addressability of the late-bound pointer. If 
there is a late-bound pointer. #CFVFYEH replaces 
(resolves) the pointer that caused the exception and 
exits in such a way that processing resumes with a retry 
of the operation that resulted in the exception. 



The verify exception can only be caused by execution of 

the Load and Verify Tags internal microprogram 
instruction. Depending on the reason for the Load and 

Verify Tags instruction resulting in the verify exception, 
one of the following can result: 

• A pointer does not exist exception (2401). 

• An invalid pointer type exception (2402). 

• Replacing of the pointer causing the exception with a 
resolved pointer. In an attempt to do this, other 
exceptions can result: 

Object destroyed (2202): This can occur because 
the segment of the program that contains the 
symbolic name no longer exists or exists but has a 
new extender value. It can also result because the 
PSSA (process static storage area) space, the 
name resolution list (NRL) space, or a context has 
been destroyed. 

- Object not found (2201): This can occur because 
the symbolic name cannot be matched to a name 
in a context or to the name of an external data 
object. 

• An object destroyed exception (2202) caused by a 
mismatch between the segment extender in the 
pointer and the one in the system object header. 

'-" It is also possible for the pointer to change in storage 
between the time of the execution of the Load and 
Verify Tags instruction and the time that this exception 
handler makes a copy of the pointer. Therefore, this 
function allows for the possibility of not being able to 
identify a cause of the verify exception; in this case it 
will exit and allow the excepting code to retry the Load 
and Verify Tags instruction. 

#CFVFYEH receives control from the SLEH as a result of 
a verify exception. #CFVFYEH finds and decodes the 
Load and Verify Tags instruction using the IAR and 
instruction length count OLC) fields of the CRE. Using 
the operand 2 effective address, it makes a copy of the 
pointer. 

The pointer does not exist exception is generated if the 
Extract Tags internal microprogram instruction indicates 
that the referenced storage location does not contain a 
pointer. 

If bit 2 of the pointer is equal to 1 (because the pointer 

is initialized but not yet resolved), the appropriate 

context management routine is invoked. Bytes 8 to 15 
of an initial value pointer point to the symbolic name 
associated with the pointer. The symbolic name is in the 
external object list of the program that declared the 
pointer. The format of the name is: type, subtype, 
name, required authority. This name can be qualified 
with a context name for a system pointer or a program 
name for a data pointer. 

Specification Default Exception Handler 

Routine #CFSPECF processes certain internal 
microprogram specification exceptions, generally those 
that occur as a result of improper alignment on an 
operand. #CFSPECF signals the boundary alignment 
exception (0602) or the range violation exception (0603). 

#CFSPECF is invoked by the SLEH as a result of a 
specification exception occurring in a machine interface 
process. The SLEH passes the address of a structure 
containing the excepting CRE address. 

The IAR, base register 0, and ILC from the CRE are 
used to form the address of the excepting instruction. If 
the exception instruction is the Execute instruction, then 
the address of the target instruction is calculated. 

Exception Management 36-13 



Numeric Exception Handler 

When an IMP binary or decimal overflow exception 
occurs while executing an encapsulated program, the 
numeric exception handler (#EXNUMEH) is invoked to 
determine if a size exception should be signaled 
immediately or if the exception should be temporarily 
ignored until the truncated result is put into the receiving 
field of the failing instruction. #EXNUMEH checks the 
ignore flag in the invocation control block (lCB) and sets 
the occurrence flag if the ignore flag is on. The ignore 
flag indicates that a potential overflow situation can 
exist in the work area, and the execution of the 
encapsulated program is to continue until the result is 
returned to the receiving area specified in the failing 
instruction. 

Chain Conflict, End-ot-Chain, and Second Chain Exception 

Handler 

Routine #RMGFEX is a default exception handler for the 
chain exceptions generated during the execution of the 
following IMP instructions: 

• Grant Hold Record 

• Grant Hold Record First 

• Free Hold Record 

• Free Hold Record First 

• Set Chain Busy 

These instructions are used for seize/release, check lock 
state, and locking functions. The action performed by 
#RMGFEX is determined by the type of exception, as 
described in the following paragraphs. 

Seize Contlict: #RMGFEX marks the conflicting hold 
record as monitored and enters the wait state by 
executing a receive count to an SRC in the TDE. 

36-14 

Lock Contlict: If a wait for the object is not indicated, 
#RMGFEX identifies the object in conflict and sets a 
return code that enables the excepting program to signal 
an exception to the machine interface. 

If a wait is indicated, #RMGFEX identifies the conflicting 
object and marks the conflicting hold record as 
monitored. If the wait is asynchronous, processing 
continues as if the requested lock was obtained. If the 
wait is synchronous, a wait is entered by invoking 
#CFRWTO. 

Check Lock Contlict: #RMGFEX identifies the conflicting 
object and sets a return code. 

Monitored Release: #RMGFEX dispatches all TDEs 
waiting for the object by executing SENDC to the SRC 
of the waiting TDE. 

Monitored Unlock: #RMGFEX locates all processes 
waiting to lock an object and sends a message to the 
lock wait queue for each waiter to restart each waiting 
process. 

Third-Level Exception Handler 

The TLEH (#CFTLEH) is invoked by the SLEH (through 
an SVL interface). the machine check handler, or the 
VMC directly. The TLEH consolidates the handling of 
HMC exceptions, VMC-detected exceptions, and 
hardware machine checks. 

The main functions of the TLEH are as follows: 

• Invokes VMC CSEH routines 

• Performs an action based on the status of the 
exception after the CSEH routines have executed 



CSEH routines intercept HMC exceptions, 
VMC-detected exceptions, and hardware machine 

checks caused in a routine of a VMC component or 
other routines in their invocation control block chain. 

The entire exception handling mechanism has a 
dependency that VMC code executing as part of a 
machine interface process maintains base register 3 to 
be used only as a pointer into the IWA stack. 

Invalid Segment Group Address Exception Handler 

#CFINVSG is called by the SLEH when the invalid 
segment group address exception occurs in a user 
process. The SLEH passes the address of a structure 
containing the excepting CRE address. 

The IAR. BPRO, and ILC from the CRE are used to form 
the address of the excepting instruction. If the 
excepting instruction is the Execute instruction, then the 
address of the target instruction is computed. 

If the instruction causing the exception is the Branch 
Internal instruction and if the register defined by the first 
operand (B1) contains an address within a program 
system object, the branch target invalid exception is 
raised. 

If the instruction causing the exception is the Compute 
Address Long or Compute Address Long Halfword 
instruction and if the register defined by the third 
operand (B3) contains an address within a system object 
or a related system object, the space addressing 
violation exception is raised. 

If the instruction causing the exception is the Compute 
Subscript Address Constrained Halfword or Compute 
Subscript Address Constrained instruction, the space 
addressing violation exception is raised. 

Establishing a CSEH 

In order for the TLEH to route errors to a 
component-specific exception handler, the TLEH must 
be able to locate the address of the CSEH. The location 
of one or more CSEH routines is through a pointer in 
the current TDE to a chain of CSEH request blocks. If 
the pointer is 0, default exception processing is 
established. Otherwise, the pointer contains the address 
of an area normally in the invocation work area, that 
contains the address of a CSEH along with a chain 
pointer to the next CSEH, if one exists. An example of 
a CSEH chain is shown in Figure 36-2. 

To establish a CSEH, VMC routines put a CSEH block at 
the beginning of the chain of active blocks for that task. 
Any number of CSEHs can be chained together, and 
chained in such a way that the last one chained is the 
first one processed. Each module within a process can 
have none or several exception handlers. 

As each CSEH is invoked, it can process or ignore the 
exception. A return code indicates the action to be 
taken. If the exception was not handled, the TLEH then 
invokes the next CSEH if one exists. 

Note: Each module that establishes a CSEH must also 
clear the CSEH before returning control to the caller. If 
a CSEH is not cleared, the pointers in the TDE to the 
CSEH block in the invocation can be pointing to an area 
that contains an invalid address. 

Exception Management 36-15 



TOE with No Active CSEHs 

0000 1 

TOE with First CSEH Active 

CSEHl 
Ptr@ 

Figure 36-2. CSEH Chain 

36-16 

CSEHl @ 

0000 

0000 

CSEHl 

CSEH2 



L 

Damage CSEH 

Routine #CFDAMEH is a common CSEH tl'1at ha~dles 
unexpected exceptions and sets damage or provides 
tolerance. Damage can cause any exception type to be 
encountered but damage is inferred by the lack of any 
other exception handler for the exception. That is, an 
unexpected exception is assumed to indicate damage. 
This routine provides common actions for the following 
functions: 

• Setting damage 

• Tolerating damage (unexpected exceptions) 

• Tolerating expected exceptions 

• Linkage to VMC-specified cleanup routines 

The damage exception handler provides facilities for 
setting damage (damage bit). generating damage 
exceptions and events, collecting logging information 
and causing it to be logged to the VMC log, invoking 
VMC-specified cleanup code, and returning control to 
specified locations (tolerance). For programs in which 
the action to be taken changes during instruction 
processing (including disabling of the exception 
handling). functions are provided to specify the action to 
be taken based on the range in the program in which 
the exception occurred. 

This CSEH is established and receives control in the 
same manner as any CSEH. When #CFDAMEH receives 
control, it searches the location field of the action table 
to locate a match to the range in which the exception 
occurred. The IAR is used to do this. If a match is 
found, the options are checked to see if damage bit 
setting and damage exception generation (set option) are 
specified. The VMC cleanup routine (if any) is then 
invoked when control is returned to #CFDAMEH. 
#CFDAMEH branches to the point specified in the 
resume field. If no resume point is provided and set 
damage flag is not specified, then not-handled is 
assumed and the exception continues through the 
exception chain. 

The CSEHDATA field in the CSEH request block area is 
used to hold information required to perform these 
functions. The ARRAYLBL field specifies the address of 
the action table to be used, the setting of B3 (saved in 
CSEH request block) is used to find the invocation 
control block and IAR for the program that de-Fined the 
CSEH (not necessarily the same program as the one in 
which the exception occurred). and the object field is 
used to find the address of the object in which the 
damage bit is to be set. 

DATA AREAS 

CSEH Request Block 

The CSEH request block is used to establish a CSEH 
routine and provide the linkage to that routine. The 
CSEH request block contains: 

• A pointer to the CSEH routine 

• An area used by the TLEH to build the CSEH chain 

• Recursion information used by the TLEH 

• User data information 

Exception Management 36-17 



STRUCTURE 

The following is a list of the modules in exception 
management and the function that each module 
performs. This list shows also shows how the module is 
invoked. 

#CFBGNEH Block Structured Exception Handler 

Function: Records exception information and returns 
control to the routine that enabled the CSEH. From the 
recorded information, the routine can determine whether 
to tolerate the exception or resignal the exception so the 
routine can perform backout and cleanup functions. 

How Invoked: As a CSEH. 

#CFDAMEH Damage Exception Handler 

Function: Processes exceptions caused by object 
damage, and provides tolerance to exceptions normally 
encountered during some operation. 

How Invoked: As a CSEH. 

#CFDAMST Damage Log and Set Routine 

Function: Sets on damage bit in the encapsulated 
program architecture (EPA) header of a damaged object, 
optionally signals a damage set event, logs the damage, 
and optionally signals an object damaged exception. 

How Invoked: Other VMC components or this 
component. 

#CFDANGL Record and Tolerate Dangling CSEH 

Function: Records information about an improperly 
enabled CSEH, disables all CSEH, and then signals a 
function check. 

How Invoked: Within this component. 

#CFDESEH Destroy a SID 

Function: Destroys an SID if an exception occurs. 

How Invoked: As a CSEH. 

36-18 

#CFEAOEH Effective Address Overflow Exception 
Handler 

Function: Processes effective address overflow 
exceptions by determining if the exception was caused 
by crossing a segment boundary within a segment 
group, and if so, completes the execution of the failing 
instruction. 

How Invoked: Within this component. 

#CFEAOSE Attempt Recovery from tffective 
Address Overflow Exception 

Function: Processes effective address overflow 
exception on a stack instruction. 

How Invoked: Within this component. 

#CFEXGEN Exception Generator 

Function: Locates and invokes the exception handler (if 
one exists) for the signaled exception or performs 
default action. 

How Invoked: Within this component. 

#CFMIDEH Default Exception Handler 

Function: Processes addressing and effective address 
overflow exceptions by mapping the HMC exception to 
another exception or sets an exception-not-handled 
condition. 

How Invoked: Within this component. 

#CFMSMEH CSEH for 80, 81, 82, and 86 

Microprogramming Exceptions 

Function: Traps 80, 81, 82, and 86 exceptions and 
returns the next microprogramming instruction. 

How Invoked: As a CSEH. 



#CFSLEH SLEH 

Function: Determines the type of internal microprogram 

exception that occurred and passes control to the 
appropriate exception handler. 

How Invoked: Within this component or other VMC 
components. 

#CFSPECF Specification Default Exception Handler 

Function: Processes exceptions for internal 
microprogram specification exceptions that occur as a 
result of improper operand alignment. 

How Invoked: Within this component. 

#CFTLEH TLEH 

Function: Locates and invokes CSEH routines. and 
invokes the exception generator for machine checks that 
are not handled. 

How Invoked: Within this component. 

#CFTOLEH Tolerate a Specified Exception 

Function: Resumes execution at a specified location if 
an exception of the type specified is detected. 

How Invoked: As a CSEH. 

#CFVFYEH Verify Exception Handler 

Function: Interprets a verify exception and either signals 
the appropriate exception or resolves the addressability 
of a late-bound pointer. 

How Invoked: Within this component. 

#EXMDEXD Modify Exception Description 

Function: Modifies the attributes of an exception 
description. 

How Invoked: Modify Exception Description instruction. 

#EXMTEXD Materialize Exception Description 

Function: Materializes the attributes of an exception 

description. 

How Invoked: Materialize Exception Description 
instruction. 

#EXNUMEH Numeric Exception Handling Routine 

Function: Processes execution-time numeric exceptions. 

How Invoked: Within this component. 

#EXRTEXD Retrieve Exception Data 

Function: Retrieves the exception-related data and puts 
it into a specified area. 

How Invoked: Retrieve Exception Data instruction. 

#EXRTEXP Return From Exception 

Function: Causes control to be passed from an 
exception handler to a specified instruction in an 
invocation within the process. 

How Invoked: Return From Exception instruction. 

#EXSGEXP Signal Exception 

Function: Signals an exception to the process and 
(based on the results of the signal) optionally performs a 
branch to an instruction specified as one of the branch 
targets. or sets indicator targets to the appropriate 
value. 

How Invoked: Signal Event instruction. 

#EXSNEXD Sense Exception Description 

Function: Searches a specified invocation of the process 
for an exception description that matches the specified 
exception and compare value. then returns the user data 
and exception handling action back to the process. 

How Invoked: Sense Exception Description instruction. 

Exception Management 36-19 



#EXTSTEX Test Exception 

Function: Determines if a specified exception description 
has been signaled and alters the control flow if the 
branch options are satisfied or sets indicators based on 
the result of the test. 

How Invoked: Test Exception instruction. 

#SVOOEXC FLEH 

Function: Determines the type of exception and routes 
control to the appropriate exception handler. 

How Invoked: Entered from a direct microcode branch. 

#SV1DEXC TLEH Router 

Function: Routes control to the third-level exception 
handler. 

How Invoked: Entered from a direct microcode branch. 

36-20 



L 

Process Management 

INTRODUCTION 

Process management provides the functions required to 
accomplish a process, the basic unit of work in the 
system. 

Process Management 37-1 



The areas that represent a process are shown in Figure 
37 -1. The task dispatching element (TOE) contains 
pointers to the process invocation work area and the 
process control block (PCB). The PCB contains pointers 
to the areas used by program execution management: 

• The process automatic storage area 

• The process static storage area 

• The name resolution list (NRL) 

37-2 

The PCB is actually contained in two separate areas; 
one part is in the beginning of the process invocation 
work area, the remainder is appended to the TOE. The 
portion in the TOE contains information that must be 
resident in main storage to avoid a page fault when the 
associated process is not within the current 
multiprogramming level. 

The fields required to initiate a process are specified in 
the process definition template (PDT). If the PDT 
specifies an access group, a pointer to the access group 
is maintained in the PCB. The access group can contain 
the process invocation work area, the process automatic 
storage area, the process static storage area, the NRL, 
and any other object used by the process. 



TDE 

CRE 

Process Access Group 

Process I nvocation Work Area 

PCB 

ICB Stack 

• 
• 
• 

-----------

Figure 37-1. Process Management 

CRE 

--, 
PASA 

PSSA 

NRL 

____________ .....J 

Process Management 37-3 



Process management supports the following System/38 
instructions: 

• Create Process Control Space 

• Destroy Process Control Space 

• Initiate Process 

• Materialize Process Attributes 

• Modify Process Attributes 

• Suspend Process 

• Resume Process 

• Terminate Instruction 

• Terminate Process 

Process management also supports functions used to 
create and destroy VMC tasks and microtasks. 

Create Process Control Space 

The Create Process Control Space instruction is used to 
create the work area process control space (PCS) 
required to support program execution. #PMCPCS 
performs the function. 

A PCS is associated with a process as long as the 
process exists. This association begins just prior to 
entering the first machine instruction program (initiation 
or problem phase) and ends just after a process 
terminated event is sent from the service task 
(#RMSVTSK). A bit in the resident PCB of the PCS is 
set on during process initiation and is set off by 
terminate process. This bit indicates whether that PCS 
is associated with an active process. 

Destroy Process Control Space 

The Destroy Process Control Space instruction causes 
the specified PCS and addressability to it to be removed 
from a context (if addressed by a context). (The PCS to 
be destroyed must not currently be associated with a 
process.) Module #PMDPCS performs the destroy 
function. 

37-4 

Initiate Process 

Process initiation is performed in two parts and executes 
under two TDEs. 

Part 1 is performed by #PMINPR1 that is invoked by the 
supervisor link (SVL) router under the initiating process 
TDE. The basic functions performed in part 1 are as 
follows: 

• Initial validation of the PDT is performed. 

• Authority to issue privileged instruction is checked 
(#CFAUPRV). 

• The PCB and the first invocation control block in the 
PIWA (second segment of the PCS) are initialized. If 
the new process is a dependent process. it is 
inserted into the subordinate process chain. 

• A TDE is initialized (this includes pinning the first PCS 
segment containing the TDE and the resident PCB. 
removing from the machine storage pool chain. and 
chaining the TDE to the system TDE chain). 

• The user profile is validated and seized (with code 
check) by #CFOCHKR. locked implicitly by #RMHLK. 
and transferred to the to-be-initialized process by 
#RMHHXLK (a special transfer lock code that does 
not run under the receiving process). 

• The new TDE is enqueued to the task dispatching 
queue (TDO). 

• The new TDO is dispatched. 

Part 2 of the process initialization is performed by 
#PMINPR2. This module running under the new TDE. 
completes validation of the PDT and invokes #RMINIPR 
to establish the process as part of the current 
multiprogramming level (MPL) and handle resource 
management process attributes (the process can enter 
the ineligible wait state at this point). #PMINPR2 then 
signals a process initiated event (#CFSGEVT) and 
invokes the initiation and problem phase programs. 
Finally. #PMINPR2 initiates process termination after 
normal completion of the specified programs by 
transferring control to #PMDPROC. 



L 

Materialize Process Attributes 

The attributes of a process are materialized by module 
#PMMATER. This module can materialize either the 
attributes of both the current process or an external 
process. Machine-wide storage (MWS) is obtained, and 
PCB of the target process is copied to the MWS. This 
provides a copy of the attributes of a process at a 
specific point in time. The data is then moved from 
MWS to the receiving area. 

Modify Process Attributes 

The Modify Process Attributes instruction is performed 
in two parts. The modify function operates under two 
TDEs if an external process is being modified. 

Part 1 is performed by #PMMODF1, which is invoked by 
the SVL router. This module performs validation and 
builds a message containing the modify option and the 
modify data. If #PMMODF1 is modifying itself, then it 
enqueues the message to the process interrupt data 
queue in the PCB. If an external process is being 
modified, #PMMODF1 enqueues the message to the 
interrupt process function (#RMINIPI) and then invokes 
that function to interrupt the target process. #RMINIPI 
invokes #PMMODF2 to execute under the TDE of the 
interrupted process. The modification data is passed to 
the target process through the process interrupt queue. 

Part 2 is performed by #PMMODF2. #PMMODF2 
dequeues the message from the process interrupt data 
queue and modifies the affected process attributes 
based on the data in the message. Because 
modification is asynchronous to the originating 
instruction, #PMMODF2 may not find any messages 
waiting or may find multiple messages waiting. If the 
attribute to be modified is related to resource 
management (for example time-slice interval or priority), 
the preceding sequence is followed, except that 
#RMMODAT is invoked rather than #PMMODF2. The 
module invoked is determined by the interrupt function 
code set by the interrupting process. 

If the attribute to be modified is a user profile, the input 
user profile is validated and seized (with lock check) by 
#CFOCHKR. Next, an implicit lock on the user profile is 
obtained by invoking #RMHLK. Then if the target is not 
the current process, an implicit lock transfer is 
performed by #RMH1XLK. The target process invokes 
#PMMODF2 to complete the lock transfer and then 
invokes #RMHUNLK to release the profile implicit lock 
of the previous user. 

Suspend Process 

A process is suspended as a result of a Suspend 
Process instruction. This instruction causes module 
#PMSUSPR to be invoked. #PMSUSPR validates the 
input parameters. If subordinate processes are to be 
suspended, the #PMSUSPR invokes #PMRSUBS and 
the following steps are executed until all subordinate 
processes have been suspended: 

1. 

2. 

3. 

#PMRSUBS locates (using the subordinate process 
chain) all subordinate processes associated with 
the target process and invokes #PMSPCIR for 
each subordinate process. 

#PMSPCIR updates the external existence state in 
the resident PCB and invokes the process interrupt 
function (#RMINIPI) to interrupt the subordinate 
process and invoke #PMSPTAR under the process 
that is to be suspended. 

#PMSPTAR updates the existence state in the 
PCB, signals a process suspended event, optionally 
sets access control bits (in the resident PCB), and 
invokes the receive with wait-time-out functions 
(#CFRWTO) to put the process in a wait state. 

If the process being suspended is not the current 
process, #PMSUSPR invokes #PMSPCIR to invoke the 
interrupt function and invoke #PMSPTAR as in steps 2 
and 3 for subordinate processes. If the current process 
suspends itself, #PMSUSPR invokes #PMSPTAR to 
suspend the target process as in step 3 for subordinate 
processes. 

Process Management 37-5 



Terminate Instruction 

Terminate instruction consists of the module 
#PMTRMIN. Other components, which have long 
running MI instructions, can check the terminate 
instruction interrupt bit. If this bit is on, the operation 
can be canceled. 

#PMTRMIN is invoked by the supervisor link (SVL) 
router. It validates the input operands, obtains 
subordinate process chain lock, and performs an internal 
hold against the target process. It then checks for 
process control special authority if the current process is 
not the parent of the target process. The ENABPINT 
macro is used to interrupt the target process and to set 
the interruption bit in the resident process control block. 
Clean-up is performed by releasing the lock, and freeing 
the target process (/NTFREE). If the target process is 
the current process, #PMTRMIN returns because there 
is no long-running function to terminate (#PRTRMIN is 
running). #PMTCSEH is used as the exception handler 
for the module. 

37-6 

Resume Process 

The execution of a process is resumed as a result of a 
Resume Process instruction. This instruction causes 
module #PMRSMPR to be invoked. #PMRSMPR 
validates the input parameters. If subordinate processes 
are to be resumed, #PMRSMPR invokes #PMRSUBS 
and the following steps are executed until all 
subordinate processes have been resumed: 

1. 

2. 

3. 

#PMRSUBS locates (using the subordinate process 
list) aU subordinate processes associated with the 
target process and invokes #PMRPCIR for each 
subordinate process. 

#PMSPCIR invokes the process interrupt function 
(#RMINIPI) to interrupt the subordinate process 
and invokes #PMRPTAR under the process that is 
to be resumed. 

#PMRPTAR sends a message to the suspend 
process queue and returns through the interrupt 
function to the receive with wait-time-out function 
(#CFRWTO). The receive function executes a 
successful Receive Message instruction and 
returns control to #PMSPTAR. 

4. If the subordinate process had suspended itself, 
#PMSPTAR returns control to #PMSUSPR. If the 
subordinate process was suspended by another 
process, #PMSPT AR returns control to the 
interrupt function and control is returned to the 
program at the point of interruption. 

The target process is then resumed in the same manner 
as subordinate process.es. 

J 



Terminate Process 

Processes are terminated when one of the following 
occurs: 

• Normal return: A process reaches the end of the 
problem phase. 

• Exception termination: An exception occurs that is 
not handled by the process. 

• Terminate instruction: A Terminate Process 
instruction is executed. 

• Superordinate process termination: A process 
terminates as a result of a superordinate process 
terminating. 

Figure 37-2 shows an overview of process termination. 

Process Management 37-7 



Machine Instruction Process 

Normal Return 
r---i-----l 
I Problem I Termination I 
I Phase I Phase I 

Initiate 
Process 
(#PMINPR2) 

Exception 
Termination 

v 

Terminate 
Exception 
Processor 
(#PMEXGEN) 

S/38 Terminate 
Process Instruction 

Terminate 
Process 
Instruction 
Processor 
(#PMDTYPR) 

Terminate 
Under Target 
TDE 
(#PMTPTAR) 

Locate 
Subordinate 
Processes 
(#PMRSUBS) 

Verify 

Subordinate 
(#PMTPCIR) 

I~ -
~--------~~-----m----~----~ Subordinate 

Process Termination 
r------, 
I 

Process I 
Call Interface /'--~ Termination and t----........ I,~ 

Locate 
Subordinate 

Figure 37-2. Process Termination Overview 

37-8 

Destruction 'I 
(#PMDPROC) 

Processes 
(#PMRSUBS) 

Final Process 
Termination 
(#PMDPROF) 

I 
I 
I 
I 
I 
I 

: 
I 

v 
I nterrupt and 
Terminate 
Subordinate 
Process 
(#PMTPTSO) 

L ______ ....J 

Resource Management 
Service Task Queue 



Normal Return 

Normal return from the problem phase of a program (or 
return from the initiation phase of a program if no 
problem phase is specified) causes #PMINPR2 to be 
invoked. #PMINPR2 sets the termination status in the 
PCB and invokes #PMDPROC as the highest invocation 
level. #PMDPROC then invokes the termination phase of 
the process and terminates the process. 

Exception Termination 

Exception termination occurs when an exception is 
detected and neither an exception handler nor the 
process default exception handler is specified to process 
the exception. In this case, #PMEXGEN is invoked by 
the exception generator. #PMEXGEN sets the terminate 
status in the PCB and invokes #PMDPROC to terminate 
the process in the same sequence as for a normal 
return. The process is destroyed if an unhandled 
exception occurs in the termination phase. 

Terminate Instruction 

The instruction to terminate a process can be issued 
either from an external process or from within the 
process to be terminated. The terminate process 
instruction processor (#PMDTYPR) is invoked by the 
SVL router as a result of a Terminate Process 
instruction. This module first validates the instruction 
and then begins terminating the process. If the process 
contains subordinate processes, #PMDTYPR invokes 
#PMRSUBS and #PMTPCIR to locate and terminate all 
associated subprocesses. This is accomplished through 
the process interrupt function causing #PMTPTAR to be 
invoked under the TDE of the subordinate processes. 

Module #PMDTYPR then invokes #PMTPTAR. This 
module sets the termination status in the PCB and 
invokes #PMDPROC to complete termination of the 
process. #PMDPROC allows the subordinate processes 
to enter their termination phases. If a subordinate 
process does not complete the termination phases 
before the target process, the subordinate process is 
interrupted and terminated. 

Subordinate Process Termination 

When a target process is to be terminated, all processes 
subordinate to the target process are also terminated. If 
the target process terminates because of normal return 
or exception termination, subordinate processes are 
terminated by #PMDPROC and #PMTPTSO. 

Create Task 

The create task function #CFCTASK creates a VMC task 
(TDE and IWA [invocation work area]) or a microtask 
(TDE only). The input parameter list specifies the first 
module to be invoked under the new task, the amount 
of automatic storage required, the priority of the new 
process, and the number and content of the initial 
register values. 

Destroy Task 

The destroy task function (#CFDTASK) provides the 
functions that allow a module to destroy its own task or 
an external microtask. 

Note: The microtask is assumed to be waiting on a 
queue from which the task can be removed without 
damaging the system. 

Process Management 37-9 



DATA AREAS 

Process Control Space 

The PCS contains the work areas required to execute a 
program within a process. Figure 37-3 shows an 
overview of the contents of the PCS. 

Resident Portion 

Segment Group Header 

EPA Header 

Process Control Block 

(resident) 

Task Dispatching Element 

Pageable Portion 

Segment Group Header 

(partial) 

Process Control Block 

Default Exception Description 

Event Monitor(s) 

Invocation Control Block 

Invocation Control Block 

Figure 37-3. Process Control Space 

37-10 

Process Definition Template 

The PDT (ZZPDT) defines the attributes of a process to 
the initiate process function. Figure 37-4 shows an 
overview of the contents of the PDT. 

Process Control Attributes 

Resource Attributes 

Modification Attributes 

Process Pointers 

• User Profile 

• Process Communication Object 

• NRL 

• Initiation Phase Program 

• Termination Phase Program 

• Problem Phase Program 

• Process Default Exception Handler 

• PASA 

• PSSA 

• Process Access Group 

Figure 37-4. Process Definition Template 



STRUCTURE 

The following is a list of the modules in process 
management'and the function that each module 
performs. The list also shows how the module is 
invoked. 

#PMCPCS Create Process Control Space 

Function: Creates a process control space. 

How Invoked: Create Process Control Space instruction. 

#PMCPCSC Create PCS Component-Specific 
Exception Handler (CSEH) 

Function: Performs the required recovery for exceptions 
that occurred during a process control space creation. 

How Invoked: Other VMC components. 

#PMDPCS Destroy Process Control Space 

Function: Destroys a PCS that is not currently 
associated with a process. 

How Invoked: Destroy Process Control Space instruction. 

#PMDPROC Process Termination Phase and Process 
Destroy 

Function: Puts a process through the termination phase 
and then destroys the process. If the process has 
subordinate process, the subordinates are interrupted 
and destroyed. 

How Invoked: By return from problem phase. 

#PMDPROF Process Terminate Final Code 

Function: Dequeues the current TDE from the TDO and 
sen'ds the terminate message to the service task. 

How Invoked: Other VMC components. 

#PMDTYPR Terminate Process Instruction 

Function: Terminates a process or subordinate 
processes or both. 

How Invoked: Terminate Process instruction. 

#PMEXGEN Terminate Process Call from Exception 
Generator 

Function: This module is invoked by the exception 
generator to initiate termination of the process. This 
invocation occurs only when a process has neither user 
exception handler nor a process default exception 
handler. 

How Invoked: Other VMC components. 

#PMFCSEH Modify Process Attributes CSEH 

Function: Provides the required recovery from an 
exception that occurred during a modify process 
attributes instruction. 

How Invoked: Other VMC components. 

#PMFINAL Final Process Termination 

Function: Final termination code for a process or a VMC 
task. 

How Invoked: Other VMC components. 

#PMICSE1 Initiate Process Part 1 CSEH 

Function: Provides recovery for initiate process part 1. 

How Invoked: Other VMC components. 

Process Management 37 -11 



#PMICSE2 Initiate Process Part 2 CSEH 

Function: Provides recovery for initiate process part 2. 

How Invoked: Other VMC components. 

#PMINIT Process Management IPL Initialization 

Function: Provides an initial program load (lPL) 
initialization for all process management functions. 

How Invoked: Other VMC components. 

#PMINPR1 Initiate Process Part 1 

Function: Establishes a new process using the process 
control space specified and the attributes in the POT. 

How Invoked: Initiate Process instruction. 

#PMINPR2 Initiate Process Part 2 

Function: This module is invoked as the first invocation 
under a new TOE. This module completes initiation of 
the process and invokes the user initiation phase and/ or 
the problem phase programs. 

How Invoked: Task switch under TOE of the new 
process. 

#PMIPL1 Build Process Environment for IPL 
Sequence Part 1 

Function: Builds the machine process. 

How Invoked: Other VMC components. 

#PMMATER Materialize Process Attributes 

Function: Materializes one or all specific attribute(s) of a 
process. 

How Invoked: Materialize Process Attributes instruction. 

37-12 

#PMMOOF1 Modify Process Attributes 

Function: Modifies a specific attribute of a process. 

How Invoked: Modify Process Attributes instruction. 

#PMMOOF2 Modify Process Attributes Part 2 

Function: This module executes under the TOE of the 
process being modified and makes the actual update of 
the PCB. 

How Invoked: Other VMC components. 

#PMRPCIR Resume Subordinate Process Initiation 

Function: Initiates the resumption of subordinate 
processes of a process. 

How Invoked: Other VMC components. 

#PMRPTAR Resume Process Logic Under Target 
TOE 

Function: This module executes under the TOE of the 
process being resumed and sends a message to satisfy 
the suspend receive message. 

How Invoked: Other VMC components. 

#PMRSMPR Resume Process 

Function: Resumes a process and / or all of its 
subroutines. 

How Invoked: Resume Process instruction. 



#PMRSUBS Reference All Subordinate Processes in 
Chain 

Function: References all subordinates of a given process 
and invokes a specified function against them. 

How Invoked: Other VMC components. 

#PMSPCIR Suspend Subordinate Process Initiation 

Function: Initiates the interrupt function against all 
subordinate processes of a process. 

How Invoked: Within this component. 

#PMSPTAR Suspend Process Logic Under Target 
TOE 

Function: This module executes under the TOE of the 
process being suspended and performs the suspend 
operation. 

How Invoked: Other VMC components. 

#PMSUSPR Suspend Process 

Function: Suspends a user process and / or all of its 
subordinates. 

How Invoked: Suspend Process instruction. 

#PMTCSEH Terminate Process CSEH 

Function: Performs the required recovery for exceptions 
that occur during process termination. 

How Invoked: Other VMC components. 

#PMTPCIR Terminate Process Verify Subordinate 

Function: Verifies that this subordinate is not the 
process issuing the terminate instruction. This module is 
passed to #PMRSUBS and is called for every 
subordinate under the root process being terminated. 
This module executes under the process issuing the 
terminate instruction. 

How Invoked: Within this component. 

#PMTPCUP Remove Subordinate Process from 
Process Chain 

Function: Locates a subordinate process and removes 
the process from the chain. 

How Invoked: Within this component. 

#PMTPTAR Terminate Process Logic Under Target 
TOE 

Function: This module executes under the TOE of the 
process being terminated and initiates the termination of 
that process. 

How Invoked: Other VMC components. 

Process Management 37 -13 



#PMTPTSO Interrupt and Terminate Subordinate 
Process 

Function: This module is invoked against all subordinate 
processes that complete termination and are being 
removed from the system. 

How Invoked: Within this component. 

#PMTRMIN Validate Input Operands 

Function: Validates input operands, obtains subordinate 
process chain lock, and performs an internal hold 
against the target process. 

How Invoked: SVL router. 

#PMZCSEH Materialize Process CSEH 

Function: Provides the required recovery from 
exceptions that occur during a materialize process 
attributes operation. 

How Invoked: Other VMC components. 

37-14 



Resource Management 

I NTROOUCTION 

Resource management consists of VMC functions that 
provide certain supervisory functions and support those 
System/38 instructions that 'control machine resources. 
The functions provided by resource management are as 
follows: 

• Machine support: Routines that support the machine 
queuing and dispatching functions. 

• Object serialization: Routines that support the 
System/38 locking instructions and the seize/release 
function. 

• Timer services: Routines that provide a time-out 
function and support the time-of-day clock. 

• Process interruption: A routine that provides a means 
to interrupt another process (at a System/38 
instruction boundary, including entry into a wait 
state). This allows another function such as event 
scheduling, process termination, and lock transferring 
to be performed. 

• Multiprogramming level (MPL) support: Routines that 
allow the user above the machine interface to control 
the levels of multiprogramming in the machine. The 
machine support, process interruption, and MPL 
routines are closely related. 

• Resource management service task: Routines that 
provide a variety of functions required for the 
execution of asynchronous tasks. 

• Resource management attribute control: Routines 
that support the System/38 instructions that 
materialize resource management data and modify 
resource management controls. 

• Access group control: Routines that support the 
. System/38 instructions that create, materialize, and 
destroy access groups. 

Machine Support Functions 

The machine support functions provide the following 
support: 

• Handle access exceptions 

• Maintain the availability of call/return elements 
(CREs) and task dispatching elements (TOEs) 

Access Exceptions 

There are three types of access exceptions associated 
with queuing operation. These exceptions are as 
follows: 

• TOE 

• Send/receive message (SRM) 

• Send/receive queue (SRO) 

VMC uses these exceptions to detect when a process 
enters a wait state and to maintain the availability of 
CREs on the available CRE queue (ACO). Normally these 
exceptions are presented in byte 1 of the exception 
code in the CRE. #SVOOEXC (the first-level exception 
handler) invokes #RMAEHS (resource management 
exception router). #RMAEHS then invokes the 
appropriate routine to process the exception. These 
routines and the exceptions they process are as follows: 

• #RMTOEAH for TOE access exceptions 

Note: TOE access exceptions are used only to 
indicate that a process has entered a wait state. 
These exceptions occur when a Receive Message 
instruction is executed in module #CFRWTO. 

• #PMSRMAC (in queue management) for SRM access 
exceptions when the message is not aCRE 

• #RMCREAC for SRM access exceptions when the 
message is aCRE 

• #PMSROAC (in queue management) for queue access 
exceptions 

Resource Management 38-1 



CRE Availability 

Horizontal microcode (HMC) uses CREs to save registers 
during supervisor linkage (SVL) operations. If the TDE 
that issued an SVL does not have any free CREs 
available, HMC performs an implicit receive message to 
the ACO. The operations in the following paragraphs 
are performed to ensure that a CRE is always available 
for use. 

The fourth from the last CRE on the ACO is marked as 
monitored. (Initially, a supply of CREs on the ACO is 
assembled in nucleus module #RTIASKS.) When a TDE 
obtains a CRE from the ACO by an SVL (explicit or 
implicit, including those used to present exceptions) and 
the CRE obtained is monitored, a CRE access exception 
is indicated in byte 0 of the CRE exception code, and 
the exception is signaled. #SVOOEXC invokes 
#RMTSACO to determine that a monitored CRE 
exception has occurred and invokes #RMCREAC. This 
routine obtains a frame of main storage by invoking 
#SMALCPF. (This action requires no additional CREs 
because the modules involved do not cause any 
exceptions.) #RMCREAC then formats the frame 
obtained into four CREs and chains them to the ACO, 
and sets the monitor indicator in the fourth from last 
CRE. (The monitor indicator in the CRE that caused the 
exception was turned off.) #RMCREAC then returns to 
#RMTSACO which in turn invokes #SVOOEXC. This 
linkage sequence allows additional exception to be 
presented in byte 0 of a CRE causing an exception. 
#SVOOEXC continues to invoke #RMTSACO until the 
additional exceptions are processed. #SVOOEXC then 
either performs a supervisor exit (SVX) or invokes the 
exception handler indicated by byte 1 of the exception 
code. 

38-2 

Logic in #RMCREAC attempts to ensure the success of 
the algorithm by marking the executing TDE as not 
timed (to prevent a timer exception that will require an 
additional CRE) and by checking that the executing task 
does not hold the MSM lock (in which case the TDE will 
deadlock after the call to #SMALCPF). A deadlock 
condition is possible only if a task holding the main 
storage management (MSM) lock incurred a timer 
exception and encountered the monitored CRE when 
presenting the exception. Storage management does 
not prevent this condition. When #RMCREAC is entered 
by a task holding the MSM lock, #SMALCPF is not 
called. Instead, a warning bit is set in the machine 
communications area, and a message is sent to the 
service task requesting that more CREs be created. 

If a get CRE or receive message operation is performed 
and storage management obtains a monitored CRE, the 
exception is presented as an SRM access exception (in 
this case the ACO is marked as busy). #SVOOEXC 
invokes #RMAEHS. Since the SRM involved is aCRE, 
#RMAEHS invokes #RMCREAC to process the exception 
as in the preceding description. In this case, 
#RMCREAC clears busy on the ACO and returns control 
to #RMAEHS that in turn performs an SVX, causing the 
interrupted receive or dequeue message operation to be 
resumed and completed. Since the ACO was marked as 
busy, other tasks executing a receive message to the 
ACO can encounter busy exceptions. In this case, CREs 
can still be obtained by SVL instructions because these 
instructions do not observe a busy status on the ACO. 

When the ACO contains 10 or more CREs and a TDE is 
being freed, #RMCMBTC is invoked to attempt to free 
some of the CREs. #RMCMBTC attempts to find four 
CREs on the same page and return them to storage 
management by invoking #SMDALCP. 

TDE Time-Out 

The task interval timer is used to perform time slicing. 
When the TDE time-out occurs, an exception is 
generated. #SVOOEXC invokes #RMTSACO which 
invokes #RMRPLTS to restore the time slice value. 



· TDE Availability 

~he available TOE queue is used to hold the TOEs that 
are available to VMC tasks. If additional TOEs are 
required, the queue is replenished from real storage. If 
the TOE queue contains 10 or more TOEs, the unused 
TOEs are purged from the queue and returned to real 
storage. 

If a program requires a TOE, the program attempts to 
obtain a TOE from the available queue. If the queue 
(RMFRETOE in module #RTTASKS) contains at least 
one TOE, the first TOE is dequeued and given to the 
caller. If the available TOE queue is empty, the caller 
obtains a page from real storage by calling the allocate 
page frame storage management module (#SMALCPF). 
The page obtained is split; half is given to the caller in 
the form of a TOE, and the other half is placed on the 
available TOE queue. The elements on the available TOE 
queue are in the sequence according to the address of 
each element. 

When a TOE is no longer required, it is returned by 
enqueueing the TOE (by its address) onto the available 
TOE queue. The combined TOE/CRE resource 
management module (#RMCMBTC) is invoked to purge 
extra CREs from the available CRE queue and any extra 
TOEs from the available TOE queue. 

The TOE for a process is part of the process control 
space (PCS) that is created by a Create Process Control 
Space instruction. The process TOE is not managed as 
in the preceding description, although all in-use TOEs 
for VMC tasks or processes are chained in a single list 
with forward pointers. When a process TOE is no 
longer needed, #RMCMBTC is invoked to purge any 
extra CREs from the available CRE queue. 

Object Serialization 

The object serialization routines support the System/38 
locking instructions, implicit locking, object lock 
enforcement, and the seize/release (#CFSZREL) function 
used within VMC. A lock or seize is a record stored in a 
special table called the hold record area. The areas used 
are shown in Figure 38-1. 

Hold Hash Table 

MCA 

L 

MCA1RHHT 

MCA3VHAR Hold Record Table 

Figure 38-1. Areas Used in Locking or Seizing 

An implicit lock is a lock on an object that has been 
obtained implicitly by a VMC routine supporting an 
instruction other than a lock instruction. Such locks are 
normally obtained to ensure that an object is not 
destroyed. Implicit locks are supported by horizontal 
interfaces to the routines supporting locking instructions. 
Lock enforcement refers to the checking done by any 
VMC routine supporting a System/38 instruction on an 
object to verify that a lock (implicit or explicit) on the 
object does not prohibit the instruction. For example, a 
lock on an object held by process A can prevent process 
B from operating directly on the object. Lock 
enforcement is accomplished by checking that no hold 
conflicting with the desired operation exists in the hold 
record table. Optionally, lock state checking can be 
performed on behalf of another task or process. Finally, 
seize/release is an internal VMC function used to 
serialize access to an object or a VMC data area during 
the execution of a single machine instruction. Seize 
records are stored in the same hold record area as lock 
records. 

-------------- 38-3 



The following paragraphs provide a simplified 
description of these functions. Process A issues a lock 
against object 0. A record is built describing the lock in 
the hold table. Process B issues a lock on 0. VMC 
searches the hold table, finds the lock record on 0, and, 
if the lock held by A conflicts with the lock requested by 
B, does one of the following: 

• Places B in wait. 

• Issues an exception to B. 

• Signals an event to B when the lock is obtained while 
B continues execution. 

In the first case, when A issues an unlock on 0, VMC 
restarts B. In the second case, an exception is signaled 
to B when B attempts to lock 0. In the last case, when 
A issues an unlock on 0, VMC signals an object-locked 
event to B after the lock is obtained for B. Next 
suppose B, instead of issuing a lock on 0, has issued a 
destroy. VMC checks whether conflicting locks were 
held on ° (in the case of a destroy, any lock by another 
process conflicts) and issues an invalid lock state 
exception to B. This also happens if A had, instead of 
locking 0, issued some other System/38 instruction that 
caused an implicit lock to be obtained on 0. 

If process A has to perform a sequence of System /38 
instructions that require ° to remain unchanged and 
protected from destruction, A must issue a lock on ° to 
ensure that the instruction sequence can be executed. If 
A does not issue a lock and executes a System/38 
instruction (for example, a materialize instruction) against 
0, the VMC routine supporting the materialize function 
issues a seize against ° causing a record to be built in 
the hold table. Again process B issues a destroy. The 
lock enforcement check is successful since there are not 
locks on 0. However, B is unable to seize ° and must 
wait until the materialize operation of A completes and 
the object is released. 

All serialization-related functions use a group of internal 
microprogramming instructions called hold/free 
instructions. For the purposes of this discussion, only 
the hold and free instructions are considered here. Lock, 
seize, and lock enforcement are performed by a hold, 
and unlock and release are performed by a free. 

38-4 

The hold/free instructions use the areas shown in Figure 
38-1. The TDE contains a unique 2-byte identification 
field (TDEID) and a 2-byte count of hold records 
chained from this TDE (TDEHLDCT). The identification 
field is maintained by GETTDE while a create task or 
initiate process initializes TDEHLDCT to O. Within the 
machine communications area (MCA), a field 
(MCA 1 RHHT) points to the hold hash table (which is a 
VMC nucleus module) and MCA3VHAR points to the 
first available hold record. MCA 1 RH HT is set by the 
link-loader. MCA3VHAR is initialized by #RMINIT when 
the hold record area is allocated and built by #RMINIT 
at initial program load (lPL) time. 

A hold request specifies: 

• The address of the object involved. 

• A byte describing the types of hold states that are to 
be interpreted as a conflict. (Hold state refers both to 
lock states and seizes.) 

• A byte specifying the types of hold states to be 
obtained if there are no conflicts. 

All addresses that have the same hash index are placed 
on the same hold record chain, and all holds for 
identical addresses are placed on a secondary chain. All 
activity on the secondary chain is done by the VMC. 
Searching the chain and then adding or removing hold 
records is started when the HMC signals a second chain 
exception. 

If a hold can be added or removed from the secondary 
chain, then the VMC exception handler completes as if 
the grant instruction or the free instruction is executed 
successfully. If any unusual condition is found while 
searching the secondary chain, the exception is changed 
to a chain-conflict or end-of-chain exception. 



The hold instruction performs a hash on the object 
address to locate the start of a (possibly empty) chain of 
hold records within the hold record area. The chain is 
searched for records specifying the same object 
address. If such a record is found and the TDE 
identification is the same, the record is ignored and the 
search continues. If the TDE identification is different 
and the lock state specified in the found record does 
not conflict with the requirement specified by the hold 
instruction, the search continues. If the search reaches 
the end of the chain, a new hold record is built. If a 
conflict was found, a machine exception is raised. An 
exception handler (#RMGFEX) then takes the proper 
action by placing the requestor in a wait, and either 
raising an exception or returning control to the requester 
with an indication of the conflict. 

If an action must be taken when the hold is freed (using 
a release or unlock!. an indicator (the monitor flag) is set 
in the hold record by the exception handler. A Free Hold 
Record or Free Hold Record First instruction causes the 
chain to be searched as for hold. When a record 
containing the specified object address and lock state 
for the issuing TDE is found and the monitor flag is on, 
an exception is raised. The exception handler 
(#RMGFEX) then takes the appropriate action (for 
example, dispatching a waiter). If the flag is off (the 
normal case!. the free instruction simply returns the hold 
record to a chain of free records (available for 
subsequent holds). 

Seize/Release 

Within VMC, seize/release is used to control object 
access. It can be used for machine interface object or 
any VMC internal object. Object serialization due to 
seize is not visible at the machine interface except as a 
delay in the execution of an instruction. When there is 
an attempt to seize an already seized object, the task or 
process waits until the object becomes available. If 
there is more than one waiter for the object, they are all 
dispatched and allowed to compete to seize the object. 

Two types of seize are available: shared or exclusive. 
Any number of TDEs can seize an object for shared use. 
If an object is seized for exclusive use, no other TDE 
can seize the object. 

Module #CFSZ is invoked to perform the seize function; 
module #CFRLS is invoked to perform the release 
function. These modules use the register save area in 
the seize/release parameter area. When a module is 
invoked, R1 points directly to the seize/release 
parameter area. 

Within VMC, deadlock is avoided by using a seize 
hierarchy. 

Objects are seized in the order specified in the seize 
ordering table (#CFSZORD). A space object has the 
lowest number and is the first object seized. The 
machine context has the highest number and is the last 
object seized. A value of 00 indicates a type of object 
that is not seized. 

Seize in general avoids deadlock by following a specific 
object order. This order is defined only by the object 
type. Deadlock occurs when two processes each hold 
an object and the processes are waiting for the object 
held by the other process. As long as the general type 
order is followed, seize avoids deadlock within one seize 
request by not holding any object listed in the request if 
it is necessary to wait for another object. If the first 
object in the request is obtained and the second is not 
available, the first is released before waiting for the 
second. When the second object becomes available, the 
entire seize request is restarted from the beginning. 
Ordering is not required for objects listed for one seize 
with one restriction. The restriction is that an object 
cannot be seized exclusive if previously seized shared 
because this can result in a deadlock wait. 

At initial program load (lPL) time, #RMINIT initializes the 
following data areas in the seize-wait data area 
(#RMSZDX): 

• A queue of available message 

• Four areas, each area containing: 
A counter used as a gate 
A queue used to record the TDEs waiting for an 
object 

Resource Management 38-5 



The data associated with one execution of seize or 
release is contained in the seize/release input area 
(ZZSRP). This area contains the number of objects to 
seize, the address of each object, and the type of seize 
for each object. 

When an object is seized, a Grant Hold Record or Grant 
Hold Record First instruction is executed. If there is no 
conflict, the internal microprogramming instruction 
records the type of hold and the seize is completed. 

If there is a conflict, the TOE must wait for the current 
conflicting seize to be released. Routine #RMSLHCS 
within #RMGFEX is given control from the exception 
handler (#SVOOEXC). Two bits of the object address are 
used to select one of the four seize wait data areas. 
Access to the area is serialized by a send/receive 
counter and a message recording the object address, 
and the waiting TOE is placed on the object queue. The 
conflicting hold record is then marked monitored and the 
busy bit is turned off in the object chain. Then 
#RMSLHCS determines if other objects were already 
seized by the current use of seize. If so, they are 
released to avoid deadlock. Finally, a Receive Count 
instruction is performed to the wait count in the TOE to 
actually put the task or process into a wait. When the 
TOE receives the count (due to a release), the registers 
in the exception CRE and instruction address register 
(lAR) are reset to again start seizing with the first object 
requested in the current use of seize. Then #RMSLHCS 
does a Supervisor Exit instruction to retry the seize. 

When an object is released, a Free Hold Record or Free 
Hold Record First instruction is executed. If the hold 
record is not monitored, the hold is removed from the 
object chain and the release is completed. 

When a hold is monitored and exception is raised, 
routine #RMSLMHS within #RMGFEX is given control 
by the exception handler. This routine uses the object 
address to select the seize data area to access. The 
area is serialized by doing a receive count, and the 
messages listing the waiters are removed from the 
object queue. A count is then sent to the wait counter 
for each waiter. Finally, the monitored and busy flags 
are turned off and a Supervisor Exit instruction results in 
retry of the free instruction. 

38-6 

Lock Enforcement 

Object locks on system objects are enforced by VMC. 
This means that before the VMC accesses a system 
object, the lock state of the object is checked. If a lock 
prohibits the attempted use of the object, an exception 
is signaled. 

The lock state of an object is checked by using Grant 
Hold Record and Grant Hold Record First instructions 
with test byte bits set corresponding to the lock states 
which would prohibit the operation. The hold request 
bits are all zero so a successful instruction will not 
actually add a new hold record to the object chain. 

It is possible to request checking on more than one 
object. The number of objects, the address of each 
object and the lock states to check for each object are 
stored in the seize/release parameter structure. Lock 
state checking proceeds one object at a time until all 
objects have been checked or a conflicting lock state is 
found. 

If there is a conflicting lock, an exception is raised and 
routine #RMSHCL within #RMGFEX is given control by 
the exception handler. 

#RMSLHCL clears the busy bit in the object hold record 
chain, sets a return code in the structure seize/release 
parameter, advances the IAR in the exception CRE past 
the Grant Hold Record or Grant Hold Record First 
instruction, and returns to the VMC routine that was 
checking lock states. 

Because seize and lock use the Grant Hold Record and 
Grant Hold Record First instructions, it is possible to 
combine seize and check lock state in one operation. 
When this is done, the test and hold bits for seize and 
lock checking are simply combined. If there is a conflict 
due to lock state, there is no change in the exception 
processing. If the conflict is due to the requested seize 
only, the exception processing proceeds as if the 
operation was a seize only. 



L 

Lock Support 

The following list shows the System/38 locking 
instructions and the various horizontal VMC interfaces 
for performing lock-related functions: 

System/38 Instructions 

Lock Object 

Unlock Object 

Lock one or more system objects 
to a process. 

Unlock one or more system 
objects from a process, cancel a 
specific object lock wait, or 
cancel all asynchronous lock 
waits for a process. 

Lock Space Address Lock one address in a space to a 
process. 

Unlock Space 
Address 

Unlock one address in a space 
from a process. 

Transfer Object Lock Transfer locks held by a process 
on one or more system objects 
to another process. 

Materialize Object 
Locks 

Materialize Process 
Locks 

Materialize Selected 
Locks 

Materialize Allocated 
Object Locks 

Materialize a list of all locks held 
by processes on an object. 

Materialize a list of all locks held 
by a process. 

Materialize a list of locks held by 
the current process on the 
specified object or space 
address. 

Materialize the current allocated 
locks on a designated object. 

Horizontal Interfaces 

Lock 

Uniock 

Transfer Lock 

Implicitly lock an object to a 
process or task. 

Unlock an implicit lock. 

Transfer an implicit lock. 

Cancel Synchronous Cancel a synchronously waiting 
Lock Wait request if the invocation is 

terminated. 

Unlock for Unlock all objects held by a 
Terminated Process process when the process is 

terminated. 

Unlock for Destroyed 
Object 

Unlock all locks on a given 
object when the object is 
destroyed. 

Resource Management 38- 7 



Lock Object: When the System/38 Lock Object 
instruction is executed, #RMLK is invoked by the SVL 
router. #RMLK first copies and validates all the input 
data. Then, the input system pointers are validated and 
resolved. If an error is found, an exception is signaled. 

Actual locking is done using the Grant Hold Record and 
Grant Hold Record First instructions. If there is no 
conflict, execution of the Grant Hold Record or Grant 
Hold Record First instruction completes the lock 
operation for one lock. A loop is set up to repeat this 
for each lock requested. 

If there is a conflict, a machine exception is generated 
and #RMSLHC receives control from the exception 
handler (#SVOOEXC). #RMSLHC first unlocks any locks 
already obtained for this Lock Object instruction. Then 
the option specified by the program is examined. If an 
immediate exception is wanted, the busy bit in the 
object hold chain is cleared and machine interface 
exception is signaled. 

If the program requests a synchronous wait for the lock, 
the conflicting hold record is marked as monitored, a 
message de"fining the process and object waited for is 
placed on a queue, and the busy bit is cleared. Then the 
common functions #CFRWTO is used to wait for a 
message indicating the conflicting lock is unlocked or 
the wait time has expired. If the conflicting lock is 
unlocked, the process again tries to obtain the requested 
locks starting with the first lock listed for this Lock 
Object instruction. If a wait time is specified and the 
time expires, an exception is signaled. 

If the program requests an asynchronous wait, the data 
defining the locks to obtain is first copied to 
machine-wide storage (MWS). A message is then 
placed on a queue defining the process and object 
waited for. Next, if a wait time is specified, #CFWTO is 
invoked to make a timer request and send a message if 
the wait time expires. The IAR is advanced, and an SVX 
operation is performed to return as if all locks were 
granted. 

38-8 

If the object is unlocked, the timer request (if any) is 
canceled and the originally requesting process is 
interrupted to retry locking. The retry is executed by 
#RMLKAR. This routine finds the list of locks to obtain 
in the MWS area which was obtained by the original 
Lock Object instruction. 

If the time limit is specified and that time limit expires 
for the task receiving the time-out message, the 
resource management service task #RMSVTSK invokes 
#RMLKTO to remove the message that indicates the 
process is waiting, and then signals a time-out event. 

A horizontal interface to the lock function is provided so 
that VMC routines can implicitly lock objects. The name 
of this routine is #RMHLK. 

Unlock: When the Unlock Object instruction is executed, 
the SVL router passes control to #RMUNLK. #RMUNLK 
first copies and validates the input data. Then the input 
system pointers are checked. An exception is signaled if 
an error is detected. The unlocking is actually done by 
setting up a loop to execute the Free Hold Record and 
Free Hold Record First instructions for each lock 
specified. 

If the process does not have such a lock to unlock, an 
internal microprogram exception is signaled and routine 
#RMSLNHL within #RMGFEX will receive control. The 
exception handler will set a return code in the input 
parameters and continue as if the operation was 
successful. When all requests have been processed, 
there is a check for errors. If one or more locks were 
not unlocked, an exception is signaled indicating which 
locks were not unlocked. 

If another process is waiting to obtain a lock that is 
being unlocked, the hold record was marked as 
monitored when the other process encountered the 
conflict. When there is an attempt to free a monitored 
hold, there is an internal microprogram exception and 
#RMSLMHL receives control. This routine first sets the 
hold byte to zero and frees the hold so the hold chain 
will not be held busy longer than necessary. Then the 
list of waiters is examined. If a wait is synchronous, a 
message is sent to allow the process to resume and 
retry the lock operations. If a lock wait is asynchronous, 
the waiting process is interrupted so it will in effect 
reexecute the Lock Object instruction. 

A horizontal interface, #RMHUNLK, is also provided so 
VMC routines can unlock implicit locks. 



L 

Cancel a Synchronously Waiting Lock Request: When an 

invocation containing a synchronous lock wait is 
terminated, the lock request is canceled. #RMSLWT is 
invoked w~en an invocation is terminated which 
contained a waiting lock request. This routine removes 
the request from the waiting message SRQ and cancels 
the time-out request. No event or exception is signaled 
to machine interface. 

Unlock of Destroyed Object: When an object is 
destroyed, the object may be locked. If a lock exists, it 
must be unlocked and waiters, if any, must be 
dispatched. 

Routine #RMDOULK is invoked during the final 
destruction of an object by the process destroying the 
object from #CFDESTO. It sets the hold record chain 
for the affected object address busy, copies any lock 
records for the object to local storage, and clears the 
busy flag. Next. a free is issued for each lock held on 
the object, based on the list of copied lock requests. 
(Thus, the copying serves to form a series of unlock 
templates.) If any of the locks on the object have 
caused other processes to wait, normal unlock logic in 
#RMSLMH causes the waiters to be dispatched or 
interrupted. (The object is now destroyed, however, and 
any reference to it results in a destroyed object 
exception.) 

Unlock Objects Locked to a Terminated Process: This 
routine, #RMDPULK, is a horizontal interface from 
terminate process. A process must unlock any locks it 
holds before it can be terminated. This routine executes 
under the to-be-terminated process. 

Because the hold records are not chained by TDE or 
process identification, the entire table of hold records 
must be searched to locate the locks held by a process. 
Each time a lock is located, a free instruction is 
executed to unlock the lock and re-dispatch or interrupt 
any waiters. The search for hold records is not done 
unless it is possible for the to-be-destroyed process to 
hold a lock. 

Transfer Lock Object: When Transfer Object Lock 
instruction is issued, the SVL router passes control to 
#RMMMXLK. This routine copies the input data, checks 
the input for valid options, and validates and resolves 
the object pointers. If an error is detected, an exception 
is signaled. 

A loop to process the requests is established. In this 

loop, the hold chain for an object is set busy and the 
entire chain is searched. This search is to locate the 
specific lock to transfer and all locks on the object held 
by the process. If the transfer does not violate the lock 
granting rules, the current owner of the hold record is 
modified and the address of the hold record is saved. 
The busy flag for the object chain is then reset. 

The list of hold record addresses for all locks that meet 
the test for a valid transfer is sent to the receiving 
process. #RMINIPI interrupts the receiving process to 
receive the list. 

If an error condition is detected before the locks are 
transferred, the exception data is saved; after 
transferring all locks which can be transferred, an 
exception is signaled. 

When the receiving process is interrupted, it invokes 
routine #RMRCVLK. #RMRCVLK removes the list of 
locks from the process interrupt queue. The receiving 
process places its TDE identification in the indicated 
hold records. The receiving process completes the 
transfer so that event handling, lock transfers, and 
process destruction can be properly serialized. 

The receiving process could be in a lock-wait waiting 
for one of the locks which was just transferred to it. So 
that the receiving process does not resume a wait state 
after receiving the locks, the receiving process checks 
the list of lock waiters to see if it was waiting for the 
lock just transferred. If this is the case, the receiving 
process completes transferring the locks and sends a 
message to resume the suspended lock operation. 

Horizontal Interface to Transfer Lock: When a process is 
created, the Initiate Process instruction can optionally 
specify the locks to be transferred to the created 
process. In this case, #RMHMXLK is invoked from a 
process creation routine. (#RMHMXLK is an entry point 
in the main transfer lock routine.) 

Also, when a process is created, the process must be 
given a lock on the user profile it runs under. This is 
done by #RMHHXLK. This routine contains limited 
checking for this special case and transfers only one 
lock. 

Resource Management 38-9 



When a user profile is changed by the Modify Process 
Attributes instruction, #RMHIXLK is invoked to transfer 
the lock. This is also an entry point in the main transfer 
lock routine. The transfer logic and checking is the 
same but the input is not a template. 

Materialize Object Locks: The SVL router passes control 
to #RMMTOLK when the Materialize Object Locks 
instruction is executed. #RMMTOLK first verifies the 
input and locates the object. 

The Set Chain Busy internal microprogramming 
instruction is used to serialize access to the list of locks 
for this object. The chain of hold records is searched for 
locks on the selected object. The desired lock entries 
are copied to a work area and the chain is made not 
busy. 

The data is moved to the output area specified by the 
System/38 instruction. If the output area is not large 
enough to contain the data, the excess data is 
truncated. 

Finally, the list of lock waiters is examined. Any waiters 
for this object are copied. Then the data is moved to 
the output area, again truncating excessive data if the 
size of the output area is exceeded. 

Materialize Process Locks: #RMMTPLK is given control 
by the SVL router when the Materialize Process Locks 
instruction is executed. #RMMTPLK tries to locate the 
specified process. An exception is signaled if the 
process cannot be found. 

Materialize Selected Locks: #RMMTSLK is given control 
by the SVL router when the Materialize Selected Locks 
instruction is executed. #RMMTSLK is designed to give 
a list of the locks held by the current process on one 
specific object or space address. 

#RMMTSLK is basically a short, faster form of 
materialize object locks. However, no lock waits are 
materialized and only locks by the current process are 
materialized. 

38-10 

The output data is moved to the user's space until all 
data is materialized or the space provided is filled. 

The table of hold records and the current size of the 
table are located and the table is searched for any locks 
held by the specified process. The table is searched 
sequentially because there is no chaining based on TDE 
identification. When locks held by the process are 
located, the lock data is copied to a work area. 

Note: The table may have been extended at the same 
time it was being searched. After completing the 
search, the size must be checked to see if additional 
records have been added. 

The lock data is moved to the output areas specified by 
the System/38 instruction. If the output area is not 
large enough to contain the data, the excess data is 
truncated. 

Finally, the list of lock waiters is examined. Any waits 
outstanding from this process are copied. Then the data 
is moved to the output area again, truncating excessive 
data if the size of the output area is exceeded. 

Initialization 

When an object is locked successfully, a hold record is 
created. When there is a conflict the exception handler 
records the waiter data in the lock wait data area 
(#RMLKDX) if a wait option was selected. This area is 
initialized at IPL by #RMINIT. This area consists of a 
queue of currently available messages and a 
send/receive counter used to serialize access to the 
available message queue and the eight lock wait areas. 
Each wait area consists of a send/receive count (SRCI. 
a queue to hold a message for each lock being waited 
for, and a queue where processes waiting synchronously 
for a lock do a receive message to wait for the lock to 
become available. When it is necessary to wait for a 
lock, the wait area is selected by using 3 bits of the 
waited-for object address. 

After copying from the program template, the data for 
one execution of lock, unlock, or transfer lock is found 
in the lock/unlock input area ZZLKI. This area contains 
some fields not needed for every instruction, such as 
the wait time and a pointer to the parameters used to 
seize the objects. Following these fields is a count of 
the number of objects, the object addresses, and the 
lock states. 



Timer Services 

Timer service routines provide support for the 
System/38 instruction that includes a wait time limit. 
These routines are used exclusively by other VMC 
components that support the System/38 instruction set. 

Timer service functions use the internal microprogram 
clock comparator and the time-of-day clock. When the 
clock comparator matches the time-of-day clock, HMC 
sends a count to the send / receive counter at the 
address contained in the machine communications area 
(at MCA2VSCC). The address of the clock comparator 
is externally known and is set by the link/loader. 

A task created at IPL by #RMINIT waits on the 
send/receive counter associated with the clock 
comparator. When a count is received, a message is 
dequeued from a queue of timer requests and this task 
performs the requested service. The task again does a 
receive count to the clock comparator send / receive 
counter. The program being executed by this task is 
#RMCCINT. 

All data areas used by the clock comparator are 
contained in the clock comparator data area 
(#RMCCDX). This area contains the send/receive 
counter that is set by the clock comparator, a queue 
used for outstanding timer requests, a queue used for 
available (unused) requests, a send/receive counter used 
as a gate to serialize access to this area, and some 
initially available request messages. 

At IPL time, #RMINIT uses the clear-page-and-pin 
function to obtain 512 pinned bytes of 0' s for this area. 
The pin is used because a send count to the clock 
comparator counter cannot page fault. Clear-page is 
used so that it is not necessary to read a VMC page 
which is then cleared. #RMINIT also enqueues the 
initially available messages to the available message 
queue. 

When a request is made for a timer service, a message 
is removed from the available queue, data is stored 
defining the user request, and the message is placed on 
the queue of outstanding requests. 

Timer services support the following System/38 
instructions: 

• Modify Machine Attributes (Time-of-Day) 

• Materialize Machine Attributes (Time-of-Day) 

In addition to the preceding instruction support, timer 
services provides the following support: 

• Wait time-out 

• Receive with time-out 

• Wait time-out for event 

• Wait time-out request cancel 

• Extend time-out wait request queue 

Modify Machine Attributes (Time-Of-Day) 

#RMMDTOD is invoked to modify the time-of-day. 
This module sets the time-of-day value to the specified 
value and updates all outstanding requests for timer 
services for a time interval so that the interval is 
terminated at the correct time. 

Materialize Machine Attributes (Time-Of-Day) 

#RMMTTOD is invoked to materialize the current 
time-of-day. This module stores the time-of-day value 
into the specified user area. 

Wait Time-Out 

#CFWTO is used to request that a count or message be 
sent after a time interval. Optionally, this action can be 
repeated indefinitely. #CFWTO returns to the caller as 
soon as the request is placed on the queue. Parameters 
passed to this routine are contained in area ZZWTO. 

Resource Management 38-11 



Receive with Time-Out 

#CFRWTO is used to execute a receive message with a 
limit on the time that the process will wait for the 
message. #CFRWTO does not return to the caller until a 
message is received or the time limit is exceeded. The 
input to this function is contained in area ZZRWT. This 
function can be used only by machine interface 
processes. 

Wait Time-Out for Event 

#RMWTOE is invoked to request interrupting a process 
for an event after time interval. #RMWTOE returns to 
the caller as soon as the request is placed on the queue. 
The input to this function is contained in area ZZWTO. 

Wait Time-Out Cancel 

#CFWTOC is invoked to cancel either a specific request 
or all requests for a task or process. #CFWTOC returns 
to the caller when the request is canceled. The input to 
this function is in area ZZWTC. 

Extend Wait-Request Queue 

#RMGTREQ is invoked if another request message is 
needed and none are currently available. This routine 
obtains a page of machine-wide storage, formats the 
page into SRMs, places the new SRMs on the available 
queue, and returns a new SRM to the caller. 

38-12 

Process Interruption 

Process interruption provides the functions that interrupt 
the execution of a process in an orderly fashion to 
perform or schedule other processing that usually is not 
related to the activity of the current process. Figure 
38-2 shows an overview of process interruption. 



Note 4 

Notes: 

Encapsulated 
Program 

VSVLM1F) 

(SVL 50) 

SVL Router / 
(#SV50MIR) 

(SVLM 1F) 

Interrupt 
Function Router 
(#SV1FBOY) 

/ \ 
To Appropriate 
I nterrupt Processor 

Note 1 

Instruction 
Processor 

~SVLM 1F) 

Note 2 

Receive Wait 
with Time-Out 

: Note 3 , 
First-Level 
Exception 
Handler 
(#SVOOEXC) 

Access Exception 
Handler 
(#RMAEHS) 

TOE Access 
Exception Handler 
(#RMTOEAH) 

---+---( SV LM 1 F) _-+ __ 

1. This is the path used for long-running VMC routines. 
2. This is the path used for an instruction wait. 
3. SVOOEXC is invoked as a result of a TOE access exception. 
4. This linkage occurs at an instruction boundary. 

Figure 38-2. Servicing Pending Interrupts 

Resource Management 38-13 



Process interruption can be initiated at any time, but the 
processing of the interrupt function under the target 
process (interrupted process) always occurs at 
System/38 instruction boundaries. System/38 
instruction boundaries are defined as follows: 

• In translator generated code: A backward branch that 
could create a loop 

• In the SVL router (#SV5DMIR): Before and after the 
System/38 instruction processor module is invoked 

• In System/38 instruction wait: When a System/38 
instruction process is in the wait state as a result of 
executing one of the following instructions: 

Lock Object 
Dequeue (with wait option) 
Wait on Event 
Set Cursor (with lock-entry-with-wait option) 
Suspend Process 

• In long-running instruction processors 

Process interruption is accomplished by using the 
Supervisor Link Monitored instruction. The Supervisor 
Link Monitored instructions are inserted at System/38 
instruction boundaries. The Supervisor Link Monitored 
instruction is executed as a no-op unless enabled by a 
bit in the TOE. When enabled, the Supervisor Link 
Monitored instruction executes as a Supervisor Link 
Short instruction. In translator generated code, the 
translator inserts the Supervisor Link Monitored 
instruction before a backward branch and a branch 
where the target is not known at the time of translation. 
The Supervisor Link Monitored instructions are inserted 
into the SVL router before and after invocations to VMC 
modules that process the System/38 instructions. The 
Supervisor Link Monitored instructions are inserted into 
long-running System/38 instruction processors at points 
where processing can be interrupted. 

38-14 

A process can be interrupted to perform the following 
functions: 

• Time slice end processing (signal event and MPL 
control) 

• Receive transferred locks 

• Asynchronous lock request lock retry 

• Suspend process 

• Resume process 

• Modify process attributes 

• Terminate machine processing 

• Terminate process 

• Wait time-out processing 

• Schedule event 

A process in an instruction wait can be interrupted from 
a wait state to perform the preceding functions except 
when the process is suspended (in suspend-wait). If 
suspended, the process can be interrupted only by 
resume process, terminate machine processing, or 
terminate process functions. 

A process is usually interrupted by another machine 
interface process or a VMC task, but a process can also 
interrupt itself. For example, when an asynchronous 
exception such as time slice end is presented, some of 
the processing for the exception can be delayed until the 
current process reaches the next System/38 instruction 
boundary. 

Only machine interface processes can be interrupted; 
VMC tasks cannot be interrupted. 



Initiate Process Interrupt 

#RMINIPI performs the initiate process interrupt 
function. This routine sets the supervisor link monitor 
(SVLM) enable bit in the TOE of the target process, 
optionally enqueues a message to the 
process-interrupt-data SRO that is in the resident 
portion of the process control block (PCB) (PCB RES) of 
the target process, and sets a bit in the function code 
(also in PCBRES) to indicate which interrupt function to 
perform. If the target process is not in instruction wait, 
#RMINIPI returns control to the caller; the pending 
interrupts are then serviced at the next System/38 
instruction boundary of the target process. 

If the target process is in an instruction wait. #RMINIPI 
enables TOE exceptions, dequeues the process from the 
wait SRO and enqueues it to the prime task dispatching 
queue (TOO). and then dispatches the process. 
#RMINIPI then returns control to the caller. 

Interrupt Function Router 

The interrupt function router (#SV1 FBOY) receives 
control from an enabled Supervisor Link Monitored 
instruction. The function code in PCBRES is saved in 
the CRE obtained for the Supervisor Link Monitored 

,..,.,. instruction. The function code is cleared and further 
processing is based on function code saved in the CRE 
of the Supervisor Link Monitored instruction. #SV1 FBOY 
invokes the appropriate interrupt function handler(s) and 
clears the corresponding bit(s) in the CRE of the 
Supervisor Link Monitored instruction. #SV1 FBOY 
returns control (SVX) to the caller when all pending 
interrupt functions are handled. The paths to #SV1 FBOY 
are shown in Figure 38-2. 

Receive Message with Wait-Time-Out 

The Receive Message instruction with wait-time-out 
function (#CFRWTO) is invoked by the System/38 
instruction processors that can place a process in an 
instruction wait. #CFRWTO issues the Receive Message 
instruction and provides the wait with time-out function. 
#CFRWTO establishes a real-time time-out by using the 
timer service function based on a specified time-out 
interval value. #CFRWTO sets the wait bits to indicate 
the intended instruction wait and enables the TOE 
access exception before issuing a Receive Message 
instruction to the designated queue. If no message is 
received, a TOE access exception is presented and 
control given (through #SVOOEXC and #RMAEHS) to the 
TOE access exception handler, #RMTOEAH. 
#RMTOEAH eventually returns (SVX) to reexecute the 
Receive Message instruction in #CFRWTO and put the 
process in a receive wait (instruction wait). If the 
intended message is received, the TOE exception is 
disabled, the wait bits are reset, and the wait time-out 
request is canceled (by a call to #CFWTOC). and the 
received message returned to the invoking module. If 
wait time interval expired before the Receive Message 
instruction is satisfied, #CFRWTO resets the wait bits, 
enables the TOE exception, sets the time-out return 
code, and returns control to the calling module. 

TDE Access Exception Handler 

When a TOE access exception is presented during an 
unsuccessful Receive Message instruction, the exception 
is presented through the Supervisor Link Short 
instruction that passes control to the first-level 
exception handler (#SVOOEXC). #SVOOEXC invokes 
#RMAEHS (TOE, SRM and SRO access exception 
handler); #RMAEHS invokes #RMTOEAH to handle the 
exception. #RMTOEAH disables TOE exceptions and 
checks the interrupt enabled bit. If the interrupt bit is on 
(interrupt enabled). #RMTOEAH frees the SRO, issues 
the Supervisor Link Monitored instruction, and passes 
control to #SV1 FBOY to service the interrupt. 

Interrupt functions are serviced before a process enters 
instruction wait state. This is also the execution path for 
process that is interrupted from an instruction wait. 
When #RMTOEAH regains control from #SV1 FBOY, 
#RMTOEAH performs an SVX that causes #CFRWTO to 
reexecute the Receive Message instruction. The process 
remains in the instruction wait state if the Receive 
Message instruction is unsuccessful. 

Resource Management 38-15 



Receive-Wait Time-Out Handler 

When an instruction wait expires, the real-time clock 
comparator service module, #RMCCINT, that runs under 
a VMC task receives control. #RMCCINT interrupts the 
time-out process out of an instruction wait to perform 
wait time-out processing in module #RMMIWTO. A 
process is interrupted out of an instruction wait using 
the TDE access exception. The 
TDE-access-exception-CRE contains the status of the 
#CFRWTO code when the Receive Message instruction 
was executed. Therefore, #RMMIWTO advances the 
IAR in the TDE-access-exception-CRE to the time-out 
return entry in #CFRWTO. Then, #RMMIWTO returns 
control to #SV1 FBDY that returns control (SVX) to 
#RMTDEAH. When #RMTDEAH issues the Supervisor 
Exit instruction, the status of #CFRWTO is restored from 
the TDE-access-exception-CRE. The Receive Message 
instruction will not be reexecuted; instead, a return code 
that indicates time-out is set. When #CFRWTO returns 
to the caller, the calling module checks the return code 
and signals a wait time-out exception at the machine 
interface. #RMMIWTO also returns the time-out 
message to timer services available message queue. 

Exception Back Out 

If an exception causes the invocation of #CFRWTO to 
be terminated, #RMMIETO is called to cancel the 
time-out request or to back out the time-out message if 
time-out has already occurred, and #RMPICRE is called 
to restore the not yet serviced interrupt function in the 
CRE(s) obtained for the SVLM(s). Both of these 
modules can be called by return from exception module 
#EXRTEXP, or by exception generator, #CFEXGEN. 
#RMMIETO invokes #CFWTOC to cancel wait time-out 
request. Then it calls #RMMIWTO to back out and 
return the time-out message if the wait has already 
expired. 

38-16 

#RMPICRE restores the unserviced interrupt functions 
from CRE(s) of the SVLM to the function code field in 
PCBRES and clears the save area in the CRE(s) before 
exception management makes the CRE from in-use 
state to available state. The function of the not yet 
serviced function is restored as process interruption is 
asynchronous to the executed sequence of the 
interrupted process; the termination of invocations does 
not mean termination of pending interrupts. 

Serialization of Process Interruption 

The process that initiates process interruption (the 
interrupting process) against another process (the target 
process) ensures that the target process is not 
terminated or in its final termination phase. The 
interrupting process uses the Compare and Swap 
Halfword instruction to determine the status of the 
target process. If the target process is being terminated, 
a nonzero return code is returned and the interrupting 
process is not allowed to interrupt the target process. If 
the target process is not being terminated, a halfword in 
the resident portion of the PCB is incremented by the 
Compare and Swap Halfword instruction to prevent the 
target process from terminating. 

When the interrupting process completes processing of 
the interrupt, it uses the Add Logical Halfword 
Immediate instruction to decrement the halfword in the 
PCB. 

When the value of the halfword in the PCB is greater 
than 0, a process cannot begin the final termination 
phase. A process uses the Compare and Swap 
Halfword instruction to check the value in the halfword. 
If the halfword is 0, the value is set to a -1 (minus one) 
value (this value prevents any further interruptions); if 
the halfword is not 0, then the process waits on an SRC 
in the resident PCB. A process waiting to enter the final 
termination phase is released when the current 
interrupting process(es) complete the interruption(s). If a 
process attempts to interrupt itself and the halfword in 
the PCB has a -1 value, a critical bit in the TDE is set. 
In this case, a terminate immediate internal 
microprogram instruction is executed to terminate 
machine processing. 



Multiprogramming Level Support 

Resource management MPL support consists of VMC 
routines that support the M PL definitions and rules. 
Following are the definitions as they relate to MPL 
support: 

• MPL: Multiprogramming level is the number of 
processes currently executing. A process is active or 
in the current MPL if it is executing. 

• Machine-wide MPL (current): The number of user 
processes currently executing in the machine. 

• Machine-wide MPL (maximum): A user specified 
value for the maximum number of processes which 
can execute concurrently in the machine. 

• MPL class: A logical set of processes. A process is 
assigned an MPL class at process initiation by the 
user. The M PL class can be altered by a Modify 
Process Attributes instruction. 

• Class MPL (current): The number of user processes 
currently executing in a class. 

• Class MPL (maximum): A user-specified value for the 
maximum number of processes that can execute 
concurrently in a specified M PL class. 

• System/38 instruction wait: A process is in a wait 
either as a result of a Suspend Process instruction 
that has been issued or an unsatisfied Lock Object. 
Wait on Event. Dequeue. or Set Cursor (that causes 
an implicit lock for update or delete) that has been 
issued. When a process enters a wait. the process is 
not considered as part of the current machine-wide 
or class MPL. 

• Ineligible wait: A process is in an ineligible wait 
when it is neither executing (active) nor in a 
System/38 instruction wait. It is placed in this state 
as a result of applying the MPL rules. 

• Time slice: A user-speci"fied amount of processor 
time a process can use before being subject to M PL 
rules. 

System/38 instruction set process is eligible to execute 
only if the machine-wide MPL maximum and class MPL 
maximum (for the class to which it is assigned) permit it 
to be active; for example. when the count of active 
processes does not exceed the maximum values. Figure 
38-3 shows an overview of the application of the MPL 
rules. The rules are enforced as follows: 

• When a process is initiated or leaves the System/38 
instruction wait state (because its wait was satisfied 
or to perform an interrupt function such as handling 
an event). it is added to the current MPL only if the 
machine-wide and class MPL limits permit. 
Otherwise. it is placed in the ineligible state. (Thus. it 
does not preempt processes currently in the active 
state.) 

• When a process enters the System/38 instruction 
wait state. terminates. or the machine-wide or class 
MPL maximum values are increased. the selection 
algorithm is dispatched to select and redispatch 
ineligible processes. 

• When a process reaches time slice end and there are 
processes of equal or higher priority that are currently 
ineligible (but could be made active if the current 
processes were removed from the MPL). the current 
process is made ineligible and the selection algorithm 
is invoked. Otherwise. the current process resumes 
execution with a full time slice value after processes 
of equal priority on the prime TDQ. 

The selection algorithm proceeds as follows: 

The search begins with the ineligible waiting process 
that has the highest priority. The process is selected 
if both the following conditions are met: 

The machine-wide current MPL is less than the 
machine-wide maximum MPL 
The MPL class current MPL is less than the MPL 
class maximum MPL 

The selection procedure continues until one of the 
following occurs: 

The machine-wide current MPL equals the 
machine-wide maximum 
Remaining ineligible processes cannot be selected 
(MPL class current MPL equals the MPL class 
maximum MPL for these processes) 
There are no processes left in an ineligible wait 
state 

Resource Management 38-17 



If there is any process left in the ineligible wait state, a 
test is made to determine if the ineligible threshold 
exceeded event(s) should be signaled. 

During the application of MPL rules, counts are 
maintained (by machine-wide and M PL class) of the 
number of processes in each state and the number of 
transitions between states. These counts can be 
materialized via the Materialize Resource Management 
Data instruction. 

If machine-wide maximum MPL value is equal to or 
greater than the sum of all class maximum MPL values, 
it has no effect. Processes in each MPL class compete 
among themselves for the current class M PL slots on a 
priority basis. There is no competition for the current 
MPL slot among processes belonging to different MPL 
classes. 

38-18 

If machine-wide maximum MPL value is less than the 
sum of all class maximum MPL values, all processes 
compete for the current machine-wide M PL slots on a 
priority basis. 

In both of the preceding cases, an executing process (a 
process in the current MPL set) cannot be preempted 
from the current M PL set by another process until the 
executing process encounters time slice end or enters 
System/38 instruction wait. That is, priority is used to 
enter the current M PL set only when there is an open 
slot in the current MPL set. 

The only exception to the MPL rules is the System/38 
Dequeue (wait state) instruction with the stay-in-MPL 
option. When that option is specified, the process 
remains in the current M PL set even when it enters the 
wait state. This option allows processes that expect a 
short wait, such as waiting for a response from 
high-speed source/sink devices, to not incur the 
overhead of leaving and entering the current MPL set. 
Deadlock can occur if a process is holding a current 
MPL slot and waiting on a queue for a message, while 
the process that is to send the message is waiting for 
the current MPL slot held by the first process. 



Instruction Wait 
(receive message 

~f/ 
• Decrement machine-wide 

current MPL value by 1 
• Decrement MPL class 

current MPL value by 1 
• If any process is in the 

ineligible wait state, 
execute SENDM to 
service task to select 
process to run in 
current MPL 

• Wait 

Wait Satisfied 

~'/ 
• If machine-wide current 

MPL < machine-wide 
Max MPL and MPL class 
current MPL < MPL 
class Max MPL, enter 
current MPL. 

• Otherwise, enter 
ineligible wait 
state. 

Figure 38-3. Application of MPL Rules 

f\ 

Active Process in Current 
MPL Set 

7 

Increase 
Machine-Wide 
and MPL Class 
Max MPL Value 

Service Task­
Select Process 
in Ineligible 
Wait State 

Ineligible Wait­
Wait for 
Selection 

/ 

Time Slice 

~/ 
• If no waiting processes 

with equal or higher 
priority, remain in 
current MPL. 

• Otherwise, enter 
ineligible wait state 
and execute SENDM to 
service task to select 
process to run in 
current MPL. 

Resource Management 38-19 



System/38 Instruction Wait 

Lock Object, Wait on Event, Dequeue, Set Cursor, and 
Suspend Process instructions cause the issuing process 
to enter a System/38 instruction wait state. The 
instruction processors for these System/38 instructions 
invoke the receive with wait-time-out function 
(#CFRWTO). This function establishes a timer 
mechanism that allows the invoking process to be 
restarted after a specified time interval if the conditions 
of the wait are not satisfied within the time interval. 

When #CFRWTO receives control, it enables TDE 
access exceptions and executes a Receive Message 
instruction to the specified SRO. This Receive Message 
instruction causes the invoking process to get a TDE 
access exception. The TDE access exception is routed 
through the first-level exception handler (#SVOOEXC) 
and the access exception handler (#RMAEHS) to the 
TDE access exception handler (#RMTDEAH). 

The TDE access exception handler inhibits any additional 
TDE access exceptions, resets the SRO to not busy (it 
was marked busy by the interrupted Receive Message 
instruction)' and invokes #RMRPL TS to restore the time 
slice if the process access group is to be purged when 
the System /38 instruction wait state is entered. 
#RMTDEAH then executes a Supervisor Link Monitored 
instruction. If the Supervisor Link Monitored instruction 
is enabled (indicating that an interrupt is pending), the 
Supervisor Link Monitored instruction is executed as a 
Supervisor Link Short instruction and control is passed 
to the interrupt function router (#SV1 FBDY). #SV1 FBDY 
processes the interrupt(s) and returns control (SVX) to 
#RMTDEAH. 

#RMTDEAH then invokes #RMMINWT if the current 
process is in the current M PL and will not remain in the 
current MPL when the System/38 instruction wait is 
entered. 

38-20 

#RMMIMWT performs the MPL-related functions, it 
updates the MPL counts (which are maintained in 
#RMMPLM)' issues a purge (storage management 
perform paging request, which invokes #SVE8PPR) 
against the process access group if the appropriate 
indicators are on, and determines if there are processes 
on the ineligible queue. If there are processes on this 
queue, a message (which is preformatted and resides in 
module #RMMPLM) is sent to the service task queue in 
#RMMPLM. This causes the service task to resume 
execution of #RMSVTSK. This routine dequeues (using 
a Receive Message instruction) the message and routes 
control (using the message key) to #RMSELIO. 

#RMSELIO determines (according to the MPL rules) if 
any of the processes on the ineligible queue should be 
allowed to run. The TDEs of the selected processes are 
then dequeued from the ineligible queue and enqueued 
to the prime TDO. A bring perform paging request is 
issued to get the process access group when the 
selected processes are executing on the prime TDO. 

#RMMIMWT, which invokes the service task, returns to 
#RMTDEAH. #RMTDEAH returns control (SVX), causing 
the receive instruction in #CFRWTO to be reissued. 
Since the access exception is now inhibited, the process 
is placed in a wait state (assuming the wait is still 
unsatisfied). From the time the purge page request is 
issued until the process actually enters the wait state, 
no pages in the access group (including IWA) are 
modified or purged. 

Time Slice End 

At time slice end (end of specified time interval), a 
process can either enter ineligible (for the current MPL) 
wait or remain in the current M PL set and continue 
execution. In the first case, processes in the machine 
are looped through the ineligible-wait TDO; in the 
second case, they are looped on the prime TDO. 

When the processor time interval in the dispatcher 
interval timer equals 0, an internal microprogramming 
(IMP) exception is signaled. This exception is passed 
using an implicit SVL and control is transferred to the 
first-level exception handler (#SVOOEXC). 



#SVOOEXC invokes the time slice end exception handler 
(#RMTSACO) to replenish the time slice value 
(#RM RPL TS). updates the processor time used, and 
interrupts the current process causing the rest of time 
slice end processing to occur at the next System/38 
instruction boundary (the process is scheduling an 
interrupt to itself). 

Note: Time slice end can only occur when the current 
process is in execution and does not necessarily occur 
at System/38 instruction boundaries. The functions to 
be performed at time slice end must be done at 
System/38 instruction boundaries. 

#RMTSACO returns to the #SVOOEXC which returns 
(SVX). and the current process continues execution until 
either a System/38 instruction boundary is reached or 
the process enters instruction wait. At such a boundary, 
the Supervisor Link Monitored instruction gives control 
to the interrupt "function routing routines #SV1 FBOY. 

#SV1 FBOY saves the routing bits in the exception CRE, 
clears the routing bits in PCBRES, saves the last 
waited-on SRO, and inhibits process interruptions. 
Then, based on the time slice end routines bit, it invokes 
#RMTSENO that performs the following time slice end 
functions: 

• Signals a machine interface event if the maximum 
allowed processor time is exceeded. 

• Signals event if the time slice end without entering 
instruction wait processing option is specified. 

• Checks if the current process should stay in the 
current MPL set. The current process is placed in the 
ineligible state if one of the following conditions is 
met: 

The class or machine-wide MPL maximum values 
are exceeded. (This could arise from a Modify 
Process Attributes instruction, which changed the 
MPL class of the process, or from modify resource 
management controls.) 
A process of higher or equal priority on the 
ineligible queue could run if the current process 
were made ineligible. 

• If the process is to be placed in the ineligible state, 
#RMINEWT is invoked to perform the following 
functions: 

Increment transition count. 
- Purge process access group if specified and 

required. 
Send a message to the service task to initiate the 
selection of a process to run if an access group is 
to be purged. 
Move current process to ineligible-wait TOO (by 
disabling task dispatching, dequeuing it from the 
prime TOO, enqueuing it to the ineligible queue 
and enabling task dispatching). 

• If the process is to remain on the prime TOO, 
#RMROBIN is invoked if the number of processes in 
the current M PL is greater than one. 

#RMROBIN disables task dispatching and checks 
the priority of the next TOE. 
If the priority of the next TOE is equal to that of 
the current TOE, then the current TOE is dequeued 
from and enqueued back to the prime TOO. 
Enables the task dispatching. 

The process, if entered ineligible wait state, remains in 
ineligible wait state until it is selected by the service 
task, executing #RMSELlO, to run in the current MPL. 
When the process is selected, #RMSELIO dequeues it 
from the ineligible queue, enqueues it to the prime TOO. 
The selected process is dispatched when it becomes the 
current process on the prime TOO. The newly 
dispatched process resumes execution of module 
#RMINEWT, brings (using a perform paging request) the 
process access group if it had been purged, and returns 
to the caller (#RMTSENO or #RMIOCMP). 

Resource Management 38-21 



Leaving Instruction Wait 

Wait Satisfied: A message is sent to the waited-upon 
SRQ, causing the RECM in #CFRWTO to be satisfied. 
#CFRWTO invokes #RMIOCMP, which determines if the 
process can run as part of the current MPL. If not, 
#RMIOCMP purges the process access group if it is in 
main storage and modify access state at instruction wait 
is specified, and then #RMINEWT is invoked to place 
the process in the ineligible state. If the process can run 
as part of the current MPL (or after #RMINEWT returns, 
indicating that the process has left the ineligible state 
and the process access group has been brought into 
main storage), #RMIOCMP brings the process access 
group if it exists and the modify access state at 
instruction wait is specified. Then, it returns to 
#CFRWTO, which cancels the time-out (#CFWTOC) and 
returns to the caller. 

Interrupt a Process in an Instruction Wait: #RMINIPI 
(executing under the interrupting process) dequeues the 
waiting process from the SRQ, enables the SVLM, 
enables TDE access exceptions, and enqueues the 
process to the prime TDQ. As with an instruction wait, 
a TDE access exception occurs when the 
waiting-process starts to run on the prime TDQ. This 
causes control to be passed to #RMTDEAH, which 
issues a Supervisor Link Monitored instruction that 
invokes #SV1 FBDY. #SV1 FBDY invokes #RMIOCMP to 
determine if the process can enter the current MPL. If 
so, the process access group is brought into main 
storage and control is returned to #SV1 FBDY. 
#SV1 FBDY then invokes the pending interrupt servicing 
routines. Thus, the process in instruction wait state is 
interrupted to service the scheduled interrupt function. 
When interrupt service routines return control to 
#SV1 FBDY, the routine returns control (SVX) to 
#RMTDEAH . #RMTDEAH then invokes #RMMIMWT, 
which operates as when entering an instruction wait to 
again place the process in the instruction wait state. 
(Note that if a message is placed on the SRQ during the 
initiate process interrupt processing, the process 
receives the awaited message first and leaves the wait 
state as with leaving the instruction wait. Then, the 
interruption is serviced at the next System/38 
instruction boundary.) 

38-22 

Resource Management Service Task 

The resource management service task is used to 
perform services that another task or process cannot do 
for itself. 

#RMSVTSK waits on a queue (#RMSVQ) by issuing a 
Receive Message instruction to that queue. When a 
message is received, the value in the key field routes 
control to one of the following functions: 

Key Value (Hex) 

0003 

0005 

0007 

0009 

8000 

Function 

Select process from ineligible 
wait state (#RMSEUQ) 

Signal event for asynchronous 
lock wait time-out (#RMLKTO) 

Make more call/return 
elements available 
(#RMCREAC) 

Return TDEs and signal 
process terminated event 
(#PMFINAL) 

Resident bad page recovery 
(#RTIRTRY) 

When the invoked modules return control to 
#RMSVTSK, the service task reexecutes the Receive 
(first message) instruction to execute or wait for the 
next requested function. 

Resource Management Attribute Control 

The attribute control functions support the following 
System /38 instructions: 

• Materialize Resource Management Data 

• Modify Resource Management Control 

J 



The Materialize Resource Management Data instruction 
is used to materialize processor utilization data, M PL 
data, auxiliary storage data, and main storage data. The 
Modify Resource Management Control instruction is 
used to alter selected attributes of MPL data, auxiliary 
storage data, and main storage pool data. The following 
list shows the process attributes that affect resource 
management. They can be materialized by the 
Materialize Process Attributes instruction: 

• Priority 

• Time slice value 

• Time slice end signal event attribute 

• Modify access state at instruction wait 

• Modify access state at time slice end 

• Process storage pool identification 

• Maximum temporary auxiliary storage allowed 

• Current temporary storage used 1 

• Default time-out interval 

• Maximum processor time allowed 

• Total processor time used 1 

• Process MPL class identification 

• Number of changes from active state to the ineligible 
wait state 1 

• Number of changes from active state to the 
instruction wait state 1 

• Number of changes from the instruction wait state to 
the ineligible wait state 1 

• The time that the latest state transition occurred 

1These attributes cannot be altered by the Modify Process 
Attributes instructions as these attributes reflect the statistics 
related to a process. 

Machine resource management attributes are modified 
immediately. Process MPL attributes are modified under 
the target process through the process interruption 
mechanism. The effect of modification usually does not 
take place immediately. Modification of attributes are 
described in the following paragraphs. 

Maximum MPL Value: The new maximum MPL value is 
greater than old maximum MPL value. 

• Machine-wide: If there is any process in the 
ineligible wait state, service task is dispatched to 
select process(es) to run in the current MPL set. 

• MPL Class: If there is any process in the ineligible 
wait state in that MPL class and if machine-wide 
current MPL is less than machine-wide maximum 
MPL, then the service task is dispatched to select 
ineligible process(es). 

The new maximum MPL value is less than old maximum 
MPL value. 

• Machine-wide: The effect is not immediate. No 
process in the current MPL set is forced out of the 
current MPL set even if the next maximum MPL is 
less than the current MPL. However, no process is 
allowed to enter the current MPL set until the current 
MPL is less than the new maximum MPL. Counts are 
corrected as processes enter instruction wait or reach 
time slice end. 

• MPL Class: The effect is not immediate. The same 
algorithm described above for machine-wide MPL 
applies to MPL class. 

Ineligible Threshold Value: The effect is not immediate. 
Ineligible threshold exceeded event can be signaled 
when either of the following occurs: 

• An instruction wait satisfied or process is initiated but 
the process is ineligible for the current MPL set. 

• The ineligible process selection algorithm indicates 
that there are additional ineligible processes. 

Resource Management 38-23 



Number of MPL Classes: Number of MPL classes cannot 
be modified. The number is initialized to 16. 

When more than one M PL attribute is specified in 
modifying MPL controls, the order of modification is 
machine-wide maximum MPL, and then machine-wide 
ineligible threshold value. 

MPL class attributes are modified by the same order, 
one class at a time. MPL class and machine-wide MPL 
attributes cannot be modified together. 

Process MPL Parameters: Certain process attributes 
affecting resource management are modified as part of 
the Modify Process Attributes instruction. When the 
target of modification is not the current process, the 
target process is interrupted via the interrupt process 
mechanism and modification takes place under the 
target process at a System/38 instruction boundary. 
The actions are as follows: 

• Priority: The function is performed by nucleus 
subroutine #RMMPRTY (packaged in module 
#RMTSACO). The process disables task dispatching, 
dequeues itself from the prime TOO, modi"fies its 
priority, re-enqueues itself back to the prime TOO 
and enables task dispatching. The purpose is to 
make the current process the last among processes 
of equal priority on the prime TOO, so that a 
processor-sharing effect is achieved. 

• Time Slice Value: If the new time slice value is less 
than the machine minimum time slice value, the 
minimum is used and no exception is signaled. If the 
new time slice value is greater than the maximum 
allowed processor time value of the current process, 
the maximum value is used and no exception is 
signaled. (The machine minimum time slice value, a 
constant, is currently 50 ms.) The new time slice 
value takes effect at the next instruction wait or when 
the next time slice end is reached. 

• Maximum Processor Time Allowed: If the new 
maximum (modified) process time allowed value is 
less than the amount of processor time used, the 
machine interface event, maximum allowed processor 
time expired, is signaled and the maximum allowed 
value is changed. 

38-24 

Normally, when the maximum processor time allowed is 
expanded, the VMC signals the event, replenishes the 
time slice with a full time slice value, and allows the 
process to continue with its program execution. 

• Process Access State at Instruction Wait: The access 
state modification (such as purge) takes effect when 
the process next enters instruction wait. 

• Process Access State at Time Slice End: The new 
value takes effect at the next time slice end. 

• Process M PL Class Identification: The process is 
taken out of the current MPL set of the old MPL 
class and put into the current MPL of the new MPL 
class. Momentarily, the current MPL value of the new 
class could be larger than its maximum MPL value 
until a process in the class enters instruction wait or 
ineligible wait state. 

• Oefault Wait Time-Out Interval: The modification 
takes effect at the next instruction wait. 

• Process Storage Pool Identification: There is no 
immediate effect. Gradually, the process begins 
paging to the new pool. 

Process Attribute Initialization 

#PMINPR2 (initiate process, Part II) invokes #RMINIPR. 
This routine initializes certain resource management 
related process attributes (time slice, maximum 
processor time allowed, M PL class and storage pool 
identification), increments the machine and class total 
number of processes, and invokes #RMIOCMP to 
attempt to enter the process in the current M PL set. If 
not entered, #RMINEWT is called to place the process 
in the ineligible state. When the process leaves the 
ineligible state or if #RMIOCMP placed the process in 
the active state, return is made to #PMINPR2 and 
initiation continues. 

J 



Process Termination 

As part of final process cleanup, #RMTERAT is invoked 
under the service task to decrement MPL counts, update 
processor time used by destroyed process since the last 
IMPL, and calls #RMSELlQ to select processes in the 
ineligible-wait TDQ to run in the current MPL. 

Resource Management Attributes Modification 

#PMMODF2 (modify process attribute) invokes 
#RMMODAT to modify process related resource 
management attributes. They are: priority, time slice 
value, maximum allowed processor time, MPL class 
identification and storage pool identification, and default 
wait time-out interval value. 

The modification data is passed in the message on the 
process interruption SRQ. #RMMODAT dequeues the 
messages one at a time, modifies the specified attribute, 
until all messages for resource management attribute 
modification are dequeued. Then control is returned to 
the caller. 

#RMMODC invokes #RMMODMP to modify MPL 
control attributes. They are: maximum MPL values and 
ineligible threshold values, either machine-wide or by 
MPL class. 

#RMMATD invokes #RMMATMP to materialize MPL 
data. They are: maximum MPL, current MPL, ineligible 
threshold and number of ineligible processes either 
machine-wide or by MPL class, and transition counts by 
MPL class. #RMMATD also invokes #RMMATPU to 
materialize processor time used since last IMPL. 

P.ccess Group Control 

The access group control functions support the 
following System /38 instructions: 

• Create Access Group 

• Materialize Access Group 

• Destroy Access Group 

An access group is an object that collects objects into a 
group that can be operated on by storage management 
to reduce auxiliary storage access. The access group is 
created as an object with a segment identifier and is 
allocated a block of contiguous space on auxiliary 
storage. Other objects can be allocated within the block. 
These objects have their own identifiers and can be 
accessed individually. Special directory information for 
the access group as a whole enables storage 
management to transfer all objects within the access 
group to and from main storage as a single unit. The 
access group is initially created containing no objects. 

At process initiation, an access group can be specified. 
This access group should contain those objects used 
exclusively by the initiated process. This access group is 
called the process access group. 

Normally, the specified access group is purged (written 
to auxiliary storage and the main storage frames 
occupied by the access group made available to other 
users) when a process leaves the active state, and 
brought into main storage when a process reenters the 
active state. This purge and bring can be overridden by 
setting to a the modify access state at instruction wait 
and time slice end process attributes. Additionally, any 
System/38 instruction that can place a process into an 
instruction wait contains a purge option. The purge only 
occurs if both the process and instruction attributes 
allow the purge. 

Resource Management 38-25 



Access Group Creation 

Access groups are created by module #RMCACG. This 
module validates the input creation template and then 
invokes storage management to create a temporary 
segment that will contain the encapsulated program 
architecture (EPA) and access group headers and the 
access group table of contents. #RMCACG again 
invokes storage management to create a temporary 
segment that will contain the segments of the access 
group. 

#RMCACG then initializes the access group header and 
stores the address of the second segment in the access 
group header. The address of the first segment group is 
stored in the segment header of the second segment 
group. 

#RMCACG then stores the auxiliary storage address of 
the first page of the second segment group into the 
table of contents. If the access group is to contain an 
associated space, #RMCACG invokes storage 
management to create the space as a segment group in 
the access group. 

The create access group module then builds the space 
pointer in the first segment group and the space pointer 
in the associated space. If the access group does not 
have an associated space, the space locator in the first 
segment group is set to D's. #RMCACG then initializes 
fields in the EPA header and the building of the access 
is completed. Figure 38-4 shows an example of an 
access group and the sturage management directories 
involved. 

38-26 



Temporary Directory 

Virt Adr of Aux Stg Adr 
AG1, SG1 of Extent 1 --

Vir Adr of Aux Stg Adr 
AG1,SG2 of Extent 1 e.-r-

Access Group Member Directory 

Virt Adr of Virt Adr of 
Segment X AG1 

'-
/ 

Virt Adr of Virt Adr of • Segment Y AG1 

Figure 38-4. Access Group and Directories 

Access Group 1, 
Segment 1, 
Extent 1 

-----r Segment Group Hdr 

EPA Header 

~ 
- ~~ccess G rou p 

Header 

Table of 
Contents 

~ " '\. "'-.'" 

~AC~"GCO~ Segment Group 2 
Size of Extent 1 
Segment X 

Segment Group ) ./ 
Header 

J Size of 
Segment Y -~ 

J Segment X, 
Page 1 

--~ 

Segment Y, 
Page 1 

:::::::~ 
./ 

r-

Segment Y, 
Page N 

Resource Management 38-27 



Attribute Materialization 

Module #RMMACG materializes the attributes of an 
access group. #RMMACG validates the size of the input 
materialization template and seizes the access group. 
#RMMACG materializes the access group information 
into an internal template, stores the access group size 
and available space in the access group into the 
template, and builds a system pointer to each object in 
the access group in the template provided in the 
instruction. #RMMACG then copies the fixed portion of 
the template and releases the access group. 

Access Group Destruction 

Module #RMDACG performs the destroy access group 
function . This module validates the system pointer to 
the access group and seizes the access group. 
#RMDACG invokes #CFOCHKR to perform other checks 
on the access group. #RMDACG then checks that the 
access group does not contain any objects. 

#RMDACG then invokes #CFDESTO to begin the 
destroy process. If the access group has an associated 
space, #RMDACG invokes #SMASM to destroy the 
associated space segment group and null the pointer to 
the associated space. #RMDACG then invokes 
#CFDESTO to complete destruction of the access group. 

Access Group Exception Processing 

Module #RMCACGC is a component specific exception 
handler (CSEH) that is entered when an exception is 
signaled in #RMCACG. This exception handler destroys 
a partially created access group. 

Module #RMMACGC is a CSEH that is entered when an 
exception is signaled in #RMMACG. This CSEH releases 
the access group. 

38-28 

DATA AREAS 

Access Group 

An access group consists of two segment groups as 
shown in Figure 38-5. Segment group 1 contains a 
segment group header, the EPA header, the access 
group header, and a table of contents. The access 
group header only contains a pointer to the segment 
header of the second segment group. The table of 
contents starts on a page boundary following the access 
group header and is used to map the virtual address of 
a page of an object in the access group to its auxiliary 
storage address. Each page of the table of contents 
contains 64 entries, each 8 bytes long. The first entry of 
the first page consists of four 2-byte fields that contain 
the following information: 

• Length of the access group segment in pages 

• An index of the last allocated entry 

• The number of available pages 

• The number of segments in the access group 

The remainder of the table of contents entries contain 
the 5 high-order bytes of the virtual address of a page 
of an object or a page in any virtual segment created 
into the access group. The last byte of the second, 
third, fourth, and fifth entries on each page of the table 
of contents contain the address of the auxiliary storage 
location where the virtual address in the first entry is 
mapped. 

Segment group 2 contains the objects that are created 
into the access group. This segment group also contains 
the associated space of the access group if an 
associated space was created as a member of the 
access group. The first page of the second segment 
group contains the segment header (the remainder of 
this page is not used). 

J 

J 



Segment Group 1 Segment Group 2 
Page 0 Page 0 

Segment Group Header Segment Group Header 

• Pointer to Segment Group Header • Pointer to Segment Group Header 

• Space Locator • Space Locator 
• Pointer to Associated Space 1 • Pointer to Associated Space 1 

1--------------
EPA Header 

Access Group Header (reserved a rea) 

Page 1 
(reserved area) -/" 
Table of Contents / 

Page 1 

Length Index No. No. r- "' 
in of Last Available Created /' 

Page 2 

Pages Page Pages Segments 
/ 

r-~ Virtual Stg status 1st byte au;...-
Addr l .. I- stg add of 

~:-..... 
~ ::--

Page 3 

Virtual Stg 
~v 

Page 0 in 
VV-I Addr l .. seg. group 2 

Page 6 3 

Virtual Stg 2nd byte aux 
Addr l .. status ~ stg add 01 vV-
Virtual Stg 

Page O~n 
status seg. group 2./ 

Addr l 

3rd byt: aux vV--Virtual Stg 
status 

Addr l II stg add ~f/ 

Virtual Stg status" 
Pate 0 in 
seg. grQ;JP 2 V 

Addr l .. I-

~~byte,:7 
/ n"ddof V Page 0 in 

seg. group 2 L 

.- J / / 

7 ~~ 

Page 6 

Page 6 

Page 66 

4 

5 

Page n 

Virtual Stg ~a;u: l/ 
1st byte aux 

Addr l II stg add of 

Virtual Stg ~atu: 
Page 64 in 

Addr l II / 
seg. group 2 

ita~s 
V 2nd byte aux Virtual Stg 

Addr l , 
stg add of 

~tus 
Page 64 in 

Virtual Stg seg. group 2 
Addr l .-

3rd byte aux 
stg add of 
Page 64 in 

L--::: --=- seg. group 2 

~ ::::.--

Virtual Stg status Addr l 

1This field contains a null value if the associated space is not allocated to some object. 

Figure 38-5. Access Group Structure 

Resource Management 38-29 



Clock Comparator Data Area (#RMCCDX) 

This area contains the queue, counters, and data used 
by resource management timer services. The contents 
of this area are shown in Figure 38-6. 

Clock Comparator SRC 

SRC Gate 

Request SRO 

Available SRO 

Initially Available 

Messages 

f t 
Figure 38-6. Clock Comparator Data Area (#RMCCDX) 

Hold Hash Table 

The hold hash table contains a series of halfword entries 
that provides an offset to an associated entry in the 
hold record area. 

Hold Record Area 

The hold record area contains a chain of entries. An 
entry is inserted in the hold record area when an object 
or data space entry is put into a lock or seize state. The 
format of each entry is as follows: 

Hold Object Object Identifier of 
Flags Address Address Holding TOE 

The data base area is not used by the grant and free 
instructions, but is used during some locking functions 
during data base operations. 

38-30 

Lock/Unlock Input Area 

The lock/unlock input area is the input to the lock and 
unlock resource management functions. The contents of 
this area are shown in Figure 38-7. This area is used 
internally by the lock instruction processors and is the 
input for the lock horizontal interfaces. 

Return Code 
Flags 
Pointer to Seize Parameters 
Pointer to Last Hold Record 
Pointer to Input Template (System/38 Lock or Unlock 
Instructions) 
Lock Options 
(reserved area) 
Register Save Area 
Number of Requests 
Unsuccessful Object Identifer 
Lock Count 

Object Address Lock State 

I Object Address 

Figure 38-7. Lock/Unlock Area (ZZLKI) 

Chain Data Base 
Pointer Area 

J 



Lock-Wait Data Area (#RMLKDX) 

The lock-wait data area is used to maintain a list of 
waiters for a lock. The contents of #RMLKDX is shown 
in Figure 38-8. The waiting messages queue defines 
the objects that a process is awaiting. The waiting 
processes queue contains the processes that are 
synchronously waiting on the queue. When a process 
requests a lock-wait for an object, 3 bits of the object 
address are used to determine which of the eight areas 
is to be used. The 3 bits are the last 3 bits of the 
segment group number. 

SRC Gate 

Available Messages Queue 

Initially Available Messages 

1= ~ 
Area 0 

SRC Gate 

Waiting Messages Queue 

Waiting Processes Queue 

Area 1 
SRC Gate 

- ":::::::r-
Area 7 

SRC Gate 

Waiting Messages Queue 

Waiting Processes Queue 

Figure 38-8. Lock-Wait Data Area (#RMLKDX) 

Seize/Release Input Area 

The seize/release input area maps the parameters for 
seize and release operations. The contents of this area 
are shown in Figure 38-9. 

Save Area 

Number of Objects 

Return Code 

Object Hold Work 
Address Request Area 

Bytes 

;,.... 
r-

Object Hold Work 
Address Request Area 

Bytes 

Figure 38-9. Seize/Release Input Area 

Seize-Wait Data Area (#RMSZDX) 

Area #RMSZDX is used during seize and release 
operations when waiting is required. The contents of 
this area are shown in Figure 38-10. The waiting 
messages queue defines the object that a TOE is 
waiting to seize. When a TOE must wait. 2 bits of the 
object address are used to determine which of the four 
areas is to be used. 

Available Message Queue 

Initially Available Messages 

~ :::t 
Area 0 

SRC Gate 

Waiting Messages Queue 
Area 1 

SRC Gate 

--Area 3 -
SRC Gate 

Waiting Messages Queue 

Figure 38-10. Seize-Wait Data Area (#RMSZDX) 

Resource Management 38-31 



STRUCTURE 

The following is a list of the modules in resource 
management and the function that each module 
performs. The list also shows how the module is 
invoked. 

#CFCTASK Create VMC or Microtask 

Function: Establishes a VMC or a microtask and 
enqueues the TDE to the TDO. 

How Invoked: Other VMC components. 

#CFDTASK Destroy Task 

Function: Externally destroys a microtask or 
self-destroys a VMC task. This module will not destroy 
an external VMC task. 

How Invoked: Other VMC components. 

#CFRWTO Receive With Time-Out 

Function: Logically performs a receive with time-out 
operation. Returns either user original message or a 
time-out indication. 

How Invoked: Other VMC components. 

38-32 

#CFWTO Wait Time-out 

Function: Builds a time-out request for the invoking 
program. 

How Invoked: Other VMC components. 

#CFWTOC Cancel Wait Time-Out Request 

Function: This routine is invoked to cancel a time-out 
request. A specific request can be canceled or all 
outstanding requests for a process can be canceled. 

How Invoked: Other VMC components. 

#RMAEHS Access Exception Handler 

Function: Receives control from the first-level exception 
handler (FLEH) for TDE, SRM, and SRO access 
exception. This module runs under either VMC or user 
processes. 

How Invoked: Other VMC components. 

#RMBSYX Busy Exception Handler 

Function: Causes a TDE getting a busy exception to 
enter a wait and then retries the failing operation. 

How Invoked: Other VMC components. 

#RMCACG Create Access Group 

Function: Creates an access group. 

How Invoked: Create Access Group instruction. 

#RMCACGC Create Access Group CSEH 

Function: Processes exceptions that occur during create 
access group operations. 

How Invoked: Other VMC components. 



L 
#RMCCDX Clock Comparator Queues, Counters, 

and Data 

Function: Provides storage for the queues, counters, and 
data used by the resource management clock 
comparator functions. This module does not contain 
executable code. 

How Invoked: Not applicable. 

#RMCCINT Clock Comparator Interrupt Handler 

Function: When the clock comparator matches the 
time-of-day clock, this routine receives the count sent 
by the comparator. This routine then removes the first 
time-out request from this queue and performs the 
requested operation. 

How Invoked: The Send Count instruction issued by 
HMC. 

#RMCDUPC Create Duplicate Object CSEH 

Function: Performs the required recovery for exceptions 
that occur during create duplicate object operations. 

How Invoked: Other VMC components. 

#RMCDUPO Create Duplicate Object 

Function: Duplicates objects. 

How Invoked: Other VMC components. 

#RMCMBTC Restore Free TDE Queue and Available 
CRE Queue 

Function: Combines any pairs of TDEs on the same 
page in the free TDE queue and deallocates the page. 
Combines any sets of four CREs on the same page in 
the free CRE queue and deallocates the page. 

How Invoked: Other VMC components. 

#RMCREAC CRE Access Exception Handler 

Function: Adds four CREs to the end of the ACQ chain. 

How Invoked: Within this component. 

#RMDACG Destroy Access Group 

Function: Destroys the designated access group. 

How Invoked: Destroy Access Group instruction. 

#RMDOUlK Destroy Object Unlock 

Function: After an object has been destroyed, this 
routine clears any locks on the object and dispatches 
any waiters to lock the object. 

How Invoked: Other VMC components. 

#RMDPUlK Destroyed Process Unlock 

Function: When a process is destroyed, this routine 
clears any outstanding lock waits and unlocks any locks 
held by the process. 

How Invoked: Other VMC components. 

#RMENOBJ Ensure Object 

Function: Ensures that any changes made to a user 
object are recorded in the auxiliary storage. 

How Invoked: Other VMC components. 

Resource Management 38-33 



#RMGFEX Grant-Free Exception Handler 

Function: Processes the exceptions from the grant and 
free IMP instruction SCB, GHR, GHRF, FHRF, and FHR. 

How Invoked: Other VMC components. 

#RMGTREQ Get Clock Comparator Request 
Elements 

Function: Creates additional clock comparator request 
elements. 

How Invoked: Other VMC components. 

#RMHHT Hold Hash Table 

Function: Defines and initializes storage to be used by 
the hold/free instructions as a hash table. This module 
does not contain executable code. 

How Invoked: Not applicable. 

#RMHHXlK Transfer User Profile lock when 
Process Created 

Function: Transfers one lock from one process to 
another when the receiving process is being created. 

How Invoked: Other VMC components. 

#RMHlK Horizontal Interface to lock 

Function: Provides an interface for a VMC routine to 
obtain an implicit lock of an object or data space entry. 

How Invoked: Other VMC components. 

#RMHUNlK Horizontal Interface to Unlock 

Function: Unlocks imlJlicit locks. If any task or process 
is waiting to obtain a lock, dispatches the waiters. 

How Invoked: Other VMC components. 

38-34 

#RMINEWT Ineligible Wait State 

Function: Initiates the signaling of ineligible threshold 
exceeded events and the selection of the processes in 
the ineligible wait state if these bits are set. This 
module then moves the current process into the 
ineligible wait TDQ to wait for an open MPl slot. 

How Invoked: Other VMC components. 

#RMINIPI Initiate Process Interrupt 

Function: Initiates process interrupt that interrupts 
another process of the current process itself. 

How Invoked: Other VMC components. 

#RMINIPR Resource Management Initiate Process 
Interface 

Function: Starts time slicing and puts this process under 
MPl control. 

How Invoked: Within this component. 

#RMINIT Resource Management Initialization 
Routine 

Function: Initializes resource management functions at 
IPl. 

How Invoked: Other VMC components. 

#RMIOCMP Transition of a Process from Wait 

Function: Changes the state of a process from a wait 
state to the executing state in current M Pl, or from wait 
state to ineligible wait state and then to current MPl 
set. 

How Invoked: Other VMC components. 

#RMlK lock Instruction Processor 

Function: Obtains object locks. 

How Invoked: lock Object instruction. 



#RMLKAR Lock Asynchronous Wait Retry 

Function: Asynchronously retries a lock instruction that 
failed previously because an object was locked in a 
conflicting state. If successful in obtaining the lock, 
signals an event. 

How Invoked: Other VMC components. 

#RMLKDX Lock Wait Data Areas 

Function: Defines the data areas used when a lock wait 
is needed. This module does not contain executable 
code. 

How Invoked: Not applicable. 

#RMLKS Lock Space Location Processor 

Function: Obtains space location locks. 

How Invoked: Lock Space Location instruction. 

#RMLKTO Asynchronous Lock Wait Time-Out 

Function: Signals an event when an asynchronous lock 
wait exceeds the wait time specified. 

How Invoked: Within this component. 

#RMMACG Materialize Access Group Attributes 

Function: Materializes the description of an access 
group and the identification of objects currently assigned 
to the access group. 

How Invoked: Materialize Access Group Attributes 
instruction. 

#RMMACGC Materialize Access Group CSEH 

Function: Performs the required recovery for exceptions 
that occur during a materialize access group operation. 

How Invoked: Other VMC components. 

#RMMATD Materialize Resource Management Data 

Function: Materializes user-specified data and machine 
maintained statistics concerning the control and use of 
machine resources. 

How Invoked: Materialize Resource Management Data 
instruction. 

#RMMATMP Materialize MPL Data (Subroutine) 

Function: Obtains MPL data and stores it in RMMTMD 
area. 

How Invoked: Within this component. 

#RMMATPU Materialize Processor Utilization Data 
(Subroutine) 

Function: Calculates processor time used by active and 
destroyed VMC tasks and user processes. 

How Invoked: Within this component. 

#RMMDTOD Modify Time-Of-Day 

Function: Sets the time-of-day clock to the value 
presented in the instruction. Requests waiting for an 
interval of time must be modified so that the elapsed 
wait interval remains unchanged. 

How Invoked: Modify Machine Attributes instruction. 

#RMMIETO Backout Time-Out Messages at 
Terminate Invocation due to 
Unexpected Exceptions 

Function: Restores time-out SRM when invocation of 
#CFRWTO is terminated unexpectedly. 

How Invoked: Other VMC components. 

Resource Management 38-35 



#RMMIMWT Unconditional Wait MPL Control 
Routine 

Function: Prepares the current process to enter a wait. 
This module adjusts the M PL and process attributes, 
invokes traces, initiates process selection when first 
entering the wait, and purges the process access group 
if conditions are met. 

How Invoked: Within this component. 

#RMMIWTO Handle Wait Time-Out 

Function: Handles wait time-out prior to message 
received in the receive-with-time-out common function. 

How Invoked: Other VMC components. 

#RMMODAT Modify Attributes for Modify Process 
Attribute 

Function: Modifies the specified resource management 
attributes. 

How Invoked: Other VMC components. 

#RMMODC Modify Resource Management Controls 

Function: Modifies the specified resource management 
controls. 

How Invoked: Other VMC components. 

#RMMODMP Modify MPL Controls 

Function: Modifies the specified values for M PL 
controls. 

How Invoked: Within this component. 

38-36 

#RMMPLM Machine-Wide MPL and MPL Class 
Data Module 

Function: Management of machine-wide MPL that 
governs the number of concurrently executing 
processes. MPL class data structure MPLC is also part 
of this module. This module does not contain 
executable code. 

How Invoked: Not applicable. 

#RMMTOLK Materialize Object Locks 

Function: Materializes all locks on an object that are 
held or waited for. 

How Invoked: Materialize Object Locks instruction. 

#RMMTPLK Materialize Process Locks 

Function: Materializes all locks that a process holds or is 
waiting for. 

How Invoked: Materialize Process Locks instruction. 

RMMTSLK Materialize Selected Locks 

Function: Materializes all locks a process holds for 
selected objects or space locations. 

How Invoked: Materialize Selected Locks instruction. 

#RMMTTOD Materialize Time- Of- Day 

Function: Stores the current time-of-day. 

How Invoked: Materialize Machine Attributes instruction. 

#RMPICRE Backout CREs 

Function: Restores unserviced interrupt functions when 
exceptions cause prior invocation to be terminated. 

How Invoked: Other VMC components. 



#RMRCVlK Receive Transferred locks 

Function: Receives the locks that are transferred to this 
process. 

How Invoked: Within this component. 

#RMRlSA Release All Objects 

Function: Releases all objects that are seized by the 
process invoking this routine. 

How Invoked: Other VMC components. 

#RMSACS Set Access State 

Function: The instruction communicates a process usage 
or access speed requirements for a designated set of 
objects. 

How Invoked: Set Access State instruction. 

#RMSEUQ Select Process 

Function: Selects a process in ineligible state to execute 
in the current M PL set. 

How Invoked: Within this component. 

#RMSlWT Synchronous Lock Wait Terminate 

Function: Terminates a synchronous lock wait when the 
invocation in which the request was made no longer 
exists. 

How Invoked: Other VMC components. 

#RMSVTSK Resource Management Service Task 

Function: Supports terminate process final phase code. 
Supports MPL control that selects and dispatches 
processes in the ineligible wait. Supports signal 
ineligible threshold exceeded event for MPL control 
functions. Supports asynchronous lock wait time-out. 

How Invoked: Other VMC components at IPL and 
periodically by timer service. 

#RMSZDX Seize Wait Data Area 

Function: Maps the data areas used by seize and 
releases when waiting is required. This module does not 
contain executable code. 

How Invoked: Other VMC components. 

#RMTDEAH TOE Access Exception Handler 

Function: Replenishes time slice value, supports process 
interrupt and interrupts at wait, and supports MPL 
control. 

How Invoked: Within this component. 

#RMTERAT Modify Attributes at Terminate Process 

Function: Updates MPL attributes and processor time 
used, and dispatches process in ineligible wait state. 

How Invoked: Other VMC components. 

#RMTSACQ Time Slice End and ACQ Related 
Access Exception Handler 

Function: Replenishes time slice, and updates processor 
time used. Indicates time slice end before completion 
status and indicates processor maximum time limit 
reached status. Analyzes exception code and invoke 
monitored CRE access exception handler. 

How Invoked: Other VMC components. 

Resource Management 38-37 



#RMTSEND Time Slice End to Ineligible Wait or 
Continue 

Function: Makes conditional transition of a process from 
the executing state to the ineligible wait state or causes 
it to remain in executing state at time slice end. 

How Invoked: Within this component 

#RMUGGR Unsuccessful Get MWS Gate Release 

Function: When a get MWS encounters an exception, a 
gate must be released in some cases before presenting 
the exception. This allows other processing to continue. 
This routine releases the gates. 

How Invoked: Within this component. 

#RMUNLK Unlock Instruction 

Function: Unlocks the specified object locks or cancels 
all asynchronous lock waits outstanding for the 
requesting process. If a specified lock is unlocked and a 
process is waiting to lock the object, this module 
dispatches the waiters. 

How Invoked: Unlock instruction. 

#RMUNLKS Unlock Space Location Processor 

Function: Unlocks specified space locations. 

How Invoked: Unlock Space Location instruction. 

38-38 



MACHINE-WIDE STORAGE 

Machine-wide storage is a virtual storage area used by 
VMC modules for various free-storage applications. 
Storage is obtained by invoking #CFGTMWS at entry 
points #CFGTMWS and #CFGMWSR. Storage is freed 
by invoking entry points #CFFRMWS, #CFFMWSR, and 
#CFFMWSA. When an area is freed, the identification 
(normally the address of the current process control 
block) of the module returning the area must also be 
provided. 

Virtual storage areas are supplied to the calling program 
in blocks of 32, 64, 128, 256, and 512 bytes. Requests 
for other sizes are rounded up to these sizes. Larger 
areas (513 through 65 024 bytes) are allocated and 
freed within the machine-wide storage (MWS) code by 
creating or destroying a segment identifier (SID) via calls 
to #SMSGCRT and #SMSGDES. Control information for 
the various blocks that have either been allocated or are 
available for allocation is kept in a control segment 
separate from the data areas given to the requesting 
program. 

At IPL time, the resource management initialization 
module (#RMINIT) invokes #CFMWSIN to set up the 
storage blocks needed. Five expandable temporary SID 
groups are obtained for the five block sizes from 32 
through 512 bytes, and 6 control segments (also 
expandable) are obtained for the control information for 
the five fixed sizes (corresponding to the five SID 
groups) and the large sizes (greater than 512 bytes). 

#CFGTMWS allocates storage from the available areas. 
If space is not sufficient, the SID group (and the control 
segment if necessary) is extended to provide enough 
space to satisfy the call. For large sizes, the auxiliary 
storage management segment creation function is 
invoked to obtain a temporary segment which is given 

to the user, and the address and the identification of the 
owner are allocated. 

Appendix A. Common Function 

In a free operation of up to 512 bytes, #CFFRMWS or 
#CFFMWSR or #CFGMWS (after checking the validity 
of the area to be returned), deallocates the area, making 
the space available for future get operations. For a free 
operation of areas greater than 512 bytes, #CFFRMWS 
or #CFFMWSR again makes a validity check, and then 
destroys the segment. The data in the control segment 
for the freed space is kept current. 

DESTROY OBJECT (#CFDESTO) 

When a System/38 destroy instruction (for a particular 
object) is issued, one of several instruction processors is 
invoked to destroy the specified object. After 
preliminary checking and processing is complete as 
appropriate for the object, it is necessary to perform 
operations that are common to all destroy operations. 

#CFDESTO is invoked to perform these operations. 
#CFDESTO normally removes the address of the object 
from any contexts that reference the object, removes the 
authority to the object from any user profile(s). removes 
object ownership from the owning user profile, and then 
destroys the object segment identifier and an associated 
space (if any). 

#CFDESTO then returns to the invoking instruction 
processor that performs any other functions required for 
the destroy. 

#CFDESTO has two parts. The first part checks the 
addressing context (if any) and the owning user profile 
(for a permanent object) or the access group (for 
temporary objects) to ensure that neither is locked 
exclusively. The second part performs the actual 
deleting functions. 

#CFDESTO also performs a cleanup function in the 
event that the invoking routine determines that the 
object cannot be destroyed. 

Note: #CFDESTO is not called to destroy user profiles. 
User profiles are destroyed by #AUDESUP. 

Common Function A-1 



GET SPACE FROM IWA (#CFGIWA) 

#CFGIWA allocates space from the invocation work area 
(lWA). The space is given contiguously beginning from 
the end of the area that is currently in use. The size of 
a request can be any value between 1 K and 64 K. Each 
request is rounded up to the next multiple of 16. 

Other options control the allocation of an IWA area. 
These options can request that the allocated area be 
aligned on a page boundary or be contained within a 
page. An IWA allocation does not cross a segment 
boundary. The amount of IWA that can be allocated to 
a process is limited. An attempt to exceed this list 
results in automatic destruction of the process. 

FREE SPACE FROM IWA (#CFFIWA) 

#CFFIWA is an entry point in #CFEAOSE. #CFFIWA 
frees space in the IWA. Only storage belonging to the 
invocation can be freed. The first 24 bytes of an 
invocation area are not freed because these bytes 
contain forward and backward pointers. The number of 
bytes to be freed is rounded down to the next multiple 
of 16. 

OBJECT CHECKER (#CFOCHKR) 

#CFOCHKR validates a system pointer and optionally 
provides some diagnostics and serialization on the 
system object addresser! through the system pointer. 
The basic checks performed by this function are as 
follows: 

• Validate pointer type (must be a system pointer) 

• Verify that the pointer is resolved (late binding) 

• Verify the existence of the pointer 

• Ensure that the reference object exists 

A-2 

This function optionally provides the following checks 
and functions: 

• Object type check 

• Authority check 

• Seize the object 

• Object damaged check 

• Object suspended check 

• Lock enforcement check 

Any system pointer used by a VMC routine, whether it 
is passed in a System/38 instruction operand or as a 
pointer within a template, is diagnosed by the function. 
One or more pointers can be provided as input to 
#CFOCHKR in a single invocation. 

One of the primary functions provided by #CFOCHKR is 
to test for a conflicting lock state and at the same time 
to serialize the activity on the system object. 

REPORT OBJECT ON OBJECT RECOVERY LIST 
(#CFLOGRL) 

#CFLOGRL performs the placement of entries on the 
object recovery list. Each entry identifies an object. 
Entries are placed on the list when they are found to be 
damaged (soft or hard). when they are not synchronized 

with a journal. when data space indexes are found to be 
invalidated during IPL, or when the entries are 
suspended during IPL (initial program load) recovery and 
during some run-time functions. #CFFLGRL sets a 
recovery flag to indicate the object recovery list is 
incomplete when discovered. 



access group: A system object that is a collection of 
other system objects, which are transferred to/from 
auxiliary storage as a group. The access group is used 
to improve storage management efficiency by specifying 
which system objects are used together. 

access group table of contents: A list that describes 
the virtual and disk addresses of objects in an access 
group. 

ACQ: See available CRE queue. 

address list element: The address list element is an 
8-byte object containing a virtual or virtual=real address 
to be used during page chaining operations. The 
address list element is a single element in a page chain 
address stack used during the processing of a function 
operation block command. 

Advanced Program-to-Program Communications: 
Data communications support that allows a System/38 
to communicate with other systems having compatible 
communications support. APPC is the System/38 
implementation of the SNA/SDLC LU6.2 protocol. 
Using APPC, System/38 can start programs on another 
system, or another system can start programs on the 
System/38. 

AIPL: See alternative initial program load. 

alternative initial program load: A process, when 
combined with the initial microprogram load sequence, 
that prepares the system for operation and installs CPF 
from the diskette magazine drive. 

American National Standard Code for Information 
Interchange: (ANSI) The standard code, using a coded 
character set consisting of 7-bit coded characters (8 bits 

including parity check!. used for information interchange 
among data processing systems, data communications 
systems, and associated equipment. The American 
National Standard Code for Information Interchange set 
consists of control characters and graphic characters. 

American National Standards Institute: An 
organization sponsored by the Computer and Business 
Equipment Manufacturers Association for the purpose of 
establishing voluntary industry standards. 

Glossary 

ANSI: See American National Standards Institute. 

APPC: See advanced program-to-program 
communication. 

ASCII: See American National Standard Code for 
Information Interchange. 

ASDE: See auxiliary storage directory entry. 

ASM: See auxiliary storage management. 

auxiliary storage: All addressable storage space other 
than main storage. Auxiliary storage is located on the 
system's removable disk enclosures. 

auxiliary storage directory entry: Contained in the 
permanent or temporary directory, the auxiliary storage 
directory entries are 11-,16-,21-, and 26-byte entries 
that map the disk addresses assigned to all permanent 
and temporary segments. 

auxiliary storage managment: Directs the allocation of 
auxiliary storage and maintains directories that map 
virtual addresses to disk locations. It also directs the 
allocation of space within access groups. 

available CRE queue: The mechanism by which 
call/return elements are made available to the processor 
and eventually to a task dispatching element. 

base address: A numeric value used as a reference in 
the calculation of addresses in the execution of a 
computer program. 

base address register: (ISO) A register that holds a 
base address. Synonymous with base register. 

basic information unit: In systems network 
architecture, the unit of data and control information that 
is passed between connection point managers. It 
consists of a request/response header followed by a 
request/ response unit. 

binary synchronous communications: A flexible form 
of line control that provides a protocol for 
communication between two stations. 

Glossary 8-' 



break offset mapping table: An optional part of an 
encapsulated program template that consists of bit 
entries that provide mapping of the System/38 
instructions to the high-level language source statement. 

BSC: See binary synchronous communications. 

BSTAT: Basic status. 

buffer control list: The buffer control list is used to 
maintain the location and status of the input buffers. 
There is an entry in the buffer control list for each 
buffer. The entry contains a pointer to the buffer and 
the status of that buffer. 

call/return element: A resident storage area used to 
save the status of a procedure during a supervisor 
linkage function. 

CD: See controller description 

commit: To cause all changes that were made to the 
data base file since the last commitment operation to 
become permanent and the records to be unlocked so 
they are available to other users. 

commit block: A permanent object that serves as the 
structure to control commit/ decommit within a process. 

commitment control: A means of grouping file 
operations that allows the processing of a group of data 
base changes as a single unit or the removal of a group 
of data base changes as a single unit. 

component-specific exception handler: An exception 
management function that is defined by a vertical 
microcode component to attempt to resolve an 
exception, replace the exception with a more meaningful 
one, or perform a cleanup function. 

connection point manager: The systems network 
architecture component that provides a common 
mechanism by which session control, network control, 
and network addressable units communicate with their 
corresponding elements through the communications 
network. The units of information that the connection 
point manager receives from the network addressable 
IJnits, session information to construct the transmission 
headers and request units. 

B-2 

Control Program Facility: The system support licensed 
program for the IBM System/38. It provides many 
functions that are fully integrated in the system such as 
work management, data base data management, job 
control, message handling, security, programming aids, 
and service. 

controller description: A system object that defines 
and describes a device controller or communications 
station. There is one controller description for each 
device controller or communications station on the 
system. The controller logically represents a physical 
I/O controller to the system. 

CPF: See Control Program Facility 

CRC: See cyclic redundancy check. 

CRE: See call/return element. 

CSEH: See component-specific exception handler. 

cursor: A system object used with the data base 
facility. A cursor provides a path to access a data base, 
performs field mapping and conversion, and retains 
information about the current status of its use by a 
process. 

cyclic redundancy check: In data communications, a 
method of error checking that is performed at both the 
receiving station and the transmitting station after a 
block check sequence has occurred. 

data flow control: A data manipulation function that 
monitors and controls the exchange of requests and 
responses to and from the function manager according 
to the half-duplex send/receive mode of operation. 

data link: (1) In data communications, the 
communications lines, modems, system consoles, work 
stations, and other communications equipment for the 
transmission of data between a receiving station and a 
transmitting station in a data network. (2) In data 
communications, the physical connection and the 
connection protocols between the host system and the 
communications control unit nodes by means of the 
host data channel. 

data link control: The noninformational exchanges that 
set up, control, check, and terminate the information 
exchange(s) between two stations on a data link. 



data space: A system object in which data space 
entries (records) are stored. Once a data space has 

been created, new entries can be inserted and existing 
entries can be updated, retrieved, or deleted. 

data space mapping table: An object that contains an 
identification entry for each data space that the cursor is 
over. The data spaces are in the same sequence as in 
the data space list supplied during program creation. 

DFC: See data flow control. 

DISC: An SDLC command for disconnect. The DISC 
command indicates that data cannot be received or 
transmitted. 

disconnect mode: An SOLe response to disconnect 
mode. The disconnect mode response indicates that the 
receiving station is offline. 

DKEY: Data space key table. 

DKYT: Key field description table. 

DLC: See data link control. 

DMAP: See data space mapping table. 

DSTAT: Device status. 

EBCDIC: See extended binary-coded decimal interchange 
code. 

ELLC: See enhanced logical link control. 

encapsulation: The process of translating data (such as 
a program in the form of a template) into an internal and 
machine-usable form. Nonencapsulated system objects 
are visible in both format and function to the System/38 
user. Encapsulated system objects are visible to the 
user in function, but not in format. An independent 
index is an example of an encapsulated system object 
while a space is not encapsulated. 

enhanced logical link control: An SNA logical link 
control protocol that allows the transfer of data link 
control information between two adjacent SNA nodes 
that are connected through an X.25-based 
packet-switched data network. This protocol provides 
enhanced error detection and recovery. Contrast with 
physical services header and qualified logical link control. 
Abbreviated ELLC. 

EPA: Encapsulated program architecture. 

EXCB: A machine index function. 

exchange identification: The station identification 
sequence for establishing identity of the secondary 
station. The contents of this field establishes a unique 
identification of the physical unit that a controller 
description object is to represent. The block number 
and the specified identification are assigned by the 
manufacturer or installer for every physical unit. Each 
unit can identify itself with the exchange identification 
information. 

extended binary-coded decimal interchange code: A 
set of 256 characters, each represented by 8 bits. 

FAT: See function address table. 

feedback record: A message placed on a queue 
indicating the status of a completed operation initiated 
by the Request I/O instruction. 

first-level exception handler: An exception 
management function that receives control from the 
horizontal microcode when the horizontal microcode 
detects an error. The first-level exception handler then 
routes the exception to the appropriate common 
exception handler. 

FOB: See function operation block. 

format identification field: In systems network 
architecture, a field in a transmission header that defines 
the subsequent format of the header and the type of 
transmission header fields involved with transmission. 

FSM: Finite state machine. 

FSTAT: Functional status. 

function address table: The function address table 
contains entries that describe functions being requested 
by the system control adapter to load and execute the 
system control adapter routines. 

function operation block: One of five forms of the 
operation block that identify the operational unit and 
convey the command to be executed by the operational 
unit. 

GB: See gigabyte. 

gigabyte: One billion bytes. 

HMC: See horizontal microcode. 

Glossary B-3 



horizontal microcode: The microcode that exhibits a 
high degree of parallelism of execution, controls the 
detailed state of the hardware, and supports the internal 
microprogramming instruction set. 

I/O: Input/output. 

I/O manager: A programming object that controls the 
flow of control information to and from an I/O unit. 

IAR: See instruction address register. 

ILC: See instruction length count. 

IMP: See internal microprogramming. 

IMPL: See initial microprogram load. 

index control block: Defines the indexing operation to 
be performed, the argument to be used, the space for 
the result, and the location of the index. 

initial microprogram load: The initialization procedure 
that causes the loading of the system microcode from 
disk or diskette to control storage. 

initial program load: The initialization procedure that 
causes an operating system to start operations. 

input/output controller: A functional unit in a data 
processing system that controls one or more units of 
peripheral equipment. 

instruction address register: A register from whose 
contents the address of the next instruction is derived. 

instruction length count: A 3-bit code that provides 
the length of the last instruction executed. 

internal microprogramming: A set of instructions that 
are used as an internal communications link between the 
vertical microcode and the horizontal microcode. 

invocation: An invocation is the execution of a 
program. It represents the status of the process after 
the program is invoked. When one program calls 
another program, the two programs are said to be in 
different invocations. The invocation of a program that 
is called a second time by the same calling invocation is 
also considered to be a different invocation. Automatic 
storage is allocated for a program at every invocation. 

invocation work area: The area of storage where the 
execution of a program occurs. 

8-4 

10C: See input/output controller. 

10M: See I/O manager. 

IPL: See initial program load. 

ISTAT: Immediate (or intermediate) status. 

IWA: See invocation work area. 

IXCB: See index control block. 

journal: Refers to the journal port and the journal 
spaces attached to the journal port. 

journal entry: The changes that are made to an object 
and are recorded in the journal spaces. 

journal port: A system object used to link the journaled 
objects to the journal spaces. 

journal space: Receives and records changes to objects 
specified as journaled objects. 

journaled object: Object that has the changes made to 
it recorded in the journal spaces. 

LEAR: See lock. 

LENR: See lock. 

light-emitting diode: A device that emits light for 
detection purposes. 

link control block: The link control block is located in 
the invocation work area of the queue message router 
and is present when the task is active. It contains 
pointer, the program operation block, the operation 
request element, status indicators, and retry counters 
used for error recovery. 

LKB: See link control block. 

LLC: See logical link control. 

load/dump: A function that enables the user to save 
(back up) certain permanent objects by dumping these 
objects to a load / dump media (such as diskettes) and, 
then, load (restore) these objects when needed. 

local session identification: In systems network 
architecture, a field in a local address formal (FID3) that 
identifies both the origin and destination network 
addressable units of a given session. 



lock: A control applied to a system object (in behalf of 

a process) that guarantees the ability for a process to 
perform certain types of operations while prohibiting 
other processes "from performing certain types of 
operations. The five types of locks are: 

• LSRD: Lock for shared read 

• LSRO: Lock for shared read only 

• LSUP: Lock for shared update 

• LEAR: Lock for exclusive use but allow read in other 
processes 

• LENR: Lock for exclusive use with no read in other 
processes 

logical link control: See also exhanced logical link 
control, qualified logical link control, and physical services 
header. 

logical unit: In systems network architecture, one of 
three types of network addressable units. It is the port 
through which an end user accesses function 
management in order to communicate with another end 
user. It is also the port through which the end user 
accesses the services provided by the system service 
control point. It must be capable of supporting at least 
two sessions-one with the system services control 
point, and one with another logical unit. It may be 
capable of supporting many sessions with other logical 
units. 

logical unit description: A system object that defines 
and describes an I/O device on the system. There is 
one logical unit description for each I/O device. 

LSRD: See lock. 

LSRO: See lock. 

LSUP: See lock. 

LU: See logical unit. 

LUD: See logical unit description. 

LUSTAT: Logical Unit Status (SNA command). 

machine check: A type of exception that indicates a 
malfunction on the machine. 

machine check logout buffer: An area in main storage 
that is reserved for the reporting of machine checks by 

the hardware machine check handler. This area contains 
data concerning the cause of the machine check and the 
environment existing when the machine check occurred. 

machine communications area: The assigned storage 
locations, which contain control information required for 
VMC objects to communicate with each other. 

machine initialization status record: Used by VMC 
components to store information relating to the status of 
the machine following an initial program load or an initial 
microprogram load. 

machine services control point: The machine 
component that provides services and coordinates the 
processing of supervisory services. 

machine-wide storage: A virtual storage area used by 
VMC modules for various free-storage applications. 

main storage: All storage in a computer from which 
instructions can be executed directly. 

main storage management: Manages the functions 
necessary to read data from or write data to main 
storage. 

materialization definition template: A part of an 
encapsulated program template that contains a copy of 
the input program template if the program was specified 
as observable in the Create Program instruction. 

MCA: See machine communications area. 

MCLB: Machine Check logout buffer. 

MCR: Machine con"figuration record. 

MDT: Materialization definition template. 

MFCU: Multi-function card unit. 

M ISR: See machine initialization status record. 

MPL: See multiprogramming level. 

MSCP: See machine services control point. 

MSM: See main storage management. 

multiprogramming level: The number of processes 
currently executing. 

Glossary 8-5 



name resolution: (1) The function of resolving 
addressability to system objects. An unresolved system 
pointer specifies the symbolic name of a system object. 
At first reference, an unresolved system pointer is 
resolved as follows. The machine searches for the 
symbolic name in contexts until it is found and then sets 
addressability to the corresponding system object into 
the pointer, thereby making it a resolved system pointer. 
The contexts to be searched are contained in the name 
resolution list. (2) Also, the function of resolving 
addressability to extend program objects defined in 
programs within a pror.ess. 

name resolution list: A process attribute that is a 
vector of resolved system pointers to the contexts that 
are searched for name resolution. See name resolution. 

NO: See network description. 

network description: A system object that defines and 
describes an I/O port and communications line for 
remotely attached I/O devices. The network description 
logically represents the I/O port to the system. 

NRl: See name resolution list. 

object definition table: A part of a program definition 
template that defines the program objects associated 
with the instructions in its instruction stream. 

object mapping table: A part of an encapsulated 
program template that consists of a variable-length 
vector of 6-byte entries. The number of entries 
corresponds to the number of object definition table 
directory vector entries. Each object mapping table entry 
provides a location mapping for the object defined by an 
associated object definition table directory vector entry. 

ODT: See object definition table. 

ODT directory vector: One of the components of the 
object definition table. The OOT directory vector 
consists of a series of 4-byte entries. These entries are 
referred to by the operands of machine interface 
instructions and provide a description of the program 
object. The object definition table entry string is used to 
complete the description when it cannot be completely 
described with the 4-byte OOT directory vector. 

ODV: OOT directory vector. 

OES: OOT entry string. 

OMT: See object mapping table. 

B-6 

OP: See operation program. 

operation program: A set of operation blocks placed in 
storage and executed together prior to any response. 

operation request element: An internal 
microprogramming message, placed on an operational 
unit queue, to cause an I/O operation. It consists of a 
standard internal microprogramming queue element 
header, a status field, and an operation block. 

operational unit: An I/O device or source of 
asynchronous events together with an operational unit 
task that controls the device or the event. 

operational unit queue: The queue upon which 
operation request elements are placed by the 
source/sink component below the machine interface. 
There is one operational unit queue for each operational 
unit. 

operational unit task: A microcode task that exists for 
each operational unit that performs operations such as 
operation block execution and command completion 
functions. The operational unit task services the 
operational unit queue and I/O events. 

ORE: See operation request element. 

ORP: Optional response poll. 

OU: See operational unit. 

PASA: See process automatic storage area. 

path control: In systems network architecture, one of 
the components of the transmission subsystem, and one 
of two components of the common network. It is 
responsible for managing the sharing of data link 
resources of the common network and for routing basic 
information units through it. It is aware of the location 
of network addressable units in the network and of the 
paths between them. It maps the basic transmission 
units, handled by transmission control, into path 
information units, and then into basic transmission units 
that are passed between path control and data link 
control. The unit of control information built by the 
sending path control component and interpreted by the 
receiving path control component is a transmission 
header. 



path information unit: In systems network architecture, 
the unit of transmission consisting of a transmission 
header and either a basic information unit or a basic 
information unit segment. 

PCB: See process control block. 

PCS: See process control space. 

POE: See primary directory entry. 

PDT: Process definition template. 

PE: See phase-encoding. 

PEM: See program event monitor. 

phase modulation recording: A magnetic recording in 
which each storage cell is divided into two regions 
which are magnetized in opposite senses; the sequence 
of these senses indicates whether the binary character 
represented is zero. Synonymous with phase encoding. 

phase-encoding: Synonym for phase modulation 
recording. 

physical services header: One of three logical link 
control protocols used by IBM SNA DTEs. Physical 
services header provides adjacent node services. 
Contrast with enhanced logical link control and qualified 
logical link control. Abbreviated PSH. 

physical unit: In systems network architecture, one of 
three types of network addressable units; a physical unit 
is associated with each node that has been defined to a 
system services control point. A physical unit controls 
the resources local to its associated node. The system 
services control point establishes a session with the 
physical unit as part of the bring-up process. 

PIWA: Process invocation work area. 

POB: Pointer operation block. 

PPR: Perform paging request. 

PRE: Paging request element. 

primary directory element: An entry in the primary 
directory. 

primary' directory entry: A list of entries in which each 
entry contains the virtual address and the status of a 
page frame in main storage. 

process automatic storage area: A space that is used 
for automatic program allocation when a program is 
invoked. 

process control block: A storage area used to map 
storage areas and provide control areas. It also contains 
a pointer to the name resolution list. 

process control space: A system object used to 
support the execution of a process and as a means of 
addressing a process. 

process static storage area: A space that is used for 
static program object allocation during program 
activation. 

program event monitor: The processor comparing the 
initial byte of the instructions to determine if they fall 
within the range of the program event monitor start and 
stop addresses. 

program operation block: One of five forms of the 
operation block that is used in an operation request 
element when an operation program is to be executed. 

PSH: See physical services header. 

PSSA: See process static storage area. 

PU: See physical unit. 

aCT: See queue control table. 

queue: A system object consisting of an ordered list of 
messages that communicates information to other 
processes. 

queue control table: A table, accessed by microcode 
and machine product code, that controls I/O operations. 
There is one table for each operational unit. 

RAM: Random access memory. 

RD: See request descriptor. 

read-only storage: Storage that can be read but not 
modified. 

request descriptor: A field of the source/sink request. 
It contains the command operations for the I/O device 
or the message description to be sent to a 
communication device. The request descriptor field is 
uniq uely defined for each type of I/O device on the 
system. 

Glossary 8-7 



request/response header: In systems network 
architecture, a control field, attached to a 
request/ response unit, that specifies the type of 
request/response unit being transmitted-request or 
response-and contains control information associated 
with that request/ response unit. It is used by sending 
and receiving connection point managers to coordinate 
data traffic between network addressable units. 

request/response unit: In systems network 
architecture, the basic unit of information entering and 
exiting the transmission subsystem. It may contain data, 
acknowledgement of data, commands that control the 
flow of data through the network, or responses to 
commands. 

ROS: See read-only storage. 

routing table: Supports the systems network 
architecture transmission subsystem. This table contains 
fields that support path control, connection point 
manager, data flow control, and logical units. 

SCA: See system control adapter. 

SDLC: See synchronous data link control. 

second-level exception handler: An exception 
management function that invokes the third-level 
exception handler to process vertical microcode 
exceptions, invokes the exception generator to process 
translated code exceptions, or invokes a default 
exception handler to process the exception. 

segment identifier: Bits 0 through 23 of a virtual 
address. 

select/omit: A program may be associated with a data 
space index that includes or excludes (based on the 
contents of the entries) data space entries in the index. 

send/receive counter: The internal microprogramming 
instruction object used to exchange intertask information 
and to synchronize the flow of control between tasks; a 
count field used for control but no messages are 
enqueued. 

send/receive message: An internal microprogramming 
instruction object that contains a message and may be 
enqueued to a send / receive queue. 

B-8 

send/receive queue: An internal microprogramming 
instruction object that is used to exchange intertask 
information to synchronize the flow of control between 
tasks. 

service order table: In the network control program, 
the list of telecommunication devices on a multipoint line 
(or point-to-point line where the terminal has multiple 
components) in the order in which they are to be 
serviced by the network control program. 

SFD: Service function driver. 

SID: See segment identifier. 

SLEH: See second-level exception handler. 

SM: Service monitor. 

SMVT: Storage management vector table. 

SNA: See systems network architecture. 

SOT: See service order table. 

source/sink active device list: A control block that 
contains the information maintained and used by various 
machine services control point routines. 

source/sink data area: A space that contains the data 
areas (I/O buffers) associated with the operations 
requested by the request descriptors within the 
source / sink request. 

source/sink request: The operand of a source/sink 
Request I/O instruction (MI) that specifies the I/O 
operation to be performed, the characteristics of the 
data to be used in the operation, and the data to be 
used in the operation. 

SRC: See send/receive counter. 

SRM: See send/receive message. 

SRQ: See send/receive queue. 

SSCP: See system services control point. 

SSD: See source/sink data area. 

SSR: See source/sink request. 

J 

J 



standard character stream: A method of transferring 
print data, carriage control, and print position 

information from the System/38 to a printer. 

supervisor linkage: The method by which internal 
microprogramming procedure switching is accomplished 
within a task and the method by which internal 
microprogramming exceptions are reported. 

supervisory services: The network control program 
supervisor code that provides miscellaneous services, 
such as the communication adapter interface, starting 
channel output, controlling timer operations, and data 
manipulation and utility services. 

SVL: See supervisor linkage. 

SVLM: Supervisor link monitor. 

SVX: Supervisor exit. 

synchronous data link control: A discipline for the 
management of information transfer over a data 
communications channel. Transmission exchanges can 
be duplex or half duplex; the communications channel 
configuration can be point-to-point, multipoint, or loop. 
SDLC includes comprehensive detection and recovery 
procedures, at the data link level, for transmission errors 
that can be introduced by the data communications 
channel. 

system control adapter: An interface used in 
conjunction with the CE / operator panel for initiating and 
monitoring the system during system initiation. 

system services control point: In systems network 
architecture, a network addressable unit that provides 
configuration, maintenance, and session services via a 
set of command processors (network services) 
supporting physical units and logical units. The system 
services control point must be in session with each 
logical unit and each physical unit for which it provides 
these services. It also provides services for the network 
operators or administrators who control the 
configuration. The system services control point is 
commonly located at a host node. 

systems network architecture: The total description 
of the logical structure, formats, protocols, and 
operations sequences for transmitting information units 
through the communications system. 

task: (1) A semi-independent unit of work that can be 

performed concurrently with other tasks and requires 

coordination with other tasks only at certain points 
within the execution. (2) Units of work activated by the 

task dispatcher. 

task dispatching element: An internal 
microprogramming object used to identify a task and the 
attributes associated with that task. 

task dispatching queue: An internal microprogramming 
object used by the task dispatcher to allocate processor 
time to the dispatchable tasks in the system. 

TOE: See task dispatching element. 

TOO: See task dispatching queue. 

third-level exception handler: An exception 
management function that invokes vertical microcode 
component-specific exception handler routines and 
performs an action based on the status of the exception 
after the component-specific exception handler routines 
have executed. 

TLEH: See third-level exception handler. 

TOO: Time of day. 

transmission header: In systems network architecture, 
a control field attached to a basic information unit or to 
a basic information unit segment, and used by path 
control. It is created by the sending path control 
component and interpreted by the receiving path control 
component. 

transmission subsystem: In systems network 
architecture, the innermost layer of the communication 
systems. It provides the control in each session to route 
and move data units between network addressable units 
and their interconnecting paths. Its three constituent 
parts are data link control, path control, and 
transmission control. 

TS: See transmission subsystem. 

ups: Uninterruptible power supply. 

vertical microcode: Microcode that defines logical 
operations on data, is primarily sequential in execution 
and supports the System/38 machine instruction set. 

virtual address: The address of a storage location 
within virtual storage. 

Glossary 8-9 



virtual storage: The combination of main storage and 
auxiliary storage, treated as a single addressable unit. 

VMC: See vertical microcode. 

volume table of contents: An area on a disk or 
diskette that describes the location, size, and other 
characteristics of each data file on the disk or diskette. 

J 



#CFCTASK 37-9 
#CFDAMEH 36-17 
#CFDESTO A-1 
#CFFIWA A-2 
#CFGIWA A- 2 
#CFGTMWS A-1 
#CFLOGRL A-2 
#CFMIDEH 36-11 
#CFOCHKR A-2 
#CFRWTO 38-12. 38-15 
#CFSGEVT 35-3 
#CFSPECF 36-13 
#CFVFYEH 36-12 
#CFWTO 38-11 
#CRWTOC 38-12 
#DBXBLKY 2-16 
#DBXFDSH 2-5 
#DBXFIXH 2- 5 
#DBXMUSE 2-4 
#DBXRINX 2-5 
#DOMATIA 12-2 
#DOMTINS 12-2 
#DOMTPTL 12-1 
#DOMTPTR 12-1 
#DOMTSOB 12- 1 
#DOTRCEX 12-2 
#DOTRCLE 12-2 
#DOTRIEV 12-2 
#DOTRINS 12-1 
#DOTRINX 12-2 
#DOTRNV 12-2 
#DOTRSEV 12-1 
#EMDBLED 35-2 
#EMEBLED 35-2 
#EMMNEVT 35-1 
#EMREVTD 35-2 
#EMSGEVT 35-2 
#EMTSEVT 35-1 
#IXCRTIX 3-2 
#IXDESTIX 3-2 
#IXINSEN 3- 4 
#IXMAIN 3-3 
#IXMATAT 3-4 
#IXMODII 3-4 
#JOAPPL Y 4-5 
#JOCRT JP 4-5 
#JOCRTJS 4-5 
#JODESJP 4-6 
#JODESJS 4-6 
#JOIN IT 4-8 
#JOJOBJ 4-6 
#JOMATJO 4-7 
#JOMATJP 4-6 

#JOMATJS 4-6 
#JOMATOA 4-7 
#JOMODJP 4-7 
#JORETEN 4-7 
#JOURDAT 4-6 
#JOURNL 4-6 
#LDPREP 26-3 
#LOCHPCI 21-6 
#LOCHRCI 21-6 
#LOSHIOM 21-3 
#MSAELRB 27-12 
#MSCABAN 27-2 
#MSCDIAL 27-2 
#MSCDRDC 27-13 
#MSCPTSK 27-1 
#MSCVOFF 27-2 
#MSERRLG 22-1 
#PMDTYPR 37-9 
#PMEXGEN 37-9 
#PMINIT 10-2 
#PMINPR1 37-4 
#PMINPR2 37-4 
#PMMATER 37-5 
#PMMODF1 37-5 
#PMMODF2 37-5 
#RMCACG 38-26. 38-28 
#RMCCDX 38-30 
#RMGFEX 36-14 
#RMGTREQ 38-12 
#RMINIPI 38-15 
#RMLKDX 38-31 
#RMMACG 38-28 
#RMMDTOD 38-11 
#RMMTIOD 38-11 
#RMSDTSK 38-22 
#RMSZDX 38-31 
#RMWTOE 38-12 
#RTVMCIR 10-1 
#SMACDIR 8-6 
#SMAGCRT 7-4 
#SMAGDES 7-4 
#SMAGEXT 7-4 
#SMMSIT 8-14 
#SMSGCRT 7-4 
#SMSGDES 7-5 
#SMSGEXT 7-5 
#SMSGTRC 7-5 
#SMSHTDN 7-7 
#SOCRT 6-1 
#SODES 6-3 
#SOMAT 6-1 
#SOMOD 6-1 
#SVE8PPR 8-1 

Index 

Index X-1 



#SV1FBDY 38-15 
#SV2DCRT 7-2 
#TPBROIC 20-4 
#TPLACIN 24-5 
#TPLACOT 24-5 
#TPLALK1 24-4 
#TPLAUDL 24-5 
#TPLCOUT 24-5 
#TPLDAKO 24-13 
#TPLDCIN 24-5 
#TPLESCR 24-5 
#TPLSRMR 24-6 
#TPLWDNS 24-5 
#TPLXIDO 24-5 
#TPLXID1 24-5 
#TPLXID2 24-5 
#TPN ROIO 29-7 
#TPRALKO 24-4 
#TPROIO 20-4 
#TPSFMX 24-10 
#TPSROID 31-5 
#TXXIOM 34-7 
#XCODEGN 18-4 
#XDATAGN 18-4 
#XEH 18-4 
#XINIT 18-4 
#XLATOR 18-1 
#XODTSC 18-4 
#XREGOPT 18-4 
#XSCAN 18-4 
#XTERM 18-4 

A 

access exception handler 36-10 
access exceptions 38-1 
access group 

control 38-25 
create segment in 7-4 
creation 38-26 
data area 38-28 
data areas 7 -9, 8-14 
destroy segment in 7-4 
destruction 38-28 
exception processing 38- 28 
extent segment in 7-4 
member directory 8-14 

data area 7-11,8-14 
operations, serialization of 7-4 
processing 7-3 
table of contents 8-14 
table of contents data area 7 -12 
truncate segment in 7-4 

address translation (page fault) exception 
handler 36-5 

addressing, virtual storage 0-4 
advanced program-to-program 
communications 19-1 

X-2 

advanced program-to-program 
communications (continued) 

error logging 19-9 
I/O support 19-7 
instruction support 19-4 
SNA support 19-6 

alternate IMPL 0-14 
apply journal changes 4-5 
ASM locks 7-6 
asynchronous message handling 27-8 
attribute materialization 38-28 
authorization enforcement 

object authorization 14-2 
privileged instruction 14-2 
resource usage 14-2 
special authorization 14-2 

authorization management 
data areas 14-3 
modules 14-5 
object function 0-7, 14-1 

auxiliary storage 
initialization 7-7 
management 7-1 
management locks 7-6 
management modules 7 -13 
space accounting 7-3 

auxiliary storage usage field 14-4 

B 

binary synchronous communications 
I/O manager 20-1 

data areas 20-6 
modules 20-7 

bring/purge access group 8-11 
busy exception 38-2 
busy exception handling 36-9 

c 

call / return element availability 38- 2 
cancel event monitor 35-2 
cancel trace 12-2 
chain conflict end-of-chain and second 
chain exception handle 36-14 

channel error message 21-7 
channel event processing function 21-3 
channel I/O management 21-1 
channel I/O management modules 21-7 
channel vary on/off message 21-7 
cleanup routine, internal 25-5 
clock comparator data area 38-30 
commit management 0- 2, 1-1 

commit 1-3 
commitment control 1-1 



commit management (continued) 
cursor support 1-5 
data areas 1 - 7 
data space index 1-2 
data spa.ce support 1-6 
decommit 1-3 
journal support 
record locking 
recovery, IMPL 
structure 1 -9 

1-4 
1-2 
1-2 

common function A-1, 0-13 
components, relationship of 0-14 
connect 24-6 
context data areas 15-2 
context management 

data areas 15-2 
introduction 1 5 -1 
modules 15-6 
object function 0- 7 

controller description data area 23-3, 
29-9 

CRE availability 38-2 
create 

independent index 3-2 
instruction processors 23-1 
process control space 37-4 
segment 7-4 
segment in access group 7-4 
space 6-1 
task 37-9 

create journal port 
create journal space 
CSEH request block 
cursor 2-23 

4-5 
4-5 
36-17 

cursor recovery 2-7 
cursors 2-2 

D 

damage CSEH 36-17 
data area 

access group 38-28 
member directory 7 -11, 8-14 
table of contents 7 -12 

clock comparator 38-30 
context 15-2 
controller description 
CSEH request block 
encapsulated program 

23-3, 29-9 
36-17 

18-5 
encapsulated program architecture 
header 15-6 

error log request 22-1 
~vent index 35-4 
function address table 
function operation block 
hold hash table 38-30 
hold record 38-30 
invocation control block 

32-5 
29-11 

14-4 

data area (continued) 
link control block 28-7 
link control block (LKB) 24-15 
lock/ unlock input 38-30 
lock-wait 38-31 
logical unit description 23-3, 29-9 
lookaside directory 8-14 
lookaside table 29-11 
machine communication area 15-6 
machine initialization status record 
(MISR) 10-6 

machine-wide storage 24-15 
monitor event template 35-4 
name resolution list 15-6 
native control block 29-10 
network description 23-4 
operation request 
element/ program 
operation block 29-11 

OU/ND table 23-4 
paging request element 8-15 
permanent directory 7 -10 
primary directory 8-15 
process automatic storage area 17-3 
process control block 

(nonresident) 35-4 
(PCB) 14-4 
(resident) 35-4 

process control space 37 -10 
process definition template 37 -10 
process static storage area 17-5 
program template 18-5 
routing table 29-10,31-7 
sector headers 7 -13, 8-1 5 
seize/release input 38-31 
seize-wait 38-31 
service order table 28- 7 
signal event messages 35-4 
source/sink active device list 27-24 
static directory 8-14 
station control block 31-6 
storage management vector 8-15 
storage management vector table 7-13 
storage pools 8-16 
storage queues (search and change) 8-16 
system pointer 14-4 
task dispatching element 15-6, 35-4 
temporary directory 7 -10 
trace table 12-2 
user message for SCA 10M 32-4 
user profile 14-3 
VMC communications area (VCA) 10-6 

data areas 19-1 
access group 7 -9, 8-14 
authorization management 14-3 
binary synchronous 
communications 
I/O manager 20-6 

context management 15-2 
controller description table 20-6 

Index X-3 



data areas (continued) 
data base management 2-7 
error log 22-2 
event management 35-4 
free space directory 7-9 
half-session control block 30-10 
independent index 3-4 
index control block 9-6 
index description template 3-5 
in itia lization / termi nation 
management 10-6 

journal management 4-8 
link control block 20-6 
machine check management 11 -3 
machine observation management 12-2 
machine services control point 27-24 
multi-leaving telecommunications access 
method I/O manager 28-7 

network architecture control block 30-9 
operation request element 20-6 
permanent directory 8-14 
process management 37-10 
program execution management 17-3 
program management 18-5 
queue management 5-2 
resource management 38-28 
service order table 20-6 
SNA output areas 30-10 
source/sink 0-10, 23-3, 29-11 
space object management 6-3 
station I/O management 31-6 
synchronous data link control input 
areas 30-10 

synchronous data link control 
primary I/O manager 24-15 

synchronous data link control 
secondary I/O manager 30-9 

system control adapter I/O 
management 32-4 

temporary directory 8-14 
data base management 

data function 0-2, 2-1 
data sharing 2-2 
modules 2-28 
recovery and IPL 2-6 
structure 2-28 

data base objects, locking 2-2 
data function 0-2 

data base management 0-2, 2-1 
independent index management 0-3 
queue management 0-3 
space object management 0-3 

data pointer resolution 15-1 
data sharing 2-2 
data space 2-8 

index 2-12 
index recovery 2-7 

X-4 

data space (continued) 
management data areas 2-7 
recovery 2-7 

destroy 
independent index 3-2 
instruction processors 23-1 
object A-1 
process control space. 37-4 
segment 7-5 
segment in access group 7-4 
space 6-3 
task 37-9 

destroy journal part 4-6 
destroy journal space 4-6 
directory lookup 8-6 
directory recovery, storage 
management 7-7 

disable event monitor 35-2 
dump journal space 4-7 
dump space management 6- 2 
dumping objects 26-4 

E 

effective address overflow exception 
handler 36-5 

emulation, 3270 33-1 
enable event monitor 35-2 
encapsulated program architecture 
(EPA) header data area 15-6 

encapsulated program data area 
error checking the I/O request 
error log 

data areas 22-1 
modules 22-2 
request data area 

establishing a CSEH 
event index data area 
event management 

data areas 35-4 
introduction 35-1 
modules 35-5 

22-1 
36-15 

35-4 

18-5 
26-4 

supervisor and control function 0-11 
exception backout 38-16 
exception handler modules 36-18 
exception management 0-11, 36-1 
exchange bring / clear 8-11 
extend segment 7-5 
extend wait-request queue 38-12 
extent segment in access group 7-4 



I 

'L 
I 

I 

L_ 

F 

FAT 32-5 
FBR 0-10 
feedback record 0-10 
find entry 9-4 
find/remove independent index entry 3-3 
first-level exception handler 36-4 
FLEH 36-4 
free space directory data areas 7-9 
free space from IWA A-2 
function 

common 0-13 
data 0-3, 2-1 
internal machine 
machine support 
object 0-7 
objects 14-1 

0-4, 7-1 
0-6, 38-1 

program control 0-8, 17-1 
source/sink 0-9 
supervisor and control 0-11, 35-1 
vertical microcode 0-1 

function address table data area 
function operation block data area 

G 

get space from IWA A-2 

H 

hold hash table data area 38-30 
hold record data area 38-30 

I/O managers 0-9 
I/O pending 8-10 
ICB 14-4 
IMPL 0-14, 10-1 

alternate 0-14 
in-use table 2-27 
independent index 

attributes, materialize 3-4 
create 3-2 
data areas 3-4 
destroy 3-2 
entry find/remove 3-3 
entry, insert 3-4 
management 0-3, 3-1 
modify 3-4 
modules 3-5 

32-5 
29-11 

index control block 9-6 
index control block, data areas 9-6 
index description template data areas 3-5 
index structure 9-2 
initial microprogram load (I M PL) 10-1 
initial program load (lPL) 10-3 
initialization 38-10 

auxiliary storage 7-7 
main storage 8-13 

in itia I ization / termination 
management 0-6, 10-1 

data areas 10-6 
initiate process 37-4 
initiate process interrupt 38-15 
insert entry 9-5 
insert independent index entry 3-4 
instruction processors 0-9 
instructions, trace 12-1 
interface, synchronous data link 
control secondary I/O managers 30-1 

intermediate mapping 2-12 
internal cleanup routine 25-5 
internal machine functions 0-4, 7-1 
Internal machine functions, 
machine index management 0-6 

internal machine functions, 
storage management 0-4 

internal microprogram load 0-14 
internal trap 24-14 
interrupt function router 38-15 
invalid segment group address exception 
handler 36-15 

invocation control block (lCB) data 
area 14-4 

invocation destruction 
invoking ASM functions 
10M queue 0-10 
IPL 10-3 
IPL recovery 4-7 

17-3 
7-2 

IPL synchronization 4-8 

J 

journal data 4-6 
journal management 4-1 
journal management 

data areas 4-8 
object functions 0-7 
structure 4-9 

journal modules 4-9 
journal object 4-6 

Index X-5 1 



K 

key specification area 2 -15 

L 

leaving instruction wait 38-22 
link control block 34-3 
link control block (LKB) data area 24-15 
link control block data area 28-7 
load/dump 

load / dump activation 26-4 
load/ dump and suspend 2-4 
load/dump management 26-1 

modules 26-8 
load journal space 4-7 
loading objects 26-6 
local I/O manager modules 25-5 
local I/O managers 25-1 
lock enforcement 38-6 
lock entries 2-3 
lock support 38-6 
lock/unlock input data area 38-30 
lock-wait data area 38-31 
locking data base objects 2-2 
locks, auxiliary storage management 7-6 
logical unit description data area 23-3, 
29-9 

lookaside directory 8-14 
data area 8-14 

lookaside table 29-11 

M 

machine check management 
data areas 11 -3 
introduction 11-1 
machine support function 0-6 

machine communication area (MCA) data 
area 15-6 

machine configuration record (MCR) 0-10 
machine index management 0-6, 9-1 
machine index management modules 9-7 
machine index structure 9-7 
machine indexes, operations on 9-4 
machine initialization management 
modules 10-6 

machine initialization status record 
(MISR) 10-6 

machine initialization status 
record (MISR) data areas 10-6 

X-6 

machine observation management 
data areas 12 - 2 
introduction 12-1 
machine support function 0-7 
modules 12-2 

machine processing, terminate 10-6 
machine services control point 

data areas 27-5 
introduction 27-1 
modules 27 -18 
source / sink function 0-9 

machine support function 
initialization/termination management 0-6 
introduction 0-6 
machine check management 0-6 
machine observation management 0-7 
resource management 38-1 
service and installation management 0-7 

machine-wide storage A-1 
data area 24-1 5 

main storage 
initialization 8-13 
management 8-1 

modules 8-17 
paging function 8-1 
paging function tasks 8-1 

mainline processing 8-4 
management 

authorization 0- 7, 14-1 
auxiliary storage 7-1 
context 0-7, 15-1 
data base 0-3, 2-1 
event 0-11, 35-1 
exception 0-11, 36-1 
independent index 0-3, 3-1 
initialization /termination 0-7 
machine check 0-6, 11-1 
machine index 0-6, 9-1 
machine observation 0-7, 12-1 
main storage 8-1 
process 0-11, 37-1 
program 0-8, 18-1 

program execution 0-8, 17-1 
queue 0-3, 5-1 
resource 0-12, 38-1 
service and installation 0-7, 13-1 
space object 0-3, 6-1 
storage 0-4 
system control adapter I/O 32-1 

managers, I/O 0-9 
materialization, program 18-4 
materialize 

independent index attributes 3-4 
instruction processors 23-1 
invocation 12-2 
machine attributes (time-of-day) 38-11 
point locations 12-1 
pointer 12-1 
process attributes 37-5 
space attributes 6-1 



materialize (continued) 
system object 12-1 

materialize journal port attributes 
materialize journal space attributes 
materialize jotJrnaled object 
attributes 4-7 

materialize journaled objects 4-7 
MCA 15-6 
MCR 0-10 

4-6 
4-6 

member directory, access group 7 -11 
message elements, queue 5-3 
MISR 10-6 
modify 

controller description 
(asynchronous) 27-7 

controller description 
(synchronous) 27-2 

instruction processors 23-1 
logical unit description 
(synchronous) 27 - 5 

LUD processing 26-6 
machine attributes (time-of-day) 
network description (synchronous) 
process attributes 37-5 
space attributes 6-1 

modify independent index 3-4 
modify journal port 4-7 
modify process event mask 35-3 
modules 

38-11 
27-5 

authorization management 14-5 
auxiliary storage management 7 -13 
channel I/O management 21-7 
context management 15-6 
data base management 2-28 
error log 22-2 
event management 35-5 
exception handler 36-18 
independent index management 3-5 
journal 4-9 
load/dump management 26-8 
local I/O manager 25-5 
machine index management 9-7 
machine initialization management 10-6 
machine observation management 12-2 
machine services control point 27-26 
main storage management 8-17 
native I/O management 29-11 
process management 37-11 
program execution management 17-7 
program management 18-7 
queue management 5-3 
resource management 38-32 
service and installation 
management 13-1 

source/sink instruction processor 23-4 
space object management 6-3 
station I/O management 31-8 
synchronous data link control I/O 
manager 24-16 

modules (continued) 
synchronous data link control 
secondary I/O managers 30-12 

system control adapter I/O 
management 32-5 

monitor event 35-2 
monitor event template data area 35-4 
MSCP 27-1 
MSCP functions 29-7 
MSM 8-1 
MSM locks 8-12 
mUlti-leaving telecommunications access 
method I/O manager 

data areas 28-7 
introduction 28-1 
modules 28-7 
structures 28-7 

multiprogramming level support 38-17 

N 

name resolution list (NRL) data area 15-6 
native control block data area 29-10 
native I/O management 

I/O support 29-7 
introduction 29-1 
modules 29-11 
SNA support 29-4 
System/38 instruction support 29-3 

network description data area 23-4 
NRL 15-6 
numeric exception handler 36-14 

o 

object authorization 14-2 
object checker A-2 
object function, journal management 4-1 
object functions 0-7, 14-1 
object functions, authorization 
management 0-7 

object functions, context management 0- 7 
object functions, journal management 0-7 
object list data area 4-9 
object serialization 38-3 
operation request element (ORE) 0-10 
operation request element/ program 
operation block 29-11 

operational unit (OU) queue 0-10 
operations on machine indexes 

find entry 9-4 
insert entry 9-5 
remove entry 9-6 

Index X-7 



ORE 0-10 
OU 0-10 
OU/ND table data area 23-4 
overview, vertical microcode 0-1 

p 

page out task 8- 7 
page replacement 8-6 
pageable channel 10M 21-6 
paging function 

main storage management 8-1 
MSM 8-1 
tasks 8-1 

paging request element 
data area 8-15 
processing 8-3 

PCB 14-4, 15-6 
PCS 37-10 
PDT 37-10 
permanent directory 8-14 
permanent directory data area 7-10 
permanent directory data areas 8-14 
point locations, materialize 12-1 
pointer tags 8-12 
pointer, materialize 12-1 
PRE 8-3, 8-15 
PRE processing 8-3 
primary directory 8-15 
primary directory data area 8-15 
privileged instruction 14-2 
process 

attribute initialization 38- 24 
automatic storage area data area 17-3 
control block (nonresident) data 
area 35-4 

control block (PCB) data area 14-4 
control block (resident) data area 35-4 
control block data area 15-6 
control space data area 37 -1 0 
definition template data area 37-10 
interruption 38-12 
management 0-11, 37-1 

data areas 37 -1 0 
modules 37-11 

static storage area data area 17-5 
termination 38- 25 

processing 
access group 7-3 
mainline 8-4 
PRE 8-3 

processors 
create instruction processors 23-1 
destroy instruction 23-1 
instruction 0-9 
materialize instruction 23-1 
modify instruction 23-1 
request I/O 23-1 

X-8 

processors (continued) 
source / sink instruction 23-1 

program 
creation 18-1 
deactivation 17-3 
destruction 18-4 
execution management 0-8, 17-1 

data areas 17-3 
modules 17-7 

invocation 17 - 2 
management 0-8, 18-1 

data areas 18-5 
modules 18-7 

materialization 18-4 
observability 18-4 
template data area 18-5 
user exit 2-22 

program activation 17-1 
program control functions 0-11, 17-1 

program execution management 0-8 
program management 0-8 

program-to-program communications 19-1 

Q 

OCT 0-10 
queue control table (OCT) 0-10 
queue management 

data areas 5-2 
data function 0-3 
introduction 5-1 
modules 5-3 
recovery 5- 2 

queue message elements 5-3 

R 

read data store 24-14 
receive message with wait- ,Ime-out 38-15 
receive-wait time-out handler 38-16 
receive with time-out 38-12 
recoverable error processing 26-8 
recovered object list 10-7 
recovery 

cursor 2-7 
data space 2- 7 
data space index 2-7 
queue management 5-2 

recovery initialization 0-7, 16-1 
relationship of components 

alternate IMPL 0-14 
internal microprogram load (lMPL) 0-14 
vertical microcode and the 
System/38 instruction set 0-15 

remove entry 9-6 
report object on object recovery A-2 

J 



L 
request I/O processors 23-1 
resident channel 10M 21-6 
resource management 

attribute control 38-22 
attributes modification 38-25 
data areas 38- 28 
introduction 38-1 
modules 38-32 
service task 38-22 
supervisor and control function 0-12 

resource usage 14-2 
resume process 37 - 7 
retrieve event data 35-2 
retrieve journal entries 4-7 
routing table data area 29-10, 31- 7 

s 

SCA 32-1 
SOLC autopoll flow 24-12 
SDLC I/O manager 24-1 
second-level exception handler 36-10 
sector headers 8-15 
sector headers data area 7 -13, 8-15 
segment 

create 7-4 
destroy 7-5 
extend 7-5 
truncate 7 - 5 

seize/release 38-5 
seize/release input data area 38-31 
seize-wait data area 38-31 
send /receive messages 0-10, 26-6 
serialization (non-access group) 7-6 
serialization of access group 
operations 7-4 

serialization of process 
interruption 38-16 

service and installation 
management 0-7, 13-1 

service and installation management 
modules 13-1 

service order table data area 28-7 
session control 29-6 
shutdown, storage management 7 - 7 
signal event data 35-2 
signal event messages data area 35-4 
SLEH 36-10 
source / sink active device list 0-10 
source/sink active device list data 
area 27-24 

source/sink data areas 0-10,23-3,29-11 
source/sink functions 

I/O managers 0-9 
instruction processors 0-9 
machine services control point 0-9 
source/sink data areas 0-10 

source/sink instruction 
instruction processors 23-1 
processor modules 23-4 

source/sink OU/NO table 0-10 
space 

create 6-1 
destroy 6-3 

space accounting, auxiliary storage 7-3 
space attributes, materialize 6-1 
space attributes, modify 6-1 
space object management 0-2, 6-1 
space object management data areas 6-3 
space object management modules 6-3 
special authorization 14-2 
specification default exception 
handler 36-13 

start/halt device function 21-1 
static directory 8-14 
static directory data area 8-14 
station control block data area 31-6 
storage addressing, virtual 0-4 
storage management 

directory recovery 7-7 
internal machine function 0-4 
shutdown 7 - 7 
vector 8-15 
vector data a rea 8 -1 5 
vector table (SMVT) data area 7-13 

storage pools 8-16 
storage pools data area 8-16 
storage queues (search and change) 8-16 
storage queues (search and change) data 
area 8-16 

structure 16-1, 19-11 
structure, data base management 2-28 
structure, journal management 4-9 
supervisor and control functions 

event management 0-11 
exception management 0-11 
process management 0-11 
resource management 0-12 

suspend journal space 4-7 
suspend process 37-5 
synchronous data link control primary 
line I/O manager 

contact 24-6 
data areas 24-15 
discontact 24-6 
error flow 24-13 
introduction 24-1 
modules 24-16 
normal flow 24-4 
SOLC autopoll flow 24-12 
test 24-10 
vary off 24-13 

synchronous data link control secondary 
I/O managers 

error logging 30-9 
I/O support 30-8 
interface 30-1 

Index X-9 



synchronous data link control secondary 
I/O managers (continued) 

introduction 30-1 
SNA support 30-5 
System/38 instruction support 30-4 

synchronous data link control station 
I/O management 

data areas 31-6 
error logging 31-6 
I/Osupport 31-5 
introduction 31-1 
modules 31-8 
SNA support 31-4 
System/38 instruction support 31-3 

system control adapter I/O management 
data areas 32-4 
introduction 32-1 
modules 32-5 

system object, materialize 12-1 
system pointer data area 14-4 
system-wide journal list data area 4-8 
System/38 instruction wait 38-20 

T 

table of contents, access group 7 -12 
task dispatching element (TOE) 0-14 
task dispatching element data area 15-6, 
35-4 

task dispatching queue (TOQ) 0-14 
TOE 0-14, 15-6,35-4 
TOE access exception handler 38-15 
TOE availability 38-3 
TOE time-out 38-2 
TOQ 0-14 
temporary directory 8-14 
temporary directory data area 
temporary directory data areas 
terminate machine processing 
terminate process 37-7 
test event 35-2 

7-10 
8-14 

10-6 

third level exception handler 36-14 
time-slice end 38-20 
time-slice end and CRE exception 
handler 36-5 

timer services 38-11 
TLEH 36-14 
trace and cancel trace invocations 12-2 
trace instructions 12-1 
trace table data area 12-2 
translate tables 2-12 
translation, 3270 33-5 
trap table 34-5 
truncate segment 7-5 
truncate segment in access group 7-4 

X-10 

u 

user exit program 2-22 
user message for SCA 10M 32-4 
user profile data area 14-3 
user profile index and table 14-5 
user profile recovery 14-4 

v 

VCA 10-6 
verify exception handler 36-12 
vertical microcode and the 
System/38 instruction set 0-15 

vertical microcode functions 0-1 
vertical microcode overview 0-1 
virtual storage addressing 0-4 
VMC communications area data area 10·6 
VMC default exception handler 36-11 

w 

wait on event 35-2 
wait time-out 38-11 
wait time-out cancel 38-12 
wait time-out for event 38-12 

x 

X.25 10M 34-1 

3270 emulation 33-1 
BSC 33-1 
manager 33-1 

3270 emulation data areas 33-6 
3270 emulation structure 33-7 
3270 translation 33-5 



IBM System!38 
Vertical Microcode Logic 
Overviews and Component Descriptions Manual SY21-0889-5 

READER'S COMMENT FORM 

Please use this form only to identify publication errors or to request changes in publications_ Direct 
any requests for additional publications, technical questions about IBM systems, changes in IBM 
programming support, and so on, to your IBM representative or to your nearest IBM branch office_ You 
may use this form to communicate your comments about this publication, its organization, or subject 
matter, with the understanding that IBM may use or distribute whatever information you supply in any way 
it believes appropriate without incurring any obligation to you. 

D If your comment does not need a reply (for example, pointing out a typing error) check this box 
and do not include your name and address below. If your comment is applicable, we will 
include it in the next revision of the manual. 

D If you would like a reply, check this box. Be sure to print your name and address below. 

Page number(s): Comment(s) : 

No postage necessary if mailed in the U.S.A. 

Please contact your nearest IBM branch office to request 
additional publications. 

Name 

Company or 
Organization 

Address 

Phone No. 

City State Zip Code 

Area Code 



Fold and tape. Please do not staple. 

-------------------------------------------------------------------------------------------, 

BUSINESS REPLY MAIL 
FIRST CLASS / PERMIT NO. 40 / ARMONK, NEW YORK 

POSTAGE WILL BE PAID BY ADDRESSEE 

International Business Machines Corporation 
Information Development 
Department 245 
Rochester, Minnesota, U.s.A. 55901 

NO POSTAGE 
NECESSARY 
IF MAILED IN THE 
UNITED STATES 

------------------------------------------------------------------------------------------~ 
Fold and tape. Please do not staple. 

---------- - ---- ---- - ---- - - ------------'-




